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Abstract 

Recently, to speed up the differential diagnosis process based on symptoms and 

signs observed from a patient in the diagnosis of rare diseases, phenotype-driven 

differential diagnosis systems have been developed and implemented. The 

performance of those systems relies on the quantity and quality of underlying 

databases of disease–phenotype associations (DPAs). Although such databases are 

often developed by manual curation, they inherently suffer from limited coverage. 

To address this problem, I propose a text mining approach to increase the 

coverage of DPA databases and consequently improve the performance of 

differential diagnosis systems. Our analysis showed that the text mining approach 

using one million case reports obtained from PubMed could increase the coverage of 

manual curated DPAs in Orphanet by 113.2%. I also present PubCaseFinder 

(https://pubcasefinder.dbcls.jp), a new phenotype-driven differential diagnosis 

system in a freely available web application. By utilizing automatically extracted 

DPAs from case reports in addition to manually curated DPAs, PubCaseFinder 

improves the performance of automated differential diagnosis. This approach is 

unique in designing a new phenotype-driven differential diagnosis system, and I 

believe that this approach shows a promising path for improving the performance of 

existing phenotype-driven differential diagnosis systems. 

Moreover, PubCaseFinder helps clinicians search for relevant case reports using 

phenotype-based comparisons. For identifying new diseases and disease causative 

genes, it is necessary to collect multiple unrelated patients and case reports with 

common variants and similar phenotypes, but existing patient repositories and 
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matchmaking services lack methods to consult published case reports. To tackle this 

situation, I have provided API to facilitate searching for such case reports, and 

several patient repositories have employed our API. 

Previous studies reported that case reports were an essential tool for extracting 

valuable information for rare diseases despite low certainty evidence due to its small 

samples. I, therefore, targeted the one million case reports included in PubMed, and 

this is, to our knowledge, the first demonstration that such an extensive collection of 

case reports was useful for tackling rare disease issues by using a text mining 

method. I will extend the collection of case reports to those of European in Europe 

PMC and those of Japanese in J-STAGE and will believe that further case reports 

will contribute more for tackling rare disease issues. 
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Chapter 1 
Introduction 

Undiagnosed patients of rare diseases 

At present over 6,000 rare diseases have been identified, and ~80% of them are 

genetic in origin [1]. Unfortunately, a quarter of rare disease patients waited 5 to 30 

years for a diagnosis, 40% of rare disease patients were misdiagnosed at first [2]. 

Such patients will likely lose opportunities such as optimization of clinical 

management and early intervention [3]. To tackle this situation, next-generation 

sequencing (NGS)-based analysis is being undertaken to identify candidate diseases 

for undiagnosed patients [4,5]. For example, the Japan Agency for Medical Research 

and Development (AMED) launched the Initiative on Rare and Undiagnosed 

Diseases (IRUD) in 2015 (Fig. 1.1), which conducted clinical whole-exome 

sequencing (CES) and clinical whole-genome sequencing (CGS) for undiagnosed 

patients on a nationwide scale [6]. IRUD have already analyzed more than 6,000 

CES, and up to 40% of patients have been diagnosed. Figure 1.2 shows the process 

of interpreting the results of CES. At first, clinicians observe symptoms and signs in 

an undiagnosed patient, which are collectively called “phenotypes.” Second, more 

than tens of thousands of variants are identified by CES analysis. Third, the large 

number of variants such as synonymous ones, non-splice ones, high conserved 

ones, and common ones are filtered, and several genes which include the candidate 

variants are identified. Finally, the corresponding diseases are identified using 

disease-gene association databases such as Orphanet and OMIM. As a differential 
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diagnosis process, the set of phenotypes of the patient are compared for those of 

diseases, and then only diseases having highly phenotypic similarity remain as 

candidate diseases. 

 

 

 
 
Figure 1.1: Process of the IRUD operation 
There are three major functional units; 1) IRUD Diagnosis Committees, 2) IRUD 

Data Center, 3) IRUD Analysis Centers. These interact well with each other and are 

operated by principal research groups [6]. 

 

  

Adachi, T., Kawamura, K., Furusawa, Y., Nishizaki, Y., Imanishi, N., Umehara, S., Izumi, K., and Suematsu, M. (2017). Japan’s 

initiative on rare and undiagnosed diseases (IRUD): Towards an end to the diagnostic odyssey. Eur. J. Hum. Genet. 25, 1025–1028. 

CC-BY-SA 4.0 
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Figure 1.2: The process of interpreting the results of CES 

Clinicians observe symptoms and signs in an undiagnosed patient (step 1), and 

more than tens of thousands of variants are identified by CES analysis (step 2). A 

large number of variants are filtered, and several genes which include the candidate 

variants are identified (step 3). The corresponding diseases are identified using 

disease-gene association databases such as Orphanet and OMIM. As the differential 

diagnosis process, the set of phenotypes of the patient are compared for those of 

diseases, and then only diseases with highly phenotypic similarity remain as 

candidate diseases (step 4). 

  

image(s) @ © 2016 DBCLS TogoTV / CC-BY-4.0 
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Phenotype-driven differential diagnosis system 

Even though the NGS-based analysis improves diagnostic rates [7,8], the 

differential diagnosis process (Fig. 1.2) is time-consuming [9]. At first, clinicians 

collect reported phenotypes from trusted medical sources (e.g., databases, 

textbooks, and papers) for each candidate disease and then check which diseases 

overlap regarding phenotype with the patient's phenotypes [10]. Recently, to speed 

up the process, phenotype-driven differential diagnosis systems such as Phenomizer 

[9], Phenolyzer [11], and FACE2GENE [12] have been implemented [13]. 

Phenomizer and Phenolyzer employ a semantic similarity computation method to 

compare the patient's phenotypes against a set of rare diseases associated with 

phenotypes. These systems use the Human Phenotype Ontology (HPO) for 

describing detailed and precise phenotypic abnormalities of a patient and rare 

diseases [13]. HPO has been curated by domain experts to provide a 

comprehensive vocabulary for describing phenotypic abnormalities that are widely 

seen in human genetic diseases. HPO is open source and consist of more than 

12,000 classes which have hierarchical relationships (Fig. 1.3). More general terms 

are at the top, and more specific terms are below in the hierarchical relationships. 

Between each node and its parents has an “is-a” relationship (e.g., both “Abnormality 

of globe size” and “Aplasia/Hypoplasia affecting the eye” are a subtype of 

“Abnormality of the globe,” and “Microphthalmia” is a subtype of them). This 

semantic structure enables us to compute semantic similarity between phenotypic 

terms. Currently, Diverse groups such as international organizations for rare 

diseases, patient registries, biomedical resources, biomedical systems, and 

biomedical databases have employed HPO as a standard vocabulary for presenting 
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phenotypic abnormalities (Table. 1.1) [13]. This situation allows for the better 

interoperability of these groups through phenotypic terms of HPO. 

 

 

 

Figure 1.3: The structure of a part of the Human Phenotype Ontology 
More general terms are at the top, and more specific terms are below in the 

hierarchical relationships. Between each node and its parents has an “is-a” 

relationship [13]. 
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Table 1.1: Systems and Databases using HPO 

These were reported in “Köhler, S., Vasilevsky, N.A., Engelstad, M., Foster, E., 
McMurry, J., Aymé, S., Baynam, G., Bello, S.M., Boerkoel, C.F., Boycott, K.M., et al. 

(2017). The Human Phenotype Ontology in 2017. Nucleic Acids Res. 45, D865–
D876” [13]. 

Category System / Database Reference 

Phenotype-driven differential diagnosis 

Phenomizer 

Phenomizer  [9] 

BOQA [14] 

FACE2GENE [12] 

Phenolyzer [11] 

Phenotype-driven exome/genome 

analysis 

Exomiser  [15] 

PhenIX [16] 

Phevor [17] 

PhenoVar [18] 

eXtasy [19] 

OMIMExplorer [20] 

Phen-Gen [21] 

Geno2MP [22] 

Genomiser [23] 

SimReg [24] 

Functional and network analysis TopGene/ToppFunn [25] 

WebGestalt [26] 

SUPERFAMILY [27] 

GREAT [28] 

Random walk on heterogeneous network [29] 

PANDA [30] 

PREDICT [31] 

Clinical data management and analysis Phenotips [32] 

Patient Archive [33] 
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GENESIS (GEM.app) [34] 

Cross-species phenotype analysis PhenoDigm  [35] 

MouseFinder [36] 

Monarch [37] 

PhenomeNet [38] 

UberPheno [39] 

MORPHIN [40] 

PhenogramViz [41] 

Phenotype knowledge resources and 

databases 

Orphanet  [42] 

MalaCards [43] 

NIH genetic testing registry [44] 

OMIM [45] 

dcGO [46] 

ClinVar [47] 

GeneSetDB [48] 

MSeqDR [49] 

DIDA (digenic diseases database) [50] 

Genetic and Rare Diseases (GARD) 

Information Center 

[51] 

Visualization PhenoStacks  [52] 

PhenoBlocks [53] 

DECIPHER (phenogram) [54] 

phenogrid [55] 
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FACE2GENE detects a patient's phenotypes from a face image and calculates a 

similarity score for hundreds of genetic diseases using a deep learning method (Fig. 

1.4). It trained with over 26,000 patient cases form a rapidly growing phenotype-

genotype database. Currently, FACE2GENE achieves 91% top-10-accuracy in 

identifying over 215 different genetic diseases and has outperformed clinical experts 

in their experiments using a large evaluation data set of patients’ photos.  

These phenotype-driven differential diagnosis systems provide a ranked list of 

diseases based on the similarity score, and the top-listed diseases represent the 

most likely differential diagnosis (Fig. 1.5). 

