
博博博士士士論論論文文文

HPC and feature enhancements of
micro- and macroscopic traffic

simulators for disaster management
applications

(災害対応におけるHPC活用のための微視的・巨視

的な交通シミュレータの機能向上)

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING

OF THE GRADUATE SCHOOL OF ENGINEERING,
UNIVERSITY OF TOKYO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Petprakob Wasuwat
(ペットプラッコ・ワスワット)

September 2018

Acknowledgements

First of all, I would like to sincerely thank Dr. Lalith Wijerathne and Dr. Muneo Hori.
They always supply me with logical, useful, sharp, and clear advice. In addition, I would
like to thank my doctorate committee member, Dr. Tsutoshi Ichimura, Dr. Eiji Hato, and
Dr.Miho Iryo-Asano, for their expert advice and suggestions. Their comments crucially
improve my thesis.

I would like to thank my supervisor, Dr. Lalith Wijerathne, for his hard work. I really
appreciate the way he taught me to solve many problems during my study. I am very
lucky to learn C++ language and Message Passing Interface (MPI) from an expert like
him. Learning from his code has been significantly improved my programming skill and
logical thinking. I am always surprised every time when he provides me with a solution to
the problem which I think it is impossible to solve. This thesis’s existence is not possible
without his relentless help.

I would like to thank the Ministry of Education, Culture, Sports, Science, and Technology
of Japan (MEXT) for giving me a chance to study in one of the best university such as the
University of Tokyo. I will apply all the knowledge that I have got from this university to
help to develop my country.

Special thanks to my master degree supervisor, Dr. Pruettha Nanakorn; I could not
have a chance to apply for the University of Tokyo without his advice and support. He
always provides me with kind support even though I always make mistakes.

I would like to extend the gratitude to my lab mates: Ms. Nao Tamechika, Dr. Supun
Chamara, Dr. Muhammad Rizwan Riaz, and Dr. Sumet Supprasert. Without the listed
lab mates, I think I could not survive the life in Japan during my first year. They provide
me with sincere support and always cheers me up especially Dr. Sumet Supprasert. I would
like to thank Mr. Takuma Yamaguchi, Mr. Keisuke Katsushima, Mr. Atsushi Yoshiyuki,
and Mr. Inawashiro Hiromichi for their kind help with translating Japanese to English and
taking random Japanese calls. Also, I would like to thank all lab fellows for their kindness
even though we did not have a lot of chances to talk with each other.

I would like to thank Ms. Yuki Takeda who inspires me to come and study in Japan.
I have a lot of good memory with her during staying in Hokkaido. We could not have a
chance to meet each other since the distance between Tokyo and Sapporo is very far. I wish
I could have more chances to visit Sapporo.

Finally, I would like to thank my family; my parents and my sister. They are ready
to sacrifice anything for me. We know that we deeply love each other without verbal
explanation. I could not achieve anything in life without their existence.

ii

Abstract

In earthquake disaster mitigation, traffic flow simulations have two major applications of
significance. The first is to find near-optimal traffic assignment such that the functioning
portion of a road network, which is damaged by a major earthquake, can be optimally
utilized to minimize economic losses and even plan the recovery sequence of the damaged
road segments. The second is high fidelity traffic simulations for virtually mimicking mass
evacuation scenarios with the aim of quantitatively evaluating various strategies to accelerate
the evacuation processes.

Though both these applications are of significant importance, there lacks HPC capable
software to solve real-life problems involving large regions. According to my literature
survey, one iteration of optimal traffic assignment such as day-to-day traffic assignment
took 1 hour and 30 minutes for New York’s road network. At this speed, it could take
months to find an acceptable traffic assignment of a large-scale road network, since the
optimal traffic assignment may take several thousand iterations to converge to an acceptable
traffic assignment. In earthquake disaster mitigation, traffic assignment plans have to be
updated at least weekly to best utilize the latest repaired roads. This large gap between
the required and the available times-to-solutions emphasizes the need of the development
HPC enhanced software to find near-optimal solutions within at least several days period.
When it comes to microscopic modeling of emergency evacuations, there are a number of
commercial products targetting small-scale applications like fire evacuation of buildings,
etc. These cannot be utilized to simulate emergency tsunami evacuations which involve
hundreds of thousands of people, on foot and vehicles, over several hundreds of square
kilometers. Though a Multi-Agent Simulator (MAS) developed by a group at ERI is capable
of such large-scale simulations utilizing HPC, its traffic simulation module lack of essential
features like controlling vehicles on multi-lanes and at junctions, and requires further HPC
enhancements to scale to larger regions like those affected by Tokai, Tonankai, and Nanaki
mega-thrust earthquakes.

The objectives of this research are to develop HPC enhanced systems to address the lack
of traffic simulators for the above-mentioned applications by:

1. developing a parallel computing extension for a macroscopic traffic simulator with the
aim of finding near-optimal traffic assignments within a reasonably short time

2. implementing lightweight junction model and enhancing the performance of a micro-
scopic agent-based simulator for applications in mass evacuations.

For the first objective, a parallel computing extension was implemented for a macroscopic
traffic simulator called FastDUE, which was a software developed by Prof. Iryo (Kobe Uni-
versity) for finding near-optimal traffic assignment based on dynamic user equilibrium [14].

iii

A simple link transmission model [38], which uses asynchronous clocks for vehicles, is used in
FastDUE for simulating traffic flow. The developed distributed memory computing exten-
sion, based on MPI (Message Passing Interface), consists of five main stages; partitioning
the network so that nearly equal workload is assigned to each CPU, calculating shortest
time paths for a selected set of vehicles, vehicle loading, forward relay of vehicles, and fi-
nally backward relay to update upstream according to traffic congestion. In order to attain
high parallel performance, we strived to modify the serial algorithms to minimize the re-
quired number of communications and hide communications. The asynchronous clocks in
link transmission model make it impossible to predict the amount of computations in the
next several time steps. This makes it impossible to assign equal workload to CPUs and is
the major barrier to attain high scalability. In order to improve the scalability, it is recom-
mended to replace the current link transmission model with a suitable traffic flow simulator.
Since the current link transmission model is a core part of FastDUE, no attempt was made
to replace it with a suitable alternative.

Three main improvements are implemented to reduce the computation time of FastDUE.
The Distributed memory pathfinding algorithm in the original code was a major bottleneck
since path-finding is an inherently serial algorithm. Replacing it with an embarrassingly
parallel model, near perfect scalability could be attained for pathfinding, and reduce the
computation time for pathfinding by 200 folds. An additional advantage of this embar-
rassingly parallel pathfinding eliminated the time consuming parallel vehicle loading step.
The time asynchronous nature and presence of links without any traffic found to waste
CPU cycles in fetching unnecessary link data from main memory. Executing only the ac-
tive links, not only this large waste of CPU cycles was eliminated but also improved load
balance among CPUs. Compared to the small amount of time required to prepare the list
of active links, this was found to reduce the time for link transmission model by 20 times.
The third improvement is the development of an algorithm for finding a weak ordering for
execution to nearly maximizing the vehicle flow rate of the links in each partition, at a given
iteration step. Finding optimal execution order of links to maximize vehicle flow rate is an
NP-hard problem and impossible for very large networks. However, it is found that certain
ordering of links in each partition significantly increases the flow rate, reducing the total
execution time up to 40%. According to our literature survey, this is a novel contribution
which is applicable to distributed parallel computation of link transmission models in traffic
engineering, etc.

In case of microscopic traffic simulator, we have used the time-step driven agent-based
system which is developed by a team at ERI, for simulating emergency evacuation. Though
it has a reasonable model of pedestrians with high parallel scalability, it has a weak model of
vehicles. The main reason for this weak model of cars is its poor model of the environment,
which is modeled as a hybrid of a grid and a topological graph. A number of shortcomings in
the topological graph introduced several problems like difficulties in define logic to use multi-
lane roads and control vehicles at junctions, errors in pathfinding, etc. In order to address
these problems, I developed an automated pre-processor which is capable of generating
high-quality grid and graph, and even including other information like contours, parks,
water bodies, inundated area, etc. Making use of efficient data structures, the developed
pre-processor is fast and robust. The new pre-processor could generate an environment of
600 km2 region within 1∼2 minutes, while the former pre-processor required hours and was
unreliable.

With the improved environment, I implemented logic to mimic vehicle flow at an ar-
bitrary junction, with or without traffic lights. Comparing with real observations from

iv

literature, it is demonstrated that free flow vehicle agents can mimic speed and acceleration
profiles observed at a real junction fairly well. In order to resolve conflicts of multiple cars
on different trajectories at a junction, a simple and lightweight algorithm based on fear
of collision was implemented. The results of the fear-based algorithm for several conflict
scenarios are compared with literature. It is shown that the new junction model can mimic
drivers’ behavior to a reasonable extent, and significantly improved the flow rate compared
to the former simple junction model. In addition, the junction model is enhanced to control
the traffic with traffic lights.

Further, the parallel computing extension of the MAS is improved by enabling to increase
or decrease the number of CPUs in real time. This complex process eliminated the need of
aborting the simulations due to a concentration of agents. In order to reduce execution time
and improve the accuracy of agents’ vision, I implemented a real-time ray tracing algorithm.
On Intel CPUs, this reduces the agents’ vision by around 40%, which brings it a step closer
to simulate evacuate in real time.

v

Contents

Acknowledgments ii

Abstract iii

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 2
1.3 Thesis structure . 2

2 Equilibrium states of traffic flow 4
2.1 Wardrop’s Equilibriums . 4
2.2 Dynamic user equilibrium . 5

3 Macroscopic traffic simulator 7
3.1 Day-to-day traffic assignment . 8
3.2 HPC enhancement . 9
3.3 Domain decomposition . 10
3.4 Enhancements of parallel performance . 13

3.4.1 Pathfinding . 13
3.4.2 Processing only the active sub-network 16
3.4.3 Processing links in the direction of vehicle flow 17

3.5 Numerical experiments . 20
3.5.1 Distributed-memory parallel pathfinding versus embarrassingly paral-

lel pathfinding . 20
3.5.2 Processing the full network versus the active sub-network 22
3.5.3 Processing links in the direction of vehicle flow 23

4 Issues for future improvements in macroscopic traffic simulator 27
4.1 Dynamic load balancing . 27
4.2 The unpredictable execution of link transmission model 28
4.3 Possible further improvement of the embarrassingly parallel pathfinding’s

scalability . 28
4.4 Possible further improvement of link transmission model based traffic simu-

lator by using a communication hiding technique 29

vi

5 Microscopic traffic simulator 37
5.1 Agent based model . 37

5.1.1 Hybrid environment . 38
5.1.2 Agents . 39

5.2 High Performance Computing Extension . 40
5.2.1 Domain decomposition . 40

5.2.1.1 Communication hiding . 41
5.2.2 Dynamic load balancing . 41

5.3 Dynamically mapping to different number of MPI processes 42
5.3.1 Scalability . 42

5.3.1.1 Partitions and scalability . 44
5.4 Enhancement of domain generator . 44

6 Agent-based model for car-car and pedestrian-car interactions at unsignal-
ized junctions 48
6.1 Approximation of trajectories and free flow speed at intersections 49

6.1.1 Vehicle trajectories at intersections . 49
6.1.2 Speed profile of a vehicle at intersections 50

6.2 Car-car interactions at unsignalized interactions 51
6.2.1 Assumptions and observations . 51
6.2.2 Potential unsafe regions . 52
6.2.3 Avoiding vehicle-vehicle collision within an intersection 53
6.2.4 Deceleration to avoid collisions . 54

6.3 Car-pedestrian interactions at unsignalized interactions 54
6.4 Validation of free flow speed profile and demonstrative examples 56

6.4.1 Vehicle-vehicle interaction . 56
6.4.1.1 Free flow of a single vehicle agent 60
6.4.1.2 Interactions of multiple vehicle agents 60

6.4.2 Vehicle-pedestrian interaction . 61

7 Concluding Remarks 67

A Derivations of equations 69
A.1 Speed profile approximation . 69

List of Figures

3.1 An overview of serial day-to-day traffic assignment. 8
3.2 An example of decomposed Chicago road network. 10
3.3 Main steps of generating non-overlapped partitions of a bidirected graph. . . 10
3.4 Overlapped partitions . 11
3.5 Grouping of links for communication hiding and efficient communication man-

agement. At each iteration, the state of ghost copies, shown in dashed lines,
are updated using MPI according to the state of the corresponding links in
the neighbor partitions. 12

3.6 Flowcharts of two implementations of parallel day-to-day traffic assignment.
Dashed lines represent MPI communications; thickness and arrows indicate
volume and direction of data flow, respectively. 14

3.7 Distributed parallel pathfinding. 15
3.8 Serial pathfinding. 15
3.9 Decomposed Nagoya network for 4 MPI processors (Colors indicate partitions) 16
3.10 A simple 1D flow of vehicles . 17
3.11 The multiple source one destination problem 17
3.12 Tier ordering of links according to vehicle flow directions. 18
3.13 Scalability of the two pathfinding algorithms. 20
3.14 Scalability of embarrassingly parallel pathfinding; a large-scale problem. . . . 21
3.15 Scalability improvement brought by processing active sub-network. 21
3.16 Communication pattern in a distributed-memory parallel pathfinding. 22
3.17 Unpredictable number of communications in distributed-memory parallel pathfind-

ing. 23
3.18 Scalability of traffic flow simulations with tier-ordered, and unordered pro-

cessing of links. 24
3.19 Vehicle flow rates with tier-ordered, and unordered processing of links. 25
3.20 Vehicle flow rates of each MPI processors . 25

4.1 An example of a variation of computational runtime after several iterations. . 28
4.2 A big imbalance in computational time of each processor. 29
4.3 The different of runtime between each iteration in link transmission model

based traffic simulator. 30
4.4 The execution time of Dijkstra’s algorithm of all vehicles in Nagoya network.

The x-axis represents the vehicle id and the y-axis represents the execution
time of Dijkstra’s algorithm. 31

4.5 The execution time of preliminary and enhanced updating vehicle trajectories
algorithm. 32

viii

4.6 Scalability of preliminary and enhanced updating vehicle trajectories algorithm. 32
4.7 Scalability of preliminary and enhanced updating vehicle trajectories algo-

rithm with out ideal case. 33
4.8 The execution time of forward and backward propagation. 33
4.9 Scalability of forward and backward propagation. 34
4.10 Flowchart of the preliminary parallel updating vehicle trajectories algorithm. 35
4.11 Flowchart of the enhanced parallel updating vehicle trajectories algorithm. . 36

5.1 The environment is modeled as a hybrid of a 1m×1m resolution grid and a
graph. Shown is 8.5km×5.4km area of Kochi city, Japan. 38

5.2 Snapshot of agents’ movements at a junction. Blue and black arrows indi-
cate instantaneous velocities of pedestrians and cars, respectively. Pedestrian
agents walk along the edges, if the road can accommodate vehicles. 39

5.3 Domain decomposed for 2 MPI processes. In order to maintain the continuity,
a region of width w from the neighbor partition #0 is included along the
boundary of the partition #1 . 40

5.4 Run-time history for 1000 iterations with 10 million pedestrian agents. Three
graphs indicate time history with 512, 1024 and 2048 nodes of K computer.
Migration and dynamic load balancing are executed on a single thread. . . . 42

5.5 Partition arrangements at different iteration steps with 80,000 agents in the
environment of Fig. 5.1. Partitions are dynamically adjusted according to
the distribution of agents and workload; shown in green dots are the agents.
When the number of agents is too small and/or concentration of agents leads
to partitions with 2w or lesser side length, like in (d) and (e), the problem
has to be mapped to a smaller number of MPI processes. 43

5.6 2048 partitions of Tokyo domain. High concentrations of agents in the central
Tokyo, encircled with a black ellipse, gives rise to partitions with smaller
dimensions and poor aspect ratio. Presence of partitions with side lengths
close to 2w makes communication hiding ineffective and significantly lower
the scalability. 44

5.7 The bad quility topological graph from previous domain generator. 45
5.8 Flow of previous domain generator. 46
5.9 Flow of enhanced domain generator. 46
5.10 The enhanced topological graph from new domain generator. 47

6.1 Vehicle trajectories at intersections are approximated with third-order B-
spline curves. 49

6.2 Intersection points of multiple trajectories. 50
6.3 Examples of the three different types of collisions considered: V5-V3 fast

moving rear vehicle and slow-moving front vehicle; V1-V3 intersection of dif-
ferent trajectories; V2-V4 extrapolated current moving directions on merging
trajectories. 52

