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Abstract 

Globally, in developed countries, the aging population carries several consequences, such as manufacturing, 

services, taxes, and healthcare. In parallel, the cost of R&D persistently levitates, whereas the cost of 

manufacturing remains constant; therefore, large pharmaceutical companies have to face the increasing 

competition of generic producers. To contrast the resulting decrease of sales margin, big pharmaceutical 

companies are required to improve the performance of their processes, e.g., by achieving reduced production 

time, and down time as well as enhanced capacity. 

Various Process Systems Engineering (PSE) approaches, which comprise modeling simulation and 

optimization have been applied to achieve the optimal design in the synthesis of pharmaceutical processes. A 

further concept, namely digitalization or Industry 4.0 (I4.0), is the current major driver of the improvement of 

processes and the technological revolution in the industry. More rigorous approaches and introspective studies 

on the incorporation of well-established PSE methodologies with the novel digital revolution approaches are 

necessary to unlock the real potential of I4.0 in improving pharmaceutical manufacturing processes. 

The thesis presents a framework, the application of which assists the uncertainty-conscious and data-driven 

decision-making in the process improvement and operations support in Good Manufacturing Practice (GMP)-

controlled biopharmaceutical manufacturing. The framework consists of three main parts: data preprocessing 

(I), process performance assessment (II), and predictive maintenance decision-making (III). The framework was 

applied in an industrial case study, where manufacturing records generated from a change over-process operated 

in a facility belonging to F. Hoffmann-La Roche Ltd. 

In biopharmaceutical Drug Product (DP) manufacturing, sterile filling plants are usually non-dedicated, 

which implies the necessity of change-over operations. The sterile filling process comprises washing and 

sterilizing of empty glass containers, filling of these containers with a drug solution, sealing of the containers, 

and finally the visual inspection. Start-up and changer-over are support processes, which enable the switch from 

a product/format to another by maintaining the sterility and purity required for the manufacturing of high-quality 

products. An example of a support process is the Cleaning-In-Place and Sterilizing-In-Place (CIP/SIP), which 

involves cleaning the product-contacting surface of the filling system such as pipes, tanks, and filling needles 
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by removing product residues and particles, sterilizing it, and finally drying it. Support processes are extremely 

time intensive, approximately half of the production timeline; in fact is the underlying reason of this case study. 

In the first part of the framework, a new algorithm for transforming raw data recorded in biopharmaceutical 

manufacturing into functional data in an automated manner is presented. The algorithm consists of seven 

activities, including process task identification by natural language recognition, model training for selecting and 

filtering of noise—e.g., data not belonging to commercial batches—from the raw data, and clustering the process 

into single batches using semi-supervised clustering. The remaining activities ensure the compatibility of the 

resulting dataset with the remaining part of the framework.  

The raw data string was treated similar to a DNA strain during sequencing: first, the process recipe was 

randomly cut into primers, which are sequences of strings and fragments of the raw data string; the heterogeneity 

coefficients between the primers were calculated. The heterogeneity coefficient and the primer size were then 

used to train decision tree-classifiers based on the human perception of data noise. The training of the 

classification model resulted in the identification of the noise in the data with an F-score of 0.99. The filtering 

of the noise could shrink the data set to 60% of the original size; 40% of the data recorded did not contain 

process relevant information but was recorded because of GMP regulations and a non-cost-efficient monitoring 

strategy. The noise-free data were clustered using a constraint k-means algorithm, which allowed separation of 

every single batch. Last, the data points were classified into three categories, namely, normal process, failure, 

and repetition. The resulting dataset was used in the subsequent two parts of the framework to identify the 

improvement potentials and to predict imminent failures. 

In the second part of the framework, an uncertainty-conscious methodology was presented; it can assess 

process performance and facilitate process improvement in biopharmaceutical DP manufacturing. The work 

was described as a six-activity model using IDEF0, which are “define key performance indicators (KPIs) (A1),” 

“create an initial process performance model (A2),” “collect and adapt data (A3),” “characterize the process 

performance model (A4),” “identify tasks to improve (A5),” and “perform what-if analysis (A6)”. 

The KPI was defined as the process runtime (A1) and was modeled as the sum of the duration of the process 

tasks, remedying operations (A2). The historical records were imported (A3 and A4). A two-loops stochastic 

global sensitivity analysis (GSA) employing a partial rank correlation coefficient (PRCC) was used to select the 
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tasks that highly affect the KPI. The GSA aimed to assess the process design in an operational environment, so 

the task duration was defined as the changeable parameter. To incorporate operational uncertainty in the 

analysis, the outer loop propagated the operation uncertainty by random sampling Monte Carlo simulation 

(MCS). In the inner loop, the PRCC for every task was calculated with Latin hypercube sampling-MCS (LHS-

MCS) using the performance model. The feasibility indicator was defined as 0 to 1, 0 being complete 

infeasibility and 1 being perfect feasibility; the feasibility process modification reflects industrial know-how. 

Finally, the results of PRCC and the feasibility analysis were combined (A5) to identify tasks that showed high 

impact and feasibility as improvement potentials. The suggestions of industry experts were implemented in a 

what-if analysis with the process model (A6); the result showed 120 h potential time-savings. 

In the third part of the algorithm, an intelligent algorithm, which is based on Industry 4.0 and big data 

approaches was presented. The algorithm predicts the failure status of the process from physical sensors in real-

time. A decision tree (DT) model was trained to identify failed batches from successful ones; historical sensor 

data were transformed by principal component analysis (PCA) to reduce the dimensionality of the system. A 

retraining loop maintained the quality of the prediction over time because the algorithm is based on machine 

learning and the process continuously evolves; the algorithm resulted in a decision after the analysis of the risk 

on the performance in case of action. An integrated failure prediction and decision-making tool was used to 

support the decision of stopping a batch before a failure occurs. The deployment of the algorithm on the real-

world data results in the potential time saving of approximately 100 hours per month. 

The thesis proposes a data-driven framework for supporting the decision-making in process and operation 

improvement for biopharmaceutical manufacturing. The framework consists of three main steps: the integration 

of existing industrial databases, assessment of the process performance and identification of the task to improve, 

and imminent failure mitigation by plant predictive maintenance. The thesis aims to provide a novel and rigorous 

tool/approach that is applicable in an industrial environment, to solve long-term challenges, such as decision-

making regarding maintenance policies and process improvement as well as daily operation challenges, such as 

downtime reduction. The result of the application of the framework in the industrial case study was implemented 

in the commercial facility; a reduction of the process runtime was achieved. In future works, the framework will 

be integrated in the manufacturing operations after further generalization. Moreover, the framework will be 
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expanded to other pharmaceutical processes, such as sterile filling, packaging, transportation. Last, the impact 

on sustainability will be included in the decision-making of process modification. 
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1.1 Pharmaceutical manufacturing 

1.1.1 Socio-economic review 

Globally in developed countries, life quality and life expectancy at birth have been continuously increasing in 

previous years1; on the contrary, the fertility rates are following the opposite trend.2 The combination of these 

two factors is leading to a constantly aging population,3 which is expected to peak in the early 2020s owing to 

the “baby boomers born between the 1940s and the 1960s. Goldstone (2006) reported that in 2050 the oldest 

countries worldwide, i.e., Japan, Germany, Italy, and Switzerland, will have on an average 36% and 14% over-

60 and under-15 population, respectively.4 This will result in only 50% of the population being productive, 

which is 10% less than the ratio for the population aged 15 to 59 years from 2005. Such a structural change has 

consequences on several aspects, such as in manufacturing, services, taxes, and healthcare; healthcare especially 

plays a crucial role in a society that is not willing to perish. Because of the aging society, the amount of 

medication and services required for maintaining or even increasing, life expectancy is increasing, which leads 

to the rise of costs. Boecking et al. (2012) predicted an increase of 26% of the expenses for prescription drugs 

in an analysis on the pharmacoeconomic impact on pharmaceutical expense caused by the demographic change 

in Germany and France.5 The prediction on the increase of healthcare expenses was performed with the 

assumption that the expenses per capita per age will not change with time, which represents the best-case 

scenario. 

A prediction of a worst-case scenario is challenging because it is not possible to predict the additional cost 

resulting from the development of new drugs in the next 30 years. However, considering that the Research and 

Development (R&D) expenses are continuously increasing,6 it is not difficult to imagine that the cost of the 

healthcare system will behave similarly. A compendium of fact and figures from the International Federation 

of Pharmaceutical Manufacturers and Association reports that the R&D expenses constantly levitated and 

reached 120% in the years between 2005 and 2015.6 One of the reasons for such an increase in costs is the 

number of new drugs approved in the same timeframe; 28 drugs in 2005 and 56 in 2015, an essential part of 

which targets age-associated diseases, such as cancer, diabetes, and cardiovascular diseases. In another review, 

the European Federation of Pharmaceutical Industries and Association (2017) reported that the pharmaceuticals 
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& biotechnology sector spent 15% of the net sales in R&D activities in 2015, which is significantly larger than 

the 3.8% spent by all industries together.7 

In contrast to the trend of R&D costs, manufacturing cost remained constant at around 30% of the cost of 

goods sold from 1994 to 2005 as reported by Basu et al. (2008).8 To some extent, pharmaceutical companies 

did not face disruptive changes in how they operate—i.e., pharmaceutics is a very stable industry sector9—or 

introduce operation innovation by changing technology in the last ten years; therefore it can be safely assumed 

that the relative cost of manufacturing did not drastically change. However, large pharmaceutical companies 

have to face the increasing competition of generic producers, which do not have R&D expenditures and can 

optimally design the process, to benefit and reinvest in new R&D. Generics and biosimilar products, which are 

supported by various governments with the intent to decrease the public expenditure on healthcare,10,11 have 

increased their reach from 2000 with a maximum 70% of volume share in Germany and Romania.12 

Near future therapeutic innovations, such as cell therapy13 and personalized medicine14, are already forcing 

the big players to change their approach toward drug manufacturing. New technologies, such as machinery for 

cell cultures, will enter the market and the variety of drugs will proliferate, because each patient will receive a 

tailored drug. To be successful in this new challenge, it is of primary importance to improve the manufacturing 

process by reducing downtime and unnecessary operations and increasing productivity. It is crucial to change 

the culture by welcoming the changes. 

1.1.2 Pharmaceutical manufacturing processes 

Pharmaceutical manufacturing processes are the result of a very long effort, which usually lasts 13 years,7 

starting from the patent application and ending with the design of the process. The first ten are invested in the 

product and the authorization for marketing it, following which three years are dedicated to administrative 

procedures and finally the design of the commercial process. The total duration of a patent is 25 years, and this 

means that companies have to return on their investment in 12 years; however, before that, the generics enter 

the market, leaving little time for optimal process design. Sub-optimal processes are improved continuously 

throughout the operations; teams of operators, mechanics, and analysts work together until the optimality of the 

process is reached.15 
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As shown in Figure 1.1, pharmaceutical processes are classified by their products, with their Active 

Pharmaceutical Ingredients (API) divided into two classes small molecules and biopharmaceuticals. Small 

molecule APIs are chemically produced compounds such as paracetamol, acetylsalicylic acid, and codeine, 

whereas biopharmaceutical APIs are compounds, such as monoclonal Antibodies (mAb), proteins and 

hormones, produced by bacterial fermentation (see Figure 1.1). In the field, the synthesis of an API is named 

Drug Substance (DS) manufacturing and it comprises fermentation and purification processes.16 After the 

synthesis of the API, the DS is transformed into a Drug Products (DP), which is the drug administrable to the 

patient and usually has two dosage forms: liquid and solid. Small molecule DPs can be found in both liquid 

(e.g., syrups, and injectables) and solid (e.g., tablets, capsules, and powders) forms; by contrast, 

biopharmaceutical DPs are mostly found in liquid formulation. For conciseness and because of the lack of 

related research works, this study will only focus on biopharmaceutical DP manufacturing. 

 

Figure 1.1  Classification of pharmaceutical products and processes. 
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In biopharmaceutical DP manufacturing a DS is put in solution and the mixture is filled in containers in the 

sterile environment, because the drug has to be directly injected into the patient’s body. The filling process 

consists of washing and sterilizing the containers, e.g., glass vials or syringes, filling the containers with the DP 

solution, sealing the containers with plastic stoppers, capping, and visual inspection. The DP solution is 

continuously maintained in a sterile condition by aseptic technologies, such as isolators and Restricted-Access 

Barrier Systems (RABS) until the containers are sealed.17 Filling facilities are usually non-dedicated, meaning 

that they can accommodate the production of multiple products with different container formats; this implies in 

addition to production scheduling, there is a necessity of plant flexibility—i.e., mounting and unmounting of 

apparatuses—and change-over operations. 

The product solutions are filled batch-wise; filling batches that have the same or similar products (Pa, Pb, Pc, 

in Figure 1.2) are filled in a campaign, which is defined as the timeframe where the isolator remains sealed and 

in sterile conditions. The campaign starts when the isolator is decontaminated and is concluded when the isolator 

is opened; during a campaign, change-over operations are executed in the sterile environment through a glove-

box system. The length of a campaign varies from one batch to a number of batches fillable within the dirty 

hold time, the validated maximum time during which the isolator is considered free of contaminant and 

operational.  

Start-up and changer-over operations are support processes, manual or automated, which enable switching 

from a product/format to another while maintaining the conditions—i.e., sterility and purity—required for 

manufacturing high-quality products. Figure 1.2 shows an explicative representation of a multi-product/multi-

format filling campaign, with different colors representing different formats or products; the campaign starts 

with start-up operations and the filling batches are followed by change-over operations. Besides the manual 

mounting of the format-specific part, support operations comprise isolator decontamination and piping cleaning, 

sterilizing, and drying processes. The first process ensures that the isolator is free of pathogens by providing a 

vaporized H2O2 solution in the production environment;18 the latter processes, which are referred to as Cleaning-

In-Place and Sterilizing-In-Place (CIP/SIP), consist of cleaning the product-contacting surface of the filling 

system by removing product residues and particles, sterilizing it, and finally drying it. 
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The terminology “-in-place” indicates for the fact that the filling system, which consists of pipes, buffer tanks, 

and filling needles, is cleaned and sterilized in the assembled status only shortly before the production is 

started—i.e., when the pipes are in place.  

Support processes are very time intensive; in fact, it can be estimated that these processes require half of the 

production timeline leaving the remaining half the actual production. From experience, on average, depending 

on the size of the filling batch, filling and change-over operations both require around 8 hours. By assuming 

that the production only consists of these two operations, half of the production time is invested in supporting 

the manufacturing. Therefore, the improvement of the support operation performance, i.e., reduction of the 

runtime, could help increase the potential productivity or production capacity of the facility, as highlighted in 

Figure 1.2. The time-intensity can currently be attributed to the highly controlled environment, which is 

necessary to ensure that products do not cause harm to the patient; Good Manufacturing Practice (GMP) is a set 

of guidelines that ensures the quality of the products is achieved throughout the lifetime of a process.19 

1.1.3 Role of Good Manufacturing Practice 

Good manufacturing practice is the most important collection of guidelines for the production of a drug and the 

recording of the document to guarantee the manufacture of safe products. The collection is the translation in 

practical term of the regulations of various countries (21CFR for the United States)20 and covers practices along 

with the entire process from the behavior of the employees, to the maintaining and controlling of plant hygiene 

and product quality. The adherence to the GMP guidelines ensures that the features of each product, e.g., lot 

number, age, and process parameters, are traceable; hence, it guarantees that the authorities can control the 

quality of the product on the market. GMP guarantees that the products are not altered during the timeframe 

from the raw material supplier to the patient. 

For improving the practical understanding, some simple examples of GMP guidelines based on the United 

States Code of Regulation are presented below.20  

 §211.25: “Each person engaged in the manufacturing […] shall have education, training, or any 

experience […]”  
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Each employee requires training before starting the operations; therefore, an adequate training program with 

certification has to be provided to the employees.20 

 §211.113: “Appropriate written procedures, designed to prevent microbiological contamination of drug 

products purporting to be sterile, shall be established and followed. […]” 

Written procedures are defined to maintain standardized operations, the steps of which are always traceable, to 

maintain the safety of a drug. The practical application of this guideline incurs high cost and is time consuming 

for the industry; however, it is essential for the patient health to guarantee that all drug produced have the same 

safety conditions.21,22 

 §211.188: “Batch production and control records shall be prepared for each batch of drug product 

[…].” 

Additionally, the standard operating procedures and indicators, which prove the quality and safety of the 

product, are created, validated, and filed with the authorities.23 

 §211.110: “Valid in-process specifications […] shall be consistent with drug product final 

specifications and shall be derived from previous acceptable process average and process variability 

estimates […].” 

Such indicators can vary in terms of physical properties, e.g., reflexing index, to process related parameters, 

such as maximum pressure at a specific process step.24 

 §211.165:  “Acceptance criteria for the sampling and testing conducted by the quality control unit shall 

be adequate to assure that batches […] meet each appropriate specification and […] quality […].” 

 §211.192: “Any unexplained discrepancy […] or the failure of a batch […] shall be thoroughly 

investigated […]. A written record of the investigation shall be made […].” 

Unexpected events, i.e., deviations or discrepancy, such as the systematic trend in indicators or product not 

matching the quality, are first documented and subsequently subjected to root cause analysis to identify the 

reason of such a deviation.25 

As it has been exemplified, pharmaceutical processes are highly controlled by GMP for the previously 

mentioned reasons. This high control decreases the degree of freedom towards change with two added risks: 

First the product quality can be influenced by process changes that seek performance improvements (see 
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§211.110 above); second, once a process is changed, the entire documentation influenced by this change has to 

be adapted, which is both time and cost intensive. The lack of degree of freedom, which could be found in 

chemical manufacturing, renders pharmaceutical companies reluctant to change without a GMP compatible 

proof—i.e., experimental and statistical testing—of the change. Besides the obvious benefits of such a system, 

including patient priority, control, and traceability, the sub-optimal process design, as mentioned in section 

1.1.2, and the process stiffness do not facilitate process improvement. Sugiyama and Schmidt (2013) developed 

a model for continuous process improvement, which targets the management of information during the 

improvement considering GMP.26,27 Several authors reflected on including the concept of GMP in their 

studies;27,28 however only a few incorporated the presence of GMP as a constraint to evaluate its quantitative 

influence on the process.29 Such perspective is critical in developing a tool for supporting pharmaceutical 

manufacturing because GMP and its culture are the limiting factors in changing manufacturing processes. 

1.1.4 Opportunities and challenges of pharmaceutical manufacturing 

To summarize the current situation outside academia offers various opportunities for improving the performance 

of manufacturing plants; however there are many more challenges. The fact that the society is aging and the 

R&D costs are increasing calls for an improvement of the profitability/performance of the manufacturing 

operations. The non-decreasing cost of production and the sub-optimal design of processes encourage the 

research of novel methodologies for designing better processes from the root and for improving the performance 

of the process that is currently running. The incorporation of industrially relevant limitations, such as GMP, in 

this work, is the key to creating methodologies that are applicable in the manufacturing environment. Finally, it 

is imperative for guaranteeing the applicability of the methodology that it is understandable and compatible with 

the culture and the standard operating procedure of pharmaceutical manufacturing.  
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1.2 Process Systems Engineering (PSE) 

1.2.1 Recent development of PSE 

Part of the PSE community has always been interested in the decision support for improving processes in various 

industrial sectors. Bonfill et al. (2008) presented a framework for supporting the coordination of the supply 

chain management in scheduling problems connecting production and transport in chemical manufacturing.30 

Later, Lainez et al. (2010) holistically modeled the linkage between marketing and supply chain for improving 

business strategic decisions, and demonstrated the economic benefits of such an approach in a conceptual case 

study.31 Suresh et al. (2010) presented a conceptual framework for the ontological and mathematical modeling 

applied in the knowledge management of pharmaceutical product development.32 In recent years, another part 

of the PSE community has shifted its research focus from the modeling and simulation, optimization and 

scheduling of chemical processes,33–35 which is still prevalent, to varied applications, such as biomass and 

energy. Pirola et al. (2017) presented a simulation of a biomass-to-liquid plant and proposed a cost-optimal 

reactor staging;36 Martin and Grossmann (2017) proposed an integrated facility that exploits CO2 capture, for 

producing methanol from switchgrass.37 As for the production of energy, Li (2017) analyzed the effect of multi-

stage design in the power generation in pressure-retarded osmosis;38 Elsholkami et al. (2016) developed a model 

for the integration of renewable technologies in the energy infrastructure in sands industry.39 

From the works published in the last few years, it is notable that the community is moving from the applied 

mathematics modelling40 and optimization41 to more application-driven research. An example is Boukouvala et 

al. (2011), who discussed the need for data-driven modeling in a field such as powder manufacturing, to 

substitute first principle models, which are computationally very expensive.42 Several studies have been 

published on the introduction of computer aided-tools for decision-making and support43,44; the trend is also to 

move, through more frequent industrial collaborations, toward more data-driven research in an attempt to 

understand and solve problems with real-world data.45–47 
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1.2.2 Application of PSE in pharmaceutical manufacturing 

Figure 1.3 shows the number of paper over the last 20 years mentioning the keywords “process,” “simulation,” 

“modeling,” or “optimization,” as well as “*pharma*,” “API,” “drug,” or “medicine”; all the papers were 

categorized as “chemical engineering” from web of science.48 

 

Figure 1.3  Graphical review on the number of papers published in PSE for pharmaceutical application from 

1998 till date (14.04.2018). 

The number of publications increased over the last 20 years. Especially after the prospective analysis from 

Reklaitis in 2007 on PSE for pharmaceutical process development,49 the research exploded to topics, such as 

molecular design50,51, sustainability assessments for bioprocesses,52 development of continuous processing 

technologies,53–55 and process design and improvement of operations in both the DS and DP fields. 

Various PSE approaches, such as computational process design and process retrofitting, have been applied 

to achieve the optimal design in the synthesis of pharmaceutical processes as a part of the Quality by Design 

(QbD) concept. In a review, Rantanen and Khinast (2015) asserted the importance of QbD-based approaches in 

the pharmaceutical environment and listed various methods that are essential for process modeling.56 Sajjia et 

al. (2017) investigated the compaction of microcrystalline cellulose through mathematical modeling, for 
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designing of an industrial-scale roller compaction process.57 Casola et al. (2015) presented a Modeling–

Simulation–Optimization (MSO) methodology for retrofitting the recrystallization process of injectable drugs.58 

The first principle MSO approaches tackle the process design, synthesis, and optimization, whereas data science 

approaches are used in process assessment59 and control60, as well as in the improvement of operations61. 

Regarding DS, Papadakis et al. (2017) created a reaction database, in order to collect multiphase reaction 

data to be used in the reaction-separation system, for small molecules processes.62 Diab and Gerogiorgis et al. 

(2018) proposed a techno-economic evaluation of the purification of rufinamide by antisolvent crystallization 

from the modeling and simulation of the upstream synthesis process.63 A mathematical modeling and 

optimization approach for a continuous multi-stage slug flow crystallization process was shown;64 Ridder et al. 

(2016) presented a feasibility study of utilizing a multisegment antisolvent crystallizer for fines removal and 

matching of the target crystal size distribution.65 Luo et al. (2018) reviewed the recent advances and strategies 

in process engineering of the microbial fermentation of butyric acid, which is an important platform chemical 

for the pharmaceutical production66. An optimization that considers uncertainty, of upstream and downstream 

processing for biopharmaceutical manufacturing, was proposed by Liu et al. (2016).67 

As for DPs, Martinetz et al. (2017) developed an operating concept for a rotary tablet press that uses mass 

flow operating point.68 Sajjia et al. (2017) proposed an artificial neural network for simulating the process of 

dry granulation via roller compaction.69 Içten et al. (2016) showed the application of the Knowledge Provenance 

Management System for modeling the relationship of processing steps, materials, and information as an 

innovative analysis of experimental data from drop-wise additive manufacturing.70 Furthermore, for continuous 

solid-dosage manufacturing, Su et al. (2017) presented a systematic framework for the process control and 

business risk analysis.71 Among the few studies that deal with biopharmaceutical DP manufacturing, Bosca et 

al. (2015) proposed a risk-based design modeling for freeze-drying cycles compliant with GMP regulations.72 

Eberle et al. (2016) presented a data-driven tiered procedure for enhancing production yield; the procedure was 

applied to a sterile filling process in an industrial case study.73 

A more specific literature review on particular application of PSE approaches in the pharmaceutical field is 

found in the introduction of Chapter 3, 4, and 5. The additional literature review is used to highlight the 

academic surrounding specific to each chapter. 
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1.2.3 Opportunities and challenges for PSE in pharmaceutical manufacturing 

The incorporation of PSE approaches in designing, controlling and changing pharmaceutical processes provides 

excellent opportunities for improving the current industry. Topics, such as performance improvement, reliability 

assessment, and process control and improvement can be well supported by the PSE and computer-added 

approach as prominent authors in the field mentioned in their reviews.49,74 Challenges are found in the 

implementation of process changes in running plants because of GMP, which requires experimental results 

proving statistically significant statements. Being both an opportunity and a challenge, the availability of real-

world data will be vital in determining the impact of the research on the field of manufacturing, dividing 

hypothetical/ideal from verisimilar models. Drug product manufacturing has proven to greatly impact the all 

drug production, therefore it is imperative to consider this step when assessing and improving the performance 

of the entire manufacturing process. In addition, from the literature review, it was recognized that the fields of 

small molecule DPs and DS, as well as biopharmaceutical DS, are well covered; however, significantly fewer 

studies on biopharmaceutical DPs were found, which opens the opportunity for new research. 

1.3 Digitalization and advanced applied statistics 

1.3.1 Digitalization in various industries 

Among numerous definition of digitalization, one by Gartner states that it is “the use of digital technologies to 

change the business model and provide new revenue and value-producing opportunities”.75 The term 

“digitalization” differs from the already existing “digitization”; in fact, the first refers to the use of the 

technological development to disruptively change the current business models in a data-driven revolution, 

whereas the second refers to the technical switch from analog to digital data recording and storage. Process and 

business data are not the only elements to be digitized; digitization of workflows, processes, and documentation 

is a requirement that sets the basis for pursuing the digital revolution.76,77 It is of common knowledge that various 

industry sectors started changing their business models through digitalization; internet companies based on 

supply chain systems, such as Amazon and Google, reached the leadership of the market by implementing 

digital technologies. Further concepts, which go hand-in-hand with digitalization, are Industry 4.0 (I4.0) and 
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Industry of Things (IoT); this section displays some academic works that show efforts for the digital revolution 

in various industrial sectors. In addition to the implementation of advanced analytics and Internet of Things in 

the creation of a wide digitalized and patient-centric healthcare system, such technologies are promising in the 

improvement of reliability and efficiency of manufacturing processes. In a review, Volker et al. (2016) presented 

the current trends towards digitalization and the use of big data analytics in the healthcare system mentioning 

several advantages, including at-risk patient identification or hospital readmission prediction.78 Industry sectors, 

such as banks,79,80 and automotive81 have been embracing the digital revolution for years and changing their 

business models. Tao et al. (2011) reviewed the application of grid technology in manufacturing systems.82 

More recently, Blaya et al. (2018) designed an arm splint, which is an orthopedic product, by using additive 

manufacturing technology.83 Reitze et al. (2018) presented a roadmap for the so-called Smart Factory, which 

includes the modular manufacturing concept for the flexible production of specialty chemicals.84 In a recent 

review, Chiang et al. (2017) showed the recent advancements of big data technology in various industries from 

a chemical engineering stem point; applications of big data in the pharmaceutical sector were also presented, 

where most of the efforts are seen in the field of drug discovery and design. The progress in the fourth industrial 

revolution in the pharmaceutical manufacturing sector is still at an infant stage; however, some studies are found 

in the literature. Lepage et al. (2013) proposed a real-time method that uses semiconductor photonics, for 

detecting the influenza A virus;85 Schenkendorf (2016) stated that the shift from batch to continuous in 

pharmaceutical manufacturing can be supported by data-driven prediction models, which can control, optimize 

the processes and predict faults.86 To highlight the specific status of the research and the needs of the 

pharmaceutical industry, a more detailed academic literature review on the topic is found in Chapter 5. 

1.3.2 Opportunities and challenges for “data science” in pharmaceutical manufacturing 

Currently, most of the effort toward digitalization is contributed by the industry; however, studies that are more 

introspective are needed to analyze and discover the real potential of digital technologies in improving 

processes. A major challenge in pursuing this path comes with redefining the concept of innovation since most 

of the “data science-” approaches are 20 years old. Application-driven studies and industrial collaborations are 

required to provide implementable methodologies that can support the manufacturing of pharmaceutical 
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manufacturing. The presence of GMP plays a key role in both reducing and enhancing the speed of the change; 

in fact, the stiffness of GMP not only protects state-of-the-art processes but also obliges to record data, which 

are an essential asset for this innovation. Employing “data science” approaches in the current pharmaceutical 

manufacturing could lead to redefining some of the very traditional principles and as QbD or process control 

through validation. A practical example of the effect that the digital revolution is the capability of predicting 

process faults in very complex systems, which would result in reducing downtime and costs. 

1.4 Process targeted in the case study 

1.4.1 Definition of the process 

The cleaning-in-place/sterilizing-in-place process, which is utilized in all industrial case studies in the thesis, 

is employed as the change-over operation of a sterile filling plant belonging to F. Hoffmann-La Roche in 

Switzerland. The plant showed in Figure 1.4 is responsible for filling an API solution, the API usually being 

an mAb, in glass vials.  

