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Abstract

The muonium (Mu) ground state hyperfine structure (HFS) interval, vy, nrs, in a
zero magnetic field was measured at the Japan Proton Accelerator Research Complex
(J-PARC), Materials and Life Science Experimental Facility (MLF), Muon Science
Facility (MUSE), where a high intensity pulsed muon beam is provided. Mu HFS is
strongly related to the muon anomalous magnetic moment g — 2, which was reported
of having a discrepancy of about 30~ between theoretical value and experimental
value. To improve the precision of the g — 2 measurement, it is important to measure
Mu HEFS precisely.

In the previous measurement at the Clinton P. Anderson Meson Physics Facility
(LAMPEF), it was reported that the time differential method can extract more
information than the time integral method. However, it was rather limited due
to low statistics. Therefore, we developed the time differential method by using
high-intensity beam at J-PARC.

It is required for a decay positron detector to measure the time and the number
of positrons correctly. Therefore, a silicon strip detector, which has a high rate
capability and a good time resolution, was developed. By using this silicon strip
detector, the time differential muon spin flip resonance method was developed.

For the development of the time differential method, a simulation study was
performed. We reveal that the time differential method can determine the muonium
HES with only one frequency data, and by taking advantage of this property, it is
possible to improve the statistical uncertainty 3.2 times compared to the conventional
analysis method, which is also called the time integral method. The systematic
uncertainty due to the microwave power drift is also improved with the time
differential method.

The time differential method was applied to the experimental data taken in June

2017, and the obtained result was

vMu HFS = 4 463 302.2 (3.1) (0.2) kHz,



where the first error is the statistical uncertainty and the second one is systematic.
The total uncertainty was 690 ppb. This value corresponds to an improvement by a
factor of seven over the previous measurement at J-PARC, and is consistent with the
previous best measurement at LAMPF. The precision in this experiment would be
improved twice compared to the previous experiment at zero field if the measurement
would run for the same period of time, and by using the time differential method.
The measurement value of the Mu HFS frequency in a zero magnetic field at J-PARC
MLF MUSE is expected to be more precise than that in a high magnetic field at
LAMPF by the upgrade of experimental apparatuses in the future.
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Chapter 1
Introduction

Muonium (Mu) is the bound state of a positive muon and an electron, and one of
hydrogen-like atoms. In the standard model (SM), a positive muon and an electron
are point-like lepton particles so that the contribution of the strong interaction is
relatively small and well understood.

The muon-to-electron mass ratio is extracted from the muonium hyperfine
structure (HFS). The electron mass was determined quite precisely, so we can
determine the muon mass precisely. In fact, the extraction from the muonium HFS is
the most precise determination of the muon mass. The point is that the muon mass
can not be predicted by the SM, but is an input parameter for the SM calculation of the
Fermi coupling constant, the muon anomalous magnetic moment (a, = %), and
so on. Actually, a more precise mass measurement can make theoretical prediction
of the muonium HFS more accurate.

The precision measurement of g —2 is important because there is a discrepancy of
3.5 standard deviations between the SM prediction and the experimental value. This
discrepancy suggests that there is a new physics beyond the SM, and a more precise
measurement is desired. However, the experimental value of g — 2 was extracted by
using the muon-to-proton magnetic moment ratio obtained from the muonium HFS
measurement, and it is necessary to measure the muonium HFS more precisely to
improve the experimental value of g — 2. Therefore, it is important to measure the
muonium HFS precisely.

The idea to improve the precision of the muonium HFS is to use a new analysis

method with high-intensity pulsed muon beam. In the previous experiments, the
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muonium HFS was obtained by the time integrated signal data. The important
point is that the time differential method can extract the information lost during the
integration process from its signal shape, and both the statistical uncertainty and the
systematic uncertainty can be improved.

This chapter describes the physics motivation of the muonium HFS measurement,
the theoretical expression of the muonium HFS, and the introduction of the time

differential method.

1.1 Hyperfine Structure of Hydrogen-like atom

Muonium is more suitable for the validation of the bound state quantum electrody-
namics (QED) than other hydrogen-like atoms, such as hydrogen and positronium
(Ps). For hydrogen, theoretical calculation is limited by the knowledge about the
proton internal structure. Theoretical analysis for positronium is complicated and
difficult due to annihilation and recoil effect. For muonium, which is free from these
effects, it is possible to calculate more precisely than other hydrogen-like atoms.
In addition, the experimental value can be as precise as the theoretical calculation.
Therefore, the muonium HFS is one of the best probe to verify the bound state QED.

The latest measured value of hydrogen HFS is [II, I, 3]
AVH(exp) = 1 420.405 751 766 2(3) MHz (1.1)
and the theoretical value is [#]
AVH(theory) = 1 420.405 11(79)(57)(140) MHz, (1.2)

where the first error comes from the finite size effect of the proton, the second
error is the contribution of the proton polarizability, and the third error represents
all remaining theoretical uncertainties. The comparison between the experimental

value and the theoretical value is

AVH(theory) - AVH(eXp)
AVH(eXp)

= (—0.45 + 1.2) ppm. (1.3)



The combined value of the three most precise measurements of positronium HFS

is [B, B, [7]
Avpg(exp) = 203 388.65(67) MHz, (1.4)
while the theoretical value is [K]
AVpg(theory) = 203 391.69(41) MHz, (1.5)

where the uncertainty comes from unknown non-logarithmic higher-order terms and
was estimated by using an analogous coeflicient as in the case of the muonium HFS.

The comparison between experimental and theoretical values is

AVPs(theory) - AVPs(exp)

= (1.5+0.4) ppm. (1.6)
AVPS(eXp)

There is a discrepancy of about three standard deviations between experiment and
theory.

The muonium HFS was measured by two different methods. One is a
measurement at a very-weak magnetic field, so called “zero” field, and the most

precise measurement value is [9]
Avviuzry = 4 463. 302 2(14) MHz. (1.7)

The other one is a measurement at a high magnetic field, and the most recent

measurement result is [[T0]
Avyiuary = 4 463. 302 765(51)(17) MHz, (1.8)

in which the first error is the statistical uncertainty and the second one is systematic.

The current theoretical value is [[IT]
AVMu(theory) = 4 463.302 868(271) MHz. (1.9)

The comparisons between results of the zero field (ZF) measurement and the high

field (HF) measurement at the Clinton P. Anderson Meson Physics Facility (LAMPF),



and the theoretical value are

AVMu(theory) — AVMu(zZF)

= (150 + 320) ppb, (1.10)
AVMu(zF)
and
Av - Av
Mu(theory) Mu(HF) = (23 £ 61) pph, (1.11)
Avnu(HF)
respectively.

Table [T summarizes the precision of the experiment, theory, and a comparison of
hydrogen-like atom HFS. The muonium HFS provides the most precise comparison
between experiment and theory. Thus, muonium HFS measurement is important to

search for new physics beyond the SM.

Table 1.1: Summary table of precision of the hyperfine structure. Calculation of the
comparison is mentioned above.

Hydrogen-like atom \ Experimental Precision Theoretical Precision Comparison
Hydrogen 0.2 ppt 1.2 ppm (=0.45 £ 1.2) ppm
Positronium 3.1 ppm 1.1 ppm (0.15 + 0.32) ppm
Muonium (ZF) 310 ppb 61 ppb (150 + 320) ppb
Muonium (HF) 12 ppb 61 ppb (23 £ 62) ppb

1.2 Muon-Electron Mass Ratio and Muon-Proton Mag-

netic Moment Ratio

Hyperfine transition measurement can be used to extract fundamental constants: the

muon-electron mass ratio, m,/m., and muon-proton magnetic moment ratio, g,/ u,.

1.2.1 Determination of the Magnetic Moment Ratio 1/,

In a static magnetic field the Hamiltonian of muonium is described as

H = hAvI - J + pzesd - B — g, I - B, (1.12)



where I is the muon spin operator, J is the total angular momentum operator of
the electron, B is the external static magnetic field, and 4 is the Plank constant.
Hy = eh/2m, and ,u’l; = eh/2m, are the electron Bohr magneton and the muon Bohr
magneton, respectively, where m, is the electron mass, m, is the muon mass, and
h = h/2n. g;l and g; are the g-factor ratios of muon and electron in muonium,
respectively. They are different from the free value, g, and g,, due to binding

corrections in muonium, and are described as [172]

2 2 3
, a 3 me o [ Me a’ me 97 4
= g1 (12| (2 (M) S 2 T ), 1.13
Su g”( 3 ( 2mﬂ) (“ (mﬂ) 127m, 108" (1.13)
2 3 2 3
3 5 1 0.289...
b = g f1- (1ot @ (me) s (L 0280.))
3 2my 4r my, 127t my, 12 w2
(1.14)

in which « is the fine structure constant [11],
a~! =137.035 999 135(31). (1.15)

In a static magnetic field, the ground state splits into four substates as shown
in Fig. [@[d. The substates are defined by the quantum numbers of the muon
and electron spins, (Me, Mﬂ). The transitions for (1/2, 1/2) < (1/2, —1/2), vi2,
and (—-1/2, =1/2) < (=1/2, 1/2), v34, are observed by a microwave resonance

technique. The transition frequencies are described by the Breit-Rabi formula [13]

vig = _‘@#+%((1+x)_m), (1.16)
Va4 = ”l’;il‘B + % (A-x)+V1+x2), (1.17)

where
= (e gll) o (1.18)

and B is the intensity of the external static magnetic field. The Larmor relation,

2u,B = hv,, and nuclear magnetic resonance (NMR) are used to determine B in



terms of the precession frequency of the free proton, v,, and the proton magnetic

moment, u,. The muonium HFS is obtained from the summation of the transition

frequencies,

Vig+V34 = Av.

(1.19)

The muon-to-proton magnetic moment ratio can be extracted from the difference

between the transition frequencies,

MgV
0=V3y—Vig = BoK p+Av(V1+x2—x).

Hp
By using the notation
, 8IHp
r, = ,
Hp
, _ SuM
Fy = ,
Hp

X is rewritten as

X = (r;+r;l) 2VA_pv

From Eqs. 20, 21, 72, and 23, r;l is described as

, 1= () +vris + 62

HT2 Vp (vprg + 6)

The muon-to-proton magnetic moment ratio is expressed as

Hu a8
Hp 2 g,

1= (Av)? + v,rl + 62 @ (1 3me) ) (m)2 @ m,
= - _— —_ -l | — _—
4y, (vprg +6) My 127 m,,

in which [CT3 is used.

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

s Ly
108

Therefore, we extract the hyperfine structure interval of the ground state Ay

9

)

(1.25)
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Figure 1.1: Energy levels diagram for muonium in the ground state as a function of
the intensity of the static magnetic field. M, and M, are the quantum number of the
muon and electron spins, respectively. F is the quantum number of the total angular
momentum and MF is the quantum number of the z component of the total angular
momentum.

and the muon-to-proton magnetic moment ratio u,/u, by the measurements of the

transition frequencies vi2 and v34. The most precise experimented values are [[1(]

via(exp) = 1897539.800(35)kHz (18 pph) (1.26)
vsa(exp) = 2565762.965(43)kHz (17 pph) (1.27)
Av(exp) = 4463302.765(53)kHz (12 ppb) (1.28)
% = 3.18334513(39) (120 ppb) (1.29)

14

1.2.2 Determination of the Mass Ratio m,/m, from the Magnetic

Moment Ratio

The muon-to-electron mass ratio m,/m, is described as
m
My _ (g_ﬂ) (@) (/‘_) ' (1.30)
me 8e) \Mu/) \Mp
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Because g,, g, and u./u, are known more precisely than u,/u,, m,/m, can be
obtained as precisely as u,/u, by using Eq. L30 with u,/u, from Eq. [2Z3. The

current value is [[T]

My
= 206.768 276 (24), (1.31)

by using Eq. and the following physical constants,

-2
a, = 8“2 = (0.001 165 920 89 (63), (1.32)
He o _658.210 686 6 (20). (1.33)
Hp

1.2.3 Theoretical Expression of Ay

The theoretical expression for the transition frequency of the hyperfine splitting is

described as the following equation [14],

AVMu(theory)y = Avp (1 + corrections), (1.34)
3
16 m
Avp = =7Z3a2Roc2e (—“) (1.35)
3 my \me + my

where R, is Rydberg constant [IT1],
Reoc = 3.289 841 960 355(19) x 10" Hz, (1.36)

and Avp is the Fermi formula. Z is the atomic number with Z = 1 for muonium.