6.4 Interaction between vehicle agents and pedestrian agents 55
6.5 Problem settings for experiment 1. 56
6.6 Problem settings for experiment 2. 57
6.7 Problem settings for experiment 3. 57
6.8 Problem settings for experiment 4. 57
6.9 Speed profile of experiment 1, and field observations by Prof. Hideki Nakamura. 58

ix

6.10 Speed profiles of experiment 2 . 58
6.11 Speed profiles of experiment 3 . 59
6.12 Screenshot of the simulation multiple vehicle agents 59
6.13 The problem settings for the pedestrian-car mixed-mode interaction experiment. 62
6.14 Resulting speed profiles of agents, for the pedestrian-car mixed-mode inter-

action experiment. 63
6.15 Snapshots of the car and pedestrian mixed experiment at t = 7.7 s 63
6.16 Snapshots of the car and pedestrian mixed experiment at t = 8.4 s 64
6.17 Snapshots of the car and pedestrian mixed experiment at t = 9.4 s 64
6.18 Snapshots of the car and pedestrian mixed experiment at t = 11.2 s 65
6.19 Snapshots of the car and pedestrian mixed experiment at t = 14.0 s 65
6.20 Snapshots of the car and pedestrian mixed experiment at t = 16.6 s 66

List of Tables

3.1 Execution time of distributed-memory (T1), and embarrassingly: parallel (T2)
pathfinding. 26

3.2 Execution time of updating vehicle trajectory with full network, T1, and
active sub-network, T2. 26

3.3 Execution time of embarrassingly parallel pathfinding for large scale problem,
T1. 26

3.4 Time required for traffic flow of one million vehicles with unordered processing
of links, T1, and tier-ordered processing of links, T2. 26

5.1 Runtime and strong scalability with 512, 1024 and 2048 nodes in K computer. 42

6.1 Vapproach, Vmin and Vdepart used for the experiment with the single vehicle
agent. Units are in km/h. 60

Chapter 1

Introduction

Major earthquakes, like the impending Tokai, Tonankai and Nankai earthquakes, are pre-
dicted to inflict serious damages to the infrastructures of the industrial heartland of Japan
and inundate the coasts with destructive tsunamis. Severe damages to road networks will
disrupt the industrial supply chain networks and other economic activities triggering a sec-
ondary disaster. According to historic earthquakes, the repair time for road networks after
major earthquakes can be more than a year; repair time after the 1995 Kobe earthquakes
was 21 months ([7]). By optimally utilizing the functioning portions of the road network to
meet the traffic demand during this long period, the degree of secondary economic disasters
can be minimized or even eliminated. Finding optimal allocation of traffic is a challenging
problem, which is well known to be an NP-hard (i.e. algorithms involve non-deterministic
polynomial hardness).

Though optimal solution cannot be found with existing algorithms, there exists a num-
ber of methods to find near-optimal traffic assignment [29, 6, 3, 28]. However, there are no
records in the literature on their applications to a large network, like the Kanto network
in Japan. A major challenge in applying those algorithms to large networks is the rapid
increase of computational demand with the size of the network. This emphasizes the need
of utilizing High-Performance Computing (HPC) in optimal traffic assignment of large net-
works. The use of HPC is especially necessary after a major earthquake disaster since the
traffic allocation has to be updated, at least weekly, to best utilize the latest repaired roads.

Although tsunamis also destroy infrastructures, the large losses of lives are the major
concern for coastal cities located in close proximity to subduction zones. Tsunami is ex-
pected to arrive at some coastal cities within a few tens of minutes, which is too short,
especially for elderly coastal communities, to evacuate to a safe high ground. Allowing to
use cars for evacuation is one of the cost-effective means of accelerating evacuation. Accord-
ing to the lessons from the past major tsunamis, the unconstrained use of cars can produce
worse outcomes. Extensive studies are necessary to answer questions like, what percentage
of people can be allowed to use cars, what are the safe time windows for each region to
safely use cars, how to cope with unexpected road damages, how stable is car usage, etc.
Such studies will contribute to finding safe strategies to make the evacuation process faster,
saving many lives. Considering the number of lives involved and the presence of an unusu-
ally large number of pedestrians, which is the recommended mode of evacuation, a mass
evacuation simulator with microscopic models of vehicles, pedestrians, and their interactions
are required to find answers to questions like the above. Most of the large-scale traffic sim-

1

CHAPTER 1 Introduction 2

ulators does not include microscopic models of vehicles and pedestrians, while the existing
large-scale agent-based microscopic simulators do not provide junction and lane changing
models with accurate speed profiles to model interactions among pedestrians and vehicles.

1.1 Objectives

Motivated by the above-mentioned needs of traffic assignment in disaster recovery, and
emergency mass evacuations, this research has two major objectives. The first is to develop
a scalable HPC system for finding near-optimal traffic assignment for the large network
within a reasonably short time, targeting applications in disaster recovery. The second
objective is to enhance an agent-based microscopic traffic simulator for simulating emergency
mass evacuation by improving its environment, implementing a junction model capable of
reproducing vehicles’ speed profiles and autonomously resolving conflicts.

1.2 Contributions

The contributions of this thesis can be summarized as

• HPC enhancement of FastDUE, which is a program for finding near-optimal traffic
assignment.

– Implementing a distributed memory parallel computing extension for FastDUE.

– Improving pathfinding to reduce computation time, and to reach near ideal scal-
ability.

– Updating algorithms of FastDUE so that most of the communications can be
overlapped with computations, thereby improving the scalability.

– Enhancements of serial algorithms to significantly reduce computation time

∗ Active link partitioning scheme made the traffic simulator run 20 times faster.

∗ Re-ordering execution of links to reduce the required number of iterations,
leading to 40% reduction of runtime.

• Enhancements of agent-based microscopic traffic simulator

– Fast and robust pre-processor for generating high-fidelity models of the environ-
ment

– Enhanced behaviors and collision avoidance at intersections

– 40% reduction of the runtime of agents’ vision by replacing a memory-bound
algorithm with a computation-bound ray tracing algorithm.

– Parallel and serial performance improvements

1.3 Thesis structure

The rest of the thesis is organized as follows. The second chapter explains about equilibrium
states. Chapter 3 provides details on the first objective including a literature review, details
of developed HPC enhanced system for near-optimal traffic assignment, techniques for re-
ducing time-to-solution and improve parallel scalability. The fourth chapter presents details

CHAPTER 1 Introduction 3

of an agent-based model for mass evacuation simulation, improvements to its environment,
the new junction model with accurate speed profiles and conflict resolving, validation of the
speed profiles, and parallel computing enhancements. Some concluding remarks are given
in the last chapter.

Chapter 2

Equilibrium states of traffic flow

In this chapter, we aim to present the notation and problem definition of user equilibriums.

2.1 Wardrop’s Equilibriums

Finding a distribution of route choice in static case is firstly discussed in Wardrop (1952)
[36]. To evaluate the performance of future improvement of the road, firstly, we have to
do an origin and destination (O-D) survey. Every vehicle from the survey is assumed to
only choose the quickest route. Our problem is to find how the vehicles distribute itself
to new alternative routes which will be added according to the future improvement plan.
Therefore, we have to find a way to find the most efficient distribution of traffic flow so that
no single vehicle can unilaterally change its route to reduce the travel cost. This mentioned
well-distributed traffic flow is called an equilibrium state.

There are two assumptions which can be used to find Wardrop equilibrium state includ-
ing:

1. Every vehicle has the same travel time on all selected routes and this common travel
time is less than the travel time of any vehicle on the unused route. The equilibrium
state under this assumption is called user equilibrium (UE).

2. The average travel time of every vehicle is minimum. The equilibrium state under this
assumption is called system optimal (SO).

Wardrop [35] stated that the first assumption is more practical since people always seek
for the shortest path. In this case, we will discuss only the first assumption. Suppose the
total flow of traffic, Q, is composed of D number of alternative route choices, qi. The flow,
qi, is a function of travel time , ti, along the route i. Then:

qi(ti) ≥ 0, i = 1, 2, 3, ..., D

and
D∑
i=1

qi(ti) = Q.

4

CHAPTER 2 Equilibrium states of traffic flow 5

According to the Wardrop’s first principle, t1, t2, ..., tD must be the same value (T).
Therefore, the problem is to find a common travel time T . The problem is defined as
follows:

D∑
i=1

qi(T) = Q.

This problem is technically an optimization problem and the solution can be found by
using many methods. Obviously, the common travel time cannot be found explicitly. There-
fore, an acceptable travel time which produces the smallest error must be found instead.
This common travel time (T) can be used to evaluate the performance of the road network.
For example, after constructing new roads, the common travel time must be reduced because
there are new quicker alternative paths.

2.2 Dynamic user equilibrium

There are many researches that try to formulate dynamic user equilibrium (DUE). Friesz et
al. [14] is one of first research that formulates the DUE. According to them, the definition
of DUE is the state that, in every instance of time, the travel time on a used path which
connects an origin-destination (O-D) pair must be equal and minimal.

The dynamic user equilibrium (DUE) is formulated as follows.

fk,p(t)
[
hk,p(f, t)−mk(t)

]
= 0,∀k ∈ O, p ∈ Pk, t ∈ [0, T] (2.1)

mk(t) = min
p ∈ Pk

{
hk,p(f, t)

}
,∀k ∈ O, t ∈ [0, T]

The above equations must satisfy following feasibility conditions as follows.∑
fk,p(t) = Dk(t),∀k ∈ O, t ∈ [0, T]

fk,p(t) ≥ 0,∀k ∈ O, p ∈ Pk, t ∈ [0, T]

fk,p(t) is the flow of traffic on path p which connects an O-D pair k at time t. O denotes
all O-D pairs. Pk denotes all paths in the domain. t denotes the specific time in time spane
[0, T]. hk,p(f, t) is the travel time of path p, which connects O-D pair k and is affected by
the path flow rates f at time t. mk(t) denotes the minimum travel time of path p. Dk(t)
denotes the demand of O-D pair k at the time t.

The path flow rates f is composed of several flow rate on time span [0, T]. It can be
written as follows:

CHAPTER 2 Equilibrium states of traffic flow 6

f =



fk1,p1
(0) fk1,p1

(t1) fk1,p1(t2) . . . fk1,p1(T))
fk2,p1(0) fk2,p1(t1) fk2,p1(t2) . . . fk2,p1(T))

...
...

...
. . .

...
fkN ,p1(0) fkN ,p1(t1) fkN ,p1(t2) . . . fkN ,p1(T))
fk1,p2(0) fk1,p2(t1) fk1,p2(t2) . . . fk1,p2(T))
fk2,p2

(0) fk2,p2
(t1) fk2,p2(t2) . . . fk2,p2(T))

...
...

...
. . .

...
fkN ,p2

(0) fkN ,p2
(t1) fkN ,p2

(t2) . . . fkN ,p2
(T))

...
...

...
. . .

...
fkN ,pN

(0) fkN ,pN
(t1) fkN ,pN

(t2) . . . fkN ,pN
(T))


The physical meaning of feasibility conditions is that the summation of the flow in the

whole domain must not exceed the demand and there are only forward flows. According to
Eq. 2.1, it can be concluded that there will be no traffic flow on those path p which connect
O-D pair k or the travel time in that path is minimum. To find the dynamic user equilibrium
state, we must find the path flow rate (f) which satisfy Eq. 2.1 and its feasibility conditions.
This is an NP-hard problem. The search space is enormous. Also, the equation 2.1 is not
an optimization problem. Therefore, heuristic rules must be set to optimize the path flow
rates. In this study, we aim to use a day-to-day traffic assignment to find the near-optimal
path flow rates or near-optimal traffic assignment.

Chapter 3

Macroscopic traffic simulator

Damages to the lifeline networks during a major earthquake can bring long lasting dis-
ruptions to manufacturing and other economic activities leading to a secondary disaster.
Especially when a commercial center like Tokyo is affected by a major earthquake, the re-
sulting secondary disaster can bring serious risk to the nation’s economy and even send
ripples in the global economy. It is hard to say which lifeline network plays the most critical
role since the industries and other economic activities depend on these in a rather compli-
cated manner. Road network is one of the vital element with a significant influence on the
economic activities.

Depending on the severity of damages, recovery of road network after a major earthquake
can take several months to years of time. As an example, it has taken 21 months to fully
recover the road network after the 1995 Kobe earthquake [7]. It is vital to find the means to
optimally utilize the functioning portion of a damaged network to meet the traffic demand
with minimum traffic delays so that degree of secondary economic disasters is minimized.
Such post-disaster traffic assignment plans should be continuously updated according to the
progress of recovery of damaged segments.

It is well known that optimal traffic assignment problem is NP-hard problem, hence it is
essential to choose a suitable algorithm and develop efficient high-performance computing
extensions to find near-optimal solutions for this post-disaster traffic assignment problem.
There exists a number of methods to find near-optimal traffic assignment [29, 6, 3, 28].
However, according to our literature survey, none of these methods have been applied to solve
large-scale problems like Tokyo probably due to the extensive computational demand. This
emphasizes the need of choosing a computationally light algorithm and high-performance
computing.

Out of the many methods for near-optimal traffic assignment, in this study, we use
the method of day-to-day traffic assignment, which mimics how people find shorter routes
by changing their routes according to experiences on previous days. As one would easily
guess, this method replans the route of a random subset of vehicles according to travel time
information of the previous simulation, and estimate the resulting travel time by simulating
the traffic after the route replanning. The above process is repeated until the total delay
time reaches a certain convergence criterion. The advantage of this method is that the total
computation time can be reduced by using a lightweight macroscopic traffic simulator.

According to our literature survey, there are reported cases of parallel implementations
of dynamic traffic assignment [6, 3]. However, these implementations do not scale well (i.e.

7

CHAPTER 3 Macroscopic traffic simulator 8

reduce the computation time linearly with respect to the number of CPUs used) to solve
large-scale problems in a shorter time by utilizing high-performance computer clusters or
supercomputers. The current best implementation scales up to 128 CPUs and takes around
1 hour and 30 minutes [31] for a single day iteration. According to our estimations, it
would take more than a month to find a solution for New York network. Though several
months period is acceptable for regular traffic assignment problems, it is too long for post-
disaster recovery problem. For practical applications in post-disaster recovery, the total
computation time has to be at least reduce to a week so that traffic assignment plans can
be regularly updated with the progress of the recovery of damages. Hence, a better scalable
HPC enhanced day-to-day traffic assignment must be implemented for solving post-disaster
traffic assignment problems.

In the rest of this chapter is organized as follows. Firstly, we briefly introduce day-to-day
traffic assignment. Secondly, we discuss the parallelization of the day-to-day traffic assign-
ment. In addition, we discuss strategies which are used to enhance the parallel algorithms
used in our implementation. The next section shows the numerical experiments which are
used to demonstrate the efficiency of each strategy. We finally discuss the possible future
improvements in the last section.

3.1 Day-to-day traffic assignment

Start

Pathfinding

Updating vehicle trajectories

Loading vehicles

Stop Satisfy stop criterion?

Randomly select vehicles

NO YES

T
r
a

ffic
 sim

u
la

to
r

T
h

e
se

 th
re

e
 p

a
r
ts ta

k
e

a
lm

o
st 9

9
%

 o
f tim

e
.

Figure 3.1: An overview of serial day-to-day traffic assignment.

For the sake of completeness, the overview of the day-to-day traffic assignment is briefly
explained in this section. Figure 3.1 shows a flowchart of the day-to-day traffic assign-
ment algorithm. It is a daily experience that drivers change their paths according to their
previous travel experiences in order to reduce their travel time ([19, 30]). The day-to-day
algorithm mimics this drivers’ behavior to find a near-optimal traffic assignment. Numerical
instabilities of iterative oscillation may be observed.

As above described, day-to-day traffic assignment involves traffic flow simulations, and
it usually requires a large number of traffic flow simulations to obtain a converged solution

CHAPTER 3 Macroscopic traffic simulator 9

by mimicking drivers’ behavior. Therefore, a lightweight stochastic cell transmission traf-
fic simulator is used in this study as a strategy to lower the total computation time. In
stochastic cell transmission simulators, each road segment stores information of every pass-
ing through vehicles. Each element in the links’ vehicle list stores information pertaining to
a vehicle such as a vehicle id, entry time to the link and departure time from the link. The
main 5 steps of day-to-day traffic assignment are briefly explained below.