The filling plant consists of a vial washing machine, a sterilization tunnel, a filling and a capping system, 

and an inspection machine (not visible). The filling and capping systems are located inside the isolator as shown 

in the schematic representation in Figure 1.5. As it is shown in Figure 1.5, first, the vials are loaded into a 

washing machine, where dust particles are removed by spraying the internal and external surface of the vials 

with Demineralized Water (DW). 
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Figure 1.4  Picture of the plant that belongs to F. Hoffmann-La Roche Ltd. in Kaiseraugst, Switzerland 

Second, the vials are automatically transported into the sterilization tunnel (see Figure 1.6, A), in which a 

temperature of 300°C activates the decomposition of pyrogenic components such as introns, bacteria, or viruses; 

after sterilizing for 10-15 min, the vials enter the isolator. Third, the sterile vials are filled with the sterile API 

solution, which passed through a filter (see Figure 1.4) before being transferred to the buffer tank in the isolator; 

a multi-needle filling system, which is connected to the buffer tank via plastic filling tubes, fills 6–12 vials 

simultaneously (see Figure 1.6, B). Fourth, the vials, whose weights are checked sample-wise, are sealed with 

pre-sterilized stoppers (see Figure 1.6, C), capped (see Figure 1.6, D) and are transported outside of the isolator. 

Fifth, the vials are visually inspected by a system of 13 cameras; the vials that show defects such as scratches, 

air bubble inclusions in the glass and particles inside the product are discarded. 
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Figure 1.6  Pictures of the filling equipment: sterilization tunnel (A), filling needles (B), stoppers sealing 

system (C), and capping system (D) 

As previously mentioned, before each filling batch, change-over operations, namely the CIP/SIP process, is 

required. The investigated commercial CIP/SIP process is applied to the filling system depicted in Figure 1.7. 

The filling system, shown in Figure 1.7, consists of a filter, a buffer tank, single-use plastic filling tubes and 

filling needles; the filling system is attached to a utility supply system that supplies DW, Water for Injection 

(WFI), and Pure Steam (PS) and to the tank containing the API solution for one filling batch. At each filling 

batch, the filling tubes are manually exchanged, and the API solution tank is attached to the filling system by a 
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sterile-to-sterile (S2S) port (also see Figure 1.4), which guarantees the sterility of the filling system and the 

solution. 

 

Figure 1.7  Simplified graphical representation of the sterile filling operations; CIP/SIP (blue arrows) and 

API filling (red arrows). 

The valves shown in Figure 1.7 are set towards the blue arrows whenever utilities, also called CIP/SIP media, 

are required, namely during the CIP/SIP process; during the filling operations, the valves are directed toward 

the red arrows letting the API solution through the filtration system and the filling needles into the vials. The 

CIP/SIP medium flows through the entire pre-built piping system and is discharged in the effluent tank, whereas 

the solution tank and S2S are pre-sterilized and attached to the piping after the CIP/SIP process is concluded. 

The CIP/SIP processes consist of 180–252 consecutive tasks divided into 9-12 process blocks. In this case 

study, the production mode—i.e., the production campaign with multiple batches of multiple products or 

formats—requires the execution of three different CIP/SIP processes: pre-campaign (252 tasks), intra-campaign 

(186 tasks), and post-campaign (180 tasks) CIP/SIP. Figure 1.8 shows the three CIP/SIP process recipes, which 

comprise the blocks rinsing the piping with DW, testing the integrity of the filters, testing the impermeability 

of the system, rinsing the piping with WFI, sterilizing with PS, drying and testing the integrity of the product 

filter system (light gray boxes in Figure 1.8). The three CIP/SIP processes are similar but with difference 

existing in the presence or absence of particular blocks (dark gray boxes in Figure 1.8). Specifically setup 
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operations, which involve the manual mounting of format-specific equipment components, decontamination of 

the isolator, and integrity testing of the gas filter—i.e., filter used to ensure the purity of the steam—are present 

only in the pre-CIP/SIP; similarly, format change, which involves the adaptation—i.e., mounting and 

unmounting of equipment componets—of the filling plant to a different format of vials, and the exchange of the 

filling tubes, in sterile conditions, is present only in the intra-campaign CIP/SIP. 

The CIP/SIP tasks are operated under the controls of execution times, pressure, and temperature; in specific, 

all tasks have upper and lower control limits of pressure and temperature as design specifications. Some tasks, 

such as impermeability and integrity test, are controlled by target temperature or pressure, and others, such as 

rinsing and decontamination, are limited by time. The control parameters, namely, minimum, maximum and 

target, are set during the validation and qualification of the process and the equipment, respectively; they ensure 

the reproducibility of the process and guarantee the achievement of the product specification at each batch. 

 

Figure 1.8  CIP/SIP process recipes 
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All CIP/SIP processes are influenced by human intervention because of the multi-product/format production 

mode; in fact, mechanical elements used for transporting the vials, e.g., plastic transport screws and vials 

pincers, are format specific and part of the filling equipment, i.e., the single-use plastic tubes connecting the 

buffer tank and the filling needles, is product-dedicated and single-use and needs to be manually substituted 

before each filling campaign/batch. The process is influenced by uncertainty; in fact, each CIP/SIP task has a 

probability to fail. 

 

Figure 1.9  Process execution showed task Sterilizing, Drying and Integrity test. Sterilizing must be repeated 

in the case of failure. 

 

As shown in Figure 1.9, in case of a failure a specific series of tasks is repeated, with the repetition sequence 

defined by the GMP documentation; the repetition is necessary to guarantee that conditions such as sterility and 

tightness are ensured after the failure. 

The process produces principally three types of data, namely, sensor data, execution logs, and metadata; 

irrespective of whether a specific process is running, the data are continuously recorded and archived in data 

storage units. As for the sensor data, the plant possesses five pressure [bar] and nine temperature [°C] sensors, 

the outputs of which are recorded at a frequency of 1 Hz. The execution logs are the temporal sequence of the 

task performed during the operations; at the start of each task, a time stamp (raw in Table 1.1) consisting of 

time and task ID/task description is recorded in text form. A graphical representation of the execution log is 

presented in Table 1.1. Metadata is a mixture of text and numerical data, and usually, it contains information 

regarding time logged process commentaries, such as logbooks, process comments, and background 

information, such as operator ID.  
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Table 1.1  Example of an execution log 

Time Task ID Description 

04:07:13 15.03.2018 ‘3000’ Set media pressure in the piping 

04:07:33 15.03.2018 ‘3010’ Test media pressure in the piping 

04:09:33 15.03.2018 ‘3020’ Increase pressure in the filter unit 

04:11:33 15.03.2018 ‘3030’ Test leak-tightness for 2 min (pass if 𝛥𝑝 <  0.2 bar) 

1.4.2 Problem framing 

The following characteristics were noticed by analyzing the current processes and operations standards in the 

decision-making in the example of the CIP/SIP process: 

The decision-making in the pharmaceutical industry is based on scientific discovery, experiments, i.e., from 

process design to scale-up, on rationales, which deterministically connect events through logic or speculation, 

and on experience. However, it does not consider uncertainty. An endogenous uncertainty  event, e.g., operator 

mounting mistake or machine failure, is an omnipresent part of the manufacturing operations but not part of the 

decision-making. In batch processes such as the CIP/SIP, where the operators interact with machines, e.g., while 

mounting and unmounting plant parts, failures can occur; hence, uncertainty has to be considered. Examples of 

failures observed in the studied process comprise leakage trough gaskets, wearing or wrong assembly of 

equipment components, and mechanical failures, such as malfunctioning of robot arms. 

Other factors that are peculiar to the case study compared with those presented in the literature are the facts 

that the process is highly complex—i.e., first principle modeling is not feasible—and it does not give the 

opportunity of experimentation. The collection of new data by installing additional sensors (if possible) would 

require years to reach a dataset that carries a statistical relevance. Hence, the historical data provided by real 

plant cannot be expanded. Similar to many commercial processes, the production facility is not available for 

performing experiments because the timeline is saturated with commercial batches. Given these two factors, 

decisions can only be performed on the basis of the historical data recorded during commercial batches and their 

interconnection. The data-driven character of the decision-making is specific for pharmaceutical processes, but 
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can be advantageous in all industries—i.e., less experimentation translates to more production; therefore, it has 

to be incorporated in the study. 

The last characteristic is GMP; in industries, implementing GMP is crucial whenever process are involved; 

therefore, it has to be incorporated in the decision of making changes in the process. Extensive analysis of the 

challenges and opportunities when working in a GMP-controlled environment has been presented in section 

1.1.4. 
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2.1 Framework for the decision-making in process improvement and operations support 

In this study, a framework is presented, whose application would assist the uncertainty-conscious and data-

driven decision-making in the process improvement and operations support in biopharmaceutical 

manufacturing. The framework, shown in Figure 2.1, is centered on the process (green box); the manufacturing 

process delivers raw data. The raw data are preprocessed by an automated algorithm (white box, Figure 2.1), 

which uses past human decisions taken during a conventional manual data cleaning, and language recognition 

algorithms to train classification models. The preprocessing algorithm first removes the data that do not carry 

process information, second, it clusters the data into single batches, and finally, it labels the data points by their 

process characteristics, i.e., alarm, repetition, and process data. 

The clean data are employed either to advise process re-design and debottlenecking alternatives (left blue 

box, Figure 2.1) through the assessment of the process performance, such as runtime (left gray box, Figure 

2.1), or to plan preventive or corrective maintenance actions (right blue box, Figure 2.1) through the prediction 

of imminent failures (right gray box, Figure 2.1) during the manufacturing operations. The first route uses 

historical runtimes as sampling pools for the stochastic sensitivity analysis considering the uncertainty of 

operations with the objective of identifying process tasks that limit the total process performance. The second 

leverages principal component analysis and supervised machine learning to extrapolate hidden process features 

from historical sensor data aiming at characterizing process failure. The goal of the second route is to identify 

process trends that would result in failures, namely, unexpected failures, before their occurrence and in real 

time; the prediction model transforms unexpected failures into predictable or even preventable failures, thereby 

reducing unexpected downtime. The outcomes of both routes are implemented in the manufacturing process; 

the framework is tailored recursively to enable the continuous improvement of the manufacturing without 

performing experiments until reaching process optimality—i.e., minimum runtime and downtime. 

In addition, to provide a guideline for continuous process improvement, the framework can be employed as 

a computer-aided tool for the real-time and uncertainty-conscious decision-making which is employable in 

commercial-scale manufacturing operations. Each activity of the framework intakes the input of experts, such 

as engineers, operators, and analysts, which are required to translate their knowledge into quantitative and semi-
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quantitative indicators and of data records, which set the basis for the decision. The tool can be tailored to 

various industry sectors; however, in this study, it will be employed in the drug product manufacturing sector. 

 

Figure 2.1  Framework for the decision-making in process improvement and manufacturing support 

2.2 Thesis statement 

The thesis presents a computer-aided framework for the assistance of data-driven decision-making for process 

improvement and operations support in biopharmaceutical drug product manufacturing. Commercial assembly-

like processes are the target of the framework; the framework intakes historical data and expert knowledge to 

deliver an improvement solution suited to the manufacturing environment and industry sector. Figure 2.2 shows 

the thematic location of the framework, which integrates knowledge from the various research fields, namely, 

pharmaceutical, PSE, and digitalization, to deliver tailored decision-making. The intersection between these 

research fields, especially with digitalization position the research in a very new and innovative research field, 

which is committed to developing highly applicable tools integrating the new state-of-the-art technologies. 
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Figure 2.2  Positioning of the framework in the current research landscape 

The following points are the general concepts necessary for the construction and implementation of the 

framework: 

 Compatibility to industrial IT and manufacturing system through general and automated data 

transformation algorithm. 

 Utilization of historical data for fitting specific descriptive or predictive models for each process or task. 

 Incorporation of process and operations-specific characteristics, such as pharma-specific limitations and 

uncertainty to provide tailored decisions. 

 Translation of industrial experts’ knowledge in to quantifiable indicators and supply of an interface that 

is understandable for non-experts for the implementation in the industrial environment. 

 Supply of a tool that supports and guides the human decision by considering risks of a process 

modification or intervention. 

The following are the goals that are necessary to satisfy the personal interests of the author: 

 Incorporation of industrial, information, digital, and process system engineering techniques to provide 

multidisciplinary and multi-faceted research. 

 Bridging the gap between academic and industrial tools for providing higher value results through 

innovation by incorporating advanced analysis methods into conventional frameworks. 

The following are the achievements in implementing the framework in a commercial environment: 
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 Automation of obsolete tasks, such as data cleaning, based on historical human decisions. 

 Delivery of an uncertainty-conscious decision that considers the human influence on the process 

performance. 

 Introduction of advanced statistical methods for the extrapolation of event-specific features. 

 Reduction of unplanned downtime by predicting imminent failure 

 Introduction of Industry 4.0 and big data concepts in the biopharmaceutical manufacturing. 

2.3 Thesis structure 

The thesis is structured as shown in Figure 2.2. Chapter 3, Chapter 4, and Chapter 5 present the data 

preprocessing algorithm, the performance assessment methodology, and the failure prediction algorithm, 

respectively. Each chapter has an independent introduction, conclusion, and nomenclature sections. The 

outcome of Chapter 3, namely the clean data, is connected to both Chapters 4 and 5 in a parallel structure; the 

order of Chapters 4 and 5 is chronological of the conclusion of the works. 

 

Figure 2.3  Structure of the thesis. 

Due to the direct incompatibility of the data records with work presented in later chapters, Chapter 3 

introduces an automated algorithm for the transformation of raw data into clean data that can be used for further 

analysis. First, the algorithm is defined; after the homogenization (stemming) of the dataset, the raw data, which 

are a continuous strain of points in the form of strings, are sequenced like a DNA sequence. The resultant 

sequence is then used in the identification of noise with supervised machine learning models; subsequently, the 

Case study on CIP/SIP

Chapter 1: Introduction

Chapter 2: Objective of the thesis

Chapter 3: Data preprocessing

Chapter 5: Failure predictionChapter 4: Performance assessment

Chapter 6: Conclusion

Chapter 7: Outlook



Chapter 2 

30 

 

noise is filtered and the single data points are characterized. Second, the algorithm is designed for the case, 

namely the parameters that deliver the maximal accuracy in noise classification are selected, and is tested for 

stability over time. Third, the algorithm is applied to the case study where the conventional manual 

preprocessing was used as the input knowledge to train the noise classifier and as a reference. Fourth, an 

alternative utilization of the data is proposed, namely, the connection of the data with the root-cause analysis 

performed in case of process failure; consequently, two innovative quantitative root-cause analysis 

representations are delivered. Finally, the chapter is concluded with a discussion on the improvement resulting 

from the implementation of the algorithm in the manufacturing scale. 

Chapter 4 presents the methodology, in the form of an activity model, for the uncertainty conscious 

performance assessment leveraging stochastic global sensitivity analysis. First, a six-activity model (IDEF0 

model) is defined; one activity (activity A3) of the model is connected to Chapter 3; the model takes 

manufacturing data and identifies the process task that has the most influence on the total process performance. 

Second, the activity model is applied in an industrial case study objecting the CIP/SIP process. In this case 

study, the methodology provides an answer to the question: “Knowing the operators are an omnipresent source 

of uncertainty, which task is the bottlenecking task?” The chapter continues by quantitatively showing the 

outcome of the process performance of potential process changes through what-if analysis. Last, the chapter 

closes with a conclusion where the results of the presented methodology are compared with those resulting from 

the application of an industrially conventional method. 

Chapter 5 introduces the development and application of an intelligent algorithm, which is based on Industry 

4.0 and big data approaches, to the pharmaceutical manufacturing industry. First, the algorithm is defined, which 

predicts the failure status of the process from physical sensors in real-time. A retraining loop maintains the 

quality of the prediction over time because the algorithm is based on machine learning and the process is in 

continuous evolution; the algorithm results in a decision after the analysis of the risk on the performance in case 

of action. Second, a case study is presented where the algorithm is used to predict failure and then to support 

the human decision of taking either a preventive or corrective action. Events describable through first principle 

models or empirical models are simulated to analyze the capability of the algorithm to recognize unknown 

imminent failures. Last, the chapter closes with a conclusion where the potential unexpected downtime 
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reduction is quantified and the implementability of the algorithm in commercial-scale manufacturing is 

assessed. 

The results and limitations presented in the previous chapter are summarized, and a conclusion is drawn in 

Chapter 6. Chapter 7 presents the thesis outlook; the outlook tackles the expandability of the work to industry 

sectors different from pharmaceutical manufacturing, the expandability of Industry 4.0 concept inside 

pharmaceutical manufacturing, and the potential impact of such a work on the environment. 
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Chapter 3: Data mining algorithm for pre-processing 

biopharmaceutical manufacturing records 

 

(Based on the manuscript submitted to Computers and Chemicals Engineering by 

G. Casola, C. Siegmund, M. Mattern, and H. Sugiyama) 
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3.1 Introduction 

The DP manufacturing process consists of a series of independent tasks that are executed consecutively by 

following a process recipe. A process recipe defines the activities, the sequence of activities, and the process 

parameters used to produce a particular product. DP manufacturing plants produce several products with the 

same equipment setup, which is finely adapted depending on the process recipe; generally, process recipes have 

multiple common tasks, but additional ones are present if the products necessitate particular requirement—e.g., 

a vial with an additional metallic cap or only rubber cap.  Because of manual operations such as format changes 

at the filling line, or nonroutine events such as failures, the process presents uncertainty, which, in this work, is 

referred to as operational uncertainty. A detailed description of operational uncertainty and its appearances can 

be found in Chapter 4.29 This uncertainty is the cause of a specific type of disturbance in the data, called 

“operational disturbance,” which appears as a discontinuity in the execution of the process recipe in the dataset 

(see Appendix: Tutorial for a graphical example). 

The recent developments in data science-based technologies opened the field of manufacturing to principles 

such as cloud- and smart-manufacturing, not only for the refinery industry87 but also for the pharmaceutical 

industry88. Kemppainen (2107) discussed the challenges and opportunities in transforming the pharmaceutical 

manufacturing industry by increasing digitalization.89 Already facilitated by the GMP companies collect a 

significant amount of manufacturing data presenting great opportunities towards digitalization. Traditionally, 

GMP regulates and records all the activities in the manufacturing practice of pharmaceutical products90; through 

the tracking of a large quantity of information, GMP aims at ensuring the safety of drugs for the patients. As 

mention in Chapter 1, the essential principles of GMP regarding data are the completeness, consistency, and 

accuracy of processes and products data, principles that are referred to as data integrity in the current GMP 

(cGMP).91 Currently, in the industry, practices that use manufacturing data, such as periodic reviews, projects 

and performance analyses, require extensive investment in understanding and manually tracking raw data—e.g., 

finding specific process information for a specific batch within the continuously recorded data. It is necessary 

to have not only reliable databases to guarantee data integrity, but also an automated data reporting system for 

preventing human errors. The application of data mining techniques has the potential to increase the efficiency 

of monitoring and to exploit manufacturing data with reduced human interactions. 
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At state of the art, the pharmaceutical industry faces three major questions in achieving such goals. The first 

is whether the advanced data-mining knowledge gathered in other industries in the last decade is leveraged 

efficiently; the second is whether the data currently recorded is qualitatively satisfactory to be used directly for 

decision-making, and the third is whether the morphology and the data are compatible with the existing batch 

isolation method, such as the tracking of flagships. 

First, the data recorded during production is often only used for monitoring, controlling and sometimes, 

improving operations. By contrast, in various fields of manufacturing, such as the assembly92, metallurgical93,94 

and textile95 industries, data mining approaches have been used extensively. Methods such as supervised and 

unsupervised machine learning and regression have been used for pattern recognition, classification and other 

types of knowledge extrapolation. Kusiak (2006) reviewed the advantages and challenges of data mining 

approaches in various types of manufacturing industries.96 Ma and Wang (2009) proposed a data mining 

algorithm for the automatic construction of decision trees that was applied to an analysis of process historical 

data from wastewater treatment plants.97 Simon and Hungerbühler (2010) compared the use of various 

intelligent pattern classifiers for the mining of an industrial batch dryer.98 

Second, the quality of mining activities is strongly dependent on the data quality. In fact, before applying 

any intelligent algorithm, the data often requires a preliminary “cleaning”.61 Differently to the operational 

disturbance, noise, defined in this study as the data points that do not describe commercial processes, is 

generated by the data collection system, which records data continuously without discriminating whether the 

data describe a commercial process or other events. Some examples of noise are data points generated during 

plant testing, maintenance, experimentation and in general noise is data recorded between commercial batches. 

For this reason, the transformation of raw data—e.g., timestamp, ID, and text in general91—into noise-free 

numerical data is also reviewed in this study. Data in text form, such as a string, are a common type of data used 

in computational biology, particularly in DNA sequencing99 and natural language recognition100. These studies 

base their findings on the so-called approximated string-matching algorithm developed by Ukkonen (1985),101 

which uses the Wagner–Fischer (WF) distance 102 of two strings to quantify their degree of similarity. Other 

applications of the WF distance in pattern recognition can be found, for example, in the work of Bunke and 

Csirik (1995).103 
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Third, data preprocessing can be a simple task if the data recording systems and dataset morphology provide 

the opportunity to track the process flag points—i.e., the process start and end; however, if such a function is 

not composed of the system’s functionalities, different approaches are needed to perform data processing in an 

automated and efficient manner. In this work, the manufacturing processes continuously produce two types of 

data: physical data and metadata in the form of timestamps consisting of execution time and task ID.104 

Consequent to the previously published study by the author29, which did not investigate the issue of data 

collection quality and integrity, the metadata are defined in this study as the raw data. 

Despite the abundance of studies in data mining, approaches for transforming raw data into clean data—i.e., 

data that are suitable for direct analysis—are rarely found in the literature, especially in pharmaceutical 

manufacturing. Meneghetti et al. (2016) presented in a proof-of-concept study a data mining-based algorithm 

for recognizing batches and process phases using data historians in DP manufacturing.105 Various limitations, 

which are often the case in biopharmaceutical DP manufacturing, were highlighted by the authors in the 

conclusion of that study. Examples of such limitations are the low classification accuracy in the presence of 

noisy data signals, the instability of isolating single batches and the unsatisfactory classification results because 

of a nonadaptive clustering algorithm. Such limitations can jeopardize the implementation of the algorithm in 

an automated manner, which is desirable. In a previous work of the author,29 the raw data were preprocessed 

manually because the morphology of the data did not allow the automation of the procedure, resulting in 

extensive time investment. 

In this study, a new algorithm for transforming raw data recorded in biopharmaceutical manufacturing into 

clean data in an automated manner was presented. The approach integrates natural language recognition and 

computational biology techniques, as well as machine learning for the selecting and filtering of noise from the 

raw data without the filtering of the operational disturbance. The resulting dataset only contains the information 

required for the decision-making when improving process performance and providing support to the operations 

considering operational uncertainty. Additionally, the practical use of the clean data in the analysis of process 

performance through an evolved Lean Six Sigma (LSS) approach is highlighted. The applicability of the 

algorithm to transform execution logs, the raw data, into the clean data and its usability in a commercial 

environment are shown in the industrial case study. 
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3.2 Definition of the algorithm 

 
Figure 3.1  Data preprocessing algorithm. 

The proposed approach consists of seven steps (see Figure 3.1). Namely, import raw data—i.e., execution 

logs—, stem raw data, sequence stemmed data, train classifier, filter noise data, cluster data by batch, and 

characterize batch. In step 4, the training of the classifier is performed only in case of absence of a classifier, or 

if the existing classifier does not match the required performance. The data resulting from the execution of the 

first six steps are free of noise and clustered by the batch, which allows direct analysis of further activities 
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without the need of additional pretreatment. As a visual aid, the summary of the algorithm and the 

transformation of the raw data in clean data is shown in Figure 3.2 

 

Figure 3.2  Summary of the algorithm applied to the raw data 

3.2.1 Import raw data (step 1) 

By choosing the time frame—i.e., the period for which the data to be preprocessed were recorded—and the 

resulting number of data points 𝑁0  (with 𝑛  as the counter), the data are selected from the manufacturing 

database 𝑴. The step imports all the time stamps, with data containing the time of execution 𝑡𝑛, the task ID 𝑖𝑑𝑛 

and a categorical variable called “the Process-Noise (PN)” class, 𝑃𝑁, for each data point. The PN class is 

manually evaluated to provide supervision, and is only used in the training of the classifier in step 4. The 

resulting dataset is referred to as “the raw dataset,” 𝑫. 

3.2.2 Stem raw data (step 2) 

In step 2, a stem process recipe is extrapolated, and the data from 𝑫 is stemmed; step 2 is only performed if the 

raw data are a record of multiple similar processes—e.g., pre-CIP/SIP, intra-CIP/SIP or post-CIP/SIP, three 

similar processes found in the industrial case study. If the process recipes differ in a way that the stem recipe 
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cannot be identified, the stemming is skipped and the single recipes are used to preprocess the data 

independently. Analogously to natural language processing, where words are stemmed to a common root,106 the 

stemming of the process recipes delivers a morphological root of the recipe, which is the common sequence of 

tasks among all processes (see Figure 3.3). 

 

Figure 3.3  Practical example of the stemming procedure (step 2), where dark and light gray tasks are stem 

tasks moreover, non-stem tasks of the process recipe, respectively 

Figure 3.3 shows a practical example of stemming three similar process recipes, where the tasks highlighted in 

light gray, namely Task C, Task D, Task E, Task F, Task H, and Task X, are not tasks in common and therefore 

are cut out. The stemming allows the processing of the entire dataset without the need of accounting for the 

presence of different process recipes, which would require applying the algorithm multiple times in parallel. 

After extrapolating the stem recipe, 𝑫 undergoes the same treatment, where tasks not belonging to the stem 

recipe are temporarily eliminated, resulting in the stemmed dataset 𝑫𝟏. 

3.2.3 Sequence stemmed data (step 3) 

The dataset 𝑫𝟏 is sequenced in step 3; in this work, sequencing is referred as the procedure that quantifies the 

heterogeneity of a sequence of tasks 𝑫𝟏 to the stem process recipe. The sequencing step consists of four main 

sub-steps: (3.1) find the Extremity Task Sequence (ETS), (3.2) calculate primer size, (3.3) calculate the Wagner–

Fischer distance 𝐷𝑛
WF of the primer from the dataset, and (3.4) calculate the heterogeneity coefficient 𝐻𝑛 (see 

Figure 3.4). For clarity, an explicative graphical representation of the entire sequencing algorithm is shown in 

Figure 3.7 and the end of the section and in addition a step-by-step tutorial on the sequencing algorithm is 

shown in the appendix (See Appendix D.1 Sequencing tutorial) 
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Figure 3.4  Diagram representing the sequencing step (step 3) of the algorithm 

3.2.3.1 Find ETS (step 3.1) 

In this step, 𝑫𝟏 is screened to locate the position of the ETSs, 𝑝ETS𝑗, where 𝑗 is the counter. In a manner similar 

to DNA, where the start and stop codons are the extremities of a gene,107 in this study, sETS and eETS are 

defined as the sequences of an 𝑠 number of tasks located at the start and end of the process recipe, respectively. 

The position 𝑝ETS𝑗 of the ETS 𝑗 is equal to the position 𝑝𝑛 of a data point in 𝑫𝟏 whenever 𝐷𝑛,𝑛+𝑠−1  
ETS  is equal to 

zero. The distance 𝐷𝑛,𝑛+𝑠−1  
ETS is defined as the WF distance between the ETS—i.e., a fragment of the process 

recipe—and a sequence of tasks of the same size belonging to 𝑫𝟏 starting from 𝑝𝑛. The distance 𝐷𝑛,𝑛+𝑠−1  
ETS  is 

quantified for every data point 𝑛 ∈ [1, 𝑁], with 𝑁 being the size of the dataset 𝑫𝟏. 

After executing step 3.1, it is possible to continue to step 3.2 only if at least one ETS is found. The absence 

of an ETS suggests that 𝑫𝟏 is too small and a full batch could not be identified in the selected time frame. In 

such a case, the algorithm asks to return to step 1, reselect a wider time interval and reimport a larger dataset 

from the database 𝑴. Step 3.1 is concluded by collecting the execution times of the tasks relative to 𝑝ETS𝑗 into 
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the set 𝛵ETS and by positioning s- and e-ETS on the dataset 𝑫𝟏, as shown in the summary representation (see 

Figure 3.7) 

3.2.3.2 Calculate primer size 𝑠𝑛
𝑝
 (step 3.2) 

The primer size 𝑠𝑛
p
 (not the ETS primer) is dynamically calculated at each point 𝑛 of 𝑫𝟏 following the algorithm 

shown in Figure 3.5. The dynamic calculation was adopted because it is known from the process that noise 

behaves differently according to its relative position to the ETSs—i.e., noise is mostly present between eETS 

and sETS (between batches), whereas operational disturbances are mostly present between sETS and eETS 

(within batches). 

 

Figure 3.5  Decision tree diagram used for the dynamic calculation of the primer size 𝑠𝑛
𝑝
. 

