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Abstract

Although the number of discovered long non-coding RNAs (IncRNAs) has increased dra-
matically, their biological roles have not been established. Many recent studies have used
ribosome profiling data to assess the protein-coding capacity of IncRNAs. However, very
little work has been done to identify ribosome-associated IncRNAs, here defined as IncRNAs
interacting with ribosomes related to protein synthesis as well as other unclear biological
functions.

On average, 39.17% of expressed IncRNAs were observed to interact with ribosomes in
human and 48.16% in mouse. We developed the ribosomal association index (RAI), which
quantifies the evidence for ribosomal associability of IncRNAs over various tissues and
cell types, to catalog 691 and 409 IncRNAs that are robustly associated with ribosomes in
human and mouse, respectively. Moreover, we identified 78 and 42 IncRNAs with a high
probability of coding peptides in human and mouse, respectively. Compared with ribosome-
free IncRNAs, ribosome-associated IncRNAs were observed to be more likely to be located
in the cytoplasm and more sensitive to nonsense-mediated decay. Furthermore, we tried to
investigate the sequence features involved in the ribosomal association of IncRNA. We have
extracted ninety-nine sequence features corresponding to different biological mechanisms
(i.e., RNA splicing, putative ORF, k-mer frequency, RNA modification, RNA secondary
structure, and repeat element). An L1-regularized logistic regression model was applied
to select these features. Finally, we obtained fifteen and nine important features for the

ribosomal association of human and mouse IncRNAs, respectively.
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To our knowledge, this is the first study to characterize ribosome-associated IncRNAs and
ribosome-free IncRNAs from the perspective of sequence features. These sequence features
that were identified in this study may shed light on the biological mechanism of the ribosomal
association and provide important clues for functional analysis of IncRNAs. Our results
suggest that RAI can be used as an integrative and evidence-based tool for distinguishing
between ribosome-associated and free IncRNAs, providing a valuable resource for the study

of IncRNA functions.
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Chapter 1

Introduction

1.1 Long noncoding RNAs

1.1.1 A brief history of IncRNAs

The knowledge of non-coding RNAs arises from a scientific understanding of non-coding
sequences in the genome. As early as the 1970s scientists took note of the non-coding
sequences and called them “junk DNAs” [1]. Transcripts from non-coding sequences, such
as heterogeneous nuclear RNA (hnRNA [2]), have been discovered since the 1970s. In the
1980s, small nuclear RNA (snRNA [3]) and small nucleolar RNA (snoRNA, reviewed in
[4]) were also discovered. This shows that the non-coding sequences in the genome are
carrying information and they should have biological functions. Scientists have gained a
more comprehensive understanding from the Human Genome Project (HGP) that began in
the 1990s [5, 6]. This project led to the determination of the complete genome sequence of
many species, thereby understanding the composition and structure of non-coding sequences
in the genome. In the 21st century, with the advancement of the transcriptome research
and the implementation of the ENCODE (Encyclopedia of DNA Elements) project, it was

found that the vast majority of the genome is pervasively transcribed into tens of thousands
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of non-coding transcripts [7]. In the past decade, the MiTranscriptome project used RNA-
seq data from various cancer tissues to obtain 91,013 expressed genes, of which over 68%
(58,648) of genes were classified as long noncoding RNAs (IncRNAs) [8]. Meanwhile, the
FANTOM (Functional ANnoTation Of the Mammalian genome) project used CAGE (cap
analysis of gene expression) data from different primary cell types and tissues and detected
27,919 human IncRNAs [9]. So far, the number of IncRNAs has far exceeded the number of

protein-coding mRNAs.
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Fig. 1.1 Number of Pubmed results for the keywords “IncRNA” or ‘“long noncoding
RNA” or “long non-coding RNA”. Data accessed on 24th June 2018.

Is IncRNA a universal transcript or a functional element? It was initially a highly
controversial problem. Due to the poor sequence conservation and low expression levels
among model organisms, IncRNAs were considered as products of low-fidelity polymerases
and without exact functionality [10]. However, this hypothesis has been ruled out by more
and more depth sequencing analysis. For instance, the promoter region and the splicing site
of IncRNAs have certain similarities to protein-coding genes [11]. Although the sequence
conservation of IncRNAs is lower relative to that of mRNAs, IncRNAs to achieve their

function may not rely on stringent sequence conservation but instead on RNA secondary
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structure [12]. The number of studies aimed at identifying IncRNAs and deciphering their
roles and functions has dramatically increased (Fig. 1.1). This effort led to a more extensive
annotation of their genomic organization and features as well as to a better understanding
of their role in various biological processes, which span from the regulation of embryonic

development to pathological conditions such as cancer [13-16].

1.1.2 Challenges in analysis of IncRNA

There are two challenging problems that scientists faced when analyzing the IncRNA popu-
lation were how to annotate their genomic locations and structures accurately, and how to
perform functional analysis and characterization of large numbers of IncRNAs.

The annotation of long non-coding RNAs depends on the genome-wide screening of
transcripts that mainly annotated as non-coding sequences, such as the lack of an active open
reading frame. Scientists are still faced with many challenges when annotating IncRNA
genes in the genome. There are at least three reasons why are IncRNAs challenging to
annotate. First, IncRNAs have low expression levels, implying that their transcripts will
be weakly detected in any unbiased transcriptomic data, including expressed sequence tags
(ESTs), RNA-seq and CAGE data. Second, IncRNAs tend to be weakly conserved during
evolution [17], making it challenging to identify their homologs by sequence similarity.
Third, our understanding of the relationship between IncRNA sequence and its function is
insufficient. Sequence features or functional elements cannot be immediately used to identify
novel IncRNAs. In contrast, we can use the ORF sequences to distinguish mRNAs from the
transcriptome. There are several different annotation databases for the human genome. They
are based on two main strategies of automatic and manual annotation. Automatic annotation
(MiTranscriptome [8], Human Body Map 2.0 [18], FANTOM CAT [9], BIGTranscriptome
[19] ) usually applies a fast and economical method of transcription assembly, but it leads to

incomplete and inaccurate annotations. Manual annotation (GENCODE [20], RefSeq [21])
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generates high-quality IncRNAs, but it is slow and requires substantial long-term financial
support.

Due to the majority of IncRNAs are still interpreted as having an unknown function,
identification of IncRNA functions has become the most challenging problem. In general,
there are two ways to study the functions of IncRNA: experimental and computational.
Experimental approaches such as gene knockdown, knockout, overexpression, or editing
are considered as golden-standard methods for the investigation of IncRNA functionality.
Unfortunately, in consideration of both technical difficulties and limited resources in the form
of time and money, these approaches are only suitable for the analysis of what is usually a
limited pool of candidates. Alternatively, computational approaches can provide predictive
biological functions for IncRNAs in genome-scale. For instance, with an amount of gene
expression data across species, tissues and biological conditions in various public databases,
it is possible to predict IncRNA functions based on the information from co-expressed

transcripts [22].

1.2 Ribosome profiling

1.2.1 Basic principle of ribosome profiling

Ingolia and colleagues developed ribosome profiling technique to obtain a genome-wide
snapshot of actively translating ribosomes on the transcriptome [23]. The core of this
method is that a translating ribosome can protect approximate 30 nucleotides of mRNA from
ribonuclease treatment [24]. These fragments (termed ribosome footprints) are subjected
to deep sequencing to provide the position of the ribosome in a sub-codon revolution. As
shown in Fig. 1.2, ribosome profiling is typically conducted on a split sample, with parallel
libraries prepared for measuring RNA abundance by RNA-seq. The principle of ribosome

profiling technique is as follows:
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(1) Treatment of the cultured cells with cycloheximide (commonly used for eukaryotes)
or chloramphenicol (for bacteria), which are inhibitors of translation elongation, making the
translating ribosomes to freeze on the mRNAs. Then obtaining the cellular extract;

(2) Obtaining the cell extract and treating with ribonuclease to digest naked mRNA frag-
ments. Sucrose density gradient centrifugation is used to separate ribosomes and protected
mRNA fragments (ribosome footprints). Ribosome footprints are quantitatively transformed
into cDNA libraries that could be deeply sequenced;

(3) Alignment of ribosome footprints to the transcriptome, which is derived from the

known gene annotations corresponding reference genome sequence.
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Fig. 1.2 An overview of ribosome profiling technique.
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1.2.2 Applications and limitations of ribosome profiling

Ribosome profiling has rapidly become a widely used tool for studying diverse and complex
biological problems. This technique can be applied to several research scenarios.

First, ribosome profiling can be applied to characterize translation efficiency or differential
translation and measure protein abundance. Combining ribosome profiles and corresponding
transcript abundances can be used for the characterization of protein translation efficiency
(i.e., protein synthesis rate). Ingolia et al. found that the difference in translation efficiency
between yeast proteins can be more than 100 times [23]. Analysis of protein translation
changes during the differentiation of mouse embryonic stem cells into embryoid bodies
revealed a large number of translational pause sites and unannotated translation products,
as well as large uORF translation differences during differentiation [25]. In addition, due to
the presence and complexity of translational regulation, it is difficult to accurately predict
protein expression levels based on mRNA expression levels. Therefore, the use of translation
efficiency may be more accurate in predicting protein abundance [26].

Second, analysis of whole genome-wide ribosome profiles facilitates us to define the
proteome more precisely and sensitively. Using the ribosome profile, we can find some
short-length translatable open reading frames, called upstream open reading frames (uORF),
which refer to short translations that exist upstream of the coding region and may be involved
in translational regulation and have an important biological role. By using ribosome profiling
techniques, a large number of ribosomes have been found in many 5° UTRs of transcripts,
implying that this region has high translation activity and may be translatable. A large
number of typical AUG-initiated uORFs and non-AUG-initiated uORFs have been found in
several species [23, 27, 25, 28]. Further analysis also revealed that the translational activity
of uORF was higher during meiosis than vegetative, and the above two short ORFs had
opposite effects on the downstream ORF translation efficiency [28]. The short open reading

frame (SORF) is a short open reading frame (less than 80 to 100 amino acids) in unannotated
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transcripts. Studies on yeast meiosis have also revealed that the translation of some sORFs
and they are highly regulatable [14]. However, the function of these SORFs remains to be
further studied. Additionally, the use of ribosome profiling to analyze procedural shifts in the
translation process can also lead to the discovery of dually decoded regions and stop codon
read-throughs [29].

Finally, The use of ribosome profiles allows in-depth study of protein translation mecha-
nisms. Studies by Li et al. [30] on bacteria found that the SD (Shine-Dalgarno) sequence
inside the mRNA coding region was evolutionarily due to the translational pause. While the
pairing binding of the anti-SD sequences on the rRNA (on the translating ribosomes) with
SD-like sequences (on the transcripts) leads to translation pauses. In other words, the main
factor in the translational pause and codon usage of bacteria is the presence of an anti-SD
sequence in the 16S rRNA on the ribosome. This phenomenon can guide the expression
of heterologous proteins in bacteria. Oh et al. [31] studied the function of the chaperone
trigger factor (TF) in E. coli cells using ribosome profiling techniques and selective ribosome
profiling techniques. By using the ribosome profiling and isotopic labeling analysis on the
HEK?293 cell line, mRNA translation was found to be more likely to bind ribosomes on the
endoplasmic reticulum than ribosomes in the cytoplasm [32]. Therefore, using ribosome
profiles can quickly and accurately discover which sequences of the genome are translated
into proteins, where the translated transcripts are highly active, and the timing of some
translation-related events.

Also, there are some remarkable limits for ribosome profiling. First, translation elongation
inhibitors are particularly important when getting snapshots of the translating ribosomes.
Particularly during the analysis of translation pausing, improper handling of inhibitors may
cause many false positive or false negative results. Moreover, researchers have found that
inhibitors can alter the local distributions of ribosomes on a mRNA [23, 33, 34]. Second,

when analyzing ribosome profiling data, we consider that most of the footprints arise from
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80S ribosomes and their sizes obey a particular distribution. Thus, we categorize the
footprints that do not match this length distribution into the contamination. However, recent
studies have shown that 80S mRNA footprints do not conform to the typical size pattern.
The footprint size may also be various due to different ribosome conformations [35] and
alternative mRNA properties [34]. Finally, how to deal with those ambiguous reads is also
a problem we need to consider when analyzing ribosome profiling data. Due to the short
length of the footprint and the presence of multiple isoforms in the genome, a footprint can
often be mapped to multiple transcripts or multiple locations within a transcript. Thus, the

probabilistic alignment may be more suitable for the analysis of ribosome profiling data.



Chapter 2

Identification and analysis of

ribosome-associated IncRNAs

2.1 Introduction

Long non-coding RNAs (IncRNAs) are sequences longer than 200 nucleotides with no
protein-coding capacity. Over 58,000 genes had been identified as human IncRNAs as of
2015 [8], and that number continues to grow [36, 9]. In contrast, only a small number of
IncRNAs have been functionally annotated to date [37]. Because the majority of human
IncRNAs are still interpreted as having an unknown function, identification of IncRNA
functions has become a challenging problem [38].

Analysis of macromolecular IncRNA interactions has been used as an approach to conduct
large-scale studies of IncRNA functions [39]. Ribosome profiling techniques adapt high-
throughput sequencing methods to ribosome-protected fragment sequences, which provides
a genome-wide dataset of ribosome—RNA interactions [23]. Ingolia et al. first developed
ribosome profiling and applied it to studying long intergenic noncoding RNAs (lincRNAs)
and reported that the majority of lincRNA fragments engaged by ribosomes represent a

limited portion of different lincRNA sequences [25]. Other modified ribosome profiling
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techniques were applied to identify ribosome-associated IncRNAs and reduce false positives
[40, 41].

Many previous studies have used ribosome profiling data to examine ribosome—IncRNA
interactions, with a primary focus on detecting protein-coding signatures in IncRNAs. Hence,
rigorous metrics and ignoring IncRNA characteristics can lead to underestimates of the
association between IncRNAs and ribosomes. For instance, Guttman et. al defined the RRS,
a ratio of counts of ribosome footprints from putative ORF to counts of ribosome footprints
based on downstream sequences, to assess the sharp decrease in ribosome occupancy at the
end of putative ORFs, ultimately demonstrating that lincRNAs do not produce proteins [42].
Wang et al. utilized the three-nucleotide periodicity and uniform distribution of ribosome
occupancy to evaluate the translation potential of lincRNAs [43]. These two studies mainly
focused on detecting lincRNAs with the ability to encode proteins while excluding any
other forms or functions of ribosome-associated IncRNAs from consideration (e.g., storing
ribosomes or translational regulation discussed in [44]). Ruiz-Orera et al. assessed ribosomal
associations by measuring the breadth of ribosome coverage, which was defined as the
number of nucleotides overlapped by Ribo-seq reads on a transcript or a transcript region
[45]. This metric ignores the influences of the depth of ribosome coverage, the expression
level of a transcript, and the length of a transcript with ribosomal association. Taken together,
little attention has been given to ribosome—IncRNA interactions that may involve biological
functions [46—48]. Efforts that focus on the identification of reliable ribosome-associated
IncRNAs are insufficient.

Here, we define the term “ribosome-associated IncRNAs” as a class of IncRNAs that
ribosomes associate with by sliding along regions on them or by binding to specific sites
within them. In contrast, “ribosome-free IncRNAs” represent IncRNAs with little (or no)
ribosomal association. Note that the term “ribosome-associated IncRNA” was frequently used

in previous studies to refer to a rare fraction of IncRNAs with the predicted ability to encode
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peptides. By mapping ribosome profiling data to IncRNAs, we observed that an average
of 39.17% (24.65-59.92%) and 48.16% (26.04-70.13%) of expressed IncRNAs interact
with ribosomes in human and mouse, respectively. The protein-coding capacity remains
relatively low for the total population of ribosome-associated IncRNAs compared with
mRNAs. However, some evidence has emerged for the translation of ribosome-associated
IncRNAs. As such, we newly present the ribosomal association index (RAI), an integrative
and evidence-based tool that assigns a confidence score to a specific IncRNA representing its
ribosomal associability. RAI can be applied to both tissue-specific and ubiquitous IncRNAs in
combination with the tissue-specific expression metric spec (see “Methods” in this chapter).
Focusing on ubiquitously expressed IncRNAs, we used RAI * (1 - spec) to measure ribosomal
associability. (Note that RAI*spec can be used for analyzing tissue-specific IncRNAs.)
Furthermore, we apply two threshold values (the 5th and 95th percentiles of RAI * (1 - spec)
scores) to divide the IncRNAs into “noribo-IncRNAs” and “ribo-IncRNAs.” Those IncRNAs
that scored below the lower threshold are defined as “noribo-IncRNAs,” representing a
subset of reliable ribosome-free IncRNAs. Conversely, IncRNAs that scored above the
upper threshold are referred to as “ribo-IncRNAs,” representing a subset of high-confidence
ribosome-associated IncRNAs. We show that transcript length may not be a major factor
associated with ribosomal associability in IncRNAs. Moreover, we have obtained 78 human
sequences (and 42 mouse sequences) that are putatively translated IncRNAs from ribo-
IncRNAs, respectively. Finally, we investigated the relationship between the ribosome-
associated IncRNAs and NMD and cell localization, and we conclude that RATI analyses are

a valuable resource that will assist with determining the underlying IncRNA functions.
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2.2 Methods

2.2.1 Data collection

We retrieved the original experimental data from NCBI GEO [49] as detailed in Tables 2.1
and 2.2. To calculate the transcript expression level and quantify potential IncRNA-ribosomal
associations, we selected ribosome profiling experiments that contained both RNA-seq and
ribosome footprint (Ribo-seq) measurements. For further analysis of IncRNA-ribosomal
associations, we chose a single representative dataset for each tissue or cell type according
to the following three empirical criteria: (i) The mapping rates of both RNA-seq and Ribo-
seq are greater than 30%; (i1) The dist value is less than 0.15; (iii) For a tissue/cell type
represented across multiple datasets, the dataset with the lowest dist value, indicating that
the footprint length distribution for IncRNAs is closest to that of CDSs in this dataset, is
selected. Here, dist is a metric of the length distribution similarity between two populations

of ribosome footprints that mapped to IncRNAs and CDSs, respectively.

dist(P.0) = 5 ¥ IP() —0(1)| 1)

leL

where P and Q denote length frequency distributions of ribosome footprints that mapped
to CDSs and IncRNAs, respectively, and L is a finite length space. This value takes a real
number between 0 and 1, and larger values indicate a greater difference between these two
distributions (see Table S1 and Figs. S1 and S2). Finally, we selected ten different human
datasets, which were derived from different tissues or cell types (i.e., brain, breast, fibroblasts,
RPE-1, myeloma, ES, HEK293, HeLa, PC3, and U20S). We selected eight mouse datasets,
which were derived from different cell types (fibroblast, EB, and ES) and tissues (i.e., brain,

hippocampi, skin, liver, and testis).
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Table 2.1 Ribosome profiling datasets used in this study (human).