Randomly select a set of vehicles: If the all the vehicles are not yet included, introduce
a certain percentage of vehicles from the input origin-destination pairs (OD pairs).
Also, choose a random subset of the vehicles already introduced to the system.

Pathfinding: Find the paths with minimum travel time, based on the previous travel time
estimated with step 4 of previous iterations, for the set of vehicles selected in the above
step.

Loading vehicles: The randomly selected vehicles in step 1 are assigned to the vehicle lists
of the links along the corresponding paths. The entry time and the departure time of
newly assigned vehicles are set to infinity.

Updating vehicle trajectory: Simulate traffic flow using a suitable link delay model for
handling congestions. Store the travel time information of each link at suitable time
interval so that travel time can be estimated in step 2 of next day iteration.

Stop criterion: Evaluate the total delay, and decide to terminate iterations or return to
step 1 and continue iterations based on a suitable criterion.

The day-to-day traffic assignment’s result depends on random parameters like in which
order the vehicles are introduced, etc. Depending on these random parameters we may
arrive at different solutions. It is best to conduct many simulations with different random
parameters and choose a suitable stable solution. The stability of the solutions can be
tested in several ways. One prominent way is to give a random variation, within a practical
time range, to the departure time of the vehicles and estimate the resulting traffic condition
by simulating traffic flow. For this simulation for stability testing, it is better to use a
microscopic traffic simulator so that most of the affecting factors can be taken into account.
A criterion like a percentage increase of delay time can be used to test whether the traffic
condition is not significantly affected by the random variations.

In this study, we used the FastDUE code, which was developed by Prof Takamasa Iryo
(Kobe University), as the base day-to-day traffic simulator. All our HPC enhancements
are implemented in FastDUE code. In this study, we did not explore the possibilities to
enhance the performance of the serial FastDUE code, though some potential advantages
improvements, like modifications to data structures, were identified.

3.2 HPC enhancement

A short introduction to the main steps of the developed distributed memory parallel day-
to-day algorithm with link transmission model (LTM) [38]. is presented in this section.
The workload is distributed among CPU cores of a cluster of computers connected via a
dedicated high-speed network. The necessary information to make the CPUs to collectively
solve the problem are exchanged among the CPU cores using Message Passing Interface

CHAPTER 3 Macroscopic traffic simulator 10

Figure 3.2: An example of decomposed Chicago road network.

(MPI). The basic processing unit of our current implementation is a CPU core since we use
only MPI. The terms CPU core and MPI process are used interchangeably in the rest of the
thesis.

3.3 Domain decomposition

In order to distribute the computational workload of Day-To-Day Traffic Assignment (D2DTA),
the bi-directional graph of the traffic network is decomposed into non-overlapping and con-
tinuous sub-networks using the graph partitioning software METIS ([21]) as shown in Fig.

(a) Input bi-directional graph (b) Decomposed undirected graph (c) Decomposed bi-directional graph

Collapse
 Map

Figure 3.3: Main steps of generating non-overlapped partitions of a bidirected graph.

CHAPTER 3 Macroscopic traffic simulator 11

Figure 3.4: Overlapped partitions

3.2. The time asynchronous nature of LTM (i.e. clocks of vehicles are not synchronized)
makes it difficult to make a reasonable estimation of the amount of computations in each
partition, within next several iterations. Devoid of better solutions, We use link-based
partitioning scheme with a number of passing vehicles as weight.

Each of the partitions is assigned to a separate MPI process (i.e. CPU core) so that
computation power of multiple MPI processes can be utilized to solve the problem in a
shorter time. In this particular MPI-only settings we use, even if some of the CPU cores
are located on the same motherboard sharing all the resources, each CPU core behaves as
an independent MPI process with its own private memory space and resources. Therefore,
to maintain the continuity of the original problem, each MPI process should exchange state
of the upstream links located along partition boundary, which deliver vehicles to neighbor
partitions, sending explicit messages to the owner MPI processes of its neighbor partitions.
This extra overhead of communication between partitions, which does not exist in serial
version, significantly increases with the number of MPI processes involved, and hence has to
be minimized to efficiently utilize a larger number of CPUs to solve the problem in shorter
time. Communication hiding (i.e. doing some useful computation while communication is
progressing) is the main strategy we utilize to reduce this extra communication overhead.

Figure 3.3 illustrates the main steps involved in partitioning the bidirected graph. It is
highly desirable to use non-overlapped partitions since it enables independent traffic flow
simulations within each MPI process, simple and efficient management of message passing
among MPI processes, and attaining high parallel scalability by communication hiding. In
order to obtained non-overlapped partitions, first the bidirected graph is collapsed into an
undirected graph; the sum of the number of vehicles in each pair of up and down links are
assigned to the corresponding link of the undirected graph as the estimator of the amount
of computations. Partitioning the undirected graph with METIS and mapping the results
back to the original bi-directional graph, we can obtain desired non-overlapped partitions
(see Fig. 3.3(b) and Fig. 3.3(c)).

Direct partitioning the bidirected graph with METIS produces overlapped partitions
(i.e. up and down links between some pairs of nodes belong to different MPI processes) as
shown in Fig. 3.4. Such overlapping introduces significantly a large number of in/out flow
of traffic scattered all over the domain of the partition, making the traffic flow simulations
within a partition to be heavily dependent on the neighbor partitions. On the other hand,
in the non-overlapping case, in/out flow of traffic to/from a partition happens only through
the links along the partition boundary, making traffic flow simulations within the partition

CHAPTER 3 Macroscopic traffic simulator 12

Processor#1 Processor#2

Inner_most_links CommunicationTo_receive_links To_send_links

Processor#1 Processor#2

Figure 3.5: Grouping of links for communication hiding and efficient communication man-
agement. At each iteration, the state of ghost copies, shown in dashed lines, are updated
using MPI according to the state of the corresponding links in the neighbor partitions.

to be independent of neighbor partitions. This greater independence from the neighbor par-
titions provides better opportunities to attain high scalability and manage communications
efficiently. In a nutshell, overlapped partitions significantly lower both the computational
efficiency and parallel scalability, and complicates the management of MPI communications.

As above mentioned, to maintain the continuity, each MPI process should exchange state
of the upstream links located along partition boundary, which deliver vehicles to neighbor
partitions, to the owner MPI processes of its neighbor partitions. In order to efficiently
manage communication of the state of those upstream links, we include their dummy copies
along the boundary of the neighbor partitions according to the corresponding downstream
links. In each partition, the dummy upstream links are grouped into a set called to recv links.
Further, the upstream links along partition boundaries, whose states are to be sent to the
neighbor partitions, are grouped to a set called to send links. The set innermost links is
formed by subtracting the to send links from the links of a partition. Fig. 3.5 illustrates
these three subsets of links in a partition.

Overlapping the communications with the computations is one of the widely used strat-
egy in attaining higher scalability in distributed parallel computing. Doing some useful
computations while communications are progressing, the time spent on communications
can be reduced or even completely eliminated. This often produces higher parallel scala-
bility (i.e. two fold increase of the number of MPI processes exactly or nearly halves the
computation time). The above sub-grouping of links in a partition makes it possible to
efficiently manage not only the communications, but also overlapping of communications
with computations. In order to hide communications of the traffic flow computations, first
the to send links are executed, and the messages carrying their updated states to the corre-
sponding neighbor partitions are posted using the non-blocking MPI functions MPI Isend()
and MPI Irecv(). Next, the traffic flow of the innermost links is executed, and finally the
above-posted messages are finalized with MPI Waitall() or MPI Testall(). Provided that
a number of links in subset innermost links is large, this overlapping of computations and
communications can significantly reduce the communication overhead, thereby increasing
the parallel scalability.

Though not essential, contiguous partitions are desired since it contributes to increasing
the effectiveness of communication hiding. Compared to non-contiguous partitions, con-
tiguous partitions increases the ratio between the number of links inside a partition to the
number of links along the partition boundary, thereby increasing the number of calculations

CHAPTER 3 Macroscopic traffic simulator 13

to be performed relative to the amount of data to be communicated, thus providing long
enough time to complete overlapped communications.

3.4 Enhancements of parallel performance

The computation time of a perfect scalable parallel program halves when the number of
CPUs doubles. Attaining high scalability is a challenging task and requires significant mod-
ifications to the data structures and serial algorithms, or it may even require the development
of completely new algorithms. This section presents three strategies, apart from above
presented communication hiding, to improve the computational efficiency of distributed
D2DTA.

3.4.1 Pathfinding

Pathfinding is one of the most time-consuming components of D2DTA. FastDUE uses the
Dijkstra’s algorithm ([11]), which is widely used for pathfinding. Due to its inherent serial
nature, it is difficult to implement scalable distributed or shared memory parallel versions
of Dijkstra’s algorithm. A shared-memory parallel implementation by Jasika et al. ([20])
has attained only 10% speed up, which is fairly low. None of the distributed-memory paral-
lel implementations ([17];[18];[6]) have reported reasonable scalability. The main difficulty
in distributed parallel implementation is involvement of a large number of messages and
difficulties in assigning balanced workloads to MPI processes.

We developed two versions of parallel D2DTA; one with distributed memory parallel
Dijkstra’s algorithm similar to Haribar et al.’s work ([17]) as shown in Fig. 3.7, and the other
with the serial Dijkstra’s algorithm. Figure 3.6 illustrates details of the MPI communications
involved in both the implementations.

In the parallel pathfinding, each processor finds the path for the assigned vehicle until
vehicles reach its boundary then these vehicles will be passed to neighbor processors as
shown in Fig. 3.7. The advantage of this method is each processor does not have to keep
the whole network. Therefore, the code is not memory intensive so that it can handle large
scale problem without exceeding memory of a node in a computer cluster. The disadvantage
is it requires a lot of communication. The approximated number of communication messages
could be estimated as number of MPI processes × number of nodes along partition boundaries
× number of vehicles, which can be quite large.

In the serial implementation of pathfinding, each MPI process keeps a copy of the whole
network and travel time information of each link and calculates paths for a given subset
of vehicles as shown in Fig. 3.8. We assigned an equal number of vehicles to each MPI
process so that each MPI process will have nearly the same computational workload. In the
example (Fig. 3.8), we assign 1 vehicle to each processor. Instead of assigning the equal
number of vehicles, using the spatial distance between the origin and destination of each
vehicle, or previous measurements of pathfinding time will lead to better scalability. This
serial implementation of pathfinding belongs to an embarrassingly parallel category, since
finding a path for a vehicle does not require any MPI communications.

The main disadvantage of the embarrassingly parallel approach is the need to keep of
copy of complete network in each MPI process. This is not a major problem since modern
computing nodes have a large memory. Though the serial implementation requires each
MPI process to exchange the travel time data of the previous iterations and the paths found

CHAPTER 3 Macroscopic traffic simulator 14

Start processor#1

Pathfinding

Loading vehicles

Retrieve selected vehicles

Start processor#...

Randomly select

vehicles

Does it satisfy stop criterion? Stop

Broadcast selected

vehicles

NO

Domain decomposition Retrieve partition information

Pathfinding

Loading vehicles

Updating vehicles

trajectory

Update

ghost copies

YES

Updating vehicles

trajectory

Broadcast partition

information

Update ghost copies

Update

ghost copies

(a) With parallel path finding.

Start process#1

Pathfinding

Updating vehicles

Loading vehicles

Retrieve selected OD pairs

Start process#...

Randomly select

OD pairs

Pass convergence test

Share updated

travel time

stop

Synchronize

updated travel time

NO

Domain decomposition Retrieve partition information

Pathfinding

Loading vehicles

Share updated

travel time

YES

Broadcast

partition

information

Updating vehicles

Active sub-network

Update

ghost copies

Broadcast

selected vehicles

Synchronize

found paths

(b) With embarrassingly parallel path finding and active sub-network.

Figure 3.6: Flowcharts of two implementations of parallel day-to-day traffic assignment.
Dashed lines represent MPI communications; thickness and arrows indicate volume and
direction of data flow, respectively.

CHAPTER 3 Macroscopic traffic simulator 15

Maximum number of communications
= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑛𝑜𝑑𝑒𝑠 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

Communication

Figure 3.7: Distributed parallel pathfinding.

processor#1 processor#2

processor#3 processor#4

Figure 3.8: Serial pathfinding.

CHAPTER 3 Macroscopic traffic simulator 16

(a) Complete traffic network.
(b) The active links during the early itera-
tions.

Figure 3.9: Decomposed Nagoya network for 4 MPI processors (Colors indicate partitions)

with the rest of MPI Processes, this communication overhead is orders of magnitudes smaller
than that is required by the distributed memory parallel pathfinding. Further, synchronizing
the paths among all the MPI processes make it possible to completely eliminate the large
number of communications involved in vehicle loading step of parallel pathfinding. This
large reduction of communication overhead and better load balance make the embarrassingly
parallel approach to drastically improve the scalability of pathfinding and vehicle loading
steps, compared to those with parallel pathfinding.

3.4.2 Processing only the active sub-network

Significantly small number of links are active (i.e. vehicles passes through) at the early
stages of D2DTA since D2DTA algorithms gradually introduce vehicles to the simulation.
For the sake of brevity, let’s call this small subset of links active links. Figure 3.9(a) and
Fig. 3.9(b) show the full Nagoya network and active links in an early iteration of D2DTA.
Instead of simulating the whole network, simulating only the active network provides two
advantages. First is the large reduction of total computation time by eliminating the number
of unproductive access to the main memory. Even though the inactive links do not incur
any computational overhead, processing the whole network requires data of each link to be
brought to CPU from main memory, which is a significant time-consuming operation. The
second is poor quality partitions. As mentioned in section 3.3, we use the number of vehicles
in each link as the weight in partitioning. The presence of links with zero vehicles leads to
seriously low-quality partitions with high workload imbalance.

The active links can be easily identified right after the vehicle loading stage. The active
sub-network is created by picking only active links from a full network. Instead of simu-
lating the full network, the active sub-network is partitioned and used in updating vehicle
algorithms. According to Fig. 3.6(b), after domain decomposition scheme, only updating
vehicle trajectory algorithm uses the partition information. Hence, the link-based partition
is used to equally distribute the workload for accelerating the updating vehicle trajectory
algorithm. The result of active sub-network domain decomposition is illustrated in Fig.
3.9(b).

If only the active sub-network is simulated, it will not only eliminate time wasted on
unproductive loading data of inactive links from main memory but also generate well load-
balanced partitions leading to higher parallel efficiency. As it will be demonstrated in the
next section, there is a considerable gain in simulating only the active sub-network. Figure
3.6(b) illustrates the flowchart of the developed parallel D2DTA algorithm with active sub-

CHAPTER 3 Macroscopic traffic simulator 17

network.

3.4.3 Processing links in the direction of vehicle flow

Link #1 Link #2 Link #3

Figure 3.10: A simple 1D flow of vehicles

T
ier 1

Tier 2

Tier 3

T
ie

r
4

Tier 5

T
ier 6

Tier 7

Tier 9

T
ie

r
8

Origin

Origin

Origin

Origin

Origin

Destination

Figure 3.11: The multiple source one destination problem

The number of iterations requires for LTM based traffic simulator depends on the exe-
cution order of the links, though ideally, the total number of updates of variables remains
roughly the same. As an example, consider a unidirectional flow of n number of vehicles
starting from the origin end of a single straight road consisting of N number of links (see
Fig. 3.10). LTM based traffic simulator involves only one iteration if the links are processed
from origin to destination. However, if the links are processed in the destination to origin
direction, it requires N number of iterations. Though some of these iterations in processing
destination to origin direction does not involve any vehicle transmission among links, it
still incurs a non-negligible overhead wasting CPU cycles in loading links’ data from main
memory, going through all the vehicles entries in a link to identify no vehicles are there
to be transmitted, message passing, etc. On the other hand, processing in the origin to
destination direction does not involve such overhead due to useless iterations and transmits
the vehicles.

To further demonstrate the advantages of processing links in flow direction, consider
the multiple source single destination problem shown in Fig. 3.11 with 250,000 vehicles
from each origin. We compared execution of links in a random order with the tier orders

CHAPTER 3 Macroscopic traffic simulator 18

of execution shown in Fig. 3.10. The time asynchronous link transmission model we use
produces a perfect vehicle transmission among links, delivering all the vehicles to their
destinations in a single iteration, when links are executed in the tier order shown in Fig.
3.10. Compared to random order of execution of links, this is almost 10 times faster.