The distance of point 𝑛 to the nearest ETS, 𝑑𝑛
ETS, is calculated using Eq. (3.1) 

 
𝑑𝑛
ETS = min

𝑗
|𝑝𝑛 − 𝑝

ETS𝑗| 
(3.1) 

The primer size is calculated depending on the position of the point concerning the nearest ETS, according 

to Eqs. (3.2)–(3.4). The conditions highlighted in Figure 3.4 differentiate between the various possible locations 

of the analyzed point, before, after or inside the ETS. By knowing that ETSs are the boundaries of a batch, the 

calculation of 𝑠𝑛
p
 can differentiate between positions as follows. If condition 1 is true, the point is positioned 

inside the ETS and Eq. (3.2) is used to calculate the primer size; else, condition 2 is tested. 
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 𝑠𝑛
p
= 1 (3.2) 

If condition 2 is true, the sequenced point is located before any ETS and Eq. (3.3) is used. 

 
𝑠𝑛
p
= 𝑑𝑛

ETS + 1 (3.3) 

If condition 2 is false, the point is positioned after any ETS and therefore Eq. (3.4) is applied. 

 

𝑠𝑛
p
= ⌈(1 − exp {

−𝑑𝑛
𝐸𝑇𝑆

ℎ
}) 𝑠p,max⌉ (3.4) 

The parameters 𝑠p,max and ℎ are the maximal primer size and the rate of primer size change, respectively, and 

have to be specified by the user according to the case study, together with the parameter 𝑠. The selection of the 

primer size 𝑠𝑛
p
 is presented in Figure 3.7. 

3.2.3.3 Calculate WF distance between the primer and dataset (step 3.3.) 

 

Figure 3.6  Algorithm for calculating the minimum distance 𝐷𝑛
WF. 

The algorithmic procedure for calculating the minimal WF distance between the primer and the dataset 𝑫𝟏 is 

shown in Figure 3.6. In step 3.3.1, the primer with size 𝑠𝑛
p
 at position 𝑝𝑛 is defined as the fragment of the 
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process recipe from 𝑘 to 𝑘 + 𝑠𝑛
p
− 1 in a string vector—i.e., the vector components are in string form—; 𝑘 ∈

[1, 𝐾], is the counter of the tasks in the recipe and 𝐾 is the total number of tasks in the recipe. In step 3.3.2, the 

WF distance 𝐷𝑛,𝑘  
WF  between the primer and the data sequence is calculated at data point 𝑛 for each 𝑘; if 𝐷𝑛,𝑘

WF =

0 before 𝑘 ≥ 𝐾 − 𝑠𝑛
p
+ 1, the distances 𝐷𝑛,𝑘′

WF  for 𝑘′ > 𝑘 are set to 1 (step 3.3.3)—i.e., there is only one perfect 

match per sequence. In step 3.3.4, after calculating the 𝐷𝑛,𝑘  
WF  for each primer 𝑘, the minimum distance 𝐷𝑛

WF is 

calculated using Eq. (3.5) and is defined as the WF distance of the data point 𝑛 to the recipe. 

 𝐷𝑛
WF = min

𝑘
𝐷𝑛,𝑘
WF(𝑠𝑛

p
) (3.5)  

3.2.3.4 Calculate heterogeneity coefficient 𝐻𝑛 (step 3.4) 

The last step of the sequencing algorithm is the calculation of the heterogeneity coefficient 𝐻𝑛 (see Figure 3.7). 

The coefficient 𝐻𝑛 quantifies the difference of the dataset fragment from the nearest primer from 1 to 0, where 

1 stands for “different” and 0 for “identical”, respectively. The heterogeneity coefficient 𝐻𝑛 is defined as the 

WF distance 𝐷𝑛
WF normalized with the primer size 𝑠𝑛

p
, as shown in Eq. (3.6). 

 𝐻𝑛 =
𝐷𝑛
WF

𝑠𝑛
p  (3.6) 

The way the process recipe is used in the algorithm to calculate the heterogeneity coefficient of each data point 

of 𝑫𝟏 is shown in Figure 3.7. 
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Figure 3.7  Summary of the sequencing step 

3.2.4 Train classifier (step 4) 

In this step, supervised machine learning is applied to classify data points into process data and noise. A 

supervised classification is possible because the noise is defined precisely and the raw data can be manually 

labeled. The noise constitutes a substantial part of the dataset therefore unsupervised outlier detection is not 

employable; also other unsupervised techniques, such as clustering, are not applicable because they cannot 

ensure the integrity of the data. The detailed algorithm used in this step integrates the results of the sequencing 

with the historical information on the classifier (Figure 3.8). The algorithm consists of three sub-steps: select a 

classifier (4.1), select predictor and response (4.2) and train the classifier (4.3). 
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Figure 3.8  Algorithm for training the classification model. 

3.2.4.1 Select classifier (step 4.1) 

If no classifier is present, a classification model is selected in this step; examples of this are Decision Trees 

(DTs), support vector machines108 and artificial neural networks98. Because of its application in an industrial 

framework, the appropriate model is selected by criteria such as accuracy, precision, training and evaluation 

velocity, as well as simplicity. Generally, a DT classifier is simple, fast and does not present any limitations 

regarding the size of the dataset or in dealing with nonlinearity; the DT is the first choice in the selection of the 

classifier. If the DT classifier shows poor performance, a further step in the algorithm allows the iteration of 

this step (4.1) and the selection of a different classifier model. 

3.2.4.2 Select predictor (step 4.2) 

In this step, predictors are defined to classify the noise; the heterogeneity coefficient 𝐻𝑛, the primer size 𝑠𝑛
p
 and 

the process coordinate 𝜋𝑛 are selected as the initial/main predictors. The process coordinate of the primer, 𝜋𝑛, 

is defined as the starting position of the primer relative to the process recipe. The coordinate 𝜋𝑛 is calculated 
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for each data point 𝑛  of 𝑫𝟏  and is defined as the counter 𝑘  of the first task of the nearest primer—i.e., 

𝑘: {𝑘|min
𝑘
𝐷𝑛,𝑘
WF}—normalized with 𝐾 (see Eq. (3.7)). 

 𝜋𝑛 =
𝑘

𝐾
  (3.7) 

If during the utilization of the algorithm the quality of prediction does not match the expectation, additional 

predictors can be introduced to provide more information. 

3.2.4.3 Train classifier (step 4.3) 

The selected classifier is trained under supervision with a labeled training dataset, where the labels are PN 

classes, namely the response of the classification, 𝑃𝑁 ∈ {0,1}. The training strategies for achieving high-

performance classifiers are selected, examples of which are the selection of the training dataset size, which must 

be large enough to be representative of the process, and the type of validation—i.e., cross-validation or 

independent validation dataset. Further discussions on the strategy selection can be found elsewhere.98,105 

The model performance is evaluated by the F-score indicator, 𝐹𝑠𝑐𝑜𝑟𝑒, which is the harmonic mean of 

precision, 𝑃class, and recall, 𝑅class, or the prediction accuracy, 𝐴class. Each of these indicators is defined as in 

Eqs. (3.8)–(3.11), where 𝑪 is the confusion matrix (see Appendix, section A.1) of the PN classes, and 𝑁obs is 

the number of observations.109 

 𝑅class =
𝑪11

𝑪11 + 𝑪10
 (3.8) 

 

𝑃class =
𝑪11

𝑪11 + 𝑪01
 (3.9) 

 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ⋅
1

1
𝑅class

+
1

𝑃pass

 
(3.10) 

Additional considerations on the performance can be made to improve prediction quality and stability over time. 

The number of false-positive (𝑪10) and false-negative (𝑪01) terms can be controlled by assigning different 

weights to the cost matrix—i.e., a training parameter—used in the training of the classifier. As mentioned above 

 𝐴class =
𝑪11 + 𝑪00
𝑁obs

 (3.11) 
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(see Select classifier (step 4.1)) in the case of poor performance, either extensive training or the selection of a 

new classifier model is required. 

3.2.5 Filter data (step 5) 

The classifier is used to classify the data in the two PN classes. A value 𝑃𝑁 ∈ {0,1} is assigned to each data 

point; the data points with 𝑃𝑁 = 1 are classified as “noise,” and those with 𝑃𝑁 = 0 are classified as “process.” 

Noise is removed from the dataset 𝑫𝟏, resulting in the noise-free dataset 𝑫𝟐with length 𝑁̃. 

3.2.6 Cluster data by batch (step 6) 

The data that are free of noise is first clustered (step 6.2) with an unsupervised approach and subsequently 

reordered (step 6.3). The method of k-means clustering is applied iteratively to cluster the data points by batch. 

The sub-algorithm used for isolating single batches from 𝑫𝟐 is shown in Figure 3.9. 

 

Figure 3.9  Algorithm used for clustering data points in batches. 

The algorithm uses an iterative procedure to identify the number of batches executed in the time interval being 

analyzed. 
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First, the total number of clusters —i.e., the number of batches—is estimated; as an indication, the number 

of sETS is an appropriate first estimation. Second, the k-means clustering algorithm presented by Macqueen 

(1967) is applied;110 the two-dimensional k-means clustering mechanism uses the execution time 𝑡𝑛 of each 

task—i.e., of each data point 𝑛 —as one of the dimensions. The other dimension used in the clustering is the 

normalized position of the task in the recipe, namely the process coordinate 𝜋𝑛. The clusters are defined as sets 

𝐶𝑖, with 𝑖 ∈ [1, Γ] containing the data points from 𝑫𝟐 as the result. Third, a reordering algorithm (see Table 

3.1), imposes on each cluster 𝐶𝑖, except for the first one, 𝐶1, an sETS data point at its lowest extremity; the 

algorithm enforces a clear split between batches in a supervised way. The first cluster is excluded because the 

starting time of the imported raw dataset does not necessarily coincide with an sETS. Because the operational 

disturbance is still present in the data set, not every sETS implies the beginning of a commercial batch. The 

semi supervised clustering approach is necessary because failure can cause the repetition of the whole process, 

including the setting of sETS. 

Table 3.1  Algorithm used to reorder the clusters into batches. 

define 𝑡𝑢,𝑖 where 𝑢 is the position of the data point inside the cluster 𝑖 (containing 𝑈 number of points) for 

each 𝑛 ∈ 𝐶𝑖 

    for each 𝑖 > 1 and while 𝑡1,𝑖 ∉ 𝛵
ETS 

        set 𝑡𝑈,𝑖−1 = 𝑡1,𝑖  

        set 𝑡1,𝑖 = 𝑡2,𝑖  

        for each 𝑢 > 1, 𝑡𝑢,𝑖 = 𝑡𝑢−1,𝑖  

        return 

    return 

return 𝐶𝑖 

Each cluster is analyzed to identify the number of batches, and if a cluster contains more than one eETS, the 

algorithm will suggest increasing the initial ; two different batches might be assigned to a single cluster. 

Likewise, if a cluster does not contain any, one batch is probably split into two clusters, and the algorithm will 

suggest decreasing the initial . In both cases, the algorithm is iterated from step 6.1 until the conditions are 

satisfied. 
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After concluding the clustering, the time extrema—i.e., 𝑡1,𝑖 and 𝑡𝑈,𝑖—of each cluster 𝑖 determine the start 

and end of each batch. These boundaries are used to re-gather the points, which were removed by the stemming, 

belonging to each batch from the dataset 𝑫. 

3.2.7 Characterize batch (step 7) 

After clustering, each batch is characterized by identifying the process type—e.g., pre-, intra- and post-

CIP/SIP—through a string search. Subsequently, the data points related to operational uncertainty are identified 

and labeled as repetition, remedy and alarm points, whereas normally executed tasks are labeled as normal. The 

time lost because of operational uncertainty is quantified and presented as an additional result of the step. 

3.3 Preliminary study 

The presented algorithm was applied to preprocess the raw manufacturing records of an industrial CIP/SIP 

process. Speed, prediction quality and stability over time are essential factors in developing an algorithm 

applicable to the industry. Hence, the effects of various parameters on these factors were analyzed as a 

preliminary study aimed at an efficient design of the algorithm. 

3.3.1 Speed and prediction quality 

In the first study, the effect of the two sequencing parameters, 𝑠 and 𝑠p,max, on the computational time for 

sequencing and prediction quality was analyzed in a multiobjective evaluation. Long computational times were 

foreseen for calculating the distance between the (relatively large) strings. The computational time complexity 

of the approximated string-matching algorithm was reported using the computational order, 𝑂(𝑚 ∙ 𝑚′), 103,111, 

where 𝑚 and 𝑚′ were the lengths of the two strings compared. In fact, after a preliminary testing phase, it was 

confirmed that the sequencing algorithm, and, in particular, the calculation of WF distances, was the speed 

bottleneck for the entire algorithm. For industrial use, however, a short computational time is preferable, 

especially if the algorithm is used to preprocess big datasets (~60,000 data points in one year of data). 

The quality of the prediction was evaluated by the F-score, which in turn was analyzed by changing the 

combination of the sequencing parameters to determine the most suitable design. From the training dataset, 
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fragments of 3,000 data points were randomly selected (10,000 iterations), and their predictors were used to 

train and validate the DT classifier (10-fold cross-validation). 

The results of the previous preliminary analyses were combined in a multiobjective evaluation, where a low 

computational time and high F-scores were desired; the cumulative cost presented in Eq. (3.12) was used for 

the evaluation. 

 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  𝑡𝑖𝑚𝑒′ + (
1

𝐹𝑠𝑐𝑜𝑟𝑒
)
′

 (3.12) 

 

Figure 3.10  Multiobjective evaluation of ETS and maximum primer sizes. 

The result of the multiobjective evaluation (see Figure 3.10) presents the scaled cumulative cost; the minimum 

of this cost was found with the values 𝑠 = 4 and 𝑠p,max = 20. In addition, a simple sensitivity analysis that 

considered the response and computational efforts found that the value of parameter ℎ was 25. 

3.3.2 Stability over time 

Continuous process improvement in manufacturing is usually accompanied by process modification, which 

sometimes leads to a change in the behavior of the data recorded during production. In the pharmaceutical 
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industry, the performance of manufacturing facilities is continuously improved for optimality.104,112 In this 

concern, a control strategy—i.e., retraining strategy—of the algorithm performance is needed, requiring a 

minimal human intervention—e.g., labeling data. 

The stability over time of the prediction performance was evaluated, and the result is shown in Figure 3.11. 

 

Figure 3.11  Analysis of the stability of the predicted quality over time. 

It can be observed that after 1,500 h, the predicted performance decreased, suggesting the need for retraining. 

Therefore, to guarantee time-stability and high-performance, the interval for retraining the model using labeled 

records from recent batches was set at 1,500 h. The reason of approximately 3 months of model stability could 

be attributed to the continuous manipulation on the plant during the setup and format change operations; it was 

hypothesized that the manipulation of could have induced trends in the data over, which resulted in the 

divergence of the predictor from the training dataset. Additional analyses would be required to investigate the 

real reason of the drop in stability of the model, or process drift; however, because it is not the main scope of 

the thesis, the analysis is not shown in this work. 
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3.4 Application of the algorithm to commercial data 

The algorithm was applied to three sets of data, each representing a 2-month record from a commercial CIP/SIP 

process. No retraining was required within each dataset because the timespan of the raw data was shorter than 

1,500 h. 

3.4.1 Import raw data (step 1) 

The manufacturing data was imported, evaluated, classified, and categorized. The imported datasets are listed 

in Table 3.2. 

Table 3.2  Import information of the datasets 

Dataset ID 𝑵𝐨 Timespan [h] Execution period 

𝑫-1 10,018 1,415 March–April 

𝑫-2 8,696 1,462 June–July 

𝑫-3 10,918 1,451 October–November 

3.4.2 Stem raw data (step 2) 

A stem recipe was created from the pre-, intra- and post-CIP/SIP recipes using the set logic operations shown 

by Eq. (3.13): 

 

{
 
 

 
 
𝑅stem ⊆ 𝑅pre     (252 tasks)                       

𝑅stem ⊆ 𝑅intra   (186 tasks)         

𝑅stem ⊆ 𝑅post    (180 tasks)         
              

𝑅stem = 𝑅pre ∩ 𝑅intra ∩ 𝑅post                    

𝑅elim = 𝑅stem  △ (𝑅pre ∪ 𝑅intra ∪ 𝑅post)

 (3.131) 

𝑅stem is the set containing the task IDs of the stem recipe. The sets 𝑅pre, 𝑅intra and 𝑅post contain the task IDs 

of the recipes of the pre-, intra- and post-CIP/SIP processes, respectively; 𝑅elim is the set containing the IDs of 

the tasks eliminated during the stemming process. 

The sets 𝑅stem and 𝑅elim  contained 165 and 108 task IDs, respectively. Data points that their 𝑖𝑑𝑛  were 

contained in 𝑅elim, were eliminated from the raw datasets 𝑫-1, 𝑫-2 and 𝑫-3, resulting in the datasets 𝑫𝟏-1, 𝑫𝟏-

2 and 𝑫𝟏-3 with sizes of 8,254, 6,969 and 8,762 data points, respectively. 
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3.4.3 Sequence stemmed data (step 3) 

The data was sequenced using the optimal design found in the preliminary study (see section Preliminary study). 

The numbers of sETSs and eETSs of these sets are presented in Table 3.3. 

Table 3.3  Number of the identified sETS and eETS. 

Dataset ID Number of sETS Number of eETS 

𝑫𝟏-1 43 35 

𝑫𝟏-2 38 29 

𝑫𝟏-3 43 35 

From Table 3.3, it is notable that the number of sETSs and eETS in each dataset is different. The difference 

was attributed to operational uncertainty, failures in and repetitions of tasks, which resulted in fewer eETS than 

sETS. 

The datasets were sequenced and the heterogeneity coefficients 𝐻𝑛  were calculated; as a result of the 

sequencing, the tuples of the predictors 𝑠𝑛
p
, 𝐻𝑛 and 𝜋𝑛 could be obtained for each point 𝑛 of the dataset. 

3.4.4 Train classifier (step 4) 

The DT classifiers were trained, and the training datasets and subsets of the three datasets were used to train the 

model (maximum number of splits = 10, cost matrix [
0 1
10 0

]). The training datasets were manually classified 

by defining the PN class for each data point. Ten-fold cross-validation was used to validate the classifier, and 

the F-score was used to characterize its performance. A summary of the training activity performed in this step 

is given in Table 3.4. 

Table 3.4  Summary of the activity in step 4. 

Dataset ID 𝑵 Training subset size F-score Error 

𝑫𝟏-1 8,254 3,000 0.9910 0.0153 

𝑫𝟏-2 6,969 3,000 0.9911 0.0143 

𝑫𝟏-3 8,762 3,000 0.9952 0.0063 

Table 3.4 shows that the classifier was validated, and exhibited very high performance in each case.  
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3.4.5 Filter data (step 5) 

 

Figure 3.12  The result of the classification; data classified as “noise” (crosses) and as “process” (circles) are 

divided by the decision boundary. 

The classification results of the dataset 𝑫𝟏-1, of size 𝑁, in which each data point is plotted as the combination 

of 𝑠𝑛
p
 and 𝐻𝑛 are shown in Figure 3.12. The results for the other datasets, 𝑫𝟏-2 and 𝑫𝟏-3, are found in the 

appendix (see Figure A.1). The classifier delivered a net classification, i.e., a clean decision boundary that 

allowed deleting the data points classified as noise from the datasets, and shrinking in their sizes to 𝑁̃, yielding 

the noise-free datasets 𝑫𝟐-1, 𝑫𝟐-2 and 𝑫𝟐-3. The result of the classification is shown in Table 3.5, which lists 

the percentage of shrinking from the raw datasets 𝑫-1, 𝑫-2 and 𝑫-3. 

Table 3.5  Summary of the result of step 5 

Dataset ID 𝑁̃ Percentage of shrinking 

𝑫𝟐-1 6,775 32% 

𝑫𝟐-2 5,456 37% 

𝑫𝟐-3 6,596 39% 
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From the percentage of shrinkage, it is notable that 30–40% of the data was not essential; hence, a large part of 

the data could potentially jeopardize the success of the preprocessing. 

3.4.6 Cluster data by batch (step 6) 

On the shop floor, the commercial CIP/SIP batches are executed at different times and are usually separated by 

sterile filling or time-consuming setup operations. Thus, time was used as the first clustering dimension, and 𝜋𝑛 

as the second dimension. The results of the clustering on the datasets 𝑫𝟐-1, 𝑫𝟐-2 and 𝑫𝟐-3 are shown in Figure 

3.13 (see section Cluster data by batch (step 6)). In this figure, each gray area represents one cluster, i.e., one 

batch. In Figure 3.13, the whole raw dataset 𝑫-1 was plotted to give a complete image of the outcome of the 

first six steps of the algorithm (for sets 𝑫-2 and 𝑫-3, see Figure A.2 in the appendix). 

 

Figure 3.13  The result of clustering on dataset 𝑫-1. 

3.4.7 Characterize batch (step 7) 

After isolating the batches, the process type of each batch was identified by recognizing specific tasks using set 

logic; the algorithm is presented in Table 3.6. The results are shown in Figure 3.13, where pre-, intra- and post-

CIP/SIP are highlighted in red, green and blue, respectively. 



Chapter 3 

56 

 

Table 3.6  Algorithm used to characterize the process type. 

If ∃𝑛 ∈ 𝐶𝑖  | 𝑖𝑑𝑛  ∈ {𝑅𝑝𝑟𝑒 ∖ (𝑅𝑖𝑛𝑡𝑟𝑎 ∪ 𝑅𝑝𝑜𝑠𝑡)}; 

𝐶𝑖 is pre-CIP/SIP 

If else ∃𝑛 ∈ 𝐶𝑖 | 𝑖𝑑𝑛  ∈ {𝑅𝑖𝑛𝑡𝑟𝑎 ∖ (𝑅𝑝𝑟𝑒 ∪ 𝑅𝑝𝑜𝑠𝑡)}; 

𝐶𝑖 is intra-CIP/SIP 

If else ∃𝑛 ∈ 𝐶𝑖 | 𝑖𝑑𝑛  ∈ {𝑅𝑝𝑜𝑠𝑡 ∖ (𝑅𝑝𝑟𝑒 ∪ 𝑅𝑖𝑛𝑡𝑟𝑎)}; 

𝐶𝑖 is post-CIP/SIP 

end 

In addition to identifying the process type, the data conditioned by operational uncertainty was labeled as 

repetition, remedy or alarm. Whenever a failure occurs in the execution of a task, the process stops, and an 

alarm is automatically turned on—i.e., an alarm task is executed—; the alarm stays “on” until the remedy 

operations start. All alarm tasks, such as “Stop during decontamination,” “Stop during rising” or “Stop during 

drying” are listed on the alarm list. Because of GMP, remedy operations are always preceded by an alarm, and 

in the case of failure, the set of predefined tasks that preceded the failing tasks is repeated. In summary, because 

of GMP, the actions to be taken in case of failure are known and predefined; hence, the search of alarms in the 

dataset was done through conditional reasoning (the algorithm is shown in the appendix, section A.3). 

The output of this step and the overall output of the algorithm, namely the clean data, is a structured dataset 

divided into batches; for each batch, the process type is indicated, and the tasks are labeled. 

3.5 Results of the implementation 

The algorithm could be implemented with historical data from 6 months of production. As a validation of the 

algorithm, the result was compared with the outcome of the same evaluation that was manually performed. The 

manual evaluation of 29,632 data points took approximately 24 h, whereas the automated evaluation of the same 

dataset (𝑫-1, 𝑫-2 and 𝑫-3) took 66 min (–86.2%), 56 min (–88.3%) and 140 min (–70.8%), respectively, with 

Intel® Core i5 2.3GHz, 8 RAM. The algorithm performance was measured with three indicators, namely the 

total yield, the batch deviation, and third, the misclassification; the indicators compared the outcomes of the 

automated and the manual pre-processing, the latter being the current practice. The first is defined as defined as 
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the ratio of number of batches identified by the algorithm and by the current practice; the second is defined as 

the time deviation between the duration of a batch recognized by the algorithm in the real duration of a batch. 

The last indicator is defined as the ratio of misclassified data points and the total number of the evaluated points. 

Table 3.7 shows a summary of the algorithm performance indicators for the three datasets. The detailed 

performance analysis is shown in Tables. A.1–A.3 in the appendix. 

Table 3.7  Results of the performance of the algorithm. 

Dataset ID Yield Mean batch deviation Median batch deviation Misclassification rate 

𝑫-1 97% 29119% 0.03% 4.1% 

𝑫-2 94% 5.816% 0.02% 1.1% 

𝑫-3 95% 1.34.6% 0.03% 1.5% 

Table 3.7 shows high yields in general, indicating that the algorithm is capable of recognizing single batches 

inside a continuously measured dataset. The mean batch deviation and the misclassification rate appear to be 

relatively high for 𝑫-1, whereas the median batch deviation is comparable with the other datasets. Analyzing 

the single performance of each batch in 𝑫-1, it is notable that 10% of the batches show an extremely high 

deviation. The special cause for this high deviation was the plant maintenance performed in January and 

February. Thus, it can be concluded that the algorithm is generally valid, but requires more attention when 

dealing with records generated by a still unstable process, as it is the case shortly after the maintenance. 

3.6 Novelties and limitations of the algorithm 

Our approach presented mainly four novelties: First, the analogy between the time series of batches and the 

DNA strain allowed the integration of well-established and robust approaches, such as approximate string 

matching in the supervised removal of noise from manufacturing records. Second, the definition of two types 

of data disturbance, operational disturbance, and noise, differentiates the disturbance caused by the operations 

and the noise that is dependent on the continuous data recording system. Such differentiation supports 

recognizing and isolating data that originated from operational uncertainty in the process. Third, the adaptive 

clustering algorithm, in step 6, recognizes single batches without the need of the number of batches contained 

in the dataset as input; such information is usually required for k-means clustering. Finally, compared with tools 
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used in database management and data retrieval, such as structured query language, the presented algorithm can 

deal with uncertainty to robustly isolate processes from continuously measured datasets. 

The novel algorithm also introduced various improvements compared with manual preprocessing. The 

manual procedure required a long time to preprocess the data and such a time investment could render immediate 

retrospective analysis and even process monitoring prohibitive. By contrast, the relatively short processing time 

presented in this work showed the potential applicability of the automated preprocess algorithm on the shop 

floor. The introduction of automation not only reduces the risk of corrupting the integrity of sensitive data but 

also possibly facilitates the fast retrieval of data during reviews and inspections by regulatory agencies such as 

United States Food and Drug Administration (FDA), as mentioned by Meneghetti et al. (2016).105 

Limitations could be found in the use of the algorithm in day-to-day operations. First, the execution time 

required in the sequencing step is still long, and this limits the speed of providing an online result; second, the 

rapidity of the preprocessing is further reduced if the stemming step is not possible because of the presence of 

multiple non-similar recipes, resulting in the iteration of the algorithm. Third, the algorithm required a large 

amount of data to deliver meaningful results. Because of such limitations, at state of the art, the algorithm can 

only be applied for process monitoring and retrospective analyses. 

3.7 Alternative utilization of the clean data in the context of operations support 

The outcome of the algorithm, the clean data, finds potential application in the current trending and monitoring 

practices, as well as in support of decision-making in process improvement. Root Cause Analysis (RCA) is a 

commonly used method performed by technicians in the industry whenever process failures occur, and their 

outcomes are recorded in a database according to cGMP guidelines. As an alternative utilization, the clean data 

were incorporated into the RCA to create a quantitative RCA. Two Ishikawa representations of the process 

failure for the previous 6 months of operations based on the 6M-model 113 are shown in Figure 3.14. 
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Figure 3.14  Cumulative (top) and evolutionary (bottom) fishbone diagrams. 

In the cumulative fishbone diagram (Figure 3.14), the thickness of the “bones” represents the cumulative 

impact of the category—i.e., machine, material, measurement, maintenance, man, and process—and the root 

cause—e.g., electronic, design or breakage—of the failures. Such a representation facilitates the fast recognition 

of important causes of failures. The evolutionary diagram (see Figure 3.14, bottom) presents a time evolution 

of the causes of failures. Each “bone,” main and secondary, of the diagram represents a time axis (from 𝑡 = 0 

to 𝑡), which evolves from the stem to the tip of the “bone”. The implementation of this RCA tool can standardize 

the outcome of the analysis by removing subjective factors in the analysis, such as naming inconsistencies—

e.g., “man,” “human” and “operator” as synonyms. The automated integration in the RCA and the impact 

quantification provides a simple measure to quantify priorities in decision-making. 
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3.8 Conclusion 

In this chapter, an algorithmic approach for the preprocessing of manufacturing records in biopharmaceutical 

manufacturing while considering operational uncertainty was presented. The algorithm can automate the 

identification of batches within a continuously measured historical record and the translation of the record in 

the form of timestamps—i.e., tuples of natural language and time information—into clean data. DNA-like 

sequencing techniques, such as the approximate string-matching algorithm, were used to transform natural 

language data into quantitative data. Such data were subsequently used for the classification of noise by 

supervised machine learning, with the use of DT models. After clustering the noise-free dataset into single 

batches, the impact of operational uncertainty was characterized. The outcome of the characterization was the 

isolation of the time invested in operations that are not expected in the normal operational framework but could 

be attributed to the presence of failures in the process. Additionally, two novel graphical representation methods, 

namely the cumulative and evolutionary Ishikawa diagrams, have been developed to facilitate a rapid and 

structured way to integrate process data and practitioner analyses in decision-making. 

In the preliminary study, the algorithm’s precision, speed, and stability over time were assessed for selecting 

the best combination of parameters to be applied in the case study. Then, the algorithm was demonstrated using 

three 2-month historical datasets of a CIP/SIP process in a sterile biopharmaceutics DP manufacturing factory. 