Source Reference Sample RNA-seq Ribo-seq Description
Brain Gonzalez2014 [50] normal-A GSM 1495249 GSM 1495244 Normal brain
normal-B GSM 1495250 GSM 1495245
normal-C GSM 1495251 GSM 1495246
tumor-A GSM 1495252 GSM 1495247
tumor-B GSM 1495253 GSM 1495248
Breast Rubio2014 [51] control-repl GSM1503444 GSM1503442 Breast cancer (cell type: Ductal breast carcinoma; cell line: MDA-MB-231)
control-rep2 GSM1503438 GSM1503434
Eye Tanenbaum2015 [52] Gl-repl GSM1657726 GSM1657720 Retinal pigment epithelial cells (cell type: RPE-1)
Gl-rep2 GSM1657727 GSM1657721
G2-repl GSM1657728 GSM1657722
G2-rep2 GSM1657729 GSM1657723
M-repl GSM1657730 GSM1657724
M-rep2 GSM1657731 GSM1657725
Fibroblasts Shitrit2015 [53] control GSM1712278 GSM1712271 Primary fibroblasts
Xu2016 [54] wt-d-leucine GSM 1585204 GSM1585210 Fibroblast (supplemented with d-leucine or I-leucine)
wt-l-leucine GSM1585205 GSM1585211
HEK Eichhorn2014 [55] mock GSM 1479597 GSM 1479598 HEK293T ( mock transfection)
Twasaki2016 [56] dmso-repl GSM1720808 GSM1720803 HEK 293 T-REx cell (treatment: DMSO)
dmso-rep2 GSM1720809 GSM1720804
Sidrauski2015 [57] control-a GSM1606099 GSM1606107 HEK?293T (treatment: untreated)
control-b GSM1606100 GSM1606108
Subtelny2014 [58] cyt GSM 1276541 GSM 1276542 HEK293T (Cytoplasmically-enriched )
HeLa Guo2010 [27] mock12hr GSM546927 GSM546926 HeLa (transfection: mock)
mock32hr GSM546921 GSM546920
Park2016 [59] Mphase-repl GSM2100590 GSM2100598 Hela (RNA-seq oligo-dT)
Mphase-rep2 GSM2100591 GSM2100599
Sphase-repl GSM2100587 GSM2100596
Sphase-rep2 GSM2100588 GSM2100597
GSM1898014 GSM1898018
Zur2016 [60] Glphase-expl GSM1898015 GSM1898019 HeLa S3 cells
GSM1898016 GSM1898020
Glphase-exp2 GSM1898017 GSM 1898021
GSM1898006 GSM1898010
Mphase-expl GSM1898007 GSM1898011
GSM1898008 GSM 1898012
Mphase-exp2 GSM1898009 GSM1898013
KOPT-K1 Wolfe2014 [61] dmso-repl GSM1370699 GSM1370695 KOPT-K1 T-ALL cell line
dmso-rep2 GSM1370700 GSM1370696
Lymphoblastoid Cenik2015 [62] GM12878-repl GSM1609427 GSM1609378 EBV-transformed lymphoblastoid cells
GM12878-rep2 GSM1609428 GSM1609379
GM12891-repl GSM1609430 GSM1609382
GM12891-rep2 GSM1609431 GSM1609383
GM12892-repl GSM1609433 GSM1609384
GM12892-rep2 GSM1609434 GSM1609385
GM19238-repl GSM1609436 GSM1609417
GM19238-rep3 GSM1609438 GSM1609418
GM19239-rep2 GSM1609440 GSM1609413
GM19240-repl GSM1609442 GSM1609421
GM19240-rep2 GSM1609443 GSM1609422
GM19240-rep3 GSM1609444 GSM1609423
Macrophages Su2015 [63] mock-repl GSM1632596 GSM 1632594 human primary macrophages (TLR2 stimulated; micrococccal nuclease)
mock-rep2 GSM1632600 GSM1632598
Muscle Wein2014 [64] control GSM1356677 GSM1356675 Skeletal muscle (normal control)
Myeloma Wiita2013 [65] control GSM1184591 GSM1184592 MMLI.S myeloma cell line
PC3 Hsieh2012 [66] control-repl GSM869036 GSM869037 PC3 (prostate cancer cells; sample type: polyA RNA; treatment: vehicle)
control-rep2 GSM869042 GSM869043
U208 Eichhorn2014 [55] mock GSM 1479587 GSM1479588 U20S cell line (mock-transfected, tRNA and rRNA depleted RNA-seq)
Guo2014 [67] mock GSM 1248736 GSM 1248735 U20S cells (mock-transfected, poly(A)-selected RNA-seq)
Jang2015 [[68] CTO00-repl GSM1371395 GSM1371443 U20S (cell type: osteosarcoma)
CT00-rep2 GSM1371407 GSM1371455
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Table 2.1 Ribosome profiling datasets used in this study (human, continued)

Source Reference Sample RNA-seq Ribo-seq Description
CT02-repl GSM1371396 GSM1371444
CT02-rep2 GSM1371408 GSM1371456
CT04-repl GSM1371397 GSM1371445
CTO04-rep2 GSM1371409 GSM1371457
CTO06-repl GSM1371398 GSM1371446
CT06-rep2 GSM1371410 GSM1371458
CT08-repl GSM1371399 GSM1371447
CTO08-rep2 GSM1371411 GSM1371459
CT10-repl GSM1371400 GSM1371448
CT10-rep2 GSM1371412 GSM1371460
CT12-repl GSM1371401 GSM1371449
CT12-rep2 GSM1371413 GSM1371461
CT14-repl GSM1371402 GSM1371450
CT14-rep2 GSM1371414 GSM1371462
CT16-repl GSM1371403 GSM1371451
CT16-rep2 GSM1371415 GSM1371463
CT18-repl GSM1371404 GSM1371452
CT18-rep2 GSM1371416 GSM1371464
CT20-repl GSM1371405 GSM1371453
CT20-rep2 GSM1371417 GSM1371465
CT22-repl GSM1371406 GSM1371454
CT22-rep2 GSM1371418 GSM1371466

hES Werner2015 [69] control-repl GSM1523640 GSM1523624 hES cell (cell line: HI)

control-rep2 GSM1523648 GSM1523632
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Table 2.2 Ribosome profiling datasets used in this study (mouse).

Source Reference Sample RNA-seq Ribo-seq Description
Brain Gonzalez2014 [50] normal-A GSM1245211 GSM 1245214 tissue: PDGF/Cre tumor; Stage: end-stage
normal-B GSM1245212 GSM1245215
normal-C GSM1245213 GSM1245216
tumor-A GSM1245217 GSM 1245223
tumor-B GSM1245218 GSM1245224
tumor-C GSM1245219 GSM 1245225
Fibroblast Thoreen2012 [70] wild-vehicle GSM904895 GSM904893 Embryonic fibroblast (genotype: 4EBP1/2 +/+ p53 -/-; genetic: 129/Svj
Hippocampi Cho2015 [71] 10min-repl GSM1853990 GSM1853985 Hippocampal tissue (strain: C57BL/6N)
10min-rep2 GSM1854000 GSM1853995
10min-rep3 GSM1854010 GSM 1854005
30min-repl GSM1853991 GSM1853986
30min-rep2 GSM1854001 GSM1853996
30min-rep3 GSM1854011 GSM1854006
4hr-repl GSM1853992 GSM1853987
4hr-rep2 GSM1854002 GSM1853997
4hr-rep3 GSM1854012 GSM1854007
Smin-repl GSM1853989 GSM1853984
Smin-rep2 GSM1853999 GSM1853994
Smin-rep3 GSM1854009 GSM1854004
control-repl GSM1853988 GSM1853983
control-rep2 GSM1853998 GSM1853993
control-rep3 GSM1854008 GSM 1854003
Liver Alvarez2017 [72] control-repl GSM2219150 GSM2219142 Fetal liver (cell type: Erythroid progenitors; strain: C57BL/6; age: E14.
control-rep2 GSM2219151 GSM2219143
Eichhorn2014 [55] wt GSM 1479601 GSM 1479602 Primary liver tissue (strain: C57BL/6; age: 6 weeks; sex: male)
Fradejas2017 [73] secisbp2-wt-repl GSM2227376 GSM2227367 Liver (age: 5-8 weeks; genotype: wild type)
secisbp2-wt-rep2 GSM2227377 GSM2227368
trsp-wt-repl GSM2227380 GSM2227371
trsp-wt-rep2 GSM2227382 GSM2227373
Frederic2015 [74] ZT00-A GSM1897722 GSM1897856 Liver (strain: C57BL/6; age: post natal day 12-16; genotype: wild type)
ZT00-B GSM1897734 GSM1897868
ZT00-C GSM1897751 GSM1897880
ZT00-D GSM1897777 GSM1897892
ZT02-A GSM1897723 GSM1897857
7T02-B GSM1897735 GSM1897869
7T02-C GSM1897754 GSM1897881
7T02-D GSM1897779 GSM1897893
ZT04-A GSM1897724 GSM1897858
ZT04-B GSM1897736 GSM1897870
ZT04-C GSM1897756 GSM1897882
7T04-D GSM1897781 GSM1897894
ZT06-A GSM1897725 GSM1897859
ZT06-B GSM1897737 GSM1897871
ZT06-C GSM1897758 GSM1897883
ZT06-D GSM1897783 GSM1897895
ZT08-A GSM1897726 GSM1897860
ZT08-B GSM1897738 GSM1897872
ZT08-C GSM1897760 GSM1897884
ZT08-D GSM1897785 GSM1897896
ZT10-A GSM1897727 GSM1897861
ZT10-B GSM1897739 GSM1897873
ZT10-C GSM1897762 GSM1897885
ZT10-D GSM1897788 GSM1897897
ZT12-A GSM1897728 GSM1897862
ZT12-B GSM1897740 GSM1897874
ZT12-C GSM1897764 GSM1897886
ZT12-D GSM1897790 GSM1897898
ZT14-A GSM1897729 GSM1897863
7ZT14-B GSM1897742 GSM1897875
ZT14-C GSM1897766 GSM1897887
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Table 2.2 Ribosome profiling datasets used in this study (mouse, continued)

Source Reference Sample RNA-seq Ribo-seq Description
ZT14-D GSM1897791 GSM1897899
ZT16-A GSM1897730 GSM1897864
7ZT16-B GSM1897743 GSM1897876
ZT16-C GSM1897768 GSM1897888
ZT16-D GSM1897793 GSM1897900
ZT18-A GSM1897731 GSM1897865
ZT18-B GSM1897745 GSM1897877
ZT18-C GSM1897771 GSM1897889
ZT18-D GSM1897796 GSM1897901
ZT20-A GSM1897732 GSM1897866
ZT20-B GSM1897747 GSM1897878
7T20-C GSM1897773 GSM1897890
7T20-D GSM1897798 GSM1897902
ZT22-A GSM1897733 GSM1897867
7T22-B GSM1897749 GSM1897879
ZT22-C GSM1897775 GSM1897891
7T22-D GSM1897800 GSM1897903
Howard2013 [75] wt GSM1122211 GSM1122205 Liver (strain: FVB/N; age: 3 weeks; treatment: 6 week diet O ppm sele
Janich2015 [76] ZTO0-repl GSM1644100 GSM1644076 Liver (strain: C57BL/6JRj; age: 11-12 weeks; gender: male)
ZTO0-rep2 GSM1644101 GSM1644077
ZT10-repl GSM1644110 GSM1644086
ZT10-rep2 GSM1644111 GSM1644087
ZT12-repl GSM1644112 GSM1644088
ZT12-rep2 GSM1644113 GSM1644089
ZT14-repl GSM1644114 GSM1644090
ZT14-rep2 GSM1644115 GSM1644091
ZT16-repl GSM1644116 GSM1644092
ZT16-rep2 GSM1644117 GSM1644093
ZT18-repl GSM1644118 GSM 1644094
ZT18-rep2 GSM1644119 GSM 1644095
ZT2-repl GSM1644102 GSM1644078
ZT2-rep2 GSM1644103 GSM1644079
ZT20-repl GSM1644120 GSM1644096
ZT20-rep2 GSM1644121 GSM1644097
ZT22-repl GSM1644122 GSM1644098
ZT22-rep2 GSM1644123 GSM1644099
ZT4-repl GSM1644104 GSM1644080
ZT4-rep2 GSM1644105 GSM1644081
ZT6-repl GSM1644106 GSM 1644082
ZT6-rep2 GSM1644107 GSM1644083
ZT8-repl GSM1644108 GSM1644084
ZT8-rep2 GSM1644109 GSM1644085
Skin Blanco2016 [77] wtl GSM 1854037 GSM 1854031 Skin (tumour stage: skin papilloma; strain: C57BL/6; age: 1 month)
wt2 GSM1854038 GSM1854032
wt3 GSM1854039 GSM 1854033
Sendoel2017 [78] wt-invivo-repQ GSM2199587 GSM2199581 Back skins (strain: R26-Sox2-IRES-eGFP fl/+; age: P4)
wt-invivo-repl GSM2199588 GSM2199582
Testis Castaneda2014 [79] wt-a GSM 1234250 GSM 1234248 Testis (strain: 129SvJae; genotype: wild type)
wt-b GSM1234254 GSM1234252
mEB Ingolia2011 [25] eb GSM765286 GSM765291 Embryoid body (genotype: CReP+/-; GADD34+/+ (WT))
mES Hurt2013 [80] control GSM1024299 GSM1024311 Embryonic stem cells (v6.5 cell line)
GSM1024300
Ingolia2011 [25] mes GSM765288 GSM765300 ES cell (E14 cell line; genetic: 129/0Ola)
Reid2014 [81] cyt GSMI1299862 GSMI299858 Embryonic fibroblasts (genotype: CReP+/-; GADD34+/+ (WT))
GSM1299863 GSM1299859
GSM1299860 GSM1299856
o GSM1299861 GSM1299857
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2.2.2 Transcriptome

The transcriptome (consisting of mRNAs and IncRNAs) was used as a reference for mapping
RNA/Ribo-seq reads based on the following considerations. First, we restricted read mapping
to annotated transcripts to avoid the identification of novel transcripts. Second, mapping reads
to a genome is a complicated problem as the mapping rate is sensitive for short reads and
those reads spanning splicing junctions. Thus, we downloaded genomic sequences and gene
annotation files from GENCODE [36] and then utilized custom Python scripts to generate
transcriptome sequences (see Table 2.4). By excluding IncRNAs that are derived from known
protein coding genes, we finally obtained 27,545 and 14,609 IncRNAs for human and mouse,
respectively, which primarily represent lincRNA and antisense RNA sequences (see Table
2.3).

Table 2.3 Long non-coding RNAs used in this study. See https://www.gencodegenes.org/
gencode_biotypes.html for the details on transcript biotype.

Biotype Human  Mouse
lincRNA 13245 6473
antisense 10980 3612
TEC 1072 2759
sense_intronic 984 294
retained_intron 517 294
processed_transcript 368 980
sense_overlapping 310 50
3prime_overlapping_ncRNA 34 3
pseudogene 20 24
bidirectional_promoter_IncRNA 11 118
non_coding 3 0
macro_IncRNA 1 2

Total 27545 14609


https://www.gencodegenes.org/gencode_biotypes.html
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2.2.3 Alignment and quantification

RNA/Ribo-seq reads were mapped to the transcriptome using Bowtie2 [87] with the —very-
sensitive-local option. Cutadapt [88] was used to trim adapter sequences from reads if the
adapter sequence was described in the literature. Additionally, we performed a local read
alignment to remove adapter sequences from one or both ends of the alignment. The Ribo-seq
reads were produced by a strand-specific protocol, which means reads from 5’ to 3" are mostly
mapped to the transcript sense strand. This helps to determine whether reads were sequenced
from the protein-coding transcript or the antisense transcript on the opposite strand. For
each read, we allowed a maximum of 100 distinct alignments to take into account the high
sequence similarity among transcript variants of the same gene locus or among transcripts

with repetitive elements. Table 2.5 shows the details of the software parameters used in this

procedure.
Table 2.5 Softwares and parameters used in this study.
Softwares Parameters Descriptions
Cutadapt v1.9.1 [88] -a ADAPTER -m 15 Remove trimmed reads that are shorter than 15nt
Bowtie v2.3.2 [87] —very-sensitive-local Discard contaminant sequences from RNA-seq data
. Align RNA-seq data to the transcriptome
—very-sensitive-local -k 100
(up to 100 alignments are allowed for a read)
. Discard contaminant sequences from Ribo-seq data
—very-sensitive-local —norc
(only forward reference strand is considered)
—very-sensitive-local -k 100 —norc Align Ribo-seq data to the transcriptome
—rdg 99999999,99999999 —rfg 99999999,99999999  (insertion and deletion are not allowed)
RSEM v1.2.31 [89] rsem-calculate-expression —alignments Estimate transcript expression from SAM file

The transcript expression value RPKM (reads per kilobase per million mapped reads) was
pre-computed from RNA-seq data using RSEM v1.2.31[89]. To quantify one Ribo-seq read
that mapped to N (1 <N < 100) different locations, we defined a metric w(i) to represent

the fraction of mapped reads assigned to the i-th location (1 <i < N).