Though it is straightforward to identify in the above two simple examples, no such ideal
execution order which complete traffic flow simulation in one iteration exists for real traffic
networks. Given a link A, executing all the upstream links which deliver vehicles to link A,
is one strategy to find an optimal links execution order. Repeatedly apply the above simple
rule, it may be possible to find an optimal execution order. However, on real networks
with loops and complicated traffic flow, this develops into a challenging graph optimization
problem.

Instead of solving an optimization problem, we opt for finding a weak link execution
order with higher vehicle transfer rate per iteration. Though not optimal, a link execution
order which substantially increases the vehicle transfer rate at each iteration of LTM can also
significantly reduce the number of iterations. In each partition assigned to an MPI process,
the major vehicle flow is from to recv links to to send links via the inner most links, which
makes to recv and to send links virtual origins and destinations in each partition. Based on
this observation, we propose a weak link execution order which significantly increases the
vehicle transfer rate per iteration. The pseudo-code of the algorithm to find this weak link
execution order is given in Algorithm 6.1.

Partition boundary

to_receiveto
_r

ec
ei

ve
to

_r
ec

ei
ve

to_receive to_receive

to_receive

to_receiveto_receive

to
_s

en
d to_send

Tier 1 to_send

Tier 1

T
ier 1

to
_s

en
d

to_send

Tier 1to_
sen

d

to_send

Tier 1to_send

Tier 1to_sendTier 1to_
sen

dTier 1

Tier 1

to_
sen

d

to_send

Tier 1

Tier
 1

to_
send

T
ie

r
1

to
_s

en
d

Tier 2

T
ier 2

Tier
 2

Tier 2

T
ie

r
2

T
ie

r
1

Tier 2

Tier 3

T
ier 3

T
ie

r
3

Tier 3

Tier 3

Tier 3

Figure 3.12: Tier ordering of links according to vehicle flow directions.

In the Algorithm 6.1, starting from the to receive links, we traverse the network in a
breadth-first order, tagging immediate downstream links of to receive links as tier-1, their
immediate downstream as tier-2 and so on until to send links are reached (see Fig. 3.12).
Each link is traversed only once during this process. While this tagging process takes a
short time, processing the links in the created tier-lists (i.e. to receive links, tier-1, tier-2, . . .,
to send links) significantly reduces the required number of LTM iterations. As demonstrated

CHAPTER 3 Macroscopic traffic simulator 19

Algorithm 3.1: Reordering execution order of innermost links

input : Partition information (indexs of to-receive links, to-send links, and
innermost links) and road network

output: Execution order array

1 create vector EOA; /* vector of execution order array */

2 create set TMPS; /* set of temporary links */

3 create set LSL; /* set of last set of links */

4 foreach link L in to-receive links do
5 LSL.insert(L);
6 end

7 initialize int LSize = -1; /* size of the last set */

8 while sizeof(EOS) ¡ sizeof(innermost links) do
9 foreach link L in LSL do

10 foreach link OL in outgoing links of L do
11 if OL is not a bidirectional link of L then
12 if OL belongs to the partition then
13 if OL is not in to-send links group then
14 TMPS.insert(OL);
15 end

16 end

17 end

18 end

19 end

20 LSL = TMPS;
21 EOA.append(TMPS);
22 TMPS.clear();

23 if sizeof(EOA) != LSize then
24 LSize = sizeof(EOA);
25 else
26 break;
27 end

28 end

29 if sizeof(EOA) != sizeof(innermost links) then
30 create set SDiff ; /* difference of sets innermost links and EOA */

31 SDiff = Innermost links\EOA; /* { x ∈ Innermost links | x /∈ EOA } */

32 EOA.append(SetDiff);

33 end
34 return EOA

CHAPTER 3 Macroscopic traffic simulator 20

5 10 15 20 25
Number of processors

2

4

6

8

10

12

S
p

e
e
d

-u
p

fa
ct

o
r

Ideal

Distributed-memory
parallel pathfinding

Embarrassingly
parallel
pathfinding

Figure 3.13: Scalability of the two pathfinding algorithms.

in the next section, it can produce around 30% reduction of runtime compared to the
execution of links in a random order (e.g. in the ascending order of link ID’s).

3.5 Numerical experiments

In this section, we demonstrate the effectiveness of the parallel performance improving
strategies presented in the previous section. We used the Nagoya network consisting of
152,464 links and 37,511 nodes as shown in Fig. 3.9(a), for the simulations presented here.

3.5.1 Distributed-memory parallel pathfinding versus embarrass-
ingly parallel pathfinding

Two experiments are conducted to evaluate advantages of the embarrassingly parallel pathfind-
ing, which is explained in section 3.4.1, comparing with the distributed-memory parallel
Dijkstra’s algorithm by [17].

For the sake of completeness, first the distributed-memory parallel Dijkstra’s algorithm9)
is briefly summarized as follows:

1. Place all vehicles’ source in local subnetwork into local queue

2. Find the shortest path for all source in local queue

3. Send updated boundary node labels to neighbors

4. Receive boundary node labels from neighbors and place in queue

5. Perform global operation for termination detection. If the algorithm is not terminated,
then repeat step 2 to step 4

In the first experiment, 5,000 vehicles with random origin-destination pairs (OD pairs)
are simulated in a workstation consisting of two Intel Xeon CPUs (E5-2697 v2 @ 2.70 GHz)

CHAPTER 3 Macroscopic traffic simulator 21

0 100 200 300 400 500
Number of processors

0

10

20

30

40

50

60

S
p

e
e
d

-u
p

fa
ct

o
r

Ideal

Embarrassingly
parallel pathfinding

Figure 3.14: Scalability of embarrassingly parallel pathfinding; a large-scale problem.

5 10 15 20 25
Number of processors

2

4

6

8

10

12

S
p

e
e
d

-u
p

fa
ct

o
r

Ideal

Full network

Active
sub-network

Figure 3.15: Scalability improvement brought by processing active sub-network.

CHAPTER 3 Macroscopic traffic simulator 22

Figure 3.16: Communication pattern in a distributed-memory parallel pathfinding.

and 256 GB memory. As shown in Fig. 3.13, the embarrassingly parallel algorithm produces
significant improvement in scalability. Most importantly, as shown in Table 3.1, there is
nearly two orders of magnitudes reduction of pathfinding time. In the second experiment,
scalability of the embarrassingly parallel pathfinding is tested with 500,000 vehicles in the
K-computer (AICS, Kobe, Japan). According to Fig. 3.14, near ideal scalability can be
attained with this embarrassingly parallel approach. These tests demonstrate that the
embarrassingly parallel pathfinding does not only have higher scalability but also requires
significantly low computation time.

The reason for the poor scalability of a distributed-memory parallel path finding is the
involvement of a large number of communication with an unpredictable pattern of desti-
nations. The example of communication pattern of the distributed-memory parallel path
finding is illustrated in Fig. ??. The bidirectional dotted-arrow represent the communica-
tion messages. Each partition can exchange the updated node labels with their neighbors in
each iteration. In some iteration, it is possible that there are inactive partitions. Therefore,
the communication pattern is not predictable. To explain why it involves an unpredictable
number of communications, refer Fig. ??. Here, each partition is represented by different
colors, and we consider only one vehicle with the path shown in red color. In this particular
case, it needs at least 5 iterations to finish, and the exact number of iterations may be
larger. In the practical problem, there are more partitions and much more vehicles leading
to an unpredictable number of communication.

3.5.2 Processing the full network versus the active sub-network

In this section, the effectiveness of processing only the active sub-network is compared with
the full network. Randomly selected 200,000 vehicles are used. The full road network (Fig.
3.9(a)) consists of 152,464 links and 37,511 nodes, while the active sub-network (Fig. 3.9(b))
consists of 3,943 links and 2,020 nodes.

According to Fig. 3.15, processing only the active sub-network produces only a slight
scalability improvement. However, Table. 3.2 shows that simulating traffic flow on the active
sub-network is around 30 times faster than that with the full network. This indicates that
traversing through inactive links, CPUs waste a significant amount of time unproductively
accessing main memory.

CHAPTER 3 Macroscopic traffic simulator 23

Figure 3.17: Unpredictable number of communications in distributed-memory parallel
pathfinding.

3.5.3 Processing links in the direction of vehicle flow

In order to study the effectiveness of processing links in traffic flow direction, which was
presented in section 3.4.3, two sets of traffic flow simulations were conducted with randomly
selected 1,000,000 vehicles. The links were updated in the ascending order of their ID’s
(i.e. a random order) in the first set of simulations, while, in the second set, the links were
updated according to the tier-lists presented in section 3.4.3. Only the active links of the
network are considered in these simulations, and time to complete traffic flow with LTM is
measured. According to Fig. 3.18, processing the links in the flow direction based tier list
and random order have identical poor scalability.

Though tier-ordered list produces no improvement in scalability, it significantly reduces
the number of iterations required for simulating the traffic flow. As shown in Fig. 3.19, the
flow rate (i.e. the number of updated vehicles during an iteration) is significantly high in the
tier-ordered processing of links. This high vehicle flow rate reduces the required number of
iterations for traffic flow simulation to 28, while the unordered processing of links requires
70 iterations. Further, Table 3.4 shows that tier-ordered processing of links brings about
30% reduction of time required for simulating the traffic flow with LTM.

It is quite mysterious that the computational time is reduced even though there is no
improvement of scalability. According to 3.19, we can observe that the area under two curves
is almost the same. The flow rate in Fig. 3.19 is the global summation of each processor’s
flow rate. Therefore, it would be clearer to plot the flow rate of each processor (Fig. 3.20).
In parallel computing, the computational time is mainly wasted for communications between
processors. All processors except one processor that has the highest workload (flow rate)
have to wait for synchronization of data at the end of each iteration. For example, the red
lines in Fig. 3.20 represent each processor’s flow rate of traffic simulator with unordered
execution order. It can be observed that there is a big gap between each processor. It implies
that processors waste a lot of CPU cycles for idling. Since the workload of link transmission
model based traffic simulator is not predictable. Therefore, we could not easily find the
good partitioning scheme to reduce this gap if the traffic simulator is not redesigned. Since
we find the simple and effective order of execution to reduces the number of iterations which
is needed to converge the macroscopic traffic simulator then the total wasted time can be

CHAPTER 3 Macroscopic traffic simulator 24

5 10 15 20 25
Number of processors

2

4

6

8

10

12

S
p

e
e
d

-u
p

fa
ct

o
r

Ideal

Unordered execution
order

Ordered
execution
order

Figure 3.18: Scalability of traffic flow simulations with tier-ordered, and unordered process-
ing of links.

eliminated. According to Fig. 3.20, the big gap still appear in case of ordered execution
(black lines). However, the number of iterations is reduced significantly (40 iterations). This
smaller number of iterations leads to the reduction of the runtime.

CHAPTER 3 Macroscopic traffic simulator 25

0 10 20 30 40 50 60 70
Iterations

050
0

k
1

M
1.
5

M
2

M
2.
5

M
3

M
3.
5

M
4

M

F
lo

w
ra

te
(v

eh
ic

le
s/

it
er

at
io

n
)

Flow rate of
unordered execution

Flow rate of
ordered execution

Figure 3.19: Vehicle flow rates with tier-ordered, and unordered processing of links.

0 10 20 30 40 50 60 70
Iterations

0

20
0

k

40
0

k

60
0

k

80
0

k

1
M

F
lo

w
ra

te
(v

eh
ic

le
s/

it
er

at
io

n
)

Ordered 1

Ordered 2

Ordered 3

Ordered 4

Unordered 1

Unordered 2

Unordered 3

Unordered 4

Figure 3.20: Vehicle flow rates of each MPI processors

CHAPTER 3 Macroscopic traffic simulator 26

MPI processors T1 (s) T2 (s) T1/T2

4 6,429.58 25.24 254.764
8 2,949.18 10.68 276.14
16 2,269.82 5.94312 381.924
24 2,127.69 4.15 512.969

Table 3.1: Execution time of distributed-memory (T1), and embarrassingly: parallel (T2)
pathfinding.

MPI processors T1 (s) T2 (s) T1/T2

4 61,225.2 2,171.71 28.1921
8 44,702.7 1,671.18 26.75
16 31299.2 1,099.71 28.46
24 25452.2 939.583 27.09

Table 3.2: Execution time of updating vehicle trajectory with full network, T1, and active
sub-network, T2.

MPI processors T1 (s)

8 9,135.34
64 6,429.58
256 2,949.18
512 2,269.82

Table 3.3: Execution time of embarrassingly parallel pathfinding for large scale problem,
T1.

MPI processors T1 (s) T2 (s) ((T1 − T2)× 100)/T1

2 4,687.23 2,769.81 40.9%
4 2,171.71 1,422.4 34.5%
8 1,671.18 1,175.33 29.7%
16 1,099.71 903.52 17.8%
24 939.58 682.5 27.3%

Table 3.4: Time required for traffic flow of one million vehicles with unordered processing
of links, T1, and tier-ordered processing of links, T2.

Chapter 4

Issues for future improvements
in macroscopic traffic simulator

In this chapter, the issues which can help to further improve the macroscopic traffic simu-
lators are discussed.

4.1 Dynamic load balancing

In parallel computing, one of the most difficult tasks is to distribute the workload equally
to each processor. To distribute the workload which does not change their position in
the domain such as distributing the FEM element to multiple processors is much easier
compared to distributing the workload of traffic simulation which vehicles almost move
throughout the domain (road networks). Even though, on the first iteration, the workload
of traffic simulator is equally distributed to each processor. However, after few iterations
have passed. The execution time will be not well distributed.

Consider Fig. 4.1, we can observe that the workload is equally assigned to each processor
at the first few iterations (around 100 iterations). However, after that, the workload different
is huge. In parallel computing, all MPI based software needs to do a synchronization process
so that we can ensure that the necessary data which is used to maintain the continuity of
the problem is successfully exchanged. While doing the synchronization process, the faster
vehicle (Processor 2) in the Fig. 4.1 has to wait for the slower vehicle (Processor 1) to finish
the computation so that they can start to synchronize the necessary data. Hence, the CPU
cycles are wasted during the synchronization process.

The dynamic load balancing technique could be used to redistribute the workload when
the big difference of computational time is observed. However, to redistribute the workload,
we need to carefully set the frequency of the repartition. If the frequency is too high, this
technique might not be useful as we taught. The computational time of repartition is one
of the most time-consuming part of any parallel code. There are two way to repartition
the domain: the first one is to do it on the master processor then broadcast the partition
information to slave processors and the second method is to use parallel such as ParMETIS
[22] which can partition the domain by using many processors. Neither of the methods
consumes significant computational time. Therefore, we must make sure that the runtime
difference as shown in the Fig. 4.1 is longer than the runtime of repartition process. Oth-

27

CHAPTER 4 Issues for future improvements in macroscopic traffic simulator28

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

C
o

m
p

u
ta

ti
o

n
a

l
ru

n
ti

m
e

 (
s
)

Number of iterations

Processor 1

Processor 2

R
u

n
tim

e
 d

iffe
re

n
c
e

Figure 4.1: An example of a variation of computational runtime after several iterations.

erwise, we can reduce the computational time different but the total computational time is
longer than the code without the dynamic load balancing technique. In our case, we could
not apply this technique now because of the unpredictable runtime which will be explained
in the next subsection.

4.2 The unpredictable execution of link transmission
model

According to Thulasidasan et al. [32], they successfully implement the dynamic load bal-
ancing for their macroscopic traffic simulator which is capable for simulating the within-day
traffic flow of New York road network within 1 hour and 30 minutes. They have shown that
the execution time is well distributed among 256 processors. However, we could not just
adopt their methodology to our code. The reason is that we cannot predict our runtime
different as shown in a sample (Fig. 4.1).

As we observed from Fig. 4.2, we have a severe imbalance in cumulative computational
time. Therefore, it would be logical to apply the dynamic load balancing technique so that
we could minimize the wasted CPUs cycles. Unfortunately, we observe the unpredictable the
different of the runtime between each iteration of our traffic simulator as shown in Fig. 4.3.
Therefore, our traffic simulator must be redesigned before we can utilize the load balancing
technique.