The algorithm reduced the time down to 11.7% compared with manual data preprocessing, while maintaining 

high data quality and integrity. The clean data were then exploited in the newly developed RCA with yielding 

quantitative and chronological insights for improving the operations. 

The algorithm presents some limitations regarding the processing speed and minimum data amount 

requirement to be applicable to real-time operations on the shop floor. However, the capability to generate clean 

data in an automated manner opens opportunities in the analysis of process data. The presented work is a 

preliminary study on the digitalization of biopharmaceutical manufacturing process and is necessary for the 

introduction of Industry 4.0 and Smart Manufacturing concepts in this industry (see Chapter 5). The output of 

the algorithm is used in Chapter 4 and Chapter 5 as an input for the performance assessment and the failure 

prediction. 
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3.9 Nomenclature 

𝐴class Accuracy of the DT classifier – 

𝑪 Confusion matrix  

𝐶𝑖 Cluster 𝑖  

𝑑𝑛
ETS Distance of data point 𝑛 from the nearest ETS – 

𝑫 Raw dataset of size 𝑁𝑜  

𝑫𝟏 Stemmed dataset of size 𝑁  

𝑫𝟐 Stemmed and noise-free dataset of size 𝑁̃  

𝐷𝑛
WF WF distance at between primer and dataset at data point 𝑛 – 

𝐷𝑛,𝑛+𝑠−1  
ETS  WF distance at between ETS primer and dataset at data point 𝑛 – 

𝐷𝑛,𝑘  
WF  WF distance at between primer and dataset at data point 𝑛 – 

𝐹𝑠𝑐𝑜𝑟𝑒 F-score of the DT classifier – 

Γ Total number of clusters – 

ℎ Change velocity factor of the primer size – 

𝐻𝑛 Heterogeneity coefficient of data point 𝑛 – 

𝑖𝑑𝑛 Task ID of data point 𝑛  

𝑘 Position in the process recipe  

𝐾 Total number of tasks in the process recipe – 

𝑴 Manufacturing database  

𝑚 General length of a string – 

𝑚′ General length of a string – 

𝑛 Counter of data points used in the dataset – 

𝑁 Size of the stemmed dataset – 

𝑁𝑜 Size of the raw dataset – 

𝑁̃ Size of the stemmed and noise free dataset – 

𝑁obs Size of the dataset for the validation of the DT classifier – 
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𝑂 Computational order of the approximate string matching 

algorithm 

 

𝑝ETS𝑗 Position of the ETS 𝑗 with respect to the dataset  

𝑝𝑛 Position of data point 𝑛  

𝜋𝑛 Process coordinate for data point 𝑛 – 

𝑃class Precision of the DT classifier – 

𝑃𝑁 Process-Noise class  

𝑅class Recall of the DT classifier – 

𝑅stem Set containing the task IDs of the stemmed process recipe  

𝑅pre Set containing the task IDs of the process recipe for pre-CIP/SIP  

𝑅intra Set containing the task IDs of the process recipe for intra-

CIP/SIP 

 

𝑅post  Set containing the task IDs of the process recipe for post-CIP/SIP  

𝑅elim Set containing the task IDs not contained in the stemmed process 

recipe 

 

𝑠 Size of the ETS primer – 

s𝑛
p
 Size of the primer for data point 𝑛 – 

𝑠p,max Maximum primer size – 

𝑡𝑛 Execution time of data point 𝑛 h 

𝑡𝑢,𝑖 Execution time of data point 𝑢 in cluster 𝑖 h 

𝛵ETS Set containing the ETS execution times  

𝑈 Total number of points contained in each cluster 𝐶𝑖 – 

𝑢 Counter of data points inside each cluster 𝐶𝑖  
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4.1 Introduction 

As mentioned in the introduction, characteristics, as can be seen in CIP/SIP such as semiautomation, time 

intensity, and the need to follow GMP, can all make process improvement challenging. For CIP/SIP, both 

mechanical issues and operator behavior could lead to success or failure of the process, and variability in the 

process regardless of its success or failure. Both nonroutine events producing process failure and process 

variability can lead to operational uncertainty and affect process performance. Another important characteristic 

that needs to be considered is GMP. The FDA (2016) and other national authorities supervise manufacturing 

processes to guarantee that pharmaceutical products are of high quality.90 In modifying commercial processes, 

GMP requires time- and resource-intensive revalidation and requalification procedures,19 which hinder 

substantial changes in the process even when the change itself is beneficial. In the case of CIP/SIP, modifications 

of the task sequences would have to go through the validation procedures independently of the increase in 

process performance. Operational uncertainty and GMP, therefore, need to be considered when seeking to 

improve process performance in the manufacturing of biopharmaceutical DPs. 

Generally, approaches such as Lean Manufacturing and Lean Six Sigma (LSS) are pillars for the continuous 

improvement of process performance and have been applied in the pharmaceutical industry.26,114 LSS is a 

collection of managerial and statistical methods such as Shewhart’s control charts, root cause analysis, and value 

stream mapping that are applied to reduce variability and waste in manufacturing processes.115,116 For example, 

Dassau et al. (2006) combined LSS with design and control approaches for yield enhancement in 

biopharmaceutical DS manufacturing,117 and Boltic et al. (2016) showed the effectiveness of LSS in improving 

quality assurance in small-molecule DS manufacturing.112 These studies applied well-known industrial 

approaches for process performance improvement but lacked a rigorous description of the complex 

pharmaceutical environment in which these processes occurred. 

Besides LSS, modeling, simulation, and optimization, which have always been the core of (PSE), are applied 

intensively in drug manufacturing.54,118,119 Reklaitis et al. described the challenges faced by the industry in 

process development and optimization as an opportunity for PSE research.120 Sundaramoorthy et al. (2012) 

developed an uncertainty-conscious framework for capacity optimization in a pharmaceutical supply chain;121 

Costa (2015) solved a scheduling problem in pharmaceutical batch processes by means of hybrid genetic 
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optimization;122 and Singh et al. (2014) proposed a hybrid control system combining model predictive control 

with proportional–integral–derivative control for continuous tablet manufacturing.60 In recent years, researchers 

have intensively focused on the deterministic description and modeling of drug manufacturing processes, more 

specifically for small molecules. Jolliffe and Gerogiorgis (2015 and 2016) presented economic and 

environmental feasibility studies of continuous manufacturing processes of ibuprofen and artemisinin.123,124 

Rogers and Ierapetritou (2014) reported the potential for the industry to apply deterministic modeling and 

optimization through a case study in DP manufacturing.74 Boukouvala et al. (2012) proposed an approach that 

applies flowsheet modeling and sensitivity analysis to analyze the efficiency and robustness of DP 

manufacturing.59 

Currently, sensitivity and uncertainty are core topics in the field of PSE. Among other sensitivity analysis 

techniques, Global Sensitivity Analysis (GSA)—e.g., Sobol’s index sensitivity analysis—is a broadly used 

technique for identifying factors that influence process performance, and for the characterization of 

uncertainty.125 Bahakim et al. (2018) studied the optimal design of large-scale chemical processes under 

uncertainty using a ranking-based approach.126 Cadini and Gioletta (2016) proposed an algorithm based on 

stochastic simulation for estimating failure probabilities of systems affected by uncertainty and applied the 

algorithm to two case studies.127 In two review papers, Grossman et al. (2005 and 2016) emphasized the 

importance of enterprise-wide optimization and the advances in mathematical programming techniques for 

optimizing process systems under uncertainty.128,129 Applequist et al. (2000) as well mentioned the importance 

of uncertainty and risk in designing and managing supply chains in chemical manufacturing.130 Turning to 

research specifically on pharmaceutical manufacturing, Chhatre et al. (2008) represented uncertainty and 

utilized GSA in purification processes for polyclonal antibodies.131 Lakhdar and Papageorgiou (2008) presented 

a specific mathematical programming approach for planning biopharmaceutical manufacturing under 

uncertainty.132 Lakerveld et al. (2013) applied sensitivity analysis to identify parameters affecting critical quality 

attributes in a model-based design of a plant-wide control strategy for a continuous pharmaceutical plant.133 

Most recently, Li and Venkatasubramanian (2016) proposed a Bayesian approach for predicting the 

performance of upcoming batches by leveraging historical data in biopharmaceutical DS manufacturing.134 
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Beyond the development and application of the individual methods reviewed above, some authors have 

advanced the research to create integrated methodologies or frameworks for process performance improvement. 

Garcia-Munoz and Mercado presented a method of raw materials selection using mixed integer nonlinear 

programming and multivariate latent variable regression models in small-molecule DP manufacturing.135 Casola 

et al. (2015) also focused on small-molecule DS manufacturing, and proposed a systematic procedure of process 

modeling for process retrofitting.136 Eberle et al. (2014) presented an approach based on Monte Carlo Simulation 

(MCS) to reduce the lead time in DP manufacturing activities, such as compounding, filling, inspection, and 

quality assurance.104 However, these contributions share a shortcoming, in that uncertainty of the process and 

the constraints of GMP are not in the foreground of the methodology, even though these factors are inevitable 

challenges in process performance improvement. 

In this chapter, a methodology for the assessment of process performance in biopharmaceutical DP 

manufacturing that integrates operational uncertainty and GMP regulations is presented. The methodology is 

described as an activity model using the type 0 Integrated Definition (IDEF0) functional modeling method, 

which systematically interconnects information, tools, and activities.137 In executing the methodology, a hybrid 

stochastic-deterministic model for describing operational uncertainty and GMP-related factors that can affect 

process performance is created. MCS is one of the key mechanisms used to propagate and reflect operational 

uncertainty in the assessment result. The combination of stochastic simulation and GSA—e.g., Partial Rank 

Correlation Coefficients (PRCCs)—quantitatively measures the effects of individual contributions to the overall 

process performance. Tailored indicators were developed to consider factors that are essential in decision-

making on the shop-floor level, such as the effort required for process validation, or the risk of overestimating 

the benefits. As a case study, the methodology was applied to a CIP/SIP process in a commercial facility for 

biopharmaceutical DP manufacturing. The author have presented a previous version of the methodology in part 

in a six-page conference proceedings paper,138 but this paper presents the complete work with full details. 
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4.2 Methodology 

Figure 4.1 displays the developed methodology using IDEF0, a general explanation of which is presented in 

the Appendix (see Appendix D.2 IDEF0). The top activity (top), A0, takes raw manufacturing data as an input 

(the arrow from the left to the box) and delivers “tasks to improve” and “scenario evaluation” as outputs (arrows 

from the box to the right). The activity defines literature, modelling know-how, the data management system, 

fitting and statistical tools, the GMP documentation system, GSA, and MCS as mechanisms (the arrows from 

the bottom to the box), and industrial needs and interests, process recipes, the data collection policy, validation 

conditions, the GMP validation plan, industrial process knowledge, and decision criteria as controls (arrows 

from the top to the box). Activity A0 (upper middle, Figure 4.1) consists of six subactivities, namely “define 

Key Performance Indicators (KPIs) (A1),” “create an initial process performance model (A2),” “collect and 

adapt data (A3),” “characterize the process performance model (A4),” “identify tasks to improve (A5),” and 

“perform what-if analysis (A6).” 
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Figure 4.1  IDEF0 representation of the process performance assessment methodology. The layers are shown  

hierarchically: The top layers (top), the A0 (upper middle), the A4 (lower middle), the A5 (bottom) layer 

 

4.2.1 Define KPI (activity A1) 

In activity A1, KPI is defined according to industrial needs and interests. Examples of KPIs in biopharmaceutical 

DP could be runtime, product loss, and energy consumption, which reflect productivity, capacity, and 

environmental impact, respectively. Literature and modeling know-how can be referred to as mechanisms to 

define an appropriate KPI. 

4.2.2 Create an initial process performance model (activity A2) 

In activity A2, the initial process performance model is created through modeling know-how under the control 

of the process recipe as well as the previously defined KPIs. Usually, the nature of process models is either 

deterministic—e.g., first-principles models—or stochastic—e.g., black box models or metamodels—depending 

on the KPIs. However, to account for operational uncertainty, this work introduces the use of a so-called “hybrid 

stochastic-deterministic model”139 that can be formulated as: 
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 𝐾𝑃𝐼 =  ∑(1 + 𝑞𝑘) ⋅ 𝐾𝑃𝐼𝑘

𝐾

𝑘=1

 (4.1) 

where 𝐾 represents the total number of tasks, 𝑞𝑘  is the counter representing the number of times task 𝑘 is 

repeated because of failures, and 𝐾𝑃𝐼𝑘 is the KPI specific to task 𝑘. Depending on the level of automation of 

the task, 𝐾𝑃𝐼𝑘 can be either distributed or constant. The use of Eq. (4.1) is suitable for KPIs that describe 

additive quantities, such as time, mass, or energy. 

4.2.3 Collect and adapt data (activity A3) 

In activity A3, raw manufacturing data are collected from a data management system such as a Manufacturing 

Execution System (MES), sorted, and adapted to the purpose of the model. The activity removes extreme 

outliers and noise from the raw dataset under the control of the data collection policy and delivers two labeled 

datasets, namely the validation and training datasets. The data collection policy also controls the amount of data 

or the number of batches that are required to conduct the analyses. 

4.2.4 Characterize the process performance model (activity A4) 

In activity A4, the initial model is characterized and validated. The activity defines as inputs the initial process 

performance model from activity A2 and the training dataset from A3, and the outputs are the validated process 

performance model, the Probability Distribution Functions (PDFs) of task-specific KPI, and the Bayesian 

network of failures. The activity uses the GMP documentation system, fitting and statistical tools, and MCS as 

mechanisms, and is controlled by the validation dataset, the initial model, data collection policy, GMP validation 

plan, KPI, and validation conditions. Generally, the GMP validation plan guides the process validation, but it 

also provides the validated repetition sequence in the case of failure. 

4.2.4.1 Create repetition matrix (activity A41) 

In activity A41, the validated repetition sequence of task 𝑘 is described by the repetition matrix [𝐾 × 𝐾], the 

element of which is 𝑹𝑘′,𝑘 = 0 or 1. The matrix is created according to the GMP validation plan extracted from 
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the GMP documentation system and the initial process performance model. A value of 1 indicates that task 𝑘′ 

must be repeated in the case of the failure of task 𝑘, and a value of 0 means there is no need to repeat task 𝑘′. 

4.2.4.2 Characterize nonroutine events (activity A42) 

In activity A42, nonroutine events are detected and summarized as a list under the control of the initial process 

performance model and repetition matrix. After statistically testing that the data in the training dataset are 

independent and identically distributed for each task, the Bernoulli PDFs are fitted to the training dataset. The 

fitted PDF, 𝐵(𝑓𝑘, 𝑝𝑘) (hereafter termed the PDF of task failure), which represents the occurrence of failures for 

each task 𝑘, is shown by: 

  𝐵(𝑓𝑘 , 𝑝𝑘) = {
1 − 𝑝𝑘         
𝑝𝑘               

for 𝑓𝑘 = 0
for 𝑓𝑘 = 1

 (4.2) 

The Boolean variable 𝑓𝑘 ∈ {0,1} represents the success or the failure of task 𝑘 by 0 or 1, respectively. The 

parameter 𝑝𝑘 represents the prior probability of the failure of task 𝑘, and is calculated by: 

 𝑝𝑘 =
Number of nonroutine events in task 𝑘

Total number of events in task 𝑘
 (4.3) 

4.2.4.3 Characterize the process variability (activity A43) 

In activity A43, the PDFs of task-specific KPI, 𝑓(𝐾𝑃𝐼𝑘), are calculated. Continuous PDFs are fitted to the 

training dataset using fitting and statistical tools to describe the process variability for a task. The choice of the 

PDF can be either parametric—e.g., normal, lognormal, or Weibull—or nonparametric—e.g., kernel140—

depending on the characteristics of the KPI. After fitting, goodness-of-fit is statistically tested by a 

Kolmogorov–Smirnov test with a 5% significance level.141 The PDFs of the task-specific KPI are used in activity 

A44 as the sampling pools for estimating the overall process KPIs by means of the initial process performance 

model (see Eq. (4.1)). 

4.2.4.4 Perform model validation with stochastic simulation (activity A44) 

MCS is used in activity A44 to validate the initial process performance model created in activity A2. In this 

work, the concept of a “failure layer” is introduced to represent consecutive failures in a batch and to count the 

position of such failures. The index 𝑗 specifies the failure layer of task 𝑘, and the variables 𝑝𝑘,𝑗 and 𝑓𝑘,𝑗 indicate 
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the probability of failure and the Boolean success/failure variable, respectively. Because failures are consecutive, 

the calculation of the probability of failure 𝑝𝑘,𝑗 at failure layer 𝑗 is dependent on (𝑗 − 1). The probability 𝑝𝑘,𝑗 

is calculated from the original probability distributions 𝐵(𝑓𝑘, 𝑝𝑘) as shown by the progression in Eq. (4.4). 

 {
𝑝𝑘,𝑗 = 𝑝𝑘,1 ⋅ 𝑢𝐾−𝑘,𝑗−1

(𝑘)         
𝑝𝑘,1 = 𝑝𝑘                              

 
for 𝑗 ≥ 2
for 𝑗 = 1

 (4.4) 

The term 𝑢𝐾−𝑘,𝑗−1
(𝑘)

 describes the probability of encountering a failure in the tasks from 𝑘 to 𝐾 that requires the 

repetition of task 𝑘 in failure layer (𝑗 − 1); and 𝑢𝐾−𝑘,𝑗−1
(𝑘)

 is the last term of the progression 𝑢𝑖,𝑗−1
(𝑘)

 in Eq. (4.5), 

where 𝑖 is the counter in the equation. The probability of the disjunction of multiple events, explained by Eq. 

(4.6) where 𝐴 and 𝐵 represent two general events, is calculated by Eq. (4.5). 

{
𝑢𝑖,𝑗−1
(𝑘)

= 𝑹𝑘,𝑘+𝑖 ⋅ 𝑝𝑘+𝑖,𝑗−1 + 𝑢𝑖−1,𝑗−1
(𝑘)

− 𝑹𝑘,𝑘+𝑖 ⋅ 𝑝𝑘+𝑖,𝑗−1 ⋅ 𝑢𝑖−1,𝑗−1
(𝑘)

          

𝑢0,𝑗−1
(𝑘) = 𝑝𝑘,𝑗−1                                      for 𝑖 = 1,2,3,… , 𝐾 − 𝑘 ; 𝑗 ≥  2       

 (4.5) 

The matrix element 𝑹𝑘,𝑘+𝑖 in Eq. (4.5) integrates GMP-related constraints into the calculation. The probability 

distribution is defined as 𝑀(𝑗 ∙ 𝑓𝑘,𝑗 , 𝑝𝑘,𝑗), which represents the sample pool for the failure counter 𝑞𝑘 (see Eq. 

(4.1)). It is the multinomial probability distribution of consecutive failures weighted by the failure layer 𝑗. In 

practice, the probability distribution 𝑀 is used to create the Bayesian network of failures that represents the 

structure of failure sequences and the probabilities of failure occurrence inside the structure. 

The stochastic simulation is performed with Eq. (4.1), where 𝐾𝑃𝐼𝑘  and 𝑞𝑘  are sampled—e.g., 10,000 

iterations—from the PDFs created above, 𝑓(𝐾𝑃𝐼𝑘) and 𝑀(𝑗 ∙ 𝑓𝑘,𝑗, 𝑝𝑘,𝑗), respectively. The initial model is 

validated by the Kolmogorov–Smirnov test for the simulation outcome using the validation dataset, at a 5% 

significance level. If the validation is unsuccessful, new information is required regarding the data and the 

model, and this activity is repeated until validation is achieved. The validated model can then be used to estimate 

the overall process KPI from the task-specific KPI incorporating operational uncertainty—i.e., nonroutine 

events and process variability. 

 
 

𝑃(𝐴 ∨  𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴)𝑃(𝐵)                (4.6) 
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4.2.5 Identify improvement targets (activity A5) 

Activity A5 is the key activity that identifies tasks to improve. The mechanisms are the GMP documentation 

system, fitting and statistical tools, GSA, and MCS; the controls are the validated process performance model, 

PDFs of task-specific KPI, Bayesian network of failures, GMP validation plan, industrial knowledge, and 

decision criteria. This activity considers both the effect of each task on the overall process performance and the 

essential factors for decision making on the shop-floor level. 

4.2.5.1 Perform PRCC sensitivity analysis (activity A51) 

Activity A51 conducts stochastic GSA using PRCCs, which delivers a ranking of the tasks k according to the 

impact of each 𝐾𝑃𝐼𝑘 on the overall process KPIs. Here, the parameters that are subject to sensitivity analysis, 

namely 𝐾𝑃𝐼𝑘, are defined as changeable parameters. 
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Figure 4.2  Approach for calculating PRCCs 𝜌𝑘 using two nested loops. 

 

The coefficient 𝜌𝑘 for task 𝑘 is calculated using two nested loops, as shown in Figure 4.2. In this approach, 

variables representing operational uncertainty and changeable parameters are independently sampled in the 

outer and inner loops, respectively. The outer loop is iterated 𝑁𝑜 times, and in this loop the values of 𝑞𝑘 are 

sampled using 𝑀 in the Bayesian network of failures. These values are used as inputs to the inner loop, where 

the sensitivity analysis is performed by executing Latin Hypercube Sampling–MCS (LHS–MCS) with the 

validated process performance model (iterated 𝑁𝑖 = 2𝐾  times with the counter 𝑛𝑖 ; see section B.2 PRCC 
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calculation in the appendix).142,143 The values of the changeable parameters are sampled from uniform 

probability distributions 𝑈(0, 𝜇𝑘
KPI + 3𝜎𝑘

KPI), where 𝜇𝑘
KPI and 𝜎𝑘

KPI represent the mean and standard deviation 

of 𝑓(𝐾𝑃𝐼𝑘), respectively. The PRCC 𝜌𝑘 is the result of the stochastic GSA and is defined as the output of this 

activity. This approach differentiates the impact on process performance of design—e.g., the nominal run time 

assigned to a specific task in the design—from the impact caused by operational uncertainty—e.g., repetition 

of tasks because of nonroutine events. 

4.2.5.2 Assess feasibility (activity A52) 

In activity A52, the feasibility indicator 𝛷𝑘 is defined, and is used to assess the feasibility of modifying task 𝑘, 

considering the effort to (re-)validate the modified process. Both the GMP validation plan and industrial process 

knowledge provide a basis for estimating this effort, with the primary consideration being product quality. 

Lower feasibility values are assigned to tasks that play significant roles in determining product quality and thus 

are highly controlled by GMP regulations, and higher values are assigned to tasks that can be modified more 

freely. The indicator can cover other factors, such as the time or cost of implementing change, and company 

strategies and priorities. The scaling of the indicator is case dependent, and is established in a relative manner 

by investigating which changes are more feasible relative to others. 

4.2.5.3 Assess the risk of no-effect (activity A53) 

Activity A53 assesses the risk of overestimating the benefits of modifying the task, here termed the “Risk of 

No-Effect” (RNE). RNE is assessed by evaluating 𝜖, which represents the normalized PRCC, as shown in Eq. 

(4.7). 

 𝜖 =
𝜌𝑘

𝑀𝑜(𝜌𝑘)
 (4.7) 

By using Eq. (4.7), it is possible to calculate the probability that activity A51 predicts a significantly lower 𝜌𝑘 

than the most frequent 𝜌𝑘, which is represented by the mode 𝑀𝑜(𝜌𝑘). The normalized PRCC 𝜖 is associated 

with its occurrence probability for every changeable parameter, then tuples comprising these 𝜖 values and their 

associated probabilities are used to characterize the RNE. For instance, the low-𝜖 , high-probability tuple 

suggests that modifying the task has a high RNE, which is not preferable. In contrast, the high-𝜖 , high-
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probability tuple indicates that the modification of the task would very likely result in significant process 

performance improvement. Industrial process knowledge, which is a control for this activity, is utilized to define 

the classifications of high versus low 𝜖 values and probabilities. 

4.2.5.4 Perform trade-off analysis (activity A54) 

In activity A54, tasks to improve are recognized based on the outputs of activities A51, A52, and A53. Trade-

off analysis is performed to identify the tasks that have high values of both 𝜌𝑘 and 𝛷𝑘. The identified tasks are 

further screened according to the values of 𝜖. The activity is controlled by the decision criteria that define the 

limiting acceptance values for feasibility and RNE indicators, and identifies the tasks to improve as the output. 

4.2.6 Perform what-if analysis (activity A6) 

In activity A6, what-if analysis is performed to evaluate alternative scenarios, for example, technical changes 

in the facility or process redesign. The what-if analysis is conducted with the validated process performance 

model using MCS, in which the sampling pool 𝑓(𝐾𝑃𝐼𝑘) and/or the Bayesian network of failures are modified. 

Either the outcome of A54 or industrial process knowledge can initiate the analysis, as controls for activity A6. 

This activity produces scenario evaluations as the output. These play a particularly important role in the creation 

of a well-assessed business case before investing in implementing any process changes. 

4.3 Case study 

The methodology was applied to the facility of F. Hoffmann–La Roche Ltd. More specifically, a process 

performance assessment on two, intra-CIP/SIP and post-CIP/SIP, was conducted, respectively. The intra-

CIP/SIP consisted of 186 tasks that were subdivided into ten main blocks. The post-CIP/SIP consisted of 180 

tasks subdivided into nine blocks. Table 4.1 lists every process block that contained a series of automated and 

manual tasks, such as “rinsing the piping for 10 min with DW” (B6) or “changing the piping format” (D2). The 

intra-CIP/SIP and post-CIP/SIP differed in the presence or absence of the format-change process block (D) and 

a part of the impermeability testing (E9), respectively. 
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Table 4.1  Table summarizing the tasks in blocks A to J. Block D and task E9 are only performed in intra-

CIP/SIP. 

ID Block description Tasks 

A Preparation of the CIP/SIP A1–A7  

B Rinsing the piping with DW B1–B30 

C Filter integrity test  C1–C34 

D Format change (only in intra-CIP/SIP) D1–D5 

E Impermeability testing of the filling needles E1–E8 (E9) 

F Rinsing the piping with WFI F1–F27 

G Sterilization of the system G1–G18 

H Drying and cooling of the piping H1–H21 

I Integrity testing of the production filter after SIP I1–I32  

J End of CIP/SIP J1–J3 

4.3.1 Define KPI (activity A1) 

In DP manufacturing, it is necessary to maintain sufficient production capacity to supply life-saving products 

to patients in an agile way without delay. Therefore, activity A1 defined the total run time of the CIP/SIP process 

as the main KPI for the overall process. 

4.3.2 Create an initial process performance model (activity A2) 

The overall process KPI (total run time) was modeled according to the process recipe, which defined the 

structure and the sequence of the tasks in the process, and is shown in Eq. (4.8): 

𝑇CIP/SIP =∑[𝑡𝑘
task + 𝑡𝑘

corr ⋅ 𝑐𝑘
rep

+ 𝑡𝑘
rem ⋅ 𝑐𝑘

rep
              

𝐾

𝑘=1

+ ∑ (𝑡𝑘′
task ⋅ 𝑐

𝑘′
rep
)

𝑘′∈ 𝑅𝑒𝑝(𝑘)

] ;            𝑐𝑘
rep

= 𝑓(𝑝𝑘 , … , 𝑝𝐾)    

(4.8) 
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The variable 𝑇CIP/SIP represents the total run time of the CIP/SIP process, and the variable 𝑡𝑘
task is the run time 

of task 𝑘. If task 𝑘 fails, time is wasted for as long as that task remains corrupted, represented as 𝑡𝑘
corr, and 

further time is needed to remedy the failure, represented as 𝑡𝑘
rem. The integer 𝑐𝑘

rep
 accounts for the number of 

failures of task 𝑘, and it is a function of the failure probability 𝑝𝑘. The internal summation term represents the 

time invested in repeating tasks because of the failure of task 𝑘. The set 𝑅𝑒𝑝(𝑘) contains the indices 𝑘′ of the 

multiple tasks that must be repeated in the case of failure in task 𝑘. Lastly, the variable 𝐾 is the total number of 

tasks that must be performed correctly in intra-CIP/SIP (𝐾 = 186) and post-CIP/SIP (𝐾 = 180). 

4.3.3 Collect and adapt data (activity A3) 

The raw manufacturing data related to the runtime of the tasks were collected from MES (the data management 

system) for 137 commercial batches that were included in 50 campaigns. The raw manufacturing data were 

assumed to be independent of intra- or post-CIP/SIP and batch, and the data were sorted by tasks according to 

the index 𝑘. To test the assumption of independence, the correlation coefficients between task run times were 

calculated, which confirmed the uncorrelated nature of the data. 

The data that were sorted by tasks were adapted to the initial model; by Eq. (4.8), run times were calculated 

as the difference between the time flags recorded in MES as shown in Table 4.2.  
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Table 4.2  Example of raw data adaptation. 

Raw data from the MES 

Adapted data used for creating the validation and 

training datasets 

Date Task ID New Task ID Duration (h) 

Nov-06-15 15:44:00 “2100” A1 1.02 

Nov-06-15 16:45:00 “2110” A2 0.17 

Nov-06-15 16:50:05 “3000” B1 0.65 

Nov-06-15 17:29:05 “3100” B2 … 

For simplicity, a continuous production timeline—i.e., 24/7 operations—was assumed. Whenever obvious, 

outliers were removed. The adapted data were split between the training and the validation datasets, which 

contained 90% and 10% of the original dataset, respectively. 

