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Abstract 

 

The autonomous vehicles (AV) have gained a focus as an essential technology 

within intelligent transportation systems since their introduction in the early 1950s. Since 

then, many attempts have been made to bring this intelligent vehicle on the roads fully or 

partially to benefit from its capabilities. In order to make this technology work in the real-

world conditions as well as the controlled environment in laboratories, researchers have 

encountered many challenges. One of these challenges is accurate vehicle self-

localization.  

Accurate and robust self-localization is an essential task for AVs. On the other hand, 

high precision self-localization solution when combined with a prebuilt map can simplify 

the difficult concept of perception and scene-understanding into a less complex 

positioning problem. Conventional approaches use global navigation satellite system 

(GNSS) for autonomous vehicle self-localization. This technology is low cost and works 

very well in the open sky. However, in the urban environment, the accuracy degrades 

dramatically due to non-line of sight (NLOS) and multipath reception of the satellites’ 

signals and make it difficult for an AV application.  

In recent years, use of light detection and ranging (LiDAR) for the perception of 

AVs become more popular due to its price down, miniaturization and density 

enhancement. Compared to cameras, LiDARs are more reliable because problems caused 

by illumination change, light conditions and shadows do not affect them. On the other 

hand, LiDARs can obtain more accurate distance information comparing to the stereo 

cameras which make them more suitable for the self-localization applications. LiDAR-

based localization can be divided into two main categories. Map-based and without a map 

which is also known as simultaneous localization and mapping (SLAM). In the SLAM 

methods, there is no prebuilt map. Based on the current position, the surrounding 

information is stored online as a map. In next time stamp, this stored map (information) 

are used to calculate the displacement of the vehicle. According to this displacement, the 

current position of the vehicle is calculated, and again the surrounding information is 

stored as a map to be used of next time stamp. SLAM methods work well over a short 

distance; however, due to its dependent nature, they are still suffering from accumulative 

error in long distances.  

Therefore, in recent years, map-based methods have gained more attention in most 

of the AV platforms. In a map-based method, a raw point cloud of the environment is 
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collected offline using high-end mobile mapping systems (MMSs). Then, based on the 

map formats, the map is generated from raw point cloud data. Later, in the self-

localization phase, the scan acquired from LiDAR mounted on the top of the vehicle is 

matched to the map to obtain the position of the vehicle within the map. In map-matching 

based self-localization, as each sequence are independent, there is no error accumulation.  

In this dissertation, the focus is made on the map based self-localization methods 

and several contributions have been made.  

In the map based categories, map plays a significant role in achieving high accuracy 

self-localization. For accurate self-localization, the global and local accuracy of the map 

is essential as well, and many types of research have been done to obtain such a highly 

accurate map. Strategic Innovation Promotion Program (SIP) has defined the required 

global accuracy of map for autonomous driving to be less than 25cm. This requirement 

comes from the satellite image resolution and vehicle’s tier width. There is a 

misunderstanding that if the map is accurate, then the localization within the map will be 

accurate as well. In fact the highly accurate map does not guarantee the accuracy of the 

localization. In other words, map accuracy is different than the ability of the map for 

localization. For example, in the case of the tunnel, no matter how much the map is locally 

and globally accurate, the lack of longitudinal features in the map causes localization 

error in the moving direction. To achieve accurate self-localization within a map, the map 

should satisfy some requirements. In other words, the map should meet some specific 

criteria which define the ability of the map for self-localization. To the best of this author’s 

knowledge, there is no comprehensive study of the definition and formulation of these 

criteria. Therefore in this dissertation, for the first time, the required criteria regarding the 

ability of the map for accurate self-localization are defined and formulated.  

Some of these criteria highly related to the environment and as surrounding 

environments are different from place to place in the map, it should be evaluated by 

defined criteria. And some other criteria are related to the quality of representation of the 

environment by the map. In addition to the sensor related parameters in the mapping phase 

such as frequency of laser scanner, layer count, the range of the beam, setup parameters, 

etc., quality of representation highly related to the format and abstraction ratio 

(resolution) of the map. Quality of representation of the environment in each of the map 

formats is different. In other words, some map formats discard more details of the map 

comparing to the others. This information loss of the map might change the quality of 

some of the criteria and lead to a localization error. However, in some part of the map, 

abstraction does not necessarily change the quality of the map, or rate of change is 
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acceptable. Additionally, in some cases, other criteria might compensate the lack in one 

criterion. Therefore, in order to evaluate the self-localization ability of the map at a 

specific point, all criteria should be considered together. 

In this dissertation, four general criteria for the map are defined. These criteria are 

feature sufficiency, layout, representation quality, and local similarity of the map. These 

criteria are defined regardless of the map format and can be applied to any other map 

formats. However, in this work, to quantify each of these criteria, the focus is made on 

the ND map format, and several factors are defined. For each point in the map, these 

factors are calculated based on the features in surroundings called local vicinity. By 

obtaining the correlation of the map factors with localization error, the effectiveness of 

the factors is investigated. Additionally, by applying principal component regression 

(PCR), the predictability of the self-localization error based on these factors are 

investigated. To evaluate the predictability of the defined factors, experiments have been 

conducted in Shinjuku, Tokyo, Japan. The route of experiments is around 40Km. The 

experimental results show the error modeled from the factors can represent the 

localization error of the map in 71% of cases with an error lower than 10cm. In order to 

increase the accuracy of prediction, the factors are fed to a simple feedforward neural 

network to model the error. The result is improved and around 78% of the localization 

error can be modeled with lower than 10cm accuracy.    

The outcome of the proposed map evaluation framework can be used for evaluating 

the map before its use for localization. Also the results of this study can be used for 

evaluation of the map which is not made specifically for the self-localization purpose.  

As the other contribution of this dissertation, the outcome of the map evaluation 

framework is used for adaptive determination of the map and localization parameters. 

These parameters are map resolution and range of the laser scanner. Basically lower map 

resolution is more desirable as it can save the computation time and memory size, but it 

might remove some important information for localization. In order to determine the best 

resolution of the map, the map is evaluated for different resolution using map evaluation 

factors and the optimum resolution is selected. On the other hand, the range of the laser 

scanner is an important parameter for reducing the matching time. This parameter can be 

determined adaptively based on the quality and quantity of the features in the 

surroundings and stored in the map beforehand. In this dissertation, the adaptive 

determination of the laser range is proposed which uses the map evaluation factors to 

define the optimum laser range for different part of the map. 

In addition to the aforementioned contributions, globally accurate urban mobile 
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mapping frameworks are proposed. One of the challenges of current Mobile Mapping 

Systems (MMS) is their precision, accuracy and the cost. In order to get required accuracy 

in the urban area, current MMSs, first converge their position system in non-urban area 

which takes more than 10 minutes and then traverse through the urban area. And after 

few kilometers the positioning system needs to be re-converged in non-urban area. This 

process is so much labor and time intensive. Even with this, the generated map has around 

a meter of error. Therefore in order to remove this error post-calibration with labor-

intensive Global Control Point (GCP) is performed which collection of GCP and post-

calibration task costs around 10 million yen for each square kilometers for the companies. 

In order to remove this cost, in the proposed urban mapping frameworks, two laser 

scanner is used in addition to the Inertial measurement unit (IMU), odometer, and GPS. 

One laser scanner is used to perform the simultaneous localization and mapping and the 

other is tilted downward to capture the environments as point cloud map. The airborne 

image is used as a reference to correct the trajectory of the vehicle. In order to correct the 

trajectory of the mapping vehicle, the lane markings extracted from tilted laser scanner is 

registered to the lane marking extracted from the airborne image. The map which is used 

for this dissertation is all made by this mapping system and global accuracy of the map is 

very high.  

In this dissertation, two self-localization methods based on abstract map format 

which are multilayered vector map and the probabilistic planar surface map are proposed 

as well. One of the huge disadvantage of the map based methods are map size. For a small 

area, for instance 300m to 300m, around 250 million points should be stored to the 

autonomous vehicle storage system. On the other hand, the matching algorithm requires 

high computational time to deal with this data size. In the multilayered 2D vector map, 

different layers of building footprints are stored as a vector in the map. By using different 

layers of the building, the feature for matching increases and make the matching more 

accurate. For each vector, the variance of the points are stored in the map to allow the 

localization process to rely on more certain vectors rather than an uncertain one. This can 

reduce the map size to several thousand times. In the probabilistic planar surface map, 

instead of using heavy point cloud, the planar surfaces are extracted from the point cloud 

map. Each planar surface contains the variance of the points which shows the uncertainty 

of the planes. Storing the variance for each plane help the localization process to rely 

more on the certain walls. In the matching phase, distortion of the input scan is one of the 

challenges which makes the misalignment of the input scan to the map. In this work, 

distortion is removed in the optimization process. In fact, in each iteration of the 
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optimization, the scan is reshaped by the new results and the distortion is removed to fit 

better to the map.        

This dissertation also includes an overview of the state of the art localization 

methods, and also a discussion about the different source of the error in self-localization 

based on map-matching. 
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Chapter 1.  

Introduction 

 

 

The autonomous vehicle has gained a focus as an essential technology within 

intelligent transportation systems since its introduction in the early 1950s. Since then, 

many attempts has been made to bring this intelligent vehicle on the roads fully or 

partially to benefit from its capabilities. In order to make this technology work in the real-

world conditions as well as the controlled environment in laboratories, researchers have 

encountered many challenges. One of the most persistent challenge has been the vehicle 

self-localization. 

The vehicle self-localization, also known as the ego-vehicle positioning, is a crucial 

technology to assist with keeping the vehicle on the road, within the correct lane, being 

aware of the stop lines, and providing accurate navigation options. In order to achieve 

that, the vehicle should be able to know its lateral and longitudinal position within 

decimeters. On the other hand, high precision self-localization solution when combined 

with prebuilt map can simplify the difficult concept of perception and scene-

understanding into a less complex positioning problem. In this case, position of static 

obstacles such as buildings, traffic lights, zebra crossings as well as following the traffic 

rules can be retrieved from ego-position rather than complex scene understanding 

methods (Figure 1-1).  

 

Figure 1-1 Assist of self-localization for various application such as augmented reality (AR). 
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However, this level of accuracy is hard to achieve by GPS-based methods in urban 

areas due to signal blockage and multipath effect. In recent years, use of Light Detection 

and Ranging (LiDAR) technologies for self-localization become more popular due to its 

price drop and miniaturization. LiDAR-based localization methods can be divided into 

two main categories. Map-based and without map. Chapter 2 of this dissertation is 

covering the state of the art vehicle self-localization methods using variety of sensors 

including GPS, LiDAR, and vision.  

Generally, in LiDAR-based localization methods, a map of the environment is made 

beforehand using high-end mapping systems. In the localization phase, a 360˚ scan of the 

environment captured by LiDAR is matched to the map to get the accurate position of the 

vehicle. For accurate self-localization, the global and local accuracy of the map is 

essential, and many types of research have been done to obtain such a highly accurate 

map. One of the challenges of the mapping is an accurate localization of the mapping 

system in the urban environment. In the urban environment the NLOS and Multipath 

effect cause the localization with the GPS system infeasible. Even real time kinematic 

(RTK) one. Thus, the location of the vehicle has error and as a result the global and local 

accuracy of the map degrades. Local accuracy degradation makes the precision of the 

map very low. Low precision means that for one single object in the map, several map 

object with inaccurate location appears. For example for one single poles, several poles 

arear. This will cause error for the methods of self-localization that later uses this map. In 

order to get the accurate position of the vehicle in such a system high-end IMU are used. 

Even with the high-end IMUs the location accuracy of these systems are highly influenced 

in urban environments where many tall buildings surrounded the vehicle. As an 

alternative way, the generated map are calibrated using hundreds of ground control points 

(GCP). This work is very labor and time intensive. For example, for each square kilometer, 

around 244 GCP is used [2]. Obtaining the GCP is very labor intensive. In order to reduce 

the labor and time complexity, airborne imagery is used an extra data source are used [3], 

[4]. In [2] generated map is post-calibrated by airborne imagery automatically. The lane 

marking from the point cloud map and airborne imagery are both extracted and matched 

together. By doing this, the generated map can be calibrated to the global coordinate. 

Utilizing this idea, we have developed a mobile mapping system which uses the airborne 
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image as a complementary data sources to update the trajectory of the vehicle. By 

updating the trajectory of the vehicle, with globally accurate airborne image, the accuracy 

of the map generated from this mapping framework are guaranteed. This mapping system 

utilizes two laser scanner. One is used for SLAM and the other is tilted downwards to 

capture the environment as a map. In Chapter 3, urban mapping frameworks and the 

results are presented. All map used in this dissertation is made by this mapping framework. 

Proposed mapping system and generated map using this system is shown in Figure 1-2.   

One of the challenges for using point cloud map for localization is its size. The size 

of point cloud is very heavy. For a small area, for instance 300m to 300m, around 250 

million points should be stored to the autonomous vehicle storage system. On the other 

hand, the matching algorithm requires high computational time to deal with this data size. 

In order to reduce the size of map, and yet keep the valuable features for matching, two 

self-localization method with two map abstraction method is proposed in Chapter 4. 

These two map formats are: multilayered 2D vector map, and probabilistic planar surface 

map. In the multilayered 2D vector map, which is used for 2D positioning, different layers 

of building footprints are stored as a vector in the map. The vectors are extracted from 

Point cloud map. By using different layers of the building, the feature for matching 

increases and make the matching more accurate. For each vector, the variance of the 

points are stored in the map to allow the localization process to rely on more certain 

vectors rather than an uncertain one. This can reduce the map size to several thousand 

 
Figure 1-2 GCP extracted for 1km2 to post calibrate the MMS scan 
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times. Localization is performed by maximizing the likelihood function between input 

scan and normal distribution made from the vectors. As the normal distribution is made 

from the vector, the discretization makes less uncertainty and thus the localization 

accuracy increase comparing to the 2D point cloud map. On the other hand, in the 

probabilistic planar surface map, instead of using heavy point cloud, the planar surfaces 

are extracted from the point cloud map. Each planar surface contains the variance of the 

points which shows the uncertainty of the planes. Storing the variance for each plane help 

the localization process to rely more on the certain walls. In the matching phase, distortion 

of the input scan is one of the challenges which makes the misalignment of the input scan 

to the map [5]. In this work, distortion is removed in the optimization process. In fact, in 

each iteration of the optimization, the scan is reshaped by the new results and the 

distortion is removed to fit better to the map. Overview of these two localization method 

is show in Figure 1-3.  

In the map based categories, map plays a significant role in achieving high accuracy 

self-localization. For accurate self-localization, the global and local accuracy of the map 

is essential as well, and many types of research have been done to obtain such a highly 

accurate map [3], [6]–[8] including the mobile mapping framework proposed in Chapter 

3. However, the highly accurate map does not guarantee the accuracy of the localization 

[1]. In other words, map accuracy is different than the ability of the map for localization. 

For example, in the case of the tunnel, no matter how much the map is locally and globally 

accurate, the lack of longitudinal features in the map causes localization error in moving 

 

Figure 1-3 Overview of abstract map based localization techniques. Left image shows the 

multilayerded 2D vector map method. The right image shows the probabilistic planar surface 

map based localization. 
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direction.  

To achieve accurate self-localization within a map, the map should satisfy some 

requirements. In other words, the map should meet some specific criteria which define 

the ability of the map for self-localization. To the best of this author’s knowledge, there 

is no comprehensive study of the definition and formulation of these criteria. Therefore 

in Chapter 5, the required criteria regarding the ability of the map for accurate self-

localization are defined and formulated.  

Some of these criteria highly related to the environment. For example, in the city 

environment, there are more structured artifacts than rural places or crop fields. Thus the 

features for the map-matching can be found easier, and as a result, the localization become 

more accurate [9]. Tunnels, urban canyons, and highways can be assumed as another 

example in which environment are not suitable for self-localization using map-matching. 

In these scenarios, the vehicle is surrounded by two long walls in each side. Thus, the 

features needed for longitudinal positioning are not enough, and as a result, there will be 

an error in moving direction. Surrounding environments are different from place to place 

in the map and should be evaluated by defined criteria. 

Some other criteria are related to the quality of representation of the environment 

by the map. In addition to the sensor related parameters in the mapping phase such as 

frequency of laser scanner, layer count, the range of the beam, setup parameters, etc., 

quality of representation highly related to the format and abstraction ratio (resolution) of 

the map. Many types of research have been done to propose an abstracted map format to 

both reduce the map size and the computational complexity [10]–[17]. Quality of 

representation of the environment in each of the map formats are different. In other words, 

some map formats discards more details of the map comparing to others. This information 

loss of the map might change the quality of some of the criteria and lead to localization 

error [18]. However, in some part of the map, abstraction does not necessarily change the 

quality of the map, or rate of change is acceptable. Additionally, in some cases, other 

criteria might compensate the lack in one criterion. Therefore, in order to evaluate the 

self-localization ability of the map in a specific point, all criteria should be considered 

together. 

In Chapter 5, three general criteria for map factors are defined. These criteria are 
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feature sufficiency, layout, and representation quality of the map. These criteria are 

defined by using top-down and bottom-up approaches iteratively. Each of these criterion 

answer one of the question about the map such as “are the features enough for 

localization?”, “are the buildings’ layout suitable?”, “does the representation quality 

enough?” and etc. These criteria are defined regardless of the map format and can be 

applied to any other map formats. For quantifying each of these criteria, in chapter 5, the 

focus is made on the normal distribution map format, and several factors are defined. For 

each point in the map, these factors are calculated based on the features in surroundings 

called local vicinity. By obtaining the correlation of the map factors with localization error, 

the effectiveness of the factors is investigated. By comparing the results, one more 

criterion which is local similarity is added to the criteria list and for quantifying the local 

similarity, three factor are introduced. These factors are score entropy, point feature 

histogram (PFH) based similarity and Battachariya distance of the features. Chapter 5 

only introduces the criteria, and factors.  

In chapter 6, the effectiveness of each factors are investigated and experimental 

results are shown. The experiments have been conducted in the Shinjuku, Tokyo, Japan, 

which contain around 40km of route. Additionally, by applying principal component 

regression (PCR), the predictability of the self-localization error based on these factors 

are investigated. In Chapter 6, effectiveness of each factors are investigated by 

accumulatively adding the map criteria to the model and comparing the goodness of fit 

results. Figure 1-4 shows the overview of proposed map evaluation frameworks. In 

addition to PCR, in order to increase the capability of modeling the error based on the 

defined factors, and also increase the possibility of combining these factors together, 

 

Figure 1-4 . Overview of the proposed map evaluation method. 
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simple feedforward neural network is used. The input to the network are defined map 

factors and the output is error rescaled to 0 to 1.0.  

In chapter 7, possible outcomes of the map evaluation factors are proposed. One of 

the highly valuable outcome of this study is the ability of adaptively determining the 

resolution of the map. In chapter 7, effect of map resolution on the localization is deeply 

discussed.  Basically lower map resolution (more abstraction) is more desirable as it can 

save the computation time and memory size, but it might remove some important 

information for localization. In order to determine the best resolution of the map, the map 

is evaluated for different resolution using map evaluation factors and the optimum 

resolution is selected. By doing this, the map resolution can be determined adaptively 

based on the presence of the features for map-matching (Figure 1-5).  

 On the other hand, the range of the laser scanner is an important parameter for 

reducing the matching time. This parameter can be determined adaptively based on the 

quality and quantity of the features in the surroundings and stored in the map beforehand. 

In Chapter 7, adaptive determination of the laser range based on map factors are proposed 

which is another outcome of this dissertation. In this method, the optimum laser range are 

acquired from the map factors and stored in the map. And finally, chapter 8 concludes 

this dissertation and discuss the possible future works.  

In the Appendix I, the project of graduate program for social ICT Global Creative leaders (GCL) are 

explained.

 

Figure 1-5 Different map resolution obtained for different part of the map by adaptive 

refinement method 
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Chapter 2.  

Vehicle self-localization and digital map 

 

 

For acquiring precise ego-vehicle position, variety of technologies such as Global 

Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU), monocular and 

stereo vision, single and multi-layer laser scanner have been studied so far. Among them, 

GNSS is the most widely used technology which provides an affordable way to 

accomplish worldwide positioning. For the intelligent vehicle self-localization, there are 

several metrics such as accuracy, robustness, availability, computational cost, and 

memory cost. 

Papers [19]–[29] investigate GNSS based self-localization. Since the reliability and 

accuracy of GNSS alone is not sufficient for autonomous driving even in an open-sky 

environment, papers [19]–[21] took the advantage of adding IMU to GNSS to obtain 

better accuracy. In [19], by modeling the residual correlated error with Parallel Cascade 

Identification (PCI), more accurate pseudo ranges are obtained and tightly coupled with 

3D Reduced Inertial Sensor System (RISS) with mixture particle filter (M-PF). In [20], 

besides the IMU, velocity and yaw angle are fused with Global Positioning System (GPS) 

using a novel parallel-dual-H-Infinity filtering (PDHF) mechanism. In [21], momentary 

blockage of satellite signals caused by utility and light poles in relatively open sky is 

distinguished by analysis of rapid changes in navigation satellites’ signal strength.  

In contrast to the open sky scenarios in the urban environments, because of various 

obstacles and tall buildings, satellite’s signals are blocked or reflected. This reflection and 

blockage of signals which cause non-line-of-sight (NLOS) and multipath reception, 

dramatically degrades the accuracy of positioning. Paper [22]–[25] investigate a solution 

to this problem in urban environments. Papers [22], [23] improve the positioning accuracy 

by removing the erroneous signals. In [23], high-mask-angle antennas (HMAAs)  are 

used to mitigate interference signals coming from a low-elevation angle and the optimal 

mask angle for multi-constellation is obtained. In papers [21], [24], [25] geographical 

information such as 3D building model [25], urban trench model [24], 3D shape of road 
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signs and bridges [21] are used to mitigate the effect of multipath and NLOS signals. In 

[26], 3D map of the drivable area is tightly coupled with GPS pseudo-ranges to obtain 

better accuracy. In paper [27], precise vehicle side slip is obtained by INS/GPS integration. 

In [30], [31] the pitch model and road slope are used for localization. In [30], the effect 

of road slope on position estimation is studied and geometric information of road, 

specially road slope, was utilized for vehicle position estimation to acquire better positon 

accuracy. In [31], the road data is encoded using linear dynamic models and the position 

of the car while traveling is obtained by the continuous comparison of a bank of linear 

model. In Figure 2-1(a) dual polarization antenna is used to detect the NLOS. Usually 

signals from satellites are right handed. If the signal is reflected by building the 

polarization is changed. So by comparing the polarization of the incoming signal we can 

detect if it is reflected signal or not. Figure 2-1(b) shows the sky-pointing camera 

observation. By using the sky-pointing camera, the building are detected and the position 

of the satellites are projected to the camera image. By comparing the building position 

and satellite position we can detected if the satellite is occluded or not. If the satellite is 

occluded and the signal from that satellite is received, it means that the received signal is 

NLOS signal. 

Papers [32]–[41] investigate the positioning solution utilizing vision/camera 

technology. Paper [32] describes the role of machine vision in intelligent vehicle which 

covers role of vision and maps in self-localization as well. In papers [33]–[35] prebuilt 

map and vision is used for localization.  In [33], image from onboard monocular camera 

is matched with visual map which is generated by stereo vision beforehand. In [35] 

 

Figure 2-1 GPS NLOS detection. (a) Using dual polarization technique the NLOS signal is 

detected [31]. (b) Using Sky-pointing camera the occluded satellite are detected [33].  

 

(a) Dual polarization antenna (b) Sky pointing camera
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localization in intersection using stereo vision and detailed digital map consisted of lane 

markings and curbs are studied while in [34], in addition to front camera, rear and side 

cameras’ images are also matched with the digital map to localize the vehicle. In order to 

take advantage of equipment already deployed in the car such as infrared camera (IR), 

[36] extends the concept of visual odometry (VO) to multispectral odometry (MO) by 

computing ego-vehicle position estimation from cameras working in different spectral 

bands. In [37], laser and camera were combined to calculate the relative displacement of 

the vehicle instead of IMU which suffers from drift. In papers [38]–[41], lane detection 

algorithm with vision sensor is utilized to obtain a lane level position of the vehicle. In 

[38], lane detection algorithm is assisted by the vehicle detection and vice versa. 

Aforementioned localization methods are only based on the data from their own 

sensors. On the other hand, in [42]–[50], inter vehicle communication technology is used 

to share the position-related information between vehicles and perform localization task 

cooperatively. In paper [42], each vehicle shares their IMU and INS-based position data 

with each other and collective data are used to obtain accurate position in difficult GNSS 

environments including deep urban canyons and tunnels. In [43], [44] GNSS pseudo-

range corrections are generated cooperatively between the vehicles instead of fixed 

stations. In [44], by having a precise map and exchanging the GPS raw measurements, 

cooperative map matching is performed. Papers [45], [46], [48] investigate relative 

positioning in a vehicular ad-hoc network (VANET). Finally in [51], [52] GSM and 

cellular networks are used to assist the self-localization. 

LiDAR is another technology that have gained the focus to be a key technology for 

 

Figure 2-2 Velodyne laser scanner for different autonomous vehicle platform. (a) from left, a 

64 layer Velodyne laser scanner (HDL-64), 32 layer (32-DL) and 16 layer (VLP-16). (b) HDL-

64 is mounted on Uber autonomous vehicle. (c) VLP-16 is mounted on Fords autonomous 

vehicle. 

 

(a) (b) (c)
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perception in autonomous vehicles. Current laser scanners are too bulky and expensive to 

be deployed in the intelligent vehicles. However, many companies have already started 

the miniaturizing and lowering the cost of this sensor to be able to be mounted on the 

intelligent vehicles. In Figure 2-2 various type of laser scanner are shown. Laser scanner 

has different field of view.  Some of them can rotate 360 degree and collect the data from 

all 360 degree. Some of them only capture part of the horizontal view. Number of layers 

in the laser scanners are different. Some of the laser scanners only have 1 layer. Other 

types has multiple layers. For example Velodyne laser scanner have multiple layer. It has 

16 layers model, 32 layers model, 64 layers model and recently it introduced a 128 layers 

model. The frequency of laser rotation or capture also varies from model to model. Some 

models capture data with 5Hz. Some model such as SICK LMS-511 PRO can collect the 

data with frequency of 100Hz. The frequency is important for the data density and 

distortion while vehicle moves. If the frequency of capturing data is low, then the 

distortion in the laser data will be high. If the frequency of the laser is high, then the 

distortion in the laser data while vehicle moves are high. The data collected by Velodyne 

64 layer laser scanner (HDL-64) is shown in Figure 2-3. 