RPKM(i)

W) = Y1 RPKM(n)

(2.2)
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where RPKM(i) is the expression value for the transcript referring to the i-th location.

It is worth noting that reads need to be mapped to rRNA and tRNA databases before
mapping to the transcriptome. This is because most of the RNAs in cells are derived from
rRNAs and tRNAs. Using the reads originated from rRNAs and tRNAs will increase the
workload of the downstream mapping process, and may also cause some unbiased predictions
of transcripts including similar sequences with rRNA/tRNA. Surprisingly, after we performed
the above processes, we still observed that the frequency distribution of reads with specific
lengths on IncRNAs did not fit well to that on mRNAs (data not shown), and instead formed a
local peak in the frequency distribution. We extracted reads from the local peak to examine if
we can generate a consensus sequence. If that is the case, we further compared the consensus
sequence with the human transcriptome by BLAST. As shown in Fig. 2.6, we found that
the sources of contamination are snoRNA, snRNA, and miRNA. Thus, we added snoRNA,

snRNA, and miRNA to the contamination list for filtering.

2.2.4 Expressed transcripts and tissue specificity

Although most previous studies are based on quantitative data over a single representative
transcript for each gene, we used RSEM to estimate the abundance of total known transcript
variants from RNA-seq data, defined by an expression threshold of 1 (i.e., > 1 RPKM) for
the purpose of identifying expressed transcripts [90, 91]. Where not otherwise specified, the
following analyses were based on sets of expressed transcripts.

For a transcript, to measure the expression tissue specificity, we count the number (x)
of tissues/cell types in which this transcript is expressed and transform it to a scale from 0

(ubiquitous) to 1 (specific) as follows:

S
.

spec = (2.3)

v
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Table 2.6 Contaminant Ribo-seq reads derived from miRNAs, snRNAs and snoRNAs are
enriched in IncRNAs.

Length of Ribo-seq read (nt)

Dataset 18 21 22 23 24 25 28 29 30 33
Human-Brain-Gonzalez2014-normal-C  |mir-4286
Human-Brain-Gonzalez2014-tumor-A ir-4286
Human-Breast-Rubio2014-control-rep1 2 snRNA |SnoRNA
Human-Breast-Rubio2014-control-rep2
Human-Fibroblasts-Shitrit2015-control

u11
Human-Fibroblasts-Xu2016-wt-d-leucine U2 snRNA [SNRNA  |U6/U11
Human-Fibroblasts-Xu2016-wt-I-leucine U2 snRNA lI:NA ue/u11
Human-HEK-Eichhorn2014-mock
Human-HEK-Iwasaki2016-dmso-repl hir42%
Human-HEK-Iwasaki2016-dmso-rep2 Lnir-4286 U6 snRNA |U6 snRNA
Human-HEK-Sidrauski2015-control-b U1 snRNA
Human-HEK-Subtelny2014-cyt
Human-Hela-Guo2010-mock12hr U2 snRNA
Human-Hela-Gu02010-mock32hr U2 snRNA
Human-Hela-Park2016-Mphase-repl U1 snRNA
Human-Hela-Park2016-Sphase-rep1
Human-Hela-Zur2016-G1phase-exp1l U2 snRNA
Human-Hela-Zur2016-G1phase-exp2 U2 snRNA
Human-Hela-Zur2016-Mphase-exp1
Human-Hela-Zur2016-Mphase-exp2 2 snRNA
Human-hES-Werner2015-control-rep1
Human-hES-Werner2015-control-rep2
Human-KOPT-K1-Wolfe2014-dmso-rep1 hir42% U1 snRNA U1 snRNA U2 snRNA
Human-KOPT-K1-Wolfe2014-dmso-rep2 Lnlr-4286 U1 snRNA U1 snRNA U2 snRNA
Human-Macrophages-Su2015-mock-repl U2 snRNA U2 snRNA
Human-Macrophages-Su2015-mock-rep2 U2 snRNA U2 snRNA
Human-Eye-Tanenbaum2015-G1-repl U2 snRNA snoRNA  |U1 snRNA
Human-Eye-Tanenbaum2015-G1-rep2 U2 snRNA U1 snRNA
Human-Eye-Tanenbaum2015-G2-rep1 U2 snRNA U1 snRNA U2 snRNA
Human-Eye-Tanenbaum2015-G2-rep2 U2 snRNA U1 snRNA U2 snRNA
Human-Eye-Tanenbaum2015-M-rep1 U2 snRNA |SnoRNA U1 snRNA
Human-Eye-Tanenbaum2025-M-rep2 U2 snRNA | U1 snRNA bz SnRNA

where M is the total number of tissues and cell types used in this study. The spec metric is

consistent with the counts metric mentioned in [92].
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2.2.5 Ribosome density to distinguish ribosome-associated and ribosome-

free IncRNAs in a single dataset

To measure the extent to which ribosomes are associated with a transcript or a region of a
transcript, we used ribosome density, which is calculated as
ribo(i, j)

ribosome_density(i, j;T) = RPKM(T) -/ — i1 1] (2.4)

where T = 1]...t, is a transcript of length n, ribo(i, j) is the number of Ribo-seq reads mapped
on the substring 7'(i, j) = #;...t; (1 <i < j <n), and RPKM(T) is the expression value of
T. Thus, ribosome_density(1,n;T) represents the density of ribosome occupancy over the
whole transcript 7'. In general, a ribosome will dissociate from mRNA once a stop codon is
encountered, which makes the area downstream of the stop codon (the 3’ UTR), a ribosome-
free region and thus a suitable reference region for detecting ribosome-associated signals. To
obtain a significant ribosome-associated IncRNA, we further derived an empirical distribution
of ribosome density scores from 3’ UTRs and then applied a 90th percentile cut-off value of
ribosome density scores from 3’ UTRs in order to distinguish between ribosome-associated
and ribosome-free IncRNAs (see Fig. 2.2a). The rationale for choosing this seemingly less
stringent cut-off value is that it (i) may enable the detection of ribosome rescue in 3’ UTRs
[93] and (ii) guarantees that the majority (i.e., >90%) of mRNAs that are associated with

ribosomes and produce proteins are identified as expected [94](see Fig. 2.1).
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2.2.6 Ribosomal association index (RAI) defines ribo-IncRNAs and noribo-

IncRNAs across multiple datasets

For each IncRNA, we applied the newly proposed ribosomal association index (RAI) to

quantify ribosome associability.

Lo x(i)

where M is the number of independent experiments; x(-) is the indicator function of transcript
expression, that is, x(i) = 1 if the IncRNA is expressed in the i-th experiment and O otherwise;
and y(-) denotes the ribosomal association sign function, that is, y(i) = 1 if the ribosomal
association was supported by the i-th experiment and —1 otherwise. Here, a continuous value
of y(i) will provide more information about the ribosomal association. However, it is difficult
to directly compare the ribosomal association across different datasets by using ribosome
density, which is normalized to transcript abundance in each dataset.

Furthermore, we used RAI * (1 - spec) to assign a more confident score of ribosome
associability based on multiple pieces of experimental evidence. The RAI * (1 - spec)
score can range between 1, for ribosome-associated IncRNAs, and -1, for the ribosome-free

IncRNAs (see Fig. 2.4 and Table S3).

2.2.7 The putative ORF in IncRNAs

For IncRNAs, putative ORFs with lengths > 30nt (including the stop codon) were considered
to analyze their coding potential. A putative ORF is a continuous sequence of trinucleotides

starting with an ATG trinucleotide and ending with TGA, TAA, or TAG.
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2.2.8 Coding potential assessment
Fragment length organization similarity score

The fragment length organization similarity score (FLOSS) was computed as formulated and

presented by [95].

34

Original FLOSS = Y ||£(1) — frer(1)]]- (2.6)
=26

where f(!) is the fraction of reads at length [ in the transcript histogram and f,,.¢() is the
corresponding fraction in the reference histogram (CDSs). Footprints derived from translating
ribosomes are expected to have a specific length distribution. Thus, the idea behind the
FLOSS analysis is to compare the histogram distributions of footprint lengths between a
given transcript and the reference (i.e., CDSs), in which ribosomes are considered to translate
proteins. To maintain the consistency of metrics of coding potential, we transformed the
original FLOSS score to 1 - FLOSS. Thus, the transformed FLOSS (called FLOSS hereafter)

value range is from O (non-translated) to 1 (high possibility of translating).

Ribosome release score

For a previously defined putative ORF of a IncRNA or a CDS, the ribosome release score
(RRS) was calculated according to the description in [42]. For each ORF, we calculated the
ratio of the number of footprints distributed in the ORF and the 3’ UTR. At the same time, to
exclude the influence of the different lengths of the two regions, we also calculated the ratio

of RNA-seq reads in these two regions as normalization coefficients as below:

( Countorr >
Countyyrg foot print

( Countorr

RRS =
Countyryrg ) RNA—seq

(2.7)
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A transcript undergoing translation tends to show ribosome coverage over the majority of an
OREF, and thus the ribosome density over ORFs ends sharply at the translation termination
site. Guttman et al. developed the ribosome release score (RRS) based on the drop signal at
the translation termination site to detect the translation event [42]. Here, the RRS value was

scaled to range from O to 1.

Framescore

As the ribosome moves three nucleotides in each step along each ORF during protein
synthesis, the three-base periodicity can be represented by the frame distribution, which
displays the frequency of Ribo-seq reads (from the 5’ end of each read) in each frame. If
the majority of IncRNAs also encode peptides, three-base periodicity would be expected
in most of their putative ORFs. Note that the different experiments and different methods
of processing reads may affect the shape of the frame distributions. Fortunately, the frame
distribution of CDSs provides a good reference for the differentiation of ORFs between active
and inactive translation. We proposed the Framescore to measure the dissimilarity in terms of
frame distribution, which is the proportion of 5" ends of Ribo-seq reads mapped to all three
frames. Here, Q is the frame distribution of Ribo-seq reads among all CDSs undergoing
ribosomal translation, and P represents the frame distribution of reads in a (putative) ORF
from a transcript. Framescore was used to calculate the Kullback—Leibler divergence from P

to Q as

Framescore(P, Q) = Z P(i il)) (2.8)
i=1

The difference between Framescore and ORFscore which is the other triplet phasing metric
[96], is that ORFscore supposes footprints derived from translating ribosomes will be pre-
dominantly mapped to frame one and frame two. However, Framescore uses the mapping

results onto CDSs as the reference to obtain a more stable performance.
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Translation score

Taken together, we applied these three coding metrics (FLOSS, RRS, and Framescore) to
assess the ability of each putative IncRNA ORF to encode a peptide. For each coding metric,
a cut-off was generated such that 90% of mRNAs can be identified as having coding ability
according to this threshold, which was then applied to IncRNAs. To integrate these three
filtering results, we developed the translation score (TS) to evaluate the coding potential for a

specific IncRNA across multiple datasets.

N
TS = ;w(a(i)) (2.9)

where N is the number of datasets in which the transcript is identified as ribosome-associated.
In the i-th dataset, o(i) is a translation level function ranging from O to 3, indicating the
maximum number of coding filters passed for a putative IncRNA ORF. While w(-) is a
function that assigns the weight for each translation level (0, 1, 2, and 3 correspond to
weights of -1, -0.5, 0.5, and 1, respectively). Finally, for a given IncRNA, TS is a weighted
sum function, with a positive value indicating translation, and a negative value indicating no

translation.

2.2.9 Mass spectrometry data

Peptide sequences derived from mass spectrometry data were downloaded from sORFs.org
[97]. Peptide sequences aligned to protein coding transcripts (by tBlastn [98]) were removed,

then the remaining peptides were aligned to IncRNAs.
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2.2.10 Sequence conservation

PhyloP scores, which measure base-wise evolutionary conservation from multiple alignments,
were downloaded from GENCODE [36]. Positive phyloP scores represent slower evolution

than expected (in other words, conserved), and vice versa.

2.2.11 Nonsense-mediated decay (NMD) and cellular localization anal-
ysis

For the NMD analysis, we computed the fold change of RNA-seq expression levels from
the control sample to those from the UPF1 knockdown sample. Here, UPF1 is one of
the major NMD factors, and interfering with the expression of UPF1 is expected to cause
increased expression levels of NMD-targeted transcripts. RNA-seq data from HelLa cells
were downloaded from NCBI GEO (GSE86148) [99].

For the cellular localization analysis, cells were first separated into cellular fractions
before the extraction of RNA. We calculated the fold change of RNA-seq data from the
cytoplasmic fraction to that from the nuclear fraction of HeLa cells. RNA-seq data from
the nucleus (ENCSRO0O0OCPQ) and the cytoplasm (ENCSRO0O0CPP) were download from
ENCODE [100].

We applied the same procedure to calculate the fold change for the NMD analysis and
the cellular localization analysis. Reads mapped to tRNAs, rRNAs, snoRNAs, or miRNAs
were first removed. For the remaining reads, their first 15 nucleotides with low sequencing
qualities were trimmed by Cutadapt [88]. Trimmed reads were mapped to the transcriptome
by Bowtie [101]. Transcript expression values were calculated by RSEM v1.2.31 [89].
Differential expression analysis was performed using EBSeq [102] to obtain the posterior

fold change for each transcript.
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2.3 Results

2.3.1 A large fraction of expressed IncRNAs are associated with ribo-

somes

To identify ribosome-associated IncRNAs in each dataset, we first calculated the ribosome
density (i.e., the number of ribosomes per unit length of transcript) for each IncRNA and
further derived the empirical distribution of ribosome density values from 3’ UTRs. Then
we adopted a cut-off value at the 90th percentile of the ribosome density values for 3’ UTRs.
The rationale for choosing this cut-off value is that it guarantees that the majority (i.e.,
>90%) of mRNAs that are associated with ribosomes and produce proteins are identified
as expected [94] (see Fig. 2.2a and Fig. S3). Finally, a transcript with ribosome density
greater than or equal to the cut-off value was defined as ribosome-associated and was
otherwise defined as ribosome-free. For expressed mRNAs, an average of 97.36% (94.73—
99.51%) and 98.30% (95.99-99.42%) of them were observed to interact with ribosomes
in human and mouse, respectively. This is in agreement with the fact that mRNAs serve
as protein-coding transcripts associated with ribosomes. Surprisingly, we found that an
average of 39.17%(24.65-59.92%) of human-expressed IncRNAs and an average of 48.16%
(26.04-70.13%) of mouse-expressed IncRNAs were also associated with ribosomes (see
Fig. 2.1 and Table S2). In total, 7,153 and 3,577 IncRNAs were identified as associated
with ribosomes in at least one human and mouse dataset, respectively. We also determined
that ribosomal association was more difficult to detect among low-expression transcripts
than among highly expressed ones, but this was not observed among all datasets (see Fig.
2.2b and Fig. S3). Despite the differences between the experiment samples, which may
affect the expression level and the ribosomal association of IncRNAs, a substantial fraction
of IncRNAs were observed to interact with ribosomes over all human and mouse ribosome

profiling experiments.
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2.3.2 Analysis of the coding potential for ribosome-associated IncR-

NAs based on Ribo-seq

To further examine whether the ribosome-associated IncRNAs encode peptides, we first
defined the putative IncRNA ORFs (see “Methods" in this chapter), and then assessed the
coding potential of their putative ORFs based on the following considerable characteristics
for translating ORFs. (i) FLOSS (fragment length organization similarity score) was used
to compare the length distributions of footprints from CDSs with the surveyed IncRNAs;
(1i1) RRS (ribosome release score) was used to measure the drop signal of footprints at the
translation termination sites; (iii) Framescore, which was developed in this study, was used
to measure the three-nucleotide periodicity. Note that such characteristics are measured by
analyzing Ribo-seq reads across a given transcript (see “Methods" in this chapter for detailed
description of FLOSS, RRS, and Framescore).