The general expression for the transition frequency of the hyperfine splitting is

(7]
AVMu(theory) = Ade + AVrec + AVr—r + Avweak + AVhad’ (137)

where the terms labeled rad, rec, r-r, weak, and had stand for the radiative, recoil,
radiative-recoil, electroweak, and hadronic contributions to the hyperfine splitting,
respectively. Representative Feynman diagrams for these correction are presented in
Fig. 2.

The radiative corrections come from emissions and reabsorptions of virtual

11



(a) (b) (c)

v v
AVAVAVAVAVAVAVAVAV SVAVAVAVAVAVAVAVAY
v 8
NNANNNNNNNY y y
AVAVAVAVAVAVAVAVAV SVaAVAVAVAVAVAVAYAY
e + — +
- o 1% 2 1%
(d) (e) Q)

e pt e ut
Figure 1.2: Representative Feynman diagrams for some contributions to the muonium
hyperfine splitting. (a) is the leading radiative correction. (b) is the leading recoil
correction. (c) and similar diagrams are the leading radiative-recoil correction from
the electron line. (d) and similar diagrams are the leading radiative-recoil correction
from vacuum polarization. (e) is the weak interaction contribution. (d) is the hadronic
contribution.
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photons by the muon and the electron. Purely radiative terms of orders a (Za)

and (Zcx)2 are known as [[159]

3 5
Avisa = Avp (1 + a#) (1 + 3 (Za/)2 +a,+a(Za) (ln2 - 5)

281] N 14.88 £ 0.29
480

—ia/ (Za)?In (Za) [ln (Za) —In4 + cy(Za)2),
3n

(1.38)

where a, and a, are the anomalous magnetic moments of the electron and muon,

respectively. The different radiative contributions are summarized in Table 2.

Table 1.2: Contributions from the radiative corrections

Term Contribution (kHz) Reference
(Za)? 356.174 [13]

a (Za) —4928.611(1) [T6]
@2 (Za) 0.4256(2) [15]

@ (Za)? —-32.115(3) (7]

@ (Za)3 -0.542(8) [1R]
a@? (Za)? 0.193(24) [19]
Total —104.901(39)

The recoil contribution is given by

3Za m,m m 2 65
AViee = Avp [-Z22 A £ 4 7 lzlnﬁ—mnm—] . (1.39)
Tomy—mg  Me My, 2y 18

where y = Zam, and m, = m,m,/ (mu + me).
The radiative-recoil contributions arising from both electron and muon lines and

from vacuum polarizations are given by

Za) m, 1 1
Avey = Avp2t 2“)’”— (—21112@ B 3+ @) - 2 4322
e my me 12 m, 72
39 4 1
+22[2{(3)+——37r21n2]+g ——ln3@+—ln2ﬂ+0 ln@ ,
2 8 | 3 m, 3 me me
(1.40)

where ( is the Riemann zeta function.

13



The electroweak contribution due to the Z° exchange is

3\/§m#me
Sarm
—0.065 kHz, (1.41)

Avyeak = —AvpGr

1R

where GF is the Fermi coupling constant. The contribution from higher order terms
is negligibly small.

The correction of the hadronic vacuum polarization is [20, D]

Z m
a( a/)Av

ey

5 5 (3.75+0.24) + - --
T mx
0.2327(14) kHz, (1.42)

AVhad, LO

where m, is the charged pion mass. Other contributions are from hadronic higher-

order corrections and the hadronic light-by-light correction [T, 22, 73, D4]

Avhaa, o = 0.005(2) kHz, (1.43)
and
Avhad, or, = 0.000 0065(10) kHz, (1.44)
respectively.
The above theory yields
Avyry (theory) =4 463 302.868(271) kHz, (1.45)

using values of the physical constants in CODATA-2014. The numerical values
of the terms given in Eqs. [38-T45 are summarized in Table 3. The dominant
uncertainty of the theoretical calculation is the muon-electron mass ratio m/m,.
Therefore, a more precise measurement of the muon-electron mass ratio as noted in

the previous section would make the uncertainty of the theoretical value smaller.

14



Table 1.3: Theoretical prediction of muonium HFS.

Term Contribution (kHz) Reference
Fermi energy and a, 4 459 031.819(253) [T, 5]
de 5170.926 23]
Radiative correction of a" (Za™) —104.901(39) [, D5]
Recoil —791.714(80) 23]
Radiative-recoil —-3.427(70) 23]
Electroweak —-0.065 [26]
Hadronic vacuum polarization 0.232 7(14) (20, 21
Hadronic higher order 0.005(2) [22, 23]
Hadronic light by light —0.000 0065(10) [24]
Total 4 463 302.868(271) [IT]

1.2.4 Alternative Determination of the Mass Ratio m,/m, from the
Mu HFS

The mass ratio m,/m, is regarded as a parameter in Av, which could also be
determined by the experimental result Av(exp). By using Eq. as the

experimental value, we obtain CODATA recommended values,

B 206.768 282 6(46) (22 ppb). (1.46)
me
and
Br _ 3.183345142(71) (22 ppb). (147)
Hp

where we have used R, and « as in Eq. and Eq. [T, respectively. This method
can determine the values of m,/m, and u,/u, more precisely than the determination
of u,/u, from the difference between transition frequencies as discussed in Section

1.3 Implementation of the Muon g — 2 Measurements

. -2 .
The muon anomalous magnetic moment (a, = g"2 ) was measured in the E821

experiment at the Brookhaven National Laboratory (BNL). The current experimental
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i oo [t

Figure 1.3: Feynman diagram for the muon g — 2 corrections [29]. From left to right,
the first order QED contribution (Schwinger term), the lowest-order weak contribution,
and the lowest order hadronic contribution.

value is [27]

a, (exp) = 0.001 165 920 91(54)(33) (0.54 ppm), (1.48)
(1.49)

where the first error is statistical and the second one is systematic.
Theoretical calculation also predicted the value of g — 2 as precisely as the

experimental value. The SM prediction value a,(SM) is [28]

a,(SM) = a™P +aliV + ™ (1.50)
= 0.001 165 918 23(1)(34)(26), (1.51)

where the errors are due to the electroweak, lowest-order hadronic, and higher-
order hadronic corrections, respectively. Representative Feynman diagrams for these
contributions are shown in Fig. [ 3.

The difference between the experimental value and the SM prediction is
Aay = a, (exp) — a, (SM) = 268(63)(43) x 1071, (1.52)

where the errors are from the experiment and SM prediction, respectively.
Comparison of the measured value and the theoretical expectation is shown in
Fig. 4. There is an interesting but not conclusive discrepancy of 3.5 standard
deviations. This discrepancy may imply the existence of new physics beyond the

SM. For example, supersymmetric (SUSY) models predict the following additional

16
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— €xXp
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Figure 1.4: Comparison of experimental and theoretical values for a,[29].

contribution [30],

a>YSY ~ £130x 1071 -

100 GeV
. ki

msusy

) tan g, (1.53)

where mgyugy is a representative supersymmetric mass scale, tan § =~ 3-40 a
potential enhancement factor, and +1 corresponds to the sign of the u term in
the supersymmetric Lagrangian. Supersymmetric particles in the mass range
100-500 GeV could be the source of the deviation Aa,,.

Two experiments aim to improve the precision of the g — 2 measurement value.
One is the E989 experiment at the Fermi National Accelerator Laboratory (FNAL)
[31]. The other is the E34 experiment at the Japan Proton Accelerator Research
Complex (J-PARC) [32]. Table T4 compares the BNL experiment, its continuation
at the Fermilab, and the J-PARC experiment.

In the g — 2 experiments, the angular frequency of the spin precession of muon,

17



Table 1.4: Comparison of BNL-E821, FNAL-E989, and J-PARC-E34 [37].

BNL-ES821 FNAL-E989 J-PARC-E34
Muon momentum 3.09 GeV/e 0.3 GeV/e
Yy 29.3 3.1
Polarization 100% 100%
Storage field B=145T B=30T
Focusing field Electric Quad. very-weak magnetic
Cyclotron period 149 ns 7.4 ns
Spin precession period 4.37 us 2.11 us
# of detected e* 5.0x10” 1.8x10M! 1.5 x 1012
# of detected e~ 3.6x10° - —
Statistical precision (a,) | 0.46 ppm 0.14 ppm 0.14 ppm

wy, is measured in a ring. In a static magnetic field, w, is expressed as

—

- o
e( - ( 1 ),BXE
wg=——\a,B — |ay

my 921

(1.54)

where B is the magnetic field intensity, while the term due to the muon electric dipole

moment (EDM) is neglected because its contribution is very small. Eq. can be

simplify by using the magic momentum, a, —

field as

,),2_

— e —>
By =-——a,B.
ny

1 = (, or eliminating the electric

(1.55)

B is determined by using the Larmor relation and nuclear magnetic resonance (NMR),

which is the same method as in the muonium HFS measurement. w, is obtained by

the oscillation of the time histogram of the decay positron as shown in Fig. 3.

1.4 Relations between g — 2, Mu HFS, and /1,

The experimental value of a,, is determined from the relation [27],

R Wq :u,u

a’u:—,R:—’/l:—’

A—R wp Hp
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Simulation
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Figure 1.5: Distribution of decay positron counts versus time obtained by a simulation.
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where w, = 27v,. In the BNL experiment, they used the following numbers as

inputs,

R(BNL)
A(LAMPF)

0.003 707 206 4(20), (540 ppb) (1.57)
3.183 345 39(10). (31 ppb) (1.58)

In Eq. [[34, a, can be expanded in a series of R/A ~ 1073 terms,

2
R/2 5(1+5+(5) +) (1.59)

WET"RIAT 2 1\

and the uncertainty da,, is described as

o[ (o i)

R
0 (Z) . (1.60)

day

It is straightforward to calculate the relative uncertainty da,/a, as

5 1 R\’ R\’
O _ 2 (6Ri—) +((mi—)
ay, ay, OR A o1 A

)

In the J-PARC/Fermilab g — 2 experiments, we aim at 6R/R = 140 ppb and then

oay/a, = 140 ppb. To achieve this, we need
o4
= < 140 ppb. (1.62)

Indeed, if (% %) = (140 ppb, 120 ppb), then da,/a, = 184 ppb, while if
(%, %) = (140 ppb, 30 ppb), then da,/a, = 143 ppb. These numbers clearly
indicate that it is necessary to improve the value of A, which is determined from
the difference between transition frequencies ¢ in Eq. [20. Furthermore, the
experimental value of A, which was obtained from the muonium HFS was determined

only in a high-field experiment. For an independent verification, a precise muonium
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Figure 1.6: Time integral signal obtained by the previous zero-field experiment [33].
The error bars are due to statistical uncertainties. The solid line shows a least-squares
fit by a Lorentzian with the center value at 4463.159 + 0.016 MHz.

HFS measurement in a zero magnetic field is desired.

1.5 Mu HFS Measurement by the Time Integral Method

In the experiment, the muonium HFS was obtained from the relation between the
microwave frequency and number of detected positrons. There are two kinds of
analysis methods: the time integral method and the time differential method.

Figure [CA represents the time integral analysis obtained by the previous zero-field
experiment. The signal of the time integral data is the integral of the number of
detected positrons over the whole measurement time. The signal shape, plotted with
the microwave frequency as the horizontal axis and the signal as the vertical axis,
obeys a Lorentzian function, and the HFS frequency is obtained from the central

value of the Lorentzian.
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Figure 1.7: Time differential signal observed by the previous experiment [33]. The
injected microwave frequency v of this data is vy = 4463.200 MHz and the microwave
power P is 1.00 W. The solid curve is a fitting result to the time differential signal with
a central frequency Av = 4463.161 + 0.011 MHz.

1.6 Time Differential Method

Figure 1 shows the time differential data, which is equivalent to one of the data
point of the time integral analysis in Fig. [CA. In this analysis, the HFS frequency is
derived from the time dependence of the signal. The time differential signal contains
more information than the time integral signal and may eliminate the systematic
uncertainty due to the power fluctuation with frequency. Therefore, it is expected
that a detailed and precise measurement is possible by using the time differential
method.

