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Abstract

A gravitational wave (GW) detector called KAGRA is under construction in Japan. KA-
GRA is the first underground cryogenic GW detector in the world. KAGRA has two
arms with the length of 3 km, and KAGRA has a design sensitivity that can detect a GW
signal radiated by a coalescence of a pair of 1.4 solar mass neutron stars 140 Mpc away
from the earth. Since the first detection of the GW signal by Advanced LIGO (alLIGO)
in the U.S., several GW signals have been detected by aLIGO and advanced VIRGO in
Italy.

In such a situation, the mission imposed on KAGRA is to achieve a sensitivity good
enough to observe a GW signal and to join the GW detector network in the world as
soon as possible. The design sensitivity of KAGRA is similar to those of other detectors
at the frequencies above 10 Hz, and KAGRA has better sensitivity at the frequencies
below 10 Hz. KAGRA has a potential to detect signals that cannot be observed by
other detectors. For the GW astronomy, the position determination of the GW source
is important. To determine the direction of the GW source, three or more detectors are
necessary. When KAGRA joins the GW detector network, the probability that three or
more machines are in operation improves to 80% from 50 %. Furthermore, the accuracy
of position determination when four detectors are in operation is predicted to be improved
to 9.5 deg? from 30.25 deg? as a result of a simulation. Therefore, the participation of
KAGRA in the GW detector network is an urgent matter in the development of the GW
astronomy.

To achieve the design sensitivity, several noises in the GW detector have to be reduced
properly. One of such noises is the noise included in the laser light, such as the frequency
noise, the intensity noise, and the beam jitter noise. We have developed an input optics
subsystem, which is a subsystem responsible for the reduction of such laser source noises.
The input optics aims to provide low-noise light to the main interferometer. The laser
light needs to be stabilized, and the input optics performs the laser frequency stabilization,
the laser intensity stabilization, the beam jitter reduction, and spatial mode cleaning.

The author is responsible for the design, the installation, the investigation, and the
integration of a pre-stabilized laser (PSL) and an input mode-cleaner (IMC). The PSL is
the in-air optics for the beam stabilization, and the IMC is the 50 m round trip length
cavity with three suspended mirrors. The PSL and the IMC are the main part of the
input optics, and almost all stabilization is done with the PSL and the IMC. The theme
of this thesis is the installation and the investigation of the frequency stabilization system
(FSS), which is one of the most important systems in the input optics.

The FSS has two requirements; one is the requirement for the duty cycle of 95%, and
the other is the requirement for the frequency noise of 1 Hz/v/Hz at 100 Hz. The frequency

noise needs to have a smaller contribution to the GW sensitivity than other fundamental



noises such as the quantum noise, the thermal noise, and the seismic noise. The control
of the FSS is automated, and it is possible for the FSS to keep locked for approximately
a week. Furthermore, even once the lock gets lost, the F'SS can return to the locked state
within 1 minute. Therefore, the FSS of KAGRA satisfies the requirement for the duty
cycle. Each actuator of the FSS is calibrated by using several transfer function measure-
ments, and a model of the F'SS is constructed. The noise budget has been made based on
the model, and the noises which limit the frequency stability in almost all bands are iden-
tified. The noises included in this noise budget are as follows: the frequency noise of the
laser source, the shot noise, the electronics noises in the photodetectors and the control
servos, the length fluctuations of the cavities used as the frequency references, the phase
noise of the voltage-controlled oscillator(VCO) used as the driver for the acousto-optic
modulator(AOM), and the residual amplitude modulation (RAM) noise. We simulate
the optimization of the control configuration with the model of the FSS. From this sim-
ulation, it is shown that the IMC length fluctuation by the seismic motion is dominant
at the frequencies below 100 Hz, and that the RAM noise and the VCO phase noise at
the higher frequencies than 100 Hz. Furthermore, the RAM noise and the VCO phase
noise don’t satisfy the requirement at the higher frequencies than 2 kHz. However, the
noises can meet the requirement in the frequency band below 1 kHz where the GW signals
are expected. Moreover, by installation of the pre-mode cleaner (PMC), using the phase
noise improved VCO, and adding the faster actuator such as the electro-optic modulator
(EOM) to the second loop, those noises can be improved and satisfy the requirement in
the whole frequency band.

The most recent task of KAGRA is to participate in the third observation run (O3)
as the fourth GW detector in the GW detector network. The O3 is scheduled in 2019,
and for that purpose, it is necessary to reach a sensitivity to detect a GW signal from a
binary neutron stars coalescence located within at least 10 to 20 Mpc away.

The FSS, for which the author is responsible, gets ready to participate in the O3. From
now on, the author continues to work on the installation of the input optics such as the
intensity stabilization system, the pre-mode cleaner which is the cavity for the beam jitter

reduction and the spacial mode cleaning.



CONTENTS

Contents
1 Introduction 9
1.1 Gravitational wave . . . . . . . . . ... 9
1.1.1 Metric tensor and geodesic equation . . . . . . . .. .. ... ... .. 9
1.1.2 Einstein equation . . . . . . . . .. ..o 10
1.1.3 Gravitational wave . . . . . . .. .. Lo 11
1.1.4 Gravitational wave radiation . . . . . . . .. ... ... 13
1.1.5 Interaction between gravitational wave and space-time . . . . . . . . . 13
1.2 Gravitational wave detector . . . . . . . .. ... 15
1.2.1 Principle of the gravitational wave detector . . . . . . . . .. ... .. 15
1.2.2 Optical configuration of GW detectors . . . . . .. . ... ... ... .. 19
1.2.3 Noise of the gravitational wave detector . . . . . . . . .. .. ... .. 23
1.3 Gravitational wave astronomy . . . . . . .. ... 26
1.3.1 Gravitational wave astronomy . . . . . . .. .. ... ... ... 26
1.3.2 Sources of gravitational waves . . . . . . ... ... ... ... 27
1.3.3 Detection of gravitational wave signals . . . . . ... ... ... ... 29
1.3.4 Multi messenger astronomy . . . . . . .. ... 31
1.3.5 Gravitational wave detectors in the world . . . . . . . ... ... ... 32
1.3.6 Significance of KAGRA . . . . . . . . ... 39
1.4 Research target and outline of this thesis . . . . . .. ... ... .. ... .. 41
2 Gravitational wave detector KAGRA 45
2.1 Overview of KAGRA . . . . . . . . . . . .. 45
2.1.1 Optical configuration of KAGRA . . . . . . .. ... ... ... .... 46
2.1.2 Underground detector . . . . . . . . . ... 47
2.1.3 Type-A suspension . . . . . . . .. . ... 49
2.1.4 Cryogenic Payload . . . . . . . . ... ... 51
2.1.5 Imstallation schedule . . . . . . ... .. .. ... .. 0. 52
2.2 KAGRA input optics . . . . . . . . . .. 53
2.2.1 Components of input optics. . . . . . . . . ... ... ... .. ... 54
2.2.2 Stabilization system . . . . . ..o Lo 59
3 Installation of KAGRA input optics 63
3.1 iIKAGRA input optics . . . . . . . . . ... 63
3.2 bKAGRA input optics . . . . . . . . . . .. 65
3.2.1 Pre-stabilized laser . . . . . . .. . .. ... ... ... ... 65
3.2.2 Reference cavity . . . . . . . ..o 65
3.2.3 Input mode cleaner . . . . . . . . .. ... 67
3.2.4 First loop of the frequency stabilization . . . . . . .. ... ... ... 72



CONTENTS

3.2.5 Second loop of the frequency stabilization . . . . . . .. ... .. ... 73

4 Frequency stabilization 7
4.1 Requirement for the frequency noise . . . . . . . ... ... ... ... ... 7
4.2 Modeling of the frequency stabilization . . . . . . ... ... ... ... .. 78
4.2.1 First loop with the reference cavity . . . . . .. .. .. .. ... ... 78
4.2.2 Second loop with the input mode cleaner . . . . . ... ... .. ... 80
4.2.3 Third loop with arm cavities . . . . . . . . . ... ... ... .. ... 84

4.3 Calibration of the frequency stabilization system . . . . . ... ... .. .. 85
4.3.1 Actuators . . . . .. 85
4.3.2 Cavity parameters . . . . . . . . . ... L 91
4.3.3 Error estimation . . . . . .. .o oo 94
4.3.4 Parameter list in the frequency stabilization system model . . . . . . 94

4.4 Optimization of the control configuration . . . . . .. ... ... ... . .. 96
4.5 Noise budget of the frequency stabilization system . . . . . .. .. .. ... 99
4.5.1 Laser frequency noise . . . . . . . ... .o 99
4.5.2 Noise from resonance frequency fluctuation of the reference cavity . . 100
4.5.3 Noise from the IMC length fluctuation. . . . . . .. ... .. ... .. 102
4.5.4 Servo noise . . . . ... 103
4.5.5 Shot noise . . . . . . ... 104
4.5.6 Dark noise of the second loop REPD . . . . ... ... ... ... .. 105
4.5.7 Residual amplitude modulation noise . . . . . . .. .. ... .. ... 106
4.5.8 VCO phase noise . . . . . . . . . . . . ... ... 108
4.5.9 Confirmation of the noise budget . . . . . . . .. ... ... ... ... 110
4.5.10 Summary of the noise budget . . . . . . . .. ... 111

5 Conclusion 113
5.1 Summary . . . ... 113
5.2 Future work . . . . . ... 114
A Fabry-Perot Cavity 117
A.1 Expression of the light . . . . . . ... ... ... ... ... ... ... 117
A.1.1 Parameters for the light expressions . . . . . . . . ... ... .. ... 117
A.1.2 Propagation of the light . . . . . . . ... .. ... ... ... ..... 118
A.1.3 Modulation . . . . . . .. 119
A.1.4 Noise of the laser light . . . . ... ... ... ... ... ... .... 124
A.1.5 Reflection from a mirror . . . . . ... ..o 125

A.2 Fabry-Perot cavity . . . . . . . . .. 128
A.2.1 Electric field inside of a cavity . . . . . .. ... ... ... ... 128
A.2.2 The reflected and transmitted light in Fabry-Perot cavity . . . . . .. 131



CONTENTS

A.2.3 Passive filtering of Fabry-Perot cavity . . . . . . ... ... ... ... 132

A.2.4 Application of a Fabry-Perot cavity . . . .. .. .. ... ... .... 134

A.3 Control of Fabry-Perot cavity . . . . . . . .. ... ... ... ... ... .. 134
A.3.1 Frequency response of Fabry-Perot cavity . . . . ... ... ... ... 134

A.3.2 Pound Drever Hall method . . . . . . ... ... ... ... .. .... 135

A4 Mode cleaning . . . . . .. 138
A4.1 Spatial mode . . . . ... 138

A.4.2 Resonant spatial mode of a Fabry-Perot cavity . . . ... .. ... .. 141

A.4.3 Spatial mode selectivity . . . . .. ..o 143

A.4.4 Beam jitter reduction . . . . .. .. ... 144

A.5 Noise Source in frequency stabilization . . . . . . . ... ... ... ... .. 146
A5 1 Shot noise . . . . . . .. 146

A.5.2 Residual amplitude modulation noise . . . . . . .. . ... ... ... 147

A.5.3 Residual gasnoise . . . . . . . . . ... ... 148

A54 Seismic noise . . . . ... 148

A5.5 Othernoise. . . . . . . . . . 149

B Fundamentals of the control theory 151
References 157
Acknowledgement 162



Glossaries

Glossaries

AdV Advanced Virgo.
AOM Acousto-Optic Modulator.
AS Anti-Symmetric.
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BS Beam Splitter.
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iKAGRA Initial KAGRA.
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IMMT Input Mode Matching Telescope.
ISS Intensity Stabilization System.

ITM Input Test Mass.

LIGO Large Interferometer Gravitational wave Observatory.
MZI Mach-Zehnder Interferometer.
NPRO NonPlanar Ring Oscillator.

OLG Open Loop Gain.
OMC Output Mode Cleaner.

PD Photo Detector.

PDH Pound Drever Hall.
PMC Pre-Mode Cleaner.
PRC Power Recycling Cavity.

PRFPMI Power Recycling Fabry-Perot Michelson Interferometer.
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PRM Power Recycling Mirror.
PSL Pre-Stabilized Laser.
PZT PieZoelectric Transducer.

RAM Residual Amplitude Modulation.
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RF Radio Frequency.

RIN Relative Intensity Noise.

RSE Resonant Sideband Extraction.

SRC Signal Recycling Cavity.
SRM Signal Recycling Mirror.

TT gauge Transverse Traceless gauge.

UGPF Unity Gain Frequency.
ULE Ultra Low Expansion.

VCO Voltage-Controlled Oscillator.
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1 INTRODUCTION

1 Introduction

The gravitational wave (GW) is a physical phenomenon predicted by Einstein’s general
theory of relativity in 1916 [1], which is a distortion of space-time propagating at the
speed of light. In 1989, Taylor and Weisberg indirectly proved the existence of the GW
from the observation of a binary pulsar [2]. Assuming that the attenuation of the rev-
olution period of the binary pulsar called PSR 1913 is due to the radiation of the GW,
the attenuation almost agrees with the observation. Subsequently in 2015, 100 years after
the prediction, direct detection of the GW signal from a black hole binary was achieved
by Large Interferometer Gravitational wave Observatory (LIGO), which is a large inter-
ferometric GW detector in the U.S. [3]. The first detection of the GW signal was a very
significant scientific event. Since the gravitational interaction is much weaker than the
electromagnetic interaction, GWs carry information that electromagnetic waves cannot
provide. Therefore, GW signals provide a new brunch of astronomy different from the
current astronomy using electromagnetic waves and neutrinos. Furthermore, by analyzing
many GW events, experimental verification of the general theory of relativity becomes
possible.

In this chapter, we first describe the theoretical background of GWs in Section 1.1, and
the principle of GW detectors and several optical configurations are described in Section
1.2. After that, we describe the new astronomy by means of GWs in Section 1.3. In
the same section, the GW detectors in the world and the significance of KAGRA, which
is the GW detector under construction in Japan, are described. Then, we describe the
input optics of KAGRA, which is the main theme of this thesis, and the outline of this
thesis briefly in Section 1.4

1.1 Gravitational wave

1.1.1 Metric tensor and geodesic equation

In the general theory of relativity, the nature of space-time is described by a metric tensor

Juv- A proper length between two points z# and x# + dx* is denoted as
ds® = g, dxtdx”, (1.1)

where the Einstein summation is used to shorten the equation. In the Einstein summation,
the summation is taken over all the values of the indices, when the same index appears in
superscript and subscript. Hereafter, the coordinates are defined as 2° = ct, 2! = z, 2% =
y, and 2® = z. Subscripts and superscripts of Roman letters represent 1, 2, or 3, and

those of Greek letters represent 0, 1, 2, or 3. This ds shows the geometric properties of



1 INTRODUCTION

space-time.
A motion of a free falling particle, to which no force other than gravity is applied,

depends only on geometric properties of space-time. The particle satisfies the geodesic

equations,
d?a? \ dztdx”
= (12)
where I, is called the Christoffel symbol and is a function only of the metric tensor. It
can be written as . 5 5 5
M, =g (Hou y v G ) 1.3
=99 ( Oz * Oxr  Ox (1.3)

A geodesic equation multiplied by the mass of the particle can be regarded as an equation
of motion. Therefore, the Christoffel symbol represents the strength of a gravitational
field. Also, since the Christoffel symbol is represented by a derivative of a metric tensor,
a metric tensor is regarded as a gravitational potential.

Curvature of space is described by the Ricci curvature tensor R, and the Ricci curva-

)
ture tensor R, is described by the Riemann curvature tensor R*,,z, which is a function
of Christoffel symbols, and they are written as
ort,s  oI'*,,
RZ&B - ore OB + 156l 0s = a1 0, (1.4)
R,, = R” a0 (1.5)

The Ricci scalar R is a scalar derived from the Ricei tensor as

R = R",. (1.6)

1.1.2 Einstein equation

A metric tensor g, with mass follows the Einstein equation,

1 8rG
Gl“’ = RHV — égl“,R = 7TMV7 (17)

where G is a Newtonian constant of gravitation, and c is the speed of light, G, is called
the Einstein tensor, T}, is called the energy-momentum tensor which represents a mass
distribution.

A metric tensor in flat space-time is called as the Minkowski metric and it is expressed
as 1, = diag(—1,1,1,1). Now a metric tensor in general space-time g, can be written

as guv = N + Ny, where hy,, is the difference from the Minkowski space-time. Here, h,,

10



1 INTRODUCTION

is assumed to be small. The following quantities are defined for later.

h=he,, (1.8)

1
Py = Py — §nw,h. (1.9)

A Christoffel symbol can be written as

on A ‘
M, = ! ( £t o, ah“”) : (1.10)

2\ oxv ozh  Ox

Now an approximation of the Einstein equation, taking the first-order of h,, by per-
turbation expansion, is effective. Such an approximation is called a linear approximation.
In the linear approximation of the Einstein equation, the Lorentz gauge is taken. In the

Lorentz gauge,

Oh
=0 1.11
e (1.11)
By using the Lorentz gauge, the Einstein tensor can be derived as
1 -
GMV = _EDh/un (]_]_2)
where 5 8
O =n""—0 ) 1.13
T Bt D (1.13)
From the above, the linearized Einstein equation can be written as
- 167G
Ohy = —C—4TW. (1.14)

1.1.3 Gravitational wave

In the vacuum, since there is no mass, 7},, = 0. Therefore, the linearized Einstein equation
(1.14) can be written as
Uhy, = 0. (1.15)

This is the wave equation for ]_IW,. In other words, Bw,, which represents the distortion
from the Minkowski space, is transmitted in space-time as a wave. This wave of the
distortion of space-time is called a gravitational wave (GW).

A monochromatic plane wave solution of Eq. (1.15) can be derived as

hyw = Auexp(ikax®), (1.16)

where A, is the amplitude and k, is the wave number for each axis of the GW. For B,W

11



1 INTRODUCTION

to satisfy the Einstein equation (1.14) and the Lorentz gauge condition (1.11),

Ak =0, (1.17)
k k= 0. (1.18)

Since this solution has the degrees of freedom in selecting coordinates, we take the
Transverse Traceless gauge (TT gauge), as a gauge condition together with the Lorentz

gauge condition,

AU =0, (1.20)

where U” is an arbitrary time-like unit vector.

In Eq. (1.20), if U” = ¢% (time base of the Minkowski space), a time component of
h, is zero from Eq. (1.20) and the trace of hy, is also zero from Eq. (1.19).

Taking the traveling direction of the GW along with the z-axis, a plane wave solution

is derived as

AT = Ay, e, (1.21)
00 0 0
0 hy hy O

A, = 7 ) : (1.22)
0 hy —hy O
00 0 0

where h, and h, are amplitudes of each polarization of the GW described later. From
Eq. (1.21), we can see that the GW travels at the speed of light. Furthermore, Eq. (1.22)
shows the GW is a transverse wave with two degrees of freedom.

Equation (1.21) can be generalized as

AT = Z ha(f)el, e t=ene) (1.23)
A=+,X

where @ is a position vector of an observation point, n is a unit vector in the direction of

the GW propagation, and e, are polarization tensors. e and e, can be written as

uvo ,uu 5%
PN A A
€ = Uyutl, — 0,0, (1.24)
ey, = Uy, + 0,0 (1.25)
py — TRV 17ad 78] .

where w and v are unit vectors orthogonal to . Since superposition of all directions and

12
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frequencies is an actually observed GW, the GW strength can be written as

e =Y / dw/d3nh,4 w, ), e =m0, (1.26)

A=+,%x
1.1.4 Gravitational wave radiation

Next, we think about GW radiation. By solving the linearized Einstein equation (1.14),
we can discuss the radiation of a GW. Equation (1.14) can be solved by using a retarded

potential as

_ 4 [T, (20— —'w?" ') 4,
B (2%, @) = 5/ & Py . (1.27)

If we assume that a mass distribution of a GW source is sufficiently compact and the
source is sufficiently far from an observer, Eq. (1.27) can be approximated by using the

quadrupole moment @);; of the mass distribution as

2G
o — EQij(t/)ﬂ (128)

where r = | — &'| and t' =t — r/c. Q;; can be written by using the mass distribution
p(x’ t') as

Qu(t) = / o, t’)( 2l —lémx/’ 'ﬂ>. (1.29)

Unlike electromagnetic waves, GWs are not radiated from dipoles. This is because the
dipole moment is always zero when we employe the coordinate system which takes the
center of mass as the origin. Therefore, GWs are not radiated from an axial symmetrical

motion of an object with an axial symmetrical mass distribution.

1.1.5 Interaction between gravitational wave and space-time

To detect GW signals, we need to know how GWs interact with space-time. To think
about the interaction of the GW and space-time, we first consider an effect of a GW on

a free particle on the Minkowski space-time. In this case,

dz*

——=(1.0,0,0). (1.30)

From the geodesic equation (1.2) and Eq. (1.10), acceleration of the particle is derived as

Az o
dr? 0
L (OnY, | Ohy  Ohy
2\ 020 020 Oz
~0. (1.31)

13
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Therefore, the GW does not give any acceleration to the free particle. The TT gauge can
be regarded as a gauge whose coordinates change so that the particle’s coordinates do not
change due to GWs and remain stationary. However, since this is a characteristic inherent
to the T'T gauge, it is necessary to introduce proper distances among free particles so as
not to depend on the coordinates, in order to consider general interactions.

Consider that a GW traveling in the z direction is incident on two adjacent free particles
P;(0,0,0,0), P»(0,&,0,0). If the proper distance hlbetween these particles changes by ¢,

0¢ can be written as

Py )
€+5€:/ |d82‘§

P

P

_ / \datda? |3
P

<
:/ |gn[? d
0
1-
= (1 + §h11) 3 (1.32)
1.
= 0§ = §h115- (1.33)

Equation (1.32) shows that the GW changes the proper distance between the free particles.
Next, let us consider a case where two free falling masses P, and P are separated by
a tiny distance £, and a GW traveling in the z-axis direction enters there. The distance

between P; and P, changes by

1 7 1
65 — 1 h+ hX f 6ik(ct—z)
se) P \ne h) \e
- [ &) - [&) .
— —h+ ezk:(ct—z) + _hx ezk(ct—z)' (134)
2 g2 2 el

Therefore, the two degrees of freedom of a GW correspond to the two modes: one in
which the y-axis contracts as the x-axis extend (4+ mode) and the other in which the +
mode is inclined by 45° (x mode). GWs have the action of extending and contracting
the space in this way. Figure 1.1 shows how each polarization of the GW changes the

distance between particles.

14
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Figure 1.1: Schematic view of polarization modes of the GW. The circles in the pictures
represent the movement of free falling masses when the GW in each mode propagates.