The above three different coding metrics were calculated after removing footprints
corresponding to contaminants. To filter footprints from among potential nonribosomal
RNA-protein complexes, we first compared Ribo-seq reads from IncRNAs to those from
mRNAs and found that reads of a specific length were enriched among IncRNAs (see Table
2.6). By identifying the sequences that were most frequently observed in these enriched
reads from the full transcripts, we found that Ribo-seq reads may also be obtained from
snRNAs, snoRNAs, and miRNAs. This finding is consistent with previous observations
[103]. To integrate these three coding metrics to more stringently assess the ability of each
ribosome-associated IncRNA to encode a peptide, we first generated cut-offs from mRNAs
based on these three metrics and then applied these cut-offs to filter IncRNAs. Figure 2.3b
and S4 show the distribution of FLOSS, RRS, and Framescore values among mRNAs as well
as ribosome-associated and ribosome-free IncRNAs. Based on these three coding metrics,
mRNAs consistently have the strongest coding abilities. Conversely, both the ribosome-

associated and ribosome-free IncRNAs showed weak coding potential. Note that there is
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Fig. 2.2 The discrimination of ribosome-associated and ribosome-free IncRNAs by ri-
bosome density in the HeLLa dataset. (a) Kernel density distribution of ribosome density
(log, scale) for 3'UTRs (gray), CDSs (blue), and IncRNAs (red). The vertical dashed line
corresponds to the 90th percentile of the ribosome density scores for 3’ UTRs, which is
used as the cut-off to distinguish between ribosome-associated IncRNAs and ribosome-free
IncRNAs. Those IncRNAs to the right of this cut-off (including the cut-off itself) are iden-
tified as ribosome-associated IncRNAs; the rest are ribosome-free in this study. Note that
transcripts or regions without any mapped Ribo-seq read correspond to a peak near -33
(owing to the addition of a pseudo value of 10e-10 prior to log transformation). (b) Violin
plot of the expression levels (RPKM, log2 scale) of mRNAs as well as ribo-associated and
free IncRNAs. The p-values correspond to two-sample ¢-tests. (¢) Classification of IncRNAs
by using FLOSS, RRS, and Framescore as filters to assess the coding potential for each
ribosome-associated IncRNA. “F” means ribosome-free, “A0” means no coding filter has
been passed, “A1”, “A2”, and “A3” denote that one, two, and three passed translation filter(s),
respectively. (See Fig. S3 for the other datasets.)
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still a tendency toward higher coding scores for ribosome-associated IncRNAs relative to
ribosome-free IncRNAs across all datasets, suggesting that some of the ribosome-associated
IncRNAs may even encode peptides. Figure 2.3a (see Fig. S4 for other datasets) indicates
how many of the putative ORFs in ribosome-associated IncRNAs pass the cut-offs for those
three coding scores (FLOSS, RRS, and Framescore). In HeLa cells, for example, we observed
275 putative ORFs that passed those three coding filters, implying that translation of these

putative ORFs may occur.
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Fig. 2.3 Analysis of coding potential by using FLOSS, RRS, and Framescore on the
HeLa dataset. (a) Venn diagram of putative ORFs in ribosome-associated IncRNAs evalu-
ated by three coding filters (FLOSS, RRS, and Framescore). (b) Comparisons of the coding
potential among CDSs (blue) and putative ORFs of ribosome-associated (red) or ribosome-
free IncRNAs (green) for FLOSS, RRS, and Framescore, respectively. Based on these three
coding metrics, we generated three cut-offs (the 10th percentiles represented as horizontal
dashed lines) from CDSs to independently filter translation events for IncRNAs. For a coding
filter of FLOSS, RRS, or Framescore, IncRNAs above the corresponding cut-off values
(including the cut-off values) are identified as putatively translated IncRNAs according to
this coding filter. (See Fig. S4 for the other datasets.)

For convenience, we label the translation of a IncRNA containing an ORF that passed
0-3 coding filters as “A0”—“A3”. When there are multiple ORFs in a IncRNA, we chose the
one with the highest number of coding filters it passed. Finally, we obtained a preliminary
classification of IncRNAs in each dataset. Figure 2.2c shows that 5,215 IncRNAs are

expressed in Hela cells, of which 3,238 are classified as ribosome-free, while the rest are
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classified as ribosome-associated. Furthermore, among the ribosome-associated IncRNAs,
978 were classified as “A0,” which means we have no evidence of translation events on these
IncRNAs, while 165 were classified as “A3,” which indicates that at least one putative ORF
has passed all three coding filters (FLOSS, RRS, and Framescore) and means that credible

translation of them may be happening.

2.3.3 Identification of trans-IncRNAs, ribo-IncRNAs and noribo-IncRNAs

across multiple datasets

As a measure of the reliability of ribosomal associations for a particular IncRNA, we devel-
oped RAI * (1 - spec) to assess the integrated confidence of specific ribosomal associations
across multiple pieces of experimental evidence. Here, RAI is a metric that measures ri-
bosomal association across datasets in which the target IncRNA was expressed; spec is a
metric for transcript expression specificity. We used a binary value to represent the ribosome
density for a IncRNA in each experiment, as the ribosome density is normalized to transcript
abundance in each dataset, which complicates the use of ribosome density across different
datasets directly. A IncRNA with an RAI * (1 - spec) value of 1 indicates that the transcript
consistently interacts with ribosomes among multiple datasets, and an RAI * (1 - spec) value
of -1 denotes that this transcript is highly dissociated from ribosomes. (See “Methods" in this
chapter for the detailed definition of RAI * (1 - spec).) Table S3 lists the RAI * (1 - spec)
values of all IncRNAs in the human and mouse datasets, respectively. As shown in Figs. 2.5a
and 2.5d, we also used two threshold values—a low threshold at the 5th percentile and a
high threshold at the 95th percentile—to determine high confident ribosome-free IncRNAs
(termed “noribo-IncRNAs") and ribosome-associated IncRNAs (termed “ribo-IncRNAs").
A IncRNA was classified as a noribo-IncRNA when its RAI * (1 - spec) value fell below
the lower threshold and as a ribo-IncRNA when its RAI * (1 - spec) value exceeded the

upper threshold. It is worth noting that the terms “ribosome-associated IncRNAs" and



34 Identification and analysis of ribosome-associated IncRNAs

O
‘Q S, s 5 ¢ \'*"’Q &
AN * *
& <<, O°¢“ & N N
INcRNA_ID ‘b"b«‘? & ¢<°* Qf" ’ é*qe’ FF F F ¥ O

ENST00000453618.1_SEC228-001 RIS 2SI EEE®® o 1 1 o0 095
ENST00000425081.2_1_PITPNA-AS1-001 Al SRS A1/ o 1 1 o0 45
ENST00000413077.1_1_Ac012146.7-001 [B2|E8 Ao B2A1 @@ a0 o 1 1 o0 2

ENST00000520348.5_1_SNHGe-00s ARl 22@@a2 o 1 1 o 6
ENST00000518073.1_1_MINCR-001 |A0//A1/A0 /A0 /A0/A0O AOACAOAT 0 1 1 0 -9
ENST00000450535.5_1_zFAs1-007 [A2][A2A2 N BEA2 A2 A2 M8AZl o1 1 089 011 55

ENST00000431268.5_1_GAS5-002 [A2|AZAZ N AS A28 A1 8lAT o1 1 089 011 4

ENST00000445118.6_1_LINC01128-001 [AZ|'N" AT /A1lA3 A0 AT/N|'N'/AT 03 1 067 033 -3
ENST00000530759.1_1_RP11-111M22.3-001 [JElA2 AT AT JElA1 AT @2 A08 o o6 06 0 -15
ENST00000497774.5_1_LRRC75A-AS1-007 |A2I El /A2 A2 B8 B8 A2 N [N'AT 0.2 0.75 0.58 0.17 3.5
ENST00000445681.1_1_GS1-124K5.4-001 [A2IAT 'N/A0 ‘N’ [N'/A0A2'N'A1l 04 1 056 044 -2
ENST00000424518.5_1_HOTAIR-001 [N 'N|AZA7 A0 /N'/N''N/AT 06 1 0.44 056 -1
ENST00000447009.1_1_APTR-005 [N 'N'/N|'N /A2] /N |[A1 N A2IIN| 08 1 022 078 05
ENST00000534336.1_1_MALAT1-001 FEEEIEIIEEEEAEA o o o o0 35
ENST00000429829.5_1_xIsT-001 [JJEllIN''N' /N Bl N Bl N'BZN° 07 -05 -02 -03 05
ENST00000604411.1_1_Tsix-001 JEIIEIN N IEIIEEIBEIN N 04 -1 06 -04 0

ENST00000510073.1_1_UcHL1-As1-001 [N B N N o3 -1 -07 03 0
HIE
HIE

ENST00000501122.2_1_NEAT1-001 0 -0.8 -0.8 0 05

[E]
ENST00000519077.3_1_TuG1-006 [N NN NE0 NG G0 D DG DGR

Fig. 2.4 The ribosomal association index (RAI) enables an integrative analysis of ri-
bosome associability of IncRNAs across multiple independent datasets. The table sum-
marizes ribosomal association and translation for selected human IncRNAs. Rows rep-
resent IncRNAs, while colored columns denote datasets. For each IncRNA, “N (gray)”
and “F (green)” cells correspond to unexpressed and ribosome-free IncRNAs, respectively.
“A0”~“A3” cells represent the IncRNA containing a putative ORF that passed 0-3 coding
filters. The last four columns are statistics that describe the corresponding IncRNAs. Spec
is the transcript expression specificity, ranging from 0 (ubiquitous) to 1 (specific). For a
IncRNA, RAI is the ribosomal association index across datasets in which this IncRNA is
expressed, ranging from -1 (ribosome-free) to 1 (ribosome-associated). RAI * (1 - spec) is a
metric to measure the confidence of ribosomal association for a IncRNA that has a broad
expression, ranging from -1 (IncRNA was observed as ribosome-free in most datasets) to 1.
Conversely, RAI * spec can be used to select ribosome-associated or ribosome-free IncRNAs
from the population of tissue-specific IncRNAs. TS can be used with RAI * (1 - spec) to
filter the putatively translated IncRNAs. (See Table S3 for a complete list of human and
mouse IncRNASs.)

Legend:
N Non-expressed
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Ribosome-free A0 passed no translation filter
passed 2 translation filters -passed 3 translation filters
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“ribosome-free IncRNAs" mentioned above are particularly used to categorize IncRNAs in a
single dataset, whereas the terms “ribo-IncRNAs" and “noribo-IncRNAs" are defined across
multiple datasets.

Furthermore, for ribo-IncRNAs that were widely expressed and commonly associated
with ribosomes across multiple tissues or cell types, we determined if there are IncRNAs
that can be translated. We presented the translation score (TS), a weighted sum function
of translation events (AO~A3), to evaluate the coding capacity for each ribo-IncRNA. The
TS value for a IncRNA is expected to be positively related to the likelihood of this IncRNA
contains an ORF encoding a peptide. We separated ribo-IncRNAs within the top 5% of
TS values as putatively translated IncRNAs (termed “trans-IncRNAs"). (See Figs. 2.5b
and 2.5e.) Overall, 746 noribo-IncRNAs, 613 ribo-IncRNAs, and 78 trans-IncRNAs in
human (326 noribo-IncRNAs, 367 ribo-IncRNAs, and 42 trans-IncRNAs in mouse) were
identified in this study (see Table S3 for the complete list of trans-IncRNAs, ribo-IncRNAs,
and noribo-IncRNAs).

Footprint alignments, which were used to distinguish between ribosome-associated and
ribosome-free IncRNAs, are more likely to occur on a longer transcript sequence. Thus,
the first step is to evaluate the effect of transcript length on the RAI * (1 - spec) metric.
We compared the transcript length among the trans-IncRNAs, ribo-IncRNAs, and noribo-
IncRNAs (see Figs. 2.5¢ and 2.5f). Although we observed that the ribo-IncRNAs tended to
be longer than noribo-IncRNAs in the human datasets (p < 0.05), we also found the opposite
result in the mouse datasets (p < 0.01), which suggests that transcript length may not the
dominant factor affecting the ribosomal association of IncRNAs. We also observed that, on
average, the trans-IncRNAs were the longest in both human and mouse, suggesting transcript
length is one of the important features that determines whether a transcript can encode a

peptide.
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Fig. 2.5 Classification of trans-IncRNAs, ribo-IncRNAs, and noribo-IncRNAs. (a) The
kernel density of the RAI * (1 - spec) scores for human IncRNAs. Two vertical dashed
lines represent the Sth percentile (left, upper bound for the reliable ribosome-free IncRNAs,
termed “noribo-IncRNAs (green)") and the 95th percentile (right, lower bound for the reliable
ribosome-associated IncRNAs (orange) for further classification) of the RAI * (1 - spec)
scores. (b) The kernel density of the TS scores for human ribosome-associated IncRNAs
identified in (a). Top 5% of IncRNAs were classified as “trans-IncRNAs (red)" suggesting
that stable translation events are likely to occur among them. The remaining IncRNAs
were finally classified as “ribo-IncRNA (orange)" indicating that there is an interaction with
ribosomes in this part of IncRNAs, but no strong translation activity was observed. (¢(
Comparisons among trans-IncRNAs, ribo-IncRNAs, and noribo-IncRNAs for their transcript
lengths in human. (d)—(f) show the results for mouse; p-values in (c) and (f) were calculated
using two-sample z-tests.
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2.3.4 Exploring the biological characteristics of ribosome-associated

IncRNAs

Next, we investigated the biological characteristics of ribosome-associated IncRNAs to deter-

mine their coding potential, sensitivity to nonsense-mediated decay, and cellular localization.
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Fig. 2.6 Overlapping of ribosome footprint coverage, mass spectrometry data, and se-
quence conservation (phyloP score) across mouse IncRNA CCT6A. Top eight panels
indicate the ribosome coverage (arbitrary unit) across the CCT6A-003 transcript, where the
colored region represents a putatively translated ORF identified by applying three coding
metrics (FLOSS, RRS, and Framescore). Orange and red regions indicate this putative
OREF has passed two and three coding filters, respectively. The MS data panel shows the
overlapping of peptides transformed from mass spectrometry data in this transcript. The
phyloP panel shows the base-wise conservation scores with positive values (blue) meaning
slower evolution than expected, and negative values (gray) suggesting faster evolution than
expected.
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Coding potential

To investigate whether the trans-IncRNAs detected in this study are consistent with mass
spectrometry data, we aligned peptide sequences that were transformed from mass spectrom-
etry data to IncRNAs. As expected, the IncRNAs with mappable peptides were significantly
enriched among the trans-IncRNAs and ribo-IncRNAs for human and mouse (all p < 0.001,
see Table 2.7). In particular, the trans-IncRNAs were associated with the highest odds
ratios (8.28 and 23.03 for human and mouse, respectively), which indicates that trans-
IncRNAs have the highest potential for coding peptides. Figure 2.6 shows the footprint
coverage, peptide alignment, and sequence conversation (phyloP score) for trans-IncRNA
ENSMUST00000201653.1_CCT6A-003. For the footprint coverage, a colored region indi-
cates the putative ORF predicted in this IncRNA. The peptide sequences transformed from the
mass spectrometry data are consistently mapped onto this putative ORF. Also, we observed
positive phyloP scores for the putative ORF, which indicates that this putative ORF sequence
is evolutionarily conserved. Both metrics supported the hypothesis that the trans-IncRNA

can encode peptides (see Tables S4-S5 and S8—S9 for the details of other putative ORFs).
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Table 2.7 Long non-coding RNAs supported by mass spectrometry data. (One-sided Fisher’s
exact test: ***p<(0.001)

Human Mouse

#Total #MS supported (odds ratio) #Total #MS supported (odds ratio)

trans-IncRNA 78 4% 5 (8.28) 42 k% 7 (23.03)
ribo-IncRNA 613 wk% 18 (4.16) 367 w55 1() (3.82)
noribo-IncRNA 746 2(032) 326 2(0.73)
other 12209 85(0.40) 5525 33(0.23)

Total 13646 110 6260 52

Cellular localization

We sought to examine whether the ribosome-associated IncRNAs are enriched in the cy-
toplasm where the ribosomes are located. Here, we used expression fold change, which
compared the abundance of IncRNAs from the nuclear or the cytoplasmic fraction, to quan-
tify the subcellular localization in HeLa cells (see “Methods" in this chapter for details for
generating the fold changes). Figure 2.7a indicates the kernel density of expression fold
changes from the cytoplasmic fractions to the nuclear fractions for either ribosome-associated
and ribosome-free IncRNAs. As expected, both the ribosome-associated IncRNAs and the
ribosome-free IncRNAs were more likely to exist in the nucleus (mean = 2.19 and 1.12
for ribosome-free IncRNAs and ribosome-associated IncRNAs, respectively). However,
if compared with the ribosome-free IncRNAs, the ribosome-associated IncRNAs have a

significant tendency to be present in the cytoplasm (p < 0.001).

Sensitivity to nonsense-mediated decay

To test whether the ribo-IncRNAs are associated with nonsense-mediated decay (NMD),
we investigated the differences in expression levels of various RNA populations in the
presence (control) or absence (UPF1_KD) of NMD (see “Methods" in this chapter for details

to generate the fold change values). In HeLa cells, Figure 2.7b is the kernel density of
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Fig. 2.7 Comparisons between ribosome-associated IncRNAs and ribosome-free IncR-
NAs in HeLa cells. (a) Cellular localization analysis. The fold changes of expression values
were calculated between the nuclear and the cytoplasmic compartments to quantify the
localization. (See Table S6 for the raw data used to generate this kernel density plot.) (b)
Nonsense mediated decay (NMD) analysis. As UPF1 is an important NMD factor, we can
use the fold changes of expression values between samples from a UPF1 knockdown and
control to express NMD sensitivity. (See Table S7 for the raw data used to generate this
kernel density plot.) The corresponding mean values are shown by vertical dashed lines;
p-values were calculated using Welch’s ¢-test.

expression fold changes from the control samples to UPF1 knockdown samples for either

ribosome-associated or ribosome-free IncRNAs. In our observations, the expression level of
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ribosome-free IncRNAs was not affected by NMD (mean = 0.07). Interestingly, we found
the expression level of ribosome-associated IncRNAs were significantly sensitive to NMD

compared to ribosome-free IncRNAs (mean = 0.46, p < 0.001).