4.3.4 Characterize the process performance model (activity A4) 

4.3.4.1 Create repetition matrix (activity A41) 

The repetition matrix 𝑹
CIP/SIP

, was created to describe the patterns of validated repetition of the tasks. Eqs. 

(4.9) and (4.10) summarize the matrices 𝑹
CIP/SIP

, non-zero elements of which (𝑹𝑋,𝑌
CIP/SIP

) show the block 𝑋 that 

must be repeated in the case of failure in block 𝑌 for intra-CIP/SIP and post-CIP/SIP, respectively. 

 𝑹
𝑖𝑛𝑡𝑟𝑎−CIP/SIP

=

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑹𝐴 0 0

0 𝑹𝐵 0

0 0 𝑹𝐶
0 0

0

𝑹𝐷

0

0
𝑹𝐸

0
0

0

0 0 𝑹𝐹 0

0 0 0 𝑹𝐺

0 𝑹𝐸 0

0 𝑹𝐹 0

𝑹𝐺 𝑹𝐺 0

0 0

𝑹𝐻 𝑹𝐻 0

0 𝑹𝐼 0

0 0 𝑹𝐽 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (4.9) 
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𝑹
𝑝𝑜𝑠𝑡−CIP/SIP

=

[
 
 
 
 
 
 
 
 
 
 
 
𝑹𝐴 0 0

0 𝑹𝐵 0

0 0 𝑹𝐶
0 0

0

𝑹𝐸 0 0

0 𝑹𝐹 0

0 0 𝑹𝐺

0 𝑹𝐸 0

0 𝑹𝐹 0

𝑹𝐺 𝑹𝐺 0

0 0

𝑹𝐻 𝑹𝐻 0

0 𝑹𝐼 0

0 0 𝑹𝐽 ]
 
 
 
 
 
 
 
 
 
 
 

 

(4.10) 

Usually, the block where the failure occurred is repeated; however, in the case of failures in quality-determining 

blocks such as filter integrity tests (block I), the GMP validation plan—i.e., the general GMP requirement—

requires the repetition of multiple previous blocks. The general matrix element 𝑹 
𝑥 in Eqs. (4.9) and (4.10) is an 

upper-triangular unit matrix of dimensions [# tasks in block 𝑥 ×  # tasks in block 𝑥] as shown in Eq. (4.11). 

A matrix element 𝑹𝑘′,𝑘 
𝑥  equal to 1 indicates that task 𝑘′ must be repeated in the case of failure in task 𝑘 in block 

𝑥. 

𝑹 
𝑥 =

[
 
 
 
 
1 1
0 1

… 1 1
… 1 1

0 0
0
0

0
0

… 1 1
0
0

1
0

1
1]
 
 
 
 

 
(4.11) 

𝑹
CIP/SIP

 was used to create the set 𝑅𝑒𝑝(𝑘) that contains the indices 𝑘′ of matrix elements equal to 1 for task 𝑘 

(see Eq. (4.8)). 

4.3.4.2 Characterize nonroutine events (activity A42) 

According to Eq. (4.8), this activity characterizes routine and nonroutine events, here represented by 𝑜𝑝 ∈

{task, rem, corr}. The PDFs of task failure 𝐵(𝑓𝑘, 𝑝𝑘) (see Eq. (4.3)) were fitted to the training dataset, by 

estimating 𝑝𝑘 as shown by Eq. (4.2). 
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4.3.4.3 Characterize the process variability (activity A43) 

The run times 𝑡𝑘
task, 𝑡𝑘

rem, and 𝑡𝑘
corr were estimated by fitting the kernel PDFs to the training dataset, to produce 

the PDFs of task-specific KPI, 𝑓(𝑡𝑘
𝑜𝑝
). Kernel functions were used because of their versatility. The goodness-

of-fit was statistically demonstrated with the Kolmogorov–Smirnov test at a 5% significance level. KPIs 

involving time are only defined for the interval [0, +∞]; hence, to ensure the physical feasibility of the PDFs, 

the interval shown in Eq. (4.12) was enforced in the estimation calculation. 

 {
𝑓(𝑡𝑘

𝑜𝑝
) = 0          for 𝑡𝑘

𝑜𝑝
< 0

𝑓(𝑡𝑘
𝑜𝑝
) ≥ 0          for 𝑡𝑘

𝑜𝑝
≥ 0

 (4.12) 

4.3.4.4 Perform model validation with stochastic simulation (activity A44) 

The initial process performance model was validated through MCS. To calculate the number of failures 

represented by the parameter 𝑐𝑘
rep

(see Eq. (4.8)), the algorithm was applied that is shown in the section B.1 

Algorithm for calculating ck of the appendix was applied. 

Contrary to the work presented by Cadini and Gioletta,127 the number of failures 𝑐𝑘
rep

 was not directly 

generated from the PDF 𝑀(𝑗 ∙ 𝑓𝑘,𝑗, 𝑝𝑘,𝑗), but was stochastically calculated with a failure-after-failure approach. 

To prevent the intensive explicit formulation of the joint probabilities 𝑝𝑘,𝑗 (see Eq. (4.4)), the infinitely large 

Bayesian network of failures represented by the PDF 𝑀(𝑗 ∙ 𝑓𝑘,𝑗, 𝑝𝑘,𝑗) was approximated with MCS. The 

approximated network was the output of this activity. This approach reduced the computational effort needed 

to model large systems—i.e., 𝐾 = 180 or 186—and infinite event scales—i.e., 𝑗 →∞, as was the case in this 

study. Figure 4.3 shows three examples of binary-element failure matrix 𝑭  generated with the presented 

algorithm. 
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Figure 4.3  Example of the failure matrix F constructed using the concept of failure layer. 

After the Bayesian network of failures and 𝑐𝑘
rep

 were determined, the variables 𝑡𝑘
task, 𝑡𝑘

rem , and 𝑡𝑘
corr were 

independently sampled from the PDFs of the task-specific KPI, 𝑓(𝑡𝑘
𝑜𝑝
). The outcome of the activity was the 

model, which was validated with the Kolmogorov-Smirnov test, yielding p-values of 0.15 and 0.05 for intra- 

and post-CIP/SIP, respectively. 
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4.3.5 Identify improvement targets (activity A5) 

4.3.5.1 Perform PRCC sensitivity analysis (activity A51) 

 

Figure 4.4  Approach for calculating PRCCs 𝜌𝑘 using two nested loops, as applied in the case study. 

 

The approach using two nested loops to conduct the stochastic PRCC sensitivity analysis is shown in Figure 

4.4. To analyze the contribution of the design of each task to the total process KPI (here, total runtime), 𝑡𝑘
task 
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(𝐾 = 180 and 186) were defined as changeable parameters. The variables 𝑡𝑘
corr, 𝑡𝑘

rem, and 𝑐𝑘
rep

 accounted for 

the operational uncertainty, and were generated using the PDFs of the task-specific KPI, 𝑓, from activity A43 

and the approximated Bayesian network of failures from activity A44. At every iteration 𝑛𝑜 of the outer loop 

(𝑁𝑜 = 10,000 iterations), one operational layout—i.e., a set of values for 𝑡𝑘
corr, 𝑡𝑘

rem, and 𝑐𝑘
rep

—was generated 

and was used in the inner loop to calculate the total KPI. Here, LHS–MCS (𝑁𝑖 = 2𝐾 iterations) sampled 

changeable parameters from uniform probability distributions  𝑈(0, 𝜇𝑘
task + 3 ⋅ 𝜎𝑘

task) using the performance 

model (see Eq. (4.8)) to calculate 𝑇𝑛𝑖
CIP/SIP

. The coefficient 𝜌𝑘,𝑛𝑜 was calculated each time the inner loop was 

completed. See section B.2 PRCC calculation in the appendix for details. 

The result of the sensitivity analysis is shown in Figure 4.5, where the PRCCs 𝜌𝑘 of the 20 most important 

tasks are highlighted for post-CIP/SIP and intra-CIP/SIP on the left and right, respectively. 

 

Figure 4.5  Result of PRCC analysis for the 20 most important tasks in intra-CIP/SIP (left) and post-CIP/SIP 

(right). 

It can be observed, by comparing intra-CIP/SIP and post-CIP/SIP in Figure 4.5, that the former shows narrower 

probability distributions of 𝜌𝑘 than the latter. For both intra-CIP/SIP and post-CIP/SIP, the probability of failure 

𝑝𝑘 was generated from the same PDF 𝐵 for the tasks in common. One important difference between intra-

CIP/SIP and post-CIP/SIP was the presence of block D in intra-CIP/SIP, which was particularly time intensive. 
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PRCC presents the relative impact of tasks by comparing the impact of one task with that of the others within 

the process. For these reasons, the time-intensive tasks in block D such as D2 significantly lowered the mean 

𝜌̅𝑘 and narrowed the probability distributions of the PRCCs in intra-CIP/SIP. 

4.3.5.2 Assess feasibility (activity A52) 

The feasibility of changing tasks was assessed by creating a feasibility indicator 𝛷𝑘 that was developed through 

brainstorming sessions with subject matter experts on the process. The experts were asked to quantify the 

feasibility of process modification in a range from 0 to 1, considering quality risk, revalidation efforts, and 

corporate strategies and priorities. An 𝛷𝑘 equal to 0 indicated that the task was completely unmodifiable, and 1 

indicated that the task could be freely modified. 

4.3.5.3 Assess risk of no-effect (activity A53) 

The risk of no-effect was assessed by calculating the normalized PRCC 𝜖 (see Eq. (4.7)) and the results are 

presented in Figure 4.6. 

  

Figure 4.6  RNE assessment results for the tasks B5, F5, F18, and H19 belonging to post-CIP/SIP in the case 

study. 

The probability distribution of the normalized PRCC is presented in Figure 4.6, where 𝜖 is discretized into 

intervals of [0,1] and the corresponding probability is shown on the y-axis. For explanatory purposes, Figure 
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4.6 only displays RNEs for the tasks B5, F5, F18, and H19 in post-CIP/SIP; the results of the remaining tasks 

are shown in Figure B.1 in the appendix. The probability distribution shows tailing in areas of low 𝜖 values, 

which suggests a possible overestimation of the PRCC in the presented tasks. In this case, values of 𝜖 lower 

than 0.8 were defined as “low-𝜖”. If a task shows low 𝜖 and high probability values, then the effect of improving 

this specific task would be overestimated—i.e., high RNE. 

4.3.5.4 Perform trade-off analysis (activity A54) 

“Tasks to improve” were identified; the trade-off analysis of 𝛷𝑘 and 𝜌̅𝑘 is shown in Figure 4.7. In this case 

study, 𝛷𝑘 ≥ 0.5 and 𝜌̅𝑘 ≥ 0.5 were applied as decision criteria for specifying the tasks in the “high-impact, 

high-feasibility” zone, which were the ones of most interest. In Figure 4.7, tasks D2, F5, and F18 and B5, F5, 

F18, and H19 lay in the “high–impact, high–feasibility” zone, for intra-CIP/SIP (left) and post-CIP/SIP (right), 

respectively. For these tasks, RNE was assessed. From the magnified inset in Figure 4.7, task B5 was classified 

as a task with high RNE, and therefore the modification of this task was considered less preferable. Tasks to 

improve—i.e., a general output of the methodology—were the tasks that passed the screenings, namely D2, F5, 

and F18 for intra-CIP/SIP and F5, F18, and H19 for post-CIP/SIP. 
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Figure 4.7  Trade-off between the PRCC and the feasibility indicator for post-CIP/SIP (top) and intra-

CIP/SIP (bottom). 

4.3.6 Perform what-if analysis (activity A6) 

In this activity, three different improvement alternatives denoted Scenarios 1, 2 and 3 were simulated and 

evaluated. Scenarios 1 and 3 were initiated by industrial process knowledge, whereas Scenario 2 was triggered 

by the outcome of activity A54. In Scenario 1, an improvement in operator training was assumed to halve the 
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𝑝𝑘 and 𝑡𝑘
rem of tasks that are highly affected by operator behavior—i.e., B3, B4, B19, B21, C9, E7, E5, and F14. 

These tasks are system sealing-related operations, such as leakage tests, as well as quality sampling, the success 

of which is influenced by the manual installation of the filling equipment. In Scenario 2, the substitution of an 

existing tank attachment with an automatic one was considered, and this would facilitate manual operations in 

block D and halve run times of this block. In Scenario 3, it was assumed that the blocks G and I could be 

removed from the process recipe of post-CIP/SIP. Usually, these blocks are necessary if the CIP/SIP is 

performed between two filling batches within a campaign—i.e., between intra-CIP/SIP processes. Because 

post-CIP/SIP is performed at the end of the campaign, after which the environment does not require sterility, 

this scenario was considered realistic. 

Figure 4.8 shows the results of what-if analysis in intra-CIP/SIP and post-CIP/SIP on the left and right sides 

of the figure, respectively. The values of the probability distributions were normalized to the median 𝑇CIP/SIP 

for the current (unmodified) process as the base scenario. In both processes, the outcomes of Scenario 1 did not 

differ from the base scenario. These results were analyzed by the Kolmogorov–Smirnov test with the null 

hypothesis that “the base scenario and Scenario 1 follow the same PDF” at a 5% significance level. The 

minimum p-values of the test were 0.17 and 0.19 for intra-CIP/SIP and post-CIP/SIP, respectively—i.e., the 

behavior of the operators would not preclude high process performance. In Scenario 2, a decrease of 12% in the 

mean total run time was found. Even if installing the new attachment would require testing and qualification, 

25% of the total annual run time is invested in intra-CIP/SIP; therefore the potential annual run time reduction 

of 3% (25% times 12%) would encourage modification of the process. In Scenario 3, the measures were found 

to reduce the mean total run time by 40%. Based on this analysis, the modifications proposed in Scenario 3 were 

recently implemented at the investigated facility, and a 32% reduction in run time was observed in one 

commercial post-CIP/SIP. 
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Figure 4.8  Scenario evaluation for post-CIP/SIP (top) and intra-CIP/SIP (bottom). 

4.4 Results and discussion 

In this section, the presented approach and the conventional LSS approach are compared using the case study. 

The result that would have been obtained by LSS, namely the runtime ratio, 𝑟𝑎𝑡𝑖𝑜𝑘
LSS , was calculated to 

represent the annual contribution of task 𝑘 to the total run time (see section B.4 LSS assessment in the appendix 

for detail). 
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Table 4.3  Summary of the outcome of the process performance assessment of CIP/SIP, 

comparing the presented approach with the conventional approach. 

intra-CIP/SIP post-CIP/SIP 

ID 

Task 

description 
𝝆̅𝒌 𝜱𝒌 RNE 𝒓𝒂𝒕𝒊𝒐𝒌

𝐋𝐒𝐒 ID 

Task 

description 
𝝆̅𝒌 𝜱𝒌 RNE 𝒓𝒂𝒕𝒊𝒐𝒌

𝐋𝐒𝐒 

D2 

Manual 

operation 

0.94 0.85 low 0.23 F18 Rinsing 0.77 0.8 low 0.05 

F18 Rinsing 0.52 0.8 low 0.03 F5 

Manual 

operation 

0.78 0.8 low 0.003 

F5 

Manual 

operation 

0.60 0.8 low 0.01 B5 

Pressure 

testing 

0.53 0.6 high 0.02 

      H19 Cooling 0.53 0.5 low 0.03 

Table 4.3 presents a summary of the outcomes. It can be seen that task F5 in post-CIP/SIP has a low 𝑟𝑎𝑡𝑖𝑜𝑘
LSS 

compared with F18; however, the coefficients 𝜌̅𝑘 of the two tasks are very similar. Because the tasks F5 and 

F18 belong to the same process block that must be repeated in case of failure (see Eq. (4.11)), 𝑐𝑘
rep

 was the 

same for both tasks. In addition, the sampling pool 𝑈 was similar for F5 and F18, which led to the similarity in 

𝜌̅𝑘; however, the 𝜇, and 𝜎 of the sampling pools were different. In fact, the value of 𝜇𝐹18
task was double that of 

𝜇𝐹5
task , and because F5 was conducted manually, 𝜎𝐹5

task  was 15% higher than 𝜎𝐹18
task . The index 𝑟𝑎𝑡𝑖𝑜𝑘

LSS 

considers only the summation of the run time over batches and not the variation between batches, so the impact 

of F5 was much lower than that of F18. Looking at the tasks H19, B5, and F18 (which were automated), the 

results for the two approaches were similar. For these reasons, one could interpret the results as indicating that 

the conventional approach could underestimate the importance of manually operated tasks, which tend to have 

high process variability. 

In addition to considering process variability, the results for the feasibility indicator 𝛷𝑘  and RNE were 

obtained, as summarized in Table 4.3. The indicators 𝛷𝑘 was assessed independently of the calculation of the 

PRCCs, and hence 𝛷𝑘 could be incorporated in the LSS approach as well, if desired. The intention of RNE was 

to avoid overestimation of the PRCCs. Because a model-based approach is used for calculating RNE, it cannot 
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be directly compared with LSS. However, the presented methodology provided additional features that would 

increase the comprehensiveness of the assessment and deliver implementable suggestions for process 

modification. 

The methodology has some potential limitations. First, excessive model complexity might exponentially 

increase the computational effort, which would render the MCS-based calculation of PRCCs unfeasible. Second, 

a lack of process knowledge would require the use of a metamodel or a black box model, which would remove 

the pharma-specific attributes and also the opportunity to evaluate alternative scenarios in activity A6. Third, in 

the presence of highly nonrobust processes, e.g., processes during the start-up phase, the performance model 

would show nonmonotonic behavior, rendering the PRCC calculation inappropriate. In such a situation, the use 

of alternative and more computationally demanding GSA methods, such as Sobol’s index analysis,59 would be 

required. Lastly, the methodology is suitable for single processes but does not assess the total performance of 

multiple and parallel processes that have shared utilities, such as WFI and workforce—i.e., factory-wide 

performance. 

4.5 Conclusion 

In this chapter, an uncertainty-conscious methodology was presented that can assess process performance and 

facilitate process improvement in biopharmaceutical DP manufacturing. The work is described as an activity 

model using IDEF0, which defines the information or tools needed to execute each activity. By executing the 

methodology, the tasks can be identified that most affect process performance, taking into account both 

nonroutine events (task failures) and process variability, the prominent characteristics of the process. The 

methodology also supports the consideration of industry-specific characteristics such as GMP requirements, the 

effort required to implement specific process modifications, and the risk of overestimating the improvement 

potential. The integrated approach serves as a solid basis for providing rational suggestions toward the 

realization of superior manufacturing processes for biopharmaceutical DPs. 

There are three novelties in the presented work. First, process performance was formulated as a hybrid 

stochastic-deterministic model that can be used in a GSA with two nested loops. The outcome of the analysis—

the PRCCs 𝜌𝑘—indicates the contribution of the design of each task to the total process performance under a 

given operational uncertainty. Second, the feasibility indicator 𝛷𝑘  incorporates the knowledge of industrial 
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experts by reflecting manufacturing, economic, and strategic factors, to screen out task modifications that would 

highly affect process performance but are unlikely to be implemented because of low feasibility. Lastly, the 

evaluation of RNE acknowledges the needs and concerns of the industry about ensuring the heavy capital 

investment often required for process modifications is unlikely to be wasted. 

An industrial case study was conducted to demonstrate the applicability of the methodology. Two types of 

cleaning and sterilization processes, intra-CIP/SIP (applied after each batch) and post-CIP/SIP (applied after 

each campaign), were analyzed with the aim of identifying the tasks to improve. After defining the overall 

process runtime as the overarching KPI, a process performance model that considered operational uncertainty 

was created and validated. A stochastic PRCC analysis was conducted, and it resulted in the quantification of 

the importance of each task for the overall process performance. The subsequent assessment of feasibility and 

RNE resulted in the identification of three tasks that could be improved in intra-CIP/SIP and post-CIP/SIP. The 

three scenarios analyzed in the what-if analysis suggested two process modifications—streamlining the process 

and redesigning a piece of equipment—that could reduce the mean total run time by 40% and 12%, respectively. 

The former has been implemented at the investigated facility, resulting in an actual reduction in the process 

runtime by of 3 h per campaign. Besides assessing the performance of the process considering the failures, the 

framework (see Figure 2.1) considers the reduction of downtimes caused by such failures through the prediction 

and prevention of unwanted events as it is presented in Chapter 5. 

4.6 Nomenclature 

𝐵 Bernoulli PDF of failure in task 𝑘 – 

𝑪 Inverted symmetric rank matrix  

𝑐𝑘′,𝑘′′ Element of the inverted symmetric rank matrix – 

𝑐𝑘
rep

 Failure counter for task 𝑘 – 

𝜖 Normalized PRCC – 

𝑭 Failure matrix  

𝑓𝑘 Boolean parameter representing success/failure in task 𝑘  – 

𝑓𝑘,𝑗 Boolean parameter representing success/failure in task 𝑘 in failure layer 𝑗  – 
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𝑓 PDFs of 𝐾𝑃𝐼𝑘 and 𝑡𝑘
𝑜𝑝

 – 

𝛷𝑘 Feasibility indicator – 

𝑗 Index of the failure layer, 𝑗 ∈ [1, +∞] 

𝐾 Number of tasks in one process – 

𝑲𝑷𝑰 Manufacturing data matrix  

𝐾𝑃𝐼 Total key performance indicator – 

𝐾𝑃𝐼𝑘 Key performance indicator specific to task 𝑘 – 

𝑘 Task, 𝑘 ∈ {𝐴1, 𝐴2,… , 𝐽3} 

𝑘′ Task, 𝑘′ ∈ {𝐴1, 𝐴2,… , 𝐽3} 

𝑘′′ Task, 𝑘′′ ∈ {𝐴1, 𝐴2,… , 𝐽3} 

𝑀 Multinomial PDF of consecutive failures of task 𝑘 – 

𝜇 Average rank – 

𝜇𝑘 Mean of the PDF 𝑓(𝐾𝑃𝐼𝑘) h 

𝑁 Number of iterations for LHS–MCS – 

𝑁𝑖 Number of iterations in the inner loop – 

𝑁𝑜 Number of iterations in the outer loop – 

𝑛 Term counter for the progression 𝑢𝑛
(𝑘)

, 𝑛 ∈ [0, 𝐾 − 𝑘] 

𝑛𝑖 Iteration counter in the inner loop, 𝑛𝑖 ∈ [1,𝑁𝑖] 

𝑛𝑜 Iteration counter in the outer loop, 𝑛𝑜 ∈ [1,𝑁𝑜] 

𝑜𝑝 Operation type, 𝑜𝑝 ∈ {task, rem, corr} 

𝑝𝑘 Failure probability of task 𝑘 – 

𝑝𝑘,𝑗 Failure probability of task 𝑘 in failure layer j – 

𝑞𝑘 General failure counter for task 𝑘 – 

𝑹   GMP-defined repetition matrix for the overall process (related to tasks 𝑘′, 𝑘)  

𝑹
CIP/SIP

 GMP-defined repetition matrix for the CIP/SIP process (related to tasks 𝑘′, 𝑘)  
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𝑹
𝑖𝑛𝑡𝑟𝑎−CIP/SIP

 GMP-defined repetition matrix for the intra-CIP/SIP process (related to blocks 

𝑋, 𝑌) 

 

𝑹
𝑝𝑜𝑠𝑡−CIP/SIP

 GMP-defined repetition matrix for the post-CIP/SIP process (related to blocks 

𝑋, 𝑌) 

 

𝑹𝑥  GMP-defined repetition matrix per process block 𝑥 (related to tasks 𝑘′, 𝑘)  

𝑅𝑒𝑝(𝑘) Set containing the indices 𝑘′ of the tasks repeated in the case of failure of task 𝑘  

𝑟𝑎𝑡𝑖𝑜𝑘
LSS Ratio of the runtime of task 𝑘 to the total run time – 

𝑟𝑘,𝑛 Rank of task 𝑘 in sample 𝑛 in the merged matrix [𝑿  𝑲𝑷𝑰] – 

𝜌𝑘 PRCC of task 𝑘 – 

𝜌𝑘,𝑛𝑜 PRCC of task 𝑘 in sample 𝑛𝑜 – 

𝜌𝑘 Mean of 𝜌𝑘 – 

𝜎𝑘 Standard deviation of the PDF 𝑓(𝐾𝑃𝐼𝑘) h 

𝑇CIP/SIP  CIP/SIP process runtime h 

𝑇𝑛𝑖
CIP/SIP

  CIP/SIP process run time in sample 𝑛𝑖 h 

𝑇𝐶𝐼𝑃/𝑆𝐼𝑃
annual   Total annual run time invested in CIP/SIP h 

𝑡𝑘 Student’s t-test t-value of the PRCC of task 𝑘 – 

𝑡𝑘
annual Total annual time invested in task 𝑘 h 

𝑡𝑘
𝑜𝑝

 Runtime of task 𝑘 specific to operation 𝑜𝑝 – 

𝑈 Uniform PDF used in LHS–MCS – 

𝑢𝑛
(𝑘)

 Geometric progression of the joint probability 𝑝𝑘,𝑗  – 

𝑿 Sample matrix  

𝑋 Block that needs to be repeated, 𝑋 ∈ {𝐴, 𝐵, . . . , 𝐽} 

𝑥 Process block, 𝑥 ∈ {𝐴, 𝐵, . . . , 𝐽} 

𝑌 Block related to interrupted task 𝑘, 𝑌 ∈ {𝐴, 𝐵, . . . , 𝐽} 



 

95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5: Intelligent real-time prediction of imminent 

failures in the cleaning and sterilization process 

of biopharmaceutical manufacturing 

 

(Based on the manuscript in currently preparation by G. Casola, C. Siegmund, 

M. Mattern, and H. Sugiyama) 
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5.1 Introduction 

The rise of digitalization, in recent years, has drawn the attention of numerous industry sectors, and 

pharmaceutical companies, which are increasing their effort in the fourth industrial revolution. In a review 

article, Kemppainen (2017) presented the challenges and opportunities in transforming the pharmaceutical 

industry through digitalization.89 The pharmaceutical industry operates under an extremely controlled 

environment that involves conservative regulations on quality for both process and product; it relies on quality 

of process and product by testing and QbD. Some products, such as injectables, are administered directly into 

the patient’s body, herein, pharmaceutical companies cannot rely on a “statistically significant” quality but have 

to deliver a high-quality product at all times.23 Process Analytical Technology (PAT) is well-accepted by the 

regulators, e.g., FDA, and is implemented in the control of the pharmaceutical process to assure QbD.144,145  

Latent variable methods, such as Principal Component Analysis (PCA) are commonly applied techniques 

for chemometrics involved in PAT. Rajalahti and Kvalheim (2011) presented an overview on the use of the 

multivariate methods PCA and Partial Least Square (PLS) regression in a combination of characterization 

techniques, such as vibrational spectroscopy and imaging, for monitoring process and product characteristics in 

drugs manufacturing.146 De Beer et al. (2009) presented a study on the use of PCA to analyze spectrometric data 

in the monitoring of a pharmaceutical freeze-drying process;147 Wu and Khan (2010) developed an integrated 

PAT approach for the real-time monitoring of a pharmaceutical coprecipitation process, the trajectories of which 

were identified by applying PCA on infrared spectral data.148 Kimura et al. (2014) applied PCA and multiple 

regression analysis for examining the correlation between operation conditions—e.g., granule and air flow 

rates—, material attributes—e.g., water content—, and micrometrics—e.g., granule size and density—in the 

production of granules by a multi-functional rotor granulator.149 Chemometrics is commonly used in industrial 

practices; however, according to an industrial survey, other advanced statistical methods, which are mostly 

based on machine learning,150 are yet not implemented because of their perceived complexity for non-experts. 

Machine learning has been primarily used in pharmaceutics for drug discovery and pharmacovigilance. 

