EEmsl (EH)

High order hyperbolic approach for diffusion
dominated flows

(HEER 3 S 72 RAVIT N 9™ B i dORE B RUHH B e i)

CHAMARTHI AMARESHWARA SAINADH
Frv—v— TA-LvaT—5— HAFE

RO KRR F e T2 R W52 RY
Mitae T T E I






ACKNOWLEDGEMENTS

I am heartily thankful to my academic advisor and mentor, Prof. Kimiya Ko-
murasaki, for his guidance and support. His unwavering support and guidance
through the successes and the setbacks has made this work possible. Komurasaki
Sensei’s trust in my abilities has been a major contributor to my success. Thank you.

I would also like to thank my dissertation committee members: Prof. Kojiro
Suzuki, Prof. Takehiro Himeno and Prof. Ikkoh Funaki for agreeing to examine my
thesis and provide critical feedback on my work. I sincerely thank them for their time
and assistance in refining this work.

I would also like to take this opportunity to thank Dr. Hiroyuki Koizumi, Dr.
Tony Schonherr and Dr. Rei Kawashima for their suggestions during seminars, as-
sistance, and encouragement with my research work. I sincerely thank Dr. Hiroaki
Nishikawa from National Institute of Aerospace, and Prof. Taku Nonomura from
Tohoku University for all the support they provided during our discussions regarding
numerical schemes. Their time and effort is sincerely appreciated.

Thanks to my lab members, Florian, Bak, Wang, Hamada and Ito for numerous
discussions and their valuable suggestions during the seminars. Special thanks to my
friend Abhishek from India, who patiently listened to my ramblings about CFD, for
the invaluable discussions. It was great sharing ideas with you.

Most of all, I want to acknowledge my parents for all their support, and my
wonderful wife, Jyothi. Thank you for putting up with my constant ‘I have to code

or derive’, late nights, and weekends. You gave up tropical climate for cold and harsh



Tokyo winters and was always on my side during these three years even when we were
squeaking through at poverty level. Thank you.

Finally, I owe special thanks to Monbukagakusho Scholarship (MEXT) for spon-
soring my research in Japan. It would be very difficult to complete my dissertation

work without this financial assistance.

1



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . .. ... ... .. . ...
LIST OF APPENDICES . . . . . . . . ... . . ..
LIST OF FIGURES . . . . . . . .. . o .

LIST OF TABLES . . . . . . . . . .

CHAPTER

I. Introduction . . . . . . . ..

1.1 Background . . . . . . . .. ...
1.2 Review of Previous Work . . . . .. .. ... ... ... ...
1.2.1 First order hyperbolic approach . . . . ... .. ..
1.2.2  Numerical methods for anisotropic diffusion . . . . .
1.2.3  Hall Thruster electron fluid modelling . . . . . . ..
1.3  Objectives and Outline of this thesis . . . . . ... ... ...

II. Numerical methods for hyperbolic conservation laws . . . . .

2.1 Imtroduction . . . . .. ...
2.2 Upwind Schemes . . . . . . . .. .. ... ... ... ....
2.2.1  Weighted Essentially Non-Oscillatory Schemes . . .

2.2.2  Linear Explicit and Compact reconstruction polyno-

mials . . ..o

2.2.3 Total variation diminishing schemes . . . . . . . ..

2.3 Time discretization . . . . . . . . . . . ...

III. Hyperbolic approach for Diffusion equation . . . . . . . . . ..

1l

vi

X1

N Ot W NN

10

10
13
13



3.1 Governing equation and construction of hyperbolic scheme . . 21

3.1.1 Homogeneity and flux vector splitting . . . . . . . . 23
3.2 Boundary Conditions . . . ... ... .. ... ... ..... 25
3.2.1  Weak boundary formulation . . ... ... .. ... 25

3.2.2  Strong boundary: Lagrange type extrapolation for
ghostcells . . ... ... . ... 26
3.3 Numerical tests . . . . . .. .. ... oo 28
3.3.1 One-dimensional test cases . . . . . . ... .. ... 29
3.3.2 Effect of shock capturing schemes . . . . . ... .. 33
3.3.3 Comparison with existing schemes . . . . . . . . .. 34
3.3.4 Two-dimensional test cases . . . . . ... ... ... 36
3.3.5  Effect of Length scale L, and Relaxation time 7,, . 42
3.3.6  Effect of dimensions . . . . . . .. ... 43
3.4 Summary . ... ... 45
IV. Hyperbolic approach for Anisotropic Diffusion . . . . . . . .. 47
4.1 Governing equations . . . . . .. ... Lo L 47

4.1.1  Construction of hyperbolic scheme and preconditioned

system . ... 50

4.1.2 Boundary conditions: WENO extrapolation . . . . . 52

4.2 Numerical tests and discussion . . . . . .. .. ... .. ... 53
4.2.1 Effect of boundary conditions . . . .. .. ... .. 62

4.2.2  Mesh convergence and accuracy for electron fluids . 65

4.3 Summary . . ... .. 66
V. Hyperbolic approach for Advection-Diffusion equation . . . . 67
5.1 Governing equations and construction of hyperbolic scheme . 67
5.2 Boundary conditions . . . . . ... ... L. 69
5.3 Numerical tests . . . . . .. ... oo 69
5.3.1 One-dimensional test cases . . . . . .. .. .. ... 70

5.3.2 High-Reynolds number flows and Péclet number . . 72

5.3.3 Two-dimensional test cases . . . . . ... ... ... 74

5.4 Summary of the chapter . . . . . . . .. ... ... ... ... 78

v



VI. Conclusions . . . . . . . . . . . s, 79

6.1 Summary . . . . .. .. 79

6.2 Recommendations for Future Work . . . . . . . . ... .. .. 81

6.2.1 Optimum length scale for higher order schemes . . . 81

6.2.2 Positivity preserving . . . . . . ... ... 82

6.2.3 Other system of equations . . . .. ... ... ... 82

APPENDICES . . . . . 84
A.1 One-dimensional test cases . . . . . . . . . . . .. ... ... 85

A.2 Two-dimensional test cases . . . . . . . . .. ... ... ... 88
BIBLIOGRAPHY . . . . . 90



LIST OF APPENDICES

Appendix

A.  Verification of numerical methods

vi



Figure

1.1

1.2
2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6
3.7

LIST OF FIGURES

Anisotropic diffusion with parallel and perpendicular diffusion coef-
ficients on a non-aligned grid. . . . . .. ... ... ... .. ...
Schematic of Hall thruster working. . . . . . . . .. ... ... ...

Domain discretization illustrating cell nodes, cell interfaces and ghost

Left and right states at the cell interfaces and interpolation stencils
for WENO. . . . . .
Characteristic waves at the boundary for hyperbolic approach. . . .
Ghost cell approach showing Dirichlet boundary condition. . . . . .
Example 3.1 using different schemes. Dashed line: analytical; red
stars: U-3E; blue squares: U-5C; magenta diamonds: U-5E. . . . . .
Example 3.1 Ly convergence errors for one-dimensional test case using
central scheme,U-3E, U-5C, U-5E, and WENO-5Z. . . . . . . .. ..
Example 3.1 Effect of boundary conditions. blue triangles: ghost
cells; black circles - weak boundary. . . . . .. ... ... ... ...
Example 3.1 Effect of TVD schemes. . . . . . .. ... ... ....
Example 3.1 Effect of WENO schemes. . . . . .. ... ... ....

vil

11

14

26

27

30

31

32



3.8

3.9

3.10

3.11

3.12

3.13

3.14

4.1

4.2
4.3

Example 3.2 Comparison of current approach and schemes proposed

in Ref.[!] Dashed line: analytical; blue circles: Nishikawa; red stars:

Example 3.3 Comparison of analytical solution and by upwind scheme

U-5E for diffusion equation are shown in (a) and (b) respectively. . 37
Computed values at geometric center and Lo convergence errors for
various schemes are shown in (a) and (b) respectively for Example

3.3. Dashed line: analytical; red stars: U-3E; blue squares: U-5C;
magenta diamonds: U-5E; green triangles: WENO-5Z.. . . . . . .. 37
Computed values at geometric center and Lo convergence errors for
various schemes for Neumann boundary condition, Example 3.4. Dashed
line: analytical; red stars: U-3E; blue squares: U-5C; magenta dia-
monds: U-5E; green triangles: WENO-5Z. . . . . . . ... ... .. 39
Computed values at geometric center and Lo convergence errors for
various schemes for Poisson equation, Example 3.5, are shown here.
Dashed line: analytical; red stars: U-3E; blue squares: U-5C; ma-
genta diamonds: U-5E; green triangles: WENO-5Z. . . . . . .. .. 41
Effect of relaxation length for the diffusion equation. Fig. (a) Exam-

ple 3.1 and Fig. (b) Example 3.4. . . . .. ... ... ... .. ... 43

Example 3.7 Simulation results for equations with dimensions on a

grid size of 80x80 and order of accuracy of upwind schemes. . . . . 45
[lustration of symbols, p, gy and 6. . . . .. ... ... ... ... 48
Sketch of the magnetic field lines for 45° angle. . . . . . . . . .. .. 54

Comparison of velocity streamlines with increasing strength of mag-
netic confinement on a grid of 192 x 96. Top row: Upwind-3E; middle

row: Upwind-5C; bottom row: Upwind-5E. . . . . . . .. . ... .. 56

viil



4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

Comparison of velocity streamlines with increasing strength of mag-

netic confinement on a grid of 192 x 96. Top row: MFAM; Middle

row: Generalized-MUSCL; bottom row: WENO-5Z-L. . . . . . . .. 57
Comparison of normalized velocity in y-direction with increasing p /4 on

a 192 x 96 grid. Top row: Upwind-3E; middle row: Upwind-5C; bot-

tom row: Upwind-5E. . . . . . .. ... 59
Comparison of normalized velocity in y-direction with increasing p /4 on

a 192 x 96 grid. Top row: MFAM; Middle row: Generalized-MUSCL;
bottom row: WENO-5Z-L. . . . . . . ... ... ... ... ..., 60
Distribution of dimensionless space potential, calculated by using var-

ious schemes on a grid of 192 x 96 for yu;/pu,=1000. . . . . . .. .. 61
Convergence histories by all the upwind schemes on a grid size of 192

x 96 for p/p1=1000 and 6 =45°. . . . . .. ... 62
Distribution of dimensionless space potential computed by WENO
extrapolation and Lagrange extrapolation in comparison with MFAM

for pu;/p.=1000 on a grid of 96 x 96. Dotted regions are enlarged

and shown in Fig. 4.9(a). . . . . . .. ... ..o L 63
(a) and (b) Distribution of dimensionless space potential and stream-

lines for constant angle of 60°, (¢) Curved magnetic field lines test

case, (d) and (e) Distribution of dimensionless space potential and
streamlines for curved magnetic field shape, computed by WENO-
5Z-W on a grid of 96 x 96 for p /. =1000. . . . .. ... ... .. 64
Numerical solutions obtained by using different schemes for Re = 1

and 10 for Example 5.1. Red circles: Generalized-MUSCL; purple
stars: U-3E; orange squares: TVD-MUSCL; blue squares: U-5C;

magenta diamonds: U-5E; green triangles: WENO-5Z.. . . . . . .. 71

1X



5.2

2.3

5.4

2.5

0.6

Al

A2

A3

A4

Convergence of the Ly error for upwind schemes for Re = 0.1, 1 and

10 for Example 5.1. . . . . . . ..o 72
Numerical and exact (dotted line) solutions obtained by various schemes

for Re =500 on a grid of 256 points. . . . . . . .. ... ... ... 73
Comparison of velocity contours, on a grid size of 48 x 48, for test
conditions given by Example 5.2. . . . . .. ... 000 75
Convergence of the Ly error for all the upwind schemes for both the

test conditions in Example 5.2. . . . . . . ... o0 76
Three-dimensional plot of numerical solution by WENO scheme with

64 x 64 cells Example 5.3. . . . . . . ..o 78
Sod shock tube problem at t = 0.2 for WENObS5-Z and Generalized

Density distribution of the Shu-Osher problem: (a) Global profile
and (b) enlarged figure for the post- shock region. . . . . . ... .. 87
34 equally spaced contours of density at t = 0.2 for WENO-JS and
WENO-5Z schemes in the blown-up region around the Mach stem. . 88
Comparison of density contours obtained by WENO-JS and WENO-
57 on a grid size of 120 x 480. . . . . . . . .. ... 89



Table

3.1

3.2

3.3

3.4

3.5

3.6

4.1
4.2

LIST OF TABLES

L, errors and order of convergence of u, primary variable, by 37, 5
order explicit and compact and WENO schemes for Example 3.1.

Ly errors and order of convergence of gradient variable by 37, 5t
order explicit and compact and WENO schemes one-dimensional dif-
fusion problem for Example 3.1. . . . . ... .. ... ... .. ..
Ly errors and order of convergence of primary variable, u, by 37
order explicit, 5" order explicit and compact and WENO schemes
one-dimensional diffusion problem, Example 3.3. . . . . . . ... ..

Ly errors and order of convergence of potential by 3"¢ order explicit,

5" order explicit and compact and WENO schemes for Example 3.4.

L4 errors and order of convergence for two-dimensional Poisson prob-
lem, Example 3.5, by 3" order explicit, 5" order explicit and compact
and WENO schemes. . . . . . ... ... ... 0L
L4 errors and order of convergence of u, primary variable for Example
3.7 by 2" order central, 3" order explicit, 5 order explicit and
compact schemes. . . . . . . .. ...
Error in transverse electron flux for yu;/pu,=1000 and 6 = 45°.

Relative I, error for MFAM and WENO-5Z-W for 4/, =1000.

x1

31

32

38

40

41

44
65
66



5.1

5.2

Ly errors and order of convergence for Example 5.2 by using WENO
scheme along with WENO and Lagrange extrapolation techniques for
boundary conditions. . . . . ... .. ..
Ly errors and order of convergence for Example 5.3 by using WENO
scheme along with WENO and Lagrange extrapolation techniques for

boundary conditions. . . . . ... ... .

xii



CHAPTER I

Introduction

In this chapter, background, previous studies in the past and the objectives of this

thesis are described along with the outline.

1.1 Background

The consensus in the field of Computational Fluid Dynamics (CFD) is that the low-
order methods are robust and reliable and therefore frequently employed in practical
calculations. On the other hand, one can obtain a significant increase in efficiency by
using the high-order method and attain better results than the low order method on
a coarse and under-resolved grid but they are considered complicated and less robust.

Boundary conditions are one of the significant issues with higher-order methods
as it is difficult to obtain stable and accurate boundary treatment that can work for
variety of test cases. Developing a numerical scheme for anisotropic diffusion that
is independent of degree of anisotropy and positivity preserving, even for moderate
anisotropies, on a cartesian mesh is a considered a significant challenge.