1.2 Gravitational wave detector

1.2.1 Principle of the gravitational wave detector

For direct detection of GW signals, it is necessary to observe minute changes in the proper
length between free falling masses. Since this change is tiny, we need a detector with high
sensitivity. The first attempt to directly detect the GW signal was made by Weber in the
1960’s with a resonant GW detector [4]. This type of detector detects the GW signal by
measuring a change in length of an elastic body of the detector, which is caused by an
elastic vibration mode excited by a tidal force of the GW.

In recent years, the development of a large GW detector using a laser interferometer has
been the mainstream. An interferometric type of a GW detector uses an interferometer
to observe a differential motion in two arms.

A conceptual diagram of the laser interferometer is shown in Fig. 1.2. A light emitted
from a laser source is divided into two arms by a beam splitter (BS). The light reflected
by a mirror placed at the end of each arm is recombined on the BS, and the power of the
interference light is measured with a photodetector (PD). There are two output ports of
the light in the Michelson interferometer. They are called an anti-symmetric (AS) port and
a reflection (REFL) port as shown in Fig. 1.2. The interference fringe changes due to the
difference in phase change caused during the light travel in each arm. When the difference
between two arm lengths fluctuates, the phase difference changes. Then, it causes the

change in the fringe. The BS and mirrors are suspended and can be regarded as free

15



1 INTRODUCTION

falling masses at the frequencies higher than the resonance frequency of the suspension.
When a GW comes in the interferometer, the proper distance between the mirrors and
the BS fluctuates differentially as can be seen in Fig. 1.1, so that the interference fringes

change. The interferometric detector measures this change and detects a GW signal.

E:Mirrory

V' \ XL

v
Laser BS Mirror

REFL port }>
e e

AS port

\ 4

Figure 1.2: Schematic view of a Michelson interferometer

Let us consider the response to the GW in the Michelson interferometer. An electric

field of the incident light can be written as
E(t) = Epe™, (1.35)

where () is an angular frequency of the incoming light and Ej is an amplitude of the electric
field of the light. This light is split into two by the BS. It is reflected by the mirror and
the reflected light is recombined on the BS. Then, the power of the recombined light is
detected by a PD on the AS port. The electric field of the light detected by the PD can
be written as

Epp = E,e¥=%) B =0 (1.36)

where ¢, and ¢, are the phase changes of the light in each arm, respectively, and F, and

E, are the amplitudes of the two divided lights. Therefore, the power of the recombined

16



1 INTRODUCTION

light can be derived as

Pep = |Epp|?
= B} + E. 4+ 2E,E, cos(¢, — ¢,)
Pmax + Pmin Pmax - Pmin

= 5 + 5 cos(¢z — @y), (1.37)

where
Puax = (E; + Ey)?, (1.38)
Proin = (Ex - Ey)2- (139)

From P,.x and P.;,, a contrast of an interferometer can be defined as

_Pmax_Pmin

= —\ 1.40
Pmax + Pmin ( )

From Eq. (1.37), an interferometer whose contrast is closer to 1 is more sensitive to the
phase difference.

Let the proper distances from the BS to each mirror be £, and ¢, respectively. As-
suming that each arm is on the zy axis and the GW of the + polarization is incident in

the z-axis direction. The phase rotations ¢, and ¢, can be written as

260 Q[ o

¢(t) = . +§/t_2£z/cdt h(t"), (1.41)
o 25 Q Q ! / /

By (t) = % -3 /t%y/c dt'h(t), (1.42)

where h(t) is an amplitude of the GW. Note that signs of the interactions of the GW in
the z direction and the y direction are opposite. Then, if we assume that &, ~ &, ~ &,

the difference between the phase rotations ¢, and ¢, can be derived as

2(5:1: - fy)Q
C

where

t
dpaw = 0 / h(t")dt'
t

—2&,/c
t o0
= Q/ dt/ dwh(w)
t—2&/c —00
<20 . .
= / dw— sin (f_w) e~ (W) et
w c

—00

= /00 dw Hygr(w)h(w)e™, (1.44)

—0o0
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where dpqw is the difference in the phase rotations caused by a GW, and Hyy(w) is the
sensitivity of the interferometer to the GW. Equation (1.44) shows the information on
the GW is included in the phase of the light. From Eq. (1.37), the power of the light on
the PD can be written as

Ppp ~ Pinax ;_ Pinin + Pinax ; Pinin {cos (—2(52 _c £y>Q) + 0paw sin (—2@” _c §y)Q) }

= Adopcw + (DC term), (1.45)

where A is the coefficient of the signal to the phase rotation caused by the GW. Therefore,
the power on the PD changes by the GW, and we can detect the GW signal by using the
signal from the PD.

The frequency responses of the Michelson interferometers with some arm lengths are
shown in Fig. 1.3. At the low frequencies, the sensitivity increases as the arm length be-
comes longer, whereas at high frequencies, the sensitivity cannot be improved by changing
the arm length. That is because the GW, which has a shorter period than a storage time
of the light in the interferometer, is canceled during a round trip in the arm. The angular

frequency w. at which the sensitivity gets maximum can be derived as

me
we = ¢ (1.46)

Above w, the sensitivity decreases because of the cancellation.

1013 Frequency response of the Michelson interferometer
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Figure 1.3: Sensitivities of Michelson interferometers with the arm length of 3 km, 30 km,
and 300 km, respectively.
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1.2.2 Optical configuration of GW detectors

The optical configuration of GW detectors currently being operated or constructed is
not a simple Michelson interferometer, but the one combining several optical cavities to

improve the sensitivities. Several optical configurations are listed below:

Fabry-Perot Michelson interferometer

The sensitivity of a GW detector becomes best when it detects the GW signal of the
frequency satisfying Eq. (1.46). The arm length with the maximum sensitivity to the 1-
kHz GW signal is about 75 km. However, it is impossible to construct an interferometer
with such a long arm. Therefore, in the GW detector, the sensitivity is improved by
using Fabry-Perot cavities (described in Appendix A) as the arms and extending the
effective arm lengths. This interferometer configuration is called a Fabry-Perot Michelson
interferometer (FPMI). Two mirrors constituting the Fabry-Perot cavity are called an
input test mass' (ITM) and an end test mass (ETM). The schematic diagram of the
FPMI is shown in Fig. 1.4.

The sensitivity Hppmi(w) of the FPMI [5] can be written as

2af) sin y

HFPMI(W) = €_i’y, (147)

w 1 —rprge 2
where rr and rg are the values of reflectivitiy of the ITM and the ETM, respectively, ~

and « are written as

t%’TE

a= SRR (1.48)

—rp+ (r% + t3)rg
e

C

(1.49)

where ¢ is the transmittance of the ITM. The absolute value of the sensitivity Hepy(w)

can be derived as

2a1) | sin |

Hypyi(w)| = ’
| Hppai (w))] w(l =rpre) \/1+ (2Fn)2sin

(1.50)

where F is the finesse (described in Appendix A.2.1) of the arm cavity. The sensitivities
of FPMIs with several values of finesse are shown in Fig. 1.5. The arm length is assumed
to be 3 km in all the cases. The FPMI with high finesse cavities has the low cut-off
frequency above which the sensitivity starts to get worse, and the low cut-off frequency
leads to the high sensitivity at low frequencies. This is because the average bounce number

is proportional to the finesse, and the higher finesse cavity has a longer effective length

In GW detectors, the main mirrors are often called test masses.
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and a longer storage time. The average bounce number Ngpyg can be derived as

2F
NFPMI = 7 (151)
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BS FP cavity
AS port
\ 4

(EEiJ

Figure 1.4: Schematic view of an FPMI. Fabry-Perot cavities are used to extending the
effective arm lengths. An ITMX(Y) and an ETMX(Y) represent the input test mass and

the end test mass of the x(y)-arm.
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Figure 1.5: Sensitivities of FPMIs with the arm length of 3 km and finesse of 100, 300,
and 1000, respectively.
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Figure 1.6: Schematic view of a DRMI. A PRM increases the effective power in the
interferometer, and an SRM amplifies the GW signal.

Dual recycling Michelson interferometer

Another configuration to improve the GW sensitivity of the interferometer is a dual
recycling Michelson interferometer (DRMI). A schematic diagram of the DRMI is shown
in Fig. 1.6.

Normally, in a GW detector, the mirror is controlled at a position, where the light
does not come out to AS port, to reduce the shot noise. We call this control a dark
fringe lock. In this case, all the power of the light returns to the REFL port. Here, by
reflecting the returned light in phase with the incident light, the effective power in the
interferometer can be increased. The cavity formed by the Michelson interferometer and
the power recycling mirror (PRM) installed at the REFL port is called a power recycling
cavity (PRC). The PRC reduces the shot noise by increasing the effective power in the
interferometer. The ratio of the laser power on the BS with the PRM to that without the
PRM is called a power recycling gain.

In the case of the dark fringe lock, all GW signals are transmitted to the AS port.
By reflecting this signal to the interferometer, it is possible to amplify the signal. The
mirror installed at the AS port is called a signal recycling mirror (SRM), and the cavity
composes of the SRM and the Michelson interferometer is called a signal recycling cavity
(SRC).

As shown in Eq. (1.44), the length of the arm that gives the maximum sensitivity
is determined by the GW frequency. This is because the GW whose period is shorter

than a storage time of the light in the interferometer is canceled during a round trip in
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the arm. Since the GW signal is transmitted to the AS port, the PRC does nothing for
the GW signal. Therefore, the cut-off frequency of the GW signal is not affected. On
the other hand, the SRC changes the cut-off frequency since the SRM reflects the GW
signal and extends the storage time. Therefore, even if the FPMI and the SRC are used
in combination, there is not a significant merit. However, by combining the PRC and
the SRC, the sensitivity can be improved. Such a configuration is called a dual-recycling
Michelson interferometer (DRMI).

ETMX

BS FP cavity

SRM ]

@

Figure 1.7: Schematic view of an RSE interferometer. The configuration itself seems to
be the combination of an FPMI and a DRMI, though the role of SRC is opposite to that
in the DRMI interferometer.

Resonant sideband extraction interferometer

The optical configuration of a resonant sideband extraction (RSE) interferometer is a
combination of an FPMI and a DRMI [6]. The schematic view of the RSE interferometer
is shown in Fig. 1.7. Although the arm cavity and the PRC play the same role as in the
FPMI and the DRMI, the role of the SRC is exactly opposite to the DRMI in the RSE
interferometer. The length of the SRC in the DRMI and that in the RSE are shifted by
a half wavelength of the laser. As a result, the SRC works to lower the effective finesse
of the arm cavities with respect to the GW signal. Therefore, the cut-off frequency of
the frequency response gets higher, which means that the sensitivity gets better up to
higher frequencies. On the other hand, since the finesse of the arm cavity with respect to
the incident light is not changed by the SRM, a large power is accumulated in the arm

cavity, and the GW signal itself is enhanced. In the RSE interferometer, the arm cavity is
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designed to have high finesse, so that the signal strength is increased. At the same time,

high sensitivity can be achieved up to higher frequencies by the SRM.

1.2.3 Noise of the gravitational wave detector

In a GW detector, it is necessary to detect a tiny distance change, so that various dis-
turbances must be identified as noise. All the noises have to be sufficiently suppressed to
detect the GW signal. Furthermore, most efforts are devoted to noise reductions. This

subsection explains the main noise sources in the GW detector.

Seismic noise

The seismic motion shakes mirrors of a GW detector, and this mirror motion is the
displacement noise in the GW detector. The mirrors are isolated from a seismic motion
by being suspended.

Assuming that the movement of the suspended mass, as shown in Fig. 1.8, is sufficiently
small, the equation of motion can be derived as

mi = —T(x—xg) — vz, (1.52)

where m is the mass, g is the acceleration of gravity, z, is the ground motion, [ is the
length of the suspension, and v is the viscous damping coefficient. Here, the third term
on the right side represents the damping force proportional to the velocity of the mass.

Equation (1.52) can be solved by Fourier transformation as

2
“o
—w? 4 iQuow + w?

T(w) =

Ty(w), (1.53)

where wy is the resonance angular frequency of the suspension, and @) is the quality factor.

wo = \/g (1.54)

—
Q—mv. (1.55)

They can be derived as

As the quality factor represents the magnitude of energy dissipation, the oscillation is

damped faster in a larger quality factor system.
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Figure 1.8: Schematic view of the pendulum in a viscous medium, where m is the mass,
g is the acceleration of gravity, x, is the ground motion, [ is the length of the suspension,
and 7y is the viscous damping coefficient.

As shown in Eq. (1.53), the transfer function of the suspension from the ground mo-
tion to the mass motion is inversely proportional to the square of the frequency in the
frequency region satisfying w > wy. Therefore, the longer suspension, which has the lower
resonance frequency, can attenuate the seismic motion more efficiently at high frequen-
cies. Furthermore, in the case of the multi-stage suspension, each stage has the seismic
isolation as represented by Eq. (1.53), and the whole suspension works as the cascading
seismic isolation filters.

The mirrors of the GW detector are suspended by long suspensions which have several
stages to reduce the seismic motion. However, since there is a limit to lowering the
resonance frequency, it is difficult to provide sufficient vibration isolation in the low-
frequency region as w < wy. Therefore, the seismic noise becomes a problem at low

frequencies (typically below several tens of Hz).

Thermal noise

A thermal noise limits the sensitivity at the frequency range around 100 Hz. Since the
mirrors of an interferometer are in contact with a heat bath of a finite temperature, the
contact causes thermal vibration, and this vibration also induces a displacement noise.
Besides, since the suspension suspending the mirror is also in contact with the heat bath,
the vibration mode is excited and causes the displacement of the mirror. It is known that
the dissipation of the system determines the thermal noise by the fluctuation-dissipation
theorem [7, 8]. This noise can be reduced by using a mirror with a substrate of a high

quality factor or by using a suspension with a fiber of a high quality factor. Therefore,
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fused silica which has a high quality factor at room temperature is used as a substrate
material in mirrors of current GW detectors [9].

The thermal noise can be reduced by cooling mirrors and suspensions. In the next
generation GW detectors, the thermal noise will be suppressed by cooling mirrors to a
cryogenic temperature. However, since the quality factor of fused silica is low at cryogenic
temperatures, fused silica cannot be used in cryogenic detectors. On the other hand,
sapphire and silicon have high quality factors at cryogenic temperatures and high thermal
conductivities. Therefore, they are used as a mirror substrate material for cryogenic

interferometers [10, 11].

Quantum noise

A quantum fluctuation of light causes a quantum noise. It is one of the noises limiting
the sensitivity of a GW detector. The quantum noise includes a shot noise and a radiation
pressure noise. The shot noise is caused when the power of light is measured on a PD
due to a fluctuation of the number of photons reaching the detector by the uncertainty
principle. Furthermore, since photons have momenta, they apply forces to the mirror
when the mirror reflects them, and this force also fluctuates due to the fluctuation of
the number of photons. As a result, the mirror of the interferometer is shaken, and the
displacement noise is induced. This is called the radiation pressure noise.

Although the shot noise can be reduced by increasing the laser power, the radiation
pressure noise is simultaneously increased. Due to this trade-off relationship, there is a
sensitivity limit which cannot be overcome only by changing the power, and this limit is
called a standard quantum limit [12]. To surpass the standard quantum limit, techniques
such as squeezing of light have been developed [13].

Noise of laser source

The fluctuations of the laser frequency and the laser intensity can cause the noises in
a GW detector.

First, consider the frequency noise. The frequency noise can be regarded as equivalent
to the phase noise, since the differentiation of the phase noise is the frequency noise.
Therefore, we consider the phase noise here. Let a phase fluctuation be d¢(t), then

Eq. (1.37) can be rewritten as

Pmax+Pmin
2
+Pmax_Pmin
2

Ppp =
ol — b, + {86(t — £4/) — 6(t — &,/)}]. (1.56)

When the lengths of the arms are equal, the phase fluctuation is not a problem. However,
if there is asymmetry in the lengths of the arms, the phase fluctuation becomes noise on
the GW signal. In the FPMI or the RSE interferometer, the asymmetry in finesse of each

arm cavity also causes the phase noise. The ratio at which the phase noise is suppressed
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by the symmetry of the interferometer is called a common mode reduction ratio (CMRR).
In a GW detector, the frequency noise is reduced by controlling the frequency of the laser
using an optical cavity as a reference.

Next, consider the intensity noise. Let E, = E, = Ey/2, ¢, — ¢, = (2n +1)/2m +
¢_ + dpaw, where n is an integer, and the intensity noise be § P. Equation (1.37) can be

rewritten as

Py+6P Py+46P

Ppp = 5 + 5 cos(¢z — ¢y)
Py+ 0P
~ 20 (Soew +0)
I oP
~ 706¢GW + 7¢—~ (1.57)

Therefore, by controlling the arm length such as ¢, — ¢, = (2n + 1)/27, the intensity
noise can be suppressed. However, the arm lengths cannot be controlled perfectly, so the
intensity noise becomes a problem. The intensity noise can be reduced by measuring the
laser power with a PD and feeding back the signal to an amplitude actuator.

When higher-order spatial modes are mixed in the laser, the contrast of the inter-
ferometer decreases and the performance of the interferometer deteriorates. Also, if the
propagation direction of the beam spatially fluctuates, this beam motion, which is called
the beam jitter, couples with the cavity to become noise. As will be described in Appendix

A 4.3, these noises can be reduced by using optical cavities.

1.3 Gravitational wave astronomy

1.3.1 Gravitational wave astronomy

GWs are radiated from any motion of a mass involving a change in a quadrupole moment
of a mass distribution. For example, a strength of a GW from an object that moves at

velocity v with mass M, can be roughly estimated from Eq. (1.28) as

_ 10716 (A]Z) <10pr) (%)2 (1.58)

As seen in Eq. (1.58), the amplitude of the generated GW is tiny, and it is impossible
with current technologies to observe the GW signal generated from motions of objects on
the earth. Since the strength of the GW depends on the mass and the velocity of the
source, an astronomical event in which a massive object moves at high speed can be a
detectable GW source.

The reason why the GW signal is difficult to be detected is the weakness of the grav-
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itational interaction. The strength of the electromagnetic interaction is characterized by
the fine-structure constant o = e*/hic = 1/137, where e is the elementary charge, and
the corresponding constant representing the strength of the gravitational interaction is
as small as ag = Gm2/hc = 7 x 1077, where m,, is the mass of a proton. This tiny
interaction of gravity is a disadvantage in the sense of detection of GW signals.

On the other hand, the weakness of the gravitational interaction can be an advantage
from the astronomical and the astrophysical viewpoints. For example, when considering
a formation process of a neutron star in a supernova explosion, the information obtained
by light is at most about the surface of the star. Photons carrying information about the
inside of the neutron star is scattered and absorbed by many electrons and atoms. On
the other hand, since the interaction of the GW is weak, a GW generated in the central
region of the neutron star is hardly scattered and absorbed. Therefore, it is possible to
observe the GW signal carrying the information on the central region of the neutron star.
The advantage and the significance of the GW astronomy is that the GW allows us to
explore astrophysics and universe beyond reach of conventional astronomical probes using

the electromagnetic waves.

1.3.2 Sources of gravitational waves

As mentioned above, astronomical events are the detectable GW source. Several types of

gravitational wave sources are listed in this subsection.

Compact binary coalescence

There are many binary systems in the universe formed of compact stars with huge
mass like neutron stars and black holes. In these binary systems, two stars rotate around
each other, and this rotational motion generates a GW. Since the generation of the GW
involves energy dissipation, the distance between the two stars gradually decreases, and
the rotation frequency increases accordingly. This stage is called an in-spiral phase, and
a frequency of a GW generated in this phase increases with time. This frequency sweeps
from 10 Hz up to about 1 kHz in the binary neutron stars, and hundreds of Hz's in the
binary black holes.

The frequency and strength evolution of the GW in the in-spiral phase can be written
approximately as [14]

5 3
14Mo\3 /1d 8
fGW(T)~1.9H2< MQ) ( Tay) : (1.59)
5 1
_ M, 4 T 4 /15 Mpc
h(T) ~ 1.7 x 107% = S 1.60
()~ 1.7 (1.4M@) (1day) ( r ) (1.60)

where 7 is the time to coalescence, r is the distance between the source and the observer,
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and M, is the chirp mass. The chirp mass is defined as M, = (myms)>®(my + my) =1/,
where m; and my are the mass of each compact object.

After the in-spiral phase, the two compact objects collide and coalesce. In this coa-
lescence phase, the waveform of the GW generated from the binary black holes can be
accurately predicted by the general theory of relativity. Therefore, if the waveform of the
GW radiated by the coalescence of the binary black holes is analyzed, the general theory
of relativity is verified.

The waveform of the GW generated by the coalescence of the binary neutron stars
depends on the mass and the state equation of inside of each neutron star. The mass of
each neutron star can be determined by the waveform in the in-spiral phase. Therefore,
it is expected that we can know the state equations of neutron stars by observing and
analyzing GW signals from the coalescence of binary neutron stars.

As we will describe later, the first detection of the GW signal was from the coalescence
of the binary black holes in 2015. Since the binary black holes had not been found until
this first GW detection, this detection was not only the first detection of the GW signal,
but also the first evidence for the binary black holes. Therefore, this historical event

opened a new window of the astronomy, i.e. the GW astronomy.

Rotation of compact stars
A rotating compact star like a neutron star can be a GW source, when it has axial
asymmetry in its mass distribution. Such a rotating star is called a pulsar. An amplitude

of a GW from a pulsar depends on the magnitude of the asymmetry and it can be written

as [15]
B 1 10 kpc faw
B 11 %1072 (= 1.61
% (10—6) (1038 ke m2) ( r ) (1 kHz)’ (1.61)

where [ is the moment of inertia around the axis of rotation and € is the asymmetry of

the pulsar. The asymmetry is defined as € = (I; — I5)/I, where I; and I, are the moments
of inertia around the axes orthogonal to the rotation axis.

The magnitude of asymmetry of the neutron star depends on the state equation of the
neutron star. Therefore, by analyzing the amplitude of GW signals radiated from pulsars,
there is a possibility that some knowledges about the mechanism of the asymmetry and

the state equation of the neutron star can be obtained.

Supernova

A supernova explosion is a major explosion that occurs when a massive star ends its
lifetime. The supernova explosion mechanism has not been fully understood. Therefore,
the magnitude and the waveform of the radiated GW is not well predicted. Along with
recent improvements in supercomputer performance and numerical simulation techniques,

quantitative understanding is expected to further advance in the near future. The GW
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strength from the supernova explosion at 20 Mpc far from the earth is estimated as
h = 1072! — 10722 and the frequency of the GW is predicted as widespread around 1
kHz [16].