Previously in 2001, Burbidge et al. showed the application of Support Vector Machine (SVM) in the 

classification of new molecular compounds in the analysis of the structure-activity relationship.151 In a review 

study, Hou et al. (2006) presented a list of analytical approaches, such as Neural Network (NN) and PLS, and 
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their use for predicting and classifying drug interaction characteristics such as absorption and permeability in 

the virtual screening of new molecules.152 Garcia-Munoz and Mercado (2013) showed a latent-variable based 

model used in the optimal selection of raw materials for drug product design. The model that predicted the 

dissolution rate of the product from the raw material characteristics was optimized considering the availability 

of the excipients.135 In a recent review paper, Gawehn et al. (2016) presented the advantages and limitations of 

various NN for supporting the modeling, discovery, and design of new drugs.153 Zhao and Henriksson (2015) 

presented an application of the random forest learning algorithm for characterizing the weights of clinical events, 

e.g., side and collateral effects of drug consumption, during the clinical trials. Several additional studies were 

also published in recent year on similar topics.154,155 

In addition to drug discovery and pharmacovigilance, the impact of such machine learning methods could 

be extended to the quality control of products and on the performance of processes. The current costly quality 

control on finished goods could be substituted by a product quality prediction and online monitoring. Similarly, 

the process performance can be improved by introducing predictive intervention policies—i.e., online fault 

detection, predictive maintenance. Regarding product quality, Gams et al. (2014) developed a machine learning-

based method that incorporated commercial data and human decision to facilitate the manufacturing and assure 

the quality of tablets.156 In a recent study, Akseli et al. (2017) proposed a machine learning tool for the prediction 

of tablet breaking force and disintegration, which are conventional indicators of a tablet’s quality. The tool 

based on models, such as genetic algorithm, NN, and SVM, would enable the practical instauration of QbD by 

connecting material attributes with the quality indicators.157 Contrary to other industrial sectors, in 

pharmaceutics, the implementation of preventive actions based on retrospective studies is more favorable 

because of the maturity of the reliability engineering methods. Some studies have been found to show the 

development of innovative predictive policies in various industrial sectors such as machining,158,159 energy 

production,160 and transportation.161 

Predictive intervention policies have great potential in improving the performance of pharmaceutical 

processes. In fact, from a preliminary analysis on the case study on the potential performance bottlenecks 

presented in Chapter 5, the avoidance of scheduled (preventive) maintenance and the early detection of process 

failure could increase the time dedicated to production by roughly 20%. Regarding predictive maintenance 
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policies, Gao et al. (2015) reviewed the historical evolution of prognosis techniques in various fields with a 

focus on manufacturing systems; Gao et al. mentioned the importance of system architecture and symbiosis for 

enabling cloud manufacturing.162 Susto et al. (2015) proposed a multiple classifier methodology for predictive 

maintenance. The methodology compared different performance tradeoffs by predicting multiple health-risk 

policy scenarios, to make the ideal maintenance decision.163 Roy et al. (2014) applied multivariate statistical 

process monitoring for the continuous verification and detection of abnormal situations of CIP/SIP batches in 

DS synthesis. In the study, Roy et al. showed the potential of predictive monitoring in four case studies.164 More 

studies on the development and implementation of machinery health prognosis and maintenance policy can be 

found elsewhere.165 

Although numerous studies have been presented above, in the current situation, a tool is still required, which 

leverages both, the traditional PSE methods and the novel data “science” techniques, to provide a tailored 

decision-making approach for pharmaceutical manufacturing. The approach must enable the integration of the 

complex data structure, typical of the pharmaceutical industry, for predicting production patters, gaining insights 

on, and supporting the operations. The design of a process can rarely be changed, so the policy of “salvaging 

the salvageable” is achievable by reducing the downtime caused by process failures during the manufacturing 

operations. Conventional approaches, such as time series analysis and vibration analysis, used for the predictive 

maintenance of engines, or machining tools are not suited in this study because the data was not following a 

wave-like behavior. In the current situation, an intelligent tool is required that can learn from exclusively 

commercial manufacturing data and can support the real-time decision-making resulting based on the process 

monitoring is required. 

In this chapter, an algorithm for predicting imminent process failures and supporting the decision of taking 

preventive actions by only leveraging manufacturing records is presented. The algorithm consists of two parts: 

an intelligent failure prediction tool and a risk-based decision-making tool. The monitoring tool is a self-training 

classification model that predicts the success of a batch; whereas, the decision-making tool evaluates the risk of 

taking preventive actions by comparing the positive and negative impacts of the intervention and the reliability 

of the prediction. A positive impact is intended as the time salvaged as a result of the early stop of a batch that 

is meant to fail; on the contrary, a negative impact is time lost by interrupting a batch that was meant to succeed. 
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By integrating a self-learning algorithm, the intelligent monitoring tool re-trains itself based on its age or the 

evolution of its prediction performance using historical data. 

The applicability of the algorithm is elucidated in an industrial case study, where the data historians of a 

CIP/SIP process performed in a sterile filling plant of F. Hoffmann-La Roche are leveraged. In the case study, 

the algorithm is used to predict imminent failures during a CIP/SIP batch, so avoiding the repetition of tasks 

and the resulting downtime. The goal of applying the algorithm is to salvage time by providing a decision to 

interrupt batches that are meant to fail before encountering the failure. The algorithm weighs the probability of 

failure and the risk of interrupting batches that are meant to succeed. 

5.2 Algorithm 

The algorithm shown in Figure 5.1 is used for predicting imminent failures in the manufacturing in real-

time. The algorithm is employed at time intervals Δ𝑡, hereafter named as the test time intervals. These intervals 

are defined accordingly to the target the resolution of the failure prediction—e.g., every 10 s, every 1 min, or 

every 1 h. The algorithm consists of two main parts: the failure prediction (see orange area, Figure 5.1) and the 

decision making (see blue area, Figure 5.1). In the first part, the dataset at time 𝑡𝑛 is used to predict the failure 

class 𝐶—i.e., successful and about to fail—of the running batch at time 𝑡𝑛+1; in the second part, the prediction 

is used to suggest an action—i.e., interrupt or do not interrupt the batch—to be taken. The failure class of the 

batch at time 𝑡𝑛+1 is predicted from the data recorded at time 𝑡𝑛; the failure class is a categorical variable, which 

classifies the batches by their future status—i.e., successful or failed. A classification model, which has been 

trained at time 𝜏𝑖 on data historian, is employed to predict the class 𝐶. 

The failure class defined as about to fail suggests the presence of Predictable Failures (PF) at time 𝑡 > 𝑡𝑛+1. 

If a PF is not detected no action is taken and the algorithm is iterated at time 𝑡𝑛+1; whereas if a PF is predicted 

at 𝑡𝑛+1 the action team—i.e., operators, who are responsible for the batch—is put on standby, the production 

manager is informed, and the second part of the algorithm is initiated. A quantitative risk analysis on the impact 

of interrupting the batch and performing preventive maintenance, or continuing the batch until the 𝑛 + 1 

iteration supports the decision-making. If a failure occurs after the decision of not stopping the batch, a 
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corrective action is required before restarting the batch. In the next sections, the two activities are represented 

in more details. 

  

Figure 5.1  Real-time failure prediction algorithm. 

5.2.1 Real-time failure prediction 

The failure prediction model takes, as input, sensors data recorded from the current batch at time 𝑡𝑛 to predict 

the failure classes, successful and about to fail at time 𝑡𝑛+1. As mentioned in the introduction, a large pallet of 

supervised models—e.g., DT, SVM, and k-Nearest Neighbors (KNN)—can be employed in this classification 

problem; however, because the model selection is not the core part of this work, a simple DT model was 

employed. In contrast to other predictive monitoring techniques, which predicted the process outcomes for 

specific events,164 the machine learning model presented here is trained to answer to the question: “will the 

current batch fail in the imminent future?” with a “yes” or “no 
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The prediction of failure is introduced to reduce the downtime caused by unexpected failures during the 

operation; hence, the worst outcome after the implementation would remain the non-detectability of the failure 

(Type I error, see Appendix C.1). In addition, the model should avoid Type II errors, namely classifying 

prospectively successful batches as about to fail. To guarantee such a condition, and because accuracy—i.e., the 

number of true predictions divided by the total number of predictions—can not be used to quantify the quality 

of the classification, a new prediction performance indicator was introduced in Eq. (5.1). 

 𝑁𝑃𝑉 =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (5.1) 

Negative Predictive Value (NPV) quantifies from 0 to 1 the quality of the model when predicting failures; a 

value of 1 guarantees a fully conservative prediction, namely it guarantees the absence of Type II errors. Having 

a model with high NPV is particularly crucial when dealing with unbalanced—i.e., only a few samples contain 

data of batches that are about to fail—and large-sized datasets—i.e., big data size—; the conventional accuracy 

indicator does not deliver a significant quantification of the model prediction quality. 

5.2.1.1 Model training 

The decision tree classifier is trained, validated, and tested with the labeled training data. The size and variability 

of the input data set are usually r emarkably large for manufacturing sensor data. In the case study presented in 

section 5.3, which represents a small end of data variety in the industry, the number of data points (time series 

for multiple sensors) sums up to a total of 1.2 billion. Various workflows have been published to support the 

transformation and adaptation of data;166–168 however, in general, the choice of workflow depends on the 

morphology and quality of the data, on the purpose of the model, and on the process to which the model is 

applied. In this work, the data transformation workflow was defined as follow: 

I. Knowledge-based data splitting (following the process recipe) 

II. Scaling169 

III. Dimensionality reduction168 

IV. Size reduction (if necessary) 

V. Relabeling  

VI. Balancing170 (if necessary) 
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As mentioned in the introduction the algorithm aims at assembly-like processes that follow a specific recipe, 

therefore sensor values are process-task and time dependent. The training dataset is split into specific datasets, 

which are used to train block—i.e., group of tasks—specific classifiers (I). If the separation of the dataset by 

blocks does not eliminate non-causal correlations, the datasets are further divided into task-specific training 

dataset. The samples represented by 𝑥𝑖, where the index 𝑖 defines the source of the data—i.e., the sensor from 

which the data point is originated—are scaled (II) following Eq. (5.2).169 

 𝑥𝑖
′ =

𝑥𝑖 −min(𝑥𝑖)

max(𝑥𝑖) − min(𝑥𝑖)
 (5.2) 

The large training and validation datasets are transformed with principal component analysis (PCA) to reduce 

the dimensionality (III); by reducing the dimensionality, the sample size shrinks automatically. Hereafter, 

principal components are noted as 𝑃 ∈ {𝑝1, 𝑝2, … , 𝑝𝐼} where 𝐼 is the total number of data sources. The size 

dataset can be further reduced (IV)—e.g., through random sampling—if the machine (computer) encounters 

limitations in handling very large information. 

The process follows a recipe, which means that ambiguous data points—i.e., data points with the same 𝑃 but 

different labels—are not determinant in estimating the class decision boundary; ambiguous data points lead to 

class overlap. The initial labeling is exported automatically from the data records, namely all data belonging to 

an interrupted or to a successful batch are labeled as about to fail or successful, respectively. To reduce class 

overlap and improve model reliability, the sample is relabeled (VI); ambiguous points are relabeled as 

successful. A more in-depth study on the relabeling of the training dataset is presented in section 5.3.1.2. Finally, 

if needed to further improve the model training, the sample is artificially balanced (V), e.g., through random up- 

or down-sampling of specific classes170, to avoid yielding unprecise—i.e., low NPV—models. 

5.2.1.2 Model maintenance 

Batch processes, especially those located in a continuous performance improvement environment like 

pharmaceutical processes and processes that are influenced by human behavior, are under constant change. In 

the presence of evolving processes, the prediction model must evolve consequently; as mentioned the model is 

applicable only for data points located inside the training dataset. Thus a model maintenance strategy is required. 
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The classifier requires re-training on a scheduled basis because of two main factors. First, machine-learning 

models can only predict what they “learned”; the model is trained on historical data records exclusively, 

meaning that predictor data that are not contained in the training dataset boundary cannot be used for predictions. 

Second, commercial processes usually have control boundaries that allow the generation of “new” data over 

time. These two factors have to be incorporated into an intelligent and evolving algorithm that recognizes under 

which dataset conditions—i.e., known data space that delivers reliable predictions— under which it can be 

applied and when it requires retraining. 

Figure 5.2 presents an intelligent model maintenance algorithm, which is used for the time or event-based 

retraining and learning of the model. 



Chapter 5 

104 

 

 

Figure 5.2  Intelligent classifier maintenance algorithm. 

 

In Figure 5.2, 𝜏𝑗  represents the time at which the classifier was trained; the age of the classifier 𝑎𝑗 is defined by 

Eq. (5.3). 

 𝑎𝑗 = 𝑡𝑛 − 𝜏𝑗            where 𝑎𝑗 ≤ Δ𝜏 (5.3) 

Time-based model retraining is the most straightforward retraining strategy and is in vigor with the condition 

shown in in Figure 5.2. The age of the model 𝑎𝑗 cannot become higher than Δ𝜏, which is defined according to 

the evolution status of the process, namely, start-up, growing, or stable status. 
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Event-based model retraining is required mainly for four reasons; the first reason is the misclassification of 

classifiable data, namely, a type I prediction error. In such an event the process breaks down without being 

predicted. The error is detected at time 𝑡𝑛+1  when the predicted failure class 𝐶𝑡𝑛+1
pred

 is different from the real 

failure class 𝐶𝑡𝑛+1
real  (see Figure 5.2). Such a failure is referred to as Unpredictable Failure (UF), the data of which 

are saved in a separated repository, the UF repository. The UF data is summoned from the UF repository and is 

used to retrain the classifier (event-based retraining I, Figure 5.2). Type II prediction errors cannot be identified 

once the algorithm is operative because the batches classified as about to fail are stopped before a failure occurs; 

therefore, it is important to apply the classifier only on data point combinations—e.g., principal component 

areas—located within the training dataset boundaries. The second reason is the inclusion of unclassifiable 

data—i.e., data points located outside of the training dataset of the trained model—in the new training dataset; 

which in this study is referred to as learning (see Figure 5.2). In presence of a big amount of data, as in this 

study, learning and event-based retraining I occur frequently and would require great attention. Whereas in this 

case, since the historical data is automatically labeled, the retraining of the model can be automated. The third 

reason is a substantial change in the process and equipment, e.g., new pumps, sensors, and operation parameters; 

in such an event, an external input and new data will be required (event-based retraining II, Figure 5.2). The 

last reason is plant maintenance, which is a less frequent but invasive intervention, such as sensors recalibration 

and gaskets installion. Plant maintenance can change the behaviour of the data (event-based retraining II, Figure 

5.2). 

5.2.2 Real-time decision-making 

A tool was developed, which is user-friendly and uncomplicated to operate, for supporting the decision in 

interrupting the batch if a PF is detected. Figure 5.3 shows the failure class monitoring plot (above) and risk 

analysis plot (below). The evolution of the failure class of each batch (solid line in Figure 5.3, above) is 

monitored through model failure prediction; the class 𝐶 at time 𝑡𝑛+1 is predicted from the principal component 

tuple 𝑃 ∈  {𝑝1, 𝑝2, … , 𝑝𝐼} at time 𝑡𝑛 (only 𝑝1 and 𝑝2 are shown in the graphical representation). The decision-

making is performed with the two approaches; the first (see Figure 5.3, below) and most conservative is an 

adaptation of a risk analysis plot—i.e., frequency vs. impact, where risk, 𝑅𝑖𝑠𝑘, is defined by Eq. (5.4). 
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 𝑅𝑖𝑠𝑘 = 𝐼𝑚 ∙ (1 − 𝑁𝑃𝑉) (5.4) 

The event frequency, which is used in the conventional risk description, is substituted by the 𝑁𝑃𝑉; the impact 

𝐼𝑚 is the time loss and cost for the restarting. The risk considered in this decision-making process is the risk of 

worsening the process performance, namely the duration of the batch, through a preventive intervention, and 

the impact 𝐼𝑚 is defined in Eq. (5.5), where 𝑡0 is the batch starting time. 

 𝐼𝑚 = 𝑡𝑛 − 𝑡0 (5.5) 

The impact is defined as the time already invested in the process, which is the time that would have to be 

reinvested in the case of an intervention. The second approach is the evaluation of the expected value of the 

time gain 𝐺 in case of an intervention defined in Eq. (5.6) and (5.7) 

 𝐼𝑚 = E[𝐺] = 𝑔 ∙ 𝑁𝑃𝑉 − 𝐼𝑚 ∙ (1 − 𝑁𝑃𝑉)  (5.6) 

 𝑔 = 𝑡̂failure − 𝑡𝑛 (5.7) 

The variables E[𝐺], 𝑔, and 𝑡̂failure are the expected value of the time gain, the estimated time gain for the local 

decision and the estimated time at which the failure will occur; the variable 𝑡̂failure is estimated from historical 

failures. 

Figure 5.3 shows a graphical example of the tool in general terms: the evolution of the failure class is 

monitored; if the profile remains inside the successful, e.g., Batch 1, no intervention is required, whereas if the 

profile crosses the decision boundary, as it is shown for Batch 2, a risk evaluation is initiated as mentioned in 

Figure 5.1. While the risk is considered acceptable (orange and blue cross, Figure 5.3) no intervention is 

triggered; however, if a risk is considered unacceptable, the batch is interrupted (green cross, Figure 5.3). 
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Figure 5.3  Decision-making tool. 

5.3 Case Study 

The algorithm shown in Figure 5.1 was applied to the data records produced by a cleaning and sterilization 

process of F. Hoffmann–La Roche Ltd. in Switzerland. The CIP/SIP process is responsible for the cleaning and 

sterilizing of the product contacting surfaces of a filling plant for sterile biopharmaceutical drug solution in vial 

form. The process is batch and follows the recipe, which sets the boundaries for the process parameters—i.e., 

pressure temperature, and duration—to be applied to each task to run the process successfully. Table 5.1 shows 

the recipe of the pre-campaign CIP/SIP process, which consists of 252 tasks divided into 11 blocks. 
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Table 5.1  Process recipe of the pre-CIP/SIP. 

ID Block description 

A Preparation of the CIP/SIP 

B Rinsing the piping with DW 

C Filter integrity test  

D Impermeability testing of the filling needles 

E Decontamination of the isolator 

F Rinsing the piping with WFI 

G Sterilization of the system 

H Drying and cooling of the piping 

I Integrity testing of the production filter after SIP 

J Integrity testing of the production gas filter after SIP 

K End of CIP/SIP 

Numerous valves present in the plant regulate the pressure in the piping; however, the facility does not have 

any active system—i.e., model predictive control or PID controllers—as a control. The process parameters are 

constrained by upper and lower control boundaries for each sensor—i.e., temperature and pressure—for each 

task. Whenever a signal crosses a control boundary, the process stops. Because of the absence of an active 

controlling system the process parameters can vary within the control boundaries suggesting that it is plausible 

to hypothesize that particular variation can lead to process failure. The monitored data of the process consisted 

of time, five pressure profiles and nine temperature profiles, which recorded 𝐼 = 15 signals at 1 Hz frequency 

for 4 years providing the data of 238 batches; the metadata—i.e., information on batch and block ID, and time—

was exported for supporting the data preprocessing. The physical sensor data was filtered by time using the 

batch cluster boundaries (see Figure 3.13), namely starting and ending times of each batch, which was the 

outcome of the algorithm in Chapter 3. A simplified graphical representation of the filling system is shown in 

Figure 1.7, but the sensors position could be provided because of the high complexity of the piping network. 
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5.3.1 Real-time failure prediction 

5.3.1.1 Data transformation 

The labeled data of 238 batches was imported, and was further transformed following the workflow presented 

in Section 5.2.1.1. First, the metadata were exploited to sort and group the data by block (I). Although the 

process blocks are independent from each other and have different process requirements, their data points 

overlapped. It was possible to avoid non-causal correlations by dividing the dataset and creating one classifier 

per block; the resulting classification model consisted of 11 independent block-specific classifiers. Second, all 

data points (including the time) were scaled (II) using Eq. (5.1); second, after the PCA (III), the first six principal 

components, which were describing 95% of the variability, were selected as the new process features 

{𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6} . For the sake of readability only 𝑝1  and 𝑝2  (77% of the variability) are represented 

graphically; however, all the models and decisions take in consideration all the six components (IV). Fourth, 

the main dataset was split in two datasets, namely the training and deployment datasets, containing the data of 

222 and 16 batches, respectively Half of the batches in the deployment set were chosen from the successful 

batches and the other half from failed batches (where one or more operating steps had to be repeated). Fifth, the 

training dataset was relabeled to reduce the degree of overlap171 (DOO) between the classes (V); a detailed study 

on the effect of DOO is found later in the thesis. Last, the training dataset was balanced by up-sampling (VI) 

the data belonging to batches labeled as about to fail. 

5.3.1.2 Relabeling 

The relabeling of data points labeled as about to fail into successful in high-DOO areas (hypervolume if all six 

components are visualized) is plausible, whereas the contrary is not; the relabeling is valid under the assumption 

that a process is successful until it fails. The DOO between the two classes is defined using fuzzy sets as it is 

shown in Eq. (5.8) and Eq. (5.9) 

 𝑑+|𝑉 =
#points (with 𝐶 = 𝑎𝑏𝑜𝑢𝑡 𝑡𝑜 𝑓𝑎𝑖𝑙) in 𝑉

𝑀|𝑉
 (5.8) 
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 {

𝐷𝑂𝑂|𝑉 = 2 ∙ 𝑑
+|𝑉                           𝑖𝑓 𝑑

+|𝑉 < 0.5 

𝐷𝑂𝑂|𝑉 = 2 − 2 ∙ 𝑑
+|𝑉                  𝑖𝑓 𝑑

+|𝑉 ≥  0.5
𝐷𝑂𝑂|𝑉 = 0                                      𝑖𝑓 𝑀|𝐴 = 0      

   (5.9) 

The parameters 𝑑+|𝑉 and 𝑀 are the density of the points labeled as about to fail, and the total number of data 

points located inside the hyper volume 𝑉, respectively. The volume 𝑉 is a local volume inside the process space. 

Full class overlap (𝐷𝑂𝑂 = 1) is observed when the number of points inside a local volume 𝑉 is the same for 

both classes. Two factors influence the relabeling activity: the size of the local volume and the highest level of 

data ambiguity that is accepted prior to the model training. The size of the local volume is a function of the 

granularity parameter 𝛾, which determines the number of local volumes that are found on each dimension of the 

process space and are used for the calculation of the 𝐷𝑂𝑂|𝑉. The calculation of the local volume 𝑉 is shown by 

Eq. (5.10); each principal component dimension is divided into segments, the number of which is described by 

the parameter 𝛾. 

𝑉 = 𝛾−𝐼∏[max(𝑝𝑖) − min(𝑝𝑖)]

𝐼

𝑖

 (5.10) 

The granularity determines the resolution of the relabeling and can be an essential parameter in the determination 

of the capability of the classifier to represent the reality. The second factor is the critical degree of overlap 𝐷𝑂𝑂𝑐. 

The 𝐷𝑂𝑂𝑐 determines the critical overlapping degree allowed inside a local volume; if the condition 𝐷𝑂𝑂|𝑉 <

𝐷𝑂𝑂𝑐 is valid, relabeling is not required. The effect of the two parameters on the quality of the classification is 

shown in the next section by sensitivity analysis (see Figure 5.5). 

The relabeling task reduces the ambiguity in data and has the effect of sharpening the boundaries between 

the failure classes. A practical demonstration of the relabeling step is shown for the data of the process block C 

(𝛾 = 10, 𝐷𝑂𝑂𝑐 = 0) in Figure 5.4, where the data points labeled as about the fail (red dots) located in areas 

(due to the 2D representation) with high overlap are relabeled as successful (blue dots). 
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Figure 5.4  Plot showing data overlapping and outliers for an explanatory purpose. 

Figure 5.4 shows the data landscape before (top, left) and the after (top, right) the relabeling of the data in the 

case of block C. Zoomed representations are shown in the bottom graphs of Figure 5.4 for better visualization 

of the change in the labeling. The local degree of overlap, 𝐷𝑂𝑂|𝑉, was calculated and the local volumes with 

𝐷𝑂𝑂 > 𝐷𝑂𝑂𝑐  were relabeled; setting 𝐷𝑂𝑂𝑐 = 0 is the most conservative approach because it removes the 

ambiguity form the training data and lowers the risk of type II classification errors. After the relabeling and the 

training of the classifier, the two classes are separated and a clear decision boundary can be drawn (see Section 

5.3.1.4). 
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5.3.1.3 Model training 

A preliminary analysis of the effect of the two parameters, namely 𝛾 and 𝐷𝑂𝑂𝑐 , was performed before the 

training of the classifier used in the deployment. The parameters 𝐷𝑂𝑂𝑐 (x-axis, Figure 5.5) and of 𝛾 (y-axis, 

Figure 5.5) were varied to identify the parameter that would lead to the most precise classification of the failure 

classes, namely, no Type II errors. For the sake of simplicity, the 11 sub-classifiers were trained with the same 

𝛾, 𝐷𝑂𝑂𝑐 for each combination of the changeable parameters. Figure 5.5 shows the results of the sensitivity 

analysis on the classifier performance, here represented by the mean NPV of the 11 blocks, for two different 

cases of process maturity. The maturity of a process/model was represented by the size of available data; the 

higher the number of batches included in the dataset, the more mature the process/model is considered. The two 

decision tree classifiers were multiply trained with 85 (Figure 5.5, left) and 238 (Figure 5.5, right) batches to 

evaluate the influence of the parameters, 𝛾 and 𝐷𝑂𝑂𝑐, on classification. The performance of the classifier was 

calculated by holding out 25% of the training data points during the training activity; this dataset, which was 

randomly sampled, was compared with the model predictions and used to calculate the NPV. The block-specific 

classifier sensitivity analysis are shown for the two maturity levels in Figure C.2.1-C.2.2 in the Appendix. 

 

Figure 5.5  Parameter sensitivity analysis on the prediction performance, 𝑁𝑃𝑉̅̅ ̅̅ ̅̅ , for two maturity levels of the 

training datasets, namely 85 batches (right) and 238 batches (left). 

Figure 5.5 show that the maturity levels does not play a significant difference on the selection of the training 

parameters. Two scenarios were defined; the first was named conservative and the second risky. The two 

sensitivity analyses do not differ; therefore, the parameters defining the scenarios were defined based on the 
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sensitivity of the mature model. In the first scenario, a conservative setting, which is best represented by a high 

NPV—i.e., 𝑁𝑃𝑉 = 1—was selected; the combination of parameters  𝛾 = 15 , 𝐷𝑂𝑂𝑐 = 0  was used. In the 

second scenario, the parameter combination 𝛾 = 15, 𝐷𝑂𝑂𝑐 = 0.07 was defined as risky—i.e., 𝑁𝑃𝑉 < 1. The 

two scenarios are used to highlight the financial impact of the algorithm from the two strategical viewpoints.  

It has to be mentioned that high granularity increases the computational time required in the relabeling step, 

which could limit the retraining activity for less mature classifiers that frequently receive new information. Low 

granularity, e.g., 𝛾 = 5, delivers great classification performance; however, setting low γ would result in a 

excessive relabeling of data points originally labeled as about to fail, increasing the number of Type I errors and 

reducing the specificity of the classification. This effect is notable in Figures C.2.1-C.2.2, in which the NPV 

could not be calculated in low granularity areas because of the absence of about to fail data points. 

The two models, conservative and risky, were finally trained on four years of data (training dataset, 68 

successful and 154 failed batches); the resulting mean NPV was equal to 1 and 0.81, respectively. The integral 

information regarding the performance of each single block-specific classifier (Table C.3.1) and the graphical 

representation of the decision boundaries (Figure C.3.1-C.3.2) for both models are shown in Section C.3 in the 

Appendix. 

5.3.1.4 Model deployment 

After training the DT classifiers, the decision boundary between the two failure classes was drawn, and the 

model was deployed, as it is shown for the two scenarios in Figure 5.6 and Figure 5.7, respectively.  
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In Figure 5.6 and Figure 5.7, the process space colored in blue represents the successful area, whereas the red 

area represented the process space in which a batch can be classified as about to fail. The effect of having a 

model with an NPV smaller than 1 results in the increase of the areas where data are classified as about to fail. 

The models previously trained for the two scenarios were used to predict the status of 16 batches (deployment 

dataset) to test the applicability of the method to real operations. Figure 5.6 and Figure 5.7 show the data of a 

successful batch (Batch 9) and a failed batch (Batch 3) selected from the deployment dataset. The figures show 

that processes can be monitored and failure can be predicted in real-time (green profile). The two scenarios 

delivered slightly different decision boundaries. In the risky scenario, the model identified Batch 3 as failing 

already at its first block (Block A, Figure 5.7). On the contrary, in the conservative scenario the failure was 

detected only in block C. The repercussion of the delayed detection lead to the loss of 0.82 h (see Table 5.2) 

Real-time failure prediction was performed, and the results are shown in Figure 5.8 

 

 Figure 5.8  Real-time prediction of the failure class. 

The result of the prediction and the quality of the classifiers, which are listed in Table 5.2 are used in the real 

decision-making to evaluate the risk of taking preventive action. The time of detection is defined as the time as 

the first prediction equal to about to fail 

 

 

 

 

 

 

Predicted

R
ea

l 8

3

0

5F

S

S F

6

35

2
Salvaged

Lost



Intelligent real-time prediction of imminent failures in the cleaning and sterilization process 

117 

 

Table 5.2  Result of the deployment of the classifier on 16 batches. 

 Time of failure detection [h]   

Batch ID Conservative Risky Status in reality Real duration [h] 

Batch 1 -  Failed 8.00 

Batch 2 -  Failed 2.67 

Batch 3 0.82 0 Failed 45.97 

Batch 4 -  Failed 3.96 

Batch 5 -  Failed 7.26 

Batch 6 -  Failed 1.36 

Batch 7 0.43 0.43 Failed 29.09 

Batch 8 0.3 0.3 Failed 32.50 

Batch 9  -  Successful 12.25 

Batch 10 - 2.57 Successful 54.93 

Batch 11 - 3.08 Successful 14.25 

Batch 12 - - Successful 14.04 

Batch 13 - - Successful 29.41 

Batch 14 - - Successful 14.33 

Batch 15 - - Successful 15.05 

Batch 16 - - Successful 16.35 

 

5.3.2 Real-time decision-making 

Quantitative support of the decision-making on the intervention policy was provided by defining the critical risk 

in the impact-frequency approach. Gathering the information to clearly define the critical risk boundary from 

the business point of view is extremely challenging in an industrial setup. Experimentation on the use of the 

decision-making tool in real life is required to collect the impact-frequency tuples necessary to define the 

boundary between an unacceptable and acceptable business risk. For the sake of simplification and because the 
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information mentioned above is still unknown, the critical risk boundary was defined as the straight line (see 

Eq. 5.11) between the highest impact with the smallest frequency and the reciprocal point, namely the smallest 

impact with the highest frequency. 