The objective is to elucidate the advantages of higher order schemes with appropri-
ate boundary conditions and WENO methodology for diffusion, anisotropic diffusion
and advection-diffusion equations that can serve as a robust and efficient framework

for other systems like incompressible and compressible Navier - Stokes, non-neutral



plasma simulations, multi-phase flows, etc. in future.

1.2 Review of Previous Work

In this section, studies carried out in the literature that are related to the current work
are summarized. Numerical modeling developed for first order hyperbolic approach

and anisotropic diffusion are discussed.

1.2.1 First order hyperbolic approach

Consider the one-dimensional convection-diffusion in non-dimensional form,

ou ou 0%u
ouw ouw _ O7u 11
ot T Yor ~ Vo (1.1)

where the first-order spatial derivatives, concerning the convection process, are typi-
cally are evaluated by upwind schemes and second-order spatial derivatives, modelling
the diffusion process, are computed by central schemes. A simple second order finite
difference scheme for computing the second order derivatives is given by the following

equation,
2
0°u . Uit1,5 — QUZ"]' + Ui—1,5
2 - 2
ox i Ax

+ O(Ax?). (1.2)

A radically new approach of upwind formulation for diffusion equation is introduced
by Nishikawa [2] based on residual-distribution (RD) method. The mathematical
strategy of this approach is to split the second order partial differential equation into
a set of first-order differential equations by adding new variables, typically solution
gradients, and pseudo-time advancement terms and the diffusion equation is com-
puted as a hyperbolic system. As the equation is reformulated as a hyperbolic system,
the numerical methods developed for convection process are directly applicable to the

diffusion terms. This novel approach has been shown to offer several advantages over



conventional methods, like accelerated convergence for steady state solution, higher
order of accuracy for both primary and gradient variables. The original approach of
Nishikawa has been applied to edge-based finite volume schemes [1] and Lee et al.
[3] have introduced fourth order cell-centered finite volume approach. This approach
is further extended to various applications, including advection-diffusion equation by
Nishikawa [1, 5, (], compressible Navier-Stokes equation [7], magnetohydrodynamics
[8], high Reynolds-number flows [9] and discontinuous coefficients [10]. The main fo-
cus of the research in literature is to obtain efficient and high-order accurate solutions

on unstructured-grids.

1.2.2 Numerical methods for anisotropic diffusion

Anisotropic diffusion occurs in many physical applications in which the rate of diffu-
sion in a certain direction can be orders of magnitude higher than the other. Ther-
mal conductivity in fusion plasmas [11], image processing [12], biological process, and
medical imaging [13] are some of the examples. Diffusion tensors can be extremely
anisotropic in magnetized and high temperature plasma process, which is the area of
interest in current work, and it poses a challenging problem for computational sim-
ulations. Due to extreme anisotropy, the diffusion phenomenon is effectively aligned
with the magnetic field lines. Such alignment may lead to the parallel diffusion, along
the magnetic field lines, coefficients being orders of magnitude, up to 10° in fusion
plasmas, larger than perpendicular diffusion coefficient. Anisotropic thermal diffusion

equation can be described as

or
= = V.(DVT) +5, (1.3)



where T represents temperature, S source term and D the diffusion tensor. For a

two-dimensional problem the diffusion tensor is given by

Djcos? (B) + Dy sin® (8) 5 (D) — D.)sin(28)
L(Dy—D.)sin(28)  Dysin? (8) + D, cos® ()|

D=

where 3 is the angle between the grid and the magnetic field lines and D, and D) are

the perpendicular and parallel diffusion coefficients, shown in Fig. 1.1, respectively.
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Figure 1.1: Anisotropic diffusion with parallel and perpendicular diffusion coefficients

on a non-aligned grid.

These extreme anisotropies can have strict requirements on the numerical meth-
ods used to model the anisotropic diffusion and magnetohydrodynamics equations
since any misalignment of the grid can lead to significant numerical diffusion in the
direction perpendicular to the magnetic field lines. One approach is to solve the equa-
tions on a computational grid that is aligned with the applied magnetic field which
can automatically take care of the directionality of the diffusion coefficients. This
approach, known as magnetic field-aligned mesh (MFAM), has been successfully used
in modeling plasma propulsion devices and fusion plasmas [, 15]. This approach
can have problems in the case of crossing field lines where local non-alignment un-
avoidable. Also, one has to reconstruct the mesh for problems involving time varying

field lines or magnetic field induce flow and it can be cumbersome task. It is benefi-



cial to develop numerical methods that are applicable even on non-aligned grids with
minimal numerical diffusion.

Gunter et al. [10] has developed “Symmetric” and “asymmetric” scheme which are
simple and easy to implement with low perpendicular numerical pollution. Sovinec
et al. [17] has used higher-order finite element method in the direction of larger
diffusion coefficient to reduce the numerical diffusion. Van Es et al. [13] has developed
second-accurate aligned finite difference method for anisotropic diffusion problems.
Another important aspect of the anisotropic diffusion equation is the positivity of
the temperature or space potential. A numerical scheme should be robust against
the development of nonphysical negative temperatures during the simulation and
must satisfy positivity and monotonicity. For example negative temperatures, in Hall
thruster modeling can lead to decreased electron currents and negative Joule power
density near the cathode region. Positivity has been attained by nonlinear schemes
proposed in literature, imposed via limiters by Kuzmin et al.[l19] and Sharma and
Hammett [20], but limiters can lead to low-order spatial accuracy and are also limited
to moderate anisotropies of the order ~ 10®. Recently, Asymptotic preserving schemes

are also proposed in literature to mitigate the issue of positivity [21, 22].

1.2.3 Hall Thruster electron fluid modelling

Electron fluid modelling in Hall thruster, an electric propulsion device shown in Fig.
1.2, is another instance where extreme anisotropies can occur. In a Hall thruster, the
emitted electrons from cathode are used to ionize the neutral propellant inside the
discharge chamber and also to neutralize the ion beam downstream of the thruster. A
fraction of the emitted electrons enter the thruster channel and an applied magnetic
field traps the electrons heading toward the anode and impedes their axial drift.
These electrons ionize the neutral propellant that is fed into the annular discharge

chamber through the anode. The ions are accelerated by the axial electric field thereby



producing thrust.

Cathode
Thruster center line

o
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Figure 1.2: Schematic of Hall thruster working.

The applied magnetic field in Hall thruster is in such a way the that electrons
are highly magnetized and constrained to the magnetic field whereas the ions are
effectively unmagnetized. This important feature is the key for the design of a Hall
thruster which improves the propellant utilization efficiency. Therefore, an under-
standing of the electron physics is important in the study of Hall thrusters [23]. The
gyrating electrons that are trapped in magnetic field can have parallel mobility, s,
four to five orders of magnitude larger than that is perpendicular,i,, to the mag-
netic field lines [24]. Conventional approach of modelling electron fluids is by using
a quasi-one-dimensional model proposed Fife [25]. Due to its limited applicability
a two-dimensional field aligned approach has been developed by Mikellides et al.[20]
for simulation of magnetic-shielded Hall thruster. Recently, electron fluid equations
in two-dimensions are being solved by central schemes [27, 28] on a non-aligned grid.
It is a well known fact that the central scheme can lead to numerical oscillations if
sharp gradients are present in the flow and also this approach also suffers from poor
iterative convergence due to the large disparity between p and p; .

As an alternative to these methods, an upwind hyperbolic-equation-system ap-



proach for two-dimensional computations has been proposed by Kawashima et al.
[29] for robust calculation on a vertical-horizontal uniform mesh. While this work is
a novel attempt for such problems, there are few drawbacks. The underlying scheme
for the original thesis was first order upwind scheme which was highly diffusive and
might require extremely fine mesh which can be computationally expensive. Their
main focus was on improving diagonal dominance by avoiding cross-diffusion terms
and speed of the computation and did not specifically address the issue of spurious
oscillations due to misalignment of the grid and magnetic field that may occur with
highly anisotropic diffusion problems on non-aligned meshes. However, mesh conver-
gence carried out by evaluating the transverse electron flux for both the hyperbolic
approach and field-aligned approach indicated that the numerical diffusion, which
can be inferred as spurious oscillations, is reduced on very fine meshes. It has been
proven that the hyperbolic approach attains good efficiency and accuracy in the pres-
ence of strong magnetic confinement. Kawashima et al. [30] had later extended their
approach to non-isothermal system by including energy equation. They considered
3% order TVD scheme to reduce the numerical diffusion, but it will be shown in this
thesis that the TVD scheme will reduce to third order linear scheme and can still

have considerable numerical errors.

1.3 Objectives and Outline of this thesis

The objective of this thesis is to develop a robust and efficient hyperbolic approach for
diffusion equation which can solve wide range of diffusion dominated flows. Especially,

the following improvements are sought:
1. Hyperbolic approach for Diffusion and Advection-Diffusion equations:

e Attain high-order accuracy for wide range of problems on cartesian meshes.



e Suitability of shock-capturing schemes for diffusion and numerical analysis

of various boundary treatments.

e Capture sharp gradients without oscillations on under-resolved grids for

advection-diffusion.

2. Development of Hyperbolic approach for Anisotropic Diffusion:

e Extension of the hyperbolic approach and develop a robust approach.

e Formulation that is independent of degree of anisotropy as well as angle of

misalignment.

e Verification of accuracy, order of convergence and resolution for various

test cases and applicability to complex magnetic field shapes.

e Reduce spurious oscillations due to misalignment of the grid and magnetic

field

e Non-positivity due to high-gradients and implementation of boundary con-

ditions.

The rest of the thesis is organized as follows. In chapter-2, numerical methods em-
ployed in this study are described. A brief overview of the high order cell-centered
explicit and compact upwind schemes along with shock-capturing schemes are pre-
sented.

In chapter-3, hyperbolic approach and upwind formulation of diffusion equation
along with the implementation of boundary conditions are presented. The adequacy
of linear upwind schemes for diffusion equation, and the effects of shock-capturing
scheme like WENO and TVD methods is presented. Finally, the effects of length
scale and relaxation time are investigated.

In chapter-4, the ideas developed for isotropic diffusion equation are extended to

anisotropic diffusion equation and magnetized electrons. First, the test calculations



for magnetized electron equations are discussed. Effect of boundary conditions and
advantages of WENO schemes over TVD schemes are clearly brought out. Numerical
results are compared with those calculated by field aligned mesh and good agreement
is observed. Later, an alternate and generalized hyperbolic approach along with local
preconditioning approach for anisotropic diffusion equation is described. Several test
cases are presented to validate the methodology, especially problems with variable
diffusion tensor are investigated in detail.

In chapter-5, the first oder hyperbolic approach is extended to advection-diffusion
equation. WENO approach is implemented to advection-diffusion equation by using
the split hyperbolic method to demonstrate the advantage of non-oscillatory schemes
to capture sharp gradients in boundary layer type problems without spurious oscilla-
tions.

Finally in chapter-6, the results of this thesis are summarized with the conclusions
along with future works that can lead to further improvement and extension of the

current ideas are also presented.



CHAPTER II

Numerical methods for hyperbolic conservation

laws

In this chapter, a brief review of numerical methods employed in this thesis are
described. Various linear and non-linear upwind schemes that are used to model the
hyperbolic conservation laws are presented. Finally, the time integration scheme is

explained.

2.1 Introduction

System of partial differential equations in the form of hyperbolic conservation laws are
used to model many physics problems such as shallow water equations, fluid dynamics
and plasma dynamics. It is difficult obtain a closed form solution of the governing
equations due to their complexity, especially for applications in engineering problems.
Numerical methods are often used to model these equations and among them high
order conservative finite volume and finite difference schemes are most popular. Finite
difference methods solve the governing equations in differential form as opposed to

the finite volume methods which solve the integral form.

10
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Figure 2.1: Domain discretization illustrating cell nodes, cell interfaces and ghost

cells.

In the finite volume method (FVM) the cell averages are updated by computing the
numerical fluxes through reconstruction polynomials. The accuracy of these numerical
fluxes, computed at the cell interfaces, i + %, shown in Fig. 2.1, defines the accuracy of
the scheme. These numerical fluxes are evaluated based on the flux Jacobian matrices
and variables defined at the cell-centers. For a hyperbolic equation the upwind fluxes

at the cell interfaces are constructed either by a Godunov type approximate Riemann

solver(Roe [31], HLLC [32], etc.) or Boltzmann type solver, also known as flux
vector splitting method (AUSM [33], Steger-Warming [31] etc.). According to the
Godunov’s theorem [35]: “For simulations of flows involving discontinuities and sharp

gradients, Gibbs phenomenon or spurious oscillations appear in the solutions near the
discontinuities if the computations are carried out by linear numerical schemes that
are greater than first-order accurate”.

In the last three decades, several high-order accurate schemes were developed to
satisfy this criterion, and among these methods, TVD and WENO are most pop-
ular. The total-variation diminishing monotone upstream scheme for conservation
laws (TVD-MUSCL) [30] is one of the popular high-order space accuracy schemes to

compute the fluxes because of its simplicity and robustness. A well-known drawback

11



of the slope limiters that are associated with these methods is that they tend to ‘clip’
smooth extrema of the flow and the accuracy necessarily degenerates to first order.
On the other end, WENO schemes first introduced by Jiang and Shu [37] to capture
discontinuities without spurious oscillations and are also able to achieve an arbitrar-
ily high formal order of accuracy in smooth flows. Various versions, like WENO-5M
[38], WENO-3YC [39] and WENO-5Z [10], of the WENO scheme, are proposed over
the years to improve the accuracy and reduce their dissipative nature. Tan and Shu
[11] had also proposed high-order boundary conditions based on the WENO idea to
prevent numerical oscillations contaminating the solution due to shockwaves near the
boundary. Another well-known high-order method is the family of central compact
schemes developed by Lele [12]. Unfortunately, the compact central schemes cannot
be used in the current ‘upwind’ formulation for diffusion and also cannot capture
the discontinuities without oscillations. Pirozzoli [13] had proposed a conservative
compact upwind method in combination with WENO scheme in-order to capture
discontinuities.

Recently, Ghosh and Baeder [11] has developed a class of upwind biased compact-
reconstruction finite difference WENO schemes called CRWENO. This concept was
extended in [15] where a positivity-preserving fifth-order finite volume compact-
WENO (FVCW) scheme was developed. On the other side, an alternative approach
is developed by Deng et al. [16] known as weighted compact non-linear schemes
(WCNS) with similar discontinuity capturing abilities of WENO. These schemes are
more flexible that we can interpolate not only fluxes [17], but also conservative vari-
ables [18], primitive variables or variables that are projected to the characteristic fields
[19]. The other advantages of WCNS are that they can be used with flux difference
splitting methods like Roe and HLLC and still maintain high-order of accuracy and
also have good freestream and vortex preservation capabilities on curvilinear grids

[50]. A comparison of WENO and WCNS is beyond the scope of this thesis and only

12



WENO schemes are considered for all the simulations.

