
博士論文

Efficient Machine Learning from
Gradient Method Perspective in

Finite and Infinite Dimensional Spaces

(有限・無限次元空間における
勾配法の観点からの効率的機械学習)

二反田　篤史

Copyright c⃝ 2018, Atsushi Nitanda.

Abstract

Along with remarkable attention to artificial intelligence technology in recent years, fur-
ther development of machine learning as its core technology is expected. In order to
realize highly accurate and advanced applications by machine learning, not only large-
scale datasets and complex modeling but also learning algorithms that work well for them
are necessary. In this thesis, we tackle this problem. The main body of the thesis is com-
posed of two parts. In the former part, we develop several efficient stochastic optimization
methods for large-scale problems by utilizing their structures such as convexity, smooth-
ness, finite-sum, and difference-of-convex structures. In the latter part, we propose learn-
ing methods for optimizing probability measures by extending optimization theory in the
case of finite-dimensional spaces to obtain highly accurate models. The other purposes
of the part are exploring the connection between optimization and sampling methods and
evaluating representational performance of neural networks having the residual structure.

1

Acknowledgments

I would like to express my gratitude to my brilliant supervisor Taiji Suzuki for great
support throughout my journey at Tokyo institute of technology and the University of
Tokyo in the doctoral course. His knowledge is very wide and deep, so I got a lot of
inspirations from him and I learned many important things and thoughts through research
discussions. It certainly will be useful in the future research life. I was also inspired by
his active work on the front lines of research. I also would like to greatly thanks Kenji
Yamanishi. When I transferred to the University of Tokyo in the doctoral course, I am
pleased that he accepted me into his laboratory.

I would like to thank all my dissertation committee members including Taiji Suzuki,
Kenji Yamanishi, Takaaki Ohnishi, Akiko Takeda, Tomonari Sei, and Issei Sato for taking
time to review my thesis. I appreciate my laboratory members in both Tokyo institute of
technology and the University of Tokyo for their support at the laboratory. I would like to
thank, particularly, Tomoya Murata and Tetsu Yamashita for developing a line of research
from the optimization method presented in Chapter 3. Their work made certain progress
in the stochastic optimization literature. I was delighted and impressed. Discussions with
Tomoya Morata and Taiji Suzuki about stochastic optimization were quite meaningful.

I would like to thank Takahito Tanabe who was my boss when I worked at NTTDATA
Mathematical Systems Inc. for allowing me to proceed to the doctoral course. I am also
thankful that he suggested me for a technical adviser when I told him my resignation.
I also respect Hiroshi Yamashita who made a significant contribution in mathematical
optimization while operating the company. It is thanks to him that I was able to study
while working for the company.

I finally would like to thank my family, particularly, parents and wife for all their
support and encouragement.

2

Contents

1 Introduction 7

I Stochastic Optimization Methods for Large Scale Problems 15

2 Stochastic Gradient Descent 16
2.1 Convergence Criterion and Complexity 18
2.2 Convergence Analysis for Nonconvex Problem 18
2.3 Convergence Analysis for Convex Problem 19
2.4 Optimal Complexity for Stochastic Convex Problems 21
2.5 Variance Reduction Methods . 22

3 Accelerated Variance Reduced Stochastic Gradient Descent I 24
3.1 Overview . 24
3.2 Preliminary . 27

3.2.1 Stochastic Variance Reduction Gradient 27
3.2.2 Accelerated Proximal Gradient Descent 28
3.2.3 APPA Acceleration . 29

3.3 Accelerated Mini-Batch Prox-SVRG . 30
3.4 Analysis . 31

3.4.1 Fast Iteration Complexity and Necessary Minibatch size 34
3.5 Numerical Experiments . 36
3.6 Appendix . 38

3.6.1 Proof of Lemma 2 . 38
3.6.2 Proof of Lemma 3 . 42
3.6.3 Proof of Theorem 4 . 43

4 Accelerated Variance Reduced Stochastic Gradient Descent II 45
4.1 Overview . 45
4.2 Preliminary . 47

4.2.1 Optimal Strongly Convex . 47

3

CONTENTS

4.2.2 Accelerated Gradient Descent 48
4.2.3 Stochastic Variance Reduction Gradient 49

4.3 Single-Stage AMSVRG . 49
4.4 Convergence Analysis of the Single-Stage AMSVRG 50
4.5 Multi-Stage AMSVRG . 52
4.6 Convergence Analysis of Multi-Stage AMSVRG 52

4.6.1 Fast Iteration Complexity and its Benefits 54
4.6.2 Restart Scheme . 55

4.7 Numerical Experiments . 56
4.8 Appendix . 58

4.8.1 Proof of the Proposition 3 . 58
4.8.2 Proof of the Lemma 6 . 58
4.8.3 Stochastic gradient descent analysis 60
4.8.4 Stochastic mirror descent analysis 60
4.8.5 Proof of the Lemma 7 . 61
4.8.6 Proof of Theorem 5 . 62
4.8.7 Modified AMSVRG for general convex problems 63

5 Stochastic Difference of Convex Algorithm 65
5.1 Overview . 65
5.2 DC Algorithm . 68
5.3 Stochastic Proximal DC Algorithm . 68

5.3.1 Metrics . 69
5.3.2 AdaSPD . 70

5.4 Analysis . 71
5.4.1 General Case . 72
5.4.2 Smooth Concave Function . 72
5.4.3 Polyak-Łojasiewicz Condition 73
5.4.4 Total Complexity . 74

5.5 Boltzmann Machines . 75
5.5.1 SPD as The Extension of EM/MCEM Algorithms 77

5.6 Numerical Experiments . 78
5.6.1 Restricted Boltzmann Machines 78
5.6.2 Deep Boltzmann Machines . 78

5.7 Appendix . 81
5.7.1 Proofs . 81
5.7.2 The derivation of diagonal hessian approximation 83
5.7.3 Parameter settings for training RBMs and DBMs 84

4

CONTENTS

II New Machine Learning Methods using Functional Gradient 85

6 Functional Gradient Descent 86
6.1 Problem Setting . 87
6.2 Functional Gradient Descent . 89
6.3 Powerful Optimization Ability and Connection to Residual Networks . . 90

7 Stochastic Particle Gradient Descent for Infinite Ensembles 92
7.1 Overview . 92
7.2 Problem Setting . 95
7.3 Optimization Domain and Optimality Condition 96

7.3.1 Integral Probability Metric on P 96
7.3.2 Local Optimality Condition . 97
7.3.3 Interior Optimality Property . 98

7.4 Stochastic Particle Gradient Descent . 100
7.4.1 Extension of Vanilla Stochastic Gradient Descent 102

7.5 Numerical Experiments . 104
7.5.1 Synthetic Data . 104
7.5.2 Real Data . 104

7.6 Appendix . 106
7.6.1 Topological Properties and Optimality Conditions 106
7.6.2 Interior Optimality Property . 110
7.6.3 Convergence Analysis . 114
7.6.4 Functional Gradient Aspect of SPGD 114

8 Enhancing the Convergence of Adversarial Training 116
8.1 Overview . 116
8.2 Brief Review of Wasserstein GANs . 118
8.3 Gradient Layer . 119

8.3.1 High-level idea of gradient layer 120
8.3.2 Algorithm description . 120

8.4 Functional Gradient Method . 121
8.5 Convergence Analysis . 123
8.6 Gradient Flow Perspective . 125

8.6.1 Continuity Equation and Discretization 125
8.6.2 Discretization of Gradient Flow 127

8.7 Experiments . 128
8.8 Appendix . 130

8.8.1 The Other Usage . 130
8.8.2 Brief Review of Wasserstein Distance 131
8.8.3 Proofs . 132

5

CONTENTS

8.8.4 Labeled Faces in the Wild . 134

9 Functional gradient boosting based on residual network perception 135
9.1 Overview . 135
9.2 Preliminary . 137

9.2.1 Problem setting . 137
9.2.2 Functional gradient . 139

9.3 Basic Property of Functional Gradient 140
9.3.1 Consistency of functional gradient norm 140

9.4 Algorithm Description . 141
9.4.1 Choice of embedding . 142

9.5 Convergence Analysis . 143
9.5.1 Empirical risk minimization . 143
9.5.2 Generalization bound . 145
9.5.3 Sample-splitting technique . 147

9.6 Experiments . 149
9.7 Proofs . 153

9.7.1 Proofs of Section 9.3 and 9.4 . 153
9.7.2 Empirical risk minimization and generalization bound 155
9.7.3 Sample-splitting technique . 163

Future Work 167

6

Chapter 1

Introduction

Artificial intelligence technology has been extensively developed due to rapid improve-
ment in computer performance and expansion of data storage capacity. For instance, the
accuracy of such techniques as image, character, and speech recognition are approach-
ing to the same level as human beings, and AI of board games like AlphaGO is growing
stronger than the top professional, moreover, vast studies on more sophisticated technolo-
gies such as automatic machine translation, data generations, autonomous robots, and
self-driving cars are now progressing. Machine learning has been received a lot of atten-
tion as a core technology of modern artificial intelligence. Typical goal of machine learn-
ing is to find a pattern or construct a function predicting unseen data from a given training
data. Various applications are constructed according to the combination of data type and
model type. This goal is basically achieved by modeling functions with finite-dimensional
parameters in Euclidean spaces and finding good parameters by minimizing the empirical
risk with some regularizations, which evaluates model fitness to a training data. Since the
risk we really want to optimize is the expected risk which corresponds to an empirical
risk with infinite samples almost surely at each parameter, large-scale datasets is required
to make the gap between an empirical risk and an expected risk sufficiently small and
to obtain good models providing better results. It is known that stochastic optimization
methods such as stochastic gradient descent are significantly useful (Bousquet and Bot-
tou, 2008) in solving large-scale problems thanks to cheap computational cost per iteration
compared to deterministic optimization methods including steepest descent and Newton
method. However, there is much room for improvement over stochastic gradient descent
even if problems are convex which is preferable structure for optimization methods. In ad-
dition, to obtain much higher accurate results than those of convex problems, complicated
modeling of functions is often required, which may be nonconvex and infinite-dimension
problems. As a result, optimization for such complex problems become harder than those
for finite-dimensional convex problems. Therefore, sophisticated optimization methods
are desired for solving such problems efficiently.

In this thesis, we tackle these problems by proposing new optimization methods for

7

1. Introduction

each problem setting and verify their effectiveness theoretically and empirically. The
thesis will make a first step toward my research mission to unravel the mystery of the
success of deep learning with stochastic optimization mathematically from the infinite-
dimensional optimization perspective. As for the importance of the optimization, Leon-
hard Euler mentioned ”Nothing in the world takes place without optimization, and there
is no doubt that all aspects of the world that have a rational basis can be explained by
optimization methods” (1774). I think this viewpoint is also valid in explaining machine
learning models and methods, which may include stochastic optimization methods not
only for learning model parameters but also for learning model structures. This intuition
is based on the belief and experience that the solution of the appropriate optimization
problem will have good mathematical properties as seen in Dirichlet’s principle, Hodge
theory, and so on. What kind of theory should be constructed for explaining deep neural
networks with the optimization? Since the optimization theory is basically a local theory,
it is common that only convergence to a local solution is guaranteed in the learning for
deep neural networks. The problem of whether or not the global optimum can be ob-
tained by stochastic optimization methods is really important for unraveling the property
of deep learning, hence problem settings and conditions to guarantee such a convergence
have been investigated in the literature. This line of research usually make extra assump-
tions to get closer to the goal, but, conversely, I believe it may be also important to relax
the conditions and investigate truly important properties. This is based on the idea that the
approach that looks opposite to the purpose is sometimes important as seen in the work
by Kiyoshi Oka, a mathematician in the theory of functions of several complex variables,
who accomplished a great achievement and succeeded in connecting the super local the-
ory and the global theory. There is also a famous episode that he gave Fields Medalist
Heisuke Hironaka this kind of advice. I refer the reader to essays (in Japanese) by Kiyoshi
Oka to learn his thoughts. I will summarize my achievement toward my mission at the
moment though it is far from their achievement, but believe we will get there someday.

Our contribution is mainly composed of two parts. In part I, we propose efficient
stochastic optimization methods for large-scale finite-sum convex problems and differ-
ence of convex problems, and show these methods provide faster convergence complex-
ities than standard optimization methods by utilizing these specific structures. In part II,
we extend problem settings from parameter optimization in a finite-dimensional space to
probability measure optimization in an infinite-dimensional space. Namely, we propose
new machine learning methods using functional gradients in infinite-dimensional spaces.
Since, this method basically performs in an infinite-dimensional space, it has much more
powerful optimization ability than that in a finite-dimensional one. We explain this phe-
nomena intuitively and theoretically and show how to overcome the limitation of finite-
dimensional methods by providing convergence analyses for several problem settings. We
remark that since the proposed methods are derived by extending optimization methods
in a finite-dimensional space in a natural way, it enable us to analyze the behavior of the

8

1. Introduction

proposed methods by leveraging the existing optimization theory. Moreover, we believe
that this attempt is useful for investigating the performance of specific deep networks and
the connection between some optimization methods and sampling methods.

Part I: Stochastic Optimization Methods for Large Scale Problems

Chapter 2. The stochastic gradient descent (Robbins and Monro, 1951) is the workhorse
method for large-scale machine learning problems thanks to its scalability, applicability
for various problems, simplicity of implementation, and good performance. In chap-
ter 2, we briefly review stochastic gradient descent method to clarify our contributions
in Part I over this baseline and its several variants. Stochastic gradient methods were
called stochastic approximation in the early days, and analyzed in an asymptotic way
(Kushner and Yin, 2003). Although such an analysis is still useful, recently provided
non-asymptotic analyses (Bach and Moulines, 2011; Rakhlin et al., 2012; Ghadimi and
Lan, 2013b; Bottou et al., 2016) enable us to analyze stochastic gradient methods more
directly from traditional optimization viewpoint such as first-order optimization methods
mainly developed by Nesterov to derive convergence rates. We first introduce minimiza-
tion problems of an expected risk and an empirical risk which are main target of stochastic
gradient methods in machine learning context. We next introduce convergence criterion
for nonconvex and convex problems, and introduce two complexity measures named the
total complexity and the iteration complexity under stochastic optimization settings. The
theoretical performance of stochastic methods are evaluated by these complexities. Utiliz-
ing the above notions, we introduce existing convergence analyses for stochastic convex
and nonconvex problems in reference to Rakhlin et al. (2012); Ghadimi and Lan (2013b);
Bottou et al. (2016); Johnson and Zhang (2013) to give theoretical comparison with our
proposed methods later. We also introduce lower bounds on the complexities of spe-
cific algorithm classes for these problems. Finally, we explain the importance of variance
reduction for stochastic gradients based on these theoretical results to achieve better com-
plexities.
Chapter 3. In this chapter, we focus on the regularized empirical risk minimization prob-
lem and propose a fast stochastic optimization method utilizing the finite-sum structure
and acceleration schemes. We first explain the tradeoff between stochastic gradient meth-
ods and deterministic gradient descent methods pointed out by Johnson and Zhang (2013).
That is, the advantage of stochastic gradient descent over deterministic gradient descent
is a cheap computational cost at each iteration. In contrast, deterministic gradient descent
achieves the linear convergence rate for strongly convex problems at the price of heavy
cost at each iteration. Note that, due to the variance of stochastic gradients, stochastic
gradient descent obtains a slower convergence rate. To remedy this issue, Johnson and
Zhang (2013) proposed stochastic variance reduced gradient (SVRG) and showed that
this techniques leads to the linear convergence. We briefly review these results. How-

9

1. Introduction

ever, it is known that the convergence rate of the gradient descent is not optimal and is
slower than accelerated first order methods such as Nesterov (1983, 2004, 2013). There-
fore, a natural question arises whether the optimal iteration complexity can be achieved
by combining SVRG and such an acceleration method. Nitanda (2014) showed that it is
achieved by these two techniques with minibatching of reasonable size, maintaining the
same total complexity as SVRG. On the other hand, the optimal total complexity, which
is faster than SVRG, was given by Woodworth and Srebro (2016); Arjevani and Shamir
(2016) and achieved by several optimal methods (Shalev-Shwartz and Zhang, 2014; Lin
et al., 2015; Frostig et al., 2015; Zhang and Xiao, 2017; Allen-Zhu, 2017). However, these
methods cannot achieve both optimal complexities simultaneously. More recently, Mu-
rata and Suzuki (2017) showed that these optimal complexities are obtained by extending
the method (Nitanda, 2014) to doubly accelerated scheme. In this chapter, we show that
Acc-Prox-SVRG (Nitanda, 2014) with or without an acceleration technique (Frostig et al.,
2015) also achieves the both optimal complexities like DASVRDA (Murata and Suzuki,
2017). A notable common feature of Acc-Prox-SVRG and DASVRDA is minibatching.
Furthermore, we show the necessity of minibatching for the optimal iteration complexity
by giving lower-bounds on the minibatch size.

Chapter 4. As mentioned above, several effective methods are recently proposed for
the smooth finite-sum problems (empirical risk minimization). SAG (Roux et al., 2012;
Schmidt et al., 2017) and SAGA (Defazio et al., 2014) are non-accelerated variance re-
duced methods achieving the same total complexity as SVRG for the strongly convex
problems. However, many problems arising in machine learning may be non-strongly
convex. An advantage of the SAG and SAGA is that they support general convex prob-
lems. More recently, Gong and Ye (2014) showed that SVRG has linear rate of conver-
gence under optimally strong convexity that is a quite weaker condition than the strong
convexity. In this chapter, we propose another acceleration method called AMSVRG
that incorporates different acceleration scheme from Acc-Prox-SVRG. We show that
AMSVRG has the similar feature as Acc-Prox-SVRG even for the optimal strongly con-
vex problems. In addition, we give a direct convergence analysis of AMSVRG for general
convex problems.

Chapter 5. There is a strong need to develop better optimization methods for nonconvex
problems. Generally speaking, a nonconvex problem is really difficult to solve. However,
if the problem possesses a special structure, there is a possibility to construct effective
algorithms by making full use of this special structure. For instance, in the previous chap-
ters, we show that acceleration is realized by utilizing finite-sum structure. In this chapter,
we consider difference of convex functions (DC) programming (Tao, 1986) as a special
structure. DC structure can be often encountered. Indeed, several tasks are formulated as
DC programming (see e.g., Argyriou et al. (2006), feature selection in support vector ma-
chines by Le Thi et al. (2008)). DC algorithm (DCA) developed by Tao (1986) is the most
basic and practical method for solving DC program, which generates a sequence by solv-

10

1. Introduction

ing convex sub-problems by linearizing the concave part of objective successively. Due to
the simplicity, efficiency, and robustness, DCAs have been widely applied to many fields.
In this chapter, we introduce a more suitable variant of DCA called stochastic proximal
DC algorithm (SPD) which works effectively not only under a deterministic setting but
also a stochastic setting. We give convergence analyses of the method and show how the
convergence complexities would be improved by utilizing additional assumptions over
vanilla stochastic gradient descent. A main application treated in this chapter is training
Boltzman machines (BMs) that are energy-based generative models over binary observa-
tions and binary hidden units. Restricted Boltzmann machines (RBMs) and deep Boltz-
mann machines (DBMs) (Salakhutdinov and Hinton, 2009) are special forms of BMs.
These models are used for several purpose including dimension reduction, recommen-
dation, and unsupervised ensemble methods. However, training of RBMs and DBMs is
still quite difficult. We show the proposed method can be recognized an extension of
expectation-maximization (EM) and Monte Carlo EM (MCEM) algorithms on training
BMs. Although the effectiveness of EM algorithms on training BMs was known empir-
ically (e.g., Ikeda (2000); Yasuda and Tanaka (2008); Yasuda et al. (2012)), they lack a
convergence analysis. In other words, we extend the EM algorithm on training BMs to a
more theoretically better method.

Part II: New Machine Learning Methods using Functional Gradient

Chapter 6 In this thesis, we point out that several problems in machine learning can be
formalized as problems of optimizing probability measures. Concretely, we treat three
tasks (ensemble method of classifiers, learning adversarial generative models, and func-
tional gradient boosting methods) and explain how these problems can be recognized as
optimization of probability measures. We first cast these problems as problems of op-
timizing transport maps in L2-space with a given base probability measure to construct
computationally tractable methods and we propose variants of functional gradient meth-
ods. In this chapter, we introduce the most basic form of these methods by using simplest
formalization of the problem. We next give a convergence result by extending a noncon-
vex analysis introduced in Chapter 2, naturally. Finally, we explain the connection be-
tween residual networks (He et al., 2016) which is the state-of-the-art model in computer
vision and the proposed method. In other words, analyses in this part can bring theoretical
insight into prominent performance of residual networks. We moreover explain the rea-
son why proposed method has a superior optimization ability compared to that in a finite-
dimensional space. We here briefly review the literature in this line of research. From
the perspective of optimizing the probability measure, gradient-based Bayesian inference
methods (Welling and Teh (2011); Dai et al. (2016); Liu and Wang (2016)) are related to
ours. Stochastic variational gradient descent (SVGD) proposed in Liu and Wang (2016)
is most related to our work. This work has a similar flavor to our method and convergence

11

1. Introduction

analysis from gradient flow perspective were also given in Liu (2017); Chen and Zhang
(2017). However, SVGD is specialized to minimizing the Kullback–Leibler-divergence.
In contrast, our method does not require special structure of a loss function and can be
applicable to a wider class of problems as shown in this thesis. We also remark the con-
nection with a normalizing flow (Rezende and Mohamed (2015)) that approximates Bayes
posterior through deep neural networks. Like the normalizing flow, our method constructs
a deep residual network as transport maps.

Chapter 7. In this chapter, we consider ensemble learning problems with the L1-
regularization in an infinite-dimensional space of base classifiers; in other words, opti-
mization problems of probability measures to sample base classifiers contained in an en-
semble. Several methods (Schapire et al., 1998; Mason et al., 2000; Friedman, 2001; Ben-
gio et al., 2006; Bach, 2014) for this problem have been proposed due to its better statisti-
cal performance (Schapire et al., 1998; Koltchinskii and Panchenko, 2002; Bartlett et al.,
2006). Like boosting methods, these methods adopt the strategy that base classifiers are
added iteratively in a greedy fashion to avoid the difficulty of handling L1-regularization
in an infinite-dimensional space. In spite of the success of boosting methods in data anal-
ysis, it seems to be difficult to apply these methods for large-scale base classifiers such as
deep neural networks because the above methods require solving nonconvex subproblems
for adding base classifiers, which can become intractable. In this chapter, we propose a
new method called Stochastic Particle Gradient Descent (SPGD) for learning ensemble.
Our method adopt a completely different strategy as essentially explained in Chapter 6.
This strategy is in opposition to existing methods that successively increase the number
of basis to be combined and easily executable compared to those. In the theoretical analy-
sis, we show the convergence of the proposed method by adapting the result described in
Chapter 6 to this problem setting. As a result, good convergence property as fast as that of
a stochastic optimization method for finite-dimensional nonconvex problems is obtained.
We also show the interior optimality property of the method which characterizes an opti-
mality condition considered in this chapter. We finally provide two practical variants of
SPGD method.

Chapter 8. Generative adversarial networks (GANs) (Goodfellow et al., 2014) are con-
sidered as a promising scheme for learning generative models. GANs are composed of
two networks called a discriminator and a generator. These networks are trained in an
adversarial way. Generators generate samples to mimic real samples, whereas discrimina-
tors classify real samples and fake samples. Due to the success of generating high quality
images by GANs (Radford et al., 2016), many variants of GANs were proposed (Larsen
et al., 2016; Salimans et al., 2016; Nowozin et al., 2016; Chen et al., 2016; Zhang et al.,
2017). However, difficulty of training GANs also widely known. Some reasons for the
difficulty are high nonconvexity of an objective function and the limited representational
ability of the generator. In this chapter, we propose a new learning procedure to alleviate
the issues of limited representational power and local optimum by introducing a new type

12

1. Introduction

of layer called a gradient layer. The gradient layer finds a direction of improvement in
an infinite-dimensional space by computing the functional gradient. As shown in Chapter
6, since the functional gradient is not limited in the tangent space of a finite-dimensional
model, it has much more freedom and it can break the limit of the local optimum induced
by a finite-dimensional model. We theoretically justify this phenomenon from the func-
tional gradient method perspective and the property of Wasserstein distance. SteinGAN
(Wang and Liu, 2016) is closely related to our work and has a similar flavor. However, it
adopts different strategy for tracking gradient flow from our methods.
Chapter 9. Since neural networks are highly flexible, an architecture search of networks
is very important. Indeed, several studies tackle this problem (Zoph and Le, 2017; Liu
et al., 2017, 2018; Pham et al., 2018). One way of architecture search (Bengio et al.,
2006; Moghimi et al., 2016; Cortes et al., 2017; Huang et al., 2017a) is based on boosting
theory where parts of neural networks are considered as weak learners and they are added
in a greedy way like boosting. In particular, Huang et al. (2017a) is interesting and related
to our work presented in this chapter, which explores residual network architecture with
respect to depth using boosting theory. Residual networks (He et al., 2016) have achieved
great success in classification tasks as mentioned before. A notable feature of residual
networks is a special layer structure called skip-connection introduced by He et al. (2016)
to avoid the vanishing gradient problem, Thanks to their great performance, several vari-
ants of residual networks were proposed (Zagoruyko and Komodakis, 2016; Xie et al.,
2017; Huang et al., 2017b). Moreover, several theoretical studies have been devoted to
reveal a reason of their success and analyze the structure of residual networks. There are
mainly two thoughts: one is the ensemble view and the other is the optimization view
based on ordinary differential equation. These viewpoints are reminiscent of gradient
boosting methods (Mason et al., 1999; Friedman, 2001) which are known to be most use-
ful in data analysis competitions. Although residual networks and gradient boosting are
state-of-the-art methods in different domains, there is an interesting similarity like this.
However, there are several differences between these two methods. In this chapter, we
propose a new gradient boosting method called ResFGB for classification tasks based on
these observations with theoretical guarantees. That is, the feature extraction gradually
grows by functional gradient methods in the space of feature extractions and a classifier
having residual network-like architecture is obtained. The expected benefit of the method
over existing gradient boosting methods is representational ability due to a deep architec-
ture rather than a shallow model. Indeed, superior performance of the proposed method
is verified in experiments.

Organization of the Thesis

The main body of this thesis is composed of our several works. Papers related to this
thesis are listed below.

13

1. Introduction

• Chapter 3 is an extended work from Stochastic Proximal Gradient Descent with Ac-
celeration Techniques, A. Nitanda, Neural Information Processing Systems, 2014
(Nitanda, 2014).

• Chapter 4 is based on Accelerated Stochastic Gradient Descent for Minimizing Fi-
nite Sums, A. Nitanda, Artificial Intelligence and Statistics, 2016 (Nitanda, 2016).

• Chapter 5 is based on Stochastic Difference of Convex Algorithm and its Applica-
tion to Training Deep Boltzmann Machines, A. Nitanda and T. Suzuki, Artificial
Intelligence and Statistics, 2017 (Nitanda and Suzuki, 2017a).

• Chapter 7 is based on Stochastic Particle Gradient Descent for Infinite Ensembles,
A. Nitanda and T. Suzuki, preprint, 2017 (Nitanda and Suzuki, 2017b).

• Chapter 8 is based on Gradient Layer: Enhancing the Convergence of Adversarial
Training for Generative Models, A. Nitanda and T. Suzuki, Artificial Intelligence
and Statistics, 2018 (Nitanda and Suzuki, 2018b).

• Chapter 9 is based on Functional Gradient Boosting based on Residual Network
Perception, A. Nitanda and T. Suzuki, International Conference on Machine Learn-
ing, 2018 (Nitanda and Suzuki, 2018a).

Chapter 2 is a brief literature review of stochastic gradient methods to clarify the
contribution of our work presented in Chapter 3, 4, and 5. In Chapter 6, a functional
gradient descent which is a commonly used notion in Chapters 7, 8, and 9 is explained
with its theoretical property which leads to deeper understanding of Part II.

The relationship between chapters is depicted in Figure 1.1.

14

1. Introduction

Finite-dimensional Infinite-dimensional

Generalization
Chapter 2

SGD

Chapter 3
Accelerated SGD I

Chapter 4
Accelerated SGD II

Chapter 5
Stochastic DC

Chapter 6
FGD

Chapter 7
Infinite ensemble

Chapter 8
Generative model

Chapter 9
Gradient boosting

Figure 1.1: The organization of the thesis. FGD is the abbreviation for functional gradient
descent

15

Part I

Stochastic Optimization Methods for
Large Scale Problems

16

Chapter 2

Stochastic Gradient Descent

Stochastic gradient descent (Robbins and Monro, 1951) method is the most popular and
useful stochastic optimization method for large-scale machine learning problems. In this
chapter, we briefly introduce several properties of stochastic gradient descent and several
important notions used frequently in this thesis. We first give problem settings to be
solved in machine learning. The ultimate goal of most machine learning problems is to
solve expected risk minimization problems. Let g(x, ξ) be a loss function that represents
fitness between models and data; smaller is better, where x ∈ Rd is a parameter and ξ is
a random variable usually corresponds to a data. For example, for given data a ∈ Rd and
label b ∈ R, if we set g(x, (a, b)) = 1

2
(a⊤x − b)2, then we obtain regression problem. If

we set g(x, (a, b)) = log(1+exp(−bx⊤a)), then we obtain regularized logistic regression.
The expected risk minimization problem is defined as follows:

min
x∈Rd

{
f(x)

def
= E[g(x, ξ)]

}
, (2.1)

where E denotes the expectation with respect to ξ.
Although stochastic gradient descent can be applied for expected risk minimization

problems under appropriate settings, this problem is also sometimes intractable depend-
ing on an underlying distribution of ξ. Therefore, we often approximate an expected risk
using finite-samples (ξi)

n
i=1 obtained independently from ξ. Namely, we use an empir-

ical risk which is the average of g(x, ξ) as a surrogate function and solve the follow-
ing empirical risk minimization problems with some regularization. We simply denote
gi(x) = g(x, ξi).

min
x∈Rd

{
f(x)

def
=

1

n

∑
i

gi(x) + h(x)

}
, (2.2)

where h : Rd → is called regularization function that is used to prevent overfitting (Bous-
quet and Elisseeff, 2002; Mukherjee et al., 2003; Steinwart and Christmann, 2008; Shalev-
Shwartz and Ben-David, 2014). Typical choices of h is h(x) = λ

2
∥x∥1 (∥ · ∥1 is the

17

2. Stochastic Gradient Descent

L1-norm) and h(x) = λ
2
∥x∥22. We call these regularizers L1-regularization function and

L2-regularization function, respectively.
Stochastic gradient descent is the iterative method for solving both problems (2.1)

and (2.2). Note that although we now explain stochastic gradient descent method for ex-
pected risk minimization problems (2.1), we can extend it to empirical risk minimization
problems (2.2) in an obvious way. We assume g(x, ξ) is differentiable with respect to x
and we denote its partial derivative by ∂xg(x, ξ). Let k denote the iteration index, xk be
the current iterate, and ξk be the random variable having the same distribution as ξ. In
this thesis, we assume {ξk}k are independent. In stochastic gradient descent method, we
randomly choose the value ξk of ξ at iteration k and move the parameter xk along the di-
rection ∂xg(xk, ξk) with sufficiently small step size ηk which is called learning rate. That
is, the update of stochastic gradient descent is described as follows:

xk+1 ← xk − ηk∂xg(xk, ξk).
To introduce the convergence property of stochastic gradient descent, we give the

important notion of Lipschitz smoothness which is frequently used in this thesis. Let ⟨, ⟩2
and ∥ · ∥2 denote Euclidean inner-product and norm, respectively.

Definition 1 (Lipschitz smoothness). Let g : Rd → R be a differentiable function. We
call that g is L-smooth if there exists a positive value L > 0 such that ∀x,∀y ∈ Rd,

∥∇g(x)−∇g(y)∥ ≤ L∥x− y∥2.

The Lipschitz smoothness implies very useful inequality for analyzing iterative opti-
mization methods. As for its proof, see Nesterov (2004).

Proposition 1. Let g : Rd → R be an L-Lipschitz smooth function. Then, for ∀x,∀y ∈
Rd, we get

|g(y)− g(x)− ⟨∇g(x), y − x⟩2 | ≤
L

2
∥x− y∥22.

The convexity of functions is preferable for optimization methods because it may lead
to the global convergence property and faster convergence rate than that for nonconvex
problems. We here introduce the definition of convexity.

Definition 2 (Convexity). LetW ∈ Rd is a convex set and g : W → R be a real valued
function. We call that g is convex if ∀x,∀y ∈ W and ∀t ∈ [0, 1],

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y).

Moreover, we call that g is µ-strongly convex if there exists a positive value µ ≥ 0 such
that ∀x,∀y ∈ W and ∀t ∈ [0, 1],

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)− 1

2
µt(1− t)∥x− y∥22.

18

2. Stochastic Gradient Descent

When g is differentiable, the condition of strong convexity is equivalent to the follow-
ing:

g(x) + ⟨∇g(x), y − x⟩2 +
µ

2
∥y − x∥22 ≤ g(y) (∀x, ∀y ∈ W),

When a function g is L-Lipschitz smooth and µ-strongly convex, the ratio L/µ called
condition number is defined, which is very important quality because this number usually
affects the convergence speed of gradient-based optimization methods. For more useful
inequalities of Lipschitz smooth function and (strongly) convex functions, we refer the
reader to Nesterov (2004).

2.1 Convergence Criterion and Complexity
Due to the difficulty of obtaining global minima of nonconvex problems, the expected
gradient norm E∥∇f(xk)∥22, where the expectation is taken with respect to random vari-
ables in a stochastic optimization method, is adopted usually as a convergence criterion
(Ghadimi and Lan, 2013b) for nonconvex problems. Therefore, convergence criterion for
nonconvex problems is described as follows: for a given threshold ϵ > 0,

E∥∇f(xk)∥22 ≤ ϵ.

On the other hand, for convex problems, the objective gap f(x) − f∗, where f∗ =
infx∈Rd f(x), is adopted as a convergence criterion because global convergence is guaran-
teed in several optimization methods, that is, convergence criterion for convex problems
is described as follows: for a given threshold ϵ > 0,

E[f(xk)− f∗] ≤ ϵ.

The performance of stochastic optimization methods is evaluated by a cost spent to
find an ϵ-accurate solution in terms of the above criterion. There are two types of costs
commonly used in this literature; the first is total complexity that is the number of gradient
evaluations and the second is iteration complexity that is the number of updates of the
parameter. In this thesis, we use both types of complexities. We note that these qualities
coincide each other for the vanilla stochastic gradient descent, thus, we say simply the
complexity for such a case.

2.2 Convergence Analysis for Nonconvex Problem
Under Lipschitz smoothness assumption, a convergence analysis with several learning
rate strategies for nonconvex problems is provided in Ghadimi and Lan (2013b). We
introduce their result with a constant learning strategy in the following theorem.

19

2. Stochastic Gradient Descent

Theorem 1 (Ghadimi and Lan (2013b)). Let g(x, ξ) be L-Lipschitz smooth with respect
to x and the variance of stochastic gradient ∂xg(x, ξ) is uniformly bounded by σ2 > 0,
that is, E∥∂xg(x, ξ)−∇f(x)∥22 ≤ σ2 for ∀x ∈ Rd. Consider running stochastic gradient
descent for T iterations with a constant learning rate ηk = η > 0 from an initial point
x0 ∈ Rd. We assume f∗ = infx∈Rd f(x) > −∞. Then, if η ≤ 1/L, it follows that

1

T

T−1∑
k=0

E∥∇f(xk)∥22 ≤
2

ηT
(f(x0)− f∗) +

ηLσ2

2
.

By taking the sufficiently small learning rate, we can get the total complexity imme-
diately from this theorem.

Corollary 1. Let us make the same assumption as Theorem 1. If we set a constant learning
rate η = min

{
1
L
, ϵ
Lσ2

}
. Then, if T ≥ 4L

ϵ
(f(x0)− f∗)max

{
1, σ

2

ϵ

}
, then we get

1

T

T−1∑
k=0

E∥∇f(xk)∥22 ≤ ϵ.

This corollary states that the total complexity of stochastic gradient descent to obtain
an ϵ-accurate solution is at most O(Lσ2/ϵ2). In Chapter 5, we further investigate noncon-
vex problems by utilizing specific structure called difference of convex (Tao, 1986).

2.3 Convergence Analysis for Convex Problem
There are mainly two types of convergence proofs of stochastic gradient descent for con-
vex problems; whether it relies on the smoothness or not. The smoothness does not always
accelerate the order of convergence rate in general stochastic optimization (Tsybakov,
2003) except for specific functions, (for instance, Bach and Moulines (2013) provides
convergence rates O(1/T) for the square and logistic losses without strong convexity) but
the proof based on Proposition 1 allows us to be free from a boundedness assumption on
gradient norms. In other words, proofs not relying on the smoothness for strongly convex
problems are valid only for the projected stochastic gradient descent introduced later, to
ensure the boundedness of gradients.

Since a convergence complexity of the order O(1/ϵ2) for general convex problems
can be obtain immediately from Corollary 1, we introduce a convergence analysis of or-
der O(1/ϵ) for strongly convex problems. We also note that following convergence rates
of stochastic gradient descent lead to those for non-strongly convex problems by reg-
ularizing techniques, moreover, recently proposed successively regularizing techniques
(Allen-Zhu and Hazan, 2016) leads to those without log(1/ϵ) factor unlike normal regu-
larizing strategy. For more direct analyses of projected stochastic gradient descent in the

20

2. Stochastic Gradient Descent

case of general convex problems using the gradient boundedness, we refer the reader to
Nemirovski et al. (2009); Bubeck (2015).

Theorem 2 (Bottou et al. (2016)). Let g(x, ξ) be L-Lipschitz smooth with respect to x and
f(x) be µ-strongly convex. We assume that the variance of stochastic gradient ∂xg(x, ξ)
is uniformly bounded by σ2 > 0, that is, E∥∂xg(x, ξ) −∇f(x)∥22 ≤ σ2 for ∀x ∈ Rd. We
assume f∗ = infx∈Rd f(x) > −∞. Consider running stochastic gradient descent for T
iterations from an initial point x0 ∈ Rd.
(i) If we use a constant learning rate ηk = η > 0 satisfying η ≤ 1/L, then

E[f(xT−1)− f∗] ≤
ηLσ2

2µ
+ (1− ηµ)T−1

(
f(x0)− f∗ −

ηLσ2

2µ

)
.

(ii) If we use diminishing learning rates ηk = β
γ+k+1

for some β > 1/µ and γ > 0,
satisfying η0 ≤ 1/L, then

E[f(xT−1)− f∗] ≤
ν

γ + T
,

where

ν
def
= max

{
Lβ2σ2

2(βµ− 1)
, (γ + 1)(f(x0)− f∗)

}
.

From this theorem, we can immediately derive a corollary concerning complexities
by setting (i) η = min

{
µϵ
Lσ2 ,

1
L

}
for the former part and (ii) β = 2/µ and γ = 2L/µ − 1

for the latter part. We denote the condition number by κ = L/µ.

Corollary 2. Let us make the same assumption as Theorem 2.
(i) If we set a constant learning rate ηk = min

{
µϵ
Lσ2 ,

1
L

}
, then complexities to obtain

ϵ-accurate solution is

1 + κmax

{
1,
σ2

µϵ

}
log

L(f(x0)− f∗)
ϵ

.

(ii) If we set diminishing learning rates ηk = 2/(2κ + k)µ, then complexities to obtain
ϵ-accurate solution is

2κ

ϵ
max

{
2σ2

µ
, f(x0)− f∗

}
.

We next introduce convergence analysis not relying on the smoothness. Since analy-
ses of this type require the boundedness of gradients, the projected version of stochastic
gradient descent is essential and slightly better result than the above is achieved. Let
W ⊂ Rd be a convex domain. Then, the update of projected stochastic gradient descent
is described as follows:

xk+1 ← ΠW (xk − ηk∂xg(xk, ξk)) ,

21

2. Stochastic Gradient Descent

where ΠW is the projection operator onto a convex domainW . In Rakhlin et al. (2012),
the convergence rate O(1/T) of projected stochastic gradient descent with α-suffix av-
eraging is obtained for strongly convex problems without the smoothness. The α-suffix
averaging is defined by

xαT =
x(1−α)T+1 + · · ·+ xT

αT
,

for a constant α ∈ (0, 1) where we simply assume that αT and (1− α)T are integers.

Theorem 3 (Rakhlin et al. (2012)). Let f(x) be µ-strongly convex and assume
E∥∂xg(x, ξ)∥22 ≤ G2. We assume f∗ = infx∈W f(x) > −∞. Consider running pro-
jected stochastic gradient descent for T iterations with an initial point x0 ∈ Rd. Then, we
get

E[f(xαT−1)− f∗] ≤
2 + 2.5 log

(
1

1−α

)
α

G2

µT
. (2.3)

We note that similar results to this theorem was given in Lacoste-Julien et al. (2012);
Bubeck (2015). Moreover, the rate of O(1/T) was also obtained in Nemirovski et al.
(2009) for strongly convex problems when the optimal point is an interior in W , but it
requires both the boundedness assumption on gradients and Lipschitz smoothness. A
result concerning a complexity is obtained as follows.

Corollary 3. Let us make the same assumption as Theorem 3. Then, a complexity to
obtain ϵ-accurate solution by α-suffix projected stochastic gradient descent is

2 + 2.5 log
(

1
1−α

)
α

G2

µϵ
.

2.4 Optimal Complexity for Stochastic Convex Problems
According to Nemirovskii and Yudin (1983); Agarwal et al. (2009), optimal complexities
to obtain ϵ-accurate solutions are

O

(√
L

ϵ
+
σ2

ϵ2

)
(2.4)

in the case of stochastic convex problems and

O

(√
L

µ
log

(
L

ϵ

)
+
σ2

µϵ

)
(2.5)

in the case of stochastic strongly convex problems. Note that the above rates are essen-
tially composed of a deterministic (bias) and stochastic (variance) optimization terms.

22

2. Stochastic Gradient Descent

Indeed, these rates correspond to deterministic optimal rates were obtained in Nesterov
(1983, 2004) when σ = 0 and it is known that accelerated gradient methods (Nesterov,
1983, 2004) achieve these optimal rates.

In a stochastic optimization case, we notice that stochastic gradient methods achieve
(asymptotic) optimal rates from the previous analyses. A non-asymptotic analysis was
originally provided by Bach and Moulines (2011). More precisely they showed that
stochastic gradient descent with a constant small learning rate achieves an optimal rate for
stochastic strongly convex problems though it may be unstable and the Polyak-Ruppert
averaging (Ruppert, 1988; Polyak and Juditsky, 1992) variant achieves optimal rates for
both stochastic strongly convex and non-strongly convex problems.

Although stochastic gradient descent methods are basically asymptotic optimal in
terms of only stochastic terms which are dominant in (2.4) and (2.5), there are some
methods that achieve optimal rates in terms of both deterministic and stochastic terms.
Such methods are called uniformly optimal (Nemirovskii and Yudin, 1983). For instance,
AC-SA (Ghadimi and Lan, 2013a) and ORDA (Chen et al., 2012) and their multi-stage
variants (Chen et al., 2012; Ghadimi and Lan, 2013a) are uniformly optimal.

For the non-strongly convex least squares regression problems, a much improved op-
timal complexity was shown. It can be obtained by combining the optimal deterministic
optimization term (Nesterov, 1983) and the optimal stochastic term (Tsybakov, 2003):

O

(√
1

ϵ
+
σ2

ϵ

)
. (2.6)

We notice that this bound achieves a rate of O(1/ϵ) without strong convexity. In Bach
and Moulines (2013), asymptotic optimal complexity of averaging stochastic gradient de-
scents without strong convexity was shown, but the deterministic term was O(1/ϵ) which
is slower than that of (2.6). More recently, the uniform optimal complexity (2.6) was
achieved by accelerated stochastic averaged gradient descent (Dieuleveut et al., 2017).

2.5 Variance Reduction Methods
As argued earlier, convergence rates of stochastic optimization methods are essentially
sum of the deterministic and stochastic optimization terms. Thus, variance reduction
techniques are important to accelerate the convergence speed of these methods. The sim-
plest method is minibatching that is a simple modification of the methods. While in
vanilla stochastic gradient methods, deterministic gradients are approximated by stochas-
tic gradients consisting of a single instance, in minibatch methods, stochastic gradients
are computed by multiple instances to reduce the variance of estimators. One benefit
due to minibatching is speeding up by parallel computing of stochastic gradients. In this
viewpoint, total computing time is almost proportional to the iteration complexity and its

23

2. Stochastic Gradient Descent

theoretical limit corresponds to the deterministic optimization (bias) term in its complex-
ity. Since the stochastic term is much slower than deterministic term usually, very large
minibatch size is required to achieve this limit for sufficiently small ϵ. For example, the
iteration complexity of the uniformly optimal methods with minibatch size b is

O

(√
L

µ
log

(
L

ϵ

)
+

σ2

µbϵ

)
,

thus, minibatch size for reaching the optimal iteration complexity is

O

σ2

µϵ

(√
L

µ
log

(
L

ϵ

))−1
 .

This size is unrealistic for a small precision ϵ. Therefore, estimating sufficient mini-
batch size to achieve the optimal iteration complexity is an important problem. We tackle
this problem in Chapter 3 and 4 by combining other variance reduction techniques.

24

Chapter 3

Accelerated Variance Reduced
Stochastic Gradient Descent I

Proximal gradient descent and stochastic proximal gradient descent are popular methods
for solving regularized risk minimization problems in machine learning and statistics. In
this chapter, we propose and analyze an accelerated variant of these methods in the mini-
batch setting. That is, the method incorporates three techniques: Nesterov’s acceleration
method, a variance reduction for the stochastic gradient, and minibatching. We show that
our method can achieve both the optimal total and iteration complexity simultaneously by
utilizing these techniques. Furthermore, we show the necessity of minibatching for the
optimal iteration complexity by giving lower-bounds on the minibatch size.

This chapter is based on the work Stochastic Proximal Gradient Descent with Accel-
eration Techniques, A. Nitanda, Neural Information Processing Systems, 2014 (Nitanda,
2014).

3.1 Overview
In this chapter, we focus on the regularized empirical risk minimization problem:

min
x∈Rd
{f(x) = g(x) + h(x)} , (3.1)

where g is the average of the smooth convex functions g1, . . . , gn from Rd to R, i.e.,
g(x) = 1

n

∑n
i=1 gi(x) and h : Rd → R is a convex function. We assume that h can

be non-differentiable, but relatively simple which means that proximal operator can be
computed efficiently. Typical examples of h are L1-regularization function λ∥x∥1 and L2-
regularization function λ

2
∥x∥22, where λ > 0 is a regularization parameter. Since h may be

non-differentiable, we consider (stochastic) proximal gradient descent rather than vanilla
(stochastic) gradient descent in this chapter. The definitions of the proximal operator and
(stochastic) proximal gradient descent will be given in the next section.

25

3. Accelerated Variance Reduced Stochastic Gradient Descent I

The advantage of stochastic proximal gradient descent over its deterministic variant
is that at each iteration, it only requires the computation of a single gradient ∇gik(xk).
In contrast, each iteration of proximal gradient descent evaluates the n gradients. Thus
the computational cost of stochastic gradient per iteration is 1/n that of the exact gradi-
ent. However, due to the variance introduced by random sampling, stochastic proximal
gradient descent obtains a slower convergence rate as shown in the previous chapter.

Under the smoothness and the strong convexity assumptions, (proximal) gradient de-
scent with a constant learning rate ηk = 1

L
, where L is the smoothness parameter, achieves

a linear convergence rate. On the other hand, for stochastic (proximal) gradient descent,
because of the variance introduced by random sampling, we need to choose diminishing
learning rate ηk = O(1/k) or small learning rate depending on the required optimization
accuracy ϵ, and thus the stochastic (proximal) gradient descent converges at a sub-linear
rate.

To improve the stochastic (proximal) gradient descent, we need a variance reduc-
tion technique, which allows us to take a larger learning rate. Recently, several stud-
ies proposed such variance reduction methods for the various special cases of (3.1). In
the case where gi(x) is Lipschitz smooth and h(x) is strongly convex, Shalev-Shwartz
and Zhang (2012, 2013b) proposed a proximal stochastic dual coordinate ascent (Prox-
SDCA); the same authors developed accelerated variants of SDCA (Shalev-Shwartz and
Zhang, 2013a, 2014). Roux et al. (2012) proposed a stochastic average gradient (SAG)
for the case where gi(x) is Lipschitz smooth, g(x) is strongly convex, and h(x) ≡ 0.
These methods achieve a linear convergence rate. However, SDCA and SAG need to
store all gradients (or dual variables), so that O(nd) storage is required in general prob-
lems. Although this can be reduced toO(n) for linear prediction problems, these methods
may be unsuitable for more complex and large-scale problems. More recently, Johnson
and Zhang (2013) proposed stochastic variance reduction gradients (SVRG) for the case
where gi(x) is L-Lipschitz smooth, g(x) is µ-strongly convex, and h(x) ≡ 0. SVRG
achieves the following total complexity (total number of component gradient evaluations
to find an ϵ-accurate solution) and the iteration complexity (the number of iterations to
find an ϵ-accurate solution)

O

(
(n+ κ) log

(
1

ϵ

))
and O

(
κ log

(
1

ϵ

))
,

respectively, where κ is the condition number L/µ. Note that this method need not store
all gradients unlike SAG, Furthermore, Xiao and Zhang (2014) proposed a proximal vari-
ant of SVRG called Prox-SVRG and showed that it achieves the same complexity as
SVRG.

However, this iteration complexity is slower than the optimal iteration complexity
(Nesterov, 2004):

O

(√
κ log

(
1

ϵ

))
.

26

3. Accelerated Variance Reduced Stochastic Gradient Descent I

We can show that this complexity is not reached by SVRG even if utilizing the minibatch
because SVRG is an stochastic variant of deterministic gradient descent.

On the other hand, the following lower bounds on the total complexity has been shown
for the problem (3.1) (Agarwal and Bottou, 2014; Woodworth and Srebro, 2016; Arjevani
and Shamir, 2016).

Ω

(
n+
√
nκ log

(
1

ϵ

))
.

It is well known that the optimal iteration complexities is achieved by deterministic
acceleration methods (Nesterov, 2004, 2005, 2013; Allen-Zhu and Orecchia, 2014). As
for the optimal total complexity, several studies (Shalev-Shwartz and Zhang, 2014; Lin
et al., 2015; Frostig et al., 2015; Zhang and Xiao, 2017; Allen-Zhu, 2017) have proposed
the optimal methods in terms of this complexity.

However, these methods cannot achieve both optimal complexities simultaneously.
More recently, an exceptional method was proposed by Murata and Suzuki (2017),
namely, they showed that these optimal complexities are obtained by extending Acc-Prox-
SVRG (Nitanda, 2014) to doubly accelerated scheme.

In this chapter, we first introduce the method Accelerated Mini-Batch Prox-SVRG
(Acc-Prox-SVRG), which is originally proposed in a short version of this work (Nitanda,
2014). Acc-Prox-SVRG incorporates two acceleration techniques in the mini-batch set-
ting: Nesterov’s acceleration method (Nesterov, 2004) and an variance reduction tech-
nique of SVRG (Johnson and Zhang, 2013). We show that the total and iteration com-
plexities of this method with reasonable minibatch size O(

√
κ) are

O

(
(n+ κ) log

(
1

ϵ

))
and O

(√
κ log

(
1

ϵ

))
.

Moreover, we show that Acc-Prox-SVRG with APPA (Frostig et al., 2015) using the
optimal minibatch size O(

√
n) achieves the following total and iteration complexities.

O

(
(n+

√
nκ) log

(
1

ϵ

))
and O

(√
κ log

(
1

ϵ

))
.

Namely, the optimal total complexity and the optimal iteration complexity are achieved
up to a logarithmic factor simultaneously like DASVRDA (Murata and Suzuki, 2017). A
notable common feature of our method and DASVRDA is minibatching. In this chapter,
we show the necessity of minibatching by providing a lower-bound on the minibatch size
for achieving the optimal iteration complexity, and show that these two methods achieve
it by the optimal minibatch size.

A short version of this work have been published at NIPS 2014 (Nitanda, 2014). Ex-
tensions from the conference paper are: (i) both the optimal total and iteration complexi-
ties are achieved by applying APPA to Acc-Prox-SVRG with the efficient minibatch size
O(
√
n) in the case of κ > n, (ii) we show that this minibatch is a lower bound to achieve

the optimal iteration complexity.