 

 
Figure 1.4: High-level flow from the input image to the output syndromes 

At first, the input image is pre-processed to achieve a face detection, landmarks 

detection, and alignment. Second, the input image is cropped into facial regions. 

Third, each region outputs regional score based on phenotypic similarity with 

syndromes. Finally, FACE2GENE output syndromes, sorted by the aggregated 

similarity score of each regional phenotypic score [12]. 

  

[https://commons.wikimedia.org/wiki/

File:Creative-Tail-People-man-2.svg 

by Wikimedia Commons, CC BY 2.0] 
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Figure 1.5: Output image of Phenomizer in top-listed diseases [9] 

Phenomizer reports the most likely differential diagnosis and provides p-value of 

each disease to consider that will result in specific diagnoses becoming significant. 
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Disease-phenotype associations 

The quantity and quality of underlying databases of disease–phenotype 

associations (DPAs) greatly influence the performance of these systems. There are 

two representative sources of DPAs: Orphanet [56] and the Human Phenotype 

Ontology (HPO) consortium [13]. Orphanet provides DPAs for the rare diseases that 

are defined in ORDO, and the HPO consortium mainly provides DPAs for the genetic 

diseases that are defined in OMIM. For example, Orphanet delivers the 27 

phenotypes associated with Fragile X syndrome (Fig. 1.6). Each phenotype is 

annotated with the frequency of occurrence in patients of Fragile X syndrome using 

Obligate (100%), Very frequently (99-80%), Frequent (79-30%), Occasional (29-5%), 

Very rare (4-1%), and Excluded (0%). 

Note that databases which rely on manual curation inherently show a limited 

coverage [57]. In the case of Orphanet, more than half of the diseases (~60.5% of 

6,268) are not associated with a phenotype. There are two main reasons for this 

limited coverage. First, the development of databases is based on the curation of 

papers by human experts, which is time-consuming and labor-intensive because of 

the large volume and rapid growth of life sciences papers [58]. Second, there are still 

many unknown phenotypes in rare diseases because phenotypic spectrums for 

many rare diseases are still under investigation [59]. For example, Elisabet et al. [60] 

quantified many atypical phenotypes of inherited kidney diseases caused by various 

genetic, epigenetic, and environmental factors (Fig. 1.7). Sawyer et al. [2] diagnosed 

105 undiagnosed rare disease patients using whole-exome sequencing and showed 

that 26 patients presented atypical phenotypes of a known disease. With the rapid 
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adaptation of NGS-based diagnostics in clinical settings, phenotypic expansions of 

disease spectrums will become increasingly common [3,60]. 

 

Figure 1.6: The phenotypes associated with Fragile X syndrome, which are 

provided by Orphanet 
Each phenotype is annotated with the frequency of occurrence in patients of Fragile 

X syndrome. 
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Figure 1.7: Possible explanations for phenotypic variability in inherited kidney 
diseases [60] 

 

Problems need to be solved 

To improve the performance of phenotype-driven differential diagnosis systems, 

the limited coverage problem of DPA databases needs to be overcome, which is an 

important problem for diagnosis of rare disease. In this study, to address the 

problem, I empirically explore one question in a large scale: Can automatically 

extracted DPAs from case reports contribute to improving the performance of 

phenotype-driven differential diagnosis systems for rare diseases?  

First, I extract DPAs from case reports in PubMed using a text mining approach 

and compare those with DPAs from Orphanet. I focus on case reports as these are 

an essential tool for quickly expanding the growing body of clinical knowledge on 

rare diseases [61], and case reports often deal with previously undescribed and 



   
 

   
 

18 

atypical phenotypes [62]. For example, cencerning cerebrotendinous xanthomatosis, 

Taboada et al. [57] automatically extracted DPAs from case reports in PubMed and 

obtained 11 new DPAs that did not appear in manually curated DPAs. In addition, 

the total number of those case reports have been more than one million, and the 

number of PubMed-indexed case reports in each year has increased from 1980 (Fig. 

1.8). This massive volume and rapid growth of case reports provide the possibilities 

to extract various DPAs. On the other hand, Orphanet also provides detailed 

descriptions of the rare diseases as unstructured data. As with case reports, these 

include diverse phenotypes for each rare disease, which are not included in the DPA 

database from Orphanet. However, these descriptions are not disclosed with an 

open license; it is not suitable for a text mining resource for extracting DPAs. Simple 

disease descriptions are disclosed with an free license, but these do not include 

diverse phenotypes for each rare disease. 

Second, I develop a new phenotype-driven differential diagnosis system 

PubCaseFinder and demonstrate that automatically extracted DPAs without manual 

screening can contribute to improving the performance of automated differential 

diagnosis. 

To the best of our knowledge, this is the first report on the potential of 

automatically extracted DPAs from one million case reports for improving the 

performance of phenotype-driven differential diagnosis systems for rare diseases. 

While existing phenotype-driven differential diagnosis systems use only curated 

DPAs retrieved from Orphanet and OMIM, I apply automatically extracted DPAs with 

curated DPAs to our system. Our approach is unique in designing a new phenotype-

driven differential diagnosis system, and I believe that our approach shows a 
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promising path for improving the performance of existing phenotype-driven 

differential diagnosis systems. 

 

 

 

 

Figure 1.8: Distribution of the number of case reports published per year in 

PubMed from 1980 to 2017 
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Chapter 2 
Material and Methods 

Collecting case reports 

I used PubMed E-utilities to obtain an extensive collection of case reports [63]. To 

find an valid search query, our strategy was to use the publication type tag “Case 

Reports” that was manually tagged by human experts. A previous study has shown 

that PubMed includes many case reports that are not explicitly tagged as such [64]. I 

also chose to consider a paper as a case report if its title included “case report” or 

“case reports.” I used the following query to collect case reports and record titles and 

abstracts: “case reports” [Publication Type] OR “case reports” [ti] OR “case report” 

[ti]. I found that 1,895,021 PubMed entries were initially collected as case reports, 

among which only 1,083,283 had both titles and abstracts (as of July 20, 2017). 

Table 2.1 lists the top 20 journals (out of 7,649 containing case reports) ranked 

according to the number of case reports published.  

Gagnier et al. [64] report the guidelines for writing case reports. According to the 

guidelines, titles should include the phenomenon of most significant interest (e.g., 

symptom, diagnosis, test, intervention). Moreover, abstracts should include case 

presentation such as the main symptoms of the patient, the primary clinical findings, 

the main diagnoses and interventions, and the leading outcomes. Thus, it is 

promising that I can extract the main and diverse DPAs from titles and abstracts of 

case reports.  
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Table 2.1: Top 20 journals ranked according to the number of case reports 
published 

Journal title Country of 

publication 

Number of 

papers 

BMJ case reports England 9782 

The Annals of thoracic surgery Netherlands 6902 

Internal medicine (Tokyo, Japan) Japan 5697 

Gan to kagaku ryoho. Cancer & chemotherapy Japan 5618 

Southern medical journal United States 5144 

Journal of pediatric surgery United States 4776 

Clinical nuclear medicine United States 4479 

Journal of neurosurgery United States 4325 

Chest United States 4295 

American journal of medical genetics United States 4290 

Urology United States 4273 

The Japanese journal of thoracic surgery Japan 4116 

Cancer United States 4092 

The Journal of laryngology and otology England 4078 

Neurosurgery United States 4064 

The Journal of urology United States 3958 

Neurology United States 3880 

Hinyokika kiyo. Acta urologica Japonica Japan 3851 

Journal of medical case reports England 3845 

Nederlands tijdschrift voor geneeskunde Netherlands 3845 
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Identifying disease–phenotype associations 

I extracted DPAs from our collection of case reports using a text mining approach 

(Fig. 2.1). At first, I annotated titles and abstracts of case reports with HPO terms 

and Orphanet Rare Disease Ontology (ORDO) terms using ConceptMapper [65] with 

HPO and ORDO. HPO, initially published in 2008, is a standardized vocabulary for 

describing phenotypic abnormalities [12]. ORDO, constructed by Orphanet and EBI, 

provides a standardized vocabulary for rare diseases extracted from papers and 

validated by international experts [13]. I downloaded the HPO file (releases/2017-06-

30) supplied by the HPO consortium and the ORDO file (version 2.3) provided by 

Orphanet. HPO contains a set of 12,786 terms that were integrated with 9,473 

textual definitions and 16,320 synonyms, and 16,443 is-a relationships were 

established between HPO terms. In this study, I use only the term HP:0000118 

(Phenotypic abnormality) and all its descendants, whose total number is 12,485. 

Other terms such as “Mode of inheritance” and “Frequency” do not present signs and 

symptoms of patients. Table 2.2 shows all descendant HPO terms of the term 

HP:0000118 with the label, the disease definition, and the number of all its 

descendants. 
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Figure 2.1. Process of identifying disease–phenotype associations (DPAs) 

from case reports 

The set of titles and abstracts of case reports were annotated with HPO terms and 

ORDO terms using ConceptMapper with HPO and ORDO (step 1), and annotations 

with inappropriate synonyms were excluded using the Allie database (step 2). DPAs 

were identified in processed annotations (step 3). 
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Table 2.2: All descendant HPO terms of the term HP:0000118 as phenotypes 
ID Term (Label) Definition # of all 

descendant 
terms 

HP:0000119 Abnormality of the 
genitourinary system 

The presence of any abnormality of 
the genitourinary system. 

814 

HP:0000152 Abnormality of head or 
neck 

An abnormality of head and neck. 1263 

HP:0000478 Abnormality of the eye Any abnormality of the eye, including 
location, spacing, and intraocular 
abnormalities. 