4.3 Possible further improvement of the embarrassingly
parallel pathfinding’s scalability

It has been mentioned that the scalability of embarrassingly parallel pathfinding could be
further improved by distributing the vehicles to each processor by considering the spatial

CHAPTER 4 Issues for future improvements in macroscopic traffic simulator29

 Processor ID

C
u
m

u
la

ti
v
e
 c

o
m

p
u
ta

ti
o
n
a
l
ti

m
e
 (

s)

Figure 4.2: A big imbalance in computational time of each processor.

distance from an origin to destination (O-D) pair of each vehicle as a weight in section
3.4.1. Actually, the calculation time of Dijkstra’s algorithm is significantly affected by the
spatial distance of O-D pair because the Dijkstra’s algorithm will stop the process after the
destination node is found (Best-First Search). Therefore, at the first iteration, there is no
single vehicle in the road network. We conduct the experiment to capture the calculation
of time of all vehicle from O-D pairs of Nagoya network (3,000,000 vehicles). The result is
shown in Fig. 4.4(a), Fig. 4.4(b), and Fig. 4.4(c). According to the result, we observed
the imbalance of runtime between each vehicle. This imbalance is the main reason why the
scalability of the embarrassingly parallel pathfinding cannot reach the ideal case.

Instead of assigning an equal number of vehicles to each processor, it is more logical to
assign the subset of vehicles which has an equal summation of the corresponding execution
time of their pathfinding. However, after the network is fully loaded, the execution times of
Dijkstra’s algorithm which is shown in Fig .4.4 might not be accurate anymore. We could
try to update these execution times of every N number of iteration or update the execution
time when the repartition scheme is activated.

4.4 Possible further improvement of link transmission
model based traffic simulator by using a communi-
cation hiding technique

The basic information of the link transmission model is discussed in [38]. In this section,
I would like to explain how exactly working in parallel. Figure 4.10 illustrates the steps
involved in the preliminary updating vehicle trajectories algorithm. As discussed earlier,
the communication hiding technique is to overlap the communication time and the com-
putational time. In Fig. 4.10, we allocate the memory while posting the packed wave
propagation data so that we can overlap communication time and computational time. We
further improve the traffic simulator by overlap the execution time of intra links and the
execution time of inter links as shown in Fig. 4.11.

CHAPTER 4 Issues for future improvements in macroscopic traffic simulator30

(a) Difference of runtime between iteration 1 and it-
eration 2.

(b) Difference of runtime between iteration 2 and
iteration 3.

(c) Difference of runtime between iteration 3 and it-
eration 4.

(d) Difference of runtime between iteration 4 and
iteration 5.

(e) Difference of runtime between iteration 5 and it-
eration 6.

(f) Difference of runtime between iteration 6 and it-
eration 7.

Figure 4.3: The different of runtime between each iteration in link transmission model based
traffic simulator.

CHAPTER 4 Issues for future improvements in macroscopic traffic simulator31

(a) Execution time of Dijk-
stra’s algorithm (Vehicle 0 -
1,000,000).

(b) Execution time of Dijkstra’s
algorithm (Vehicle 1,000,001 -
2,000,000).

(c) Execution time of Dijkstra’s
algorithm (Vehicle 2,000,001 -
3,000,000).

Figure 4.4: The execution time of Dijkstra’s algorithm of all vehicles in Nagoya network.
The x-axis represents the vehicle id and the y-axis represents the execution time of Dijkstra’s
algorithm.

The idea is simple. We first analyze the inter links and post the packed analyzed infor-
mation. After posting information to neighbor processors, we analyze the intra links which
can be analyzed without any communication. Finally, the posted messaged will definitely
arrive their destination processors since the number of intra links is technically much higher
than the number of inter links which are at the boundary of the partition. To evaluate this
idea, we conduct the experiment with 3 million vehicles in Nagoya road network. The result
is shown in Fig. 4.5. The runtime of traffic simulator does not reduce significantly. It can
reduce the execution time around 20 seconds when we use 128 processors. In addition, the
execution time is longer than the preliminary code. Further, we investigate the scalability
to see the parallel efficiency. Both of them has very poor scalability comparing to the ideal
case as shown in Fig. 4.6. If we omit the ideal case line, we can see that the scalability
is significantly improved as shown in Fig. 4.7. We can further improve both runtime and
scalability by finding some useful tasks which do not require the transmission of the infor-
mation as shown in 4.11. Unfortunately, in the current situation, we could not find the
useful tasks to do while waiting for the synchronization of the data. Therefore, the traffic
simulator must be redesign so that there are some independent tasks which can be done
during the synchronization process.

We also investigate two main parts of the traffic simulator including the forward prop-
agation and the backward propagation. The result in Fig. 4.8 shows that the forward
wave propagation is more time consuming than the backward wave propagation. However,
Fig. 4.9 illustrates that the backward wave propagation can scale in an acceptable range
which almost reaches the ideal case. According to Fig. 4.9, the scalability of forward wave
propagation is very poor. This is the source of poor scalability of our traffic simulation.
Therefore, we must redesign the forward wave propagation algorithm so that we can en-
hance the scalability of traffic simulator.

CHAPTER 4 Issues for future improvements in macroscopic traffic simulator32

20 40 60 80 100 120
Number of processors

1000

1250

1500

1750

2000

2250

2500

2750

3000

E
x
e
cu

ti
o
n

ti
m

e
(s

)

Preliminary version

Enhanced version

Figure 4.5: The execution time of preliminary and enhanced updating vehicle trajectories
algorithm.

20 40 60 80 100 120
Number of processors

2

4

6

8

10

12

14

16

S
p

e
e
d

-u
p

fa
ct

o
r

Ideal

Preliminary version

Enhanced version

Figure 4.6: Scalability of preliminary and enhanced updating vehicle trajectories algorithm.

CHAPTER 4 Issues for future improvements in macroscopic traffic simulator33

20 40 60 80 100 120
Number of processors

1

1.25

1.5

1.75

2

2.25

2.5

2.75

S
p

e
e
d

-u
p

fa
ct

o
r

Preliminary version

Enhanced version

Figure 4.7: Scalability of preliminary and enhanced updating vehicle trajectories algorithm
with out ideal case.

20 40 60 80 100 120
Number of processors

0

500

1000

1500

2000

2500

E
x
e
cu

ti
o
n

ti
m

e
(s

)

Forward wave propagation

Backward wave propagation

Figure 4.8: The execution time of forward and backward propagation.

CHAPTER 4 Issues for future improvements in macroscopic traffic simulator34

20 40 60 80 100 120
Number of processors

2

4

6

8

10

12

14

16

S
p

e
e
d

-u
p

fa
ct

o
r

Ideal

Forward wave
propagation

Backward wave
propagation

Figure 4.9: Scalability of forward and backward propagation.

CHAPTER 4 Issues for future improvements in macroscopic traffic simulator35

Start

Finding wave propagation updates

Update wave propagation of intra links

Send size of wave propagation inter link updates

Pack the wave propagation data for sending

Receive size of wave propagation inter link updates

Send packed wave propagation data of inter link updates

Allocate memory for receiving packed data

Receive packed wave propagation data of inter link updates

Update wave propagation of inter links

Stop

Figure 4.10: Flowchart of the preliminary parallel updating vehicle trajectories algorithm.

CHAPTER 4 Issues for future improvements in macroscopic traffic simulator36

Start

Finding wave propagation updates

Send size of wave propagation inter link updates

Pack the wave propagation data for sending

Receive size of wave propagation inter link updates

Send packed wave propaga-
tion data of inter link updates

Allocate memory for receiving packed data

Update wave propagation of intra links

Some useful tasks which can
done without the posted data

Receive packed wave propagation data of inter link updates

Update wave propagation of inter links

Stop

Figure 4.11: Flowchart of the enhanced parallel updating vehicle trajectories algorithm.

Chapter 5

Microscopic traffic simulator

Anticipating major earthquakes in Tokai, Tonankai and Nankai regions of Japan are pre-
dicted to bring major tsunami hazards to the neighboring coastal regions. While short
tsunami arrival time and high tsunami heights are major threats in many areas, different
regions have various other problems, like a long distance to the evacuation areas, insuf-
ficient capacity of evacuation shelters, large elderly population, narrow roads, car usage,
etc. Numerical simulations are invaluable to the disaster mitigation authorities in seeking
various strategies to address these problems, accelerating evacuation process, identifying
unforeseen problems, etc. Motivated by the ease of use, less effort in developing and limited
computational resources available, simple queue models with 1D networks are widely used
in mass evacuation studies. While such simplified models provide much useful information,
they have strong limitations. Related to mass evacuation in large congested urban cities,
there are many scenarios which require the use of an accurate high-resolution model of
the environment and complex models of individuals: people with different behaviors and
responsibilities, multiple evacuation modes and their interaction, dynamic changes like a
progressive inundation, visibility, etc. With the aim of simulating such demanding scenar-
ios, we developed an Agent-Based Model (ABM) which includes a high-resolution model of
the environment and complex agents which are capable of perceiving it ([25], [37]). In order
to meet the high computational demand of complex agents in the high-resolution environ-
ment, we implemented a scalable parallel computing extension so that millions of agents
in several hundreds of square kilometers can be simulated by utilizing high-performance
computing facilities ([36], [1]). In this thesis, we present the details of the implemented
agent-based model and its parallel computing extension.

5.1 Agent based model

The developed system is a time step driven agent based model which is consisting of a hy-
brid environment and cognitive agents. In order to model heterogeneous evacuating crowds,
agents are assigned with different physical and behavioral parameters, different roles (i.e.,
evacuee, volunteer, officials, etc.), different level of access to information. Most systems
model mass evacuation as agent flows on 1D networks and set the agents’ speeds according
to the average density in each link and suitable fundamental diagrams. On the contrary, the
parameters of the autonomous agents of the developed system are tuned such that agents’

37

CHAPTER 5 Microscopic traffic simulator 38

(a) 1m×1m resolution grid. Green areas are
above 30m elevation. (b) Topological graph

Figure 5.1: The environment is modeled as a hybrid of a 1m×1m resolution grid and a
graph. Shown is 8.5km×5.4km area of Kochi city, Japan.

individual actions reproduce characteristics like fundamental diagrams as an emergent be-
havior.

5.1.1 Hybrid environment

With the aim of modeling evacuation process in microscopic details, we model the envi-
ronment as a hybrid of a high resolution grid and a topological graph, see Fig. 5.1. The
traversable 2D domain is modeled with a 1m×1m resolution grid, and updated at desired
time intervals to model dynamic changes like tsunami inundation, fallen debris due to the
earthquake, etc. The grid updates are generated based on the physics based simulators or
observations. Connectivity between the traversable spaces in the grid is abstracted by a
topological graph. The graph contains topological connectivity of an ordinary day (i.e., not
updated according to dynamic changes of the grid). The graph serves as the base map of
the agents’ memory supporting agents’ decision making functions. Scanning the grid in high
resolution, agents recognize the features of their visible surrounding in the grid and any mis-
matches between the information in graph and grid. These mismatches, like a blocked road,
and other experiences, like getting support from an official, are stored with reference to the
graph so that experiences and new information can be easily taken into account in their
decision making processes. The graph is equipped with a number of functions to find paths
with various requirements (e.g. minimize the use of narrow roads in night time evacuation
scenarios). The environment evolves in time, and its state at time t is denoted by Et.

The grid and graph are automatically generated from GIS data. Traversable spaces can
be generated from any of the following three data: center line and width of roads, road
boundaries, or outline of the buildings. While generating the topological graph is straight-
forward with road center lines, we use thinning algorithm ([4]) to generate graph when the
given input data is grid environment. The hybrid system is scalable to accommodate several
hundreds of square kilometers in 1×1m2 resolution. An accurate model of the environment,
including data like buildings, contours, water bodies, etc., can be generated in a short time,
when GIS data is available. As an example, the model of 8.5km×5.4km region shown in
Fig. 5.1 was generated in 90 seconds.

CHAPTER 5 Microscopic traffic simulator 39

ai

Agent ai’s bound-
ary of visibility

Topological
graph

Cars

Pedestrians

Figure 5.2: Snapshot of agents’ movements at a junction. Blue and black arrows indicate
instantaneous velocities of pedestrians and cars, respectively. Pedestrian agents walk along
the edges, if the road can accommodate vehicles.

5.1.2 Agents

An agent, ai , which mimics the behavior of a person during an emergency mass evacuation,
consists of its state at time t, sti, and a set of constituent functions, gi, defines its role.
sti consists of agent’s private data (e.g. destination, sight distance, decision, etc.) and
information which are deducible by neighboring agents (e.g. speed, moving direction, etc.).
The surrounding, with which an agent interacts at time t, consists of animate and inanimate
parts. Inanimate surrounding consists of ai’s visible surrounding, Evisible,t

i ⊂ Et, and any
remote sources of information, Eremote,t

i ⊂ Et, like the current travel time of the road
segments along its current path. Animate surrounding consists of agents visible to ai’s,
Avisible,t

i ⊂ A, where the set of agents A = {ai|i = 1, 2, . . .}. Figure 5.2 shows the boundary
of visibility of an agent ai with 30m sight distance; the agents inside this visibility boundary
are ai’s A

visible,t
i .

The discrete time evolution of the agent based system, A ∪ Et, is governed by the
functions updating the environment, and functions defining individual agent’s role. Evo-
lution of environment is modeled by updating with suitable functions, λj ’s , to mimic
events like tsunami inundation, damage propagation, etc.; Et+∆t = λ1 ◦ λ2 . . . ◦ λm(Et).
Autonomous actions of an agent ai are defined by fi, which updates the agent’s state as
st+∆t
i = fi(s

t
i, A

visible,t
i , Evisible,t

i , Eremote,t
i). fi is composed of suitable subset of the avail-

able set of constituent functions, G = {gj |j = 1, 2, . . .}, to mimic the role of corresponding
agent; fi = gmove ◦ g... ◦ . . . ◦ gsee.

The system provides a number of predefined constituent functions to perceive the high
resolution environment, do complex path planning for different scenarios, identify whether
a path is blocked, follow someone, etc. Each agent uses gsee function to scan its visible
surrounding in high resolution (every 0.5◦) like a radar; each agent has its own eyesight
distance, which is typically set within 30m to 100m. This high resolution scanning en-
ables agents to detect dynamic changes in the environment, move avoiding collision obeying
restrictions like walk along road edges or drive on road lanes.

The constituent function for collision avoidance, gcoll av, is implemented adopting the
Optimal Reciprocal Collision Avoidance (ORCA) ([33]) with minor modifications and addi-
tional parameters to model interactions among agents ([24], [25]). The parameters of gcoll av

were tuned to model collision avoidance among pedestrians and pedestrians, cars and cars,
and cars and pedestrians. In network flow based simplified models, within each road link,
the rate of evacuees’ flow is controlled according to a relevant fundamental diagram (i.e.,

CHAPTER 5 Microscopic traffic simulator 40

relation between speed and flow density which is obtained from field observations). In con-
trast, in the developed system, the agents’ speeds are not controlled externally. Instead,
each agent autonomously controls its moving speed and direction using gcoll av, which is
tuned to reproduce observed fundamental diagrams. Several predefined update functions,
f ’s, which are composed of suitable constituent functions are available to mimic roles of
residents, visitors, officials who advise people to evacuate, cars, pedestrians.

5.2 High Performance Computing Extension

In order to meet the high computational demand of the autonomous agents, a scalable High
Performance Computing (HPC) extension was developed. Some of the basic constituent
functions, like gsee and gidentify road blocks, are computationally expensive. gsee, which is
based on a memory intensive ray tracing algorithm, scans the visible neighborhood in high
resolution. gidentify road blocks is used to identify road blockages due to fallen debris or
inundation and detect whether it is possible to continue avoiding debris. When encountered
with road blockages and congestion, agents replan their paths or even start looking for
new destinations. The processor intensive and memory intensive nature of these functions
demand a significant amount of computational resources. As an example, a simulation with
90,000 agents with the environment shown in Fig. 5.1 requires 33 node hours in K Computer;
a computing node of K-computer consists of an 8-core SPARC64 VIIIfx processor with
16GB of RAM. In order to address this high computational demand, a shared and hybrid
parallel extension was developed. This section presents some details of the implemented
HPC extension.

5.2.1 Domain decomposition

(a) Two partitions

Partitions #0 Partitions #1

(b) Partiton sub-regions
inner_most
of #0

to_send
to #1

to_receive
from #1

inner_most
of #1

to_send
to #0

to_receive
from #0

ww

Figure 5.3: Domain decomposed for 2 MPI processes. In order to maintain the continuity,
a region of width w from the neighbor partition #0 is included along the boundary of the
partition #1

In order to utilize computational power of multiple computing nodes in a computer
cluster, the domain of the environment is partitioned such that each computing node is
assigned nearly equal workload. Almost all the computational workload is due to agents,
and execution time related to the environment is mostly memory bound. Since the execution
time of the heterogeneous agents highly depends on their type, visible surrounding, the
density of other agents in the neighborhood, etc., we use measured execution time of each
agent as a weight in creation partitions. Kd-tree based 2D partitions are generated using

CHAPTER 5 Microscopic traffic simulator 41

agents’ execution time as weight, and each partition is assigned to an MPI process. In our
case, a shared memory compute node is designated as an MPI process, and computations
within a node are accelerated using OpenMP threads. Specifically, we use OpenMP’s task
level parallelism to accelerate computations.