27

3. Accelerated Variance Reduced Stochastic Gradient Descent I

3.2 Preliminary
In this section, we introduce some notions, assumptions, and methods used in this chapter.
Since h can be non-differentiable, vanilla gradient descent and stochastic gradient descent
are not directly applied to the problem (3.1) as mentioned earlier. Thus, we first introduce
the proximal operator and proximal variants of (stochastic) gradient descent.

The definition of the proximal operator is

proxηh(y) = argmin
x∈Rd

{
1

2
∥x− y∥2 + ηh(x)

}
.

In (stochastic) proximal gradient descent, the updated is constructed by the composition of
(stochastic) gradient step and the proximal operator. Namely, proximal gradient descent
is performed as follows; at iteration k = 1, 2, . . .,

xk+1 = proxηkh (xk − ηk∇g(xk)) ,

and stochastic proximal gradient descent is performed as follows; at iteration k = 1, 2, . . .,
we pick ik randomly from {1, 2, . . . , n}, and take the following update:

xk+1 = proxηkh (xk − ηk∇gik(xk)) .

In this chapter, we make the following assumptions to provide a convergence analysis.

Assumption 1. Let L and µ be positive values such that L ≥ µ. We assume that each
convex function gi(x) is L-Lipschitz smooth and g(x) is µ-strongly convex, that is, it
follows that

gi(x) ≤ gi(y) + ⟨∇gi(y), x− y⟩2 +
L

2
∥x− y∥2,

g(x) ≥ g(y) + ⟨∇g(y), x− y⟩2 +
µ

2
∥x− y∥2.

Assumption 2. The regularization function h(x) is a lower semi-continuous proper con-
vex function; however, it can be non-differentiable or non-continuous.

3.2.1 Stochastic Variance Reduction Gradient
In this section, we briefly review stochastic variance reduction gradient (SVRG) (John-
son and Zhang, 2013). To ensure the convergence of stochastic gradient descent, the
learning rate must decay to zero so that we reduce the variance effect of the stochastic
gradient. This slows down the convergence. Variance reduction techniques (Johnson and
Zhang, 2013; Xiao and Zhang, 2014; Konečnỳ and Richtárik, 2013; Konečnỳ et al., 2016)
such as SVRG have been proposed to solve this problem. We introduce prox-SVRG in a

28

3. Accelerated Variance Reduced Stochastic Gradient Descent I

minibatch setting. Prox-SVRG is a multi-stage scheme. During each stage, this method
performs m-iterations of stochastic proximal gradient descent using the following direc-
tion,

vk = ∇gIk(xk)−∇gIk(x̃) +∇g(x̃),

where x̃ is a starting point at stage, k is an iteration index, Ik = {i1, . . . , ib} is a uniformly
randomly chosen size b subset of {1, 2, . . . , n}, and fIk = 1

b

∑b
j=1 fij . Note that vk

is an unbiased estimator of gradient ∇g(xk): EIk [vk] = ∇g(xk), where EIk denotes
the expectation with respect to Ik. The overall procedure of SVRG is summarized in
Algorithm 1.

Algorithm 1 Proximal Stochastic Variance Reduced Gradient (Prox-SVRG)
Input: the number of outer-iterations T , the number of inner-iterationsm, learning rate
η, mini-batch size b, and initial point x̃1
for s = 1 to T do
x̃← x̃s
ṽ ← 1

n

∑n
i=1∇gi(x̃)

x1 ← x̃
for k = 1 to m do

Randomly pick subset Ik ⊂ {1, 2, . . . , n} of size b
vk ← ∇gIk(yk)−∇gIk(x̃) + ṽ
xk+1 ← proxηh (yk − ηvk)

end for
x̃s+1 ← 1

m

∑m+1
k=2 xm

end for
Return x̃T+1

Under the smoothness assumption, it is shown that variances of vk approach to zero as
optimization proceeds and SVRG with b = 1 achieves total complexity ofO((n+κ) log 1

ϵ
)

and iteration complexity of O(κ log 1
ϵ
) for the strongly convex problems, where κ is the

condition number (for the proof, see Johnson and Zhang (2013); Xiao and Zhang (2014)).

3.2.2 Accelerated Proximal Gradient Descent

In this section, we briefly introduce accelerated proximal gradient descent (APG) (Nes-
terov, 2004). In APG, two sequences of parameters are updated rather than one se-
quence like usual gradient descent, to accelerate the convergence speed of gradient de-
scent method. Indeed, for Lipschitz-smooth and strongly convex function g, it is shown
that APG achieves the optimal iteration complexity of O(

√
κ log(1/ϵ)), where κ is the

condition number. We note that the proof of this convergence rate is essentially included

29

3. Accelerated Variance Reduced Stochastic Gradient Descent I

in that of our method proposed in the next section. The overall procedure of APG is
provided in Algorithm 2.

Algorithm 2 Accelerated Proximal Gradient Descent (APG)
Input: the number of iterations T , learning rate η, non-negative sequence β1, . . . , βm,
and initial point x1
y1 ← x1
for s = 1 to T do
vs ← gIs(ys)
xs+1 ← proxηh (ys − ηvs)
ys+1 ← xs+1 + βs(xs+1 − xs)

end for
Return xT+1

3.2.3 APPA Acceleration
In this section, we introduce a technique APPA (Frostig et al., 2015) that is a meta-
algorithm to accelerate an existing optimization methods. For instance, in the case of
κ > n, the total complexities of SAG, SAGA, MISO, and SVRG are improved from
O(κ log(1/ϵ)) to O(

√
nκ log(1/ϵ)), that is, they reach the optimal total complexity up to

a logarithmic factor. In APPA, the objective function 3.1 with a proximal term at a cur-
rent iterate is approximately minimized successively by using an existing method and an
acceleration step is taken. The overall scheme of APPA is described in Algorithm 3. We
denote by F ∗

s the infimum infx∈Rd Fs(x), where Fs is defined in Algorithm 3.
The following lemma is key result to derive a total complexity of an optimization

method accelerated by APPA. Concretely, Lemma 1 gives an iteration complexity of Al-
gorithm 3 ignoring a complexity of an inner-solverM.

Lemma 1 (Frostig et al. (2015)). Suppose that f is µ-strongly convex and γ ≥ 3µ/2.
Consider Algorithm 3. If a generated sequence {ws}Tc+1

s=1 satisfies the following

E[Fs(ws+1)]− F ∗
s ≤

1

4

(
µ

µ+ 2γ

) 3
2

(Fs(ws)− F ∗
s). (3.2)

Then, there exists a positive value C0 which only depend on w0 such that

E[f(ws)]− f∗ ≤
(
1− 1

2

√
µ

µ+ 2γ

)s
C0. (3.3)

From this lemma, we can get the complexity of APPA for the case of γ ≥ 3µ/2:

O

(√
γ

µ
log

(
1

ϵ

))
. (3.4)

30

3. Accelerated Variance Reduced Stochastic Gradient Descent I

Algorithm 3 APPA
Input: the number of iterations Tc, strong convexity µ, positive parameter γ > 2µ
inner-solverM, the number of iterations TM forM, and initial point w1

ρ = µ+2γ
µ

ζ = 2
µ
+ 1

γ

v1 ← w1

for s = 1 to Tc do
zs ← 1

1+ρ−1/2ws +
ρ−1/2

1+ρ−1/2vs
Solve the following problem approximately by runningM starting from ws for TM-
iterations:
ws+1 ← argminx∈Rd Fs(x)

def
= f(x) + γ

2
∥x− zs∥2

gs ← γ(zs − ws+1)
vs+1 ← (1− ρ−1/2)vs + ρ−1/2(ys − ζgs)

end for
Return wTc+1

Note that although we here incorporate APPA, Catalyst in Lin et al. (2015, 2017)
which is another proximal acceleration scheme also has a similar property.

3.3 Accelerated Mini-Batch Prox-SVRG
In this section, we give a detailed description of the proposed method called accelerated
proximal SVRG (Acc-Prox-SVRG). Since we are attempting to get the optimal iteration
complexity with reasonable minibatch size, we incorporate (Nesterov, 2004) and prox-
SVRG (Xiao and Zhang, 2014). Acc-Prox-SVRG is a multi-stage scheme like prox-
SVRG. During each stage, this method performs m-iterations of APG by using variance
reduced stochastic gradient with minibatch:

vk = ∇gIk(yk)−∇gIk(x̃) +∇g(x̃), (3.5)

where Ik = {i1, . . . , ib} is a randomly chosen size b subset of {1, 2, . . . , n} and gIk =
1
b

∑b
j=1 gij . At the beginning of each stage, the initial point x1 is set to be x̃, and at the

end of stage, x̃ is updated. Conditioned on yk, we can take expectation with respect to
Ik and obtain EIk [vk] = ∇g(yk), so that vk is an unbiased estimator. As described in
the next section, the conditional variance EIk∥vk − ∇g(yk)∥2 can be much smaller than
Ei∥∇gi(yk) − ∇g(yk)∥2 near the optimal solution. The overall procedure of Acc-Prox-
SVRG is given in Algorithm 4.

In our analysis, we focus on a basic variant of Algorithm 4 with βk =
1−√

µη

1+
√
µη

. We note
that Acc-Prox-SVRG can be further accelerated by applying APPA in an obvious way:
running Algorithm 3 using Algorithm 4 as an inner-solverM.

31

3. Accelerated Variance Reduced Stochastic Gradient Descent I

Algorithm 4 Acc-Prox-SVRG
Input: the number of outer-iterations T , the number of inner-iterationsm, learning rate
η, mini-batch size b, non-negative sequence (βk)

m
k=1, and initial point x̃1

for s = 1 to T do
x̃← x̃s
ṽ ← 1

n

∑n
i=1∇gi(x̃)

x1 = y1 ← x̃
for k = 1 to m do

Randomly pick subset Ik ⊂ {1, 2, . . . , n} of size b
vk ← ∇gIk(yk)−∇gIk(x̃) + ṽ
xk+1 ← proxηh (yk − ηvk)
yk+1 ← xk+1 + βk(xk+1 − xk)

end for
x̃s+1 ← xm+1

end for
Return x̃T+1

Table 3.1: The best achievable total and iteration complexities.

Algorithm Condition b,m η Total complexity Iteration complexity

Acc-Prox-SVRG n ≥ κ O(
√
κ) O

(
1
L

)
O
(
n log

(
1
ϵ

))
O
(√

κ log
(
1
ϵ

))
with APPA n < κ O(

√
n) O

(
1

L−µ

)
Õ
(√

nκ log
(
1
ϵ

))
Õ
(√

κ log
(
1
ϵ

))

3.4 Analysis
In this section, we present our analysis of the convergence rates of Algorithm 4 and it with
APPA under Assumptions 1 and 2. All missing proofs are provided in the Appendix of this
chapter. We summarize the best achievable complexities derived in this section in Table
3.1. Note that the optimal total and iteration complexities are obtained simultaneously up
to a logarithmic factor. The notation Õ hides logarithmic terms of µ and γ (parameter of
APPA).

We first give useful notion estimate sequence which was developed to prove fast con-
vergence rate of APG (Nesterov, 2004). In the following analysis, we may omit the outer
index s for notational simplicity. By the definition of a proximity operator, there exists a
subgradient ξk ∈ ∂h(xk+1) such that

xk+1 = yk − η (vk + ξk) .

32

3. Accelerated Variance Reduced Stochastic Gradient Descent I

We define the estimate sequence Φk(x) (k = 1, 2, . . . ,m+ 1) by

Φ1(x) = f(x1) +
µ

2
∥x− x1∥2

Φk+1(x) = (1−√µη)Φk(x) +
√
µη{gIk(yk) + ⟨vk, x− yk⟩2 +

µ

2
∥x− yk∥2

+ h(xk+1) + ⟨ξk, x− xk+1⟩2}, for k ≥ 1.

We set

Φ∗
k = min

x∈Rd
Φk(x) and zk = argmin

x∈Rd

Φk(x).

Since∇2Φk(x) = µIn, it follows that for ∀x ∈ Rd,

Φk(x) =
µ

2
∥x− zk∥2 + Φ∗

k. (3.6)

The following lemma is the key to the analysis of our method.

Lemma 2. Consider Algorithm 4 under Assumptions 1 and 2. If η ≤ 1
2L

, then for k ≥ 1
we have

E [Φk(x)] ≤ f(x) + (1−√µη)k−1 (Φ1 − f)(x), (3.7)

E [f(xk)] ≤ E

[
Φ∗
k +

k−1∑
l=1

(1−√µη)k−1−l
{
−µ
2

1− µη
√
µη
∥xl − yl∥2 + η∥∇g(yl)− vl∥2

}]
,(3.8)

where the expectation is taken with respect to the history of random variables I1, . . . , Ik−1.

Note that if the conditional variance of vl is equal to zero, we immediately obtain a
linear convergence rate from inequalities (3.7) and (3.8). Our bound on the variance of vk
is given in the following lemma.

Lemma 3. Consider Algorithm 4 under Assumption 1. Let x∗ = argmin
x∈Rd

f(x). Condi-

tioned on yk, we have that

EIk∥vk −∇g(yk)∥2 ≤
1

b

n− b
n− 1

(
2L2∥yk − xk∥2 + 8L(f(xk)− f(x∗) + f(x̃)− f(x∗))

)
.

Utilizing these lemmas, we can give the convergence rate of Algorithm 4.

Theorem 4. Consider Algorithm 4. Suppose Assumption 1 and 2 hold. Let η ≤
min

{
(pb)2

64

(
n−1
n−b

)2 µ
L2 ,

1
2L

}
and 0 < p < 1. Then we have

E [f(x̃s+1)− f(x∗)] ≤
(
(1− (1− p)√µη)m +

p

1− p

)
(2 + p)(f(x̃s)− f(x∗)). (3.9)

33

3. Accelerated Variance Reduced Stochastic Gradient Descent I

Moreover, if m ≥ 1
(1−p)√µη log

1−p
p

, then it follows that

E [f(x̃s+1)− f(x∗)] ≤
2p(2 + p)

1− p
(f(x̃s)− f(x∗)). (3.10)

From Theorem 4, we can see that for small 0 < p, the total and iteration complexities
of Acc-Prox-SVRG are (total number of component gradient evaluations to find an ϵ-
accurate solution) is

O

((
n+

b
√
µη

)
log

(
1

ϵ

))
and O

(
1
√
µη

log

(
1

ϵ

))
.

Thus, we have the following corollary:

Corollary 4. Consider Algorithm 4. Suppose Assumption 1 and 2. Let p be sufficiently
small, as stated above, and η = min

{
(pb)2

64

(
n−1
n−b

)2 µ
L2 ,

1
2L

}
. If mini-batch size b is smaller

than
⌈

8
√
κn√

2p(n−1)+8
√
κ

⌉
, then the learning rate η is equal to (pb)2

64

(
n−1
n−b

)2 µ
L2 and the total

and iteration complexities are

O

((
n+

n− b
n− 1

κ

)
log

(
1

ϵ

))
and O

(
n− b
n− 1

κ

b
log

(
1

ϵ

))
.

Otherwise, η = 1
2L

and the total and iteration complexities become

O

((
n+ b

√
κ
)
log

(
1

ϵ

))
and O

(√
κ log

(
1

ϵ

))
.

We denote b0 =
8
√
κn√

2p(n−1)+8
√
κ

and note that b0 = O (min{n,
√
κ}). From Corollary 4,

the total and iterations complexities of Algorithm 4 decrease monotonically with respect
to b when b < ⌈b0⌉ and the total complexity increases monotonically when b ≥ ⌈b0⌉.
Moreover, if b = 1, then Algorithm 4 has the same complexities as that of Prox-SVRG,
while if b = n then the complexities of this method are equal to those of APG. Therefore,
with an appropriate mini-batch size b0, Algorithm 4 may outperform both Prox-SVRG and
APG. Even if the mini-batch is not appropriate, then Algorithm 4 is still comparable to
Prox-SVRG or APG. The following total and overall complexity are achieved Algorithm
4 by setting b = b0,

O

((
n+min{κ, n

√
κ}
)
log

(
1

ϵ

))
and O

(
min{

√
κ, n} log

(
1

ϵ

))
.

Therefore, we see that the optimal total and iteration complexities are achieved simul-
taneously up to a logarithmic factor by Algorithm 4 with an efficient minibatch size of
b = O(

√
κ) when n ≥ κ.

34

3. Accelerated Variance Reduced Stochastic Gradient Descent I

We next derive complexities of Algorithm 4 with APPA from results introduced in
Section 3.2.3 in the case of n < κ. To do so, we specify complexities of Algorithm 4 for
solving subproblems with required accuracy (3.2) by APPA. Since gi(x) + γ

2
∥x− zs∥2 is

L+ γ-smooth and g(x) + γ
2
∥x− zs∥2 is µ+ γ-strongly convex, the condition numbers of

subproblems are κ′ def
= L+γ

µ+γ
. We assume γ > 3µ/2 below.

By choosing p to be satisfied 2p(2+p)/1−p ≤ 1/2, we see that the objective Fs can be
halved by running Algorithm 4 with the setting: b = O(min{n,

√
κ′}), η = O(1/(L+γ)),

and m = O(
√
κ′), Moreover, we note that the number of outer iteration of Algorithm 4

to satisfy requirement (3.2) is O(log(γ/µ)). Thus, by combining these observations and
(3.4), we can immediately obtain an iteration complexity of Algorithm 4 with APPA:

Õ

(√
κ+

γ

µ
log

(
1

ϵ

))
.

Setting γ = L
n
− µ under the ill-conditioned case of n < κ, we see b = O(

√
n),

η = O(1/(L − µ)), and m = O(
√
n). Moreover, we conclude that the optimal total and

iteration complexities are achieved simultaneously up to a logarithmic factor when n < κ
by Algorithm 4 with APPA under these settings,

Õ

(√
nκ log

(
1

ϵ

))
and Õ

(√
κ log

(
1

ϵ

))
.

3.4.1 Fast Iteration Complexity and Necessary Minibatch size
As mentioned above, Nesterov’s acceleration achieves the best iterations complexity
(Nesterov, 2004) for deterministic optimization problems. As for a specific class of
stochastic optimization methods, we can also confirm that the same lower bound on the
iteration complexity is held. We first consider the class A of first-order stochastic opti-
mization methods that correspond to deterministic methods when the variance of stochas-
tic gradients are zero. Then, for any methodM∈ A, we can choose an objective function
g such that the deterministic variant ofM needs the iteration complexity O(

√
κ log(1/ϵ))

to minimize g. Thus, considering the empirical minimize problem derived by setting
gi = g for all i ∈ {1, . . . , n}, the same lower bound is provided for the class A.

However, unlike deterministic optimization methods, this lower bound cannot be ob-
tained by direct application of Nesterov’s acceleration to vanilla stochastic methods with-
out the variance reduction. Moreover, we observe Nesterov’s acceleration with either
SVRG with minibatch size of 1 or only reasonable size minibatching is not enough to
achieve the optimal iteration complexity from the analysis in the previous section and
Cotter et al. (2011). Namely, under stochastic setting, we observe that (i) Nesterov’s ac-
celeration + small mini-batching may have the almost same convergence rate as that of
SGD as indicated by Cotter et al. (2011), (ii) Nesterov’s acceleration + SVRG without

35

3. Accelerated Variance Reduced Stochastic Gradient Descent I

mini-batching has the same iteration complexity as SVRG, as shown in this chapter, (iii)
mini-batching + SVRG has the almost same iteration complexity as deterministic gradient
descent because SVRG is a stochastic variant of it. On the other hand, by combining three
techniques: Nesterov’s acceleration, mini-batching, and SVRG, our method achieves the
optimal iteration complexity with the efficient minibatch sizeO(

√
κ) orO(

√
n), as shown

in the previous section. These observations leads to the conjecture that we need not only
SVRG but also mini-batching to obtain sufficiently small variance for the acceleration
scheme. We support this observations for a specific algorithm class rigorously by giving a
lower bound on the minibatch size for achieving the optimal iteration complexity. Let b be
a positive integer and A be a set of first-order stochastic optimization methods satisfying
the following properties.

• The total complexity is lower-bounded by Ω(n+
√
nκ log(1/ϵ)). For instance, such

a class is introduced in Arjevani and Shamir (2016), which includes major variance
reduced methods SAG, SAGA, SVRG, and these accelerated variants by APPA and
Catalyst.

• Achieving the optimal iteration complexity O(
√
κ log(1/ϵ)).

• The order of the total complexity is equal to minibatch size b times the iteration
complexity.

We remark that our proposed method and notable methods such as SAG, SAGA,
SVRG, APPA, and Catalyst using sufficiently large minibatch of size b are included this
class A. Moreover, we remark that when n ≥ κ, Acc-Prox-SVRG with b = O(

√
κ)

does not satisfy the last property in the above list, but it will be satisfied if resetting
b← Õ(n/

√
κ).

For an arbitrarily methodM, we can choose an empirical risk such that it takes the
total complexity of Ω(

√
nκ log(1/ϵ)) from the property ofA. Then, it clearly follows that

n+
√
nκ log

(
1

ϵ

)
≲ b
√
κ log

(
1

ϵ

)
.

Therefore, we get a lower-bound Ω̃(max{n/
√
κ,
√
n}) on minibatch size b, where Ω̃ hides

a constant and a logarithmic term. We immediately conclude the following statement from
this consideration.

Proposition 2. We consider a first-order stochastic optimization method M with mini-
batch of size b. We assume thatM is included in the class A described above. Then, the
minibatch size b is Ω̃(max{n/

√
κ,
√
n}).

We find that these lower-bound are attained by Acc-Prox-SVRG with b = Õ(n/
√
κ)

when n ≥ κ and by Acc-Prox-SVRG with Catalyst and b = O(
√
n) when n < κ.

36

3. Accelerated Variance Reduced Stochastic Gradient Descent I

In the rest of this section, we explain this minibatch efficiency discussed above leads
to effective parallelization. An obvious benefit by minibatching is speeding up by parallel
computing of stochastic gradients with minibatch as done in (Dekel et al., 2012; Agarwal
and Duchi, 2011; Shalev-Shwartz and Zhang, 2013a). In this view point, we notice that
the optimal iteration complexity gives the theoretical limit of the running time by mini-
batch parallelization if we ignore the communication cost. This limit is attained when we
used some stochastic accelerated methods and the number of processors is proportional
to the minibatch size providing the optimal iteration complexity. Therefore, to estimate
such a minibatch size is an important problem. We note that many of the optimal methods
in terms of the total complexity such as Acc-SDCA (Shalev-Shwartz and Zhang, 2014),
APCG (Lin et al., 2014), and SPDC (Zhang and Xiao, 2017) require b = O(n) for achiev-
ing the optimal iteration complexity. On the other hand, as shown in Proposition 2, our
method can obtain the optimal iteration complexity by the optimal minibatch size, which
means the effectiveness of the method by minibatch parallelization. In addition, we note
that DASVRDA (Murata and Suzuki, 2017) that has the same property of our proposed
method.

3.5 Numerical Experiments

In this section, we compare Acc-Prox-SVRG with Prox-SVRG and APG on L1-
regularized multi-class logistic regression with the regularization parameter λ. Table 3.2
provides details of the datasets and regularization parameters utilized in our experiments.
These datasets can be found at the LIBSVM website1. The best choice of mini-batch size
is b = ⌈b0⌉, which allows us to take a large learning rate, η = 1

2L
. Therefore, we have

m ≥ O(
√
κ) and βk =

√
2κ−1√
2κ+1

. When the number of components n is very large compared
with

√
κ, we see that b0 = O(

√
κ); for this, we set m = δb (δ ∈ {0.1, 1.0, 10}) and

βk =
b−2
b+2

varying b in the set {100, 500, 1000}. We ran Acc-Prox-SVRG using values of
η from the range {0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}, and we chose the best η in each
mini-batch setting.

Figure 3.1 compares Acc-Prox-SVRG with Prox-SVRG and APG. The horizontal
axis is the number of single-component gradient evaluations. For Acc-Prox-SVRG, each
iteration computes the 2b gradients, and at the beginning of each stage, the n component
gradients are evaluated. For Prox-SVRG, each iteration computes the two gradients, and
at the beginning of each stage, the n gradients are evaluated. For APG, each iteration
evaluates n gradients.

As can be seen from Figure 3.1, Acc-Prox-SVRG with good values of b performs
better than or is comparable to Prox-SVRG and is much better than results for APG. On
the other hand, for relatively large b, Acc-Prox-SVRG may perform worse because of an

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

37

3. Accelerated Variance Reduced Stochastic Gradient Descent I

mnist covtype rcv1

Figure 3.1: Comparison of Acc-Prox-SVRG with Prox-SVRG and APG. Top: Objective
gap of L1 regularized multi-class logistic regression. Bottom: Test error rates.

Table 3.2: Details of data sets and regularization parameters.

Dataset classes Training size Testing size Features λ

mnist 10 60,000 10,000 780 10−5

covtype 7 522,910 58,102 54 10−6

rcv1 2 20,242 677,399 47,236 10−5

overestimation of b0, and hence the worse estimates of m and βk.

38

3. Accelerated Variance Reduced Stochastic Gradient Descent I

3.6 Appendix
In this section, we provide proofs for a convergence analysis of our method.

3.6.1 Proof of Lemma 2

We first prove auxiliary lemmas for Lemma 2.

Lemma 4. If η < 1
µ

, then for k ≥ 1 we have

zk+1 = (1−√µη)zk +
√
µηyk −

√
η

µ
(vk + ξk) (3.11)

zk − yk =
1
√
µη

(yk − xk). (3.12)

Proof of Lemma 4. From the definition of estimate sequence and (3.6), we have that for
k ≥ 1

µ

2
∥x− zk+1∥2 + Φ∗

k+1= (1−√µη)
(µ
2
∥x− zk∥2 + Φ∗

k

)
+
√
µη
(
gIk(yk) + ⟨vk, x− yk⟩2

+
µ

2
∥x− yk∥2 + h(xk+1) + ⟨ξk, x− xk+1⟩2

)
.

By differentiating at yk this equality, we obtain

µ(yk − zk+1) = (1−√µη)µ(yk − zk) +
√
µη(vk + ξk).

Hence, we have

zk+1 = (1−√µη)zk +
√
µηyk −

√
η

µ
(vk + ξk),

and that is exactly (3.11) of Lemma 4.
Next, we prove (3.12) of Lemma 4 by induction. It is true for k = 1. We assume it is

true for k, then it follows from (3.11) of Lemma 4 that,

zk+1 − yk+1= (1−√µη)zk +
√
µηyk −

√
η

µ
(vk + ξk)− yk+1

=
1
√
µη

(yk − η(vk + ξk))−
1−√µη
√
µη

xk − yk+1

=
1
√
µη
xk+1 −

1−√µη
√
µη

xk − yk+1.

39

3. Accelerated Variance Reduced Stochastic Gradient Descent I

From the update rule of yk+1, we have

−
1−√µη
√
µη

xk=
1 +
√
µη

√
µη

(
yk+1 −

(
1 +

1−√µη
1 +
√
µη

)
xk+1

)
=

1 +
√
µη

√
µη

yk+1 −
2
√
µη
xk+1.

Hence, we get

zk+1 − yk+1 =
1
√
µη

(yk+1 − xk+1).

Lemma 5. For k ≥ 1, we have

⟨∇g(yk) + ξk, vk + ξk⟩2 =
1

2

(
∥∇g(yk) + ξk∥2 + ∥vk + ξk∥2 − ∥∇g(yk)− vk∥2

)
, (3.13)

∥vk + ξk∥2 ≤ 2
(
∥∇g(yk) + ξk∥2 + ∥∇g(yk)− vk∥2

)
, (3.14)

∥∇g(yk) + ξk∥2 ≤ 2
(
∥vk + ξk∥2 + ∥∇g(yk)− vk∥2

)
. (3.15)

Proof of Lemma 5. Averaging

⟨∇g(yk) + ξk, vk + ξk⟩2 = ∥∇g(yk) + ξk∥2 + ⟨∇g(yk) + ξk, vk −∇g(yk)⟩2

and
⟨∇g(yk) + ξk, vk + ξk⟩2 = ∥vk + ξk∥2 + ⟨vk + ξk,∇g(yk)− vk⟩2 ,

we get (3.13) of Lemma 5:

⟨∇g(yk) + ξk, vk + ξk⟩2 =
1

2

(
∥∇g(yk) + ξk∥2 + ∥vk + ξk∥2 − ∥∇g(yk)− vk∥2

)
.

The inequality (3.14) of Lemma 5 is shown as follows:

∥vk + ξk∥2 = ∥vk + ξk +∇g(yk) + ξk − (∇g(yk) + ξk)∥2

= ∥∇g(yk) + ξk∥2 + 2(∇g(yk) + ξk, vk −∇g(yk)) + ∥vk −∇g(yk)∥2

≤ 2(∥∇g(yk) + ξk∥2 + ∥vk −∇g(yk)∥2).

In the last inequality, we use

| ⟨a, b⟩2 | ≤
∥a∥2 + ∥b∥2

2
, for ∀a,∀b ∈ Rd.

The inequality (3.15) of Lemma 5 can be proved in a similar way.

We here prove Lemma 2.

40

3. Accelerated Variance Reduced Stochastic Gradient Descent I

Proof of Lemma 2. We prove inequalities (3.7) and (3.8) by induction. Obviously, the
inequality (3.7) holds for k = 1. We assume it is also true for k. From the definition of
estimate sequence, we have

E [Φk+1(x)] = (1−√µη)E [Φk(x)] +
√
µη E [gIk(yk) + ⟨vk, x− yk⟩2

+
µ

2
∥x− yk∥2 + h(xk+1) + ⟨ξk, x− xk+1⟩2]

≤ (1−√µη)f(x) + (1−√µη)k(Φ1 − f)(x)

+
√
µη E

[
g(yk) + ⟨∇g(yk), x− yk⟩2 +

µ

2
∥x− yk∥2 + h(xk+1) + ⟨ξk, x− xk+1⟩2

]
≤ (1−√µη)f(x) + (1−√µη)k(Φ1 − f)(x) +

√
µη(g(x) + h(x))

= f(x) + (1−√µη)k(Φ1 − f)(x),

where for the first inequality we used induction hypothesis, EIk [gIk(yk)] = E[g(yk)] and
EIk [vk] = E[∇g(yk)], for the last inequality we used the convexity of g and h. Hence, the
inequality (3.7) follows.

We next prove (3.8). From the definition of Φ1, Φ∗
1 = f(x1). we assume (3.8) is true

for k. Using the equation (3.11), we have

∥yk − zk+1∥2 =
∥∥∥∥(1−√µη)(yk − zk) +√η

µ
(vk + ξk)

∥∥∥∥2
= (1−√µη)2∥yk − zk∥2 + 2

√
η

µ
(1−√µη) ⟨yk − zk, vk + ξk⟩2 +

η

µ
∥vk + ξk∥2.

From the above equation and (3.6) with x = yk, we get

Φk+1(yk) = Φ∗
k+1

+
µ

2

{
(1−√µη)2∥yk − zk∥2 + 2

√
η

µ
(1−√µη) ⟨yk − zk, vk + ξk⟩2 +

η

µ
∥vk + ξk∥2

}
.

On the other hand, from the definition of the estimate sequence and (3.6),

Φk+1(yk) = (1−√µη)
(
Φ∗
k +

µ

2
∥yk − zk∥2

)
+
√
µη(gIk(yk) + h(xk+1) + (ξk, yk − xk+1)).

Therefore, from these two equations, we have

Φ∗
k+1 = (1−√µη)Φ∗

k +
µ

2
(1−√µη)√µη∥yk − zk∥2 +

√
µη(gIk(yk) + h(xk+1)

+ ⟨ξk, yk − xk+1⟩2)− (1−√µη)√µη ⟨yk − zk, vk + ξk⟩2 −
η

2
∥vk + ξk∥2. (3.16)

Since g is Lipschitz smooth, we bound f(xk+1) as follows:

f(xk+1) ≤ g(yk) + ⟨∇g(yk), xk+1 − yk⟩2 +
L

2
∥xk+1 − yk∥2 + h(xk+1). (3.17)

41

3. Accelerated Variance Reduced Stochastic Gradient Descent I

Using (3.16), (3.17), (3.12), and xk+1 − yk = −η(vk + ξk) we have

EIk
[
f(xk+1)− Φ∗

k+1

]
≤

(3.16),(3.17)
EIk
[
(1−√µη)(−Φ∗

k + g(yk) + h(xk+1)) + ⟨∇g(yk), xk+1 − yk⟩2

+
√
µη ⟨ξk, xk+1 − yk⟩2 +

L

2
∥xk+1 − yk∥2 −

µ

2
(1−√µη)√µη∥yk − zk∥2

+ (1−√µη)√µη ⟨yk − zk, vk + ξk⟩2 +
η

2
∥vk + ξk∥2

]
=

(3.12)
EIk
[
(1−√µη)(−Φ∗

k + g(yk) + h(xk+1) + ⟨xk − yk, vk + ξk⟩2)− η(∇g(yk), vk + ξk)

− η√µη ⟨ξk, vk + ξk⟩2 −
µ

2

1−√µη
√
µη

∥yk − xk∥2 +
η

2
(Lη + 1)∥vk + ξk∥2

]
, (3.18)

where for the first inequality we used EIk [gIk(yk)] = g(yk).
Here, we give the following,

EIk [g(yk) + h(xk+1) + ⟨xk − yk, vk + ξk⟩2]
= EIk [g(yk) + ⟨vk, xk − yk⟩2 + h(xk+1) + ⟨ξk, xk − xk+1⟩2 + ⟨ξk, xk+1 − yk⟩2]

≤ EIk
[
g(xk)−

µ

2
∥xk − yk∥2 + h(xk)− η ⟨ξk, vk + ξk⟩2

]
, (3.19)

where for the first inequality we used EIk [vk] = ∇g(yk) and convexity of g and h. Thus
we have

EIk
[
f(xk+1)− Φ∗

k+1

]
≤

(3.18),(3.19)
EIk
[
(1−√µη)(f(xk)− Φ∗

k)−
µ

2

1− µη
√
µη
∥xk − yk∥2

− η ⟨∇g(yk) + ξk, vk + ξk⟩2 +
η

2
(1 + Lη)∥vk + ξk∥2

]
≤

(3.13)
EIk

[
(1−√µη)(f(xk)− Φ∗

k)−
µ

2

1− µη
√
µη
∥xk − yk∥2

−η
2
∥∇g(yk) + ξk∥2 +

Lη2

2
∥vk + ξk∥2 +

η

2
∥vk −∇g(yk)∥2

]
≤

(3.14),η≤ 1
2L

EIk

[
(1−√µη)(f(xk)− Φ∗

k)−
µ

2

1− µη
√
µη
∥xk − yk∥2 + η∥vk −∇g(yk)∥2

]
.

By taking expectation with respect to the history of random variables I1, . . . , Ik−1, the
induction hypothesis finishes the proof of (3.8).

42

3. Accelerated Variance Reduced Stochastic Gradient Descent I

3.6.2 Proof of Lemma 3
Lemma 3 is the key lemma which give a bound on the variance. Now we give this proof.

Proof of Lemma 3. We set v1j = ∇gj(yk)−∇gj(x̃) + ṽ. Since

vk =
1

b

∑
j∈Ik

v1j ,

conditional variance of vk is as follows (see Freund (1971); Nitanda (2016))

EIk∥vk −∇g(yk)∥2 =
1

b

n− b
n− 1

Ej∥v1j −∇g(yk)∥2,

where expectation in right hand side is taken with respect to j ∈ {1, . . . , n}. Therefore, it
suffices to prove that

Ej∥v1j −∇g(yk)∥2 ≤ 2L2∥yk − xk∥2 + 8L(f(xk)− f(x∗) + f(x̃)− f(x∗)). (3.20)

For i ∈ {1, . . . , n}, we set

ϕi(x) = gi(x)− (gi(x∗) + ⟨∇gi(x∗), x− x∗⟩2).

We have that ϕi(x∗) = minx ϕi(x) since ∇ϕi(x∗) = 0 and convexity of ϕi. Since ∇ϕi is
Lipschitz continuous with L, it follows that (see (Nesterov, 2004, Theorem 2.1.5))

1

2L
∥∇ϕi(x)∥2 ≤ ϕi(x)− ϕi(x∗) = ϕi(x),

Thus,
∥∇gi(x)−∇gi(x∗)∥2 ≤ 2L(gi(x)− gi(x∗)− ⟨∇gi(x∗), x− x∗⟩2).

Averaging from i = 1 to n, we have

1

n

n∑
i=1

∥∇gi(x)−∇gi(x∗)∥2 ≤ 2L(g(x)− g(x∗)− ⟨∇g(x∗), x− x∗⟩2).

By the optimality of x∗, −∇g(x∗) is a subgradient of h at x∗, so that

⟨−∇g(x∗), x− x∗⟩2 ≤ h(x)− h(x∗).

Hence we get

1

n

n∑
i=1

∥∇gi(x)−∇gi(x∗)∥2 ≤ 2L(g(x)− g(x∗) + h(x)− h(x∗)) = 2L(f(x)− f(x∗)).

(3.21)

43

3. Accelerated Variance Reduced Stochastic Gradient Descent I

We now bound left hand side of (3.20) as follows:

Ej∥v1j −∇g(yk)∥2

= Ej∥∇gj(yk)−∇gj(x̃)− (∇g(yk)−∇g(x̃))∥2

≤ Ej∥∇gj(yk)−∇gj(x̃)∥2

≤ 2Ej∥∇gj(yk)−∇gj(xk)∥2 + 4Ej∥∇gj(xk)−∇gj(x∗)∥2 + 4Ej∥∇gj(x∗)−∇gj(x̃)∥2

≤ 2L2∥yk − xk∥2 + 8L(f(xk)− f(x∗) + f(x̃)− f(x∗)),

where for the first inequality we used E∥ζ − Eζ∥2 ≤ E∥ζ∥2 for any random vector ζ , for
the second inequality, we used ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, and for the last inequality, we
used L-Lipschitz continuity and (3.21). This finishes the proof of lemma.

3.6.3 Proof of Theorem 4
We give the proof of the main convergence theorem.

Proof of Theorem 4. From (3.8), (3), and (3.7) with x = x∗, it follows that

E [f(xk)− f(x∗)] ≤ (1−√µη)k−1(Φ1 − f)(x∗) + E
[∑k−1

l=1 (1−
√
µη)k−1−l

·
{(
−µ

2
1−µη√
µη

+ n−b
n−1

2L2η
b

)
∥xl − yl∥2 + n−b

n−1
8Lη
b
(f(xl)− f(x∗) + f(x̃)− f(x∗))

}]
.

If η ≤ min
{

(pb)2

64

(
n−1
n−b

)2 µ
L2 ,

1
2L

}
, then the coefficients of ∥xl − yl∥2 are non-positive for

p ≤ 2. Indeed, using

η ≤ (pb)2

64

(
n− 1

n− b

)2
µ

L2
⇒ n− b

n− 1

Lη

b
≤ p

8

√
µη, for p > 0, (3.22)

we get

−µ
2
1−µη√
µη

+ n−b
n−1

2L2η
b
≤ −µ

2
1−µη√
µη

+ L
2

√
µη

= 1
2
√
µη

(−µ+ µ2η + µLη) ≤
µ≤L

1
2
√
µη

(−µ+ 2µLη) ≤
η≤ 1

2L

0.

Thus, using (3.22) again with p ≤ 1, we have

E [f(xk)− f(x∗)] ≤ (1−√µη)k−1(Φ1 − f)(x∗)

+ E

[
k−1∑
l=1

(1−√µη)k−1−lp
√
µη(f(xl)− f(x∗) + f(x̃)− f(x∗))

]
≤ (1−√µη)k−1(Φ1 − f)(x∗) + p(f(x̃)− f(x∗))

44

3. Accelerated Variance Reduced Stochastic Gradient Descent I

+ E

[
k−1∑
l=1

(1−√µη)k−1−lp
√
µη(f(xl)− f(x∗))

]
, (3.23)

where for the last inequality we used
∑k−1

l=1 (1−
√
µη)k−1−l ≤

∑∞
t=0(1−

√
µη)t = 1√

µη
.

We denote E[f(xk) − f(x∗)] by Vk, and we use Wk to denote the last expression in
(3.23). Thus, for k ≥ 1, Vk ≤ Wk. For k ≥ 2, we have

Wk = (1−√µη)

{
(1−√µη)k−2(Φ1 − f)(x∗) + pV1 +

k−2∑
l=1

(1−√µη)k−2−lp
√
µη Vl

}
+ p
√
µη Vk−1 + p

√
µη V1 ≤ (1−√µη(1− p))Wk−1 + p

√
µη W1.

Since 0 <
√
µη(1− p) < 1, the above inequality leads to

Wk =

(
(1− (1− p)√µη)k−1 +

p

1− p

)
W1. (3.24)

From the strong convexity of g (and f), we can see

W1 = (1 + p)(f(x̃)− f(x∗)) +
µ

2
∥x̃− x∗∥2 ≤ (2 + p)(f(x̃)− f(x∗)).

Thus, for k ≥ 2, we have

Vk ≤ Wk ≤
(
(1− (1− p)√µη)k−1 +

p

1− p

)
(2 + p)(f(x̃)− f(x∗)),

and that is exactly (3.9). Using log(1− α) ≤ −α and m ≥ 1
(1−p)√µη log

1−p
p

, we have

log(1− (1− p)√µη)m ≤ −m(1− p)√µη ≤ − log
1− p
p

,

so that
(1− (1− p)√µη)m ≤ p

1− p
.

This finishes the proof of Theorem 4.

45

Chapter 4

Accelerated Variance Reduced
Stochastic Gradient Descent II

In the previous chapter, we proposed a method incorporating an accelerated gradient de-
scent technique by Nesterov, a stochastic variance reduction gradient, and minibatching.
In this chapter, we proposed a new method by adopting another accelerated method for
smooth convex finite-sum problems. An important feature of this method is that unlike
Acc-Prox-SVRG, it can be directly applied to general convex and optimal strongly convex
problems that is a weaker condition than strong convexity. Thus, we extend results shown
in the previous chapter to these problems. In experiments, we show the effectiveness of
the method.

This chapter is based on the work Accelerated Stochastic Gradient Descent for Min-
imizing Finite Sums, A. Nitanda, Artificial Intelligence and Statistics, 2016 (Nitanda,
2016).

4.1 Overview
In this chapter, we consider the following empirical risk minimization problem:

min
x∈Rd

{
f(x)

def
=

1

n

n∑
i=1

gi(x)

}
, (4.1)

where g1, . . . , gn are smooth convex functions from Rd to R. In machine learning, we
often encounter optimization problems as mentioned earlier. Note that each gi(x) may
include smooth regularization terms.

As mentioned in the previous chapter, several studies recently proposed effective
methods (SAG (Roux et al., 2012; Schmidt et al., 2017), SDCA (Shalev-Shwartz and
Zhang, 2012, 2013b), SVRG (Johnson and Zhang, 2013), S2GD (Konečnỳ and Richtárik,

46

4. Accelerated Variance Reduced Stochastic Gradient Descent II

2013), Acc-Prox-SDCA (Shalev-Shwartz and Zhang, 2014), Prox-SVRG (Xiao and
Zhang, 2014), MISO (Mairal, 2015), SAGA (Defazio et al., 2014), APCG (Lin et al.,
2014), Acc-Prox-SVRG (Nitanda, 2014), mS2GD (Konečnỳ et al., 2016), SPDC (Zhang
and Xiao, 2017)) for solving strongly convex finite-sum problems. These methods at-
tempt to reduce the variance of the stochastic gradient and achieve the linear convergence
rates like a deterministic gradient descent. Moreover, because of the computational effi-
ciency of each iteration, the overall complexities of these methods are less than those of
the deterministic and stochastic gradient descent methods.

However, many problems arise in machine learning may become not strongly convex.
An advantage of the SAG and SAGA is that they support general convex problems. Al-
though we can apply any of these methods to non-strongly convex functions by adding a
slight L2-regularization, this modification increases the difficulty of model selection. In
the general convex case, the overall complexities of SAG and SAGA are O((n + L)/ϵ).
This complexity is less than that of the deterministic gradient descent, which have a com-
plexity of O(nL/ϵ), and is a trade-off with O(n

√
L/ϵ) , which is the complexity of the

AGD.
More recently, Gong and Ye (2014) showed that Prox-SVRG has linear rate of conver-

gence for optimal strongly convex problems that is quite weaker condition than the strong
convexity. Our proposed method called AMSVRG in this chapter is similar to that in
the previous chapter, that is, it incorporates an accelerated gradient descent and stochas-
tic variance reduced gradient in a mini-batch setting. The difference between this method
and Acc-Prox-SVRG is the type of accelerated methods. Namely, AMSVRG incorporates
Allen-Zhu and Orecchia (2014), which is similar to Nesterov’s acceleration (Nesterov,
2005), whereas Acc-Prox-SVRG incorporates Nesterov (2004). An important feature of
AMSVRG is that it can be directly applied to general convex and optimal strongly con-
vex problems. We show that for general convex problems, AMSVRG achieves an total
complexity of

Õ

(
n+min

{
L

ϵ
, n

√
L

ϵ

})
,

where the notation Õ hides constant and logarithmic terms. This complexity is less than
that of SAG, SAGA, and AGD. In the optimal strongly convex case, our method achieves
an total complexity

Õ
(
n+min

{
κ, n
√
κ
})
,

where κ is the condition number L/µ. Moreover, an iteration complexity (the number of
iterations needed to find an ϵ-accurate solution in expectation) is

O

(√
κ log

1

ϵ

)
,

This iteration complexity is the same as that of deterministic acceleration methods, i.e.,
best iteration complexity. Thus, AMSVRG method converges quickly for general convex

47

4. Accelerated Variance Reduced Stochastic Gradient Descent II

and optimal strongly convex problems by parallelization of minibatch computation. We
also note that AMSVRG has the same important feature of Acc-Prox-SVRG described in
the previous chapter, namely, it can achieve the both optimal iteration and total complex-
ities simultaneously by applying APPA or Catalyst if needed.

4.2 Preliminary
In this section, we introduce some notions, assumptions, and methods used in this chapter.
To provide a convergence analysis, we make the Lipschitz smoothness assumption.

Assumption 3. Let L be a positive value. We assume that each function gi(x) is convex
and L-Lipschitz smooth, that is, it follows that,

gi(x) ≤ gi(y) + ⟨∇gi(y), x− y⟩2 +
L

2
∥x− y∥2.

While we assumed the strong convexity of loss functions in the previous chapter, we
suppose a much weaker condition called optimal strongly convex in this chapter. We next
introduce its definition.

4.2.1 Optimal Strongly Convex
We make an optimal strongly convex assumption as follows.

Assumption 4. Let C be a subset of Rd and X∗ denote the optimal set. We assume
X∗ ̸= ϕ. f(x) is µ-optimal-strongly convex on C, i.e., there exists µ > 0 such that for all
x ∈ C \X∗,

f∗ +
µ

2
∥x− ΠX∗(x)∥2 ≤ f(x),

where f∗ is the optimal value and ΠX∗ denotes the projection onto X∗.

Obviously, we can see that optimal strong convexity is a weaker condition than strong
convexity. Since f∗ + L

2
∥x − ΠX∗(x)∥2 ≥ f(x) by L-smoothness, we have µ ≤ L. We

denote the ratio between L and µ by κ and we call it the condition number.
The main differences between strong convexity and optimal strong convexity are that

the latter condition admits an infinite number of solutions and linear parts of the function.
Thus, optimal strongly convex is a very large class.

Two quantities 1
2
∥x−ΠX∗(x)∥2 and f(x)−f∗ are optimality measures and continuous

functions, so that the ratio between these two values: µ(x) = 2(f(x)−f∗)
∥x−ΠX∗ (x)∥2

is positive

continuous on the complement of X∗. Let C ⊂ Rd be a compact subset. Then, µ def
=

infx∈C\X∗ µ(x) gives the optimal strong convexity parameter on C. Since C \ U is also

48

4. Accelerated Variance Reduced Stochastic Gradient Descent II

compact, where U is an arbitrary small open neighborhood of X∗, µ(x) has positive
minimum values on C \ U . This means that whether Assumption 4 is satisfied or not
depend on the behavior of f around the boundary of C ∩X∗. Therefore, many problems
belong to the class of optimal strongly convex on compact set.

A smoothed hinge loss function (see Figure 4.1)

f(x) =


1
2
− x (x ≤ 0),

1
2
(1− x)2 (0 < x ≤ 1),

0 (1 < x),

Figure 4.1: Smoothed hinge loss.

is a simple example of optimal strongly func-
tion on a bounded region. Let C = [−a, a] (a >
1) be a bounded range. Since X∗ = [1,∞) and
ΠX∗(x) = 1 for x /∈ X∗, we can easily see
that optimal strong convexity parameter onC for
smoothed hinge loss is

µ = inf
x∈[−a,1)

µ(x) =
2f(−a)
|1 + a|2

=
1 + 2a

|1 + a|2
> 0.

Here, we checked the value of µ, but we
can conclude the positivity of µ by the fact that
C = [−a, a] is compact and f is quadratic
around ∂(C ∩X∗) = {1}.

In our analyses, for optimal strongly convex
problems we assume that points generated by al-
gorithm is contained in C. For monotonic algorithms (generating decreasing sequence
f(ws)s=1,2,...), we may consider the case where C is the sublevel set {x ∈ Rd; f(x) ≤ c}
and this assumption holds for sufficiently large c ≥ f∗. Here, we give the condition of
compactness of sublevel set.

Proposition 3. Let f be C1 class convex function and X∗ be the optimal set of f . If X∗ is
compact, then for c ≥ f∗, the sublevel set {x ∈ Rd; f(x) ≤ c} is also compact.

Thus, by the above discussion, the monotonic algorithm deals with many problems
as optimal strongly convex problems and potentially converge fast. We propose such a
method later.

4.2.2 Accelerated Gradient Descent
In this section, we review the recently proposed accelerated gradient method. We first
introduce some notations. In this section, ∥ · ∥ denotes the general norm on Rd. Let

49

4. Accelerated Variance Reduced Stochastic Gradient Descent II

d(x) : Rd → R be a distance generating function (i.e., 1-strongly convex smooth function
with respect to ∥ · ∥). Accordingly, we define the Bregman divergence by

Vx(y) = d(y)− (d(x) + ⟨∇d(x), y − x⟩2) , ∀x,∀y ∈ Rd,

where (,) is the Euclidean inner product. The accelerated method proposed in Allen-Zhu
and Orecchia (2014) called Linear Coupling uses a gradient step and mirror descent steps
and takes a linear combination of these points. The procedure of this method is described
in Algorithm 5.

Algorithm 5 Linear Coupling
Input: the number of iterations m, learning rates η, (αk+1)

m
k=0, coefficients (τk)

m
k=0,

and initial points y0, z0
for k = 0 to m do
xk+1 ← (1− τk)yk + τkzk
vk+1 ← ∇f(xk+1)
yk+1 ← argminy∈Rd

{
η ⟨vk+1, y − xk+1⟩2 +

1
2
∥y − xk+1∥2

}
(GD step)

zk+1 ← argminz∈Rd { αk+1 ⟨vk+1, z − zk⟩2 + Vzk(z) } (MD step)
end for
Return ym+1

Then, with appropriate parameters, f(yk) converge to the optimal value as fast as the
Nesterov’s accelerated methods (Nesterov, 2004, 2005) for non-strongly convex prob-
lems. Moreover, in the strongly convex case, we obtain the same fast convergence as
Nesterov’s methods by restarting this entire procedure.

In the rest of this chapter, we only consider the Euclidean norm, i.e., ∥ · ∥ = ∥ · ∥2.

4.2.3 Stochastic Variance Reduction Gradient
The proposed method in this chapter, we combine stochastic variance reduced gradient
with the accelerated method as done in the previous chapter to reduce the variance effect
of stochastic gradients. We here list the step of SVRG with minibatch of size b again.
SVRG is a multi-stage scheme. During each stage, this method performs m SGD itera-
tions using the following direction,

vk = ∇gIk(xk)−∇gIk(x̃) +∇f(x̃),

where x̃ is a starting point at stage, k is an iteration index, Ik = {i1, . . . , ib} is a uniformly
randomly chosen size b subset of {1, 2, . . . , n}, and gIk = 1

b

∑b
j=1 gij . Note that vk is

an unbiased estimator of gradient ∇f(xk): EIk [vk] = ∇f(xk), where EIk denotes the
expectation with respect to Ik. A bound on the variance of vk is given in the following
lemma, which is proved in the Appendix.