2.2 Upwind Schemes

In this section, the procedures of TVD, WENO and linear upwind schemes are briefly
explained. The following one-dimensional first-order partial differential equations are

used for discussing the numerical schemes,

0 | (a—E> =0, (2.1)

ot ox

where Q and E denote denote vector of conserved quantities and physical fluxes
respectively. The subscript ¢ denotes the variable at the ith cell center. The semi-

discrete approximation, in conservative numerical method, of Eq. (2.1) is given by

1

%Q? ~ Ax [Ezdr% - EAF }a (2.2)

[N

where Ez 41 are the numerical fluxes which are an approximation of physical fluxes.
The numerical fluxes E; 1 are interpolated at cell interfaces by various linear and

nonlinear methods are discussed in the following sections.

2.2.1 Weighted Essentially Non-Oscillatory Schemes

The numerical fluxes requires knowledge of the values Q and Q¥ at the cell interface.
The values of Q% and Q¥ can be obtained by upwind interpolation to the same order
of accuracy and also QE?% should be biased to left and similarly ng)% has to be biased
to the right for correct upwinding as shown in Fig. 2.2. In the WENO scheme, the

fiftth order upwind-biased interpolation is nonlinearly weighted from three different

third order interpolations on sub-stencils, Sy, S1 and S,, shown in Fig. 2.2.
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Figure 2.2: Left and right states at the cell interfaces and interpolation stencils for

WENO.

For simplicity, the interpolation polynomials to the left side of the cell interface
at ;1 are only presented here. The three third order reconstruction polynomials for

variable () are given by

QE?% = % (2Qi—2 — 7Qi—1 + 11Q;)

QSF)% = % (—Qi-1 +5Q; +2Qi11) (2.3)
~ 1

QZ)% =5 (2Q;i +5Qiy1 — Qiy2)

where QE?% are approximated values at cell interfaces from different sub-stencils and
Q; are the values at cell centers. In WENO literature, the variable ) can either
be fluxes [17, 51], conservative variables [52], primitive variables or characteristic
variables [53]. In this current work the conservative variables (Q) are directly in-
terpolated. The three third order upwind approximation polynomials in Eq. (2.3),
are chosen dynamically by a nonlinear convex combination which adapts either to a
higher order approximation in smooth regions of the solution, or to a lower-order spa-
tial discretization that avoids reconstruction across discontinuities and provides the
necessary numerical dissipation for shock capturing. The fifth order WENO scheme

can be expressed as

2
@H% = Z Wngi)%; (2.4)
k=0



where wy, are the nonlinear weights which are given by,

(6973 Yk

o BT

k=0

Wy = k=0,1,2, (2.5)

where m, v, and [; are a positive integer, ideal linear weights, and smoothness
indicators, respectively. € = 1075 is a small constant to prevent division by zero.
The non-linear weights of the convex combination are based on local smoothness
indicators (3, which measure the sum of the normalized squares of the scaled L2
norms of all derivatives of the lower order polynomials. The basic weighting strategy
is to assign small weights to those lower order polynomials whose underlying stencils
contain discontinuities so that an essentially non-oscillatory solution is obtained. The
traditional smoothness indicators for fifth order WENO are given by Jiang, and Shu
[37] denoted as WENO-JS.

k 2
xH_l dl
Bi = ZAlel/ ’ (@pj(x)) dx (2.6)
=1 T

ol

where £k is the polynomial degree of p;(z). Evaluating of each k, one can obtain the

following equations

1 13
Bo = 1 (Qi—z — 4Qi—1 +3Q:)" + I (Qizz — 2Qi—1 + Q)°
1 13 ~
B = 1 (Qi—1 — Qi+1)2 + 1 (Qiq —2Qi + Qi+1)2 (2.7)
1 2 13 2
Bo = 7 3Qi = 4Qin1 + Qiv2)” + 15 (Qi = 2Qis1 + Qi)
Borges et al. [10] proposed a new approach, denoted as WENO-5Z in this thesis,

for the nonlinear weights obtained by WENO-JS as they are known to lose accuracy

at critical points and are also excessively dissipative in smooth regions. The improved

15



non-linear weights are as follows:

z p
z ak z T5
Wi = —5——, a=%1+( )), (2.8)
D DY . ( €+ B

where the smoothness indicators ;s are the same as those given in Eq. (2.7), € =

10749 and 75 is the smoothness indicator of the large stencil given by,
13 1" " 5 6
s = |fo — Be| = E(Qz Q; Az’) + O(Az®) (2.9)

The variable p is used to tune the dispersive and dissipative properties of the scheme.
It is reported by Borges et al. [10] that the scheme becomes more dissipative when
p is increased. In this thesis, p = 2 is employed in all test problems for diffusion
and advection-diffusion equations and p = 1 for magnetized electron fluids. Through
spectral and approximate dispersion relation (ADR) analysis, Jia et al. [51] found
that the anti-dissipation of the WENO-5Z scheme is less than that of the WENO-JS
scheme. They also demonstrated that the WENO-5Z scheme is not only less dissipa-
tive and dispersive but also relatively more accurate and safer. These properties of
the scheme were found to be useful for magnetized electron fluid simulations discussed
later.

Another variant of WENO scheme, denoted as WENO-M, that can prevent WENO-
JS from losing accuracy is proposed by Henrick et al. [38]. They introduced a mapping

function gx(w) which is defined as,

QW@:M%+%_MW+w>
Vi +w(l = 2%)

k=0,1,2, (2.10)

where v;’s are the ideal weights and non-linear weights, wy, are computed by the
smoothness indicators of WENO-JS. WENO-M is known to be more expensive, about

25%, than the standard WENO-JS as well as WENO-5Z scheme.
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2.2.2 Linear Explicit and Compact reconstruction polynomi-

als

For a smooth function, the fifth order WENO scheme is theoretically equivalent to
the optimal fifth order linear upwind scheme, denoted as U-5E in this thesis, that is,
the nonlinear weights, wy, are equal to the ideal linear weights, ~,. The fifth order
reconstruction formulas for left and right interfaces are given by,

2
S (k) _ i _ E _ i 2.11
Qv =D MQ N0 ="15M=15 "= 15 (2.11)

- 1
QE? = 50 (2Qi—2 — 13Qi—1 +47Q; + 27Qi 41 — 3Qi2) ,

1
’ (2.12)
ng)% = — (—3Qi—1 +27Q; + 47Qi11 — 13Qi12 + 2Qi13) .

Similarly, third order reconstruction formulas, same as that of in Eq. (2.3), denoted

as U-3E in this thesis, are given by,

é (—Qi—1 +5Q; +2Qi+1)
X (2.13)

=5 (2Qi +5Qi11 — Qito2) .

Finally, compact upwind reconstruction polynomials are also implemented the, de-
noted as U-5C in this thesis, given by Eq. (2.14). Compact schemes are a family of
reconstruction schemes which are implicit in space and therefore requires an inversion
of a tridiagonal matrix. They are characterized by high spectral resolution and have
significantly lower dispersion errors compared to that of non-compact schemes. Im-

plementation of the boundary conditions is same as that of the non-compact schemes.
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1~ A 1 1 19 5
§Qsz% + in% + ngL+g = 1_8Qz‘—1 + EQZ + §Qi+1 (2.14a)
1= ~ 1~ 5 19 1
EQZR—% + Qﬁ% + §Qﬁg = §Qi + 1_8Qi+1 + 1_8Qi+2 (2.14Db)

In general, the integrals of the fluxes are discretized using a high-order Gaussian
quadrature with suitable Gaussian integration points over the faces of the control
volume|[55, 56] to achieve higher order accuracy in, third order or more, multidimen-
sional finite volume method. In the present hyperbolic approach, the fluxes are no
longer non-linear and are same as that of the conservative variables. Due to this, finite
volume method can also obtain higher order accuracy by using point values and re-
construction of the fluxes at Gaussian quadrature points is not necessary. Therefore,
we cannot distinguish the difference between cell-centered finite volume and finite
difference schemes for the flux computation. In fact, we also computed the fluxes by

WCNS in [57] and the results are identical.

2.2.3 Total variation diminishing schemes

Several TVD schemes are proposed in the literature for shock-capturing and prevent-
ing Gibbs oscillations. Two of the popular approaches are considered here. First one
is the van Leer’s standard TVD-MUSCL [36] reconstruction for the left and right

interfaces, QiLJr , and Qﬁ 1, are given by,
2 2

2y = (- 0069(@ = Qe + (14096 () (@i - Q).

28y = Q= 1 (1= 0@ = Q) + (14000 () (@ - Q).
(2.15)
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where £ is a free parameter which is set to 1/3 for the third-order limiter and

oL Qiv1 — Qi
‘ Qi — Qi1+ €
2.16
R Qit1 — Qi ( )
’ Qita — Qit1 + €

where € is a small value 10716, In this thesis we considered minmod and van Leer

limiters which are given by

¢minmod - m’in(r, 1)7
9 (2.17)

1+7

Second approach is that of Cockburn and Shu |

¢vanLeer =

] which can be considered as

Generalized MUSCL and is popular in discontinuous Galerkin methods. For k = %,
the Eq. (2.15) will reduce to third order linear recosntruction formula, Eq. (2.13), if

limiters are not considered. Now we define,

Q; = @;1/2 — Qi Qi1 = Q;.l/g — Qit1- (2.18)

Then, by using the definition of minmod limiter we can obtained a generalized limiter

for 3 points

Q7" = minmod (Qw Qi — Qi—1, Qir1 — Qi) ; (2.19)

where the minmod function defined as
sign(a)min(|al, |b], |c]) if sign(a) = sign(b) = sign(c)
minmod(a, b, ¢) =

0 otherwise

(2.20)
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2.3 Time discretization

After discretizing the spatial derivative, the set of ordinary differential equations

obtained are,

Q: = Res(Q), (2.21)

where the operator Res(Q) = E! and E! is approximated by linear upwind polyno-
mials or WENO scheme. For time integration the following third order TVD Runge-

Kutta method [37] is used

QY = Q"+ AtRes(Q")

3 1 1
Q® = ZQ“ + ZQ(D + ZAtRes(Q(l)) (2.22)
1 2 2
Qutl — gQ“ T gQ(Z) + gAtRes(Q(z)).

A fourth order non-TVD Runge-Kutta scheme can also be employed for the computa-
tions. Numerical results obtained by Eq. (2.22) are only presented in this thesis. The

verification of numerical schemes presented in this chapter are discussed in Appendix.

A.
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CHAPTER III

Hyperbolic approach for Diffusion equation

In this chapter, the construction of first order hyperbolic approach for diffusion
and the implementation of high-order numerical schemes on uniform cartesian meshes
is presented. Schemes are validated for different types of boundary conditions and
problem settings. Implementation of numerical boundary conditions through ghost
cells is the key idea. Results indicate that the significant improvement in accuracy

and speed can be obtained through hyperbolic approach.

3.1 Governing equation and construction of hyperbolic scheme

In this section, the construction of hyperbolic approach for diffusion equation is ex-

plained. Consider the following diffusion equation in two dimensions,
ou *u 0%
==L = g9 3.1
T (8w2 * 8y2) ’ (3:1)

where v is the diffusion coefficient and S is the source term. In the original idea of
Nishikawa [2], new variables representing the gradients of the primary variable are

introduced, and the original diffusion equation has been converted into a system of

three coupled first-order equations. By defining new variables p = g—;‘ and ¢ =

ou
oy’

and introducing pseudo-time terms one can obtain the following first order hyperbolic
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system:

Ou_ Op 04 _ g

or Ox oy
dp Ou
77 3.2
or Ox by (3.2)
9¢ _Ou_ _
or  dy

It is important to state the fact that the first-order system reduces to the diffusion

equation at the steady state, i.e. the pseudo-time terms will be zero at steady state,

(
0 dp dq ( dp 0Oq
Bg Yor  Voy 5 O:V(%Jr@_)_s’ , )
P ou ou 0°u  0%u
_ i 0= —4+—] =5
72 SN T N
of ou u_
L T Oy e L0y
(3.3)
The equations (3.2) can be represented in vector form as,
E E
Q9 "+a Y =8, (3.4)

8_7'+ ox y

where the conservative variables, fluxes in x and y-direction and source terms are,

u —vp —vq )
Q - p 5 Ex - —U y Ey - O y S - —p y (35)
q 0 —u —q

respectively. The Jacobian matrices, Jx and Jy, in the x- and y-directions and the

corresponding eigenvalues,\, are given by

0 —1 0 0 0 —1
=vv|l =1 0 o |, J,=vv| 0 0 0 |. A==xvr,0. (3.6
0 0 0 10 0

22



In steady state, the diffusion equation will reduce to Laplace’s or Poisson’s equation.
By replacing the primary variable u with ¢, space potential, the hyperbolic formu-
lation can be used to model many physics problems that are time independent. By
using the right, R, and left, L, eigenvectors of Jacobian matrices, and the diagonal
eigenvalue matrix, |A|, the absolute Jacobian or the Roe matrix in x-direction, |Jax|,

can be written as,

100
Jazl = Ru AL =vv [ 0 1 0 |- (3.7)

000

Finally, the upwind flux in the x-direction can be expressed as Eq. (3.8),

A

1 1
Ei—i—%,j - §(EL + ER) - §|de‘(QR - QL)

_ 1 —
(pR _l_pL) \/; O 0 UR ur, (38)

1
—5 —(UR+UL) _7 010 PR — PL
0 000 qr — 4L

where the left and right fluxes, Er, and Eg, are defined at the cell interfaces which

are evaluated by the interpolation polynomials that are discussed later.

3.1.1 Homogeneity and flux vector splitting

Interestingly, the hyperbolic form of the diffusion equation (3.2) satisfy the homo-
geneity property,

E(Q) = g—g@ — Q). (3.9)

The proof of this property is easy to notice. By multiplying the Jacobian matrices
shown in Eq. (3.6) by the vector Q one can reproduce the flux vector E(Q). This
remarkable property of the hyperbolic form can be used to solve the diffusion equation

by employing Flux vector splitting schemes. For example, in the hyperbolic approach
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of Kawashima et al. [29] the upwind fluxes are computed by using Steger-Warming

[34] flux vector splitting scheme, shown in Eq. (3.10)

E=E"+E", (3.10)
with,
Et=J"Q = (RATL)Q,
(3.11)
E-=J0Q=(RANL)Q.
where J* and J~ in x-direction are expressed as follows,
1o S
+ _ - _ _
=1t ol 3= 2y (3.12)
0 0 0 0 0 O
Lo 4o
+_ - _
elboy |l b o 13
0 00 0 0 O

and AT is the diagonal matrix of positive eigenvalues, and A~ is the diagonal matrix
of negative eigenvalues. The Jacobian matrices satisfy, J* +J~ = J and the recon-
struction for ET uses a biased stencil with one more point to the left, and that for E~
uses a biased stencil with one more point to the right, to obey correct upwinding. In
the current upwind formulation for diffusion equation, there is no difference between
flux vector splitting and Roe solver. Other Riemann solvers generally used for Euler
equations like HLL and Rusanov can also be used for the simulations. For the first
order approach for diffusion, HLL scheme is same as that of the Rusanov scheme and
would lead to less accurate results than Roe method due to too much dissipation,
especially in gradient variables p and q. All the simulations are carried out by Roe

fluxes unless otherwise stated.
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3.2 Boundary Conditions

In this section, the implementation of boundary conditions for the hyperbolic system
is described. Two different approaches are employed for the numerical boundary
conditions: weak and strong boundary condition. Strong boundary conditions are
employed through ghost cells. In the hyperbolic approach the Neumann boundary
conditions are also implemented as Dirichlet boundary condition through the gradient

variables, and therefore only Dirichlet boundary conditions are described.