2.4 Discussion

We emphasize that the term ribosomal association in this study refers to the ribosome
translating or binding of a transcript, as ribosomes not only translate proteins but may also
carry out other unclear functions by interacting with transcripts. To our knowledge, this is
the first comprehensive study of ribosome—IncRNA interactions across multiple ribosome-
profiling experiments in mammals, and it has several differences from previous studies: (i)
more IncRNAs, including lincRNAs (long intergenic RNAs), were examined; (ii) a main
focus on human and mouse because of the well-annotated IncRNAs for these two species; (iii)
the use of the ribosome density metric and the cut-off value derived from 3’ UTRs to detect
ribosomal associations of IncRNAs, which thus obtained robust detection rates of ribosome-
associated IncRNAs over multiple independent datasets. We developed a novel tool, RAI *
(1 - spec), to measure ribosomal association from multiple ribosome-profiling experiments.
By using the RAI * (1 - spec) metric, we determined high-confidence ribosome-associated
IncRNAs (ribo-IncRNAs) and ribosome-free IncRNAs (noribo-IncRNAs) and investigated
the biological characteristics of ribosome-associated and ribosome-free IncRNAs involving
coding potential, cellular localization, and NMD sensitivity.

Processed transcripts and retained introns were observed to prefer to associate with
ribosomes, which suggests these two biotypes of IncRNAs are related to either protein-
coding or ribosome-mediated regulation. For example, SEC22B has two transcript variants
in the human genome, both of which were annotated as “processed transcript that does
not contain an ORF" in GENCODE v25lift37(release 25 mapped to GRCh37). However,
they had high RAI * (1 - spec) scores (both are 1, see Fig. 2.4 and Table S3), indicating
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their strong association with ribosomes. Moreover, we also observed a high translation
score for SEC22B-001 (TS =9.5), which indicates there is credible translation activity on
this transcript. Strikingly, we found that SEC22B was removed from IncRNA category
and annotated as a “protein coding" transcript in human genome h19 (GRCh38). Indeed,
compared to ribosome-free IncRNAs, ribosome-associated IncRNAs have a higher protein-
coding potential in the light of three variant coding metrics—FLOSS, RRS, and Framescore
(see Figs. 2.3b and S4). This particular case of SEC22B suggests that some IncRNAs with
high RAI * (1 - spec) and TS values could be protein/peptide coding transcripts. It seems
plausible to use the RAI * (1 - spec) and TS in combination to examine the coding capacity
of IncRNAs.

Table 2.8 LncRNAs derived from snoRNA host genes are enriched in trans-IncRNAs and
ribo-IncRNAs. (One-sided Fisher’s exact test: **p<0.01, ***p<0.001)

Human Mouse
#Total #snoRNA host (odds ratio) #Total #snoRNA host (odds ratio)
trans-IncRNA 78 **% 22 (20.46) 42 *% 5 (7.26)
ribo-IncRNA 613 k%70 (10.71) 367 *k* 44 (11.21)
noribo-IncRNA 746 5(0.42) 326 *#% 57 (20.75)
other 12209 112 (0.14) 5525 1 (0.00)
Total 13646 209 6260 107

Most snoRNAs are located in introns of ribosomal protein genes and of genes encoding
translation factors or nucleolar proteins. However, several noncoding genes are also reported
as hosts for small nucleolar RNA (snoRNA) expression. Notably, as shown in Table 2.8,
we observed snoRNA host gene-derived IncRNAs enriched in both trans-IncRNAs and ribo-
IncRNAs, suggesting their interaction with ribosomes, which is consistent with previous
studies [25, 104—-106]. One possible reason for their association with ribosomes is that
such IncRNAs are by-products of snoRNA production and are targeted to ribosomes, thus

triggering the nonsense-mediated decay (NMD) pathway. Host gene-derived IncRNAs were
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reported to be sensitive to NMD [105], which provides indirect support of this hypothesis. In
particular, GASS (growth arrest-specific 5) and ZFAS1 (ZNFX1 Antisense RNA 1), which
were revealed by ribosomal association analysis in this study, have been reported to be
associated with distinct biological functions. The GAS5 IncRNA sequence was determined to
control transcriptional activity of apoptosis-related genes, while the NMD pathway appears
to regulate the abundance of GASS transcripts [106]. The ZFAS1 IncRNA sequence was
primarily identified to interact with the 40S ribosome subunit and reported to affect ribosomal
protein modification [107]. The ZFAS1-ribosome interaction was also conserved in mouse
(see Table S3), which suggests that the IncRNA may play a role in targeting the ribosome.
For IncRNAs, the dissociation of ribosomes illuminates IncRNA localization and func-
tional studies. NEAT1 (nuclear enriched abundant transcript 1) is known to be a nuclear-
enriched IncRNA. NEAT1 has been found to function as an important structural determinant
of nuclear paraspeckles [108], which corresponds to the apparent ribosome-free NEAT1 (RAI
*(1 - spec) =-0.8). TUGI (taurine up-regulated gene 1) is a PRC2 (polycomb repressive
complex 2)-associated IncRNA involved in cell-cycle regulation [109]. The longest transcript
variant of TUG1 was highly ribosome-free (RAI * (1 - spec) = -1)). A TUGI transcript
variant of the human (ENST00000569149, RAI * (1 - spec) = 0.2)) and two transcript
variants of the mouse (ENSMUST00000193809 and ENSMUSTO00000132077 with RAI *
(1 - spec) =1 and -1, respectively), on the contrary, displayed entirely different ribosomal
association characteristics. This is also consistent with the finding that a unique peptide maps
to TUGI [110]. We, therefore, concluded that different transcript variants of IncRNAs act
with different ribosome-associated properties, which may suggest a new functional class of

IncRNAs regulated by alternative splicing coupled with ribosome targeting.
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2.5 Conclusions

In this study, we applied ribosome profiling data to identify interactions between IncRNAs
and ribosomes. To our knowledge, this is the first report showing that a large fraction
of IncRNAs-ribosome interactions over multiple independent studies are consistent and
reliable in human and mouse. We developed the ribosomal association index (RAI) and
used it with transcript expression specificity (spec) to measure the degree of reliability of
IncRNA-ribosome interactions across multiple datasets. Furthermore, we used three different
coding metrics (FLOSS, RRS, and Framescore) to assess the coding potential for ribosome-
associated IncRNAs. LncRNAs detected to associate with ribosomes were observed to
be more likely to be located in the cytoplasm and be more sensitive to NMD compared
to ribosome-free IncRNAs. We also noticed that many ribosome-associated IncRNAs are
tissue- or splicing-specific, which suggests these IncRNAs may target ribosomes under
specific conditions to perform certain special functions. An interesting goal for future
research is determining the biological mechanism underlying the condition-specific ribosomal
association for IncRNAs. Future research may also identify the genomic characteristics of
ribosome-associated IncRNAs and develop a method for distinguishing ribosome-associated
IncRNAs from other RNA species. The complete list of ribosome associations of known
IncRNASs in human and mouse are available online, from Table S3, which will be a useful

resource for functional IncRNA studies.



Chapter 3

Identifying sequence features that drive

ribosomal association for IncRNA

3.1 Introduction

With the advancement of high-throughput sequencing technology, the IncRNA population
has begun to emerge. In the past few decades, we have had a new understanding of this type
of RNA that their number far exceeds the protein-coding gene in human and mouse [111].
However, it is still unclear what function most of the IncRNAs have [37]. Moreover, it is
difficult to predict the IncRNA genes from other organisms without sequence characteristics
of IncRNAs[111].

Here, we discuss ribosome-associated IncRNAs, which are interacting with the ribosomes
although we did not have evidence for their protein translation. Such IncRNAs are considered
to have the function of regulating translation [112, 113]. The ribosome-associated IncRNAs
are also reported to serve as a source of new peptides [45]. Several individual studies have
found encoded peptides from IncRNAs, which have been reviewed in [114]. However, due to
the limited number of ribosome-associated IncRNAs, it is difficult to understand in depth

what are the essential features (or regulatory elements) included in the IncRNAs that control
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their association with the ribosome. Characterization of ribosome-associated IncRNAs play
a crucial role in understanding the involvement of IncRNA in specific biological functions or
which possible regulatory mechanisms.

Ribosome profiling is a technique that collect and read RNA fragments, which are
protected by the ribosome. It provides us a way to investigate the genome-wide association of
IncRNAs with ribosomes. In the previous work [115], we have analyzed ribosome profiling
data and identified 613 ribosome-associated IncRNAs (ribo-IncRNAs) and 746 ribosome-free
IncRNASs (noribo-IncRNASs) from human (367 ribo-IncRNAs and 326 noribo-IncRNAs from
mouse).

In this study, we investigated which sequence features could distinguish between these
two IncRNAs. To our knowledge, this is a first study of characterizing ribosome-associated
IncRNAs. Such sequence features identified in this study are possible to be considered as

regulatory factors that play an essential role in the ribosomal association.

3.2 Methods

3.2.1 Datasets and potential features

Ribo-IncRNAs and noribo-IncRNAs were derived from our previous study [115]. We used
Blast [116] to remove IncRNAs that share sequences of high similarity. If the sequence
similarity between two IncRNAs exceeded 60% (of the shorter one), then it is considered as
high similarity and hence the shorter one is discarded (Table 3.1 shows the statistics of dataset
before and after removing IncRNAs of high similarity). All sequence features considered to
affect ribosome association were listed in Table 3.2. For each feature column, we imputed

missing data by using mean value.
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Table 3.1 Statistics of dataset used in this study. The “reduced” column shows the number of
IncRNA s after removing sequences of high similarity.

Human Mouse

Original Reduced Original Reduced

ribo-IncRNA 613 487 367 279
noribo-IncRNA 746 681 326 300
Total 1359 1168 693 579

Primary/first/upstream ORF

We defined three different types of putative open reading frames (ORFs) on a IncRNA (Fig.
1). A primary ORF (pOREF) is the longest ORF starting with ATG. A first ORF (fORF) starts
with ATG and is closest to the 5’ end of the IncRNA. An upstream ORF (uORF) starts with a
near-cognate initiation site (i.e. CTG, GTG, or TTG [25]). Here, the uORF is considered
only when an existing pORF located in the IncRNA; the beginning and end of uORF should
be upstream of the pORF. These three types of ORFs above are all terminated with a TAG,
TGA, or TAA. In addition, the upstream ORF overlapping with the primary ORF was not

analyzed in this study.

Context/trimer/hexamer score

For the three types of ORFs mentioned above, we defined three scores based on frequency
ratio between ribo-IncRNAs and noribo-IncRNAs. Context sequence score of ORF start
(hereinafter abbreviated as “context score”) is the sum of frequency ratios of nucleotides at
-6 to +3 positions relative to the ORF start. Trimer score and hexamer score are summed
frequency ratios of trinucleotide or hexanucleotide, respectively, during ORFs. These three
metrics can be calculated using the following formula (which is also applied to assess coding

potential in CPAT[117]):
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Context/Trimer/Hexamer score = ! ilo Fx) (3.1)
T nH g F'(x;) '

1=

where, for context score, x; € [A,C,G,T| represents the nucleotide at the i-th position while
i indicates the index of the relative position above (i = 1 .. 10). F(-) and F'(-) are the
occurrence frequencies of position-specific nucleotide in categories of ribo-IncRNA and
noribo-IncRNA, respectively. For trimer score and hexamer score, ORF sequence is converted
into a sequence of length # in units of trinucleotide and hexanucleotide, respectively. Thus,
x; represents the unit (trimer or hexamer), F(-) and F'(-) are the occurrence frequencies of
unit in ribo-IncRNAs and noribo-IncRNAs, respectively. Both F(-) and F’(-) need to be
calculated in advance from a control dataset to generate a lookup table. Hence, we randomly

selected 5,000 CDS sequences to calculate F(-) and shuffled those sequences to generated
F'(+).

Stem probability

A higher stem probability means a stronger RNA secondary structure in this context. To
investigate whether RNA secondary structure affects the ribosomal association, we used
ParasoR [118], which is specifically designed for RNA secondary structure prediction of
numerous and long RNAs, to predict the stem probability of each base in an IncRNA. We set
the parameter —constraint to N — 1, where N is the length of the IncRNA, in order to consider
all possible base pairs during the IncRNA. Except it was an extreme long (> 9,500nt) RNA,
we used the default parameter (—constraint = 200) to guarantee the prediction result in a

limited time.
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N°-Methyladenosine modification, G-quadruplex, and repeat element

We used SRAMP [119] to predict N6—Methyladenosine modification (m6A) sites in an
IncRNA. G-quadruplex (G4) segments were predicted by using QGRS [120]. G4 element
with G-score > 30 is considered as a stable G-quadruplex structure. Transposon elements
(TEs) annotations were obtained from RepeatMasker [121]. We used the repeat library
(build on 20140131) that mapped to human (hg19) and mouse (mm10), respectively. Repeat

elements annotated as simple repeats, low-complexity, or non-coding RNA were removed.

Table 3.2 Sequence features were considered to influence the ribosomal association.

No. Feature Description
Basic
1 fLen Logjo(length+1) of the mature IncRNA
2 g G+C content of the mature IncRNA
RNA splicing

3 nE Number of exons
4 fELen Logjo(length+1) of the first exon
5 minELen Logjo(length+1) of the shortest exon
6 maxELen Logjo(length+1) of the longest exon
7 avgELen Logjo(averaged_length+1) of exons
8 fEgc G+C content of the first exon
9 minEgc G+C content of the shortest exon

10 maxEgc G+C content of the longest exon

11 avgEgc Averaged G+C content of exons

12 flLen Logjo(length+1) of the first intron

13 minlLen Logio(length+1) of the shortest intron

14  maxILen Logjo(length+1) of the longest intron

15 avgllen Logig(averaged_length+1) of introns

16 flgc G+C content of the first intron

17  minlge G+C content of the shortest intron

18  maxIgc G+C content of the longest intron

19  avglge Averaged G+C content of introns
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Table 3.2 Sequence features (continued)

No. Feature

Description

Putative ORF (pORF: primary ORF; fORF: first ORF; uORF: upstream ORF)

20-22  p/fluOrfLen
23-25  p/fluOrfCov
26-28  p/f/uOrfSutrLen
29-31  p/fuOrf5utrCov
32-34  p/f/luOrf3utrLen
35-37  p/fuOrf3utrCov

Logjo(length + 1) of ORF

Percentage of ORF length compared to that of IncRNA
Logjo(length + 1) of the upstream region of ORF (5’ UTR)
Percentage of the 5’ UTR length compared to that of IncRNA
Logjo(length + 1) of the downstream region of ORF (3’ UTR)

Percentage of the 3’ UTR length compared to that of IncRNA

K-mer frequency

38-40  p/f/uOrfStartContext
41-43  p/f/luOrfSeqTrimer

44-46  p/fluOrfSeqHexamer

Context sore of ORF start
Trimer score of ORF

Hexamer score of ORF

RNA secondary structure

47-49  p/fluOrfSp

50-52  p/t/aOrfSutrSp
53-55  p/fluOrfSutrSpFC
56-58  p/fluOrf3utrSp
59-61  p/f/uOrf3utrSpFC

62  g4NearTIS_log

63  g4NearTTS_log
64-66  g4Near(p/f/u)ORFstart_log
67-69  g4Near(p/f/u)ORFend_log
70  g4NearTIS_%

71  g4NearTTS_%

Averaged RNA stem probability of ORF

Averaged RNA stem probability of 5 UTR

Ratio of RNA stem probability of 5’UTR to that of ORF
Averaged RNA stem probability of 3’ UTR

Ratio of RNA stem probability of 3’UTR to that of ORF
Logjo(minimum distance) from G4 to transcription initiation
Log;o(minimum distance) from G4 to transcription termination
Logio(minimum distance) from G4 to ORF start
Logo(minimum distance) from G4 to ORF end

Minimum distance from G4 to TIS divided by length of IncRNA

Minimum distance from G4 to TTS divided by length of IncRNA

72-74  g4Near(p/f/u)ORFstart_% Minimum distance from G4 to ORF start divided by length of IncRNA
75-77  g4Near(p/f/u)ORFend_% Minimum distance from G4 to ORF end divided by length of IncRNA
RNA modification

78  mo6aNearTIS_log
79  mb6aNearTTS_log

80-82  m6aNear(p/f/u)ORFstart_log

Log;o(minimum distance) from m®A to transcription initiation
Logo(minimum distance) from m°A to transcription termination

Log;o(minimum distance) from m®A to ORF start
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Table 3.2 Sequence features (continued)

No. Feature Description
83-85 mo6aNear(p/f/u)ORFend_log  Logjo(minimum distance) from m®A to ORF end
86 mb6aNearTIS_% Minimum distance from m°A to TIS divided by length of IncRNA
87 mb6aNearTTS_% Minimum distance from m®A to TTS divided by length of IncRNA
88-90  mo6aNear(p/f/u)ORFstart_% Minimum distance from m°A to ORF start divided by length of IncRNA
91-93  m6aNear(p/f/u)ORFend_% Minimum distance from m®A to ORF end divided by length of IncRNA

Repeat element

94 DNA Containing DNA transposon or not

95 LINE Containing LINE element or not

96 LTR Containing LTR element or not

97 SINE Containing SINE element or not

98  Retroposon Containing Retroposon element or not
99  Satellite Containing Satellite element or not

3.2.2 Ll-regularized logistic regression

Logistic regression (LR) model [122] can be used as a binary classifier which applies a
logistic function to turn linear predictions to [0, 1]. Given a set of labeled training data X
(feature vectors) and their labels y (i.e. 0 and 1 indicates noribo-IncRNA and ribo-IncRNA,

respectively), LR model seeks to minimize the loss (or objective) function:

n
mwicn||w||1 +C210g(exp(—yi(XiTw+c))+1). (3.2)

i=1

To avoid the over-fitting, in which a complicate (many parameters and parameters with a
large variance) model can perform perfectly on training dataset but badly on testing dataset,
a regularization term (|lw||;) was used to control the complexity (i.e. the number and the

values of parameters) of model. Moreover, L1-based regularization drives parameters to
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zero, which is a natural process of feature selection. After training the LR model, we get
a small number of features with non-zero coefficients. Since the feature value has been
scaled in the same range, the absolute value of the coefficient represents how much the
change of this feature has an effect on the prediction of the model, and can be used to express
the importance of this feature in classification. The choice of using the model is based on
following reasons: First, the model uses a logistic function to transform the prediction results
to a range of 0 to 1, which is suitable for a two-class problem involved in this study; Second,
L1-regularization drives the model to tend to adopt a sparse feature space during training,
that is, the coefficients of many features will be zero, resulting in the model naturally selects
features for us; Finally, a linear combination of all features is considered in the model. Thus,
a positive/negative sign of the coefficient of the feature indicates that a positive/negative
correlation with the result of prediction (i.e. ribo-IncRNA), and an absolute value of the
coefficient can be used to describe the importance of the responding feature.