904 

HP:0000598 Abnormality of the ear An abnormality of the ear. 281 
HP:0000707 Abnormality of the 

nervous system 
An abnormality of the nervous 
system. 

1638 

HP:0000769 Abnormality of the 
breast 

An abnormality of the breast. 30 

HP:0000818 Abnormality of the 
endocrine system 

Ab abnormality of the endocrine 
system. 

375 

HP:0000924 Abnormality of the 
skeletal system 

An abnormality of the skeletal 
system. 

3591 

HP:0001197 Abnormality of prenatal 
development or birth 

An abnormality of the fetus or the 
birth of the fetus, excluding structural 
abnormalities. 

132 

HP:0001507 Growth abnormality Growth abnormality. 84 
HP:0001574 Abnormality of the 

integument 
An abnormality of the integument, 
which consists of the skin and the 
superficial fascia. 

836 

HP:0001608 Abnormality of the voice Abnormality of the voice. 17 
HP:0001626 Abnormality of the 

cardiovascular system 
Any abnormality of the cardiovascular 
system. 

914 

HP:0001871 Abnormality of blood 
and blood-forming 
tissues 

An abnormality of the hematopoietic 
system. 

544 

HP:0001939 Abnormality of 
metabolism/homeostasis 

Abnormality of 
metabolism/homeostasis. 

861 

HP:0002086 Abnormality of the 
respiratory system 

An abnormality of the respiratory 
system, which include the airways, 
lungs, and the respiratory muscles. 

357 

HP:0002664 Neoplasm An organ or organ-system 
abnormality that consists of 
uncontrolled autonomous cell-
proliferation which can occur in any 
part of the body as a benign or 
malignant neoplasm (tumour). 

541 

HP:0002715 Abnormality of the 
immune system 

An abnormality of the immune system 559 
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HP:0003011 Abnormality of the 
musculature 

Abnormality originating in one or 
more muscles, i.e., of the set of 
muscles of body. 

578 

HP:0003549 Abnormality of 
connective tissue 

Any abnormality of the soft tissues, 
including both connective tissue 
(tendons, ligaments, fascia, fibrous 
tissues, and fat). 

201 

HP:0025031 Abnormality of the 
digestive system 

Abnormality of the digestive system. 559 

HP:0025142 Constitutional symptom A symptom or manifestation 
indicating a systemic or general 
effect of a disease and that may 
affect the general well-being or status 
of an individual. 

63 

HP:0025354 Abnormal cellular 
phenotype 

An anomaly of cellular morphology or 
physiology. 

4 

HP:0040064 Abnormality of limbs Abnormality of limbs. 2727 
HP:0045027 Abnormality of the 

thoracic cavity 
Abnormality of the thoracic cavity. 3 

HP:0500014 Abnormal test result Abnormal finding in a diagnostic test 
or assay. 

36 
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ORDO contains a set of 13,321 terms integrated with 3,737 textual definitions and 

20,542 synonyms and 15,973 is-a relationships and provides connections with other 

resources (e.g., OMIM and ICD10). In this study, I used 6,268 ORDO terms that are 

descendent terms of ORDO: 377788 (disease), ORDO: 377789 (malformation 

syndrome), ORDO: 377790 (biological anomaly), ORDO: 377791 (morphological 

anomaly), ORDO: 377792 (clinical syndrome), and ORDO: 377793 (particular clinical 

situation in a disease or syndrome) as rare diseases (Table 2.3). 

For annotation, I used a dictionary-based system for recognizing concepts in the 

text. Christopher et al. [66] evaluated MetaMap [67], NCBO Annotator, and 

ConceptMapper on eight biomedical ontologies (Cell Type Ontology, Gene Ontology: 

Cellular Component, Gene Ontology: Molecular Function, Gene Ontology: Biological 

Process, Sequence Ontology, ChEBI, NCBI Taxonomy, Protein Ontology) using the 

Colorado Richly Annotated Full-Text Corpus (CRAFT). They examined over 1,000 

combinations of parameters and concluded that ConceptMapper was the best-

performing system, producing the highest F-measure for seven out of eight 

ontologies (Table. 2.4).  
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Table 2.3: Using all descendant ORDO terms of these terms as rare diseases 
ID Term (Label) Definition # of all 

descendant 
terms 

ORDO: 
377788 

disease An alteration of health status 
resulting from a physiopathological 
mechanism and having a 
homogeneous clinical presentation 
and evolution and homogeneous 
therapeutic possibilities. Excludes 
developmental anomalies. 

3770 

ORDO: 
377789 

malformation syndrome A set of morphological anomalies 
resulting from a developmental 
anomaly involving more than one 
morphogenetic field regardless of the 
cause.  Includes sequences and 
associations. 

1702 

ORDO: 
377790 

biological anomaly An alteration of the normal values of 
biological products. Example :  
hypertransferrinemia. 

7 

ORDO: 
377791 

morphological anomaly A set of anomalies resulting from a 
developmental anomaly involving 
only one morphogenetic field. 
Includes isolated anomalies and 
anatomical variants. 

387 

ORDO: 
377792 

clinical syndrome A set of manifestations resulting from 
the alteration of a physiological state 
and that can be present in several 
diseases. Examples:  nephrotic 
syndrome, hepatic failure. 

32 

ORDO: 
377793 

particular clinical 
situation in a disease or 
syndrome 

A set of manifestations presenting as 
a subset of a disorder under 
particular circumstances. 

30 
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Table 2.4: Best performance for eight ontologies 

These results were reported in “Funk, C., Jr, W.B., Garcia, B., Roeder, C., Bada, M., 

Cohen, K.B., Hunter, L.E., and Verspoor, K. (2014). Large-scale biomedical concept 
recognition: an evaluation of current automatic annotators and their parameters. 

BMC Bioinformatics 15, 59” [66]. Bolded systems produced the highest F-measure. 
Cell Type Ontology (CL) 

System F-measure Precision Recall 

NCBO Annotator 0.32 0.76 0.20 

MetaMap 0.69 0.61 0.80 

ConceptMapper 0.83 0.88 0.78 

Gene Ontology – Cellular Component (GO_CC) 

System F-measure Precision Recall 

NCBO Annotator 0.40 0.75 0.27 

MetaMap 0.70 0.67 0.73 

ConceptMapper 0.77 0.92 0.66 

Gene Ontology – Molecular Function (GO_MF) 

System F-measure Precision Recall 

NCBO Annotator 0.08 0.47 0.15 

MetaMap 0.09 0.09 0.34 

ConceptMapper 0.14 0.44 0.29 

Gene Ontology – Biological Process (GO_BP) 

System F-measure Precision Recall 

NCBO Annotator 0.25 0.70 0.15 

MetaMap 0.42 0.53 0.34 

ConceptMapper 0.36 0.46 0.29 

Sequence Ontology (SO) 

System F-measure Precision Recall 

NCBO Annotator 0.44 0.63 0.33 
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MetaMap 0.50 0.47 0.54 

ConceptMapper 0.56 0.56 0.57 

ChEBI 

System F-measure Precision Recall 

NCBO Annotator 0.56 0.7 0.46 

MetaMap 0.42 0.36 0.50 

ConceptMapper 0.56 0.55 0.56 

NCBI Taxonomy 

System F-measure Precision Recall 

NCBO Annotator 0.04 0.16 0.02 

MetaMap 0.45 0.31 0.88 

ConceptMapper 0.69 0.61 0.79 

Protein Ontology (PRO) 

System F-measure Precision Recall 

NCBO Annotator 0.50 0.49 0.51 

MetaMap 0.36 0.39 0.34 

ConceptMapper 0.57 0.57 0.57 
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Besides, I evaluated MetaMap [67], NCBO Annotator, and ConceptMapper on HPO 

using HPO gold standard [13]. Although ConceptMapper produced lower F-measure 

than MetaMap (Table. 2.5), ConceptMapper was ~50 times faster than MetaMap and 

NCBO Annotator (Table. 2.6). Considering these results, I decided to use 

ConceptMapper for annotating published case reports. To conduct ConceptMapper 

with HPO and ORDO, I used ccp nlp-pipelines with default parameter sets [66]. 

 
Table 2.5: Best performance for HPO 
Bolded system produced the highest F-measure. 

System F-measure Precision Recall 

NCBO Annotator 0.51 0.54 0.47 

MetaMap 0.56 0.51 0.61 

ConceptMapper 0.52 0.52 0.51 

 

Table 2.6: Best performance for HPO gold standard 

Bolded system produced the fastest processing time to annotate 228 abstracts of 

HPO gold standard. 
System Processing time (sec) 

NCBO Annotator 206.0 

MetaMap 351.0 

ConceptMapper 4.3 
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Many synonyms are present in HPO and ORDO, and some of them are 

abbreviations of labels. A previous study reported that 81.2% of abbreviations are 

ambiguous and have an average of 16.6 meanings [68]. Thus, there are instances 

where case reports annotated with synonyms that are abbreviations do not include 

their labels. For example, the label of ORDO: 103918 is “tropical pancreatitis,” and 

its synonym is “TCP.” A case report with PubMed ID 24472742 includes “TCP,” but it 

does not include “tropical pancreatitis” and instead includes “thrombocytopenia.” To 

exclude inappropriate annotations, I used the Allie database that deposits 

abbreviations generated by all titles and abstracts in PubMed (Table. 2.7). 

Annotations including synonyms were excluded if a case report did not include both 

the synonym and its label in the text. 