However, the previous time differential analysis was fairly limited because of low
statistics. Also in the previous measurement, a DC muon beam was used. We can
improve the statistical uncertainty by using the high-intensity pulsed muon beam
at J-PARC. Thus, J-PARC high-intensity beam makes it possible to use the time
differential method for the first time. On the other hand, the high-intensity beam
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may distort the time differential signal due to pile-up. Therefore, it is necessary to
develop a high-rate capable detector.

In general, a silicon strip detector is highly segmented and has a good time
resolution, so it is well suited to the time differential analysis with a pulsed muon
beam.

This paper presents the development of a silicon strip detector, the development
of the time differential analysis and the experimental results obtained by the time

differential analysis.

1.7 Organization of the Thesis

In the above, the physics motivation to measure muonium HFS and the advantage of
the time differential method were discussed.

An important point to emphasize in this dissertation is the fact that the time
differential method can improve statistical and systematic uncertainties compared
to the time integral method, and it is actualized for the first time by using the
high-intensity pulsed muon beam at J-PARC and a silicon strip detector with high-rate
capability.

This dissertation describes the development of the silicon strip detector and
the development of the time differential method. The second chapter presents the
theoretical expression of the signal forms. It is important for the fitting to understand
how the microwave power and its frequency affect the signal shapes.

The microwave system, the gas control system, and magnetic shields are important
to reduce systematic uncertainty due to variation of the microwave power, gas
density shift, and static magnetic field, respectively. The third chapter describes
the experimental apparatus and also presents the development and construction of
the silicon strip detector.

To substantiate the time differential method, a simulation study was developed.
The advantage of the time differential method was also evaluated by the simulation.
The detail of the simulation is described in the forth chapter.

The muonium HFS measurement at J-PARC was conducted in June 2017. The

performance check of the silicon detector in the measurement and data analysis with
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the time differential method are presented in the fifth chapter.
In the sixth chapter, we will discuss the experimental results and the estimation
of the systematic uncertainty by a Monte-Carlo (MC) simulation at this time. Then,

the perspectives of the muonium HFS measurement at J-PARC is described.
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Chapter 2

Theoretical Discussion for the
Muonium Hyperfine Structure

Measurement

In the experiment, the muon spin flip induced by a microwave magnetic field is
measured via the number of decay positrons. The theoretical expression of the
signals is described in this chapter.

2.1 Muonium Decay

The dominant mode of the muonium decay is due to the decay of the free positive

muon due to the weak interaction
w— et + v+, (2.1
The measured mean lifetime 7, or the muon decay rate 7y is [34]

T, = — = 2.196 981 1(22) ps. (2.2)

R

The momentum and angular spectrum of decay positrons from positive muons

with degree of polarization P is given by the following equation,

N (y, 0) = %yQ (B3=2y)+ (2y —1) P,cosb), (2.3)
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where 6 is the angle between the muon spin direction and the positron momentum, and
y is the positron momentum y = p/pmax, With ppax being the maximum momentum

of the decay positron and given by

ms, — m;
Pmax = ——¢ = 52.8 MeV/c. 2.4)
2my,

2.2 Energy Levels of Muonium Ground State

Here the Hamiltonian of the muonium is introduced again.
H =hAvI - J + pu8,J - B - ,u‘égl'll - B. (2.5)

The first term is the magnetic interaction between the electron and the muon. The
second term and the third term are the energy of the electron and the muon in the
static magnetic field, respectively.

The four eigenstates of the muonium are expressed as

¢:¢(F)XF,MF (B)’ (26)

where ¢ (r) is the spatial part of the wave function, yr . (B) is the spin
eigenfunction, F is the quantum number of the total angular momentum, and MF is

the associated magnetic quantum number. The spin eigenfuctions are

x1,1(B) = |1)=a.a
x10B) = [2) =ca.Bu+ sBeay
X1, -1(B) = 3)= BBy
Xxo,0(B) = [4) =cPeay = saefy (2.7)

inwhich @, and g, are the normalized spin eigenfunctions of the muon corresponding

to the spin orientation in the positive z direction and the negative z direction,

26



respectively. @, and S, are that of the electron. The quantities s and c are

X

c = — |1+ , (2.8)
V2 V1 + x2
1 X
s = — [1- , (2.9)
V2 V1 + x2
where x is defined in Eq. [CIR. s and c satisfy the following equation,
s2+c?=1. (2.10)

The energy eigenvalues of the Hamiltonian for the ground state are expressed in

the Breit-Rabi equation

1 1
W = = hAv - g My MpB + ihm\h + 2Mpx + x2. (2.11)

1,1 =
—2i27 Mp

The energy levels of the muonium ground state are represented in Fig. [ 1l. At a very

weak field, the energy levels of the state |i), W;, are described as

1 SIHS + &l
W, = —hAv+< B_°K B)B,
1 2
1
WQ = ZhAV,
1 SIHS + &l
Wy = —hAv—< B_°K B)B,
1 2
3
Wi = ~Thav. (2.12)

2.3 State Populations of Muonium

The time-dependent populations of the four states are expressed by the density

operator

p ) =1¢ @) {d (DI, (2.13)

where |¢ (¢)) is the wave function for the system at time #. The density operator can

be described as a density matrix using the eigenfunctions of the system as bases. The
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elements of the density matrix are

Pmn (1) {m| (1) [n) = (m|¢ (2)){¢ (t) |n) .

An arbitrary muonium wave function is described as

a;(0) [y e,

M-

) =

i=1
where the coefficient a;(0) are normalized as
4

> ai0)a; (0) = 1.

i=1

(2.14)

(2.15)

(2.16)

The diagonal matrix elements p,,, (0) = |a,;,(0) 12 give the probabilities of formation

of the states |m) at time ¢ = 0.

The density matrix for the muon with a polarization P is

oo Lf1+P 0
pu(0) = = :
8 2\ 0 1-p

The density matrix for the electron is

o=1"
P 7900 1)

The elements of the density matrix for muonium at ¢ = 0 are

pik (0) = (il pe (0) pu (0) k).

Therefore, the density matrix is

1+P 0 0
1] 0 1+P<s2—02) 0 2csP
p0) =~
4 0 1-P
0 2csP 0 1+P(c2 —s2)
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where the spin eigenfunctions of Eq. 77 are used as bases. The probabilities of

formation of the states are

P = i(1+P),

Po= L (1+P(2 =),
La-p),
i (1-P(s*=¢%)). (2.21)

For a highly polarized beam P ~ —1 and a zero field case, the relative populations of

the states are

la1 (0)* = 0,
1
laz (0)* = T
1
laz (0)]* = >
1
lag (O)° = T (2.22)

2.4 State Amplitudes of Muonium

Muonium formed in a gas target populates Zeeman states. Transitions between
Zeeman states are induced by the external magnetic field of the microwave. The
transition probability depends on the difference between the microwave frequency
and the transition frequency. A time dependent term H’ is added to the Hamiltonian

in Eq. 3 due to the applied magnetic field of the microwave and is described as

7_{/

(ungJ — Hu8ul ) - By cos wot

H, cos wot

— %7_{6 (e—iwot + eiwot) , (2.23)

where B1 = B, x + B,y is the vector amplitude of the microwave field and wy is the
microwave angular frequency. In the experiment, the microwave magnetic field is

perpendicular to the muon spin direction.
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The muonium wave function  (r, t) is describe as

4
W, =6 () Y a @) lkye ™, (2.24)

k=1

where ¢ (r) is the spatial component of the wave function, | k) are spin wave functions
defined in Eq. 274, and W}, are energy eigenvalues.

Time dependent state amplitudes of muonium are decomposed into the muon
decay component and the state transition component induced by the microwave field.

The muon decay operator is treated phenomenologically by
, 1
Qi (1) = =5yar (), (2.25)
and the state transition is expressed as
0
iha—"f =(H+H )y @). (2.26)

By using Eqs and 226, the time dependence of the state amplitude is given by

M-

1
ap (1) = —5yax (t) =i

5 aibix fix (1), (2.27)

i=1

where

.,
bir = ﬁﬂlﬂolk% (2.28)
fir (1) = e_i(wik_wo)t+e_i(wik+w0)t’ (2.29)

W, - W,

wip = Tk (2.30)

For a general microwave field By = B.x + B,y + B;Z, the matrix elements b;; are

shown in Table 1l In the table, the following definition is used,

B. = B, +iB,. 2.31)

The z axis is chosen parallel to B and the microwave field B; is assumed to be

perpendicular to B. All diagonal elements of b as well as byo and boy are zero
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because B, = 0 in the experiment.

Table 2.1: Matrix elements b;;.

k\ i 1 2 3 4
| gIHG + &Ly SgIMY + cgl . MYy — 581 5
e 4n s ) an e ’ _,U e e 4? ’ ,U_
2 SgJ/JB+CgpﬂBB (62—S2) gJﬂB_g,u/JBB CgJ/lB"'sg#/JBB —QSCgJﬂB_gﬂﬂBB
4h * 4f z AR - z
; ; CIMY + Sg My ) | &M+ gLt —SgIUY + Cg) )
e s 451 s e ’ M ) 4n e ’ M
4 CgJ:uB_Sg,u/‘BB —2SCgJ'uB_gluuBB _SgJﬂB+Cg#ﬂBB (S2—6‘2) gJﬂB_gyﬂBB
4h * 4k < AR - A7 z

The time dependent coupled equations for the state amplitudes is given by the

matrix
Y 0 0 _ib14ei(w14—w0)l
ai 2 a
4
ds 0 -3 0 0 s
= y . ,(2.32)
ds 0 0 -3 —ib3ye!(@s1=wo) | a3
da _ib e i eiwsi—wor _% as
in which,
1 . e ’ U
bu = 3 (Be—iBy) (cgsuy — sgmy) (2.33)
b = 0 (B. +iBy) (cgsply — sglurly) - (2.34)

b}, and b;, are the conjugates of b14 and b3y, respectively. The microwave power is

defined as
by = —b§4 = b.

Clearly the state |2) is decoupled from other states.

For the zero field case, B = 0 and the following relations hold,

w34 = 21AY = w.

w14
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The three coupled equations can be reduced to an equivalent two-level problem. The

state amplitudes defined by the linear combinations

1
Ay = —(a1+a3),
TV
1
A = —(a1—a3),
V2
satisfy the matrix equations
Y
: -= 0 0
Ay 2 Ay
A= o0 -2 —iV2bei@-wor || 4.
Ci4 0 —i\/ibe_i(w_w())t _Z ay
2

Only the A_ and a4 are coupled. The solution for the state amplitudes is

A, (1) (611 (0) + as (0)) e—yz/z’

V2

A-@) = ((“1 © - (0)) (COS E - lA_w sin E) + a4 (0) (_i2\/§b .

2 I 2 r

V2

(2.37)

(2.38)

(2.39)

(2.40)

E)) e—yt/2+iAa)t/2

2
(2.41)

I't

a() = ((m (0) — a3 (0)) (_i2\/§b <in %) + a4 (0) (Cos It + iAw sin ?))e—yt/Q—iAwt/Z,

I 2 I

V2

where

Aw W — wy = 21A,
I = +JAw?+8 b2

The state amplitudes a; () and as (¢) are given by

ar (1) = % (As () + A (1)),
as (1) = % (A, () = A (1)).
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2.5 Time Dependence of the Muon Polarization
The time dependence of the muonium state is described as
¢ (1) = ar (1) |1y 4 ay (1) 2) M, (2.47)
The number of muon polarized along the 7z axis is
P, (t) = |a1|* — |as|® + ajase’? + ajage™ 24, (2.48)

The muon decay rate y is relatively small compared to the HFS frequency woy.

Therefore, the cross terms are negligible, and Eq. 248 becomes

2 2
lai]” — |as]

2Re (a}(H)a_(1))

1 Awt I'c A Awt I't
- (cos 2N cos— + 22 6in 2 gin —) e . (2.49)

P (1)

4 2 2 I 2 2

Then, the ensemble average of the muon spin polarization is

P (G G-
(P, (1)) = 3 (T+ cosG_t + T cos G+t) eV
= Po(n)e™, (2.50)
I'+A
where G, = 5 a)’ respectively.