Feature selection by using the £1-regularized logistic model becomes a univariate prob-
lem of how to select a hyperparameter C. Here, C represents the inverse of regularization
strength. As C is increased, the number of features with non-zero coefficients is increased,
and the model becomes more complicated. Thus, the criteria used in this study is that the
most appropriate C should be to select fewer non-zero feature coefficients while still ensuring
that the model has relatively high prediction accuracy. For this purpose, we divided all data
into a training set and test set in a ratio of 80:20, and the training set was further applied for
5 fold cross validation. When we determine a value of C, the model optimizes all the feature
coefficients on the training set. Then the performance of the optimized model was evaluated

on the test set using accuracy metric:

Accuracy = TP+TN (3.3)
Y T TPYTN+FP+FN '
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where, T P is number of true positives, F'P is number of false positives, TN is number of true
negatives, and F P is number of false negatives. We used the Python scikit-learn library [123]

to perform all the machine learning processes mentioned above.

Results

3.2.3 Defining ninety-nine features from IncRNA sequence

We considered factors that may cause IncRNA to associate with ribosome in terms of RNA
splicing, putative ORF, k-mer frequency, RNA secondary structure, RNA modification, and

repeat elements. A full list of extracted features is included in Table 3.2.

RNA splicing

To investigate the relationship between splicing and ribosomal association, we mainly ex-
amined length and G+C content of intron and exon. Because the first exon and intron was
important for alternative splicing [124-126], their length and G+C content were also included

in our feature set.

Putative ORF and k-mer frequency

We first defined three types of ORFs (primary, first, and upstream), then extracted sequence
features based on them (see “Methods” in this chapter for more details). As shown in Fig.
3.1a, pORF is the longest ORF which is considered most frequently as a possible translated
region; fORF is the ORF closest to the 5’ end of the IncRNA which was selected because
of the first-ATG rule [127]; uORF locates in the upstream of the primary ORF starting with
near-cognate initiation site (i.e., CTG, GTG, or TTG). Other ORFs located inside or in the

downstream of the primary ORF were excluded to ensure the simplicity of the problem.
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Fig. 3.1 Example of feature extraction. (a) Representation of primary ORF (pORF, gray),
first ORF (fOREF, blue), and upstream ORF (uORF, red) in a IncRNA. Horizontal line indicates
a mature IncRNA, boxes represent putative open reading frames (ORFs) defined on this
IncRNA. (b) Relationship (distance) between m®A/G4 and transcript initiation site (TIS),
transcript termination site (TTS), and starts or ends of u/f/pORF were used as features. Direct
distance (bases in log scale) and relative distance (percentage of the length of IncRNA) were
considered to express the relationship.
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OREF length is a discriminating feature for coding and non-coding RNAs[117], hence we
questioned whether this feature can also contribute to the detection of ribosome-associated
IncRNA. As it was reported that 3’ UTR length may regulate the translation efficiency [128]
and 5’ UTR may contain RNA modification [129] or regulatory motif (e.g., G-quadruplex
[130]), they were also considered in this investigation. Moreover, we used trimer score and
hexamer score to assess whether the codon usage and bi-codon frequency were similar to
CDS. To calculate trimer (or hexamer) score, we first randomly selected 5,000 CDSs as active
OREF reference and randomly shuffled their sequences as inactive ORF reference (Table S10).
Each trimer (or hexamer) has a weight, which is the ratio of its occurrence frequency in the
two reference groups. For a given putative ORF, we calculated the weight of all trimers (or
hexamers), and then took the mean to represent its trimer (or hexamer) score (see “Methods”
in this chapter). Thus, trimer (or hexamer) score measures the degree of trimer (or hexamer)
usage bias in a specified putative ORF. A positive score indicates a possible active ORF,
whereas a negative score indicates an inactive one.

A consensus sequence, termed Kozak sequence, surrounds the start codon in eukaryotic
mRNAs and is reported to promote the translation initiation [131]. To take this into account,
we developed context score to compare sequence motif surrounding the putative ORF start
with that surrounding the start codons from mRNAs. The calculation of context score is
similar to that of the trimer/hexamer score above. We calculated the weight of each base at
-6 to +1 positions relative to the start codon. Indeed, we observed the Kozak sequence motif
in this position-specific weight matrix (Fig. 3.2). Hence, the higher the context score, the

more similar to the Kozak sequence.

RNA secondary structure

We considered the RNA stem probability as a metric of RNA secondary structure, and then

defined RNA structure features with respect to 5'/3’ UTRs and ORF. Both experimental and
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Fig. 3.2 Context scoring matrix measures the similarity of Kozak sequence (human).
We calculated the context scoring matrix from 5,000 CDSs (see “Method”). This indicates a
Kozak sequence motif (gcc[ag]ccATGg) surrounding the start codon.

computational studies have observed that ORF sequences were more structured comparing
with other regions in the mRNAs [118, 132], and a change of RNA secondary structure can
be often observed surrounding the start and the stop codon . Thus, we calculated the RNA
stem probability which indicates the likelihood that each base is included in a RNA stem
structure across the full RNA sequence. Then we could extract averaged stem probabilities
for distinct regions corresponding to pre-defined putative ORFs. Furthermore, we proposed
that a stem probability ratio of 5 UTR to ORF is needed to quantify the RNA structure
changes between these two regions. Similarly, we also defined the ratio between 3’ UTR and
ORF.

G4 is a four-stranded helical structure which can form in RNA and may be involve in
translational control. Although the study of G4 is still in its infancy, it is inferred from
its stable RNA secondary structure that G4 may block the translational regulation of the
relevant site when it is close to the 5’ cap structure, the start codon, and the stop codon
[133]. Additionally, G4 may also provide a cap-independent initial entry for translation
initiation factors, thereby facilitating RNA translation [130, 133]. To explore whether G4
affects the association of IncRNAs with the ribosome, we first predicted the possible G4

structure in IncRNAs using QGRS [120], and then considered the relative positions of these
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G4s relative to transcription initiation site (TIS), transcription termination site (TTS), and
the start and end of the putative ORF (Fig. 3.1b). In addition, for the definition of relative
position, we used two kinds of measurement methods: direct distance and relative distance.
Direct distance represents the number of nucleotides on the RNA between the G4 and the
target site mentioned above. Relative distance is a measure of the direct distance normalized

to the total length of the RNA, to prevent possible bias of different RNA lengths.

RNA modification and repeat element

We utilized SRAMP [119] to predict where an m®A might occur in a IncRNA, and calculated
the direct and relative distances of the m®A to various locations (i.e. TIS, TTS, and start/stop
codons) as features. This is because previous studies have found that the m®A is often
enriched in a 5 UTR or in a 3’ UTR neighboring stop codon [134, 135]. The m°A that
located in the 5’ UTR can promote cap-independent translation [129], while the m®A located
around the stop codon may promote translation initiation by a binding protein. Finally, we
were interested in whether the IncRNA contains a particular repeat element as a binarized
feature. For example, Alu element is reported to be related to the cellular localization
of IncRNAs [136], and our previous work have shown that the ribosomal association of
IncRNAs,indeed, is positively correlated with the nuclear localization of IncRNAs. SINEB2,
which is one of SINE (short interspersed nuclear element) repeat sequence, is reported to
be associated with the up-regulated translation [137]. Hence, we do not rule out that SINE
or other repeat elements may have the potential to regulate the ribosomal association of
IncRNA.

Figure 3.3 shows the distribution of all features in ribo-IncRNA and noribo-IncRNA in
human (see Fig. 3.4 for mouse; the meaning of the features are described in Table 3.2).
According to the KS importance (described below) of each feature, we ranked all the features

from high to low in the figure. Interestingly, if only one feature was chosen to distinguish the
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two types of IncRNAs, the GC content of the first exon (fEgc) was the most discriminating
feature. We observed that ribo-IncRNAs tend to have a higher GC content in their first exons
both in human and mouse. Here, all feature values were transformed in a range of O to 1.
Then, we used two-sample Kolmogorov—Smirnov (KS) statistic [138] to examine the ability
of each feature to separate the two types of IncRNAs (KS importance). The two-sample KS
statistic 1S a non-parametric test to compare two groups of samples. When a feature has a
significant difference between the two groups of IncRNAs, a smaller P value will be obtained
in the two-sample KS statistic. If we only consider the effect of an individual feature, we can
rank the features according to the statistical significance level (-log P value) from high to
low. This method can be used for feature selection. Since it only independently assesses the
importance of a single feature, it is also referred to as a filter method. This method is fast and
straightforward and works well in many scenarios, but it cannot consider the combination of
various features in the classification. For this purpose, we will carry out a more systematic

screening of these extracted features as below.
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Removing high redundant features

One feature is considered to be redundant in the presence of another related feature with
which is strongly correlated and can be removed without incurring much loss of information.
To eliminate redundant features, we investigated the correlation coefficient between all
features (Fig. 3.5a). The results show that the high redundant (|r| > 0.8) features are mainly
clustered on exon/intron, G4, and m°A in the form of length or distance. For example, in
human, there is a high correlation between the lengths of a transcript and the longest exon
in the transcript; the lengths of a pORF and the downstream 5’ UTR, and the length of a 3
UTR of fORF and that of an uORF (r > 0.8, Table S10). The distance of mPA relative to
the transcript 5" end was highly correlated with its distance to the start of uORF (r = 0.949,
Table S10). Similarly, there is a high correlation between the distance of G4 relative to the
start of fORF and its distance to the start of uORF (r = 0.928, Table S10). We also observed
similar results in mouse (Fig. 3.6a and Table S10).

After removing redundant features, we prepared low redundant features which were
ready for a further feature selection. We removed one feature from each pair of redundant
features to obtain the low redundant features (Table S10). Then, 59 and 55 sequence features
were remained in the human and mouse, respectively. A list of low redundant features is
given in Table 3.3. Figure 3.5b shows the correlation coefficient matrix between human low
redundant features (see Fig. 3.6b for mouse). Although there are still some weak correlations
between some features (e.g., the direct distance and the relative distance between mPA and
TIS), filtering of highly correlated features allows us to consider the importance of each

feature more distinctly.
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a

High redundant features

exon/intron

G4

mSéA

exon/intron

Low redundant features

Pearson’s r

Fig. 3.5 Correlations (r) of features indicate redundant features in human. (a) Correla-
tions of all extracted features show that features of several sub-regions are highly correlated
(redundant). (b) After removing high redundant ( |r| > 0.8 ) features, we obtained a low
redundant feature set for further analysis in this study.
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a

High redundant features

exon/intron

G4

meéA

exon/intron |

Low redundant features

Pearson's r

Fig. 3.6 Correlations (r) of features indicate redundant features in mouse. (a) Correla-
tions of all extracted features show that features of several sub-regions are highly correlated
(redundant). (b) After removing high redundant ( |r| > 0.8 ) features, we obtained a low
redundant feature set for further analysis in this study.
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Table 3.3 Low-redundant features in human and mouse.

No. Human Mouse No. Human Mouse
1 fLen fLen 31 DNA DNA
2 gc gc 32 LINE LINE
3 nE nE 33 LTR LTR
4 fELen fELen 34 Retroposon SINE
5 fEgc fEgc 35 SINE m6aNearTIS_log
6 flLen minEgc 36 Satellite m6aNearTTS_log
7 pOrfCov fiLen 37 mé6aNearTIS_log m6aNearpORFstart_log
8 pOrfSp pOrfCov 38 mé6aNearTTS_log m6aNearuORFstart_log
9 pOrf5utrCov pOrfSp 39 mé6aNearpORFstart_log g4NearTIS_log
10 pOrf5utrSp pOrf5SutrCov 40 me6aNearuORFstart_log g4NearTTS_log
11 pOrf5utrSpFC pOrf5utrSp 41 g4NearTIS_log g4NearpORFstart_log
12 pOrf3utrLen pOrf5utrSpFC 42 g4NearTTS_log m6aNearTIS_%
13 pOrf3utrCov pOrf3utrLen 43 g4NearpORFstart_log m6aNearTTS_%
14 pOrf3utrSp pOrf3utrCov 44 g4NearfORFend_log m6aNearpORFstart_%
15 fOrfLen pOrf3utrSp 45 mé6aNearTIS_% g4NearTIS_%
16 fOrfCov fOrfLen 46 mb6aNearTTS_% g4NearTTS_%
17 fOrfSp fOrfCov 47 m6aNearpORFstart_% g4NearpORFstart_%
18 fOrfSutrLen fOrfSp 48 g4NearTIS_% pOrfStartContext
19 fOrf5SutrCov fOrfSutrLen 49 g4NearTTS_% fOrfStartContext
20 fOrf5utrSp fOrfSutrCov 50 g4NearpORFstart_% uOrfStartContext
21 fOrf5utrSpFC fOrf5utrSp 51 pOrfStartContext pOrfSeqTrimer
22 fOrf3utrCov fOrfSutrSpFC 52 fOrfStartContext fOrfSeqTrimer
23 fOrf3utrSp fOrf3utrCov 53 uOrfStartContext fOrfSeqHexamer
24 uOrfCov fOrf3utrSp 54 pOrfSeqTrimer uOrfSeqTrimer
25 uOrfSp uOrfCov 55 pOrfSeqHexamer uOrfSeqHexamer
26 uOrf5SutrLen uOrfSp 56 fOrfSeqTrimer
27 uOrf5utrCov uOrfSutrLen 57 fOrfSegHexamer
28 uOrf5utrSp uOrf5utrCov 58 uOrfSeqTrimer
29 uOrf5utrSpFC uOrf5utrSp 59 uOrfSeqHexamer
30 uOrf3utrSpFC uOrf3utrSpFC
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Feature selection by L 1-regularized logistic regression

Feature selection by using the £1-regularized logistic model becomes a problem of how to
select a hyperparameter C (see “Methods” in this chapter). As shown in Fig. 4, in a range
of [0.01, 1], we increased the value of C in steps of 0.001 and finally obtained the function
between the C and the feature coefficients (colored solid lines), and the accuracy of prediction
(blue dashed line). When the value of C is very small, the regularization strength is enormous
and all of the feature coefficients are zeros, which means that no feature will be used as
a predictor. At this time, the prediction accuracy implies that we predict all the results as
positives (i.e., ribo-IncRNAs), which exactly reflects the proportion of positives in the test
dataset. In human, for instance, the accuracy at this time is about 55%, which means that
the number of positives and negatives in our test dataset is well-balanced. As the value of C
increases, the more coefficients of the features turn to be non-zero, the prediction accuracy
from the beginning of the rapid growth, to later stability or even a decrease. According
to the criteria mentioned above, we choose C = 0.257 at the black vertical line in Fig.4,
and the prediction accuracy at this time is 0.828. The features with non-zero coefficients
corresponding to this are the critical features that we finally screen out. We can see that even
if we continue to increase the value of C (to apply more features), this prediction accuracy
has not improved considerably.

Taken together, we identified fifteen crucial sequence features of ribosomal association
for human IncRNAs (nine for mouse IncRNAs). A list sorted by the importance of the crucial

features is shown in the upper left corner of Fig. 3.7 (see Fig. 3.8 for mouse).
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3.3 Discussion

By comparing the sequence features of the ribosomal association that we have identified in
human and mouse IncRNAs, it is observed that seven features are conserved between the two
species. It means that these common features may involve in the biological mechanisms of
ribosomal association. Meanwhile, eight (human) and two (mouse) species-specific features
are observed, which may involve species-specific regulatory mechanisms of the ribosomal
association. In the following subsections, we discuss these features from the aspects of

conserved and species-specific.

3.3.1 Conserved features

Conserved features include the fEgc, fELen, flLen, fOrfSeqHexamer, fOrf3utrCov, uOrf-
SeqHexamer, and LTR. Out of them, fEgc, flLen and LTR were positively correlated with
the ribosomal association, while others vice versa. We observed that the G+C content and
the length of the first exon had a high positive and negative correlation with the ribosomal
association of IncRNA respectively. This finding matches with the results a study regarding
the correlation between ribosome-associated mRNA and CDS [139]. High G+C content may
indicate the occurrence of unexpected selection on ribosome-associated IncRNAs [140].

We could also observe that the longer the first intron, the more favorable IncRNAs are
associated with the ribosome. The selection forces of intron-dependent nonsense-mediated
RNA decay (NMD) on the first intron may be a reason for this situation [141]. This
phenomenon is common among protein-coding genes, and a simple hypothesis is that longer
introns are more likely to contain certain motifs [125], and these motifs may have essential
factors that promote ribosomal association.