Figure 5.3 shows the domain decomposed for two MPI processes. It is necessary to ex-
change information among those to ensure the continuity of the problem, since the compute
nodes cannot directly access each other’s memory. Along the boundary of each partition,
we add dummy copies of a w wide region from the neighbor partitions (see Fig. 5.3(b)).
In HPC literature, this dummy layers are referred as halo, or ghost. At the end of each
iteration step, the information of the dummy agents in ghost layers are updated according
to the latest states of the originals in the corresponding neighbor partitions, using MPI.
By using the information of the agents in the ghost regions, when executing the agents of
its own partition, MPI process can eliminate the effect of artificial boundaries introduced
by partitioning (i.e. maintain the continuity). Since agents’ actions are affected by the
information within their visible surrounding, the thickness, w, of the ghost region is set to
the longest eyesight of the agents.

5.2.1.1 Communication hiding

The inter-node communication, which is required for maintaining the continuity, is an extra
overhead, and this overhead increases with the number of MPI processes. Communication
hiding (i.e. doing useful work during communication) is a standard technique to minimize
the performance degradation due to communication overhead. In order to hide communi-
cations, we group the agents in an MPI process into three mutually exclusive sets. to send
includes all the agents to be sent to neighbor MPI processes, while to recv group includes
all the agents in ghost regions. The rest are included in inner most.

In order to hide the communications, first the agents in the set to send is executed, and
non-blocking messages to send the latest state of these agents to the corresponding neigh-
bor MPI processes are initialized using non-blocking MPI Isend and MPI Irecv functions.
While the communications proceed, the agents in inner most set are executed. As long as
execution of inner most set takes longer than the time to complete the communication,
we can effectively eliminate the communication overhead. Once, execution of inner most
is completed, the non-blocking messages are finalized, which updates the agents in ghost
regions to latest states.

5.2.2 Dynamic load balancing

With time, agents move from the domain of one partition to another, which we call agent
migration in this thesis. Unlike the above discussed ghost region updates, permanently
moving agents to neighbor partitions is expensive. Figure 5.4 shows the time history of
run-time with 10 million agents in a 588 km2 region.

Movement of a large number of agents in or out from a partition leads to imbalances of
workloads assigned to MPI processes, lowering the computation efficiency. When the load
imbalance reaches a critical state, domain is re-partitioned to re-assign equal workloads.
Figure 5.3 (a), (b) and (c) show how the partitions are rearranged according to the agent
distribution, at early stages of a simulation with 80,000 agents. The process of this dy-
namic load balancing is the heaviest in communication and can consume a significant time
depending on the total number of agents being simulated.

CHAPTER 5 Microscopic traffic simulator 42

0 200 400 600 800 1000
Time step

0

2

4

6

8

10

R
u

n
ti

m
e

(s
ec

on
d

s)

512

1024

2048

Dynamic load bal-

ancing Migration Reduction of com-

putation time due

to dynamic load

balancing

Figure 5.4: Run-time history for 1000 iterations with 10 million pedestrian agents. Three
graphs indicate time history with 512, 1024 and 2048 nodes of K computer. Migration and
dynamic load balancing are executed on a single thread.

5.3 Dynamically mapping to different number of MPI
processes

With the progress of time, the agents start to concentrate along roads leading towards
evacuation regions and decrease in number since evacuated agents are deactivated. Both
these can force to reduce the number of MPI processes. Since the minimum width of the
to receive regions, w, is set to the maximum eyesight, the length or width of a partition
cannot be smaller than 2w. The concentration of agents to a few number of streets, as
seen in Fig. 5.5 (d) and (e), give rise to partitions with closer to 2w side lengths. When
that happens, either the program has to be aborted, or the problem should be mapped to a
smaller number of MPI processes. Though this mapping is a complex and time consuming
process, it is necessary to prevent premature abortions and continue until the end of the
desired simulation. Figure 5.5 (d), (e), and (f) show the partitions after mapping to 16 and
8 MPI processes.

Number of nodes Execution time (s) Strong scalability (%)

512 3904.0 -
1024 2067.7 94.4
2048 1258.5 82.1

Table 5.1: Runtime and strong scalability with 512, 1024 and 2048 nodes in K computer.

5.3.1 Scalability

In order to conduct the target large scale evacuation simulations (e.g., tsunami evacuation
of a long stretch of coastal region, or evacuation of large metropolis like Tokyo after a major
earthquake) utilizing HPC facilities, the developed code must scale to a large number of

CHAPTER 5 Microscopic traffic simulator 43

(a) Itr. 1. 79972 agents, 32 par-
titions

(b) Itr. 1000. 71339 agents, 32
partitions.

(c) Itr. 2000. 61079 agents, 32
partitions.

(d) Itr. 2400. 57049 agents, 16
partitions.

(e) Itr. 3600. 46746 agents, 16
partitions.

(f) Itr. 5800. 34652 agents, 8
partitions.

Figure 5.5: Partition arrangements at different iteration steps with 80,000 agents in the
environment of Fig. 5.1. Partitions are dynamically adjusted according to the distribution
of agents and workload; shown in green dots are the agents. When the number of agents is
too small and/or concentration of agents leads to partitions with 2w or lesser side length,
like in (d) and (e), the problem has to be mapped to a smaller number of MPI processes.

MPI processes. Near ideal scale (i.e., halving the execution time when doubling the number
of MPI processes) to thousands of compute nodes with the complex heterogeneous agents is
a challenging task. According to autohors’ literature survey, there are no records of agent
based models of similar complexity which scales even to hundred compute nodes.

In order to test the scalability, we conducted several simulations with 10 million pedes-
trians in a 588 km2 area in central Tokyo. The pedestrians were set to move to the nearest
park, and their walking speeds were set according to [5]. To produce maximum computa-
tion load, all the agents were set to start evacuation immediately. 1000 iteration steps were
simulated on 512, 1024 and 2048 nodes of K computer.

The Table 5.1 shows the strong scalability which is obtained from the simulations. Strong
scalability is defined as (Tm/Tn)/(n/m), where Ti is the execution time with i number of MPI
processes and n ≥ 2m. These simulations indicate that not only the developed scales well
up to 2048 nodes (16384 CPU cores), but also it can handle millions of agents in several
hundreds of square kilometers in 1m×1m resolution model of the environment. Figure 5.4
shows the time history of run-times. The tall spikes indicate the dynamic load balancing at
100 iteration steps intervals. The smaller spikes indicate the migration of agents from one
partition to another, at 20 iteration intervals. Each of dynamic load balancing took nearly
one minute.

The developed system has potential to scale even beyond the results shown in Table
5.1. Currently, only the execution of agents uses shared memory parallelism to best utilize
multiple threads in each compute node. The migration and dynamic load balancing functions
are executed on single threads. Enhancing these time consuming functions with shared
memory parallelism will further improve the scalability.

CHAPTER 5 Microscopic traffic simulator 44

Figure 5.6: 2048 partitions of Tokyo domain. High concentrations of agents in the central
Tokyo, encircled with a black ellipse, gives rise to partitions with smaller dimensions and
poor aspect ratio. Presence of partitions with side lengths close to 2w makes communication
hiding ineffective and significantly lower the scalability.

5.3.1.1 Partitions and scalability

In the central Tokyo environment, which is used for the above scalability tests, the city
center had a high agent density compared to the outskirts (see Fig. 5.6). This high agent
concentration produced smaller partitions, while, with time, agents start to further concen-
trate along the roads to evacuation regions, as shown in Fig. 5.5. This high concentrations
of agents lead to partitions with side dimensions closer to 2w and poor aspect ratios, like the
one encircled with a blue color ellipse in Fig. 5.5(c). In partitions with dimensions closer to
2w, most of the agents are located in to receive regions, and have only smaller number of
agents in inner most region. This makes the communication hiding ineffective and signifi-
cantly lowers the scalability. The simulation with 2048 nodes starts to produce partitions
with side dimensions closer to 2w at iteration 600 and onward, which is why there is 12%
reduction in scalability with 2048 nodes. Partitioning scheme with better aspect ratio will
enable to maintain the high scalability up to a larger number of MPI processes.

5.4 Enhancement of domain generator

The basic concept of environment in our agent-based simulator is explained in section 5.1.1.
The agents make their decision by considering their surrounding environment. The previous
domain generator has generated poor topology graph as shown in 5.7. Therefore, it is
difficult to formulate decision making of agents. The zigzag patterns are obviously observed.
These zigzag patterns introduce large error to the simulation result (traffic flow) because
vehicles may need to abruptly change their speed at the shape turn of topology graph.
At intersections which are the most significant path of traffic simulation, we observed the
malformed intersections and disconnected intersections. These defects in the domain make
the agents behave badly at the intersections. Hence, the result of the simulation is not
reliable. Also, previous domain generator is computationally demanding. It took more than
1 hour to generate the domain with the size of 100 km2. We aim to improve the mentioned
domain generator.

The reason behind poor quality is that the topology graph is generated by using a
thinning algorithm. It is difficult for thinning algorithm to define a centerline from a raster

CHAPTER 5 Microscopic traffic simulator 45

Malformed
junctions

Difficult to
define lanes

Disconnected
junction

Figure 5.7: The bad quility topological graph from previous domain generator.

grid with a size of 1m × 1m. The flow of previous domain generator is illustrated in Fig.
5.8. The road boundaries which are obtained from GIS data are converted to a raster grid.
After that, the raster grid will be abstracted to a topological graph.

To fix this problem, instead, we use the road centerlines from GID data to generate the
raster grid. The reason that we don’t use these road center lines in the first place is that
the road centerlines are just available recently. The flow of enhanced domain generator is
shown in Fig. 5.9. We created topological graph directly from road center lines. After
that, we generate a raster grid by drawing road centerlines to a bitmap file according to
road width data from GID data. As a result, all mentioned problems have been solved as
shown in Fig. 5.10. The enhanced domain generator uses less than 1 minute to produce the
domain with the size of 625 km2 which are a lot faster than the previous domain generator.
At the current stage, multiple lanes can be defined easily. Therefore, a high fidelity model
of intersections can be applied conveniently. We also include water bodies, contour lines,
building, and park area in the enhanced domain generator.

In addition, the enhanced domain generator also reduces the number of unnecessary
nodes and links of a topological graph. There are 351,318 nodes and 717,467 links in Kochi
city’s domain (Fig. 5.1) when the previous domain generator is used. After the enhance-
ment, we have 79,845 nodes and 170,826 links which are around 4 times lesser compared to
the previous domain generator. This reduction leads to faster computation of pathfinding
algorithm according to the complexity of Dijkstra’s algorithm (O(|E|+ |V |log|V |)).

CHAPTER 5 Microscopic traffic simulator 46

Road
boundaries

from GIS data

Raster grid
(1x1)

Topological
graph

Figure 5.8: Flow of previous domain generator.

Road center
lines from GIS

data

Topological
graph

Raster grid
(1mx1m)

Figure 5.9: Flow of enhanced domain generator.

CHAPTER 5 Microscopic traffic simulator 47

Figure 5.10: The enhanced topological graph from new domain generator.

Chapter 6

Agent-based model for car-car
and pedestrian-car interactions
at unsignalized junctions

In countries like Japan, where most streets are narrow and recommended to evacuate on foot,
tsunami triggered evacuation can produce heavy interactions among cars and an unusual
number of pedestrians, especially at junctions. When addressing the problems like how many
vehicles can be allowed, what are the allowable time windows for car usage, etc., it is vital
to reasonably mimic these unusual pedestrian-vehicle interactions at unsignalized junctions;
during a disaster, signal lights may not be functioning or even not respected. Especially, the
car agents must be capable of reproducing realistic trajectories and speed profiles within a
junction, since cars can be more than twenty times faster compared to pedestrians. While
it is rare to find pedestrian-car interaction models at unsignalized junctions, even existing
car-car interaction models, which are mostly based on collision avoidance algorithms [34,
9, 12, 13, 15], scheduling scheme [8], and game theory [23], etc., do not reproduce realistic
trajectories and speed profiles.

In this chapter, we propose a lightweight agent-based model to accurately reproduce tra-
jectories and speed profiles of vehicles at junctions and reasonably reproduce vehicle-vehicle
and vehicle-pedestrian interactions at unsignalized junctions. These features are imple-
mented in an existing agent-based framework [26] for large-scale evacuation simulation; the
agents are a cognitive type, environment is modeled as a hybrid of 1m×1m resolution grid
and a topological graph of road center lines. It is demonstrated that vehicle trajectories at
junctions can be easily approximated with B-splines, while free flow speed profiles can be ap-
proximated with cubic polynomials. Vehicle-vehicle interaction is modeled based on simple
physics-based approximations, and the uncertainty and fear of collision in close encounters.
In addition, pedestrians are given priority when modeling vehicle-pedestrian interactions.
With several numerical examples, it is demonstrated that reasonable interaction behaviors
can be reproduced.

The rest of this chapter is organized as follows. Section 6.1 presents the approximations
for vehicle trajectories and free flow speed profiles at junctions. Vehicle-vehicle interactions
and vehicle-pedestrian interactions at unsignalized junctions are presented in section 6.2
and 6.3, respectively. Section 6.4 presents several numerical examples to demonstrate the

48

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 49

L

Entering point Intersection point

Exiting point

Center line of lane

Trajectory of vehicles

Figure 6.1: Vehicle trajectories at intersections are approximated with third-order B-spline
curves.

accuracy of approximations and the interactions can be reasonably reproduced.

6.1 Approximation of trajectories and free flow speed
at intersections

6.1.1 Vehicle trajectories at intersections

We sought to find fast-to-evaluate parametric approximations which are easy to define and
can be used for any intersection geometry. Though there are approximations combining
Euler spirals and circles, which satisfies traffic engineering requirements [2], those are com-
plicated to define and evaluate. Analyzing vehicle trajectory observations by Alhajyaseen
et. al. [2], we found that vehicle trajectories can be easily approximated with B-splines.
Trajectories at most of intersection geometries, except u-turns, can be approximated using
a B-spline curve with knot vector [0, 0, 0, 1, 1, 1], and lane centre at the entry point, the
intersection point between centre lines of the incoming and outgoing lanes, and lane center
at the exiting point (see Fig. 6.1) as control points. While the required three control points
are known, the above B-spline knot vector defines a simple third-order Bézier basis func-
tion, making it effortless to define the vehicle trajectory and simple to evaluate points on
the trajectory. Comparing with the approximation proposed by Alhajyaseen et. al.[2], we
found that our B-spline approximation deviates only a few centimeters, which is negligible
for this particular application or even compared to vehicle dimensions. Also, we found that
a very accurate approximation can be made with NURBS, but this requires observations
and solving a linear set of equations.

In order to reduce the amount of computations in updating agents, we define the vehicle

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 50

Possible collision points

Trajectory of vehicles

Figure 6.2: Intersection points of multiple trajectories.

agents’ trajectories using a few numbers of points (e.g. 5 to 10 points) on the B-spline
curve, and the intersection points of multiple trajectories are pre-calculated as shown in
Fig. 6.2. Potential collision zones of vehicles on different trajectories are defined based on
these intersecting points.

6.1.2 Speed profile of a vehicle at intersections

In modeling vehicle-pedestrian interactions at junctions, it is essential for car agents to have
realistic free-flow speed profiles. Since vehicle speed can be one order of magnitude larger
than that of a pedestrian, unrealistic or sudden changes of vehicle speed can induce abnormal
pedestrian behavior. According to Charitha et al. [10], speed profiles of vehicles can be
approximated with higher order polynomial curves. While their approximation requires
field observations, we use the following third order polynomial approximation which can be
defined with three known parameters and one constraint.

v(x) = (−4Vapproach + 4Vdepart)
(x
L

)3

+ (8Vapproach − 4Vmin − 4Vdepart)
(x
L

)2

+ (−5Vapproach + 4Vmin + Vdepart)
(x
L

)
+ Vapproach, (6.1)

where L is the length of trajectory and x ∈ [0, L]. We assumed that at x = L/2 the
acceleration is zero (i.e. dv/dx|x= L

2
= 0) and the vehicle reaches the minimum speed of

Vmin. Vmin can be considered as the maximum allowable speed to prevent accidents due to
centripetal force; given the mass of a vehicle, maximum curvature of the trajectory, road
surface condition, etc., Vmin can be defined. Vapproach is the vehicle’s approaching speed to
the junction (i.e. v(0)) and Vdepart is the desired departing speed v(L).