2.6 Muon Spin Relaxation

Muonium depolarizes due to collisions and chemical reactions. The gas impurity
may increase the rate of the muon spin relaxation. One of the main source of high
spin relaxation is the oxygen contamination in the gas target. Considering the spin

relaxation rate A, the time dependence of the muon spin polarization can be written

33



as

/ _ —At
PZO —_ PZ()e

P(G G_
=3 (T+ cosG_t + T ¢os G+t) et 251

2.7 Resonance Signal

The counting rate of the number of detected positrons is described as,

N b|, t A 2y -1
T

o 5 3 2, P, (1) cos 0) e dydQ, (2.52)

in which dQ is the infinitesimal solid angle and N is the number of muons stopped
in the gas target. Integrating Eq. over y from the threshold energy yq to 1 gives

the total number of detected positron as

A
N = ff N04—A0 (1+aP’ (t)cosB) e " dtdQ, (2.53)

T

where
_ 3.4
Ao =1-(2y] - ¥)). (2.54)
1- (3yg - 2y})

= . 2.55
a 34, (2.55)

The signal is expressed by the ratio of the number of detected positron with
and without microwave. The time development of the signal is described by the

microwave frequency v and the intensity of the microwave magnetic field |b| as

dNon/dt — dNoyr/dt
dNorr/dt

NO,ONf (1 +92.C (v, |bl, 1) cos 0) e "'dQ — Ny orr f (1 + 92 cos 6) e " dQ
No.oFF f (1 + “TP cos 6) e 7 dQ

Saiee (v, 1], 1)

Cw, |bl,t)-1 .
DL G Noox = Morr), (256)

—+1
aP’S1
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in which

C(v, |bl,t) = % cosG_t + % cos G4t, (2.57)
N fcos 0dQ, (2.58)
Sy = f dQ. (2.59)

The shape of the time differential signal is described by the summation of cosine
functions. Their frequency and height are related to the field intensity of the stored
microwave and the difference between the microwave frequency and the muonium
HES frequency.

Calculation results of Eq. for several microwave frequencies and microwave
intensities are plotted in Fig. Z1I. This signal expression is called the time differential
signal. This figure indicates the following fact. When the microwave frequency
is detuned from the muonium HFS frequency, the frequency of the component
% cos G4t becomes higher, and that of T+ cos G_t becomes lower, while signal
heights of both components become lower. On the other hand, when the microwave
power is increased, both frequency components become higher frequency and their
signal heights become higher. The response to the signal form is obviously different
between the microwave frequency and the stored microwave power. Hence, the time
differential signal can extract the muonium HFS and the stored microwave power
from its shape at the same time.

The integral over time from ¢ = 0 to f = oo is elementary. The integration result

is

_ Non — Norr
St = ——————
Norr
Poose  —21b1* (y? +21b%)
- 1, aP 2
1+ 2+ % cosf ()/'2 L9 |b|2) +y2Aw?
% cos 6

= L (v, |b]), 2.60
1+$+%COS@ (v. 16D ( )

where y' = v + A. L is the Lorentzian function. This expression is called the time
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Figure 2.1: Time differential signals. The left side shows microwave frequency
dependence of the time differential signal when the microwave power |b| is 800 kHz.
The detuning frequency from the muonium HFS is represented in respective colors. The
right side represents microwave power dependence just on the resonance frequency. The
stored microwave power is represented in respective colors.

integral signal. The signal shape described in Eq. is plotted with the frequency
difference between the microwave and the muonium HFS as the horizontal axis and
the signal height as the vertical axis in Fig. 2. The time integral signal follows a
Lorentzian function of which the center microwave frequency is equal to the muonium
HFS frequency.

However the signals observed in the measurement are more complicated because
the magnetic field intensity of the microwave varies with position. The integral of

the time differential signal over the cavity is described as

20

S (Noon(r.6.2) (1+ 42C (v, |b], 1) cos8) = Noorr(r.6,2) (1 + % cos ) ) dQdV

[ Noorr(r.6.2) (1 + 4 cos ) dQdV
42 [ [ No(r,6,2) (C (v, |bl, t) — 1) cos @ dQdV
[ No(r.0.2) (1 + %4 cos ) dQdV

, (if No,on = No,orF = Np),

where dV is the infinitesimal volume.
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Figure 2.2: Time integral signals. Solid lines represent the Lorentzian signal without the
spin relaxation. Broken lines show the signal considering a spin relaxation coefficient
of 200 us.
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For the time integral method, the muonium HFS frequency is determined by a
multitude of frequency data. Therefore, a microwave power variation with frequency
due to the frequency characteristics of the microwave cavity may shift the center value
of the Lorentzian function and results in one the source of systematic uncertainty.

On the contrary, the time differential method can determine the muonium HFS
frequency from a single frequency data. In addition, the time differential signal can
also extract the microwave power from the signal form at the same time. Thus, the
time differential method can eliminate the systematic uncertainty due to fluctuation

of the stored microwave power.
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Chapter 3

Experimental Procedure and

Apparatus

This chapter describes the experimental setup of the measurement of muonium HFS
at J-PARC Materials and Life Science Experimental Facility (MLF) Muon Science
Facility (MUSE). Figure BT shows a schematic view of the zero field muonium
HFS measurement. A polarized muon beam is injected in a Kr gas volume, and
then muonium is formed in the cavity. The muon spin flip due to the microwave
is measured by two types of detectors. Well suppressed very weak magnetic field
was achieved by three layers of permalloy magnetic shield. A gas handling system

controlled and monitored the Kr gas pressure.

3.1 Coordinate System

In the following discussion, the coordinate system is defined as shown in Fig. B
the z-axis, the y-axis, and the x-axis are along the beam direction axis, the vertical

axis, and the horizontal axis perpendicular to the z-axis and y-axis, respectively.

3.2 Muon Beam Line

Figure B2 shows the schematic view of the MLF muon beam line [35]. A proton beam
injected into a graphite target produces surface muons with a momentum of typically

28.0 MeV/c, and then the D-Line transports the polarized surface muon beam to
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@iM220)
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Figure 3.1: Schematic view of zero field experiment at J-PARC MLF MUSE. Muon
beam is injected from the left side and stopped in Kr gas. The number of decay positron
is counted by a silicon detector and two segmented scintillation counters.

the experimental area. The proton beam power was 150 kW in this experiment.
The repetition rate of the beam was 25 Hz. The typical number of muons at the

experimental area was 1.8 x 10° per pulse.

3.3 Magnetic Field Control System

For the zero field experiment, it is necessary to reduce the residual magnetic field
in the cavity from the surroundings. The magnetic shields and a field measurement
system are shown in Fig. B3. The magnetic shields consist of three layers of
permalloy plates. The permeability of permalloy was estimated as 12000. A coaxial
flux gate probe (MTI K. K. FM-3500) was used to measure the magnetic field. The
resolution of the probe was about 0.5 nT. The result of the magnetic field measurement
is shown in Fig. B4. A magnetic field of less than 350 nT was achieved, which is
about 1000 times smaller than without the three layers of magnetic shield. The
largest source of the magnetic field was from a thermocouple used to measure the

temperature of the cavity. The time fluctuation of the magnetic field during muonium
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Figure 3.3: Three layers of magnetic shield and a field probe. The left picture shows
a downward view of the magnetic shields, and the right the magnetic probe attached to
the end of a moving pole.
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Magnetic Field (nT)

Figure 3.4: Result of the magnetic field measurement. The angle & measures the rotation
angle around the beam axis, and the probe was set at 41 mm from the center. The largest
field source was from a thermocouple that was attached on the microwave cavity.
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Figure 3.5: Block diagram of the gas control system. TMP stands for a turbo molecular
pump. The gas pressure was monitored by a capacitance gauge.

HFS frequency measurements was monitored by the same probe. The measuring

interval was 5 sec.

3.4 Gas Control System

The muonium HFES frequency is shifted in the Kr gas due to collisions. The collision
rate depends on the Kr gas density, which can be calculated by knowing the gas
pressure and temperature. Therefore, the muonium HFS frequency depends on
the Kr gas pressure, and monitoring of the gas pressure is important to reduce
systematic uncertainty due to gas density shift. Figure shows the diagram of
the gas control system. Scroll pumps and turbo molecular pumps were used to
evacuate the gas chamber. The gas pressure was monitored by a capacitance gauge
(ANELVA M-342DG) with a precision of 0.2% at 300 K. Figures B and B2 show
pictures of the Kr gas chamber and the gas control panel. On the upstream side, a
100-um thick aluminum foil separates the Kr gas volume from the outside. On the

opposite side, there was a 55-mm thick flange, which also works as an absorber to
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Figure 3.6: Kr gas chamber. There was a aluminum foil as a beam window at the front,
and a chamber flange with a thickness of 55 mm as an absorber at the back.

cut off low energy positrons and duct streaming radiations.

3.4.1 Gas Selection

When positive muons stop in a gas target, muoniums are formed through the following

electron capture reaction,
ut + Kr — Mu+ Kr*. (3.1)

Muonium is formed in any one of the bound state. The ionization energy of muonium
E; (Mu) is 13.54 eV and that of Krypton E; (Kr) is 14.000 eV [36]. In order for a
muon to capture an electron from a Krypton atom to form muonium in the ground
state, the kinetic energy of the muon-krypton system in the center of mass (CM)

coordinate system must be greater than the threshold value
E, (CM) = E; (Kr) — E; (Mu) = 0.46 eV. (3.2)

The ionization energies and the threshold energies for muonium formation for several
atoms are listed in Table B1l. E; is negative in the case of xenon, and muonium

formation is always possible energetically. For the experiment, krypton gas is suitable
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Figure 3.7: Kr gas control panel. A capacitance gauge was attached. The gas pressure
was controlled and monitored by this panel.

because the muonium production is highly efficient due to the low energy threshold

and the muonium momentum is low.

Table 3.1: Ionization energies, threshold energies, and fractions for muonium formation
in rare gases [37, B8].

Atom E; E; Muonium formation fractions
He 24.587 11.04 0

Ne 21.565 8.02 0.06 = 0.05

Ar 15.760 2.22 0.74 +0.04

Kr 14.000 0.46 1.00 + 0.05

Xe 12.130 -1.41 1.00 £ 0.04

3.4.2 Gas Impurity

Muonium is a highly reactive paramagnetic atom. In order to avoid depolarization
through collisions and chemical reactions, a pure inert gas, krypton, is used. Its purity
is better than 99.999%. The cross section of the electron-spin exchange collision
between muonium and molecular oxygen is very large (~ 107'¢ cm?) [3Y, &0].
Therefore, the molecular oxygen impurity must be kept very low.

The gas impurity was evaluated by using a quadrupole mass spectrometer.
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Figure 3.8: Gas impurity measurement in the gas chamber by Q-mass spectrometer
before filling Kr gas. The mass numbers 18, 28, and 44 represent water (H20), nitrogen
molecule (N3), and carbon dioxide (COs3), respectively. The mass numbers 16 and 17
correspond to the fragments of HoO. The gas with mass number 30 came from a cold
cathode gauge, which was detached from the chamber during the HFS measurement.

Figure shows relative pressures for each mass number before filling Kr gas
in June 2017. The result was consistent with a previous measurement in 2016. The

systematic effect due to the gas impurity is discussed in Ch. B

3.4.3 Extrapolation to Zero Gas Density

The quantity of gas density shift was reported by Thompson et al. as follows [4T],
Avitu (D) = Avygy (0) (1 +aD + bD?), (3.3)

where D is the gas density at 0 °C, a is the coefficient of the linear density shift, and b
is the coeflicient of the quadratic density shift. a and b are experimentally determined.
Their values are a = —10.66 (10) x 107%/torr and b = 9.7 (2.0) x 107'*/torr?.
Figure B9 shows a plot of the monitored gas pressure as the vertical axis and
the time as the horizontal axis, and the histogram of the gas pressure is shown in

Fig. B10. As a result, the fluctuation of the gas pressure is about 20 Pa.
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Figure 3.9: Time variation of monitored Kr gas pressure. The red line indicates the time
when the microwave frequency was changed.

The gas temperature was controlled by a chiller with a temperature feedback
system, and was also measured to calculate the gas density at 0°C as shown in

Fig. B11. Fluctuation of the gas temperature was about 0.17°C.

3.5 Microwave System

The probability of muon spin flip depends on the injected microwave frequency
and power. Therefore a stable microwave injection system is necessary. A signal
generator was used to control the power and frequency of the injected microwave. The
resonance frequency of the microwave cavity was tuned by a 20 mmx100 mmx5 mm’
aluminum plate and a piezo actuator. Figure shows the circuit diagram of the
microwave system. The microwave from a signal generator (R&S SMBV-B106) was
amplified and injected to the cavity. A part of the microwave was picked up by an

antenna inside the cavity and monitored by a power meter (R&S NRP2).