In [23] the author, for the first step apply scan-to-scan matching with ICP to get 

initial guess for the next step. Next step is matching scan to map using NDT. NDT has 

problem with initial pose so with this technique we can overcome this problem. In this 

NDT each cell is divided to multiple normal distribution to match the points better. Also 

 

Figure 2-3 (a) Velodyne HDL-64 scan data which is captured in California, U.S. (b) Data from 

Luminar laser scanner. Luminar laser scanner does not rotate and it is stationary.  

 

16

(a) (b)
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the new scan is represented as ND. The author said that this (ND-to-ND) technique is 

novel but before that Magnusson proposed this and also open source are available in ROS. 

For matching the similarity of normal distribution Kullback-Leibler is divergence is used.  

 Feature-based 

Feature-based SLAM techniques, a set of features including different types of 

distinct geometric models such as points, lines, curvatures, and any arbitrary shapes are 

extracted from the observation and used as landmarks to associate the new and previous 

observations. Finding landmark is not so easy. 

 Scan-based 

Directly used unprocessed scans from laser scanner. Association or matching of 

current scan to previous scan Scan-to-scan matching. 

There are several methods for scan-to-scan matching.  

 ICP iterative closest point  (the most common) [34] 

Point to point matching between two scan by minimizing the total distance between 

them. May lead to inappropriate data association because cannot find corresponding point 

sets  

 In [45] angle between two points are used for matching 

Weiss and Puttkamer [37] proposed a technique that avoids the point-to-point 

matching problem by calculating an angle between two neighboring scan points for every 

scan point and using the angles to match the two scans.  

 NDT 

 Lu and Milios [43], which performed the matching of the new scan to the previous 

scan and further matched all the scans by storing the past scans 

 Thrun et al. [23] used the expectation maximization (EM) algorithm that finds the best 

matching past 

 Due to the need for matching to all the past scans for the best accuracy, Bosse et al. 

[16-in the docs] introduced a subspace-to-map matching technique where the new 

scan is matched to all the past scans of a subspace of concern with any scan-to-scan 
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matching technique and the subspaces are subsequently associated to each other for 

global mapping. This technique achieves the matching of the new scan to all the past 

scans, but the accuracy could still drop since the new scan points not in the subspace 

are not matched to the past scans.  

In paper [17], [53]–[56] LiDAR based localization techniques are studied. 

Generally LiDAR based positioning techniques can be divided into map based and 

without map. In no-map categories, prior map is not available. The vehicle moves and 

make map real-time and at the same time use that map for positioning. This technique 

called Simultaneous Localization and Mapping (SLAM). SLAM techniques can be 

divided to scan matching and filter based methods. In scan matching methods which is 

also known as LiDAR-odometry, the consequent scans from laser scanner are matched to 

each other and the movement of the vehicle is calculated. In the filter based SLAM, first, 

from the laser scanner data specific features such as poles are extracted. Next, position of 

these objects are stored. After vehicle moves, again the same features are extracted from 

new scan. By comparing the positon of the features in both scans, the displacement of the 

vehicle are calculated. Papers [53], [55] investigates the simultaneous localization and 

mapping (SLAM) using LiDAR. Paper [54], [56] extract the curbs or road markings from 

 

Figure 2-4 Lidar based self-localization categories. SLAM, Map matching. 

LiDAR based self-positioning

SLAM (LiDAR Odometry) Map matching Filter-based SLAM

Vehicle center

1 2 3 4

1,2 2,3 3,4

time

Steps:
• Predict next move using IMU, 

odometer or any other sensor
• Extract pole like features (or any other 

feature) from LiDAR data
• Data association between the 

observations
• Update the pose and map together

Algorithm:
Scan from LiDAR is matched to the point cloud 
map utilizing point cloud matching algorithm 
such as ICP, NDT
(The video shows the NDT based point cloud 
matching)

Map size for this area (300mx300m) around 25 
million points
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LiDAR point cloud and use it for positioning. These categories are shown in the 

Figure 2-4.  

SLAM based methods suffer from accumulative error. In each step of positioning 

there is a small error. As the position is not updated by any reference this error increase 

the total error. Therefore map based methods are more reliable. 

In the map matching based localization methods, map is generated beforehand and 

later using the map and matching of the laser data to that map, the position of the vehicle 

are obtained. There are many types of map such as point cloud map, lane markings map, 

corner map. For example, in [29] the road marking map is generated from laser scanner 

data beforehand and later by matching the laser data to the road marking map, the position 

of the map is generated. Using laser scanner, and intensity value of the laser beams, 

extraction of the road marking become more accurate and reliable. This method is shown 

in Figure 2-5(b). In [33] the localization is performed by single layer laser scanner by 

detecting the curbs and lane markings and matching it to the roadmarking map. This 

method is shown in Figure 2-5(a). Paper [39] investigates the impact of different LiDAR 

observations from the upper and lower layers of a multi-layer laser scanner in highway 

and urban scenarios. One of the map type for self-localization is 3D point cloud. Sample 

of the 3D point cloud map is shown in Figure 2-6.  

 

Figure 2-5 Methods which is used laser scanner and prior map for self-localization [29] [33]. 

(a) (b) (c)
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In [57] camera is use to perform the localization within in the LiDAR map. This 

paper proposed a methods which utilizes 2D vector map (simplified 2D line feature map 

representation) and 3D laser scanner and GPS and IMU and odometer  

 

 

 

 

 

 

 

 

Figure 2-6 Point cloud map of the Hitotsubashi, Tokyo, Japan. This point cloud is the 

combination of the (Mobile Mapping System) MMS data and airborne laser scanner (ALS) 

data. 
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Chapter 3.  

Low-cost urban mapping framework 

 

 

 Introduction 

As described in Chapter 2, the most reliable and accurate localization techniques in 

urban environment is based on point cloud map matching. In this method point cloud map 

should be generated beforehand. Usually this point cloud map is generated by the Mobile 

mapping systems (MMSs). MMSs are a sensor platform mounted on the roof of a ground 

vehicle in combination with high-end GPS, inertial measurement unit (IMU) and 

odometer to rapidly capture a lot of 3D datasets essential for creating highly accurate and 

high-resolution representation of the roads and their surrounding environment. These 

 

Figure 3-1. Generalized MMS workflow [13]. 
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systems were designed for the first time in the late 1980s when the GPS technology 

become available for public civil usages [1]. While the definition of the MMS is quite 

simple, the real MMS workflow contains plenty of essential factors which missing each 

of them leads fail in the quality control. Figure 3-1 illustrates the generalized workflow 

of the MMS including middle products of each step [2]. This workflow shows the detailed 

consideration of a single data collection using MMS. Traditionally, the MMS workflow 

consists of plenty of site surveys and experiments which require labor-intensive and time-

consuming procedures. The Figure 3-2 shows MMS which is to generate map for some 

part of the experiments.  

 Mapping Platform 

As the price of these system are very expensive (several hundred million yen), the 

low-cost mapping frame work are proposed in this chapter. In fact, the problem of price 

of MMS is coming from two factors. One is the price of sensors and technologies, and 

the other is the labor fee for post-calibration of the map. Low cost system to make the 

point cloud map by integration and use several data sources. The sensor used for mapping 

is as follows: 

 SICK laser scanner (25 Hz) 

 Horizontal Velodyne laser scanner (10 Hz) 

 Tilted Velodyne laser scanner (10 Hz) 

 

Figure 3-2. MMS which is used in part of mapping of the experimental area 
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 IMU (8.4 Hz) 

 Odometer (8.4 Hz) 

 Differential GPS (1 Hz) 

 Stereo Camera (10 fps) 

The experimental vehicle for the map mapping and the employed equipment are 

shown in Figure 3-3 and Figure 3-4. The single layer  SICK laser scanner is installed in 

front of the vehicle and tilted to see the ground. Two side of the SICK is the stereo cameras 

which can be used for localization, mapping and perception. There is one horizontal 

Velodyne and one tilted one, which the first one is used for the localization and fused with 

 

Figure 3-3. Proposed mapping system 

 

 

Figure 3-4. Equipment which is used for mapping 
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other sensors and the other one is used for the mapping. IMU sensor on center of the roof 

and the odometer read from the CAN system is also an essential component to be fused 

for the vehicle localization. The mounting system is customized by the factory to be solid 

enough for the experiments since it is important in the fusion to know that the relative 

location of the sensors are fixed and not changing during the experiment.  

 Mapping Framework 

All these sensor information are fused together in a double extended Kalman filter 

(EKF) framework to calcluate the position of the car and performed the mapping 

(Figure 3-5). 

Even though we fuse all of these sensors, still we have a significant localization 

error in deep urban canyons. Therefore, the map generated using only the local sensors 

installed on the experiment vehicle is not enough for the autonomous vehicle’s self-

localization. In order to cover this problem, generally companies are collect ground 

control points (GCP) in the survey area (Figure 3-7) and use them to calibrate the point 

cloud. However, it is very labor-intensive and time-consuming procedure. The procedure 

of calibrating the 3D point cloud data obtained from a ground surveillance data is shown 

in Figure 3-8. This procedure consists of 1) handpicking the GCPs from the original 3D 

point cloud, 2) calculating the position correction vector (PCV) which estimates the 

localization error, 3) correct the ground surveillance vehicle’s position using the PCV, 4) 

correct the vehicle trajectory using the new vehicle positions, and 5) rectify the 3D point 

cloud based on new vehicle trajectory. As can be seen in Figure 3-7 and Figure 3-8, the 

 

Figure 3-5. Equipment which is used for mapping 
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total cost of landmark updating for a square kilometer is almost 9 million yen. 

 Updating vehicle trajectory utilizing Aerial Data 

To solve this problem and generate high-precision 3D point cloud, we extended the 

works [3], [4] and take into account another global information, aerial surveillance data 

to rectify the point cloud data acquired by our ground surveillance system. Nowadays, by 

 
Figure 3-7. GCP acquisition in urban areas, a labor-intensive and time-consuming task 

 

2p x 3 days
(6 person-day)

GCP x 30

244 GCP

１ｋｍｘ１ｋｍサンプルエリアにおける調整店の設置

GCP acquisition only

1km x 1km GCP collection for 25cm accuracy

• 244 points required

• 48 person-days (24 days) for field data acquisition

• 24 person-days (12 days) for calculations

• Total 72 person-days

• 4.5 million yen $$$$

Calculations

1.5 days

 

Figure 3-6. Calibration of aerial image using few GCPs. 
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“VisionMap A3 Digital Mapping System Tested by IFP,” Test report. Available online: http://www.visionmap.com/prdPics/files/152_cs_file.pdf
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the development in the remote sensing technologies, aerial surveillance data of the urban 

areas are becoming widely available with a reasonable price.  

One of the characteristics of the roads and streets in the urban area is clear road 

markings on the road pavement. Since urban canyons are happening in the developed 

areas of the city, we can consider that there will be a plenty of road marking information 

on the pavement. As both ground experimental vehicle and the aerial surveillance data 

captures these markings clearly, they are a suitable information for the calibration of the 

map. Aerial surveillance data is capturing a large area in short time and therefore the 

consistency of the error is higher than ground data. Therefore, calibrating the aerial data 

is much easier than ground data, which is shown in Figure 3-6.  

To use the aerial image to calibrate the 3D point cloud, firstly the road marking are 

extracted from SICK laser scanner’s point cloud. The main reason the SICK is used is to 

obtain high resolution road markings on the road pavement to perform this step of 

calibration. Then, similar road markings are extracted from aerial image. Then, the 

registration is performed between these two data sources by considering the aerial data as 

the reference. The fusion framework of the aerial image is shown in Figure 3-9. A new 

EKF is added to the previous filter structure without aerial calibration. In addition, we 

 

Figure 3-8. Landmark updating technique for calibrating 3D point cloud data obtained from 

ground surveillance system in the urban areas. 
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Neither accurate nor precise Accuracy only Precision only Both accurate and precise

Apply landmark update technique

1. Hand pick GCPs from original data 

2. Calculate position correction  vector (PCV)

3. Correct MMS position by PCV

4. Correct MMS trajectory for each survey

5. Correct point cloud based on new trajectory 

GCP

• 70km of surveys

• 21 person-days (8 days) for analysis process 

• 31 person-days (5 days) co-registration

• Total 2.6 million + 1.9 million = 4.5 million yen



Chapter 3. Low cost urban mapping framework 
 

 

 

22 

consider the distortion removal phase to increase the quality of resulting map since one 

of the main source of the uncertain 3D point cloud acquired from the Velodyne laser 

scanner is the distortion caused by vehicle movement. Using this method, the quality and 

accuracy of the ground-based 3D point cloud can increase to decimeter level which is 

accurate enough for the vehicle localization. Figure 3-11 include more details of the cheap 

MMS calibration method utilizing the road markings from the aerial image. 

The proposed framework takes multiple MMS surveys, ALS point cloud, and 

overlapping high-resolution aerial images as input and provides accurate and precise 

MMS data as output. The proposed framework is performed in the following sequence. 

First, road markings are extracted from both aerial images and MMS point clouds. Next, 

a Gaussian mixture map is generated from the aerial road markings as a reference. Then, 

each MMS survey is subdivided into fixed-length short patches, and finally, the MMS 

surveys are aligned to the aerial reference based on the registration results from the road 

markings. To overcome the problem of roads obscured by buildings in the aerial images, 

which is called relief displacement and complicates road marking extraction, a 

perspective occlusion map is generated for each image using ALS and the image’s 

position and orientation. In addition, overlapping aerial photographs (forward overlap) 

are considered to exclude moving vehicles which can be mistakenly extracted as road 

 

Figure 3-9. Framework of the filter including the aerial image data for the calibration. 
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features. 

The road markings extracted from the aerial image are considered as references for 

the georeferencing of the MMS data. To obtain more features for the registration, all kinds 

of road markings and even signs in the sidewalks are considered based on the intensity 

contrast between the markings and the road surface background. After a level adjustment 

of the image, the adaptive Gaussian thresholding is performed to for the road marking 

extraction. 

After the calibration of the intensity, the similar road markings from the MMS point 

cloud are extracted for the registration step. MMS road markings are derived by applying 

the adaptive thresholding. Thus far, we have obtained the road markings from both aerial 

images and MMS surveys. The next step is to perform registration of each MMS survey 

to the aerial image. We have two different input formats. To perform the registration, a 

dynamic-length sliding window [5] and NDT. The main idea behind the NDT is to 

represent the observed spatial information as a Gaussian mixture model [6]–[8]. To 

prepare the reference data for the registration, the bitmap image of the airborne road 

markings is divided into a uniform grid with a predefined cell size. Assuming that the set 

of all   points within the cell   𝑗, { 1,  2, …    |  𝑘 = (𝑥𝑘,  𝑘)}, has been drawn from 

a normal distribution N(μ, Σ), the maximum-likelihood estimate of the mean (𝜇) is 

defined as follows: 

 
(a) (b) 

 
(c) 

 
(d) 

 

Figure 3-10. Generation of the normal distribution from the reference data: (a) Estimated 1D 

normal distribution of the sample points; (b) Estimated 2D normal distribution of the sample 

points; (c) Extracted aerial road markings; (b) Generated NDT map with 2m grid size. 
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𝜇 =  
1

 
∑   
 
 =1 , (5) 

and the maximum-likelihood estimator of the covariance matrix (Σ) is defined as 

Σ =
1

 −1
∑ (  − 𝜇)(  − 𝜇)𝑇 
 =1 , (6) 

Figure 3-10a and Figure 3-10b illustrate the representation of the estimated 

Gaussian distributions for 1D and 2D cells. Figure 3-10c shows a part of the aerial road 

markings, and the generated Gaussian mixture map is shown in Figure 3-10d. 

The probability of observing a road marking at a certain 2D coordinate of the cell 

  𝑗 is derived from the following equation: 

𝑃( ) ~  𝑒−
(𝑝−𝜇𝑖𝑗)

𝑇
Σ𝑖𝑗
−1(𝑝−𝜇𝑖𝑗)

2 , 
(7) 

where   presents the 2D coordinate (𝑥,  ) of the point. 

The size of NDT grid is an important parameter for the registration. If the grid size 

is set to be larger than the suitable dimension, the defined probability density function for 

the cell might not be able to represent well the points included in the cell. In contrast, if 

the grid size is small, each grid can capture only a few number of input road marking 

points, so there will be only a few grids having the normal distribution [9]. Therefore, a 

small error will make the input points out of the corresponding reference grid. 

By using this method, accurate and precise map can be made. Figure 3-12 shows 

the generated map using proposed mapping framework.  
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Figure 3-12. Generated map using the proposed mapping frameworks. The point cloud are 

subsampled by 10cm grids. 

Path I Path II
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Chapter 4.  

Map abstraction for Self-localization 

 

 

Accurate vehicle self-localization is significant for the autonomous driving. Global 

Navigation Satellite System (GNSS) based localization techniques cannot achieve 

required accuracy in urban canyons. Simultaneous Localization and Mapping (SLAM) 

methods also suffer from error accumulation. 3D Light Detection and Ranging (LiDAR) 

has become popular recently. State-of-the-art localization approaches adopt LiDAR to 

observe the surrounding environment and match the observation with the priori known 

3D point cloud map for understanding the position of the vehicle within the map. However, 

storing the massive point clouds needs an immense storage on the vehicle, and if they are 

stored on the servers, downloading them from the servers are again challenging. In this 

study, rather than using 3D point cloud directly as a map, we focus on the abstract map 

of buildings, which are mostly available in urban areas, easy to extract, and at the same 

time apparently observable by LiDAR. More specially, we proposed two methods to 

represent the abstract maps of urban areas. The first one is the multilayer 2D vector map 

of building footprints, which represents the building boundaries using vectors (lines). The 

second one is the planar surface map of buildings. Moreover, the two proposed abstract 

map share the same idea that the uncertainty (deviation) of each vector and the planar 

surface is calculated and included in the maps. Later in the localization phase, the 

observed data from LiDAR is matched with the prior map to obtain the precise location 

of the vehicle. Experiments conducted in one of the urban areas of Tokyo show that even 

though we extremely shrank the map size, we could preserve the mean error of the 

localization. 

 Introduction 

The autonomous vehicles have considered as the key component of the intelligent 

transportation systems since their first introduction. In recent years, significant progress 

has been made in this field, and many companies already started their field tests. One of 
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the critical requirements of the autonomous driving is the ability to know the ego-position 

(self-localization) within decimeters [1, 2]. Although the Global Navigation Satellite 

Systems (GNSSs) can achieve this level of accuracy in the open sky, its positioning 

quality degrades significantly in dense urban areas with tall buildings due to signal 

blockage and multipath effect [3-6]. One of the alternatives or auxiliary technology to 

GPS is a vision. Although vision-based methods have achieved a real progress [7-11], 

still this technology suffers from weather conditions, illumination changes, and shadows. 

Recently, many companies are working on getting the LiDAR price as low as 

possible, and thus, this technology has once again gained a focus as the primary 

technology for the autonomous vehicle’s perception. LiDAR’s measurements are accurate, 

it has a wide field of view, long range, and it is irrelevant to different light conditions. 

Many companies have already started the miniaturizing and lowering the cost of this 

sensor to mount it on their commercial vehicles. In this chapter, we focus on the vehicle 

self-localization in urban areas using multi-channel LiDAR since, on the one hand, the 

GNSS cannot achieve the required positioning accuracy of the autonomous driving in 

urban areas and, on the other hand, plenty of features exist in the urban areas for the 

LiDAR localization.  

LiDAR-based localization can be divided into map-based and SLAM-based 

(simultaneous localization and mapping) techniques. Methods without a prebuilt map are 

known as SLAM. These methods can be divided into two main categories: 1) feature-

based [12], and 2) scan-based [13]. [14] uses building corners to rectify the error 

accumulation of the SLAM. In [15] author proposed a hybrid map-based SLAM using 

the particle filter. In their paper, the environment is represented by both grid and feature 

map. However, the typical methods based on the SLAM suffer from error accumulation 

[15]. 

With the development of remote sensing technologies such as LiDAR which is 

being used for airborne laser scanning (ALS) and mobile mapping system (MMS), the 

large-scale and high accuracy maps have become widely available [2]. The availability of 

the high-precision maps has increased the interests on the map-based vehicle self-

localization techniques. In most of these methods, the high-definition 3D point cloud is 

used as the prior map, and in each sequence, the observed LiDAR scan is matched to the 
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map to obtain the ego-vehicle position. In [1], the authors use the Velodyne laser scanner 

in addition to GPS, IMU, and odometer to generate the map offline. Then the localization 

within the map is performed using the particle filter. The authors extended their work in 

[16], developing a probabilistic approach. In [17], the authors develop an Iterative Closest 

Point (ICP) algorithm for local matching of the scans and incorporate a histogram-feature 

representation for the registration of sub-maps. In [18], lane markers are used as local 

features, which are extracted from reflectivity values of the LiDAR scans. In [19], Monte 

Carlo Localization (MCL) method utilizing the curb-intersection features is introduced, 

and the road observation is fused with odometry information. Pauly [20][64] proposed a 

height map encoding in point cloud by spectrally analyzing the point cloud.  

After the ICP algorithm was proposed, Biber [21] introduced the idea of 

representing a two-dimensional environment by normal distributions for the scan 

registration. This method is known as Normal Distributions Transform (NDT). In the 

NDT, map space is divided into fixed 2D cells, and for each cell, a corresponding normal 

distribution is generated. Then, rather than matching the scan data to the point cloud, it is 

matched to the set of normal distributions. Later, Magnusson et al. extended the NDT idea 

to the 3D domain and proposed many variants for the NDT [22-25][65]–[69]. On the other 

hand, Tu et al. [26] was inspired by image compression techniques and proposed a method 

to compress the streaming point cloud using image and video compression methods. The 

authors also evaluated their compressed point cloud in the self-localization application. 

In our previous work [27], a multilayer 2D vector map was proposed for the vehicle self-

localization which the map consisted of different heights of the building walls in 2D 

vector format. Therefore, the data size of the map was remarkably smaller than the 

conventional point cloud format. On the other hand, since the proposed vector map is 

multilayer and the normal distributions are generated from the vectors, we could achieve 

a better localization accuracy compared to the conventional methods based on 2D point 

cloud maps. 

City scale 3D point cloud data is too bulky to be stored in the internal storages of 

the autonomous vehicles since each square kilometer consists of around 300 million 

points. For the self-localization applications, map structure should be small in size and, 

at the same time, capable of containing enough features for the localization. In the urban 
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area, we have many structured objects such as buildings. These structures are made of 

many basic elements, such as 2D lines and 3D planes which are easy to extract and, at the 

same time, clearly observable by LiDAR. In this study, rather than using the massive 3D 

point cloud as the prior map, we employ two abstract map formats for the 2D and 3D 

localization of the autonomous vehicle: 1) multilayer 2D vector map, and 2) planar 

surface map. These maps are generated by extracting lines (vectors) and planes (planar 

surfaces) in addition to their uncertainties from the 3D point cloud. Therefore, we can 

abstract several thousands of points by single element, and as a result, we can extremely 

shrink the map size (25 million points to around 1000 elements). In the localization phase, 

the observed data form the LiDAR is registered into the prior map to obtain the precise 

location of the vehicle. Figure 4-1 shows the concept of the localization using the 

proposed abstract maps. The experimental result proves the effectiveness of the proposed 

conception of the abstract map-based localization. 

 Vehicle Self-Localization Based on Multilayer 2D 

Vector Map 

4.2.1. Generating Multilayer Vector Map 

Buildings are the most available and stable features in the cities, compared to trees, 

traffic signs, and poles. If the map is made based on buildings, updating and maintaining 

the map will be less challenging. On the other hand, LiDAR can observe building surfaces 

clearly. Even though the lower part of the buildings can be partially obscured by trees, 

cars or other dynamic objects but the upper layers of the building can be apparently 

captured by the LiDAR. Therefore, we only consider the buildings in the proposed map 

structures. 

The 2D footprint of a building is generally considered as the area on a surface 

covered by the building at the ground level. However, as shown in Figure 4-2, a building 

can have different footprints in different heights.  In this case, if a 2D map is generated 

based on only a specific height of the buildings (i.e. footprints), the self-localization of 

the vehicle might face a problem since the laser scanner installed on the vehicle might see 

a different height of the buildings which have different surface compared to the map. In 

this part, a vehicle self-localization method based on the multilayer 2D vector map is 
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proposed to reduce the map size while maintaining the localization accuracy. In the 

proposed structure, instead of storing and employing massive 3D or 2D point clouds as 

prior map for the two-dimensional localization,  2D lines extracted from the 3D point 

cloud of the buildings are stored in the map as vectors. Thus, for each building, the 

footprints of the building at different height-levels are stored in the map, and as a result, 

a better localization can be expected. The term “multilayer” does not mean that a certain 

number of layers are considered in the map generation. In fact, it means that each building 

in the 2D vector map is generated from the multiple footprints if available (Figure 4-2).   

 

Figure 4-1. The concept of the vehicle self-localization using the proposed abstract map 

formats rather than massive 3D point cloud.  

 

3D Point Cloud Map

3D Planar Surface Map

Multilayer 2D Vector Map

 
Figure 4-2. Building footprints for different layers (height Z) of the building. 
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 To generate the multilayer vector map, the entire building points are extracted 

from the calibrated MMS point cloud (Figure 4-3 (a)) by referring to ALS, firstly. The 

obtained point cloud is shown in Figure 4-3 (b). Then, the remained points are projected 

onto the ground plane to form the multi-layer 2D point cloud which contains the building 

footprints of different heights. From this 2D point cloud, vector segments (lines) are 

extracted using the Random Sample Consensus (RANSAC). During the vector extraction, 

the uncertainty of each vector is also calculated and stored. Assuming that the length of 

an extracted vector �⃗� which represents a building wall is 𝑙, a 2D bounding box with the 

side lengths of 𝑙 and 𝑙/10 is defined around the vector, as shown in Figure 4-4,. Given 

the points within this bounding box { ⃗1, … ,  ⃗ } , the uncertainty of the vector 𝜎  is 

calculated as  

𝜎 = 
1

 
∑   𝑠    𝑒(�⃗�,  ⃗𝑘)
 
𝑘=1 .    (1) 

 

Figure 4-3. The procedure of generating the multilayer 2D vector map from the 3D point 

cloud. (a) Top view of the original 3D point cloud. (b) The building points extracted from the 

point cloud. (c) Multilayer 2D vector map. (d) Normal distributions of the vector map. 