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 51

The above speed profile defines only an upper bound for the speed of a given car agent, at
a length x along its trajectory. Let the speed of ith car agent be ui(x) and the corresponding
upper bound defined by Eq. 6.1 be vi(x). If ui(x) ≥ vi(x), ith car agent decelerate itself
to follow the speeds of Eq. 6.1, and otherwise continue at ui(x) or any desired speed below
vi(x). The details of deceleration and acceleration are described in the next section.

6.2 Car-car interactions at unsignalized interactions

During a tsunami triggered mass evacuation, it is highly probable that the preceding earth-
quake to render the signals at intersections dysfunctional, hence the need of simulating
interactions at unsignalized intersections. While we use the trajectories and speed profiles
presented in the previous section for modeling free flow traffic, a simple and lightweight
vehicle-vehicle interaction model to resolve conflicts and possible collisions at close encoun-
ters is presented in this section.

6.2.1 Assumptions and observations

We make the following two assumptions in order to devise a simple, yet realistic, vehicle-
vehicle interaction model.

Assumption 1 Vehicles will not change their lanes while traveling through an intersection.

Assumption 2 Higher priority is given to the vehicle that can first enter the region of a
potential collision.

Both these assumptions are not far from the reality. It is a daily experience that almost
all the drivers stick to standard trajectories at intersections, and as a matter of fact, changing
lanes at an intersection is one of the major sources of accidents [?]. Also, many observations
support the second assumption[16]. In addition, we use the following observed behaviors of
a rational driver in implementing the interaction algorithm.

1. When approaching an intersection, reduces the speed to a comfortable range.

2. Observes neighbor vehicles’ position and their turn signals, and estimates their relative
speeds.

3. Estimates, with some safety factors, whether his vehicle is going to collide with any
neighbor vehicle.

4. If potential collision is identified, avoids it by applying comfortable deceleration to
maintain a safe distance in between.

A simple mistake or misjudgment in close encounters at intersections, where vehicles
are moving fast at few seconds time gap between each other, can lead to fatal accidents.
In fear of collision at such close proximities, drivers usually include a safety factor in their
decision making in order to cope with their imperfect mental judgments, driver’s reaction
time, unpredictable actions of any neighboring driver, mistakes made by neighboring drivers,
etc. The most common safety factor is including an extra buffer to mental estimations, in
terms of distance or time, instead of mathematically perfect estimations. We included this
sense of fear in the decision making of car agents by making them to maintain a gap between
neighboring vehicles or pedestrians.

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 52

V
2

V3
d

e -d
s

Possible collision points

V5

Trajectory of vehicles

V4

V1
d

e
-d

s

d
e
-d

sd
e -d

s

d
e
-d

s

Figure 6.3: Examples of the three different types of collisions considered: V5-V3 fast moving
rear vehicle and slow-moving front vehicle; V1-V3 intersection of different trajectories; V2-
V4 extrapolated current moving directions on merging trajectories.

6.2.2 Potential unsafe regions

In vehicle-vehicle interactions, we consider three types of potential unsafe zones, each around
the following three potential points of collisions (see Fig. 6.3).

1. The collision point of fast-moving rear vehicle and slow-moving front vehicle on the
same trajectory.

2. Intersections of two independent trajectories.

3. Intersection of linearly extrapolated current moving directions of two vehicles on merg-
ing trajectories.

The third type of point of collision, which considered extrapolated current moving directions,
is included to take any mistakes by a driver on merging trajectories into account. The
intersecting points which fall under the second type are pre-calculated as explained in the
latter part of section 6.1.1 to reduce computational overhead. List of trajectories falls
under the third item are also pre-identified to reduce conditional branching in computer
implementations.

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 53

6.2.3 Avoiding vehicle-vehicle collision within an intersection

As explained in the beginning of this section, we assume that vehicle agents do not change
their lane or direction to avoid the collision, within an intersection. Instead, they reduce
their speed to avoid any potential collisions. Each vehicle agent identifies all the neighboring
vehicles leading to any of the above given three types of collisions, estimates whether itself
and any of those vehicles would come closer than a safe distance ds, and decelerate to
maintain or stop before reaching ds distance to the agent with the shortest time to the
collision. While the details of agents’ deceleration process are given in the rest of this
section, the basic steps involved in vehicle-vehicle collision avoidance are given in Algorithm
6.1.

In estimating time to reach the potential point of collision with neighboring vehicle agent
aj , a vehicle agent ai assumes that neighbor aj will continue driving at the current observed
speed up to the point of potential collision. However, the agent ai makes an accurate
estimation of its own travel time to the point of collision based on its expected future speed
changes. As an example, if ai is on a curved trajectory, it estimates the travel time based
on its expected speed profile bounded by the Eq. 6.1. ai’s accurate estimation of time is not
unrealistic since drivers are capable of making fairly accurate estimations of short distance
travel times based on their past experiences. However, uncertain of what the neighboring
drivers would do, accurate estimation of their travel times is not possible.

Algorithm 6.1: Pseudo code for vehicle-vehicle collision avoidance at intersections.

input : One considered vehicle (cveh),Neighbor vehicle information
output: Collision free speed of considered vehicle

1 initialize list OV List ; /* the observed vehicle list */

2 initialize float OptimalSpeed = FreeFlowSpeed ; /* the collision free speed */

3 initialize vector2d collpoint ; /* the possible collision point */

4 Observing neighbor vehicles and keep them in OV List

5 while OV List is not empty do

6 sveh = OV LIST .pop() ; /* selected vehicle */

7 if sveh is possible to collide with the considered vehicles then
8 Determine collpoint between cveh and sveh;

9 if cveh will not reach the collpoint before sveh then

10 Calculate the collision free speed (collfreespeed) for cveh

11 if collfreespeed<OptimalSpeed then
12 OptimalSpeed = collfreespeed
13 end

14 end

15 end

16 end
17 return OptimalSpeed

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 54

6.2.4 Deceleration to avoid collisions

We assume that the safe distance ds, which is preferred by the vehicle agent ai as a safety
factor against misjudgments and uncertainties, is ds = τivi, where τi and vi are reaction
time and current speed of ai, respectively. The effective distance, de between the considered
agent ai and its neighbor aj is defined as

de = d− ri − rj , (6.2)

where d denotes the distance between centers of the two agents, and ri and rj denote their
radii. To simplify the computations, we represent vehicle agents with a circle of radius r.

Consider a vehicle agent ai with speed vi(t), and agent afront with speed vfront(t) to
be moving in front of ai on the same trajectory. If vi > vfront, to avoid the collision with
the slow moving front agent afront, the fast moving rear agent ai decelerates to match their
speeds (i.e. vi − vfront = 0), before reaching a safe distance of ds to afront (see Fig. 6.3).
Based on simple physics, we can define the equation for updating ai speeds at ∆t time
intervals as

vi(t+ ∆t) = vi(t) +
(vfront(t)− vi(t))2

2(de − ds)
∆t. (6.3)

In all the other potential collision situations, except the above, all the vehicles later
reaching the point of potential collision decelerate to completely stop, allowing the agent
first reaching the point of collision to continue undisturbed. To completely stop before
reaching a safe distance of ds to the point of potential collision, a vehicle ai which later
reach the point of collision updates its speed according to

vi(t+ ∆t) = vi(t)−
vi(t)

2∆t

2(de − ds)
. (6.4)

6.3 Car-pedestrian interactions at unsignalized interac-
tions

As mentioned in the introduction, in countries like Japan, the main mode of tsunami evac-
uation is walking, and the roads are narrow. Under these circumstances, pedestrians may
occupy the narrow roads creating unusual interactions among a large number of pedestrians
and a small number of vehicles. One objective of this study is to model such vehicle-
pedestrian interactions at unsignalized junctions.

In addition to the two main assumptions related to vehicle-vehicle interactions (see
section 6.2.1), we assume that vehicles give priority to pedestrians. Considering the fact
that pedestrians have a long distance to walk to reach a safe high ground, this is not an
unreasonable assumption.

When interacting with pedestrians, a car agent ai identifies all the visible pedestrian
agents, finds which pedestrians are going to walk across its fixed trajectory and estimates
the time to reach ai’s trajectory assuming each pedestrian will continue walking in their
current direction as illustrated in Fig. 6.4. Just as in vehicle-vehicle interaction case,
vehicle agent ai makes an accurate estimation of time to collision according to the expected
speed profile (see section 6.2.3), and identifies the first pedestrian agent to collide on. If the
pedestrian agent can reach closer than the safe distance ds, it decelerates according to Eq.

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 55

Pedestrian

Vehicle

s
1

Possible collision point

Trajectory of vehicles

Predicted position

Unsafe zone

t
1
v

pedestrian

t
1
: time required for

vehicle to reach the
possible collision point

Vehicle position at time t
1

Figure 6.4: Interaction between vehicle agents and pedestrian agents

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 56

v1

Figure 6.5: Problem settings for experiment 1.

6.4, such that it will stop before entering the unsafe zone (see Fig. 6.4) around the potential
point of collision.

In contrast, pedestrian agents avoid collisions by adjusting both their speeds and direc-
tions, based on a slightly modified version of Orthogonal Reciprocal Collision Avoidance
(ORCA) algorithm [26, 34]. Just as real pedestrians, the pedestrian agents prefer to main-
tain their preferred walking speed, if possible, by slightly changing their walking directions
to avoid potential collisions. Since their speeds are low, pedestrian agents are allowed to
stop or change their directions abruptly.

6.4 Validation of free flow speed profile and demonstra-
tive examples

In this section, we present validation of the cubic polynomial approximations for vehicle
speed profiles, and numerical experiments to qualitatively demonstrate the implemented
agent system for simulating vehicle-vehicle and vehicle-pedestrian interactions at unsignal-
ized junctions.

In all of the numerical examples, reaction time (i.e. τ) and preferred speed of all the
vehicle agents are set to 0.67 second [27] and 45 km/h, respectively. To reduce the compu-
tations, instead of evaluating B-splines at every iteration step, vehicles were bound to their
trajectories by making them pass through 6 equally spaced points on the corresponding
B-splines. We set Vapproach = 30 km/h, Vmin = 20 km/h, and Vdepart = 30 km/h in all
experiments, except the simulation with a single vehicle agent.

6.4.1 Vehicle-vehicle interaction

In order to demonstrate the vehicle-vehicle interaction model presented in section 3, we
conducted four numerical experiments, as shown in Fig. 6.9, 6.10, 6.11, 6.12. The first
case is to validate the free-flow speed profile, while the rest are to demonstrate interactions
among different number of vehicle agents.

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 57

v1

Figure 6.6: Problem settings for experiment 2.

v1

Figure 6.7: Problem settings for experiment 3.

v1

Figure 6.8: Problem settings for experiment 4.

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 58

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Time (s)

0

10

20

30

40

50
S

p
ee

d
(k

m
/h

)

Prof. Hideki’s observation

Simulation results

Aprroximated speed profiles

Figure 6.9: Speed profile of experiment 1, and field observations by Prof. Hideki Nakamura.

0 2 4 6 8 10 12 14 16

Time (s)

0

10

20

30

40

50

S
p

ee
d

(k
m

/h
)

GID 0

GID 1

Figure 6.10: Speed profiles of experiment 2

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 59

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

0

10

20

30

40
S

p
ee

d
(k

m
/h

)

GID 0

GID 1

GID 2

Figure 6.11: Speed profiles of experiment 3

Figure 6.12: Screenshot of the simulation multiple vehicle agents

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 60

Case number Vapproach Vmin Vdepart
1 24 20 25
2 21 19 23
3 22 21 26

Table 6.1: Vapproach, Vmin and Vdepart used for the experiment with the single vehicle agent.
Units are in km/h.

6.4.1.1 Free flow of a single vehicle agent

The objective of this set of simulation is to validate our approximation for the free flow
speed profile of a vehicle agent moving along a curved trajectory (see section 6.1.2), by
comparing with observations by Prof. Hideki Nakamura. Three free flow experiments were
conducted using three different sets of values for Vapproach, Vmin and Vdepart given in Table
1.

Figure 6.9 shows the corresponding polynomial approximations for speed profiles, and the
agent’s speed from the developed agent-based model. The plot box-and-whisker diagrams
in Fig. 6.9 are generated using the observations of left-turning vehicles at Suemori junction,
Nagoya. This dataset provided by Prof. Hideki Nakamura, at Nagoya University, consists
of observations of more than 100 left turning vehicles. We observed that the simulated
result (Fig. 6.9) and observation data [10] are in good agreement, indicating our third order
polynomial is a reasonable approximation for speed profile along curved trajectories. Further
comparisons are necessary to validate our cubic polynomial approximation for u-turns or
junctions with small acute angles.

6.4.1.2 Interactions of multiple vehicle agents

In the case of multiple interacting vehicles, we could not find field observations to compare
with. The most related works are found in [23]. In their work, Mandiau et al. [23] have
simulated two and three vehicles on conflicting trajectories at junction using a game theoretic
model. Though most of the settings are similar to our problem setting shown in Fig. ?? and
Fig. ??, they have not provided necessary initial conditions to make a detailed comparison.

As seen in the Fig. 6.10, the two vehicles agents resolve the conflicts by giving priority to
a first arriving agent with ID 1, and slightly decelerating the agent with ID 0. Qualitatively,
these speed profiles are in good agreement with that of Mandiau et al. [23].

Figure 6.11 shows the speed profiles for the case with three vehicles. In this case,
the conflicts are solved by giving priority to the agent with ID 0 which shows a slight
deceleration. A soon as vehicle 0 moves out from the conflicting zone, vehicle 1 accelerates
since its receives the priority; by the time vehicle 0 moves away, the speed of vehicle 1
is much higher than that of vehicle 2. This simulation shows that the giving priority to
the first to arrive at the point of collision can resolve the conflicts at junctions. In case if
several vehicles can simultaneously arrive at the collision point, those are assigned priorities
according to a random process. When compared with corresponding Mandiau et al. results,
we observe that both the simulations have similar patterns. However, their game theoretic
based model makes all the three agents stop, and take a longer time for the three cars to
clear the junctions.

The many vehicle agent case shown in Fig. ?? tests a more realistic scenario with many
conflicts. In this case, the right turning vehicles had an uninterrupted flow just as in a real

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 61

junction, while other three queues cleared the junction one after another. Though it could
resolve all the conflicts and made all the agents clear the junction in a shorter time, giving
priority to all the vehicles in a single queue is unfair and unrealistic. When there are long
queues at a junction, a suitable probabilistic estimation to switch the priorities among the
queues in a fair manner.

6.4.2 Vehicle-pedestrian interaction

The objective of this numerical experiment is to demonstrate that the developed agent-
based model can resolve the conflicts in the presence of number of pedestrians. We used
only 8 pedestrians, arranged in a simple geometric setting, so that one can easily assess the
quality of the outcome based on his own expectations. Three vehicles spaced at distances
to produce free-flow speeds are set to enter from the lower limb of the junction as shown in
Fig. 6.13. To mimic an emergency evacuation scenario, we did not restrict the pedestrian
agents to pedestrian crossings. The 8 pedestrians were set southbound to meet with three
northbound right turning vehicles at an unsignalized junction. All pedestrian agents (ID
0-7) are represented by circles and all vehicle agents (ID 8-10) are represented by rectangles.

The resulting speed profiles of the agents are shown in Fig. 6.14. The vehicle agents
have produced remarkably smooth speed profiles even if their trajectories are obstructed by
a number of pedestrian agents. In section 4, rules of vehicle agents are set to decelerate to
stop when collision with pedestrian agents is detected. As is seen in Fig. 6.14, this rule
does not really make each car agent decelerate until its speed is zero. Under the fear of
collision, a vehicle agent applies brakes according to Eq. 6.4 as long as it detects collision
with a pedestrian. As soon its path becomes clear, it resumes under free-flow conditions.
This demonstrates that Eq. 6.4 is not too restrictive.