 
Table 2.7: Examples of Allie’s outputs 

Abbreviation Long form 

SPF Specific pathogen-free 

S-phase fraction 

Sun protection factor 

MAP Mean arterial pressure 

Mitogen-activated protein 

Mean arterial blood pressure 

Microtubule-associated protein 

BAC Bacterial artificial chromosome 

Blood alcohol concentration 

Bronchioloalveolar carcinoma 

Benzalkonium chloride 
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Finally, using the processed annotations, I identified DPAs in all titles and 

abstracts of published case reports. Various approaches have been proposed to 

extract relations such as protein-protein interactions and disease-gene associations 

from biomedical text. I used the most straightforward approach to identify DPAs that 

are co-occurrences of an ORDO term and an HPO term within a sentence using the 

processed annotations [69]. Owing to the intrinsic complexity of the biomedical text, 

most of the cases using this approach work on the sentence-based level. Note that, 

this approach tends to be with high recall but be with low precision. I chose this 

approach due to acquiring diverse DPAs. 

 

Development of PubCaseFinder 

I developed PubCaseFinder, a new phenotype-driven differential diagnosis system 

using the DPAs extracted from the one million of case reports. PubCaseFinder is 

based on a DPA database where phenotypes are associated with diseases defined 

in Orphanet. Some of the DPAs are from Orphanet, whereas some originate from 

text mining results. The goal of the system was to help clinicians rank candidate 

diseases for a patient who is suspected to be a case of a rare disease. 

PubCaseFinder takes as input a set of HPO terms that describe the signs and 

symptoms of the patient. The case representation is then compared to diseases in 

the database. Note that each disease in the database is also represented by a set of 

HPO terms. Thus, the comparison is performed as a similarity computation between 

two sets of HPO terms. As a result, PubCaseFinder outputs a ranked list of 

candidate diseases according to the similarity score. 
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To calculate semantic similarity between two sets of HPO terms, several 

measures such as Resnik [70], Lin [71], Jiang-Conrath [72], simGIC [73], and 

GeneYenta [74] have been recommended (Table. 2.8). These measures are used 

for patient diagnosis [6], enrichment analysis of gene sets and disease sets [75,76], 

discovering causative genes of rare diseases [74], and other applications. Resnik, 

Lin, and Jiang-Conrath define semantic similarity between two HPO terms as the 

information content (IC) of the most informative common ancestor. simGIC is defined 

as the sum of IC of HPO terms shared by two sets of HPO terms, divided by the sum 

of IC of those HPO terms. 

 

Table 2.8: Measures to calculate semantic similarity between two sets of HPO 

terms 

The measures of Resnik, Lin, and Jiang-Conrath are used for comparing two HPO 

terms (a, b) using each equation. There are two variations in measuring the similarity 

between two sets of HPO terms (P, Q). The Avg is the average score, and the Max 

is the highest score in the scores for HPO terms in P. On the other hand, the 

measure of simGIC directly measures the similarity between two sets of HPO terms. 

gP is the set of HPO terms in P and all ancestral HPO terms of them. 
Measure Equation Variations Reference 

Resnik(a,b) max
$∈&'∩&)

𝐼𝐶(𝑡) Avg, Max [70] 

Lin(a,b) 2 ∗ 𝑅𝑒𝑠𝑛𝑖𝑘(𝑎, 𝑏)
𝐼𝐶(𝑎) + 𝐼𝐶(𝑏)  Avg, Max [71] 

Jiang-Conrath(a,b) 1
𝐼𝐶(𝑎) + 𝐼𝐶(𝑏) − 2 ∗ 𝑅𝑒𝑠𝑛𝑖𝑘(𝑎, 𝑏) + 1 Avg, Max [72] 

simGIC(P,Q) ∑ 𝐼𝐶(𝑡)$∈&>∩&?

∑ 𝐼𝐶(𝑡)$∈&>∪&?
 

 [73] 
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PubCaseFinder uses GeneYenta (based on Resnik's measure) and constitutes a 

user-weighted matching algorithm that empowers researchers to leverage their 

expertise and knowledge to customize results. In clinical practice, a specific 

phenotype may be extremely prominent or severe; thus, this algorithm allows users 

to set a matching weight for each phenotype [77]. The Gene Yenta algorithm 

represents the similarity ranging from 0% for no phenotypic overlap to 100% for 

complete phenotypic overlap. The algorithm starts with determining the information 

content (ICt) of each HPO term t. P(t) is the probability of occurrence of an HPO term 

t in a set of case reports, and the ICt of the HPO term t is defined as follows: 

𝑃(𝑡) =
|𝑎𝑛𝑛𝑜𝑡$|
|𝑎𝑛𝑛𝑜𝑡EFF|

, 

𝐼𝐶$ = − log𝑃(𝑡), 

where annotall is the total number of annotations of all HPO terms in case reports 

and annott is the total number of annotations of the HPO term t and all its 

descendants in case reports. That is, for the root node, P(t) is 1 and ICt is 0. There is 

an inverse relation between IC and the total number of annotations of an HPO term t. 

ICt of the most informative common ancestor of the two HPO terms was assigned as 

the similarity simterms between two HPO terms. This is defined as follows: 

𝑠𝑖𝑚$KLMN(𝑡, 𝑡O) = 𝑚𝑎𝑥EQ∈RQ∩RQS 	𝐼𝐶EQ , 

where At is the HPO term t and all ancestral HPO terms of t, and at is the HPO term 

of a intersection of At and At’. The similarity simcase_disease between a case and a 

disease assesses the resemblance between their sets of HPO terms and is defined 

as follows: 

𝑠𝑖𝑚UENK_WXNKENK(𝑐, 𝑑) =
∑ 𝑅$ × 𝑚𝑎𝑥$S∈\]𝑠𝑖𝑚$KLMN(𝑡, 𝑡O)$∈\̂

∑ 𝑅$ × 𝐼𝐶$$∈\̂
, 
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where Rt allows users to assign weights ranging from 1 to 5 that represent how 

important a term t is for the user. For this evaluation, I assigned 1 to Rt for any HPO 

terms, where c represents a case, and d represents a disease. Tc and Td represent 

HPO terms for a case and disease, respectively. PubCaseFinder provides a ranked 

list of diseases according to simcase_disease, but the disease with the fewest Td 

becomes highest ranking in the case of diseases with the same simcase_disease. 
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Chapter 3 
Results 

Identifying disease–phenotype associations from 

case reports 

I annotated titles and abstracts of 1,083,283 case reports with HPO terms and 

ORDO terms and identified DPAs that are co-occurrences of an ORDO term and an 

HPO term within a sentence. As a result, 810,705 case reports were annotated with 

6,380 HPO terms and 316,674 case reports were annotated with 3,788 ORDO 

terms. Using these annotations, I identified 70,011 DPAs consisting of 3,881 HPO 

terms and 3,072 ORDO terms. I also obtained 51,590 DPAs composed of 4,832 

HPO terms and 2,478 ORDO terms from Orphanet. Figure 3.1 shows the overlap 

between the two sets of ORDO terms included in DPAs from case reports and 

Orphanet. I found that 1,483 ORDO terms were common to the two data sources 

and 1,589 ORDO terms included in DPAs from case reports were not found in DPAs 

from Orphanet. 

Within the overlapping 1,483 ORDO terms, I compared 40,512 DPAs from case 

reports with 35,172 DPAs from Orphanet. I regarded ORDO terms as the same if 

their related HPO terms were located in the same, superordinate, or subordinate part 

of the ontology hierarchy. As a result, 11,593 DPAs were in common, and 28,919 

new DPAs were added to 1,483 rare diseases included in DPAs from Orphanet. I 

also identified 29,499 DPAs for 1,589 rare diseases that are not associated with a 



   
 

   
 

37 

phenotype in Orphanet. In total, our text mining approach could identify 58,418 new 

DPAs and increase the coverage of DPAs in Orphanet by 113.2%. 

 

 

 

 

Figure 3.1: Overlap between two sets of ORDO terms found in disease–

phenotype associations (DPAs) from Orphanet and case reports 
  

DPAs from Orphanet:
2,478 ORDO terms

DPAs from case reports:
3,072 ORDO terms

1,483
ORDO terms
in common

1,589
ORDO terms

995
ORDO terms
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An overview of PubCaseFinder 

I implemented the algorithms described above in a web application called 

PubCaseFinder. By typing a patient's phenotype in the search box, candidate HPO 

terms are displayed (Fig. 3.2). This enables rapid entry of HPO terms because users 

select appropriate HPO terms from the list. Moreover, users can obtain detailed 

information about HPO terms such as definition, synonyms, superordinate concepts, 

and subordinate concepts (Fig. 3.3). The patient is then compared with all rare 

diseases in Orphanet based on phenotypic similarity, and Figure 3.4 shows the 

ranked list of rare diseases. Users can also narrow down the ranked list of rare 

diseases to specify the causative genes of rare diseases. The higher the phenotypic 

similarity, the higher the displayed probability as a candidate disease. In addition to 

comparing a patient's phenotypes with rare diseases, users can compare a patient's 

phenotypes against published case reports that are associated with their HPO terms 

in the same manner (Fig. 3.5). By the ranked lists of rare diseases and case reports, 

clinicians can discuss differential diagnoses for undiagnosed patients with suspected 

rare diseases. To confirm detailed contextual information on the presence of DPAs, 

PubCaseFinder shows the context in which a DPA appears (Fig. 3.6). To keep up 

with new DPAs that are continuously introduced in case reports, PubCaseFinder is 

equipped with an automatic update system. 
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Figure 3.2: Textbox having autocompleted feature for helping user’s rapid 
entry of HPO terms 
 

 