50

4. Accelerated Variance Reduced Stochastic Gradient Descent II

Lemma 6. Suppose Assumption 3 holds, and let x∗ = argmin
x∈Rd

f(x). Conditioned on xk,

we have

EIk∥vk −∇f(xk)∥2 ≤ 4L
n− b
b(n− 1)

(f(xk)− f∗ + f(x̃)− f∗) . (4.2)

Due to this lemma, SVRG with b = 1 achieves a complexity of O((n+ κ) log 1
ϵ
).

4.3 Single-Stage AMSVRG
We now introduce a new method Accelerated efficient Mini-batch SVRG (AMSVRG)
which incorporates AGD and SVRG in a mini-batch setting. Our method is a multi-
stage scheme similar to SVRG. During each stage, this method performs several APG-like
(Allen-Zhu and Orecchia, 2014) iterations combining stochastic gradient descent (SGD)
and stochastic mirror descent (SMD) steps with SVRG direction in a mini-batch setting.
Each stage of AMSVRG is described in Algorithm 6.

Algorithm 6 Single-Stage of AMSVRG
Input: the number of iterations m, learning rates η, (αk+1)

m
k=0, mini-batch sizes

(bk+1)
m
k=0, coefficients (τk)mk=0, and initial points y0, z0

ṽ ← 1
n

∑n
i=1∇gi(y0)

for k = 0 to m do
xk+1 ← (1− τk)yk + τkzk
Randomly pick subset Ik+1 ⊂ {1, 2, . . . , n} of size bk+1

vk+1 ← ∇gIk+1
(xk+1)−∇gIk+1

(y0) + ṽ
yk+1 ← argminy∈Rd

{
η ⟨vk+1, y − xk+1⟩2 +

1
2
∥y − xk+1∥2

}
(SGD step)

zk+1 ← argminz∈Rd { αk+1 ⟨vk+1, z − zk⟩2 + Vzk(z) } (SMD step)
end for
Option I-a: w ← ym+1,
Option I-b: w ← 1

m+1

∑m+1
k=1 xk,

Option II: If f(y1) < f(w), then w ← y1,
Return w

4.4 Convergence Analysis of the Single-Stage AMSVRG
Before we introduce the multi-stage scheme, we show the convergence of single-stage
version Algorithm 6. The following lemma is the key to the analysis of our method and
gives us an insight on how to construct algorithms.

51

4. Accelerated Variance Reduced Stochastic Gradient Descent II

Lemma 7. Consider Algorithm 6 under Assumption 3. We set δk = n−bk
bk(n−1)

. Let x∗ ∈
argminx∈Rd f(x). If η = 1

L
, then we have,

m∑
k=0

αk+1

(
1

τk
− (1 + 4δk+1)Lαk+1

)
E[f(xk+1)− f∗)] + Lα2

m+1E[f(ym+1)− f∗]

≤ Vz0(x∗) +
m∑
k=1

(
αk+1

1− τk
τk

− Lα2
k

)
E[f(yk)− f∗]

+

(
α1

1− τ0
τ0

+ 4L
m∑
k=0

α2
k+1δk+1

)
(f(y0)− f∗).

The following two lemmas are well known and useful for showing the convergence of
stochastic gradient descent and stochastic mirror descent, respectively, and they are also
useful for proving Lemma 7.

Lemma 8. (Stochastic Gradient Descent). Suppose Assumption 3 holds, and let η = 1
L

.
Conditioned on xk, it follows that for k ≥ 1,

EIk [f(yk)] ≤ f(xk)−
1

2L
∥∇f(xk)∥2 +

1

2L
EIk∥vk −∇f(xk)∥2. (4.3)

Lemma 9. (Stochastic Mirror Descent). Conditioned on xk, we have that for arbitrary
u ∈ Rd,

αk ⟨∇f(xk), zk−1 − u⟩2 ≤ Vzk−1
(u)−EIk [Vzk(u)]+

α2
k

2

(
∥∇f(xk)∥2 + EIk∥vk −∇f(xk)∥2

)
.

(4.4)

From now on we consider Algorithm 6 with Option I-a and we set η, αk+1, and τk as
follows: For k = 0, 1, . . . we set

η =
1

L
, αk+1 =

1

4L
(k + 2),

1

τk
= Lαk+1 +

1

2
. (4.5)

Theorem 5. Consider Algorithm 6 with Option I-a under Assumption 3. For p ∈
(
0, 1

2

]
,

we choose bk+1 ∈ Z+ such that 4Lδk+1αk+1 ≤ p. Then, we have

E[f(w)− f∗] ≤ E[f(ym+1)− f∗] ≤
16L

(m+ 2)2
Vz0(x∗) +

5

2
p(f(y0)− f∗).

Moreover, if m ≥ 4
√

LVz0 (x∗)

q(f(y0)−f∗) for q > 0, then it follows

E[f(w)− f∗] ≤ E[f(ym+1)− f∗] ≤
(
q +

5

2
p

)
(f(y0)− f∗).

52

4. Accelerated Variance Reduced Stochastic Gradient Descent II

Let bk+1,m ∈ Z+ be the minimum values satisfying the assumption of Theorem 5 for

p = q = ϵ, i.e., bk+1 =
⌈

n(k+2)
ϵ(n−1)+k+2

⌉
and m =

⌈
4
√

LVz0 (x∗)

ϵ(f(y0)−f∗)

⌉
. Then, from Theorem 5,

we have an upper bound on the total complexity (total number of processed examples to
obtain ϵ-accurate solution in expectation):

O

(
n+

m∑
k=0

bk+1

)
≤ O

(
n+m

nm

ϵn+m

)
= O

(
n+

nL

ϵ2n+
√
ϵL

)
,

where we used the monotonicity of bk+1 with respect to k for the first inequality. Note
that the notation O also hides Vz0(x∗) and f(y0)− f∗.

4.5 Multi-Stage AMSVRG
In this subsection, we introduce and analyze AMSVRG, as described in Algorithm 7.

Algorithm 7 Multi-Stage AMSVRG
Input: the number of outer-iterations T , the number of inner-iterations (ms)

T
s=0, learn-

ing rates η, (αk+1)k∈Z+ , mini-batch sizes (bk+1)k∈Z+ , coefficients (τk)k∈Z+ , and initial
point w0

for s = 0 to T do
y0 ← ws, z0 ← ws
ws+1 ← Algorithm6(ms, η, (αk+1)k∈Z+ , (bk+1)k∈Z+ , (τk)k∈Z+ , y0, z0)

end for
Return wT+1

If we run Algorithm 6 with Option II in AMSVRG, it follows that f(w) ≤ f(y1).
Since x1 = y0 = z0, the step to obtain y1 corresponds to the deterministic gradient
descent from the starting point at each stage. This means that AMSVRG (with Option
II) is monotonic that generates decreasing sequence {f(ws)}s=0,1,.... Note that Option II
requires computational cost for computing function values of O(n) but the order of total
complexity does not increase.

4.6 Convergence Analysis of Multi-Stage AMSVRG
General Convex

We consider the convergence of AMSVRG for general convex problems under the fol-
lowing boundedness assumption which has been used in a several studies to analyze in-
cremental and stochastic methods (e.g., Bottou and Le Cun (2005); Gürbüzbalaban et al.
(2015)).

53

4. Accelerated Variance Reduced Stochastic Gradient Descent II

Assumption 5. (Boundedness) There is a compact subset Ω ⊂ Rd such that the sequence
{ws} generated by AMSVRG is contained in Ω.

Note that, if we change the initialization of z0 from z0 ← ws to z0 ← z, where z is a
constant, the above method with this modification will achieve the same convergence for
general convex problems without the boundedness assumption (see Appendix). However,
this modified version is slower than the above scheme for the strongly convex case, thus,
we here consider this version described in Algorithm 7.

From Theorem 5, we can see that for small p and q (e.g. p = 1/10, q = 1/4), the
expected value of the objective function is halved at every stage under the assumptions
of Theorem 5. Hence, running AMSVRG for O(log(1/ϵ)) outer iterations achieves an
ϵ-accurate solution in expectation. Here, we consider the complexity at stage s to halve
the expected objective value. Let bk+1,ms ∈ Z+ be the minimum values satisfying the

assumption of Theorem 5, i.e., bk+1 =
⌈

n(k+2)
p(n−1)+k+2

⌉
and ms =

⌈
4
√

LVws (x∗)
q(f(ws)−f∗)

⌉
. If the

initial objective gap f(ws)− f∗ in stage s is larger than ϵ, then the complexity at stage is

O

(
n+

ms∑
k=0

bk+1

)
≤ O

(
n+

nm2
s

n+ms

)

= O

(
n+

nL

n(f(ws)− f∗) +
√

(f(ws)− f∗)L

)

≤ O

(
n+

nL

ϵn+
√
ϵL

)
,

where we used the monotonicity of bk+1 with respect to k for the first inequality. Note
that by Assumption 5, {Vws(x∗)}s=1,2,... are uniformly bounded and notation O also hides
Vws(x∗). The above analysis implies the following theorem.

Theorem 6. Consider AMSVRG under Assumptions 3 and 5. We set η, αk+1, and τk as

in (4.5). Let bk+1 =
⌈

n(k+2)
p(n−1)+k+2

⌉
and ms =

⌈
4
√

LVws (x∗)
q(f(ws)−f∗)

⌉
, where p and q are small

values described above. Then, the total complexity to run AMSVRG forO(log(1/ϵ)) outer
iterations or to obtain an ϵ-accurate solution is

O

((
n+

nL

ϵn+
√
ϵL

)
log

(
1

ϵ

))
.

Optimal Strongly Convex

Next, we consider the optimal strongly convex case. We assume that f is a µ-optimal-
strongly convex function on C ⊂ Rd. In this case, we choose the distance generating
function d(x) = 1

2
∥x∥2, so that the Bregman divergence becomes Vx(y) = 1

2
∥x − y∥2.

54

4. Accelerated Variance Reduced Stochastic Gradient Descent II

Let the parameters be the same as in Theorem 6 with x∗ = ΠX∗(ws) at stage s. Then, the
expected value of the objective function is halved at every stage. Moreover, we assume
that {ws}s=0,1,... ⊂ C. As mentioned in Section 2, for monotonic methods, we may
consider the case where C is the sublevel set {x ∈ Rd; f(x) ≤ c} and this assumption
holds for sufficiently large level. Since, by definition of optimal strong convexity, we have

ms =
⌈
4
√

L∥ws−ΠX∗ (ws)∥2
2q(f(ws)−f∗)

⌉
≤
⌈
4
√

κ
q

⌉
, the complexity at each stage is

O

(
n+

ms∑
k=0

bk+1

)
≤ O

(
n+

nκ

n+
√
κ

)
.

Thus, we have the following theorem.

Theorem 7. Consider AMSVRG under Assumptions 3 and 4. Let parameters
η, αk+1, τk,ms, and bk+1 be the same as those in Theorem 6 with x∗ = ΠX∗(ws) at stage
s. If {ws}s=0,1,... ⊂ C, then the total complexity for obtaining ϵ-accurate solution in
expectation is

O

((
n+

nκ

n+
√
κ

)
log

(
1

ϵ

))
,

and its iteration complexity is

O

(
n
√
κ

n+
√
κ
log

(
1

ϵ

))
.

Table 4.1 lists the overall complexities of the AGD, SAG, SVRG, Acc-Prox-SVRG,
Acc-SDCA, APCG, SPDC, and AMSVRG. The notation Õ hides constant and logarith-
mic terms. By simple calculations, we see that

nκ

n+
√
κ
=

1

2
H(κ, n

√
κ),

nL

ϵn+
√
ϵL

=
1

2
H

(
L

ϵ
, n

√
L

ϵ

)
,

where H(·, ·) is the harmonic mean whose order is the same as min{·, ·}. Thus, as shown
in Table 4.1, the complexity of AMSVRG is less than or equal to that of other methods
in general convex and optimal strongly convex. Note that Optimal Methods in the table
includes Acc-SDCA (Shalev-Shwartz and Zhang, 2014), APCG (Lin et al., 2014), SPDC
(Zhang and Xiao, 2017).

55

4. Accelerated Variance Reduced Stochastic Gradient Descent II

Table 4.1: Comparison of total complexity.

Algorithm General Convex Optimal Strongly Convex Strongly Convex

AGD Õ

(
n
√

L
ϵ

)
Õ (n
√
κ) Õ (n

√
κ)

SAG Õ
(
n+L
ϵ

)
Õ
(
n+L
ϵ

)
Õ (n+ κ)

SVRG - Õ (n+ κ) Õ (n+ κ)

Acc-SVRG - - Õ (n+ κ ∧ n
√
κ)

Optimal Methods - - Õ (n+ κ ∧
√
nκ)

AMSVRG Õ

(
n+ L

ϵ ∧ n
√

L
ϵ

)
Õ (n+ κ ∧ n

√
κ) Õ (n+ κ ∧ n

√
κ)

4.6.1 Fast Iteration Complexity and its Benefits

In the above convergence analyses, we find that our proposed method AMSVRG achieves
the optimal iteration complexity for general, optimal strongly, and strongly convex prob-
lems with minibatch sizes of

√
L/ϵ ,

√
κ, and

√
κ, respectively by combining an ac-

celerated gradient method and a stochastic variance reduced gradient. We note that the
previous method (Nitanda, 2014) achieves it only for the strongly convex problem. As
seen in the previous chapter, this feature of our acceleration scheme leads to some advan-
tages: effective parallelization and better performance for linear-model on sparse dataset
without using sparse structure.

Firstly, AMSVRG achieves the optimal iteration complexity with reasonable mini-
batch sizes as described above, while many existing methods cannot achieve this rate.
This means, our method may become much faster more efficient than the other meth-
ods including optimal methods in terms of the total complexity, under the parallelization
settings.

Next, we discuss the performance of AMSVRG for linear model that takes a form
of gi(x) = l(aTi x) on sparse datasets {ai}i=1,...,n. Since ∇gi(x) = l′(aTi x)ai, some al-
gorithms such as SGD and SVRG can be updated efficiently by using sparsity of ai.
It is unclear whether AMSVRG can be also implemented efficiently, but our acceleration
scheme reduces the number of dense computations, consequently AMSVRG has the same
complexity as sparse implementation of SVRG, without using sparse structure for prob-
lems with large condition number. Let d0 be the maximum number of non-zero elements

56

4. Accelerated Variance Reduced Stochastic Gradient Descent II

of ai. Then, the total complexity including d and d0 of AMSVRG is as follows:

Õ (nd0 +m(bmd0 + d)) ≤ Õ

(
nd0 + κ

(
d0 +

d√
κ

))
,

where we used m ≤ O(
√
κ) and bm ≤ O(m) = O(

√
κ). Hence, if the condition number

is sufficiently large: d/d0 ≤
√
κ, the total complexity is

Õ (d0(n+ κ)).

Therefore, AMSVRG efficiently performs on sparse datasets without an implementation
trick.

4.6.2 Restart Scheme
The parameters of AMSVRG are essentially η,ms, and bk+1 (i.e., p) because the appro-
priate values of both αk+1 and τk can be expressed by η = 1/L as in (4.5). It may be
difficult to choose an appropriate ms which is the restart time for Algorithm 6. So, we
propose heuristics for determining the restart time.

First, we suppose that the number of components n is sufficiently large such that the
complexity of our method becomes O(n). That is, for appropriate ms, O(n) is an upper
bound on

∑ms

k=0 bk+1 (which is the complexity term). Therefore, we estimate the restart
time as the minimum index m ∈ Z+ that satisfies

∑m
k=0 bk+1 ≥ n. This estimated value

is upper bound on ms (in terms of the order). In this chapter, we call this restart method
R1.

Second, we propose an adaptive restart method using SVRG. In a strongly convex
case, we can easily see that if we restart the AGD for general convex problems every√
κ, then the method achieves a linear convergence similar to that for strongly convex

problems. The drawback of this restart method is that the restarting time depends on an
unknown parameter κ, so several studies (O’Donoghue and Candes, 2015; Giselsson and
Boyd, 2014; Su et al., 2014) have proposed effective adaptive restart methods. Moreover,
Giselsson and Boyd (2014) showed that this technique also performs well for general
convex problems. Inspired by their study, we propose an SVRG-based adaptive restart
method called R2. That is, if

⟨vk+1, yk+1 − yk⟩2 > 0,

then we return yk and start the next stage.
Third, we propose the restart method R3, which is a combination of the above two

ideas. When
∑m

k=0 bk+1 exceeds 10n, we restart Algorithm 6, and when

(vk+1, yk+1 − yk) > 0 ∧
m∑
k=0

bk+1 > n,

we return yk and restart Algorithm 6.

57

4. Accelerated Variance Reduced Stochastic Gradient Descent II

λ mnist covtype rcv1

10−5

10−6

10−7

0

Figure 4.2: Comparison of algorithms applied to L2-regularized logistic regularization
(mnist, covtype, rcv1).

4.7 Numerical Experiments

In this section, we compare AMSVRG with SVRG and SAGA. We ran an L2-regularized
multi-class logistic regularization on mnist and covtype and ran an L2-regularized binary-
class logistic regularization on rcv1. The datasets and their descriptions can be found
at the LIBSVM website1. In these experiments, we vary regularization parameter λ in
{0, 10−7, 10−6, 10−5}. We ran AMSVRG using some values of η from [10−2, 5 × 10]
and p from [10−1, 10], and then we chose the best η and p.

The results are shown in Figure 4.2. The horizontal axis is the number of single-
component gradient evaluations. Our methods performed well and outperformed the other

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

58

4. Accelerated Variance Reduced Stochastic Gradient Descent II

methods in some cases. For mnist and covtype, AMSVRG R1 and R3 converged quickly,
and for rcv1, AMSVRG R2 worked very well. This tendency was more remarkable when
the regularization parameter λ was small.

59

4. Accelerated Variance Reduced Stochastic Gradient Descent II

4.8 Appendix

4.8.1 Proof of the Proposition 3

We now prove the Proposition 3 that gives the condition of compactness of sublevel set.

Proof. Let Bd(r) and Sd−1(r) denote the ball and sphere of radius r, centered at the
origin. By affine transformation, we can assume that X∗ contains the origin 0, X∗ ⊂
Bd(1), and X∗ ∩ Sd−1(1) = ϕ. Then, we have that for ∀x ∈ Sd−1(1),

⟨∇f(x), x⟩2 ≥ f(x)− f(0) > 0,

where we use convexity for the first inequality and 0 ∈ X∗ ∧ x /∈ X∗ for the sec-
ond inequality. We denote the minimum value of (∇f(x), x) on Sd−1(1) by α. Since
(∇f(x), x) is positive continuous, we have α > 0. For ∀r ≥ 1 and ∀x ∈ Sd−1(r), we set
x̂ = x/r ∈ Sd−1(1), then it follows that

f(x) ≥ f(x̂) + ⟨∇f(x̂), x− x̂⟩2
≥ f(x̂) + (r − 1) ⟨∇f(x̂), x̂⟩2
≥ f∗ + (r − 1)α

This inequality implies that if r > 1 + c−f∗
α

, then we have f(x) > c for ∀x ∈ Sd−1(r).
Therefore, sublevel set {x ∈ Rd; f(x) ≤ c} is a closed bounded set.

4.8.2 Proof of the Lemma 6

To prove Lemma 6, the following lemma is required, which is also shown in Freund
(1971).

Lemma 10. Let {ξi}ni=1 be a set of vectors in Rd and µ denote an average of {ξi}ni=1. Let
I denote a uniform random variable representing a size b subset of {1, 2, . . . , n}. Then, it
follows that,

EI

∥∥∥∥∥1b∑
i∈I

ξi − µ

∥∥∥∥∥
2

=
n− b
b(n− 1)

Ei∥ξi − µ∥2.

Proof. We denote a size b subset of {1, 2, . . . , n} by S = {i1, . . . , ib} and denote ξi − µ
by ξ̃i. Then,

EI

∥∥∥∥∥1b∑
i∈I

ξi − µ

∥∥∥∥∥
2

=
1

C(n, b)

∑
S

∥∥∥∥∥1b
b∑

j=1

ξij − µ

∥∥∥∥∥
2

60

4. Accelerated Variance Reduced Stochastic Gradient Descent II

=
1

b2C(n, b)

∑
S

∥∥∥∥∥
b∑

j=1

ξ̃ij

∥∥∥∥∥
2

=
1

b2C(n, b)

∑
S

(
b∑

j=1

∥ξ̃ij∥2 + 2
∑
j,k,j<k

ξ̃Tij ξ̃ik

)
,

where C(·, ·) is a combination. By symmetry, an each ξ̃i appears bC(n,b)
n

times and an each
pair ξ̃Ti ξ̃j for i < j appears C(b,2)C(n,b)

C(n,2)
times in

∑
S . Therefore, we have

EI

∥∥∥∥∥1b∑
i∈I

ξi − µ

∥∥∥∥∥
2

=
1

b2C(n, b)

(
bC(n, b)

n

n∑
i=1

∥ξ̃i∥2 +
2C(b, 2)C(n, b)

C(n, 2)

∑
i,j,i<j

ξ̃Ti ξ̃j

)

=
1

bn

n∑
i=1

∥ξ̃i∥2 +
2(b− 1)

bn(n− 1)

∑
i,j,i<j

ξ̃Ti ξ̃j.

Since, 0 = ∥
∑n

i=1 ξ̃i∥2 =
∑n

i=1 ∥ξ̃i∥2 + 2
∑

i,j,i<j ξ̃
T
i ξ̃j , we have

EI

∥∥∥∥∥1b∑
i∈I

ξi − µ

∥∥∥∥∥
2

=

(
1

bn
− b− 1

bn(n− 1)

) n∑
i=1

∥ξ̃i∥2 =
n− b
b(n− 1)

1

n

n∑
i=1

∥ξ̃i∥2.

This finishes the proof of Lemma.

We now prove the Lemma 6.

Proof of Lemma 6 . We set v1j = ∇gj(xk)−∇gj(x̃) + ṽ. Using Lemma A and

vk =
1

b

∑
j∈Ik

v1j ,

conditional variance of vk is as follows

EIk∥vk −∇f(xk)∥2 =
1

b

n− b
n− 1

Ej∥v1j −∇f(xk)∥2,

where expectation in right hand side is taken with respect to j ∈ {1, . . . , n}. By Corollary
3 in Xiao and Zhang (2014), it follows that,

Ej∥v1j −∇f(xk)∥2 ≤ 4L(f(xk)− f(x∗) + f(x̃)− f(x∗)).

This completes the proof of Lemma 6.

61

4. Accelerated Variance Reduced Stochastic Gradient Descent II

4.8.3 Stochastic gradient descent analysis
Below is the proof of Lemma 8.

Proof of Lemma 8 . It is clear that yk is equal to xk − ηvk. Since f(x) is L-smooth and
η = 1

L
, we have,

f(yk) ≤ f(xk) + ⟨∇f(xk), yk − xk⟩2 +
L

2
∥yk − xk∥2

= f(xk)−
1

L
⟨∇f(xk), vk⟩2 +

1

2L
∥vk∥2.

vk is an unbiased estimator of gradient ∇f(xk), that is, EIk [vk] = ∇f(xk). Hence, we
have

EIk∥vk∥2 = ∥∇f(xk)∥2 + EIk∥vk −∇f(xk)∥2.

Using above two expressions, we get

EIk [f(yk)] = f(xk)−
1

L
∥∇f(xk)∥2 +

1

2L
EIk∥vk∥2

= f(xk)−
1

2L
∥∇f(xk)∥2 +

1

2L
EIk∥vk −∇f(xk)∥2.

4.8.4 Stochastic mirror descent analysis
We give the proof of Lemma 9.

Proof of Lemma 9 . The following are basic properties of Bregman divergence.

⟨∇Vx(y), u− y⟩2 = Vx(u)− Vy(u)− Vx(y), (4.6)

Vx(y) ≥
1

2
∥x− y∥2. (4.7)

Using (4.6) and (4.7), we have

αk ⟨vk, zk−1 − u⟩2 = αk ⟨vk, zk−1 − zk⟩2 + αk(vk, zk − u)
= αk ⟨vk, zk−1 − zk⟩2 −

⟨
∇Vzk−1

(zk), zk − u
⟩
2

=
(4.6)

αk ⟨vk, zk−1 − zk⟩2 + Vzk−1
(u)− Vzk(u)− Vzk−1

(zk)

≤
(4.7)

αk ⟨vk, zk−1 − zk⟩2 −
1

2
∥zk−1 − zk∥2 + Vzk−1

(u)− Vzk(u)

≤ 1

2
α2
k∥vk∥2 + Vzk−1

(u)− Vzk(u),

62

4. Accelerated Variance Reduced Stochastic Gradient Descent II

where for the second equality we use stochastic mirror descent step, that is, αkvk +
∇Vzk−1

(zk) = 0 and for the last inequality we use the Fenchel-Young inequality
αk ⟨vk, zk−1 − zk⟩2 ≤

1
2
α2
k∥vk∥2 + 1

2
∥zk−1 − zk∥2.

By taking expectation with respect to Ik and using EIk∥vk∥2 = ∥∇f(xk)∥2+EIk∥vk−
∇f(xk)∥2, we have

αk ⟨∇f(xk), zk−1 − u⟩2 ≤ Vzk−1
(u)−EIk [Vzk(u)]+

1

2
α2
k∥∇f(xk)∥2+

1

2
α2
kEIk∥vk−∇f(xk)∥2.

This finishes the proof of Lemma 9.

4.8.5 Proof of the Lemma 7
We now prove the Lemma 7 that is the key to the analysis of our method.

Proof. We denote Vzk(x∗) by Vk for simplicity. We get

αk+1 ⟨∇f(xk+1), zk − x∗⟩2
≤ Vk − EIk+1

[Vk+1] + Lα2
k+1(f(xk+1)− EIk+1

[f(yk+1)]) + α2
k+1EIk+1

∥vk+1 −∇f(xk+1)∥2

≤ Vk − EIk+1
[Vk+1] + Lα2

k+1(f(xk+1)− EIk+1
[f(yk+1)])

+ 4Lα2
k+1δk+1(f(xk+1)− f(x∗) + f(y0)− f(x∗))

= Vk − EIk+1
[Vk+1] + (1 + 4δk+1)Lα

2
k+1(f(xk+1)− f(x∗))− Lα2

k+1EIk+1
[f(yk+1)− f(x∗)]

+ 4Lα2
k+1δk+1(f(y0)− f(x∗)),

where for the first inequality we use Lemma 8 and 9 with u = x∗, for the second inequality
we use Lemma 6.

By taking the expectation with respect to the history of random variables I1, I2 . . ., we
have,

αk+1E[⟨∇f(xk+1), zk − x∗⟩2] ≤ E[Vk − Vk+1] + (1 + 4δk+1)Lα
2
k+1E[f(xk+1)− f(x∗)]

− Lα2
k+1E[f(yk+1)− f(x∗)] + 4Lα2

k+1δk+1(f(y0)− f(x∗)), (4.8)

and we get

m∑
k=0

αk+1E[f(xk+1)− f(x∗)]

≤
m∑
k=0

αk+1E[⟨∇f(xk+1), xk+1 − x∗⟩2]

=
m∑
k=0

αk+1(E[⟨∇f(xk+1), xk+1 − zk⟩2] + E[⟨∇f(xk+1), zk − x∗⟩2])

63

4. Accelerated Variance Reduced Stochastic Gradient Descent II

=
m∑
k=0

αk+1

(
1− τk
τk

E[⟨∇f(xk+1), yk − xk+1⟩2] + E[⟨∇f(xk+1), zk − x∗⟩2]
)

≤
m∑
k=0

(
αk+1

1− τk
τk

E[f(yk)− f(xk+1)] + αk+1E[⟨∇f(xk+1), zk − x∗⟩2]
)
.

(4.9)

Using (4.8), (4.9), and Vzk+1
(x∗) ≥ 0, we have

m∑
k=0

αk+1

(
1 +

1− τk
τk

− (1 + 4δk+1)Lαk+1

)
E[f(xk+1)− f(x∗)]

≤ V0 +
m∑
k=0

αk+1
1− τk
τk

E[f(yk)− f(x∗)]− L
m∑
k=0

α2
k+1E[f(yk+1)− f(x∗)]

+ 4L
m∑
k=0

α2
k+1δk+1(f(y0)− f(x∗)).

This completes the proof of Lemma 7.

4.8.6 Proof of Theorem 5

We here give the proof of convergence theorem of AMSVRG.

Proof of Theorem 5. Using Lemma 7 and

τ0 = 1,
1

τk
− (1 + 4δk+1)Lαk+1 ≥ 0,

αk+1
1− τk
τk

− Lα2
k = Lα2

k+1 −
1

2
αk+1 − Lα2

k

= − 1

16L
< 0,

we have

Lα2
m+1E[f(ym+1)− f∗] ≤ Vz0(x∗) + 4L

m∑
k=0

α2
k+1δk+1(f(y0)− f∗).

This proves the theorem because 4L
∑m

k=0 α
2
k+1δk+1 ≤ p

∑m
k=0 αk+1 ≤ 5p

32L
(m+2)2.

64

4. Accelerated Variance Reduced Stochastic Gradient Descent II

Algorithm 8 Modified Multi-Stage AMSVRG
Input: the number of outer-iterations T , the number of inner-iterations (ms)

T
s=0, learn-

ing rates η, (αk+1)k∈Z+ , mini-batch sizes (bk+1)k∈Z+ , coefficients (τk)k∈Z+ , and initial
point w0

for s = 0 to T do
y0 ← ws, z0 ← w0

ws+1 ← Algorithm6(ms, η, (αk+1)k∈Z+ , (bk+1)k∈Z+ , (τk)k∈Z+ , y0, z0)
end for
Return wT+1

4.8.7 Modified AMSVRG for general convex problems
We now introduce a modified AMSVRG (described in Algorithm 8) that does not need
the boundedness assumption for general convex problems.

We set η, αk+1, and τk as in (4.5). Let bk+1 ∈ Z+ be the minimum values satisfying

4Lδk+1αk+1 ≤ p for small p (e.g. 1/4). Let ms =

⌈
4

√
LVz0 (x∗)

ϵ

⌉
.

From Theorem 5, we get

E[f(ws+1)− f(x∗)] ≤ ϵ+ a(f(ws)− f(x∗)),

where a = 5
2
p. Thus, it follows that,

E[f(ws+1)− f(x∗)] ≤
s∑
t=0

atϵ+ as+1(f(w0)− f(x∗))

≤ 1

1− a
ϵ+ as+1(f(w0)− f(x∗)).

Hence, running the modified AMSVRG for O
(
log 1

ϵ

)
outer iterations achieves ϵ-accurate

solution in expectation, and a complexity at each stage is

O

(
n+

ms∑
k=0

bk+1

)
≤ O

(
n+

nm2
s

n+ms

)
= O

(
n+

nL

ϵn+
√
ϵL

)
= O

(
n+min

{
L

ϵ
, n

√
L

ϵ

})
,

where we used the monotonicity of bk+1 with respect to k for the first inequality. Note
that Vz0(x∗) is constant (i.e. Vw0(x∗)), and O hides this term. From the above analysis,
we derive the following theorem.

65

4. Accelerated Variance Reduced Stochastic Gradient Descent II

Theorem 8. Consider the modified AMSVRG under Assumptions 3. Let parameters be as
above. Then the overall complexity for obtaining ϵ-accurate solution in expectation is

O

((
n+min

{
L

ϵ
, n

√
L

ϵ

})
log

(
1

ϵ

))
.

66

Chapter 5

Stochastic Difference of Convex
Algorithm

Difference of convex functions (DC) programming is an important approach to noncon-
vex optimization problems because these structures can be encountered in several fields.
Effective optimization methods, called DC algorithms, have been developed in determin-
istic optimization literature. In machine learning, a lot of important learning problems
such as the Boltzmann machines (BMs) can be formulated as DC programming. How-
ever, there is no DC-like algorithm guaranteed by convergence rate analysis for stochas-
tic problems that are more suitable settings for machine learning tasks. In this chapter,
we propose a stochastic variant of DC algorithm and give computational complexities to
converge to a stationary point under several situations. Moreover, we show our method
includes expectation-maximization (EM) and Monte Carlo EM (MCEM) algorithm as
special cases on training BMs. In other words, we extend EM/MCEM algorithm to more
effective methods from DC viewpoint with theoretical convergence guarantees. Experi-
mental results indicate that our method performs well for training binary restricted Boltz-
mann machines and deep Boltzmann machines without pre-training.

This chapter is based on the work Stochastic Difference of Convex Algorithm and its
Application to Training Deep Boltzmann Machines, A. Nitanda and T. Suzuki, Artificial
Intelligence and Statistics, 2017 (Nitanda and Suzuki, 2017a).

5.1 Overview

There is a strong need to develop better optimization methods for nonconvex problems
because many scientific problems are nonconvex. Generally speaking, a nonconvex prob-
lem is hard to solve. However, several important problems possess a special structure
(quadratic, finite sums, etc.), and it is expected that we can build effective algorithms by
making full use of the special structure. In particular, a wide range of problems are re-

67

5. Stochastic Difference of Convex Algorithm

Table 5.1: Complexities of SPD
General case Smooth concave Polyak-Łojasiewicz

Outer Iteration Complexity O(Lg/ϵ) O(min{Lg, Lh}/ϵ) Õ(CLg)
Total Complexity

(general) O(Lg/ϵ
2) O(Lg/ϵ

2) Õ
(
CLg

ϵ

)
Total Complexity

(variance growth condition) Õ
(
Lg(1+β)

ϵ

)
Õ
(
Lg(1+β)

ϵ

)
Õ (CLg(1 + β))

duced to difference of convex functions (DC) programming (Tao, 1986) which takes the
the following form:

min
x∈Rd
{f(x) def

= g(x)− h(x)}, (5.1)

where g and h are differentiable convex functions from Rd to R.
In fact, DC structures can be encountered in several fields, e.g., in economics, finance,

operations research, and biology. In machine learning, multiple kernel learning (Argyriou
et al., 2006) and feature selection in support vector machines (Le Thi et al., 2008) are
formulated as DC programs. Moreover, it is shown that: (i) any continuous function over
a compact set can be approximated by a DC function by Stone-Weierstrass theorem and
DC decomposition of polynomials (ii) any C2-function f whose eigenvalues of Hessian
are lower bounded can be decomposed as a DC function; there exists a convex function h
such that f = g−h is DC, where g = f+h. The former property is induced by the fact that
any continuous function on a compact set is a uniform limit of a sequence of polynomials
according to the Stone-Weierstrass theorem and, a polynomial can be decomposed as the
sum of a convex polynomial and a concave polynomial (Ferrer, 2001; Wang et al., 2014;
Ahmadi and Hall, 2015).

To solve optimization problem (5.1), practical methods are variants of DC algorithms
(DCAs) (Tao, 1986) that generate a sequence by solving sub-problems that consist of
the sum of the convex part g and the linear approximation of the concave part −h at the
current iterate. Due to their simplicity, efficiency, and robustness, DCAs have been widely
applied to many fields. It has been shown that a DCA converges to a stationary point even
when an objective function is non-differentiable. Moreover, convergence rates have been
given (Le Thi et al., 2009; Le Thi and Dinh, 2011) for a special class of DC programs.

Important applications of DC programming are Boltzmann machines (BMs) which are
energy-based generative models over binary observations and binary hidden units. Re-
stricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs) (Salakhut-
dinov and Hinton, 2009) are special forms of BMs. These models are used for unsuper-
vised learning, dimension reduction, feature extraction, and pre-training or initialization
of multi-layer perceptrons. RBMs and DBMs learning are easier than more general Boltz-

68

5. Stochastic Difference of Convex Algorithm

mann machine learning; however, it is still quite difficult. In fact, in recent years, several
studies have exploited optimization methods (Salakhutdinov and Hinton, 2009; Cho et al.,
2013; Carlson et al., 2015). The log-likelihood of a BM is the subtraction of two com-
posite functions of linear mapping and a log-sum-exp function. That is, BM learning is
DC programming. However, there is still no DC-like algorithm with any convergence rate
analysis to solve stochastic problems that are more suitable settings for training BMs.

In this chapter, we propose a stochastic proximal DC algorithm (SPD). Our method
works effectively not only under a deterministic setting but also under a stochastic set-
ting, where only stochastic gradients are available for the convex part and sometimes
for the concave part. Optimization methods built under this setting can be applied to a
wider class of problems, including training BMs. Furthermore, we show that Expectation-
maximization (EM) and Monte Carlo EM (MCEM) algorithms, which are heavily used
for latent variable models, are recognized as special cases of our SPD algorithm, and our
algorithm is even more effective than these algorithms.

In addition, we give convergence complexities: the number of iterations of SPD to
obtain an ϵ-accurate solution in expectation (i.e., E∥∇f(x)∥22 < ϵ) under several settings:
Lipschitz smoothness of g, h and Polyak-Łojasiewicz condition on objective function f ,
whose definitions will be described in Section 5.4.

SPD requires only approximate solutions of sub-problems in expectation. To solve
the sub-problems we can employ stochastic optimization methods for convex problems,
which is a very active research area. Moreover, since a sub-problem becomes strongly
convex, effective stochastic gradient-based methods (Rakhlin et al., 2012; Chen et al.,
2012; Ghadimi and Lan, 2013a; Bottou et al., 2016) can be used as underlying solvers
to achieve fast convergence, and we give the total complexity analyses that include the
complexity of such a method.

Table 5.1 shows the complexities of our method in general case (g : Lg-smooth),
smooth concave case (g, h : Lg, Lh-smooth), and Polyak-Łojasiewicz case. Note that the
notation Õ hides a logarithmic term. The middle row of Table 5.1 lists the total complex-
ities without additional structures for the sub-problem. RSG (Ghadimi and Lan, 2013b)
is a stochastic optimization method for solving Lipschitz smooth nonconvex problems,
and in this case, we can obtain the same complexity O(Lg/ϵ2) as SPD by slight modifi-
cation of their proof. However, SPD has better practical performance than suggested by
the theory because our analyses for the total complexities do not take into account the
warm starting for sub-problems solved in SPD repeatedly. An intuition for the practical
performance of SPD is described in Section 5.4.

Moreover, if the convex sub-problems have additional special structures such as 2nd-
order derivative, noise condition, finite sums, it is possible to show much better conver-
gence by utilizing this information for the convex optimization method used in the inner
loop. Especially, we focus on a variance growth condition (Bottou et al., 2016; Carlson
et al., 2016), defined in Section 5.4 and we show that this condition strictly improves the

69

5. Stochastic Difference of Convex Algorithm

total complexities as shown in the last row of Table 5.1.

Related Works
The stochastic majorization-minimization method and the online DCA were proposed in
Mairal (2013) for nonconvex problems. Although SPD is also a type of majorization-
minimization methods, it differs from their methods in several respects. The surrogate
function used in Mairal (2013) is more stochastic and is quadratically approximated, and
can be solved exactly. On the other hand, the convex part is not approximated in SPD
and it is relatively difficult to solve our surrogate function exactly; SPD only requires an
approximation to the solution in expectation. Moreover, although they gave convergence
analyses, convergence rates for the nonconvex problem were not provided.

The method proposed in Nesterov (2013) for deterministic nonconvex problems is one
of the methods which should be compared with our method. Applying their analysis to our
problem, the complexity to obtain a gradient mapping of norm ϵ is O(Lh/ϵ). However,
the norm of a gradient and the norm of a gradient mapping cannot be directly compared.
Furthermore, while the coefficient of their order is always affected by Lh, our method is
free from it when Lh > Lg.

5.2 DC Algorithm
DCAs are optimization algorithms for solving DC problems. To obtain the next iterate
that linearly approximates the concave part −h at the current iterate xk and solves the
resulting convex minimization problem:

min
x∈Rd
{g(x)− (h(xk) + ⟨∇h(xk), x− xk⟩)} ∼ min

x∈Rd
{g(x)− ⟨∇h(xk), x⟩}, (5.2)

where ⟨, ⟩ denotes the Euclidean inner product. Several studies have exploited the con-
vergence properties and shown the efficiency of a DCA under the assumption that we
can obtain an exact or deterministically approximate solution of the sub-problem (5.2).
However, there is no algorithm with convergence rate analysis for stochastic problems
frequently encountered in machine learning. Thus in the next section, we propose a more
suitable DCA for such problems.

5.3 Stochastic Proximal DC Algorithm
In the remainder of this chapter, we make the following stochastic assumption.

Assumption 6 (Stochastic Assumption). To solve DC problem (5.1), an optimization al-
gorithm can use only the stochastic gradients of g and h.

70

5. Stochastic Difference of Convex Algorithm

Note that although there are several problems such that a deterministic gradient of h
can be computed and we can use∇h, we also make stochastic assumption on h to handle
some specific problems including general BMs. Here, we propose SPD, which is more
suitable for this assumption. Let Hk denote the d× d positive definite matrix and ∥ · ∥Hk

denote the Mahalanobis norm defined by Hk, i.e., for v ∈ Rd, ∥v∥Hk
=
√
⟨v,Hkv⟩. Let

vh(x) denote an unbiased estimator of ∇h(x) and σ2
h be an upper bound on the variance

of vh; E[vh(x)] = ∇h(x), E[∥vh(x) −∇h(x)∥22] ≤ σ2
h. Let xk be the current iterate. To

obtain the next iterate xk+1, SPD solves the following proximal sub-problem inexactly by
a stochastic method:

SP (k) : min
x∈Rd
{ϕk(x)

def
= g(x) +

1

2
∥x− xk∥2Hk

− (h(xk) + ⟨vh(xk), x− xk⟩)}. (5.3)

The difference between sub-problems (5.2) and (5.3) is that the latter problem is a stochas-
tic approximation and includes the proximal term 1

2
∥x−xk∥2Hk

, which forces the solution
to stay close to xk with respect to the norm ∥·∥Hk

. Practical choices for the metricHk and
our motivations are described in the next subsection. Since it is impractical to obtain an
exact or deterministic approximation to the solution, we employ the following condition
on expectation of a solution of the sub-problem:

E[ϕk(xk+1)|Fk] ≤ ϕ∗
k + δ, (5.4)

where Fk is the filtration for all information up to iterate xk, ϕ∗
k is the optimal value of

SP(k), and δ > 0. For many stochastic algorithms, e.g., stochastic gradient descent, the
global convergence property in expectation is shown for convex problems. Therefore, we
can use such algorithms as an underlying solver of SPD. Note that we can warm start to
solve sub-problems, i.e., by running a stochastic algorithm from a previous solution xk
with sufficiently small learning rates, it is not particularly difficult to satisfy the above
condition empirically. In Section 5.4, we demonstrate how condition (5.4) guarantees
the convergence of SPD with better convergence rates to obtain an ϵ-accurate solution in
expectation. Here, we briefly give a connection between SPD and mirror descent method.
Let x∗k+1 = argminϕk(x), ψk(x)

def
= g(x) + 1

2
∥x∥2Hk

, and assume vh(xk) = ∇h(xk), then
we have

∇f(xk) = ∇ψk(xk)−∇ψk(x∗k+1). (5.5)

This equation means SPD can also be interpreted as an inexact variant of a stochastic
mirror descent method using distance generating functions ψk for DC programming.

SPD runs forR iterations, whereR is chosen uniformly at random from {1, 2, . . . ,M}
for M ∈ Z+. This is a standard technique for nonconvex analysis (Ghadimi and Lan,
2013b). SPD is described in Algorithm 9.

71

5. Stochastic Difference of Convex Algorithm

Algorithm 9 SPD (Stochastic proximal DC algorithm)
Input: initial point x1, the maximum number of iterations M , underlying solver A for
solving SP (k), the number of iterations T for A
Randomly pick up R ∈ {1, 2, . . . ,M}
for k = 1 to R− 1 do

Update the metric Hk

Compute stochastic approximation vh(xk) of ∇h(xk)
xk+1 ← Solve SP(k) by running A for T iterations

end for
Return xR

5.3.1 Metrics
There are two aims for including the proximal term 1

2
∥x− xk∥2Hk

of ϕk in sub-problems.
The first is to keep the next iterate xk+1 in a neighborhood of the current xk where the
linear approximation of the concave part−h is sufficiently accurate. In the gradient-based
optimization literature, it is well studied theoretically and empirically that the proximity
induced by an appropriate metric at each iteration improves the convergence behavior,
e.g., Natural Gradient (Amari, 1998) and AdaGrad (Duchi et al., 2011). The second
is to enhance the effect of strong convexity, which makes the sub-problem SP(k) better
conditioned and easier to solve.

Next, we give practical choices for the metric Hk. The first choice is a scalar matrix,
i.e., Hk = µId, µ > 0. As will be discussed in Section 5.4, this choice with µ = Lg
or Lh, where Lg, Lh are smoothness parameters, gives a better convergence complexity
according to our analysis. Second, when the concave part −h is twice differentiable, we
propose a diagonal approximation to the Hessian of h (Becker and Le Cun, 1988). In
other words, we define Hk as follows:

Hk ←
∣∣diag (∇2h(xk)

)∣∣+ µId, (5.6)

where the absolute value operator | · | is applied element-wise to the diagonal of the
Hessian and µ is a positive value that guarantees sufficiently strong convexity to improve
the conditioning of the curvature of h. This metric makes the update take large steps in
the direction of low curvature compared to that of highly curved directions.

5.3.2 AdaSPD
Here, we derive a specific form of the SPD described by Algorithm 9. For a metric Hk,
we use a scalar matrix or the diagonal Hessian (5.6) as in the previous subsection. For
an underlying solver, due to the simplicity of implementation and better empirical perfor-
mance, we adopt AdaGrad using the proximal term 1

2
∥x− xk∥2Hk

as the regularization in

72

5. Stochastic Difference of Convex Algorithm

its update. Let yk,t and vk,t (t = 1, 2, . . .) denote an inner iterate and a stochastic gradient
of g at yk,t, respectively, in outer iteration k. To adapt the step size to the geometry of the
objective function, AdaGrad computes diagonal matrix Dk,t as follows:

Dk,t ←
√
λId + diag(

∑t
i=1 sk,is

⊤
k,i),

where λ is a damping parameter for numerical stability and sk,i denotes vk,i − vh(xk). To
obtain the next inner iterate yk,t+1, we solve the following problem:

arg min
y∈Rd

{
⟨sk,t, y⟩+

1

2
∥y − xk∥2Hk

+
1

2η
∥y − yk,t∥2Dk,t

}
,

where η denotes the learning rate. Note that Dk,t can be updated successively and yk,t+1

can be computed in closed form. The algorithm AdaSPD is described in Algorithm 10.

Algorithm 10 AdaSPD
Input: initial point x1, the maximum number of iterations M , (lower) scale µ of a
metric Hk, the number of iterations T for the inner loop, damping parameter λ of Dk,t,
learning rate η > 0, suffix averaging parameter α ∈ (0, 1) (assuming αT is an integer)
Randomly pick a R ∈ {1, 2, . . . ,M}
for k = 1 to R− 1 do

scalar matrix option:
Hk ← µId

Diagonal Hessian option:
Hk ← |diag (∇2h(xk))|+ µId

yk,1 ← xk
Sk,0 ← O
for t = 1 to T − 1 do
vk,t ← a stochastic gradient of g at yk,t
sk,t ← vk,t − vh(xk)
Sk,t ← Sk,t−1 + diag(sk,ts

⊤
k,t)

Dk,t ←
√
λId + Sk,t

yk,t+1 ← (ηHk +Dk,t)
−1(ηHkxk +Dk,tyk,t − ηsk,t)

end for

xk+1 ←
∑T

t=(1−α)T+1 yk,t

αT
end for
Return xR

73

5. Stochastic Difference of Convex Algorithm

5.4 Analysis
In this section, we give convergence analyses of SPD and complexities to obtain an ϵ-
accurate solution in expectation under several situations. Note that all proofs can be found
in the supplement. For simplicity, we only consider the scalar matrix µkId for Hk. We
first give the definition of Lipschitz smoothness needed for analyses.

Definition 3. A function ϕ is Lipschitz smooth if there exists Lϕ > 0 such that ∀x,∀y ∈
Rd,

∥∇ϕ(x)−∇ϕ(y)∥ ≤ Lϕ∥x− y∥2.

5.4.1 General Case
The following proposition shows the expected square norm of the gradient is upper-
bounded by the expected reduction of the objective function per iteration up to δ and
σ2
h.

Proposition 4. Consider Algorithm 9 under stochastic assumption 6. Suppose g is Lg-
smooth and the expected condition (5.4) holds. Then, it follows that for k = 1, 2, . . .

µk
4
E
[
∥xk+1 − xk∥22|Fk

]
+
∥∇f(xk)∥22
2(Lg + µk)

≤ δ +
σ2
h

µk
+ E[f(xk)− f(xk+1)|Fk].

Using Proposition 4, we derive a convergence theorem.

Theorem 9. Make the same assumption as Proposition 4 and assume the optimal value
f∗ of f is bounded from below. Let µk = O(Lg) and (µk = Ω(Lg) or σh = 0). Then it
follows that

E[∥∇f(xR)∥22] ≤ O

(
Lgδ + σ2

h +
Lg(f(x1)− f∗)

M

)
.

We immediately obtain the following corollary.

Corollary 5. Suppose the assumptions in Theorem 9 hold and σ2
h = O(ϵ). Set δ =

O(ϵ/Lg). Then, the complexity M to obtain an ϵ-accurate solution in expectation is
O(Lg/ϵ).

The readers might feel that the assumption σ2
h = O(ϵ) in the above corollary is un-

realistic because the variance σ2
h of the stochastic gradient of h is assumed to be smaller

than the solution accuracy ϵ. However, this is reasonable because the total complexity
is unchanged even if we spend the same computational cost as that of solving SP (k) to
estimate ∇h and the variance σ2

h can be made sufficiently small by using a comparable
number of samples in the mini-batch.

74

5. Stochastic Difference of Convex Algorithm

5.4.2 Smooth Concave Function

In this subsection, we give the convergence properties for problems having Lipschitz
smooth h. To establish a complexity analysis, we slightly modify the algorithm: we
choose R, the number of iterations of SPD, uniformly at random from {2, 3, . . . ,M + 1}
instead of {1, 2, . . . ,M} as before forM ∈ Z+. Then, we have the following proposition.

Proposition 5. Suppose that g, h are Lg, Lh-smooth, respectively. Then, it follows that

E
[
∥∇f(xk+1)∥22|Fk

]
≤ 8(Lg + µk)δ + 4σ2

h + 4(µ2
k + L2

h)E
[
∥xk+1 − xk∥22|Fk

]
.

By combining Proposition 4 and 5, we have the following proposition.

Proposition 6. Make the same assumption as Proposition 5. Let µk = O(Lh) and µk =
Ω(Lh). Then, it follows that

E
[
∥∇f(xk+1)∥22|Fk

]
≤ O((Lg + Lh)δ + σ2

h + LhE [f(xk)− f(xk+1)|Fk]).

From Proposition 6, we can obtain the convergence theorem that indicates that as Lh
decrease, SPD has better convergence.

Theorem 10. Make the same assumption as Proposition 6. We assume Lh = O(Lg) and
the optimal value f∗ of f is bounded from below. Then it follows that

E[∥∇f(xR)∥22] ≤ O

(
Lgδ + σ2

h +
Lh(f(x1)− f∗)

M

)
.

Theorem 10 implies the following complexity result which is better than Corollary 5
because of Lh = O(Lg).

Corollary 6. Suppose the assumptions in Theorem 10 hold and σ2
h = O(ϵ).We set δ =

O(ϵ/Lg). Then, the complexity M to obtain an ϵ-accurate solution in expectation is
O(Lh/ϵ).

5.4.3 Polyak-Łojasiewicz Condition

Here, we show a fast convergence of Double-loop SPD described in Algorithm 11 under
Polyak-Łojasiewicz condition:

Definition 4. A function ϕ satisfies Polyak-Łojasiewicz condition, i.e., ∃C > 0 such that
∀x ∈ Rd

ϕ(x)−minϕ ≤ C∥∇ϕ(x)∥22. (5.7)

75

5. Stochastic Difference of Convex Algorithm

Algorithm 11 Double-loop SPD
Input: initial point y1, the maximum number of outer-iterations N , the options for
Algorithm 9 M,A, T
for t = 1 to N − 1 do
yt+1 ← Algorithm 9 (yt,M,A, T)

end for
Return yN

Note that Algorithm 9 and 11 are essentially the same up to the returned point. There-
fore, algorithm remain unchanged in practical implementations.

Let δ = O(ϵ/Lg),M = O(CLg/2) and assume σ2
h = O(ϵ). Using Theorem 9 and

(5.7), we can easily show

E[∥∇f(yt+1)∥22] ≤ ϵ+
E[∥∇f(yt)∥22]

2
.