Figure 6.15 to 6.20 show snapshots of the locations and speeds of each agent. The
number and arrow associated with each agent indicate its speed and velocity, respectively.
As seen in Fig. 6.14, vehicle agent with ID 8 predicted it had a collision-free trajectory, and
passed the junction at free-flow speed (see Fig. 6.15). The agent with ID 9 predicted that
it may collide with some pedestrians while reducing the speed for turning right. Therefore,
the agent 9 reduced its speed at t = 8.4 s as seen in Fig. 6.17 so that it could avoid the
collision. While agent with GID 9 was reducing its speed, the corresponding pedestrian also
changed its direction such that they will never collide with ID 9 (see Fig. 6.18). Therefore,
at t = 10seconds, the vehicle agent ID 9 resumed at its preferred speed. The last vehicle
agent with ID 10 predicted that it will collide with pedestrian agents. Hence, it reduced its
speed to almost match with pedestrians’ speed, and pedestrian agents could safely avoid the
collision as seen in Fig. 6.19. Finally, the vehicle agent with ID 10 predicted that it would
not collide with the pedestrian in the second row and resume at its preferred speed.

As demonstrated in this simple example, the developed agent-based model is capable
of simulating unsignalized junctions with many pedestrian-vehicle interactions. We plan to
compare the simulations with real observations to identify potential further improvements.

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 62

#8

#9

#10

#4 #5 #6 #7

#4 #5 #6 #7

Figure 6.13: The problem settings for the pedestrian-car mixed-mode interaction experi-
ment.

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 63

0 5 10 15 20 25 30

Time (s)

0

10

20

30

40

50

S
p

ee
d

(k
m

/h
)

Ped GID 0

Ped GID 1

Ped GID 2

Ped GID 3

Ped GID 4

Ped GID 5

Ped GID 6

Ped GID 7

Veh GID 8

Veh GID 9

Veh GID 10

Figure 6.14: Resulting speed profiles of agents, for the pedestrian-car mixed-mode interac-
tion experiment.

#8

#9

Figure 6.15: Snapshots of the car and pedestrian mixed experiment at t = 7.7 s

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 64

#8

#9

Figure 6.16: Snapshots of the car and pedestrian mixed experiment at t = 8.4 s

#9

Figure 6.17: Snapshots of the car and pedestrian mixed experiment at t = 9.4 s

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 65

#9

#10

Figure 6.18: Snapshots of the car and pedestrian mixed experiment at t = 11.2 s

#10

Figure 6.19: Snapshots of the car and pedestrian mixed experiment at t = 14.0 s

CHAPTER 6 Agent-based model for car-car and pedestrian-car interactions at
unsignalized junctions 66

#10

Figure 6.20: Snapshots of the car and pedestrian mixed experiment at t = 16.6 s

Chapter 7

Concluding Remarks

In this thesis, we present methodologies to improve a macroscopic traffic simulator and
microscopic traffic simulator so that it can be used efficiently for disaster management
application within a sufficiently short time.

In a macroscopic traffic simulator chapter, we presented a distributed memory parallel
implementation of day-to-day traffic assignment algorithm (D2DTA) which is being de-
veloped with the aim of finding near-optimal traffic assignment for large networks. It is
demonstrated that embarrassingly parallel pathfinding does not only substantially improve
pathfinding scalability, but it is also several orders of magnitudes faster compared to paral-
lel pathfinding. The use of only the active sub-network in early iterations greatly reduced
the computational time of LTM based traffic flow simulation; nearly 20 times faster than
using the full network. Further, we presented a link execution sequence which significantly
reduces the number of iterations required to complete LTM based traffic flow simulations;
it can reduce the traffic flow simulation time around 30%.

The remaining bottleneck in a macroscopic traffic simulator is the scalability of traffic
flow simulator. There is a big imbalance of execution time of each MPI processor in each
iteration. The imbalance of execution time is caused by the difficulty of assigning an equal
workload to each MPI processor. Therefore, in the future, the dynamic load balancer
technique could be applied. This technique is promising for reducing the imbalance of
runtime. In addition, we could redesign the forward wave propagation so that we can
improve the scalability of our traffic simulator.

In a microscopic traffic simulator chapter, we present a basic idea of an agent-based model
which we use as a traffic simulator. We explained the partition scheme of our agent-based
traffic simulator and technique which is used to increase the parallel efficiency: communica-
tion hiding and dynamic load balancing. In a macroscopic traffic simulator, we improved the
domain generator to improve the quality of a topological graph which improves the result of
the simulation since the agents can make their decision more precisely. Because of enhanced
environments, it enables us to apply high fidelity intersection model. Hence, we implement
the traffic light control at the intersection and we formulate the high fidelity intersection
behavior of vehicle agents.

The agent-based model for vehicle-vehicle and vehicle-pedestrian is formulated. This
model can capture realistic delayed travel time in case of free flow traffic. In addition, this
model can capture the realistic trajectories of vehicles at arbitrary junctions. The proposed
model is theoretically faster than optimization based intersection behavior because we used

67

CHAPTER 7 Concluding Remarks 68

only a simply physics equations.

Appendix A

Derivations of equations

A.1 Speed profile approximation

We have discussed roughly about the approximated speed profile which is used to navigate
the vehicle agents in section ??. In this appendix, we aim to provide the full details of the
mentioned equation. Firstly, we represent the speed profile by using a cubic polynomial
equation as following:

v(x) = ax3 + bx2 + cx+ d.

Variable x is the distance a vehicle agent traveled from an entering point of the trajectory
curve. As discussed in section ??, we used 4 initial conditions as following:

v(0) = d = Vapproach,

v(
L

2
) =

aL3

8
+
bL2

4
+
cL

2
+ d = Vmin,

v(L) = aL3 + bL2 + cL+ d = Vdepart

, and

dv(x)

dx
|x= L

2
= 3

L2

4
a+ 2Lb+ c = 0.

variable L which is used in all equation are the length of trajectory which is shown in Fig.
6.1. The first initial condition means that the vehicle agent approach the intersection with
an approach velocity (Vapproach). The second initial condition means that the lowest speed
of turning vehicle at the middle of trajectory is minimum speed (Vmin). The third initial
condition means that the vehicle depart the intersection with a depart velocity (Vdepart).
The last initial condition is that the minimum point of speed profile has zero slope. After
combining initial condition equations, we obtain a system of linear equations.

0 0 0 1
L3

8
L2

4
L
2 1

L3 L2 L 1
3L2

4 2L 1 0



a
b
c
d

 =


Vapproach
Vmin

Vdepart
0


69

CHAPTER A Derivations of equations 70

After solving the system of linear equations, we obtain the coefficient of the system as
following: 

a
b
c
d

 =


4.0∗(−Vapproach+Vdepart)

L3

4.0∗(2.0∗Vapproach−Vmin−Vdepart)
L2

−5.0Vapproach+4.0Vmin+Vdepart

L
Vapproach


.

The final form of the speed profile is as following:

v(x) = (−4Vapproach + 4Vdepart)
(x
L

)3

+ (8Vapproach − 4Vdepart)
(x
L

)2

+ (−5Vapproach + 4Vmin + Vdepart)
(x
L

)
+ Vapproach, x ∈ [0, L]

Bibliography

[1] Leonel Aguilar, Maddegedara Lalith, Tsuyoshi Ichimura, and Muneo Hori. On the
performance and scalability of an hpc enhanced multi agent system based evacuation
simulator. Procedia Computer Science, 108:937 – 947, 2017. International Conference
on Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland.

[2] Wael K.M. Alhajyaseen, Miho Asano, Hideki Nakamura, and Dang Minh Tan. Stochas-
tic approach for modeling the effects of intersection geometry on turning vehicle paths.
Transportation Research Part C: Emerging Technologies, 32:179 – 192, 2013.

[3] A. Attanasi, E. Silvestri, P. Meschini, and G. Gentile. Real world applications using
parallel computing techniques in dynamic traffic assignment and shortest path search.
In 2015 IEEE 18th International Conference on Intelligent Transportation Systems,
pages 316–321, Sept 2015.

[4] P. Beeson, N. K. Jong, and B. Kuipers. Towards autonomous topological place detection
using the extended voronoi graph. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pages 4373–4379, April 2005.

[5] RW BOHANNON. Comfortable and maximum walking speed of adults aged 20-79
years : Reference values and determinants. Age Ageing, 26:15–19, 1997.

[6] Ismail Chabini and Sridevi Ganugapati. Parallel algorithms for dynamic shortest path
problems. International Transactions in Operational Research, 9(3):279–302, 2002.

[7] Stephanie E Chang and Nobuoto Nojima. Measuring post-disaster transportation sys-
tem performance: the 1995 kobe earthquake in comparative perspective. Transportation
Research Part A: Policy and Practice, 35(6):475 – 494, 2001.

[8] A. Colombo and D. Del Vecchio. Least restrictive supervisors for intersection colli-
sion avoidance: A scheduling approach. IEEE Transactions on Automatic Control,
60(6):1515–1527, June 2015.

[9] G. R. de Campos, P. Falcone, and J. Sjöberg. Autonomous cooperative driving: A
velocity-based negotiation approach for intersection crossing. In 16th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pages 1456–1461,
Oct 2013.

[10] Charitha Dias, Miho Iryo-Asano, and Takashi Oguchi. Predicting optimal trajectory
of left-turning vehicle at signalized intersection. Transportation Research Procedia,
21:240 – 250, 2017. International Symposia of Transport Simulation (ISTS) and the
International Workshop on Traffic Data Collection and its Standardization (IWTDCS).

71

CHAPTER BIBLIOGRAPHY 72

[11] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1(1):269–271, December 1959.

[12] A. Doniec, R. Mandiau, S. Piechowiak, and S. Espié. Anticipation based on constraint
processing in a multi-agent context. Autonomous Agents and Multi-Agent Systems,
17(2):339–361, Oct 2008.

[13] Arnaud Doniec, René Mandiau, Sylvain Piechowiak, and Stéphane Espié. A behavioral
multi-agent model for road traffic simulation. Engineering Applications of Artificial
Intelligence, 21(8):1443 – 1454, 2008.

[14] Terry Friesz, David Bernstein, Tony Smith, Roger Tobin, and Byung-Wook Wie. A
variational inequality formulation of the dynamic network user equilibrium problem.
41:179–191, 02 1993.

[15] Y. Fu, C. Li, B. Xia, W. Dong, Y. Duan, and L. Xiong. A novel warning/avoidance
algorithm for intersection collision based on dynamic bayesian networks. In 2016 IEEE
International Conference on Communications (ICC), pages 1–6, May 2016.

[16] M. R. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio. Cooperative colli-
sion avoidance at intersections: Algorithms and experiments. IEEE Transactions on
Intelligent Transportation Systems, 14(3):1162–1175, Sept 2013.

[17] Michelle R Hribar, Valerie E Taylor, and David E Boyce. Termination detection for par-
allel shortest path algorithms. Journal of Parallel and Distributed Computing, 55(2):153
– 165, 1998.

[18] Michelle R Hribar, Valerie E Taylor, and David E Boyce. Implementing parallel shortest
path for parallel transportation applications. Parallel Computing, 27(12):1537 – 1568,
2001. Applications of parallel computing in transportation.

[19] Takamasa Iryo. Day-to-day dynamical model incorporating an explicit description of
individuals’ information collection behaviour. Transportation Research Part B: Method-
ological, 92:88 – 103, 2016. Special issue Day-to-Day Dynamics in Transportation
Networks.

[20] N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma, and N. Nosovic. Dijkstra’s shortest
path algorithm serial and parallel execution performance analysis. In 2012 Proceedings
of the 35th International Convention MIPRO, pages 1811–1815, May 2012.

[21] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, December 1998.

[22] D. Lasalle and G. Karypis. Multi-threaded graph partitioning. In 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, pages 225–236, May
2013.

[23] René Mandiau, Alexis Champion, Jean-Michel Auberlet, Stéphane Espié, and
Christophe Kolski. Behaviour based on decision matrices for a coordination between
agents in a urban traffic simulation. Applied Intelligence, 28(2):121–138, Apr 2008.

CHAPTER BIBLIOGRAPHY 73

[24] Leonel Enrique Aguilar Melgar, Wijerathne Maddegedara Lalith Lakshman, Muneo
Hori, Tsuyoshi Ichimura, and Seizo Tanaka. On the development of an mas based evac-
uation simulation system: Autonomous navigation and collision avoidance. In Guido
Boella, Edith Elkind, Bastin Tony Roy Savarimuthu, Frank Dignum, and Martin K.
Purvis, editors, PRIMA 2013: Principles and Practice of Multi-Agent Systems, pages
388–395, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[25] Leonel Enrique Aguilar Melgar, Maddegedara Lalith, Muneo Hori, Tsuyoshi Ichimura,
and Seizo Tanaka. A scalable workbench for large urban area simulations, com-
prised of resources for behavioural models, interactions and dynamic environments.
In Hoa Khanh Dam, Jeremy Pitt, Yang Xu, Guido Governatori, and Takayuki Ito,
editors, PRIMA 2014: Principles and Practice of Multi-Agent Systems, pages 166–181,
Cham, 2014. Springer International Publishing.

[26] Leonel Enrique Aguilar Melgar, Maddegedara Lalith, Muneo Hori, Tsuyoshi Ichimura,
and Seizo Tanaka. A scalable workbench for large urban area simulations, com-
prised of resources for behavioural models, interactions and dynamic environments.
In Hoa Khanh Dam, Jeremy Pitt, Yang Xu, Guido Governatori, and Takayuki Ito,
editors, PRIMA 2014: Principles and Practice of Multi-Agent Systems, pages 166–181,
Cham, 2014. Springer International Publishing.

[27] Charles Arthur Nagler and William Merle Nagler. Reaction time measurements. Foren-
sic Science, 2:261 – 274, 1973.

[28] Eoin A. O’Cearbhaill and Margaret O’Mahony. Parallel implementation of a trans-
portation network model. Journal of Parallel and Distributed Computing, 65(1):1 – 14,
2005.

[29] Zuo-Jun Max Shen, JyothsnaRai Pannala, Rohit Rai, and Tsz Shing Tsoi. Modeling
transportation networks during disruptions and emergency evacuations. UC Berkeley:
University of California Transportation Center, 2008.

[30] M. J. Smith and M. B. Wisten. A continuous day-to-day traffic assignment model and
the existence of a continuous dynamic user equilibrium. Annals of Operations Research,
60(1):59–79, Dec 1995.

[31] S. Thulasidasan and S. Eidenbenz. Accelerating traffic microsimulations: A parallel
discrete-event queue-based approach for speed and scale. In Proceedings of the 2009
Winter Simulation Conference (WSC), pages 2457–2466, Dec 2009.

[32] S. Thulasidasan, S. P. Kasiviswanathan, S. Eidenbenz, and P. Romero. Explicit spatial
scattering for load balancing in conservatively synchronized parallel discrete event simu-
lations. In 2010 IEEE Workshop on Principles of Advanced and Distributed Simulation,
pages 1–8, May 2010.

[33] Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body
collision avoidance. In Cédric Pradalier, Roland Siegwart, and Gerhard Hirzinger,
editors, Robotics Research, pages 3–19, Berlin, Heidelberg, 2011. Springer Berlin Hei-
delberg.

CHAPTER BIBLIOGRAPHY 74

[34] Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body
collision avoidance. In Cédric Pradalier, Roland Siegwart, and Gerhard Hirzinger,
editors, Robotics Research, pages 3–19, Berlin, Heidelberg, 2011. Springer Berlin Hei-
delberg.

[35] J G WARDROP. Road paper. some theoretical aspects of road traffic research. Pro-
ceedings of the Institution of Civil Engineers, 1(3):325–362, 1952.

[36] M. L. L. Wijerathne, Muneo Hori, Tsuyoshi Ichimura, and Seizo Tanaka. Parallel
scalability enhancements of seismic response and evacuation simulations of integrated
earthquake simulator. In Michel Daydé, Osni Marques, and Kengo Nakajima, editors,
High Performance Computing for Computational Science - VECPAR 2012, pages 105–
117, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[37] M.L.L. Wijerathne, L.A. Melgar, M. Hori, T. Ichimura, and S. Tanaka. Hpc enhanced
large urban area evacuation simulations with vision based autonomously navigating
multi agents. Procedia Computer Science, 18:1515 – 1524, 2013. 2013 International
Conference on Computational Science.

[38] Isaak Yperman. The link transmission model for dynamic network loading. PhD
dissertation, Katholieke Universiteit Leuven, 2007.