𝐼𝑚 = −𝐼𝑚𝑚𝑎𝑥 ∙ (1 − 𝑁𝑃𝑉) + 𝐼𝑚𝑚𝑎𝑥 (5.11) 

The highest impact, 𝐼𝑚𝑚𝑎𝑥, was defined as the duration of a CIP/SIP batch resulting from the process recipe, 

which in this case study was 12 hours. The risk analysis was applied the prediction for both scenarios, as shown 

in Table 5.2. Values predicted failure times higher than the impact presented by Eq. (5.11) were rejected, values 

below the critical risk boundary were accepted. As a result, all the batches predicted as about to fail were 

accepted and the decision of interrupting the batch was enforced. 

5.3.3 Maintenance of the classifier 

  

Figure 5.9  Evolution of the process space over the time. 

As previously mentioned the process space evolved over time; Figure 5.9 shows the evolution of process block 

C. The evolution of the process space of other blocks is shown in the appendix (see Appendix C.4). From Figure 
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5.9 it can be noticed that the process space is expanding over the time—i.e., white areas turn into blue—, which 

justified the employment of a time-based retraining policy.  

The evolution of the model following the time-based maintenance policy was simulated for the available 

data (238 batches). A preliminary classifier at 𝜏0 was trained with the first three months of data, which 

contained the data of 15 batches; subsequently, the model was used to predict the presence of imminent 

failures and was retrained every 𝛥𝜏 equal to three months. The training dataset increases at each retraining 

activity; i.e., all new historical data were included in the updated training dataset every at interval 𝛥𝜏 in 

addition to the full set of previous training data. The simulation was performed for both the scenarios resulting 

in the salvaging of 12 batches over the period of 4 years. The complete results of the simulation are shown in 

Table C.4.1 and Table C.4.2 in the Appendix. 

5.4 Result and discussion 

The application and validity of the algorithm were shown in an implementation with real-world data recorded 

during a CIP/SIP process of a sterile filling facility. Two simulations for each risk scenario were performed in 

this study, namely the training and deployment of a DT classifier on the total training dataset (four years 

maturity) and the evolution of a classifier along a four years timespan. The results of the predictions were 

coupled with the decision-making tool providing the decision of interrupting the batch. The results of the 

simulation can be assessed in terms of the number of salvaged and lost batches, where the term lost refers to an 

interrupted batch that in reality would have been successful; a salvaged batch is a batch which failed in reality 

and was recognized as about to fail by the classifier. The time savings are also used to assess the impact of the 

algorithm on the operations; in case of salvaged batches, the time savings are defined as the difference between 

the time of detection and the real time of failure. In the case of a lost batch the time lost is equal to the time of 

detection of the failure. 

First, the two deployed classifiers were evaluated by their performance and their capability of identifying 

imminent failure; the deployment resulted in the salvaging of three batches in both scenarios out of eight batches, 

and the loss of two batches in the risky scenario. The implementation of the algorithm could result in the 
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potential saving of 106 and 100 hours each month, which is approximately the timespan in which 16 batches 

are performed, for the conservative and the risky scenarios, respectively. 

Second, the creation and evolution of two classifiers, conservative and risky, was simulated resulting in the 

salvage of 12 and 31 and loss of 12 and 34 batches over the total period of four years, respectively. The algorithm 

applied under these conditions over the four years of data did not reduce the actual downtime as in the previous 

example due to the high number of lost batches. This could be attributed to either the retraining interval being 

too large or the data still containing non-causally correlated data overlapping. From Table C.4.2, it can be 

noticed that the real-time decision-making part of the algorithm considered the unacceptable risk of taking a 

preventive action in the two cases, Without this tool the two Type II classification errors would have cost 20.41 

h (10.77 h and 9.74 h, respectively; see Table C.4.2).  

The study presented three main novelties, namely the supervised and conservative prediction of imminent 

failures, the intelligent retraining system, and the tool decision-making for considering business risk. First, a 

classification model was constructed for two scenarios, namely for conservative and risky decision-making. As 

expected from the sensitivity analysis, after the selection of the parameters 𝛾 and 𝐷𝑂𝑂𝑐  the model did not 

deliver Type II classification errors after the training in the conservative scenario; on the contrary, in the risky 

scenario, Type II errors were observed. Second, it was observed that the machine-learning models required 

evolution—i.e., retraining—over time, which was shown by applying the time-based retraining part of the 

maintenance algorithm. Although it was not shown in this work, the event-based retraining and the learning 

parts of the maintenance algorithm were responsible for updating the models whenever new data points or labels 

were available. The calculation of the local DOO through grid search simplified the search of volumes 

neighboring the class boundaries and reduced the computational effort during the retraining activity. Third, the 

method for assessing the risk of intervening in a production batch as the risk of worsening the current production 

supported the decision of the policymakers, which were represented by the conservative and risky scenarios. 

The algorithm presented three main limitations: First, the training of each model (two in total) required around 

30 minutes on average, which become excessively long when the maintainance algorithm is implemented in 

commercial operations. The reason could be attributed to the time required to train the single block-specific sub-

models (22 models in total) individually. The computational effort for training the model also increased with 
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increasing the size of the training dataset, which suggested a potential explosion of the computational time over 

the time. The limitation caused by the hardware could be solved by employing cluster computing, which was 

not accessible in this case because of data security constraints, in the training activity. Second, the data 

transformation part of the algorithm is simplistic; discretizing the process space during the relabeling step 

guarantees a specific decision-making strategy but decreases the sharpness of the decision boundary allowing 

more Type I classification errors. The algorithm could be improved for commercial applications by selecting 

alternative algorithms, such as nearest neighbor clustering, for selecting the local relabeling volumes. Third, the 

definition of the critical boundary is dependent on the decision maker. Thus the characterization of the business 

risk is subjective. Even though it is commonly applied, the assumption of a linear critical risk is simplistic does 

not reflect the reality of the business risk. To increase the contribution of the risk analysis to the final decision, 

a progressive critical risk with respect to the NPV could be applied. A progressive boundary of critical risk 

would allow higher detectability but block the predictions that carry too high impacts. 

5.5 Conclusion 

In this chapter, an intelligent algorithm for the real-time prediction of imminent failures for the cleaning and 

sterilization process in the biopharmaceutical manufacturing was presented. The algorithm, which is applied to 

real-world industrial data, consists of two main parts, a failure prediction and a real-time decision-making. The 

predictive model intelligently evolves with the always-changing process by updating itself whenever it fails, or 

new information is available, resulting in a powerful model-predictive monitoring tool. The decision-making 

tool is adaptable to the policy of the user, who can opt for a more conservative or a rather risky decision support. 

The application of the presented tool allows salvaging batches without changing the process or the process 

control system; hence, it avoids the time and monetary investments required to modify a process that is located 

in a GMP environment. The work presents a new take on the topic of process improvement and process control 

highlighting the utilization of the large amount of data without the need of the conventional process model.  

Three specific novelties were presented in this work: first, the supervised and conservative imminent failure 

prediction model, which removes data ambiguity leveraging the local DOO provided to the classification model 

high reliability and applicability in a running commercial process. Second, the quantitative incorporation of 

business risk could support the real-time decision on taking actions during the execution of a commercial batch; 
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third, the implementation of an intelligent maintenance algorithm that analyzes the performance of the model 

and automatically decides a model retraining policy. 

The algorithm was applied to an industrial case study in biopharmaceutical manufacturing with the goal of 

providing a tool for predicting imminent process failures. Two scenario analyses were performed by changing 

the risk of the decision; the scenarios represented a conservative decision-making and a risky decision-making 

policy. The two scenarios resulted in the potential salvage of 19% of the deployment batches; the potential time 

saving per month of 100 and 106 hours resulted for the first and second scenario, respectively. The time 

evolution and the temporal deployment of the model was simulated and resulted in the salvage of 12 batches in 

both scenarios; however, because of the high amount Type II error the effect on the downtime was minimal.  

The algorithm still presents some limitations as mentioned above. Among others, the low specificity (type I 

classification error) is prominent and limits the applicability of the entire algorithm in real operations. The 

reason of the low specificity was attributed to presence of non-causal overlapping in the training data.  

In future work it is of key importance to improve the prediction capability of the model; classification 

algorithm alternative to the decision tree model, such KNN or SVM, could improve the prediction performance 

and stability over time of the algorithm. Similarly, the further splitting of the data to a sub-block level, such as 

task, would remove non-causal data overlap improving the specificity of the prediction. Furthermore, more 

attention has to be invested in the definition of the critical business risk to better translate strategies and goals 

into quantitative indicators that can be used for supporting the real-time decision-making. Additionally, to 

further improve the applicability of the algorithm, future studies would have to invest efforts in improving the 

performance of the time-based retraining as well as include the retraining policies presented in the method 

section but not demonstrated in the case study. Finally, the descriptors and outcomes of the predictions, which 

were observed in the principal component dimension, have to be translated in the physical dimension. This 

would allow gaining additional process knowledge, and identifying and possibly removing the causes of process 

failures. 

5.6 Nomenclature 

𝐴 Local area inside the process space - 
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𝛼𝑗 Age of the classifier at iteration 𝑗  h 

𝐵 Sudden shift parameter - 

𝐶 Class variable, 𝐶 ∈ {𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙, 𝑎𝑏𝑜𝑢𝑡 𝑡𝑜 𝑓𝑎𝑖𝑙}  

𝐶𝑡𝑛+1
real  Real class at time 𝑡𝑛+1  

𝐶𝑡𝑛+1
pred

 Predicted class at time 𝑡𝑛+1  

𝐷 Slope of the linear relation  Pa s-1 

𝑑+ Density of the points labeled as about to fail - 

𝐷𝑂𝑂 Degree of overlap, 𝐷𝑂𝑂 ∈ [0,1] - 

𝐷𝑂𝑂𝑐 Critical degree of overlap - 

𝐺 Time gain h 

𝑔 Estimated time gain for the local decision h 

𝛾 Granularity parameter   

𝐼m Impact of an intervention h 

𝐼𝑚𝑚𝑎𝑥 Maximum impact of an intervetion h 

𝐼 Total number of sensors - 

𝑖 Sensor counter 𝑖 ∈ {1, 𝐼}  

𝑗 Classifier training iteration counter  

𝑀 Local total number of data points - 

𝑛 Time counter  

𝑁𝑃𝑉 Negative predictive value - 

𝑃 Set of principal components 𝑃 ∈ {𝑝1, 𝑝2, … , 𝑝𝐼}  

𝑝𝑖 Principal component 𝑖  - 

𝑡𝑛 General time point h 

𝑡̂failure Estimated time at which the failure will occur h 

𝜏𝑗 Training time point of the classifier h 

𝑥𝑖 Value of the sensor 𝑖 K, Pa, … 
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𝑥𝑖
′ Scale value of the sensor 𝑖 - 

𝑥̃𝑖 Transformed value of the sensor 𝑖 - 
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The thesis proposed a data-driven framework for supporting the decision-making in process and operation 

improvement for biopharmaceutical manufacturing. The framework consists of three main steps: the integration 

of existing industrial databases, assessment of the process performance and identification of the task to improve, 

and imminent failure mitigation by plant predictive maintenance. The second and third step of the framework 

tackle performance improvement through process re-design, which is long-term support, and through the real-

time plant maintenance, which is intervention support, respectively. The third step connects the industrial data 

storage system to the tool developed in the other steps to ensure industrial compatibility of the framework; this 

step is essential for the bridging between industry and academia, which is one of the goals of the author. In 

comparison with other studies134,164,172, this thesis provided a novel tool or approach that is applicable in an 

industrial environment and can solve long-term challenges as well as daily operation ones. This work integrated 

methods from various fields of research, such as data mining, machine learning, and natural language 

recognition. Moreover, the work could provide a multidisciplinary and multi-faceted view on the pharmaceutical 

world and the challenges found in this particular manufacturing sector. The data preprocessing algorithm 

utilized an extraneous perspective, namely the view of biotechnology, i.e., DNA sequencing, to solve a technical 

problem of computer science; the algorithm provided a multidisciplinary aspect to the thesis, which was one the 

author’s statements stated in section 2.2. In the next sections, the conclusions of the three aspects mentioned in 

the introduction, namely, the impact on academia, industry, and society are presented singularly in more details.  

6.1 Impact on the academia 

As previously mentioned the framework and more specifically the data transformation algorithm showed the 

compatibility of the work to industrial operations and systems. This work introduced some general novelties in 

addition to the specific ones presented in Chapters 3, 4, and 5. First, uncertainty was defined from historical 

data and used to assess the process performance considering the presence of operators; contrary to the studies 

that only considered exogenous uncertainty in the evaluation of the performance,130 the assessment considered 

the operators and human as part of the process and source of endogenous uncertainty, and provided a new 

perspective on process re-design. Second, in various occasions, e.g., noise classification, and the definition of 

the feasibility indicator, the framework could effectively integrate knowledge from experts in quantitative 

decision-making. Finally, the framework could also integrate the characters and the limiting factor that is very 
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peculiar to pharmaceutical manufacturing, namely GMP. GMP information was incorporated into the modeling 

of performance and in the decision-making mechanism, which is a value addition for such applied research. 

6.2 Impact on the industry 

The application of the framework in an industrial environment would bring several improvements in the 

decision-making process by simplifying and automating various activities. First, the data transformation 

algorithm, which is based on intelligent machine learning models, would automate tedious and obsolete tasks, 

such as data cleaning and structuring. Second, data historians would be optimally exploited; the data are used 

for creating models that support the process redesign and the monitoring and prediction of operations, and not 

used exclusively for retrospective analysis. Third, in addition to providing advanced mathematical methods, this 

work presented an integrated tool, which considers the risk of its implementation, for supporting the decision-

making in manufacturing operation. Fourth, by introducing an advanced statistical method, event-specific 

process features were extrapolated and used for the reduction of unexpected downtime. The case study 

demonstrated that the framework is industrially compatible and that, if implemented in the operations, it could 

improve the decision-making process as well as the process performance.  

Some limitations regarding the industrial applicability were identified in this work. Although the framework 

considers some simple aspects of GMP, a consideration of the entire GMP and its complex influence on process 

modification was not fully incorporated in the framework. Furthermore, given industrial implementation, the 

tool still requires extensive efforts in managing the integration of constraints from the informatics systems and 

the regulators. Finally, the extreme strong GMP culture, which is omnipresent in the pharmaceutical industry, 

and the lack of support from other studies, only allowed the employment of the framework to single or use cases 

or stand-alone process. A systemic or plant-wide implementation in the current decision-making process is still 

limited in the reality because of the reasons mentioned above. 

Nonetheless, part of the results of the case study, namely, the what-if analysis of Scenario 2, was 

implemented in the industrial facility, leading to 120 h of time savings per year, which can be potentially utilized 

for manufacturing operations resulting in a 3% increase of the production capacity. Without considering the 

potential gain derived by the increase in capacity, the contribution of the study resulted in the reduction of the 

fixed costs of 0.5 million CHF per production line per year. 
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6.3 Impact on the society 

This work is one of the many studies that aim to improve the global healthcare system by providing a solution 

to specific and technical problems. More specifically, in this study, the reduction of manufacturing costs by 

decreasing unexpected downtimes and increasing production capacity of high potent medications, such as anti-

cancer drugs, was the focus.  

Increasing production capacity, of course, has a high impact on the economy of a drug producer; in fact it 

guarantees that, the increasing number of new drugs entering the market can be manufactured without investing 

in new facilities. Ideally speaking, the cost of manufacturing can be reduced if the currently working facilities 

would be optimized instead of investing in new ones; therefore, the framework, especially the performance 

assessment step, is aimed at reducing manufacturing cost. 

Reducing unexpected downtime, similar to the previous case, has repercussions on the profitability of a 

process; however, an essential aspect that has to be considered is the effect of unexpected downtime on the 

supply of a drug to the market. With more unexpected downtime, more reserve has to be maintained in storage 

to provide the necessary drug to the patient. The risk associated with keeping large inventory is the shelf life of 

the product, which decreases with time, increasing the risk of wasting life-saving products. The predictive 

maintenance part of the framework aims at reducing the unexpected downtime by predicting the process failures; 

by doing so, it indirectly decreases the risk of increasing waste. 

The framework is relatively general and is adaptable to several processes; however, because the production 

of pharmaceutical products is a very complicated process, only the influence of the single improvement on the 

society could be deduced. 

To show the effect of the framework from the two perspectives, industrial case studies were performed: The 

first resulted in the identification of unnecessary process steps, and the second showed that the algorithm could 

save up to 100 hours production time per month if applied in real-time decision making. It can be concluded 

that the implementation of the framework on the most significant scale would result in the potential reduction 

of manufacturing cost and the increase of drug availability on the market. Not to be forgotten is that the 

improvement of a process in general usually results in improvement of their efficiency, which also has a positive 

effect from an environmental stand point.
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In future works, the framework has to be systematically implemented in the manufacturing, after the necessary 

adaptations, such as the creation of a user interface, and further generalization to increase flexibility. Moreover, 

a long-term benefit analysis has to be performed to prove the outcome of the decisions over time; lastly, the 

framework has to be expanded to other processes that are not CIP/SIP, such as filling, and transportation. 

Another perspective, which has not yet been considered, is the contribution that such a framework can deliver 

in improving the sustainability of the manufacturing process. By redefining the KPI through sustainability 

indicator, it is possible to analyze the impact of process improvement and operations support on the 

environment. The addition of such an assessment will enable the framework to deliver multi-objective decision-

making, considering the economic, supply risk-related, political, and environmental perspectives. 

7.1 Relevance of the study to the outside of pharmaceutical manufacturing 

The framework presented in this work is very general and can be adapted to the need of each user independently 

on the industry sector. In future works, the framework has to be applied to other processes, such as the 

downstream process of DS or the sterile filling process, and in other industry sectors, such as watch, car, and 

discrete manufacturing. The author is convinced that the framework can be transformed into every process 

consisting of a series of tasks through the reinterpretation of industry-related indicators such as the feasibility 

indicator. Additionally, the knowledge collected using the framework in assessing existing facilities, especially 

the knowledge about uncertainty, will support an advanced grass root design of new process. Such as an evolved 

root design will consider enlarged design boundary compared with the conventional design; in fact, additionally 

to the conventional boundaries, it will consider the operational environment in which the new process is located. 

Furthermore, the implementation of the algorithm presented in Chapter 5 could result in a very hands-on and 

profitable tool, which will reduce the downtime as well as guarantee the supply reliability required in the market. 

7.2 Industry 4.0 and Internet of Things concepts 

As mentioned in the conclusion sections in Chapters 3, 4, and 5, the study provided an introductory lesson to 

I4.0- and IoT tools, which until now, were unknown to the pharmaceutical industry. Following the current trend 

on data production, the data inventory, comprising manufacturing companies, is increasing exponentially; 

hence, such a framework can set the practical basis for the development of further integrated tools. The 
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expansion from a process-wide to plant-wide predictive monitoring and process improvement, by installing the 

new sensor and optimizing the position of old ones could increase the value of CAPE/PSE methods in the 

industry. 

Another technology, which is still in its infancy but is suitable for pharmaceutical operations support, is 

blockchain technology; such technology could further facilitate the introduction of the framework by dealing 

with GMP controlled activity and information. The author is convinced that the road toward smart 

pharmaceutical manufacturing is still long, but at least we are on the right track and already progressing. 
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A Appendix to Chapter 3 

A.1 Confusion matrix 

 
𝑪 = [

𝑪00 𝑪10
𝑪01 𝑪11

], (A.1) 

where: 

𝐶00 ≡ Number of times the process-class was correctly predicted 

𝐶11 ≡ Number of times the noise-class was correctly predicted 

𝐶10 ≡ Number of times the process-class was wrongly predicted 

𝐶01 ≡ Number of times the noise-class was wrongly predicted 

 

A.2 Additional figures 

 

Figure. A.1  Classification results of the datasets 𝑫𝟏-2 (top) and 𝑫𝟏-3 (bottom) 
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Figure A.2  Result of clustering on dataset 𝑫-2 (top) and 𝑫-3 (bottom) 
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A.3 Noise labeling algorithm 

The Matlab function used for identifying the alarms, remedy and repetitions in the process output is presented 

below. 

%% ”Cluster_list” is a cell containing task ID vectors as strings and execution times 
%% vectors of task for each clusters 

%% “Remedy_list” string vector containing the task ID of remedy operations 

%% “Alarm_list” string vector containing the task ID of alarm operations 

%% “Process_recipe” string vector containing the process sequence of task ID 

%% “Alarm_position” Cell containing vectors with the position of each alarm 

%% “Failing_taskID” Cell containing string vectors with the position of each alarm 

%% “Repetition_position” Cell containing vectors with the position of the repeated tasks 

 

function [Alarm_position, Failing_taskID, Repetition_position] = 

failure_analysis_function(Remedy_list, Cluster_list, Alarm_list, Process_recipe) 

 
% Pre-allocation  
Alarm_position = cell(length(Cluster_list),1); %Position of the alarms with respect to n 

Failure_presence = cell(length(Cluster_list),1); %Binary vector if =1 Failure exists 
Failing_taskID = cell(length(Cluster_list),1); %List of ID of the failed tasks 

 
for k=1:length(Cluster_list) 

 

 if sum(ismember(Cluster_list {k,1}, Alarm _list)) ~= 0 

 
  %% Identify Alarms 

  Alarm_position{k,1} =find(ismember(Cluster_list {k,1}, Alarm_list)); 

 

  % Pre-allocation of the single cells 

  Failing_taskID{k,1} = string(zeros(length(Alarm_position{k}),1)); 

 

  %% Identify failing tasks IDSs (the task before the alarm) 

  for j =1:length(Alarm_position{k}) 
   Failing_taskID{k}(j) = Cluster_list {k,1}(Alarm_position{k}(j)-1); 
  end 

 
  %% Repetition recognition 

  % Pre-allocation 
  for j =1:length(Failing_taskID{k}) 
   Repetition_position{k,j}=[];  
  end 

 
  for j =1:length(Failing_taskID{k}) 
   i=Alarm_position{k}(j); 
   T = 0;  

 

   % Position of the failure in the recipe (B) 
   [m,B,n] = intersect(Process_recipe,Failing_taskID{k}(j)); 
   while  B ~= T 
    if Failing_taskID{k}(j) == string('Remedy) 
     [m,T,n] = intersect(Process_recipe, Cluster_list{k,1}(i)) 
     Repetition_position{k,j} = [Repetition_position{k,j}(:,1); i]; 
    else 
     if ~ismember(Cluster_list{k,1}(i), Alarm _list) && 

        ~ismember(Cluster_list{k,1}(i), Remedy_list) 
      [m,T,n] = intersect(Process_recipe, Cluster_list{k,1}(i)); 
      Repetition_position{k,j} = [Repetition_position{k,j}(:,1); i]; 
     else 
      Repetition_position{k,j} = [Repetition_position{k,j}; 0]; 
     end 
    end 
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    i=i+1; 
     if  i >= length(Cluster_list{k}) 
      T=B; 
     end 
    end 
   end 

 
   % Correct repetition sequence and recognize nested/consecutive failures 
   for i =1:length(Failing_taskID{k}) 
    for j =i:length(Failing_taskID{k}) 
     [y,ia{i,j},ib]=intersect(Repetition_position{k,i},Repetition_position{k,j}); 
    end 
   end 

 
   % Pre-allocation set the position equal to 0 for all nested repetitions 
   for i =1:length(Failing_taskID{k}) 
    for j =i:length(Failing_taskID{k}) 
     if i<j && sum(ia{i,j})~=0 
      for t=1:length(ia{i,j}) 
       Repetition_position{k,j}(ia{i,j}(t))=0; 
      end 
     end 
    end 
   end 

 
   for j =1:length(Failing_taskID{k}) 
    if sum(ismember(Repetition_position{k,j},0))~=0 
     Repetition_position{k,j}(Repetition_position{k,j}(:,1)==0)=[]; 
    end 
   end 
    

   display('Repetition sequences were determined') 
    

   % Recognition of remedy, which consist of the failure itself and the lag before 

     restarting the process 

                 
   for j = 1:length(Alarm_position{k}) 
    if ~isempty(Repetition_position{k,j}) 
     Remedy_position{k,j} = Alarm_position{k}(j):Repetition_position{k,j}(1,1)-1; 
    else 
     Remedy_position{k,j} = []; 
    end 
   end 
  end 
   

  display('Remedy sequences were determined') 

   
 end 

end 
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A.4 Detailed algorithm performance results 

Table A.1  Detailed results of data preprocessing of 𝑫-1 

Batch  
Correctly 

identified 

Batch deviation / 

% 

Number of 

misclassification 
Comment 

1 Yes 0 0  

2 Yes 0 0  

3 Yes 0 0  

4 Yes 0 0  

5 Yes 0 0  

6 Yes 0 0  

7 Yes 0 0  

8 Yes 0 0  

9 Yes 0 0  

10 Yes 0 0  

11 Yes 0 0  

12 Yes -6.4 10 Erroneously classified as noise 

13 Yes 0 0  

14 Yes 0 0  

15 Yes 77 10  

16 Yes 0 0  

17 Yes 0 0  

18 Yes 510 138 

Batch was not concluded 

following the recipe, no eETS 

(outlier) 

19 Yes 0 0  

20 Yes 200 70 Misclassified noise 

21 Yes 0 0  

22 Yes 0 0  

23 Yes 0 0  

24 Yes 0 0  

25 Yes 132 32 Misclassified noise 

26 No - - Partial batch  

27 No - - Partial batch  

28 Yes -15 18 Erroneously classified as noise 

29 Yes 0 0  

30 Yes 189 14 Misclassified noise 

31 Yes 0 0  

32 Yes 201 57  

33 Yes 0 0  

34 Yes 0 0  

35 Yes 460 62 Misclassified noise 

36 Yes 0 0  

37 Yes 3.4 21 Misclassified noise 

38 Yes 0 0  

39 Yes 0 0  
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Table A.2  Detailed results of the data preprocessing of 𝑫-2 

Batch  
Correctly 

identified 

Time deviation / 

% 

Number of 

misclassification 
Comment 

1 Yes 0 0  

2 Yes 0 0  

3 Yes 0 0  

4 Yes 0 0  

5 Yes -8.4 15 Erroneously classified as noise 

6 Yes 0 0  

7 Yes 0 0  

8 Yes 0 0  

9 Yes 0 0  

10 Yes 0 0  

11 Yes 0 0  

12 Yes 0 0  

13 Yes 0 0  

14 Yes 0 0  

15 No - 0 Partial batch 

16 No - 0 Partial batch 

17 Yes -19 31 Erroneously classified as noise 

18 Yes 0 0  

19 Yes 0 0  

20 Yes 0 0  

21 Yes 0 0  

22 Yes 0 0  

23 Yes 31 5 Misclassified noise 

24 Yes 0 0  

25 Yes 0 0  

26 Yes 0 0  

27 Yes 0 0  

28 Yes 0 0  

29 Yes -25 12 Erroneously classified as noise 

30 Yes 0 0  

31 Yes 0 0  

32 Yes -83 12 

Batch was not concluded 

following the recipe, no eETS 

(outlier) 

33 Yes 0 0  

34 Yes 0 0  

35 Yes 0 0 
Not a commercial batch 

(excluded) 
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Table A.3  Detailed results of the data pre-processing of 𝑫-3 

Batch  
Correctly 

identified 

Time deviation / 

% 

Number of 

misclassification 
Comment 

1 Yes 0 0  

2 Yes 0 0  

3 Yes 0 0  

4 Yes 0 0  

5 Yes 0 0  

6 Yes 1.0 6 Misclassified noise 

7 Yes 0 0  

8 Yes 0 0  

9 Yes 0 0  

10 Yes 0 0  

11 Yes 0 0  

12 Yes 0 0  

13 Yes 0 0  

14 Yes 0 0  

15 Yes 0 0  

16 Yes 0 0  

17 Yes 0 0  

18 Yes -5.4 25 Erroneously classified as noise 

19 Yes 0 0  

20 Yes 0 0  

21 Yes -19 35  

22 Yes 0 0  

23 Yes -21 50 Erroneously classified as noise 

24 Yes 0 0  

25 Yes 0 0  

26 Yes 0 0  

27 Yes 0 0  

28 Yes 2.3 10 Misclassified noise 

29 Yes 0 0  

30 Yes 0 0  

31 No - 30 
Erroneously classified as noise, 

Partial batch 

32 No - - Partial batch 

33 Yes 0 0  

34 Yes 0 0  

35 Yes -0.5 8 Erroneously classified as noise 

36 Yes 0 0  

37 Yes 0 0  

38 Yes 0 0  

39 Yes 0 0  

40 Yes 0 0  
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B Appendix to Chapter 4 

B.1 Algorithm for calculating 𝑐𝑘 

1. Initialize the matrix 𝑭 with size [𝐾 × 1]. 
2. Sample a random number from 𝐵(𝑓𝑘, 𝑝𝑘) for each 𝑭𝑘,1. 

3. Return 𝑭. 

Failure in task 𝑘 in layer 𝑗 is represented by an element equal to 1 in a binary-element failure matrix 

𝑭, the element of which is 𝑭𝑘,𝑗, a portion of the entire Bayesian network of failures. For task 𝑘 the 

matrix at the first layer 𝑭∗,1  is created by sampling from the Bernoulli probability distributions 

𝐵(𝑓𝑘, 𝑝𝑘). If all elements of 𝑭∗,1 are equal to 0, no failure occurred and the algorithm is terminated. 

Otherwise, the algorithm continues as follows. 