This recurrence relation immediately implies E[∥∇f(yt+1)∥22] ≤ 2ϵ + (1
2
)t∥∇f(y1)∥22.

This mean that if we run Algorithm 11 for N = O(log 1/ϵ) outer-iterations, we can
obtain an ϵ-accurate solution. Thus, the following theorem holds.

Theorem 11. Make the same assumption as Theorem 9 and assume Polyak-Łojasiewicz
condition holds. Let δ,M and σh be as above. Then, the complexity including that of
inner SPD to obtain a solution is O(CLg log 1

ϵ
).

5.4.4 Total Complexity
We consider the total complexity that includes the complexity of an underlying solver.
In recent years, several stochastic optimization methods that can solve the sub-problem
SP(k) have been developed. Note that the objective function of the sub-problem can be
µk = O(Lg) or O(Lh) strongly convex. Let us adopt SGD (Rakhlin et al., 2012) as
an underlying solver. Noting that, SGD can solve the sub-problem with a complexity
of O

(
1
µkδ

)
, we obtain the total complexities as shown in the middle row of Table 5.1.

Although the complexity O(Lg/ϵ
2) is the same as that of RSG method (Ghadimi and

Lan, 2013b) for solving Lipschitz smooth nonconvex problems, SPD has better practical
performance for several reasons. Firstly, since we can warm start the underlying solver of
SPD at the previous solution, it is enough to perform fewer iterations than suggested by the
theory. By the strong convexity of the sub-problem, we get ∥∇f(xk)∥22 ≥ 2µk(ϕk(xk)−
ϕ∗
k), that is, as current iterate xk is closer to a stationary point, initial objective gap of each

sub-problem SP(k) also becomes small. Let us assume µk are uniformly upper and lower
bounded by positive constants. Noting that smoothnesses Lg + µk, strong convexities µk,
and accuracy δ of sub-problems are the same order among all iterations, we find that as

76

5. Stochastic Difference of Convex Algorithm

the initial objective gap of a sub-problem is smaller, we can easily solve it empirically.
Secondly, although a performance of almost all of stochastic gradient based algorithms
are affected by its variance, SPD reduces this effect by fixing an estimate of ∇h(xk) in
each inner loop.

Moreover, we can show improved convergence complexities by using an additional
structure of the convex sub-problems such as a variance growth condition.

Variance Growth Condition

We first introduce the variance growth condition.

Definition 5. A function ϕ satisfies the variance growth condition if there exist α, β > 0
such that ∀x ∈ Rd,

V[Φ(x, ξ)] ≤ α + β∥∇ϕ(x)∥22,

where Φ(x, ξ) denotes a stochastic gradient of ϕ at x.

This condition can be found in Bottou et al. (2016); Carlson et al. (2016) and a
stronger condition called gradient growth condition is used in Schmidt and Roux (2013);
Gürbüzbalaban et al. (2015). Note that the variance growth condition with α = 0 is used
in Carlson et al. (2016) to establish a convergence analysis of stochastic optimization
method for the learning discrete graphical models including RBMs and this condition is
controllable by mini-batching of gradient estimators.

Applying Theorem 4.6 in Bottou et al. (2016) to the sub-problem SP(k), we immedi-
ately obtain a complexity to solve it as follows.

Proposition 7. Let us assume that the objective function ϕk of SP(k) satisfies the variance
growth condition with α

(1+β)µk
≤ δ. Then, if we run SGD, with a constant learning rate

η = O(1
Lg(1+β)

), a δ-accurate solution of SP(k) can be obtained with a complexity of

O

(
Lg(1 + β)

µk
log

ϕk(xk)− ϕ∗
k

δ

)
.

Since ϕk(xk)− ϕ∗
k ≤ 1

2µk
∥∇f(xk)∥22, if {∥∇f(xk)∥2}Mk=1 are uniformly bounded and

if we apply Proposition 7 with the same µk, δ as in Corollary 5, 6, or Theorem 11, we can
find that the variance growth condition strictly improves the total complexities as shown
in the last row of Table5.1.

5.5 Boltzmann Machines
Although we are mainly concerned with RBMs or DBMs rather than BMs, we describe an
application to learn BMs because BMs are the general form of these models. The BM is

77

5. Stochastic Difference of Convex Algorithm

a particular type of Markov random field with visible binary stochastic units v ∈ {0, 1}D
and hidden binary stochastic units h ∈ {0, 1}M . The negative energy of the state {v, h} is

−E(v, h; Θ) = v⊤b+ h⊤c+ v⊤Uv + h⊤V h+ v⊤Wh,

where Θ = (b, c, U, V,W) are the model parameters, i.e., b ∈ RD, c ∈ RM , U ∈
RD×D, V ∈ RM×M , and W ∈ RD×M . The diagonal elements of U and V are set to zeros.
Note that special form of the Boltzmann machine with U = 0 and V = 0 is nothing else
but RBMs. The joint distribution of v, h is defined as proportional to exp(−E(v, h; Θ)).
Thus, the likelihood of BMs is

p(v|Θ) =
1

Z(Θ)

∑
h

exp(−E(v, h; Θ)),

Z(Θ) =
∑
v

∑
h

exp(−E(v, h; Θ)).

Learning the BM is achieved by minimizing the average negative log-likelihood, i.e., for
i.i.d. samples {vi}Ni=1:

min
Rd

f(Θ) = − 1

N

N∑
i=1

log p(vi|Θ) = g(Θ)− h(Θ),

where g(Θ) = log
∑
v

∑
h

exp(−E(v, h; Θ)),

h(Θ) =
1

N

N∑
i=1

log
∑
h

exp(−E(vi, h; Θ)).

Since a composite function of the convex log-sum-exp function and linear mapping is
convex, training the BM is DC programming. The gradients of g and h are as follows: for
the parameter θ ∈ Θ,

∇θg(Θ) = −Ep(v,h;Θ) [∇θE(v, h; Θ)] ,

∇θh(Θ) = −Ep(h|v;Θ)p0(v) [∇θE(v, h; Θ)] ,

where p0(v) is the empirical distribution 1
N

∑n
i=1 δ(v = vi). To run SPD with a diagonal

Hessian approximation, we give diag(∇2
θh(Θ)) based on the formulation:

∇2
θi
h(Θ) = ∇θih(Θ)− (∇θih(Θ))2,

whose derivation can be found in the supplement.
Although for RBMs the second expectation ∇θh(Θ) is tractable, the first ∇θg(Θ)

is not because the expectation is taken with respect to v and h. Practically, contrastive

78

5. Stochastic Difference of Convex Algorithm

divergence (CD) (Hinton, 2002) or persistent contrastive divergence (PCD) (Tieleman
and Hinton, 2009) is used to obtain a stochastic approximation of∇θg(Θ). Therefore, we
can apply SPD with σ2

h = 0 to training RBMs. Note that, in each iteration of SPD,∇h(Θ)
is computed at the cost of N evaluations; however, in practice, this cost is relatively small
compared to that of CD / PCD used in an underlying solver. In fact, previous work
(Salakhutdinov and Murray, 2008) has shown that to obtain a good approximation of the
gradient, a sufficiently large number of Gibbs samples are required in the CD method.

It is intractable to compute both expectations ∇θg(Θ) and ∇θh(Θ) for general BMs.
Therefore, we stochastically approximate these terms. We use persistent Gibbs sampling
(Salakhutdinov and Hinton, 2009) to compute the model expectation term ∇θg(Θ). That
is, we obtain new samples v, h in underlying solver by Gibbs sampling with few steps,
initialized at the previous samples. This procedure is equivalent to PCD for RBMs. To es-
timate the data expectation∇θh(Θ), we adopt self-normalized importance sampling using
mean-field approximation: q(h|µ) =

∏M
j=1 q(h

j), with q(hj = 1) = µj , to the true distri-
bution p(h|v,Θ). First, we perform following fixed-point iterations until convergence and
obtain q(h|µ), where µ = (µ1, . . . , µM), as done in Salakhutdinov and Hinton (2009),

µj ← σ

(
cj +

∑
i

Wijv
i +
∑
k

Jkjµ
k

)
,

where σ is the sigmoid function. Next we draw samples {hs}Ps=1 from q(h|µ) and approx-
imate∇θh(Θ) as follows:

∇θh(Θ) ∼ Ep0(v)

[∑P
s=1−∇θE(v, hs|Θ) · ωs∑P

s=1 ωs

]
,

where ωs = exp(−E(v,hs;Θ))
q(hs|µ) is a ratio between joint distribution and q(h), so that it is

computable. This estimate is asymptotically consistent (Owen, 2013). Using these ap-
proximations, we can run SPD for learning BMs. For simplicity of implementation, we
may use P = 1 and the expectation µ instead of a sample h1 to reduce the sampling vari-
ance, even though it may have a relatively large bias, and so the resulting approximation
of ∇h is the same as the mean-field approximation.

5.5.1 SPD as The Extension of EM/MCEM Algorithms
In the following we describe the connection between EM, MCEM algorithms and SPD.
Let Θ′ be a current parameter of a BM, V = {vi}Ni=1, and H = {hi}Ni=1 be i.i.d data sam-
ples and corresponding hidden variables, respectively. At the E-step of the EM algorithm
we computes the following expectation of the log-likelihood of the joint distribution:

Q(Θ,Θ′) =
1

N

∫
p(H|V,Θ′) log p(V,H|Θ)dH

79

5. Stochastic Difference of Convex Algorithm

= Ep0(v)p(h|v,Θ′)[−E(v, h; Θ)]− logZ.

In MCEM, the first term of the right hand side is approximated by a Monte Carlo method.
This term is a linear mapping with respect to ∀θ ∈ Θ and its gradient is nothing else but
∇θh(Θ

′). Combining the fact g(Θ) = logZ, we conclude that Q(Θ,Θ′) is the objective
function of the sub-problem of SPD with µ = 0 and the M-step in EM/MCEM corre-
sponds to solving this sub-problem. Therefore, SPD can be recognized as an extension of
the EM/MCEM algorithm for training BMs with better convergence analyses. Note that
the proximal term of SPD with Lg or Lh convexity does not affect the convergence rate by
Theorem 9 and 10, while it facilitates the optimization of the sub-problems by its strong
convexity. Thus, SPD may be the more efficient method than EM/MCEM algorithms.

5.6 Numerical Experiments
In this section, we demonstrate the effectiveness of AdaSPD on training RBMs and DBMs
with the weight decay. Our implementation is done using Theano (Bergstra et al., 2010;
Bastien et al., 2012). We used the binarized MNIST (Salakhutdinov and Murray, 2008)
which has 60,000 training and 10,000 test images (28×28 pixels) of 10 handwritten digits
(0-9) and used CalTech101 Silhouettes (Marlin et al., 2010) which has 6,364 training and
2,307 test images (28×28 pixels) of 101 classes, representing object silhouettes.

Since computing the partition function of BMs is difficult (except for small RBMs),
we used the annealed importance sampling (AIS) (Salakhutdinov and Murray, 2008) to
estimate it with the settings: (i) for RBM, 500 temperatures spaced uniformly from 0 to
0.5, 4,000 temperatures spaced uniformly from 0.5 to 0.9, 10,000 temperatures spaced
uniformly from 0.9 to 1, and 100 particles, (ii) for DBM, 20,000 temperatures spaced
uniformly, and 1,000 particles. Theoretically, AdaSPD uses a random iteration count
R to establish complexity results to solve problems; however, we always evaluate the
model at the current iteration. The number of underlying solver iterations T and the
suffix averaging parameter α were set as follows: T = ⌈N/b⌉, αT = ⌈T/2⌉, where N is
the number of data points and b is a mini-batch size. All parameter settings of AdaSPD
used in experiments can be found in the supplement.

5.6.1 Restricted Boltzmann Machines
We compare AdaSPD to SGD and AdaGrad on RBMs with 15, 25, and 500 hidden units.
For metric Hk of AdaSPD, we tested the diagonal Hessian approximation and scalar ma-
trices with µ ∈ {10−1, 10−3, 10−5}.

The results are shown in Figure 5.1. The top row represents the result for binarized
MNIST dataset and the bottom row represents the result for CalTech101 Silhouettes. The
vertical axis is the average (estimated) log-likelihood on training dataset. As can be seen

80

5. Stochastic Difference of Convex Algorithm

Training, 15 hidden units Training, 25 hidden units Training, 500 hidden units

Figure 5.1: Comparison of algorithms on training RBMs with 15, 25, and 500 hidden
units. The vertical axis is the average (estimated) log-likelihood on training dataset. Top
row: MNIST, Bottom row: CalTech101 Silhouettes.

in the figure, AdaSPDs showed significantly fast convergence compared to the others,
although it tends to over-fitting, especially for the 500-hidden RBM on CalTech101 Sil-
houettes dataset. For binarized MNIST, the best training log-likelihood of the 500-hidden
RBM was -83.19 and test log-likelihood was -85.83 obtained by AdaSPD with the diag-
onal Hessian approximation. These results are comparable to those reported in Carlson
et al. (2015); Salakhutdinov and Murray (2008). For CalTech101 Silhouettes, the best
training log-likelihood of the 500-hidden RBM was -84.15 obtained by AdaSPD with the
scalar matrix (µ = 10−3) and test log-likelihood was -109.95 obtained by AdaSPD with
the scalar matrix (µ = 10−1).

5.6.2 Deep Boltzmann Machines

Next, we train two DBMs: one has three-hidden layers (500-500-1000 hidden units)
and the other has four-hidden layers (500-500-500-1000 hidden units). The results are
shown in Table 5.2. Stochastic approximation procedure (SAP) (Salakhutdinov and
Hinton, 2009) is the standard method for training DBMs. We compare our method
with SAP with and without pre-training schemes (Cho et al., 2013; Salakhutdinov and

81

5. Stochastic Difference of Convex Algorithm

Table 5.2: Comparison of estimated variational lower bound on the log-likelihood of
MNIST dataset.

Algorithms
3-hidden layers DBM 4-hidden layers DBM
Train Test Train Test

AdaSPD -82.28 -85.17 -82.85 -85.15
SAP - -128.72 - -128.70

Two-stage pre-training+SAP - -81.84 - -83.25
Pre-Training+SAP -84.49 -85.10 - -

Hinton, 2009) We should point out that AdaSPD and SAP were run without any so-
phisticated pre-training such as Salakhutdinov and Hinton (2009); Cho et al. (2013).

Figure 5.2: Learning curves for
AdaSPD on DBMs.

Although AdaSPD showed a little bit worse
score than the method using the best pre-training
strategy (Cho et al., 2013), it outperformed SAP
and was comparable to or better than the other
pre-training methods proposed in (Salakhutdi-
nov and Hinton, 2009; Cho et al., 2013). Thus,
our experiments showed the possibility that no
pre-training methods can lead to a better BM
model. Figure 5.2 shows the learning curves for
AdaSPD. From this figure we observe efficiency
of our method on DBMs.

82

5. Stochastic Difference of Convex Algorithm

5.7 Appendix

5.7.1 Proofs

We give proofs of convergence analyses. We first prove the Proposition 4.

Proof of Proposition 4. Since ϕk is (Lg + µk)-smooth function, we have

ϕk(x) ≤ ϕk(xk) + ⟨∇ϕk(xk), x− xk⟩+
Lg + µk

2
∥x− xk∥22.

By minimizing both sides of the above inequality,

ϕ∗
k ≤ ϕk(xk)−

1

2(Lg + µk)
∥∇ϕk(xk)∥22.

Noting that ϕk(xk) = f(xk) and Evh(xk)[∥∇ϕk(xk)∥22|Fk] ≥ ∥∇f(xk)∥22, we have

Evh(xk)[ϕ
∗
k|Fk] ≤ f(xk)−

1

2(Lg + µk)
∥∇f(xk)∥22.

Using E[ϕk(xk+1)|Fk] ≤ ϕ∗
k + δ and the above inequality, we have

E[ϕk(xk+1)|Fk] ≤ δ + f(xk)−
1

2(Lg + µk)
∥∇f(xk)∥22.

Thus, it follows that

E[f(xk+1) +
µk
2
∥xk+1 − xk∥22|Fk]

≤ E[g(xk+1)− (h(xk) + ⟨∇h(xk), xk+1 − xk⟩) +
µk
2
∥xk+1 − xk∥22|Fk]

= E[ϕk(xk+1)− ⟨∇h(xk)− vh(xk), xk+1 − xk⟩|Fk]

≤ E[ϕk(xk+1)|Fk] + E[
1

µk
∥∇h(xk)− vh(xk)∥22 +

µk
4
∥xk+1 − xk∥22|Fk]

≤ δ + f(xk)−
1

2(Lg + µk)
∥∇f(xk)∥22 +

σ2
h

µk
+
µk
4
E[∥xk+1 − xk∥22|Fk],

where for the first inequality we used convexity of h and for the second inequality we
used Young’s inequality. This finishes the proof of Proposition 4.

Next, let us prove Theorem 9.

83

5. Stochastic Difference of Convex Algorithm

Proof of Theorem 9. Summing up the inequality of Proposition 4 over indices k =
1, . . . ,M and taking the expectation, we have

M∑
k=1

1

2(Lg + µk)
E[∥∇f(xk)∥22] ≤Mδ +

M∑
k=1

σ2
h

µk
+ E[f(x1)− f(xM+1)].

Since µk = O(Lg) ∧ (µk = Ω(Lg) ∨ σh = 0) and f(x1)− f(xM+1) ≤ f(x1)− f∗,

M∑
k=1

E[∥∇f(xk)∥22] ≤ O(LgMδ +Mσ2
h + Lg(f(x1)− f∗)).

Noting that

E[∥∇f(xR)∥22|FM] =
1

M

M∑
k=1

∥∇f(xk)∥22,

we can conclude the proof of Theorem as follows,

E[∥∇f(xR)∥22] = E
[
E[∥∇f(xR)∥22|FM]

]
=

1

M

M∑
k=1

E[∥∇f(xk)∥22]

≤ O

(
Lgδ + σ2

h +
Lg(f(x1)− f∗)

M

)
.

Below is the proof of Proposition 5.

Proof of Proposition 5. It follows that

E[∥∇f(xk+1)∥22|Fk]
= E[∥∇ϕk(xk+1)− (∇h(xk)− vh(xk)) +∇h(xk)−∇h(xk+1)− µk(xk+1 − xk)∥22|Fk]
≤ 4E[∥∇ϕk(xk+1)∥22 + ∥∇h(xk)− vh(xk)∥22 + ∥∇h(xk)−∇h(xk+1)∥22 + µ2

k∥xk+1 − xk∥22|Fk]
≤ 4σ2

h + 4E[∥∇ϕk(xk+1)∥22 + (µ2
k + L2

h)∥xk+1 − xk∥22|Fk],

where for the first inequality we used ∥
∑d

j=1 αj∥22 ≤ d
∑d

j=1 ∥αj∥22 and for the second
inequality we used Lipschitz smoothness of h. Since ϕk is (Lg + µk)-smooth,

1

2(Lg + µk)
E[∥∇ϕk(xk+1)∥22|Fk] ≤ E[ϕk(xk+1)− ϕ∗

k|Fk] ≤ δ.

Thus, we conclude

E[∥∇f(xk+1)∥22|Fk] ≤ 4σ2
h + 8(Lg + µk)δ + 4(µ2

k + L2
h)E[∥xk+1 − xk∥22|Fk].

84

5. Stochastic Difference of Convex Algorithm

By combining Proposition 4 and 5, we prove Proposition 6.

Proof of Proposition 6. Noting that µk = O(Lh) ∧ µk = Ω(Lh), we have

E[∥∇f(xk+1)∥22|Fk] ≤ O
(
(Lg + Lh) δ + σ2

h + L2
hE[∥xk+1 − xk∥22|Fk]

)
≤ O

(
(Lg + Lh) δ + σ2

h + LhE[f(xk)− f(xk+1)|Fk]
)
,

where for the first and second inequality we used Proposition 4 and 5, respectively.

We give the proof of Theorem 10.

Proof of Theorem 10. Using Proposition 6 and Lh = O(Lg), it follows that

E[∥∇f(xk+1)∥22|Fk] ≤ O
(
Lgδ + σ2

h + LhE[f(xk)− f(xk+1)|Fk]
)
.

This inequality resemble Proposition 4 up to the term E[∥xk+1−xk∥22|Fk], so that we can
show the theorem in the same manner as Theorem 9.

5.7.2 The derivation of diagonal hessian approximation

To run AdaSPD with a diagonal hessian approximation for training BMs, we give
diag(∇2

θh(Θ)), where h is the concave part of the log-likelihood of BMs. We only con-
sider a parameter Wij connecting a visible unit vi and a hidden unit hj because for the
other parameters it can be shown in the same manner.

∇2
Wij
h(Θ) = ∇2

Wij
log
∑
h

exp(−E(v,h; Θ))

= ∇Wij

(∑
h exp(−E(v,h; Θ))vihj∑

h exp(−E(v,h; Θ))

)
=

∑
h exp(−E(v,h; Θ))(vihj)2∑

h exp(−E(v,h; Θ))
−
(∑

h exp(−E(v,h; Θ))vihj∑
h exp(−E(v,h; Θ))

)2

=

∑
h exp(−E(v,h; Θ))vihj∑

h exp(−E(v,h; Θ))
−
(∑

h exp(−E(v,h; Θ))vihj∑
h exp(−E(v,h; Θ))

)2

= ∇Wij
log
∑
h

exp(−E(v,h; Θ))−

(
∇Wij

log
∑
h

exp(−E(v,h; Θ))

)2

= ∇Wij
h(Θ)− (∇Wij

h(Θ))2,

where we used (vihj)2 = vihj derived from the fact that vi and hj are binary units {0, 1}.

85

5. Stochastic Difference of Convex Algorithm

5.7.3 Parameter settings for training RBMs and DBMs
In our experiments, we optimized L2-penalized log-likelihoods of RBMs and DBMs.
Here, we give all parameter settings used for AdaSPD. The damping parameter λ was
fixed to 10−4. The scales of metrics were set to µ = 10−4 for diagonal hessian ap-
proximation and µ ∈ {10−5, 10−3, 10−1} for scalar matrix. The number of under-
lying solver iterations T and the suffix averaging parameter α were set as follows:
T = ⌈N/b⌉, αT = ⌈T/2⌉, where N is the number of data points and b is a mini-batch
size. The other parameters are listed in Table 5.3 for binarized MNIST dataset and Table
5.4 for CalTech101 Silhouettes.

Table 5.3: Parameter settings for binarized MNIST
Model Minibatch b PCD-k Mean-field iter. L2-penalty η

RBM-15 32 1 - 0 10−1

RBM-25 32 3 - 0 10−1

RBM-500 128 10 - 5× 10−4 10−1

DBM-500-500-1000 128 10 10 3× 10−4 10−2

DBM-500-500-500-1000 128 10 10 5× 10−4 10−2

Table 5.4: Parameter settings for CalTech101 Silhouettes
Model Minibatch-size b PCD-k Mean-field iter. L2-penalty η

RBM-15 32 1 - 0 10−2

RBM-25 32 3 - 0 10−2

RBM-500 64 10 - 10−3 10−2

86

Part II

New Machine Learning Methods using
Functional Gradient

87

Chapter 6

Functional Gradient Descent

Most optimization methods on Euclidean spaces can be generalized to those on Hilbert
spaces. For instance, functional gradient methods (Kivinen et al., 2004; Dai et al., 2014;
Zhu and Xu, 2015; Dieuleveut and Bach, 2016) in Hilbert spaces are the most straightfor-
ward extensions. When a given functional class approximates the true function well and
it can be modeled efficiently by fewer parameters, parametric models are quite useful in
providing better results. One of the typical successful model is the convolutional neural
network commonly used in computer vision tasks. In contrast, when the task is rather
complicated and we do not have enough information about it, finding such a good param-
eterization is difficult due to the limitation of computational resources. In this case, an
infinite-dimensional modeling with a sophisticated regularization is reasonable to solve
the problem efficiently. Kernel method (Smola and Schölkopf, 1998) is an example of
such a method, which is formalized as L2-regularized empirical risk minimization prob-
lems in a reproducing kernel Hilbert space consisted of functions. There are various
methods for solving this problem and many functional gradient based methods (Kivinen
et al., 2004; Dai et al., 2014) in a reproducing kernel Hilbert space were also proposed.
On the other hand, in boosting methods (Freund and Schapire, 1997; Schapire et al., 1998;
Friedman, 2001; Mason et al., 1999; Schapire and Freund, 2012), complicated functions
are constructed as large as necessary from a simple function by adding a weak learner at
each iteration and generalization ability of an obtained function is commonly guaranteed
by the early stopping. We note both approaches are none other than optimization methods
in functional spaces.

The methods proposed in subsequent chapters are similar to boosting methods. Those
are constructed based on the observation that several machine learning tasks can be re-
garded as optimization problems of probability measures. In this chapter, we first ex-
plain that such a problem can be (approximately) solved through transport maps using
the simplest form of the problem. We next introduce functional gradient methods for the
optimization problem of transport maps and explain convergence property of the method.
Finally, we explain the connection between residual networks (He et al., 2016) which

88

6. Functional Gradient Descent

is the state-of-the-art model in computer vision and the functional gradient method, and
explain how powerful compared to methods on finite-dimensional spaces, intuitively and
theoretically. Recently, this connection is considered to be prominent for explaining the
reason of superior performance of residual networks. For instance, utilizing this connec-
tion, Bartlett et al. (2018) showed the global convergence property of functional gradient
method for training residual networks for regression tasks under suitable assumptions. In
Huang et al. (2017a), a boosting method for learning residual networks, which iteratively
trains residual-layer, was proposed. This method is also similar to our method introduced
in Chapter 9. Another interesting aspect of functional gradient methods is Wasserstein
geometry view which will be explained in Chapter 8. The methods proposed in Chapter 7
and 8 for ensemble learning and generative model learning are closely related to this view-
point. We note that very similar methods (Chizat and Bach, 2018; Johnson and Zhang,
2018) to ours based on the same viewpoints have been proposed with good theoretical
analyses.

6.1 Problem Setting

In this section, we provide several notations and describe the simplest form of problems
considered in Part II. Let X = Rd be a space of interest. We denote by µ a general Borel
probability measure on X which may have continuous, discrete, or finite support. we also
denote by Eµ the expectation with respect to a random variable according to µ, by L2(µ)
the space of square-integrable functions with respect to µ, and by Lq2(µ) the product space
of L2(µ) equipped with ⟨·, ·⟩Lq

2(µ)
-inner product: for ∀ξ, ∀ζ ∈ Lq2(µ),

⟨ξ, ζ⟩Lq
2(µ)

def
= Eµ[ξ(X)⊤ζ(X)] = Eµ

[
q∑
j=1

ξj(X)ζj(X)

]
.

We also use the following norm: for ∀ξ ∈ Lq2(µ), ∥ξ∥Lq
1(µ)

def
= Eµ[∥ξ(X)∥2] =

Eµ
[√∑q

j=1 ξ
2
j (X)

]
. We note that the notation of q in Lq1(µ) may be omitted if it is

not needed.
As seen in subsequent chapters later, several problems in machine learning can be

formalized as optimization problems with respect to probability measure. We note that
when a base probability measure µ0 is given, this problem is (approximately) solved by
optimizing transport maps in L2(µ0) as explained below. In general, for a probability
measure µ, the push-forward measure ϕ♯µ by a map ϕ ∈ L2(µ) is defined as follows: for
a Borel measurable set A ⊂ Θ,

ϕ♯µ(A)
def
= µ(ϕ−1(A)). (6.1)

89

6. Functional Gradient Descent

For a probability measure µq having a continuous density function q, i.e., dµq = q(θ)dθ,
the push-forward measure is described as follows: by the change of variables formula

dϕ♯µq(θ) = q(ϕ−1(θ))| det∇ϕ(θ)−1|dθ.

When we use maps in L2(µ) to push-forward probability measures, we call these as trans-
port maps. We notice that a vast space of probability measures may be reached through
transport maps from a given base probability measure. Such a property is investigated
well in the optimal transport theory, see Villani (2008); Ambrosio et al. (2008).

From the above discussion, considering the optimization problems with respect to
transport maps is justified. Especially, we treat the following simple problem to explain
basic form of functional gradient method and its property.

min
ϕ∈Ld

2(µ)

{
L(ϕ) def

= Eµ[r(ϕ(X))]
}
, (6.2)

where r is a sufficiently smooth function. Note that problems considered in subsequent
chapters are not interpreted as this simplified problem correctly, but it is useful in explain-
ing a property and an advantage of the method and leads to a deeper understanding.

Connections to concrete problems. We here briefly introduce the formulation of the
problems treated in subsequent chapters. In Chapter 7, we propose an ensemble method
for classification tasks. Since an ensemble is composed of weak (base) learners by taking
an expectation on the space of them, the problem turns out to be equivalent to optimizing
probability measures to obtain a highly accurate classifier. Thus, the discussion in this
chapter is quite useful for understanding the method for ensemble learning problems. In
Chapter 8, we consider the generative adversarial networks (GANs) (Goodfellow et al.,
2014) which is the most successful model for generating realistic images. In the train-
ing procedure of GANs, the discriminator and the generator are simultaneously trained
in an adversarial way. Namely, the discriminator is trained to classify between training
images and generated images drawn from the generator, while the generator is trained to
generate realistic images from a noise distribution to mimic real images. Thus, GANs
training can be formalized as min-max problems. Under the assumption where each dis-
criminator is completely optimized in the procedure, the problems can be recognized as
minimizing the objective with respect to generator to increase the classification error of
a current discriminator. Noting that generators are none other than transport maps, the
GAN training is also accomplished by optimizing transport maps. Moreover, we give an
interesting viewpoint that the functional gradient method is a discretization procedure of
a gradient flow in the space of probability measures in terms of Wasserstein geometry.
In Chapter 9, we propose a new gradient boosting method for classification tasks. In our
method, a classifier consisting of the feature extraction and the linear classifier grows by
greedily adding a residual-layer on the top of the feature extraction based on functional

90

6. Functional Gradient Descent

gradient boosting theory. While GANs training is the min-max problem, this problem is
the min-min problem with respect to the linear classifier and the feature extraction. By
regarding feature extractions as transport maps from input data distribution in order to
obtain a ditribution in which each example can be linearly separated into corresponding
classes, we notice that the proposed method turns out to be the method for optimizing
transport maps when a linear classifiers is completely optimized in each iteration. Thus,
this problem is also basically special case of the problem treated in this chapter.

6.2 Functional Gradient Descent
In this section, we introduce functional gradient descent to solve (6.2). The key notion
used in the method is the functional gradient in function spaces. Since they are taken in
some function spaces, we first introduce Fréchet differential in general Hilbert spaces.

Definition 6. Let (H, ⟨, ⟩H) be a Hilbert space and h be a function on H. For ξ ∈ H, we
call that h is Fréchet differentiable at ξ in H when there exists an element ∇ξh(ξ) ∈ H
such that

h(ζ) = h(ξ) + ⟨∇ξh(ξ), ζ − ξ⟩H + o(∥ξ − ζ∥H).
Moreover, for simplicity, we call∇ξh(ξ) Fréchet differential or functional gradient.

If the objective L(ϕ) is differential, then we can obtain ∇L(ϕ) = ∇zr ◦ ϕ, where
z stands for the input variable of r. Therefore, a functional gradient is a vector field of
gradients ∇zr at ϕ(x) (x ∈ X). A functional gradient descent is an iterative optimization
method using this functional gradient. The whole procedure is described in Algorithm 12.

Algorithm 12 Functional Gradient Descent
Input: the initial transport map ϕ0 ∈ Ld2(µ0) and the learning rate η.
for k = 0 to T − 1 do
ϕk+1 ← ϕk − η∇L(ϕk)

end for
Return the function: ϕT .

That is, the functional gradient is the method to move particles {ϕk(x)}x∈X along
negative gradients {∇L(ϕk(x))}x∈X of decreasing the objective.

As in the finite-dimensional case, smoothness property of objective function is also
useful in infinite-dimensional problems, hence, we here introduce Lipschitz smoothness
in Hilbert spaces.

Definition 7. Let h be a function on a Hilbert space (H, ⟨, ⟩H). We call that h is L-
Lipschitz smooth if h is differentiable and it follows that ∀ξ, ζ ∈ H.

∥∇h(ξ)−∇h(ζ)∥H ≤ L∥ξ − ζ∥H.

91

6. Functional Gradient Descent

Under the smoothness assumption, we can show the convergence to a stationary point
by naturally extending the proof of Theorem 1.

Theorem 12. Let us assume that L is L-Lipschitz smooth. Consider Algorithm 12 with
constant learning rate η ≤ 1/L. Then we have for T ∈ Z+

min
k∈{0,...,T−1}

∥∇ϕL(ϕk)∥2L2(µ0)
≤ 2

ηT
(L(ϕ0)− L∗),

where L∗ = infϕ L(ϕ).

Since the proof of the theorem is essentially included in subsequent chapters, though
their have specific forms according to the problem and require additional assumption, we
omit it here. Note that the convergence rate O(1/T) is the same as the gradient descent
method for smooth objective in the finite-dimensional one. This means that even though
the optimization is executed in the infinite-dimensional space, we do not suffer from the
infinite dimensionality in terms of the convergence.

As explained in the previous section, concrete examples introduced in subsequent
chapters are also formalized as optimization problems of transport maps. Thus, the pro-
posed methods for these problems and theoretical analyses are given based on the above
idea although we need several adaptations depending on problems.

6.3 Powerful Optimization Ability and Connection to
Residual Networks

In this section, we explain that functional gradient methods exhibit an excellent perfor-
mance for optimizing L compared to the gradient method in a finite-dimensional space.
If L is Fréchet differentiable, the functional gradient is represented as ∇ϕL(ϕ)(·) =
∇zr(ϕ(·)) as shown in the previous section. Therefore, the negative functional gradi-
ent indicates the direction of decreasing the objective r at each point ϕ(x). An iteration
of the functional gradient method with a learning rate η is described as

ϕt+1 ← ϕt − η∇zr ◦ ϕt = (id− η∇zr) ◦ ϕt.

We can immediately notice that this iterate makes ϕt one level deeper by stacking a resid-
ual network-type layer id − η∇zr (He et al., 2016), and data representation is refined
through this layer. Starting from a simple feature extraction ϕ0 and running the functional
gradient method for T -iterations, we finally obtain a residual network:

ϕT = (id− η∇zr) ◦ · · · ◦ (id− η∇zr) ◦ ϕ0.

Therefore, feature extraction ϕ gradually grows by using the functional gradient method to
optimizeL. This is a huge advantage of the functional gradient method because stationary

92

6. Functional Gradient Descent

points in Ld2(µ0) are potentially significant better than those of finite-dimensional spaces.
Note that this formulation explains the optimization view (Jastrzebski et al., 2017) of
ResNet mathematically.

We now briefly explain how powerful the functional gradient method is compared to
the gradient method in a finite-dimensional space, for optimizing L. Let us consider any
parameterization of ϕt ∈ Ld2(µ0). That is, we assume that ϕt is contained in a family of
parameterized feature extractionsM = {gθ : X → X | θ ∈ Θ ⊂ Rm} ⊂ Ld2(µ0), i.e.,
∃θ′ ∈ Θ s.t. ϕt = gθ′ . Typically, the family M is given by neural networks. If L(gθ)
is differentiable at θ′, we get ∇θL(gθ)|θ=θ′ = ⟨∇ϕL(ϕt),∇θg|θ=θ′⟩Ld

2(µ0)
according to the

chain rule of derivatives. Note that ∇ϕL(ϕt) dominates the norm of gradients. Namely,
if ϕt is a stationary point in Ld2(µ0), ϕt is also a stationary point in M and there is no
room for improvement using gradient-based methods. This result holds for any family
M, but the inverse relation does not always hold. This means that gradient-based meth-
ods may fail to optimize L in the function space, while the functional gradient method
exceeds such a limit by making a feature extraction ϕt deeper. For detailed descriptions
and related work in this line, we refer to Ambrosio et al. (2008); Daneri and Savaré (2010)
and subsequent chapters. As for the representational ability of residual networks, we also
refer the reader to Bartlett et al. (2018) which showed the global convergence property of
functional gradient methods for regression problems under suitable conditions.

93

Chapter 7

Stochastic Particle Gradient Descent for
Infinite Ensembles

We propose a new method for ensemble learning problems with the L1-regularization in
an infinite-dimensional space of base classifiers; in other words, optimization problems of
probability measures. Several optimization methods for this problem have been proposed
due to better statistical performance of this problem. Most of these methods adopt the
boosting strategy, namely adding base classifiers iteratively in a greedy fashion because of
the difficulty of handling L1-regularization in an infinite-dimensional space. As a result,
it causes the requirement of solving nonconvex optimization problems which may make it
difficult to apply to large scale models. In contrast, our proposed method adopts an easily
executable sampling strategy for approximating a probability measure, which optimizes a
transport map for sampling base classifiers, and we are free from adjusting early stopping
time. In the theoretical analysis, we show the convergence property to a stationary point
with a convergence rate and an interior optimality property of the method, that is, the
optimization proceeds as long as better probability measures than a current probability
measure exist in its support.

This chapter is based on the work Stochastic Particle Gradient Descent for Infinite
Ensembles, A. Nitanda and T. Suzuki, preprint, 2017 (Nitanda and Suzuki, 2017b).

7.1 Overview

The goal of the binary classification problem is to find a measurable function, called a
classifier, from the feature space to the range [−1, 1], which is required to minimize the
expected classification error. The ensemble methods, including boosting and bagging,
are powerful scheme for solving this problem; constructing a complex classifier by com-
bining base classifiers. It is well-known empirically that such a classifier attains good
generalization performance in experiments and applications (Bauer and Kohavi (1999);

94

7. Stochastic Particle Gradient Descent for Infinite Ensembles

Dietterich (2000); Viola and Jones (2001)).

Especially boosting methods have been thoroughly analyzed due to their excellent
performance. The first important result was presented by Schapire et al. (1998), where
the margin theory for convex combinations of classifiers was introduced. The tighter
generalization bounds were given in Koltchinskii and Panchenko (2002); Bartlett et al.
(2006) by using the complexities of the function class such as the covering numbers and
Rademacher complexity. Moreover, several studies have shown the convergence prop-
erty and consistency of boosting methods (Mason et al. (2000); Zhang (2003); Mannor
et al. (2003); Blanchard et al. (2003); Lugosi and Vayatis (2004); Zhang and Yu (2005);
Bartlett and Traskin (2007)). At the same time, many boosting-type methods have been
proposed, e.g., AdaBoost (Freund and Schapire (1997)), LogitBoost (Friedman et al.
(2000)), Arc-gv (Breiman (1999)), AdaBoost∗ν (Rätsch and Warmuth (2005)), α-Boost
(Friedman (2001)), and AnyBoost (Mason et al. (2000)). These methods are essentially
based on the strategy of coordinate descent methods or functional gradient methods in
an infinite-dimensional space of base classifiers; classifiers are added iteratively in greedy
fashion with their weights in each iteration. As for the regularization, L1-regularization in
an infinite-dimensional space is adopted in these methods by restricting the model to con-
vex combinations of base classifiers or imposing early stopping with a small learning rate
(Friedman (2001); Rosset et al. (2004)) to prevent the rapid growth of its L1-norm. The
former formalization have also appeared in convex neural networks (Bengio et al. (2006);
Bach (2014)) and boosting-like methods have been proposed. Moreover, Bach (2014) has
studied the generalization ability of this problem and Rosset et al. (2007) has shown that
the sparsity property still holds even in the case of an infinite-dimensional space.

In spite of the success of boosting methods in data analysis, it seems to be difficult to
apply these methods for taking an ensemble of large size base classifiers such as neural
networks because of the requirement of solving nonconvex subproblems for adding base
classifiers, which can become intractable. In this chapter, we propose a new ensemble
learning method, called Stochastic Particle Gradient Descent (SPGD) by adopting a com-
pletely different strategy based on easily executable sampling method for approximating
a current probability measure. The SPGD performs in a space of probability measures
on a set of continuously parameterized base classifiers and constructs an ensemble by the
expectation with respect to the obtained probability measure. In other words, the SPGD
method handles the L1-constraint naturally, hence we are free from adjusting early stop-
ping time and a complex ensemble can be found quickly. Such a procedure is realized
by constructing a transport map for sampling base classifiers and this transport map iter-
atively grows by stacking layers on neural networks to optimize the objective function.
This strategy is in opposition to those of existing methods that successively increase the
number of basis to be combined.

In the theoretical analysis, we show the convergence of the proposed method to a
stationary point with a convergence rate as fast as that of a stochastic optimization method

95

7. Stochastic Particle Gradient Descent for Infinite Ensembles

for finite-dimensional nonconvex problems. Moreover, we show the interior optimality
property of the method, where the optimization proceeds as long as better probability
measures than a current probability measure exist in its support. This property is inherent
in problems with respect to probability measures and its proof mainly relies on partial
differential equation theory.

Furthermore, we provide two practical variants of SPGD method. One is a natural
approximation of a transport map in SPGD using finite particles, and we note this approx-
imation forms a residual-type network (He et al. (2016)). The other is a more practical
variant without resampling of particles, and we show this variant can be regarded as well-
initialized SGD for the nonweighted voting classification problem, that is, we can say
it is an extension of the vanilla SGD to the method for optimizing a general probability
measure.

Related Work
Ensemble learning with infinite models have been received a lot of attention due to their
superior performance and many optimization methods have been exploited. Represen-
tative methods are boosting methods (Schapire et al. (1998)), convex (continuous) neu-
ral networks (Bengio et al. (2006); Le Roux and Bengio (2007); Rosset et al. (2007)),
and Bayesian neural networks (MacKay (1992, 1995); Neal (2012)). Kernel methods
using shift-invariant kernels (Rahimi and Recht (2007)) also combine a basis, although
a base probability measure to sample base functions is pre-determined. Most of these
methods are based on optimization problems in infinite-dimensional spaces with some
regularization, for instance, boosting methods and convex neural networks use the L1-
regularization as mentioned earlier, that is, combinations by probability measures, and
kernel methods with shift-invariant kernels use RKHS-norm regularization which is writ-
ten by the L2-regularization using an associated probability measure like infinite-layer
networks (Livni et al. (2017)). L2-regularized problems in kernel methods can be effi-
ciently solved by the functional gradient descent (Kivinen et al. (2004); Dai et al. (2014);
Zhu and Xu (2015); Dieuleveut and Bach (2016)) or methods using explicit random fea-
tures (Rahimi and Recht (2007); Livni et al. (2017)). Note that the random kitchen sinks
(Rahimi and Recht (2009)) adopt the L∞-constraint rather than the L2-regularization. As
for the L1-regularization, combining its good generalization performance (Koltchinskii
and Panchenko (2002); Koltchinskii et al. (2003); Bach (2014)) with the fact that the L1-
ball always includes the L2 (L∞)-ball, superior classification performance is expected,
especially when base classifiers have high representational ability. However, solving L1-
regularized problems are more challenging than L2 (L∞)-regularized problems because
handling L1-regularization is difficult from the optimization perspective, indeed boost-
ing methods which are representative for this problem require to solve the nonconvex
subproblems for adding base classifiers.

From the perspective of optimizing the probability measure, gradient-based Bayesian

96

7. Stochastic Particle Gradient Descent for Infinite Ensembles

inference methods (Welling and Teh (2011); Dai et al. (2016); Liu and Wang (2016)) are
related to ours. Especially, stein variational gradient descent (SVGD) proposed in Liu
and Wang (2016) is most related to our work, which has a similar flavor to our method.
Convergence analysis and gradient flow perspective were given in Liu (2017) and further
analysis was provided in Chen and Zhang (2017). However, while SVGD is a method
specialized to minimize the Kullback–Leibler-divergence based on Stein’s identity tech-
nique, our method does not require special structure of a loss function; hence, our method
can be applied to a wider class of problems and theoretical results hold in the more general
setting, though we focus our study only on the ensemble learning. We would like to re-
mark an interesting point of our method compared to the normalizing flow (Rezende and
Mohamed (2015)) that approximates Bayes posterior through deep neural networks. In
our method, a transport map is obtained by stacking residual-type layers (He et al. (2016))
iteratively, hence a residual network to output an infinite ensemble is built naturally.

7.2 Problem Setting
In this section, we explain our problem setting for classification tasks. We first define
the space of base classifiers. Let us denote the Borel measurable feature space and the
label set by X ⊂ Rn and Y = {−1, 1}, respectively. Let Θ ⊂ Rd be a Borel set and
H = {hθ : X → [−1, 1]; Borel measurable | θ ∈ Θ} be a subset of base binary
classifiers that is parameterized by θ ∈ Θ. We sometimes use the notation h(θ, x) for
hθ(x) when it is regarded as a function with respect to θ and x. We assume that h(θ, x) is
Borel measurable on Θ×X and continuous with respect to x ∈ X .

Example 1 (Linear Classifier). For θ ∈ Θ, we define the linear classifier as follows:

hθ(x) = tanh(θ⊤x),

which separates the feature space X linearly using a hyperplane with normal vector θ.

Example 2 (Neural Network). Let {ls}Ls=0 be the sizes of layers, where l0 = n, lL = 1.
We set d =

∑L−1
s=0 lsls+1 and Θ =

∏L−1
s=0 Θs, where Θs ⊂ Rlsls+1 . For θ = {θs}L−1

s=0 ∈ Θ,
we define the classifier, that is, an L-layer neural network:

hθ(x) = tanh(θ⊤Lσ(θ
⊤
L−1σ(· · ·σ(θ⊤1 x) · · ·))),

where σ is a continuous activation function.

Let us denote the set of all Borel probability measures on Θ by P . For µ ∈ P , we
define the infinite ensemble (ensemble by the probability measure) hµ : X → [−1, 1] as
follows: for x ∈ X ,

hµ(x)
def
= Eµ[h(θ, x)],

97

7. Stochastic Particle Gradient Descent for Infinite Ensembles

where Eµ is the expectation with respect to µ, and predict the label of x by sign(hµ(x)).
Let G be the set of all infinite ensembles: G = {hµ | µ ∈ P}. The goal of the classification
problem under our setting is to minimize the empirical risk on P .

Let l : R→ R be a loss function such as the exponential loss. Let us consider solving
the following problem:

min
µ∈P
LS(µ)

def
=

1

N

N∑
j=1

l (−yjhµ(xj)) . (7.1)

Noting that this problem can be cast as L1-regularization problem in an infinite-
dimensional problem, good statistical properties of the problem are well known (Bach
(2014)). Moreover, since, this problem have an optimal solution of finite support (Ros-
set et al. (2007)), several generalization guarantees (Koltchinskii and Panchenko (2002);
Blanchard et al. (2003); Bartlett et al. (2006)) for convex combinations can be applied to
the problem (7.1). Therefore, we focus on how to solve this problem efficiently.

One way to make this infinite dimensional optimization problem computationally
tractable is to parameterize its subspace locally by a space of actions, which may also
be infinite-dimensional manifold. Basically, our proposed method sequentially updates a
Borel probability measure on Θ based on the theory of transportation. That is, the current
probability measure µk is updated through pushing-forward by a transport map having
the form id + ξk toward a direction reducing the objective function LS . Repeating this
procedure, we finally obtain a composite transport map ϕT = (id + ξT−1) ◦ · · · (id + ξ0)
from an initial probability measure µ0 and the corresponding probability measure µT is
obtained by pushing-forward µ0 by ϕT . In practice, the final probability measure µT is
approximated by samples obtained through ϕT as ϕT (θi) ∼ µT where θi ∼ µ0 and this
approximation makes the method feasible. The resulting problem is how to choose ξk
to optimize (7.1) and an answer to this question is to perform the functional gradient
method with respect to ξ. To explain our proposed method correctly, we should describe
the optimization domain with its properties.

7.3 Optimization Domain and Optimality Condition

In this section, we specify the optimization domain where the proposed method performs.
We set Θ = Rd. Let µ denote any Borel probability measure on Θ with finite second
moment Eµ[∥θ∥2] < +∞ and P2 denote the set of such probability measures. We denote
by L2(µ) the space of L2(µ)-integrable maps from supp(µ) ⊂ Θ into Θ, equipped with
⟨·, ·⟩L2(µ)

-inner product: for ∀ξ, ∀ζ ∈ L2(µ),

⟨ξ, ζ⟩L2(µ)
= Eµ[ξ(θ)⊤ζ(θ)].

98

7. Stochastic Particle Gradient Descent for Infinite Ensembles

As defined in Chapter 6, we denote by ϕ♯µ the push-forward measure of µ by ϕ. When
we use maps in L2(µ) to push-forward probability measures, we call these as transport
maps. We can clearly see ϕ♯µ is also contained in P2 when µ ∈ P2 and id is contained in
L2(µ) for arbitrary µ ∈ P2. Let us consider approximately solving the problem (7.1) on
P2 by updating transport maps iteratively. To discuss the local behavior of the problem,
we must specify the topology of P; hence, we need to introduce more notions.

7.3.1 Integral Probability Metric on P
In this chapter, we adopt a kind of integral probability metrics (Müller (1997)) on P . For
a positive constant C > 0, let f be a function on Θ such that it is uniformly bounded
|f(θ)| ≤ C and f(θ) is C-Lipschitz continuous on Θ with respect to the Euclidean norm.
We denote byFC the set of such functions and the subscript will be omitted for simplicity.
This set of functions is used for defining the norm ∥ · ∥F on the space of linear functionals
on F , which includes P . Specifically, ∥µ∥F = supf∈F |µ(f)| for a finite signed measure
µ on Θ, where we denote the integral of a function f with respect to µ ∈ P by µ(f).
Thus, P is a metric space with respect to the uniform distance dF(µ, ν) = ∥µ − ν∥F for
µ, ν ∈ P . The convergence dF(µt, µ) → 0 is none other than the uniform convergence
of integrals µt(f) → µ(f) on F . Note that this norm defines the same topology as the
Dudley metric (Dudley (1968)).

To investigate the local behavior of LS(µ), we need to clarify the continuity of several
quantities depending on µ ∈ P and h(·, x). Especially, −l′(−yhµ(x))y∇θh(θ, x) is re-
ally important because it is used to describe an optimality condition and performs as the
stochastic gradient in the function space. For simplicity, we use the notation

sµ(θ, x, y) = −l′(−yhµ(x))y∇θh(θ, x). (7.2)

The following proposition gives a sufficient condition for the continuity of these quanti-
ties.

Proposition 8. Suppose sets {h(·, x) | x ∈ X} and {∥ES[sµ(·, x, y)]∥22 | µ ∈ P} are
included in the set FC . Then, hµ(x), LS(µ), and ∥ES[sµ(θ, x, y)]∥L2(µ) are continuous as
a function of µ on P with respect to ∥ · ∥F .

The next proposition supports the validity of the assumption in this proposition for
Example 1 of the linear classifier.

Proposition 9. Let the loss function l be a C1-class function. If h(·, x) is two times con-
tinuously differentiable and h(·, x),∇θh(·, x) are Lipschitz continuous with respect to θ
with the same constant for all x ∈ X , then for sufficiently large C > 0, the assumption in
Proposition 8 is satisfied.

99

7. Stochastic Particle Gradient Descent for Infinite Ensembles

Note that, if we use the set of all 1-Lipschitz continuous functions instead of F , it
derives the Kantorovich and Rubinstein dual form of 1-Wasserstein distance. Although
continuous functions with respect to dF are also continuous with respect to larger dis-
tances including p-Wasserstein distances with p ≥ 1, we prefer dF in this work because
it has sufficient size to contain the integrands h(·, x).

7.3.2 Local Optimality Condition
In this subsection, we establish the local optimality condition for the problem over P2. To
achieve this goal, we need not only the continuity propositions, but also the counterpart
of Taylor’s formula in the space of probability measures, giving the intuition to construct
and analyze an optimization method for solving the problem. Thus, we show such a
proposition under the following assumption.

Assumption 7 (Smoothness and boundedness). Let l be a C2-function and let h be a
C2-function with respect to θ. Moreover, we assume∇θh(θ, x),∇2

θh(θ, x), and the eigen-
values of the latter matrix are uniformly bounded on Θ×X .

Note that this assumption also holds for Example 1 of the linear classifier under the
compactness of X and this assumption is essentially stronger than the assumption in
Proposition 8. The following is the counterpart of Taylor’s formula.