3.2.1 Weak boundary formulation

The Dirichlet boundary condition u = wug at, say, x = 0 can be implemented through
the numerical flux by weak boundary condition as described by Nishikawa and Roe

[59]. For a one-dimensional problem, the upwind flux in x-direction is given by,

1 1
Ei1,;= §(EL + ERr) — §|de’(QR —Qu)

1| —(pr+pr) 110 YR — UL (3.14)
_(UR+UL> 2 01 PR — PL
1 1
Eyo = E1 :§<EL+ER)_§’JQC‘<QR—QL)’ (3.15)

where (ug, pgr) are given by a higher order interpolation from the interior of the

domain, and the left state (ur, pr) is specified by the boundary condition:

(ur,pr) = (w0, pR)- (3.16)

Set p;, = pg, since the value of gradient variable is not known . This approach
is consistent with the characteristic condition at = 0. One can specify only one

condition in hyperbolic approach only one wave enters the domain as shown in Fig.
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3.1. For a Neumann boundary condition, say p = pg, the value of p is specified instead

of u:

(uz, pr) = (ur, po)- (3.17)

Interior state

+
A

Required state

A
‘\

Ghost point Inside the domain

.
o i i o i i e i i i i
s

Figure 3.1: Characteristic waves at the boundary for hyperbolic approach.

3.2.2 Strong boundary: Lagrange type extrapolation for ghost

cells

In this approach, an additional “ghost cells” are introduced by extending the physical
domain. Unlike the weak boundary condition, the Dirichlet boundary condition is
employed at the cell interface as shown in Fig. 3.2. The number of ghost-cells
depends on the interior interpolation scheme and cell-interface to cell-center Lagrange

extrapolation formula given by Eq. (3.18) is used to compute the values in ghost cells:

N

k
ul (@) =D iy Crj(a), (3.18)
j=0

where 1 is the order of the Lagrange polynomial and the constants C); are obtained
by,
(3.19)
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Figure 3.2: Ghost cell approach showing Dirichlet boundary condition.

Primary variable u
For Dirichlet boundary condition, where the value of u is prescribed at the cell inter-
face, say u 1, one can extrapolate the ghost cell values by using third order accurate

polynomial given by Eq. (3.20).

1 8

Similarly, fifth order extrapolation formula is given by Eq. (3.21).

1
UZ‘+1/2 = 38 (35U2 + 140’U,i+1 — 70ui+2 —+ 28Ui+3 — 5ui+4) s (321)

where ¢ = 0.

Gradient variables p and q

For the gradient variable, p and ¢, the values in ghost cells are extrapolated by
using the interior points by cell-center to cell-center extrapolation [60, G1]. Such
extrapolation is also consistent with the outgoing characteristics at the boundary as

shown in Figure. 3.1. Lagrange extrapolation can be approximated by a (s-k)th order

Taylor expansion

s—1
uj=y JTu;), (3.22)
k=o )
where ugf) is a (s-k)th order approximation of g%}j at x = 1. If u(z) is smooth near
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the boundary, ugf) can be obtained by

(k) _ dsz_l(J,’)

bt = (3.23)

where P;_i(x) is a Lagrange polynomial of degree at most s — 1. A general formula

is given by Eq. (3.24)

. 7!
—(=1Dfp; =0, j=N+1,...,N+3 (3.24)
kzzok!(r—k)! !

For example, At the boundary, say x = 0, the values of ghost cell py approximated

by 3" and 5% order extrapolations are given by equations (3.25),

Po = 3p1 — 3p2 + p3
(3.25)

po = 9p1 — 10py + 10p3 — Ops + ps

3.3 Numerical tests

In the chapter only linear problems are considered and therefore the fluxes are no
longer non-linear and are same as that of the conservative variables. Due to this,
finite volume schemes can also obtain higher order accuracy by using point values and
reconstruction of the fluxes at Gaussian quadrature points is not necessary. Therefore,
one cannot distinguish the difference between cell-centered finite volume and finite
difference schemes for the flux computation. In this chapter only on the standard
finite volume schemes are considered unless otherwise stated.

For the examples considered here, the numerical solutions are computed by the
standard 27¢ order central scheme using successive over relation for comparison. For
the linear upwind schemes, depending on the order of the interior scheme the cor-

responding 7" order extrapolation polynomial is used for the numerical boundary
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conditions. Only strong and weak boundary procedures are implemented for the hy-
perbolic form of diffusion equation. The implementation of interpolation polynomials

beyond 5 order are straightforward and are not presented here.

3.3.1 One-dimensional test cases

Example 3.1. To investigate the implementation and accuracy of the numerical
schemes the following one-dimensional diffusion equation including a source term is

considered with the domain size of z € [0,1].

ou 9%u x
E = V@ + ACOS (27TNz> y (326)

where v = 1 and Dirichlet boundary conditions, u; = 2, uy = 1, are considered. The

exact solution for u is given by:

L \? T Uy — Up L \?
ue——(%) A cos (27TCZ>+T.TL’+A<%> + usg. (327)

where the constants and A and C' are assumed to be 10.0 and 3.0 respectively. The

equivalent first order hyperbolic equation system can be written as follows:

ou  Op 2nNx
— — — = — Acos( ),
op _Ou_ _ '
or or P
where the conservative variables are denoted by Q = [ u, p| and the flux vector is
denoted by E = [—p, — u] respectively. The Jacobian matrix and the corresponding

eigenvalues for the above system of equations is,

ofi 9f

OE Ernllim 0 -1

- 0Q Ofs 9f -1 0
o1 0g2
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The right and left eigenvectors can be used to compute the absolute flux Jacobian

7. = RIA|L = (3.30)

The simulations are conducted with grid refinements from N = 24 to 384 by second-
order central, and all the upwind schemes which includes TVD and WENO schemes.
For upwind schemes, the numerical solution is computed by an explicit time-marching
until the residuals are dropped below 107! in L; norm with a constant CFL = 0.65.

Figure 3.3 shows the solutions contours of various schemes in comparison with the

analytical solution for both primary and gradient variable. Ls error convergence

results are shown in Fig. 3.4(a) and Fig. 3.4(b) for the solution and the gradient

variables respectively.

2.0- % = =
H /
1 .
—o6f 11 r fe
1.8 @ $ & ¢ %
—08{{ 1 Loy
1.6 ¢ % » % # ¢
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R |
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(a) Primary variable (b) Gradient variable

Figure 3.3: Example 3.1 using different schemes. Dashed line: analytical; red stars

U-3E; blue squares: U-5C; magenta diamonds: U-5E.
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Figure 3.4: Example 3.1 Ly convergence errors for one-dimensional test case using

central scheme,U-3E, U-5C, U-5E, and WENO-5Z.

Table 3.1 shows the Ls error for the velocity and the order of accuracy for the
U-3E, U-5E, U-5C and WENO-5Z schemes respectively and design order of accuracy
is obtained for all the schemes. Table 3.2 shows the Ly error for the gradient vari-

able, p, and the order of accuracy for the U-3E, U-5E,U-5C and WENO-5Z schemes

respectively.

Table 3.1: L, errors and order of convergence of u, primary variable, by 374, 5 order
explicit and compact and WENO schemes for Example 3.1.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5%Z

of points error order error | order | error order error order
24 1.54E-02 1.83E-03 1.26E-03 2.64E-03
48 2.11E-03 | 2.87 | 9.70E-05 | 4.24 | 1.10E-04 | 3.52 | 7.70E-05 | 5.10
96 2.63E-04 | 3.01 | 4.02E-06 | 4.59 | 4.84E-06 | 4.50 | 3.99E-06 | 4.27
192 3.23E-05 | 3.02 | 1.33E-07 | 491 | 1.61E-07 | 4.91 | 1.33E-07 | 4.90
384 4.00E-06 | 3.02 | 4.22E-09 | 4.98 | 5.07E-09 | 4.99 | 4.22E-09 | 4.98
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Table 3.2: Ly errors and order of convergence of gradient variable by 37 5™ or-
der explicit and compact and WENO schemes one-dimensional diffusion problem for

Example 3.1.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5Z

of points error order error order error order error order
24 5.82E-03 4.66E-04 1.64E-04 1.44E-03
48 6.91E-04 | 3.07 | 2.79E-05 | 4.06 | 2.92E-05 | 2.48 | 2.73E-05 | 5.72
96 6.48E-05 | 3.42 | 8.23E-07 | 5.08 | 8.86E-07 | 5.04 | 8.23E-07 | 5.05
192 5.83E-06 | 3.47 | 1.94E-08 | 5.40 | 2.10E-08 | 5.40 | 1.94E-08 | 5.40
384 5.31E-07 | 3.46 | 4.40E-10 | 547 | 4.71E-10 | 5.48 | 4.40E-10 | 5.46

Figure 3.5 shows the comparison of ghost cell approach and weak boundary im-

plementation, and it can be observed that ghost cell approach represents the solution

more accurately on coarse meshes. Weak boundary implementation was unstable be-

yond 3" order accuracy whereas the ghost cell approach was found to be stable until

6th order accuracy. It may be noted that the ghost cell approach may be complicated

to implement on an unstructured mesh compared to the weak formulation and also

the difference between these approaches is minimal on finer meshes. Based on these

observations only ghost cell approach has been employed for the all the test cases in

the next subsections.

Figure 3.5:

black circles - weak boundary.

Example 3.1 Effect of boundary conditions. blue triangles: ghost cells;
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3.3.2 Effect of shock capturing schemes

In Fig. 3.6(a), one can observe the difference between the shock-capturing schemes,
TVD-MUSCL and Generalized-MUSCL. TVD-MUSCL formulation has not contam-
inated the solution and it is reduced to the linear third order scheme. On the other
hand, the Generalized-MUSCL approach resulted in unnecessary oscillations and is
only first order accurate, shown in Fig. 3.6(b), and it may not be appropriate for the

diffusion equation in hyperbolic form.

2.0 © o Generalized MUSCL
O . 10—1 ]
o —-—  Exact solution
&O A TVD-MUSCL
1.8 A°
1072+
1.6 1 . 3
s é 1077
=
1.4
10744 Generalized MUSCL
+ U-3E
1.2 . - TVD-MUSCL
U Slope-1
pe
Lo Slope-3
T T - T
0.0 0.2 0.4 1073 1072 107!
T Mesh size
(a) Solution obtained by TVD schemes (b) Accuracy of TVD schemes

Figure 3.6: Example 3.1 Effect of TVD schemes.

Figure 3.7(a) shows the solution obtained by weighted essentially non-oscillatory
schemes, WENO-JS, WENO-M and WENO-Z respectively. As expected, WENO-Z
and WENO-M schemes have better accuracy than WENO-JS. WENO-M and WENO-
Z gave similar results but it is well known that WENO-M scheme is more computa-
tionally intensive. Based on this analysis WENO-Z is considered for all the simula-
tions in following sections. Order of accuracy for WENO schemes is shown in Fig.
3.7(b). From this analysis, shock-capturing schemes can be considered unnecessary
for diffusion equation in hyperbolic approach. TVD schemes contaminated the solu-

tion depending on the type of the scheme considered whereas the WENO scheme did
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not show any unnecessary oscillations for all the variations. It was also mentioned by
Nishikawa [2] that no discontinuity capturing mechanism is required for the upwind

formulation of the diffusion equation.

2.01 o  WENO-JS —+— WENO-JS
O WENO-M 10724 -@- WENO-M
n N A WENO-5Z -6 WENO-57Z
: 2 —— Exact —— Slope-3
ol 1014 7 Slope-5
s
1.4 1070+
1.2
1075 e
1.0
T T T ! J
0.00 0.25 0.50 0.75 1.00 10-3 1()‘—2 107!
7 Mesh size
(a) Simulations by WENO schemes (b) Accuracy of WENO schemes

Figure 3.7: Example 3.1 Effect of WENO schemes.

3.3.3 Comparison with existing schemes

Example 3.2. In this test case the numerical schemes are compared with upwind
schemes proposed by Nishikawa[!]. The following one-dimensional diffusion equation,

[2], including a source term is considered with the domain size of x € [0,1].

ou 0%u 5 .
5 = Vo + vresin(mx), (3.31)

where v = 1 and Dirichlet boundary conditions, u; = 0, ux = 0, are considered. The

exact solution for u and p are given by:

Uexact = :B(-T - 1)7 (3 32)

Pexact = 2(1’ - 1)
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The simulations are conducted with grid refinements from N = 16 to 256 by 3"¢ order
upwind schemes proposed Nishikawa, U-3E and U-5E respectively. The numerical
solution is computed by an explicit time-marching until the residuals are dropped
below 107! in L; norm with a constant CFL = 0.5. Fig. 3.8(a) shows the solution
contour obtained by U-3E and Nishikawa. The difference between the solutions is
due to the fact that the current schemes are cell centered whereas Ref.[1] are node-
based schemes. Fig. 3.8(b) shows the Ly error for the velocity for U-3E, U-5E and
Nishikawa’s schemes respectively and the design order of accuracy is obtained for all

the schemes.

1.0 ﬁga»&a‘m
# "
# »
0.81 ¥ X 1074
# %
/ Y
0.6 f ’t& 3 1076,
3 ¢ *!q* é
044 F % Jo-e A
j ‘? ,// /-/ —6&-- Nishikawa
0.2 f ‘% e ’ ,/'/ - U-3E
. ) @ -6 U-5E
4 32 10710, / 7
b /./ —— Slope-3
0.04 ¢ 1, <>/ ---- Slope-5
0.00 025 050 075 100 10-3 102 10-!
T Mesh size
(a) Comparison (b) Order of Accuracy

Figure 3.8: Example 3.2 Comparison of current approach and schemes proposed in

Ref.[1] Dashed line: analytical; blue circles: Nishikawa; red stars: U-3E.