Stochastic background

A stochastic background of the GW includes GWs from numerous unresolved astro-
physical sources, cosmological origins in the early universe, and cosmic strings. In partic-
ular, GWs from the early universe are interesting. As the universe has been filled with
plasma for 380,000 years since the universe was born, electromagnetic waves could not
travel freely in this period. On the other hand, GWs could travel freely even in plasma be-
cause the gravitational interaction is weak. Therefore, by observing GW signals generated
immediately after the universe creation, it is possible to directly observe the early uni-
verse. The prediction of the strength and frequency of these GWs varies widely according
to the theoretical models.

One example of the stochastic GW background is a GW generated in the inflation [17].
It is predicted that GWs were generated by the quantum fluctuation of space-time during
the inflation, and the GWs generated at that time still remain as background. If we can
detect the GWs derived from the inflation, we will have evidence for the inflation model

in the early universe.

1.3.3 Detection of gravitational wave signals

The first detection of GW signals was one of the most important scientific events in the
last several decades. With the detection of a GW signal from a coalescence of binary
black holes [3] as a start, two more GW signals from binary black holes coalescences were
detected [18, 19] by Advanced LIGO. In 2017, the first detection with three detectors,
two detectors of Advanced LIGO and Advanced Virgo was achieved [20]. Moreover, a
GW signal from a coalescence of binary neutron stars was detected [21].

The first event observed in 2015 is named GW150914. This event was not only the first
detection of the GW signal but also the first evidence for the binary black holes and their
coalescence. According to the analysis, this GW source is the binary black holes located
about 410 Mpc away from the earth and their masses were 36 M, and 29M,, respectively.
The GW signal frequency was swept from 35 Hz to 150 Hz during 0.2 seconds. After the
coalescence, the waveform called a ring down, which occurs for a short period after the
coalescence, appeared around 250 Hz. This waveform of the GW was in accordance with
the one expected by the general theory of relativity. Figure 1.9 shows the waveform of
this event.

What is surprising in GW150914 was that the GW source was not binary neutron stars

but binary black holes. Until the first observation, many scientists expected to observe
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GW signals from coalescences of binary neutron stars first. This observation gave us
an important suggestion on the event rate of coalescences of binary black holes, namely,
9-240 events per year within the range of 1 Gpc, which is far more than the predicted
value of 0.1-1 events per year. It was also a surprise that their masses were about 30M.
The mass of a celestial compact object that had been a candidate for a black hole by the
X-ray observations so far was approximately 10M.

Since the first observation, the GW signals from three coalescences of binary black holes
have been observed by two detectors of Advanced LIGO. In August 2017, Advanced Virgo
in Italy participated in the observation, and GW signals from a coalescence of the binary
black holes and a coalescence of the binary neutron stars were detected simultaneously
by the three detectors of Advanced LIGO and Advanced Virgo. These events are named
GW170814 and GW170817, respectively. The source position determination accuracy
of GW150914 was 600 deg?, as the position was determined by the two detectors. On
the other hand, in the case of GW170814, the source position determination accuracy
was improved to be 60 deg?, as the position was determined by the three detectors.
From the above, one sees that simultaneous observations by three or more detectors
are indispensable, when determining the position of the GW source. In addition, We
emphasize that GW170817 was also an important event in the multi-messenger astronomy
described in the next section.

The masses and the distances of the compact objects of each event are summarized in
Table 1.1.

Event Source  Primary mass [Mg] Secondary mass [Mg] Final mass [Mg] Distance [Mpc]
GW150914 [3] | BH-BH 3615 294 625 4107159
GW151226 [18] | BH-BH 14753 7.572% 20.8761 4407150
GW170104 [19] | BH-BH 31.2184 19.4723 48.715T 8807350
GW170608 [22] | BH-BH 1247 7+3 18.0738 3407110
GW170814 [20] | BH-BH 30.5757 25.37%% 53.215-2 5401330
GW170817 [21]

(Low-spin priors) | NS-NS 1.36 — 1.60 1.17-1.36 2.7410-0¢ 40718,
(High-spin priors) | NS-NS 1.36 — 2.26 0.86 — 1.36 2.8210-97 408,

Table 1.1: Parameters of the GW source for each event.

neutron star.
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Figure 1.9: Waveform of GW150914 [3].

1.3.4 Multi messenger astronomy

Some GW sources have mechanisms that radiate electromagnetic waves and neutrinos. In
the case of such a GW source, the simultaneous observations of GW signals, electromag-
netic waves, and neutrinos can provide more information than the individual observation
can. The astronomy based on coordinated observations in such a way is called the multi-
messenger astronomny.

For the multi-messenger astronomy, the quick communication among the relevant ob-
servations is essential. A particularly important thing for the GW observation is to
determine the arrival direction of GWs accurately and to communicate it to the other
observations. There is a big difference in angular resolution between a GW detector and
other detectors. For example, typical optical telescopes can determine the arrival direc-
tion of light with one telescope, while the GW detector cannot precisely determine the
arrival direction of a GW with one detector. In order to determine the arrival direction,
it is necessary to use the difference in the arrival time of the GW by using several GW
detectors. For this purpose, three or more GW detectors are necessary.

By the multi-messenger astronomy that includes GWs, research on v-ray burst (GRB)
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is expected to make progress. A GRB is a phenomenon in which «-rays are observed like a
flash. A GRB with a short duration of about 2 seconds are called a short GRB. Although
it was assumed that the source of the short GRB was a coalescence of binary neutron
stars, there was no experimental verification. However, in August 2017 when the GW
signal from the coalescence of the binary neutron stars was detected by Advanced LIGO
and Advanced Virgo, the GRB was also observed with a delay of 1.7 seconds [23]. This
event demonstrated that short GRBs originated from coalescences of the binary neutron
stars. The ~-ray intensity emitted from GRB170817A was lower than those emitted from
any other short GRBs ever observed. It is an open question whether such dark short
GRBs have just been overlooked or GRB170817A is special. In any case, if similar GRBs
are observed with multi-messenger observations with GWs, it is expected that they will

provide new knowledge on astrophysics.

1.3.5 Gravitational wave detectors in the world

LIGO

Large Interferometer Gravitational wave Observatory (LIGO) is a GW observatory
composed of two sites in the U.S. One is located in Hanford, Washington State, and the
other in Livingstone, Louisiana State. LIGO is divided into three phases.

The first phase is called initial LIGO (iLIGO) [24]. In this phase, there were one
detector with 4 km arm length and another with 2 km arm length in the Hanford site,
and another with 4 km arm length in the Livingstone site. The optical configuration
was a Power recycled Fabry-Perot Michelson interferometer (PRFPMI) which combines
an FPMI and a PRC. The laser source was a 10 W Nd:YAG laser. To isolate the test
masses from the seismic vibration, they are suspended by single-stage pendulums which
are mounted on four-layer passive vibration isolation platforms. iLIGO was sensitive to
detect the GW signal from a coalescence of a pair of 1.4-solar mass neutron stars at about
15 Mpc far from the earth. Figure 1.10 shows the iLIGO sensitivity curves during the
fifth science run of iLIGO.
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Figure 1.10: Designed sensitivity of iLIGO (magenta), together with measured sensitivity
curves of the iLIGO during the final science run (red, green, and blue) in strain amplitude
spectral density [24].

After iLIGO, LIGO shifted to the second phase called Enhanced LIGO (eLIGO) [25].
In this phase, the laser power was increased to 35 W, and a signal acquisition method
was changed from the RF demodulation method (developed from the Pound-Drever-Hall
(PDH) method described in Appendix A.3) to what is called the DC readout method [26].
In the RF demodulation method, the interferometer is locked on a dark fringe, and the
signal of differential motion of the arm lengths, which includes GW information, is ac-
quired by the beat signal between the RF sideband and the carrier light. Even in the case
of dark fringe lock, junk lights such as RF sidebands and higher-order spatial mode lights
leak out to the AS port. Since junk lights increase the shot noise, they should be reduced
somehow. The junk lights can be filtered by a cavity, however, it will also filter out the
RF sideband including the GW signal. On the other hand, in the DC readout method,
the control point in the mirrors is microscopically shifted from the dark fringe, so that
the weak DC light leaks to the AS port. In this case, the intensity of the DC light leaking
to the AS port varies in proportion to the GW signal, so the RF sideband is unnecessary.
Therefore, the cavity to filter the junk lights at the AS port can be used to reduce the
shot noise. This cavity is called an output mode cleaner (OMC) and installed in eLIGO.

After eLIGO, a major improvement was made. This third phase is called Advanced
LIGO (aLIGO) [27]. aLIGO has a design sensitivity 10 times better than that of iLIGO.
aLLIGO can observe GW signals from a coalescence of binary neutron stars at 190 Mpc far

away, and it is expected to detect about 10 coalescences of binary neutron stars per year.
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In fact, aLIGO has successfully observed GW signals from five coalescences of binary black
holes and from one coalescence of binary neutron stars. aLIGO uses the iLIGO building
and the vacuum tanks, but the detector part is completely new. alLIGO composes of two
detectors with 4-km arm length, one in each site. The laser power is increased up to 125
W, and the optical configuration is an RSE interferometer. As with eLIGO, the signal
acquisition method is the DC readout method, and the OMC is also used.

Compared to eLIGO, the vibration isolation system has been greatly improved in
alLIGO, and the test masses are isolated by three-stage vibration isolation systems. In
the first step, a basic system chamber (BSC), in which a test mass is stored, is isolated
by an active seismic isolation platform called a hydraulic external pre-isolator (HEPI). In
the BSC, an internal seismic isolator (BSC-ISI), which is an in-vacuum two-stage seismic
isolator, is mounted as the second stage of the seismic isolation system. The BSC-ISI is a
system that combines the active seismic isolation with the passive one. Figure 1.11 shows
the schematic view and the CAD diagram of the HEPI and the BSC-ISI. As the final
stage, the test mass is suspended from the BSC-ISI platform by a quadruple suspension.
The CAD diagram of the quadruple suspension is shown in Fig. 1.12.

aLLIGO completed the construction of the equipment in mid 2014 and the first obser-
vation as aLIGO was done for 4 months from September 2015. During that observation,
alLIGO succeeded in the first detection of the GW signal from the coalescence of the bi-
nary black holes, GW150914. At that time, the observation range for GW signals from

the coalescence of binary neutron stars was 60 Mpc.

(a) (b)

W .
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Suspended _
- test mass

Figure 1.11: (a) Schematic and (b) CAD diagram of the isolation system supporting the
core optics in the BSC chambers [28].

34



1 INTRODUCTION

Isolation: S
3 Stages of \ .
Maraging ;
Steel Blade

Springs

fﬂff"’fﬂéteel suspension wires
leading to upper metal

suspe nsion stages

Fused Silica
Penultimate
Mass [40 kg]

Silica fibers
between the

Ring Heater

Fused Silica
Input Test
Mass (ITM)

10ka) Metal %

\Cﬂm pensation “Catcher”
Plate (CP) Structure

T ANER\

f—— 4

Electrostatic
Actuator

Figure 1.12: CAD diagram of the quadruple pendulum suspension for the core optics of
the interferometer [27].

Virgo

Virgo is a GW detector with arm length of 3 km built near Pisa, Italy. The Virgo
project can be divided into two phases, Virgo [29] and Advanced Virgo (AdV) [30].

Virgo’s interferometer configuration was a PRFPMI like iLIGO. It is noteworthy that
test masses are suspended by using a seismic isolation system called a superattenuator.
The superattenuator is effective above 10 Hz and it is a prototype of what is now used in
AdV. Figure 1.13 shows the CAD diagram of the superattenuator. The superattenuator is
a vibration isolation system similar to that in KAGRA described in Chapter 2, consisting
of inverted pendulums, seismic filters, and a mirror payload. The inverted pendulum is
a horizontal mechanical oscillator with an ultralow resonance frequency by balancing a
restoring force of a metal elastic rod and an anti-spring force due to the weight of a mass.
Figure 1.14 shows the schematic view of the inverted pendulum. Each pendulum chain has
the seismic isolation system in the vertical direction using cantilever blade springs. The
seismic filter incorporates a mechanism that reduces the spring constant of the cantilever
blade spring by using the anti-spring effect of the magnet to lower the resonance frequency.

The detection range for the GW signal from coalescence of binary neutron stars of Virgo
was 7 Mpc. Since 2007, Virgo and LIGO have fully cooperated in the data analysis. They

actually took 5-month data simultaneously and the data analysis was made in cooperation.
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This was the beginning of the current GW detector network.

After that, Virgo started the AdV project that uses the infrastructure of Virgo and up-
dates detectors from Virgo. AdV will achieve the sensitivity 10 times higher than Virgo's
design sensitivity using technologies such as a high power laser, an RSE interferometer
configuration, a DC readout, and an OMC. When the design sensitivity is achieved, the
detection range for a GW signal from a coalescence of binary neutron stars will reach 140
Mpc. AdV completed the construction of the equipment in mid 2016. After improving its
sensitivity, AdV joined the simultaneous observation with LIGO in August 2017. During
that observation, AdV detected the GW signals from the coalescences of the binary black
holes [20] and of the binary neutron stars [21].

——Inverted Pendulum
Pendulum Wire

Inner Structure

10560

Separating Roof

Figure 1.13: CAD diagram of the Virgo superattenuator [29].

KAGRA

KAGRA is a GW detector with arm length of 3 km under construction in the mine of
Kamioka, Hida City, Gifu Prefecture, Japan. iLIGO and Virgo is called the first generation
detectors, and aLIGO and AdV are called the second generation detectors. On the other
hand, KAGRA is called the 2.5th generation detector. This is because the KAGRA

incorporates several more advanced features. KAGRA is constructed underground for a
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restoring force

Figure 1.14: Schematic view of the inverted pendulum. The gravity acts as the anti-spring
force. The effective spring constant gets small when anti-spring force and restoring force
get balanced, which means the resonance frequency gets low.

quiet seismic motion and a stable environment, and the mirrors and suspensions will be
cooled down to cryogenic temperatures to suppress thermal noises in them. Furthermore,
the test masses are isolated from the seismic motion by a large seismic isolation system
similar to the Virgo superattenuator. The detail of each feature will be described in
Chapter 2.

KAGRA has a design sensitivity that can detect a GW from a coalescence of binary
neutron stars at the distance of 140 Mpc. In the case of the coalescence of a pair of 30-solar
mass black holes, the detection range reaches 1.27 Gpc, corresponding to the expected
event rate of 24-440 events per year [31]. Figure 1.15 shows the design sensitivity of
KAGRA. The sensitivity of KAGRA is limited by the seismic noise at low frequencies, the
quantum noise at high frequencies, and the thermal noise in the middle. A comparison
of the sensitivities among aLLIGO, AdV, and KAGRA is shown in Fig. 1.16. At the
frequencies around 100 Hz, where GWs from coalescences of binary neutron stars and
binary black holes sweep, all detectors have the design sensitivity at a similar level. On
the other hand, KAGRA shows the best sensitivity in the band below 10 Hz, thanks
both to the quiet seismic motion level at the Kamioka mine where KAGRA is located
and to the mirrors isolated from the seismic motion with huge seismic isolation systems.
In addition, the sensitivity of KAGRA is slightly better than that of the other detectors
around 100 Hz. This is because the thermal noise in the mirrors is reduced by cooling
them.

Other detectors
Prototype detectors such as GEO600 [32] in Germany, 40-m prototype [33] in the U.S.,
TAMA300 [34], and CLIO [35] in Japan, were in operation before, and they mostly serve

as technology development sites for the current large GW detectors.
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Figure 1.15: Sensitivity curve of KAGRA (black). The sensitivity is limited by the
seismic noise (brown), the suspension and the mirror thermal noise (cyan and red), and
the quantum noise (magenta).
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Figure 1.16: Sensitivity curves of each detector. The designed sensitivity curves of KA-
GRA (blue), LIGO (red), and Virgo (yellow) are shown, together with the measured

sensitivity of the Hanford site (magenta) in the first observation run (O1) of aLIGO in
2015.
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1.3.6 Significance of KAGRA

Before the first GW detection in 2015, GW150914, the GW detectors in the world were
trying to observe the first GW event. However, the situation has changed completely.
aLLIGO and AdV have already succeeded in detecting the GW signals from the several
events. In this situation, we would like to confirm the significance of KAGRA once again.

As shown in Fig. 1.16, the sensitivity at lower frequencies than 10 Hz is better than
other detectors. Figure 1.17 shows the spectra of the GW150917 and the typical neutron
star binary coalescence with the designed sensitivity curves of KAGRA and aLIGO [36].
As shown in Fig. 1.17, KAGRA can measure the GW signal at the frequencies where
aLLIGO cannot measure. This means that KAGRA can measure GW signals in the in-
spiral phase for a longer time than the other detectors. As mentioned in Subsection 1.3.2,
the mass of each star is determined by the waveform in the in-spiral phase. Therefore, the
longer measurement of the GW signal in the in-spiral phase by KAGRA can determine
the mass more accurately. Furthermore, the predicted GW signal of the known spinning
pulsars are shown in Fig. 1.18 [37]. The amplitude is calculated under the assumption
that the observed spin-down rate is fully dominated by the gravitational wave emission.
As shown in Fig. 1.18, the frequencies of many of the GWs from the pulsars are below 10
Hz, where only KAGRA has the sensitivity for the GW signal, and actually only KAGRA
can detect the GW signals from some of such pulsars with the designed sensitivity.

The second significant contribution of KAGRA as the fourth detector is the improve-
ment of the duty cycle of the GW detector network. It is necessary for the interferometer
to control the distance between the mirrors and lock it to the operating point. The in-
terferometers easily lose lock, and until it gets re-locked, the observation stops. If we
assume each detector has the 80 % duty cycle, the duty cycle, when all detectors in a
three-detector network are operated in coincidence, is approximately 50 %. If the fourth
detector join to the detector network, the duty cycle, when more than three detectors are
in operation, is approximately 80 %.

The third significant contribution is the improvement of the ability to localize the GW
sources. By using the Monte Carlo simulation, the sky localization accuracy with three
detectors as well as with four detectors are calculated [38]. By this simulation, with the
three detectors of aLIGO and AdV assumed, the average accuracy of the sky localization
of a GW from a coalescence of binary neutron stars is 30.25 deg®. On the other hand, with
the four detectors including KAGRA assumed, the sky localization accuracy improves to
9.5 deg?.

Position determination accuracy, which is important in the future development of the
GW astronomy, will be greatly improved by KAGRA joining the GW detector network.
Therefore, the task currently required to KAGRA is to achieve the sensitivity necessary

to the GW observation as soon as possible and to participate in the GW detector network.
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The most recent task is to participate in the third observation (O3) by alLIGO and AdV
planned in 2019. For this purpose, it is necessary to reach the sensitivity corresponding
to the observation range of at least 10 to 20 Mpc for a coalescence of the binary neutron

stars. It is urgent to construct every subsystem in KAGRA to achieve such a sensitivity.
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Figure 1.17: Strain spectra of the GW150917 and a typical coalescence of a neutron star
binary with the designed sensitivities of KAGRA and aLIGO. A neutron star binary with
the chirp mass of 1.4M is assumed as the typical neutron star binary. Black solid and
dashed curves are the designed sensitivity of KAGRA and aLLIGO, respectively.
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Figure 1.18: Predicted GW signals from pulsars with the KAGRA and aLIGO designed
sensitivities with 1 year observation.
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1.4 Research target and outline of this thesis

As mentioned above, KAGRA has to join the GW detector network in the world as
soon as possible, and for that, the reduction of noises is an essential task. The GW
detectors consist of various components such as a laser system, suspensions, mirrors,
cryogenic systems, vacuum systems, a data management system, a data analyzing system,
an environmental monitoring system, and so on. In the GW detector project, various
subsystems work on each subsystem to reduce each noise.

Among them, a subsystem for reducing the noise of the laser and supplying low-noise
light to the interferometer is called an input optics subsystem. The roles required for the

input optics are as follows:
e Reduction of the frequency noise and the intensity noise.
e Reduction of the beam jitter.
e Mode matching to the main interferometer

Another requirement is for the duty cycle. The input optics has the several optical
cavities through which the laser passes. If the cavities are not locked on the resonance,
no light is provided into the main interferometer. The input optics must not disturb the
main interferometer operation. During the first observation run of aLIGO, the percentage
of time, when the interferometer is in the state of observing or locking, was about 80
% [39]. KAGRA should aim at a duty cycle equal to or higher than that. Therefore, the
requirement for the duty cycle of the input optics was set to 95%.

The stabilization of the incident light to the main interferometer is one of the essential
tasks in order to participate in the GW detector network. Installation of the input optics
is ongoing in KAGRA, and up to now the installation of the in-air optics which are called
pre-stabilized laser (PSL) and the triangular optical cavity called input mode cleaner
(IMC) has been completed.

The requirements at 100 Hz for each noise are as follows:
e Frequency noise at the IMC output: 0f < 1 Hz/vHz

e Relative intensity noise at the IMC output: dp < 107® /v/Hz

e Beam jitter at the output of the PSL: \/(0z/wo)2 + (60/ap)? < 3 x 107 /v/Hz

Here, 0 f is the frequency noise, dp is the relative intensity noise, dx is the transverse
motion of the beam, §6 is the angular motion of the beam, wy is the waist size of the
beam, and the ag is the divergence angle of the beam (see Appendix A.4.1).

The frequency stabilization system is one of the most important systems in the input
optics subsystem. The frequency stabilization system uses optical cavities as the frequency

reference. The linear cavity, called the reference cavity (RC), located on the PSL table
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and the IMC are the optical cavities used as the frequency reference in KAGRA. In
the frequency stabilization, if the length of the frequency reference cavity fluctuates due
to seismic vibration, the frequency stability gets worse. Therefore, the cavities for the
frequency references need to be isolated from the seismic motion. For example, a schematic
view of seismic isolation system of the input mode cleaner which is one of the reference
cavities of aLLIGO is shown in Fig. 1.19. The input mode cleaner is isolated from seismic
motion by using the HEPI, which is also used for vibration isolation of the test mass,
and the HAM (Horizontal Access Module chamber)-ISI, which is the seismic isolated
chamber simplified from BSC-ISI, and the mirrors are further suspended with a 3-stage
suspension. Also in AdV, the vibration isolation of the input mode cleaner is performed
by a suspension called a short superattenuator which reduces the six-stage seismic filter of
a supperattenuator to the three-stage one. On the other hand, as mentioned in Subsection
3.2.3, KAGRA has a very simple seismic isolation system with a passive vibration isolation
by stacks and a two-stage suspensions for the input mode cleaner. This is thanks to
the fact that the seismic motion of the KAGRA site is quiet. However, it is necessary
to confirm that such a simplified system can actually satisfy the requirement for the
frequency stability.