Proposition 10. Suppose Assumption 7 holds. For ∀µ ∈ P2 and ∀ξ ∈ L2(µ), LS((id +
ξ)♯µ) can be represented as follows:

LS((id+ ξ)♯µ) = LS(µ) + Eµ[ES[sµ(θ, x, y)]⊤ξ(θ)] +
1

2
Hµ(ξ) + o(∥ξ∥2L2(µ)

), (7.3)

whereHµ(ξ) = O(∥ξ∥2L2(µ)
) is described as follows: for θ′, which is a convex combination

of θ and θ + ξ(θ) depending also on x, Hµ(ξ) is defined by

Hµ(ξ) = −ES[yl′(−yhµ(x))Eµ∥ξ(θ)∥2∇2
θh(θ

′,x)] + ES[l′′(−yhµ(x))Eµ[∇θh(θ, x)
⊤ξ(θ)]2].

Proof Sketch. A perturbation of the probability measure µ can be translated into that on
the parameter space θ in the integral with respect to µ by the change of variables formula:
E(id+ξ)♯µ[h(θ, x)] = Eµ[h(θ + ξ, x)]. Therefore, applying Taylor’s formula to h and l, we
get

ES[l(−yh(id+ξ)♯µ(x))] = ES[l(−yEµ[h(θ + ξ, x)])]

≃ ES[l(−yEµ[h(θ, x) +∇h(θ, x)⊤ξ(θ)])]
≃ ES[l(−yhµ(x)) + Eµ[sµ(θ, x, y)⊤ξ(θ)]],

where we omitted the second- and higher-order terms for simplicity. A complete proof
will be given in the Appendix.

100

7. Stochastic Particle Gradient Descent for Infinite Ensembles

Using this proposition, we can immediately derive a necessary local optimality condi-
tion over P2 in a similar way to the finite-dimensional case, where P2 is a closure of P2

in P with respect to dF . Note that from Assumption 7, sµ(·, x, y) is contained in L2(µ)
for any µ ∈ P .

Theorem 13 (Necessary local optimality condition). Suppose Assumption 7 holds. Let
µ∗ ∈ P2 be the local minimum of LS(µ) with respect to dF . Then we have

∥ES[sµ∗(θ, x, y)]∥L2(µ∗) = 0. (7.4)

7.3.3 Interior Optimality Property
In this section, we present the interior optimality property of the condition (7.4). When
the loss function l is convex, the optimization problem (7.1) is also convex with respect
to µ ∈ P in terms of affine geometry, and hence the following holds: for a Borel measure
∀τ such that

∫
dτ(θ) = 0,

LS(µ) +
∫
∇µLS(µ)(θ)dτ(θ) ≤ LS(µ+ τ),

where ∇µLS(µ) is Fréchet derivative with respect to µ: ∇µLS(µ) =
ES[−l′(−yhµ(x))yh(·, x)]. Thus, the equation,

∫
∇µLS(µ)(θ)dτ(θ) = 0 (for ∀τ

s.t.
∫
dτ(θ) = 0), is the global optimality condition. In general, this condition and

the local optimality condition (7.4) are different. Indeed, in the set of Dirac measures,
there may exist some local minima as finite-dimensional optimization problems but the
global optimality condition is not satisfied. However, we can show the interior optimality
property of local optimum by using the global optimality condition.

Theorem 14. Suppose that h is a C1-function with respect to θ and the loss function l is
a C1-convex function. Let µ∗ ∈ P be a probability measure having a continuous density
function. If supp(µ∗) is a compact C∞-manifold with boundary and µ∗ satisfies the local
optimality condition (7.4), then there is neither measure µ having a continuous density
such that supp(µ) ⊂ supp(µ∗) and LS(µ) < LS(µ∗) nor µ not having a continuous
density such that supp(µ) is contained in the interior of supp(µ∗) and LS(µ) < LS(µ∗).

This theorem states that the optimization proceeds as long as there exists a better
probability measure in support of a current measure µ satisfying the same assumptions on
µ∗ in Theorem 14 except for condition (7.4).

So far, we have discussed the local optimality conditions and we have confirmed that
∥ES[sµ(θ, x, y)]∥L2(µ) for µ ∈ P2 can be regarded as the local optimality quantity for
the problem due to its continuity and the above theorems. Therefore, the goal of an
optimization method for the problems is to output a sequence {µt}∞t=1 ⊂ P2 such that
∥ES[sµt(θ, x, y)]∥L2(µt) converges to zero.

101

7. Stochastic Particle Gradient Descent for Infinite Ensembles

The following proposition ensures the existence of an accumulation point of such
a sequence satisfying the local optimality condition under the tightness assumption on
generated probability measures.

Proposition 11. We assume a sequence {µt}∞t=1 in P is tight, that is, for arbitrary ϵ > 0,
there exists a compact subset A ⊂ Θ such that µt(A) ≥ 1 − ϵ for ∀t ∈ N. Then, this
sequence has a convergent subsequence with respect to ∥ · ∥F .

Therefore, by taking a subsequence if necessary, we can obtain a sequence {µt}∞t=1

to converge to a stationary point µ∗ ∈ P by an appropriate method. Note that this con-
vergence implies the uniform convergence µt(h(·, x)) → µ∗(h(·, x)) for all x ∈ X by
Proposition 8.

7.4 Stochastic Particle Gradient Descent
In this section, we introduce a stochastic optimization method for solving problem (7.1)
on P2 and present its convergence analysis. The proposed method is essentially the same
as the functional gradient descent described in Chapter 6, but we describe it by another
perspective. We first present an overview of our method again. Let µ0 ∈ P2 be an
initial probability measure and suppose a current probability measure µ is obtained by
pushing-forward µ0 by ϕ ∈ L2(µ0). Then, ϕ and µ are updated along ξ ∈ L2(µ) as
ϕ+ ← (id + ξ) ◦ ϕ and µ+ ← (id + ξ)♯µ. The resulting problem is how to obtain ξ to
locally minimize the objective function LS((id + ξ)♯µ) on L2(µ). We can find that by
Taylor’s formula (7.3), this objective is Fréchet differentiable with respect to ξ ∈ L2(µ)
and its differential is represented by ES[sµ(·, x, y)] via the L2(µ)-inner product. Thus, this
differential performs in function space with this inner-product like the usual gradient in a
finite-dimensional space and it is expected to reduce the objective value. We next provide
a more detailed description below.

Let us denote by Br(µ) the r-neighborhood of the origin in L2(µ); Br(µ)
def
= {ξ ∈

L2(µ) | ∥ξ∥L2(µ) < r}. Since the higher-order term Hµ(ξ) + o(∥ξ∥2L2(µ)
) in (7.3) is

O(∥ξ∥2L2(µ)
), it can be locally upper bounded by the quadratic form at ξ = 0. Thus, we

can assume that there exists a positive-definite smooth (d, d)-matrix Aµ(θ) such that for
all ξ ∈ Br(µ),

1

2
Hµ(ξ) + o(∥ξ∥2L2(µ)

) ≤ 1

2
Eµ∥ξ∥2Aµ(θ). (7.5)

Note that we can choose scalar matrix cId as Aµ with c > 0 that does not depend on µ
under Assumption 7. By Proposition 10, the following quadratic function with respect to
ξ is a local upper bound on LS((id+ ξ)♯µ) at µ ∈ P2:

LS(µ) + Eµ[ES[sµ(θ, x, y)]⊤ξ(θ)] +
1

2
Eµ∥ξ∥2Aµ(θ). (7.6)

102

7. Stochastic Particle Gradient Descent for Infinite Ensembles

Thus, minimizing (7.6) as a surrogate function, we can obtain ξ ∈ L2(µ) to reduce the
objectiveLS and we can make an update µ+ ← (id+ξ)♯µ and an update ϕ+ ← (id+ξ)◦ϕ
for the corresponding transport map from the initial probability measure. Practically, such
a solution ξ is obtained by minimizing the following stochastic approximation to (7.6):
for randomly chosen (x′, y′) from S,

min
ξ∈Br(µ)

Eµ[sµ(θ, x′, y′)⊤ξ(θ)] +
1

2
Eµ∥ξ∥2Aµ(θ). (7.7)

Note that under Assumption 7 and uniformly boundedness assumption on Aµ, a positive
constant η0 exists such that for ∀µ ∈ P and ∀(x′, y′) ∈ X × Y ,

η0∥Aµ(θ)−1sµ(θ, x
′, y′)∥L2(µ) < r.

Thus, we can choose the step −ηAµ(θ)−1sµ(θ, x
′, y′) (0 < η < η0) as an approximate

solution to (7.7) and Lemma 11 shows the reduction of the objective function by this step.
Moreover, if η0 is sufficiently small, we can find this step produces a diffeomorphism (see
Appendix), which preserves good properties of the initial probability measure such as the
manifold structure, and it may lead to good exploration of the proposed method by an
intuition from Theorem 14.

Lemma 11 (Descent Lemma). Suppose Assumption 7 holds and suppose 0 ≺ λAId ⪯
Aµ(θ) ⪯ ΛAId. We set ζ(θ) = −Aµ(θ)−1sµ(θ, x

′, y′) Then, there exist G > 0 and η0 > 0,
depending on the smoothness, the boundedness of l, h, Aµ, and the radius r, such that
for 0 < ∀η < η0, ηζ is contained in Br(µ) and it leads to a reduction:

ES[LS((id− ηζ)♯µ)] ≤ LS(µ)−
η

ΛA
∥ES[sµ(θ, x, y)]∥2L2(µ)

+ η2G.

This lemma means that for sufficiently small learning rates η > 0, the iterate µ+ ←
(id+ ηξ)♯µ strictly reduces the objective function LS in the expectation when µ does not
satisfy the local optimality condition (7.4). Here, we propose an algorithm called SPGD
in Algorithm 13 to solve problem (7.1) based on the above analyses. Note that Algorithm
13 is the ideal one, and hence a practical variant will be described later.

Depending on the choice ofAµ, we can derive several specific algorithms as in the tra-
ditional (stochastic) optimization literature, e.g. steepest descent method, natural gradient
method, and quasi-Newton method. Thus, Algorithm 13 can be regarded as the simplest
form, where Aµ = cId (c > 0), of SPGD. We can obtain the convergence theorem for
Algorithm 13 by the inequality of Lemma 11.

Theorem 15 (Convergence Theorem). Let us make the same assumptions as in Lemma
11. For ϵ > 0, let η > 0 be a constant satisfying η ≤ min{η0, ϵ

2G
}. Then an ϵ-accurate

solution in the expectation, i.e., E[∥ES[sµk(θ, x, y)]∥2L2(µk)
] ≤ ϵ, where the outer expecta-

tion is taken with respect to the history of sample data used in learning, can be obtained

103

7. Stochastic Particle Gradient Descent for Infinite Ensembles

Algorithm 13 SPGD
Input: dataset S, initial distribution µ0, the maximum number of iterations T , learning
rates {ηk}T−1

k=0

ϕ0 ← id
for k = 0 to T − 1 do

Randomly choose a sample (x′, y′) from S
ϕk+1 ← (id− ηksµk(·, x′, y′)) ◦ ϕk
µk+1 ← (id− ηksµk(·, x′, y′))♯µk

end for
Return ϕT

at the most

2(LS(µ0)− infµ∈Q LS(µ))
ϵη

(7.8)

iterations of Algorithm 13 with learning rate ηk = η.

Running Algorithm 13, we obtain the transport map ϕT . If we choose a tractable
distribution as the initial distribution µ0, we can obtain i.i.d. particles {θ0i }Mi=1 from µ0.
By the construction of ϕk, we find that {ϕk(θ0i)}Mi=1 are regarded as i.i.d. particles from
the distribution µk = ϕk♯µ0. However, note that Algorithm 13 is impractical because we
cannot compute exact value of hµk(x

′) required to get sµk(·, x′, y′). Thus, we estimate it
using sample average hk ∼ 1

M

∑M
i=1 hθki . where θki = ϕk(θ

0
i). The overall procedure is

summarized in Algorithm 14. Because of the form of id + ηkl
′(−y′hk)y′∇θh(·, x′), we

notice that Algorithm 14 iteratively stacks residual-type layers (He et al. (2016)) and so
a residual network to output an infinite ensemble is built naturally. We can also derive
more practical variant Algorithm 15 without resampling in Algorithm 14, that is, using
the same seeds {θ0i }Mi=1 over all iterations.

7.4.1 Extension of Vanilla Stochastic Gradient Descent
Let us explain how the proposed method can be regarded as an extension of vanilla
SGD in a finite-dimensional space. If we adopt the sum of Dirac measures as the ini-
tial distribution µ0, then Algorithm 13 and 15 become the same method by initializ-
ing particles {θ0i }Mi=1 to be the support of µ0. Moreover, we can see that the step of
Algorithm 15 is the same as that of vanilla SGD for the nonweighted voting problem:
min{θi}∈ΘM ES[l(− 1

M

∑M
i=1 yh(θi, x))]. Specifically, we can say that the vanilla SGD for

learning a base classifier is the method to optimize a Dirac measure and is none other than
Algorithm 13 with a Dirac measure µ0. In other words, Algorithm 13 is an extension of
the vanilla SGD to the method for optimizing a general probability measure.

104

7. Stochastic Particle Gradient Descent for Infinite Ensembles

Algorithm 14 SPGD - building residual network -
Input: dataset S, initial distribution µ0, the maximum number of iterations T , the
number of particles M , learning rates {ηk}T−1

k=0

ϕ0 ← id
for k = 0 to T − 1 do

Independently draw particles {θ0i }Mi=1 from µ0

{θki }Mi=1 ← {ϕk(θ0i)}Mi=1

Randomly choose a sample (x′, y′) from S
hk ← 1

M

∑M
i=1 hθki (x

′)
ϕk+1 ← (id+ ηkl

′(−y′hk)y′∇θh(·, x′)) ◦ ϕk
end for
Return {θTi }Mi=1

Algorithm 15 SPGD - practical variant -
Input: dataset S, initial distribution µ0, the maximum number of iterations T , the
number of particles M , learning rates {ηk}T−1

k=0

Independently draw particles {θ0i }Mi=1 from µ0

for k = 0 to T − 1 do
Randomly choose a sample (x′, y′) from S
hk ← 1

M

∑M
i=1 hθki (x

′)

{θk+1
i }Mi=1 ← {θki + ηkl

′(−y′hk)y′∇θh(θ
k
i , x

′)}Mi=1

end for
Return {θTi }Mi=1

From this viewpoint of Algorithm 15, we can introduce some existing techniques
and extensions to our method. For instance, we can use accelerating techniques such as
Nesterov’s momentum method (Nesterov (2004)), which is also used in our experiments
to accelerate the convergence.

Moreover, we can extend Algorithm 15 to the multiclass classification problems. Let
us consider the c-classes classification problem. We denote the binary vector for the class
by y, that is, for the i-th class, only the i-th element yi is one and the other elements
are zeros. The output of the classifier h is extended to the range [0, 1]c, which repre-
sent the confidences of each class such as the softmax function. Then, the SGD for the
problem min{θi}∈ΘM ES[l(− 1

M

∑M
i=1 y

⊤h(θi, x))] is the extension of Algorithm 15 to the
multiclass problem.

105

7. Stochastic Particle Gradient Descent for Infinite Ensembles

7.5 Numerical Experiments

7.5.1 Synthetic Data

Figure 7.1: Toy example of the SPGD method (upper-left: weights of the initial particles;
upper-right: weights of the final particles; bottom-left: predicted labels by the initial
particles; bottom-right: predicted labels by the final particles).

We first present how our method behaves by using toy data: two-dimensional double
circle data. We ran Algorithm 15 for Example 1 of a binary linear model with exponential
loss;

min
θi∈R2,bi∈R

ES

[
exp

(
− 1

M

M∑
i=1

Y tanh(θ⊤i X + bi)

)]
.

The number of particles was set to be 20. The behavior of the method is shown in Figure
7.1. The upper-left part shows weights θ of the initial particles and the upper-right part
shows θ of the final particles. The bottom row represents predicted labels by the initial
particles (left) and the final particles (right). It can be seen that the data are well classified
by the locations of the particles using this method.

7.5.2 Real Data
Next, we present the results of experiments on binary and multiclass classification tasks
in a real dataset. We ran Algorithm 15 with momentum for logistic regression and three-
layer perceptrons where we set the number of hidden units to be the same as the input
dimension and we used sigmoid activation for the output of the hidden layer. For the
last layer of multilayer perceptrons, we used softmax output with the exponential loss
or the logarithmic loss function. The number of particles was set to be 10 or 30. Each
element of initial particles was sampled from the normal distribution µ0 with zero mean
and standard deviation of 0.01 to bias parameters and of 1 to weight parameters. To

106

7. Stochastic Particle Gradient Descent for Infinite Ensembles

Table 7.1: Test classification accuracy on binary and multiclass classification.

DATASET LOGREG SPGD(LOGREG) MLP(EXP) SPGD(EXP) MLP(LOG) SPGD(LOG)

BREASTCANCER
0.966 0.965 0.965 0.971 0.968 0.971

(0.0187) (0.0177) (0.0210) (0.0174) (0.0110) (0.0174)

DIABETES
0.755 0.761 0.764 0.756 0.738 0.757

(0.0464) (0.0435) (0.0366) (0.0447) (0.0524) (0.0400)

GERMAN
0.769 0.763 0.738 0.769 0.724 0.775

(0.0406) (0.0390) (0.0178) (0.0381) (0.0393) (0.0356)

IONOSPHEREO
0.892 0.886 0.914 0.937 0.923 0.937

(0.0400) (0.0383) (0.0512) (0.0274) (0.0339) (0.0274)

GLASS
0.566 0.622 0.477 0.616 0.619 0.659

(0.0655) (0.0692) (0.1127) (0.0595) (0.1144) (0.1033)

SEGMENT
0.934 0.913 0.717 0.953 0.961 0.970

(0.0148) (0.0143) (0.1104) (0.0100) (0.0082) (0.0089)

VEHICLE
0.771 0.780 0.759 0.838 0.794 0.829

(0.0422) (0.0248) (0.0372) (0.0451) (0.0525) (0.0370)

WINE
0.968 0.978 0.949 0.974 0.963 0.984

(0.0321) (0.0377) (0.0519) (0.0414) (0.0552) (0.0246)

COVERTYPE
0.720 0.738 0.772 0.763 0.772 0.806

(0.0071) (0.0056) (0.0269) (0.0255) (0.0271) (0.0247)

evaluate the performance of the SPGD, we also ran logistic regression and multilayer
perceptron, whose structure is the same as used for SPGD.

We used the UCI datasets: breast-cancer, diabetes, german, and ionosphere for binary
classification; glass, segment, vehicle, wine, and covertype for multiclass classification.
We used the following experimental procedure as in Cortes et al. (2014); we first divided
each dataset into 10 folds. For each run i ∈ {1, . . . , 10}, we used fold i for validation,
used fold i+ 1 (mod 10) for testing, and used the other folds for training. We performed
each method on the training dataset with several hyper-parameter settings and we chose
the best parameter on the validation dataset. Finally, we evaluated it on the testing dataset.

The mean classification accuracy and the standard deviation are presented in Table
7.1. Notations SPGD(LOGREG), SPGD(EXP), and SPGD(LOG) stand for SPGD for
logistic regression, multilayer perceptrons with exponential loss, and with logarithmic
loss function, respectively. Although SPGD did not improve logistic regression on some
datasets, it showed overall improvements over base models on the other settings. Thus,
we confirmed the effectiveness of our method.

107

7. Stochastic Particle Gradient Descent for Infinite Ensembles

7.6 Appendix

7.6.1 Topological Properties and Optimality Conditions
In this section, we prove statements about the optimization problem for majority vote
classifiers.

Proof of Proposition 9 . By the assumption, uniform boundedness, Lipschitz continuity
of h(·, x) and uniform boundedness of ∥ES[sµ(θ, x, y)]∥22 are clear. Thus, it is suffi-
cient to show uniform Lipschitz continuity of the latter functions. Let us define func-
tions ϕα(z) = ∥

∑N
i=1 αizi/N∥22 (where zi ∈ Rd, ∃K, α ∈ [−K,K]N) and map-

pings ψS(θ) = (∇θh(θ, xi))
N
i=1. By the boundedness assumption there is a constant

C > 0 such that ∥∇θh(θ, x)∥2 ≤ C. Note that ϕα|[−C,C]dN and ψS are Lipschitz
continuous with the uniformly bounded constant. Thus, composite functions of these;
{ϕα ◦ ψS}α∈[−C,C]dN ,S are also Lipschitz continuous with the uniformly bounded con-
stant. Clearly, functions ∥ES[sµ(θ, x, y)]∥22 is an element of these composite functions, so
this finishes the proof.

We now give propositions needed in our analysis. The first statement in the following
proposition shows that the distance between ϕ and ϕ + ξ ◦ ϕ with respect to L2(µ) is the
norm of ξ with respect to L2(ϕ♯µ). The second statement gives a sufficient condition for
a vector to define a diffeomorphism that preserves good properties if the base probability
measures possesses these, for instance, the absolute continuity with respect to Lebesgue
measure and the manifold structure of the support of itself which are sometimes useful
from the Wasserstein geometry or partial differential equation perspective.

Proposition 12. For µ ∈ P2, the following statements are valid:
(i) ∥(id+ ξ) ◦ ϕ− ϕ∥L2(µ) = ∥ξ∥L2(ϕ♯µ) for ϕ ∈ L2(µ), ξ ∈ L2(ϕ♯µ);
(ii) Let ξ ∈ L2(µ) be the C1-mapping from the convex hull of supp(µ) to Θ. We denote
by Λ an upper bound on maximum singular values of ∇ξ(θ) as the (d, d)-matrix on the
convex hull of supp(µ). Then id+ ηξ is a diffeomorphism on supp(µ) for 0 ≤ ∀η < 1/Λ.

Proof. We set µ = ϕ♯µ0 for ϕ ∈ L2(µ0). Then we have that for ξ ∈ L2(µ)

∥ξ∥2L2(µ)
=

∫
∥ξ(θ)∥22dµ(θ)

=

∫
∥ξ(θ)∥22dϕ♯µ0(θ)

=

∫
∥ξ(ϕ(θ))∥22dµ0(θ) = ∥ξ ◦ ϕ∥2L2(µ0)

,

where we used the variable transformation for the third equality. This finishes the
proof of (i).

108

7. Stochastic Particle Gradient Descent for Infinite Ensembles

If we assume (id+ ηξ)(θ) = (id+ ηξ)(θ′), then it follows that ∥θ− θ′∥2 = η∥ξ(θ)−
ξ(θ′)∥2 ≤ η∥∇ξ(θ′′)T (θ − θ′)∥2 < ηΛ∥θ − θ′∥2, where θ′′ is a convex combination of
θ and θ′. Since ηΛ < 1, we have θ = θ′, i.e., id + ηξ is an injective mapping. By the
same argument, we find that∇(id+ηξ)(θ) = Id+η∇ξ(θ) also defines an injective linear
mapping for θ ∈ supp(µ) and ηΛ < 1, so that this matrix is invertible. Thus, we conclude
the proof of (ii) by using the invertible mapping theorem.

Here, we present the proof of Proposition 8 and the continuity of the parameterization
via transport maps in the following propositions, which will be used to show a local
optimality condition theorem.

Proof of Proposition 8 . Continuity of hµ(x) and LS(µ) with respect to µ are clear. Let
{µt}∞t=1 be a sequence converging to µ ∈ P . In the following, we denote sµ(θ, x, y) by sµ
for simplicity. By triangle inequality, we have∣∣∥ES[sµt]∥2L2(µt)

− ∥ES[sµ]∥2L2(µ)

∣∣ ≤ ∣∣µt(∥ES[sµt]∥22)− µt(∥ES[sµ]∥22)∣∣
+
∣∣µt(∥ES[sµ]∥22)− µ(∥ES[sµ]∥22)∣∣ .

Since ∥ES[sµ]∥22 ∈ F , the latter term converges to zero. In order to show that the former
converges to zero, it is sufficient to see the uniform convergence ∥ES[sµt]∥22 → ∥ES[sµ]∥22.
By the boundedness and the triangle inequality, we have∣∣∥ES[sµt]∥22 − ∥ES[sµ]∥22∣∣ ≤ 2

√
C |∥ES[sµt]∥2 − ∥ES[sµ]∥2|

≤ 2
√
C∥ES[sµt]− ES[sµ]∥2.

This upper bound converges to zero. Indeed, each element in expectation: sµt(·, x, y)
uniformly converges to sµ(·, x, y) as seen in the following:

∥l′(−yhµt (x))∇h(θ, x)− l
′(−yhµ(x))∇h(θ, x)∥2 ≤ C|l′(−yhµt (x))− l

′(−yhµ(x))| → 0.

This finishes the proof.

Proposition 13. For ∀µ ∈ P2 and ∀ξ ∈ L2(µ), it follows that dF((id + ξ)♯µ, µ) ≤
C∥ξ∥L2(µ).

Proof of Proposition 13 . Noting that Lipschitz continuity of ∀f ∈ F , we have that for
∀ξ ∈ L2(µ),

dF((id+ ξ)♯µ, µ) = sup
f∈F
|((id+ ξ)♯µ)(f)− µ(f)|

= sup
f∈F

∣∣∣∣∫ f(θ)d(id+ ξ)♯µ(θ)−
∫
f(θ)dµ(θ)

∣∣∣∣
= sup

f∈F

∣∣∣∣∫ (f(θ + ξ(θ))− f(θ)) dµ(θ)
∣∣∣∣

109

7. Stochastic Particle Gradient Descent for Infinite Ensembles

≤ C

∫
∥ξ(θ)∥2dµ(θ) ≤ C∥ξ∥L2(µ),

where we used Hölder’s inequality for the last inequality.

As noted in the paper, the continuity in Proposition 8 also holds with respect to p-
Wasserstein distance (p ≥ 1) and Proposition 13 holds for 1-Wasserstein distance with
C = 1.

We now give the proof of the counterpart of Taylor’s formula.

Proof of Proposition 10 . By the variable transformation, we have∫
h(θ, x)d(id+ ξ)♯µ(θ) =

∫
h(θ + ξ(θ), x)dµ(θ).

Using Taylor’s formula, we obtain

hψ♯µ0(x) = hµ(θ) + Eµ[∇θh(θ, x)
T ξ(θ) + ∥ξ(θ)∥2∇2

θh(θ
′,x)],

where ∥ · ∥∇θh(θ′,x) is Mahalanobis norm, and

l(a+ b) = l(a) + l′(a)b+
1

2
l′′(a)b2 + o(b2) (a, b ∈ R).

Noting that by Hölder’s inequality and Assumption 7, Eµ[∇θh(θ, x)
T ξ(θ)] = O(∥ξ∥L2(µ))

and Eµ[∥ξ(θ)∥2∇θh(θ′,x)
] = o(∥ξ∥L2(µ)), we get

l(−yhψ♯µ0(x)) = l(−yhµ(x)) + Eµ[sµ(θ, x, y)T ξ(θ)] +Hµ(ξ, x, y) + o(∥ξ∥2L2(µ)
),

where Hµ(ξ, x, y) is the integrand in Hµ(ξ). Therefore, by taking the expectation ES ,
we finish the proof.

Using facts and propositions presented in the paper, we prove the theorem of a neces-
sary optimality condition.

Proof of Theorem 13 . We denote ζµ = ES[sµ(·, x, y)] and denote the δ-ball centered at
µ∗ by BF

δ (µ∗) with respect to dF . We assume µ∗ is a minimum on BF
δ (µ∗). By Assump-

tion 7 and Proposition 13, there exists η0 > 0 such that (id ± ηζµ)♯µ ∈ BF
δ (µ∗) ∩ P2

for 0 < ∀η < η0 and ∀µ ∈ BF
δ/2(µ∗) ∩ P2. Let ϵ > 0 be an arbitrary constant.

Here, we can choose a sequence {µt}∞t=1 in BF
δ/2(µ∗) ∩ P2 satisfying µt → µ∗ and

LS(µt) ≤ LS(µ∗) + ϵ/t by the continuity of LS . Then, using Proposition 10, we have

−ϵ
t
≤ LS

((
id− η0

t
ζµt

)
♯
µt

)
− LS(µt) = −

η0
t
∥ES[sµt]∥2L2(µt)

+
η20
t2
O(∥ES[sµt]∥2L2(µt)

),

110

7. Stochastic Particle Gradient Descent for Infinite Ensembles

where we denote sµt = sµt(θ, x, y) for simplicity. Note that Assumption 7 is essen-
tially stronger than the assumption in Proposition 8 and the continuity of LS(µ) and
∥ES[sµ]∥2L2(µ)

with respect to µ are valid by Proposition 8. Thus, multiplying t, taking
the limit as t→∞, and using continuity, we have η0∥ES[sµ∗]∥2L2(µ∗)

≤ ϵ. Since ϵ is taken
arbitrary and ϵ, η0 are independent of each other, we get ∥ES[sµ∗]∥2L2(µ∗)

= 0

We next provide the proof of Proposition 11.

Proof of Proposition 11 . For ∀ϵ > 0, let A be a compact subset in Θ such that µt(A) ≥
1 − ϵ Let P(A) denote the set of Borel probability measures on A and µ′

t ∈ P(A) be
the rescaled probability measure of µt|A, i.e., µ′

t = µt|A/µt(A). Note that measures in
P(A) are naturally extended to the whole space Θ and the distance between µt and µ′

t is
bounded as follows: for ∀f ∈ F ,

|µt(f)− µ′
t(f)| =

∣∣∣∣∫ f(θ)dµt −
∫
f(θ)dµ′

t

∣∣∣∣
≤
∣∣∣∣∫

A
f(θ)dµt −

∫
A
f(θ)dµ′

t

∣∣∣∣+ ∣∣∣∣∫
Ac

f(θ)dµt

∣∣∣∣
≤
∣∣∣∣∫

A
f(θ)(1− 1/µt(A))dµt|A

∣∣∣∣+ Cϵ

≤ C

(
1

µt(A)
− 1 + ϵ

)
≤ Cϵ

(
1 +

1

1− ϵ

)
.

Since P(A) is a compact with respect to the topology of weak convergence, we can take
a convergent subsequence of {µ′

t}∞t=1. Let us denote this by {µ′
tk
}∞k=1 and its limit by

µ ∈ P(A). Using Ascoli-Arzela theorem, we can see F|A is relatively compact in the
set of continuous functions on A with uniform norm ∥ · ∥∞. Noting that the set of the
continuous functions on a compact set is complete and that relatively compactness and
totally boundedness are equivalent, we can concludeF|A is totally bounded. Thus, for ∀ϵ,
we have a ϵ-ball covering; {B∞

fi
(ϵ)}li=1 (fi ∈ F|A), where B∞

f (·) denote a ball centered
at f with respect to the uniform norm. Hence, for any f ∈ F|A, there is i ∈ {1, . . . , l}
such that f ∈ B∞

fi
(ϵ).

Therefore, we have that for ∀f ∈ F ,

|µtk(f)− µ(f)| =
∣∣∣∣∫ f(θ)dµtk −

∫
f(θ)dµ

∣∣∣∣
≤
∣∣∣∣∫ f(θ)dµ′

tk
−
∫
f(θ)dµ

∣∣∣∣+ ∣∣∣∣∫ f(θ)dµtk −
∫
f(θ)dµ′

tk

∣∣∣∣
≤
∣∣∣∣∫ f(θ)dµ′

tk
−
∫
fi(θ)dµ

′
tk

∣∣∣∣+ ∣∣∣∣∫ fi(θ)dµ
′
tk
−
∫
fi(θ)dµ

∣∣∣∣
111

7. Stochastic Particle Gradient Descent for Infinite Ensembles

+

∣∣∣∣∫ fi(θ)dµ−
∫
f(θ)dµ

∣∣∣∣+O(ϵ)

≤ O(ϵ) +

∣∣∣∣∫ fi(θ)dµ
′
tk
−
∫
fi(θ)dµ

∣∣∣∣ .
Since, µ′

tk
weakly converges to µ in P(A), there is k0 ∈ N such that ∀k ≥ k0,

maxj∈{1,...,l} |µ′
tk
(fj)−µ(fj)| ≤ ϵ. Thus, we can conclude supf∈F |µtk(f)−µ(f)| ≤ ∃C ′ϵ

for k ≥ k0. This implies µtk → µ with respect to dF .

7.6.2 Interior Optimality Property
To prove Theorem 14, we now introduce the notion of the smoothing of probability mea-
sures as Schwartz distribution. We denote by χ a C∞-class probability density function
on Θ = Rd with supp(χ) = {θ ∈ Θ | ∥θ∥2 ≤ 1} and write χϵ(θ) = ϵ−dχ(θ/ϵ) for ϵ > 0.
For a probability measure µ ∈ P , it can be approximated by a smooth probability density
function defined by the following:

(µ ∗ χϵ)(θ) =
∫
Θ

χϵ(θ − θ′)dµ(θ′).

It is well known that µ ∗ χϵ is C∞-class on Θ and converges as Schwartz distribution
to µ as ϵ → 0 (Hörmander (1963)). Moreover, if µ possesses a Lp-integrable probability
density function q ∈ Lp(Θ) with p ≥ 1, then µ ∗χϵ converges to q with respect to Lp(Θ)-
norm. Let µϵ denote a probability measure induced by µ ∗χϵ. When supp(µϵ) is compact
in Θ, µϵ(f) converges to µ(f) for arbitrary continuous function f on Θ. This can be
confirmed by constructing a C∞-function g that uniformly approximates f on supp(µϵ)
and takes the value zero outside of sufficiently large compact set. Clearly, we see that
supp(µϵ) is contained in the closed ϵ-neighborhood of supp(µ). Thus, if supp(µ) is
compact, then {µϵ}ϵ∈(0,1) is tight, so that we can find µϵ converges to µ with respect to
∥ · ∥F by the proof of Proposition 11, that is, µϵ(f) converges uniformly to µ(f) on F .

Note that if supp(µ) is the compact submanifold in Θ, supp(µ) and the closed ϵ-
neighborhood of supp(µ) coincide for sufficiently small ϵ > 0 and these sets possess a
manifold structure as can be seen by the following auxiliary lemma.

Lemma 12. Let M be a l-dimensional compact C∞-submanifold (l < d) or a d-
dimensional compact C∞-submanifold with boundary in Rd. If ϵ > 0 is sufficiently small,
then closed ϵ-neighborhood ofM in Rd is a d-dimensional compact C∞-submanifold with
boundary.

Proof. We only prove the case whereM is a compact C∞-submanifold since we can give
a proof for a d-dimensional compact C∞-submanifold with boundary in a similar fash-
ion. LetMϵ denote an open ϵ-neighborhood ofM in Θ = Rd. By the ϵ-neighborhood

112

7. Stochastic Particle Gradient Descent for Infinite Ensembles

theorem (Guillemin and Pollack (1974)), if ϵ is sufficiently small, then ∀θ ∈ Mϵ pos-
sesses a unique closest point π(θ) in M and the map π : Mϵ → M is a submer-
sion. Moreover, for each θ0 ∈ Y , we can see that there is a local coordinate system
z = (z1, . . . , zd) = ϕ(θ) on an open subset U ⊂ Θ such that ϕ(θ0) = (0, . . . , 0),
ϕ(M ∩ U) = {z ∈ ϕ(U) | zl+1 = · · · = zd = 0}, and the submersion π can
be written as π(ϕ−1(z)) = ϕ−1(z1, . . . , zl, 0, . . . , 0) for z ∈ ϕ(Mϵ ∩ U). Since, M
is compact, the closed ϵ-neighborhood Mϵ is covered by a finite number of such lo-
cal coordinate systems for sufficiently small ϵ > 0. We redefine (U, ϕ) to be one
of such local coordinate system. The Euclidean distance to M from ϕ−1(z) ∈ U is
f(z) = d(ϕ−1(z),M) = ∥ϕ−1(z) − ϕ−1(z1, . . . , zl, 0, . . . , 0)∥2 and Mϵ ∩ U is repre-
sented as {ϕ−1(z) | z ∈ ϕ(U), f(z) ≤ ϵ}. Since, f(·) is a C∞-function and df ̸= 0 on a
neighborhood of ∂Mϵ in U ,Mϵ ∩ U is a d-dimensional compact C∞-submanifold with
boundary in Θ.

Let U be a bounded domain with smooth boundary in Θ = Rd, that is, U is
a d-dimensional C∞-manifold with boundary. We denote by H1(U)(= W 1,2(U))
the Sobolev space and we denote by V (U) a linear subspace {f ∈ H1(U) |∫
U
fdθ = 0}. We equip H1(U) with the Sobolev inner product ⟨u, v⟩H1(U) =∫

U
u(θ)v(θ)dθ +

∫
U
∇u(θ)⊤∇v(θ)dθ and we equip V (U) with the inner product

⟨u, v⟩V (U) =
∫
U
∇u(θ)⊤∇v(θ)dθ, (u, v ∈ V (U)). The non-degeneracy and the com-

pleteness of ⟨, ⟩V (U) on V (U) can be checked as follows. We denote u =
∫
U
u(θ)dθ/|U |,

where |U | is the Lebesgue measure of U . Since u = 0 for u ∈ V (U), we get from the
Poincaré-Wirtinger inequality that there exists CU > 0 such that

∥u∥L2(U) = ∥u− u∥L2(U) ≤ CU∥∇u∥L2(U) = CU∥u∥V (U). (7.9)

Thus, we have

∥u∥V (U) ≤ ∥u∥H1(U) =
√
∥u∥2L2(U) + ∥∇u∥2L2(U) ≤ (1 + CU)∥u∥V (U).

This inequality means that these two norms introduce the same topology to V (U) and it
immediately implies the non-degeneracy and also the completeness of ∥ · ∥V (U) on V (U)
because V (U) is the closed subspace in the Sobolev spaceH1(U) with respect to ∥·∥H1(U).
Therefore, V (U) with ⟨, ⟩V (U) is actually Hilbert space.

Although the Poincaré constant CU depends on a region U , it is known that for any
R > 0 there exists CR > 0 such that if U is an ϵ-open neighborhood of a connected set
K ⊂ BR(0) = {θ ∈ Θ | ∥θ∥2 < R} for some constant ϵ > 0, then CU can be taken as it
is upper bounded by CR (Ruiz (2012)).

In our analysis, we need an estimation of the norm of a solution to the problem where
for f ∈ V (U), the task is to find u ∈ V (U) satisfying the following equation:∫

U

∇u(θ)⊤∇v(θ)dθ = −
∫
U

f(θ)v(θ)dθ for any v ∈ V (U). (7.10)

113

7. Stochastic Particle Gradient Descent for Infinite Ensembles

This is the weak formulation of the Neumann problem: to find u ∈ V (U) such that
∆u = f in U and ∂u/∂n = 0 on ∂U , where n is the outward pointing unit normal vector
of ∂U . An upper bound on the norm of a solution is given by the following lemma which
can be proven in the standard way in partial differential equation theory.

Lemma 13. Let U be a bounded domain in Θ = Rd. Then for any f ∈ V (U), a solution
u∗ ∈ V (U) to the problem (7.10) exists and its norm is bounded as follows:

∥u∗∥V (U) ≤ ∥αf∥V (U)∗ , (7.11)

where αf is a linear functional αf (u) =
∫
U
f(θ)u(θ)dθ (u ∈ V (U)) and ∥ ·∥V (U)∗ denote

the dual of the norm ∥ · ∥V (U).

Proof. We denote β(u, v) =
∫
U
∇u(θ)⊤∇v(θ)dθ for u, v ∈ V (U). Clearly, β(·, ·) is

bilinear function. The boundedness with respect to ∥ · ∥V (U) are shown as follows. Using
Hölder’s inequality and the inequality (7.9), we have that for u, v ∈ V (U),

|β(u, v)| =
∣∣∣∣∫
U

∇u(θ)⊤∇v(θ)dθ
∣∣∣∣ ≤ ∥u∥L2(U)∥v∥L2(U) ≤ C2

U∥u∥V (U)∥v∥V (U).

Moreover, β(·, ·) is 1-coercive because β(u, u) = ∥u∥2V (U). We can also see that αf (·) is
a bounded linear functional in the same manner: for u ∈ V (U),

|αf (u)| =
∣∣∣∣∫
U

f(θ)u(θ)dθ

∣∣∣∣ ≤ ∥f∥L2(U)∥u∥L2(U) ≤ CU∥f∥L2(U)∥u∥V (U).

Thus, by the Lax-Milgram theorem, there is a unique solution u∗ ∈ V (U) and we have
∥u∗∥V (U) ≤ ∥αf∥V (U)∗ .

We now give the proof of Theorem 14 that gives an interior optimality property of the
local optimality condition.

Proof of Theorem 14 . We denote Ω = supp(µ∗) and let q∗ be a continuous probability
density function of µ∗. We assume that there exists µ′ ∈ P that possesses a continu-
ous probability density function q′ and satisfies supp(µ′) ⊂ Ω, LS(µ′) < LS(µ∗). By
smoothing µ∗ and µ′ with sufficiently small ϵ > 0, we can obtain dµ′

ϵ = q′ϵ(θ)dθ and
dµ∗ϵ = q∗ϵ(θ)dθ where q′ϵ, q∗ϵ are C∞-density functions satisfying supp(µ′

ϵ) ⊂ supp(µ∗ϵ).
As stated above, q′ϵ, q∗ϵ converge to q′, q∗ in L2(Θ).

Let us denote Ωϵ = supp(µ∗ϵ) Since q′ϵ − q∗ϵ is C∞-function and
∫
Ωϵ
(q′ϵ − q∗ϵ)dθ = 0,

there is a C∞-function ψϵ on Ωϵ that solves the Neumann problem (Hörmander (1963)):

∆ψϵ = q′ϵ − q∗ϵ in Ωϵ, ∂ψϵ/∂n = 0 on ∂Ωϵ,

114

7. Stochastic Particle Gradient Descent for Infinite Ensembles

where ∂Ωϵ is the boundary of Ωϵ and n is the outward pointing unit normal vector of ∂Ωϵ.
By adding a constant, we assume

∫
Ωϵ
ψϵ(θ)dθ = 0, i.e., ψϵ|Ωi

ϵ
∈ V (Ωi

ϵ), where Ωi
ϵ is the

interior of Ωϵ. Therefore, we have∫
Ωϵ

∇µLS(µ∗ϵ)(θ)d(µ
′
ϵ − µ∗ϵ) =

∫
Ωϵ

∇µLS(µ∗ϵ)(θ)∆ψϵ(θ)dθ

= −
∫
Ωϵ

∇θ∇µLS(µ∗ϵ)(θ)
⊤∇θψϵ(θ)dθ

+

∫
∂Ωϵ

∇µLS(µ∗ϵ)(θ)
∂ψϵ(θ)

∂n
d∂Ωϵ

= −
∫
Ωϵ

ES[sµ∗ϵ(θ, x, y)]⊤∇θψϵ(θ)dθ, (7.12)

where for the second equality we used Green’s formula and for the last equality we used
∂ψϵ/∂n = 0. By the convexity of LS with respect to µ in terms of Affine geometry and
LS(µ′) < LS(µ∗), we have

lim
ϵ→0

∫
Ωϵ

∇µLS(µ∗ϵ)(θ)d(µ
′
ϵ − µ∗ϵ) ≤ lim

ϵ→0
LS(µ′

ϵ)− LS(µ∗ϵ) = LS(µ′)− LS(µ∗) < 0.

(7.13)
By the boundedness of Ω, we can assume it is contained in a ball with radius R > 0
centered around 0. Since, ψϵ solves (7.10) with U = Ωi

ϵ and f = q′ϵ − q∗ϵ, we get that by
Lemma 13,

lim
ϵ→0
∥ψϵ∥V (Ωi

ϵ)
≤ lim

ϵ→0
sup

∥u∥
V (Ωi

ϵ)
≤1

∣∣∣∣∫
Ωi

ϵ

(q′ϵ − q∗ϵ)(θ)u(θ)dθ
∣∣∣∣

≤ lim
ϵ→0

sup
∥u∥

V (Ωi
ϵ)
≤1

∥q′ϵ − q∗ϵ∥L2(Ωi
ϵ)
∥u∥L2(Ωi

ϵ)

≤ lim
ϵ→0
∥q′ϵ − q∗ϵ∥L2(Ωi

ϵ)
sup

∥u∥
V (Ωi

ϵ)
≤1

CΩi
ϵ
∥u∥V (Ωi

ϵ)

≤ CR∥q′ − q∗∥L2(Θ),

where we used the Poincaré-Wirtinger inequality (7.9) and uniform boundedness of CΩi
ϵ
.

Thus, the limit as ϵ→ 0 in the right hand side of (7.12) is lower-bounded by

−lim
ϵ→0
∥ES[sµ∗ϵ(θ, x, y)]∥L2(Ωϵ)CR∥q′−q∗∥L2(Θ) = −∥ES[sµ∗(θ, x, y)]∥L2(Ω)CR∥q′−q∗∥L2(Θ).

(7.14)
Combining (7.13) and (7.14), we find ES[sµ∗(θ, x, y)] ≢ 0 on Ω, so µ∗ does not satisfy
the local optimality condition (7.4). This finishes the proof of the theorem.

For the case where µ does not have a continuous density, we can show the same result
in a similar way by smoothing µ with as its support is contained in Ω.

115

7. Stochastic Particle Gradient Descent for Infinite Ensembles

7.6.3 Convergence Analysis
In this section, we prove the convergence theorem of the proposed method.

Proof of Lemma 11 . Putting ηζ into (7.3) and (7.5), we obtain

LS((id+ ηζ)♯µ) ≤ LS(µ)− ηEµ[ES[sµ(θ, x, y)]TAµ(θ)−1sµ(θ, x
′, y′)]

+
η2

2
Eµ[∥sµ(θ, x′, y′)∥2Aµ(θ)−1].

Note that by the assumption, there exists G > 0 such that Eµ[∥sµ(θ, x′, y′)∥2Aµ(θ)−1] < G.
Moreover, using the bound on Aµ(θ)−1 and taking the expectation with respect to (x′, y′)
(i.e., ES), we can finish the proof.

Proof of Theorem 15 . Using the Lemma 11, we can see the updates of Algorithm 13
decreases the objective value as follows:

ES[LS(µk+1)] ≤ LS(µk)− η∥ES[sµk(θ, x, y)]∥2L2(µk)
+ η2G.

Taking an expectation of the history of sample, summing up k ∈ {1, . . . , t − 1}, and
dividing by tη, we have

1

t

t∑
k=1

E[∥ES[sµk(θ, x, y)]∥2L2(µk)
] ≤ LS(µ0)− infµ∈Q LS(µ)

ηt
+ ηG.

Thus, if t ≥ 2(LS(µ0)−infq LS(µ))

ϵη
, then 1

t

∑t
k=1 E[∥ES[sµk(θ, x, y)]∥2L2(µk)

] ≤ ϵ. This
means the method can find ϵ-accurate solution with respect to the expectation, up to t
iterations.

7.6.4 Functional Gradient Aspect of SPGD
In this section, we provide the functional gradient method perspective of SPGD, that is,
we describe a connection between SPGD and the functional gradient method in L2(µ0)
where µ0 is the fixed initial probability measure in the method.

Though, we have introduced our method to optimize a probability measure, it also
can be readily recognized as the method to optimize a transport map in L2(µ0) if we fix
the initial distribution µ0 ∈ P2. Indeed, since a composite function ϕ ◦ ψ is contained in
L2(µ0) when ψ ∈ L2(µ0) and ϕ ∈ L2(ψ♯µ0), so obtained transport maps by Algorithm 13
also belong to L2(µ0). Thus objective function can be translated to the form of LS(ϕ) =
LS(ϕ♯µ0) with respect to ϕ ∈ L2(µ0). Note that in general, since an initial distribution is
usually variable in several trials, such a translation does not make sense.

116

7. Stochastic Particle Gradient Descent for Infinite Ensembles

In a similar manner to the proof of Proposition 10, we can obtain the following for-
mula: for ϕ, τ ∈ L2(µ0),

LS(ϕ+ τ) = LS(ϕ) + Eµ0 [ES[sµ(ϕ(θ), x, y)]⊤τ(θ)] +Hϕ(τ) + o(∥τ∥2L2(µ0)
),

where µ = ϕ♯µ0 and Hϕ(τ) = O(∥τ∥2L2(µ0)
). Thus, this formula indicates LS(ϕ) is

Fréchet differentiable with respect to ϕ. We can see its differential is represented by
ES[sµ(ϕ(θ), x, y)] and sµ(ϕ(θ), x, y) is the stochastic gradient via L2(µ0)-inner product.
Therefore, we can perform a stochastic variant of the functional gradient method (Luen-
berger (1969)) to minimize LS(ϕ) on L2(µ0) and its update rule becomes as follows:

ϕ+ ← ϕ− ηsµ(ϕ(·), x, y) = (id− ηsµ(·, x, y)) ◦ ϕ.

We immediately notice the equivalence between this update and Algorithm 13, so SPGD
method is nothing but the stochastic functional gradient method if the initial distribution
µ0 is fixed. However, we note that to consider the problem with respect to a probability
measure µ is important because it can lead to a much better understanding of the problem
as seen before.

117

Chapter 8

Enhancing the Convergence of
Adversarial Training

We propose a new technique that boosts the convergence of training generative adversar-
ial networks. Generally, the rate of training deep models reduces severely after multiple
iterations. A key reason for this phenomenon is that a deep network is expressed using a
highly nonconvex finite-dimensional model, and thus the parameter gets stuck in a local
optimum. Because of this, methods often suffer not only from degeneration of the conver-
gence speed but also from limitations in the representational power of the trained network.
To overcome this issue, we propose an additional layer called the gradient layer to seek a
descent direction in an infinite-dimensional space. Because the layer is constructed in the
infinite-dimensional space, we are not restricted by the specific model structure of finite-
dimensional models. As a result, we can get out of the local optima in finite-dimensional
models and move towards the global optimal function more directly. In this chapter, this
phenomenon is explained from the functional gradient method perspective of the gradient
layer. Interestingly, the optimization procedure using the gradient layer naturally con-
structs the deep structure of the network. Moreover, we demonstrate that this procedure
can be regarded as a discretization method of the gradient flow that naturally reduces the
objective function. Finally, the method is tested using several numerical experiments,
which show its fast convergence.

This chapter is based on the work Gradient Layer: Enhancing the Convergence of
Adversarial Training for Generative Models, A. Nitanda and T. Suzuki, Artificial Intelli-
gence and Statistics, 2018 (Nitanda and Suzuki, 2018b).

8.1 Overview

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a promising
scheme for learning generative models. GANs are trained by a discriminator and a gen-

118

8. Enhancing the Convergence of Adversarial Training

erator in an adversarial way. Discriminators are trained to classify between real samples
and fake samples drawn from generators, whereas generators are trained to mimic real
samples. Although training GANs is quite difficult, adversarial learning succeeded in
generating very impressive samples (Radford et al., 2016), and there are many subsequent
studies (Larsen et al., 2016; Salimans et al., 2016; Nowozin et al., 2016; Chen et al., 2016;
Zhang et al., 2017). Wasserstein GANs (WGANs) (Arjovsky et al., 2017) are a variant
to remedy the mode collapse that appears in the standard GANs by using the Wasserstein
distance (Villani, 2008), although they also sometimes generate low-quality samples or
fail to converge. Moreover, an improved variant of WGANs was also proposed (Gulrajani
et al., 2017) and it succeeded in generating high-quality samples and stabilizing WGANs.
Although these attempts have provided better results, there is still scope to improve the
performance of GANs further.

One reason for this difficulty stems from the limitation of the representational power
of the generator. If the discriminator is optimized for the generator, the behavior is solely
determined by the samples produced from that generator. In other words, for a generator
with a poor representational power, the discriminator terminates its learning in the early
stage and consequently results in having low discriminative power. However, for a finite-
dimensional parameterized generator, the ability to generate novel samples to cheat the
discriminators is limited. In addition, the highly nonconvex structure of the deep neural
network for the generator prevents us from finding a direction for improvement. As a
result, the trained parameter gets stuck in a local optimum and the training procedure
does not proceed any more.

In this study, we propose a new learning procedure to overcome the issues of lim-
ited representational power and local optimum by introducing a new type of layer called
a gradient layer. The gradient layer finds a direction for improvement in an infinite-
dimensional space by computing the functional gradient (Luenberger, 1969) instead of
the ordinary gradient induced by a finite-dimensional model. Because the functional gra-
dient used for the gradient layer is not limited in the tangent space of a finite-dimensional
model, it has much more freedom than the ordinary finite-dimensional one. Thanks to this
property, our method can break the limit of the local optimum induced by the strong non-
convexity of a finite-dimensional model, which gives much more representational power
to the generator. We theoretically justify this phenomenon from the functional gradient
method perspective and rigorously present a convergence analysis. Interestingly, one it-
eration of the method can be recognized as inserting one layer into the generator and
the total number of iterations is the number of inserted layers. Therefore, our learning
procedure naturally constructs the deep neural network architecture by inserting gradient
layers. Although gradient layers can be inserted into an arbitrary layer, they are typically
stacked on top of the generator in the final training phase to improve the generated sample
quality.