 



Chapter 4. Map abstraction for Self-localization 
 

 

 

33 

For each vector, the head and tail, and the uncertainty values are stored in the map 

structure. Figure 4-3 (c) shows the multilayer 2D vector map generated for the selected 

area, and Figure 4-3 (d) visualizes the vector uncertainties by the blue ellipses.  

4.2.2. Scan-to-Vector-Map Matching for Localization  

 To estimate the current state of the vehicle, the laser scan should be registered to 

the prior abstract map. The flowchart of the proposed localization method is shown in 

Figure 4-5. Firstly, the vector map is converted to a normal distribution (ND) map, and 

the laser scan is preprocessed before the matching. In the map matching phase, the laser 

is matched to the ND map using the point-to-distribution variant of the NDT (P2D-NDT).  

 Generating Normal Distribution (ND) from 2D Vector Map 

 To perform the fast and robust matching between the LiDAR scan and 2D vector 

map, the NDT-matching is used. In the NDT-based point cloud registration, unlike the 

iterative closest point (ICP), the reference point cloud is converted to a set of Gaussian 

distributions, and then the matching is performed over these distributions [24]. In the 

conventional NDT, to calculate a set of NDs which represents the map, a process called 

discretization is performed which divides the map space into grids with a fixed size.  

 
Figure 4-4. Calculating the vector uncertainty. The thick navy blue line shows the vector 

representing a building wall. The red box shows the bounding box to get uncertainty of 

vector representing the wall, and the green vectors are the Eigen vectors {𝑢1, 𝑢2} used for 

generating uncertainty for the vector. The green ellipse shows the normal distribution 

generated based on the center point of the vector and its uncertainty. 
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Usually, the uncertainties in the reference ND map come from this discretization process 

which results in a considerable alignment error. Finding the suitable grid size is a difficult 

task and depends on many parameters such as the environment, sensors, and etc. The 

larger the grid size becomes; the more uncertainty appears in the NDs. If a small grid size 

is chosen to limit the uncertainty of the NDs, then a considerable number of the grids will 

not have enough point for making ND (5 points), and therefore we will have a sparse map 

without enough features which is not suitable for the localization. Moreover, in the 

conventional NDT method, two close walls might fall into a single cell of the grid, and 

therefore abstracted by one ND. To avoid the problems mentioned and maintain the 

localization accuracy, this paper generates the NDs based on the extracted vectors and 

their uncertainty values.  

To generate the ND from the 2D vectors in the map, we need to define the mean 

and covariance for each of them. The probability of observing a point   in ℝ2 on a 

particular vector represented by  a normal distribution is derived from the following 

equation: 

𝑃( ) =  
1

2𝜋√|∑|
exp (−

(𝑝−µ⃗⃗)𝑇∑−1(𝑝−µ⃗⃗)

2
)    (2) 

where ∑ is the covariance matrix, and µ⃗⃗ is the mean. In the case of vectors, their center 

points (Figure 4-4) are selected as the mean values. To define the covariance matrices, 

Eigen decomposition is used. The covariance matrix for the vector �⃗� can be defined as: 

 

Figure 4-5. Flowchart of the vector map-based self-localization. Inputs are the vector map 

and point cloud acquired by the laser scanner, and the output is the current position of the 

vehicle. 
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∑ =  UɅ𝑈𝑇 = [
𝑢1𝑥 𝑢2𝑥
𝑢1𝑦 𝑢2𝑦

] [
𝜆1 0
0 𝜆2

] [
𝑢1𝑥 𝑢1𝑦
𝑢2𝑥 𝑢2𝑦

],    (3) 

where u1 and u2 are the Eigen vectors, and 𝜆1 and 𝜆2are the Eigen values. The Eigen 

vectors are obtained from the head and tail points of the vector segments as follows: 

𝑢1 =  [
𝑣1𝑥 − 𝑣2𝑥
𝑣1𝑦 − 𝑣2𝑦

] , 𝑢2 =  [
0 −1
1 0

] 𝑢1,    (4) 

where 𝑣1 and 𝑣2 are the head and tail points of the vector �⃗�. 𝜆1 is defined as half of 

the length of the vector, and 𝜆2 is set to the uncertainty of the vector (𝜎) which was 

calculated in Eq. (1). The NDs generated from the vectors are shown in Figure 4-6. As 

each vector has its own ND, the uncertainties caused by the discretization in the 

conventional NDT can be resolved, and therefore, building corners and neighboring walls 

can be represented correctly. 

 Scan to Normal Distribution (ND) Vector Map Matching 

After obtaining the ND map from the multilayer 2D vector map, we have to localize 

the vehicle within the map. For the localization, a multi-layer (channel) LiDAR mounted 

on the roof of the vehicle is used. Usually, the distortion of the LiDAR scan which is 

caused by the vehicle motion during the experiment is eliminated using a relative 

movement acquired from odometer sensors. In our algorithm, we proposed a method to 

remove the distortion inside the optimization process of the map matching. In this case, 

as can be seen in the flowchart of the map matching in Figure 4-5, each time the 

transformation vector transforms the scan, the distortion elimination process is performed 

to calculate the distortion based on the newly estimated position.  

 

Figure 4-6. Normal Distributions generated from the vectors. 
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To perform a 2D matching, the multi-layer laser scan should be converted to a 2D 

point cloud by projecting all layers to the ground plane. Employing a multi-layer laser 

scanner instead of a single-layer one brings two advantages for the map matching. Firstly, 

it increases the point density of the building footprints. And secondly, scanning different 

levels of buildings allows us to capture different footprints of a single building. Having 

access to a dense scan makes the registration robust against outliers. To avoid bias from 

uneven point distribution and to reduce the matching time, the input scan should be down-

sampled [23]. In the proposed method, to keep the benefits of the higher point density 

around building walls, the down-sampling is done before the 2D projection. For the down-

sampling, we create a 2D grid of 30 cm × 30 cm over the input scan. And then, all 

points within each grid will be approximated with their centroid.  

After preprocessing mentioned above, the 2D scan is transformed from the vehicle 

coordinate to the map coordinate (Global) with an initial guess acquired from two 

previous subsequent positions. Then, the best alignment is obtained which is the 

transformation matrix 𝑀𝑡 . In fact, 𝑀𝑡  is the optimal 2D transformation matrix that 

applied to initially aligned laser scan to further match the scan to the ND map, and defined 

as 

𝑀𝑡 = [
 𝑧(𝜃) 𝑇𝑥,𝑦
0 1

]     (5) 

where  𝑧(𝜃) describes 𝜃 degrees of the rotation around the Z-axis, and 𝑇𝑥,𝑦 is the 2D 

translation. This optimal matrix is obtained by maximum likelihood estimation [27][70].  

Suppose that  = {𝑥1, …  , 𝑥 } is the initially transformed input scan in ℝ2, and 

𝑃𝑗  is the ND for the vector segment j. The optimal 𝑀𝑡  is the transformation that 

maximizes the likelihood function (score function) 

Ł =  ∏ 𝑃𝑗(𝑀𝑡𝑥𝑘)
 
𝑘=1      (6) 

or, equivalently, minimizes the log-likelihood function of Ł: 

− logŁ = −∑ log𝑃𝑗(𝑀𝑡𝑥𝑘)
 
𝑘=1     (7) 

This cost function is less complex for calculating gradient and Hessian matrix in 

optimization process thus, Eq. (7) is used for obtaining 𝑀𝑡 . In Eq. (7), outlier points 
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significantly decreases the matching score, thus instead of the normal distribution, a 

mixture of uniform and normal distribution �́�𝑗 is used: 

�́�𝑗 =  𝜉
1
𝑃𝑗 + 𝜉

2
𝑃0    (8) 

where 𝑃0 is the expected rate of the outliers, and 𝜉1 and 𝜉2 are constants such that Eq. 

(8) integrates over the 𝑗𝑡  vector to one. By applying Eq. (8) to the log-likelihood 

function in Eq. (7) and approximating it for the sake of simplicity, the score of 𝑘𝑡  point 

can be defined as: 

𝑆   𝑒(𝑀𝑡 , 𝑥𝑘 , 𝑗) = 𝑑1 exp (−𝑑2
(𝑀𝑡𝑥𝑘−𝐶𝑗)

𝑇∑𝑗
−1(𝑀𝑡𝑥𝑘−𝐶𝑗)

2
)    (9) 

where j is index of the closest vector to the transformed point 𝑀𝑡𝑥𝑘, ∑𝑗 and 𝐶𝑗 are 

covariance and center of the 𝑗𝑡  vector, and 𝑑1 and 𝑑2 is obtained from 𝜉1 and 𝜉2. 

Finally, the cost function of the transformation matrix 𝑀𝑡  for the input scan   is 

defined as: 

𝐶 𝑠 (𝑀𝑡) = −∑ 𝑆   𝑒(𝑀𝑡, 𝑥𝑘 , 𝑗)
 
𝑘=1     (10) 

To find the optimal 𝑀𝑡, the Newton optimization method is employed. Newton’s 

method optimizes the cost function by 

 [
𝛥𝑥
𝛥 
𝛥𝜃

] =  −𝑔,    (11) 

where   and 𝑔 are the Hessain matrix and the gradient of the cost function, and 𝑥,  , 

and 𝜃 are the translation and rotation parameters of the Matrix 𝑀𝑡. After the Newton’s 

process is merged, the optimum 𝑀𝑡 is obtained and the ego-position of the vehicle can 

calculated by multiplying 𝑀𝑡 to the initial translation matrix. Figure 4-7 shows a few 

examples of the proposed map matching.   

 Vehicle Self-Localization Based on Probabilistic 

Planar Surface Map 

The vector map format proposed in the previous chapter is suitable for the 2D 

localization of the autonomous vehicle, but cannot be used for the 3D localization. 
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Besides vectors, planes can be considered as the abstract three-dimensional representation 

of building walls. Thus, we extend the idea from Section 2 and propose a 3D planar 

surface map format for the vehicle localization. The flowchart of the proposed planar 

surface map-based localization is shown in Figure 4-8. As can be seen in the figure, the 

output of the planar surface map-based localization is the 6D state of the vehicle.  

 

4.3.1. Generating Probabilistic Planar Surface Map 

In contrast to the 2D vector map-based localization proposed in the previous chapter 

which the ground points were removed in the vector mapping step, the ground surface 

plays an essential role in the 3D localization using the planar surface map, especially for 

defining the pitch and height of the vehicle position. Therefore, instead of removing the 

ground surfaces, we actively take them into account for the localization. Thus, the primary 

components representing a planar surface map will be the building walls and ground 

surface.  

The first step of creating a planar surface map is to define the ground surface from 

the 3D point could map (Figure 4-9 (a)). The ground points are obtained using the cloth 

simulation filter algorithm proposed in [29][71] which works well for large-scale ground 

detection. Figure 4-9 (b) and (c) show the ground extraction procedure. Typically, the 

ground surface does not include so many details and also does not change so often. 

Therefore, a local surface of the ground can be abstracted by a plane without losing 

 

Figure 4-7. A few examples of the localization technique based on the multi-layer 2D vector 

map. The input laser scans are shown in red. The blue spheres are the NDs generated from 

the vector map.   
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information. To generate the ground map, the ground surface is first divided into large 

grids (10 m × 10m), and then the plane detection algorithm is applied to points within 

each cell. For each detected plane, the uncertainty of the points forming the plane is also 

estimated and stored. Therefore, for each ground surface the center, width, length, and 

normal of the plane are stored beside the mean and sigma of the corresponding 

distribution. The method of calculating the ND for each surface is described after the 

building surface extraction for both the ground and building surfaces. Figure 4-9 (d) 

shows the normal distributions of the ground surface.  

After the ground extraction fr  om the MMS point cloud, remaining points are used 

to extract the building walls, as shown in Figure 4-9 (e). The objective of the plane 

extraction is to find the main features that likely to be observed by the laser scanner in the 

localization phase and not 3D building reconstruction. Planar surfaces are extracted by 

efficiently fitting the planes to the off-ground points using the RANSAC [30][72]. 

RANSAC randomly generates plane candidates in each iteration by subsampling the point 

cloud and estimates the plane with maximal score. The plane is only accepted if the 

deviation of the points is less than a predefined threshold. We empirically defined the 

angular threshold for extracting the planes within the experimental area which is three 

degree. The remaining RANSAC parameters used for the plane extraction are as follows; 

maximum distance to the plane is set to 1.0 m, the minimum number of points per each 

plane is set to 200, and the overlooking probability is set to 0.01. The results of plane 

 

Figure 4-8. Flowchart of the planar surface map-based vehicle self-localization. Inputs: the 

planar surface map and 3D laser scan. Output: the 6D state of the vehicle. 
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fitting are shown in Figure 4-9 (f), where each plane represents the building walls. For 

each extracted building plane, just like the ground part, the center, width, length, and 

normal of the plane, are stored with the mean and covariance of the corresponding ND of 

the plane. 

 

As mentioned before, to use the planar surfaces extracted from both the ground and 

building surfaces for the self-localization, we have to generate NDs which will be used in 

the scan matching phase. Therefore, the uncertainty of the points forming each plane 

should be calculated and stored for making the ND for the plane.  

Suppose that a set of points Y = { 1,  2… ,   } in ℝ3 is forming the ith planar 

surface entity Pi. The uncertainty of the plane Pi is defined by the mean 𝜇 and covariance 

matrix ∑ as follows: 

𝜇 =  
1

 
∑  𝑘
 
𝑘=1        (12) 

∑ =  
1

 −1
𝐵𝐵𝑇 , 𝐵 = [ 1 − 𝜇,… ,   − 𝜇 ]   (13) 

By having the mean and covariance matrix, the probability of observing a point   

in ℝ3on a particular wall surface or ground surface represented by a normal distribution 

 

Figure 4-9. The procedure of generating the planar surface map. (a) The original 3D point 

cloud. (b) The ground segmentation result. (c) The extracted ground. (d) The Gaussian 

mixture model of the ground surface. (e) The off-ground points. (f) The planar surface map 

of the off-ground points. 
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with the estimated covariance and mean is derived from the following equation: 

𝑃( ) =  
exp (−

1

2
(𝑝−𝜇)T∑ (𝑝−𝜇)−1 )

√(2𝜋)3|∑|
    (14) 

In the planar surface map, we only store the planes and their uncertainty values for 

both the ground and building surfaces, and neglect all other details to reduce the map size. 

While those details might be helpful for the self-positioning, especially in the longitudinal 

direction, the acquired surface information can provide fairly enough features for the map 

matching in the urban areas. Figure 4-10 shows different map formats and abstraction 

level of a particular urban area. As can be seen, the dense 3D point cloud consists of 

higher details which lead to a massive data size. In the conventional NDT, the grid size 

and localization accuracy are tightly connected. While increasing the grid size can reduce 

the final map size, the positioning accuracy is affected and degraded. The proposed 3D 

surface map can provide the smallest map size and comparable localization accuracy with 

the original point cloud. 

4.3.2. Scan-To- Planar -Map Matching for Localization 

 Making Normal Distribution (ND) from Planar Surface Map 

In the previous step, the planar surface map of the environment including the 

ground and building surfaces was generated and stored. In this step, the planar surface 

 

Figure 4-10. Comparison of different map formats and abstraction levels: point cloud map, 

fixed-size grid ND map, and 3D planar surface map.  

 

3D point cloud 2.0 m grid ND map

10.0 m grid ND map1.0 m grid ND map 3D planar surface map
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map should be converted to the ND map to perform the NDT matching for the localization. 

If we directly use the uncertainty associated with a surface in the planar surface map as 

the ND (Eq. 14) and perform the NDT matching, we will face two challenges as written 

below. 

In the NDT matching technique, to calculate the matching score, we should define 

the corresponding ND for each point in the input scan. This is done by searching and 

selecting the ND with the nearest centroid to the point. This method works well if the 

domain of NDs is relatively small. However, in the planar surface map, typically the NDs 

representing the planes are large. Therefore, the distance to the ND centroids is not a good 

estimate for defining the nearest ND, as shown in Figure 4-11 (a). In the figure, the closest 

surface to the point C is P1. However, as the centroid of P2 is closer to C than the centroid 

of P1, P2 is considered as the corresponding ND for the C. The same problem happens for 

points A and B, and it causes a significant matching error. To solve this, point to plane 

distance should be considered instead. However, calculating the distance of all points in 

the input scan to all planes in the map is time-consuming and makes the matching slow.  

The second challenge is the score calculation. If each plane is represented by only 

one ND, the input points with a same distance to the plane might get totally different 

scores. In Figure 4-11 (a), points A and D have an almost same distance to plane, but the 

score of A is much lower than D. 

To overcome the problems mentioned above without increasing the size of the 

planar surface map,  each plane is subdivided to a fixed smaller size and then represented 

by multiple NDs in the localization phase, as shown in Figure 4-11 (b). By doing this, the 

nearest ND to the input points can be estimated by searching the centroids of the NDs by 

k-d-tree nearest neighbor algorithm which is very fast, and also the score function will 

become more uniform.      

 Scan to Normal Distribution (ND) Plane Map Matching 

Before the map matching, the sensor data collected from the laser scanner is 

preprocessed for removing the distortion using the method described in section 2.2-B. 

After excluding the distortion, scans are down sampled using the similar method in 2.2-

B. Then, the scan is transformed from the vehicle coordinate to the map coordinate by an 

initial guess. The initial guess of the first frame is obtained from GPS, but after that, it is 
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estimated by a simple prediction performed based on two previous positions of the vehicle.  

Suppose that the transformation vector for the initial guess is  ⃗ =

[ 𝑥,  𝑦,  𝑧 , 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧 , ]
𝑇
where  𝑥,  𝑦,  𝑧 are the translation, and 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 are the rotation 

parameters. Assuming that  = {𝑥1…  𝑥 } is the subsampled laser scan and  ′ is the 

scan after applying the transformation  ⃗. For each transformation  ⃗, the motion of the 

vehicle is estimated and the distortion is removed based on the estimated motion to make 

a distortion free scan  ̂.  Similar to section 2.2-B, the cost function of  ̂ is defined as 

𝐶 𝑠 ( ̂) = −∑ 𝑆   𝑒( ̂) 
𝑘=1    (15) 

Assuming that T is the transformation function and D is the distortion elimination 

 
Figure 4-11. Effect of the NDs generated from the planar surface map on the defining the 

correct corresponding ND of the points in the input scan. (a) Misdetection of the nearest ND 

due to the large ND domain, and the score reduction due to the distance of the input points 

from the center of the ND. (b) Effect of representing the planar surface using smaller NDs. 
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function,  ̂ can be defined as 

 ′ = 𝑇( ⃗,  )  ,    ̂ =  ( ′) =  (𝑇( ⃗,  ))  (16) 

Therefore, Eq. (15) can be expanded as: 

𝐶 𝑠 ( ⃗) = −∑ 𝑆   𝑒( (𝑇( ⃗,  ))) 
𝑘=1    (17) 

To find the optimal  ⃗ which is the best matching result, the Newton optimization 

method is applied. Newton’s method optimizes the cost function by iteratively changing 

the  ⃗ using the following equation: 

 [∆𝑥 ∆ ∆𝑧 ∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧]𝑇 = −𝑔   (18) 

where   and 𝑔 are the Hessain matrix and the gradient of the cost function, and 𝑥,  , 

z are the translation and 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 are the rotation parameters of   ⃗⃗⃗ ⃗. After the Newton’s 

process is converged, the ego-position of the vehicle can be calculated using the optimum 

  ⃗⃗⃗ ⃗. For the details of the optimization process, the reader is referred to [28][70]. 

 Experimental Results 

This section presents the experimental results of the proposed map structures and 

localization method. To evaluate the performance of the localization method using the 

proposed map formats, the experiments were conducted in the vicinity of Hitotsubashi, a 

typical urban area in the Chiyoda-ku area of central Tokyo, Japan. Figure 4-12 shows 

route of the experiment with the length of 650 m and accuracy of the GPS-based 

localization in the area. For the experiment, we run the vehicle four times in the same 

route and compared the 2D and 3D localization accuracy of different map formats. 

Figure 4-13 (left) shows the MMS used for the mapping and Figure 4-13 (right) 

shows the experimental vehicle and the sensor setup for the localization. The 3D point 

cloud map is obtained by two single layer SICK laser scanners, and offline calibration 

using our previous work [2, 31]. For the localization, our experimental vehicle is equipped 

with Velodyne VLP-16 laser scanner with 16 channels which has 100m range, 360-degree 

horizontal and 30-degree vertical field of view. The laser scanner is installed at a height 

of 2.3 meters and set to spin at 10Hz which collects ten scans in each second. The 

maximum speed of the vehicle in the experiments was 47 Km/h. Since defining the 
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ground truth in this route is challenging, we adopted the 3D point cloud-based localization 

method as a quasi-ground truth.   

4.4.1. Evaluation for Multiplayer Vector Map-based 

Localization 

 There are three aspects needs to be evaluated. First, the proposed method can 

 

Figure 4-12. The experimental area in the vicinity of Hitotsubashi, a typical urban area in the 

Chiyoda-ku area of central Tokyo, Japan. The red line shows the experiment route and the green 

dots show the positon acquired by GPS for the route.  

 
Figure 4-13. The experimental setup. The left is the MMS used for the mapping and the right is 

our experimental vehicle. Velodyne VLP-16 is mounted on the top of this car at a height of 

2.3m.  
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preserve the localization accuracy comparing to the ground truth, while our method uses 

an extremely small map structure. Second, the proposed method can outperform 2D point 

cloud methods in terms of accuracy and finally, show the effect of vector base 

discretization in the localization accuracy.  

Figure 4-14 (b) shows the number of elements in each map structures. The proposed 

 

(a) 

 

(b) 

Figure 4-14. First chart of (a) shows the evaluation of proposed method by comparing to ground 

truth, and as result shows, the mean error is less than 20 cm. Thus, the proposed method extremely 

decreased the map size while preserving the localization accuracy. Other chart of (a) show the 

comparison of proposed method with 2D point cloud method. Figure (b) shows the number of map 

elements in each map structure. 

 



Chapter 4. Map abstraction for Self-localization 
 

 

 

47 

method is the lightest structure comparing to all of the other methods. Figure 4-14 (a) 

shows the self-localization results of proposed method and it’s comparison to 2D point 

cloud methods.  In this figure, mean, maximum and variance of self-localization errors 

are shown.  As can be seen in the first chart of Figure 4-14, the average self-localization 

error of the proposed vector map is kept less than 20cm which shows, though we 

extremely lowered the map size, we could fairly preserve the localization accuracy. Rest 

of the charts in Figure 4-14 shows the comparison with 2D point cloud based methods. 

These methods are based on single layer map (certain height of buildings footprints) and 

use multilayer laser scanner for getting input scans. For NDT discretization, they used 1m 

grid size.  The downsampling strategy is same in all methods. As we can see in 

Figure 4-14, our proposed method outperforms single layer 2D methods in terms of mean 

and max error. In Figure 4-16, 2D point cloud map is made from all layers to eliminate 

the effect of different layers in localization so that we can compare vector based 

discretization and static grid based discretization. Our method still has better performance. 

Figure 4-15 shows the comparison of proposed method with the different discretization 

of the 2D point cloud. As shown in Figure 4-15, the vector map outperforms the 2D point 

cloud based method with different grid size as well.  

4.4.2. Evaluation for Plane Surface Map based Localization 

Figure 4-17 shows the comparison of plane surface map size for the experimental 

area. A total number of point cloud data for this area is around 25 million points. Grid 

representation of the map can decrease the map size. For example for 1.0m grid size, a 

 

Figure 4-15. Comparison of proposed method with 2D point cloud with different grid size. Height 

of building footprint used in 2D point cloud methods is 6m. As results show proposed method 

perform better comparing to all grid sizes.  
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total number of the map entity for the same area become 168,378. For the same area, a 

total number of extracted planar surface entity is 1,043 which is extremely lighter than 

grid-based and point cloud based representation.  

Figure 4-18 shows the accuracy of proposed plane surface map based localization. 

As Figure 4-18 shows mean error of proposed method comparing to the ground truth is 

43cm and maximum error is 120cm. These results demonstrate that, though we used an 

extremely lighter map structure, we could preserve the localization accuracy. Figure 4-18 

also illustrates the accuracy of proposed method comparing to NDT-based methods. As 

can be seen Figure 4-18, as grid size of NDT-based methods increase the accuracy 

 

Figure 4-16. Comparison between proposed method and 2D point cloud which uses all 

footprints in different heights.  

 

Figure 4-17. Map size comparison of proposed plane surface map and other point cloud based 

methods. A base-10 log scale is used for the Y axis. As can be seen in this figure, planar surface 

map structure is extremely lighter than others. 
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decrease. This is because more abstraction applied to the map and thus many details of 

the map is removed. Also, in higher grid size, the edge of the buildings which vital for 

accurate map matching are also removed. Proposed method has lower error comparing to 

2.0 NDT-based localization while map size is extremely lighter. As Figure 4-18 shows, 

best discretization size for the NDT-based method in this area is 1.0m. In NDT-based 

localization methods, the optimum size of grids depends on the environment and there is 

no method for finding optimum grid size for each environment. As can be seen from 

Figure 4-18, in proposed method, the smallest error is for altitude. This is because the 

ground does not have so many details and can be abstracted without any loss. Also 

distortion does not have so much effect on altitude. The evaluation results of Figure 4-18 

shows that in proposed method, the longitudinal error is more than lateral error. This is 

because in some part of the experimental route, buildings are placed very densely, and the 

space between two buildings are so minor. Therefore, the lateral walls (walls which are 

perpendicular to the moving direction of the vehicle) cannot be fully captured by the 

MMS in mapping phase. As a result, points for such a wall become very few, and that part 

of the building cannot be extracted in the planar surface map. Therefore, lack of those 

lateral features results in error in positioning. This can be solved by manipulation of the 

plane extraction parameters for such position. One possible future work for proposed 

method is to find out such position and add more details to the map in order to get better 

longitudinal accuracy. 