The author is responsible for the design, the installation, the investigation, and the
integration of the pre-stabilized laser table and the input mode cleaner in KAGRA. The
frequency stabilization system which is one of the main role of the PSL and the IMC is
the main theme of this thesis. In this thesis we describe the modeling based on actual
measurements and performance evaluation of the frequency stabilization system. Further-
more, the simulation of the improved frequency stabilization system necessary to achieve
the requirement is described. The main target of my research written in this thesis is
to construct the frequency stabilization system which satisfies the requirement for the
frequency noise and the duty cycle.

The outline of this thesis is as follows. Chapter 2 explains the KAGRA overview.
Firstly each feature of the KAGRA such as the optical configuration, the suspensions,
and the cryogenic systems is described. Then, we move to the input optics and describe
the component and the stabilization system. In Chapter 3, we describe installation works
of the input optics. As described in Chapter 2, the KAGRA project is divided into two
phases: initial KAGRA (iKAGRA) and baseline KAGRA (bKAGRA). The input optics
also has two phases, and the installation works in both phases are described. In Chapter
4, we explain the frequency stabilization system. The frequency stabilization system was
investigated and modeled by the several measurements, and we estimated the frequency
noise based on this model. Then, we compare this estimated noise with the requirement,
and evaluate the performance of the frequency stabilization system. Chapter 5 summarizes

this thesis and describes future works.
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Figure 1.19: (a) Schematic view and (b) CAD diagram of the isolation systems supporting
the input mode cleaner in the HAM chambers in al.IGO [27].

43



1 INTRODUCTION

44



2 GRAVITATIONAL WAVE DETECTOR KAGRA

2 Gravitational wave detector KAGRA

KAGRA is a gravitational wave (GW) detector currently under construction in Japan.
KAGRA is built underground to suppress the noise due to the seismic motion. Further-
more, by cooling mirrors and suspensions to a cryogenic temperature, the thermal noise
is suppressed and the improvement in sensitivity is expected. These two features are not
employed in other GW detectors such as aLIGO and AdV constructed so far.

A low-noise light source is indispensable for the GW detector. It is the role of input
optics to provide the low-noise light to the main interferometer. In this chapter, we will
first describe the features of KAGRA in Section 2.1. Then, we focus on the input optics

in Section 2.2.

2.1 Overview of KAGRA

KAGRA is the GW detector constructed under the Tkenoyama of Kamioka, Hida city, Gifu
prefecture (36°24'43"N in latitude, 137°1821”E in longitude). An excavation of a tunnel
with a total length of 6 km took over 1 year and 10 months. Figure 2.1 shows a top view
of KAGRA. A control room is located at the Mozumi office in the upper left corner of the
figure. It takes about 10 minutes by car from the Mozumi office to the Atotsu entrance
which is the entrance to the KAGRA tunnel. Facilities such as Super-Kamiokande (SK)

and CLIO are also built under Tkenoyama.
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Figure 2.1: Top view of KAGRA. The control room is located at the Mozumi office, and
the Atotsu entrance is the entrance of the KAGRA tunnel.
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KAGRA has three features: the location of the underground, cryogenic mirrors and
suspensions, and an RSE interferometer. In general, the sensitivity of the GW detector
is limited by the seismic noise at the low frequencies below 10 Hz, by the thermal noise
at the intermediate frequencies between 10 Hz and 200 Hz, and by the shot noise at the
high frequencies above 200 Hz. By constructing the interferometer in the underground
of Kamioka, where the seismic motion is small, the seismic noise is smaller than in other
detectors. Also by cooling the mirrors and the suspensions, the thermal noise can be
suppressed. Furthermore, by using the RSE interferometer, the shot noise can be reduced.
Therefore, by these techniques, it is possible to improve the sensitivity at the whole
frequency range to the level which allows us to detect GW signals. In this section, each

feature will be explained in detail.

2.1.1 Optical configuration of KAGRA

The configuration of KAGRA is an RSE interferometer with an arm length of 3 km. In
Fig. 2.2, the overview of KAGRA is shown. In KAGRA, we cannot inject the high power
laser light so as to keep the mirrors at the cryogenic temperature. If the power transmitted
through the ITMs is too high, the input test masses will be heated by absorption of the
laser power in the substrate. Therefore, high finesse arm cavities are used to amplify
the GW signal by raising the power accumulated in the cavities, and then the cut off
frequency of the GW signal is brought up to 100 Hz by utilizing the effect of the signal
extraction of the RSE interferometer. In this configuration, the injection power and the
power recycling gain don’t need to be so high. The design finesse of the KAGRA's arm
cavities is 1530, while the design finesse of the LIGO’s arm cavities is 450. As a result,
the incident laser power to achieve the design sensitivity in KAGRA is 78 W which is
about 60% of that of aLIGO.
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Figure 2.2: Overview of the KAGRA interferometer. The input test masses (ITMX and
ITMY) and the end test masses (ETMX and ETMY) compose the arm cavities. The
power recycling mirror (PRM) and the signal recycling mirror (SRM) compose the power
recycling cavity (PRC) and the signal recycling cavity (SRC), respectively.

2.1.2 Underground detector

KAGRA is built underground. By excavating a L-shaped tunnel horizontally, we built
an interferometer underground at a depth of 200 m. A primary purpose is to reduce the
seismic noise described in Subsection 1.2.3. The seismic motion level at the interferometer
is 1/100 lower than that in Chiba prefecture which is located in the suburb of Tokyo, by
setting up the interferometer in the tunnel on the hard rock ground. The plot in Fig. 2.3
shows a spectrum of the seismic motion around the KAGRA site. Since CLIO is located
underground of the same mountain as KAGRA, the CLIO seismic spectrum is equivalent
to that of KAGRA. The seismic motion level of KAGRA is hundred times lower than that
in Kashiwa City, Chiba Prefecture [40].

Another advantage of the underground site is an environmental stability. The temper-
ature and the humidity in the tunnel are constant throughout the year, which makes it
possible to keep the environment inside the tunnel optimal for the experiment. Changes
in the environment cause changes in the interferometer conditions such as an alignment of
the beam, suspension lengths, and so on. These changes in the interferometer conditions

prevent a stable operation. Therefore, the underground environment has a significant
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advantage in operating the GW detector.

The gravity gradient causes another noise limiting the sensitivity of the GW detector.
The gravitational field fluctuates due to a change in a density distribution caused by the
seismic motion, and the gravitational fluctuation shakes the mirrors in the GW detector.
This noise is called the gravity gradient noise. In KAGRA, the calculation shows that the

gravity gradient noise is about ten times lower than that in aLIGO [41].
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Figure 2.3: Spectrum of the seismic motion. The Atotsu entrance and the Mozumi office
are shown in Fig. 2.1. Although the Atotsu entrance and the Mozumi office are located on
the ground surface, the seismic motions at these places are quieter than that in Kashiwa
which is in the suburb of Tokyo. This is because the Kamioka area is on the hard rock.
Furthermore, the seismic motion around CLIO is quieter than that at Atotsu and Mozumi
in the higher frequency rage than 2 Hz, because CLIO is located underground. As KAGRA
is located underground inside the same mine as CLIO, the seismic motion at the KAGRA
site is expected to have the same level as at the CLIO site [40].
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2.1.3 Type-A suspension

In a GW detector, mirrors are suspended to be isolated from the seismic motion. A
vibration isolation performance of a suspension is determined by the resonance frequency
and the number of stages of the suspension as described in Subsection 1.2.3. Therefore,
the longer suspension has the better isolation performance due to the lower resonance
frequency. In KAGRA, the seismic isolation is done by suspending the test mass with a
eight-stage suspension with a total length of 13.5 m. This suspension is called type-A,
and it is divided into a room temperature part and a cryogenic temperature part. The
room temperature part is called a type-A tower, and the cryogenic temperature part is
called a cryogenic payload. We describe the cryogenic payload in the next subsection.
Figure 2.4 shows the schematic view of the type-A suspension and the CAD diagram of
the type-A suspension chamber.

The type-A tower is similar to the Virgo's superattenuator. At the first stage, inverted
pendulums (IPs) are used to isolate the seismic motion at low frequencies. The IP can
adjust the resonance frequency by the load weight, and it can realize the resonance fre-
quency of 0.1 Hz or less. Therefore, the IP can isolate the mirror from the seismic motion
in the frequency band from 0.2 Hz to 0.5 Hz called a micro seismic motion. The micro
seismic motion is the ground motion excited by the waves in the sea. A stage called a
top filter, which has a vertical vibration isolation system, is mounted on the IP. Then,
four vertical vibration isolation stages are suspended from the top filter. The top three
among the four stages are called standard filters, and the bottom one is called a bottom
filter. Those stages have the vertical isolation filters called geometric anti-spring (GAS)
filters [42]. The GAS filter is a vibration isolator using cantilever blades. By balancing the
upward restoring force of the cantilever and the gravitational force, the effective spring
constant can be reduced and the resonance frequency can be lowered. Figure 2.5 shows
the schematic view of the GAS filter. From the bottom filter, the cryogenic payload is
suspended.

The difference between the Type-A suspension and the Virgo superattenuator is the
length of the IP. Since the IP is mounted on the ground in AdV, it is necessary to lengthen
the IP to construct the long suspension. For this reason, the IP with the height of about
10 m is used in AdV. However, mechanical resonances exist in the low frequency region
due to its length, and it may cause the seismic noise and the difficulty in control of the
interferometer. On the other hand, the IP with the length of about 2 m is enough for
KAGRA, since we can excavate a tunnel of 2 floors and hang the suspension from the

second floor.
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Figure 2.4: Schematic view of the Type-A suspension (left) and the CAD drawing of the
Type-A suspension chamber (right). The top filter is isolated by the inverted pendulum
(IP). Four vertical vibration isolation stages are suspended from the top filter, and the top
three stages are called standard filters. The forth stage is called the bottom filter, and the
cryogenic payload is suspended from the bottom filter. The cryogenic payload has four
stages, and these stages are called the platform, the marionette (MN), the intermediate
mass (IM), and the test mass (TM) from the top.
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cantilever blades

cantilever blades

mg

Figure 2.5: Schematic view of the GAS filter. The cantilever blade has the restoring
upward force. The effective spring constant gets small when the gravitational force and
restoring force get balanced, which means the resonance frequency gets low.
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2.1.4 Cryogenic Payload

To reduce the thermal noise, the test masses are cooled down to the cryogenic tempera-
tures in KAGRA. As mentioned in Subsection 1.2.3, the thermal noise is one of the noises
limiting the sensitivity of a GW detector, and it is the noise caused by the thermal vibra-
tion of mirrors and suspensions. Therefore, the thermal noise can be reduced by cooling
them at cryogenic temperature. In KAGRA, the thermal noise is reduced by cooling the
mirrors and the suspensions to 20 K. Reduction of the thermal noise is demonstrated by
CLIO, which is a prototype detector with a cryogenic interferometer built in the same
mine [35].

According to the fluctuation-dissipation theorem, the thermal noise is caused by the
dissipation of the system. Therefore, mirrors and suspensions need to have high quality
factors. Fused silica which is usually used for a mirror substrate has a low quality factor
at cryogenic temperatures. Therefore, KAGRA uses sapphire, which has a high quality
factor even at the cryogenic temperature, as the substrate material of the mirror.

The suspension thermal noise is also caused by the dissipation of the suspension. There-
fore, the suspension with a high quality factor is needed to reduce the suspension thermal
noise. The quality factor of the suspension is determined by the quality factor of the
material and the mechanical loss of the suspension. To achieve the high quality fac-
tor, the cryogenic payload consists of sapphire fibers, sapphire ears, and sapphire blade
springs [43]. The CAD diagram of the cryogenic payload is shown in Fig. 2.6. The bond-
ing method of the sapphire test mass, the sapphire fibers, and the sapphire blade springs
determine how much the mechanical loss of cryogenic payload can be reduced. In KA-
GRA, a hydroxide catalysis bonding technique [44] is used to attach a sapphire ear to a
sapphire mirror. The sapphire ear has slits, while the sapphire fiber has nail heads at
both ends. The sapphire fiber hooks the sapphire ear. The upper part of the sapphire
fiber is hooked up by the sapphire blade spring. By using the Hydroxide catalysis bonding
technique, the test mass and the sapphire ears can be bonded with very thin bonds, so
the mechanical loss can be reduced.

The cryogenic payload consists of 4 vertical stages, as shown in Fig. 2.6. Located at
the top is the part called platform which has a vertical vibration isolation filter using a
blade spring. Next, there is a stage called a marionette (MN) which is a stage mainly for
aligning the test mass in the angular direction. The third stage, a bottom intermediate
mass (IM), is suspended by the MN. The fourth stage, a sapphire mirror, is suspended
by the bottom IM with the sapphire fibers. There is another chain suspended from the
platform stage to actuate each stage of the main chain, consisting of an MN recoil mass,
an IM recoil mass, and a TM (test mass) recoil mass.

The sapphire mirror is cooled by heat conduction through heat links. The heat links
are connected from the bottom IM to the cryogenic shield via the MN, the platform, and
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the MN recoil mass. Heat exchange between the test mass and the bottom IM is done
through the sapphire fibers. The cryogenic shield is connected to the cryogenic cooler,

and it cools down the test mass to 20 K.

coil-magnet| Platform
actuators \ stage
MN recoil mass ——p +;s °

IM recoil mass

BeCu blades

Sapphire fibres
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Length 350 mm

Marionette

Heat links
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\ Sapphire . o _.Tl Recoil Mass Sapphire test

TM recoil mass fibers mass mirror

Sapphire Mirror

(a) (b) (c)

Figure 2.6: (a) Schematic view of the cross-section, and (b) CAD drawing of the cryogenic
payload and (c) the CAD drawing of the TM part.

2.1.5 Installation schedule

KAGRA is under construction and the installation is underway in each subsystem. The
installation schedule is divided into two phases, the first phase is called iIKAGRA (initial
KAGRA) and the second phase is called bBKAGRA (baseline KAGRA) [41]. iKAGRA
refers to the period of the test operation conducted in May 2016, and the purposes are
to confirm alignment of the entire facility, to prepare for the final configuration, and to
demonstrate the operation of the GW detector by actually controlling a large interferom-
eter. Therefore, the configuration is simple. The optical configuration was a Michelson
interferometer with an arm length of 3 km without arm cavities, a PRC and an SRC. Mir-
rors were suspended with double pendulums of about 1 m in height and the interferometer
was operated at room temperature.

After the iIKAGRA test run, KAGRA started to work on the next phase, bKAGRA.
While the goal of iIKAGRA was an operation of a large interferometer, bKAGRA aims to
detect a GW signal with an RSE interferometer. As the first stage of bBKAGRA, we had
a test operation at cryogenic temperature for the first time from April to May 2018. In
this test operation, the optical configuration is a Michelson interferometer like iKAGRA,

but the end mirror is suspended by a Type-A suspension as described in Subsection 2.1.3
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and the interferometer is operated at the cryogenic temperature. After that, we will
sequentially install arm cavities, the PRC, and the SRC. On the way to the designed
sensitivity, we will achieve the same level of sensitivity as the current alLIGO and AdV to
participate in the 3rd observation run (O3) by alLIGO and AdV planned in 2019.

2.2 KAGRA input optics

For GW detectors using interferometers, a low-noise light source is indispensable. The
light emitted from the laser light source contains the intensity noise and the frequency
noise, and they degrade the sensitivity of the detector. Moreover, the beam jitter causes
a noise, and higher-order spatial modes worsen the performance of the interferometer as
shown in Subsection 1.2.3. Therefore, it is necessary to stabilize the light before entering
the interferometer. The input optics subsystem is responsible for the stabilization of the
laser light. The overview of the input optics is shown in Fig. 2.7 and the place where the
input optics is located in the whole KAGRA is shown in Fig. 2.2. The input optics has
components as below; A pre-mode cleaner (PMC), a modulation system, a reference cavity
(RC), an input mode cleaner (IMC), an input Faraday isolator (IFI), and an input mode

matching telescope (IMMT). In the following subsections, each component is described.

seed light

Eaolid state o
amp
rFi

RC

1 PMC

Figure 2.7: Overview of the bKAGRA input optics. There are the PMC, the RC and
the laser source on the pre-stabilized laser (PSL) table. The modulation system is also
located on the PSL table, but it was omitted in the figure. Then, the IMC, the IFI, and
the IMMTs are set up following the PSL table, and they are inside the vacuum chamber.
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2.2.1 Components of input optics

Laser source

The contribution of the shot noise decreases in proportion to the square root of the
laser power. Therefore, to increase the sensitivity, it is necessary to use a high power
laser. KAGRA will use a laser with an output of 180 W. A nonplanar ring oscillator
(NPRO) [45] with the output power of 400 mW is used as the seed laser source. The seed
laser injected to a fiber amplifier is split into two paths, and the laser power in each path
is increased up to 40 W. Then, they are added coherently and pass through the solid-state
amplifier to be amplified up to 180 W [46].

Pre-mode cleaner

A pre-mode cleaner (PMC) is an optical cavity located at the most upstream in the
input optics. The primary role of the PMC is the reduction of the intensity noise in
the radio frequency (RF) band, the reduction of the beam jitter, and the spatial mode
cleaning. The parameters of the PMC used in KAGRA are shown in Table 2.1, while
the principle of the optical cavity and the meaning of each parameter are described in
Appendix A.

A piezoelectric transducer (PZT) is attached to one mirror of the PMC. The cavity
length is controlled so that a resonance frequency of the PMC follows the laser frequency.
A slow signal below 0.1 Hz is fed back to a heater attached to the spacer, and the thermal
expansion is used to control the cavity length.

Since the noise with periods shorter than the storage time of an optical cavity is
averaged in the cavity, the optical cavity acts as a first-order low-pass filter for the intensity
noise and the frequency noise (see Appendix A.2.3). The cut-off frequency of this low-
pass filter is called the cavity pole. In the case of the PMC, the cavity pole is 600
kHz. Therefore, the intensity noise and the frequency noise are filtered out at the higher
frequencies than 600 kHz.

The PMC is designed so that a round trip gouy phase rotation (, (see Appendix.A.4.1)
is not the integer multiple of 7 for the mode cleaning performance and the beam jitter
reduction (see Appendix A.4.3). The designed power transmittance of the fundamental
mode and the higher-order modes are shown in Fig. 2.8. As shown in Fig. 2.8, the PMC is
designed such that the lower-order mode has low transmittance. The lowest-order mode
whose amplitude transmittance exceeds 0.1 is the 18th-order mode. The beam jitter
noise reduction ratio expressed by the ratio between the transmitted amplitude of the
fundamental mode and that of the first-order mode is 0.0164. The phase of the laser
light is modulated to obtain the control signal by the Pound-Drever-Hall (PDH) method
(described in Appendix A.3.2). This modulation frequency is chosen such that the phase

modulation frequency does not coincide with the resonance frequency of the higher-order
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modes.

Shape Bow-tie
Round trip length Lpve =2 m
ROC of input and output mirrors Rpye =3 m
ROC of monitor mirrors 00
FSR e = 149 MHz
Finesse Fpmc = 125
Cavity pole fEnme = 600 kHz

Table 2.1: Parameters of the PMC
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Figure 2.8: Calculation plots of the power transmittance of the PMC for higher-order
modes. The upper blue line is the transmittance of TEMgg, and each peak represents the
transmittance of the nth-order mode, respectively. The horizontal axis shows the phase
rotation ¢ during the round trip in the cavity. Here, ¢ = arg(exp(i2L/c)), where € is
the angular frequency of the laser light and L is the cavity length. The PMC is designed
such that the lower-order mode has low transmittance.
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Reference cavity

To reduce the frequency noise of a laser, an optical cavity, which has a resonance
frequency more stable than the frequency fluctuation of the laser, is used as a frequency
reference. One of the cavities used for this purpose is a reference cavity (RC). Since the
stability of the cavity length is essential for the frequency stabilization, a spacer made of
ultralow expansion (ULE) glass which has little thermal expansion is placed in a vacuum
chamber. A heater and a thermometer are attached to the vacuum chamber, and the
local temperature is controled. The parameters of the RC are shown in Table 2.2. The
details of the RC will be described in Subsection 3.2.2.

Shape Linear
Round trip length Lrc =10 cm

ROC of the input mirror Rrc =50 cm

ROC of the output mirror 0
FSR FeR = 1.5 GHz
Finesse Frc = 11100
Cavity pole fhc = 67.6 kHz

Table 2.2: Parameters of the RC

Modulation system

Control signals of the IMC (described later) and the main interferometer are obtained
by the PDH method. For that, it is necessary to apply modulations, which is one of the
input optics’ roles. The modulation required to use PDH method is the phase modulation,
and the phase modulation is usually applied to the light by using an electro-optic modula-
tor (EOM). The EOM is an optical device which can modulate the phase of the light. The
EOM crystal can change the optical path length by changing the refractive index with
applying a voltage to the crystal exhibiting an electro-optic effect. The change in the
optical path lengh causes the phase difference in the outcoming light. The KAGRA input
optics uses EOMs to apply phase modulations. At the same time, the tunable amplitude
modulation is also applied by using a Mach-Zehnder interferometer (MZI) together with
EOMs [47]. In an RSE interferometer, the frequency of the extracting GW signal can be
adjusted by tuning the SRC length microscopically [6]. The tunable amplitude modula-
tion is used for the SRC length tuning.
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Pre-stabilized laser table

The in-air optical table and the components on it are called the pre-stabilized laser
(PSL) table. The PMC, the RC, and the modulation system are located on the PSL
table. Figure 2.9 shows the bBKAGRA PSL layout.
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Figure 2.9: Layout of the bKAGRA PSL. The PMC area has the PMC, mode matching
lenses, and an RF PD for the PDH method. The light outcoming from one mirror of the
PMC goes into the FSS path. There are the double path acousto-optic modulator (AOM)
(described in Subsection 3.2.5), mode matching lenses, the RC, and an RF PD in the FSS
path. In the modulation system, one EOM modulates the phase of the laser, and two
EOMs constitute the MZI for tunable amplitude modulation.

Input mode cleaner

An input mode cleaner (IMC) is an optical cavity through which the light stabilized
on the PSL table passes before entering the main interferometer. The cavity axis is on
the horizontal plane. It is one of the largest and the most important components in the
input optics. The main roles of the IMC are the frequency stabilization and the spatial
mode cleaning. The IMC is the triangular cavity with a cavity length of 53.3 m in a round
trip. Since the mirrors constituting the IMC are isolated from the seismic motion with a
double pendulum, it works as a reference cavity more stable than the RC in the frequency
band above the resonance frequency of the pendulum. As we will see later, the frequency
stabilization is done in two loops using the RC and the IMC. The IMC parameters are
shown in Table 2.3. The details of the IMC are described in Subsection 3.2.3
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Since the resonance frequency of the IMC is stable at high frequencies, the laser fre-
quency is controlled to be kept at the resonance frequency of the IMC. On the other hand,
since the RC is a more stable cavity than the IMC at low frequencies, the cavity length
of the IMC is controlled for the resonance frequency to follow the laser frequency. The

cavity length is controlled by using the coil-magnet actuator attached to each mirror.