Figure 3.3: Presenting detailed information about HPO terms such as 
definition, synonyms, superordinate concepts, and subordinate concepts to 
facilitate the inputting of HPO terms 
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Figure 3.4: Providing a ranked list of rare diseases defined in Orphanet based 
on phenotypic similarity for supporting differential diagnosis of rare diseases 
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Figure 3.5: Providing a ranked list of published case reports in PubMed based 
on phenotypic similarity for supporting differential diagnosis of rare diseases 

 

 

Figure 3.6: Providing detailed contextual information on the presence of 
disease-phenotype associations 

 

To identify new causative genes and new diseases for rare diseases, the 

comparison of the exomes or genomes of unrelated patients and case reports with 

similar phenotypes is a promising method, but it is a nontrivial task. Such patients 

will likely be seen by different clinicians at different hospitals and different countries, 

and the clinician will often be unaware of other cases. Currently, to find such patients 

on a worldwide scale, many patient repositories and matchmaking services have 

been implemented all over the world. These repositories and services made possible 

to find such patients. However, those lack methods to consult published case 

reports. So, I integrated PubCaseFinder with available patient repositories and 

matchmaking services, namely, IRUD (Initiative on Rare and Undiagnosed 
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Diseases) Exchange [6]/Patient Archive [33] and PhenomeCentral [79] in 

BioHackathon2017. IRUD is actively engaged in the diagnosis of patients with 

suspected rare diseases in Japan, and IRUD Exchange is a customized system of 

the Patient Archive platform for IRUD. PhenomeCentral is a portal for phenotypic 

and genotypic matchmaking of patients with suspected rare genetic diseases. I 

developed a JSON-based REST endpoint to query PubCaseFinder using HPO terms 

and Ensemble gene IDs and to return ranked lists of rare diseases and case reports 

based on phenotypic similarity. I also developed the Matchmaker Exchange (MME) 

application programming interface (API) [79] as a secondary querying option for 

PubCaseFinder. Using the PubCaseFinder API and the MME API, I enabled the use 

of PubCaseFinder in both IRUD Exchange/Patient Archive and PhenomeCentral. 

 

Performance evaluation of PubCaseFinder 

To evaluate the performance of PubCaseFinder as a phenotype-driven differential 

diagnosis system, I collected 1,584 clinical cases from PhenomeCentral, which were 

registered by the Care4Rare Canada Consortium. It turned out only 243 cases out of 

them had both phenotypes and diagnoses, the former represented by HPO terms 

and the latter represented by MIM IDs. I used them as the test cases of our 

evaluation. All MIM IDs of the cases were converted to Orpha numbers using 

connections between MIM IDs and Orpha numbers in ORDO. To evaluate the effect 

of DPAs form case reports, I compared the performance of PubCaseFinder in three 

different settings: one with DPAs only from Orphanet (PubCaseFinder-O), one with 

DPAs only from case reports (PubCaseFinder-CR), and one with DPAs from both 

(PubCaseFinder-O/CR). For a reference purpose, I included Orphamizer (a 
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customized system of Phenomizer for Orphanet) in our comparison because it was 

the most similar system among phenotype-driven differential diagnosis systems, 

using DPAs from Orphanet and targeting the diseases defined in ORDO. For the 

evaluation, I compiled two exclusive sets of diseases as targets of differential 

diagnosis; one consisted of 2,323 diseases that were associated with phenotypes in 

Orphanet and consequently could be potentially solved by both PubCaseFinder and 

Orphamizer (Target-A), the other consisted of 1,589 diseases that were not 

associated with a phenotype in Orphanet (Target-B). 

First, I evaluated the performance of PubCaseFinder (in the three different 

settings) and Orphamizer, when targeting target-A. Figure 3.7 shows the evaluation 

process. The 135 cases out of the 243 PhenomeCentral cases were used for this 

evaluation (Table. S1), as they had diagnoses which belonged to Target-A. The 

result of each run was obtained as a ranked list of diseases. They were represented 

in terms of “recall at ranks” (i.e., the fraction of cases where the correct diagnosis 

appeared in the top-listed diseases). Figure 3.8 shows the recall rates by 

PubCaseFinder-O and PubCaseFinder-O/CR (the recall numbers are shown in 

Table 3.1). The top 10 recall rate of PubCaseFinder-O/CR is 57% (Fig. 3.8), which 

means that there is a correct diagnosis in the top 10 of a ranked list of 2,323 

diseases for about one in every two cases. All recall rates of PubCaseFinder-O/CR 

are higher than those of PubCaseFinder-O (Fig. 3.8). The top 50 recall rate of 

PubCaseFinder-O is lower than the top 20 recall rate of PubCaseFinder-O/CR, 

which means that even if a user checks the top 50 diseases of PubCaseFinder-O, 

the diagnostic rate is lower than when checking the top 20 diseases of 

PubCaseFinder-O/CR. 
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Figure 3.9 shows the recall rates by Orphamizer and PubCaseFinder-O/CR (the 

recall numbers are shown in Table 3.1). All recall rates of PubCaseFinder-O/CR are 

higher than those of Orphamizer (Fig. 3.9). The top 100 recall rate of Orphamizer is 

lower than the top 10 recall rate of PubCaseFinder-O/CR, which means that even if a 

user checks the top 100 diseases of Orphamizer, the diagnostic rate is lower than 

when checking the top 10 diseases of PubCaseFinder-O/CR. I also evaluated the 

statistical significance of a correct diagnosis appearing in the top 10 with a binomial 

test and found that the p-value of PubCaseFinder-O/CR was 4.01 × 10−144, whereas 

those of PubCaseFinder-O and Orphamizer were 2.83 × 10−108  and 4.73 × 10−65, 

respectively. Those results clearly show the potential of DPAs from case reports to 

improve the performance of phenotype-driven differential diagnosis systems. 
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Figure 3.7: Performance evaluation of PubCaseFinder 
Clinical cases of rare diseases were collected from PhenomeCentral (step 1), and a 

ranked list of rare diseases based on phenotypic similarity was obtained with 

PubCaseFinder for each clinical case (step 2). The performance of PubCaseFinder 

was evaluated using the “recall at ranks” metric (step 3). 
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Figure 3.8: Performance comparison of PubCaseFinder-O and PubCaseFinder-
O/CR 

Recalls were calculated on the basis of ranked lists of 2,323 rare diseases for 135 

clinical cases from PhenomeCentral. 
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Figure 3.9: Performance comparison of Orphamizer and PubCaseFinder-O/CR 
Recalls were calculated on the basis of ranked lists of 2,323 rare diseases for 135 

clinical cases from PhenomeCentral. 
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Table 3.1: Recall numbers by PubCaseFinder in three different settings and by 
Orphamizer 

Differential 

diagnosis 

system 

Top 1 

recall 

number 

(rate) 

Top 5 

recall 

number 

(rate) 

Top 10 

recall 

number 

(rate) 

Top 20 

recall 

number 

(rate) 

Top 50 

recall 

number 

(rate) 

Top 100 

recall 

number 

(rate) 

Top 1000 

recall 

number 

(rate) 

Orphamizer 12  

(8.9%) 

31  

(23.0%) 

42  

(31.1%) 

49  

(36.3%) 

63  

(46.7%) 

68  

(50.4%) 

111  

(82.2%) 

PubCaseFinder 

(using DPAs 

from Orphanet) 

19  

(14.1%) 

40  

(29.6%) 

62  

(45.9%) 

71  

(52.6%) 

84  

(62.2%) 

91  

(67.4%) 

124  

(91.9%) 

PubCaseFinder 

(using DPAs 

from Orphanet 

and Case 

Reports) 

20  

(14.8%) 

63  

(46.6%) 

77  

(57.0%) 

87  

(64.4%) 

96  

(71.1%) 

104  

(77.0%) 

126  

(93.3%) 

 

Let us take a running example. A clinical case from PhenomeCentral had 

HP:0000657 (Oculomotor apraxia), HP:0001263 (Global developmental delay), and 

HP:0002066 (Gait ataxia), as the phenotypes, which were diagnosed with 

ORDO:2318 (Joubert syndrome with oculorenal defect). PubCaseFinder-O could 

place ORDO:2318 only at the 41st rank because the association between it and 

HP:0000657 was missing in the DPAs from Orphanet. However, the association 

existed in the DPAs from case reports, and PubCaseFinder-O/CR could place it at 

the 5th rank. 

Second, I evaluated the performance of PubCaseFinder-CR when targeting target-

B. I narrowed down 243 cases of PhenomeCentral to 59 cases (Table. S2) whose 



   
 

   
 

49 

diagnoses were part of the target-B. For the 59 cases, I obtained ranked lists of 

target-B using PubCaseFinder-CR and then calculated recalls on the basis of the 

results. PubCaseFinder-CR showed the recall number (rate), 2(3.4%)@1, 

3(5.1%)@5, 5(8.5%)@10, 6(10.2%)@20, 13(22.0%)@50, 24(40.7%)@100, and 

56(94.9%)@1000 (Fig. 3.10). I evaluated the statistical significance of a correct 

diagnosis appearing in the top 10 by using a binomial test and found a p-value of 

3.72 × 10−5. Although Figure 3.10 highlights the low recall rates of PubCaseFinder-

CR, the p-value shows the potential of PubCaseFinder for differential diagnosis of 

rare diseases that were not associated with a phenotype in Orphanet. Note that the 

recall rates of PubCaseFinder-CR for target-B were lower than those of 

PubCaseFinder-CR for target-A even though they both exploited DPAs from case 

reports. From examining the number of associated DPAs from case reports for 

target-A and target-B, on average, each disease in target-A had 27.3 DPAs, while 

each disease in target-B had 18.6 DPAs. It is interpreted that the difference of the 

number of associated DPAs causes the difference in recall rates. 
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Figure 3.10: Performance comparison of a random method and 

PubCaseFinder-CR for rare diseases not included in disease–phenotype 

associations (DPAs) from Orphanet 
Recalls were calculated on the basis of ranked lists of 1,589 rare diseases for 59 

clinical cases from PhenomeCentral. 
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Filtering of unreliable disease-phenotype 

associations 

In a previous study, Tudor et al. [80] also tried to extract DPAs for common diseases 

from papers in PubMed, and they suggested to ignore frequent low occurrences to 

filter out potentially noisy DPAs. This method is often used and is based on the 

hypothesis that if two entities are frequently mentioned together, it is likely that they 

are related [69]. However, I found that most DPAs identified in this study appeared in 

few case reports. Figure 3.11 shows the distribution of DPA numbers from case 

reports according to frequencies of occurrence in case reports. More than half of 

DPAs appeared in only one case report, and the ratio of DPAs that appeared in 

multiple case reports was only ~34.0%. Using the 135 clinical cases from 

PhenomeCentral, I calculated the top 10 recall rate of PubCaseFinder that exploits 

each set of DPAs filtered by their frequencies of occurrence in case reports (Fig. 