 

Figure 4-18. Accuracy of the plane surface based self-localization and other NDT-based 

methods. 
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Chapter 5.  

Quantification of digital map ability for self-

localization 

 

 

 Introduction 

In map-based localization methods, the source of localization error can be divided 

into three main categories. These are input scan, matching algorithm, dynamic 

phenomena, and map. In this chapter, first each of the source of error are explained  

 Input scan 

o Input scan quality  

Input scan quality can change the localization accuracy. For obtaining input scan, 

laser scanner is used. Type of laser scanner is important to get more detailed scan of 

the environment. For example Velodyne HDL-64 has 64 channels (layers) of laser 

beams which can capture the 360˚ environment densely. Velodyne VLP-32C has 32 

channels and VLP-16 has 16 channels. These three laser scanners capture the 

environments with different quality. HDL-64 can capture the details of surrounding 

which cannot be captured by VLP-16. These details can help the matching algorithm 

to match the input and map more accurately. In addition to number of channels, other 

sensor related parameters such as vertical and horizontal field of view, horizontal 

resolution, laser range are also important and related to the error. laser scanner setup 

parameter such as pitch and roll are important as well.  

o Down sampling of input scan  

Generally, in the matching algorithm, input scan is down-sampled for two reasons. 

One is to decrease the computation complexity and the other is to make the input scan 

more even. Some of the features might be removed or might become more uncertain 

in this phase. Therefore, down-sampling can be one of the error source. 
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o Distortion of the input scan 

Usually this distortion is happen when the vehicle is moving. The error caused by 

this phenomena is related to the sensor which is used. If sensor is SICK then the 

frequency of each scan is more than 50 Hz. If the vehicle speed is 36Km then in each 

second it moves 10m. Thus in the time of emitting one single beam the vehicle only 

moves 20cm. So there is a 20cm shift between the beginning point of the scan and 

the endpoint. This 20cm has minor effect in localization. However if the scanner is 

Velodyne, then its frequency is usually 10Hz. In this case, if the vehicle moves with 

36Km, in each scan the vehicle moves 1.0m. Therefore, the beginning point and 

endpoint of the scan has 1.0m shift. This means that the scan points has average shift 

of 50 cm and thus localization error might be near 50cm. 

 Matching algorithm 

o Matching algorithm robustness and accuracy 

Matching algorithm can be one of the error source for self-localization. Some of the 

algorithm are more robust to local optimum and some of them are more robust to 

partial overlapping. Some of the algorithm can register two different shapes of scan 

and some cannot. As the density of map and input scan is not same matching 

algorithm should be more robust to this phenomena.  

o Initial guess 

For map-matching techniques before the matching of input scan to the map, initial 

guess of the input scan should be defined. Initial guess has a huge effect on the 

matching especially for the optimization based techniques because if the initial guess 

is not close enough, it might stuck on the local optimum. This initial guess is very 

important in the NDT-based method as well.  

 Dynamic phenomena 

In some part of the map we might have environment change. For example, some 

building has newly built or some building destroyed. Some of the changes are 

seasonal. Usually trees cause these kind of huge environment change. If the map is 

generated in summer that trees has leaf and map is used in winter then there is a huge 
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environment change and this cause localization error. Sometime this environment 

change happen by dynamic objects. In the mapping phase there are cars parked in 

the streets but in the localization phase, the previously parked car is no longer there 

or the position of the car is changed. This kind of small environment change does not 

affect the localization so much. However, presence of a bus or a truck in the mapping 

phase can cause blockage of laser scanner and hole in some part of the map. 

 Map  

In map-matching methods map plays a key role in localization accuracy. This role is 

explained in detail later in this chapter. 

In the map based categories, map plays a significant role in achieving high accuracy 

self-localization. For accurate self-localization, the global and local accuracy of the map 

is essential as well, and many types of research have been done to obtain such a highly 

accurate map [3], [6]–[8]. However, the highly accurate map does not guarantee the 

accuracy of the localization [1]. In other words, map accuracy is different than the ability 

of the map for localization. For example, in the case of the tunnel, no matter how much 

the map is locally and globally accurate, the lack of longitudinal features in the map 

causes localization error in moving direction.  

To achieve accurate self-localization within a map, the map should satisfy some 

requirements. In other words, the map should meet some specific criteria which define 

the ability of the map for self-localization. To the best of this author’s knowledge, there 

is no comprehensive study of the definition and formulation of these criteria. Therefore 

in this chapter, the required criteria regarding the ability of the map for accurate self-

localization are defined and for each of the criteria, several map factors are defined. 

Some of these criteria highly related to the environment. For example, in the city 

environment, there are more structured artifacts than rural places or crop fields. Thus the 

features for the map-matching can be found easier, and as a result, the localization become 

more accurate [9]. Tunnels, urban canyons, and highways can be assumed as another 

example in which environment are not suitable for self-localization using map-matching. 

In these scenarios, the vehicle is surrounded by two long walls in each side. Thus, the 

features needed for longitudinal positioning are not enough, and as a result, there will be 
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an error in moving direction. Surrounding environments are different from place to place 

in the map and should be evaluated by defined criteria. 

Some other criteria are related to the quality of representation of the environment 

by the map. In addition to the sensor related parameters in the mapping phase such as 

frequency of laser scanner, layer count, the range of the beam, setup parameters, etc., 

quality of representation highly related to the format and abstraction ratio (resolution) of 

the map. Many types of research have been done to propose an abstracted map format to 

both reduce the map size and the computational complexity [10]–[17]. Quality of 

representation of the environment in each of the map formats are different. In other words, 

some map formats discards more details of the map comparing to others. This information 

loss of the map might change the quality of some of the criteria and lead to localization 

error [18]. However, in some part of the map, abstraction does not necessarily change the 

quality of the map, or rate of change is acceptable. Additionally, in some cases, other 

criteria might compensate the lack in one criterion. Therefore, in order to evaluate the 

self-localization ability of the map in a specific point, all criteria should be considered 

together.  

In this chapter, four general criteria for the map are defined. These criteria are 

feature sufficiency, layout, local similarity, and representation quality of the map. These 

criteria are defined regardless of the map format and can be applied to any other map 

formats. However, in this chapter, to quantify each of these criteria, the focus is made on 

the ND map format, and several factors are defined. For each point in the map, these 

factors are calculated based on the features in surroundings called local vicinity. Overview 

 

Figure 5-1 . Overview of the proposed map evaluation method. For a sample point P (top left), 

the map factors in the local vicinity are calculated (right). Based on these factors, the 

localization error is estimated (bottom left). 
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of the proposed map evaluation frameworks are shown in Figure 5-1.  

As far as the knowledge of this author, there is very few works that is related to the 

map evaluation. Some of them are explained here. As already mentioned, one of the 

challenges of the optimization based map matching methods such as NDT is its sensitivity 

to the initial guess. This sensitivity is different from place to place in the map. In [6], to 

predict the localization error in different place of the map from different initial guesses, 

experimentally determined uncertainty is used. In their method, a vehicle once traverses 

whole paths, and an error model is calculated empirically. Later in the localization phase, 

this error model is used for rectification. One of the drawbacks of this method is that it 

needs a high amount of field experiments. Contrary to this method, using proposed factors 

in this work, localization error can be modeled without a field test. However, error model 

in [6] directly consider the input scan quality such as density of the scan as well, while in 

this work, input scan quality is inferred from map factors and for sure former can model 

more precisely.  

In [73], the author used the building information from the open street map (OSM) 

as background knowledge to predict the erroneous part of the paths to improve the graph-

based SLAM. In this work, point cloud map are considered to be available. Thus, the 

factors are directly extracted from the point cloud. OSM does not contain detailed shape 

of the building or irregularity in the building walls which highly affect the map matching 

results. In [74] author calculates the quality of map for visual odometry by heuristically 

estimating the entropy of the map. In [75] the author used the 3D polygons for self-

localization. They use the correlation of the polygons to detect the localization accuracy 

beforehand.  

In the field of scan alignment detection, some works have been done which is worth 

to mention and compare with our method. The reality is that, no matching algorithm exist 

today that can provide any certain methods for detecting misaligned point clouds [76]. 

And as experimental results in [76] shows, NDT and ICP both will not fail in the same 

point cloud set [15]. In the much less structured environment number of failed 

registrations are higher [15]. Therefore, in [76], H. Almqvist and M. Magnusson 

compared several geometric consistency methods for classifying aligned and nonaligned 

point cloud pairs. They also combined these classifier together with Adaboost to make 
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stronger classifier. The evaluations shows the combined measure achieve better results 

than the single measures at the cost of requiring a large training set [15]. Some of the 

measures used in matching is : RMS(which is used in ICP), NDT score (which is used in 

NDT), NDT Hessain, and Plane Extraction, Partitioned mean normal [77], and surface 

interpenetration measures [78]. Alignment quality of point clouds can be investigated at 

different levels, from maps consisting of many point clouds to point cloud pairs [15]. 

Evaluation are done on four measures and a combined measure was performed using 

multiclass support vector machine [79].  

But there are some key difference between scan to scan alignment evaluation and 

map evaluation. These differences are as follows: 

 One of the difference of scan to scan matching misalignment detection and map 

evaluation using factors is that in the former, they use some measure between those 

point clouds. It means the scan is already exist. However, in our method, we assume 

that we only have the map, and only using map data, map is evaluated.  

 We focused on the environment rather than the scan itself. We think that this is the 

environment that cause this misalignment.  

 One more difference between these two is, the map and the scan shape is totally 

different. Map has denser data and scan has very sparse data. Thus if we want to use 

some of the measure mentioned in [15], we cannot perform the evaluation. Data set 

used in both [15] and [79] consist of scan made by single layer laser that upward and 

rotates, thus the density of the scan is high. 

Outcomes of this chapter is evaluated in chapter 6 and applied to the adaptive 

determination of map and localization parameters in chapter 7.  

One of the important outcome of this research is that, it can be applied to evaluate 

the capability of the map provided by mapping companies for the self-driving localization 

application and fills the gap between mapping companies and automobile industries. In 

fact, some of the digital maps are already made for the other purposes. For example Japan 

government already has a GIS map which is a vector map. The purpose of this 2D map is 

not autonomous driving. Therefore, in order to use it as a self-localization purpose, the 

GIS map can be evaluated by applying the map evaluation factors. 
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The other benefit of this map evaluation method is that, those part of the map which 

cannot meet the thresholds are detected. After detection, there are two possible solution. 

One is to tell the government to put some artificial objects there to increase the map 

evaluation factors or to tell the autonomous vehicle companies to use other sensors for 

doing self-localization in that region of the city. Indeed, this map evaluation can be also 

performed in an experimental way or field test. In this way, after the map is generated, 

the car drive the part of the map that needed to be evaluated and compared the self-

localization output to the ground truth. By comparing the self-localization output with the 

ground truth we can evaluate the accuracy of self-localization and ability of the map for 

self-localization. However this method has two problems. First, if we want to perform the 

field test for all drivable area in the map, it needs so much time and cost for field test 

evaluation. Second, after detecting the erroneous part of the map, we cannot determine 

which factor cause this error to solve it.  

For the map matching based methods, in addition to the map related factors, other 

parameters which is not related to the map can also affect the self-localization accuracy 

which is ignored in this work. 

The rest of this chapter is organized as follows. Section 5-2 describes the map 

evaluation criteria, and section 5-3 formulates each of the criteria using map factors.  

 Evaluation criteria 

In this section criteria for a map evaluation are defined. These criteria are feature 

efficiency, layout, local similarity, and representation quality of the map and defined 

regardless of map formats. Overview of the criteria is shown in Figure 5-2. 

5.2.1. Feature sufficiency of the map 

In self-localization techniques based on map-matching, pre-built map is made up of 

features. The type of features varies depending on the map formats and matching 

algorithms. For example, in the point cloud map the features are points, and in the 

occupancy map, features are the occupied cells. Likewise, in the ND map the features are 

NDs, and in the case of vector map and planar surface map, the features are vectors and 

planar surfaces respectively. For better self-localization accuracy, plenty yet high-quality 
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features are required. The quality and number of extracted features are related to the 

environment. For example, in the urban city, there are many buildings and structured 

environments that produce plentiful features in the map. However, in the crop fields, there 

are no sufficient features for matching. Therefore generally in the urban area, the accuracy 

of localization using laser scanner is higher. In the case of a planar surface map, in the 

environment with many vegetation and trees, extraction of planar surfaces is difficult, and 

thus the features for matching are not sufficient.  

 In addition to the number of features, the quality of the features is important as 

well. In some part of the map, there might be plenty of features; however, as the quality 

of them are not adequate, the localization cannot be performed accurately. Quality of the 

features varies in different map format as well. Consider ND map as an example. In order 

to make ND map, the space of the map are subdivided into static voxels. Then, each voxel 

is represented by the normal distribution calculated from the position of the points. In the 

matching phase, these normal distributions lead the input scan point cloud to its optimum 

location. In ND map, the shape of the normal distribution can be assumed as the quality 

of the features, and it might play an important role in optimization.  

To formulate the feature sufficiency, three factors are proposed. These factors are 

𝑓𝑒  𝑢 𝑒_  𝑢  ,   _     , and    𝑢     _     . These factors are described in 

section IV.  

 

Figure 5-2 . Different layout for the map. In (A) all features are lean to one corner. This layout 

can cause positioning error. In (B), the distribution of the features are even. 
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5.2.2. Layout of the map 

 In addition to the count and quality of the features, the layout or displacement of 

the features in the space might be important. In some part of the map, there might be 

plenty of high-quality features. However, as the features are all placed in one corner of 

the map, the quality of matching degrades (Figure 5-3(A)). In Figure 5-3, blue circle in 

the center shows the vehicle position and small red circles show the features of the map 

which are captured by a laser scanner. In Figure 5-3(A), captured features in the map are 

distributed evenly. However, in Figure 5-3(A) the features of the map are placed in the 

upper left corner of the vehicle. This uneven distribution of the map features can cause 

the localization error.  

In fact, the concept of the layout of the features comes from a global positioning 

system (GPS). In the GPS-based localization, if satellites are not distributed evenly, in 

other words, satellites lean in one region, then the calculated position will be erroneous.  

This is because each of the pseudo-ranges calculated from each satellite has an error by 

itself. If all satellites are lean in one small region, then they cannot compensate each of 

the pseudo range error, and the input error highly appear in the output. For GPS, the ratio 

that shows how much the input error affect the output localization result is formulated by 

geometrical dilution of precision (GDOP)[80]. We inspired from GDOP and defined a 

map factor called feature DOP (   𝑃) to formulate the distribution of the features in the 

map space. GDOP and satellite position is shown in Figure 5-4(b). In scenario 1 the 

distribution of satellites are even so the GDOP is very small. It means that the input error 

 

Figure 5-3 . Different layout for the map. In (A) all features are lean to one corner. This layout 

can cause positioning error. In (B), the distribution of the features are even. 
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will not result in high output error. However in scenario 2, as the satellites are lean more 

closely the GDOP is high. This means that the small error in pseudo ranges results in high 

positioning error.  

In addition to the distribution of the features, in some part of the map, there might 

be a situation such as tunnels, urban canyons, and highways in which the layout of the 

buildings is not suitable for lo ngitudinal positioning (Figure 5-6). In these situations, the 

layout of the buildings is so that the lateral position of the vehicle can be obtained 

accurately but not longitudinal. As shown in Figure 5-5(A), when the vehicle is in the 

position A, the layout of the buildings is so that it cannot get the features for longitudinal 

positioning. In position B, the situation is same. However, in Position C, the layout of the 

buildings changed and the vehicle is able to observe the features for longitudinal 

positioning.  In both A and B position, the previously defined criteria (feature 

sufficiency) are satisfied as the car is surrounded by plentiful high-quality features. We 

 

Figure 5-5 Different situations (A and B) in that the localization in longitudinal direction has 

error. 
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Figure 5-4 Effects of satellite distribution to the GDOP. 
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introduce      𝑙_𝑒       factor to formulate such kind of layout problem in the map.  

To formulate the Layout criterion of the map, in addition to aforementioned factors, 

 _ 𝑣𝑒  𝑔𝑒 and   𝑔𝑢𝑙  _𝑒       are proposed and described in section IV. 

5.2.3. Local similarity of the map 

 There are some positions in the map that the environment has many similar 

features (Figure 5-6). These similar features make the positioning difficult. In Figure 5-7, 

blue shapes are a map, and red lines show the observation of the laser scanner. In this case, 

as there are similar shapes in the map, it is impossible to detect which is the actual vehicle 

position; A or B. In other words, in both position A and B the observation of the laser 

scanner are same. In this situation, the map has local similarity, and this criterion is not 

satisfied. Again, in this scenario, there are plenty of features, so the feature sufficiency is 

met, the distribution of the features and layout of the buildings are satisfactory, so the 

layout criterion is satisfied as well. However, due to the presence of local similarity in 

this part of the map, localization is erroneous.  

Environment and map abstraction both can cause local similarity. If the abstraction 

ratio become high, then some details of the map are eliminated, and consequently local 

similarity increases.  

In order to formulate the local similarity, 𝑠   𝑒_𝑒       is proposed. 

Formulation of 𝑠   𝑒_𝑒       is described in section IV. 

5.2.4. Representation quality of the map 

One of the important criteria for the map which is directly related to the map format 

and abstraction ratio is the representation quality of the map. Representation quality 

 

Figure 5-6 Situation that the map does not have any lateral feature to get the longitudinal 

position. 
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shows how much the generated map is similar to the actual environment.  

On the one hand, representation quality of the map is related to the type of laser 

scanner and sensor parameters in the mapping phase. These parameters are number of 

layers, the rage of beams, scanning frequency, number of sensors, and setup parameters 

such as pitch and roll angles. As an instance, raw point cloud collected by Velodyne HDL-

64 which has 64 layers of laser beams can represent the environment more densely 

comparing to the VLP-16 which only has 16 layers. However, in this work, effects of 

mapping phase to the quality of representation are ignored.  

On the other hand, representation quality related to the map format and resolution 

of the map. In fact, the representation quality criterion shows how the final map is similar 

to the raw point cloud map collected in the mapping phase. Low representation quality of 

the environment might change the peak of score function. If the peak is changed, correct 

answer from optimization process will be the wrong answer for the localization. In 

Figure 5-8 change of peak after abstraction in ND map format is shown. Figure 5-8(top) 

shows the score of matching for 2.0m grids and below shows the matching for the same 

region with 4.0m grid size. Score peak should correspond to ground truth. However, in 

4.0m grid size, as more abstraction applied to the map, the peak of scores are shifted 60cm. 

Consequently, even if the optimization process does not stick in local maximum, 

localization has a 60cm error.  

Abstraction does not always change the score peak. Our investigation shows for 

 

Figure 5-7 Local similarity cause the positioning uncertainty. Longitudinal position cannot 

be obtained. The blue shapes are the buildings which surround the laser scanner. The red 

lines are scan on the specific time and shows the observed part of the building by laser 

scanner. In this scenario, vehicle cannot distinguish between position A and B. 
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2.0m grids, about 77.3% and for 4.0m grid about 43.1% of the cases, peak remains 

unchanged. This is because abstraction always does not affect the representation quality. 

Consider a ground or a flat wall. No matter how much the size of grid expands, the 

representation quality remains same. Therefore, to evaluate the mapping capability for 

localization, there should be a factor to evaluate the map representation quality. 

    𝑙   𝑏 𝑠_𝑑 𝑠    𝑒 factor can formulate the criterion for representation quality and 

explained in section IV. 

5.2.5. Formulation of the evaluation criteria 

In this section, to quantify each of the proposed criteria for the map, several factors 

are defined. Map evaluation criteria are defined regardless of map format. However, to 

formulate each factor, self-localization based on normal distribution transform (NDT) 

 

Figure 5-8 Shift of score peak due to abstraction of the map. Top images shows the 2.0m ND 

map and the matching score of scan (red points) on it. Score of 2.0m ND map does not have 

any shift. Bottom image shows the same pair for 4.0m ND map. In 4.0m ND map, due to 

higher abstraction of the map, peak of matching score is shifted by 60cm. This shift of peak 

at least cause 60cm localization error. 
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which is well-known in the field of vehicle self-localization is considered.  

In NDT methods, instead of directly registering the Velodyne scan to the point cloud 

map, the scan is registered to the set of normal distributions called 𝑁   𝑝 which is made 

from point cloud map. In order to make 𝑁   𝑝, map space is subdivided into fixed size 

voxels called cells. Then, from the points inside each cell, normal distribution (ND) is 

calculated. To register the scan on this NDs, the scan is moved over the NDs with 6D 

transformation matrix 𝑇 and for each pose, likelihood are calculated. The scan pose 

correspond to the maximum likelihood is obtained by Newton’s optimization algorithm 

and considered as the position of the vehicle within a map. For further discussion readers 

are referred to [11], [70].  

To calculate the factors for position 𝑃 , first, the map elements (normal 

distributions) in the range of laser scanner beam from 𝑃 are extracted from the map. 

Second, the elevation angle 𝜓 of each map elements to point 𝑃 is calculated. In this 

work, for the localization, Velodyne VLP-16 is used. The elevation angle range of VLP-

16 is -15 to +15 degree. Therefore, from the map elements extracted beforehand, those 

are considered with the elevation angle −15 <  𝜓 < +15. These elements are called 

local vicinity of the position 𝑃 in the rest of this work and shown in Figure 5-9. Factors 

for position 𝑃 is calculated based on the local vicinity of it.  

Point cloud correspond to local vicinity is represented by 𝑆 = {𝑥1, 𝑥2… 𝑥 }, where 

  is the number of points. NDs correspond to local vicinity is represented by 𝑁   𝑝 =

 {𝑁(𝜇1, ∑1), 𝑁(𝜇2, ∑2)…  𝑁(𝜇 , ∑ )}, where   is the number of NDs, and 𝜇 and ∑ 

are the mean and covariance matrix of the normal distributions respectively. Figure 5-9(b) 

shows the raw point cloud of the extracted region. Figure 5-9(a) shows the 𝑁   𝑝 of 

the same region which is used for calculation of the factors. 

 Factors for feature sufficiency 

The first criterion is feature sufficiency of the map. In order to formulate feature 

sufficiency, three factors are proposed. These factors are   _  𝑢  ,   _     , and 

   𝑢     _     . 

5.3.1. 𝒇𝒆𝒂𝒕𝒖𝒓𝒆_𝒄𝒐𝒖𝒏𝒕, 𝑫𝒎_𝒄𝒐𝒖𝒏𝒕, and 𝑫𝒎_𝒓𝒂𝒕𝒊𝒐 

The first factor is 𝑓𝑒  𝑢 𝑒_  𝑢  . 𝑓𝑒  𝑢 𝑒_  𝑢   shows the number of map 
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features in the local vicinity. In the case of ND map format, features are normal 

distributions. More feature count should lead to less localization error. 

In order to evaluate the quality of the features in 𝑁   𝑝, the dimension value of 

the normal distributions are considered. The dimension value of each ND are calculated 

inspired by [81] as follows:  

First, for each normal distribution, Eigenvalues and Eigenvectors are calculated. 

Consider that the Eigenvalues are 𝜆1, 𝜆2, and 𝜆3. 

∑𝑗 =  UɅ𝑈𝑇, (1) 

Where ∑𝑗  is covariance matrix of the Normal distribution 𝑗  and U  is 

Eigenvectors and Ʌ is Eigenvalues as follows:  

Ʌ =  [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

], (2) 

From Eigen values the standard deviations are calculated as follows: 

∀  ∈ [1,3]  𝜎 = √𝜆 , (3) 

where   is the index of Eigen values. Using standard deviation, three dimension 

behavior are defined as follows (𝜎  is sorted so that 𝜎1 > 𝜎2 > 𝜎3): 

 1𝐷 =  
𝜎1 −𝜎2

𝜎1
,  2𝐷 =

𝜎2 −𝜎3

𝜎1
,  3𝐷 =

𝜎3 

𝜎1
, 

(4) 

where   𝐷 is the  𝑡  dimension behavior of the feature. If  1𝐷 ≫  2𝐷 ,  3𝐷, the 

 

Figure 5-9 Local vicinity of target point 𝑃. Local vicinity is extracted based on the range 

and vertical angle 𝜓 of the laser scanner. (a) ND map of local vicinity. (b) point cloud map 

is the local vicinity. 



Chapter 5. Quantification of digital map ability for self-localization 
 

 

 

65 

feature considered to be 1  feature which is pole-like features (Figure 5-10 (left)) and 

if  2𝐷 ≫  1𝐷 ,  3𝐷 , the feature is 2  feature which is more like walls and planar 

surfaces (Figure 5-10 (middle)). Finally, if  3𝐷 ≫  1𝐷 ,  2𝐷 , then the feature is 3  

feature which is more like vegetation or scatters (Figure 5-10 (right)).  

As already described in the Chapter 2, the normal distribution is used to lead the 

input scan to its optimum position. The contribution of each ND to this lead is defined by 

their shapes. If the shape is more like sphere (3D feature), it means that ND is more 

uncertain and the portion of contribution is less. In other words, it cannot help so much 

for adjusting the input scan to its proper position. Having 3D features increase the 

uncertainty of the whole map, however having of it, is better than having no features. 2D 

feature are plane-like features and can lead the input in one dimension. It can lead the 

scan to the direction parallel to its normal. As shown in Figure 5-10(b) it can only correct 

the position of the wall in the X direction. In other words, the uncertainty of 2D-ND 

features are high in 2 dimension but in one dimension which is X dimension, the 

uncertainty is very small. Thus it can be used to align the scan in that dimension. These 

features (2D-NDs) are more useful in the matching and thus in the localization comparing 

 

Figure 5-10 Definition of 1D, 2D and 3D features. 1D feature can perform the positioning for 

2 dimension. 2D features can perform in 1 dimension and 3D object has high uncertainty so 

it cannot get the correct location in any direction. 

 

1D feature 2D feature 3D feature

X
Y X

X
Y

Z

Y

 

Figure 5-11 feature dimension value for three types of objects. 