Shape Triangular
Round trip length Live =53.3m
ROC of the end mirror Rivie = 37.33 m
ROC of the input and output mirrors 0
FSR fER =5.62 MHz
Finesse Fivc = 540
Cavity pole fivic = 6.13 kHz

Table 2.3: Parameters of the IMC

Input Faraday isolator

A light incident on the main interferometer is reflected by the interferometer and
returns to the REFL port. The reflected light includes the control signal of the main
interferometer. Therefore, it is necessary to separate the reflected light from the incident
light. Moreover, if the light comes back to the laser source by chance, the operation of
the laser source becomes unstable. For this purpose, an optical element called a Faraday
isolator is used. The Faraday isolator is an optical element to isolate going and returning
light using the Faraday effect. The Faraday effect refers to a phenomenon by which the
polarization direction rotates during light passes through a material to which a magnetic
field is applied. The Faraday isolator separates the reflected light with a polarizer by
changing the polarization directions of incident light and reflected light by 90 degrees
using the Faraday effect.

KAGRA uses a large Faraday isolator after the IMC to separate the reflected light.
This is called an input Faraday isolator (IFI). The IFI is made with the cooperation of
the University of Florida [48]. The IFI is compatible with ultrahigh vacuum and high

input laser power.

Input mode matching telescope

For a light cleaned by the IMC, it is necessary to match the spatial mode to the
resonance mode of the main interferometer. For this purpose, we use two curved mirrors
after the IFI and call this an input mode-matching telescope (IMMT). The two mirrors
of the IMMT are seismically isolated by double pendulums of the same type as the one
used for the mirror of the IMC. Also, since the mirrors of the IMMT can be rotated by

using the coil-magnet actuator, they are also used to align the incident light to the main
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interferometer.

2.2.2 Stabilization system

The input optics has an active stabilization system as follows.

Frequency stabilization

As mentioned above, a frequency stabilization system (FSS) at KAGRA is an active
stabilization system with a hierarchical control using several optical cavities as frequency
references. The schematic diagram of the FSS control loop is shown in Fig. 2.10. The
laser frequency is stabilized by using the RC in the first loop, and achieves the further
stability by using the IMC in the second loop. Figure 2.11 shows the designed frequency
noises suppressed by each FSS loop. As is shown in Fig. 2.11, the designed frequency

stability meets the requirement for the frequency noise.
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Figure 2.10: Schematic diagram of the FSS loop. The symbols employed in this diagram
correspond to those in the block diagrams shown in Fig. 4.2 and Fig. 4.3.
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_frequency stabilization concept
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Figure 2.11: Frequency stabilization by the FSS. The first loop controls the RC as a
frequency reference, and the second loop refers to the IMC.
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Intensity stabilization

The intensity of the laser should also be stabilized in the input optics. The reduction
of the intensity noise is performed by measuring a power of the light using a PD and
controlling the power of the light by the PD signal. Ideally, the intensity stabilization is
limited by the shot noise. Therefore, the higher power of the light is incident on the PD,
and the intensity stability gets the better.

The intensity stabilization system (ISS) is also a hierarchical stabilization system simi-
lar to the F'SS. The sensor in the first loop is a PD placed on the PSL, and the second loop
uses another PD that receives the transmitted light of the IMMT in the vacuum. Higher
power is injected to the PD in the second loop than the one in the first loop to achieve
the lower shot noise. The requirement for the intensity noise is calculated from the design
sensitivity and the coupling transfer function from the intensity noise to the output signal
of the main interferometer. In the lower frequency band than 2 Hz, the seismic noise
limits the GW sensitivity, and it increases rapidly as the frequency decreases. Therefore,
the requirement for the intensity noise gets relaxed in this frequency band. Above 2 Hz,
the quantum noise limits the sensitivity and the quantum noise starts to get larger at 50
Hz. This is the reason why the noise requirement above 50 Hz gets relaxed. The require-
ment becomes tighter again at the frequencies above 1 kHz. This is because the intensity
fluctuation shakes the mirror by the radiation pressure, and this mirror motion becomes
the dominant noise at this frequency band. The requirement for a relative intensity noise
(RIN) is shown in Fig. 2.12.

o6 Relative instensity noise requirement

107 é
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Figure 2.12: Requirement for the RIN
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3 Installation of KAGRA input optics

As mentioned in Section 2.1.5, KAGRA is currently in the phase of bKAGRA. In iKA-
GRA, the interferometer was simplified, and the input optics was also simplified. Espe-
cially, the stabilization system was simplified. For the frequency stabilization, only the
IMC worked as a frequency reference, and the IMC control signal was fed back directly
to the laser frequency. Also, the intensity stabilization was not installed. This is because
iKAGRA has no requirement for sensitivity and there was no need for stabilization of an
intensity noise and a frequency noise. So we focused on demonstrating the input optics
with as simple a system as possible.

On the other hand, the role of bKAGRA input optics is to provide the laser light stable
enough to observe GWs. As seen in Subsection 1.2.3, the intensity noise, the frequency
noise, the beam jitter noise, and mixing of higher-order spatial modes are the noises in
the GW detector. The input optics reduces these noises so that they do not limit the
sensitivity of the GW detector.

We installed the PSL table and the IMC in iKAGRA, and the input optics successfully
provided the main interferometer with the laser light. After that, We also installed the
FSS and evaluated its performance. Then, We finished designing the control loop which
satisfies the requirement. The intensity stabilization is being installed by collaborators
from Toyama Univ.

In this chapter, first, we show the installation works of iKAGRA input optics briefly
in Section 3.1. Then, we move on to the bKAGRA input optics installation in Section
3.2.

3.1 iKAGRA input optics

An overview of the iIKAGRA input optics is shown in Fig. 3.1. As mentioned above,
the iKAGRA input optics was rather simple, compared with the bKAGRA configuration.
The main goal of IKAGRA was to gain the experience in the operation of the large scale
interferometer, and the main purpose of the iKAGRA input optics is a test of remote
operation of each component. Therefore, iIKAGRA did not have any requirement for the
detector sensitivity. That means there was no frequency or intensity stability requirements
for iKAGRA, and iKAGRA input optics did not need any stabilization system. The
iKAGRA input optics had only the PMC and the IMC and no frequency and intensity
stabilization systems. Also, the PMC was different from the one which will be used in
bKAGRA. The cavity pole was high and the filtering performance of the RF intensity
noise was not as good as the bKAGRA PMC.
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Figure 3.1: Overview of the iIKAGRA input optics.

In such a simplified system, only the IMC was the same as the bKAGRA IMC. The
main interferometer does not receive any laser light without the IMC being locked. There-
fore, the duty cycle of the IMC is one of the essential factors determining the duty cycle
of iIKAGRA itself. The IMC control loop was connected to the digital control system, and
the script called Guardian [49] was used to monitor the IMC's states and re-locked the
IMC, when the IMC lost lock. In addition to the robustness of the IMC control loop itself,
the Guardian script significantly improved the IMC duty cycle. Figure 3.2 is the plot of
the duty cycle of the IMC and the main interferometer during the iIKAGRA test run. The
duty cycle through the second half run was 98.2% [41], and it satisfied the requirement of
95%. Actually, the IMC duty cycle is much higher than the main interferometer. There-
fore, the IMC did not disturb the main interferometer, and we can say that the iIKAGRA

input optics achieved sufficient performance in the iKAGRA test observation.
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Figure 3.2: Duty cycle of the IMC and the main Michelson interferometer (MICH) during
the iKAGRA test run. The test run started on 25th March and ended on 25th April in
2016. The blank between 31st March and 11th April was the maintenance term of the
interferometer when the test run was stopped.
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3.2 bKAGRA input optics

3.2.1 Pre-stabilized laser

Figure 3.3 shows a photo of the current status of the bBKAGRA PSL table. Currently,
a 2-W NPRO laser is used as a laser light source. The main path up to the IMC has
been already installed. The PMC is being installed now. The RC, which is a frequency
reference of the FSS first loop, has been installed.

Figure 3.3: Photo of the current bPKAGRA PSL.

3.2.2 Reference cavity

The RC on the PSL table is used as the frequency reference in the first loop of the FSS.
The RC is a rigid linear cavity. The spacer is made of ULE (ultralow expansion) glass
with dimensions of 100-mm diameter and 100-mm width. A flat mirror and a curved
mirror with an ROC of 50 ¢cm are optically contacted to the spacer. Figure 3.4 is a photo
of the RC spacer.

The RC must be isolated from external fluctuations such as the thermal extension,
the seismic motion, and optical length fluctuations due to residual gas. Therefore, the
RC should be housed in a proper container with an appropriate support. The cavity is
mounted on a Zerodur support with a radiation shield inside. Zerodur is a glass-ceramics

composite material composed of an amorphous base material and a crystalline dispersion
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material. Materials with different expansion coefficients are mixed to reduce the expansion
coefficient near the room temperature. Viton balls are inserted between the support and
the spacer for the vibration isolation. The RC is housed inside a vacuum chamber, and a
heater is attached to the can. The vacuum chamber is wrapped with a thermal insulator
and put into an aluminum shell. Figure 3.5 shows a photo of the inside of the aluminum
shell and the vacuum chamber.

The ULE glass has a zero-crossing temperature of 29.5 °C according to the data sheet,
at which the coefficient of thermal expansion is zero. Therefore, the local temperature

will be maintained at this temperature.

Figure 3.4: Photo of the RC spacer.
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Radiation shield

5y

Zerodur support

Figure 3.5: A vacuum chamber is located inside an aluminum shield. A semitransparent
plate is a Zerodur support, on top of which a cavity as well as a radiation shield are
mounted. After closing the vacuum chamber, a heater is attached on a vacuum flange.
The cavity is not seen in the photo. A thermal insulator is installed between the vacuum
chamber and the aluminum shield.

3.2.3 Input mode cleaner

The stabilized laser frequency by the RC is further stabilized by the second loop by using
the IMC as the frequency reference. The IMC performs the beam jitter reduction and
the spatial mode cleaning. Since the intracavity power of the IMC reaches more than 10
kW, if there is a dust on the mirror, it will burn and damage the coating of the mirror.
Therefore, the IMC is installed in a vacuum. Careful attention was paid to eliminate the
contamination during the installation work.

The IMC mirrors are made of synthetic quartz glass with dimensions of 100-mm di-
ameter and 30-mm thickness. The input and the output mirrors are flat mirrors, and the
end mirror is a curved mirror with an ROC of 37.3 mm. (The definition of each mirror is
shown in Fig. 2.7.) The transmittances of the input and the output mirrors are around
6000 ppm, and that of the end mirror is 5 ppm.

As we have seen, when using a cavity as a frequency reference, the fluctuation of the
cavity length deteriorates the frequency stability of the laser. Thus, the IMC mirrors

have to be isolated from the seismic motion. The IMC has two seismic isolation systems,
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one is a vacuum-compatible vibration isolation stack [50], and the other is a two-stage
suspension called Type-C [51]. Figure 3.6 shows a schematic view of the IMC seismic
isolation systems.

The stacks isolate a breadboard on which the IMC suspension is located from the
seismic motion of the baseplate which is fixed on the ground. Each of the three legs of
the breadboard has 3-layer stacks. The isolation bandwidth is above 10 Hz.

Figure 3.7 shows an overview of a Type-C suspension. Type-C suspensions were de-
veloped to suspend the test masses of the TAMA300 detector [51]. Four tungsten wires
suspend an intermediate mass from an upper stage, and the IMC mirror is suspended by
four tungsten wires from the intermediate mass. The intermediate mass has eddy current
dumping, and the IMC mirror mass has coil-magnet actuators. Picomotors are installed
on the upper stage to move the whole suspension horizontally.

Figure 3.8 shows a modeled transfer function from the ground motion to the IMC
mirror motion of the Type-C suspension. As described in Section 4.3.1, the first reso-
nance frequency of the longitudinal motion is estimated to be around 0.95 Hz, and the
Q value is 4-5. The second resonance is calculated by rigid-body modeling described in
the reference [42]. The second resonance frequency and the Q value were calculated as
around 4 Hz and 2-3, respectively. Figure 3.9 shows a spectrum of the seismic motion of
the IMC mirrors. The spectrum is estimated using a ground motion spectrum based on

a 1.5-year-long measurement.
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vacuum chamber

Figure 3.6: Schematic view of the seismic isolation systems of the IMC. The vacuum-
compatible stacks are located between a breadboard and a baseplate.
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Figure 3.7: Picture of a Type-C suspension.
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Type-C transfer function

Phase [deq]
o

90+t ]

-180 : — : —
107 100 10!
frequency [Hz]

Figure 3.8: Transfer function from the ground motion to a test mass motion of Type-C
suspension.
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Figure 3.9: Estimated seismic motion of a test mass of the Type-C suspension based on
a 1.5-year-long measurement of the ground motion.
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3.2.4 First loop of the frequency stabilization

As shown in the Fig. 2.10, the first loop of the FSS stabilizes the laser frequency by using
the RC as a frequency reference.

Actuators

The first loop has three different bandwidth actuators; a heater for temperature tun-
ing of laser crystal as a slow actuator, a laser PZT as a middle speed actuator, and a
broadband EOM as a fast actuator. The FSS servo circuit has the two analog filters for
the broadband EOM and the PZT. The servo circuit is connected to the digital control
system, which can control the gains of the servo filters, turn the control loop on and off,

inject an excitation signal, and make a servo filter for the temperature control remotely.

Open loop gain

As shown in Appendix B, an open loop gain (OLG) determines the stability of the
feedback system. To increase the OLG and suppress noises more efficiently, it is necessary
to make the unity gain frequency (UGF) as high as possible. On the other hand, if it is
too high, the phase margin disappears, and the system becomes unstable. Therefore, it is
necessary to adjust the servo gains, in order to set the UGF that can obtain a sufficient
OLG while securing the enough phase margin. Besides, it is necessary to adjust the servo
gain of the PZT loop and that of the EOM loop by considering the phase difference of
the OLG at the crossover frequency. If the crossover frequency is too high, the phase
difference gets close to 180° due to the phase delay of the PZT. In contrast, if it is too
low, the control signal to the EOM gets saturated.

The servo circuit, which is installed in the first loop of the FSS, has two variable gain
stages. One of them can change the overall gain of the first loop, while the other can
change only the gain of the PZT loop. The UGF is determined by the OLG of the EOM
loop and the crossover frequency is determined by the relative gain between the PZT
loop and the EOM loop. Therefore, it is possible to adjust the UGF and the crossover
frequency independently with these two gains.

Figure 3.10 shows the OLG of the current first loop. From Fig. 3.10, the UGF fygr,
the phase margin fpy;, the crossover frequency f.,, and the phase difference 6., at the

crossover frequency can be read off as follows:

fuar = 500 kHz,
feo = 18 kHz,
QPM - QUGF + 180 - 260,

and 0., = 05OM — 9PZT — 108°.
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The phase in a Bode diagram is often written in the range of —180° to 180°. When the
phase is delayed by more than -180°, the curve is not continuous and jumps from -180° to
180°. However, an actual phase delay is continuous. In Fig. 3.10, the phase of the OLG
of the PZT loop can be read off as 652" = 158°, but in fact 05T = 158° — 360° = —202°.

The first loop OLG
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Figure 3.10: Bode diagram of the OLGs of the first loop. The orange line is the estimated
OLG of the entire loop, and yellow and purple dashed lines are the OLG of the PZT loop
and the EOM loop, respectively. These plots are estimated by the parameters described
in Section 4.3. The UGF fygr is 500 kHz, and the phase margin 0py; is fugr + 180 = 26°.
The crossover frequency f., is 18 kHz, and the phase difference between the PZT loop
and the EOM loop is #EOM — gPZT — _94° — (—202°) = 108°.

3.2.5 Second loop of the frequency stabilization

The second loop of the FSS stabilizes the laser frequency by using the IMC as a frequency
reference.

Actuator

The second loop of the FSS uses an AOM as an actuator to control the laser fre-
quency [52]. A PZT is attached to the AOM crystal, and this PZT generates a sound
wave in the crystal. The frequency of this sound wave is determined by the frequency of
the input signal to the PZT. When the laser light is incident on the AOM crystal where
the sound wave is generated as described above, the emitted light from the AOM has a
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diffraction angle 6, since the density gradient in the AOM crystal caused by the sound
wave acts as a diffraction grating. This diffraction angle can be written from the Bragg’s
condition as \Q

0= 0 (3.1)
where ( is the RF angular frequency of the sound wave and v is the sound speed in the
crystal. In addition to this, since the light exchanges the energy with the sound wave, the

frequency of the outgoing light shifts as
Wout = Win Q7 (32)

where w;, and wyy are the incoming and the outgoing light angular frequencies. As
described above, when we change the angular frequency of the RF signal €2, not only the
outgoing light frequency wy, but also the diffraction angle 6 changes. Therefore, if the
light emitted from the AOM is incident on the RC directly, the change in the diffraction
angle misaligns the cavity axis and the laser light. To avoid this misalignment, a curved
mirror with an ROC of R is put at a place away from the AOM by the distance of R, as
shown in Fig. 3.11. In this case, since the light is perpendicularly incident on the curved
mirror, it returns to the AOM again through the same path regardless of the diffraction
angle. The AOM diffracts the light again, but the incident light and the reflected light
on the AOM follow the same path, because the diffraction angle is the same as the first
diffraction angle. If this light is incident on the RC, the alignment is kept. Such a
configuration is called a double path configuration.

An AOM driver consists a voltage-controlled oscillator (VCO), a mixer, and an ampli-
fier. The VCO is an electric element whose frequency of the output signal varies depending
on the input voltage. By using the VCO, we control the amount of the frequency shift 2
by the AOM. Here, in the case of the double path configuration, since the laser frequency
is shifted twice, it is shifted by twice the frequency of the output signal from the VCO.
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Figure 3.11: The configuration of a double path AOM.

Open loop gain
Figure 3.12 shows the OLG of the current second loop. From Fig. 3.12, the UGF
fuar, the phase margin py, the crossover frequency f.,, and the phase difference at the

crossover frequency 6., can be read off as follows:

fuar = 39 kHz,
feo = 4 Hz,
Opm = OBugr + 180° = 30°,

and B, = 6595 — 9AOM — 560,

The phase margins at the UGF and the crossover frequency are larger than 30 degrees.
Therefore, these margins can be considered to be sufficient.

The IMC has been locked for more than six days in bKAGRA and this confirms this
system is sufficiently robust. Figure 3.13 is a plot of transmitted light power from the
IMC. The transmitted light power is normalized to 1 as the locked state on 28th December
in 2017. This plot demonstrates that the IMC was kept locked for more than six days.
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Furthermore, in case the IMC loses lock, it takes less than one minute for the IMC to be
re-locked owing to the Guardian script. Therefore, under the assumption that the IMC
loses lock once a week, the duty cycle will be 99.99%. This obviously means that the FSS
satisfied the requirement of the duty cycle to be better than 95%.

The second loop OLG
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Figure 3.12: Bode diagram of the OLGs of the second loop. The solid orange line is the
estimated OLG of the second loop, and yellow and purple dashed lines are the OLG of
the AOM loop and the suspension loop, respectively. These plots are estimated by the
parameters described in Section 4.3. The UGF fyqgr is 39 kHz, and the phase margin
Opm is Bugr + 180° = 30°. The crossover frequency f., is 4 Hz, and the phase difference
between the AOM loop and the suspension loop is #5895 — 9AOM = 56°,
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Figure 3.13: Plot of the transmitted power from the IMC. The vertical axis is the trans-
mitted power normalized to 1, when it is locked. The IMC is kept locked for more than
six days. There was a power drift however, this was caused by the change of the alignment
of the IMC. The lack of the data is due to the trouble in the data acquisition system.
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4 Frequency stabilization

As we have seen, the frequency stabilization is done by using optical cavities. A reference
cavity (RC) and an input mode cleaner (IMC) are used as the frequency references in
bKAGRA. Although we have not mentioned so far, the arm cavity of the main interfer-
ometer is also used as a frequency reference, and the frequency stabilization system (FSS)
has hierarchical control of three stages in total. The schematic diagram of the first loop
and the second loop, which use the RC and the IMC as the frequency reference, is shown
in Fig. 2.10.

This chapter describes the detail of the frequency stabilization system, which is the
main theme of this thesis. First, we show the requirement for the frequency noise in
Section 4.1. Then, the modeling of the control loop is described in Section 4.2. After
that, the calibration of the parameters in the model is described in Section 4.3. In
Section 4.4, the simulation about the optimization of the control loop necessary for the
frequency stablization to meet the requirement is described. Finally, the noise budget

with the optimized configuration is described in Section 4.5.

4.1 Requirement for the frequency noise

The requirement for the frequency noise is set under the condition that it becomes smaller
than fundamental noises such as the quantum noise or the thermal noise. The requirement
includes the safety margin of 10. As described in Subsection 1.2.3, when considering the
frequency noise, it is necessary to consider a common mode reduction ratio (CMRR). In
the case of an RSE interferometer, CMRR can be derived as

5L 6F
CMRR = — + —. (4.1)

where 0L and 0.F are the differences in the arm lengths and in the finesse values between
the two arms. The arm lengths have a designed asymmetry as 6L/L = 1/1000. For
the finesse, we assume that the asymmetry of the cavity loss is 10 ppm corresponding to
O0F/F = 1/200 as shown in Eq. (A.61). In the GW detectors, typically the cavity loss
is the order of 100 ppm and 10 % asymmetry is reasonable. Therefore, the CMRR is
calculated as 1/200. The requirement for the frequency noise in the IMC output is shown
in Fig. 4.1.
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Figure 4.1: Frequency noise requirement for the IMC output. CMRR is assumed as 1/200.

4.2 Modeling of the frequency stabilization

4.2.1 First loop with the reference cavity

In the first loop of the FSS, the RC is used as a frequency reference, and a laser frequency
is controlled to a resonance frequency of the RC. In the first loop, the control is performed
by actuators with three different speeds to take the control band as wide as possible and
secure a large control range. The slowest and the largest range actuator is a heater tuning
the temperature (TEMP) of the nonplanar ring oscillator (NPRO) laser crystal. It can
actuate the laser frequency in a range of several GHz/s with a bandwidth of 0.1 Hz. The
second actuator is a piezoelectric transducer (PZT) actuator attached to the laser crystal.
It can actuate the laser frequency, by changing the effective length of the laser crystal,
in a range of about 200 MHz with a bandwidth of 100 kHz. The fastest actuator is a
broadband electro-optic modulator (EOM). The EOM controls the phase of the laser light
with a bandwidth of 1 MHz. The error signal to control the laser frequency is generated
by the Pound-Drever-Hall (PDH) method.