Surprisingly, the hexamer frequencies, which were used to assess the coding potential, of
the first ORF and the first non-ATG ORF were inversely related to the ribosomal association.

The reasons for this can be considered from two aspects: First, even if the ribosome has
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translation event on these two ORFs, the probability of detection of this event is low due
to the length of the two ORFs is relatively shorter than that of the primary ORF. Moreover,
the stronger the translation activity on these two ORFs will directly affect the ribosomal
initiation of downstream pORFs, resulting in the failure of ribosome association on pORF to
be detected. Second, we argue that the ribosomal association mentioned here not be the same
as the ribosomal translation. The ribosome may use regulatory mechanisms other than the
properties of the CDS sequence, to associate with particular RNAs (e.g., internal ribosomal
entry site). Note that we did remove IncRNAs with translation potential when collecting
ribosome-associated IncRNAs.

The results of human and mouse consistently demonstrated that IncRNAs containing a
long terminal repeat (LTR), are more likely to associate with the ribosome. LTR is often used
as a tool when viruses insert genetic material into a host genome. A well-known example
of LTR is the human immunodeficiency virus (HIV), in which the LTR contains promoter,
enhancer and other functional sequence elements [142]. Furthermore, our results indicate that

LTR may be a functional element that promotes the ribosomal association or even translation.

3.3.2 Species-specific features

In human, the IncRNA length and the length of the non-ATG OREF are positively correlated
with the ribosomal association. The remaining six features — the length and the hexamer
frequency of the pOREF, the trimer frequency of the fORF, the distance between G4 and TIS,
and whether it contains LINE or SINE — have a negative correlation with the ribosomal
association. In mouse, there are only two species-specific features — the RNA secondary
structure of 3’ UTR of pORF and the distance between m°A and transcript 3’ end — have a
negative correlation with the ribosomal association.

Transcript length is one among the important features while distinguishing between

protein-coding RNA and noncoding RNA [117]. As expected, this feature can also be used
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to distinguish ribo-IncRNA and noribo-IncRNA to some extent. The longer the transcript,
the higher the probability that it may be associated with the ribosome (according to statistical
point of view). Besides, the longer the sequence, the more likely it is to include functional
motifs that promote ribosomal association. On the OREF, the features of the trimer/hexamer
frequency and the length may be similar to those discussed above.

In contrast to LTR, SINE and LINE (long interspersed nuclear element) are more likely
to appear in a ribosome-free IncRNA. This result is consistent with a report that Alu (a
type of SINE) can drive the IncRNA in the nucleus [136]. We argue whether there is a
set of complementary mechanisms controlling IncRNAs in the cytoplasm and nucleus by
applying LTR and SINE/LINE. A systematic analysis of how these repeat elements affect the
localization of IncRNAs can help us to understand the role of repeat elements in the evolution
of genome, and the biological functions and mechanisms that IncRNAs may have involved.

G4 affects the ribosomal association when approaching transcript 5" end. This result is
also discussed in many studies [130, 133]. Meanwhile, it further exhibits that the biological
regulation of RNA in the secondary structure level. We observed that m®A modification
appears around transcript 3’ end affecting the ribosomal association. Wang and colleagues
mentioned that m®A might form an RNA loop near the stop codon that brings the distance
between the start and the stop codons closer to promote the translation efficiency [143].
However, the m®A near TTS may hinder the formation of this mechanism. Finally, we
compared mRNA with ribo-IncRNA and noribo-IncRNA (Fig. 3.9 and Fig. 3.10). It can be
observed that in human, the length of the transcript can indeed be used to distinguish between
IncRNA and mRNA. Additionally, we noticed that 5'/3' UTR of ribo-IncRNA seems to have
a stronger RNA secondary structure compared with that of mRNA. In mouse, noribo-IncRNA
has less number of exons compared with mRNA, which means the corresponding gene model

is more straightforward.
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3.4 Conclusions

This study analyzed the features of the ribosome-associated IncRNA at the level of sequence.
Using the ribo-IncRNAs (ribosome-associated IncRNAs) and noribo-IncRNAs (ribosome-
free IncRNAs) collected from human and mouse in our previous study [115], we analyzed
which features are most important for distinguishing between the ribo-IncRNAs and the
noribo-IncRNAs. Considering the reasons that a IncRNA may be involved in the ribosomal
association, we mainly define sequence features based on distinct dimensions from several
aspects such as RNA splicing, putative ORF, k-mer frequency, RNA secondary structure,
RNA modification, and repeat element. Highly redundant features are removed by analyzing
the correlation coefficient of each pair of features. Then, based on the £1-regularized logistic
regression model, we performed a feature selection while training feature parameters. Finally,
we obtained fifteen and nine essential features for distinguishing between ribo-IncRNA and
noribo-IncRNA from human and mouse, respectively, and discussed possible relationships
between these features and the ribosomal association. To the best of our knowledge, this
should be the first study of how to further divide ribo-IncRNA and noribo-IncRNA from the
perspective of sequence features. This research describes how to extract sequence features
to study IncRNAs and other biological phenotypes (e.g., subcellular localization), which
provide research ideas for similar work. Moreover, the analysis of these sequence features
has a critical reference value for us to understand further the ribosomal association, which is

still an unknown mechanism, for IncRNA.
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Table S1 Mapping statistics for RNA-seq and Ribo-seq reads

mRNA IncRNA
Dataset(used) FullName Total Mapped  %Mapped Total Mapped  %Mapped Dist*
human-Brain-Gonzalez2014-normal-A 23706173 16991196  71.67% 24217633 10708008  44.22% 0.079
human-Brain-Gonzalez2014-normal-B 21347787 15420462  72.23% 31333947 25115315  80.15% 0.083
human-Brain-Gonzalez2014-normal-C 35977217 28536150  79.32% 25080466 16907554 67.41% 0.079
human-Brain-Gonzalez2014-tumor-A 35098242 28716405  81.82% 15170942 10265883  67.67% 0.052
Brain human-Brain-Gonzalez2014-tumor-B 31626666 24658572 77.97% 14653984 9454559 64.52% 0.049
human-Breast-Rubio2014-control-repl 50340395 7125959 14.16% 81412342 53189767 65.33% 0.132
human-Breast-Rubio2014-control-rep2 123083196 79744297 64.79% 79526733 58476522 73.53% 0.116
human-ES-Werner2015-control-repl 41584104 35567283 85.53% 17021851 9081529 53.35% 0.134
ES human-ES-Werner2015-control-rep2 44512501 36568569  82.15% 9449697 3886889 41.13% 0.126
human-Fibroblasts-Loayza2013-control 37257171 32752183 87.91% 39356144 11357702 28.86% 0.089
human-Fibroblasts-Loayza2013-control-1 25370509 21470081 84.63% 23004275 8993671 39.10% 0.09
human-Fibroblasts-Loayza2013-control-2 27320637 23173344 84.82% 13064524 5461725 41.81% 0.238
human-Fibroblasts-Loayza2013-control-3 48538121 44008710 90.67% 11062208 7337328 66.33% 0.12
Fibroblasts h Fibrobl Shitrit2015-control 53207227 42990185 80.80% 22619805 9508781  42.04% 0.072
human-Fibroblasts-Xu2016-wt-d-leucine 31165323 22882098 73.42% 15835151 10316719 65.15% 0.301
human-Fibroblasts-Xu2016-wt-I-leucine 30937001 23043630 74.49% 14717871 8045138 54.66% 0.301
Foreskin human-Foreskin-Stren2012-24hr 12586584 9124038 72.49% 10193853 6982202 68.49% 0.121
human-Foreskin-Stren2012-5hr 13618497 10402167  76.38% 9020836 6450523  71.51% 0.162
human-Foreskin-Stren2012-72hr 9692082 3531189  36.43% 16990568 7612822  44.81% 0.153
human-Foreskin-Stren2012-72hr-rep 29124647 23621055 81.10% 12299740 4672420 37.99% 0.15
human-HEK293-Andreev2015-control-repl 5821931 4627175 79.48% 3203499 2424055 75.67% 0.245
human-HEK293-Andreev2015-control-rep2 28820156 18614735 64.59% 14186970 9906609 69.83% 0.365
human-HEK293-Eichhorn2014-mock 14387524 10246301 71.22% 9829831 4018989 40.89% 0.156
human-HEK293-lwasaki2016-dmso-repl 32641987 27901375 85.48% 16871798 5153802 30.55% 0.172
human-HEK293-lwasaki2016-dmso-rep2 36838220 31153478 84.57% 8948458 4161066 46.50% 0.16
human-HEK293-Sidrauski2015-control-a 45917567 28306917 61.65% 26774547 12225942 45.66% 0.096
HEK293 human-HEK293-Sidrauski2015-control-b 41697825 26107816 62.61% 30655490 16222331 52.92% 0.071
human-HEK293-Subtelny2014-cyt 14387523 10246290 71.22% 9829810 4018982 40.89% 0.151
human-Hela-Gu02010-mock12hr 25144786 11869651 47.21% 12397013 9638225 77.75% 0.057
human-Hela-Gu02010-mock32hr 9497338 5150764  54.23% 14078294 9921256  70.47% 0.044
human-Hela-Park2016-Mphase-repl 53935760 47051344  87.24% 34655468 14499275  41.84% 0.053
human-Hela-Park2016-Mphase-rep2 53939835 47460177 87.99% 88029442 37295857  42.37% 0.106
Hela human-Hela-Park2016-Sphase-repl 52504854 43563287 82.97% 71439409 58656536 82.11% 0.034
human-HeLa-Park2016-Sphase-rep2 66000131 55476885 84.06% 151184131 59778953 39.54% 0.078
human-Hela-Zur2016-G1phase-expl 153305557 9241210 6.03% 79722525 36599502 45.91% 0.091
human-Hela-Zur2016-G 1phase-exp2 19392270 13904364 71.70% 23378881 20295774 86.81% 0.086
human-HeLa-Zur2016-Mphase-expl 135614675 13787506 10.17% 34065351 16029392 47.05% 0.114
human-HeLa-Zur2016-Mphase-exp2 39594603 31521108 79.61% 23148891 18892323 81.61% 0.133
human-KOPT-K1-Wolfe2014-dmso-repl 106222113 90541881 85.24% 10907164 3070350 28.15% 0.25
human-KOPT-K1-Wolfe2014-dmso-rep2 127285058 108625726 85.34% 14377264 2176344 15.14% 0.302

human-Lymphoblastoid-Cenik2015-GM12878-repl 29915148 24545964  82.05% 73497149 12414030 16.89% 0.284
human-Lymphoblastoid-Cenik2015-GM12878-rep2 28305168 23098982 81.61% 45672997 8198038 17.95% 0.377
human-Lymphoblastoid-Cenik2015-GM12891-repl 28321824 23657450  83.53% 56277140 14285775  25.38% 0.302
human-Lymphoblastoid-Cenik2015-GM12891-rep2 25870794 21564461  83.35% 42350440 13272838 31.34% 0.378
human-Lymphoblastoid-Cenik2015-GM12892-repl 30539431 25481284  83.44% 44516176 9147759  20.55% 0.385
human-Lymphoblastoid-Cenik2015-GM12892-rep2 31189920 25500883 81.76% 61243778 16760461 27.37% 0.287
human-Lymphoblastoid-Cenik2015-GM19238-rep1 26312170 21955224  83.44% 31417050 3731817 11.88% 0.248
human-Lymphoblastoid-Cenik2015-GM19238-rep3 24541174 20784635  84.69% 35682223 3914713  10.97% 0.362
human-Lymphoblastoid-Cenik2015-GM19239-rep2 29949538 25060101 83.67% 69464081 19743840 28.42% 0.314
human-Lymphoblastoid-Cenik2015-GM19240-repl 29726968 24553278 82.60% 57926870 12257435 21.16% 0.273
human-Lymphoblastoid-Cenik2015-GM19240-rep2 26782548 22227879 82.99% 70801017 13379551 18.90% 0.312
human-Lymphoblastoid-Cenik2015-GM19240-rep3 28489531 23706955  83.21% 44215080 2279554 5.16% 0.292

human-Macrophages-Su2015-mock-repl 38930591 30469722 78.27% 19428752 17563866  90.40% 0.189
human-Macrophages-Su2015-mock-rep2 35302066 28521252 80.79% 11728115 10156047  86.60% 0.188
human-Muscle-Wein2014-control 7540109 7489401  99.33% 507661 501992  98.88% 0.263
Myeloma human-Myeloma-Wiita2013-control 12617533 9204491  72.95% 14397749 10642131  73.92% 0.099
human-NCCIT-Grow2015-wt 9396393 6251682  66.53% 58060631 34647049  59.67% 0.302
human-PC3-Hsieh2012-control-repl 17950921 12853625 71.60% 6657524 2378395 35.72% 0.1
PC3 human-PC3-Hsieh2012-control-rep2 18654224 13998836  75.04% 11039398 8426186 76.33% 0.068
RPE-1 human-RPE-1-Tanenbaum2015-G1-repl 50333134 40846388 81.15% 41779569 28082117 67.21% 0.055
human-RPE-1-Tanenbaum2015-G1-rep2 55585218 39859008  71.71% 22735931 12444339 54.73% 0.079
human-RPE-1-Tanenbaum2015-G2-repl 44261794 33761676  76.28% 21192827 10074858  47.54% 0.096
human-RPE-1-Tanenbaum2015-G2-rep2 43331997 21556178  49.75% 20957157 10404402  49.65% 0.08
human-RPE-1-Tanenbaum2015-M-repl 81071630 62179718  76.70% 24229813 13058571  53.89% 0.154
human-RPE-1-Tanenbaum 2015-M-rep2 49400997 40023521  81.02% 16605224 8491625 51.14% 0.138
human-U20S-Eichhorn2014-mock 20765487 12249370  58.99% 11094286 5685810 51.25% 0.228
human-U20S-Guo2014-mock 20765497 12249379  58.99% 11097798 5688525 51.26% 0.229
human-U20S-Jang2015-CT00-repl 30766467 27524642  89.46% 10698710 8238395  77.00% 0.065
human-U20S-Jang2015-CT00-rep2 26568487 23761469  89.43% 8093448 5869414  72.52% 0.081
human-U205S-Jang2015-CT02-repl 32053909 28505173  88.93% 7109437 5576440  78.44% 0.079
human-U20S-Jang2015-CT02-rep2 27608457 24647296 89.27% 7233471 5075635 70.17% 0.075
human-U20S-Jang2015-CT04-repl 29325468 25924749  88.40% 8927641 6518547  73.02% 0.073