3.5.1 Microwave Cavity

Two microwave cavities were produced. One is for the resonance mode TM110,
and its length and diameter are 230 mm and 81 mm, respectively, and the other
one is for the TM220 mode, and its length and diameter are 330 mm and 180 mm,

respectively. A TM110 cavity is easy to design because other resonance modes
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Figure 3.10: Representative histogram of the Kr gas pressure during the measurement.
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Figure 3.11: Representative histogram of the gas temperature.
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Figure 3.12: Schematic circuit diagram of the microwave system. The stability of the
input power was monitored by a power meter. The resonance frequency of the cavity
was tuned by an aluminum tuning bar.

are limited. However, the diameter of the cavity is smaller than the muon stopping
distribution. Therefore, many muons would stop on the wall of the cavity where
microwave is not induced and become background. On the contrary, the design of
a TM220 cavity is a little more difficult due to other resonance modes, however
almost all muonium can contribute by feeling the magnetic field of the microwave.
Therefore the signal to noise ratio is much improved.

The number of stopping muons in the cavity was estimated by a Geant4 simulation.
As a result, the ratio of the number of stopping muons to the number of injected
muons was 38.1% and 93.8% for the TM110 cavity and TM220 cavity, respectively.
The number of muoniums which feel the microwave magnetic field is increased by
2.5 times by using the TM220 cavity instead of the TM110 cavity. Namely, the
statistics is improved by 2.5 times.

In the previous experiment at J-PARC in June 2016, the TM110 cavity was used,
while the TM220 cavity was used in this experiment in June 2017. Pictures of the
TM?220 cavity is shown in Fig. B13.
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Figure 3.13: The TM220 cavity. (a) shows an inside view of the cavity. There were
two antennas for injecting microwave and picking up a part of the stored microwave
in the cavity to monitor stored energy. The resonance frequency was controlled by an
aluminum tuning bar. (b) shows the whole cavity. There was a piezo positioner at the
top of the cavity used to move the tuning bar.

3.5.2 Distribution of the Microwave Intensity in the Cavity

It is important to understand the intensity of the microwave field distribution on
the resonance because the shape of the muon spin-flip resonance-signal depends on
the muon stopping distribution and the magnetic field distribution in the microwave
cavity.

For the TM,,,,0 mode of a cylindrical cavity [47, &3], the magnetic field in

cylindrical coordinates is described as

j(We m ] )
H, = _Ajk_§7j’" (J%r)sm(me),
JWE jmn o, (J
Hy = —Ak—g%Jm (%r)cos(m@),
H, = 0,
.2
wleu = kf:(%) . (3.4)
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Below is a variation of the expression in Eq. B-4.

H, = —A% (Jm_1 (J%r) + Jni1 (]%r)) sin(m@),
23 mn i
Hy = _AJQkC (Jm_1 (J?r) — Jn+1 (J?r)) cos(m@). (3.5)

The square of the microwave magnetic field intensity is

|H> = |H, >+ |Hg|?
2 92 ; j '
— A?‘Zkz (J31+1 (];rénr) " J;i—l (];;nr) =201 (J%r) -1 (]%r) COS(QmQ)) .
C

(3.6)

The quality factor, Q, is given by

0=w—, (3.7)

where W is total energy of the microwave in the cavity, and P is the input power.
Since the power of the magnetic field W), is equal to one of the electric field Wg, W

can be described as

4

Weg+ Wy =2Wy

= pu f |H|* dV
\%
_ A2w2€2ﬂ R o " J2 ]mn ]2 ]mn
- D) m+1 rf+Jdpa |77
4k Jo Jo Jo R R

—2J 41 (]ﬂr) Jm-1 (]%r) Cos(2m9)) r drdfdz

R
9, € R ) ]mn 2 ]mn
= 2rA hZ . r\Jo R rl+J,_4 R r||dr
1 .
= €AVt Gn) (3.8)

in which V(= nR?h) is the volume of the cavity. Using Eqs. B, B2, and B8, we
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Figure 3.14: Magnetic field intensity of the TM220 microwave cavity. In the calculation,
Q = 20000, and an input power P = 0.8 W were used.

obtain

PO 1
20UV I | ()

(J31+1 (7’”) + J,i_l ( R r) — 2041 (?r) Jn-1 (?r) cos(2m9)) .
(3.9

|H|?> =

The calculation result of the magnetic field intensity for a TM220 cavity with a
diameter of 180 mm is shown in Fig. 314

The distribution of the magnetic field of the TM220 cavity was also evaluated
by using a simulation software (AER, INC. CST microwave studio). Figure B3
shows the results of the simulation. The result are almost consistent with the analytic

calculation, but the field of the microwave was rotated due to the tuning bar. The
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Figure 3.15: Simulation result of the magnetic field of the microwave by CST microwave
studio. The arrows indicate the direction of the magnetic fields and their sizes represent
the intensity of the magnetic fields. In the calculation, the aluminum tuning bar was
considered.

uncertainty of the microwave field rotation will be discussed in Sec. Bl

3.5.3 Measurement of the Quality Factor of the Cavity

It is important to measure the quality factor of the cavity because the stored energy
of the microwave in the cavity depends on it. The quality factor of the TM220 cavity
was calculated from the ratio of the reflected power to the injected power, which is
called S11 parameter, by using a vector network analyzer (VNA).

Figure BTH shows a block diagram of the quality factor measurement system.
The VNA was connected to the two antennas of the cavity. First, the tuning bar was
moved to the position where the S11 parameter was minimum at the target frequency.
Then, the quality factor was obtained by fitting the frequency dependence of the
S11 parameter as a function composed of a gaussian plus a linear constant as shown

in Fig. BT7. The result of the quality factor measurement appears in Fig. BIR.
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Figure 3.16: Diagram of the quality factor measurement

This result indicates that the quality factor depends on the resonance frequency of
the cavity. Therefore, the time integral method with a simple Lorentzian fitting is

inapplicable.

3.5.4 Microwave Power Monitoring

A part of the microwave was picked up by one of the antenna and monitored.
This monitor recorded the picked up microwave power with a time interval of
5 seconds. Figure B-T9 shows the time variation of the monitored microwave power.
A microwave power drop was observed in several measurements. This power drop
was caused by the thermal expansion of the cavity. The heat source was the injected
microwave power. This problem could be improved by using a water cooling system.

The systematic uncertainty of the power drop will be discussed in Ch. B.

3.6 Positron Detector

Changes in the number of decay positrons by the muon spin flip were detected by

two types of detectors. One is composed of segmented scintillation counters with
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by fitting. The quality factor was calculated from the peak height and width.
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Figure 3.18: Results of the quality factor measurement. The horizontal axis and the
vertical axis correspond to the results of the peak center and the quality factor obtained
in Fig. BT, respectively.

MPPCs. The other is a single-sided silicon strip detector. These detectors must be
stable in a high-rate counting environment caused by high-intensity muon beam. To

achieve this requirement, these detectors were highly segmented.

3.6.1 Segmented Scintillation Detector

This detector consists of 576 (24 x 24) plastic scintillators. The size of each pixel was
10 mm square and 3 mm thick. A multi-pixel photo counter (MPPC, Hamamatsu
Photonics K.K. S12825-050P-01) was connected to each pixel. In the experiment in
June 2017, these detectors were not stable due to a miss-operation of the high voltage
control, and after pulses were observed. This problem can be improved by providing

appropriate voltage to the MPPCs.
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Figure 3.19: Time variation of the picked up microwave power. (a) shows arepresentative
run in which the microwave power fluctuation was relatively small. (b) represents a run
where the microwave power was decreasing.
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3.6.2 Single-sided Silicon Strip Detector

A silicon strip detector is very useful for experiments in which high-intensity pulsed
beam is used. The sensor is highly segmented with pitch in the order of 100 yum.
Therefore, the pileup rate is low. A silicon detector also has a good time resolution.

For precise time measurements, a silicon strip detector, which consists of
an original silicon strip sensor and an original readout circuit optimized for our
experiment, was developed.

The original silicon strip detector was mainly developed for the precise
measurement of the muon g —2/EDM at J-PARC. For this measurement, the detector
must measure the decay positron momentum, time, and the number of positrons.
The measurement environment is in a high magnetic field of 3 T, with high-rate
fluctuation during the measurement time from 1.4 MHz to 140 kHz, and in vacuum.
The requirements and conditions are similar in our measurement. Therefore, this

sensor is also suitable for our muonium HFS measurement.

Silicon Strip Sensor

Figure shows pictures of the silicon strip sensor for the muon g — 2/EDM

experiment at J-PARC. The specification of this sensor is summarized in Table B2.

Table 3.2: Specification table of the silicon strip sensor.

Item \ Specification
Sensor type ponn, AC
Sensor size 98.77 mm x 98.77 mm

Sensor thickness 320 um
Number of Strips | 512 stripsx 2 blocks
Strip pitch 190 pum
Strip length 48.575 mm
Backside metal Aluminum

The characteristics of this sensor are that it is divided into two blocks to improve
the strip occupancy, and that it is possible to connect the chips from either the
vertical or horizontal direction by its double metal structure. The detector electrical
characteristics was studied for quality assurance by a probing test as detailed in

Appendix Bl. The strip area is smaller than the pixel area of the segmented scintillator.
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Figure 3.20: The silicon strip sensor developed for the muon g — 2/EDM experiment
at J-PARC. (a) shows a picture of the whole silicon strip sensor, and (b) and (c) are
microscope views at the center and the corner of the sensor, respectively.

59



éeamp

Comparator TDC
Shaper | (5ns time stamp) \
Input_s Memary Resd Serial
Controller Processor
(40.96us memory) |~ (Zero-suppress, Outputs
Vth edge detection,
Serializer) (100Mbps)
CLK Read Ready
Write Start Read Start )
Write Busy Read Busy gsilt:'oTe
|
DAC Slow control :
. . I/F Configure
\_Analog part / Digital part monitor

Figure 3.21: Block diagram of SIiT128A. The SIiT128A is an analog/digital combined
type integrated circuit.

Readout Circuit

An original Application-Specific-Integrated-Circuit (ASIC) named “Slit” was
developed. The latest version of the Slit, which is named SIiT128A, was produced.
The process of the SIiT128A is Silterra CMOS 0.18 um. The SIiT128A is an
analog/digital combined type integrated circuit. The signal from the silicon strip
sensor is amplified, shaped, discriminated, and digitized, then the hit timing is
recorded with a 5-ns time stamp over a time range of 40.96 us. Figure B2 shows a
block diagram of the SIiT128A [44].

Four S1iT128 As were mounted on the circuit board, named multi-SIiT128 A board,
and were controlled and readout by a Field-Programmable Gate Array (FPGA,
XILINX ARTIX-7) directly mounted on the board. The chips were glued by a
conductive sliver paste (DOTITE D-500) to provide bias voltage, and connected to
the board with 25-um aluminum wires. The FPGA communicated with a PC via an
optical fiber. Figure shows a photograph of the multi-SIiT128 A board.

A performance test of the SIiTI28A was conducted by using test pulses. The
pulses simulated minimum ionization particle (MIP) positron signal. The results are
summarized in Table B3.

For the time differential method, the time calibration is important. The clock
for the multi-SIiT128 A boards was provided from a function generator (Tektronix

AFG3252C), which has on accuracy of 1 ppm. The effect of the uncertainty of the

60



XILINX
ARTIX. =7
XC7A2007™

FFG1156ABX1617
DF5219379A
x

Multi-S1iT128A Board
KYUSHU-U/KEK/JAXA

Figure 3.22: Multi-SIiT128A board. Four chips were controlled by the FPGA.

Table 3.3: The results of the performance tests of SIiIT128A.

Parameter Performance
Dynamic range 4 M1P
Equivalent Noise Charge (ENC) 430 e~
Pulse width 155 ns

Time walk (0.5 - 3 MIP threshold) 11.5 ns
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Figure 3.23: Schematic view of the silicon strip detector. The silicon strip sensor
and two pitch adaptors were glued on the sensor board, and the sensor board and two
multi-SliT128A boards were glued on the mother frame made of aluminum. The sensor,
pitch adaptors and SliT128As were connected by wire bonding.

time calibration will be discussed in Ch. B.