 

 1𝐷 ≫  2𝐷,  3𝐷  2𝐷 ≫  1𝐷,  3𝐷  3𝐷 ≫  1𝐷,  2𝐷
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to 3D feature. And finally 1D features has the uncertainty only in one dimension. In other 

words, it has certain value in 2 dimension and can lead the input scan in 2 dimension to 

fit the map. 1D features is shown in Figure 5-10(a). As shown in the figure, this type of 

feature can lead the input scan in X and Y dimension. It cannot fit the position of input 

scan in Z dimension. 1D features are more useful than both 2D features and 3D features. 

Usually vegetation and trees and specially scattered objects makes 3D features. Building 

walls can make 2D features and poles and edges make 1D features.  

Figure 5-13 shows different dimension property of the features with different colors 

in the map. In Figure 5-13, red features are 1 , blue is 2  features, and green features 

are 3  features. As an instance ground and building walls form 2  features and 

lighting poles and tree trunks are forming 1  features which is red.  However, 

sometimes due to the sensor parameters and sensor setup in mapping phase, the walls 

point cloud appear sparse and thus more 1D features appear in the map. This is shown in 

the Figure 5-12. Using this definition and the property of the features, 𝑓𝑒  𝑢 𝑒_  𝑢   

factor are divided into  1_   ,  2_   , and  3_    factor.   _    factor (∀  ∈

[1,3]), shows the number of    features in the space. As an instance,  1_    shows 

the number of 1  features in the space. In addition to the number of whole features in 

the patch which can represent the sufficiency of the features, these factors can represent 

 
Figure 5-12 1D, 2D and 3D shapes in point cloud map. The red features are 1D features and 

the blue features are 2D features and the green s 3D features. 

 

2D features

1D features
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the quality of the features in the patch. In addition to the   _    factor (∀  ∈ [1,3]), 

the ratio of each feature over all features are considered as another factor. These factors 

are  1_     ,  2_     , and  3_     .  

∀  ∈ [1,3],   _     =  
𝐷 _    𝑡

𝐷1_    𝑡+𝐷2_    𝑡+𝐷3_    𝑡
 , 

(5) 

5.3.2. 𝒐𝒄𝒄𝒖𝒑𝒐𝒂𝒏𝒄𝒚_𝒓𝒂𝒕𝒊𝒐 

The next factor which can formulate the feature sufficiency criteria is 

   𝑢     _     .    𝑢     _      shows how much the surrounding environment 

which can be seen by laser scanner is occupied with the map features. This factor consider 

the feature sufficiency from the view of LiDAR instead of 3D space. In previously defined 

factors such as 𝑓𝑒  𝑢 𝑒_  𝑢  , some of the features counted on the factors might be 

redundant because they are not observed by the laser scanner. Laser scanners can only 

capture the closest object in the scene.  

In order to consider this characteristic of the laser scanner, the local vicinity space 

is converted to the local vicinity depth image as shown in the bottom of Figure 5-14 (b).  

This depth image of the map can be seen as 2D histogram too. Vertical and 

horizontal resolution of the depth image is set to the number of layers and horizontal 

resolution of the laser scanner respectively. In this work, for localization, Velodyne VLP-

16 is used. This laser scanner has 16 vertical layers with resolution of 2˚. Therefore the 

 

Figure 5-13 1D (red), 2D(blue) and 3D (green) features in map. Left image is point cloud amp 

and right image is the ND map generated from left point cloud with 2.0m grid. Ground and 

building walls are 2D features and poles and trunk of trees are 1D and vegetation and trees 

has 3D features. 
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vertical resolution of the depth image is set to 2. Rotation frequency of the laser scanner 

directly related to its horizontal resolution. The rotation frequency of VLP-16 set to 20Hz 

(1200 rpm). Horizontal resolution of the VLP-16 in this rotation speed is 0.4˚. Therefore 

the horizontal resolution of the depth image is set to 0.4 as well.  

For each normal distribution in the local vicinity, the vertical angle 𝛹  and 

horizontal angle (azimuth) 𝛷  to point 𝑃 are calculated. According to these two values, 

the depth image are filled with 0’s and 1’s. 0’s in the depth image mean that there is no 

corresponding feature in that specified angel and 1’s shows the presence of the feature. In 

Figure 5-14 (b) black shows the absence and white shows the presence of the features. 

   𝑢     _      factor is the ratio of the occupied cell over all cells of the depth 

image and calculated as follows:  

 

Figure 5-14 Depth images (bottom images) correspond to the features in local vicinity (purple 

ellipsoids). In depth image white shows presence of features and black shows the absence of 

features. Occupancy ratio for the left image is 0.354 and for the left is 0.523. In right scenario, 

local vicinity is occupied with more features thus the occupancy ratio is higher. 

 

(b)(a)

   𝑢     _     = 0.354    𝑢     _     = 0.523

 

Figure 5-15 Quality of localization in longitudinal and lateral is depend on the direction of 

feature’s normal. Lateral score and longitudinal score is shown with purple. Uncertainty in 

lateral is lower, thus lateral weight should be higher than longitudinal weight. Blue ellipsoid 

shows the ND_map and red points is input scan.  
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   𝑢       𝑡  =
    𝑝  𝑑_    

   _     
 , 

(6) 

5.3.3. 𝒍𝒐𝒏𝒈_𝒘𝒆𝒊𝒈𝒉𝒕 and 𝒍𝒂𝒕_𝒘𝒆𝒊𝒈𝒉𝒕 

In order to evaluate the quality of the feature for self-localization, 𝑙  𝑔_ 𝑒 𝑔  and 𝑙  _ 𝑒 𝑔   are 

defined. 𝑙  𝑔_ 𝑒 𝑔  measures the quality of the feature for longitudinal positioning and 𝑙  _ 𝑒 𝑔  

measure the quality of feature for lateral positioning.  In Figure 5-15 ND features and one point from 

scan (red point) is shown. In this scenario, normal of the ND feature is perpendicular to the longitudinal 

direction. Uncertainty of the feature in longitudinal direction is high. Thus in this direction the 

localization accuracy is low. On the other hand, uncertainty of the feature in lateral direction is low. 

Thus the score function in lateral direction has sharper peak and thus the accuracy in lateral direction 

is higher. In this scenario, 𝑙  _ 𝑒 𝑔  is high and 𝑙  𝑔_ 𝑒 𝑔   is high. Longitudinal and lateral 

weight of each feature 𝑥  are calculated based on the degree of the angle between normal of the 

features and longitudinal direction ∅ , and the distance of the feature to the center of local vicinity   . 

The importance of   is described in the section of layout criterion. The 𝑙  𝑔_ 𝑒 𝑔    and 

𝑙  𝑔_ 𝑒 𝑔   factors are calculated as follows:  

 𝑙  𝑔_ 𝑒 𝑔   =
1

 
∑

1

 𝑖
𝑠  (∅ )

 
 =1   , 

(7) 

 𝑙  _ 𝑒 𝑔   =
1

 
∑

1

 𝑖
  𝑠(∅ )

 
 =1   , 

(8) 

Where n is the number of features in local vicinity.  

Longitudinal and lateral direction is not important. Any direction can be assumed 

as longitudinal and the perpendicular direction to longitudinal is lateral direction. In this 

work, longitudinal direction is assumed to be same as road direction. Here several factors 

are calculated from this weight.  𝑒 𝑔   factor is the summation of all weights and 

calculated as follows: 

𝑊    = ∑
1

 𝑖
𝑠  (∅ )

 
 =1 ,  , 

(9) 

𝑊  𝑡  = ∑
1

 𝑖
  𝑠(∅ )

 
 =1 ,  , 

(10) 

 𝑒 𝑔   = √𝑊   
2 + 𝑊  𝑡

2  , 
(11) 

 𝑒 𝑔  _ 𝑣  =
1

 
√𝑊   

2 + 𝑊  𝑡
2  , 

(12) 

Where n is the number of ND features in local vicinity.  
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contribution of each feature to leading the input scan to its correct position is related to 

the shape of them. Features with smaller Eigenvalues has smaller uncertainty and can lead 

to better registration solution. Thus, in addition to the aforementioned factors, 

𝑙  𝑔_ 𝑒 𝑔  _𝑒 𝑔𝑒  and 𝑙  _ 𝑒 𝑔  _𝑒 𝑔𝑒  is defined. Corresponding Eigenvalues for 

the normal are assumed to be the weight of this feature. If the Eigenvalues are big, it 

means the uncertainty is high, and if the Eigenvalues are small, it means the uncertainty 

are low and the weight should be high. The 𝑙  𝑔_ 𝑒 𝑔  _𝑒 𝑔𝑒  and 𝑙  _ 𝑒 𝑔  _𝑒 𝑔𝑒  

are calculated as follows:  

𝑙  𝑔_ 𝑒 𝑔   =
1

 
∑ 𝐾

1

𝜆𝑖 𝑖
𝑠  (∅ )

 
 =1   , 

(13) 

𝑙  _ 𝑒 𝑔   =
1

 
∑ 𝐾

1

𝜆𝑖 𝑖
  𝑠(∅ )

 
 =1   , 

(14) 

Where 𝜆  is the Eigenvalue correspond to  𝑡  feature and 𝐾 is a constant that 

make the range of 𝜆  and    almost same. 

 Factors for the layout  

In order to formulate the layout criteria of the map,    𝑃,      𝑙_𝑒      , and 

  𝑔𝑙𝑒_𝑒       are defined. 

5.4.1. 𝑭𝒆𝒂𝒕𝒖𝒓𝒆 𝑫𝑶𝑷 

Inspiring from GDOP in global positioning systems, Feature DOP (   𝑃 ) is 

calculated. Assume that the center of local vicinity is 𝑃 =  (𝑥𝑝,  𝑝, 𝑧𝑝) and the position 

of the  𝑡  ND feature is 𝑓 = (𝑥 ,   , 𝑧 )  and its distance to 𝑃  is   . Matrix 𝐴  is 

obtained as follows: 

𝐴 =

[
 
 
 
 
 
(𝑥1−𝑥)

 1

(𝑦1−𝑦)

 1

(𝑧1−𝑧)

 1
(𝑥2−𝑥)

 2

(𝑦2−𝑦)

 2

(𝑧2−𝑧)

 2

⋮
(𝑥𝑚−𝑥)

 𝑚

⋮
(𝑦𝑚−𝑦)

 𝑚

⋮
(𝑧𝑚−𝑧)

 𝑚 ]
 
 
 
 
 

  , 

(15) 

From multiplication of 𝐴 and its transpose,  

𝑄 = 𝐴𝑇𝐴 = [

�̃�𝑥
2 �̃�𝑥𝑦 �̃�𝑥𝑧

�̃�𝑥𝑦 �̃�𝑦
2 �̃�𝑦𝑧

�̃�𝑥𝑧 �̃�𝑦𝑧 �̃�𝑧
2

] , 

(16) 
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Q is obtained which can be assumed as covariance matrix of the position of 

the features related to the vehicle. Finally,    𝑃 is calculated as follow: 
 

𝑄   𝑃 =  1/√�̃�𝑥
2 + �̃�𝑦

2 + �̃�𝑧
2 , 

(17) 

If features are distributed uniformly in the space, the values of �̃�𝑥
2, �̃�𝑦

2, and �̃�𝑧
2 

are high and thus    𝑃 is low.    𝑃 has a direct relation to the localization error. In 

Figure 5-16 The distance to features for different map format. 

In Figure 5-17 several scenarios for FDOP are shown. FDOP related to the 

environment and abstraction ratio does not affect it.  

5.4.2. 𝒏𝒐𝒓𝒎𝒂𝒍_𝒆𝒏𝒕𝒓𝒐𝒑𝒚 

One of the important questions that should be answered in order to evaluate the 

layout criterion of the map is that, is the layout of the environment capable of providing 

features for both longitudinal and lateral positioning. Generally, in the matching based 

methods, the uncertainty of the positioning is related to the features normal.  

In Figure 5-18 three scenarios with features with different normal are shown. Red 

arrows show normal of the features, and red ellipsoid around the car shows the positioning 

uncertainty. In Figure 5-18(a), all of the features are parallel to the moving direction of 

 

Figure 5-16 The distance to features for different map format. 

 

 

Figure 5-17 Comparison of the layout (distribution) of the feature with lateral and longitudinal 

FDOP. 
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the vehicles. In this scenario, the longitudinal position cannot be calculated accurately, 

and the uncertainty in the moving direction is high. In Figure 5-18(b) the features are 

perpendicular to the moving direction. In this scenario, the longitudinal position can be 

obtained. However, the lateral position has a huge error. And finally in Figure 5-18(c), 

due to the presence of features in both direction, both longitudinal and lateral positioning 

can be obtained.  

Consequently, if the features in the local vicinity face more directions, the 

positioning uncertainty decreases.      𝑙_𝑒       factor can show the degree of 

dispersity of the direction of the features. 

To calculate      𝑙_𝑒      , first, Eigenvalues and Eigen vectors of the NDs in 

the local vicinity are calculated. Second, for each ND, from Eigen values, normal is 

calculated. Corresponding Eigen vector to the smallest Eigen value are considered as the 

normal. Then the azimuth angle 𝜙 and elevation angle 𝛹 of the normal are calculated. 

According to 𝜙 and 𝛹, the normal are stored in  𝑥  bins histogram. In this work, the 

     𝑙_𝑒       result are evaluated with  = 8𝑥8, 16𝑥16, and 90𝑥90 bins. 

Finally, from this normal angle histogram,      𝑙_𝑒       are calculated as 

follows: 

       = −∑ ∑ 𝑃      
 
 =1 ( , 𝑗)(𝑙 𝑔2 𝑃      ( , 𝑗))

 
 =1 , (18) 

where b is the number of bins for each axis, and 𝑃      ( , 𝑗) is the probability of 

 

Figure 5-18 Vehicle position uncertainty (red ellipsoid) in different layout of the building. (a) 

has high uncertainty in moving direction. (b) has high localization error in lateral direction. 

(c) layout of the building make the localization more accurate. 
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Positioning
uncertainty

Environment
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direction
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occurrence of ( , 𝑗)𝑡  bin and calculated using following equation: 

𝑃      ( , 𝑗) =  
 (𝑖,𝑗)

∑  (𝑖,𝑗)
𝑏
𝑖=1

 , 
(19) 

where  ( ,𝑗) is the value of the ( , 𝑗)𝑡 bin of the normal angle histogram. 

If local vicinity has a higher degree of disparity of normal, the histogram bins filled 

more evenly, therefore the entropy of the normal angle histogram increase. On the other 

hand, if the      𝑙_𝑒       shows lower value, it means that the local vicinity has a 

low level of scatter, and localization might be erroneous. Therefore localization accuracy 

has direct relation with      𝑙_𝑒       as shown in the followings. 

𝑙   𝑙 𝑧         𝑢     ∝       𝑙_𝑒       , (20) 

Value of      𝑙_𝑒       is both related to the environment and abstraction ratio 

of the map. Figure 5-19 shows the effect of abstraction ratio in the      𝑙_𝑒      . As 

shown in 4.0m ND map, the abstraction causes the normals to point to the same direction. 

In this case localization in the moving direction might have error.  

5.4.3. 𝒂𝒏𝒈𝒖𝒍𝒂𝒓_𝒆𝒏𝒕𝒓𝒐𝒑𝒚 

One of the factors which can help the quantification of the layout of the map is 

  𝑔𝑙𝑒_𝑒      .   𝑔𝑙𝑒_𝑒       shows a degree of uniformity of the feature 

distribution in the space. In order to calculate   𝑔𝑢𝑙  _𝑒      , the azimuth of all 

features are calculated. Then, based on azimuth value, angular histogram are filled. 

Angular histogram is one dimension and has 90 bins. From the angular histogram, 

  𝑔𝑢𝑙  _𝑒       is calculated as follows:  

 

Figure 5-19 Effect of map resolution on the normal of the features. Red arrows are the normal 

of each featue (ND). 

Point Cloud map ND map (4.0m grid)ND map (2.0m grid)Environment

  _2 0 𝜃,  >>                     _  0 𝜃,  
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        = −∑ 𝑃       ( ) (𝑙 𝑔2𝑃       ( ))  
 
 =1 , 

(21) 

where b is the number of bins which is 90, and 𝑃      ( ) is the probability of 

occurrence of  𝑡  bin and calculated using following equation: 

𝑃       ( ) =  
 𝑖

∑  𝑖
𝑏
𝑖=1

   , 
(22) 

where    is the value of the  𝑡 bin of the angular histogram. 

The more features distribute uniformly around the vehicle, the higher 

  𝑔𝑢𝑙  _𝑒       achieved. Higher   𝑔𝑢𝑙  _𝑒       value might have positive 

effects on the localization accuracy. Abstraction ratio does not affect the 

  𝑔𝑢𝑙  _𝑒      . 

5.4.4. 𝒓_𝒂𝒗𝒆𝒓𝒂𝒈𝒆  

 _ 𝑣𝑒  𝑔𝑒 factor is the average of the distance of the features in the local vicinity 

from point 𝑃 and calculated as follows: 

        = ∑   
 
 =1 ,  (23) 

where   is the number of features (NDs) in the local vicinity and    is the 

distance to the  𝑡  feature from the center of the local vicinity. 

 Factor for representation quality 

In order to quantify the representation criterion, mahalanobis_distance factor is 

proposed. This factor shows how much a 𝑁   𝑝  of the local vicinity was able to 

preserve the details of the raw point cloud 𝑆.  

To formulate this, for each point in the raw point cloud of local vicinity 𝑆, distance 

to corresponding 𝑁  is calculated. Distance of point to the 𝑁  is calculated by 

Mahalanobis distance as it consider the scaling parameters. Mahalanobis distance 

𝑑    of the point 𝑥  to the 𝑁 𝑗  is calculated as follows: 

𝑑   (𝑥 ) = √(𝑥 − 𝜇𝑗)𝑇∑𝐽
−1(𝑥 − 𝜇𝑗) , (24) 

where 𝜇𝑗  and ∑𝑗  are mean and covariance of the nearest 𝑁 𝑗  to 𝑥  

respectively. Then average of these points for the local vicinity are considered as 

    𝑙   𝑏 𝑠_𝑑 𝑠    𝑒 factor and calculated as follows: 
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            = 
∑ 𝑑𝑚𝑎ℎ(𝑥𝑖)
𝑛
𝑖=1

 
 , (25) 

where   is the total number of points in the local vicinity of 𝑃.  

Figure 5-20 shows Mahalanobis distance value for different NDs. Blue shows lower 

Mahalanobis values and red shows higher values. NDs correspond to ground shows lower 

Mahalanobis values, means the representation quality is high. However, vegetation and 

trees have a color near to red. This is because in these points representation quality is low. 

In fact, for the trees and vegetation, ND with 2.0m grid cannot represent the details. 

 Factors for local similarity 

5.6.1. 𝒔𝒄𝒐𝒓𝒆_𝒆𝒏𝒕𝒓𝒐𝒑𝒚 

To formulate the local similarity of the map in position 𝑃, the 𝑠   𝑒_𝑒       is 

introduced.  

The score of registration of local vicinity point cloud 𝑺  on its 𝑵𝑫𝒎𝒂𝒑   is 

calculated as 

𝑆(�⃗�) = −∑  ̃(𝑇(�⃗�, 𝑥 )) 
 
𝑘=1  , (26) 

where  ̃ is the simplified log-likelihood function of the nearest normal distribution 

 

Figure 5-20 Different Mahalanobis distance values for different NDs. Grid size is 2.0m. Blue 

shows lower mahalanobis distance and red shows higher values. Ground shows low value 

means the representation quality is high and vegetation and trees have higher Mahalanobis 

value means the representation quality is low.   
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to the point 𝑥  in the 𝑁   𝑝  and T( �⃗� ,𝑥 ) is the transformation function which 

transforms 𝑥  with 2D transformation vector �⃗�(𝑥,  ). Here �⃗� can only transform point 

𝑥  in two dimensions, 𝑥 dimension and   dimension. 

It is obvious that if the transformation vector is set to �⃗�(0, 0), the score function 

shows maximum value. As shown in Figure 5-21(b) if the point cloud shifted Δ to the 

right or left the score function decreases as the likelihood of 𝑆  and 𝑁   𝑝  are 

decreases. However, in Figure 5-21(a), as map has repetitive characteristics, by shifting 

𝑆  to the left and right, numerous peaks appear. This peaks usually known as local 

optimum and make the optimization process stack in a wrong answer. Comparison of the 

score function 𝑆 (�⃗�) with 𝑆 (�⃗�), which both are two dimension distributions, shows 

that in the presence of the repetitive objects in the map which is called local similarity 

here, the score function will distribute more evenly. Therefore if the score function is 

assumed as a probability distribution, and the entropy of the score function is calculated, 

𝑠   𝑒_𝑒       in the scenario such as Figure 5-21(a) shows higher value.  

In order to calculate the 𝑠   𝑒_𝑒      , first the score is changed to the 

probability distribution as follows: 

𝑃     (�⃗�) =
 ( ⃗⃗)

∑  ( ⃗⃗)
,  

(27) 

where 𝑠(�⃗�) is the score of registration for �⃗� and 𝑃     (�⃗�) is the corresponding 

probability. Using (25) 𝑠   𝑒_𝑒       is defined as the entropy of the 𝑃      as 

follows: 

      = −∑𝑃     (�⃗�)𝑙 𝑔2
 ⃗⃗

(𝑃     (�⃗�)) , 
(28) 

where        is 𝑠   𝑒_𝑒      .  

Range and steps of the transformation vector �⃗� is defined based on the initial guess 

requirements and here set to [−2 , 2 ] for both direction 𝑥  and   with steps of 

20  . 

As shown in the following, score entropy has a direct relation to the local similarity 

criterion. 

𝑙   𝑙 𝑠   𝑙      ∝        , (29) 



Chapter 5. Quantification of digital map ability for self-localization 
 

 

 

77 

5.6.2. 𝒑𝒇𝒉_𝒔𝒊𝒎𝒊𝒍𝒂𝒊𝒓𝒕𝒚 

In addition to the aforementioned factor, similarity based on Point Feature 

Histogram (PFH) is considered as another factor to calculate the similarity. A Point 

Feature Histogram representation is based on the relationships between the points in the 

k-neighborhood and their estimated surface normals. Simply put, it attempts to capture as 

best as possible the sampled surface variations by taking into account all the interactions 

between the directions of the estimated normals. The resultant hyperspace is thus 

dependent on the quality of the surface normal estimations at each point [82], [83]. In the 

 𝑓 _𝑠   𝑙      for each ND entity of the map, PFH is calculated based on the other 

NDs in the vicinity. This PFH represent the characteristics of that ND or in other word, 

the surrounding environment. Then this histogram is compared to other histogram in the 

local vicinity. Two approaches for calculating similarity from PFH is followed. First, to 

calculate the Manhattan distance of the PFH similarity of each factor to other neighbors. 

And total sum of Manhattan distance is assumed as the similarity value for that local 

vicinity. If the Manhattan distance is high, it means the PFH of two neighbors are not 

 

Figure 5-21 Score for two different scenario. Left environment has local similarity and right 

does not. Left score has more peaks. Score is obtained by moving point cloud (green points) 

over ND map (blue ellipsoid) and calculating likelihood. 
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similar and thus the similarity between them is low. The other approach is to calculate the 

entropy from PFH. Lower entropy means more similarity of neighbors. 

5.6.3. 𝑫_𝑩𝒂𝒕𝒕𝒂𝒄𝒉𝒂𝒓𝒚𝒚𝒂 

The other approach for calculating the local similarity is to calculate the 

Battarcharyya distance for each pair of ND entities. Battacharyya can measure the 

distance between two discrete and continuous probability distribution function. 

Bhattacharyya distance  𝐵( , 𝑞)  between two distributions  (𝑥) =

𝑁(𝑥|𝜇𝑝, 𝛴𝑝) and 𝑞(𝑥) = 𝑁(𝑥|𝜇𝑞, 𝛴𝑞) is defined as:  

 𝐵( , 𝑞) =
1

8
(𝜇 − 𝜇𝑞)𝑇(

𝛴 + 𝛴𝑞

2
)−1(𝜇 − 𝜇𝑞)

+
1

2
𝑙 𝑔(

1
2 |

𝛴 + 𝛴𝑞

2
|

|𝛴 |0 5|𝛴𝑞|0 5
) , 

(30) 

 

Summation of all value from the local vicinity is  _𝑏           . 
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Chapter 6.  

Digital map evaluation based on 

quantification factors 

 

 

In this chapter, the effectiveness and contribution of the proposed factors for the 

map evaluation is investigated by real experiments. First the experimental parameters and 

methodology is described. Then the effectiveness of the factors are investigated by 

correlation factor and Principal Component Analysis. Then using the Principal 

Component Regression (PCR), the localization error is modeled. The results are evaluated 

with and without similarity criteria to show the contribution of it. Finally, in order to 

model the error better, simple feedforward ne network is used and the results are shown.   

 Experimental methodology and setup 

To evaluate the contribution of each factor in the map matching-based localization 

error, an experiment was conducted in Shinjuku, a dense urban area of central Tokyo, 

Japan. Figure 6-1 shows the experimental area and paths. Total route of the experiments 

are 40Km. Streets around Shinjuku is surrounded by skyscrapers, tall buildings, narrow 

streets, and trees. Localization is performed using VELODYNE’s VLP-16 which has 16 

channels. The VLP-16 is placed on the roof of the vehicle with the height of 2.45 m. The 

sensor setup for the experiments are shown in Figure 6-2. To avoid the scan distortion due 

to the motion of the vehicle, the vehicle’s velocity was below 2 m/s while the frequency 

of the laser scanner was set to 20 Hz which limits the distortion in each scan to less than 

10 cm. From point cloud map (raw point cloud) the ND map is generated with the various 

grid sizes. The factors are extracted for sample points and the extracted factors are 

compared with the localization error for the same sample point. Sample points for the 

map evaluation are selected along the trajectory with 1.0m intervals. For each sample 

point, localization error and map factors are calculated. In order to calculate the 

localization error for each sample point, particles are distributed within the range of 2.0m. 
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These particles are distributed with and interval of 0.2m from each other in 2D grid. The 

distribution of particles are shown in Figure 6-3. Localization (map-matching) is 

performed for each particles and the localization error is calculated. In fact, the particles 

 

 

Figure 6-1 path of experiments in Shinjuku 

 

 

Figure 6-2 Our experimental vehicle. Front Velodyne VLP-16 is used for mapping and it is 

tilted to scan the environment densely (pith -80°). Top VLP-16 used for localization. 