3.11, all results are shown in Table S4). The top 10 recall rates gradually decreased 

from 57.0% to 49.6% when increasing the frequency of occurrence. Our results show 

that low-frequency DPAs from case reports include many DPAs that are informative 

for the differential diagnosis of rare diseases. I should therefore not filter out DPAs 

for rare diseases using frequencies of occurrence. 
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Figure 3.11: Distribution of numbers of disease–phenotype associations 
(DPAs) from case reports (bars) and Top 10 recall rates (solid line) 
For each set of DPAs ordered according to the frequency of occurrence in case 

reports, the number of DPAs was counted, and the top 10 recall rate was calculated 

to evaluate the performance of PubCaseFinder using the set of DPAs. 
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Chapter 4 
Discussion and Future Work 

To speed up the differential diagnosis process based on symptoms and signs 

observed from patients, phenotype-driven differential diagnosis systems for rare 

diseases have been developed and implemented. The performance of these 

systems is influenced by the quantity and quality of underlying DPA databases. I 

found that the limited coverage of manually curated databases was a significant 

problem that hindered the further progress of automated differential diagnosis. To 

address the problem, I developed a text mining approach to extend the coverage of 

DPAs in manually curated databases like Orphanet. By applying the approach to a 

million case reports from PubMed, I could increase the coverage of DPAs from 

Orphanet more than two times. Based on the extended DPA database, I also 

developed PubCaseFinder, a new phenotype-driven differential diagnosis system. A 

series of experiments which was conducted using clinical cases from 

PhenomeCentral showed that the performance of phenotype-driven differential 

diagnosis could substantially be improved thanks to the extension of the DPA 

database. Previous studies reported that case reports were an essential tool for 

extracting valuable information for rare diseases in spite of low certainty evidence 

due to its small samples. I, therefore, targeted the one million case reports included 

in PubMed, and this is, to our knowledge, the first demonstration that such a 

extensive collection of case reports was useful for tackling rare disease issues by 

using a text mining method. I will extend the collection of case reports to those of 

European in Europe PMC [84] and those of Japanese in J-STAGE [85] and will 
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believe that further case reports will contribute more for tackling rare disease issues. 

In addition, I will also use all papers in PubMed instead of the collection of case 

reports to examine whether the performance will further improve. 

Note that automatic text mining techniques are often regarded as assistive tools to 

help manual curation of databases, due to its potentially high chance of noisy results. 

Our automatically extracted DPAs using text mining techniques also included noisy 

results, but they included many new DPAs which were not obtained by manual 

curation of Orphanet. Figure 6 shows that the performance of PubCaseFinder was 

much low when using automatically extracted DPAs independently. However, I could 

regard them as useful supplementary information for manual curated DPAs since the 

performance was most high by using both in combination. Manual curation is the 

best approach for obtaining correct DPAs, but our proposed approach using text 

mining techniques is deemed practically useful because manual curation will take 

enormous time and cost, particularly considering the large volume and rapid growth 

of case reports. 

For annotation with HPO terms and ORDO terms, I used ConceptMapper which 

was reported as a state-of-the-art concept recognition system among publicly 

available ones. Recently, Bio-LarK, which was also a concept recognizer specifically 

tailored to annotate HPO terms have become a publicly available system. A previous 

study showed that Bio-LarK was benchmarked using both the gold standard and the 

test suite corpora for HPO and outperformed other concept recognizers [81]. As our 

approach does not rely on a specific concept recognizer, I am planning to seek a 

further performance improvement by finding and adopting a more optimal concept 

recognizer.  
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Our experiment and discussion on filtering of unreliable DPAs suggest that a 

simple filtering method based on the frequency of occurrence will not work well for 

automated differential analysis of rare diseases, although it was reported to be useful 

for common diseases. I attribute the reason to the nature of data for rare diseases 

which are much less frequent than that of common diseases. Although the coverage 

of DPAs in Orphanet was improved with a text mining approach, unreliable DPAs 

(i.e., including negations in the sentence, which might represent a cause of false-

positive association) were found. As a preliminary study, I performed an NLP tool 

negation-detection [39] against all sentences of case reports, which include DPAs 

and detected the sentences including negations. As a result, negated HPO terms or 

negated ORDO terms were detected in the 4.2% of sentences including DPAs 

(Table 4.1). As a future work, I am planning to exclude such negated sentences by 

manual curation and develop much more sophisticated filtering methods than simple, 

frequency-based filtering. Conversely, I will consider increasing DPAs which may 

include more noisy ones. Although DPAs are extracted within a sentence including 

both an ORDO term and HPO term in this study, I am planning to expand the 

searching region to two sentences or more. For example, in case of extracting DPAs 

within the entire abstract, more noisy results may increase, but the performance of 

PubCaseFinder may be improved using them. 

In clinical practice, a specific phenotype may be extraordinarily prominent or 

severe; thus, I used the GeneYenta algorithm that allows users to set a matching 

weight for each phenotype. However, I always assigned the same weights to HPO 

terms in this evaluation in order to only evaluate the contribution of automatically 

extracted DPAs from case reports for improving the automated differential diagnosis. 
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As a future work, I am planning to modify the user interface of PubCaseFinder to 

make users set weights to HPO terms, which empowers users to leverage their 

expertise and knowledge to customize results. On the other hand, instead of 

assigning the weights to HPO terms of patients, it is possible to assign the weights to 

HPO terms for each disease. Even in such a case, it is considered that physician's 

expertise and knowledge can be reflected as the weights. Besides, to improve the 

accuracy of matching more, it is necessary to consider utilization other than 

phenotypes such as gender, age, family history, and medical history. When using a 

ranking system, top ranking results like Top 5 are essential. However, the scores of 

the top-ranked diseases in PubCaseFinder tend to be similar. In other words, only 

using the set of phenotypes alone, there is not much difference in ranking results. 

So, for example, I will discuss a new matching method that considers sex, age, 

family history, and medical history of a patient for calculating similarity scores. As a 

result, there is a possibility that the accuracy of top ranking results is improved. 

I will integrate PubCaseFinder with TogoVar as future work. TogoVar is a 

database providing genomic variant information and the corresponding allele 

frequency information among ExAC [83], Japanese public variant database, and 

original Japanese dataset consisted from 183,884 samples genotyped by SNP-array 

and 125 whole exome sequence samples. Further, it provides biological information 

annotated by Variant Effect Predictor, publications registered in PubMed, and clinical 

data of ClinVar. Using integrated databases, for example, users will be able to 

search for case reports which will include variants with low allele frequency only in 

Japanese public variant database. In this study, I used only the phenotypes as input 

data for the evaluation. But, after integrating PubCaseFinder and TogoVar, I am 
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planning to evaluate my method using patient's variants in order to evaluate whether 

PubCaseFinder is effective in the process of genome analysis. 
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Table. 4.1 Examples of sentences including negations detected by the 

negation-detection tool 

The disease names and symptoms are indicated in red and blue, respectively. 

No Sentence including a disease-phenotype association Reference 

1 Mucolipidosis III (ML-III), or pseudo-Hurler polydystrophy, is an autosomal 

recessive Hurler-like disorder without mucopolysacchariduria.   

[86] 

2 Van der Woude syndrome is an autosomal dominant disease characterized 

by lower lip pits with or without cleft lip and/or cleft palate.   

[87] 

3 The majority of the cases of nephroblastoma do not present with abdominal 

pain.   

[88] 

4 Developmental regression has not been reported in SPG56 patients.   [89] 

5 This type of arthropathy has not been described in dermatomyositis or 

polymyositis. 

[90] 

6 Herein we report a case of a possible PHACE syndrome without 

hemangioma of the head but with a large segmental hemangioma of the 

trunk. 

[91] 

7 Systemic therapy for granulocytic sarcoma presenting without evidence of 

leukemia is reviewed. 

[92] 

8 Although there was a widely held belief that ALS does not cause cognitive 

impairment, cognitive function in patients with ALS has received more 

attention recently. 

[93] 

9 Our results indicate that hyperparathyroidism is not more prevalent in 

affected individuals with osteosarcoma than in the general population. 

[94] 
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10 We report a rare case of toxocariasis with thoracic and pleural involvement 

without transient pulmonary infiltrates. 