Silicon Strip Detector Construction

Figure shows a schematic view of the design of the silicon strip detector for
this experiment. The sensor was glued on the sensor board, which also provides
bias voltage to the sensor. Eight SIiT128A were mounted on two circuit boards to
readout the whole sensor. Both the sensor board and the two circuit boards were
glued on an aluminum mother frame as shown in Fig. B24. The silicon strip sensor
was connected to the chips via two pitch adaptors. The pitch adaptors have 512
lines to read out a half side of the strip sensor and their minimum line/space is
20/22.5 um, respectively. Figure B2 shows pictures of the pitch adaptor, and a
picture of the constructed silicon strip detector is displayed in Fig. B26. For gluing
of all the boards, pitch adaptors, and sensor, an insulated epoxy adhesive (Araldite
Araldite2011) was used. This adhesive is a two-component liquid type, and it takes

about a day for solidification at room temperature after mixing.

62



Figure 3.24: After gluing the sensor board on the aluminum mother frame. The mother
frame had notches and was shielded by a Kapton tape to avoid electrical contact with
the circuit boards.

Back side

Figure 3.25: Pitch adaptor made by Fujikura K.K. The back side of the pitch adaptor
was made of a copper mesh structure to control the curvature.
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“Pltch adaptor“

Figure 3.26: Completed silicon strip detector.

Before gluing the silicon strip sensor, the sensor quality was confirmed by the

measurement of the sensor electrical characteristics as presented in Appendix B.

Silicon Strip Detector Performance Test

The silicon strip detector performance was estimated by using a test pulse simulating
a minimum ionising particle (MIP) signal. Figure B27 shows results of the
performance tests for several SIiT128A. We confirmed that the average equivalent
noise charge (ENC) was 1400 e~. A signal to noise ratio of 21 was obtained. An
uniform gain and an offset at 0.3 MIP threshold were also obtained. There were
some channel dependence on an unit of 32 channels. This was because by the power
supply to the chip that was not adequate to fully control the chips. This problem can

be improved by a circuit upgrade.

3.7 Data Acquisition System

Figure represents a block diagram of the data acquisition (DAQ) system. The
DAQ system for the silicon strip detector was separated from that of the segmented
scintillators. The DAQ trigger was distributed from the 25 Hz beam pulse, and
was provided even when the muon beam was off, thus background level could be

monitored.
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Figure 3.27: Summary plots of the performance tests of the silicon strip detector: (a)
ENC distributions, (b) offset DAC distributions, and (c) gain distributions. For each
32 channels, there were some channel dependence due to a poor power supply, but this
could be improved by a circuit upgrade.
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Figure 3.28: Block diagram of the trigger logic circuit. Two computers were used for
the data acquisition. They also monitored the performance of the detectors.
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Chapter 4
Simulation Study

This chapter describes the simulation study for the zero field experiment at J-PARC.
First, the estimation of the positron hit rate of the silicon detector is described. Then,
the estimation of the signal shapes obtained by the time differential method and the

time integral method is discussed.

4.1 Simulation Setup

For the estimation of the muon stopping distribution and counting rate of decay
positrons, a Geant4 simulation was used. For the signal form simulation of the time
integral method and the differential method, the total number of detected positrons
subjected to the microwave spin flip was calculated by using the muon stopping
distribution from a Geant4 simulation, and then, the signal form was calculated by
using Eqgs. and Z60. The total number of simulated muons was 7.8 x 101,
The event display of the simulation is shown in Fig. B1l. In the simulation, muons
were injected from the beam pipe. The beam width was assumed to be 21.7 mm in
the x direction and 19.6 mm in the y direction, and the value of the beam momentum

was assumed to be 28.0 MeV/c.

4.2 Estimation of the Counting Rate

The hit rate of the silicon detector for the experiment in June 2017 was estimated.

The number of muons in a bunch is expected as 1.8 x 10° at the experimental area
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Kr Gas Chamber

Microwave Cavity

Figure 4.1: Geant4 simulation event display. Blue lines and red lines indicate muon and
positron tracks, respectively.

when the proton beam power is 150 kW. Simulation results about the hit rate of the
silicon detector are shown in Fig. B2, This figure indicates that the strip position
dependence is negligibly small.

Average hit rate per strip per pulse was estimated to be 0.43 count. Therefore, the
number of detected positron by the whole silicon detector was assumed as 440 hit

per pulse.

4.3 Estimation of the Signal Shapes

The signal shapes in the time integral method and time differential method were
estimated by a simulation. The muon stopping distribution was estimated by using
Geant4 as shown in Fig. B3, and then, the number of positrons, which was counted
by a detector, was calculated by using Eq. IZ33. The solid angle covering the detector
and the microwave field distribution of the TM220 cavity discussed in section
were considered. The decay positron energy threshold, which is related to the signal

amplitude, was estimated to be 30 MeV from the range of positron in aluminum for
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Figure 4.2: Hit rate of the silicon detector estimated by a Geant4 simulation. (a, b) show
strip dependence of simulated hit rate. (c) shows the distribution of hit rate per strip.
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Figure 4.3: Simulation results for the muon stopping distribution. The left shows a
projection on the beam axis and the right a distribution in the cavity projected on the
plane perpendicular to the beam axis.

a flange with a thickness of 55 mm. The quality factor and stored microwave power

were assumed to be 20000 and 0.8 W as ideal values, respectively.

4.3.1 Time Integral Method

In the simulation, the number of detected positron was calculated from the microwave
field intensity and the number of stopping muon was simulated by Geant4. Then, the
total number of detected positrons was integrated over the space and fluctuated by a
Poisson distribution. Finally, the signal was calculated as (Nox — Norr) /Norr and
was plotted with the signal as the vertical axis and the microwave frequency, vy, as
the horizontal axis. For each frequency, 7.8x10'° muons were simulated.

The fitting function is expressed as

Poose  —2lpabl* (¥ +2Ipabl?)
A P 2 ’
1+;+%COSH(7/2+2|p2b|2) +7/2 (27TA)2

fint 00, p1, P2, A D) =p1 Y (4.1)

where p; is the signal amplitude scaling factor, po is the power scaling factor,
A = Av — vy is the difference between the microwave frequency and the muonium
HFS frequency, and 1/4 is the spin relaxation time. The values of pi, p2, Av,
and A are free fitting parameters. The other two parameters, which were the muon

decay rate v and the spin relaxation rate A, were fixed as the inverse of Eq. and
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Figure 4.4: The simulation result of the time integral method. Amp. scale, pow. scale,
life, detu. freq., and relaxation refer to the parameters pi, p2, 1/y, A, and 1/4 in Eq.
BT, respectively.

1/200 us~1, respectively.

The fitting function was not a single Lorentzian, but a summation of multiple
Lorentzians that varied with the microwave power that the muonium feels at different
location. It appears as the summation in Eq. B

Figure B4 shows the simulation results obtained by the time integral method. The
precision of the muonium HFS frequency obtained by the time integral method was
estimated to be 0.41 kHz. Note that this method is only applicable when the quality

factor and injected microwave power are constant during the whole measurement.

4.3.2 Time Differential Method

The time differential signal shape was estimated in the same way as the time integral
method. Simulation results of the time differential signals are plotted in Fig.
with the signal as the vertical axis and the time as the horizontal axis. The statistics

for each frequency was the same as in the simulation of the time integral signal.
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Figure 4.5: The simulation results of the time differential signal.

The fitting function is expressed as

ZN( cos G_ (t—t0)+G?cosG+(t—t0)—1)S

Z N; (1 + %S,)

the solid angle of the silicon strip detector, respectively. G is expressed as

I' £ 27A
Gi = 27T )

r \/(27TA)2 + 8 |p2b)?.

where p; is the signal amplitude scaling factor, ps is the power scaling factor, A is
the difference between the microwave frequency and the muonium HFS frequency,
A is the spin relaxation rate, and ¢ is the time when muonium is formed. These five

values are free fitting parameters. N; and §; are the number of stopping muons and

(4.3)

(4.4)

We developed a new method to obtain the muonium HFS frequency from multiple
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Figure 4.6: The simulation result of the multiple time differential method.

results of the time differential method. The muonium HFS frequency Av is described

with the following equation,
Av = vy — A 4.5)

where v is the microwave frequency, and A is the detuning frequency obtained by
fitting. However, only absolute value of the detuning frequency from the muonium
HES frequency, |A|, can be obtained in the time differential method. Thus, the

muonium HFS frequency is
|Al = [vo = Av| (4.6)

Figure -6 shows the simulation results of the multiple time differential method.
Eq. B was used as fitting function. Precision of the muonium HFS frequency by
the time differential method was estimated to be 0.34 kHz.

This result is just a particular case when the same data as the time integral method
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Figure 4.7: Relation between the detuning frequency and the precision of the obtained
muonium HFS frequency when a quality factor of 20000 and an injected microwave
power of 0.8 W are considered. The most precise point is when the detuning frequency
is set to 60 kHz.

are used. One of the most charming point of the time differential method is that the
muonium HFS frequency can be determined by only one frequency data. Figure
&7 shows the relation between the detuning frequency and the precision of obtained
muonium HFS frequency by a simulation whose statistics for each point is the same
as the total statistics of the above simulations. This plot indicates that the most precise
data can be obtained when the detuning frequency is set to 60 kHz. Figure B8 shows
the time differential signal obtained by a simulation when the detuning frequency
is set to 60 kHz, and the precision of the obtained muonium HFS frequency was
estimated to be 0.13 kHz. This precision is 3.2 times better than that obtained by the

time integral method.
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Figure 4.8: The simulation result of the time differential signal when the detuning
frequency is set to 60 kHz. The red line indicates the fitting result.

4.4 Comparison of the Time Integral Method and the
Time Differential Method

By comparing with the precision of the time integral method, the precision of the
time differential method is 15% better when the same data set is used. Moreover, the
time differential method can determine the muonium HFS with only one detuning
frequency data. Accordingly, the time differential method can be used efficiently by
concentrating all data at the most sensitive detuning frequency, and the statistical
uncertainty would be drastically improved by 3.2 times compared to the time integral
method.

In addition, the microwave power can be obtained by the fitting of the time
differential signal. Therefore, it is possible that the systematic effect of the
variation of the microwave power can be eliminated by using the time differential
method. Consequently, the time differential method can improve both the systematic

uncertainty and the statistical error.
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Chapter 5

Experimental Data Analysis

The experiment of the muonium HFS measurement was conducted from June 13 to
June 19, 2017. This chapter presents the experimental data analysis of the silicon
strip detector and the resonance spectroscopy. First, the validation of the silicon strip
detector is described. Next, the stability check of the detector and the stored energy
in the cavity are described. Then, the analysis of the time differential method is

discussed.

5.1 Experimental Setup

The experiment was conducted at area D2 of J-PARC MLF MUSE. The measurement
period of the beam time was 30 hours for beam tuning and 100 hours for the muonium

HFS measurement. The experimental apparatus is described in Ch. B.

5.2 Validation of the Silicon Strip Detector

Event loss or multi-count deforms the signal shape. This deformation may contribute
to the systematic uncertainty. Thus, validation of the detector is necessary. First,
strips of the silicon detector were qualified by the time over threshold (ToT)
distribution to mask noisy strips. Next, events with the same timing between adjacent
strips were merged to prevent multi-count. Then, the event loss was estimated by the

time distribution of clusters.

76



(a) (b)

30000 r
80 \
60

20000 \

40
10000 1 %

0 500 1000 1500 2000 0 500 1000 1500

2000

(c) ToT (ns) (d) ToT (ns)
x10°
J 50000
2000
40000
1500
30000
1000 20000 H”
W
500 10000 s
\k N NWTmﬁMM?\fhN”"T“ﬁ“*r“7k~~ﬂv«ﬁ-v~w—~
% 500 1000 1500 2000 % 500 1000 1500
ToT (ns) ToT (ns)

Figure 5.1: Representative plots of ToTl distribution. (a) Threshold was reasonable.
Noise and MIP signals were clearly separated. (b) Threshold was high, and the total
number of counts was small. (c¢) Threshold was low, and ToT cut was necessary to obtain
the number of signals. (d) Noise level was too high to distinguish signals from the noise.
These strips were masked in the following analysis.