Figure 4.2 shows a block diagram of the F'SS first loop. We can evaluate the transfer

function from the free-run laser frequency fluctuation fi.. to the stabilized output laser
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frequency fluctuation fR¢ by this block diagram. Blocks in the figure stand for actuator
responses A,, servo transfer functions F}, and cavity transfer functions Drc and Cgc,
where subscript x is an indicator of the actuator corresponding to either TEMP, PZT or
EOM, CRgc is the transfer function of a low-pass filter due to the cavity pole of the RC
described in Eq. (A.78), and Dgc is called an optical gain which is the coefficient of the
error signal proportional to the frequency variation. There are two kinds of measurable
signals, the error signal VR and the feedback signal Vi to each actuator.

In addition to the laser frequency fluctuation, four noise sources are shown in the block
diagram, the servo electrical noise JviC, the shot noise 6 f{%, the resonance frequency

fluctuation of the RC 6 fE¢, and the sensor noise §v=<.

The output frequency fluctuation fR¢ can be derived as
1
(i? = —(flaser + 14‘1?'30‘5((S ig + 5U ) + AFtOtDRC(;f hot T GRC(S res )’ (42)
1 4+ Gre

where AFyo = > A, F, is the sum of the product of each actuator response and servo
filter, and Grc = CrcDrcAFio is the open loop gain (OLG). The error signal and the

feedback signal can be calculated as

1 5fRC
Vol = ———(Hro(fiaser + 0f1es + —=24) + 608l + Grodog© 43
err 1 +GRC( RC(fl + res CRC )_'_ Usen + RCOVUR )7 ( )
1 L 9ot RC
Vi = Hro Fy(flaser + 0 fR 10 F.(év ) , 4.4
= g (P v+ 05+ 2209 1 (000 + (). (44)

where Hrc = DrcCre. If the OLG Ggre is much larger than one, Egs. (4.2), (4.3), and

(4.4) can be written as

asor ) RC o) RC 5

out ~ f 1 + 5 1FP(;SC + shot + Usen Up ( 4. 5)

GRC Cre  Hre HRC

(5 RC 5URC 5URC
‘/BE{YC asor + 5 Re ~Jshot 4 sen ~“sen G F 7 4.6
GRC et CRC HRC e HRC> (4.6)
5 f%c RC 5URC

and Vi ~ e+ G fRC . Oshot | OVhen | OV A7
b A, (fl CRC Hrc HRC) (4.7)

Therefore, the laser frequency fluctuation is suppressed by the OLG Ggrc. However, the
resonance frequency fluctuation of the RC is not suppressed in the output frequency.
This means that the stability of the laser frequency is determined by the stability of the
cavity length of the RC, when the other noises are sufficiently small. This is because the
PDH method cannot distinguish between the cavity length fluctuation and the frequency
fluctuation, as can be seen from Eq. (A.86). The servo electrical noise and the sensor
noise can be reduced by increasing the optical gain Dgrc by increasing either the laser
power on a photodetector (PD) or the modulation depth of RF sidebands as shown in
Eq. (A.86).

Note that the error signal or the feedback signal does not carry any information to
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distinguish the sensor noise from the resonance frequency fluctuation of the cavity because

generally, 6vRC/Hgq, 0 fRC and § RS are smaller than fi,er. From the signal inside the

sen res

loop, we can only derive the free-running laser frequency fluctuation faser as A, Vi.

VTEMP
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v
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Figure 4.2: Block diagram of the first loop of the F'SS. The schematic diagram of the whole
FSS is shown in Fig. 2.10. fl.eer is the free-run frequency fluctuation of the laser source,

RO is the stabilized laser frequency fluctuation. We have three actuators, the heater

tuning the temperature of the laser crystal, the PZT attached to the laser crystal, and

the broadband EOM. Argvp, Apzr, and Agom are the corresponding actuator responses.

The error signal VE¢ and feedback signals Vit "MP VPZT “and VEOM are the signals which

err

we can measure. Four noises, the resonance frequency fluctuation of the RC §fE¢, the

res )

shot noise § fRC | the sensor noise JuES, and the servo electrical noise JvR° are included
in the diagram.

4.2.2 Second loop with the input mode cleaner

In the second loop of the FSS, the laser frequency is locked to the resonance frequency of
the IMC. The IMC is much more stable in the high-frequency band than the RC, since
the IMC mirrors are suspended. On the other hand, the resonance frequency of the RC
is more stable than that of the IMC in the lower-frequency band, as the IMC suspensions
move more than the RC spacer. Therefore, the laser frequency is controlled to follow the
IMC resonance frequency in the high-frequency band, and the IMC length is controlled
to follow the laser frequency, which is stabilized by the RC, in the lower-frequency band.
For this control, two actuators are used in the IMC loop. The first one is a coil-magnet
actuator attached to one of the IMC mirrors. It controls the cavity length of the IMC
with a bandwidth of about 10 Hz. The other is an acousto-optic modulator (AOM) used
in a double pass configuration. As shown in Fig. 2.10, the AOM is placed in the path
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towards the RC and shifts the frequency of the incident laser light to the RC. As a result,
the laser frequency in the main path to the IMC and the resonance frequency of the RC
are shifted, so that the RC and the IMC can resonate at the same time. The AOM has
the several tens of MHz range with a bandwidth of more than 100 kHz.

Figure 4.3 shows the block diagram of the second loop of the FSS. The first loop part
is wrapped into Grc. Blocks in Fig. 4.3 represent IMC loop actuators, servos, and an
optical response of the IMC. Axom and Agys are the actuator responses of the double pass
AOM and the coil-magnet actuator of the IMC mirror suspension, respectively. FLi; and
FMS are the transfer function of each servo filter, respectively. Cpyc is a low-pass filter

due to the cavity pole of the IMC, and Dpy¢ is the optical gain of the IMC.

GRe[®
f ‘f\(\x(—l) Ja
laser ~ VW / X
f out f AOM
AAOM
AOM
6Uact _>€9 AOM
A V;b
IMC
FAOM
CIMC AOM
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¢ ]
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f S—> Crve P> Divc =P Verr
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IMC IMC
5fsh0t 5Usen
suUs
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IMC SUS SUs
Of ov
res 5Uact F

Figure 4.3: Block diagram of the FSS second loop. The schematic diagram of the whole
FSS is shown in Fig. 2.10. We have two actuators, a double pass AOM and a coil-magnet
actuator on the IMC mirror. Axom and Agus are the corresponding actuator responses.
The error signal VIMC and feedback signals VAOM and VEUS are signals which we can
measure. Resonance frequency fluctuation of the IMC § M€ shot noise 6 fMC sensor
noise dvMC servo electrical noises dva®™ and §viYS, and electrical noises of actuator

drivers §v29M and §vSUS are included as new noises in the second loop.
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The noise sources included in the diagram are the servo electrical noises JvEUS

IMC

res

the sensor noise dvMC. §vA9M and §vSUS are the actuator noises of the AOM and the

and
Svp©M | the shot noise 0 fIMC] the resonance frequency fluctuation of the IMC & and
coil-magnet actuator. Since the AOM and the coil-magnet actuator of the suspension are
controlled by using the driver with the electric circuit, the electric circuit noise has to be
taken into account. On the other hand, the PZT and the EOM, which are the actuators
in the first loop, are controlled by directly applying the voltage of the control signal, so
no such a noise is included.

The transfer function from faom to fou:' can be derived as

fout = —fAOM- (48)

The unity gain frequency (UGF) of the second loop is lower than that of the first loop.
Therefore, the OLG of the first loop Grc is much larger than 1 at all frequencies in the

second loop bandwidth and Eq. (4.8) can be rewritten as fou' = —faom. Therefore, the

IMC

ont~ can be derived as

stabilized output frequency from the IMC

C
fanis = ﬁ((l + G§US ) (S + Axom (00 ™ + Faomovp ™))

+ FaomAnom (60 + Drucd fime ) + Groat (0 fim € + Asus(6v5a° + Faus 0vp®))),
(4.9)

where GSUS C’IMCDIMCFSUS Agyus and GIM AOM = CrmeDmvcF AOMAAOM are the OLGs of
each actuator loop, and Gnye = GRS + Ghagy is the total OLG of the second loop. Then,

the error signal and feedback signals can be calculated as

1
Var'© = HT(HIMc(fﬁf + Arom (0™ + Faomdvg®™))
IMC
+ (6 Usen + D Mcéfshot ) + HIMC((sfres + A Us(évgc[gs SI¥SC($ SUS)))’
(4.10)
VAOM _ Fg\élg/l ((H (fRC+A 5 AOM)_|_ AOM)
fb - 1 +G IMC\Jout AOMOUpct Vg
IMC
+ (005en” + Dincd finor ) + Hintc (8 fres© + Asus (0v55° + Fauis 0vp ),
(4.11)
FIMC
and VflS)US = %(H Mc(fout + AAOM((SUact + FAOM&U?OM))
IMC

+ (6vin® 4 Divcd faes ) + Hine (0 fr© + Asusdvie”) + 0vp),  (4.12)

where Hpc = DivcCrvc-
Here, the control band of the second loop is divided into two, and the frequency
fluctuation of the outgoing light in each frequency band is discussed.

First, think about the lower frequency band where the suspension control is stronger
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than the AOM control, that is GRS > GRS, This is a lower frequency band than the
resonance frequency of the IMC suspension, and since the cavity length of the RC is more
stable, the cavity length of the IMC is controlled in this frequency band. The output

frequency fluctuation can be derived as

fIMCN RC GAOM (5fIMC 5fshot 4 igflc

out — Jout GISI}/Ijg res CIMC HIMC
JuAOM A S’ A
¢ O Ao | g (P sy

Hive Gvc Hivie  Gmae

Next, consider the higher frequency band where the AOM control is stronger than the
suspension control, that is Gl < GRAS;. Since the IMC is a stable frequency reference
in this band, the frequency of the laser is controlled to follow the IMC resonance frequency.

In this band, the output frequency fluctuation can be derived as

IMC IMC IMC
fIMC ~ 1+ GSUS RC + 5fIMC 0 shot + 5Usen
out — GIMC out O H
AOM IMC IMC

(14 GBI Aron o e M Asus g g )
Hmnie  Gmae Hmne  Gmae

As seen from Eq. (4.13), the frequency stability of the outgoing light is determined by
the residual frequency fluctuation fRC of the first loop in the band where GRS > GRS,
In this frequency band, since the cavity length of the IMC follows the frequency of the
laser, it does not work as a frequency reference, and it is natural that the RC determines
the frequency stability. On the other hand, the resonance frequency fluctuation of the
IMC §fMC determines the frequency stability of the laser in the band where GRS <
GRS, However, as you can see from the first term of Eq. (4.14), the resonance frequency
fluctuation of the RC will shake the IMC, if GRIS > 1. As a result, the frequency
of the outgoing light also fluctuates. Therefore, it is necessary to suppress the gain of
the suspension loop at as low frequency as possible. Similarly from the second term of
Eq. (4.13), if the OLG of the suspension loop GRS is larger than 1, the residual frequency
fluctuation fR$ makes the output frequency stability worse by shaking the IMC via the
IMC suspension loop.

In the intermediate frequency band where GRS ~ GRS, the residual frequency fluc-

MC are not suppressed

in the second loop. However, the crossover frequency, at which Gl = Ghagy, is around

IMC
res

tuation f2¢ and the resonance frequency fluctuation of the IMC §

1 Hz in the second loop, and the IMC resonance frequency fluctuation ¢ is much

larger than the residual frequency fluctuation fR¢ at the frequency around 1 Hz. There-

fore, in this intermediate frequency band, the frequency stability of the outgoing light is

IMC
res

determined by o

AOM and 5v§US

The servo noises dvy can be suppressed by increasing the optical gain
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AOM and §05YS without de-

Diyvic. However, we cannot suppress the actuator noises vl ot

creasing each loop gain.

4.2.3 Third loop with arm cavities

Error signals from the arm cavities are fed back to the end test massed (ETMs) in the
lower-frequency band below 10 Hz and fed back to the IMC suspension in the higher-
frequency band. Therefore, in the fast frequency band, the resonance frequency of the
IMC follows the resonance frequency of the arm cavities. The arm cavities are more
stable than the IMC, and the stability of the laser frequency is ideally determined by the
frequency stability of the arm cavities. The formulation of the third loop is a repetition

of the second loop. Therefore, we will skip it.
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4.3 Calibration of the frequency stabilization system

4.3.1 Actuators

For an investigation of the F'SS performance, the F'SS must be modeled accurately. In
general, to model the feedback loop system, we need to know a plant transfer function,
an actuator response, and a servo filter transfer function. The transfer function of the
servo filter can be easily measured. In the FSS case, the plant is the optical cavity and
the measurement the optical gain is difficult since there are no good out-of-loop sensors
which can measure the frequency fluctuation of the laser light. However, if the actuator
response can be calibrated, the optical gain can be estimated from the OLG, the transfer
function of the servo filter, and the actuator response. Therefore, the calibration of the
actuator response is the critical issue for the modeling of the F'SS.

The basic idea of calibration is to set one absolute reference and to take a ratio to
the reference. Let us think of the simple feedback system with two actuators as shown
in Fig. 4.4. Inject the excitation signal V.. between one servo and actuator pair. The

transfer function, V5/V) can be derived as

Va &

- = 4.15
Vi 1+ Gy ( )

where G; = HF1 Ay and Gy = HF5 Ay are the OLGs of each loop. If G5 is much greater

than than 1,
Vy By

Vi T RA
Therefore, if Ay, F1, and F, are known, Ay can be derived from V5 /V} without H which is
the optical response of the cavity in the F'SS case. In this calibration, the AOM is chosen

(4.16)

as the absolute reference, based on which we calibrate the other actuators.

Vexc
Al ‘1}1@ ];’72 Fl <
- H

Figure 4.4: Block diagram with two actuators. A, F'; and H are transfer functions of an
actuator, a servo filter, and a plant respectively.

e AOM calibration

The amount of a shift frequency in the laser light by an AOM is the same as the
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frequency of a sound wave in the AOM crystal, as is shown in Eq. (3.2). It is easy
to know the frequency by measuring an output RF signal frequency from a voltage-
controlled oscillator (VCO). Therefore, the AOM is the most appropriate actuator
as the absolute reference for the FSS calibration. Figure 4.5 shows the measured
frequency of the output RF signal from the AOM driver as a function of an input
voltage to the VCO. The output frequency was measured with a network analyzer.
The slope of the plot is 5.01 MHz/V. Therefore, the actuator efficiency of the AOM
aaom 1s calibrated as

axom = 10.02 + 0.01 MHz/V. (4.17)

Here, note that the actuator efficiency becomes twice as large as the slope due to the

double path configuration.

AOM driver input voltage vs. output RF frequency
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Figure 4.5: Plot of output signal frequency from the AOM driver as a function of the FM
input voltage. Blue points are the measured data and red line is a fitted curve.

The bandwidth of the AOM is important to design the second loop. Therefore, the
actuator response of the AOM was measured in addition to the actuator efficiency.
The first loop was locked with the PZT, and the OLG was measured. Then, the
excitation signal was injected into the AOM driver. The transfer function from the

excitation signal V... to the error signal Vi, can be derived as

Verr _ HpcAxom
Vexe 1+ Gpzr

(4.18)
The OLG Gpyr was measured, and the cavity pole of the RC is obtained by an-
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other measurement described in Subsection 4.3.2. Therefore, the actuator response

is derived as

‘/err 1 G
Anom = v %. (4.19)

Figure 4.6 shows the calculated actuator response Aaom by using the measured

transfer function Vg, /Vixe, Hre, and Gpzr. Since we are not interested in the overall
gain, the calculated actuator response Axon is normalized by the DC gain. From
Fig. 4.6, the actuator response can be assumed as the first-order low-pass filter. The
gain of a first-order low-pass filter at pole frequency is -3 dB. Therefore, the pole

frequency of the AOM response can be read off as
fp—AOM =167+4 kHZ, (420)
where this measured value and its error are based on five measurements.

AOM actuator response measurement
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Figure 4.6: Calculated actuator response of the AOM Apon. It is the first-order low-pass
filter and it has one pole at 167 kHz.
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e NPRO PZT calibration

For the calibration of the NPRO PZT, the FSS first loop was locked only with
the PZT. Then, the control signal to the PZT was divided into two, of which one
was injected into the AOM. In this case, A; and A in Eq. (4.16) are the actuator
response of the PZT and that of the AOM, respectively. Moreover, as F; = F5 holds,
the transfer function can be written as V5/Vi = Apzr/Aaom at frequencies below
the UGF. The measured transfer function of V5/V; = 0.127 below the UGF. The
actuator efficiency of the NPRO PZT is obtained as

Apzr = 1.27 4 0.05 MHz/V. (4.21)

e Broadband EOM calibration

For the calibration of the broadband EOM, the FSS first loop was locked with
the PZT and the broadband EOM. The measurement was done in the PZT loop.
Since the transfer function is measured in the frequency band of Ggon > 1, from

Eq. (4.16),
Vo FpzrApzr

—_ ==\ 4.22
Vi FromArom (4.22)
Therefore, the frequency response of the EOM can be derived as
Fpzr Apzr V1
A =" 4.23
EOM Foort Vo (4.23)

The frequency response calculated by using the obtained data is shown in Fig. 4.7.

The obtained actuator response is

f
10 kHz

Note here that the EOM does not modulate a frequency but a phase. Therefore, the

actuator response is proportional to the Fourier frequency f.
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Estimation of EOM actuator response

-+ Calculated

—Fitted

Actuator response [Hz/V]
o
N
T

L L L L L L i |
108 10%
frequency [Hz]

Figure 4.7: Frequency response of the broadband EOM. Blue dots are the calculated data
with the measured value by Eq. (4.23) and red line is a fitted curve.

e IMC suspension calibration

The actuator response of the suspension can be derived from the equation of motion.

The equation of motion can be written as

mi = —?m — &+ F, (4.25)

where m is the mass of the test mass, ¢ is the gravitational acceleration, [ is the length
of the suspension, F' is the external force, and v is the viscous damping coefficient.
Equation (4.25) can be solved in the same manner as Eq. (1.52). The external force
can be written as F' = AV, where A is the actuator efficiency of the actuator, and
V' is the input voltage. Therefore, the frequency response from the input voltage to

the displacement of the IMC mirror can be derived as

B Asus f§ ~
= TErifgar e V) (4.26)

z(f)

where Z(f) and V(f) are the Fourier components of the displacement and the input
voltage to the actuator, f; is the resonance frequency, @) is a quality factor, and Agys

is an actuator efficiency at low frequencies.

For the IMC suspension calibration, the second loop was locked with the AOM and
the IMC suspension. The transfer function V;/V; was measured in the suspension

loop. From a similar calculation to that for the broadband EOM calibration, the
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suspension response can be derived as

F A
Asus = aomAsom Va (4.27)

Fsus Vi’

The calculated frequency response by using the measured data is shown in Fig. 4.8.
The resonance frequency fy can be obtained by reading off the peak frequency. By
using the frequency fi, f» at which the gain is v/2 times lower than the peak height,
the quality factor () can be obtained as

Jo
= ) 4.28
LT (4:28)
The obtained parameters of the suspension actuator response are as follows:
fo=10.95=£0.05Hz, (4.29)
Q=48+0.7, (4.30)
and ASUS =42+3 MHZ/V, (431)

where each measured value and its error are based on ten measurements.

Estimation of the IMC suspension actuator response
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Figure 4.8: Frequency response of the IMC suspension. Blue dots are the calculated data
with measured value by Eq. (4.27) and red line is a fitted curve. fy is the resonance
frequency, and @ can be derived as @ = fo/(f2 — f1)-
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4.3.2 Cavity parameters

Cavity pole

As described in Appendix A.2.3, an optical cavity works as a low-pass filter for noises
with a cutoff frequency of a cavity pole. The cavity pole is another important parameter
to investigate the system. Cavity poles of the RC and the IMC were estimated by different
methods

e Reference cavity

To measure the cavity pole of the RC, an excitation signal was injected into an
amplitude modulation port of the AOM driver. This means that the amplitude
modulation (AM) was applied to the injection light. Then, the transfer function
Prirans/ Pret was measured, where Pj,s and P are the transmitted and reflected
power, respectively. The AM is reduced by the low-pass filter of the cavity as shown
in Appendix A.2.3, and the high-frequency component is cut in the outgoing light.
Therefore, the cavity pole can be obtained from the transfer function Pians/Prefi-
Figure 4.9 shows the measured transfer function Pians/Pren and the fitted curve.

The estimated cavity pole C%C is

RC __
RC = 67 + 2kHz. (4.32)

RC cavity pole estimation

10

* Measured
—Fittied

gain [dB]

103 104 10° 10°
frequency [Hz]

Figure 4.9: Transfer function P ans/Pren. Blue dots are measured data, and red curve is
fitted with the low-pass filter with the cutoff frequency of 67 kHz.
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o IMC
The IMC cavity pole was measured by the transfer function from a control signal
of the AOM to an error signal. The measured transfer function corresponds to
AromHive, where Axow is almost flat below 100 kHz as shown in Fig. 4.6. Therefore,
the shape of this transfer function is the same as that of the cavity low-pass filter.
The measured transfer function is shown in Fig. 4.10. The estimated cavity pole

IMC i

Cp S

IMC __
IMC — 6.1 + 0.3kHz. (4.33)

IMC cavity pole estimation
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* Measured
— Fitted

Phase [degd]

104 10°
frequency [Hz]

Figure 4.10: Transfer function Pans/Pres. Blue dots are measured data and red curve is
fitted with the low-pass filter with the cutoff frequency of 6.1 kHz.

Free spectral range

e Reference cavity
A free spectral range (FSR) is equivalent information to a cavity length. The RC
cavity length of 10 cm was employed from the designed value. Then, the FSR of the

RC is calculated as
vish = 1.5 GHz. (4.34)

e IMC
To control the IMC, the incident light to the IMC is modulated in phase. The
PDH signal cannot be obtained, when the modulation frequency and the FSR of the

IMC become equal. This is because the sideband for obtaining the beat signal also
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resonates with the IMC. Namely, the relative phase between the sideband and the
carrier remains unchanged in the reflected light and the phase modulation of the
reflected light is kept. The obtained FSR is

Vg = 5.6242 £ 0.0003 MHz. (4.35)

Finesse
From the FSR and the cavity pole, finesse can be calculated. The values of finess of

each cavity are as follows:

Frc = 11100 £ 300, (4.36)
Five = 458 £ 20. (437)

Optical gain
As mentioned above, an optical gain of a cavity can be estimated from an OLG. The

OLG of the first loop and the second loop can be written as

Gre = DreCre(ApzrFrzr + AromFrom), (4.38)
Gve = DivicCrvc(AsusFsus + AaomFaom), (4.39)

where C'is the transfer function of low-pass filter and D is the optical gain of each cavity,
and C, A, and F' are already obtained. Therefore, from OLGs, the optical gain can be

obtained as

Dpc = 7.6 £ 0.5 V/MHz, (4.40)
Dive = 7.8+ 0.7V/MHz. (4.41)
(4.42)

In Figs.3.10 and 3.12, the modeled OLGs with the obtained parameters are shown with
measured OLGs.
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4.3.3 Error estimation

Each parameter is estimated by the fitting of each transfer function. We took ten mea-
surements for each transfer function and fitting was performed for each measured data
to estimate the parameters. The error of the parameter was estimated by taking the
standard error of the ten estimated values for each parameter.