human-U20S-Jang2015-CT04-rep2 27997648 25056491  89.49% 6847792 4827831  70.50% 0.086
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human-U20S-Jang2015-CT06-repl 31538781 27599221 87.51% 9666763 7420551 76.76% 0.073
human-U20S-Jang2015-CT06-rep2 30991243 27708189 89.41% 12240724 9023725 73.72% 0.078
human-U20S-Jang2015-CT08-repl 29291180 25973579 88.67% 10010105 8103457 80.95% 0.072
human-U20S-Jang2015-CT08-rep2 28186680 25103379 89.06% 8997894 7081787 78.70% 0.077
human-U20S-Jang2015-CT10-repl 28867822 25496675 88.32% 8404007 6371930 75.82% 0.074
human-U20S-Jang2015-CT10-rep2 31234143 27526578 88.13% 9982689 7495258 75.08% 0.078
human-U20S-Jang2015-CT12-repl 26613183 23555262 88.51% 11118970 7928171 71.30% 0.07
human-U20S-Jang2015-CT12-rep2 28002620 24927575 89.02% 7126120 4050069 56.83% 0.08
human-U20S-Jang2015-CT14-repl 31000585 27548946 88.87% 8209464 6325949 77.06% 0.069
human-U20S-Jang2015-CT14-rep2 30829679 27415638 88.93% 10345199 7643952 73.89% 0.083
human-U20S-Jang2015-CT16-repl 26693598 23855127 89.37% 5294481 4052150 76.54% 0.072
human-U20S-Jang2015-CT16-rep2 29921626 26733926 89.35% 8826312 6621706 75.02% 0.078
human-U20S-Jang2015-CT18-repl 26105761 23154457 88.69% 6668649 4501141 67.50% 0.064
human-U20S-Jang2015-CT18-rep2 31325337 28107322 89.73% 9742329 6930868 71.14% 0.073
u20s human-U20S-Jang2015-CT20-repl 29915338 26678709 89.18% 8502522 6290697 73.99% 0.064
human-U20S-Jang2015-CT20-rep2 28135499 25308070 89.95% 10808655 8157323 75.47% 0.067
human-U20S-Jang2015-CT22-repl 30156260 26776982 88.79% 12706599 9498408 74.75% 0.065
human-U20S-Jang2015-CT22-rep2 26765823 23998397 89.66% 8227433 5833278 70.90% 0.066
mouse-Brain-Gonzalez2014-normal-A 33270791 27614324  83.00% 2522944 442908 17.56% 0.034
mouse-Brain-Gonzalez2014-normal-B 33360725 27386092 82.09% 16698604 11583554  69.37% 0.1
mouse-Brain-Gonzalez2014-normal-C 33881050 28359821  83.70% 11113005 6090392 54.80% 0.087
Brain mouse-Brain-Gonzalez2014-tumor-A 37120052 26551951  71.53% 14367807 6215221 43.26% 0.037
mouse-Brain-Gonzalez2014-tumor-B 28006296 22512124  80.38% 30945876 1047535 3.39% 0.137
mouse-Brain-Gonzalez2014-tumor-C 31433374 25817920  82.14% 12901149 458937 3.56% 0.127
mouse-Brain-Laguesse2015-wt-1 25468840 23146791  90.88% 19357901 11246784  58.10% 0.11
mouse-Brain-Laguesse2015-wt-2 19128723 17476386 91.36% 21404954 12300424 57.47% 0.104
EB mouse-EB-Ingolia2011-eb 44474377 34359886 77.26% 39142735 25506644 65.16% 0.058
ES mouse-ES-Hurt2013-control 44200486 40690743  92.06% 70747244 44057365 62.27% 0.019
mouse-ES-Ingolia2011-mes 59790833 49112252 82.14% 48811567 28303241 57.98% 0.085
mouse-ES-Reid2014-cyt 45958696 37763078 82.17% 10184184 7401189 72.67% 0.043
mouse-ES-Reid2014-er 56320987 24349018  43.23% 45081181 27375999 60.73% 0.106
mouse-ES-You2015-Lipo 92713371 58873929  63.50% 54200488 41925126  77.35% 0.087
mouse-ES-You2015-siGFP 94540100 60345402  63.83% 49928706 37901320 75.91% 0.08
mouse-ES-You2015-siNC 100988376 64013168  63.39% 62157133 47750090 76.82% 0.08
Fibroblasts mouse-Fibroblast-Thoreen2012-wild-vehicle 6383082 3571804 55.96% 5996501 3997946  66.67% 0.038
mouse-Hippocam pi-Ch02015-10min-repl 101438895 31392345 30.95% 63906806 38476139 60.21% 0.08
mouse-Hippocam pi-Cho2015-10min-rep2 79682904 25551313  32.07% 71962828 26326298  36.58% 0.173
Hippocampi mouse-Hippocampi-Cho2015-10min-rep3 77253662 24824683  32.13% 59412790 27811123  46.81% 0.076
mouse-Hippocam pi-Cho2015-30min-repl 99165827 30980431  31.24% 68045914 42027923 61.76% 0.087
mouse-Hippocam pi-Ch02015-30min-rep2 83706253 25431361  30.38% 76954045 28258246  36.72% 0.161
mouse-Hippocampi-Cho2015-30min-rep3 72231705 24568230 34.01% 58314315 29339899 50.31% 0.094
mouse-Hippocam pi-Cho2015-4hr-repl 92607383 28704664 31.00% 58415171 36823640 63.04% 0.097
mouse-Hippocam pi-Cho2015-4hr-rep2 72710479 21696274 29.84% 60702086 19602931 32.29% 0.2
mouse-Hippocam pi-Cho2015-4hr-rep3 68806057 23027841 33.47% 60105894 28667564 47.70% 0.085
mouse-Hippocampi-Cho2015-5min-repl 86962503 25955207  29.85% 57225946 33246425 58.10% 0.084
mouse-Hippocam pi-Cho2015-5min-rep2 76613300 24340433  31.77% 62115557 23492391  37.82% 0.219
mouse-Hippocam pi-Cho2015-5min-rep3 82499197 26509424 32.13% 52286387 24643127 47.13% 0.077
mouse-Hippocam pi-Cho2015-control-repl 89250671 27310697 30.60% 57407818 34276751 59.71% 0.077
mouse-Hippocam pi-Cho2015-control-rep2 84226124 28087405 33.35% 68682721 27642831  40.25% 0.215
mouse-Hippocam pi-Cho2015-control-rep3 78929229 26834524  34.00% 62221835 30705396  49.35% 0.094
mouse-Liver-Alvarez2017-control-repl 37544658 14983921 39.91% 21508992 3830928 17.81% 0.054
mouse-Liver-Alvarez2017-control-rep2 21836373 13794543 63.17% 20241198 3107406 15.35% 0.117
mouse-Liver-Eichhorn2014-wt 41427924 12417208 29.97% 40903891 19130139 46.77% 0.168
mouse-Liver-Fradejas2017-secisbp2-wt-repl 58481818 47567139 81.34% 18538329 13752643 74.18% 0.06
mouse-Liver-Fradejas2017-secisbp2-wt-rep2 70260478 50268046 71.55% 23269466 17774081 76.38% 0.299
mouse-Liver-Fradejas2017-trsp-wt-repl 45357002 34404379 75.85% 13928674 10968035 78.74% 0.076
mouse-Liver-Fradejas2017-trsp-wt-rep2 48240351 36338081 75.33% 11533817 7078147 61.37% 0.088
mouse-Liver-Frederic2015-ZT00-A 61463219 46194716 75.16% 39881861 34195972 85.74% 0.046
mouse-Liver-Frederic2015-Z2T00-B 42213367 31209585 73.93% 43229442 37844873 87.54% 0.041
mouse-Liver-Frederic2015-Z2T00-C 58324789 44798969 76.81% 36190320 30479336 84.22% 0.033
mouse-Liver-Frederic2015-Z2T00-D 59970294 46049152 76.79% 45009390 39246747 87.20% 0.078
mouse-Liver-Frederic2015-2T02-A 59844576 45970942 76.82% 39250281 29287966 74.62% 0.058
mouse-Liver-Frederic2015-2T02-8 55928223 43494730 77.77% 40227347 27271002 67.79% 0.099
mouse-Liver-Frederic2015-2T02-C 59515906 46220179 77.66% 41028413 35148119 85.67% 0.048
mouse-Liver-Frederic2015-2T02-D 53866993 41218938 76.52% 36679695 31117317 84.84% 0.039
mouse-Liver-Frederic2015-2T04-A 59594923 45798470 76.85% 41313712 31477055 76.19% 0.095
mouse-Liver-Frederic2015-2T04-B 50506345 38364374 75.96% 35356679 24480446 69.24% 0.063
mouse-Liver-Frederic2015-2T04-C 57252425 43470398 75.93% 41725080 34959894 83.79% 0.064
mouse-Liver-Frederic2015-2T04-D 56999400 43761599 76.78% 30863503 23361131 75.69% 0.111
mouse-Liver-Frederic2015-ZT06-A 59821414 43961477 73.49% 39179136 31735760  81.00% 0.095
mouse-Liver-Frederic2015-Z2T06-B 45754295 32620585 71.30% 43512282 37487683 86.15% 0.062
mouse-Liver-Frederic2015-2T06-C 60171428 45414939 75.48% 33242273 25698867 77.31% 0.088
mouse-Liver-Frederic2015-Z2T06-D 58974501 42779502 72.54% 32071831 23554355 73.44% 0.099
mouse-Liver-Frederic2015-ZT08-A 58647867 44546814 75.96% 39619185 29267358 73.87% 0.058
mouse-Liver-Frederic2015-2T08-8 59903194 44778139 74.75% 36798863 31972355 86.88% 0.047
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mouse-Liver-Frederic2015-ZT08-C 53912120 40215367  74.59% 37556683 31380779  83.56% 0.045
mouse-Liver-Frederic2015-ZT08-D 50594412 37597704 74.31% 32965845 24571731 74.54% 0.166
mouse-Liver-Frederic2015-ZT10-A 60025634 47430382  79.02% 26921799 16154699  60.01% 0.093
mouse-Liver-Frederic2015-ZT10-B 55529276 42145755  75.90% 33183723 25829744  77.84% 0.115
mouse-Liver-Frederic2015-2T10-C 54529232 41861010  76.77% 34384031 27353087  79.55% 0.06
mouse-Liver-Frederic2015-ZT10-D 56513483 40245363  71.21% 41281247 34994695  84.77% 0.063
mouse-Liver-Frederic2015-ZT12-A 55237730 41689510  75.47% 49840117 44213128 88.71% 0.046
mouse-Liver-Frederic2015-ZT12-B 55688206 41154168 73.90% 32448529 25519673 78.65% 0.159
mouse-Liver-Frederic2015-2T12-C 58121704 44747826  76.99% 31482795 23921648  75.98% 0.052
mouse-Liver-Frederic2015-2T12-D 59053115 45838790  77.62% 40932029 35408928  86.51% 0.069
mouse-Liver-Frederic2015-ZT14-A 56463229 44384461  78.61% 59055226 52009455  88.07% 0.068
mouse-Liver-Frederic2015-2T14-B 53422282 41171291  77.07% 30912332 22749841  73.59% 0.065
mouse-Liver-Frederic2015-2T14-C 62323830 47384097  76.03% 40918944 32538658  79.52% 0.06
mouse-Liver-Frederic2015-ZT14-D 58084806 44899768  77.30% 39085568 33401367  85.46% 0.044
mouse-Liver-Frederic2015-ZT16-A 41353484 30972309  74.90% 39034912 29044031  74.41% 0.072
mouse-Liver-Frederic2015-ZT16-B 54506996 41807944  76.70% 34160229 27774246  81.31% 0.082
mouse-Liver-Frederic2015-2T16-C 57241604 43966661  76.81% 41161040 35406805  86.02% 0.052
mouse-Liver-Frederic2015-2T16-D 60331531 43953852  72.85% 32933404 24156727  73.35% 0.038
mouse-Liver-Frederic2015-ZT18-A 41786138 32052623  76.71% 50169938 35723740  71.21% 0.073
mouse-Liver-Frederic2015-ZT18-B 51185766 39490659 77.15% 42434381 37418200 88.18% 0.075
mouse-Liver-Frederic2015-ZT18-C 58914821 45390640  77.04% 35702491 28521102  79.89% 0.114
Liver mouse-Liver-Frederic2015-ZT18-D 49164797 37639770  76.56% 35106576 21073274 60.03% 0.03
mouse-Liver-Frederic2015-ZT20-A 61424054 45079231  73.39% 36416542 30599080  84.03% 0.042
mouse-Liver-Frederic2015-2T20-B 60595356 45727009  75.46% 34056033 29622594  86.98% 0.038
mouse-Liver-Frederic2015-2T20-C 43300737 33681699  77.79% 45426759 36641154  80.66% 0.089
mouse-Liver-Frederic2015-ZT20-D 43124830 32865998 76.21% 52675489 44377211 84.25% 0.094
mouse-Liver-Frederic2015-2T22-A 61355344 48356738  78.81% 41931302 34688743  82.73% 0.084
mouse-Liver-Frederic2015-2T22-B 54540169 40193986  73.70% 40405417 34065090 84.31% 0.062
mouse-Liver-Frederic2015-2T22-C 61292646 47593473  77.65% 47430108 41300385  87.08% 0.06
mouse-Liver-Frederic2015-2T22-D 54357767 39584984  72.82% 43931094 38882714  88.51% 0.064
mouse-Liver-Gao2015-control 39838628 26610950  66.80% 3216308 2115663  65.78% 0.047
mouse-Liver-Howard2013-wt 63513172 33665691  53.01% 53100660 39529814  74.44% 0.235
mouse-Liver-Janich2015-ZT0-repl 40066009 20109991  50.19% 26374605 22343259  84.72% 0.173
mouse-Liver-Janich2015-ZT0-rep2 33034581 17120213  51.83% 28480769 23668038  83.10% 0.144
mouse-Liver-Janich2015-ZT10-repl 37166117 19685517  52.97% 39017872 31724041  81.31% 0.152
mouse-Liver-Janich2015-ZT10-rep2 52434821 31210099  59.52% 55505348 49464297  89.12% 0.117
mouse-Liver-Janich2015-ZT12-repl 33460930 9804374  29.30% 26731927 18633958  69.71% 0.18
mouse-Liver-Janich2015-ZT12-rep2 38172695 12292098  32.20% 28619553 20649016  72.15% 0.146
mouse-Liver-Janich2015-ZT14-repl 35825397 9840591  27.47% 36060159 24394028 67.65% 0.17
mouse-Liver-Janich2015-ZT14-rep2 45538631 13482278  29.61% 26523033 18048726  68.05% 0.158
mouse-Liver-Janich2015-ZT16-repl 35396516 10252899  28.97% 35443540 25395529  71.65% 0.184
mouse-Liver-Janich2015-ZT16-rep2 42037128 11826736  28.13% 43388802 27004249  62.24% 0.187
mouse-Liver-Janich2015-ZT18-repl 86299374 12793653  14.82% 38507184 25294086  65.69% 0.157
mouse-Liver-Janich2015-ZT18-rep2 35876901 6646869  18.53% 31862312 22969489  72.09% 0.155
mouse-Liver-Janich2015-ZT2-repl 42598690 17739420  41.64% 43000318 28190435  65.56% 0.238
mouse-Liver-Janich2015-ZT2-rep2 25950739 10319057  39.76% 22971346 18986684  82.65% 0.191
mouse-Liver-Janich2015-ZT20-repl 71828840 14588942 20.31% 34936315 22463937 64.30% 0.154
mouse-Liver-Janich2015-ZT20-rep2 29445291 9492932  32.24% 26463626 20030154  75.69% 0.187
mouse-Liver-Janich2015-ZT22-repl 34173363 20544569  60.12% 32902738 27817250  84.54% 0.113
mouse-Liver-Janich2015-ZT22-rep2 37395859 24264540  64.89% 26708844 21980535  82.30% 0.11
mouse-Liver-Janich2015-ZT4-repl 44391275 21490299  48.41% 26823442 22185260 82.71% 0.219
mouse-Liver-Janich2015-ZT4-rep2 43488989 17884880  41.13% 51169822 27586940  53.91% 0.211
mouse-Liver-Janich2015-ZT6-repl 53967135 16548232  30.66% 28208501 22443144  79.56% 0.223
mouse-Liver-Janich2015-ZT6-rep2 42780292 21238154  49.64% 28090962 24442046  87.01% 0.139
mouse-Liver-Janich2015-ZT8-repl 47958781 22402688  46.71% 27454799 23359208  85.08% 0.158
mouse-Liver-Janich2015-ZT8-rep2 51511890 26596414  51.63% 34218062 27547193  80.50% 0.154
mouse-MEF-Ga02015-control 31220314 18979484  60.79% 28602028 16707971  58.42% 0.237
mouse-Skin-Blanco2016-wtl 31890403 17409393  54.59% 11278549 4210860 37.34% 0.14
mouse-Skin-Blanco2016-wt2 32580339 20995627  64.44% 6979962 3168705  45.40% 0.225
mouse-Skin-Blanco2016-wt3 29481496 15779595  53.52% 7412554 1867291  25.19% 0.161
Skin mouse-Skin-Sendoel2017-wt-invivo-rep0 39183466 35408652 90.37% 23305836 11309499  48.53% 0.069
mouse-Skin-Sendoel2017-wt-invivo-repl 40175494 36264195  90.26% 15586905 4858355  31.17% 0.078
Testis mouse-Testis-Castaneda2014-wt-a 89242379 66147271  74.12% 15237617 7480401 49.09% 0.11
mouse-Testis-Castaneda2014-wt-b 40924228 28528077 69.71% 8669490 4604910  53.12% 0.139

Notes:
Dist is a metric of the length distribution similarity between reads mapped to IncRNAs and that mapped to CDSs. See
"Methods" in the main text for the details on the Dist.
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112 Supplementary figures and tables

Due to the limited space, the following files are available in figshare.com

Table S3 Ribosome association for human and mouse IncRNAs. (XLSX 1.48 MB)
* https://ndownloader.figshare.com/files/11763305

Table S4 Alignment of mass spectrometry data to human trans-IncRNAs. (TSV 9.83 kb)
* https://ndownloader.figshare.com/files/11763065

Table S5 Alignment of mass spectrometry data to mouse trans-IncRNAs. (TSV 5.97 kb)
* https://ndownloader.figshare.com/files/11763083

Table S6 Fold change values for cellular localization analysis in HeLa cells. (XLSX 154 kb)
* https://ndownloader.figshare.com/files/11763149

Table S7 Fold change values for NMD analysis in HeLa cells. (XLSX 147 kb)
* https://ndownloader.figshare.com/files/11763173

Table S8 Putative ORFs in human IncRNAs. (TSV 7.8 MB)
* https://ndownloader.figshare.com/files/11763101

Table S9 Putative ORFs in mouse IncRNAs. (TSV 5.35 MB)
* https://ndownloader.figshare.com/files/11763116

Table S10 Raw data for human and mouse. (tar.gz 14.68 MB)
* https://figshare.com/s/ftbfcff93bce6339089
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Appendix B

List of abbreviations

* IncRNA, long noncoding RNA;

¢ ribo-IncRNA, ribosome-associated IncRNA;
¢ noribo-IncRNA, ribosome-free IncRNA;

e RAI, ribosomal association index;

* spec, transcript expression tissue-specificity;
* NMD, nonsense-mediated decay;

* lincRNA, long intergenic noncoding RNA;
¢ RRS, ribosome release score;

e TS, translation score;

* OREF, open reading frame;

* CDS, coding sequence;

* RNA-seq, RNA sequencing;
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List of abbreviations

Ribo-seq, ribosome profiling;

RPKM, reads per kilobase per total million mapped reads;
UTR, untranslated region;

FLOSS, fragment length organization similarity score;
snRNA, small nuclear RNA;

snoRNA, small nucleolar RNA;

miRNA, microRNA;

TEC, to be experimentally confirmed

TIS, transcript initiation site;

TTS, transcript termination site;

pORE, putative primary ORF in IncRNA;

fOREF, putative first ORF in IncRNA;

uORF, putative upstream ORF in IncRNA;

mOA, N6-Methyladenosine modification;

G4, G-quadruplex;

LTR, Long terminal repeat;

SINE, Short interspersed nuclear element;

LINE, Long interspersed nuclear element;

HIV, Human Immunodeficiency Virus;
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TE, Transposon element;

TP, number of true positives;

TN, number of true negatives;

FP, number of false positives;

FN, number of false negatives;
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