5.2.1 Qualification of Strips

The SIiT128 A measured both the leading edge and trailing edge of signal pulses. The
ToT was calculated from the time difference between these edges. The ToT gave us
information on the charge distribution that depends on the noise level, signal height,
and pulse width. Therefore, we could evaluate the strips. Strips were classified into
four types by ToTl spectra. Several typical ToT distributions are shown in Fig. B,
and the number of strips and strip types are summarized in Table 5. In total, 89%

strips survived.
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Table 5.1: Strip types and the number of strips.
Threshold level \ Number of strips

High threshold level 20
Reasonable 714
Low threshold level 174
Too noisy 10
Dead 106

Total (alive / masked) \ 908 /116
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Time difference between adjacent strips (ns)

Figure 5.2: Time difference between adjacent strips. A peak due to multi-hits appears
on the accidental coincidence floor.

5.2.2 Clustering

When a positron hits multi-strips, it is necessary to merge several hits to avoid
double counting. Figure B2 represents the distribution of the time difference between
adjacent strips for all events. As the plot indicates, there is a multi-hit peak with a
time width of £20 ns on the floor due to accidental coincidence. Thus, multi-events

within +20 ns on adjacent strips were merged.
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5.2.3 Time Distribution

Figure shows the time distribution of the clustered events normalized by the
number of pulses. The first peak corresponds to the prompt electron beam generated
at the muon production target. The muon beam arrives at the Kr gas target 250 ns
after the prompt electron beam.

As a fitting result, we obtain a muon life time of 2198+1.6 ns. It is consistent
with previous measurements. The number of positrons hitting the whole sensor
is estimated to be 430 counts/pulse, which is consistent with the simulation result.
Namely, the maximum hit rate of decay positron is estimated to be about 0.2 MHz
per strip. Assuming a muon pulse width of 100 ns, the maximum event loss ratio
due to pile-up is estimated to be 0.02%. However, this result indicates that 14% of
decay positrons are lost at the beginning. This is caused by strips having a wide pulse
width. Typical distorted and non-distorted time distributions are shown in Fig. 5.4.

The effect of event loss for systematic uncertainty will be discussed in Ch. .
This problem could be solved by improving the board power supply to control better
the chips.

5.3 Stability of the Counting Rate and the Microwave

Power

Fluctuation of the beam power or the ground level of the detector could change the
counting rate and the signal shape. Fluctuation of the microwave power could also
distort the signal shape. For these reasons, it is important to validate the stability of
the counting rate and the microwave power.

For the validation, it is useful to compare two data with the same microwave
condition. If there is no fluctuation, the signal should be zero constant as shown in
Fig. BS.

Figure 5@ shows the chi-square distribution when we assume the signal to be zero
constant. The data with a chi-square of more than 149, corresponding to 0.1 percent

probability equivalent, are discarded in the following analysis.
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Figure 5.3: Time spectrum of the silicon strip detector scaled by the number of pulses
with the microwave power off. The time zero was adjusted to the time when the muon
beam is injected to the Kr gas target. The red line shows the fitting result with an
exponential function from 5 us. Extrapolation of the fitting result to the time zero is
represented with a green broken line.
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Figure 5.4: Typical time spectra (left) and ToT distributions (right) before clustering. The
top shows the data of a well controlled strip and event loss cannot observed. However,
there is more than 20% of event loss in the bottom plots. The pulse width estimated
from the ToT distribution is much wider than expected.
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power on.
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5.4 Analysis of Time Differential Signal

Figure 577 shows typical time differential signals. The time bin width is 100 ns before
10 us, and rebined to 500 ns after 10 us to reduce statistical uncertainty. For the
fitting, Eq. 2261 and the minimum chi-square method was applied. The minimization
was carried out with the MIGRAD algorithm from MINUIT fitting software, and
then the MINOS algorithm was used to evaluate uncertainties of the parameter values
[45]. The microwave power distribution and the muon stopping distribution were
assumed to be the same as in the simulation results discussed in Sec. B3. There
are two types of parameters. One is common parameters to all measurements. The
signal amplitude factor, the time offset, and the spin relaxation coefficient are of this
type. The other is individual parameters to each measurement. The scale factor of
the microwave power amplitude and the detuning frequency from the muonium HFS
frequency are of this type. In total, we measured muonium HFS frequency at 44

detuning frequency points.

5.5 Analysis of Multiple Time Differential Method

The experimental data analysis is different from the simulation since we must consider
the gas density shift.
From Eq. B35 and Eq. B8, we obtain

Avirs (0) (1 +aD + bD2) = vy — A, 5.1
or

N = v - Avars (0). (5.2)

where
= L A (5.3)

" 1+aD+bD2 "’ '
1

P —— 5.4
Y 1T ap+o02" >4
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Figure 5.7: Typical time differential signals. The frequency of the signal generator
was from the top, +23.10 kHz, —223.46 kHz, and —679.90 kHz from 4 463 302 kHz,
respectively. The red line represents the fitting results. Equation was used as
the fitting function. The numbers, which are components of the muonium HFS, Av,
represent from left to right the microwave frequencies, the detuning frequencies from
the fitting A’, and uncertainties obtained by fitting for each plot.
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Figure 5.8: Results of the multiple time differential method. The red line shows the

fitting result.

and Avyrs (0) is the muonium HFS frequency in vacuum.

Figure 5.8 shows a plot with the obtained detuning frequency from the muonium

HES frequency by fitting as the vertical axis and the microwave frequency as the

horizontal axis. The pull distribution is shown in Fig. B9, and it indicates that the

fitting is good.
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Chapter 6
Results and Discussion

In this chapter, we discuss about systematic uncertainties, and the result of the
muonium HFS measurement in June 2017. Finally, we present some perspectives

for our experiment.

6.1 Systematic Uncertainties of the Previous Measure-
ment at J-PARC in 2016

Systematic uncertainty in the previous measurement at J-PARC in June 2016, were
estimated and reported by Kanda [46] as shown in Table B1. The muonium HFS

was extracted by the time integral method at that time.

Table 6.1: Systematic uncertainties of the muonium HFS measurement at J-PARC in
2016, in which the time integral method was used.

Item \ Contribution
Gas pressure extrapolation 66 Hz
Gas pressure fluctuation 6 Hz
Gas impurity 12 Hz
Static magnetic field 0 Hz
Muon beam profile 9.8 Hz
Detector pileup 2 Hz
Microwave power drift 26 Hz
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6.2 Systematic Uncertainties in 2017

The differences between the experiments in 2016 and 2017 are the analysis method,
detectors, and the microwave cavity. Therefore, it is necessary to estimate other
uncertainties arising from these differences.

For the time differential method, the signal shape is directly fitted, so unexpected
distortion of the signal becomes the main source of systematic. To put it the other way
around, understanding the signal deformation can reduce systematic uncertainties by
adding the effect to the fitting function.

Candidates of signal distortion not considered in the fitting were the event loss
due to pileup, the wrong assumption of the muon beam profile, the microwave power
distribution, and the uncertainty of the time calibration of the detector. Uncertainties
due to these effects are discussed later. In addition to these effects, the uncertainty

in June 2017 due to gas pressure fluctuation was also estimated.

6.2.1 Gas Density

As discussed in Sec. B4, the resonance frequency is shifted due to collisions
between the Kr gas and the muonium atom. The quantity of the frequency shift is
experimentally described in Eq. B3. There was a pressure fluctuation of about 20 Pa
as shown in Fig. B10 and its contribution to the uncertainty was estimated to be
7 Hz. This value was larger than in the previous experiment in 2016 because the set
temperature of the chiller was colder and a time variation of the gas pressure was
observed.

Furthermore, according to the data sheet, the accuracy of the capacitance gauge,
which becomes uncertainty due to extrapolation to zero gas density, was 0.2%. The
systematic uncertainty due to the accuracy of the capacitance gauge was estimated

to be 66 Hz. It was the same value as in the previous experiment.

6.2.2 Muonium Spin Depolarization

As discussed in Ch.3, gas impurity is the cause of depolarizing collisions and

chemical reactions and makes spin relaxation rate higher. The spin relaxation due to
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gas impurity was included in the fitting function and no effect was observed.

The initial depolarization of the muon, the wrong evaluation of the momentum
distribution of detected positron, and detecting decay positrons of muons which
decay in the wall of the cavity only lead to changes in the signal amplitude and was
considered in the fitting function. Therefore, systematic uncertainties due to the

muon spin depolarization were estimated to be nearly zero.

6.2.3 Wrong Assumption of the Microwave Power Distribution

The wrong assumption of the distribution of the microwave power felt by muonium
leads to signal shape distortion and becomes a source of systematic uncertainty. The
cause of a misassumption is mainly the microwave power drift and the application of
the wrong muon stopping distribution. As shown in Fig. B.19, the microwave power
decreased by up to 50% during the measurements.

The difference of the microwave power distribution felt by muonium due to a
wrong assumption is shown in Fig. Bl for several situations. This figure indicates
that a microwave power drop was dominant to change the distribution. Therefore,
it is sufficient to evaluate the uncertainty due to a microwave power drop as the
uncertainty of the wrong assumption of the microwave power distribution.

The equation of the time differential signal of muonium which feels the microwave

with power |b| can be modified from Eq. 261 as,

1+ ——Aw

2 2 A 2 + 2 _ A
dSus = K VAw2+8]b| cos VAw? + 8b| a)t
2 2
_ Aw
VAw2+8|b[2 ( Aaﬂ + 8|b|2 + Aw )
+ 5 COS
[, b2
_ ok 1 1+A +1COS 1+Aw2_1Awt
8|b|2 2 2
1+ vl
148062 148062
+ A? o A awt||-1], 6.1)
2 2
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Figure 6.1: Microwave power distributions felt by muonium estimated by a simulation.
The black line shows the ideal distribution of the microwave power. The green line
indicates the microwave power distribution when the beam center was assumed to be
shifted by 10 mm. The red line shows the distribution when the microwave power was
assumed to constantly drop to 50% during the measurement. These distributions were
normalized by the number of muons in a pulse at 150-kW proton beam power. In this
experiment, the largest misassumption of the microwave power distribution was due to
the microwave power drop.
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where K is a time independent signal amplitude when the spin relaxation rate is

negligibly small and expressed as

P o5

K = 2

= 6.2
1+%C0$9 6:2)

The equation BTl indicates that the angular detuning frequency, Aw, is dominant in
frequency of the cosine function when the microwave power, |b|, is larger than Aw. To
put it the other way round, a lower detuning frequency is more strongly related to the
microwave power. Figure B2 shows a plot obtained by a simulation with the ratio of
the microwave power drop as the horizontal axis and the precision of muonium HFS
for each detuning frequency as the vertical axis. This plot indicates that the obtained
muonium HFS frequency is shifted by more than 5 kHz due to a microwave power
drop of 50% when the detuning frequency is set to 10 kHz. However, no significant
shift of more than 200 Hz is observed when the microwave power decreases by 10%
under a detuning frequency of 100 kHz, or even if the microwave power drops by
50% over a detuning frequency of 100 kHz. In this experiment, the microwave power
decreased up to 10% during the measurement with a detuning frequency was set to
under 100 kHz. Hence, the uncertainty due to a microwave power drop was estimated
to be up to 200 Hz.

6.2.4 Pileup Event Loss

In the experiment in 2017, the event loss of the silicon strip detector due to pileup
was estimated to be 14% at maximum from the time spectrum. By the way, when we
will use the MLF H-Line instead of the D-Line and the proton beam power increases
to I MW, the counting rate of the silicon strip detector will be 29 count/strip and the
event loss will be expected to be 36% at maximum. Hence, the systematic uncertainty
arising from event loss in this experiment was smaller than that of in the future. The
uncertainty due to the pileup event loss in future measurements was estimated.
Figure shows a plot with the detuning frequency as the horizontal axis and
the precision of the obtained muonium HFS frequency as the vertical axis. For each

detuning frequency, the statistics is the same, so the detuning frequency dependence
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Figure 6.2: Relation between the ratio of the microwave power drop and the precision
of muonium HFS frequency for several frequencies obtained by a simulation.

appears to the error bar in this plot as discussed in Ch. E3.

As aresult, no significant shift of the muonium HFS frequency was observed and
the systematic uncertainty due to pileup event loss was estimated to be 10 Hz in this
experiment. If the measurement is concentrated to the detuning frequency of 60 kHz

in the future, the systematic uncertainty would be 1 Hz.