A

B
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can be assumed as different initial guess for map-matching. Using the localization errors 

of the particles, the mean and maximum error for each sample point are calculated. The 

maximum error are more important for evaluation however the maximum error are 

tolerate a lot. Because of this tolerance, modeling is difficult. Therefore, worst 10% error 

in each particle is assumed as error parameter for map evaluation. Localization error is 

calculated by comparing with the ground truth. Ground truth is obtained by the 1.0m grid 

map-matching with two extensions. First, in order to not stack in local minimum, the 

score of the matching for different particles around the sample point is calculated. The 

highest one is selected as the one which is most close to ground truth. Then, again in the 

vicinity of this sample point, particles are distributed with closer intervals and the score 

of matching for each of the particles are calculated. Highest score is obtained as the 

ground truth. This ground truth is then visually confirmed. For the same sample points, 

map factors are calculated as well. Map factors are calculated only based on the ND map 

in the local vicinity of sample point and input scan is not considered.  

 Evaluation and error modeling with PCR 

Figure 6-4 shows the comparison of four defined factors with 3D maximum error 

for 4.0m ND map (grid size in this ND map is 4.0m). These factors are DM_ratio, FDOP, 

score_entropy (      ),  and normal_entropy (       ). Normal entropy is calculated 

for 8x8 bins. In region (a) and (c) where the score_entropy is lower compared to the other 

parts, the localization error is higher. The same thing happens for most of the peaks of the 

 

Figure 6-3 sample points and particles which are distributed in the vicinity of the sample point. 
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maximum error. However, in region (b) the score_entropy stayed high while the 

localization error was increased. While the similarity entropy failed to describe the 

maximum localization error in region (b), the normal entropy factor clearly describes the 

error source.  

Figure 6-5, Figure 6-7, Figure 6-8 shows the map evaluation factors compared to 

mean and maximum error for ND map with 2.0m grid size of PATH #II of the 

experimental area (Figure 6-6). Figure 6-5 shows the factors for feature sufficiency 

criterion. The first and second figures show the maximum and mean error of the self-

 

Figure 6-4 Comparison of different factors with 3D maximum error. For each figure, blue graph 

is 3D maximum error and orange graph is values of factors. Normal entropy factor is calculated 

for 8 × 8 bins. 
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localization respectively. In B-C and D-E periods, localization shows higher accuracy. 

However, in A-B and C-D big error appeared.  These errors came from many factors 

which can be assessed from Figure 6-5, Figure 6-7, and Figure 6-8. Figure 6-5 shows that 

the    𝑢     _      and 𝑓𝑒  𝑢 𝑒_    is highly related to the mean and max error. 

In A-B and C-D where error exist, these two values are lower. Among the   _      

factor (∀  ∈ [1,3]),  3_      contribute more to the localization accuracy. Whenever 

the ratio of  3 features lowered the localization error increased.     

Localization errors and factors related to the Layout criterion for a 4.0m grid of path 

 

Figure 6-6 Path #I, #II, and #VI of the experimental area. 

 

 

 

Path VI 00-15-53

Path II Path VIPath I

 

Figure 6-5 Factors related to the feature sufficiency for path II (2.0m ND) compared to mean 

and max error of the same path. 
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II is shown in Figure 6-7. A-B period of Figure 6-7 shows,  _ 𝑣𝑒  and 

 

Figure 6-7 Factors related to the layout for path II (2.0m ND) compared to mean and max error 

of the same path. 
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TABLE 6-1 Correlation of factors related to the layout, local similarity, and representation 

quality with each other and mean and max error for path II (2.0m ND). 

 

Green cells show high positive relation and red cells show high negative relation. Yellow cells has no relation. 

criteria Layout
Representation 

quality
Local 

similarity
Localization Error

𝑓     𝑠   𝑣𝑒    𝑃    𝑔𝑢𝑙  
      𝑙

(90)
      𝑙

(16)
      𝑙

(8)
     𝑠   𝑒 𝜇3      𝑥3    

    1.000 -0.190 0.684 0.727 0.654 0.463 -0.372 0.580 -0.631 -0.674

   𝑃 -0.190 1.000 0.290 0.222 0.210 0.204 0.286 -0.032 -0.057 -0.134

        0.684 0.290 1.000 0.972 0.927 0.745 -0.143 0.640 -0.825 -0.809

       (90) 0.727 0.222 0.972 1.000 0.971 0.811 -0.189 0.700 -0.836 -0.844

        (16) 0.654 0.210 0.927 0.971 1.000 0.883 -0.177 0.696 -0.824 -0.827

        (8) 0.463 0.204 0.745 0.811 0.883 1.000 0.022 0.544 -0.763 -0.717

            -0.372 0.286 -0.143 -0.189 -0.177 0.022 1.000 -0.421 0.026 0.164

      0.580 -0.032 0.640 0.700 0.696 0.544 -0.421 1.000 -0.592 -0.654

 𝑒  𝑢 𝑒  𝑡 0.712 0.266 0.923 0.960 0.902 0.727 -0.149 0.646 -0.764 -0.843

 1  𝑡 0.612 0.256 0.811 0.804 0.686 0.441 -0.059 0.486 -0.624 -0.672

 2  𝑡 0.555 0.145 0.631 0.588 0.452 0.238 -0.141 0.301 -0.517 -0.515

 3  𝑡 0.667 0.254 0.878 0.939 0.926 0.807 -0.157 0.668 -0.743 -0.837

 1  𝑡  -0.406 -0.042 -0.460 -0.542 -0.637 -0.700 0.179 -0.470 0.509 0.557

 2  𝑡  -0.655 -0.217 -0.906 -0.950 -0.961 -0.824 0.179 -0.703 0.761 0.808

 3  𝑡  0.637 0.180 0.847 0.908 0.949 0.866 -0.197 0.696 -0.753 -0.805

   𝑢   𝑡  0.641 0.256 0.874 0.924 0.921 0.807 -0.190 0.617 -0.752 -0.831

1.0

-1.0

1.0

-1.0
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  𝑔𝑢𝑙  _𝑒       react better than other factors. It is shown that if the r-average is 

higher, localization become more accurate. In C-D,    𝑃 ,   𝑔𝑢𝑙  _𝑒      , and 

     𝑙_𝑒       react well.  For both A-B and C-D,      𝑙_𝑒       reacts well. 

In Figure 6-7      𝑙_𝑒       is calculated for 90 × 90 , 16 × 16bins, and 8 ×

 

Figure 6-8 Factors related to the representation quality and local similarity for path II (2.0m 

ND) compared to mean and max error of the same path. 
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TABLE 6-2 Correlation of factors related to the feature sufficiency with each other and mean 

and max error for path II (2.0m ND). 

 

Green cells show high positive relation and red cells show high negative relation. Yellow cells has no relation. 

1.0

-1.0

1.0

-1.0

criteria Feature sufficiency Localization Error

𝑓     𝑠  𝑒  𝑢 𝑒  𝑡  1  𝑡  2  𝑡  3  𝑡  1  𝑡   2  𝑡   3  𝑡     𝑢   𝑡  𝜇3𝐷     𝑥3𝐷   

 𝑒  𝑢 𝑒  𝑡 1.000 0.866 0.639 0.964 -0.504 -0.912 0.866 0.932 -0.764 -0.843

 1  𝑡 0.866 1.000 0.722 0.721 -0.017 -0.716 0.552 0.679 -0.624 -0.672

 2  𝑡 0.639 0.722 1.000 0.444 -0.081 -0.344 0.290 0.518 -0.517 -0.515

 3  𝑡 0.964 0.721 0.444 1.000 -0.670 -0.950 0.952 0.955 -0.743 -0.837

 1  𝑡  -0.504 -0.017 -0.081 -0.670 1.000 0.586 -0.787 -0.690 0.509 0.557

 2  𝑡  -0.912 -0.716 -0.344 -0.950 0.586 1.000 -0.961 -0.902 0.761 0.808

 3  𝑡  0.866 0.552 0.290 0.952 -0.787 -0.961 1.000 0.922 -0.753 -0.805

   𝑢   𝑡  0.932 0.679 0.518 0.955 -0.690 -0.902 0.922 1.000 -0.752 -0.831

    0.712 0.612 0.555 0.667 -0.406 -0.655 0.637 0.641 -0.631 -0.674

   𝑃 0.266 0.256 0.145 0.254 -0.042 -0.217 0.180 0.256 -0.057 -0.134

        0.923 0.811 0.631 0.878 -0.460 -0.906 0.847 0.874 -0.825 -0.809

       (90) 0.960 0.804 0.588 0.939 -0.542 -0.950 0.908 0.924 -0.836 -0.844

        (16) 0.902 0.686 0.452 0.926 -0.637 -0.961 0.949 0.921 -0.824 -0.827

        (8) 0.727 0.441 0.238 0.807 -0.700 -0.824 0.866 0.807 -0.763 -0.717

            -0.149 -0.059 -0.141 -0.157 0.179 0.179 -0.197 -0.190 0.026 0.164

      0.646 0.486 0.301 0.668 -0.470 -0.703 0.696 0.617 -0.592 -0.654
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8bins. Among these three 90 × 90bins can show error model more precisely.  

Localization errors and factors related to both local similarity and representation 

quality criteria for a 2.0m grid of path II is shown in Figure 6-8. Errors are made of several 

factors, and each of factors reacts in a specific situation. In other words, each of the factors 

can model something that others cannot. Thus, for modeling the error, all of them are 

essential. Factors can overlap in some situations.  

For example, in Figure 6-8, both    𝑢     _      and 𝑓𝑒  𝑢 𝑒_    follows 

the similar trend. However, it is not always and at the same time they show different 

characteristics of the map as well. TABLE 6-2 shows a correlation of the factors related 

to the feature sufficiency with other factors and also with the mean and max error.  

Likewise, TABLE 6-1 shows correlations for factors related to the layout, local 

similarity and representation quality. Correlation of the factors with errors can be assumed 

as effectiveness or contribution of each factor to the error. In other words, the higher the 

correlation value with error model, the more that factor contribute to the error. In 

TABLE 6-2 and TABLE 6-1, a value near to 1.0 (green cells) shows two variables are act 

highly related to each other and values near to -1.0 (red cells) shows they are act nearly 

opposite of each other. Values near the 0 (yellow cells) means they are not related at all. 

In TABLE 6-2    𝑢     _      and 𝑓𝑒  𝑢 𝑒_  𝑢   has 0.93 of correlation. High 

correlation value could be expected from Figure 6-5 as well. Factors related to the feature 

sufficiency (TABLE 6-2), has high correlation values with localization error. Among 

them, 𝑓𝑒  𝑢 𝑒_  𝑢   has the highest correlation with 0.843. Contribution of each 

factor is different in mean and maximum error. Correlation of  2_      with error 

(0.761 for mean, 0.808 for max) shows that if the proportion of  2  increase, the 

localization increase too. Among the features in TABLE 6-1,    𝑃  and 

    𝑙   𝑏 𝑠_𝑑 𝑠    𝑒  has lower correlation to other factors. Therefore these two 

factors can evaluate some characteristics of the map that cannot be evaluated by others 

and make them a key factor for modeling the error. On the other hand,    𝑃  and 

    𝑙   𝑏 𝑠_𝑑 𝑠    𝑒  factors has low correlation with the localization error 

(TABLE 6-1). This is because some of the map criteria does not appear frequently, thus, 

corresponding factors has lower correlation to the error. One of the other reason is that 

the representation quality in the 2.0m grid size is not bad. Thus the error is not related to 
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the value of representation quality. Low correlation in TABLE 6-2 and TABLE 6-1 do not 

necessarily mean the inability of the factors for map evaluation.   

In order to model the localization error based on the afformentioned factors, 

principal component regression (PCR) is used. PCR applied to a set of factors as 

explanatory variables and localization error as a response. Here, in order to show the 

importance of the similarity, the error modeling is performed with and without similarity. 

PCR are applied to all data. The results are shown for three paths #I, #II, and #VI in the 

Figure 6-6 and total path (Figure 6-1).    

In order to show how much the proposed factors could model the error, r-squared 

( 2) and root mean squared error (RMSE) are used. In addition to these parameters, ratio 

of predicted error less than 10cm ~ 20cm are shown in the Tables. This ratio means what 

percent of the sample points can be evaluated with error less than 10cm. Figure 6-9 shows 

the modeled error using PCR for Path #I. The results are divided into two parts. Modeled 

error without using the fourth criteria which is local similarity criterion (top) and the 

 

Figure 6-9 Modeled error with PCR for Path #I with (bottom) and without similarity (top). 
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results using all criteria (bottom). In Figure 6-9(top), the results are shown by adding each 

criteria into the model. Graph for 1 criterion only uses the factors for representation 

quality (green). In graph with 2 criteria, feature sufficiency is added to the model (yellow) 

and in the graph with 3 criteria, layout is added to the model. In Figure 6-9 (Bottom) 

similarity criteria added to the model and make the graph fit better to the error model. 

From Figure 6-9, it is obvious that by adding more evaluation criteria to the model, 

goodness of fit increased. The results of good ness of fit in Table 6-3 confirm this. The 

Table 6-3 Modeled error goodness of fit for Path #I  

𝑹𝟐 RMSE predErr 

< 10cm 

predErr 

< 15cm 

predErr 

< 20cm 

predErr 

> 25cm 

Represent Quality 0.046 0.399 47.6% 65.2% 79.9% 7.2% 

+Feature Criteria 0.269 0.350 40.9% 60.2% 72.5% 18.5% 

+Layout Criteria 0.664 0.238 66.2% 83.3% 89.7% 7.7% 

+Local Similarity 0.747 0.207 70.7% 83.2% 88.9% 7.5% 

 

 

Figure 6-10 Modeled error with PCR for Path #II with (bottom) and without similarity (top). 
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modeled error are shown for the Path #II (Figure 6-10) and Path #VI (Figure 6-11) as well. 

Also, Table 6-4 and Table 6-5 shows the goodness of fit for Path #II and Path #VI 

respectively. From the tables, it is obvious that by adding the criteria, better model 

achieved. The improvement of each path is different from each other. For example, in 

Path #I, representation quality can model the error in 47.6% points of the map, while in 

Path #II it is 37.5%. This is because the effect of the representation quality in Path #II is 

lower. Table 6-6 shows the goodness of fit parameter for whole experimental area. The 

results show in about 63% of the cases the localization error could be modeled by four 

Table 6-4 Modeled error goodness of fit for Path #II  

𝑹𝟐 RMSE predErr 

< 10cm 

predErr 

< 15cm 

predErr 

< 20cm 

predErr 

> 25cm 

Represent Quality 0.404 0.391 37.5% 48.1% 57.5% 34.4% 

+Feature Criteria 0.621 0.312 58.6% 66.6% 72.2% 23.5% 

+Layout Criteria 0.752 0.253 59.3% 69.8% 78.5% 16.1% 

+Local Similarity 0.819 0.218 60.1% 70.9% 78.5% 16.1% 

 

 

Figure 6-11 Modeled error with PCR for Path #VI with (bottom) and without similarity (top). 
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map criteria and using PCR. However this value is not satisfactory. In fact, as the relation 

of the factors with each other is not clear, it is difficult to formulate it. Thus, we use a 

simple feedforward neural network for modeling the error more precisely.  

 Error modeling using neural network 

In order to model the error more precisely, in this subchapter a simple feedforward 

neural network is used. In fact the connection and relation between the map factors are 

very difficult to model using the PCR. Thus, the determination of the relation of the 

factors and weights are done by the learning method. In this work, we have used a very 

simple feedforward neural network for classification. The input size of vectors correspond 

to the number of factors extracted from map and the label is the error of the path. As the 

error more than 1.0m are not acceptable, error more tha n 1.0m are all set to 1.0m. By 

doing this, the output of the network are become 0  to 1.0 which suit to the classic 

classification problem. In fact, here only the structure of classification is used. The output 

of 0 to 1.0 is assumed as error of the position of the map. Input of the network has 16 

neurons which is the number of factors. The number of hidden layer is 3 and each hidden 

layer has 100 of neurons. Total number of data are around 20000 which is shown in the 

Figure 6-1. Here the data is referred to the set of factors extracted from each sample 

Table 6-6 Modeled error goodness of fit for whole area  

𝑹𝟐 RMSE predErr 

< 10cm 

predErr 

< 15cm 

predErr 

< 20cm 

predErr 

> 25cm 

Represent Quality 0.064 0.406 35.7% 54.8% 68.3% 20.4% 

+Feature Criteria 0.220 0.371 42.1% 55.3% 67.1% 22.5% 

+Layout Criteria 0.567 0.276 58.6% 75.0% 82.2% 12.6% 

+Local Similarity 0.666 0.243 63.3% 74.3% 82.1% 12.8% 

 

Table 6-5 Modeled error goodness of fit for Path #VI  

𝑹𝟐 RMSE predErr 

< 10cm 

predErr 

< 15cm 

predErr 

< 20cm 

predErr 

> 25cm 

Represent Quality 0.072 0.342 41.3% 61.0% 77.2% 13.9% 

+Feature Criteria 0.185 0.321 46.4% 62.7% 76.0% 15.5% 

+Layout Criteria 0.387 0.279 57.9% 73.4% 82.8% 10.8% 

+Local Similarity 0.543 0.242 59.8% 75.8% 84.6% 10.6% 
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position in the map and actual localization error of the map is assumed as label. In order 

to show the modeled data for each path, like the one for PCR, each path are excluded 

from the data, and the network is trained. Later, using the trained model, error for each 

 

Figure 6-12 Modeled error (green) vs actual error (blue) for the path #I, #II, #VI. 
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Table 6-7 Prediction success rate and false negative rate for whole path. 

Prediction 

Success rate 

(<10cm) % 

Prediction 

Success rate 

(<15cm) % 

Prediction 

Success rate 

(<20cm) % 

78.2% 87.3 % 91.8% 
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path is modeled. Figure 6-12 shows the modeled error using the learning method. These 

figures show that the model fitted the actual error better than PCR. The goodness of fit 

characteristics are shown for each of the path in Table 6-8. Prediction success rate for less 

than 10cm in the tab les means, if the difference of actual error and predicted error is less 

than 10cm, then the prediction is assumed as success. For path I, prediction success rate 

for less than 10cm is 82.9% which is good. Prediction success fail rate for more than 

25cm means the prediction and actual error difference is more than 25cm. The rate of fail 

is 4.4% for path I. The False negative rate which shows the negative prediction over all 

negative samples are around 4.26% which is quite good. Here, negative means the error 

is not more than 25cm. as already mentioned in the chapter II about localization, required 

localization accuracy assumed to be 25cm in this work.  

 

 

 

 

 

 

 

 

 

Table 6-8 Prediction success rate and false negative rate for path #I, #II, and #VI. 

 Prediction 

Success rate 

(<10cm) % 

Prediction 

Success rate 

(<15cm) % 

Prediction 

Success rate 

(<20cm) % 

Prediction 

fail rate  

(>25cm) % 

FN rate (
𝑭𝑵

𝑻𝑷+𝑭𝑵
) 

PATH #I 82.9% 91.3% 94.6% 4.4% 56.0%(19.6%*) 

PATH #II 78.8% 85.0% 90.0% 6.1% 4.26% 

PATH #VI 72.1% 83.0% 88.9% 8.25% 26.3% (12.6%*) 

*In the case the cut off set to 20cm instead of 25cm 
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Chapter 7.  

Adaptive refinement of map and localization 

parameters based on map factors 

 

 

In Chapter 6, map evaluation factors are used to model the error for different 

position of the map. If error model is available, some of the parameters for localization 

can be defined beforehand. These parameters are resolution of the map and range of laser 

scanner. In this chapter, this prediction is used for determination of the abstraction ratio 

of the map and laser range of the input scan adaptively. 

 Adaptive refinement of map resolution 

In NDT, map space is divided into the static grids, and for each grid, ND of the 

points are calculated. Usually, grid size (resolution) of the map is determined empirically 

and depends on the environment. Bigger grid size has lower map resolution, and smaller 

grid size has higher resolution. Basically, lower resolution are more favorable because of 

its data size. In fact, lower resolution has more abstraction ratio and can reduce the map 

size. However, if the resolution is low, many details of the environment are ignored, and 

the localization accuracy degrades. In other words, in the bigger grid sizes, some of the 

vital information for the self-localization are lost and as results error occurs. This 

information loss and localization error are different from place to place on the map. If the 

self-localization ability of the map for specific position and resolution can be evaluated 

with some method, then the grid size of that position can be determined adaptively based 

on the evaluation.  

In this subchapter, localization ability of the map in a specific position for each 

resolution is evaluated with factors mentioned in Chapter 5. Using these factors, for each 

position and resolution of the map, localization error are modeled. Based on the modeled 

error, for each position of the map, (lower resolution) most significant grid size which can 

preserve required localization accuracy is selected. The adaptive abstraction is evaluated 
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for two required localization accuracy, 0.25m and 0.5m. It is worth to mention that, still 

there is no global standard for required accuracy of self-localization among the 

companies; however, Cross-ministerial Strategic Innovation Promotion Program (SIP) 

Japan have announced in its recent report that the required accuracy of the high definition 

(HD) map for autonomous driving should be 0.25m. This figure comes from the tier width 

and satellite image resolution. Based on this figure, the localization accuracy of the 

autonomous vehicles needs to get close to 0.25m as well. 

7.1.1. Effect of map resolution to localization error 

Most of the digital map formats such as point cloud map, ND map, Vector map and 

planar surface map has a kind of abstraction inside it. Otherwise, use of point cloud map 

itself for localization is very infeasible because of its size. Here, the term resolution is 

defined for digital map to show the rate of abstraction. Resolution can be used for every 

map format. In the case of Point cloud map, the term resolution of the map correspond to 

the grid size which is used for down-sampling the point cloud map. Usually, Point cloud 

map are down-sampled beforehand due to its huge size. In Figure 7-1 different resolution 

of the point cloud map is shown. 

In the case of ND map, the term resolution refer to grid size that we use to discretize 

the point cloud before making the NDs. If the smaller grid size used, means the resolution 

is higher, then more details of the environment can be represented using the NDs. If the 

bigger grid size is used the resolution become lower and thus less details of the 

environment represented in the map. The map resolution has direct relation with the map 

size. Different level of ND resolution are shown in Figure 7-2. 

 

Figure 7-1 Different resolution of the point cloud. Right image is the high density with original 

resolution. The left image is down-sampled by 30cm grids. 
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In the case of multilayered vector map format, the resolution means how much 

details of the building are appeared in the vector map. By manipulating the line extraction 

parameters we can change the amount of details that are represented by the map. As 

shown in the Figure 7-3 for the corresponding point cloud we can extract line segment in 

two ways. The one with lower resolution (Figure 7-3(right)) and the one with higher 

resolution (Figure 7-3(left)). As we can see the higher resolution represent more detail of 

the building (Figure 7-3(left)).  

Same concept can be defined for the planar surface map. By manipulating the 

RANSAC plane extraction parameters, the plane is extracted with more detail which 

means with higher accuracy. In Figure 7-4 different plane extraction parameter with 

different resolution are shown.  

In general map resolution show how much detail of the environment are represented 

by the map and has direct relationship with map size. In terms of map size, lower 

 

Figure 7-3 Different resolution for the vector map. The vector map resolution can be adjusted 

using line extraction parameters. 

 

Figure 7-2 Different resolution for ND map. For the ND map, grid size can adjust the 

resolution. 

 

Point cloud1.0 m2.0 m3.0 m4.0 m

Level of abstraction
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resolution is more desi rable. However in terms of self-localization accuracy, more details 

of the environment can be used for better accuracy. This fact already mentioned in 

Chapter 3 where we introduced the concept of multilayered vector map. However higher 

resolution has several disadvantages. These disadvantages are as follows: 

 Computation time  

In general, in map-based techniques, for each points in the laser scanner, the 

corresponding entity is found. If the number of entity is high, then the search time will 

increase. Thus total matching time increase.  

 Intensive memory usage 

More resolution means more entity in the map, thus the memory size increase. In grid-

based map, the map size increase logarithmic. If the size of grid become half then the 

size of memory increase 8 times. 

 Data loss 

This will happen in NDT based map matching techniques. Usually for making ND for 

each cell we require 5 points. In some part of the map, if the resolution of the map is 

high (grid size is low) then 5 points cannot be found. Thus, in that part we will not 

have data.  

The details of the environment can help the self-localization accuracy in some occasions. 

For example, In the Figure 7-5 two buildings are shown. Figure 7-5(a) shows a low 

resolution of the building walls, thus the detail texture of the building is not appeared. In 

this case the lateral accuracy is high due to presence of two walls. However, for 

 

Figure 7-4 Different resolution of plane extraction algorithm. If we set the parameter of plane 

extraction to very high value, then we have very coarse plane as shown in the left. 

Level of abstraction
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longitudinal position the accuracy degrades. The reason is that there is no observation 

difference between various positions in the longitudinal direction. This is true for almost 

any localization technique which uses laser scanner and map. In Figure 7-5(b), the 

resolution of the map is increased and more texture of the map appeared. In this situation, 

by using these features of the building, the longitudinal position can be obtained. 

Therefore, in this scenario, increase in resolution can raise the self-localization accuracy. 

In Figure 7-5(c), one more building added in the previous alignment of the buildings. In 

this scenario, the longitudinal position can be obtained using the front walls of the lateral 

building. In this case, there is no need for high resolution map because the layout of the 

map can cover the shortage in resolution.  

As a conclusion, in some part of the map, plenty of building features are available 

which enables us to use lower resolution and therefore save the memory space. However, 

in some occasions few features are available and if the same resolution as the former is 

used, accuracy of the localization degrades by some extent. In this case, whole map can 

be made with higher resolution or just increase the resolution of some part of the map. 

therefore, some factors are necessary to evaluate the map in terms of accuracy.  

7.1.2. Effect of resolution in NDT-based localization 

In NDT-based map matching, instead of directly registering the Velodyne scan to 

the point cloud map, the scan is registered to the set of NDs called 𝑁   𝑝 which is made 

 

Figure 7-5 Special case that the vehicle self-localization longitudinal accuracy is low (a). In 

(b) the resolution of the map is good enough so we can see the longitudinal features and we 

can obtain the longitudinal position as well as lateral position. In (c) by adding a new wall in 

front, the vehicle can obtain the longitudinal position as well. 