When we make the noise budget, these errors propagate to the error of the noise
calculation. For instance, the error in an optical gain propagates in the whole frequency
range, and a cavity pole error propagates in the frequency range higher than the cavity
pole. However, almost all errors are less than 10 % of each parameter, and the requirement
includes the safety margin of 10. Therefore, these errors are small enough to make the

noise budget.

4.3.4 Parameter list in the frequency stabilization system model

As a summary of this section, the parameter list obtained above is shown in Table 4.1.
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Actuator parameters

Actuator efficiencies

suspension

pole of the AOM

resonance frequency of the IMC suspension
Q-factor of the IMC suspension

Cavity parameters

Optical gain

FSR

cavity pole

Finesse

Aaom = 10.02 MHz/V
Apzr = 1.27 MHz/V

Agom = 160 Hz/V @ 10kHz
Anic = 40 MHz/V @ DC
fr_non= 167 kHz

fo = 0.955 Hz

Q=48

Drc=7.6 V/MHz

Dive=T7.8 V/MHz
R = 1.5 GHz
ME = 5.6242 MHz

VEC = 67 kHz

VN = 6.1 kHz

Frc = 11100

Fivc = 460

Table 4.1: Parameters of the FSS.
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4.4 Optimization of the control configuration

We simulated the OLGs of the FSS loops with an optimal configuration. Figures 4.11 and
4.12 show the optimal OLGs. The improvements in the simulated model of each loop are

as follows:

First loop

e The servo gain of the PZT path is increased by 16 dB.

The original laser frequency noise does not meet the requirement at higher frequencies
than 6 kHz. Therefore, the PZT path gain is increased by 16 dB to suppress the
laser frequency noise. In Fig. 4.11, the optimized OLG is the orange line, and it is
larger than that before the optimization by 16 dB in the frequency band below 10
kHz where the PZT loop is dominant.

e The servo gain of the EOM path is decreased by 3 dB.

To optimize the UGF and earn the phase margin as much as possible, the servo
gain of the EOM path is decreased by 3 dB. As a result, the phase margin is 32°.
Typically, the phase margin of 30° is enough for the robust control of the cavity, and
the system will not oscillate. In Fig. 4.11, the optimized OLG is the orange line, and
it is larger than that before the optimization by 3 dB in the frequency band higher
than 300 kHz where the EOM loop is dominant.

Second loop

e The laser power on the PD is increased up to 2.5 mW from 50 puW.

The servo noise of the second loop does not meet the requirement above 2 kHz, and
the shot noise does not meet the requirement above 6 kHz as well. From Eq. (A.118)
the shot noise is inversely proportional to the square root of the laser power. Also
from Eq. (4.14), the higher optical gain suppresses the servo noise contribution. This
is because the servo gain necessary for realizing the same OLG becomes small, if the
optical gain is high. The contribution of the servo noise becomes small as a result.
Therefore, higher laser power is required to be injected into the PD in order to

improve the contribution of the shot noise and the servo noise in the second loop.
In the simulation, the laser power on the PD is increased from the current power
of 50 W to 2.5 mW. This assumption is feasible, because the main laser power is
increased up to 40 W from 2 W.

e The mode matching ratio of the IMC is improved up to 80 % from 20 %

The mode matching ratio is also important to increase the optical gain of the cavity.

The more laser power couples with the cavity of the higher mode matching ratio,
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which increases the optical gain of the cavity. The mode matching ratio is improved
from 20% up to 80 %. The mode matching ratio of the IMC in the test operation of
iIKAGRA was above 85%. Therefore, this assumption is feasible.

The optical gain is assumed to get higher by factor of 200 than current value by the

improvement of the mode matching ratio and the power increasing.

e A second-order high-pass filter with the cutoff frequency of 0.5 Hz is added to the
AOM loop.

At the lower frequencies below 1 Hz, the cavity length of the RC is more stable than
that of the IMC. Therefore, the control signal should not be fed back to the AOM,
since the IMC length fluctuation propagates to the laser frequency. The high-pass
filter cuts off the control signal to the AOM at the lower frequencies.

e A boost filter to earn the servo gain in the band from 10 Hz to 10 kHz is added to
the AOM loop.

The residual amplitude modulation (RAM) noise in the first loop limits the perfor-
mance of the frequency stabilization in the frequency band from 10 Hz to 10 kHz.
Since the RAM noise can be suppressed by the second loop, the boost filter was
added in order to increase the OLG of the second loop.

Because of this boost filter, the phase difference between two OLGs of each actuator
loop gets slightly closer to 180°. Therefore, the total OLG at the frequencies around
2 Hz gets smaller by this optimization. That means the suppression ratio becomes
worse and several noises increase at these frequencies. However, the noises at these
frequencies satisfy the requirements by huge margins, and the differences are small

enough compared to these margins.

Open loop gains

The UGF and phase margin are as follows:

ap = 390 kHz, nd 34 kHy,

fust = 61 kHz, ford =2 He,

Oy = 32°, O3ni = 64°,

and 05" = 158°, 024 = 212.6°.

The phase margins are enough for the both loops. 65! is close to 180° and actually
the OLG of the total first loop has a dip at the crossover frequency. Nonetheless, this
optimized system is a stable system, as the gain of the OLG is more than 20 dB at the

crossover frequency.
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The optimized first loop OLG
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Figure 4.11: Bode diagram of the simulated OLGs of the first loop. The solid orange line
is the estimated OLG of the first loop, and yellow and purple dashed lines are the OLGs
of the PZT loop and the EOM loop, respectively. Blue thin line is the current OLG. The
optimized UGF fygr is 390 kHz, and the phase margin fpy; is ygr + 180° = 32°. The
crossover frequency f., is 61 kHz, and the phase difference between the PZT loop and the
EOM loop is EOM — gP2ZT — _136° — (—294°) = 158°.
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Figure 4.12: Bode diagram of the OLGs of the second loop. The solid orange line is the
estimated OLG of the second loop, yellow and purple dashed lines are the OLG of the
AOM loop and the suspension loop, respectively. Blue thin line is the current OLG. The
UGF f2i is 34 kHz, and the phase margin 0% is 2% + 180° = 64°. The crossover
frequency f2¢ is 4 Hz, and the phase difference between the AOM loop and the suspension
loop is 595 — 9AOM = 212 6°.
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4.5 Noise budget of the frequency stabilization sys-

tem

With the parameters estimated in the previous section, we can make a model of the whole
FSS loop. Then, as described in Section 4.2, the contributions of each noise in the FSS
have been estimated. By using this noise budget, the control loop is designed so that all
the noises satisfy the requirements. In this section, first of all, the simulated results of
the optimized OLGs are shown. Then, the contributions of measured or estimated noises
in the FSS with the current and the optimized configurations are shown and compared

with the requirement.

4.5.1 Laser frequency noise

The original laser noise is suppressed by the first and the second loops. The current laser
source is the NPRO laser, and it is not the same as the final laser of bBKAGRA. However,
it is worth checking the contribution of the original noise of the NPRO laser, since the

final laser of bKAGRA also uses an NPRO laser as a seed laser [53]. The laser frequency

noise is assumed as

Fraser () = 100 (miHZ) Hz/v/Hz. (4.43)

Figure 4.13 is the contribution of the NPRO laser frequency noise. The laser frequency
noise has a larger suppression after the optimization by increasing the OLG of the first
loop and the second loop. By increasing the servo gain of the PZT loop in the first loop,
the noise is suppressed by 16 dB up to 10 kHz. Furthermore, the boost filter in the second

loop suppresses the noise at the frequencies from 10 Hz to 1 kHz.
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Noise estimation of the original frequency noise

— Requirement ]
—— NPRO original frequency noise| ;
(After optimization)
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103

Figure 4.13: Contributions of the NPRO laser frequency noise to the frequency noise
in the outgoing light from the IMC. The red curve is the contribution with the current
configuration, and the yellow curve is that with the simulated optimal configuration. By
increasing the OLG of the first loop and the second loop, the noise meets the requirement.

4.5.2 Noise from resonance frequency fluctuation of the refer-
ence cavity

The resonance frequency fluctuation due to residual gas and a seismic motion is estimated.

From Eq. (A.125), the resonance frequency fluctuation due to residual gas can be derived

Qesn _ 182 (ng — 1)* (2) (E) esw (4.44)
A 4m /T (AO/VO)Uom Po T A '
where Qpgr is the FSR of the RC, X is the laser wavelength, ng is the refractive index of

as

OVgas = Olgas

gas, Ayg = 6.02 x 10 is the Avogadro’s number, ug is the average speed of the molecule.
Vo = 2.24 x 1072 m? is the volume of gas for the amount of 1 mol under standard state
in which the pressure is the standard pressure of pg = 1 atm and the temperature is
the standard temperature of Ty = 273.15 K. The pressure p is assumed as 1 Pa and the
temperature T is assumed as 300 K. Molecules of the gas are assumed as mixture of O,

and Ny with a ratio of 1:4. Average speed ug can be derived as

[3ky T
= 4.4
Uo 2m0 ) ( 5)
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where k; is the Boltzmann constant and my is the average mass of the molecule. Then,

0Vgas can be obtained as
§Vgas = 2.0 x 107* Hz/VHz. (4.46)

Molecular masses of Oy and Ny and their refractive indices at the wavelength of 1064 nm
are listed in Table 4.2.

The cavity length fluctuation due to the seismic motion can be derived from Eq. (A.126).
The coupling constant A between the cavity length fluctuation and the acceleration of

the seismic vibration is assumed as
A=10"" (m/s*)7 . (4.47)

The coupling constant A assumed above is the product of that obtained by the experiment
using the same type of a cavity with the safety factor 10 [54]. The measured seismic motion
spectrum in Kamioka is used to derive the seismic acceleration spectrum, as shown in
Fig. 2.3.

The contributions of these noises are summarized in Fig. 4.14. All the noise levels

satisfy the requirement even before the optimization.

The molecular mass mo, = 5.3x10723 g
mn, = 4.7x107% g
Refractive index no, = 1+2.97 x 1074

nN, = 14+2.72 x 1074

Table 4.2: Molecular masses and refractive indices for the residual gas noise estimation under the standard
state.
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Noise estimation of the RC length fluctuation
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Figure 4.14: Contributions of resonance frequency fluctuation of the RC to the frequency
noise in the outgoing light from the IMC. Red and yellow curves are the contributions of
the RC length fluctuation due to the seismic motion with the current configuration and
with the simulated optimal configuration, respectively. Magenta and green curves are
the contributions of residual gas noise with the current configuration and the simulated
optimal configuration, respectively. All of the noises meet the requirement, and the boost
filter in the second loop suppresses these noises at the frequencies from 10 Hz to 1 kHz.
At the frequencies around 2 Hz, the noises increase because of the new boost filter in the
AOM loop as mentioned in Section 4.4.

4.5.3 Noise from the IMC length fluctuation

The seismic motion of the IMC mirrors is estimated as shown in Fig. 3.9. Since the OLG
of the second loop around 1 Hz is lowered, the suppression of the seismic noise gets small
at the frequencies around 1 Hz. On the other hand, the contribution of the seismic noise is
suppressed at the frequencies below 0.1 Hz. That is because the propagation of the IMC
length fluctuation to the laser frequency was reduced by the high-pass filter added to the
AOM loop. At the frequencies higher than 10 Hz the suspension loop has no difference
in the optimization. Therefore, we cannot see any difference.

Here, the IMC length fluctuation was determined with an assumption that all three
mirrors move independently. However, when all three mirrors move in the same direc-
tion, the cavity length does not change. If the seismic motion is correlated with each

mirror, actual cavity length fluctuation is smaller than our expectation due to this corre-
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lation mainly in the low-frequency band. Therefore, note that the IMC length fluctuation
estimated here is an overestimation, and even so it meets the requirement.
The contributions of these noises are shown in Fig. 4.15. All the noise levels satisfy

the requirement.

Noise estimation of the IMC seismic noise

]06 g — Requirement 1

5 i — |MC seismic noise
107 ¢ (After optimization) 7

qguen
N

102 10" 109 10! 102 103

Frequency [Hz]
Figure 4.15: Contributions of the IMC length fluctuation to the frequency stability in the
outgoing light from the IMC. The red curve is the contribution with the current servo

filter, and the yellow curve is that with the simulated optimal servo filter. All noises meet
the requirement.

4.5.4 Servo noise

The servo noise spectra were measured at the output port of each servo filter with the
input port terminated. Then, those are divided by transfer functions of each servo filter
and converted to input equivalent noise spectra. Figure 4.16 shows the contributions of
servo noises of each servo filter.

The second loop servo noise does not satisfy the requirement with the current control
configuration. By increasing the optical gain of the IMC, the contribution of the servo
noise in the second loop is expected to be suppressed by a factor of 200. In the system

with the increased optical gain, that noise will meet the requirement.
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Noise estimation of the servo noise
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Figure 4.16: Contributions of the servo noise to the frequency noise in the outgoing light
from the IMC. Orange and yellow curves are the contributions of the first loop servo noise
with the current configuration and with the simulated optimal configuration, respectively.
The servo noise of the first loop is suppressed by the boost filter added to the second loop.
Magenta and green curves are the contributions of the second loop servo noise with the
current optical gain and with the simulated higher optical gain, respectively. By increasing
the optical gain of the IMC, all of the noises meet the requirement.

4.5.5 Shot noise

From Eq. (A.118), the shot noise can be estimated. The RC and the IMC are cavities
designed as Ry = R., where Ry and R, are the reflectance of input and output mirrors.
Therefore, the reflectance of the cavity can be derived as 0, as shown in Eq. (A.63). If we
assume the quantum efficiency of the PD as a typical value of 0.8, the shot noise can be

obtained as

., 10* 10 em /1064 nm /2 mW
Wshot = 1.2 X 10 4? i \/ . \/ P Hz/vVHz, (4.48)

where F is the finesse of the cavity, L is the cavity length, and P. is the carrier power
on the PD. Figure 4.17 shows the shot noise contributions. Originally, they almost fulfill
the requirement, and they satisfy the requirement with further margin by increasing the

carrier power on the PD.
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Figure 4.17: Contributions of the shot noise on the IMC and the RC control signals to
the frequency noise in the outgoing light from the IMC. Orange and yellow curves are the
contributions of the first loop shot noise with the current servo filter and with the simu-
lated servo filter, respectively. The shot noise of the first loop is suppressed by the boost
filter added to the second loop. Magenta and green curves are the contributions of the
second loop servo noise with the current laser power and with the increased laser power,
respectively. Due to increasing the laser power, all of the noises meet the requirement.
At the frequencies around 2 Hz, the noises increase because of the new boost filter in the
AOM loop as mentioned in Section 4.4.

4.5.6 Dark noise of the second loop RF PD

A dark noise of an RF PD to obtain the error signal of the second loop was measured.
The dark noise was measured at the output of a demodulator, in other words, the error
point of the second loop. The noise was measured with and without laser injection. The
noise level with the laser was the same as that without the laser. Therefore, this noise is
supposed to be the electric noise of the PD. Figure 4.18 shows the contributions of the
IMC PD dark noise. The PD dark noise is also suppressed by increasing the optical gain
of the IMC. This is because the cavity with the higher optical gain generates the larger

signal, and the signal to noise ratio is improved as a result.
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I_\Ioise estimation of the‘ PD dark noise
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Figure 4.18: Contributions of the RF PD dark noise of the second loop to the frequency
noise in the outgoing light from the IMC. The orange curve is the contribution with
the current optical gain, and the yellow curve is that with the higher optical gain. By

increasing the optical gain and improving the signal to noise ratio, the noise is suppressed
and meets the requirement.

4.5.7 Residual amplitude modulation noise

An RAM noise, as shown in Appendix A.5.2; is one of the noises which are inherent in
the PDH method. As mentioned above, the RF PD dark noise level of the second loop
does not show any difference between with and without the laser injection. This means
that the RAM noise of the second loop has not been measured so far, since the injected
power on the second loop PD is too small to detect the RAM noise. Therefore, the RAM
index €,(w) in Eq. (A.124) is assumed to be 10° by referring to the RAM obtained in a
similar experiment [55, 56]. Then, from Eq. (A.124), the contribution of the RAM noise
can be derived as dv(f) = 2 x 10~* Hz/v/Hz with the designed phase modulation index
0 = 0.01 in the first loop of the FSS. It almost meets the requirement.

The first loop has a large RAM noise compared with the second loop between 10 Hz
to 1 kHz. The RAM noise was measured by demodulating the signal from the RF PD
on which the injection light to the RC was directly incident. The modulation index of
the RAM was measured as €,, ~ 1073 at 100 Hz. Figure 4.19 shows the contribution of
the measured RAM noise to the frequency noise calculated from Eq. (A.124) with the
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designed modulation index 9,, = 0.2. After the optimization, it satisfies the requirement
in the frequency band below 2 kHz, where gravitational wave (GW) signals are expected
from compact objects.

To reduce the RAM noise above 2 kHz, we have to align the polarization direction
and the crystal axis of the EOM to generate the sideband for the PDH method. If they
are misaligned, the EOM modulates not only the phase but also the amplitude of the
laser. Moreover, the linearity of the polarization of the laser light is also important. An
elliptically polarized light is represented by a linear combination of linearly polarized lights
in two directions having different phases. Therefore, the EOM modulates the amplitude
of the elliptically polarized light. The polarization ratio of the laser was measured as
about 1/50. The thin film polarizer used in LIGO can isolate linearly polarized lights in
two directions with the polarization ratio of 1/100. By using such a polarizer and aligning
more precisely, the RAM noise can be reduced. Furthermore, the pre-mode cleaner (PMC)
works as a passive filter of the RAM. The cavity pole of the PMC is 600 kHz, and the
modulation frequency for the PDH method in the first loop is 51 MHz. As shown in
Appendix A.2.3, the RAM is expected to be reduced by a factor of (51 MHz)/(600 kHz)
= 85. Therefore, after the installation of the PMC, the RAM noise introduced before the
PMC is expected to be suppressed. By reduction of the RAM by the PMC and the fine
alignment of the polarization, the RAM noise is expected to meet the requirement even
above 2 kHz.
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Noise estimation of the RAM noise
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Figure 4.19: Contribution of the RAM noise of the first loop to the frequency noise of
the outgoing light from the IMC. The orange curve is the contribution with the current
configuration, and the yellow curve is that with the simulated configuration. Even after
increasing the OLG of the second loop, the noise does not meet the requirement above 2

kHz.

4.5.8 VCO phase noise

The VCO has the phase noise which causes the frequency noise of the laser. To estimate
the VCO noise, the IMC was used as an out-of-loop sensor to measure the frequency
noise. At first, the first loop was locked, and the IMC was locked only with the IMC
suspension. Then, we measured and calibrated the feedback signal to the suspension.
The AOM driver was turned on, and a DC signal was injected into an input port of the
VCO during one measurement and turned off during the other measurement. Figure 4.20
shows the calibrated feedback signal to the AOM. When the VCO was turned on, the
frequency noise increased above 3 kHz. This means that the frequency noise above 3
kHz is due to the phase noise of the VCO. From this measurement, the VCO noise was

determined as

6VVCO =0.3 HZ/V Hz (449)

From the experience, the noise was assumed to be flat for all frequencies.
The contribution of the VCO noise is shown in Fig. 4.21. After the optimization, the
VCO noise satisfies the requirement in the frequency band below 2 kHz
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To reduce the VCO phase noise, one possibility is to use the lower phase noise VCO.
Actually, the VCO used in aLIGO has the better phase noise by a factor of 20 than the
VCO of KAGRA. Even with such a high performance VCO, the phase noise does not
satisfy the requirements above 4 kHz. Another possibility is to add a broadband EOM
to the second loop as a fast actuator. If the crossover frequency between the AOM loop
and the EOM loop is assumed as 20 kHz, the OLG of the second loop at 8 kHz will be
increased by more than 20 dB. Therefore, it is possible to satisfy the requirements by the
improvement of the VCO and adding the EOM as the fast actuator.

VCO noise measurement

102 . :
—\VCO turned off
—\CO turned on

10!

10°

L= T

Frequency noise [Hz/v Hz]

{iiﬁhq-"“llll'ﬂﬂ“'

102 103 104 10°
frequency [Hz]

Figure 4.20: Calibrated feedback signals for the VCO noise measurement into the fre-
quency noise. The VCO phase noise appears above 3 kHz.
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Noise estimation of the VCO phase noise
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Figure 4.21: Contributions of the VCO phase noise to the frequency noise in outgoing
light from the IMC. The red curve is the contribution with current configuration and
the yellow curve is with the optimized configuration. At the frequencies around 2 Hz,
the noises get worse because of the new boost filter in the AOM loop as mentioned in
Section 4.4.

4.5.9 Confirmation of the noise budget

Figure 4.22 is the noise budget curve of the feedback signal to the AOM. This is equivalent
to the out-of-loop measurement of the first loop, since the IMC can be regarded as the
frequency sensor of the outgoing light from the pre-stabilized laser (PSL) table. The
RAM noise and the VCO noise limit the first loop. The feedback signal can be explained
by the noises which have been discussed so far in almost all bands. If we had other
unknown noises in the first loop, the feedback signal would be larger than our expectation.
Therefore, we conclude that the correct estimation of the noise is performed in the first
loop.

The actual performance of the second loop cannot be measured at this point. After
locking the arm cavity of the main interferometer, the out-of-loop measurement of the

second loop can be done. Then, the actual frequency stability will be measured.
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Figure 4.22: Noise budget of the feedback signal. The blue line is the measured signal and
the orange line is the sum of the estimated noises. The other noises such as the NPRO
laser noise, the resonance frequency fluctuation noise of the RC, the first loop servo noise,
the shot noise, and the PD dark noise on the second loop are omitted in this plot, because
these noises are lower than the other noises at all of the frequencies.

4.5.10 Summary of the noise budget

As we have seen, by the optimization of the control configuration, it is possible to suppress
all the noises to satisfy the requirements at the frequency band below 2 kHz which is the
frequency band of the target gravitational wave signals such as the coalescence of the
binary compact objects . Figure 4.23 shows the noises currently limiting the frequency
stability. In the frequency band lower than 100 Hz, the stability is limited by the resonance
frequency fluctuation of the IMC. That means the stability of the laser frequency is
determined by the stability of the resonance frequency of the IMC.