Moreover, we provide another interesting perspective of the gradient layer, i.e., dis-

119

8. Enhancing the Convergence of Adversarial Training

Figure 8.1: Random samples drawn from the generator trained by Algorithm 16 on the
CIFAR-10 dataset.

cretization of the gradient flow in the space of probability measures. In Euclidean space,
the steepest descent which is the typical optimization method, can be derived by discretiz-
ing the gradient flow that naturally produces a curve to reduce the objective function. Be-
cause the goal of GANs is to generate a sequence of probability measures moving to the
empirical distribution by training samples, it is natural to consider a gradient flow in the
space of probability measures defined by a distance between generated distribution and
the empirical distribution and to discretize it in order to construct practical algorithms.
We show that the functional gradient method for optimizing the generator in the function
space is such a discretization method; in other words, the gradient flow can be tracked by
stacking gradient layers successively.

The recently proposed SteinGAN (Wang and Liu, 2016) is closely related to our work
and has a similar flavor, but it is based on another strategy to track gradient flow. That is,
since that discretization is mimicked by a fixed-size deep neural network in SteinGAN, it
may have the same limitation as typical GANs. By contrast, our method directly tracks
the gradient flow in the final phase of training GANs to break the limit of the finite-
dimensional generator.

8.2 Brief Review of Wasserstein GANs
In this section, we introduce WGANs and their variants. Although our proposed gradient
layer is applicable to various models, we demonstrate how it performs well for the training
of generative models; in particular, we treat Wasserstein GANs as a main application in
this chapter. Let us start from briefly reviewing WGANs.

WGAN is a powerful generative model based on the 1-Wasserstein distance, defined
as the L1 minimum cost of transporting one probability distribution to the other. Let
X ⊂ Rv and Z ⊂ Rh be a compact convex data space and a hidden space, respectively. A
typical example of X is the image space [0, 1]v. For a noise distribution µn on Z , WGAN
learns a data generator g : Z → X to minimize an approximation to the 1-Wasserstein
distance between the data distribution µD and the push-forward distribution g♯µn, which

120

8. Enhancing the Convergence of Adversarial Training

is a distribution that the random variable g(z) follows when z ∼ µn (in other words, the
distribution obtained by applying a coordinate transform g to z ∼ µn). That is, WGAN
can be described as the following minmax problem by using a Kantrovich-Rubinstein
duality form of the 1-Wasserstein distance:

min
g∈G

max
f∈F
L(f, g) def

= Ex∼µD [f(x)]− Ez∼µn [f ◦ g(z)],

where G is the set of generators and F is an approximate set to the set of 1-Lipschitz
continuous functions called critic. In WGANs, G,F are parameterized neural networks
{gθ}, {fτ} and the problem is solved by alternate optimization: maximizing and minimiz-
ing L(fτ , gθ) with respect to τ and θ, alternately.

In practice, to impose the Lipschitz continuity on critics fτ , penalization techniques
were explored. For instance, the original WGANs (Arjovsky et al., 2017) use weight
clipping ∥τ∥∞ ≤ c, which implies the upper-bound on the norm of ∇τfτ and makes it
Lipschitz continuous. However, it was pointed out in a subsequent study (Gulrajani et al.,
2017) that such a restriction seems to be unnatural and sometimes leads to a low-quality
generator or a failure to converge. In the same study, an improved variant of WGANs
called WGAN-GP was proposed, which succeeded in stabilizing the optimization process
and generating high-quality samples. WGAN-GP (Gulrajani et al., 2017) adds the gradi-
ent penalty (∥∇x̃fτ (x̃)∥2 − 1)2 to the objective function in the training phase of critics,
where x̃ is a random interpolation between a training example x ∼ µD and a generated
sample g(z) ∼ gθ♯µn, i.e., x̃ ← ϵx + (1 − ϵ)g(z) (ϵ ∼ U [0, 1]: uniform distribution).
DRAGAN (Kodali et al., 2017) is a similar method to WGAN-GP, although it is based
on a different motivation. DRAGAN also uses the gradient penalty, but the penalty is
imposed on a neighborhood of the data manifold by a random perturbation of a training
example.

WGAN and its variants are learned by alternately optimizing fτ and gθ, as stated
above. We can regard this learning procedure as a problem of minimizing L(gθ)

def
=

maxτ{L(fτ , gθ)− λRτ}, where Rτ is a penalty term. Let L(fτ , gθ)− λRτ attain its max-
imum value at τ∗ for gθ. Then, the gradient∇θL(gθ) is the same as −Eµn [∇τf

⊤
τ∗∇θgθ(z)]

by the envelope theorem (Milgrom and Segal, 2002) when both terms are well-defined.
The differentiability of L(gθ) with respect to θ almost everywhere is proved in Arjovsky
et al. (2017) under a reasonable assumption. Hence, we can apply the gradient method to
this problem by approximating this gradient with finite particles generated from µn. How-
ever, because it is difficult to obtain fτ∗ , we run the gradient method for several iterations
on training a critic instead of exactly computing fτ∗ at each gθ. We can notice that this
learning procedure is quite similar to that of the standard GAN (Goodfellow et al., 2014).

121

8. Enhancing the Convergence of Adversarial Training

8.3 Gradient Layer

In the usual training procedure of WGANs, though more general maps are admissible
for the original purpose, generators are parameterized by finite-dimensional space as de-
scribed in the previous section, and the parameter may get stuck in a local optimum in-
duced by this restriction, or the speed of convergence may reduce. In this work, we
propose a gradient layer that accelerates the convergence and breaks the limit of finite-
dimensional models. This layer is theoretically derived by the infinite-dimensional opti-
mization method. We first explain the high-level idea of the gradient layer that strictly
improves the ability of generator and why our method enhances the convergence of train-
ing WGANs.

8.3.1 High-level idea of gradient layer

Here, we explain gradient layer with intuitive motivation. It is inserted into the generator
g in WGANs. We now focus on minimizing L(f, g) with respect to g under a fixed critic
f , that is, we consider the problem ming Lf (g)

def
= Eµn [−f(g(z))]. Let us split g into two

neural networks g = g1 ◦ g2 at arbitrary layer where a new layer is to be inserted. Our
purpose is to specify the form of layer ϕ that reduces the objective value by perturbations
of inputs g2(z), i.e., Lf (g1 ◦ ϕ ◦ g2) ≤ Lf (g). Since Lf (g1 ◦ ϕ ◦ g2) is regarded as the
integral Ez′∼g2♯µn [−f(g1(ϕ(z′)))] with respect to the push-forward distribution g2♯µn, this
purpose is achieved by transporting the input distribution of ϕ along the gradient field
∇z′f(g1(z

′)). Therefore, we propose a gradient layer Gη with one hyperparameter η > 0
as a map that transforms an input z′ to

Gη(z
′) = z′ + η∇z′f(g1(z

′)). (8.1)

Because the gradient layer depends on the parameters τ, θ of the upper layers f, g1, we
specify the parameter as Gτ,θ

η if needed.
Applying the gradient layer recursively, it further progresses and achieves a better

objective. The computation of the gradient layer is quite simple. Actually, simply taking
the derivative is sufficient, which can be efficiently executed. Because too many gradient
layers would lead to overfitting to the critic f , we stop stacking the gradient layer after an
appropriate number of steps. Indeed, if f ◦ g1 is Lipschitz continuous, id + ηf ◦ g1 for
sufficiently small η is an injection because (id+ ηf ◦ g1)(z) = (id+ ηf ◦ g1)(z′) implies
∥z − z′∥2 ≤ ηLf◦g1∥z − z′∥2 where Lf◦g1 is the Lipschitz constant. Thus, a topology
of supp(g2♯µn) is preserved and early stopping is justified. Then, this layer efficiently
generates high-quality samples for the critic and the overall adversarial training procedure
can be also boosted.

122

8. Enhancing the Convergence of Adversarial Training

8.3.2 Algorithm description

The overall algorithm is described in this subsection. We adopt WGAN-GP as the base
model to which gradient layer is applied. Let us denote by Rfτ (x̃) a gradient penalty
term. In a paper on the improved WGANs (Gulrajani et al., 2017), the use of a two-sided
penalty (∥∇x̃fτ (x̃)∥2 − 1)2 is recommended. However, we also allow the use of the one-
sided variant (max(∥∇x̃fτ (x̃)∥2 − 1, 0))2. As for the place in which the gradient layer is
inserted, we can propose several possibilities, e.g., inserting the gradient layer into (i) the
top and (ii) the bottom of the layers of the generator. The latter usage is described in the
appendix.

The first usage is stacking gradient layers on the top of the generator, except for nor-
malization to fine-tune the generator in the final phase. Although a normalization term
such as tanh is commonly stacked on generators to bound the output range of the gen-
erators, gradient layers are typically applied before the normalization layer. Since tanh
is a fixed function, it is no problem to combine tanh with critics by reinterpreting F and
X . The gradient layer directly handles the generated samples, so that it may significantly
improve the sample quality. Because the gradient ∇xfτ (x) of the critic with respect to
data variables provides the direction to improve the quality of the current generated sam-
ples, it is expected that we can obtain better results by tracking the gradient iteratively.
To compute the output from the gradient layer for a completely new input, we need to
reproduce the computation of the gradient layers, which can be realized by saving the his-
tory of the parameters of critics and stacking the gradient layers using these parameters.
The concrete procedure is described in Algorithm 16. When executing Algorithm 16,
the parameter of gθ is fixed, so that the push-forward measure gθ♯µn is treated as a base
probability measure and we denote it by µg. Because the gradient layers depend on the
history of the parameters in this case, we specify the parameter to be used: Gτ

η . For the
parameter τ and the gradient v, we denote byA(τ, v) one step of a gradient-based method
such as SGD with momentum, Adam (Kingma and Ba, 2015), and RMSPROP (Tieleman
and Hinton, 2012). From the optimization perspective, we show that Algorithm 16 can
be regarded as an approximation to the functional gradient method. From this perspec-
tive, we show fast convergence of the method under appropriate assumptions where the
objective function is smooth and the critics are optimized in each loop. This theoretical
justification is described later. Although Algorithm 16 has a great optimization ability,
applying the algorithm to large models is difficult because it requires the memory to reg-
ister parameters; thus, we propose its usage for fine-tuning in the final phase of training a
WGAN-GP. After the execution of Algorithm 16, we can generate samples by using the
history of critics, the learning rate, and the base distribution as described in Algorithm 17.

123

8. Enhancing the Convergence of Adversarial Training

Algorithm 16 Finetuning WGAN-GP
Input: The base distribution µg = g♯µn, the minibatch size b, the number of iterations
T , the initial parameters τ0 of the critic, the number of iterations T0 for the critic, the
regularization parameter λ, and the learning rate η for gradient layers.
for k = 0 to T − 1 do
τ ← τk
for k0 = 0 to T0 − 1 do
{xi}bi=1 ∼ µbD, {zi}bi=1 ∼ µbg, {ϵi}bi=1 ∼ U [0, 1]b

{zi}bi=1 ← {Gτk
η ◦ · · · ◦Gτ1

η (zi)}bi=1

{x̃i}bi=1 ← {ϵixi + (1− ϵi)zi}bi=1

v ← ∇τ
1
b

∑b
i=1[fτ (zi)− fτ (xi) + λRfτ (x̃i)])

τ ← A(τ, v)
end for
τk+1 ← τ

end for
Return (τ1, . . . , τT).

Algorithm 17 Data Generation for Algorithm 16
Input: the seed drawn from base measure z ∼ µg = g♯µn, the history of parameters
{τk}Tk=1, and the learning rate η for gradient layers.
Return the sample GτT

η ◦ · · · ◦Gτ1
η (z).

8.4 Functional Gradient Method
In this section, we provide mathematically rigorous derivation from the functional gra-
dient method perspective under the Fréchet differentiable (functional differentiable) as-
sumption on L. That is, we consider an optimization problem with respect to a generator
in an infinite-dimensional space. For simplicity, we focus on the case where the gradi-
ent layer is stacked on top of a generator g and we treat g♯µn as the base measure µg.
Thus, in the following we omit the notation g in L(f, ϕ ◦ g). Let L2(µg) be the space of
L2(µg)-integrable maps from Rv to Rv, equipped with the ⟨·, ·⟩L2(µg)

-inner product: for
∀ϕ1,∀ϕ2 ∈ L2(µg),

⟨ϕ1, ϕ2⟩L2(µg)
= Eµg [ϕ1(z)

⊤ϕ2(z)].

To learn WGAN-GP, we consider the infinite-dimensional problem:

min
ϕ∈L2(µg)

max
fτ∈F
L(fτ , ϕ)− λRfτ ,

where Rfτ is a gradient penalty term. To achieve this goal, we take a Gâteaux deriva-
tive along a given map v ∈ L2(µg), i.e., a directional derivative along v. Let us denote

124

8. Enhancing the Convergence of Adversarial Training

maxfτ∈F{L(fτ , ϕ) − λRf} by L(ϕ) and argmaxfτ∈F{L(fτ , ϕ) − λRfτ} by f ∗
ϕ and the

corresponding parameter by τ ∗ϕ , i.e., f ∗
ϕ = fτ∗ϕ for ϕ ∈ L2(µg). If every f ∈ F is Lipschitz

continuous and differentiable, we can find that by the envelope theorem and Lebesgue’s
convergence theorem this derivative takes the form:

d

dt
L(ϕ+ tv)

∣∣∣
t=0

= −Eµg [∇xf
∗
ϕ(x)|⊤x=ϕ(z)v(z)].

Therefore, −∇xf
∗
ϕ(x)|x=ϕ(·) can be regarded as a Fréchet derivative (functional gradi-

ent) in L2(µg) and we denote it by ∇ϕL(ϕ), which performs like the usual gradient in
Euclidean space. Using this notation, the optimization of L(ϕ) can be accomplished by
Algorithm 18, which is a gradient descent method in a function space. Because the func-
tional gradient has the form −∇xf

∗
ϕ ◦ ϕ, each iteration of the functional gradient method

with respect to ϕ is ϕ← ϕ+ η∇xf
∗
ϕ ◦ϕ = (id+ η∇xf

∗
ϕ) ◦ϕ, where η is the learning rate.

We notice here that this iteration is the composition of a perturbation map id+η∇xf
∗
ϕ and

a current map ϕ and is nothing but stacking a gradient layer Gτ∗
η on ϕ(z). In other words,

the functional gradient method with respect to ϕ, i.e., Algorithm 18, is the procedure of
building a deep neural network by inserting gradient layers, where the total number of
iterations is the number of layers. Moreover, we notice that if we view ∇xf

∗
ϕ as a pertur-

bation term, this layer resembles that of residual networks (He et al., 2016) which is one
of the state-of-the-art architectures in supervised learning tasks.

However, executing Algorithm 18 is difficult in practice because the exact optimiza-
tion with respect to a critic f to compute L(ϕ) is a hard problem. Thus, we need an
approximation and we argue that Algorithm 16 is such a method. This point can be un-
derstood as follows. Roughly speaking, it maximizes L(f, ϕ) with respect to f in the
inner loop under fixed ϕ = Gτk

η ◦G
τk−1
η ◦ · · · ◦Gτ1

η to obtain an approximate solution τk+1

to τ∗ and minimizes that with respect to ϕ in the outer loop by stacking Gτk+1
η , which is

an approximation to Gτ∗
η . Thus, Algorithm 16 is an approximated method, but we expect

it to achieve fast convergence owing to the powerful optimization ability of the functional
gradient method, as shown later. In particular, it is more effective to apply the algorithm
in the final phase of training WGAN-GP to fine-tune it, because the optimization ability
of parametric models are limited.

Algorithm 18 Functional Gradient Descent
Input: the initial generator g and the learning rate η.
ϕ0 ← g
for k = 0 to T − 1 do
ϕk+1 ← ϕk − η∇ϕL(ϕk)

end for
Return the function: ϕT .

125

8. Enhancing the Convergence of Adversarial Training

8.5 Convergence Analysis
Let us provide convergence analysis of Algorithm 18 for the problem of the general form:
minϕ L(ϕ). We note that the Algorithm 18 is the sames as that in Chapter 6. The con-
vergence can be shown in an analogous way to that for the finite-dimensional one. To
prove this, we make a smoothness assumption on the loss function. We now describe a
definition of the smoothness on a Hilbert space whose counterpart in finite-dimensional
space is often assumed for smooth nonconvex optimization methods.

Definition 8. Let h be a function on a Hilbert space (Z, ⟨, ⟩Z). We call that h is L-smooth
at z in U if h is differentiable at z and it follows that ∀z′ ∈ U .

|h(z′)− h(z)− ⟨∇zh(z), z
′ − z⟩Z | ≤

L

2
∥z′ − z∥2Z .

The following definition and proposition provide one condition leading to Lips-
chitz smoothness of L. Let us denote by ∥ · ∥L∞(µg) the sup-norm ∥ψ∥L∞(µg) =

supsupp(µg) ∥ψ(z)∥2 and by B∞
r (ϕ) a ball of center ϕ and radius r. Let L̂(f, ψ) =

L(f, ψ) − λRf . In the following we assume f ∗
ψ is uniquely defined for ψ ∈ L2(µg)

and L-smoothness with respect to the input x.

Definition 9. For positive values r and L, we call that L is (r, L)-regular at ϕ when
the following condition is satisfied; For ∀ψ ∈ B∞

r (ϕ), L̂(f ∗
ψ′ , ψ) is L-smooth at ψ with

respect to ψ′ in B∞
r (ψ).

Proposition 14. If L is (r, L)-regular at ϕ, then L is 2L-smooth at ϕ in B∞
r (ψ).

We now show the convergence of Algorithm 18. The following theorem gives the rate
to converge to the stationary point.

Theorem 16. Let us assume the norm of the gradient ∥∇xf
∗
ϕ(x)∥2 is uniformly bounded

by α and assume L is L-smooth at ϕ in B∞
r (ϕ) for ∀ϕ ∈ L2(µg). Suppose we run

Algorithm 18 with constant learning rate η ≤ min{1/L, r/α}. Then we have for T ∈ Z+

min
k∈{0,...,T−1}

∥∇ϕL(ϕk)∥2L2(µg)
≤ 2

ηT
(L(ϕ0)− L∗),

where L∗ = infϕ L(ϕ).

Note that the convergence rate O(1/T) is the same as the gradient descent method
for smooth objective in the finite-dimensional one. This means that even though the opti-
mization is executed in the infinite-dimensional space, we do not suffer from the infinite
dimensionality in terms of the convergence.

The following rough argument indicates that Algorithm 18 matches with learning
WGANs. Let W1 denote the 1-Wasserstein distance with respect to the Euclidean dis-
tance on a compact base space X ⊂ Rv. The following proposition is immediately shown
by combining existing results (Ambrosio, 2003; Sudakov, 1979).

126

8. Enhancing the Convergence of Adversarial Training

Proposition 15. Let µg be a Borel probability measure on X and assume µg is absolutely
continuous with respect to the Lebesgue measure. Then, there exists an optimal transport
ψ and it follows that W1(ψt♯µg, µD) = (1− t)W1(µg, µD), where ψt = (1− t)id+ tψ.

The notion of the optimal transport is briefly introduced in Appendix. By this propo-
sition, there exists a curve ψt strictly reducing distance, i.e., dW1(ψt♯µg, µD)/dt < 0 if
µg ̸= µD. Because L approximates W1, it is expected that dL(ψt)/dt < 0 when µg dif-
fers from µD. Noting that dL(ψt)/dt = ⟨∇ϕL(ψt), ψ − id⟩L2(µg)

, the functional gradient
∇ϕL(ψt) ̸= 0 does not vanish and the objective L may be strictly reduced by Algorithm
18.

8.6 Gradient Flow Perspective
In Euclidean space, the step of the steepest descent method for minimizing problems can
be derived by the discretization of the gradient flow dγ(t)/dt = −∇xF (γ(t)) where F
is an objective function on Euclidean space. Because our goal is to move µg closer to
µD, we should consider a gradient flow in the space of probability measures. To make
this argument rigorously, we need the continuity equation that characterizes a curve of
probability measures and the tangent space where velocities of curves should be contained
(c.f., Ambrosio et al. (2008)). When these notions are provided, the gradient flow is
defined immediately and it is quite natural to discretize this flow to track it well. In
this section, we show that Algorithm 18 is such a natural discretization; in other words,
building a deep neural network by stacking gradient layers is a discretization procedure
of the gradient flow. We refer to Ambrosio et al. (2008) for detailed descriptions on this
subject, and also refer to Otto (2001) for an original method developed by Otto.

8.6.1 Continuity Equation and Discretization
We denote by P the set of probability measures on Rv. For µ ∈ P , let {ϕt}t∈[0,δ] be a
curve in L2(µ) that solves the following ordinary differential equation: for an L2(ϕt♯µ)-
integrable vector field vt on Rv,

ϕ0 = id,
d

dt
ϕt(x) = vt(ϕt(x)) for ∀x ∈ Rv.

Then, this equation derives the curve νt = ϕt♯µ in P , which can be characterized by .

d

dt
νt +∇ · (vtνt) = 0. (8.2)

In other words, the following equation is satisfied∫
I

∫
Rv

(∂tf(x, t) +∇xf(x, t)
⊤vt)dνtdt = 0,

127

8. Enhancing the Convergence of Adversarial Training

for ∀f ∈ C∞c (Rv× I) where C∞c (Rv× I) is the set of C∞-functions with compact support
in Rv × I . Conversely, a narrowly continuous family of probability measures νt solving
equation (8.2) can be obtained by transport map ϕt satisfying d

dt
ϕt(x) = vt(ϕt(x)) (Am-

brosio et al., 2008). Thus, equation (8.2) indicates that vt drifts the probability measures
νt. Indeed, vt can be recognized as the tangent vector of the curve νt as discussed below.

Here, we focus on curves in the subset P2 ⊂ P composed of probability measures
with finite second moment. Noting that there is freedom in the choice of vt modulo
divergence-free vector fields w ∈ L2(νt) (i.e., ∇ · (wνt) = 0), it is natural to consider
the equivalence class of v ∈ L2(νt) modulo divergence-free vector fields. Moreover,
there exists a unique Π(v) that attains the minimum L2(νt)-norm in this class: Π(v) =
argminw∈L2(νt){∥w∥L2(νt) | ∇· ((v−w)νt) = 0}. Thus, we here introduce the definitions
of the tangent space at µ ∈ P2 as follows:

TµP2
def
= {Π(v) | v ∈ L2(µ)}. (8.3)

The following proposition shows that TµP2 has the property of the tangent space on
the space of probability measures, that is, a perturbation using vt ∈ TµP2 can discretize
an absolutely continuous curve νt and vt locally approximates optimal transport maps.
We denote the 2-Wasserstein distance by W2.

Proposition 16 (Ambrosio et al. (2008)). Let νt : I → P2 be an absolutely continuous
curve satisfying the continuity equation with a Borel vector field vt that is contained in
TνtP2 almost everywhere t ∈ I . Then, for almost everywhere t ∈ I the following property
holds:

lim
δ→0

W2(νt+δ, (id+ δvt)♯νt)

|δ|
= 0.

In particular, for almost everywhere t ∈ I such that νt is absolutely continuous with
respect to the Lebesgue measure, we have

lim
δ→0

1

δ
(tνt+δ
νt − id) = vt in L2(νt),

where t
νt+δ
νt is the unique optimal transport map between νt and νt+δ.

This proposition suggests the update µ+ ← (id + v)♯µ for discretizing an absolutely
continuous curve in P2. Note that when µ = ϕ♯ν, (ν ∈ P2, ϕ ∈ L2(ν)), the corresponding
map to µ+ is obtained by ϕ+

♯ ν = µ+ where ϕ+ is a composition as follows:

ϕ+ ← (id+ v) ◦ ϕ = ϕ+ v ◦ ϕ. (8.4)

So far, we have introduced the property of continuous curves in P2 and a method of
their discretization. We notice that the above update resembles the update of Algorithm
18. Indeed, we show that the functional gradient method is nothing but a discretization
method of the gradient flow derived by the functional gradient∇ϕL(ϕ).

128

8. Enhancing the Convergence of Adversarial Training

8.6.2 Discretization of Gradient Flow

We here introduce the gradient flow, which is one of the most straightforward ways to
understand Algorithm 18. We have explained that an absolutely continuous curve {νt}t∈I
in P2 is well characterized by the continuity equation (8.2) and we have seen that {vt}t∈I
in (8.2) corresponds to the notion of the velocity field induced by the curve. Such a
velocity points in the direction of the particle flow. Moreover, the functional gradient
∇ϕL(ϕ)(·) points in an opposite direction to reduce the objective L at each particle. Thus,
these two vector fields exist in the same space and it is natural to consider the following
equation:

vt = −∇ϕL(ϕt). (8.5)

This equation for an absolutely continuous curve is called the gradient flow (Ambrosio
et al., 2008) and a curve satisfying this will reduce the objective L. Indeed, we can find
by the chain rule such a curve {νt = ϕt♯µg}t∈I that also satisfies the following:

d

dt
L(ϕt) = −∥∇ϕL(ϕt)∥2L2(νt)

.

Recalling that νt can be discretized well by νt+δ ∼ (id−δ∇ϕL(ϕt))♯νt, we notice that
Algorithm 18 is a discretization method of the gradient flow (8.5). In other words, build-
ing deep neural networks by stacking gradient layers is such a discretization procedure.

Figure 8.2: Generated samples by Algorithm 16 on 8-gaussian dataset for 0, 25, 50, and
100 generator iterations (from left to right) and training data (rightmost).

129

8. Enhancing the Convergence of Adversarial Training

8.7 Experiments

In this section, we show the powerful optimization ability of the gradient layer method
empirically on training WGANs. Our implementation is done using Theano (Bergstra
et al., 2010; Bastien et al., 2012). We first used three toy datasets: swiss roll, 8-gaussian,
and 25-gaussian datasets (see Figure 8.2) to confirm the convergence behavior of the
gradient layer. The sizes of toy datasets are 500, 500, and 1000, respectively. We next
used the CIFAR-10 containing 50,000 images of size 32×32, and STL-10 containing
100,000 images. For STL-10 dataset, we downsample each dimension by 2, resulting
image size is 48×48. We reported inception scores (Salimans et al., 2016) for image
datasets, which is one of the conventional scores commonly used to measure the quality
of generated samples.

Toy datasets We ran Algorithm 16 without pre-training of generators (i.e., g = id)
on toy datasets from Gaussian noise distributions with the standard deviation 0.5. We
used four-layer neural networks for the critics where the dimension of hidden layers
were set to 128 for swiss roll and 8-gaussian datasets and 512 for 25-gaussian dataset.
We adopted one-sided penalty with regularization parameter λ = 10. The output of
generator was activated by tanh. We used ADAM for training critics with parameters
α = 10−4, β1 = 0.5, β2 = 0.9, minibatch size b = 50. When we run Algorithm 16, gradi-
ent layers are stacked below tanh. The learning rates were set to η = 0.1. The number of
inner iterations T0 for training the critics was set to 5× datasize/b. Figure 8.2 shows the
results for toy datasets for running T = 100 iterations of generators. Although we ran the
algorithm without pre-training the generators, we obtained better results only for a few
iterations. This is surprising, because these toy datasets are difficult to learn and fail to
converge in the standard GANs and WGANs. Whereas improved variants of these models
overcome this difficulty, they usually require more than 1,000 iterations to converge.

CIFAR-10 and STL-10 We first trained WGAN-GP with a two-sided penalty (λ = 10)
on the CIFAR-10 and STL-10 datasets. We used DCGAN for both the critic and the
generator. The batch normalization (Ioffe and Szegedy, 2015) was used only for the gen-
erator. The critic and the generator were trained by using ADAM with α = 10−4, β1 =
0.5, β2 = 0.9, and minibatch size b = 64. The number of inner iterations for training the
critics were 5 and we ran ADAM for 105-iterations. The left side of Figure 8.3 shows the
inception scores obtained by WGAN-GP. It seems that the learning procedure is slowed
down in a final training phase, especially for CIFAR-10. The final inception score on
CIFAR-10 and STL-10 are 6.32 and 7.40, respectively. We next ran Algorithm 16 starting
from the result of WGAN-GP. The critics were trained by ADAM with the same param-
eters, except for α = 5 × 10−5 and T0 = datasize/b. The learning rates were set to
0.5 for CIFAR-10 and 0.3 for STL-10. The right side of Figure 8.3 shows the inception

130

8. Enhancing the Convergence of Adversarial Training

Figure 8.3: Left: Inception scores obtained by WGAN-GP, Right: Inception scores obtain
by Algorithm 16 starting from the result of WGAN-GP.

scores obtained by Algorithm 16. Note that, since we focus on the optimization ability of
generators, we plotted results with the horizontal axis as the number of outer-iterations.
We observed a rapid increase in the inception scores, which were improved to 6.80 and
7.71 on CIFAR-10 and STL-10, respectively.

131

8. Enhancing the Convergence of Adversarial Training

8.8 Appendix

8.8.1 The Other Usage

We introduce the usage that inserts a fixed number of gradient layers into the bottom of
the generator to assist overall training procedure, which is described in Algorithm 19.
Note that we always use latest parameters of f, g for gradient layers in Algorithm 19.
When gradient layers are inserted in the middle of the generator: g1 ◦ϕ ◦ g2, we can apply
Algorithm 19 by setting µn ← g2♯µn, g ← g1. After training, we can generate samples
by using parameters of the critic and the generator, the learning rate, and the number of
gradient layers, which is described in Algorithm20.

Algorithm 19 Assisting WGAN-GP
Input: The base distribution µn, the minibatch size b, the number of iterations T , the
initial parameters τ0 and θ0 of the critic and the generator, the number of iterations
T0 for the critic, the regularization parameter c, learning rate η for gradient layers, the
number of gradient layers l.
for k = 0 to T − 1 do
τ ← τk
for k0 = 0 to T0 − 1 do
{xi}bi=1 ∼ µbD, {zi}bi=1 ∼ µbn, {ϵi}bi=1 ∼ U [0, 1]b

Gτk,θk
η is applied l times.

{zi}bi=1 ← {gθk ◦Gτk,θk
η ◦ · · · ◦Gτk,θk

η (zi)}bi=1

{x̃i}bi=1 ← {ϵixi + (1− ϵi)zi}bi=1

v = ∇τ
1
b

∑b
i=1[fτ (zi)− fτ (xi) + λRfτ (x̃i)])

τ ← A(τ, v)
end for
τk+1 ← τ

{zi}bi=1 ∼ µbn
Gτk+1,θk

η is applied l times.
{zi}bi=1 ← {G

τk+1,θk
η ◦ · · · ◦Gτk+1,θk

η }bi=1

v ← −∇θ
1
b

∑b
i=1 fτk+1

(gθk(zi))
θk+1 ← A(θk, v)

end for
Return τT , θT .

We next briefly review Algorithm 19 in which a fixed number of gradient layers with
latest parameters is inserted in the bottom of a generator of WGAN-GP. That is, gradi-
ent layers modify a noise distribution µn to improve the quality of a generator by the
functional gradient method.

132

8. Enhancing the Convergence of Adversarial Training

Algorithm 20 Data Generation for Algorithm 19
Input: the seed drawn from the base measure z ∼ µn, the parameter τ and θ of the
critic and the generator, the learning rate η, the number of gradient layers l.
Apply gradient layers l times z′ ← Gτ,θ

η ◦ · · · ◦Gτ,θ
η (z)

Return the sample gθ(z′).

8.8.2 Brief Review of Wasserstein Distance
We introduce some facts concerning the Wasserstein distance, which is used for the proof
of Proposition 15. We first describe a primal form of the Wasserstein distance. For p ≥ 1
let Pp be the set of Borel probability measures with finite p-the moment on X ⊂ Rv. For
µ, ν ∈ Pp a probability measure γ on X × X satisfying π1

♯ γ = µ and π2
♯ γ = ν is called

a plan (coupling), where πi denotes the projection from X × X to the i-th space X . We
denote by Γ(µ, ν) the set of all plans between µ and ν. We now introduce Kantorovich’s
formulation of the p-Wasserstein distance Wp for p ≥ 1.

W p
p (µ, ν) = min

γ∈Γ(µ,ν)

∫
X×X
∥x− y∥p2dγ(x, y) (8.6)

When p = 1 and µ, ν have bounded supports, there is the Kantorovich-Rubinstein dual
formulation of the 1-Wasserstein distance, which coincide with the definition introduced
in the paper. The existence of optimal plans is guaranteed under more general integrand
(c.f. Villani (2008); Ambrosio et al. (2008)) and we denote by Γ the set of optimal plans.
Prior to this formulation, the optimal transport problem in Monge’s formulation was pro-
posed.

inf
ϕ♯µ=ν

∫
X
∥x− ϕ(x)∥p2dµ(x), (8.7)

where the infimum is taken over all transport maps ϕ : X → X from µ to ν, i.e., ϕ♯µ = ν.
Because a transport map ϕ gives a plan γ = (id× ϕ)♯µ, we can easily find (8.6) ≤ (8.7).
In general, an optimal transport map that solves the problem (8.7) does not always exist
unlike Kantrovich problem (8.6). However, in the case where p > 1, X = Rv, and µ
is absolutely continuous with respect to the Lebesgue measure, the existence of optimal
transport maps is guaranteed (Brenier, 1987, 1991) and it is extended to more general
integrand (see Ambrosio et al. (2008)). Moreover, this optimal transport map also solves
Kantrovich problem (8.6), i.e., these two distances coincide. On the other hand, in the
case p = 1, the existence of optimal transport maps is much more difficult, but it is shown
in limited settings as follows.

Proposition 17 (Sudakov (Sudakov, 1979), see also (Ambrosio, 2003)). Let X be a com-
pact convex subset in Rv and assume that µ is absolutely continuous with respect to
Lebesgue measure. Then, there exists an optimal transport map ϕ from µ to ν for the

133

8. Enhancing the Convergence of Adversarial Training

problem 8.7 with p = 1. Moreover, if ν is also absolutely continuous with respect to
Lebesgue measure, we can choose ψ so that ψ−1 is well defined µ0-a.e., and ϕ−1

♯ ν = µ.

Under the same assumption in Proposition 17, it is known that two distances (8.7) and
(8.6) coincide (Ambrosio, 2003), that is, the Kantrovich problem (8.6) is solved by an
optimal transport map.

8.8.3 Proofs
We here the give proof of Proposition 14.

Proof of Proposition 14. Note that L(ψ) = L̂(f ∗
ψ, ψ). For ψ ∈ B∞

r (ϕ), we divide L(ψ)
into two terms as follows.

L(ψ) = (L̂(f ∗
ψ, ψ)− L̂(f ∗

ϕ, ψ)) + L̂(f ∗
ϕ, ψ). (8.8)

We first bound the first term in (8.8) by L-smoothness of L̂(f ∗
ψ′ , ψ) with respect to ψ′ at

ψ in B∞
r (ψ).∣∣∣∣L̂(f ∗
ϕ, ψ)− (L̂(f ∗

ψ, ψ) +
⟨
∇ψ′L̂(f ∗

ψ′ , ψ)
∣∣
ψ′=ψ

, ϕ− ψ
⟩
L2(µg)

)

∣∣∣∣ ≤ L

2
∥ϕ− ψ∥2L2(µg)

.

Since L̂(f ∗
ψ′ , ψ) attains the maximum, we have∇ψ′L̂(f ∗

ψ′ , ψ)
∣∣
ψ′=ψ

= 0 and have∣∣∣L̂(f ∗
ϕ, ψ)− L̂(f ∗

ψ, ψ)
∣∣∣ ≤ L

2
∥ϕ− ψ∥2L2(µg)

. (8.9)

We next bound L̂(f ∗
ϕ, ψ) in (8.8). We remember that

L̂(f ∗
ϕ, ψ) = Ex∼µD [f

∗
ϕ(x)]− Ex∼µg [f ∗

ϕ ◦ ψ(x)]− λRf∗ϕ
. (8.10)

By L-smoothness of f ∗
ϕ , it follows that∣∣∣f ∗

ϕ(ψ(x))− (f ∗
ϕ(ϕ(x)) +

⟨
∇zf

∗
ϕ(z)

∣∣
z=ϕ(x)

, ψ(x)− ϕ(x)
⟩
2
)
∣∣∣ ≤ L

2
∥ψ(x)− ϕ(x)∥22.

By taking the expectation with respect to Eµg , we get∣∣∣−Ex∼µg [f ∗
ϕ ◦ ψ(x)] + Eµg [f ∗

ϕ(ϕ(x))] +
⟨
∇zf

∗
ϕ ◦ ϕ, ψ − ϕ

⟩
L2(µg)

∣∣∣ ≤ L

2
∥ψ − ϕ∥2L2(µg)

.

We substitute this inequality into (8.10), we have

L̂(f ∗
ϕ, ψ) ≤ Ex∼µD [f

∗
ϕ(x)] +

L

2
∥ψ − ϕ∥2L2(µg)

− (Eµg [f ∗
ϕ(ϕ(x))] +

⟨
∇zf

∗
ϕ ◦ ϕ, ψ − ϕ

⟩
L2(µg)

)− λRf∗ϕ

134

8. Enhancing the Convergence of Adversarial Training

= L̂(f ∗
ϕ, ϕ)−

⟨
∇zf

∗
ϕ ◦ ϕ, ψ − ϕ

⟩
L2(µg)

+
L

2
∥ψ − ϕ∥2L2(µg)

= L(ϕ) + ⟨∇ϕL(ϕ), ψ − ϕ⟩L2(µg)
+
L

2
∥ψ − ϕ∥2L2(µg)

, (8.11)

and the opposite inequality

L̂(f ∗
ϕ, ψ) ≥ L(ϕ) + ⟨∇ϕL(ϕ), ψ − ϕ⟩L2(µg)

− L

2
∥ψ − ϕ∥2L2(µg)

, (8.12)

where we used ∇ϕL(ϕ) = −∇zf
∗
ϕ(z)|z=ϕ(·). By combining (8.8),(8.9), and (8.11), we

have

L(ψ) ≤ L(ϕ) + ⟨∇ϕL(ϕ), ψ − ϕ⟩L2(µg)
+ L∥ϕ− ψ∥2L2(µg)

.

Moreover, since L̂(f ∗
ψ, ψ)− L̂(f ∗

ϕ, ψ) ≥ 0 in (8.8), we have L(ψ) ≥ L̂(f ∗
ϕ, ψ). There-

fore, we get the opposite inequality by (8.12)

L(ψ) ≥ L(ϕ) + ⟨∇ϕL(ϕ), ψ − ϕ⟩L2(µg)
− L

2
∥ϕ− ψ∥2L2(µg)

.

This finishes the proof.

We next provide the proof of Theorem 16.

Proof of Theorem 16. Noting that ∥η∇ϕkL(ϕk)∥∞ ≤ r and Lipschitz smoothness of L,
we have

L(ϕk+1) ≤ L(ϕk)− η∥∇ϕL(ϕk)∥2L2(µg)
+
η2L

2
∥∇ϕL(ϕk)∥L2(µg)

= L(ϕk)− η(1− ηL/2)∥∇ϕL(ϕk)∥2L2(µg)
.

Since η ≤ 1/L, we have L(ϕk+1) ≤ L(ϕk) − η
2
∥∇ϕL(ϕk)∥2L2(µg)

. Summing up over
k ∈ {0, . . . , T − 1} and dividing by T we obtain

1

T

T−1∑
k=0

∥∇ϕL(ϕk)∥2L2(µg)
≤ 2

ηT
(L(ϕ0)− L(ϕT)).

This inequality finishes the proof of the theorem.

Proof of Proposition 15 . By Proposition 17, there exists an optimal transport ψ from µg
to µD and an optimal plan is given by γ = (id× ψ)♯µg. We set ψt = (1− t)id + tψ and
µt = ψt♯µg. Because (ψs, ψt)♯µg (0 ≤ s < t ≤ 1) gives a plan between µg and µD, we
have

W1(µs, µt) ≤
∫
X×X
∥x− y∥2d(ψs, ψt)♯µg

135

8. Enhancing the Convergence of Adversarial Training

=

∫
X
∥ψs(x)− ψt(x)∥2dµg

= (t− s)
∫
X
∥x− ψ(x)∥2dµg = (t− s)W1(µg, µD). (8.13)

We next prove the opposite inequality. Noting that (id, ψs)♯µg is a plan from µg to µs and
(ψt, ψ)♯µg is a plan from µt to µD, we have the following two inequalities

W1(µg, µs) ≤
∫
X×X
∥x− y∥2d(id, ψs)♯µg =

∫
X
∥x− ψs(x)∥2dµg = sW1(µg, µD),

W1(µt, µD) ≤
∫
X×X
∥x− y∥2d(ψt, ψ)♯µg =

∫
X
∥ψt(x)− ψ(x)∥2dµg = (1− t)W1(µg, µD).

Using these two inequalities and the triangle inequality, we get

W1(µg, µD) ≤ W1(µg, µs)+W1(µs, µt)+W1(µt, µD) ≤ (1+s−t)W1(µg, µD)+W1(µs, µt).

That is (t − s)W1(µg, µD) ≤ W1(µs, µt). By combining this inequality and (8.13), we
have (t− s)W1(µg, µD) = W1(µs, µt) and this finishes the proof.

8.8.4 Labeled Faces in the Wild
We provide the result on the Labeled Faces in the Wild dataset. The result is depicted in
Figure 8.4. After training WGAN-GP, we ran Algorithm 18 for a few iterations.

Figure 8.4: Random samples drawn from the generator trained by WGAN-GP (left) and
the gradient layer (right).

136

Chapter 9

Functional gradient boosting based on
residual network perception

Residual Networks (ResNets) have become state-of-the-art models in deep learning and
several theoretical studies have been devoted to understanding why ResNet works so well.
One attractive viewpoint on ResNet is that it is optimizing the risk in a functional space
by combining an ensemble of effective features. In this chapter, we adopt this viewpoint
to construct a new gradient boosting method, which is known to be very powerful in data
analysis. To do so, we formalize the gradient boosting perspective of ResNet mathemat-
ically using the notion of functional gradients and propose a new method called ResFGB
for classification tasks by leveraging ResNet perception. Two types of generalization
guarantees are provided from the optimization perspective: one is the margin bound and
the other is the expected risk bound by the sample-splitting technique. Experimental re-
sults show superior performance of the proposed method over state-of-the-art methods
such as LightGBM.

This chapter is based on the work Functional Gradient Boosting based on Residual
Network Perception, A. Nitanda and T. Suzuki, International Conference on Machine
Learning, 2018 (Nitanda and Suzuki, 2018a).

9.1 Overview

Deep neural networks have achieved great success in classification tasks; in particu-
lar, residual network (ResNet) (He et al., 2016) and its variants such as wide-ResNet
(Zagoruyko and Komodakis, 2016), ResNeXt (Xie et al., 2017), and DenseNet (Huang
et al., 2017b) have become the most prominent architectures in computer vision. Thus, to
reveal a factor in their success, several studies have explored the behavior of ResNets and
some promising perceptions have been advocated. Concerning the behavior of ResNets,
there are mainly two types of thoughts. One is the ensemble views, which were pointed

137

9. Functional gradient boosting based on residual network perception

out in Veit et al. (2016); Littwin and Wolf (2016). They presented that ResNets are ensem-
ble of shallower models using an unraveled view of ResNets. Moreover, Veit et al. (2016)
enhanced their claim by showing that dropping or shuffling residual blocks does not af-
fect the performance of ResNets experimentally. The other is the optimization or ordinary
differential equation views. In Jastrzebski et al. (2017), it was observed experimentally
that ResNet layers iteratively move data representations along the negative gradient of the
loss function with respect to hidden representations. Moreover, several studies (Weinan,
2017; Haber et al., 2017; Chang et al., 2017a,b; Lu et al., 2017) have pointed out that
ResNet layers can be regarded as discretization steps of ordinary differential equations.
Since optimization methods are constructed based on the discretization of gradient flows,
these studies are closely related to each other.

On the other hand, gradient boosting (Mason et al., 1999; Friedman, 2001) is known to
be a state-of-the-art method in data analysis; in particular, XGBoost (Chen and Guestrin,
2016) and LightGBM (Ke et al., 2017) are notable because of their superior performance.
Although ResNets and gradient boosting are prominent methods in different domains, we
notice an interesting similarity by recalling that gradient boosting is an ensemble method
based on iterative refinement by functional gradients for optimizing predictors. However,
there is a key difference between ResNets and gradient boosting methods. While gradient
boosting directly updates the predictor, ResNets iteratively optimize the feature extraction
by stacking ResNet layers rather than the predictor, according to the existing work.

In this chapter, leveraging this observation, we propose a new gradient boosting
method called ResFGB for classification tasks based on ResNet perception, that is, the
feature extraction gradually grows by functional gradient methods in the space of feature
extractions and the resulting predictor naturally forms a ResNet-type architecture. The
expected benefit of the proposed method over usual gradient boosting methods is that
functional gradients with respect to feature extraction can learn a deep model rather than
a shallow model like usual gradient boosting. As a result, more efficient optimization is
expected.

In the theoretical analysis of the proposed method, we first formalize the gradient
boosting perspective of ResNet mathematically using the notion of functional gradients
in the space of feature extractions. That is, we explain that optimization in that space
is achieved by stacking ResNet layers. We next show a good consistency property of
the functional gradient, which motivates us to find feature extraction with small func-
tional gradient norms for estimating the correct label of data. This fact is very helpful
from the optimization perspective because minimizing the gradient norm is much easier
than minimizing the objective function without strong convexity. Moreover, we show the
margin maximization property of the proposed method and derive the margin bound by
utilizing this formalization and the standard complexity analysis techniques developed in
Koltchinskii and Panchenko (2002); Bartlett and Mendelson (2002), which guarantee the
generalization ability of the method. This bound gives theoretical justification for mini-

138

9. Functional gradient boosting based on residual network perception

mizing functional gradient norms in terms of both optimization and better generalization.
Namely, we show that faster convergence of functional gradient norms leads to smaller
classification errors. As for another generalization guarantee, we also provide conver-
gence analysis of the sample-splitting variant of the method for the expected risk min-
imization. We finally show superior performance, empirically, of the proposed method
over state-of-the-art methods including LightGBM.

Related work Several studies have attempted to grow neural networks sequentially
based on the boosting theory. Bengio et al. (2006) introduced convex neural networks
consisting of a single hidden layer, and proposed a gradient boosting-based method in
which linear classifiers are incrementally added with their weights. However, the ex-
pressive power of the convex neural network is somewhat limited because the method
cannot learn deep architectures. Moghimi et al. (2016) proposed boosted convolutional
neural networks and showed superior empirical performance on fine-grained classifica-
tion tasks, where convolutional neural networks are iteratively added, while our method
constructs a deeper network by iteratively adding layers. Cortes et al. (2017) proposed
AdaNet to adaptively learn both the structure of the network and its weight, and provided
data-dependent generalization guarantees for an adaptively learned network; however, the
learning strategy quite differs from our method and the convergence rate is unclear. The
most related work is BoostResNet (Huang et al., 2017a), which constructs ResNet itera-
tively like our method; however, this method is based on an different theory rather than
functional gradient boosting with a constant learning rate. This distinction makes the dif-
ferent optimization-generalization tradeoff. Indeed, our method exhibits a tradeoff with
respect to the learning rate, which recalls perception of usual functional gradient boosting
methods, namely a smaller learning rate leads to a good generalization performance.

9.2 Preliminary
In this section, we provide several notations and describe a problem setting of the clas-
sification. An important notion in this chapter is the functional gradient, which is also
introduced in this section.

9.2.1 Problem setting
Let X = Rd and Y be a feature space and a finite label set of cardinal c, respectively.
We denote by ν a true Borel probability measure on X × Y and by νn an empirical
probability measure of samples (xi, yi)ni=1 independently drawn from ν, i.e., dνn(X,Y) =∑n

i=1 δ(xi,yi)(X,Y)dXdY/n, where δ denotes the Dirac delta function. We denote by νX
the marginal distribution on X and by ν(·|X) the conditional distribution on Y . We
also denote empirical variants of these distributions by νn,X and νn(·|X). In general,

139

9. Functional gradient boosting based on residual network perception

for a probability measure µ, we denote by Eµ the expectation with respect to a random
variable according to µ, by L2(µ) the space of square-integrable functions with respect to
µ, and by Lq2(µ) the product space of L2(µ) equipped with ⟨·, ·⟩Lq

2(µ)
-inner product: for

∀ξ, ∀ζ ∈ Lq2(µ),

⟨ξ, ζ⟩Lq
2(µ)

def
= Eµ[ξ(X)⊤ζ(X)] = Eµ

[
q∑
j=1

ξj(X)ζj(X)

]
.

We also use the following norm: for ∀p ∈ (0, 2] and ∀ξ ∈ Lq2(µ), ∥ξ∥
p
Lq
p(µ)

def
=

Eµ[∥ξ(X)∥p2] = Eµ
[
(
∑q

j=1 ξ
2
j (X))p/2

]
.

The ultimate goal in classification problems is to find a predictor f ∈ Lc2(νX) such that
argmaxy∈Y fy(x) correctly classifies its label. The quality of the predictor is measured
by a loss function l(ζ, y) ≥ 0. A typical choice of l in multiclass classification problems
is l(ζ, y) = − log(exp(ζy)/

∑
y∈Y exp(ζy)), which is used for the multiclass logistic re-

gression. The goal of classification is achieved by solving the expected risk minimization
problem:

min
f∈Lc

2(νX)

{
L(f) def

= Eν [l(f(X), Y)]
}
. (9.1)

However, the true probability measure ν is unknown, so we approximate L using the
observed data probability measure νn and solve the empirical risk minimization problems:

min
f∈Lc

2(νX)

{
Ln(f)

def
= Eνn [l(f(X), Y)]

}
. (9.2)

In general, some regularization is needed for the problem (9.2) to guarantee generaliza-
tion. In this chapter, we rely on early stopping (Zhang and Yu, 2005) and some restriction
on optimization methods for solving the problem.

Similar to neural networks, we split the predictor f into the feature extraction and
linear predictor, that is, f(x) = w⊤ϕ(x), where w ∈ Rd×c is a weight for the last layer
and ϕ ∈ Ld2(νX) is a feature extraction from X to X . For simplicity, we also denote
l(z, y, w) = l(w⊤z, y). Usually, ϕ is parameterized by a neural network and optimized
using the stochastic gradient method. In this chapter, we propose a way to optimize ϕ in
Ld2(νX) via the following problem:

min
w∈Rd×c

ϕ∈Ld
2(νX)

{
R(ϕ,w) def

= Eν [l(ϕ(X), Y, w)] +
λ

2
∥w∥22

}
(9.3)

where λ > 0 is a regularization parameter to stabilize the optimization procedure and
∥ · ∥2 for w is a Euclidean norm. When we focus on the problem with respect to ϕ, we
use the notation R(ϕ) def

= minw∈Rd×cR(ϕ,w). We also denote by Rn(ϕ,w) and Rn(ϕ)
empirical variants of R(ϕ,w) and R(ϕ), respectively, which are defined by replacing Eν

140

9. Functional gradient boosting based on residual network perception

by Eνn . In this chapter, we denote by ∂ the partial derivative and its subscript indicates
the direction.

9.2.2 Functional gradient
The key notion used for solving the problem is the functional gradient in function spaces.
Since they are taken in some function spaces, we first introduce Fréchet differential in
general Hilbert spaces.

Definition 10. Let H be a Hilbert space and h be a function on H. For ξ ∈ H, we call
that h is Fréchet differentiable at ξ in H when there exists an element ∇ξh(ξ) ∈ H such
that

h(ζ) = h(ξ) + ⟨∇ξh(ξ), ζ − ξ⟩H + o(∥ξ − ζ∥H).
Moreover, for simplicity, we call∇ξh(ξ) Fréchet differential or functional gradient.

We here make an assumption to guarantee Fréchet differentiability of R,Rn, which
is valid for multiclass logistic loss: l(z, y, w) = − log(exp(w⊤

y z)/
∑

y∈Y exp(w⊤
y z)).

Assumption 8. The loss function l(ζ, y) : Rc × Y → R is a non-negative C2-convex
function with respect to ζ and satisfies the following smoothness: There exists a positive
real number A such that ∥∂2ζ l(ζ, y)∥ ≤ A (∀(ζ, y) ∈ Rc × Y), where ∥ · ∥ is the spectral
norm.