 

(a) (b) (c)
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from point cloud map. In order to make 𝑁   𝑝, map space is subdivided into fixed size 

voxels called cells. Then, from the points inside each cell, ND is obtained. To register the 

scan on this 𝑁   𝑝, the scan is moved over the NDs with 6D transformation matrix 𝑇 

and for each pose, likelihood are calculated. The scan pose correspond to the maximum 

likelihood is obtained by Newton’s optimization algorithm and considered as the position 

of the vehicle within a map. For further discussion about NDT, readers are referred to 

[11], [70]. 

The error of self-localization within a map is highly related to the map resolution. 

Map resolution in the 𝑁   𝑝 is related to grid size in the descritization process. If grid 

 

Figure 7-6 Localization error for different map resolution. Red region shows errors more than 

0.25m. 
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size of the map is low, it has higher resolution. Higher resolution means that the map can 

preserve more details of the environment. In other words, information loss in small grid 

size is lower. On the other hand, if the grid size of the map is big, details in the 

environemnt are ignored and there are more information loss. If the details of the map is 

ignored, localization error are more likely to appear. Figure 7-6 shows mean self-

localization error of a specific path (Figure 7-7) for differet resolutions (2.0m ~ 5.0m). 

Mean error is obtained by averaging the localization error from different initial guess 

around each position. For each position, the initial guess is distributed in four sides with 

0.2m interavals and range of 2m(total 441 initial guesses). Red region in Figure 7-6 shows 

localization error more than 0.25m. Figure 7-6 (5.0m) shows that in about 63.7% of the 

path, the error is less than 0.25m (white regions). This means if in those positions, 𝑁   𝑝 

with 5.0m resolution is used, still, high accuracy localization results can be obtained. On 

the other hand, in the red region which their error are more than 0.25m, the higher 

resolution should be used. In 4.0m resolution, 17.3% of the positoins has error higher than 

0.25m and in 3.0m and 2.0m grid sizes, 10.5% and 7.1% respectively.  

From Figure 7-6, it is clear that the error for specific grid size is different from place 

to place. One of the reason is that the amount of information loss is different from place 

to place as the volume of the details of the environment varies from place to place. Thus, 

in some places, more abstraction does not lead to more information loss. Moreover, in 

some places, more information loss necessarily does not result in localization error 

because of other characteristics of the map.  

In fact, information loss is not the only reason for the localization error. Other 

criteria affect the localization error as well. One of these criteria is a sufficiency of 

features. If the features for matching is not sufficient or the quality of the features is not 

satisfactory, the error might happen. The layout of the features might be important as well. 

There might be places on the map that the number of high-quality features are enough. 

However, as all features faced parallel to the moving direction of the car, the longitudinal 

position of the vehicle cannot be obtained accurately, and localization error occurs. 

Tunnels, highways and deep urban canyons are some of the example scenarios that the 

layout of the environment cause localization error in the moving direction. On the other 

hand, in some places of the map, there might be similar features that make the localization 



Chapter 7. Adaptive refinement of map and localization parameters based on map factors 
 

 

 

100 

erroneous, as the optimization process cannot match the input scan to the correct 

correspondences. Thus local similarity in the map can cause an error as well.  

Therefore, in order to evaluate the ability of map in a specific position, these criteria 

should be considered together. Moreover, by evaluating these criteria, and feeding back 

it to the abstraction process, resolution of the map is adjusted to abstract the map as much 

as possible considering the required localization accuracy. 

In order to clarify the discussion, in Figure 7-8, four scenarios are showed. In 

Figure 7-8, redpoints shows the input scan and bluwe ellipsoids are ND_map. The 

ellipsoids arround the vehicle shows the uncertainty in pose of vehicle. Red elliposoid 

means the error in localization. In Figure 7-8 (a), as the resolution is low, information loss 

happen, and other criteria cannot aid the localization as well. Thus the positioning has a 

high error in moving direction. However, in Figure 7-8 (b), one lateral feature in the top 

of the vehicle appears. In this situation, the vehicle can use these features for longitudinal 

positioning. Thus in this scenario, localization can be done with the same resolution 

without error. In fact, in (b), the layout of the features cover the information loss effect to 

the localization. In (c), the layout of the features and feature sufficiency cover the 

information loss effect on the localization. Information loss in (a), cannot be rectified by 

other factors because they are not satisfactory as well. Thus, in (a), by increasing the 

resolution (decrease the grid size), localization accuracy should be achieved (Figure 7-8 

(d)). 

7.1.3. Map refinement based on factors 

In Chapter 5, map factros to evalaute map capability for self-localization is defined. 

In this section, these map factros are used to predict the error of each map resolution and 

define the best resolution for the map. Map factros are calcutaled and evaluated from low 

 

Figure 7-7 Path of experiments in Shinjuku, Tokyo (left), and its point cloud map (right). 
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resolution (big gridd size) to high resolution (low grid size) thus the process is called 

resolution refinement. 

First sample point 𝑃 ,𝑗 is distributed in map space with a 1.0m interval in 𝑥 and   

directions. These sample points are the points that the map evaluation are performed. 

Then for each sample point 𝑃 ,𝑗 , by calculating the factors and evaluating them, 

resolution of the local vicinity are obtained adaptively. To obtain resolution in the vicinity 

of point 𝑃 ,𝑗, first, local vicinity of 𝑃 ,𝑗 are extracted. Second, 𝑁   𝑝 of local vicinity 

is generated with bigest grid size (here 5.0m). Third, using map evaluation factors defined 

in cahpter 5, the self-localization ability of this 𝑁   𝑝 is evaluated. In this process, from 

the map factors, mean error are modeled (based on method in Chapter 6). In order to 

model the localization error based on the afformentioned factors, we use principal 

 

Figure 7-9 Modeled error using map evaluation factors for different grid sizes (2.0m~5.0m) 

 

 

Figure 7-8 Vehicle position uncertainty in different scenarios. Red ellipsoid means high error 

and green ellipsoids means low position uncertainty. 

(a) (b)

(c) (d)

ND map Environment scan
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component regression (PCR). PCR is a regression analysis technique that is based on the 

principal component analysis (PCA). PCR applied to a set of factors as explanatory 

variables and actual mean localization error as a response. By doing this mean error for 

each position can be modeled from factors. Figure 7-9 shows the modeled error from map 

evaluation factors. These results are made utilizing the final map refinment procedure 

wchich uses the neural network for modeling the error. 

If the modeled error from factors is more than error threshold, the resolution should 

be increased, and again the ND map is generated and evaluated. Error threshold in this 

work is set to 0.25m and 0.5m. This iterative refinement continues until the mean error 

becomes less than the threshold or the grid size reaches the lower value (here 1.0m). The 

result of this refinement for each position 𝑃 ,𝑗 is the best resolution for the local vicinity 

of that position and stored in the 𝐺 ,𝑗   𝐺 is a 2D arrray and has the same number as 

sample points 𝑃 ,𝑗. This process is applied to all points in sample points in the map and 

2D array G is filled. 

Now, for each point 𝑃 ,𝑗 in the map, the best resolution is stored in 𝐺 ,𝑗 . In order 

to make the 𝑁   𝑝  from 𝐺 , overlap region of each element should be considered. 

Suppose the value of  𝐺 ,  is 1.0 and the value of its neighbor element 𝐺 , +1is 4.0. 

This means that for the local vicinity of the point 𝑃 ,  the best grid size is 1.0m and for 

the 𝑃 , +1the best grid size is 4.0m. If the range of laser scanner is assumed to be 50.0m, 

local vicinity of these two points has 49m overlap. Therefore, for the overlap region, 

smaller grid size should be applied. 

So for the final step, overlap region of the elements of 𝐺 should be processed. For 

this, first, elements with the smallest value (1.0) is selected. Then, their value are 

overwritten into the elements in the range of laser scanner and their flag are set to one. 

Here, the flag is used to distinguish the elements which is already finalized. Next, for the 

remaining (flag=0), elements with second smallest value (2.0) are selsected and their 

vicinity with the range of laser scanner is overwritten with their value and flags are set to 

one. Overwrite is only applied to the elements which their flag is 0. This iterative process 

is applied to all grid size (1.0 ~ 5.0m). In this work the step of refinement is 1.0m. 

Figure 7-10 shows an example of before and after applying the final process to  𝑡  row 

of 𝐺. In this example laser range is assumed to be 20m. As can be seen, small grid size 
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in G force neighbor elements to be small too, thus overal abstraction ratio of map increase. 

Before applying final process, abstraction ratio of this row was 3.78 and after final process 

abstraction ratio became 1.99. 

7.1.4. Experimental results 

In order to evaluate the refinement strategy, experiments were conducted in 

Shinjuku, Tokyo. Experimental path and its point cloud map are shown in Figure 7-7. 

Length of this path is around 1.2Km. For the localization, VLP-16 is used. Frequency and 

laser range of VLP-16 is set to 20Hz and 25m respectively.  

Map refinement strategy is done based on the map factors. Thus, first, we evaluate 

the effectiveness of the defined factors by modeling the mean error. By applying PCR to 

the factors of each grid size, the error is modeled based on factors.  

Figure 7-11 shows the best resolution estimated based on the modeled error and 

0.25m error threshold for the experimental path. Figure 7-12 shows same results for the 

error threshold of 0.5m. Blue graph is before final process and red is after final process. 

As Figure 7-11 shows, in most of the position in the path, 3.0m grid size can achieve 

required localization accuracy.  

Experimental results show that our adaptive resolution strategy can shrink the map 

size of the experimental area down to 32.4 % compared to the 1.0m resolution while the 

average of the mean errors is less than 0.14m.  

 

Figure 7-10 Best grid size of the map before (blue) and after (red) final process. 
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Figure 7-11 Best grid size of the map for experimental path before (blue) and after (red) final 

process for 0.25m error threshold. 
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TABLE 7-1 shows the average of the mean error for different grid sizes. If the 5.0m 

grid is used for entire area, an average of the mean error become 0.283m. Also, more than 

36.3 percent of the cases errors more than 0.25m appears. Compared to this, by using the 

adaptive strategy, an average of the mean error for the experimental path is around 0.141m 

and only in 9.9% of the cases error more than 0.25m appears. This 9% caused because of 

error in the modeling phase. One of the solutions for overcoming this problem is to add 

more map factors in the phase of map evaluation. Another solution is to perform iterative 

refinement with a lower threshold than 0.25m.  

Figure 7-13 shows best estimates for the map. Different colors of the positions show 

different resolution for their local vicinities. Red shows lowest resolution which is 5.0m 

and green shows highest resolution which is 1.0m. In (b, c) as many structured buildings 

TABLE 7-1 Comparison of error for proposed adaptive map refinement strategy and different 

grid sizes. 

  

2.0m 3.0m 4.0m 5.0m Adaptive refinement 

(0.25m error threshold) 
Average of mean error (m) 0.140 0.154 0.193 0.283 0.141 

Error more than 0.25m (%) 7.2% 10.6% 17.4% 36.3% 9.9% 

Abstraction ratio  

compared to 1.0m grid ND map 
3.57 7.31 11.98 16.76 10.08 

Map size ratio (%)  

compared to 1.0m grid ND map 

28.0% 13.6% 8.3% 5.9% 9.9% 

 

 
Figure 7-12 Best grid size of the map for experimental path before (blue) and after (red) final 

process. 
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surround the sample point, map factors have satisfying values, and thus the localization 

can be performed even with the low resolution of the map. Figure 7-13 (b, c) shows 

generated 𝑁   𝑝  which has a 5.0m resolution. However, in (a) lateral features are 

missing. In other words,  in this part of the map, perpendicular walls to the moving 

direction of the vehicle is few. Thus in this sample position, the localization error should 

be high. In this scenario, by increasing the resolution of the map, more details of the 

building is preserved in the map to help longitudinal positioning. Thus in this region, the 

 

Figure 7-13 Estimated best grid size for the experimental path. Top figure is for 0.5m error 

threshold and bottom figure is for 0.25m error threshold. Different colors shows different grid 

size. (a) 2.0m resolution. (b,c) 5.0m resolution. 

`
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Best grid size for 0.5m error threshold
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grid size become 2.0m. Figure 7-13 (a) shows generated 𝑁   𝑝  which has 2.0m 

resolution.    

By use of these factors, mean localization error have been modeled with the 

goodness of fit of  2 = 0.71 and  𝑀𝑆 =0.126. Based on this map evaluation, for each 

position of the map, best resolution have been estimated with map refinement strategy so 

that the map size shrink down to 9.9% while the mean error remain less than 0.141m. 

 Adaptive determination of the laser range 

Accuracy and time efficiency are two key parameters of self-localization techniques 

for autonomous driving. While the scanning range of the 360 degree laser scanners have 

significant effect on the both accuracy and computation time of the map matching-based 

localization, this effect is not well investigated in the literature. In this section the effect 

of scanning range on the autonomous vehicle’s localization is investigated. Based on this 

effect, a novel localization idea which defines the scanning range adaptively to improve 

the time efficiency while keeping the localization accuracy is proposed. To model the 

effect of scanning range on the localization accuracy in every local vicinity of the map, 

map factors from Chapter 5 are used. The capability of the proposed framework is verified 

using field data, demonstrating that it is able to improve the average matching time from 

142.2 ms to 38.1 ms while keeping the localization accuracy within 10 cm. 

7.2.1. Effect of laser range in self-localization 

To evaluate the contribution of the laser scanning range on the map matching-based 

localization, an experiment was conducted near Shinjuku, a dense urban area of central 

Tokyo, Japan. Length of the experimental route was 1.4 Km and it included multiple 

crossings, narrow streets, wide streets, buildings, and trees.  

The localization was performed using the laser scanner mounted on the roof and 

basic NDT map matching technique [62], [84] with different laser scanning ranges 

starting from 10 m to 50 m. For each scan sequence, the matching was performed using 

different initial guesses in a 1.0 m range of the ground truth position and the mean error 

and matching time were reported.  

Figure 7-14 demonstrates mean localization error for the experimental route 

comparing to the laser range. By increasing the scanning range, the localization error 



Chapter 7. Adaptive refinement of map and localization parameters based on map factors 
 

 

 

107 

decreases, and the 50 m scanning range has the best localization accuracy. Figure 7-15 

shows the mean matching time for different scanning ranges. As shown in the figure, the 

matching time increases by increasing the laser scanning range for the localization. All 

the computations were conducted on an off-the-shelf PC with an 8-core, 3.50 GHz Intel 

Xeon E3-1270 V2 CPU and 16 GB of RAM running the 64-bit version of the Ubuntu 

16.04 operating system. 

The main reason that affects the matching time in Figure 7-15 is the number of 

points within the input scans. In the NDT matching, the input scan is first subsampled and 

then the matching is performed. In this work, the scan is down-sampled with 1.0m grid 

 

Figure 7-14 laser range vs localization error. As the laser range increases the localization error 

decreases. 
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size. Figure 7-16 shows the mean number of points in each scan sequence before and after 

 

Figure 7-16 Average number of points in each input scan of laser scanner vs laser range in 

Path I. As the laser range increases the number of points also increased. Red graph is for the 

input scan after down-sampling with 1.0m grid size. 
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Figure 7-15 Matching time vs laser range. As the laser range increase the matching time also 

increases. 
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the subsampling. By taking a look at Figure 7-15 and Figure 7-16 it can be understood 

that the matching time and number of points after the subsampling are in a direct and 

linear relationship, which means that by decreasing the scanning range time efficiency of 

the matching can be improved (Figure 7-17). Figure 7-18 shows the mean number of 

iterations in the NDT matching. As already mentioned, Newton’s optimization algorithm 

iteratively investigates for the optimum answer. If the features are enough for matching it 

can be merged in final answer faster. In Figure 7-18, number of iteration decrease as the 

range of laser scanner increase. However this effect is covered by the increase of number 

 

Figure 7-17 Comparison between the number of points and matching time. 
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Figure 7-18 average number of points in each input scan of laser scanner vs laser range in 

Path I. as the laser range increase the number of points also increased.  
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of points and as a total, the matching time increase.  

7.2.2. Adaptive determination of laser range 

In this section, a dynamic scanning range localization method which aims to 

improve the time efficiency of the map matching while keeping the required localization 

accuracy is introduced.  

As mentioned before, the scanning range affects both the accuracy and matching 

time. For the autonomous driving, a certain localization accuracy is expected (e.g. 25 cm) 

while a lower matching time preferred. It means that the scanning range should be 

increased only if the accuracy requirement is not met. In the ideal case, consider that the 

localization error is known beforehand for different scanning ranges starting from 10 to 

50 m with 5 m intervals. In this case, the smallest range which meets the accuracy 

requirements can be chosen. Figure 7-19 shows the smallest scanning ranges during the 

experimental route that keep the localization error less than 10 cm and 25 cm.  

 

Figure 7-19 Optimized laser range for different sample points in the map for two error 

threshold. In top chart (red), laser range is selected so that the error become less than 10cm 

and in bottom chart (red), error threshold is 25cm.  

 

Fig. 1. Example of a figure caption. (figure caption) 
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By applying the dynamic scanning range method, the average matching time for 

the experimental route reduces from 142.2 ms to 16.4 ms which is a significant 

improvement. This method not only improves the mean time, but also reduces the 

maximum matching time from 261.1 ms to 54.9 ms. TABLE 7-2 shows the mean and 

maximum matching time for the entire route using static scanning range of 50 m, dynamic 

scanning range for 10 cm error and 25 cm error.  

To be able to define the dynamic range for each scan sequence in the previous 

section, it was considered that the localization errors for different scanning ranges are 

known beforehand. But it is not a realistic assumption and that is why defining the 

dynamic range which meets the accuracy requirement is not an easy work.  

In this section, map evaluation factors introduced in chapter 5 are used to model the 

error and based on the error modeled, the laser range determination is performed 

adaptively. For this, map space is divided into 2D grids with 1.0m intervals. For center of 

each grid, the factors are calculated. Factors are calculated based on the range of laser 

scanner which is increased from minimum scanning range (10m) to maximum (50m) with 

5m intervals. If the error modeled from factors become less than predefined error 

threshold (10cm, 25cm), the laser range is fixed to that value for that specific grid. 

Therefore for each grid, the optimum range of laser scanner are defined and this value is 

stored in the map to be used later in the localization phase. In the localization phase, based 

on the prediction of the next position of the vehicle (initial guess), optimum laser range 

is determined from 2D array which is already stored in the map. 

7.2.3. Experimental results 

In order to evaluate the effectiveness and accuracy of the proposed adaptive laser 

range determination framework, experiments have been conducted in the Shinjuku, 

Tokyo. The length of path for the experiments are 1.4Km. For this region, predefined laser 

range is calculated as described in the subchapter 7.2.2 and already stored in the map. 

TABLE 7-2 Matching time Evaluation 

Matching time 

Scanning range 

50 m Dynamic range (10 cm error) Dynamic range (25 cm error) 

μ (ms) 142.2 41.7 16.4 

max (ms) 261.1 156.8 54.9 
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Then by using this predefined values, adaptively the range is changed and localization are 

preformed. Modeled error using map evaluation factors are shown in Figure 7-20. Range 

of laser scanner for error threshold of 10cm and 25cm is shown in Figure 7-21. In most 

of the cases the localization can be performed with LIDAR range less than 25m. Blue 

graph is for the model that generated based on 10cm error threshold and red graph is the 

matching time which is based on the model generated with 25cm error threshold. As the 

error threshold in red is higher, more errors are acceptable, thus the range of scan can be 

smaller and thus the matching time is faster. However, due to miss modelling of the error 

of the map, in some cases localization error might extent from the threshold. Table X 

shows the error values for proposed method. TABLE II shows the error of localization 

using this adaptive range determination. In some places the prediction from factors are 

not accurate enough, thus the features in the defined rage is not enough and thus the 

 

Figure 7-20 Error modeled from map evaluation factors. 

 

Figure 7-21 Adaptive range determined by comparing to map evaluation factors. (Top) for 

error threshold of 10cm. (Bottom) for 25cm error threshold. 
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localization cannot be performed with required threshold. The mean error for path I is  

15.2 cm which is acceptable. 

 

 

 

 

Figure 7-22 Adaptive range determined by map evaluation factors for 10cm error threshold. 
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Chapter 8.  

Conclusion  

 

 

In this dissertation, we have introduced map evaluation factors to evaluate and 

quantify the map ability for self-localization. The focus has been made on the map based 

self-localization methods and several contributions have been made.  

In the map based categories, map plays a significant role in achieving high accuracy 

self-localization. For accurate self-localization, the global and local accuracy of the map 

is essential as well, and many types of research have been done to obtain such a highly 

accurate map. However, the highly accurate map does not guarantee the accuracy of the 

localization. In other words, map accuracy is different than the ability of the map for 

localization.  

Therefore, in this dissertation, four general criteria for the map has been defined. 

These criteria are feature sufficiency, layout, representation quality, and local similarity 

of the map. These criteria are defined regardless of the map format and can be applied to 

any other map formats. However, in this work, in order to quantify each of these criteria, 

the focus has been made on the ND map format, and several factors has been defined. For 

each point in the map, these factors are calculated based on the features in surroundings 

called local vicinity. By obtaining the correlation of the map factors with localization error, 

the effectiveness of the factors has been investigated. Additionally, by applying principal 

component regression (PCR), the predictability of the self-localization error based on 

these factors has been investigated. To evaluate the predictability of the defined factors, 

experiments have been conducted in Shinjuku, Tokyo, Japan. The route of experiments 

was around 40Km. The experimental results showed that the error modeled from the 

factors can represent the localization error of the map in 76.1% of the cases with an error 

lower than 10cm using PCR. In order to increase the accuracy of prediction, the factors 

have been fed to a simple feedforward neural network to model the error. The result has 

been improved and 78.2% of the localization error can be modeled with lower than 10cm 

accuracy.    
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As the other contribution of this dissertation, the outcome of the proposed map 

evaluation framework has been utilized to the adaptive refinement of the map and 

localization parameters. These parameters are map resolution and range of the laser 

scanner. 

In addition to the aforementioned contributions, globally accurate urban mobile 

mapping frameworks have been proposed. One of the challenges of current mapping 

systems is their precision, accuracy and the cost. In the proposed urban mapping 

frameworks, two laser scanner has been used in addition to the Inertial measurement unit 

(IMU), odometer, and GPS. The airborne image has been used as a reference to correct 

the trajectory of the vehicle. In order to correct the trajectory of the mapping vehicle, the 

lane markings extracted from tilted laser scanner was registered to the lane marking 

extracted from the airborne image. The map which has been used for this dissertation was 

all made by this mapping system and global accuracy of the map is very high.  

In this dissertation, two self-localization methods based on abstract map format 

which are multilayered vector map and the probabilistic planar surface map have been 

proposed as well. In the multilayered 2D vector map, different layers of building 

footprints are stored as a vector in the map. By using different layers of the building, the 

feature for matching increases and make the matching more accurate. For each vector, the 

variance of the points are stored in the map to allow the localization process to rely on 

more certain vectors rather than an uncertain one. This can reduce the map size to several 

thousand times. In the probabilistic planar surface map, instead of using heavy point cloud, 

the planar surfaces are extracted from the point cloud map. Each planar surface contains 

the variance of the points which shows the uncertainty of the planes. Storing the variance 

for each plane help the localization process to rely more on the certain walls. In the 

matching phase, distortion of the input scan is one of the challenges which makes the 

misalignment of the input scan to the map. In this work, distortion is removed in the 

optimization process. In fact, in each iteration of the optimization, the scan is reshaped 

by the new results and the distortion is removed to fit better to the map. 

One of the possible future works for map evaluation framework is to use deep 

neural network. In this case, the local vicinity of the sample point is directly fed to the 

network and the task of defining factors are all given to the network  
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Appendix 

GCL Social Innovation Project 

Towards Autonomous Vehicle Platform for Smart Society 

Overview 

 

More than a century ago, the first production vehicle was made by Karl Benz and 

later automobiles dramatically changed the way we live. Today, the autonomous driving 

technology has a potential to revolutionize not only the transportation, but also the entire 

society. Every year, more than a million lives of people are cut short due to traffic 

accidents while the autonomous vehicles can significantly reduce these fatalities. This 

emerging technology can also save huge amounts of time for the people in the society. If 

we start working when we get into the car, how many hours we can save? Especially in 

metropolitans like Tokyo! In addition, autonomous driving facilitates transportation of 

aged people, reduces the fuel consumption and plays a key role in saving the environment, 

reducing the parking spaces, and so on.  

To achieve these opportunities, an intensive cooperation between academia, 

industries, government and society is required to boost the research, make a reliable 

business model, review and modify the laws, and prepare the society for the required 

changes (Figure A. 1.). Even within the academia, an interdisciplinary collaborations 

between the researchers in the field of the autonomous driving and the other fields such 

as city planning, sociology, psychology, and environmental science is required. 

 

Figure A. 1. Cooperation required for benefiting from the autonomous driving technology 
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Social Innovation Project 

 The aim of this social innovation project is to provide the GCL students with an 

autonomous driving platform while initiating a small scale cooperation between academia, 

industries and society. To achieve this goal, four phases of 1) Gaining the knowledge and 

initiating the cooperation; 2) Design the components; 3) Implement the components; and 

4) Apply to society; are designed and followed. 

The members of this project is Ehsan Javanmardi and Mahdi Javanmardi who 

worked together during their Ph.D. program from the early stages to the end. This project 

is a collaboration with the GCL-MUSCAT (Mobile Unit for Smart Campus 

Transportation) under the supervision of Dr. Tsukada and all outputs will be accessible 

for the GCL students to boost their own social innovation project. Overview of author’s 

GCL project is shown in Figure A. 2. Each phase of the project and achievements are 

described in the following.  

1) Gaining the knowledge and initiating the cooperation 

In order to design a platform which is going to make a revolution in the society, 

only a high-end technology cannot promise the success. Besides, the knowledge about 

the government strategies, business models, society problems, development challenges, 

and investment opportunities are required. To gain these knowledge and widen the 

networks, the author contributed to several projects, demonstrations, meetings and 

conferences with industries and academia. Some of these contributions are listed and 

described below. 