1. Find 𝑘 for non-zero elements of 𝑭𝑘,𝑗. 

2. Update 𝑗 = 𝑗 + 1. 

3. For each 𝑘 and each non-zero element of 𝑹∗,𝑘, sample a random value from 𝐵(𝑓𝑘, 𝑝𝑘) 
4. Update 𝑭∗,𝑗. 

5. If ∑ 𝑭𝑘,𝑗𝑘 ≠ 0 iterate from 1. 

6. Return 𝑭. 

As long as the sum over the 𝑘 elements in the last column 𝑗 of 𝑭 is nonzero, a new column (𝑗 + 1) is 

added to matrix 𝑭, and new values are sampled from 𝐵(𝑓𝑘, 𝑝𝑘). In the new column (𝑗 + 1), the values 

are sampled only for the task 𝑘′ that has to be repeated in the case of failure in task 𝑘, namely if 

𝑹
𝑘′,𝑘

CIP/SIP
= 1, whereas for other tasks a value of 0 is assigned. If the sum over the 𝑘 elements in the 

last column 𝑗 of 𝑭 is equal to 0, the algorithm is terminated. The parameter 𝑐𝑘
rep

 is calculated by 

counting the failures that occurred in task 𝑘, shown in row 𝑘 of matrix 𝑭. 

𝑐𝑘
rep

=∑𝑭𝑘,𝑗
𝑗

 

B.2 PRCC calculation 

The PRCC is calculated for every changeable parameter by LHS–MCS.173–176 The stratified sample matrix 𝑿 of 

the changeable parameters and the vector 𝑲𝑷𝑰 are paired. The samples within each changeable parameter are 
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ranked by assigning the ranking values 𝑟𝑘,𝑛 ∈ [1, 𝑁] (see Eq. (B1)), where the highest rank is assigned to the 

highest value in every column. 

 |𝑿      𝑲𝑷𝑰| = |

𝑟1,1 𝑟2,1 …
𝑟1,𝑛 𝑟2,𝑛 …
…
𝑟1,𝑁

…
𝑟2,𝑁

…
…

    

𝑟𝑘,1
𝑟𝑘,𝑛
…
𝑟𝑘,𝑁

    

𝑟𝐾,1      𝑟𝐾+1,1
𝑟𝐾,𝑛      𝑟𝐾+1,𝑛
   …            …     
𝑟𝐾,𝑁      𝑟𝐾+1,𝑁

|  (B1) 

The ranking matrix of size [𝑁, 𝐾 + 1] shown in equation A1 is used to calculate the intermediate symmetric 

matrix 𝑺 as shown by equation B2. 

 

𝑺 = 𝑪−𝟏 = [𝑐𝑘′,𝑘′′]
−𝟏
=

∑ (𝑟𝑘′,𝑛 − 𝜇)(𝑟𝑘′′,𝑛 − 𝜇)
𝑁
𝑛=1

√∑ (𝑟𝑘′,𝑛 − 𝜇)
2𝑁

𝑛=1 ∑ (𝑟𝑘′′,𝑠 − 𝜇)
2𝑁𝑖

𝑠=1

       

𝑘′, 𝑘′′ = 1,2,… , 𝐾 + 1  

(B2) 

The parameter 𝜇 is the average rank of the sample and is equal to (𝑁 + 1)/2. The matrix 𝑪 is subsequently used 

to calculate the PRCC 𝜌𝑘, as shown in equation S3. 

 𝜌𝑘 =
−𝑐𝑘′,𝐾+1

√𝑐𝑘′,𝑘′𝑐𝐾+1,𝐾+1
 (B3) 

The significance of “𝜌𝑘 is different from 0” is tested by a t-test,176 calculating the 𝑡𝑘-value as follows. 

 𝑡𝑘 = 𝜌𝑘√
𝑁 − 2

1 − 𝜌𝑘
 (B4) 

The PRCC approach has various advantages, such as simplicity and low computational effort. Additionally, it 

can also evaluate nonlinear and stochastic models; however, it is only applicable if the relationship between 

input data and output data, here represented by 𝑿 and 𝑲𝑷𝑰, is monotonic. 
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B.3 Additional figure 

 

Figure B.1  RNE analysis results for the tasks D2, F5, and F18 belonging to intra-CIPSIP in the case study. 

B.4 LSS assessment 

An analysis using LSS was conducted in the case study for comparative purposes. The process performance 

model shown in equation B5 is analogous to the one used in the method (see Eq. (4.8)), but the model considers 

the annual process run time neglecting repetitions and failures. 

 𝑇CIP/SIP
annual =∑ 𝑡𝑘

annual

𝐾

𝑘=1

 (B5) 

The variables 𝑇CIP/SIP
annual  and 𝑡𝑘

annual  represent the total annual run times invested in CIP/SIP and task 𝑘 , 

respectively. The 𝑟𝑎𝑡𝑖𝑜𝑘
LSS is constructed on the basis of the partial contribution of every task k to the total 

annual run time, as shown in equation B6. 

  𝑟𝑎𝑡𝑖𝑜𝑘
LSS =

𝑡𝑘
annual

𝑇CIP/SIP
annual

 (B6) 
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The ratio is traditionally represented by a so-called Pareto chart. Figure B.2 shows a Pareto chart where 

𝑟𝑎𝑡𝑖𝑜𝑘
LSS is listed from the highest to the lowest for the two processes, post-CIP/SIP (left) and intra-CIP/SIP 

(right). The y-axis on the right and the black line show the cumulative yearly contribution. 

 

Figure B.2  Pareto chart showing the annual run time contribution of each task, for post-CIPSIP (left) and 

intra-CIP/SIP (right). 
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C Appendix to Chapter 5 

C.1 Contingency table 

Table C.1 Generic graphical representation showing the difference between  

operational disturbance (red) and noise (gray)  

  Real failure class 

P
re

d
ic

te
d

 f
ai

lu
re

 c
la

ss
 

 
Successful About to fail 

Successful True positive 
False positive  

(Type I error) 

About to fail 
False negative 

(Type II error)  
True negative 
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C.2 Block specific sensitivity analysis 

 

Figure C.2.1  Block-specific sensitivity analysis, the models are trained on an 85 batches dataset. 

 

Block A Block B Block C Block D

Block GBlock FBlock E

Block H Block I Block J Block K
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Figure C.2.2  Block-specific sensitivity analysis, the models are trained on a 85 batches dataset 

 

 

 

 

 

 

 

 

 

Block A Block B Block C Block D

Block GBlock FBlock E

Block H Block I Block J Block K
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C.3 Training details 

Table C.3.1 Training performance (NPV) of the block-specific classification models 

(N.A. appears whenever the training dataset is entirely classified as successful) 

Block  Conservative  

scenario 

Risky  

scenario 

A 1 0.99 

B 1 1 

C 1 1 

D 1 0.99 

E 1 1 

F 1 0.86 

G 1 0.99 

H 1 0.87 

I N.A. 0.75 

J N.A. 0.13 

K N.A. 0.23 

mean 1 0.81 
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C.4 Evolution of the process space 

 

Figure C.4.1 Process space evolution for block A  

 

 

Figure C.4.2 Process space evolution for block B 
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Figure C.4.3 Process space evolution for block D 

 

 

Figure C.4.4 Process space evolution for block E 
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Figure C.4.5 Process space evolution for block F 

 

 

Figure C.4.6 Process space evolution for block G 
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Figure C.4.7 Process space evolution for block H 

 

 

Figure C.4.8 Process space evolution for block I 
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Figure C.4.9 Process space evolution for block J 

 

Table C.4.1  Summary table of the results of the simulation of the intelligent self-training algorithm for the 

conservative scenario 

Batch ID Detection time [h] Status Duration of the batch [h] Time saved [h] 

1 - For training 0.76 - 

2 - For training 1.38 - 

3 - For training 0.04 - 

4 - For training 17.36 - 

5 - For training 0.03 - 

6 - For training 0.19 - 

7 - For training 12.43 - 

8 - For training 0.02 - 

9 - For training 12.39 - 

10 - For training 12.47 - 

11 - For training 52.67 - 

12 - For training 0.04 - 

13 - For training 12.60 - 

14 - For training 12.37 - 

15 - For training 12.41 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1)  

16 - - 12.27 - 

17 - - 13.41 - 

18 - - 0.03 - 
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19 0.00 Lost 1.85 0.00 

20 - - 12.63 - 

21 - - 12.49 - 

22 - - 15.39 - 

23 - - 0.03 - 

24 - - 0.04 - 

25 - - 12.58 - 

26 - - 12.36 - 

27 0.00 Lost 0.02 0.00 

28 - - 12.50 - 

29 - - 12.56 - 

30 0.00 Lost 14.30 0.00 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1)  

31 0.00 Lost 21.37 0.00 

32 - - 4.70 - 

33 - - 0.20 - 

34 - - 0.99 - 

35 - - 5.68 - 

36 - - 4.51 - 

37 - - 4.76 - 

38 - - 1.37 - 

39 - - 10.61 - 

40 - - 6.18 - 

41 - - 0.70 - 

43 0.00 Lost 0.14 0.00 

44 - - 13.03 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

45 - - 1.87 - 

46 0.00 Lost 49.54 0.00 

47 8.73 Salvaged 10.29 1.57 

48 1.04 Lost 36.50 -1.04 

49 0.00 Lost 7.00 0.00 

50 - - 0.59 - 

51 0.00 Lost 0.09 0.00 

52 - - 2.03 - 

53 - - 1.79 - 

54 - - 2.48 - 

56 - - 0.04 - 

57 - - 52.33 - 

58 - - 0.19 - 

59 - - 3.76 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

60 - - 0.01 - 

61 0.00 Lost 12.53 0.00 

62 - - 0.03 - 
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63 0.00 Lost 13.58 0.00 

64 0.00 Lost 0.01 0.00 

65 - - 12.90 - 

66 - - 0.02 - 

67 - - 0.02 - 

68 - - 3.12 - 

69 - - 2.40 - 

70 - - 2.32 - 

71 - - 13.55 - 

72 0.00 Lost 0.03 0.00 

73 0.00 Salvaged 1.80 1.80 

74 0.02 Salvaged 0.69 0.67 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

75 - - 1.93 - 

76 - - 0.00 - 

77 - - 7.16 - 

78 - - 29.66 - 

79 - - 12.40 - 

80 - - 37.53 - 

81 - - 12.47 - 

82 0.01 Salvaged 6.63 6.63 

83 1.83 Salvaged 2.59 0.76 

84 - - 17.52 - 

85 - - 1.71 - 

86 - - 0.20 - 

87 - - 0.73 - 

88 - - 12.67 - 

89 - - 0.07 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

90 - - 0.05 - 

91 - - 0.27 - 

92 - - 12.26 - 

93 - - 0.00 - 

94 - - 1.24 - 

95 - - 0.29 - 

96 - - 0.07 - 

97 - - 0.42 - 

98 - - 12.82 - 

99 - - 7.13 - 

100 - - 0.34 - 

101 1.04 Salvaged 17.76 16.73 

102 0.00 Lost 12.49 0.00 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

103 - - 0.01 - 

104 12.73 Lost 15.77 -12.73 
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105 - - 4.06 - 

106 1.26 Lost 17.04 -1.26 

107 - - 10.78 - 

108 - - 0.02 - 

109 1.56 Salvaged 2.82 1.26 

110 - - 0.18 - 

111 - - 0.14 - 

112 - - 12.89 - 

113 0.00 Lost 0.11 0.00 

114 - - 27.95 - 

115 - - 37.74 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

116 - - 0.02 - 

117 - - 0.04 - 

118 - - 7.06 - 

119 - - 2.38 - 

120 - - 12.51 - 

121 0.00 Lost 0.07 0.00 

122 - - 0.03 - 

123 - - 8.40 - 

124 - - 27.45 - 

125 - - 32.45 - 

126 - - 1.21 - 

127 - - 14.02 - 

128 - - 14.14 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

129 - - 0.02 - 

130 - - 0.29 - 

131 - - 12.58 - 

132 - - 12.57 - 

133 - - 2.10 - 

134 - - 1.40 - 

135 0.00 Lost 0.14 0.00 

136 - - 0.49 - 

137 0.00 Lost 0.03 0.00 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

138 0.06 Salvaged 0.16 0.10 

139 - - 12.40 - 

140 - - 0.02 - 

141 - - 0.01 - 

142 - - 30.19 - 

143 - - 0.01 - 

144 6.03 Lost 37.88 -6.03 

145 5.71 Lost 12.70 -5.71 

146 - - 0.02 - 
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147 - - 1.61 - 

148 - - 0.51 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

149 0.01 Salvaged 1.50 1.49 

150 - - 0.80 - 

151 - - 14.26 - 

152 - - 13.38 - 

153 - - 0.00 - 

154 - - 1.37 - 

155 - - 30.93 - 

156 - - 14.56 - 

157 - - 2.96 - 

158 - - 0.01 - 

159 - - 0.04 - 

160 - - 2.46 - 

161 - - 0.03 - 

162 - - 0.97 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

163 - - 1.91 - 

164 - - 14.17 - 

165 7.62 Lost 13.59 -7.62 

166 0.00 Lost 14.58 0.00 

167 - - 12.30 - 

168 - - 0.03 - 

169 - - 2.71 - 

170 - - 0.05 - 

171 - - 0.01 - 

172 0.00 Lost 0.07 0.00 

173 - - 0.03 - 

174 - - 0.86 - 

175 - - 15.22 - 

176 - - 1.31 - 

177 - - 12.27 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

178 - - 6.10 - 

179 - - 14.67 - 

180 - - 12.64 - 

181 - - 0.04 - 

182 - - 12.74 - 

183 5.63 Lost 26.16 -5.63 

184 2.46 Lost 13.70 -2.46 

185 - - 0.28 - 

186 6.88 Lost 13.43 -6.88 

187 6.18 Lost 17.20 -6.18 

188 - - 1.56 0.00 
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189 6.82 Lost 13.49 -6.82 

190 8.25 Lost 15.29 -8.25 

191 - - 1.41 - 

192 - - 1.42 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

193 - - 14.44 - 

194 - - 1.39 - 

195 - - 5.27 - 

196 - - 13.25 - 

197 - - 1.38 - 

198 0.05 Salvaged 0.34 0.30 

199 - - 1.36 - 

200 - - 12.80 - 

201 0.02 Salvaged 1.40 1.38 

202 - - 1.76 - 

203 - - 0.11 - 

204 - - 0.01 - 

205 - - 1.51 - 

206 - - 1.44 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

207 - - 1.44 - 

208 - - 1.43 - 

209 - - 0.02 - 

210 0.04 Salvaged 1.40 1.35 

211 - - 1.40 - 

212 - - 0.05 - 

213 - - 1.44 - 

214 - - 1.45 - 

215 - - 0.06 - 

216 - - 0.01 - 

217 - - 1.47 - 

218 - - 15.30 - 

219 - - 0.34 - 

220 - - 1.54 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

221 - - 0.01 - 

222 - - 1.50 - 

223 - - 0.05 - 

224 - - 1.50 - 

225 - - 1.66 - 

226 - - 1.41 - 

227 - - 0.01 - 

228 - - 1.48 - 

229 - - 1.42 - 

230 - - 1.45 - 
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231 - - 1.42 - 

232 - - 1.46 - 

233 - - 0.26 - 

234 - - 0.01 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 1) 

235 - - 0.01 - 

236 - - 2.80 - 

237 - - 2.19 - 

238 - - 37.76 - 

 

Table C.4.2  Summary table of the results of the simulation of the intelligent self-training algorithm for the 

risky scenario 

Batch ID Detection time [h] Status Duration of the batch [h] Time saved [h] 

1 - For training 0.76 - 

2 - For training 1.38 - 

3 - For training 0.04 - 

4 - For training 17.36 - 

5 - For training 0.03 - 

6 - For training 0.19 - 

7 - For training 12.43 - 

8 - For training 0.02 - 

9 - For training 12.39 - 

10 - For training 12.47 - 

11 - For training 52.67 - 

12 - For training 0.04 - 

13 - For training 12.60 - 

14 - For training 12.37 - 

15 - For training 12.41 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.88) 

16 0.67 Lost 12.27 -0.67 

17 0.57 Lost 13.41 -0.57 

18 - - 0.03 - 

19 0.00 Salvaged 1.85 1.85 

20 - - 12.63 0.00 

21 0.94 Lost 12.49 -0.94 

22 1.00 Lost 15.39 -1.00 

23 - - 0.03 - 

24 - - 0.04 - 

25 0.20 Lost 12.58 -0.20 

26 0.62 Lost 12.36 -0.62 

27 0.00 Lost 0.02 0.00 

28 0.58 Lost 12.50 -0.58 

29 0.59 Lost 12.56 -0.59 

30 0.00 Lost 14.30 0.00 
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Retraining (NPV̅̅ ̅̅ ̅̅ = 0.80) 

31 0.00 Lost 21.37 0.00 

32 - - 4.70 - 

33 - - 0.20 - 

34 0.65 Salvaged 0.99 0.34 

35 0.68 Salvaged 5.68 5.00 

36 0.60 Salvaged 4.51 3.92 

37 0.29 Salvaged 4.76 4.47 

38 - - 1.37 - 

49 1.02 Salvaged 10.61 9.60 

50 - - 6.18 - 

51 - - 0.00 - 

52 - - 0.70 - 

53 0.00 Lost 0.14 0.00 

54 - - 13.03 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.81) 

55 - - 1.87 - 

56 0.00 0.00 49.54 0.00 

57 1.76 Salvaged 10.29 8.54 

58 1.04 Lost 36.50 -1.04 

59 0.00 Lost 7.00 0.00 

60 - - 0.59 - 

61 0.00 Lost 0.09 0.00 

62 - - 2.03 - 

63 - - 1.79 - 

64 - - 0.00 - 

65 - - 2.48 - 

66 - - 0.04 - 

67 6.01 Lost 52.33 -6.01 

68 - - 0.19 - 

69 - - 3.76 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.92) 

70 - - 0.01 - 

71 0.00 Lost 12.53 0.00 

72 - - 0.03 - 

73 0.00 Lost 13.58 0.00 

74 0.00 Lost 0.01 0.00 

75 - - 12.90 - 

76 - - 0.02 - 

77 - - 0.02 - 

78 1.30 Salvaged 3.12 1.82 

79 - - 2.40 - 

80 - - 2.32 - 

81 0.00 Lost 13.55 0.00 

82 - - 0.03 - 
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83 0.00 Salvaged 1.80 1.80 

84 0.02 Salvaged 0.69 0.67 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.80) 

85 - - 1.93 - 

86 - - 7.16 - 

87 2.14 Lost 29.66 -2.14 

88 - - 12.40 - 

89 - - 37.53 - 

90 - - 12.47 - 

91 0.01 Salvaged 6.63 6.63 

92 1.83 Salvaged 2.59 0.76 

93 - - 17.52 - 

94 1.18 Salvaged 1.71 0.54 

95 - - 0.20 - 

96 - - 0.73 - 

97 0.26 Lost 12.67 -0.26 

98 - - 0.07 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.90) 

99 - - 0.05 - 

100 - - 0.27 - 

101 - - 12.26 - 

102 - - 0.00 - 

103 - - 1.24 - 

104 - - 0.29 - 

105 - - 0.07 - 

106 - - 0.42 - 

107 3.03 Lost 12.82 -3.03 

108 - - 7.13 - 

109 - - 0.34 - 

110 1.04 Salvaged 17.76 16.73 

111 0.00 Lost 12.49 0.00 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.81) 

112 - - 0.01 - 

113 2.93 Lost 15.77 -2.93 

114 - - 4.06 0.00 

115 0.88 Lost 17.04 -0.88 

116 - - 10.78 - 

117 - - 0.02 - 

118 1.56 Salvaged 2.82 1.26 

119 - - 0.18 - 

120 - - 0.14 - 

121 2.04 Lost 12.89 -2.04 

122 0.00 Lost 0.11 0.00 

123 2.01 Lost 27.95 -2.01 

124 2.00 Lost 37.74 -2.00 
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Retraining (NPV̅̅ ̅̅ ̅̅ = 0.84) 

125 - - 0.02 - 

126 - - 0.04 - 

127 1.98 Salvaged 7.06 5.08 

128 - - 2.38 - 

129 2.08 Lost 12.51 -2.08 

130 0.00 Lost 0.07 0.00 

131 - - 0.03 - 

132 2.31 Salvaged 8.40 6.08 

133 7.13 Lost 27.45 -7.13 

134 2.42 Lost 32.45 -2.42 

135 - - 1.21 - 

136 1.39 Lost 14.02 -1.39 

137 6.69 Lost 14.14 -6.69 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.84) 

138 - - 0.02 - 

139 - - 0.29 - 

141 2.12 Lost 12.58 -2.12 

142 - - 12.57 - 

143 - - 2.10 - 

144 - - 0.00 - 

145 - - 0.00 - 

146 - - 1.40 - 

147 0.00 Lost 0.14 0.00 

148 - - 0.49 - 

149 0.00 Lost 0.03 0.00 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.83) 

150 0.06 Salvaged 0.16 0.10 

151 - - 12.40 - 

152 - - 0.02 - 

153 - - 30.19 - 

154 - - 0.01 - 

155 2.18 Lost 37.88 -2.18 

156 1.93 Lost 12.70 -1.93 

157 - - 0.02 - 

158 - - 1.61 - 

159 - - 0.51 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.77) 

160 0.01 Salvaged 1.50 1.49 

161 - - 0.80 - 

162 0.90 Lost 14.26 -0.90 

163 - - 13.38 - 

164 - - 1.37 - 

165 6.67 Lost 30.93 -6.67 

166 2.11 Lost 14.56 -2.11 
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167 - - 2.96 - 

168 - - 0.01 - 

169 - - 0.04 - 

170 - - 2.46 - 

171 - - 0.03 - 

172 - - 0.97 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.76) 

173 - - 1.91 - 

174 9.77 Lost (unacceptable risk) 14.17 -9.77 

175 7.62 Lost 13.59 -7.62 

176 0.00 Lost 14.58 0.00 

177 0.17 Salvaged 12.30 12.13 

178 - - 0.03 - 

179 - - 2.71 - 

180 - - 0.05 - 

181 - - 0.01 - 

182 0.00 Lost 0.07 0.00 

183 - - 0.03 - 

184 - - 0.86 - 

185 10.74 Lost (unacceptable risk) 15.22 -10.74 

186 - - 1.31 - 

187 - - 12.27 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.81) 

188 - - 6.10 - 

189 - - 14.67 - 

190 2.01 Lost 12.64 -2.01 

191 - - 0.04 - 

192 1.57 Lost 12.74 -1.57 

193 1.99 Lost 26.16 -1.99 

194 2.46 Lost 13.70 -2.46 

195 - - 0.28 - 

196 2.68 Lost 13.43 -2.68 

197 2.31 Lost 17.20 -2.31 

198 - - 1.56 - 

199 6.82 Lost 13.49 -6.82 

200 2.32 Lost 15.29 -2.32 

201 - - 1.41 - 

202 - - 1.42 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.74) 

203 - - 1.44 - 

204 - - 1.43 - 

205 - - 0.02 - 

206 0.04 Salvaged 1.40 1.35 

207 - - 1.40 - 

208 - - 0.05 - 
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209 - - 1.44 - 

210 - - 1.45 - 

211 - - 0.06 - 

212 - - 0.01 - 

213 - - 1.47 - 

214 - - 15.30 - 

215 - - 0.34 - 

216 - - 1.54 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.74) 

217 - - 0.01 - 

218 - - 1.50 - 

219 - - 0.05 - 

220 - - 1.50 - 

221 - - 1.66 - 

222 - - 1.41 - 

223 - - 0.01 - 

224 - - 1.48 - 

225 - - 1.42 - 

226 - - 1.45 - 

227 - - 1.42 - 

228 - - 1.46 - 

229 - - 0.26 - 

230 - - 0 - 

231 - - 0.01 - 

Retraining (NPV̅̅ ̅̅ ̅̅ = 0.74) 

232 - - 2.80 - 

233 - - 0.01 - 

234 - - 2.19 - 

235 6.86 Lost 37.76 - 

 

 

D Tutorials 

D.1 Understanding operational disturbance and noise 

A generic process recipe consists of five tasks: ‘start’, ‘2’,’3’,’4’, and ‘end’. The process is under the influence 

of operational uncertainty and is controlled by GMP, which determines which tasks must be repeated in case of 

failure—e.g., only the failed task must be repeated until success. If a batch is performed without failure the 

exact recipe sequence is observed in the raw data (see A, in Figure D.1); however, if the batch is faulty, the 

operational disturbance (red, Figure D.1) is observed in the raw data (see B, in Figure D.1) and the recipe is 
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truncated—e.g., three data points are repeated inside the recipe sequence. Differently from the operational 

disturbance, the noise (grey, Figure D.1) appears between batches; all data points between batches are classified 

as noise. Two types of noise can be observed: One is identified as the recording of a task which belongs to the 

recipe but does not follow the any sequence (see C, in Figure D.1); the other is the recording of a task ID which 

does not belong to the process recipe (see D, in Figure D.1). 

 

Figure D.1 Generic graphical representation showing the difference between  

operational disturbance (red) and noise (gray)  

D.2 Data sequencing 

D.2.1 Find ETS (step 3.1) 

All the ETS sequences are located as following the below algorithm; the number of  total ETS is unknown. 

Let the vectors 𝑠𝐸𝑇𝑆 =  [𝑠1, 𝑠2, 𝑠3, 𝑠4]
𝑇 and 𝑒𝐸𝑇𝑆 =  [𝑒1, 𝑒2, 𝑒3, 𝑒4]

𝑇 be the starting and ending ETS. 

 for ∀𝑛 <  𝑁 − 𝑠 + 1 calculated the distance 𝐷𝑛,𝑛+𝑠−1  
sETS  between 𝑠𝐸𝑇𝑆 and [𝑫𝟏(𝑛),… ,𝑫𝟏(𝑛 + 𝑠 − 1)] 

 for ∀𝑛 <  𝑁 − 𝑠 + 1 calculated the distance 𝐷𝑛,𝑛+𝑠−1  
eETS  between 𝑒𝐸𝑇𝑆 and [𝑫𝟏(𝑛),… ,𝑫𝟏(𝑛 + 𝑠 − 1)] 

 The position 𝑝𝑠ETS𝑗 of the sETS 𝑗 in equal to 𝑝𝑛 ∀𝑛 where 𝐷𝑛,𝑛+𝑠−1  
sETS = 0 

 The position 𝑝𝑒ETS𝑗 of the eETS 𝑗 in equal to 𝑝𝑛 ∀𝑛 where 𝐷𝑛,𝑛+𝑠−1  
eETS = 0 

The ETS positions set of the 𝑝ETS = {𝑝𝑠ETS , 𝑝𝑒ETS  } is saved and is used as placeholder in the sequencing. 

D.2.2 Calculate primer size 𝑠𝑛
𝑝
 (step 3.2) 

The primer size at each data point 𝑛 is calculated; during the sequencing the primer size adapts depending on 

its distance from the nearest ETS. The primer size is calculated as follows: 
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 ∀𝑛 <  𝑁 − 1 calculate the distance of the data point from the nearest ETS as 𝑑𝑛
ETS = min

𝑗
|𝑝𝑛 − 𝑝

ETS𝑗| 

 ∀𝑛 <  𝑁 − 1  use Figure 3.4 to determine how to calculate the primer size 𝑠𝑛
𝑝
 

D.2.3 Calculate Wagner-Fischer distance and heterogeneity coefficient  

First, the WF distance between each primer and fragments of 𝑫𝟏 are calculated  

Let 𝑃 and 𝑅 be the primer and recipe string vectors 

 ∀𝑛 < 𝑁 − 1 and ∀𝑘 < 𝐾 − 𝑠𝑛
𝑝
+ 1 define the string vector 𝑃𝑘,𝑛 = [𝑅(𝑘), … , 𝑅(𝑘 + 𝑠𝑛

𝑝
− 1)] 

 ∀𝑛 < 𝑁 − 1  and ∀𝑘 < 𝐾 − 𝑠𝑛
𝑝
+ 1  calculate the distance  𝐷𝑛,𝑘

𝑊𝐹  between the 𝑃𝑘,𝑛 and 

[𝑫𝟏(𝑛), … , 𝑫𝟏(𝑛 + 𝑠𝑛
𝑝
− 1)]  

 ∀𝑛 < 𝑁 − 1 calculate the minimum distance 𝐷𝑛
𝑊𝐹  =  𝑚𝑖𝑛𝑘  (𝐷𝑘,𝑛

𝑊𝐹) 

 ∀𝑛 < 𝑁 − 1 calculate the heterogeneity coefficient 𝐻𝑛  =
𝐷𝑛
𝑊𝐹

𝑠𝑛
𝑝  

 

  



Appendix 

185 

 

D.3 IDEF0 

The IDEF0 notation is used to describe the interconnection between actions (activities) and information; as it is 

shown in Figure D.2 an activity is defined through its description—e.g., “do X”, “analyze Y”—and is identified 

by an ID. An activity—e.g., transform raw data—takes an input—e.g., raw data—and delivers an output—e.g., 

structured data—; the activity is performed following a mechanism and is controlled by a control, an example 

of which is “preserve data integrity”. Activities can be layered by introducing sub-activities, which use all 

inputs, control, and mechanisms of the main activity. The identifier starts from the outer layer with A0, also 

called zero layer, and continues with the notation AIJ… in the inner layers—e.g., A41 stays for the first sub-

activity of the fourth activity in the first layer and is located in the second inner layer. An exhaustive and 

extended description and definition of the IDEF0 method is found at http://www.idef.com/idefo-

function_modeling_method/.177 

 

Figure D.2  Generic IDEF0 notation 
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