Note that under this assumption, the following bound holds:

∥∂2z l(z, y, w)∥ ≤ Ar2 for z ∈ X , y ∈ Y , w ∈ Br(0),

whereBr(0) ⊂ Rd×c is a closed ball of center 0 and radius r. After this, we setAr
def
= Ar2

for simplicity.
For ϕ ∈ Ld2(νX), we set wϕ

def
= argminw∈Rd×cR(ϕ,w) and wn,ϕ

def
=

argminw∈Rd×cRn(ϕ,w). Moreover, we define the following notations:

∇ϕR(ϕ)(x)
def
= Eν(Y |x)[∂zl(ϕ(x), Y, wϕ)],

∇ϕRn(ϕ)(x)
def
=

{
∂zl(ϕ(xi), yi, wn,ϕ) (x = xi),

0 (otherwise).

We also similarly define functional gradients ∂ϕR(ϕ,w) and ∂ϕRn(ϕ,w) for fixed w by
replacing wϕ, wn,ϕ by w. It follows that

∇ϕR(ϕ) = ∂ϕR(ϕ,wϕ),∇ϕRn(ϕ) = ∂ϕRn(ϕ,wn,ϕ).

The next proposition means that the above maps are functional gradients in Ld2(νX)
and Ld2(νn,X). We set l0 = maxy∈Y l(0, y).

141

9. Functional gradient boosting based on residual network perception

Proposition 18. Let Assumption 8 hold. Then, for ∀ϕ, ψ ∈ Ld2(νX), it follows that

R(ψ) = R(ϕ) + ⟨∇ϕR(ϕ), ψ − ϕ⟩Ld
2(νX) +Hϕ(ψ), (9.4)

where Hϕ(ψ) ≤
Acλ

2
∥ϕ − ψ∥2

Ld
2(νX)

(cλ =
√

2l0/λ). Furthermore, the corresponding

statements hold for R(·, w) (∀w ∈ Rd) by replacing R(·) by R(·, w) and for empirical
variants by replacing νX by νn,X .

We can also show differentiability of L(f) and Ln(f). Their functional gradients
have the form∇fL(f)(x) = Eν(Y |x)[∂ζl(f(x), Y)] and∇fLn(f)(xi) = ∂ζl(f(xi), yi). In
this chapter, we derive functional gradient methods using∇ϕRn(ϕ) rather than∇fLn(f)
like usual gradient boosting (Mason et al., 1999; Friedman, 2001), and provide conver-
gence analyses for problems (9.1) and (9.2). However, we cannot apply ∇ϕRn(ϕ) or
∂ϕRn(ϕ,w) directly to the expected risk minimization problem because these functional
gradients are zero outside the training data. Thus, we need a smoothing technique to
propagate these to unseen data. The expected benefit of functional gradient methods us-
ing ∇ϕRn(ϕ) over usual gradient boosting is that the former can learn a deep model that
is known to have high representational power. Before providing a concrete algorithm
description, we first explain the basic property of functional gradients and functional gra-
dient methods.

9.3 Basic Property of Functional Gradient
In this section, we explain the motivation for using functional gradients for solving clas-
sification problems. We first show the consistency of functional gradient norms, namely
predicted probabilities by predictors with small norms converge to empirical/expected
conditional probabilities. We next explain the superior performance of functional gradient
methods intuitively, which motivate us to use it for finding predictors with small norms.
Moreover, we explain that the optimization procedure of functional gradient methods can
be realized by stacking ResNet layers iteratively on the top of feature extractions.

9.3.1 Consistency of functional gradient norm
We here provide upper bounds on the gaps between true empirical/expected conditional
probabilities and predicted probabilities.

Proposition 19. Let l(ζ, y) be the loss function for the multiclass logistic regression.
Then,

∥∇fL(f)∥Lc
1(νX) ≥

1√
c

∑
y∈Y

∥ν(y|·)− pf (y|·)∥L1(νX),

142

9. Functional gradient boosting based on residual network perception

∥∇fLn(f)∥Lc
1(νn,X) ≥

1√
c

∑
y∈Y

∥νn(y|·)− pf (y|·)∥L1(νn,X),

where we denote by pf (y|x) the softmax function defined by the predictor f , i.e.,
exp(fy(·))/

∑
y∈Y exp(fy(·)).

Many studies (Zhang, 2004; Steinwart, 2005; Bartlett et al., 2006) have exploited the
consistency of convex loss functions for classification problems in terms of the classifi-
cation error or conditional probability. Basically, these studies used the excess empiri-
cal/expected risk to estimate the excess classification error or the gap between the true
conditional probability and the predicted probability. On the other hand, Proposition 19
argues that functional gradient norms give sufficient bounds on such gaps. This fact is
very helpful from the optimization perspective for non-strongly convex smooth problems
since the excess risk always bounds the functional gradient norm by the reasonable order,
but the inverse relationship does not always hold. This means that finding a predictor with
a small functional gradient is much easier than finding a small excess risk.

Note that the latter inequality in Proposition 19 provides the lower bound on empirical
classification accuracy, which is confirmed by Markov inequality as follows.

Pνn [1− pf (Y |X) ≥ 1/2] ≤ 2Eνn [1− pf (Y |X)]

≤ 2
√
c∥∇fLn(f)∥Lc

1(νn,X).

Generally, we can derive a bound on the empirical margin distribution (Koltchinskii and
Panchenko, 2002) by using the functional gradient norm in a similar way, and can obtain
a generalization bound using it, as shown later.

9.4 Algorithm Description
In this section, we provide concrete description of the proposed method. Let ϕt ∈ Ld2(νX)
and wt denote t-th iterates of ϕ and w. As mentioned above, since functional gradi-
ents ∂ϕRn(ϕt, wt+1) for the empirical risk vanish outside the training data, we need a
smoothing technique to propagate these to unseen data. Hence, we use the convolution
Tkt,n∂ϕRn(ϕt, wt+1) of the functional gradient by using an adaptively chosen kernel func-
tion kt on X . The convolution is applied element-wise as follows.

Tkt,n∂ϕRn(ϕt, wt+1)
def
= Eνn,X

[∂ϕRn(ϕt, wt+1)(X)kt(X, ·)]

=
1

n

n∑
i=1

∂zl(ϕt(xi), yi, wt+1)kt(xi, ·).

Namely, this quantity is a weighted sum of ∂ϕRn(ϕt, wt+1)(xi) by kt(xi, ·), which we
also call a functional gradient. In particular, we restrict the form of a kernel kt to the inner-
product of a non-linear feature embedding to a finite-dimensional space by ιt : Rd → RD,

143

9. Functional gradient boosting based on residual network perception

that is, kt(x, x′) = ιt(ϕt(x))
⊤ιt(ϕt(x)). The requirements on the choice of ιt to guarantee

the convergence are the uniform boundedness and sufficiently preserving the magnitude
of the functional gradient ∂ϕRn(ϕt, wt+1). Let F be a given restricted class of bounded
embeddings. We pick up ιt from this class F by approximately solving the following
problem to acquire magnitude preservation:

max
ιt∈F
∥Tkt,n∂ϕRn(ϕt, wt+1)∥2kt . (9.5)

where we define ∥Tkt,nξ∥2kt = ⟨ξ, Tkt,nξ⟩Ld
2(νn,X) for a vector function ξ. Detailed

conditions on ιt and an alternative problem to guarantee the convergence will be discussed
later. Note that due to the restriction on the form of kt, the computation of the functional
gradient is compressed to the matrix-vector product. Namely,

At
def
=

1

n

n∑
i=1

∂ϕRn(ϕt, wt+1)(xi)ιt(ϕt(xi))
⊤,

Tkt,n∂ϕRn(ϕt, wt+1) = Atιt(ϕt(·)).

Therefore, the functional gradient method ϕt+1 ← ϕt − ηtTkt,n∂ϕRn(ϕt, wt+1) can be
recognized as the procedure of successively stacking layers id − ηtAtιt(ϕt(·)) (t ∈
{0, . . . , T − 1}) and obtaining a residual network. The entire algorithm is described in
Algorithm 21. Note that because a loss function l is chosen typically to be convex with
respect to w, a procedure in Algorithm 21 to obtain wn,ϕt is easily achieved by running an
efficient method for convex minimization problems. The notation T0 is the stopping time
of iterates with respect to w. That is, functional gradients ∂ϕRn(ϕt, wt+1) are computed
at wt+1 = wn,ϕt and correspond to ∇ϕRn(ϕt) when t < T0 and computed at an older
point of w when t ≥ T0, rather than ∇ϕRn(ϕt).

9.4.1 Choice of embedding

We here provide policies for the choice of ιt. A sufficient condition for ιt to achieve good
convergence is to maintain the functional gradient norm, which is summarized below.

Assumption 9. For positive values γ, ϵ, p ≤ 2, q, and K, a function kt(x, x
′) =

ιt(ϕt(x))
⊤ιt(ϕt(x)) satisfies ∥ιt(x)∥2 ≤

√
K on X , and γ∥∂ϕRn(ϕt, wt+1)∥qLd

p(νn,X)
−

γϵ ≤ ∥Tkt,n∂ϕRn(ϕt, wt+1)∥2kt .

This assumption is a counterpart of that imposed in Mason et al. (1999). The existence
of ιt, not necessarily included in F , satisfying this assumption is confirmed as follows.
We here assume that ϕt is a bijection that is a realistic assumption when learning rates
are sufficiently small because of the inverse mapping theorem. Then, since νn(·|X) =

144

9. Functional gradient boosting based on residual network perception

Algorithm 21 ResFGB
Input: S = (xi, yi)

n
i=1, initial points ϕ0, w0, the number of iterations T of ϕ, the

number of iterations T0 of w, embedding class F , and learning rates ηt
for t = 0 to T − 1 do

if t < T0 then
wt+1 ← wn,ϕt = argminw∈Rd×cRn(ϕt, w)

else
wt+1 ← wt

end if
Get ιt by approximately solving (9.5) on S
At ← 1

n

∑n
i=1 ∂zl(ϕt(xi), yi, wt+1)ιt(ϕt(xi))

⊤

ϕt+1 ← ϕt − ηtAtιt(ϕt(·))
end for
Return ϕT−1 and wT

νn(·|ϕt(X)), functional gradients ∂ϕRn(ϕt, wt+1)(x) become the map of ϕt(x), so we
can choose ιt such that

ιt(ϕt(·)) = ∂ϕRn(ϕt, wt+1)(·)/∥∂ϕRn(ϕt, wt+1)(·)∥2.

By simple computation, we find that kt(x, x′) ≤ 1 and ∥Tkt,n∂ϕRn(ϕt, wt+1)∥2kt are lower-
bounded by 1

d
∥∂ϕRn(ϕt, wt+1)∥2Ld

1(νn,X)
. A detailed derivation is provided in Appendix.

Thus, Assumption 9 may be satisfied if an embedding class F is sufficiently large, but we
note that too large F leads to overfitting. Therefore, one way of choosing ιt is to approxi-
mate ∂ϕRn(ϕt, wt+1)(·)/∥∂ϕRn(ϕt, wt+1)(·)∥2 rather than maximizing (9.5) directly, and
indeed, this procedure has been adopted in experiments.

9.5 Convergence Analysis

In this section, we provide a convergence analysis for the proposed method. All proofs
are included in Appendix. For the empirical risk minimization problem, we first show
the global convergence rate, which also provides the generalization bound by combining
the standard complexity analyses. Next, for the expected risk minimization problem, we
describe how the size of F and the learning rate control the tradeoff between optimization
speed and generalization by using the sample-splitting variant of Algorithm 21, whose
detailed description will be provided later.

145

9. Functional gradient boosting based on residual network perception

9.5.1 Empirical risk minimization
Using Proposition 18, Assumption 9, and an additional assumption on wt, we can show
the global convergence of Algorithm 21. The following inequality shows how functional
gradients decrease the objective function, which is a direct consequence of Proposition
18. When η ≤ 1

Acλ
K

, we have

Rn(ϕt+1, wt+2) ≤ Rn(ϕt, wt+1)

− η

2
∥Tkt,n∂ϕRn(ϕt, wt+1)∥2kt .

Therefore, Algorithm 21 provides a certain decrease in the objective function; moreover,
we can conclude a stronger result.

Theorem 17. Let Assumptions 8 and 9 hold. Consider running Algorithm 21 with a con-
stant learning rate ηt = η ≤ 1

Acλ
K

. If p ≥ 1 and the minimum eigenvalues of (wt⊤wt)T0t=0

have a uniform lower bound σ2 > 0, then

1

T

T−1∑
t=0

∥∇fLn(ft)∥qLc
1(νn,X) ≤

2Rn(ϕ0, w1)

ηγσqT
+

ϵ

σq
(9.6)

where we denote ft = w⊤
t+1ϕt.

Remark. (i) This theorem states the convergence of the average of functional gradient
norms obtained by running Algorithm 21, but we note that it also leads to the conver-
gence of the minimum functional gradient norms. (ii) Although a larger value of T0 may
affect the bound in Theorem 17 because of dependency on the minimum eigenvalue of
(w⊤

t wt)
T0
t=0, optimizing w at each iteration facilitates the convergence speed empirically.

Theorem 17 means that the convergence becomes faster when an input distribution has
the high degree of linear separability. However, even when it is somewhat large, a much
faster convergence rate in the second half of the algorithm is achieved by making an
additional assumption where loss function values attained by the algorithm are uniformly
bounded.

Theorem 18. Let Assumptions 8 and 9 with (ϵ, p, q) = (0, 1, 2) hold. We assume T/2 ∈ N
for simplicity. Consider running Algorithm 21 with learning rates η0 and η1 in the first
half and the second half of Algorithm, respectively. We assume η0, η1 ≤ γ

Ac2λK
2 . We set

ft = w⊤
t+1ϕt. Moreover, assume that there exists ∃M > 0 such that l(ft(X), Y) ≤M for

(X,Y) ∼ νn,X and the minimum eigenvalues of (wt⊤wt)T0t=0 have a uniform lower bound
σ2 > 0. Then we get

1

T

T
2
−1∑
t=0

∥∇fLn(ft)∥2Lc
1(νn,X) ≤

2Ln(f0)
η0γσ2T

,

146

9. Functional gradient boosting based on residual network perception

1

T

T−1∑
t=T

2

∥∇fLn(ft)∥2Lc
1(νn,X) ≤

4Ln(f0)
η1γσ2(2 + η0αLn(f0)T)T

.

9.5.2 Generalization bound
Here, we derive a generalization bound using the margin bound developed by Koltchinskii
and Panchenko (2002), which is composed of the sum of the empirical margin distribution
and Rademacher complexity of predictors. The margin and the empirical margin distri-
bution for multiclass classification are defined as mf (x, y)

def
= fy(x) − maxy′ ̸=y fy′(x)

and Pνn [mf (x, y) ≤ δ] (δ > 0), respectively. When l is the multiclass logistic loss, us-
ing Markov inequality and Proposition 19, we can obtain an upper bound on the margin
distribution:

Pνn [mf (x, y) ≤ δ] ≤
(
1 +

1

exp(−δ)

)√
c∥∇fLn(f)∥Lc

1(νn,X).

Since the convergence of functional gradient norms has been shown in Theorem 17
and 18, the resulting problem to derive a generalization bound is to estimate Rademacher
complexity, which can be achieved using standard techniques developed by Bartlett and
Mendelson (2002); Koltchinskii and Panchenko (2002). Thus, we specify here the archi-
tecture of predictors. In the theoretical analysis, we suppose F is the set of shallow neural
networks Bσ(Cx) for simplicity, where B,C are weight matrices and σ is an element-
wise activation function. Then, the t-th layer is represented as

ϕt+1(x) = ϕt(x)−Dtσ(Ctϕt(x)),

where Dt = ηtAtBt, and a predictor is fT−1(x) = w⊤
T ϕT−1(x). Bounding norms of these

weights by controlling the size of F and λ, we can restrict the Rademacher complexity
of a set of predictors and obtain a generalization bound. We denote by GT−1 the set of
predictors under constraints on weight matrices where L1-norms of each row of w⊤

T , Ct,
and Dt are bounded by Λw,Λ, and Λ′

t.

GT−1
def
= {∥(wT)∗,y∥1 ≤ Λw, ∥(Ct)i,∗∥1 ≤ Λ,

∥(Dt)j,∗∥1 ≤ Λ′
t, t ∈ {0, . . . , T − 1}, ∀y, ∀i, ∀j}.

Theorem 19. Let l be the multiclass logistic regression loss. Fix δ > 0. Suppose σ is
Lσ-Lipschitz continuous and ∥x∥2 ≤ Λ∞ on X . Then, for ∀ρ > 0, with probability at
least 1− ρ over the random choice of S from νn, we have ∀f ∈ GT−1,

Pν [mf (X,Y) ≤ 0] ≤ 2c3Λ∞Λw
δ
√
n

T−2∏
t=0

(1 + ΛΛ′
tLσ)

+

√
log(1/ρ)

2n
+

(
1 +

1

exp(−δ)

)√
c∥∇fLn(f)∥Lc

1(νn,X).

147

9. Functional gradient boosting based on residual network perception

Combining Theorems 17, 18 and 19, we observe that the learning rates ηt, the num-
ber of iterations T , and the size of F have an impact on the optimization-generalization
tradeoff, that is, larger values of these quantities facilitate the convergence on training data
while the generalization bound becomes gradually loose. Especially, this bound has an
exponential dependence on depth T , which is known to be unavoidable (Neyshabur et al.,
2015) in the worst case for some networks with L1 or the group norm constraints, but this
bound is useful when an initial objective is small and required T is also small sufficiently.

We next derive an interesting bound for explaining the effectiveness of the proposed
method. This bound can be obtained by instantiating bounds in Theorem 19 for various
T, Λ′

t and making an union bound. Since norms of rows of At are uniformly bounded by
their construction, norm constraints on Dt = ηtAtBt is reduced to bounding a norm of
Bt. Thus, we further assume

∑
l ∥(Bt)∗,l∥2 ≤ Λ′′.

Corollary 7. Let l be the multiclass logistic regression loss. Fix δ > 0. Suppose σ is Lσ-
Lipschitz continuous and ∥x∥2 ≤ Λ∞ on X . Then, for ∀ρ > 0, with probability at least
1− ρ over the random choice of S from νn, the following bound is valid for any function
fT−1 obtained by Algorithm 21 under constraints ∥(wT)∗,y∥1 ≤ Λw,

∑
l ∥(Bt)∗,l∥2 ≤ Λ′′,

and ∥ιt(x)∥2 ≤
√
K.

Pν [mfT−1
(X,Y) ≤ 0] ≤ 2c3ΛLσΛ∞Λw

δ
√
n

+
c3Λ∞Λw
δ
√
n

(
1 +

C

T − 1

T−2∑
t=0

ηt∥∇fLn(ft)∥Lc
1(νn,X)

)T−1

+

√
1

2n

(
log

(
1

ρ

)
+O(T log T)

)
+

(
1 +

1

exp(−δ)

)√
c∥∇fLn(fT−1)∥Lc

1(νn,X),

where ft = w⊤
t+1ϕt and C = 2ΛLσ

√
KdΛ′′cλ.

This corollary shows an interesting and useful property of our method in terms of gen-
eralization, that is, fast convergence of functional gradient norms leads to small complex-
ity of an obtained network, surprisingly. As a result, our method is expected to get a net-
work with good generalization because it directly minimizes functional gradient norms.

By plugging in convergence rates of functional gradient norms in Theorem 17 and 18
for the generalization bound in Corollary 7, we can obtain explicit convergence rates of
classification errors. For instance, under the assumption in Theorem 17 with q = 2, ϵ = 0,
and a learning rate η = O(1/Tα) 0 ≤ α < 1, then the generalization bound becomes

O

(
1√
n

(
exp(T

1−α
2) +

√
log

1

ρ

)
+
Rn(ϕ0)

T
1−α
2

)
.

148

9. Functional gradient boosting based on residual network perception

Moreover, under the assumption in Theorem 18 with learning rates η0 = O(1/Tα) and
η1 = O(1/T 2α−1) 1

2
≤ α < 1, a faster convergence rate is achieved.

O

(
1√
n

(
exp(T

1−α
2) +

√
log

1

ρ

)
+

1

T
3(1−α)

2

)
.

Note that by utilizing the corollary, the optimization and generalization tradeoff depend-
ing on the number of iterations and learning rates is confirmed more clearly.

We note another type of bound can be derived by utilizing VC-dimension or pseudo-
dimension (Vapnik and Chervonenkis, 1971). When the activation function is piece-wise
linear, such as Relu function σ(x) = max{0, x}, reasonable bounds on these quantities
are given by Bartlett et al. (1998, 2017). Thus, for that case, we can obtain better bounds
with respect to T by combining our analysis and the VC bound, but we omit the pre-
cise description for simplicity. We next show the other generalization guarantee from
the optimization perspective by using the modified algorithm, which may slow down the
optimization speed but alleviates the exponential dependence on T in the generalization
bound.

9.5.3 Sample-splitting technique

To remedy the exponential dependence on T of the generalization bound, we introduce the
sample-splitting technique which has been used recently to provide statistical guarantee
of expectation-maximization algorithms (Balakrishnan et al., 2017; Wang et al., 2015).
That is, instead of Algorithm 21, we analyze its sample-splitting variant. Although Algo-
rithm 21 exhibits good empirical performance, the sample-splitting variant is useful for
analyzing the behavior of the expected risk. In this variant, the entire dataset is split into
T pieces, where T is the number of iterations, and each iteration uses a fresh batch of
samples. The key benefit of the sample-splitting method is that it allows us to use con-
centration inequalities independently at each iterate ϕt rather than using the complexity
measure of the entire model. As a result, sample-splitting alleviates the exponential de-
pendence on T presented in Theorem 19. We now present the details in Algorithm 22. For
simplicity, we assume T0 = 0, namely the weight vector wt is fixed to the initial weight
w0.

Our proof mainly relies on bounding a statistical error of the functional gradient at
each iteration in Algorithm 22. Because the population version of Algorithm 21 strictly
decreases the value of R due to its smoothness, we can show that Algorithm 22 also
decreases it with high probability when the norm of a functional gradient is larger than a
statistical error bound. Thus, we make here an additional assumption on the loss function
to bound the statistical error, which is satisfied for a multiclass logistic loss function.

149

9. Functional gradient boosting based on residual network perception

Algorithm 22 Sample-splitting ResFGB
Input: S = (xi, yi)

n
i=1, initial points ϕ0, w0, the number of iterations T , embedding

class F , and learning rates η
Split S into T disjoint subsets S1, . . . , ST of size ⌊n/T ⌋
for t = 0 to T − 1 do

DefineR⌊n/T ⌋(ϕt, w) using St
Get ιt by approximately solving (9.5) on St
At ←

⌊
T
n

⌋∑⌊n/T ⌋
i=1 ∂zl(ϕt(xi), yi, w0)ιt(ϕt(xi))

⊤

ϕt+1 ← ϕt − ηAtιt(ϕt(·))
end for
Return ϕT−1 and w0

Assumption 10. For the differentiable loss function l(z, y, w) with respect to z, w, there
exists a positive real number βr depending on r > 0 such that ∥∂zl(z, y, w)∥2 ≤ βr for
z ∈ X , y ∈ Y , w ∈ Br(0).

We here introduce the notation required to describe the statement. We let F j be a
collection of j-th elements of functions in F . For a positive value M , we set

ϵ(m, ρ)
def
= β∥w0∥2

√
KdD

m

(
2M +

√
2K log

2dD

ρ

)
.

The following proposition is a key result to bound a statistical error as mentioned
above.

Proposition 20. Let Assumption 10 hold and each F j be the VC-class (for the definition
see van der Vaart and Wellner (1996)). We assume ∥ιt(x)∥2 ≤

√
K on X . We set µ to

be νX or νm,X and k(x, x′) to be ι(ϕ(x))⊤ι(ϕ(x′)). Then, there exists a positive value M
depending on F and it follows that with probability at least 1 − ρ over the choice of the
sample of size m, ϵ(m, ρ) upper-bounds the following.

sup
ι∈F
∥Tk∂ϕR(ϕ,w0)− Tk,m∂ϕRm(ϕ,w0)∥Ld

2(µ)
.

Since each iterate in Algorithm 22 is computed on a fresh batch not depending on pre-
vious batches, Proposition 20 can be applied to all iterates withm← ⌊n/T ⌋ and ρ← δ/T
for δ ∈ (0, 1). Thus, when ⌊n/T ⌋ is large and η is small sufficiently, functional gradients
used in Algorithm 22 become good approximation to the population variant, and we find
that the expected risk function is likely to decrease from Proposition 18. Moreover, we
note that statistical errors are accumulated additively rather than the exponential growth.
Concretely, we obtain the following generalization guarantee.

150

9. Functional gradient boosting based on residual network perception

Theorem 20. Let Assumptions 8, 9, and 10 and the same assumption in Proposition 20
hold. Consider running Algorithm 22. If p ≥ 1, ∥∂ζl(ζ, y)∥2 ≤ B, and the minimum
eigenvalue of w0

⊤w0 is lower-bounded by σ2 > 0, then we get with probability at least
1− ρ,

∥∇fL(w⊤
0 ϕt∗)∥Lc

1(νX) ≤ B

(
2T

n
log

T

ρ

) 1
4

+

√
B

γ
1
qσ

·
{
R0

ηT
+ β∥w0∥2ϵ

(n
T
,
ρ

T

)
+
η

2
A∥w0∥2K

2β2
∥w0∥2 + γϵ

} 1
2q

where R0 = R(w0, ϕ0) and t∗ is the index giving the minimum value of
∥∇fL⌊n/T ⌋(w

⊤
0 ϕt)∥Lc

p(ν⌊nT ⌋,X).

According to this theorem, η, T , and F control the optimization-generalization trade-
off like Theorem 19.

Table 9.1: Test classification accuracy on binary and multiclass classification.

METHOD LETTER USPS IJCNN1 MNIST COVTYPE SUSY

RESFGB (LOGISTIC) 0.976 0.953 0.989 0.986 0.966 0.804
(0.0019) (0.0007) (0.0004) (0.0007) (0.0004) (0.0000)

RESFGB (SMOOTH HINGE) 0.975 0.952 0.989 0.987 0.965 0.804
(0.0014) (0.0023) (0.0005) (0.0010) (0.0058) (0.0004)

MULTILAYER PERCEPTRON
0.971 0.948 0.988 0.986 0.965 0.804

(0.0059) (0.0045) (0.0010) (0.0010) (0.0015) (0.0004)

SUPPORT VECTOR MACHINE
0.959 0.948 0.977 0.969 0.824 0.754

(0.0062) (0.0023) (0.0015) (0.0041) (0.0059) (0.0534)

RANDOM FOREST
0.964 0.939 0.980 0.972 0.948 0.802

(0.0012) (0.0018) (0.0005) (0.0005) (0.0005) (0.0004)

GRADIENT BOOSTING
0.964 0.938 0.982 0.981 0.972 0.804

(0.0011) (0.0039) (0.0010) (0.0004) (0.0005) (0.0005)

9.6 Experiments
In this section, we present experimental results of the binary and multiclass classification
tasks. We run Algorithm 21 and compare it with support vector machine, random forest,
and gradient boosting methods. We here introduce settings used for Algorithm 21. As
for the loss function, we test both multiclass logistic loss and smooth hinge loss, and
as for the embedding class F , we use three or four hidden-layer neural networks. The

151

9. Functional gradient boosting based on residual network perception

number of hidden units in each layer is set to 100, 200, or 1000. Linear classifiers and
embeddings are trained by Nesterov’s momentum method. The learning rate is chosen
from {10−3, 10−2, 10−1, 1, 10, 102}. These parameters and the number of iterations T are
tuned based on the performance on the validation set.

0 5 10 15 20
0.8

0.9

1.0

a
c
c
u
ra
c
y

letter

0 1
0.90

0.95

1.00
usps

0 5 10 15 20 25
0.90

0.95

1.00
ijcnn1

0 1 2 3 4 5 6 7 8

iterations

0.90

0.95

1.00

a
c
c
u
ra
c
y

mnist

0 10 20 30 40 50

iterations

0.8

0.9

1.0
covtype

0 1

iterations

0.78

0.80

0.82
susy

train

test

Figure 9.1: Learning curves for Algorithm 21 with multiclass logistic loss on libsvm
datasets showing classification accuracy on training and test sets versus the number of
iterations.

We use the following benchmark datasets: letter, usps, ijcnn1, mnist, covtype, and
susy. We now explain the experimental procedure. For datasets not providing a fixed test
set, we first divide each dataset randomly into two parts: 80% for training and the rest for
test. We next divide each training set randomly and use 80% for training and the rest for
validation. We perform each method on the training dataset with several hyperparameter
settings and choose the best setting on the validation dataset. Finally, we train each model
on the entire training dataset using this setting and evaluate it on the test dataset. This
procedure is run 5 times.

The mean classification accuracy and the standard deviation are listed in Table 9.1.
The support vector machine is performed using a random Fourier feature (Rahimi and
Recht, 2007) with an embedding dimension of 103 or 104. For multilayer perceptron, we
use three, four, or five hidden layers and rectified linear unit as the activation function.
The number of hidden units in each layer is set to 100 or 1000. As for random forest,
the number of trees is set to 100, 500, or 1000 and the maximum depth is set to 10, 20,
or 30. Gradient boosting in Table 9.1 indicates LightGBM (Ke et al., 2017) with the
hyperparameter settings: the maximum number of estimators is 1000, the learning rate
is chosen from {10−3, 10−2, 10−1, 1}, and number of leaves in one tree is chosen from
{16, 32, . . . , 1024}.

152

9. Functional gradient boosting based on residual network perception

As seen in Table 9.1, our method shows superior performance over the competitors
except for covtype. However, the method that achieves higher accuracy than our method
is only LightGBM on covtype.

We plot learning curves for one run of Algorithm 21 with logistic loss, which depicts
classification accuracies on training and test sets. Note that the number of iterations are
determined by classification results on validation sets. This figure shows the efficiency of
the proposed method.

153

9. Functional gradient boosting based on residual network perception

In this section, we introduce auxiliary lemmas used in our analysis. The first one is
Hoeffding’s inequality.

Lemma 14 (Hoeffding’s inequality). Let Z1, . . . , Zs be i.i.d. random variables to [−a, a]
for a > 0. Denote by As the sample average

∑s
i=1 Zi/s. Then, for any ϵ > 0, we get

P[As + ϵ ≤ E[As]] ≤ exp

(
− ϵ

2s

2a2

)
.

Note that this statement can be reinterpreted as follows: it follows that for δ ∈ (0, 1)
with probability at least 1− δ

As + a

√
2

s
log

1

δ
≥ E[As].

We next introduce the uniform bound by Rademacher complexity. For a set G of func-
tions from Z to [−a, a] and a dataset S = {zi}si=1 ⊂ Z , we denote empirical Rademacher
complexity by ℜ̂S(G) and denote Rademacher complexity by ℜs(G); let σ = (σi)

s
i=1

be i.i.d random variables taking −1 or 1 with equal probability and let S be distributed
according to a distribution µs,

ℜ̂S(G) = Eσ

[
sup
f∈G

1

s

s∑
i=1

σif(xi)

]
, ℜs(G) = Eµs [ℜ̂S(G)].

Lemma 15. Let Z1, . . . , Zs be i.i.d random variables to Z . Denote by As(f) the sample
average

∑s
i=1 f(Zi)/s. Then, for any δ ∈ (0, 1), we get with probability at least 1 − δ

over the choice of S,

sup
f∈G
|As(f)− E[As(f)]| ≤ 2ℜs(G) + a

√
2

s
log

2

δ
.

When a function class is VC-class (for the definite see van der Vaart and Wellner
(1996)), its Rademacher complexity is uniformly bounded as in the following lemma
which can be easily shown by Dudley’s integral bound (Dudley, 1999) and the bound on
the covering number by VC-dimension (pseudo-dimension) (van der Vaart and Wellner,
1996).

Lemma 16. Let G be VC-class. Then, there exists positive value M depending on G such
that ℜs(G) ≤M/

√
m.

The following lemma is useful in estimating Rademacher complexity.

154

9. Functional gradient boosting based on residual network perception

Lemma 17. (i) Let hi : R→ R (i ∈ {1, . . . , s}) be L-Lipschitz functions. Then it follows
that

Eσ

[
sup
f∈G

s∑
i=1

σihi ◦ f(xi)

]
≤ LEσ

[
sup
f∈G

s∑
i=1

σi ◦ f(xi)

]
.

(ii) We denote by conv(G) the convex hull of G. Then, we have ℜ̂S(conv(G)) = ℜ̂S(G).

The following lemma gives the generalization bound by the margin distribution, which
is originally derived by Koltchinskii and Panchenko (2002). Let G be the set of predictors;
G ⊂ {f : X → Rc} and denote ΠG = {fy(·) : X →| f ∈ G, y ∈ Y}, then the following
holds.

Lemma 18. Fix δ > 0. Then, for ∀ρ > 0, with probability at least 1− ρ over the random
choice of S from νn, we have ∀f ∈ G,

Pν [mf (X,Y) ≤ 0] ≤ Pνn [mf (X,Y) ≤ δ] +
2c2

δ
ℜn(ΠG) +

√
1

2n
log

1

ρ
.

9.7 Proofs
In this section, we provide missing proofs in the paper.

9.7.1 Proofs of Section 9.3 and 9.4
We first prove Proposition 18 that states Lipschitz smoothness of the risk function.

Proof of Proposition 18 . Because l(z, y, w) is C2-function with respect to z, w, there ex-
ist semi-positive definite matrices Aϕ,ψx,y , B

ϕ,ψ
x,y such that

l(ψ(x), y, wϕ) = l(ϕ(x), y, wϕ) + ∂zl(ϕ(x), y, wϕ)
⊤(ψ(x)− ϕ(x))

+
1

2
(ψ(x)− ϕ(x))⊤Aϕ,ψx,y (ψ(x)− ϕ(x)), (9.7)

l(ψ(x), y, wϕ) +
λ

2
∥wϕ∥22 = l(ψ(x), y, wψ) +

λ

2
∥wψ∥22

+ (∂wl(ψ(x), y, wψ) + λwψ)
⊤(wϕ − wψ)

+
1

2
(wϕ − wψ)⊤Bϕ,ψ

x,y (wϕ − wψ). (9.8)

Note that we regard wϕ and wψ are flattened into column vectors if necessary. By
Assumption 8, we find spectral norms of Aϕ,ψx,y is uniformly bounded with respect to

155

9. Functional gradient boosting based on residual network perception

x, y, ϕ, ψ, hence eigen-values are also uniformly bounded. In particular, since λ
2
∥wϕ∥22 ≤

R(ϕ,wϕ) ≤ R(ϕ, 0) ≤ l0 , we see −AcλI ⪯ Aϕ,ψx,y ⪯ AcλI .
By taking the expectation Eν of the equality (9.7), we get

R(ψ,wϕ) = R(ϕ,wϕ)+⟨∇ϕR(ϕ), ψ − ϕ⟩Ld
2(νX)+

1

2
Eν [(ψ(x)−ϕ(x))⊤Aϕ,ψx,y (ψ(x)−ϕ(x))]

(9.9)
and by taking the expectation Eν of the equality (9.8), we get

R(ψ,wϕ) = R(ψ,wψ) +
1

2
(wϕ − wψ)⊤Eν [Bϕ,ψ

x,y](wϕ − wψ), (9.10)

where we used ∂wR(ψ,wψ) = 0. By combining equalities (9.9) and (9.10), we have

R(ψ) = R(ϕ) + ⟨∇ϕR(ϕ), ψ − ϕ⟩Ld
2(νX) +Hϕ(ψ),

where

Hϕ(ψ) =
1

2
Eν [(ψ(x)− ϕ(x))⊤Aϕ,ψx,y (ψ(x)− ϕ(x))]−

1

2
(wϕ − wψ)⊤Eν [Bϕ,ψ

x,y](wϕ − wψ).

By the uniformly boundedness of Aϕ,ψx,y and the semi-positivity of Bϕ,ψ
x,y , we find Hϕ(ψ) ≤

Acλ

2
∥ϕ− ψ∥2

Ld
2(νX)

.
The other cases can be shown in the same manner, thus, we finish the proof.

We next show the consistency of functional gradient norms.

Proof of Proposition 19. We now prove the first inequality. Note that the integrand of
y′-th element of∇fL(f)(x) for multiclass logistic loss can be written as

∂ζy′ l(f(x), y) = −1[y = y′] +
exp(fy′(x))∑
y∈Y exp(fy(x))

.

Therefore, we get

∥∇fL(f)∥Lc
1(νX) = EνX∥∇fL(f)(X)∥2

= EνX∥Eν(Y |X)[∂ζ(f(X), Y)]∥2

= EνX

√∑
y′∈Y

(Eν(Y |X)[∂ζy′ (f(X), Y)])2


≥ 1√

c

∑
y′∈Y

EνX
[∣∣∣Eν(Y |X)[∂ζy′ (f(X), Y)]

∣∣∣]

156

9. Functional gradient boosting based on residual network perception

=
1√
c

∑
y′∈Y

EνX

[∣∣∣∣∣ν(y′|X)

(
−1 + exp(fy′(X))∑

y∈Y exp(fy(X))

)

+
∑
y ̸=y′

ν(y|X)
exp(fy′(X))∑
y∈Y exp(fy(X))

∣∣∣∣∣
]

=
1√
c

∑
y′∈Y

EνX

[∣∣∣∣∣ν(y′|X)

(
−1 + exp(fy′(X))∑

y∈Y exp(fy(X))

)

+ (1− ν(y′|X))
exp(fy′(X))∑
y∈Y exp(fy(X))

∣∣∣∣∣
]

=
1√
c

∑
y′∈Y

EνX

[∣∣∣∣∣−ν(y′|X) +
exp(fy′(X))∑
y∈Y exp(fy(X))

∣∣∣∣∣
]

=
1√
c

∑
y′∈Y

∥ − ν(y′|·) + pf (y
′|·)∥L1(νX),

where for the first inequality we used (
∑c

i=1 ai)
2 ≤ c

∑c
i=1 a

2
i . Noting that the second

inequality in Proposition 19 can be shown in the same way by replacing ν by νn, we finish
the proof.

We here give the proof of the following inequality concerning choice of embedding
introduced in section 9.4.

∥Tkt,n∂ϕRn(ϕt, wt+1)∥2kt ≥
1

d
∥∂ϕRn(ϕt, wt+1)∥2Ld

1(νn,X) (9.11)

Proof of (9.11) . For notational simplicity, we denote by Gt = ∂ϕRn(ϕt, wt+1)(·) and by
Gi
t the i-the element of Gt. Then, we get

∥Tkt,n(Gt)∥2)∥2kt = ⟨Gt, Tkt,nGt⟩Ld
2(νn,X)

= E(X,X′)∼ν2n,X
[Gt(X)⊤Gt(X

′)Gt(X
′)⊤Gt(X)/(∥Gt(X)∥2∥Gt(X

′)∥2)]

=
d∑

i,j=1

(Eνn,X
[Gi

t(X)Gj
t(X)/∥Gt(X)∥2])2

≥
d∑
i=1

(Eνn,X
[Gi

t(X)2/∥Gt(X)∥2])2

≥ 1

d
Eνn,X

[∥Gt(X))∥2]2 =
1

d
∥Gt∥2Ld

1(νn,X),

where we used (
∑c

i=1 ai)
2 ≤ c

∑c
i=1 a

2
i .

157

9. Functional gradient boosting based on residual network perception

9.7.2 Empirical risk minimization and generalization bound
In this section, we give the proof of convergence of Algorithm 21 for the empirical risk
minimization. We here briefly introduce the kernel function that provides useful bound
in our analysis. A kernel function k is a symmetric function X × X → R such that for
arbitrary s ∈ N and points ∀(xi)si=1, a matrix (k(xi, xj))

s
i,j=1 is positive semi-definite.

This kernel defines a reproducing kernel Hilbert space Hk of functions on X , which has
two characteristic properties: (i) for ∀x ∈ X , a function k(x, ·) : X → R is an element
of Hk, (ii) for ∀f ∈ Hk and ∀x ∈ X , f(x) = ⟨f, k(x, ·)⟩Hk

, where ⟨, ⟩Hk
is the inner-

product inHk. These properties are very important and the latter one is called reproducing
property. We extend the inner-product into the product spaceHd

k in a straightforward way,
i.e., ⟨f, g⟩Hd

k
=
∑d

i=1 ⟨f i, gi⟩Hk
.

The following proposition is useful in our analysis. The first property mean that the
notation ∥Tkt,n∇Rn(ϕt)∥kt provided in the paper is nothing but the norm of Tkt,n∇Rn(ϕt)
by the inner-product ⟨, ⟩Hd

kt

.

Proposition 21. For a kernel function k, the following hold.

• ⟨f, g⟩L2(νX) = ⟨Tkf, g⟩Hd
k

for f ∈ Ld2(νX), g ∈ Hd
k where Tkf =

EνX [f(X)k(X, ·)],
⟨f, g⟩L2(νn,X) = ⟨Tk,nf, g⟩Hd

k
for f ∈ Ld2(νn,X), g ∈ Hd

k where Tk,nf =

Eνn,X
[f(X)k(X, ·)],

• ∥f∥2L2(νX) ≤ EνX [k(X,X)]∥f∥2Hd
k

for f ∈ Hd
k,

∥f∥2L2(νn,X) ≤ Eνn,X
[k(X,X)]∥f∥2Hd

k
for f ∈ Hd

k.

Proof. We show only the case of νX because we can prove the other case in the same
manner. For f ∈ L2(νX), g ∈ Hd

k, we get the first property by using reproducing property,

⟨f, g⟩L2(νX) = EνX [f(X)⊤⟨g, k(X, ·)⟩Hd
k
] = ⟨g, Tkf⟩Hd

k
.

We next show the second property as follows. For ∀f ∈ Hd
k, we get

∥f∥2L2(νX) = EνX∥f(X)∥22
= EνX∥ ⟨f(·), k(X, ·)⟩Hd

k
∥22

≤ EνX∥k(X, ·)∥2Hk
∥f∥2Hd

k

= EνX [k(X,X)]∥f∥2Hd
k
.

We give the proof of Theorem 17 concerning the convergence of functional gradient
norms.

158

9. Functional gradient boosting based on residual network perception

Proof of Theorem 17 . When η ≤ 1
Acλ

K
, we have from Proposition 18 and Proposition

21,
Rn(ϕt+1, wt+2) ≤ Rn(ϕt, wt+1)−

η

2
∥Tkt,n∂ϕRn(ϕt, wt+1)∥2kt .

By Summing this inequality over t ∈ {0, . . . , T − 1} and dividing by T , we get

1

T

T−1∑
t=0

∥Tkt,n∂ϕRn(ϕt, wt+1)∥2kt ≤
2

ηT
Rn(ϕ0, w1), (9.12)

where we usedRn ≥ 0.
On the other hand, since ∂zl(z, y, w) = ∂zl(w

⊤z, y) = w∂ζl(w
⊤z, y), it follows that

∂ϕRn(ϕ,w)(x) = Eνn(Y |x)[∂zl(ϕ(x), y, w)]

= Eνn(Y |x)[w∂ζl(w
⊤ϕ(x), y)]

= w∇fLn(w⊤ϕ)(x).

Thus, by the assumption on (wt
⊤wt)

T0
t=0, we get for t ∈ {0, . . . , T − 1}

∥∂ϕRn(ϕt, wt+1)∥Ld
p(νn,X) = Eνn,X

[∥wt+1∇fLn(w⊤
t+1ϕt)(X)∥p2]1/p

≥ σEνn,X
[∥∇fLn(w⊤

t+1ϕt)(X)∥p2]1/p

= σ∥∇fLn(w⊤
t+1ϕt)∥Lc

p(νn,X). (9.13)

Combining inequalities (9.12) (9.13) and Assumption 9, we get

1

T

T−1∑
t=0

∥∇fLn(w⊤
t+1ϕt)∥

q
Lc
p(νn,X) ≤

2

ηγσqT
Rn(ϕ0, w1) +

ϵ

σq
.

Since p ≥ 1, we observe ∥∇fLn(w⊤
t+1ϕt)∥Lc

1(νn,X) ≤ ∥∇fLn(w⊤
t+1ϕt)∥Lc

p(νn,X) and we
finish the proof.

To provide the proof of Theorem 18, we here give an useful proposition to show fast
convergence rate for the multiclass logistic regression.

Proposition 22. Let l(ζ, y) be the loss function for the multiclass logistic regression.
Let M > 0 be arbitrary constant. For a predictor f , we assume l(f(X), Y) ≤ M for
(X,Y) ∼ νn. Then, we have

∥∇fLn(f)∥Lc
1(νn,X) ≥

1− exp(−M)√
cM

Ln(f).

159

9. Functional gradient boosting based on residual network perception

Proof. Since exp(−t) ≤ 1− 1−exp(−M)
M

t for ∀t ∈ [−M, 0), we get

Eνn [exp(−l(f(X), Y))] ≤ 1− 1− exp(−M)

M
Ln(f).

Using l(f(X), Y) = − log pf (Y |X) and the above inequality with Proposition 19, we
obtain

∥∇fLn(f)∥Lc
1(νn,X) ≥

1√
c

∑
y∈Y

∥νn(y|·)− pf (y|·)∥L1(νn,X)

=
1√
c

∑
y∈Y

Eνn,X
|νn(y|X)− pf (y|X)|

≥ 1√
c
Eνn [1− pf (Y |X)]

=
1√
c
Eνn [1− exp(−l(f(X), Y))]

≥ 1− exp(−M)√
cM

Ln(f).

The following is the proof for Theorem 18.

Proof of Theorem 18 . Noting that ft+1 ← ft − ηw⊤
t+1Tkt,n∂ϕRn(ϕt, wt+1), we get the

following bound by a similar way in the proof for Theorem 17.

Ln(ft+1) ≤ L(ft)− η
⟨
∇Ln(ft), w⊤

t+1Tkt,n∂ϕRn(ϕt, wt+1)
⟩
Lc
2(νn,X)

+
Aη2

2
∥w⊤

t+1Tkt,n∂ϕRn(ϕt, wt+1)∥2Lc
2(νn,X).

We here bound the right hand side of this inequality as follows.⟨
∇Ln(ft), w⊤

t+1Tkt,n∂ϕRn(ϕt, wt+1)
⟩
Lc
2(νn,X)

= ⟨wt+1∇Ln(ft), Tkt,n∂ϕRn(ϕt, wt+1)⟩Ld
2(νn,X)

= ⟨∂ϕRn(ϕt, wt+1), Tkt,n∂ϕRn(ϕt, wt+1)⟩Ld
2(νn,X)

≥ γ∥∂ϕRn(ϕt, wt+1)∥2Ld
1(νn,X),

where we used Proposition 21 for the second equality and Assumption 9 for the last
inequality. Recalling ∥wt+1∥2 ≤ cλ, we have

∥w⊤
t+1Tkt,n∂ϕRn(ϕt, wt+1)∥2Lc

2(νn,X) = EX∼νn,X
∥w⊤

t+1Tkt,n∂ϕRn(ϕt, wt+1)∥22
≤ c2λEνn,X

∥Tkt,n∂ϕRn(ϕt, wt+1)(X)∥22

160

9. Functional gradient boosting based on residual network perception

≤ c2λK
2∥∂ϕRn(ϕt, wt+1)(X)∥2Ld

1(νn,X).

where for the second inequality, we used ∥Tkt,n∂ϕRn(ϕt, wt+1)(X)∥2 ≤
K∥∂ϕRn(ϕt, wt+1)∥Ld

1(νn,X) which is a consequence of the triangle inequality. Combining
the above three inequalities, we have

Ln(ft+1) ≤ Ln(ft)− η
(
γ − 1

2
Aηc2λK

2

)
∥∂ϕRn(ϕt, wt+1)∥2Ld

1(νn,X)

≤ Ln(ft)−
ηγ

2
∥∂ϕRn(ϕt, wt+1)∥2Ld

1(νn,X)

≤ Ln(ft)−
ηγσ2

2
∥∇fLn(ft)∥2Lc

1(νn,X), (9.14)

where we used Aηc2λK
2 ≤ γ for the second inequality and we used (9.13) for the last

inequality. Thus, we obtain from (9.14) and Proposition 22 that

Ln(ft+1) ≤ Ln(ft)− ηαL2
n(ft),

where α = γσ2(1−exp(−M))2

2cM2 .
From this inequality, we get

1

Ln(ft)
≥ 1

Ln(ft+1)
− ηα Ln(ft)

Ln(ft+1)
≥ 1

Ln(ft+1)
− ηα,

where for the last inequality we used the fact that Ln(ft) is monotone decreasing which
is confirmed from the inequality (9.14). Therefore, by applying this bound recursively for
t ∈ {0, . . . , T/2− 1} with η = η0, we conclude

Ln(fT/2) ≤
2Ln(f0)

2 + η0αLn(f0)T
. (9.15)

On the other hand, by summing up the inequality (9.14) over t ∈ {T/2, . . . , T − 1}
with η1 and dividing by T/2, we get

η1γσ
2

T

T−1∑
t=T/2

∥∇fLn(ft)∥2Lc
1(νn,X) ≤

2

T
Ln(fT/2). (9.16)

From inequalities (9.15) and (9.16), we conclude

η1γσ
2

T

T−1∑
t=T/2

∥∇fLn(ft)∥2Lc
1(νn,X) ≤

4Ln(f0)
(2 + η0αLn(f0)T)T

.

161

9. Functional gradient boosting based on residual network perception

We next show Theorem 19 that gives the generalization bound by the margin distri-
bution. To do that, we give an upper-bound on the margin distribution by the functional
gradient norm.

Proposition 23. For ∀δ > 0, the following bound holds.

Pνn [mf (X,Y) ≤ δ] ≤
(
1 +

1

exp(−δ)

)√
c∥∇fLn(f)∥Lc

1(νn,X).

Proof. If mf (x, y) ≤ δ, then, we see∑
y′ ̸=y

exp(fy′(x)− fy(x)) ≥ exp

(
max
y′ ̸=y

fy′(x)− fy(x)
)

= exp(−mf (x, y)) ≥ exp(−δ).

This implies,

pf (y|x) =
1

1 +
∑

y′ ̸=y exp(fy′(x)− fy(x))
≤ 1

1 + exp(−δ)
.

Thus, we get by Markov inequality and Proposition 19,

Pνn [mf (X,Y) ≤ δ] ≤ Pνn
[
pf (Y |X) ≤ 1

1 + exp(−δ)

]
= Pνn

[
1− pf (Y |X) ≥ exp(−δ)

1 + exp(−δ)

]
≤
(
1 +

1

exp(−δ)

)
Eνn [1− pf (Y |X)]

=

(
1 +

1

exp(−δ)

)
Eνn [νn(Y |X)− pf (Y |X)]

≤
(
1 +

1

exp(−δ)

)∑
y∈Y

∥νn(y|·)− pf (y|·)]∥L1(νn,X)

≤
(
1 +

1

exp(−δ)

)√
c∥∇fLn(f)∥Lc

1(νn,X).

We prove here Theorem 19.

Proof of Theorem 19 . To proof the theorem, we give the network structure. Note that
the connection at the t-th layer is as follows.

ϕt+1(x) = ϕt(x)−Dtσ(Ctϕt(x)).

162

9. Functional gradient boosting based on residual network perception

We define recursively the family of functions Ht and Ĥt where each neuron belong:
We denote by Pj ∈ Rd the projection vector to j-th coordinate.

H0
def
= {Pj : X → R | j ∈ {1, . . . , d}},

Ĥt
def
= {σ(c⊤t ϕt) : X → R | ϕt ∈ Hd

t , ct−1 ∈ Rd, ∥ct−1∥1 ≤ Λ},

Ht+1
def
= {ϕjt − d⊤t ψt : X → R | ϕjt ∈ Ht, ψt ∈ Ĥd

t , dt ∈ Rd, ∥dt∥1 ≤ Λ′
t}.

Then, the family of predictors of y ∈ Y can be written as

GT−1,y
def
= {w⊤

y ϕT−1 : X → R | ϕ ∈ Hd
T−1, wy ∈ Rd, ∥wy∥1 ≤ Λw}.

Note that GT−1 = {(fy)y∈Y | fy ∈ GT−1,y, y ∈ Y}.
From these relationships and Lemma 17, we get

ℜ̂S(Ht) ≤ ℜ̂S(Ht−1) + Λ′
t−1ℜ̂S(Ĥt−1)

≤ (1 + Λ′
t−1ΛLσ)ℜ̂S(Ht−1),

ℜ̂S(GT−1,y) ≤ Λwℜ̂S(HT−1).