 Networking and Collaboration with Industries and Government: 

o ITS-Japan: ITS-Japan was launched in January 1994 as Japan’s response to 

the developments intelligent transportation systems, and it enjoys the full 

backing of National Police Agency, Ministry of Economy, Trade and Industry, 

Ministry of Land, Infrastructure and Transport, National Police Agency, 

Ministry of Public Management, Home Affairs, Posts and 

Telecommunications, and Ministry of Construction. The author joined ITS-

Japan’s sub-working group meetings as a representative of the Kamijo Lab, 

the University of Tokyo and learned the high-level management issues of 

implementing the autonomous driving in the society from the frontiers in the 
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field. The accuracy requirements for the localization and mapping of an 

autonomous driving platform, statics about the mapping whole Japan for 

autonomous driving, and state-of-the-art of the mapping technology is a few 

 

Figure A. 2. Overview of the social innovation project “Towards Autonomous Vehicle Platform 

for Smart Society”. 
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examples of the knowledge gained during these meetings and discussions.  

o Honda-HRI: The author had collaborated with Honda Research Institute 

(HRI), USA during two projects with Berkeley Deep Drive (BDD), “Generic 

Motion Generation and Comprehension with Social Interactions1” and “3D 

Object Detection based on Lidar and Camera Fusion2”. The main contribution 

of the author was generating a high-precision map from raw data collected by 

HRI. The resulting map was used for the motion generation and object 

detection of autonomous vehicle. During this collaboration, the author learned 

how a frontier car industry like Honda invest to the academia to keep their 

technology always updated. Also the author’s research was qualified for the 

shortlist in the Honda Y-E-S Forum 2018. 

o ATEC Co. and Aisan-Technology: Map generation is one of the most 

important basics for the autonomous driving. Therefore, to design an 

autonomous vehicle platform, a deep knowledge about the state-of-the-art of 

the mapping technology and its current challenges is required. To gain this 

knowledge, the author had several meetings and discussions with ATEC Co. 

and Aisan-Technology, two frontier mapping companies of Japan, to know the 

details about their aerial mapping systems and mobile mapping system (MMS). 

Even the author joined their data collection experiment in a challenging 

environment such as Hitotsubashi intersection around Tokyo station with a lot 

of tall buildings. This knowledge helped the author in the design and 

implementation phase of the autonomous vehicle platform. 

o Valeo Japan: Valeo is a multinational automotive supplier based in France, 

providing a wide range of products to auto manufacturers and after-markets. 

The author had opportunity to negotiate with Valeo Japan, the Japanese arm 

of the Valeo Group, about possible collaborations and their investment to 

initiate a startup for the high-precision mapping and localization of the 

autonomous vehicles. Also, by invitation from their CTO, the author applied 

                                                        

 
1 https://deepdrive.berkeley.edu/project/generic-motion-generation-and-comprehension-social-interactions 

2 https://deepdrive.berkeley.edu/project/3d-object-detection-based-lidar-and-camera-fusion 
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to the “Valeo Innovation Challenge 20183”.  

 Networking and Collaboration with Academia: 

o GCL MUSCAT: In the GCL MUSCAT project, with a collaboration of Dr. 

Tsukada, the author could initiate an autonomous driving hub in the University 

of Tokyo which every student with a different background can join, learn the 

basics about the autonomous vehicles, contribute to the project, and benefit 

from the autonomous driving platform in his/her research. In fact, GCL 

MUSCAT was a hub for inter-academia collaboration and networking for 

autonomous driving. As a core member of GCL MUSCAT, the author could 

connect several international project leaders to cooperate in the future, 

including the leaders UC Berkeley Deep Drive, TierIV, Islamic Azad 

University.  

o U.C. Berkeley: To gain the required knowledge, the author widen his 

networks internationally with frontiers in the field of autonomous vehicle’s 

perception, motion planning, and control. During collaboration with PATH 

and BDD at U.C. Berkeley the author could gain valuable knowledges about 

how to promote a research, academia-industry collaboration, working with 

members with different backgrounds. 

o Kamijo Lab: The Kamijo lab was playing a central role in this academia 

networking and collaboration. Other than above mentioned parties, many 

other valuable connections were made through Kamijo lab, including research 

groups from Saitama Institute of Technology, Nagoya University, Riken-AIP, 

etc. 

 UC Berkeley internship: To experience the state-of-the-art research in the 

international groups and collaborate with the industries, the author had a 6 months 

internship at the Institute of Transportation studies of University of California at 

Berkeley (UCB). During this visit which has been done from 2016 Sep to 2017 Feb, 

the author collaborated with Partners for Advanced Transportation Technology 

(PATH) under the supervision of Prof. Wei-Bin Zhang. During this visit, many 

                                                        

 
3 https://valeoinnovationchallenge.valeo.com/en/challenges/innovationchallenge2018 
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research institute and companies have been visited in order to gain the knowledge and 

experience. Some of these companies and research groups are, Velodyne Co.4, which 

is the biggest producer of the-state-of-the-art multi-channel laser scanners, Honda 

research institute5 in Palo Alto, Berkeley deep drive6 (BDD), etc. During this visit 

the author has contributed to several projects which are listed below: 

i. Build a multi-modal data collection platform for gathering synchronized data 

from multiple sensors. These sensors are Velodyne HDL-64 which has 64 

channel data, 4 HD cameras which can see surrounding of the car, IMU, GPS, 

RTK-GPS, and odometer data from CAN. Figure A. 3 shows the Lincoln car 

which is equipped with these sensors and the data logger software.  

ii. Vector map of several locations of Berkeley which was generated with a 

collaboration of the Honda Research institute and BDD. The Figure A. 4 

shows the website of the BDD which is show that the author are collaborated 

in some of the projects.   

iii. Obstacle detection algorithm with implementation of the clustering algorithm 

which uses the angle of the points not distance of the points.  

                                                        

 
4 www.velodynelidar.com/ 

5 https://usa.honda-ri.com/ 

6 https://deepdrive.berkeley.edu/ 

 

Figure A. 3. The designed data collection platform for autonomous driving 
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iv. ITSS ITS Now offers a quarterly, free, limited-time access to articles from the 

IEEE ITS Society publications and conference proceedings. Each issue has a 

dedicated editorial team of topical experts. Each team selects 10-15 

outstanding papers from Society publications IEEE Explore access is granted 

to the full text of these ITS papers. It is launched in 2013 and three numbers 

are published so far. The fourth topic was selected as self-localization. The 

author was responsible for writing the surveys about the papers in the IEEE 

ITS society and related to self-localization. 40 papers are selected and the 

survey was written. However the ITS Now letter is not yet published.   

 

 

Figure A. 4. The contribute projects on the website of the BDD  
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Through these valuable experiences we could get familiar with Government 

strategies, companies business models, current society problems, development challenges 

and also consider the investment opportunities. This knowledge equipped the author with 

a set of tools to design and implement a comprehensive autonomous vehicle platform. 

The generated network in this phase is illustrated in Figure A.5. 

 

2) Designing the components 

For the autonomous platform for smart society, the author with collaboration of the 

other team member (Mahdi) designed three main components of the autonomous driving, 

which are mapping, localization, and obstacle detection. In the following, the role of this 

author in designing each component are described. 

 Mapping and Localization: 

Mapping and localization are two key requirements for autonomous vehicles and these 

two topics are the main topics of the Ph.D. dissertation of this author. Currently most of 

the AV platforms use HD map which is a point cloud map of the path and laser scanner to 

get the position of the vehicle. This point cloud map is very huge in size and it is very 

difficult to store and to be downloaded. Thus in part of this author Ph.D., abstracted map 

formats which are multilayer 2D vector map and probabilistic planar surface map is 

proposed to be used instead of point cloud map. The details of these two algorithms are 

mentioned in Chapter 4 of this dissertation. By using these map formats, the size of map 

can be shrink to more than 1000 times and yet the accuracy is preserved. These two 

 

Figure A. 5. Overview of the generated network in the knowledge phase 
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localization components and map formats are designed and later implemented and applied 

in the MUSCAT platform. To make the code compatible with the Autoware software 

which is used in MUSCAT, these modules are implemented using Robot Operating 

System (ROS). All design and implementations of these localization systems are done by 

this author.   

The other requirement of the autonomous vehicles are HD map. Currently, the HD map 

of Hongo campus is provided by AISAN TECHNOLOGY CO., LTD. However the map 

of campus is not enough for testing the platform for different scenario and applications. 

Thus the system which can map the environment for different places other than Hongo 

campus is essential. This system which is low-cost urban mapping framework is designed 

by this author and the details of this implementation is explained in Chapter 3 of this 

dissertation. By using designed low-cost urban mapping framework, some part of the 

Shinjuku are mapped and is ready for the use of MUSCAT platform. In addition to this, 

the proposed mapping framework can be used for mapping any other places which is 

needed. In order to design the mapping framework, the idea of automatic calibration of 

the MMS data to the airborne imagery is used which is proposed by other MUSCAT team 

member (Mahdi). Also, some part of the data acquisition system which is used in this 

mapping framework is designed during the internship in the U.C. Berkeley and designed 

together by this author and other team member (Mahdi).  

 Obstacle detection: 

Obstacle detection is one of the important component for autonomous driving. The 

vehicle needs to be aware of the surrounding environment and detect the obstacles. This 

can be done based on various sensors such as vision, radar and LiDAR. In the designed 

component, Velodyne’s HDL-64 which has 64 channels is used. Design of obstacle 

detection program have been done by this author and Mahdi as a part of internship at the 

California PATH and this author have been contributed from the early stage to the end.  

These designed components were presented in flagship conferences and journals in 

the field of intelligent transportation systems and intelligent vehicles. The localization 

component which was presented in the ITSC’17 was able to receive the best student paper 

award of the conference. The details of each component can be found in the publications 

listed at the end of this dissertation.  
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3) Implementing components 

Each of the mapping, localization and obstacle detection component was 

implemented, tested, and evaluated in different projects during three years. For example, 

the localization component was fully implemented and tested in the Kamijo laboratory’s 

experimental vehicle, mapping component was also implemented in the Kamijo 

laboratory with a collaboration of ATEC Co., and obstacle detection component was 

implemented in U.C. Berkeley during the internship period. All the components are 

designed using C++ and ROS in order to be compatible with MUSCAT platforms main 

program which is Autoware. These components which were initially designed and 

implemented separately were finally integrated into the MUSCAT platform and the 

outcome of these systems can be used by GCL MUSCAT autonomous driving hub. 

 

4) Apply to the society 

The final phase of the project is applying the platform to boost GCL student’s social 

innovation project and achieve the opportunities provided by autonomous driving. This 

phase can be achieved through three Global Design Workshop C (GDWC). The 1st 

GDWC was organized on August 23rd, 2017 to help understanding the safety 

requirements for experiment inside the campus. This author was the co-organizer of this 

workshop. During the first workshop, GCL students experienced the autonomous driving 

by sitting in the fully automated vehicle and traversing inside the campus. The outcome 

of the workshop was the safety guidelines for working and doing the experiment with 

MUSCAT platform. The second GDWC was held on December 21st, 2017. In this 

workshop, which was the advanced version of the first workshop and this author was the 

organizer, the guidelines for setting up the platform are introduced and the GCL students 

are trained with the platform so that they can use the MUSCAT platform for their research 

without the help of the MUSCAT members. As one of the key component of the 

autonomous driving is mapping and localization, first a short lecture was given about 

mapping and localization. Then, the attendees were divided into two groups, and they 

setup the system and collect the required data and run the system according to the 

checklists and guidelines. By getting the feedbacks from GCL students we could modify 
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the checklist and guidelines. The outcome of this workshop was the checklist and 

guidelines for using the platform and serval students who were trained to operate the 

platform. The third workshop will be organized in September 2018 which aims to define 

one social application of the autonomous driving and apply it using GCL MUSCAT 

platform. 

The following will be the report of the GCL workshop #1 and #2. 

GCL-MUSCAT Workshop #1  

"Safe and Effective Autonomous Vehicle Experiments" 

Safety first, autonomous driving next! 

 

This workshop aimed to introduce the MUSCAT platform to the students who are 

interested in self-driving cars and their social benefits, and strengthening their skills in 

designing a safe and effective autonomous driving experiment. The workshop attendees 

were also asked to help the MUSCAT members to draft a safety manual by joining a 

brainstorm at the end of the workshop. In this workshop, this author was the co-organizer. 

Figure A.6, A.7 and A.8 shows some view of this workshops. 

By attending this workshop, attendees could become familiar with the key 

components of the driverless cars, observe the step-by-step procedure of an autonomous 

 
Figure A. 6. The announcement of GCL MUSCAT Workshop #1 
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driving experiment, and experience self-driving cars for themselves. During the self-

driving experience, they had to pay attention to the requirements of safe experiment 

design consisting of experiment planning, required checklists, safety considerations, 

dealing with emergency situations, and how to report after the experiment. Moreover, this 

workshop gave the students an opportunity to think about how MUSCAT can assist their 

 

Figure A. 8. A view of the workshop 1 self-driving experience by students 

 

Figure A. 7. Group photo of the GCL MUSCAT Workshop #1 
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research and social projects, and provide us with feedback to define our future 

development priorities.  

The specific outcome of this workshop was a manual titled “GCL MUSCAT Safety 

Manual” which is currently being used by everyone who uses the MUSCAT platform. 

This workshop was an excellent opening for the MUSCAT global design workshop series, 

which will be followed by our next workshop titled GCL-MUSCAT Workshop #2 

"Workshop on Autonomous Driving." The participants of this workshop are as follows: 

Information and Communication Engineering (3 persons), Institute of Industrial Science 

(2 persons), Institute of Artificial Intelligence and Robotics (1 person). 

 

GCL MUSCAT Workshop #2 

“Workshop on Autonomous Driving” 

From basics to experience, let’s become an expert on self-driving cars! 

 

More than a century ago, the first production vehicle was made by Karl Benz, and 

later automobiles dramatically changed the way we live. Today, fully autonomous driving 

has the potential to revolutionize not only transportation but also the entire society. Every 

year, more than a million lives are cut short due to traffic accidents—autonomous driving 

could significantly reduce these fatalities. This emerging technology can also save people 

time. If we start working when we get into the car, how many hours can we save? 

Especially in a metropolis like Tokyo. Also, autonomous driving facilitates the 

transportation of aged people, reduces fuel consumption and plays a key role in saving 

the environment, reducing the number of required parking spaces, and so on. 

All the opportunities mentioned above require an interdisciplinary collaboration 

between autonomous driving experts and researchers in other fields such as city planning, 

sociology, psychology, environmental science, etc. The autonomous driving platform 

“GCL-MUSCAT” aims to provide GCL students with an opportunity to utilize self-

driving cars and boost their social innovation projects to make our society a better place 

to live.  

In our previous workshop “GCL-MUSCAT GDWS C #1, Safe and Effective 

Autonomous Vehicle Experiments” we demonstrated our autonomous driving platform to 
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the interested GCL students and provided them an opportunity to experience autonomous 

driving on campus. The outcome of the first workshop was a safety checklist for 

MUSCAT that ensures our autonomous driving experiments meet basic standards of 

safety. 

In this workshop, we aimed to extend our MUSCAT professional network and train 

more students to be able to operate this platform from scratch. Later, these students will 

be able to help and assist other GCL students from different fields to employ MUSCAT 

in their social innovation projects. To achieve this goal, the attendees were divided into 

two groups and received multiple sessions of in situ training and group work from 10 AM 

to 6:30 PM. The workshop consisted of four main components including a lecture to 

transfer advanced knowledge of autonomous driving to the attendees, indoor group work 

to familiarize them with the autonomous driving software Autoware and generate the 

required data, outdoor group work to train them on how to set up and operate the 

MUSCAT platform and do the experiment, and finally reflection and group discussion to 

get their feedback and increase their motivation for future collaborations. 

 

【Items】 

Autonomous driving vehicle, Autonomous driving software, PowerPoint, Whiteboard, 

Laptop, Drone, LCD, Wireless internet 

 

【Participants】 

Information and Communication Engineering (2 persons), Emerging design and 

informatics course (1 person), Institute of Artificial Intelligence and Robotics (1 person) 

 

【About the WS】 

The MUSCAT project is an interdisciplinary project in GCL supervised by Dr. 

Tsukada which aims to provide autonomous driving technology to GCL students who 

believe that this technology might boost their social innovation projects. 

Since autonomous driving technology is new and complex, it is difficult for students 

with no prior knowledge of self-driving cars and programming to operate such systems 

and perform experiments by themselves. Therefore, an interdisciplinary collaboration 

between students who are majoring in information or computer science and students in 
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other fields is essential to achieve the goals of the MUSCAT project. 

This workshop focused on training new students and equipping them with the 

knowledge to operate the MUSCAT platform and organize autonomous driving 

experiments. This workshop aims to expand the professional network of MUSCAT 

members, but also to ensure knowledge transfer from current members to prospective 

members of MUSCAT. 

 

This workshop started at the GCL-lab with a short self-introduction and continued 

with a 40-minute lecture on the MUSCAT autonomous driving platform. In the lecture, 

the main components and technologies of self-driving cars were described using examples. 

After that, the students were divided into two groups, and one laptop with Autoware 

(open-source autonomous driving software) was given to each group. With instruction 

from the facilitators, they started getting familiar with Autoware and manipulating the 

software by themselves.  

To provide an environment that allowed the students to share their opinions with 

the facilitators, facilitators and students had their lunch at the cafeteria together. After 

lunch, members came back to the GCL lab and started the second round of group work to 

generate the required data for an autonomous driving experiment. When the data was 

ready, members moved the car outdoors, beside the Starbucks café on Hongo campus, 

and started setting up the car. After they prepared the system and data, each group 

performed the autonomous driving experiment, and every student sat behind the wheel 

while the car was in the autonomous driving mode. 

After everyone tried the system, all the attendees and facilitators had a group 

discussion and reflection to get the students’ feedback on how to improve the experiment 

quality and define the development priorities of MUSCAT for the future.  

Finally, the attendees and facilitators took the car back to the GCL lab, and the 

workshop was finished with a wrap-up. The video report of the workshop can be found 

here: https://photos.app.goo.gl/c5BjL8SMHw7i7oty1 

 

【Program】 

10:00-10:05   Self-introduction 

10:05-10:45   Lecture on the MUSCAT autonomous driving platform 



Appendix. GCL Social Project: Autonomous Vehicle Platform for Smart Society 

 

 

 

131 

10:45-12:00   Getting familiar with Autoware (Group work) 

12:00-12:45   Lunch break@cafeteria 

12:45-14:45   Generating data using Autoware (Group work) 

14:45-15:00   Coffee break 

15:00-16:00   Setting up the car (Group work) 

16:00-18:00   Self-driving experiment (Group work) 

18:00-18:15   Reflection 

18:15-18:30   Wrap up 

 

【Achievement】 

The main achievement of this workshop was undoubtedly the new students who 

can operate the MUSCAT platform and will be able to organize an autonomous driving 

experiment from scratch without help from the MUSCAT core members, after just a few 

practices. Since current core members will graduate soon, these new students can fill the 

gap and assist the GCL students who are interested in the platform but cannot operate it 

by themselves. Moreover, similar workshops should be regularly organized to expand this 

network. 

Another outcome of the workshop is a step-by-step experiment manual which will 

make the experiment procedure less complicated and easier to perform. This manual is 

currently under construction, and after its release, it will be modified from time to time to 

reflect each new experience and challenges members have faced during the experiments. 

 

【Reflection】 

The main goal of this workshop was to expand the MUSCAT professional network. 

One of the essentials for growing a project is to make more people interested in what you 

are doing. While autonomous driving is an attractive topic, many students are afraid of 

its complexity. Therefore, they are not easily convinced to join this project. To avoid this 

problem, we should promote MUSCAT in a way that every GCL student can feel they can 

join and benefit from this project without having any prior knowledge of autonomous 

driving or programming. To be able to achieve the goal of attracting people from different 

majors and backgrounds, this workshop or similar workshops are essential. The role of 

this kind of workshop is to strengthen the MUSCAT core members, and make a base for 
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other students.  

Beyond this, we should focus on one social problem and design GCL-MUSCAT 

workshop #3, which will target a specific social concern. If workshop #3 is held 

successfully, we will be able to extend this model to other social problems and involve 

more GCL students over time. 

 

 

Figure A. 9. Poster of the second GCL workshops. 
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Figure A. 10. During the fully autonomous 

driving test, the attendees faced a problem 

several times and they fixed it. 

 

Figure A. 11. The MUSCAT platform were 

returned to the GCL-lab and workshop were 

finished. 

 
Figure A. 12. Lecture on autonomous vehicle, 

MUSCAT platform and Autoware by Ehsan 

Javanmardi. 

 

Figure A. 13. The participants were divided 

into two groups and they followed the steps 

explained by the lecturer. 

 

Figure A. 14. After the lecture, the attendees 

run the software by themselves. 

 

Figure A. 15. The safety manual as well as 

sticker of the MUSCAT logo were distributed 

among all participants. 
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Figure A. 16. Instructors showed how the 

system should be set up. 

 

Figure A. 17. Participants tried to set up the 

system by themselves and apply what they 

have learned. 

 

Figure A. 18. The participants experienced a 

partial autonomous driving which was set up 

by themselves. 

 

Figure A. 19. The system was set up to run on 

the fully autonomous mode. 

 

Figure A. 20. Everything was double-checked 

before fully autonomous driving test. 

 

Figure A. 21. Group photo was taken before 

the sunset. 
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Figure A. 22. Group photo was taken from the 

bird’s view of drone. 

 

Figure A. 23. Fully self-driving test after the 

sunset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 24. Attendees exchanged their thoughts about today’s experience and difficulties they 

faced during the setup of the system. 

Finally the outcome of the GCL MUSCAT Workshop #1, which is a safety manual is 

shown in the following. This author was the co-organizer of GCL MUSCAT Workshop 

#1. 

GCL MUSCAT Safety Manual (Output of Workshop) 

OVERVIEW 

This manual provides the basic checklists required for performing experiments using 

GCL-MUSCAT’s robocar. This manual should be read by all attendees before organizing 
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an experiment. If there is any question regarding the safety manual contact Dr. Tsukada 

(tsukada@hongo.wide.ad.jp).  

CHECKLISTS 

1. Pre-experiment 

2. During experiment 

3. Emergency 

4. Post-experiment 

PRE-EXPERIMENT CHECKLIST 

Basics: 

□ This manual is read by all attendees 

□ This manual is printed 

□ At least two experienced experts are attending the experiment 

(Experienced expert is a person who has at least 3 times of autonomous driving 

experience using MUSCAT. Beginners should be trained by experts beforehand.) 

□ Understand how to manually operate the robocar 

Confirmations: 

□ Permission of Dr. Tsukada (When, Where, Who) 

□ University program check (Festivals, Entrance exams, etc.) 

□ GCL Lab Programs 

□ Weather Check 

Setup: 

□ Setup warning signs along the test route (Cones, warnings) 

□ Setup autonomous driving sign on the car (if available) 

Emergency preparation: 

□ Understand how to stop robocar in case of emergency 

□ Write down the address of campus and experiments area for an emergency case 

□ Bring emergency kits 

mailto:tsukada@hongo.wide.ad.jp
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DURING EXPERIMENT CHECKLIST 

Basics: 

□ Warning people (a person in front of the car for warning pedestrians) 

□ Driver’s right foot on the break without pushing (the break overwrites the program 

mode) 

□ Driver’s right hand on the handbrake (handbrake is physical and does not 

overwrite program) 

□ Front display’s emergency stop button is not for emergency case 

Pre-autopilot checks: 

□ Check laptop’s batteries before starting autopilot (Autoware and Controller pc) 

□ Check if the electricity cable is plugged-out 

□ Driver is behind the wheel 

□ Fasten the seatbelt 

□ Driver’s hand should not be inside the steering wheel 

□ Warning sound using speaker while robocar is on autopilot (if available) 

□ Handbrake should be pulled up before starting autopilot 

□ Confirm with every member before starting autopilot 

EMERGENCY CHECKLIST 

Basics: 

□ Keep calm! 

□ Emergency contacts: 

Manabu Tsukada: (Mobile)  080-9558-2094, (email) tsukada@hongo.wide.ad.jp 

GCL Office:  (Tel) 03-5841-8746(内線 28746), (email) gcl.jimukyoku@gcl.i.u-

tokyo.ac.jp 

Driver: 

□ Push the emergency stop button 

□ Pull the handbrake 

□ Park the car in a safe place 

Other members: 

mailto:tsukada@hongo.wide.ad.jp
mailto:gcl.jimukyoku@gcl.i.u-tokyo.ac.jp
mailto:gcl.jimukyoku@gcl.i.u-tokyo.ac.jp
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□ Check the victim’s health condition (If there is any victim) 

□ If the situation is severe call the 119 and ask for an ambulance 

□ Stay beside the victim till ambulance arrives 

Reporting: 

□ Call Dr. Tsukada and GCL office 

□ Take picture of the situation, victim, car 

□ Write down accident report including following information and sign the report 

□ Time and place 

□ Contact information of the victim (phone number, plate number of car) 

□ The reason of accident 

□ Describe the situation (car speed, accident scenario, awareness of the 

victim, ...) 

□ Attach the pictures 

□ Describe the level of damage with pictures 

□ Screen captures of the experiment (if available) 

□ Organize a meeting with responsible persons and GCL to avoid similar mistakes 

POST-EXPERIMENT CHECKLIST 

Basics: 

□ Park the car in GCL-Lab 

□ Put the key to the locker 

□ Plug the car into charger 

□ Plug the laptops into the charger 

□ Emergency or dangerous situation report (If any) 

□ Organize GCL-lab’s chairs and tables 

□ Backup the data if required 

□ Share the pictures of experiments using Google Drive  

□ Make a quick report and share it using Google Doc including checklist photos 
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Conclusion 

In this social innovation project, with Collaboration of GCL MUSCAT project 

which is started under supervision of Prof. Tsukada, an autonomous driving platform was 

provided for the GCL students while a small scale cooperation between academia, 

industries and society was initiated. To achieve the goals, four phases of 1) Gaining the 

knowledge and initiating the cooperation; 2) Design the components; 3) Implement the 

components; and 4) Apply to society; were followed. This author have had several 

contributions to the GCL MUSCAT project which are specially in the field of vehicle self-

localization and HD map required for autonomous driving and the technological details 

have been mentioned in Ch. 3,4,5, and 6 of this dissertation.  

Currently, all outputs of this project is accessible for the GCL students to boost their 

social innovation project by using autonomous driving technology through GCL 

MUSCAT platform and network hub.   
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