6.2.5 Uncertainty due to the Time Calibration
Equation b1l can be re-written as follows,
1
dSqif = K| ———= (A4 cos (A_Awt) + A_cos (AL Awt)) — 1, (6.3)

8|b|2
1 Aw?

V1+8|b|2/Aw?x1
2

by optimizing |b| and K. Thus, this equation implies that the time spectrum of

where A, = , respectively. If Aw is changed, A. could stay constant

the signal can be scaled in the time direction by shifting Aw, |b|, and K, which

are free parameters in the fitting function. Therefore, the uncertainty of the time
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Figure 6.3: Result of the event loss simulation plotted with the detuning frequency as
the horizontal axis and the muonium HFS frequency as the vertical axis. There is no
significant shift for any detuning frequencies.

calibration would directly be the systematic uncertainty, and its quantity depends on
the detuning frequency. For example, when the accuracy of the time calibration is
1% at 100 kHz detuning frequency, the systematic uncertainty of the muonium HFS
frequency would be 1 kHz. In this experiment, the detuning frequency was set to
less than 1 MHz and the accuracy of the time calibration, which was determined by
the accuracy of the frequency of pulse generator, was 1 ppm. Hence, the systematic

uncertainty due to the time calibration was estimated to be 1 Hz.

6.3 Results and Perspectives

6.3.1 Results of the Experiment at J-PARC in June 2017

As given in the above discussion, the total systematic uncertainty was evaluated to

be 200 Hz in this experiment. The result of our muonium HFS measurement in June
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2017 was
Avyg = 4 463 302.2 + 3.1 £ 0.2 kHz. (6.4)

where the first error is the statistical uncertainty and the second one is systematic.
The total uncertainty was 690 ppb. This value is consistent with the previous result at
LAMPF, and it corresponds to an improvement by a factor of seven from the previous
measurement at J-PARC. This improvement is caused by a time differential method,
using the TM220 cavity, and removal of a beam collimator. The precision in this
experiment would be improved twice compared to the previous experiment at zero
field if the measurement would run for the same period of time, and by using the

time differential method.

6.3.2 Future Perspectives

The summary tables of the statistical uncertainty and the different systematic
uncertainties are indicated in Table B2 and Table B3, respectively.

In the future, the power drop could be suppressed down to 0.02% by installing a
water cooling system to the microwave cavity, and also a microwave power feedback
system [47]. The simulation result plotted with the detuning frequency as the
horizontal axis and the precision of the muonium HFS frequency as the vertical axis
is shown in Fig. 4. It indicates that there is no significant shift when the detuning
frequency is set to more than 10 kHz. When the measurement is concentrated to a
detuning frequency set to 60 kHz, the systematic uncertainty due to a power drop of
0.02% was estimated to be 1 Hz.

Finally, we could achieve 24 Hz (5 ppb) for the statistical uncertainty by using
a higher proton beam power, spreading the active area of the silicon strip detector,
extending the measuring time, and using the H-Line that will provide a muon beam
intensity 10 times higher than that of the D-Line. The total systematic uncertainty
will also be improved to 10 Hz (3 ppb). Therefore, the muonium HFS frequency at
zero field could be measured with a precision of 26 Hz (6 ppb), which would be even

more precise than that of the high field measurement at LAMPF.
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Figure 6.4: Result of a simulation to estimate the systematic uncertainty due to a power
drop of 0.02%.

Table 6.2: Results in 2016, 2017, and prospects of muonium HFS frequency of the zero
field experiment at J-PARC.

June 2016 June 2017 Prospects
Analysis Method Time integral Time differential Time differential
Beam line D Line D Line H Line
Beam power 200 kW 150 kW 1 MW
Measurement time 8 hours 31 hours 80 days (1920 hours)
Microwave cavity TMI110 TM220 TM220
Detector area 240x 240 mm? 98.77x 98.77 mm?  98.77x 98.77 mm? x4
Statistical uncertainty 22 000 Hz 3100 Hz 24 Hz

Table 6.3: Systematic uncertainty table in this experiment.
June 2017 Prospects

Gas pressure fluctuation 7 Hz 7 Hz
Gas pressure extrapolation 66 Hz 7 Hz
Gas impurity 0 Hz 0 Hz
Static magnetic field 0 Hz 0 Hz
Microwave power drift (including muon beam profile) 200 Hz 1 Hz
Detector pileup 10 Hz 1 Hz
Time calibration 1 Hz 1 Hz
Total systematic error 200 Hz 10 Hz
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6.3.3 1Idea to Extract More Information from the Time Differential

Signal

The time differential signal contains information of the microwave power, so it is
possible to extract the microwave power distribution felt by muonium and make the
analysis more rigid. The idea of extracting the microwave power information from
the time differential signal is discussed here.

Equation 61 can be re-written as follows,

aTP/ fNo(r, 0,72) (f cos QdQ) (C@)-1)av

Saier (v, |b], 1) >
[ No(r.6.2) (1 + 44" cos ) dQdV
= f a(r,0,2)C(t)dV + C, (6.5)
where
P Ny(r,0,z) | cosOdQ2
a(r,0,z) = 2 ! f (6.6)

2 ff No(r, 0, z) (1 + “TP’ cos 9) dQdv’
aP [ No(r,0,2) (f cos GdQ) av

C=-— / ) (6.7)
2 ff No(r,0,z7) (1 + % cos 0) dQdV
Therefore, the integral of the time differential signal over the cavity becomes
Sait (v, 1bl, 1) = fa (@) cos ¢t d¢ + C, (6.8)

in which a (¢) is an appropriate factor.

Equation indicates that a time differential analysis can be converted into the
frequency spectrum by a Fourier transform.

Especially, when the microwave frequency is set precisely to the muonium HFS

frequency, the equation of the time differential signal can be described as follows,

Saitr (151, t)=fa(r,9,z) (cos (V21pl1) - 1) dg. (6.9)

Equation 69 means that the time differential signal is a summation of cosines.

Its frequency and amplitude depend on the microwave power and the number of
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positron hits, respectively. Hence, the Fourier transform of the time differential
signal may become a strong tool to validate the dependence between the muon

stopping distribution and the microwave power distribution.
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Chapter 7
Conclusion

The muonium HFS is one of the key to search for new physics beyond the SM, and
more precise measurement is desired. For that purpose, the time differential spin
flip resonance method was developed. This method contains much more information
than the conventional method, named the time integral method, so the precision could
be improved dramatically. However, this method needs high statistics, detectors with
high-rate capability and good time resolution. Therefore, a silicon strip detector
optimized for high-intensity pulse beam was developed. This detector was used in
the experiment in June 2017.

First, the time differential method was developed by using a MC simulation.
The most charming point of the time differential method is that the muonium HFS
frequency can be determined by only one detuning frequency while the time integral
method needs multiple detuning frequency data. Taking advantage of this property of
time differential method, it is found that the time differential method can dramatically
improve the statistical uncertainty by 3.2 times compared to the time integral method.
Furthermore, the systematic uncertainty due to the microwave power variation with
frequency can be eliminated. Thus, the time differential method can drastically
improve the uncertainty compared to the time integral method.

Next, we applied the time differential method to the experimental data in June

2017. The result of the muonium HFS frequency measurement was

Avyvig = 4463 302.2 £ 3.1 £ 0.2 kHz. (7.1)
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where the first error is the statistical uncertainty and the second one is the systematic
uncertainty. The precision of the result value was 690 ppb. This result is consistent
with the previous experiment at LAMPF, and would be twice better than the previous
experiment at zero field if the data were taken for the same period of time. Moreover,
by upgrading the experimental apparatus, the precision in the future was estimated to
reach 26 Hz (6 ppb) at zero field. This precision would be better than the precision
of the previous measurement of 12 ppb at high field. Only after the time differential

method is used, this can be achieved.
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Appendix A

Formula of Bessel Function

Bessel functions are solutions to the differential equation,

1d{( d 2

——(x—f) . (k2—n—2)f=0, (A1)
X

where k is a real number and n is an integer. One of the independent solution to the

equation, J,, is called a Bessel function of the first kind, and the following equations

are useful.
2n
Jor1(x) = 7Jn(x)_-]n—1(x), (A.2)
1
Jp(x) = 5 Un-1 = Jus1), (A.3)
Y x* ) n 2
fo Jo(ktyrdt = 5 J7 (kx) + I—W Jy (kx) ¢ . (A4)

Equation A4 is called a Integral of Lommel.
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Appendix B

Silicon Strip Sensor Qualification

The electrical characteristics of the sensor was measured by using a micro probe
at Kyushu University. This measurement is important to check the sensor quality.
Table BTl shows the results of the measurement. The sensor for the experiment was

chosen according to this qualification.

Table B.1: Electrical characteristics table of the silicon strip sensor.

Item Estimation =~ Measurement
IV measurement N/A plateau observed
Bulk capacitance 3100 pF 3050 pF
Full depletion voltage ~80V ~80V
Interstrip capacitance 3.0 pF +a 7.1 pF
Coupling capacitance 164 pF 167 pF
Polysilicon resistance  5~15 MQ ~12 MQ
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Appendix C

Wire Bonding of the Silicon Detector

Figure 1 represents a picture of the automatic small wire bonder (Orthodyne
Electronics 3700 plus) at Kyushu University. Figure shows a microscope view
during wire bonding. The silicon strip sensor and the readout ASIC are highly
integrated. Hence, fine pitch wire bonding is necessary to assemble the detector.
There are two types of wire bonding processes. One is a ball bonding process in
which heat is applied to melt the wire. The other is a wedge bonding process in
which only ultrasonic force is used. The former can damage the sensor because of
heat. Therefore, the wedge bonding process with thin aluminum wires was used for
wire bonding.

There were 3660 wires for the silicon strip detector. After the wire bonding, the
status of each wire was validated by visual check with a microscope as shown in Fig.

c3.

C.1 Pull Test

There are several tests to optimize the bond parameters, which are the bond force,
ultrasonic power, bond time, loop height, and so on. For the tests, first, we check
wires with a microscope whether there is a crack at the bond heels and distortion of
the wire, then, we perform a pull test, which is one of the break tests.

A picture of the pull tester is shown in Fig. 4. This pull tester can be controlled
precisely by an electrical moving stage. It is useful to disconnect wires touching each

other. Figure (3 shows a schematic view of the pull test. The tension applied to the
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Figure C.1: Automatic wire bonder at Kyushu University.
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Figure C.2: Microscope view during wire bonding.

Figure C.3: Visual check of the wire bonding with a microscope. The area of bonding
pads on the chip is 60 um square. The red circle indicates a disconnected wire.
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Figure C.4: Hook of the pull tester at Kyushu University. The circuit board with a chip
is on the moving stage and remotely controlled.

bond heel is calculated as follows,

(h2 + 62d2)1/2 ((1 — €)cos ¢ + }”TH sin ¢)

Jfwt = F P : (C.D)
1/2
(1 + ((1;5)‘122) (h+H) (e cos ¢ + %sin ¢)
foa = F — (C2)

Figure C-A shows a plot with the tension to the bonding heel as the vertical axis
and the hook position as the horizontal axis for several loop heights when the wire
is pulled straight up. The height difference between bonded planes, and the distance
between bonds are 300 um. This figure indicates that higher loop height gives a
better result because the tension to the bond heels is smaller. In addition, this figure
also shows that the pull test result depends on the pull position. Therefore, the pull
position was fixed in the middle of a wire. As a result of the pull test, we obtained a

pull force of more than 9 gf for a wire loop height of 400 um.
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Figure C.5: Schematic view of the wire pull test.
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Figure C.6: Correlation plot between the pull position and the tension applied to the
bond heels.
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Appendix D

Solid Angle Calculation for an Off-axis

Rectangular Detector

For a rectangular detector, which is set as shown in Fig. D, the solid angle is

calculated as follows.

P2 raz cos 6 cos ¢
Q = f f — 73d0d¢ (D.1)
B1 Yau (1—8111 0 sin ¢)

= Sin~! (sin @; sin B1) + Sin~! (sin a4 sin B2)

—Sin™" (sin aq sin B2) — Sin™! (sin g sin B1) . (D.2)

Figure D.1: Schematic view of an off-axis rectangular detector.
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