The current numerical schemes are based on uniform meshes and can be extended
to arbitrary order of accuracy for the interior schemes. Numerical schemes employ
ghost boundary approach whereas Nishikawa primarily considered weak boundary
approach. Nishikawa’s schemes are specifically developed for unstructured meshes

and are at most third order accurate.

35



3.3.4 Two-dimensional test cases

Example 3.3. First test case is the following two-dimensional diffusion equation

considered by Nishikawa [2]

ou 0*u  0%u

ou_ o Ou 3.33
o~ Gz T o) (3.33)

with a spatial domain of [0, 1] x [0, 1], where v=1 and the following Dirichlet boundary

conditions are considered:

u= U= (3.34)
sin(ry), z=1 sin(rz), y=1

The exact steady state solution is given by,

sinh(7z) sin(my) + sinh(7y) sin(7x) |

sinh(7) (3:35)

Uegact (.T, y) =

The simulations are conducted with grid refinements from 16x16 to 256 x 256 by
second-order central, and all the upwind schemes. For upwind schemes, the numerical
solution is computed by an explicit time-marching until the residuals are dropped
below 10712 in L; norm with a constant CFL = 0.5. The exact solution and numerical
solution contours computed by the U-5E scheme are shown in Fig. 3.9(a) and Fig.
3.9(b). Computed values of u for various schemes along the geometric center line along
the horizontal axis are shown in 3.10(a). Ls error convergence results are shown in
Fig. 3.10(b) for the primary variable and one can observe that the design order of

accuracy is obtained for all the schemes.
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Figure 3.9: Example 3.3 Comparison of analytical solution and by upwind scheme
U-5E for diffusion equation are shown in (a) and (b) respectively.
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Figure 3.10: Computed values at geometric center and Lo convergence errors for

various schemes are shown in (a) and (b) respectively for Example 3.3. Dashed line:

analytical; red stars: U-3E; blue squares: U-5C; magenta diamonds: U-5E; green
triangles: WENO-5Z.

Table 3.3 shows the Ly error for the primary variable, u, and the order of accuracy

for the U-3E, U-5E,U-5C and WENO-5Z schemes respectively. Design order of accu-
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racy is obtained for the velocity for all the linear upwind schemes. For the WENO

scheme, the 5 order boundary conditions are found to be unstable, and only 37

order boundary conditions are considered. TVD-MUSCL has once again reduced to

3rd order linear scheme and is not discussed henceforth for diffusion problems.

Table 3.3: L, errors and order of convergence of primary variable, u, by 3¢ order
explicit, 5 order explicit and compact and WENO schemes one-dimensional diffusion

problem, Example 3.3.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5%7

of points error order error order error order error order
16 7.01E-04 5.46E-06 6.48E-06 6.59E-04
32 8.24E-05 | 3.09 | 2.63E-07 | 4.37 | 297TE-07 | 4.45 | 6.20E-05 | 3.41
64 947E-06 | 3.12 | 1.00E-08 | 4.72 | 1.09E-08 | 4.77 | 6.60E-06 | 3.23
128 1.10E-06 | 3.10 | 3.44E-10 | 4.86 | 3.64E-10 | 4.90 | 7.23E-07 | 3.19
256 1.31E-07 | 3.07 | 1.13E-11 | 4.93 | 1.14E-11 | 5.00 | 8.19E-08 | 3.14

Example 3.4 In this test case, the verification of Neumann boundary condition which

is also implemented as Dirichlet boundary condition in the hyperbolic formulation for

diffusion equation is considered. The following two-dimensional Laplace equation with

the spatial domain of [0, 1] x [0, 1], Eq. (3.36), has been considered.

D*¢ %o _

o2 "oy =

which has the following Neumann and Dirichlet boundary conditions

where L = 1 and M = 1 and the analytical solution is given by Eq. (3.38)

3
sinh (iy) 3

¢emact(x7 y) = —3[/]\/[ sin (ﬂ)

sinh <%> L
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The simulations are conducted with grid refinements from 16x16 to 256 x 256 for the
test case. For the upwind schemes, the numerical solution is again computed by an
explicit time-marching until the residuals are dropped below 1072 in L; norm with a
constant CFL = 0.5. Computed values of ¢ for various schemes along the geometric

center line along the horizontal axis are shown in Fig. 3.11 for a 32 x 32 grid.
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Figure 3.11: Computed values at geometric center and Lo convergence errors for vari-
ous schemes for Neumann boundary condition, Example 3.4. Dashed line: analytical;
red stars: U-3E; blue squares: U-5C; magenta diamonds: U-5E; green triangles:
WENO-5Z.

Table 3.4 show the Ly norms for all the schemes and the advantage of high-order
methods over lower-order methods can be seen as they need less number of com-
putational cells to get a solution with the same accuracy. This advantage enables
high-order methods to use coarse meshes, in comparison with the lower-order meth-
ods. Design accuracy is obtained for all the schemes, and the implementation of
Neumann boundary condition is successfully verified through this test case. Unlike

the previous test case, WENO scheme also shows 5 order accuracy.
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Table 3.4: L, errors and order of convergence of potential by 3"¢ order explicit, 5"

order explicit and compact and WENO schemes for Example 3.4.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5Z
of points error order error order error order error order
162 2.01E-03 3.23E-05 4.11E-05 3.22E-05

322 2.69E-04 | 290 | 1.42E-06 | 4.50 | 1.68E-06 | 4.61 | 1.42E-06 | 4.50

64> 3.29E-05 | 3.03 | 5.61E-08 | 4.67 | 6.12E-08 | 4.78 | 5.61E-08 | 4.67

1282 3.93E-06 | 3.06 | 1.99E-09 | 4.82 | 2.06E-09 | 4.89 | 1.99E-09 | 4.82

2562 4.73E-07 | 3.06 | 6.63E-11 | 491 | 6.68E-11 | 4.95 | 6.62E-11 | 4.91

Example 3.5. For the previous test cases and the given numerical grids, one could
not distinguish the numerical results by different methods. In this example, the
following Poisson equation, i.e., with a source term, given by Eq. (3.39) is considered
0? 0?
a—xf + a—ﬁ _ 397 sin(4nz) sin(4ry) (3.39)
where the domain is [0, 1] x [0, 1] and ¢ = 0 at all the boundaries. The exact solution

for this test case is given by

Gewact (T, y) = sin(4drz) sin(4ry) (3.40)

In this test case, the advantage of 5" order schemes can be observed. The simulations
are conducted with grid refinements from 16x16 to 256 x 256 for the test case. For
the upwind schemes, the numerical solution is deemed to have reached a steady state
when the residuals are dropped below 107! in L; norm and constant CFL = 0.5
is used. Table 3.5 shows the Ly error for the primary variable, ¢, and the order of
accuracy for the U-3E, U-5E,U-5C and WENO-5Z schemes respectively. Compact
schemes show better accuracy for problems with source term with increasing grid size

in comparison with the explicit scheme.
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Table 3.5: Ly errors and order of convergence for two-dimensional Poisson prob-

lem, Example 3.5, by 3" order explicit, 5 order explicit and compact and WENO

schemes.
Number Upwind-3E Upwind-5E Upwind-5C WENO-5Z
of points error order error order error order error order
162 2.466E-01 3.06E-02 2.65E-02 6.15E-02
322 3.221E-02 | 2.94 | 1.16E-03 | 4.72 | 7.32E-04 | 5.18 | 1.30E-03 | 5.56
642 4.006E-03 | 3.01 | 3.42E-05 | 5.09 | 1.35E-05 | 5.76 | 3.52E-05 | 5.21
1282 4.985E-04 | 3.01 | 1.01E-06 | 5.09 | 2.30E-07 | 5.87 | 1.01E-06 | 5.12
2562 6.218E-05 | 3.00 | 3.03E-08 | 5.05 | 4.01E-09 | 5.84 | 3.01E-08 | 5.07
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Figure 3.12: Computed values at geometric center and Lo convergence errors for
various schemes for Poisson equation, Example 3.5, are shown here. Dashed line:
analytical; red stars: U-3E; blue squares: U-5C; magenta diamonds: U-5E; green

triangles:

WENO-5Z.

In Figure 3.12(a) the computed results at geometric center on a 32 x 32 grid is

shown and one can observe that the third order explicit scheme has deviated consid-

erably from the exact solution in comparison with the other schemes. It can be seen

from the Ly norms shown in the Fig. 3.12(b) that even though third order accuracy

is obtained for the upwind scheme, U-3E, the solution is inferior to standard second
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order case on coarse meshes. Such results are also observed in edge based methods
proposed by Nishikawa in [Ref. [!], Figs. 4 and 5]. The source term may have a

significant effect on the solution accuracy for the upwind formulation.

3.3.5 Effect of Length scale L, and Relaxation time 7T,
Re-consider the diffusion equation (3.1) in two dimensions, and the hyperbolic for-
ou _,(9p _0q
or  ~\ox oy)’
op 1 (0Ou
9q _ 1 (0w _
or T, \ 0y 1)

where a new variable 7T, may be called a relaxation time has been introduced. For

mulation

the steady state computation, the relaxation time 7, is a free parameter. For the all
the earlier examples T, is considered as 1. For the sake of dimensional consistency 7
is defined in [2] as

T, ==, (3.42)

where L, is the length scale. The value of L, may be taken as 1 but it may not be the
best possible value. The optimum value of L, depends on the type and order of the
scheme and also on the purpose for which the scheme is employed. Through Fourier
analysis an optimum value of L, is derived for the finite volume first order upwind

schemes in Ref. [1, 62] and is defined as,

2h

> 4
~ (mh+4)7h (343)

where h is the grid size. As h — 0, L, = % Example 3.1 and Example 3.4 are
reevaluated by using the new variable 7T, and the results are shown in Figs. 3.13(a)

and 3.13(b). It can be seen that T, effects the error of the primary variable and also
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the convergence speed but does not effect the consistency and order of accuracy. The
length scale, L,, could significantly effect when solving dimensional equations, which

is discussed in next example, and anisotropic diffusion equation discussed in next

chapter.
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Figure 3.13: Effect of relaxation length for the diffusion equation. Fig. (a) Example
3.1 and Fig. (b) Example 3.4.

3.3.6 Effect of dimensions

Example 3.7. In this final example problem with dimensions, i.e the domain L,
and L, may not be equal to unity, is considered. In the previous examples smooth
isotropic solutions are considered, but if numerical schemes are to be applied to
practical problems with high-Reynolds number viscous simulations, they must be
tested for anisotropic solutions and one such problem is given by Eq. (3.44)

2 2
o P _ —(1 + 2000272 sin(7) sin(20007y),

e (3.44)
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where the domain is [0, 1] x [0, 0.005] and ¢ = 0 at all the boundaries. The exact

solution for this test case is given by

Gezact(T,y) = sin(mz) sin(20007y). (3.45)

One can see that L, = 0.005, which is not unity, and for such problems the optimum

formula for length scale L, given in Ref. [62], which is given by Eq. (3.46)

Lo L Ll

ar 2+ 12)

The simulations are conducted with grid refinements from 20 x 20 to 320 x 320 for the

(3.46)

test case. For the upwind schemes, the numerical solution is deemed to have reached
a steady state when the residuals are dropped below 107'* in L; norm and constant
CFL = 0.45 is used. The solution contours for U-5E are shown in Fig. 3.14(a). The
Ly norms shown in the Fig. 3.14(b) and design order of accuracy is obtained for
all the schemes. It has been observed that if an optimum L, is not considered the
solution will diverge and may not reach steady state results. L, errors for various
schemes is shown in Table 3.6. It can be observed that the 5 order schemes are
significantly more accurate for anisotropic solutions even on coarse meshes and 37

2nd

order schemes are once again inferior to order central schemes on coarse meshes.

Table 3.6: Ly errors and order of convergence of u, primary variable for Example 3.7
by 27¢ order central, 3" order explicit, 5* order explicit and compact schemes.

Number Central-2 Upwind-3E Upwind-5E Upwind-5C
of points error order error order error order error order
20 0.1894305 0.8729564 0.2893233 0.286379
40 5.04E-02 | 1.91 | 8.90E-02 | 3.29 | 2.06E-02 | 3.81 | 2.26E-02 | 3.66
80 1.28E-02 | 1.98 | 9.68E-03 | 3.20 | 4.88E-04 | 5.40 | 4.91E-04 | 5.53
160 3.21E-03 | 1.99 | 1.17E-03 | 3.05 | 1.02E-05 | 5.57 | 6.80E-06 | 6.17
320 8.03E-04 | 2.00 | 1.47E-04 | 3.00 | 2.67E-07 | 5.26 | 7.44E-08 | 6.51
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Figure 3.14: Example 3.7 Simulation results for equations with dimensions on a grid
size of 80x80 and order of accuracy of upwind schemes.

3.4 Summary

The important findings of this chapter are summarized as follows:

1. Efficient and accurate demonstration of the hyperbolic method for the steady
diffusion equation using the cell-centered finite volume or difference framework

is shown.

2. High-order and high-resolution methods are implemented successfully for the
diffusion equation in the hyperbolic form on uniform meshes. Design order of

accuracy is obtained for all the schemes for all the test problems considered.

3. Shock-capturing schemes are found to be unnecessary for diffusion equation, and
by various test cases, the inapplicability of certain TVD schemes is explained.
Even though the WENO scheme is a shock-capturing scheme the steady-state

solutions are not contaminated and are similar to the linear schemes.

4. Ghost cell approach is found to be more accurate and stable than the weak

boundary implementation, especially on coarse meshes. Linear upwind schemes
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are consistently stable with the corresponding higher order boundary conditions
whereas WENO is stable only with 3" order boundary conditions due to their

inherent non-linearity.

. Relaxation time and length scales are important for dimensional equations and

design accuracy is also achieved such problems.
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CHAPTER IV

Hyperbolic approach for Anisotropic Diffusion

In this chapter the hyperbolic approach is extended to anisotropic diffusion equa-
tion. A key distinction between the present methodology and the earlier efforts based
on first order upwind [29] and third order accurate monotonicity preserving TVD dis-
cretization is in the implementation of high-order finite-volume WENO discretization
and implementation of WENO extrapolation for boundary conditions. The gain in
accuracy and reduction in numerical oscillations are significantly more pronounced
for the WENO schemes when compared with TVD discretization. An alternate hy-
perbolic approach for anisotropic diffusion is also constructed and the merits are

discussed.