[95] 
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Web Resources 

URLs for data presented herein are as follows: 

Orphanet, http://www.orpha.net/consor/cgi-bin/index.php/ 

Phenomizer, http://compbio.charite.de/phenomizer/ 

Phenolyzer, http://phenolyzer.wglab.org 

FACE2GENE, https://www.face2gene.com 

Orphanet Rare Disease Ontology, http://www.orphadata.org/cgi-

bin/inc/ordo_orphanet.inc.php/ 

Human Phenotype Ontology consortium, http://human-phenotype-ontology.github.io 

PubMed, https://www.ncbi.nlm.nih.gov/pubmed/ 

EBI, https://www.ebi.ac.uk 

OMIM, https://www.omim.org 

ICD10, http://www.who.int/classifications/icd/icdonlineversions/en/ 

MetaMap, https://metamap.nlm.nih.gov 

NCBO Annotator, https://bioportal.bioontology.org/annotator 

Ccp nlp-pipelines, https://github.com/UCDenver-ccp/ccp-nlp-pipelines 

PubCaseFinder, https://pubcasefinder.dbcls.jp/ 

PubCaseFinder API, https://pubcasefinder.dbcls.jp/mme 

Patient Archive, http://www.patientarchive.org 

PhenomeCentral, https://www.phenomecentral.org 

MME API, https://github.com/ga4gh/mme-apis 

BioHackathon2017, http://2017.biohackathon.org 

Care4Rare Canada Consortium, http://care4rare.ca 
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Orphamizer, http://compbio.charite.de/phenomizer_orphanet 

negation-detection, https://github.com/gkotsis/negation-detection 
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Supplemental Data 

Table S1: 135 clinical cases from PhenomeCentral 

No MIM ID ORDO ID Disease Name 
# of 

annotated 
HPO terms 

1 MIM:212840 ORDO:1173 Cerebellar ataxia-
hypogonadism syndrome 2 

2 MIM:212840 ORDO:1173 Cerebellar ataxia-
hypogonadism syndrome 2 

3 MIM:301835 ORDO:1187 Lethal ataxia with deafness 
and optic atrophy 30 

4 MIM:301835 ORDO:1187 Lethal ataxia with deafness 
and optic atrophy 38 

5 MIM:165199 ORDO:1215 Autosomal dominant optic 
atrophy plus syndrome 9 

6 MIM:117650 ORDO:1393 Cerebro-costo-mandibular 
syndrome 6 

7 MIM:117650 ORDO:1393 Cerebro-costo-mandibular 
syndrome 2 

8 MIM:117650 ORDO:1393 Cerebro-costo-mandibular 
syndrome 7 

9 MIM:117650 ORDO:1393 Cerebro-costo-mandibular 
syndrome 6 

10 MIM:117650 ORDO:1393 Cerebro-costo-mandibular 
syndrome 4 

11 MIM:117650 ORDO:1393 Cerebro-costo-mandibular 
syndrome 9 

12 MIM:135900 ORDO:1465 Coffin-Siris syndrome 8 
13 MIM:135900 ORDO:1465 Coffin-Siris syndrome 7 
14 MIM:612794 ORDO:1478 Interatrial communication 1 
15 MIM:612794 ORDO:1478 Interatrial communication 1 

16 MIM:204500 ORDO:16849
1 

Late infantile neuronal ceroid 
lipofuscinosis 4 

17 MIM:608156 ORDO:17830
3 

8q22.1 microdeletion 
syndrome 9 

18 MIM:608156 ORDO:17830
3 

8q22.1 microdeletion 
syndrome 13 

19 MIM:608156 ORDO:17830
3 

8q22.1 microdeletion 
syndrome 17 

20 MIM:608156 ORDO:17830
3 

8q22.1 microdeletion 
syndrome 14 

21 MIM:608156 ORDO:17830
3 

8q22.1 microdeletion 
syndrome 7 

22 MIM:133540 ORDO:191 Cockayne syndrome 15 
23 MIM:133540 ORDO:191 Cockayne syndrome 6 
24 MIM:136140 ORDO:2044 Floating-Harbor syndrome 16 
25 MIM:136140 ORDO:2044 Floating-Harbor syndrome 17 
26 MIM:136140 ORDO:2044 Floating-Harbor syndrome 19 
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27 MIM:136140 ORDO:2044 Floating-Harbor syndrome 23 
28 MIM:136140 ORDO:2044 Floating-Harbor syndrome 15 
29 MIM:136140 ORDO:2044 Floating-Harbor syndrome 17 
30 MIM:136140 ORDO:2044 Floating-Harbor syndrome 16 
31 MIM:136140 ORDO:2044 Floating-Harbor syndrome 19 
32 MIM:136140 ORDO:2044 Floating-Harbor syndrome 21 
33 MIM:136140 ORDO:2044 Floating-Harbor syndrome 16 
34 MIM:136140 ORDO:2044 Floating-Harbor syndrome 17 
35 MIM:136140 ORDO:2044 Floating-Harbor syndrome 22 
36 MIM:136140 ORDO:2044 Floating-Harbor syndrome 20 
37 MIM:219000 ORDO:2052 Fraser syndrome 5 

38 MIM:206200 ORDO:20998
1 IRIDA syndrome 6 

39 MIM:206200 ORDO:20998
1 IRIDA syndrome 5 

40 MIM:234100 ORDO:2108 Hallermann-Streiff syndrome 19 
41 MIM:236100 ORDO:2162 Holoprosencephaly 10 
42 MIM:236100 ORDO:2162 Holoprosencephaly 5 
43 MIM:243150 ORDO:2300 Multiple intestinal atresia 3 
44 MIM:243150 ORDO:2300 Multiple intestinal atresia 2 
45 MIM:243150 ORDO:2300 Multiple intestinal atresia 2 

46 MIM:612285 ORDO:2318 Joubert syndrome with 
oculorenal defect 5 

47 MIM:612285 ORDO:2318 Joubert syndrome with 
oculorenal defect 3 

48 MIM:612285 ORDO:2318 Joubert syndrome with 
oculorenal defect 3 

49 MIM:612285 ORDO:2318 Joubert syndrome with 
oculorenal defect 1 

50 MIM:612285 ORDO:2318 Joubert syndrome with 
oculorenal defect 3 

51 MIM:612285 ORDO:2318 Joubert syndrome with 
oculorenal defect 3 

52 MIM:612285 ORDO:2318 Joubert syndrome with 
oculorenal defect 4 

53 MIM:147920 ORDO:2322 Kabuki syndrome 3 
54 MIM:223370 ORDO:235 Dubowitz syndrome 12 
55 MIM:223370 ORDO:235 Dubowitz syndrome 11 
56 MIM:223370 ORDO:235 Dubowitz syndrome 7 

57 MIM:612965 ORDO:242 46,XY complete gonadal 
dysgenesis 1 

58 MIM:612965 ORDO:242 46,XY complete gonadal 
dysgenesis 1 

59 MIM:613807 ORDO:244 Primary ciliary dyskinesia 5 
60 MIM:154400 ORDO:245 Nager syndrome 8 
61 MIM:154400 ORDO:245 Nager syndrome 4 
62 MIM:154400 ORDO:245 Nager syndrome 5 
63 MIM:154400 ORDO:245 Nager syndrome 2 
64 MIM:154400 ORDO:245 Nager syndrome 2 
65 MIM:154400 ORDO:245 Nager syndrome 12 
66 MIM:154400 ORDO:245 Nager syndrome 8 
67 MIM:201200 ORDO:2500 Acrogeria 18 
68 MIM:600118 ORDO:2510 Micro syndrome 6 

69 MIM:159950 ORDO:2590 
Spinal muscular atrophy-
progressive myoclonic 
epilepsy syndrome 

4 
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70 MIM:252010 ORDO:2609 Isolated complex I deficiency 13 
71 MIM:276820 ORDO:2879 Phocomelia, Schinzel type 10 
72 MIM:276820 ORDO:2879 Phocomelia, Schinzel type 8 
73 MIM:173800 ORDO:2911 Poland syndrome 3 
74 MIM:173800 ORDO:2911 Poland syndrome 5 

75 MIM:135100 ORDO:337 Fibrodysplasia ossificans 
progressiva 1 

76 MIM:232400 ORDO:366 
Glycogen storage disease 
due to glycogen debranching 
enzyme deficiency 

3 

77 MIM:232400 ORDO:366 
Glycogen storage disease 
due to glycogen debranching 
enzyme deficiency 

4 

78 MIM:615630 ORDO:474 Jeune syndrome 27 
79 MIM:614615 ORDO:475 Joubert syndrome 3 
80 MIM:614615 ORDO:475 Joubert syndrome 4 
81 MIM:614615 ORDO:475 Joubert syndrome 3 
82 MIM:614615 ORDO:475 Joubert syndrome 4 
83 MIM:614615 ORDO:475 Joubert syndrome 4 
84 MIM:614615 ORDO:475 Joubert syndrome 3 
85 MIM:614615 ORDO:475 Joubert syndrome 5 
86 MIM:614615 ORDO:475 Joubert syndrome 4 
87 MIM:614615 ORDO:475 Joubert syndrome 3 
88 MIM:614970 ORDO:475 Joubert syndrome 7 

89 MIM:604168 ORDO:48431 
Congenital cataracts-facial 
dysmorphism-neuropathy 
syndrome 

21 

90 MIM:615846 ORDO:51 Aicardi-Gouti ﾃ δ ｨ res 
syndrome 4 

91 MIM:157900 ORDO:570 Moebius syndrome 32 

92 MIM:309900 ORDO:580 Mucopolysaccharidosis type 
2 5 

93 MIM:309900 ORDO:580 Mucopolysaccharidosis type 
2 8 

94 MIM:602771 ORDO:598 Multiminicore myopathy 6 
95 MIM:158810 ORDO:610 Bethlem myopathy 3 
96 MIM:158810 ORDO:610 Bethlem myopathy 10 
97 MIM:608553 ORDO:65 Leber congenital amaurosis 4 
98 MIM:602440 ORDO:65684 Monomelic amyotrophy 3 