The Rademacher complexity ofH0 is obtained as follows. Since ∥Pj∥2 = 1, we have

ℜ̂S(H0) =
1

n
E(σi)ni=1

[
sup

j∈{1,...,d}

n∑
i=1

σiPjxi

]

≤ 1

n
E(σi)ni=1

[
sup

j∈{1,...,d}
∥Pj∥2

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]

=
1

n
E(σi)ni=1

[∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]

≤ 1

n

E(σi)ni=1

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

2

 1
2

=
1

n

(
n∑
i=1

∥xi∥22

) 1
2

≤ Λ∞√
n
,

where we used the independence of σi when taking the expectation.
We set ΠGT−1 = {fy(·) : X →| f ∈ GT−1, y ∈ Y}. Noting that ℜ̂S(ΠGT−1) ≤∑
y∈Y ℜ̂S(GT−1,y), we get

ℜ̂S(ΠGT−1) ≤ cΛwΛ∞

T−2∏
t=0

(1 + ΛΛ′
tLσ)/

√
n.

Thus, we can finish the proof by applying Proposition 23 and Lemma 18.

163

9. Functional gradient boosting based on residual network perception

Corollary 7 can be derived by instantiating Theorem 19 for various choices of T, Λ′
t.

Proof of Corollary 7 . For simplicity, we set vt,j the L1-norm of j-th row of Dt, namely,
vt,j

def
= ∥(Dt)j,∗∥1. For arbitrary positive integers (T, kT−2) = (T, k0, . . . , kT−2), we set

B(T, kT−2) to networks defined by parameters included in{
max
j
vt,j ≤

kt
T
, max

c
∥(wT)∗,c∥1 ≤ Λw, max

i
∥(Ct)i,∗∥1 ≤ Λ, ∀t ∈ {0, . . . , T − 2}

}
and set

ρ(T, kT−2)
def
=

ρ

T (T + 1)k0(k0 + 1) · · · kT−2(kT−2 + 1)
.

Moreover, we set B def
= ∪T,kT−2

B(T, kT−2). Clearly, we see
∑

T,kT−2
ρ(T, kT−2) = ρ.

Therefore, by instantiating Theorem 19 for all (T, kT−2) with probability at least 1 −
ρ(T, kT−2) and taking an union bound, we have that with probability at least 1 − ρ for
∀f ∈ B,

Pν [mf (X,Y) ≤ 0] ≤ 2c3Λ∞Λw
δ
√
n

T−2∏
t=0

(
1 + ΛLσ

kt
T

)

+

√√√√ 1

2n
log

(
1

ρ

)
+ 2 log(T + 1) +

T−2∑
t=0

2 log(kt + 1)

+

(
1 +

1

exp(−δ)

)√
c∥∇fLn(f)∥Lc

1(νn,X).

Let f ∈ B be a function obtained by Algorithm 21 and (ft) = (w⊤
t+1ϕt) be a sequence

to obtain f in the algorithm. We choose the minimum integers (T, kT−2) such that f ∈
B(T, kT−2), then

max
j
vt,j ≤

kt
T
≤ max

j
vt,j +

1

T
.

Thus, it follows that

Pν [mf (X,Y) ≤ 0] ≤
(
1 +

1

exp(−δ)

)√
c∥∇fLn(f)∥Lc

1(νn,X)

+
2c3Λ∞Λw
δ
√
n

T−2∏
t=0

(
1 + ΛLσ

(
max
j
vt,j +

1

T

))

+

√√√√ 1

2n

(
log

(
1

ρ

)
+ 2 log(T + 1) +

T−2∑
t=0

2 log(T max
j
vt,j + 2)

)
.

164

9. Functional gradient boosting based on residual network perception

We next estimate an upper bound on maxj vt,j . Note that ∥(AtBt)i,∗∥1 ≤
∥(At)i,∗∥2

∑
l ∥(Bt)∗,l∥2 ≤ ∥(At)i,∗∥2Λ′′ and

∑
i ∥(At)i,∗∥2 ≤√

Kd∥∂ϕRn(ϕt, wt+1)∥Ld
1(νn,X) by its construction. Thus, we get

max
j
vt,j ≤

∑
j

vt,j ≤ ηt
√
KdΛ′′∥∂ϕRn(ϕt, wt+1)∥Ld

1(νn,X) ≤ ηt
√
KdΛ′′cλ∥∇fLn(ft)∥Lc

1(νn,X),

where we used ∥wt∥2 ≤ cλ for the last inequality.

Using the inequality
∏T−2

t=0 (1 + pt) ≤
(
1 + 1

T−1

∑T−2
t=0 pt

)T−1

for positive integers
(pt) and Jensen’s inequality, we have

Pν [mf (X,Y) ≤ 0] ≤
(
1 +

1

exp(−δ)

)√
c∥∇fLn(f)∥Lc

1(νn,X) +
c3Λ∞Λw
δ
√
n

(
1 +

2ΛLσ
T

)T−1

+
c3Λ∞Λw
δ
√
n

(
1 +

2ΛLσ
√
KdΛ′′cλ

T − 1

T−2∑
t=0

ηt∥∇fLn(ft)∥Lc
1(νn,X)

)T−1

+

√
1

2n

(
log

(
1

ρ

)
+O(T log T)

)
.

Since
(
1 + 2ΛLσ

T

)T−1 is an increasing with respect to T and converges to 2ΛLσ, we
finish the proof.

9.7.3 Sample-splitting technique
In this subsection, we provide proofs for the convergence analysis of the sample-splitting
variant of the method for the expected risk minimization. We first give the statistical error
bound on the gap between the empirical and expected functional gradients.

Proof of Proposition 20 . For the probability measure ν, we denote by ϕ♯ν the push-
forward measure (ϕ, id)♯ν, namely, (ϕ, id)♯ν is the measure that the random variable
(ϕ(X), Y) follows. We also define ϕ♯νm in the same manner. Then, we get

∥Tk∂ϕR(ϕ,w0)− Tk,m∂ϕRm(ϕ,w0)∥Ld
2(µ)

=
√
EX′∼µ∥Eν [∂zl(ϕ(X), Y, w0)k(X,X ′)]− Eνm [∂zl(ϕ(X), Y, w0)k(X,X ′)]∥22

=

√√√√ d∑
j=1

EX′∼µ|(Eν [∂zj l(ϕ(X), Y, w0)ι(ϕ(X)))]− Eνm [∂zj l(ϕ(X), Y, w0)ι(ϕ(X))])⊤ι(ϕ(X ′))|2

≤

√√√√K
d∑
j=1

∥Eν [∂zj l(ϕ(X), Y, w0)ι(ϕ(X)))]− Eνm [∂zj l(ϕ(X), Y, w0)ι(ϕ(X))]∥22

165

9. Functional gradient boosting based on residual network perception

≤

√√√√K
d∑
j=1

D∑
i=1

∣∣Eϕ♯ν [∂zj l(X,Y,w0)ιi(X))]− Eϕ♯νm [∂zj l(X,Y,w0)ιi(X)]
∣∣2. (9.17)

To derive an uniform bound on (9.17), we estimate Rademacher complexity of

Gij
def
= {∂zj l(x, y, w0)ι

i(x) : X × Y → R | ιi ∈ F i}.

For (xl, yl)ml=1 ⊂ X×Y , we set hl(r) = r∂zj l(xl, yl, w0). Since, |∂zj l(xl, yl, w0)| ≤ β∥w0∥2
by Assumption 10, hl is β∥w0∥2-Lipschitz continuous. Thus, from Lemma 16 and Lemma
17, there exists M such that for all i ∈ {1, . . . , D}, j ∈ {1, . . . , d},

ℜ̂m(Gij) = Eσ

[
sup
ιi∈Fi

m∑
l=1

σlhl(ι
i(xl))

]

≤ β∥w0∥2Eσ

[
sup
ιi∈Fi

m∑
l=1

σlι
i(xl)

]

≤ β∥w0∥2
M√
m
.

Therefore, by applying Lemma 15 with δ = ρ
dD

for ∀i, j simultaneously, it follows
that with probability at least 1− ρ for ∀i, j

sup
ιi∈Fi

∣∣Eϕ♯ν [∂zj l(X,Y,w0)ι
i(X))]− Eϕ♯νm [∂zj l(X,Y,w0)ι

i(X)]
∣∣

≤
β∥w0∥2√
m

(
2M +

√
2K log

2dD

ρ

)
. (9.18)

Putting (9.18) int (9.17), we get with probability at least 1− ρ

sup
ι∈F
∥Tk∂ϕR(ϕ,w0)− Tk,m∂ϕRm(ϕ,w0)∥Ld

2(µ)
≤ β∥w0∥2

√
KdD

m

(
2M +

√
2K log

2dD

ρ

)
.

We here prove Theorem 20 by using statistical guarantees of empirical functional
gradients.

Proof of Theorem 20 . For notational simplicity, we set m ← ⌊n/T ⌋ and δ ← ρ/T . We
first note that

⟨∂ϕR(ϕt, w0), Tkt,m∂ϕRm(ϕt, w0)⟩Ld
2(νX)

166

9. Functional gradient boosting based on residual network perception

=
1

m

m∑
j=1

EνX [∂ϕR(ϕt, w0)(X)⊤∂ϕRm(ϕt, w0)(xj)kt(X, xj)]

=
1

m

m∑
j=1

Tkt∂ϕR(ϕt, w0)(xj)
⊤∂ϕRm(ϕt, w0)(xj)

= ⟨Tkt∂ϕR(ϕt, w0), ∂ϕRm(ϕt, w0)⟩Ld
2(νm,X) .

Noting that ∥∂zl(ϕt(xj), yj, w0)∥2 ≤ β∥w0∥2 by Assumption 8, and applying Proposi-
tion 20 for all t ∈ {0, . . . , T − 1} independently, it follows that with probability at least
1− Tδ (i.e., 1− ρ) for ∀t ∈ {0, . . . , T − 1}∣∣∣⟨∂ϕR(ϕt, w0), Tkt,m∂ϕRm(ϕt, w0)⟩Ld

2(νX) − ⟨Tkt,m∂ϕRm(ϕt, w0), ∂ϕRm(ϕt, w0)⟩Ld
2(νm,X)

∣∣∣
≤ ∥Tkt∂ϕR(ϕt, w0)− Tkt,m∂ϕRm(ϕt, w0)∥Ld

2(νm,X)∥∂ϕRm(ϕt, w0)∥Ld
2(νm,X)

≤ β∥w0∥2ϵ(m, δ). (9.19)

We next give the following bound.

∥Tkt∂ϕRm(ϕt, w0)∥2Ld
2(νX) = EνX

∥∥∥∥∥ 1

m

m∑
j=1

∂zl(ϕt(xi), yi, w0)kt(xi, X)

∥∥∥∥∥
2

2

≤ β2
∥w0∥2K

2.

(9.20)
On the other hand, we get by Proposition 18

R(ϕt+1, w0) ≤ R(ϕt+1, w0)− η ⟨∂ϕR(ϕt, w0), Tkt,m∂ϕRm(ϕt, w0)⟩Ld
2(νX)

+
η2A∥w0∥2

2
∥Tkt∂ϕRm(ϕt, w0)∥2Ld

2(νX). (9.21)

Combining inequalities (9.19), (9.20), and (9.21), we have with probability at least
1− Tδ for t ∈ {0, . . . , T − 1},

R(ϕt+1, w0) ≤ R(ϕt+1, w0)−η∥Tkt,m∂ϕRm(ϕt, w0)∥2kt+ηβ∥w0∥2ϵ(m, δ)+
η2β2

∥w0∥2K
2A∥w0∥2

2
.

By Summing this inequality over t ∈ {0, . . . , T − 1} and dividing by T , we get with
probability 1− Tδ

1

T

T−1∑
t=0

∥Tkt,m∂ϕRm(ϕt, w0)∥2kt ≤
R(ϕ0, w0)

ηT
+ β∥w0∥2ϵ(m, δ) +

ηβ2
∥w0∥2K

2A∥w0∥2

2
.

Thus by Assumption 9 and the assumption on w⊤
0 w0, we get

1

T

T−1∑
t=0

∥∇fLm(w⊤
0 ϕt)∥

q
Ld
p(νm,X)

167

9. Functional gradient boosting based on residual network perception

≤ 1

γσq

{
R(ϕ0, w0)

ηT
+ β∥w0∥2ϵ(m, δ) +

ηβ2
∥w0∥2K

2A∥w0∥2

2
+ γϵ

}
. (9.22)

To clarify the relationship between ∥∇fLm(f)∥Lc
1(νm,X) and ∥∇fL(f)∥Lc

1(νX), we take
an expectation of the former term with respect to samples (Xj, Yj)

m
j=1 ∼ νm. Since

∥∂ζl(ζ, y)∥2 ≤ B, we obtain

E(Xj ,Yj)mj=1∼νm∥∇fLm(f)∥Lc
1(νm,X) = E(X,Y)∼νm∥∂ζl(f(X), Y)∥2

≥ 1

B
E(X,Y)∼νm∥∂ζl(f(X), Y)∥22

≥ 1

B
Eνm,X

∥Eν(Y |X)[∂ζl(f(X), Y)]∥22

=
1

B
Eνm,X

∥∇fL(f)(X)∥22

=
1

B
∥∇fL(f)∥2Lc

2(νX).

Hence, applying Hoeffding’s inequality with δ ← ρ/T to
E(Xj ,Yj)mj=1∼νm∥∇fLm(w⊤

0 ϕt)∥Lc
1(νm,X) for all t ∈ {0, . . . , T − 1} independently,

we find that with probability 1− Tδ for ∀t ∈ {0, . . . , T − 1},

∥∇fLm(w⊤
0 ϕt)∥Lc

1(νm,X) +B

√
2

m
log

1

δ
≥ E∼νm∥∇fLm(w⊤

0 ϕt)∥Lc
1(νm,X)

≥ 1

B
∥∇fL(w⊤

0 ϕt)∥2Lc
1(νX), (9.23)

where we used for the last inequality ∥ · ∥2Lc
2(νX) ≥ ∥ · ∥2Lc

1(νX).
We set t∗ = argmint∈{0,...,T−1} ∥∇fLm(w⊤

0 ϕt)∥Ld
p(νm,X). Combining inequalities

(9.22) and (9.23) and noting p ≥ 1, we get with probability at least 1− 2Tδ,

1

B
∥∇fL(w⊤

0 ϕt∗)∥2Lc
1(νX) ≤ B

√
2

m
log

1

δ

+
1

γ1/qσ

{
R(ϕ0, w0)

ηT
+ β∥w0∥2ϵ(m, δ) +

ηβ2
∥w0∥2K

2A∥w0∥2

2
+ γϵ

} 1
q

.

Noting that
√
a+ b ≤

√
a+
√
b for a, b > 0, we finally obtain

∥∇fL(w⊤
0 ϕt∗)∥Lc

1(νX) ≤ B

(
2

m
log

1

δ

) 1
4

168

9. Functional gradient boosting based on residual network perception

+

√
B

γ1/qσ

{
R(ϕ0, w0)

ηT
+ β∥w0∥2ϵ(m, δ) +

ηβ2
∥w0∥2K

2A∥w0∥2

2
+ γϵ

} 1
2q

.

Recalling that m← ⌊n/T ⌋ and δ ← ρ/T , the proof is finished.

169

Future Work

In this thesis, we have introduced our work for large-scale or complicated machine learn-
ing problems. We here mention possible extensions of our work.

In Chapter 3 and 4, we have introduced optimal methods in terms of the total and
iteration complexities, which are expected to better work by parallelization of minibatch
computing. Thus, we will try to further investigate in this line of research and compare
with asynchronous variants of stochastic gradient methods and variance reduced meth-
ods (Leblond et al., 2017) for huge datasets empirically and theoretically. In Chapter 5,
we have introduced a stochastic variant of difference of convex algorithm and provided
better theoretical analysis. Moreover, superior empirical performance has been verified
especially on training restricted Boltzmann machines. Therefore, it is expected to ex-
plore applications using this model efficiently. One candidate for such an application is
unsupervised ensemble (Dawid and Skene, 1979; Shaham et al., 2016) which has gained
attention recently because of increasing demand for crowd labeling for supervised learn-
ing tasks (Brabham, 2008; Kittur et al., 2008). Furthermore, exploring other applications
from Boltzmann machines is also highly expected because the difference of convex struc-
ture can appear in several fields.

In Chapter 6 and subsequence chapters, the functional gradient method for learning
probability measures and its applications with several theoretical results have been pro-
vided. One common notion appeared in these chapters is notable deep learning network
structure called residual networks (He et al., 2016). It is widely known empirically that
residual networks have remarkable performance especially for computer vision tasks, but
there is a lack of better theoretical explanations of their ability. Thus, such an analysis
is desired in machine learning community. In our work, we haves shown the conver-
gence of the functional gradient method in several situations. As shown in this thesis,
the method has the connections with residual network. This means that we also provide
sufficient size of residual networks to achieve a required accuracy. This is quite meaning-
ful because network size is important for analyzing its generalization ability. Moreover,
functional gradient methods under settings considered in Chapter 7 and 8 are also closely
related with sampling methods. Therefore, we think that our analyses also provide a
new way for theoretical guarantees of some specific sampling methods. Especially, Stein
variational gradient descent (Liu and Wang, 2016) recently proposed sampling method

170

9. Functional gradient boosting based on residual network perception

in Bayesian inference literature to better match to a posterior distribution may be further
investigated theoretically using our technique by combing the analysis for kernel func-
tion like that provided in Chapter 9, although we only used simple analysis for the kernel
because we adopted variable kernel functions thanks to its better empirical performance
rather than the more analyzable fixed kernel function. We next comment on each appli-
cation in Chapter 8 and 9. In Chapter 8, we have introduce the method for enhancing the
convergence of adversarial generative models (Goodfellow et al., 2014; Arjovsky et al.,
2017; Gulrajani et al., 2017) by applying the functional gradient descent on the generator.
Thus, we focused only on the generator, but performance of the discriminator (critic) is
also clearly important. In particular, we think that the smoothing technique for the dis-
criminator is useful to generate better samples as done in Miyato et al. (2018) because the
smoothness may exclude a kind of adversarial example (Goodfellow et al., 2015; Kurakin
et al., 2016) which cheats discriminator by unrealistic samples. Thus, we believe that
the performance of the functional gradient descent can be further improved by combining
such a smoothing technique. In Chapter 9, the new functional gradient boosting method
based on the property of the residual network has been proposed. Indeed, an interesting
and better theoretical analysis of the method was shown, but the important problem is left,
that is, a theoretical benefit of deep structure. If we can show the benefit of our method to
shallow models such as usual functional gradient boosting methods (Mason et al., 1999;
Friedman, 2001), the concrete superiority of our method is also shown. The first step
for this line of research is to give some examples where a deep structure approximate
functional gradients well more efficiently than shallow models. As for empirical verifi-
cation, we have shown that the proposed method outperforms existing methods including
the state-of-the-art method such as LightGBM (Ke et al., 2017) on general benchmark
datasets. However, such a result on image datasets on which regular residual networks
perform well has not yet observed and additional efforts will be required to achieve this
goal. This is one of important topics left for future work.

171

Bibliography

Agarwal, A. and Bottou, L. (2014). A lower bound for the optimization of finite sums.
arXiv preprint arXiv:1410.0723.

Agarwal, A. and Duchi, J. C. (2011). Distributed delayed stochastic optimization. In
Advances in Neural Information Processing Systems 24, pages 873–881.

Agarwal, A., Wainwright, M. J., Bartlett, P. L., and Ravikumar, P. K. (2009). Information-
theoretic lower bounds on the oracle complexity of convex optimization. In Advances
in Neural Information Processing Systems 22, pages 1–9.

Ahmadi, A. A. and Hall, G. (2015). DC decomposition of nonconvex polynomials with
algebraic techniques. Mathematical Programming, pages 1–26.

Allen-Zhu, Z. (2017). Katyusha: The first direct acceleration of stochastic gradient meth-
ods. In Proceedings of Annual ACM SIGACT Symposium on Theory of Computing
49, pages 1200–1205. ACM.

Allen-Zhu, Z. and Hazan, E. (2016). Optimal black-bbox reductions between optimiza-
tion objectives. In Advances in Neural Information Processing Systems 29, pages
1614–1622.

Allen-Zhu, Z. and Orecchia, L. (2014). Linear coupling: An ultimate unification of gra-
dient and mirror descent. arXiv preprint arXiv:1407.1537.

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation,
10(2):251–276.

Ambrosio, L. (2003). Lecture notes on optimal transport problems. In Mathematical
aspects of evolving interfaces, pages 1–52.

Ambrosio, L., Gigli, N., and Savaré, G. (2008). Gradient Flows in Metric Spaces
and in the Space of Probability Measures. Lectures in Mathematics. ETH Zürich.
Birkhäuser Basel.

172

BIBLIOGRAPHY

Argyriou, A., Hauser, R., Micchelli, C. A., and Pontil, M. (2006). A DC-programming al-
gorithm for kernel selection. In Proceedings of international conference on Machine
learning 23, pages 41–48.

Arjevani, Y. and Shamir, O. (2016). Dimension-free iteration complexity of finite sum
optimization problems. In Advances in Neural Information Processing Systems 29,
pages 3540–3548.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial
networks. In Proceedings of International Conference on Machine Learning 34,
pages 214–223.

Bach, F. (2014). Breaking the curse of dimensionality with convex neural networks.
Journal of Machine Learning Research, 18(19):1–53.

Bach, F. and Moulines, E. (2011). Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing
Systems 24, pages 451–459.

Bach, F. and Moulines, E. (2013). Non-strongly-convex smooth stochastic approxima-
tion with convergence rate O(1/n). In Advances in Neural Information Processing
Systems 26, pages 773–781.

Balakrishnan, S., Wainwright, M. J., and Yu, B. (2017). Statistical guarantees for the
EM algorithm: From population to sample-based analysis. The Annals of Statistics,
45(1):77–120.

Bartlett, P. L., Evans, S. N., and Long, P. M. (2018). Representing smooth functions
as compositions of near-identity functions with implications for deep network opti-
mization. arXiv preprint arXiv:1804.05012.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A. (2017). Nearly-tight VC-
dimension and pseudodimension bounds for piecewise linear neural networks. arXiv
preprint arXiv:1703.02930.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classification, and
risk bounds. Journal of the American Statistical Association, 101(473):138–156.

Bartlett, P. L., Maiorov, V., and Meir, R. (1998). Almost linear VC dimension bounds
for piecewise polynomial networks. In Advances in Neural Information Processing
Systems 11, pages 190–196.

Bartlett, P. L. and Mendelson, S. (2002). Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(Nov):463–
482.

173

BIBLIOGRAPHY

Bartlett, P. L. and Traskin, M. (2007). Adaboost is consistent. Journal of Machine Learn-
ing Research, 8(Oct):2347–2368.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard,
N., Warde-Farley, D., and Bengio, Y. (2012). Theano: new features and speed im-
provements. In NIPS 2012 Workshop: Deep Learning and Unsupervised Feature
Learning.

Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classification algo-
rithms: Bagging, boosting and variants. Machine Learning, 36:105–139.

Becker, S. and Le Cun, Y. (1988). Improving the convergence of back-propagation learn-
ing with second order methods. In Proceedings of the 1988 Connectionist Models
Summer School, pages 29–37.

Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., and Marcotte, P. (2006). Convex
neural networks. In Advances in Neural Information Processing Systems 19, pages
123–130.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J.,
Warde-Farley, D., and Bengio, Y. (2010). Theano: A cpu and gpu math compiler in
python. In Proceedings of the Python for Scientific Computing Conference (SciPy).

Blanchard, G., Lugosi, G., and Vayatis, N. (2003). On the rate of convergence of regular-
ized boosting classifiers. Journal of Machine Learning Research, 4(Oct):861–894.

Bottou, L., Curtis, F. E., and Nocedal, J. (2016). Optimization methods for large-scale
machine learning. arXiv preprint arXiv:1606.04838.

Bottou, L. and Le Cun, Y. (2005). On-line learning for very large data sets. Applied
Stochastic Models in Business and Industry, 21(2):137–151.

Bousquet, O. and Bottou, L. (2008). The tradeoffs of large scale learning. In Advances in
Neural Information Processing Systems 21, pages 161–168.

Bousquet, O. and Elisseeff, A. (2002). Stability and generalization. Journal of Machine
Learning Research, 2(Mar):499–526.

Brabham, D. C. (2008). Crowdsourcing as a model for problem solving: An introduction
and cases. Convergence, 14(1):75–90.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation,
11:1493–1517.

174

BIBLIOGRAPHY

Brenier, Y. (1987). Décomposition polaire et réarrangement monotone des champs de
vecteurs. CR Acad. Sci. Paris Sér. I Math, 305(19):805–808.

Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued
functions. Communications on pure and applied mathematics, 44(4):375–417.

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and
Trends R⃝ in Machine Learning, 8(3-4):231–357.

Carlson, D., Cevher, V., and Carin, L. (2015). Stochastic spectral descent for restricted
Boltzmann machines. In Proceedings of International Conference on Artificial In-
telligence and Statistics 18, pages 111–119.

Carlson, D., Hsieh, Y.-P., Collins, E., Carin, L., and Cevher, V. (2016). Stochastic spectral
descent for discrete graphical models. IEEE Journal of Selected Topics in Signal
Processing, 10(2):296–311.

Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., and Holtham, E. (2017a). Re-
versible architectures for arbitrarily deep residual neural networks. arXiv preprint
arXiv:1709.03698.

Chang, B., Meng, L., Haber, E., Tung, F., and Begert, D. (2017b). Multi-level residual
networks from dynamical systems view. arXiv preprint arXiv:1710.10348.

Chen, C. and Zhang, R. (2017). Particle optimization in stochastic gradient mcmc. arXiv
preprint arXiv:1711.10927.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceed-
ings of ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining 22, pages 785–794.

Chen, X., Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P.
(2016). InfoGAN: Interpretable representation learning by information maximizing
generative adversarial nets. In Advances in Neural Information Processing Systems
29, pages 2172–2180.

Chen, X., Lin, Q., and Pena, J. (2012). Optimal regularized dual averaging methods
for stochastic optimization. In Advances in Neural Information Processing Systems,
pages 395–403.

Chizat, L. and Bach, F. (2018). On the global convergence of gradient descent for over-
parameterized models using optimal transport. arXiv preprint arXiv:1805.09545.

175

BIBLIOGRAPHY

Cho, K., Raiko, T., Ilin, A., and Karhunen, J. (2013). A two-stage pretraining algorithm
for deep Boltzmann machines. In International Conference on Artificial Neural Net-
works 23, pages 106–113. Springer.

Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., and Yang, S. (2017). Adanet: Adap-
tive structural learning of artificial neural networks. In Proceedings of International
Conference on Machine Learning 34, pages 874–883.

Cortes, C., Mohri, M., and Syed, U. (2014). Deep boosting. In Proceedings of Interna-
tional Conference on Machine Learning 31, pages 1179–1187.

Cotter, A., Shamir, O., Srebro, N., and Sridharan, K. (2011). Better mini-batch algorithms
via accelerated gradient methods. In Advances in neural information processing
systems 24, pages 1647–1655.

Dai, B., He, N., Dai, H., and Song, L. (2016). Provable Bayesian inference via particle
mirror descent. In Proceedings of International Conference on Artificial Intelligence
and Statistics 19, pages 985–994.

Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F. F., and Song, L. (2014). Scalable
kernel methods via doubly stochastic gradients. In Advances in Neural Information
Processing Systems 27, pages 3041–3049.

Daneri, S. and Savaré, G. (2010). Lecture notes on gradient flows and optimal transport.
arXiv preprint arXiv:1009.3737.

Dawid, A. P. and Skene, A. M. (1979). Maximum likelihood estimation of observer error-
rates using the em algorithm. Applied Statistics, pages 20–28.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in
neural information processing systems 27, pages 1646–1654.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. (2012). Optimal distributed
online prediction using mini-batches. Journal of Machine Learning Research,
13(Jan):165–202.

Dietterich, T. G. (2000). An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting and randomization. Machine
Learning, 40:139–157.

Dieuleveut, A. and Bach, F. (2016). Nonparametric stochastic approximation with large
step-sizes. The Annals of Statistics, 44(4):1363–1399.

176

BIBLIOGRAPHY

Dieuleveut, A., Flammarion, N., and Bach, F. (2017). Harder, better, faster, stronger con-
vergence rates for least-squares regression. Journal of Machine Learning Research,
18(1):3520–3570.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159.

Dudley, R. M. (1968). Distances of probability measures and random variables. The
Annals of Mathematical Statistics, 39(5):1563–1572.

Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge University Press.

Ferrer, A. (2001). Representation of a polynomial function as a difference of convex
polynomials, with an application. Lectures Notes in Economics and Mathematical
Systems, 502:189–207.

Freund, J. (1971). Mathematical statistics. Prentice-Hall.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
The Annals of Statistics, pages 1189–1232.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A
statistical view of boosting. The Annals of Statistics, 28(2):337–407.

Frostig, R., Ge, R., Kakade, S., and Sidford, A. (2015). Un-regularizing: Approxi-
mate proximal point and faster stochastic algorithms for empirical risk minimiza-
tion. In Proceedings of International Conference on Machine Learning 32, pages
2540–2548.

Ghadimi, S. and Lan, G. (2013a). Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization, II: Shrinking procedures and op-
timal algorithms. SIAM Journal on Optimization, 23(4):2061–2089.

Ghadimi, S. and Lan, G. (2013b). Stochastic first-and zeroth-order methods for noncon-
vex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368.

Giselsson, P. and Boyd, S. (2014). Monotonicity and restart in fast gradient methods. In
IEEE Conference on Decision and Control 53, pages 5058–5063.

177

BIBLIOGRAPHY

Gong, P. and Ye, J. (2014). Linear convergence of variance-reduced stochastic gradient
without strong convexity. arXiv preprint arXiv:1406.1102.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances
in Neural Information Processing Systems 27.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adver-
sarial examples.

Guillemin, V. and Pollack, A. (1974). Differential Topology. Prentice-Hall.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017). Im-
proved training of wasserstein gans. In Advances in Neural Information Processing
Systems 30, pages 5769–5779.

Gürbüzbalaban, M., Ozdaglar, A., and Parrilo, P. (2015). A globally convergent incre-
mental Newton method. Mathematical Programming, 151(1):283–313.

Haber, E., Ruthotto, L., and Holtham, E. (2017). Learning across scales-a multiscale
method for convolution neural networks. arXiv preprint arXiv:1703.02009.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.

Hinton, G. (2002). Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800.

Hörmander, L. (1963). Linear Partial Differential Operators. Springer.

Huang, F., Ash, J., Langford, J., and Schapire, R. (2017a). Learning deep resnet blocks
sequentially using boosting theory. arXiv preprint arXiv:1706.04964.

Huang, G., Liu, Z., Weinberger, K. Q., and van der Maaten, L. (2017b). Densely con-
nected convolutional networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4700—4708.

Ikeda, S. (2000). Acceleration of the EM algorithm. Systems and Computers in Japan,
31(2):10–18.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In Proceedings of International Conference
on Machine Learning 32, pages 448–456.

178

BIBLIOGRAPHY

Jastrzebski, S., Arpit, D., Ballas, N., Verma, V., Che, T., and Bengio, Y. (2017). Residual
connections encourage iterative inference. arXiv preprint arXiv:1710.04773.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using predic-
tive variance reduction. In Advances in Neural Information Processing Systems 26,
pages 315–323.

Johnson, R. and Zhang, T. (2018). Composite functional gradient learning of generative
adversarial models. arXiv preprint arXiv:1801.06309.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017).
Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems 30, pages 3149–3157.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
Proceedings of International Conference on Learning Representations 3.

Kittur, A., Chi, E. H., and Suh, B. (2008). Crowdsourcing user studies with mechanical
turk. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 453–456.

Kivinen, J., Smola, A. J., and Williamson, R. C. (2004). Online learning with kernels.
IEEE Transactions on Signal Processing, 52(8):2165–2176.

Kodali, N., Abernethy, J., Hays, J., and Kira, Z. (2017). How to train your DRAGAN.
arXiv preprint arXiv:1705.07215.

Koltchinskii, V. and Panchenko, D. (2002). Empirical margin distributions and bounding
the generalization error of combined classifiers. The Annals of Statistics, 30(1):1–50.

Koltchinskii, V., Panchenko, D., and Lozano, F. (2003). Bounding the generalization error
of convex combinations of classifiers: Balancing the dimensionality and the margins.
Annals of Applied Probability, 13(1):213–252.

Konečnỳ, J., Liu, J., Richtárik, P., and Takáč, M. (2016). Mini-batch semi-stochastic
gradient descent in the proximal setting. IEEE Journal of Selected Topics in Signal
Processing, 10(2):242–255.

Konečnỳ, J. and Richtárik, P. (2013). Semi-stochastic gradient descent methods. arXiv
preprint arXiv:1312.1666.

Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Adversarial examples in the physical
world. arXiv preprint arXiv:1607.02533.

179

BIBLIOGRAPHY

Kushner, H. and Yin, G. G. (2003). Stochastic approximation and recursive algorithms
and applications, volume 35 of Applications of Mathematics: Stochastic Modelling
and Applied Probability. Springer.

Lacoste-Julien, S., Schmidt, M., and Bach, F. (2012). A simpler approach to obtaining
an O(1/t) convergence rate for the projected stochastic subgradient method. arXiv
preprint arXiv:1212.2002.

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and Winther, O. (2016). Autoencoding
beyond pixels using a learned similarity metric. In Proceedings of international
conference on Machine learning 33, pages 1558–1566.

Le Roux, N. and Bengio, Y. (2007). Continuous neural networks. In Proceedings of
International Conference on Artificial Intelligence and Statistics 11, pages 404–411.

Le Thi, H. A. and Dinh, T. P. (2011). On solving linear complementarity problems by DC
programming and DCA. Computational optimization and applications, 50(3):507–
524.

Le Thi, H. A., Huynh, V. N., and Dinh, T. P. (2009). Convergence analysis of DC al-
gorithm for DC programming with subanalytic data. Technical report, LMI, INSA-
Rouen.

Le Thi, H. A., Le, H. M., and Dinh, T. P. (2008). A DC programming approach for
feature selection in support vector machines learning. Advances in Data Analysis
and Classification, 2(3):259–278.

Leblond, R., Pedregosa, F., and Lacoste-Julien, S. (2017). ASAGA: Asynchronous paral-
lel SAGA. In Proceedings of International Conference on Artificial Intelligence and
Statistics 20, pages 46–54.

Lin, H., Mairal, J., and Harchaoui, Z. (2015). A universal catalyst for first-order optimiza-
tion. In Advances in Neural Information Processing Systems 28, pages 3384–3392.

Lin, H., Mairal, J., and Harchaoui, Z. (2017). Catalyst acceleration for first-order convex
optimization: from theory to practice. arXiv preprint arXiv:1712.05654.

Lin, Q., Lu, Z., and Xiao, L. (2014). An accelerated proximal coordinate gradient method.
In Advances in Neural Information Processing Systems 27, pages 3059–3067.

Littwin, E. and Wolf, L. (2016). The loss surface of residual networks: Ensembles and
the role of batch normalization. arXiv preprint arXiv:1611.02525.

180

BIBLIOGRAPHY

Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J.,
and Murphy, K. (2017). Progressive neural architecture search. arXiv preprint
arXiv:1712.00559.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K. (2018). Hierarchi-
cal representations for efficient architecture search. In Proceedings of International
Conference on Learning Representations 6.

Liu, Q. (2017). Stein variational gradient descent as gradient flow. In Advances in Neural
Information Processing Systems 30, pages 3117–3125.

Liu, Q. and Wang, D. (2016). Stein variational gradient descent: A general purpose
Bayesian inference algorithm. In Advances in Neural Information Processing Sys-
tems 29, pages 2378–2386.

Livni, R., Carmon, D., and Globerson, A. (2017). Learning infinite layer networks without
the kernel trick. In Proceedings of International Conference on Machine Learning
34, pages 2198–2207.

Lu, Y., Zhong, A., Li, Q., and Dong, B. (2017). Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. arXiv preprint
arXiv:1710.10121.

Luenberger, D. G. (1969). Optimization by Vector Space Methods. John Wiley & Sons.

Lugosi, G. and Vayatis, N. (2004). On the Bayes-risk consistency of regularized boosting
methods. The Annals of Statistics, 32(1):30–55.

MacKay, D. J. (1992). A practical Bayesian framework for backpropagation networks.
Neural Computation, 4(3):448–472.

MacKay, D. J. (1995). Probable networks and plausible predictions―a review of practical
Bayesian methods for supervised neural networks. Network: Computation in Neural
Systems, 6(3):469–505.

Mairal, J. (2013). Stochastic majorization-minimization algorithms for large-scale opti-
mization. In Advances in Neural Information Processing Systems 26, pages 2283–
2291.

Mairal, J. (2015). Incremental majorization-minimization optimization with application
to large-scale machine learning. SIAM Journal on Optimization, 25(2):829–855.

Mannor, S., Meir, R., and Zhang, T. (2003). Greedy algorithms for classification–
consistency, convergence rates, and adaptivity. Journal of Machine Learning Re-
search, 4(Oct):713–742.

181

BIBLIOGRAPHY

Marlin, B., Swersky, K., Chen, B., and Freitas, N. (2010). Inductive principles for re-
stricted Boltzmann machine learning. In Proceedings of International Conference
on Artificial Intelligence and Statistics 13, pages 509–516.

Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. (2000). Functional gradient techniques
for combining hypotheses. In Advances in Large Margin Classifiers. MIT Press.

Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (1999). Boosting algorithms as
gradient descent. In Advances in Neural Information Processing Systems 12, pages
512–518.

Milgrom, P. and Segal, I. (2002). Envelope theorems for arbitrary choice sets. Economet-
rica, 70(2):583–601.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for
generative adversarial networks.

Moghimi, M., Belongie, S. J., Saberian, M. J., Yang, J., Vasconcelos, N., and Li, L.-
J. (2016). Boosted convolutional neural networks. In Proceedings of the British
Machine Vision Conference, pages 24.1–24.13.

Mukherjee, S., Rifkin, R., and Poggio, T. (2003). Regression and classification with
regularization. In Nonlinear estimation and classification, pages 111–128.

Müller, A. (1997). Integral probability metrics and their generating classes of functions.
Advances in Applied Probability, 29:429–443.

Murata, T. and Suzuki, T. (2017). Doubly accelerated stochastic variance reduced dual
averaging method for regularized empirical risk minimization. In Advances in Neural
Information Processing Systems 30, pages 608–617.

Neal, R. M. (2012). Bayesian Learning for Neural Networks, volume 118 of Lecture
Notes in Statistics. Springer.

Nemirovski, A. S., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization,
19(4):1574–1609.

Nemirovskii, A. and Yudin, D. B. (1983). Problem Complexity and Method Efficiency in
Optimization. John Wiley.

Nesterov, Y. (1983). A method of solving a convex programming problem with conver-
gence rate O(1/k2). 27(2):372–376.

182

BIBLIOGRAPHY

Nesterov, Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical pro-
gramming, 103(1):127–152.

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathemati-
cal Programming, 140(1):125–161.

Neyshabur, B., Tomioka, R., and Srebro, N. (2015). Norm-based capacity control in
neural networks. In Proceedings of Conference on Learning Theory 28, pages 1376–
1401.

Nitanda, A. (2014). Stochastic proximal gradient descent with acceleration techniques.
In Advances in Neural Information Processing Systems 27, pages 1574–1582.

Nitanda, A. (2016). Accelerated stochastic gradient descent for minimizing finite sums.
In Proceedings of International Conference on Artificial Intelligence and Statistics
19, pages 195–203.

Nitanda, A. and Suzuki, T. (2017a). Stochastic difference of convex algorithm and its
application to training deep Boltzmann machines. In Proceedings of International
Conference on Artificial Intelligence and Statistics 20, pages 470–478.

Nitanda, A. and Suzuki, T. (2017b). Stochastic particle gradient descent for infinite en-
sembles. arXiv preprint arXiv:1712.05438.

Nitanda, A. and Suzuki, T. (2018a). Functional gradient boosting based on residual net-
work perception. arXiv preprint arXiv:1802.09031.

Nitanda, A. and Suzuki, T. (2018b). Gradient layer: Enhancing the convergence of adver-
sarial training for generative models. In Proceedings of International Conference on
Artificial Intelligence and Statistics 21.

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-GAN: Training generative neural sam-
plers using variational divergence minimization. In Advances in Neural Information
Processing Systems 29, pages 271–279.

Otto, F. (2001). The geometry of dissipative evolution equations: The porous medium
equation. Communications in Partial Differential Equations, 26(1-2):101–174.

Owen, A. B. (2013). Monte Carlo theory, methods and examples.

O ’Donoghue, B. and Candes, E. (2015). Adaptive restart for accelerated gradient
schemes. Foundations of computational mathematics, 15(3):715–732.

183

BIBLIOGRAPHY

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural archi-
tecture search via parameter sharing. arXiv preprint arXiv:1802.03268.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and Optimization, 30(4):838–855.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation learning with
deep convolutional generative adversarial networks. In Proceedings of International
Conference on Learning Representations 4.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems 20, pages 1177–1184.

Rahimi, A. and Recht, B. (2009). Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning. In Advances in Neural Information
Processing Systems 22, pages 1313–1320.

Rakhlin, A., Shamir, O., and Sridharan, K. (2012). Making gradient descent optimal for
strongly convex stochastic optimization. In Proceedings of International Conference
on Machine Learning 29, pages 1571–1578.

Rätsch, G. and Warmuth, M. K. (2005). Efficient margin maximizing with boosting.
Journal of Machine Learning Research, 6(Dec):2131–2152.

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows.
In Proceedings of International Conference on Machine Learning 32, pages 1530–
1538.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407.

Rosset, S., Swirszcz, G., Srebro, N., and Zhu, J. (2007). 1-regularization in infinite dimen-
sional feature spaces. In Proceedings of Conference on Learning Theory 20, pages
544–558.

Rosset, S., Zhu, J., and Hastie, T. (2004). Boosting as a regularized path to a maximum
margin classifier. Journal of Machine Learning Research, 5:941–973.

Roux, N. L., Schmidt, M., and Bach, F. R. (2012). A stochastic gradient method with an
exponential convergence rate for finite training sets. In Advances in Neural Informa-
tion Processing Systems, pages 2663–2671.

Ruiz, D. (2012). A note on the uniformity of the constant in the Poincaré inequality.
Advanced Nonlinear Studies, 12:889–903.

184

BIBLIOGRAPHY

Ruppert, D. (1988). Efficient estimations from a slowly convergent Robbins-Monro pro-
cess. Technical report, Cornell University Operations Research and Industrial Engi-
neering.

Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann machines. In Proceedings of
International Conference on Artificial Intelligence and Statistics 12, pages 448–455.

Salakhutdinov, R. and Murray, I. (2008). On the quantitative analysis of deep belief
networks. In Proceedings of International Conference on Machine Learning 25,
pages 872–879.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X. (2016).
Improved techniques for training GANs. In Advances in Neural Information Pro-
cessing Systems 29, pages 2234–2242.

Schapire, R. E. and Freund, Y. (2012). Boosting: Foundations and algorithms. MIT press.

Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S. (1998). Boosting the margin: A
new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651–1686.

Schmidt, M., Le Roux, N., and Bach, F. (2017). Minimizing finite sums with the stochas-
tic average gradient. Mathematical Programming, 162(1-2):83–112.

Schmidt, M. and Roux, N. L. (2013). Fast convergence of stochastic gradient descent
under a strong growth condition. arXiv preprint arXiv:1308.6370.

Shaham, U., Cheng, X., Dror, O., Jaffe, A., Nadler, B., Chang, J., and Kluger, Y. (2016).
A deep learning approach to unsupervised ensemble learning. In Proceedings of
international conference on Machine learning 33, pages 30–39.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From
theory to algorithms. Cambridge university press.

Shalev-Shwartz, S. and Zhang, T. (2012). Proximal stochastic dual coordinate ascent.
arXiv preprint arXiv:1211.2717.

Shalev-Shwartz, S. and Zhang, T. (2013a). Accelerated mini-batch stochastic dual co-
ordinate ascent. In Advances in Neural Information Processing Systems 26, pages
378–385.

Shalev-Shwartz, S. and Zhang, T. (2013b). Stochastic dual coordinate ascent methods for
regularized loss minimization. Journal of Machine Learning Research, 14(Feb):567–
599.

185

BIBLIOGRAPHY

Shalev-Shwartz, S. and Zhang, T. (2014). Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. In Proceedings of International Conference
on Machine Learning 31, pages 64–72.

Smola, A. J. and Schölkopf, B. (1998). Learning with Kernels. GMD-Forschungszentrum
Informationstechnik.

Steinwart, I. (2005). Consistency of support vector machines and other regularized kernel
classifiers. IEEE Transactions on Information Theory, 51(1):128–142.

Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Springer.

Su, W., Boyd, S., and Candes, E. (2014). A differential equation for modeling Nesterov’s
accelerated gradient method: Theory and insights. In Advances in Neural Informa-
tion Processing Systems 27, pages 2510–2518.

Sudakov, V. N. (1979). Geometric problems in the theory of infinite-dimensional proba-
bility distributions. Number 141. American Mathematical Soc.

Tao, P. D. (1986). Algorithms for solving a class of nonconvex optimization problems.
methods of subgradients. North-Holland Mathematics Studies, 129:249–271.

Tieleman, T. and Hinton, G. (2009). Using fast weights to improve persistent contrastive
divergence. In Proceedings of International Conference on Machine Learning 26,
pages 1033–1040.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. Technical report, COURSERA: Neural net-
works for machine learning.

Tsybakov, A. B. (2003). Optimal rates of aggregation. In Proceedings of Conference on
Learning Theory 16, pages 303–313.

van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes:
With Applications to Statistics. Springer.

Vapnik, V. and Chervonenkis, A. Y. (1971). On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications,
16(2):264–280.

Veit, A., Wilber, M. J., and Belongie, S. (2016). Residual networks behave like ensem-
bles of relatively shallow networks. In Advances in Neural Information Processing
Systems 29, pages 550–558.

186

BIBLIOGRAPHY

Villani, C. (2008). Optimal transport: old and new, volume 338 of Grundlehren der
mathematischen Wissenschaften. Springer.

Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple
features. In Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 511–518.

Wang, D. and Liu, Q. (2016). Learning to draw samples: With application to amortized
mle for generative adversarial learning. arXiv preprint arXiv:1611.01722.

Wang, S., Schwing, A., and Urtasun, R. (2014). Efficient inference of continuous markov
random fields with polynomial potentials. In Advances in Neural Information Pro-
cessing Systems 27, pages 936–944.

Wang, Z., Gu, Q., Ning, Y., and Liu, H. (2015). High dimensional em algorithm: Sta-
tistical optimization and asymptotic normality. In Advances in Neural Information
Processing Systems 28, pages 2521–2529.

Weinan, E. (2017). A proposal on machine learning via dynamical systems. Communi-
cations in Mathematics and Statistics, 5(1):1–11.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of International Conference on Machine Learning 28,
pages 681–688.

Woodworth, B. E. and Srebro, N. (2016). Tight complexity bounds for optimizing com-
posite objectives. In Advances in Neural Information Processing Systems 29, pages
3639–3647.

Xiao, L. and Zhang, T. (2014). A proximal stochastic gradient method with progressive
variance reduction. SIAM Journal on Optimization, 24(4):2057–2075.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transfor-
mations for deep neural networks. In Proceedings of the IEEE Computer Vision and
Pattern Recognition, pages 5987–5995.

Yasuda, M. and Tanaka, K. (2008). Approximate learning algorithm for restricted Boltz-
mann machines. In Proceedings of International Conference on Computational In-
telligence for Modelling, Control & Automation Intelligent Agents, Web Technologies
& Internet Commerce Innovation in Software Engineering, pages 692–697.

Yasuda, M., Tannai, J., and Tanaka, K. (2012). Learning algorithm for Boltzmann ma-
chines using max-product algorithm and pseudo-likelihood. Interdisciplinary infor-
mation sciences, 18(1):55–63.

187

BIBLIOGRAPHY

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In Proceedings of the
British Machine Vision Conference, pages 87.1—87.12.

Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., and Metaxas, D. N. (2017).
StackGAN: Text to photo-realistic image synthesis with stacked generative adver-
sarial networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5907–5915.

Zhang, T. (2003). Sequential greedy approximation for certain convex optimization prob-
lems. IEEE Transactions on Information Theory, 49(3):682–691.

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on
convex ris minimization. The Annals of Statistics, 32(1):56–134.

Zhang, T. and Yu, B. (2005). Boosting with early stopping: Convergence and consistency.
The Annals of Statistics, 33(4):1538–1579.

Zhang, Y. and Xiao, L. (2017). Stochastic primal-dual coordinate method for regu-
larized empirical risk minimization. The Journal of Machine Learning Research,
18(1):2939–2980.

Zhu, C. and Xu, H. (2015). Online gradient descent in function space. arXiv preprint
arXiv:1512.02394.

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning.
In Proceedings of International Conference on Learning Representations 5.

188

	Introduction
	I Stochastic Optimization Methods for Large Scale Problems
	Stochastic Gradient Descent
	Convergence Criterion and Complexity
	Convergence Analysis for Nonconvex Problem
	Convergence Analysis for Convex Problem
	Optimal Complexity for Stochastic Convex Problems
	Variance Reduction Methods

	Accelerated Variance Reduced Stochastic Gradient Descent I
	Overview
	Preliminary
	Stochastic Variance Reduction Gradient
	Accelerated Proximal Gradient Descent
	APPA Acceleration

	Accelerated Mini-Batch Prox-SVRG
	Analysis
	Fast Iteration Complexity and Necessary Minibatch size

	Numerical Experiments
	Appendix
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 4

	Accelerated Variance Reduced Stochastic Gradient Descent II
	Overview
	Preliminary
	Optimal Strongly Convex
	Accelerated Gradient Descent
	Stochastic Variance Reduction Gradient

	Single-Stage AMSVRG
	Convergence Analysis of the Single-Stage AMSVRG
	Multi-Stage AMSVRG
	Convergence Analysis of Multi-Stage AMSVRG
	Fast Iteration Complexity and its Benefits
	Restart Scheme

	Numerical Experiments
	Appendix
	Proof of the Proposition 3
	Proof of the Lemma 6
	Stochastic gradient descent analysis
	Stochastic mirror descent analysis
	Proof of the Lemma 7
	Proof of Theorem 5
	Modified AMSVRG for general convex problems

	Stochastic Difference of Convex Algorithm
	Overview
	DC Algorithm
	Stochastic Proximal DC Algorithm
	Metrics
	AdaSPD

	Analysis
	General Case
	Smooth Concave Function
	Polyak-Łojasiewicz Condition
	Total Complexity

	Boltzmann Machines
	SPD as The Extension of EM/MCEM Algorithms

	Numerical Experiments
	Restricted Boltzmann Machines
	Deep Boltzmann Machines

	Appendix
	Proofs
	The derivation of diagonal hessian approximation
	Parameter settings for training RBMs and DBMs

	II New Machine Learning Methods using Functional Gradient
	Functional Gradient Descent
	Problem Setting
	Functional Gradient Descent
	Powerful Optimization Ability and Connection to Residual Networks

	Stochastic Particle Gradient Descent for Infinite Ensembles
	Overview
	Problem Setting
	Optimization Domain and Optimality Condition
	Integral Probability Metric on P
	Local Optimality Condition
	Interior Optimality Property

	Stochastic Particle Gradient Descent
	Extension of Vanilla Stochastic Gradient Descent

	Numerical Experiments
	Synthetic Data
	Real Data

	Appendix
	Topological Properties and Optimality Conditions
	Interior Optimality Property
	Convergence Analysis
	Functional Gradient Aspect of SPGD

	Enhancing the Convergence of Adversarial Training
	Overview
	Brief Review of Wasserstein GANs
	Gradient Layer
	High-level idea of gradient layer
	Algorithm description

	Functional Gradient Method
	Convergence Analysis
	Gradient Flow Perspective
	Continuity Equation and Discretization
	Discretization of Gradient Flow

	Experiments
	Appendix
	The Other Usage
	Brief Review of Wasserstein Distance
	Proofs
	Labeled Faces in the Wild

	Functional gradient boosting based on residual network perception
	Overview
	Preliminary
	Problem setting
	Functional gradient

	Basic Property of Functional Gradient
	Consistency of functional gradient norm

	Algorithm Description
	Choice of embedding

	Convergence Analysis
	Empirical risk minimization
	Generalization bound
	Sample-splitting technique

	Experiments
	Proofs
	Proofs of Section 9.3 and 9.4
	Empirical risk minimization and generalization bound
	Sample-splitting technique

	Future Work