4.1 Governing equations

Magnetized electron fluid simulations can have the features like sharp gradients in
the flow field, strongly diffusion dominated flow with anisotropic diffusion and also
have the convection aspect of the flow. The system of equations, electron mass and
momentum equations, for the magnetized electron fluid in quasi-neutral flow described

by Kawashima et al. [29] are given by
V. (neﬁe) = Nelion; (41)
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ne (1] Vo — (1] V (neTe) = nete, (4.2)

where N, Ue, @, Vion, and T, are the electron number density, electron velocity, space
potential, ionization collision frequency, and electron temperature respectively. The

electron mobility tensor [u] can be expressed as follows,

] = _ o 1| o o_ cosf) —sind

fe [y [y sinf  cos@

‘ 1= S —
/rneljcol7 1 + (IU/HB)Q

Kl =

where e, B, and v, are the elemental charge, magnetic flux density, and electron-
neutral total collision frequency, respectively. Also, © is the rotation matrix, and 6
is the angle between the magnetic lines of force and the grid, shown in Fig. 4.1. The
electron flux in parallel (||) and perpendicular (L) directions of the magnetic lines of

force are described by using the electron mobility j and p; respectively. Assuming

Y

Figure 4.1: Illustration of symbols, x|, p1 and 6.

steady state, the following plasma diffusion equation can be obtained by substituting

momentum equation 4.2 in to continuity equation 4.1

Vo (ne (] Vo — (1] V (nTe)) = NeVion- (4.4)
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For a given electron number density and temperature distribution, this equation can
then be solved for plasma potential, ¢, using a general Poisson’s equation solver
(24, 63]. Equation (4.4) is usually solved by a central scheme [27, 28] and it is a well
known fact that the central scheme can lead to numerical oscillations if sharp gradients
are present in the flow. This approach also suffers from poor iterative convergence
due to the large disparity between p and . To avoid these difficulties Kawashima
et al. [29] has proposed hyperbolic approach by introducing pseudo-time terms in
the continuity and momentum equations. This approach is similar to the artificial
compressibility method utilized in solving incompressible Navier-Stokes [(4], where a
pseudo-time derivative of the pressure is added to the continuity equation. Similarly,
a pseudo-time derivative of plasma potential is added in the continuity equation and

the corresponding equations are as follows,

E% -V (neﬁe) = —NeVion,
T, 0T
. (4.5)
o E (neue) — Ne [/,l,] V¢ + [ﬂ] V (neTe) = —NeUe.

For the simulations, the equations are expressed in non-dimensional form. The

non-dimensionalization procedure of the equation system (4.5) and the definitions of

dimensionless quantities are same as that of Ref. [29] which are as follows:
~ Te i Te 7 ¢ ~ T 1 T
Ne=—, To=—, = —, z, = — (o, , 4.6
©= =T 9= @0 =5 (z,9) (4.6)
-1 [2eTr 5 U U N .
t = e t, ?Ie = — = s Veol = T;Vcola Vion = 7—;;Vion' (47)
A me ct yeT

where Ty, Ve tn, ¢s and 7y are the mean free time, electron thermal velocity, and electron
acoustic velocity, and specific heat ratio respectively. Also, the electron number
density n?, electron temperature 7, potential ¢,, and mean free path A} are the

reference values. For simplified analysis the following values are assumed for all the
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test calculations,
fe=1, To=1, D=1,  Dig=0. (4.8)

Finally, By adding the pseudo-time terms the simplified non-dimensional system of

electron fluids for the Eq. (4.5) can be expressed as follows:

9 [re

— —/2V U =0,
Ue ST . -
oF \/—2—7 [ V¢ = —.
The final non-dimensional hyperbolic equations are as follows:
0 OJE, OE
9Q Y =9, (4.10)

o7 on +a_g

where the conservative variables, fluxes in x and y-direction and source terms are,

¢ i iy 0
Q=|a |, Ex=|0¢ |, Ey=| ¢ |, S=| —u | (4.11)
iy —,

4.1.1 Construction of hyperbolic scheme and preconditioned
system

Due to the significant discrepancy between parallel, y = 10%, and orthogonal, | =1,
mobilities, the condition number of the system increases significantly and degrades
the convergence performance. Convergence can be made independent of mobility by
altering the eigenvalues of the system such that all of them are of the same order. A
popular approach is to multiply the system of equations by a preconditioning matrix

to normalize the eigenvalues [65]. The system can be written in the preconditioned
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form as,

. .0Q OE, OE
P1=—= S R AR 4.12
or " or Top (4.12)

where P = ©71PO is a preconditioning matrix which is derived based on the idea of

electron mobility tensor rotation

2
\/;oo 1 0 0
i

P = 0 % 0 ; ©=| 0 cosf sinf |- (4.13)
0 0 V= 0 —sinf cos@
a8

Finally, the preconditioned system of equations can be rewritten as follows:

% —-V- ue =0

or (4.14)
% _ 95— -l
o7 - e

where, [g] is a tensor which is written as follows:

v cos 9"{'#” sin?@ (£ —1)cos@sinf
al (u— - 1) cosfsinf sin? 0+ “H cos2 0

Hi

The flux Jacobian matrices and the corresponding eigenvalues for the preconditioned

system of equations can be expressed as follows,

0 -1 0 0 0 -1
Pl,=| -1 0 o |, Pny = 0 0 0 , A==%1,0. (4.16)
0 0 0 -1 0 0

We can notice that the above Jacobian matrices are the same as that of the hyper-
bolic form of diffusion equation derived for the diffusion equation, Eq. (3.6). The

upwind fluxes are the same for both set of equations, and by changing the source
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terms and by using appropriate boundary conditions the magnetized electron fluid
equations and diffusion can be simulated by the same code. Therefore, the Jacobian
matrices are not affected by the magnetic field as they are included in the source
terms and also the eigenvalues are significantly simplified which improves the conver-
gence speed. Similarly to the anisotropic diffusion equation, the upwind flux for the
magnetized electrons will be constructed by following the standard procedure of local
preconditioning method [66], i.e., the preconditioned Jacobian is multiplied by P~!
to cancel the effect of P,

~ 1 la 1 ~a
Ei+%yj = Q(EL + ER) - §P 1‘PJx’<QR - QL)? (417)

4.1.2 Boundary conditions: WENO extrapolation

In situations where there are sharp gradients close to the boundary, the Lagrange
extrapolation may result in severe oscillations. To overcome such difficulties a more
robust WENO type extrapolation is proposed by Tan and Shu [60, 11]. Analogous to

the idea of WENO, three polynomials are constructed for the extrapolation given by,

Po(ZL‘) = Ug,
Uy — U
Pi(x) = %x + up, (4.18)
3w + duy — 9
Py(z) = up + to 1 2t Y2, 4 2o u1+u2x2.

2Ax 2Az?

Using the standard WENO procedure, the equation 3.23, Lagrange extrapolation,

can be rewritten as,

2
d*p, () Ax
k T
ut = E_ W at v = o (4.19)
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2
D im0 Os

where w, are the typical nonlinear weights given by, w, = and o, =

(€+,Br)3 ’

where the linear weights d, are chosen as
do = Az% dy = Ax,dy = 1 — Az — Az?, (4.20)
and the smoothness indicators (3, are obtained by,

- a1 [ d ’
B = lzle /_AI (%p](x)) dx. (4.21)

When doing WENO extrapolation on left boundary, the smoothness indicators are

listed below:

B =Az®
B2 I(Uo - U1)2
63 :E<UO — 2u1 —+ UQ) + (2U0 — 3U1 + u2)

The coefficients for right boundary extrapolation can be obtained by symmetry. Only

3% order WENO extrapolation is considered for all the simulations.

4.2 Numerical tests and discussion

The test calculation considered by Kawashima et al. [29] with uniformly angled Mag-
netic lines of force at 45° from the vertical, shown in Fig. 4.2, is considered here. For
a Cartesian mesh, the condition of 45° magnetic lines of force can give significant false
diffusion [67]. False diffusion will occur due to the oblique flow direction and non-zero
gradient in the direction normal to the flow. As a consequence of false diffusion, non-
physical local extrema can occur in regions in which the gradients of the solution are

steep and not aligned with the orientation of grid, and the discretization method will
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be unable to capture them properly. Results were obtained for three different values
of magnetic confinements, y/p, =100, 500 and 1000, which are uniform throughout
the domain. Dirichlet boundary conditions for the non-dimensional space potential
are defined at the left and right side boundaries and zero-flux conditions, which are

also Dirichlet, are used for the top and bottom boundaries, shown in Eq. (4.22).

¢ = iy = (4.22)
0, x =200 0, y=100

Magnetic field lines

’ ’ . . . v .
’ ’ . ’ ’ 4 v
’ ’ v v ’ v
4 . v
’ ’
.
v v

0 = 45° from vertical X

Figure 4.2: Sketch of the magnetic field lines for 45° angle.

Unlike the test cases of diffusion and advection-diffusion where the numerical schemes
are compared with the analytical solutions, the linear and WENO upwind schemes
are compared with the Magnetic Field Aligned Mesh (MFAM). MFAM is described by
Mikellides et al. [26] and Kawashima et al. [29], which eliminates the false diffusion
by aligning the mesh with the magnetic field. The simulations are conducted for both
MFAM and the upwind schemes with grid refinements of NX, NY = [96, 48] to [768,
384] for all the values of f/p.. For the upwind methods, the numerical solution
is computed by explicit time marching with a constant CFL of 0.32. Regardless of

the interior scheme, 3rd order accurate boundary conditions are considered for all
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the upwind schemes for stable computation. The steady-state solution is deemed to
be reached if the L; norms are below 1072, As far the MFAM approach, successive
over-relaxation is used to numerically relax the solution until the L, norms are below
10719 by second-order central discretization. Figs. 4.3 and 4.4 show the velocity
streamlines computed by using different schemes for mobility ratios p/p1 =10, 500
and 1000. Velocity streamlines computed by MFAM are shown in Figs. 4.4(a), 4.4(b)
and 4.4(c) respectively and we can see that as p/p, is increasing the plasma is
more confined to the center. For py/puy = 100 all the linear schemes and WENO
has similar results compared to that of the MFAM whereas the Generalized MUSCL
approach is showing unphysical streamlines even for such small anisotropies. From
the Figs. 4.3(c) and 4.4(f), we can see that there are significant unphysical vortices in
Upwind-3E for y;/p. = 1000. Results obtained by TVD-MUSCL are same as that
of Upwind-3E scheme, similar to the results observed for isotropic diffusion problems.
However, the fifth order schemes, Upwind-5C, Upwind-5E, and WENO-5Z-L, were

able to reduce the unphysical oscillations significantly.
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We see from a series of Figs. 4.5(a) — 4.6(i), that there can be serious numerical
oscillations in the solutions of the flow field with increasingly strong magnetic confine-
ment. The main reason is not only the anisotropic diffusion itself but also because
of the sharp gradients that are not aligned with the grid. In Fig. 4.6(c), MFAM
approach do not show such behavior through an alignment of field lines with the grid
and thereby captures the sharp gradient without numerical oscillations. If the angle
between the field lines and the mesh is aligned, even the central scheme could also
be easily implemented. As the gradient becomes more and more skewed, it diverges
much more from the grid lines, thereby generating larger oscillations, as seen in Fig.
4.5(c). WENO-5Z was able to capture the gradients without significant oscillations
as the disturbances in the y-velocity are minimal when the solution has reached the
steady state.

Steady state solutions obtained for linear upwind schemes indicate that the dis-
turbances behind the strong gradient have polluted the entire domain but similar to
the boundary layer problem the solutions may be reduced with finer grids. Solutions
obtained for diffusion, advection-diffusion, and magnetized electrons are indicating
that the TVD- type schemes are not effective for the first order hyperbolic approach.

The oscillations due to sharp gradients can be drastically reduced with finer meshes
by WENO-5Z. Even though MFAM approach did not show any spurious oscillations,
such alignment may not be practical in many simulations with multiple sharp gra-
dients. Furthermore, the boundary conditions and coding can be challenging to im-
plement. Based on these simulations we can say that the non-oscillatory approach of

WENO can be a reasonable and viable alternative.
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Similar patterns are also observed in potential distributions shown in Fig. 4.7.
The maximum principle is violated as a consequence of these spurious oscillations
as we can see the values of space potential are more than the theoretical bounds
defined by the boundary conditions. Although the values are relatively smaller, it
should be noted that the values are non-dimensionalized and the actual error can be
much higher. On coarse grids, the entire domain can be polluted with unphysical
extrema. The grid size of 192 x 96 is chosen in Fig. 4.7 is to reiterate the fact
that the spurious oscillations can be reduced by the linear upwind schemes whereas
they remain the same for the Generalized-MUSCL. Spurious oscillations in potential

are comparatively smaller in the compact scheme than that of explicit schemes. As

Gmaz = 1.0033753 i = -0.0033753 Gmaz = 1.0030745 ¢y = -0.0030745
100 ————— 5
801
601
(SN
401
20
0t
0 50 100 150 200
i
(a) Upwind-3E (b) Upwind-5E
Omar = 1002414 iy = -0.002414 Gmaz = 1.006T17L @i = -0.0022551
100 IOOWH - AT T e e

601 604

= = P
401 404"

20 20 //’

ok 0=
0 0

(¢) Upwind-5C (d) Generalized-MUSCL

Figure 4.7: Distribution of dimensionless space potential, calculated by using various
schemes on a grid of 192 x 96 for y/p,=1000.

explained earlier, the steady state is considered to be reached when the L; norms
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attain negligibly small values in the order of 10712, that are defined by Eq. (4.23)

1 Noen
Li- \/ e - @, (4.29

where () denotes each of the conservative variables (qg, Ty, Uy). The convergence his-
tory of space potential for various schemes is shown in Fig. 4.8 when the test problem
is calculated on a 192 x 96 grid. The residuals are monotonically decreasing and
reached the limit as mentioned earlier for all the linear upwind schemes and WENO
scheme. For the Generalized MUSCL scheme, the residual does not converge beyond

four orders of magnitude.

—A— -C5
—92 - oES
—r— ¢-E5
—#— ¢-WENO
—4 —_— &—Ge!lel’ztlized—l\[USCL
Py AT S A A A e
<q
g g
0~
-
o
o
g —8
—
—10
— 12 .

1 1 1
0 50000 100000 150000
Number of iterations

Figure 4.8: Convergence histories by all the upwind schemes on a grid size of 192 x
96 for py/p11=1000 and 6 =45°.