99 MIM:609734 ORDO:71526 Obesity due to pro-
opiomelanocortin deficiency 7 

100 MIM:609734 ORDO:71526 Obesity due to pro-
opiomelanocortin deficiency 7 

101 MIM:105830 ORDO:72 Angelman syndrome 12 

102 MIM:190350 ORDO:77258 Trichorhinophalangeal 
syndrome type 1 and 3 20 

103 MIM:312750 ORDO:778 Rett syndrome 9 
104 MIM:180849 ORDO:783 Rubinstein-Taybi syndrome 23 
105 MIM:613794 ORDO:791 Retinitis pigmentosa 1 
106 MIM:613794 ORDO:791 Retinitis pigmentosa 1 

107 MIM:610536 ORDO:79113 Mandibulofacial dysostosis-
microcephaly syndrome 14 

108 MIM:610536 ORDO:79113 Mandibulofacial dysostosis-
microcephaly syndrome 13 

109 MIM:610536 ORDO:79113 Mandibulofacial dysostosis-
microcephaly syndrome 19 
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110 MIM:610536 ORDO:79113 Mandibulofacial dysostosis-
microcephaly syndrome 12 

111 MIM:610536 ORDO:79113 Mandibulofacial dysostosis-
microcephaly syndrome 11 

112 MIM:610536 ORDO:79113 Mandibulofacial dysostosis-
microcephaly syndrome 6 

113 MIM:606574 ORDO:79435 Oculocutaneous albinism 
type 4 25 

114 MIM:248200 ORDO:827 Stargardt disease 11 

115 MIM:615938 ORDO:83473 
Megalencephaly-
polymicrogyria-postaxial 
polydactyly-hydrocephalus 
syndrome 

7 

116 MIM:615938 ORDO:83473 
Megalencephaly-
polymicrogyria-postaxial 
polydactyly-hydrocephalus 
syndrome 

6 

117 MIM:614381 ORDO:88637 
Hypomyelination-
hypogonadotropic 
hypogonadism-hypodontia 
syndrome 

2 

118 MIM:614381 ORDO:88637 
Hypomyelination-
hypogonadotropic 
hypogonadism-hypodontia 
syndrome 

1 

119 MIM:610743 ORDO:88644 Autosomal recessive ataxia, 
Beauce type 4 

120 MIM:313400 ORDO:93284 Spondyloepiphyseal 
dysplasia tarda 3 

121 MIM:250220 ORDO:93317 Spondylometaphyseal 
dysplasia, Sedaghatian type 18 

122 MIM:250220 ORDO:93317 Spondylometaphyseal 
dysplasia, Sedaghatian type 15 

123 MIM:271510 ORDO:93357 SPONASTRIME dysplasia 7 
124 MIM:102500 ORDO:955 Acroosteolysis dominant type 7 
125 MIM:102500 ORDO:955 Acroosteolysis dominant type 6 
126 MIM:102500 ORDO:955 Acroosteolysis dominant type 3 
127 MIM:102500 ORDO:955 Acroosteolysis dominant type 11 
128 MIM:102500 ORDO:955 Acroosteolysis dominant type 8 
129 MIM:102500 ORDO:955 Acroosteolysis dominant type 10 
130 MIM:102500 ORDO:955 Acroosteolysis dominant type 6 
131 MIM:102500 ORDO:955 Acroosteolysis dominant type 4 
132 MIM:102500 ORDO:955 Acroosteolysis dominant type 6 

133 MIM:614707 ORDO:97229 Riboflavin transporter 
deficiency 13 

134 MIM:614707 ORDO:97229 Riboflavin transporter 
deficiency 8 

135 MIM:300068 ORDO:99429 Complete androgen 
insensitivity syndrome 1 
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Table S2: 59 clinical cases from PhenomeCentral 

PhenomeCentral 
ID MIM ID ORDO ID Disease Name 

# of 
annotated 
HPO terms 

1 MIM:604187 ORDO:100991 Autosomal dominant spastic 
paraplegia type 10 3 

2 MIM:604187 ORDO:100991 Autosomal dominant spastic 
paraplegia type 10 3 

3 MIM:610246 ORDO:101109 Spinocerebellar ataxia type 
28 3 

4 MIM:610246 ORDO:101109 Spinocerebellar ataxia type 
28 8 

5 MIM:601338 ORDO:1171 
Cerebellar ataxia-areflexia-
pes cavus-optic atrophy-
sensorineural hearing loss 
syndrome 

11 

6 MIM:601338 ORDO:1171 
Cerebellar ataxia-areflexia-
pes cavus-optic atrophy-
sensorineural hearing loss 
syndrome 

12 

7 MIM:245570 ORDO:163721 Rolandic epilepsy-speech 
dyspraxia syndrome 10 

8 MIM:245570 ORDO:163721 Rolandic epilepsy-speech 
dyspraxia syndrome 2 

9 MIM:611523 ORDO:166073 Pontocerebellar hypoplasia 
type 6 12 

10 MIM:611523 ORDO:166073 Pontocerebellar hypoplasia 
type 6 11 

11 MIM:610125 ORDO:178364 Syndromic microphthalmia 
type 5 4 

12 MIM:610125 ORDO:178364 Syndromic microphthalmia 
type 5 3 

13 MIM:612541 ORDO:178503 Dursun syndrome 21 
14 MIM:235510 ORDO:2136 Hennekam syndrome 9 

15 MIM:182212 ORDO:2462 Shprintzen-Goldberg 
syndrome 10 

16 MIM:130720 ORDO:2789 Lateral meningocele 
syndrome 31 

17 MIM:260600 ORDO:280293 
Pelizaeus-Merzbacher-like 
disease due to AIMP1 
mutation 

3 

18 MIM:260600 ORDO:280293 
Pelizaeus-Merzbacher-like 
disease due to AIMP1 
mutation 

2 

19 MIM:233400 ORDO:2855 Perrault syndrome 14 
20 MIM:233400 ORDO:2855 Perrault syndrome 7 
21 MIM:233400 ORDO:2855 Perrault syndrome 6 
22 MIM:233400 ORDO:2855 Perrault syndrome 6 

23 MIM:614261 ORDO:294016 Microcephaly-capillary 
malformation syndrome 14 

24 MIM:614261 ORDO:294016 Microcephaly-capillary 
malformation syndrome 11 

25 MIM:614261 ORDO:294016 Microcephaly-capillary 
malformation syndrome 11 

26 MIM:614261 ORDO:294016 Microcephaly-capillary 
malformation syndrome 12 
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27 MIM:614261 ORDO:294016 Microcephaly-capillary 
malformation syndrome 6 

28 MIM:180700 ORDO:3107 Autosomal dominant 
Robinow syndrome 5 

29 MIM:180700 ORDO:3107 Autosomal dominant 
Robinow syndrome 15 

30 MIM:312830 ORDO:3134 SCARF syndrome 21 
31 MIM:312830 ORDO:3134 SCARF syndrome 10 

32 MIM:604213 ORDO:314597 Chudley-McCullough 
syndrome 5 

33 MIM:604213 ORDO:314597 Chudley-McCullough 
syndrome 5 

34 MIM:604213 ORDO:314597 Chudley-McCullough 
syndrome 3 

35 MIM:604213 ORDO:314597 Chudley-McCullough 
syndrome 5 

36 MIM:604213 ORDO:314597 Chudley-McCullough 
syndrome 3 

37 MIM:604213 ORDO:314597 Chudley-McCullough 
syndrome 4 

38 MIM:269880 ORDO:3163 SHORT syndrome 8 
39 MIM:269880 ORDO:3163 SHORT syndrome 9 

40 MIM:605130 ORDO:319182 Wiedemann-Steiner 
syndrome 14 

41 MIM:275400 ORDO:3363 
Trichomegaly-retina 
pigmentary degeneration-
dwarfism syndrome 

8 

42 MIM:613477 ORDO:3451 West syndrome 6 

43 MIM:614736 ORDO:361 Familial glucocorticoid 
deficiency 8 

44 MIM:614736 ORDO:361 Familial glucocorticoid 
deficiency 3 

45 MIM:615290 ORDO:363454 
Autosomal dominant 
childhood-onset proximal 
spinal muscular atrophy with 
contractures 

8 

46 MIM:615630 ORDO:474 Jeune syndrome 27 

47 MIM:608931 ORDO:590 Congenital myasthenic 
syndrome 8 

48 MIM:602771 ORDO:598 Multiminicore myopathy 6 

49 MIM:606002 ORDO:64753 Spinocerebellar ataxia with 
axonal neuropathy type 2 5 

50 MIM:601675 ORDO:670 PIBIDS syndrome 7 

51 MIM:609015 ORDO:746 Mitochondrial trifunctional 
protein deficiency 16 

52 MIM:212065 ORDO:79318 PMM2-CDG 4 

53 MIM:300539 ORDO:93606 Nephrogenic syndrome of 
inappropriate antidiuresis 4 

54 MIM:300539 ORDO:93606 Nephrogenic syndrome of 
inappropriate antidiuresis 11 

55 MIM:108500 ORDO:97 Familial paroxysmal ataxia 12 
56 MIM:108500 ORDO:97 Familial paroxysmal ataxia 13 

57 MIM:270550 ORDO:98 
Autosomal recessive spastic 
ataxia of Charlevoix-
Saguenay 

5 
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58 MIM:270550 ORDO:98 
Autosomal recessive spastic 
ataxia of Charlevoix-
Saguenay 

4 

59 MIM:128230 ORDO:98808 Autosomal dominant dopa-
responsive dystonia 3 

 