4.2.1 Effect of boundary conditions

Simulations carried out by WENO-5Z along with Lagrange extrapolation, WENO-
5Z-L, for ghost cells are free of spurious values in space potential if p /. < 500.
But with increasingly higher anisotropies small overshoots and undershoots, similar

to those that are observed in linear upwind schemes, are also found in the cells next
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to the boundary. By keeping the objective of the uniform grid, WENO extrapo-

lation method, WENO-5Z-W, is used for computing the values in ghost-cells. The

WENO-5Z-W scheme was able to adaptively reduce to lower accurate order bound-

aries and thereby prevented the unphysical oscillations in the flow field, as shown in

Fig. 4.9. WENO extrapolation approach was also tested for smaller anisotropies, and
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Figure 4.9: Distribution of dimensionless space potential computed by WENO ex-
trapolation and Lagrange extrapolation in comparison with MFAM for p/p, =1000
on a grid of 96 x 96. Dotted regions are enlarged and shown in Fig. 4.9(a).

the results indicated that the performances are similar to that of WENO-5Z-L and no

unphysical extrema are generated. The minimum grid size required for WENO-5Z-W

scheme to prevent unphysical extrema in space potential distribution is 16 x 16 for

p/ e <500 and 96 x 96 if /g > 500. Test calculations are also carried out for

the cases when the magnetic field lines are aligned at an angle 60° from the vertical

and even for complicated shapes constructed using the magnetic stream function,

shown in Fig. 4.10(c). These results further confirm the fact that the WENO scheme
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has better capabilities in capturing the sharp gradients without spurious oscillations

even for complex magnetic field shapes shown 4.10(d) and 4.10(e).
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Figure 4.10: (a) and (b) Distribution of dimensionless space potential and streamlines
for constant angle of 60°, (c) Curved magnetic field lines test case, (d) and (e) Dis-
tribution of dimensionless space potential and streamlines for curved magnetic field

shape, computed by WENO-5Z-W on a grid of 96 x 96 for p/p,=1000.
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4.2.2 Mesh convergence and accuracy for electron fluids

The computational accuracy of anisotropic diffusion by HES approach is compared
with that of MFAM by using the transverse electron flux which is defined as the total

electron flux from right to left boundary given by Eq. (4.24),

Fe - /QL (ae,x> dgv (424)

where 2, is the left boundary of the calculation field. The grid convergence of the
calculated electron transverse flux is evaluated only for WENO-5Z-W and MFAM
schemes as for the other schemes the solution is polluted due to spurious oscillations
and might not be appropriate. Table 4.1 shows the difference between computed

transverse electron fluxes by both the approaches. The error reduces from 1.12% to

0% on mesh refinement. Another criteria considered is the relative numerical error,

Table 4.1: Error in transverse electron flux for p/p,=1000 and § = 45°.

Number WENO-5Z-W MFAM

of points L, Error % I, Error %
96x48 | -0.01861 1.12 -0.01878 0.21
192x96 | -0.01878 0.21 -0.01879 0.16

384x192 | -0.01881 0.05 -0.01882 0.0

768 x384 | -0.01882 0.0 -0.01882 0.0

|la| error, which is defined as

1 Queno - Q 2\
|l2|:ﬁ <Z< WENO MFAM) > :

QMFAM

(4.25)

where Q is each of the conservative variable. The relative errors are calculated in
comparison with the field aligned mesh results. The Table 4.2 show thew relative [y
errors computed for field aligned mesh and WENO-5Z-W and the results show that

the solution seems to improve with finer grid resolution.
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Table 4.2: Relative I, error for MFAM and WENO-5Z-W for 44/41 =1000.

Number of points o) Uy (s
96x48 3.28E-03 | 1.01E-02 | 1.03E-02
192x96 2.62E-03 | 9.92E-03 | 1.02E-02
384x192 1.73E-03 | 8.71E-03 | 8.92E-03
768x 384 9.82E-04 | 8.12E-03 | 8.35E-03

4.3 Summary

The important findings of this chapter are summarized as follows

1. Spurious oscillations due to sharp gradients are significantly reduced by using
high-order schemes. For small anisotropies, linear upwind schemes as well as
TVD-MUSCL employed can be appropriate. TVD schemes cannot reduce the

oscillations for the magnetized electron fluids computations.

2. WENO approach is found to be more suitable and robust to reduce the spurious
oscillations associated with the sharp gradients with increasing anisotropic dif-
fusion in magnetized electrons. Significant improvement is achieved by utilizing
WENO schemes for the simulation of magnetized electron fluids as the results

are much closer to the field-aligned mesh.

3. Boundary conditions based on WENO extrapolation are found more appropriate

to prevent unphysical extrema for anisotropies higher than 500.

4. For very high anisotropic diffusion problems, s/, of the order from 10* to 10
that can be seen in practical applications like tokamaks and space propulsion
devices, all the schemes would result in spurious oscillations on coarse meshes,

say 96 x 96, and reducing such oscillations is the subject of future work.
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CHAPTER V

Hyperbolic approach for Advection-Diffusion

equation

Convection and diffusion are the two major transport phenomenon in fluid flow
and most of the governing equations involve modeling the these processes. Convection
and diffusion terms appear in energy equation of the magnetized plasma equations
and this chapter is a preliminary step in that direction. The convection process is
modeled using first-order spatial derivatives and various types of upwind schemes
developed for the hyperbolic type of equations. On the other hand, diffusion terms
are generally modelled using second-order spatial derivatives. In the previous chapter,
high-order upwind schemes are presented for diffusion equation via hyperbolic system
approach. Therefore, it is natural to unify the convection and diffusion terms and
model them by a single scheme. In this chapter the first order hyperbolic approach

is extended further to advection-diffusion equation.

5.1 Governing equations and construction of hyperbolic scheme

In this section, consider the advection-diffusion equation,

ou ou b@u_ 0%u  0%*u

gu | 0u 4 ot 0 O 1
ot "% tha, TG t o) (5:1)
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where where u is the solution variable, (a,b) is a constant advection vector, and v is a
constant positive diffusion coefficient. Similar to the diffusion equation new variables
p = g—g and ¢ = g—;‘ are defined and pseudo-time derivatives are introduced to obtain

the following first order hyperbolic system:

ou ou ou dp  Oq

E—l—aa—x—i-ba—y:V(a—x‘i‘a—y),
dp Ou
v 77 5.2
or or U (5:2)
9¢ Ou_
or Oy e

The Eq.(5.2) can be represented in vector form as,

0Q  OE, OE,
ar Tor Ty (5:3)

where the conservative variables, fluxes in x and y-direction and source terms are,

u auw — vp bu — vq 0
Q: P 7EX: —U 7Ey: 0 ) S = 'Y ) (54>
q 0 —u —q

respectively. The split hyperbolic formulation introduced by Nishikawa in Ref. [5] is
considered in this section. The advection, E2, and diffusion, E?, fluxes in x-direction

are separated as

au ez
Ex=E2+Ed=| o | +| —u |- (5.5)
0 0

The absolute Jacobian matrix for the diffusive fluxes would be the same as in Eq.

(3.7), which is written here for connivence, and the corresponding absolute Jacobian
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matrix for the advection flux is straightforward,

la| 0 0 100
Jaxl=1 0 0 0| Haxl=v¥»|[0 1 0]- (5.6)
0 00 000

and finally, the upwind flux can be constructed as,

~ 1 1
Ei+%,j 25( L+ER)_§’de+JaX’(QR_QL) (5.7)

The upwind fluxes can also be constructed by the unified advection-diffusion approach
proposed by Nishikawa in Ref. [4] and the numerical schemes presented here can be

used in a straight forward manner and is discussed later.

5.2 Boundary conditions

Similar to the diffusion and anisotropic diffusion equations the Dirichelt boundary
conditions are employed through Lagrange extrapolation. In this section outflow

boundary conditions are also considered which are set as follows:

Ui=Uy=10, (5.8)

5.3 Numerical tests

For the advection-diffusion equation, the numerical solutions are computed on a uni-
form Cartesian mesh. For the linear upwind schemes, depending on the order of the
interior interpolation the corresponding r*" order extrapolation polynomial is used
for the ghost boundary conditions. For WENO scheme both Lagrange and WENO

extrapolations are considered for boundary conditions.

69



5.3.1 One-dimensional test cases

Example 5.1. The following one dimensional-advection diffusion equation is consid-

ered with the spatial domain of [0,1] and u(0) = 0 and u(1) =1

Uy + AUy = Vg, + (), (5.9)

where, s(z) = mRe[acos(rx) + mvsin(rx) and the Reynolds number, Re = . The

exact steady state solution is given by

exp(—Re) — exp(xRe — Re) N sin(mx)
exp(—Re) — 1 Re

(5.10)

Uezact (I) —

The exact solution is a smooth sine curve for low Reynolds numbers, which are diffu-
sion dominant, and develops a sharp gradient close to the boundary for high Reynolds
numbers when advection becomes the dominant effect. The main objective of this
test case to verify the design accuracy and implementation of the numerical schemes
and also to show the advantage of WENO scheme over TVD-MUSCL in capturing
the sharp gradients. The simulations are conducted on a uniform grid with grid re-
finements from N = 8 to 256 by all the upwind schemes. The numerical solution is
computed by an explicit time-marching until the residuals are dropped below 10719
in L; norm. A constant value of CFL is considered depending on the order of the

scheme. Simulations are carried out for three Reynolds numbers: Re = 0.1, 1, 10.

70



1.50+
1.251
1.001

= 0.75
0.50
0.25+
.00 | Famesesneamesmeo o B

000 02 050 075 100
T x
(a) Linear schemes (b) Shock-capturing schemes

Figure 5.1: Numerical solutions obtained by using different schemes for Re = 1 and
10 for Example 5.1. Red circles: Generalized-MUSCL; purple stars: U-3E; orange
squares: TVD-MUSCL; blue squares: U-5C; magenta diamonds: U-5E; green trian-
gles: WENO-5Z.

Fig. 5.1 shows the solutions contours of various schemes in comparison with the
analytical solution for the primary variable, u. From Fig. 5.1(b), it is obvious to
notice that the Generalized MUSCL scheme can pollute the smooth profile whereas
TVD-MUSCL reduces to linear 3rd order scheme. For Re = 1 there were unnecessary
oscillations in the profile, and for the Reynolds number of 10, even though there are
no oscillations, the sharp gradient has been completely cut-off. Numerical results
obtained by linear upwind schemes were, in fact, better than the results obtained
by Generalized MUSCL scheme. The design order of accuracy is obtained for all
the schemes and all the Reynolds numbers and is shown in Fig. 5.2. The 5th order
compact scheme is one order of magnitude more than the design accuracy for Re =

0.1.
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Figure 5.2: Convergence of the Ly error for upwind schemes for Re = 0.1, 1 and 10

for Example 5.1.

5.3.2 High-Reynolds number flows and Péclet number

The impact of convection and diffusion on the transport of a physical quantity is
measured by the cell Reynolds number or the local Péclet number (Pe), which is
defined as the ratio of convective flux to diffusive flux, To obtain the solution without
oscillations in the case of high-Re, extremely fine grids are required to meet the well-
known requirement on the mesh Reynolds-number, i.e., Re < 2, as explained by

Nishikawa [1]. Computations are carried out by Nishikawa on substantially coarser
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grids by grid stretching to meet the criteria. In this test case, the non-oscillatory

schemes, WENO, are incorporated to capture the sharp gradients without oscillations

on uniform meshes which might not satisfy the mesh Reynolds-number requirement.

Simulations carried out for the Reynolds number of 500 on a uniform grid size of 256

has been shown in Fig. 5.3.
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Figure 5.3: Numerical and exact (dotted line) solutions obtained by various schemes

for Re = 500 on a grid of 256 points.

Generalized MUSCL scheme did not show any oscillations but completely cut-off
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the sharp gradient and thereby failing to capture it. On the other hand TVD-MUSCL
has reduced oscillations compared to that of linear 3rd order scheme. Oscillations are
also observed in both 5th order schemes. However, the amplitude of the oscillations is
much smaller for the compact scheme than the explicit scheme as expected. Finally,
sharp gradient developed at x = 1 is easily captured by WENO scheme without
spurious oscillations as shown in Fig. 5.3(d). Also, it is important to note that the
linear schemes can also give oscillation free solutions on dense grids by satisfying the
mesh-Reynolds number criteria. These important inferences were found to be useful
for the simulation of magnetized electrons which can develop sharp gradients with

increasing strength of magnetic confinement.

5.3.3 Two-dimensional test cases

Example 5.2. The two-dimensional advection-diffusion equation is solved by split

flux approach for two test cases.

Ur + Uy + by, = V(Ugy + Uy ), in domain (x,y) € [0,1] x [0,1] (5.11)

1. The first test case is an advection-dominated problem considered by Nishikawa

and Liu [9] which has the following exact solution,

827T2,u€ ) ’ (512)

Uegact (T, Y) = cos(2mn) ex

o(.9) (2mm) p(1+ 1+ 167717
where £ = ax + by, 7 = bx - ay and the viscosity, ¥ = 0.1. The advection vector
(a,b) is given by (1.0,1.0). This exact solution is given by Eq. (5.12) is very
smooth and therefore can be used to verify the accuracy of numerical schemes.

For the right boundary, outflow boundary conditions are used for this test case.
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2. For the second test case the following exact solution is considered,

—0.5¢(1 1+ 42722
Uegact (T, y) = cos(mn) exp s+ + £m?) , (5.13)
v

where the viscosity coefficient is ¥ = 0.1, and the advection vector (a, b) is given
by (7.0,4.0) respectively. This test case was originally proposed by Nishikawa
and Roe in [68], where both advective and the diffusive terms are equally im-

portant which may exist in the middle of the boundary layer.

Computations are carried out with grid refinements from 8x8 to 128 x 128 for both
the test cases. For all the numerical schemes, the simulations are carried out until the
residuals are dropped below 1074 in L; norm and CFL is dependent on the numerical
scheme used, which is in between from 0.3 to 0.7. Both WENO extrapolation denoted
as WENO-5Z-W, and Lagrange extrapolation, WENO-5Z-L, are implemented for the
numerical boundary conditions for the WENO scheme, which are 3rd order accurate.
Figures 5.4(a) and 5.4(b) show the velocity contours obtained by the upwind scheme,
U-5E, for both the test cases on a 48 x 48 grid.
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Figure 5.4: Comparison of velocity contours, on a grid size of 48 x 48, for test

conditions given by Example 5.2.

5



Design accuracy is obtained for all the linear upwind schemes, shown in Fig. 5.5(a)
and the implementation of boundary conditions for advection dominated problem are
verified through this test case. First the first test condition, WENO scheme is third
accurate for both WENO and Lagrange type extrapolations which is unlike the one-
dimensional test case where the WENO scheme was fifth order accurate.

The second test case was found to be more challenging than the advection-
dominant flow. Design accuracy is obtained for all the linear upwind schemes, shown
in Fig. 5.5(b). For the WENO scheme, the WENO extrapolation technique for the
boundary conditions was observed to be first order accurate whereas the Lagrange ex-
trapolation is 3rd order accurate similar to the advection-dominated problem. Table

5.1 show the L, norms for both the test cases for both WENO implementations.
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Figure 5.5: Convergence of the Ly error for all the upwind schemes for both the test

Mesh size

(a) Advection dominated

conditions in Example 5.2.

76

Mesh size

(b) Both Advection-Diffusion dominant




Table 5.1: Ly errors and order of convergence for Example 5.2 by using WENO scheme
along with WENO and Lagrange extrapolation techniques for boundary conditions.

Number Advection Advection-Diffusion
of points WENO-5Z-L WENO-5Z-W WENO-5Z-L WENO-5Z-W
error order error order error order error order
82 7.52E-05 6.90E-05 4.55E-02 3.99E-02

162 1.22E-05 | 2.62 | 1.19E-05 | 2.53 || 7.83E-03 | 2.54 | 1.35E-02 | 1.56
322 1.27E-06 | 3.27 | 1.27E-06 | 3.23 || 1.30E-03 | 2.59 | 4.92E-03 | 1.45
642 1.40E-07 | 3.18 | 1.40E-07 | 3.18 || 1.48E-04 | 3.14 | 1.75E-03 | 1.49
1282 1.56E-08 | 3.17 | 1.56E-08 | 3.17 || 1.50E-05 | 3.30 | 7.51E-04 | 1.22

Example 5.3. In this test case, the steady state problem of the two-dimensional
advection-diffusion equation is considered, with boundary layers along x =1 and y =

1, considered by Chou and Shu [69] which has the following exact solution given by

z71+y71

ue:vact<x;y) =ev VoL (514)

The viscosity coefficient v is taken as 0.05, and the exact solution is imposed on
the boundaries. Linear upwind schemes are not considered for this problem as they
will produce spurious oscillations. Figure 5.6 shows the three-dimensional numerical
solution contour. The numerical results are shown in Table 5.2 indicate that the third
order accuracy is obtained for WENO-5Z-L. whereas the accuracy of WENO-5Z-W
is reduced to first order. This test case demonstrates that the WENO scheme can

resolve the boundary layers by using first-order hyperbolic approach.

Table 5.2: Ly errors and order of convergence for Example 5.3 by using WENO scheme
along with WENO and Lagrange extrapolation techniques for boundary conditions.

Number WENO-5Z-W WENO-5Z-L

of points error order error order
202 2.21E-03 1.91E-03
402 1.07E-03 | 1.04 | 2.00E-04 | 3.26
802 4.60E-04 | 1.22 | 2.34E-05 | 3.09
1602 1.99E-04 | 1.21 | 2.59E-06 | 3.18
320 9.06E-05 | 1.14 | 2.68E-07 | 3.27
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Figure 5.6: Three-dimensional plot of numerical solution by WENO scheme with
64 x 64 cells Example 5.3.

5.4 Summary of the chapter

e First order hyperbolic approach developed for diffusion equation is extended to

advection-diffusion equation.

e All the upwind schemes are consistently high-order accurate for all the prob-
lems. For smooth solutions compact schemes have better accuracy than explicit

schemes.

e An important contribution in this chapter is the successful implementation of
weighted non-oscillatory schemes to capture the sharp gradients without spuri-
ous oscillations for boundary layer type problem for advection-diffusion equa-

tion.
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CHAPTER VI

Conclusions

6.1 Summary

In this thesis, high-order schemes using a hyperbolic approach are proposed for diffu-
sion dominated flows. Several new tools, like boundary conditions and new hyperbolic
formulations, are developed and described in this thesis. Various problems encoun-
tered are examined in detail and resolutions are discussed.

In chapter-3 high-order and high-resolution methods for the diffusion equation in
the hyperbolic form on uniform meshes are proposed and investigated. Design or-
der of accuracy is obtained for all the schemes for all the test problems considered.
Shock-capturing schemes are found to be unnecessary for simple diffusion equation,
and through various test cases, the inapplicability of specific TVD schemes is ex-
plained. In particular Generalized MUSCL scheme is found to be unsuitable. Even
though the WENO scheme is a shock-capturing scheme the steady-state solutions are
not contaminated and are similar to the linear upwind schemes. Ghost cell approach
is found to be more accurate and stable than the weak boundary implementation,
especially on coarse meshes. Linear upwind schemes are consistently stable with the
corresponding higher order boundary conditions whereas WENO schemes were stable
only with reduced order boundary conditions due to their inherent non-linearity. Ap-

propriate relaxation time and length scales are found to be important for dimensional
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equations and design accuracy is also achieved such problems. Fifth or higher order
schemes are recommended for diffusion equation in hyperbolic form.

In chapter-4 the hyperbolic approach for anisotropic diffusion equation is im-
plemented. Firstly, the ideas and lessons learnt from isotropic diffusion are found
useful for anisotropic diffusion equation. Significant improvement is achieved by uti-
lizing WENO scheme for the simulation of magnetized electron fluids as the results
are much closer to the field-aligned mesh. Similar to the boundary layer problem
WENO approach is found to be more suitable and robust to reduce the spurious
oscillations associated with the sharp gradients with increasing anisotropic diffusion
in electron fluid equations. For small anisotropies, linear upwind schemes as well
as TVD-MUSCL employed can be appropriate. Generalized MUSCL is found inap-
propriate for the magnetized electron fluids computations similar to the hyperbolic
diffusion equation.

Secondly, an alternate formulation is proposed for the anisotropic transport equa-
tion with appropriate length scale, L,, and relaxation time, 7)., and the numerical
results indicate that the simulations are independent not only of degree of anisotropy
and but also angle of misalignment. Preconditioned form of the hyperbolic system is
found suitable for anisotropic diffusion with significant improvement in accuracy and
steady state convergence. Consistent high-order accuracy was achieved for test cases
with variable diffusion coefficients. Boundary conditions based on WENO extrapola-
tion are found more suitable to prevent unphysical extrema, for both the formulations
in case of sharp gradients, for anisotropies higher than 500. For very high anisotropic
diffusion problems, 4/, from 10* to 10° that can be seen in practical applications
like tokamaks and space propulsion devices, all the schemes resulted in spurious os-
cillations on coarse meshes, say 96 x 96.

In chapter-5 the hyperbolic approach is further extended to advection-diffusion

equation. Design order of accuracy is obtained for all the higher order methods for
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smooth solutions. Unlike the diffusion equation the compact schemes are slightly
more accurate than explicit schemes. The advantage of compact schemes may be
more pronounced if the current approach is extended to time-dependent problems
and also to hyperbolic compressible and incompressible Navier-Stokes equations pro-
posed by Nishikawa [70]. An important finding from chapter-5 is that the weighted
essentially non-oscillatory schemes can capture the sharp gradients without spurious
oscillations for boundary layer type problem for advection-diffusion equation, without
grid stretching and satisfaction of mesh Reynolds number.

In conclusion, fifth order accurate results are obtained for various kinds of diffu-
sion dominated flows by using appropriate boundary conditions and preconditioning
method. Hy- perbolic approach along with these high-order upwind schemes are

recommended for practical plasma simulations.

6.2 Recommendations for Future Work

During this research, several areas have been identified that can lead to further im-

provement of hyperbolic approach for diffusion and its applications

6.2.1 Optimum length scale for higher order schemes

Optimal values for length scale, L,, and relaxation time, T,, may be derived for the
anisotropic diffusion equation by following the procedure described in Ref.[2]. In
brief, we substitute a Fourier mode into the first-order version of the finite-difference
scheme in the semi-discrete form to derive a pseudo-time evolution of the amplitude
of the Fourier mode, and derive the optimal values by requiring that the eigenvalues
of the evolution matrix become complex, so that the Fourier mode will propagate
rather than purely get damped. By propagating the Fourier mode the scheme can

have a property of removing errors by propagation along with damping. It may be

81



beneficial if they are derived for high-order schemes, 3" and greater.

6.2.2 Positivity preserving

Another important aspect of the anisotropic diffusion equation is the positivity of the
temperature or space potential. A numerical scheme should be robust against the
development of nonphysical negative temperatures during the simulation and must
satisfy positivity and monotonicity. For example negative temperatures, T, in Hall
thruster modeling can lead to decreased electron currents and negative Joule power
density near the cathode region. A possible alternative to the nonlinear limiters is
the high order positivity preserving WENO schemes developed by Zhang and Shu
[71, 72] and Hu et al. [73] which are both high-order accurate and also positivity
preserving at the same time. The numerical schemes may be developed along with
the appropriate boundary conditions for consistent and accurate simulations.

All the numerical schemes presented in this thesis were one-dimensional, i.e. the
reconstructions and interpolations are performed dimension by dimension, whereas
the flow features are multidimensional. An alternative is to develop a truly multidi-
mensional solver that incorporates the multi-dimensional effects which are also im-
mune to mesh irregularities and alignment. Such schemes proposed in the literature,
e.g. Residual Distribution schemes proposed in Ref. [2] for the hyperbolic approach
of diffusion equation, multi-dimensional Riemann solver developed for Magnetohy-
drodynamics [74, 75], and high-order Residual distribution WENO schemes [(9], can
be explored. Combining Asymptotic preserving schemes and hyperbolic approach can

be an alternative to mitigate the issue of positivity [21, 22].

6.2.3 Other system of equations

1. Electron energy equation for magnetized electrons: In this thesis the hy-

perbolic approach for magnetized electrons models only mass and momentum
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conservation equations. To simulate plasma devices, the hyperbolic approach
should include the energy conservation equation to obtain the electron temper-
ature. Such a model proposed by Kawashima et al. [30] constructs the upwind
fluxes by using the flux vector splitting approach. It may be interesting to de-
velop a method based on Roe solver proposed in this thesis to compare the two
approaches. Also, optimal values for the relaxation time, 7}, and length scales,
L,, discussed in earlier chapters may be explored further for improved accuracy

and faster convergence.

. Compressible Navier-Stokes equations: The non-oscillatory schemes im-
plemented for advection-diffusion equation readily extended to Navier-Stokes
equations. It may be particular beneficial for boundary-layer type problems,
without grid stretching and satisfaction of mesh Reynolds number. Another
challenging application could be employing such approach for problems involv-

ing sharp gradients and discontinuities (shock waves).

. Multi-component plasma: The proposed method has wide ranging practical
applications and one such area interest that has not be explored yet is multi-
component plasma [76]. The methodology proposed by Parent et al.[77, 78] can

be a good starting point due to its similarities to hyperbolic formulation.
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APPENDIX A

Verification of numerical methods

In this appendix, the following Euler equations for inviscid and compressible flows

are computed to verify the numerical schemes presented in chapter-2.

dp 0 B

QJF%(PU)—O,
Opu 0 9
2 2 - Al
o a5 (ou”+p) =0, (A1)
oE 0
EJFE(U(EvLP))—U,

where p, u, p and E are the density, velocity vector, pressure, and total energy per

unit volume respectively. The total energy per unit volume is given by,

where 7 is the specific heat ratio of the gas.

A.1 One-dimensional test cases

First, Sod’s shock-tube problem [79] is computed to verify the shock-capturing ability
of MUSCL and WENO-5Z schemes. The initial conditions for the Sod problem are

85



given below.

(0.125, 0, 0.1), 0<az<0.5,

(p,u,p) = (A.3)

(1, 0, 1), 05<z<l;

The ratio of specific heats 7 is 1.4 and the computational domain is [-0.5,0.5]. In
the test case, grid points are set to be 100 and the CFL number 0.5. Exact solution
is computed on a grid size of 1000 points by exact Riemann solver [30]. Numerical
results of the density, pressure, velocity and internal energy obtained from WENO-5Z
and Generalized MUSCL schemes at time t = 0.2 are shown in Fig A.1. It can be
seen that there are no overshoots at the contact discontinuities and WENO-5Z has

less dissipation than MUSCL scheme as expected.
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Figure A.1: Sod shock tube problem at ¢ = 0.2 for WENO5-Z and Generalized
MUSCL
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Second, the Shu-Osher problem [31] is computed. The following initial data is

considered,

(3.857143, 2.629369, 10.3333), —H<ax < —4,
(p,u,p) = (A.4)
(14 0.2sin(5z), 0, 1), —4 <z <5,

with zero-gradient boundary conditions. This problem simulates the interaction of a
right-moving Mach 3 shock with a perturbed density structure. Figure A.2 show the
numerical results of the 5th-order WENO-5Z and WENQO-JS schemes at time t = 1.8
with grids of N = 200. The “exact” solution is computed by WENO-CUG6 [32] with
a fine grid N = 2000. It is shown that all schemes give satisfactory approximations
of the wavelike structures behind the shock. It can be observed that WENO-5Z has

lower dissipation and resolves the wave phenomenon better than WENO-JS.
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Figure A.2: Density distribution of the Shu-Osher problem: (a) Global profile and
(b) enlarged figure for the post- shock region.
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A.2 Two-dimensional test cases

In this section, two-dimensional numerical tests of WENO schemes are conducted to
verify the resolution and robustness. All the simulations are carried out by Local Lax
splitting approach. First, the double Mach reflection is investigated. The problem
simulates the interaction of a shock wave of Mach number M = 10 with a wall at a
60 angle. The initial conditions for the problem are as follows,

(8, 8.25c0s30°, —8.255in30°, 116.5), =z <1/6+ —L

tan 600

<p7u7v7p) = (A5)
(1.4, 0, 0, 1), z>1/6+

tan 6007

The initial and boundary conditions as same as that of Woodward and Collela [33]
and the computation is conducted until t = 0.2, on a grid size of 960 240. At
the bottom boundary, reflecting boundary conditions are used for x > 1/6 and the
slip wall condition is imposed at z € [0,1/6]. The left boundary is set at the post-
shock flow conditions and zero-gradient conditions are applied at the right boundary.

Time-dependent boundary conditions are employed on the top boundary.

0.—1*
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X X
(a) WENO-JS (b) WENO-5Z

Figure A.3: 34 equally spaced contours of density at t = 0.2 for WENO-JS and
WENO-5Z schemes in the blown-up region around the Mach stem.

In Fig.A.3, WENO-JS is too dissipative to produce any rolled-up vortices along
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the slip line and the resolution is improved in WENO-5Z simulations.

Second, Rayleigh-Taylor instability, which occurs at an interface between fluids of
different densities when an acceleration is directed from the heavy fluid to the light
fluid, is computed. The objective of this test case is to show the feature of dissipation,
with bubbles of light fluid rising into the ambient heavy fluid and spikes of heavy fluid
falling into the light fluid and resulting in fingering like structure, in two dimensions.

The initial conditions of Rayleigh-Taylor instability are [34]

(2.0, 0, —0.025, /g_§ cos(8rx), 2y +1), 0<y<0.5, (46
A6

(1.0, 0, —0.025 g—ﬁcos(sm), y+15), 0<y<0.5,

(pJ/U/?U?p) -

and the computation is conducted until t = 1.95, on a grid size of 120 x 480.

0.2

0.0
0

(a) WENO-JS (b) WENO-5Z

Figure A.4: Comparison of density contours obtained by WENO-JS and WENO-5Z
on a grid size of 120 x 480.

Reflective boundary conditions are imposed on the right and left boundaries by
ghost cells. The flow conditions are set to p=1, p=2.5, and u = v=0 on top boundary
and p=2, p=1.0, and v = v=0 on bottom boundary. Figure A.4 indicates the den-
sity distribution of the Rayleigh-Taylor instability problem and it can be seen that
WENO-5Z resolved the finer structures in comparison with WENO-JS.
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