There are two noises which do not meet the requirement in the band higher than 2 kHz.
Our data acquisition system can acquire the signal with the frequency of up to 8 kHz.
Therefore, it is preferable to stabilize it so that the frequency noise do not deteriorate the
sensitivity up to 8 kHz. As for the RAM noise, one of the reasons why RAM noise can
be caused is that the crystal axis of the EOM for the PDH method and the polarization
direction of the light are not correctly aligned. Therefore, after the alignment of the
polarization direction, the RAM noise is expected to be improved. Also, the PMC will

filter the RAM noise above its cavity pole frequency, and the expected suppression ratio
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of the RAM is 1/85. After installation of the PMC and fine alignment between the
polarization and the EOM crystal axis, this noise is expected to meet the requirement.
Another one is the noise due to the VCO. Currently, the VCO used in bKAGRA is not
a VCO with the low noise. Therefore, the lower noise VCO can help to suppress the noise
contribution. For instance, in aLIGO, a VCO with a phase noise lower by about ten times
than our VCO has been developed and used. Another way to suppress the VCO phase
noise is to add a new fast actuator to the second loop like a broadband EOM. If that
actuator can control the laser frequency up to 160 kHz, the frequency stabilization can gain
the factor of about 20 at the frequency of 8 kHz. Since the broadband EOM can control
at the frequencies up to 500 kHz in the first loop, this control loop is feasible enough.
Then, it is possible that the VCO phase noise is reduced and satisfy the requirement.

Frequency noise budget
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Figure 4.23: Noise budget of the frequency noise. The IMC seismic noise and the RAM
noise are dominant at the frequencies below 100 Hz. In contrast, above 100 Hz, the RAM
noise and the VCO noise are dominant, and they meet requirement below 2kHz, where
GW signals are expected from compact objects. The seismic noise of the RC and the
residual gas noise of the RC are not included in this plot because those noises are much
lower than other noises.

112



5 CONCLUSION

5 Conclusion

5.1 Summary

A gravitational wave (GW) detector called KAGRA is under construction in Japan. KA-
GRA is the first underground cryogenic GW detector in the world. KAGRA has two arms
with the length of 3 km, and KAGRA has a design sensitivity that can detect GW signals
radiated by a coalescence of the pair of 1.4 solar mass neutron stars 140 Mpc away from
the earth. Since the first detection of the GW signal by Advanced LIGO (aLIGO) in the
U.S., several GW signals have been detected by aLIGO and advanced VIRGO (AdV) in
Italy.

In such a situation, the mission imposed on KAGRA is to achieve a sensitivity good
enough to observe a GW signal and to join the GW detector network in the world as soon
as possible. The design sensitivity of KAGRA is similar to those of the other detectors
at frequencies above 10 Hz, and KAGRA has better sensitivity at the frequencies below
10 Hz. KAGRA has the potential to detect signals that cannot be observed by the
other detectors. For the GW astronomy, the position determination of the GW source
is important. To determine the direction of the GW source, three or more detectors are
necessary. When KAGRA joins the GW detector network, the probability that three or
more machines are in operation improves to 80% from 50 %. Furthermore, the accuracy
of position determination when four detectors are in operation is predicted to be improved
up to 9.5 deg? as a result of a simulation. Therefore, a participation of KAGRA in the
GW detector network is an urgent matter in the development of the GW astronomy.

For this purpose, each subsystem in the KAGRA project has to reduce noises so that
these noises do not deteriorate the performance of the GW detector. The input optics is
one of these subsystems, and the role of the input optics is to provide the stabilized laser
light to the main interferometer. The author is responsible for the design, the installation,
the investigation, and the integration of a pre-stabilized laser (PSL) and an input mode-
cleaner (IMC). The PSL is the in-air optics for the beam stabilization, and the IMC is
the 50-m round trip length cavity with three suspended mirrors. The PSL and the IMC
are the main part of the input optics, and almost all stabilization is done with the PSL
and the IMC. Development of the input optics for bBKAGRA began in April 2016 when
the test operation of iIKAGRA was completed, and almost all optical elements of the PSL
and the IMC have been installed. Regarding the frequency stabilization system (FSS),
the installation has been done, and performance evaluation is completed.

Control of the FSS is robust, and it has been demonstrated that it can continue to be
locked for a week without any adjustment. Furthermore, even if they lost lock, it takes
less than one minute to be re-locked, and therefore the requirement for the duty cycle of
95% can be said to be satisfied.
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Regarding the frequency stability, the requirement was decided so that the contribution
of the frequency noise to the GW sensitivity gets smaller than the contribution of other
fundamental noise such as the quantum noise and the thermal noise. We evaluated the
performance and confirmed whether the frequency noise meets the requirement. Although
some are not satisfied at present, almost all the noises meet the requirement when the
control configuration is optimized in the frequency band of the target GW signals.

A noise due to a residual amplitude modulation (RAM) and a noise due to the phase
noise of the voltage-controlled oscillator (VCO) do not satisfy the requirement at frequen-
cies above 2 kHz, and it is preferable for those noises to satisfy in all frequency band
where the data can be acquired. As for the RAM, the fine alignment of the polarization
of the light and the crystal axis of the electro-optic modulator (EOM), and the PMC in-
stallation are expected to reduce the RAM, and it is possible for the RAM noise to satisfy
the requirement. As for the VCO phase noise, if we use an existing high performance one,
we can expect a performance improvement roughly by a factor of ten. And a new faster
actuator like a broadband EOM will help to increase the open loop gain (OLG) up to 10
kHz. If these measures are taken, the requirement is expected to be satisfied.

The KAGRA FSS is a similar system to those of aLIGO and AdV. The reference
cavity (RC) and the IMC are also used as frequency references in aLIGO and AdV. What
is noteworthy in KAGRA’s FSS is the simplicity of the vibration isolation system. The
KAGRA’s IMC has a vibration isolation system that suspends a mirror with a two-stage
pendulum and places it on a vibration-isolated breadboard with three-layer stacks, and
the RC has no vibration isolation system. Moreover, we don’t have any active local control
for seismic isolation in the FSS. On the other hand, the RC has an active seismic isolation
system in aLIGO. Besides, the mirror of the IMC is suspended with the complex system
described in Section 1.4. We confirm that KAGRA does not need such an elaborate
vibration-isolation system thanks to a quiet seismic motion. KAGRA’s FSS achieves the
frequency stability required for the GW detection with the simplest configuration in the

world.

5.2 Future work

As mentioned several times in this thesis, the most recent task is to participate in the
third observation run, the O3, which is planned in 2019.

By the O3, the input optics is required to increase the laser power to 40 W, to in-
stall the PMC and intensity stabilization system, and to provide the light to the main
interferometer stably. On the current schedule, the commissioning of the main interfer-
ometer toward the O3 is scheduled from September 2018. Therefore, by August 2018
it is required to finish these upgrades. The PMC has already been assembled, and it is

now being installed. As for the intensity stabilization, a prototype experiment and the
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hardware installation have already been completed by the author and the collaborators
from Toyama Univ. We will develop the control design and evaluate its performance.

As for the FSS, the performance evaluation with current configuration has been com-
pleted, and there are some noises which do not achieve the required value. Therefore,
it is necessary to optimize the control configuration as discussed in this thesis. After
optimization and installation of the PMC and the high power laser, the frequency sta-
bility have to be investigated again, and be confirmed to satisfy the requirement. One
concern about the high power laser installation is that some new noises might limit the
frequency stability. For example, the fluctuation of the cavity length of the IMC due
to the classical radiation pressure could be a problem. If the laser power fluctuates, the
radiation pressure of the laser will also fluctuate and shake the IMC mirrors. Since the
radiation pressure is proportional to the power of the laser, even if it is not a problem at
the current laser power, there is a possibility that it becomes a problem, when the laser
power is increased. Reduction of the intensity noise is indispensable to reduce this noise.
The intensity stabilization system is being installed and it is expected to reduce this noise
to satisty the requirement.

Although only the IMC length is controlled so far, the alignment control of the IMC is
also required. The signal for the alignment control is acquired by a method called wave
front sensing. In this method, an alignment control signal is obtained by the beat signal
between TEMgy, component of the phase modulation sideband and TEM;q mode of the
carrier light. The preparation of hardware devices such as a photodetector (PD) for signal
acquisition and circuits for demodulation is completed. By the time when the O3 starts,
we need to install them and stabilize the control loop.

With respect to the beam jitter noise, it is also necessary to check whether this noise
will limit the sensitivity or not. We will evaluate the current jitter noise using the IMC,

and reduce it if it is necessary.
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A Fabry-Perot Cavity

A Fabry-Perot cavity is an optical element composed of two or more mirrors. Light inci-
dent on the Fabry-Perot cavity circulates many times inside the cavity to cause multiple
interferences. When internal light and newly incident light are aligned in phase, the light
power accumulates inside the cavity. This state is called resonance of the cavity, and
keeping the cavity on the resonance is called locking the cavity. A cavity resonates when
a round-trip phase rotation is an integral multiple of 27, i.e., the newly incident light is
in phase with the circulating light, and this is called a resonance condition.

The Fabry-Perot cavity has frequency selectivity. By using this characteristic, it is
possible to stabilize the frequency by controlling the frequency of the laser as locking it
to the cavity resonance frequency. Also, due to the relatively long storage time of light
in the cavity, the cavity has the property of a passive filter, reducing a frequency noise
and an intensity noise in the high-frequency band. Furthermore, it has selectivity to the
spatial mode of the incident light, and the light can be mode-cleaned by passing through
the cavity.

In most of the GW detectors in the world, we use several Fabry-Perot cavities to
stabilize the laser light and to increase the sensitivity of the detector. In this chapter, we

show the properties of a Fabry-Perot cavity.

A.1 Expression of the light

A.1.1 Parameters for the light expressions

To understand the principle of a Fabry-Perot cavity, first, consider how to express light in
equations. Here, to simplify, light is treated as an ideal plane wave with linear polarization.
Consider light propagating in the positive direction of the x axis. This light can be
expressed by the strength of the electric field. The strength of this electric field E(t —x/c)

is a sinusoidal function with respect to ( =t — z/c. E(() can be expressed as follows:

E(¢) = & cos(QoC — o), (A.1)
= &.cos Qg + & sin ¢, (A.2)
B geiﬂ()C _|_ g*efiﬂoc

7 ,

where () is the angular frequency of the light. In this chapter we refer to angular frequen-

(A.3)

cies when the term frequency is used. These three equations all represent the electric field
of the light with either two complex or two real parameters. Equation (A.1) is a simple

representation of a wave and & and ¢, are called an amplitude and a phase, respectively.
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Equation (A.2) is a representation using real parameters . and &, called quadrature
amplitudes and Eq. (A.3) uses a complex amplitude, £. The relationship between the

parameters can be written as

& =/E2+E2=2lE, tan ¢o = &/, = arg€,

g =& ;; _ VIRe[E] = Eycosdy, £ = % — 3m[E] = Eysindy, (A4
AT -

V2 V2

Figure A.1 shows these parameters on a complex plane. In this way, the electric field
of the light is expressed using a vector on the complex plane, which is called a phasor
diagram.

The electromagnetic wave as a plane wave is a function depending only on the argument

(. Therefore, even if only the point of z = 0 is considered and let E(() = E(t), generality

is not lost.
Im
A £ei0¢
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Figure A.1: Parameters in a phasor diagram. The red solid vector represents the light
rotating at the frequency €2y and the red dashed vector represents the initial state of the
light. The coordinate system represented by the green arrows consisting of quadrature
amplitudes turns with the light. From this, it can be considered that the quadrature
amplitude is the magnitude of each component in the coordinate system in which the
vector representing the light stands still.

A.1.2 Propagation of the light

Then, we consider how each parameter changes due to light propagation. Let the electric
fields of the light at two spatially separated points z; = 0 and x5, = L be E©(t) and
EW(t), then obviously B (t) = E©(t — L/c). Therefore, the complex amplitude € can
be easily denoted as

EWD) = 8WL/cg(0), (A.5)
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Also, the quadrature amplitude € = (&., &)T can be written as ,

cos¢p  singp gv

en) _ = R(—¢)EY, (A.6)
—sin¢r cos¢r, glv

where ¢, = QoL/c, and R(#) is a rotation matrix in the quadratic plane. Furthermore,
consider the case where the propagation distance L is sufficiently shorter than the wave-
length A. In this case, the change in the quadrature amplitude and the complex amplitude

can be written as

E® = (1 —i¢) B, (A7)
gL — g0
= (I +0R(—¢1))E, (A.8)

where 0R(—¢y) is a matrix showing how much the quadrature amplitude has changed
during propagation from the start point to the end point .
Consider the case where the light whose frequency changes by 0Q(¢) around €2y prop-

agates the distance L. The electric fields can be written as

EeiQHANE | £xo—i(R0+62A)E
EO(t) = , (A.9)
V2
£ei(Q0H00(t—L/e)(t~L]e) | £%p—ilQ+6Q(t—(L/)))(t—L/e)
E® () = £° e (A.10)

V2

Here, assuming that the frequency change 0€2(t) is sufficiently slow with respect to the
propagation time L/c. Then, §Q(t — L/c) ~ 6(t), and from Eq. (A.10), £X)(¢) can be

derived as
S(L)(t) — exp(—Z(Qo + 59( )) )8(0 ( )

= exp (—ng(l—i- QE)))C> EO@). (A.11)

Therefore, the frequency change can be regarded as the propagation of the additional
distance of (6€2(t)/2)L

A.1.3 Modulation

In this section, we consider how the parameters change when the light is modulated.

Consider a light with frequency €2, amplitude &, initial phase ¢y = 0, and modulate this
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light. This light before the modulation can be expressed as
Eear(t) = & cos Qpt = Re[&)emot]. (A.12)

Hereafter this light is called the carrier light. There are two modulations, amplitude
modulation and phase modulation. Consider how each modulation is represented.
Amplitude modulation
Let the amplitude-modulated electric field be Ean(t), which is modulated at a single

frequency of w. Then, the electric field can be written as
Ean(t) = E(1 + € cos(wt + ¢,)) cos Qo (A.13)

where (1) > w. ¢, is called the modulation depth and represents the modulation strength.

Typically, €,, < 1. By transforming Eq. (A.13), we can write
. Eoern . Eoern .
Exn(t) = Re[Ege 0! 4 %e‘l%e”m“w)t + %e"i’me_z(ﬂo_“)t]. (A.14)

From this equation, light modulated in intensity has a component that oscillates at the
frequency 2y and components oscillating at €2y +w that are separated by the modulation
frequency around the carrier frequency. These components standing on both sides of
the carrier light are called sidebands. A representation of the state of this light by a
phasor diagram is shown in Fig. A.2. Since the axes in Fig. A.2 represent quadrature
components, the vector representing the carrier light does not rotate. In contrast, each
sideband rotates at +w. Each sideband is called upper sideband or lower sideband.

When such a modulation is applied, the complex amplitude and the quadrature am-
plitude can be written as

&o

Eam(t) = E(l + €, cos(wt + én)), (A.15)

Eeam(t) = E(1 + €, cos(wt + ¢yy,)), (A.16)
Esam = 0. (A.17)

When amplitude modulation is applied, the effect appears in the cosine part of the quadra-
ture phase component.

By generalizing the above results, we can get the expression of an amplitude-modulated
light by an arbitrary modulation function A(t) = [~ ‘;—:A(w)e_i“t, where A(w) is the
Fourier transform of A(¢). The electrical field of the amplitude-modulated light can be
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written as

Eam(t) = Re [Eo(1 + €en(t))e %1 .
(A.18)

Here, the quadrature amplitude is derived as

Eenm(t) =E (1 + € /OO d—w;l(w)e_i“’t). (A.19)

2T

—00

Therefore, the Fourier transform of the quadrature amplitude 507 am(w) can be written as

Eeam(W) = enoA(w), (A.20)
E. E.
ASum .
0 carrier
I carrier Sum

-

upper sideband lower sideband

. Eg v . &,

lower sideband

upper sidebandf

1
t=20 P = —
T 40
Ee ‘ Ee
carrier Lca rrier
Sum

Sum _>

lower sideband | ;nner sideband

o | I - & LA > Es
upper sideband“‘” “lower sideband
t = ! t = i
2Q) T 40

Figure A.2: Schematic view showing the amplitude modulation by a phasor diagram. By
the rotation of the sideband, the amplitude modulation is represented.
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Phase modulation
Next, phase modulation is considered in the same way. Considering phase modulation

at a single frequency w, an electric field Epy; can be written as

Epm(t) = & cos(Qot + 0, cos(wt + ¢p,))
_ Re[goeiQote—iém Cos(wt+¢m)], <A21)

where 6,, < 1. Here, emcs@iHém) can be expanded with Bessel functions of the k-th-
order Jg(d,,) as

€i5m cos(wt+pm) _ Z ika(ém)eik(”tJ”z’m). (A.22)
k=—0c0
Here
62
Jo(6m) =1 — Z’" +0(5h), (A.23)
W) = 224 O}, (A24)
1 /6,\" N

Then Eq. (A.21) can be approximated to the first-order term of 9,, as
) om&o . ) O0méo _. oy
Epn(t) ~ Re[&pe! + iToewmeZ(Qow)t + ZTOe im gi(Qo-w)t] (A.26)

As in the amplitude modulation, it can be seen that the sidebands are established around
the carrier frequency 2y even when phase modulation is applied. Figure A.3 shows these
phasor diagrams.

The complex amplitude and quadrature amplitude when phase modulation is applied

can be written as

Ey .
gPM (t) _ 705626m cos(wt+¢m)7 (AQ?)

Eepm(t) = Eo cos[d,, cos(wt + )] =~ o, (A.28)
Espm(t) = Eysindy, cos(wt + ¢p,)] 2 6,,E cos(wt + ¢, ). (A.29)

It can be seen that the phase modulation appears in the sine component, whereas the
amplitude modulation appears in the cosine component of the quadrature amplitude as
in Eq. (A.16). From this, the two quadrature components are called amplitude and phase

components, respectively.
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Figure A.3: Schematic view showing phase modulation by phasor diagram. Light fluctu-
ates in the phase direction by the sideband.

We can generalize the above results and obtain the modulated light with an arbitrary

modulation function ®(t) = [~ 2@ (w)e~™!

Epu(t) = Re [goei5m<1>(t)€—iszot] — Re [50(1 + iémq)(t))e_iﬂot] _
(A.30)

Therefore, the quadrature amplitude is expressed by using the Fourier transform ®(w) of
O(t) as
% dw ~ —iwt
gs’pM(t) >~ 5m‘€0 2—@(&))6 . (A?)l)
s

—00

Therefore, the Fourier transform of the quadrature amplitude gs,pM (w) can be written as

Espni(w) = OpEod(w). (A.32)
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A.1.4 Noise of the laser light

In this section, we show how noises of the laser source are expressed. In the discussions
so far, the laser light has been treated as an ideal single frequency light, but the actual
laser light includes intensity fluctuations and frequency fluctuations. We can write such

an actual laser electric field using Eq. (A.1) as

E(t) =(&o + an(t)) cos(Qot + do + da(t))
=(& + / d—wdn(w)e’m) cos(Qot + ¢ + /

—o0 4T —00

o0

dw ~ —iwt

where ay,(t) is an intensity noise and ¢, (t) is a phase noise, and @(w) and ¢(w) are Fourier
components of each noise. Note that a frequency noise dv,(t) can be derived from the

phase noise as
1 0¢,(t)
ovp(t) = ————=.
valt) 2r Ot

From Eq. (A.33), the laser intensity and phase noise can be regarded as the amplitude

(A.34)

modulation and the phase modulation for the laser light as the carrier light, respectively.
In other words, it means that sidebands are generated by the intensity noise and the
frequency noise. As we have seen, a quadrature amplitude expression is convenient to
express the the modulations. Furthermore, it is easy to calculate the propagation of
quadrature amplitude with a matrix calculation. Therefore, the quadrature amplitude
expression is the most suitable for considering the laser noise. Hereafter, let noises in the
quadrature amplitude expression be e.(t), es(t), respectively. Their Fourier expansion can

be written as

GC,S(t) = / d_wéc,s (w)e_thy (A35)

oo 2m
where é., are the Fourier components of e. ;. The relationship between a,(t), ¢, (t) and
e.(t),es(t) can be obtained from Eq. (A.4).

Consider how this laser noise propagates through free space. Regarding propagation
of a carrier light, it is the same as shown in Appendix A.1.2. However, a correnction is
necessary for the noise sideband, since the frequency is different from the carrier frequency
by the sideband frequency w. The strength of the noise electric field § E},is can be written
as

0 Eoise () = e.(t) cos Qot + e4(t) sin Qot. (A.36)

When the carrier light travels a distance L, the change in the intensity of the noise electric
field can be derived as
5 E(L)

noise

(£) = S Efore(t = L/c). (A.37)

From this and Eq. (A.35), propagation of the noise sideband at the sideband frequency w
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can be written as

, cos ¢ sin ¢ ‘
60 () = emille - "l e0w) = e eR[—6)60 (W), (A.38)

—sin¢r cos¢r,

Compared with the carrier light, the phase is shifted by e®/¢. Therefore, we must
compute the phase shift for each frequency component when we consider the propagation

of the sidebands.

A.1.5 Reflection from a mirror

Next, we show how the reflection from a mirror can be expressed. Assume an ideal
mirror without loss, and define the electric field of an incident light, a reflected light, the

reflectance and the transmittance on each surface as shown in Fig. A.4.
!/ !/
(N r’t
in
Ey EM
— —

L b

-

in
out E2
El

Figure A.4: Schematic view showing the reflection from a mirror. Ei" and Ei are electric
fields of incident beams from the left side and the right side, respectively. E{"* and EJ"
are electric fields of outcoming beams from the left side and right side, respectively. r
and r’ are the reflectances of the left side and the right side, respectively. t and ¢’ are the
transmittances of the left side and the right side, respectively.

The relationship between the incident light and the reflected light can be expressed by

using a 2 X 2 matrix as

Epv rot ER EPR
= =M , (A.39)
Eg t ) \EP ER

We can characterize the mirror by the matrix M. r,t,7’, and ¢’ are the complex reflectance

and transmittance of the mirror. From the energy conservation, these must satisfy the
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following relationships
r| =[], [t =], [rP+ [t =1, 7"t + 't =0, 7't 4+t = 0. (A.40)

In order to satisfy Eq. (A.40), the matrix M needs to be unitary. The matrix M satisfying
Eq. (A.40) is not uniquely determined and has a degree of freedom. So we will use the

following matrix

—VR VT
M = , (A.41)

VT VR

where R = |r|> and T = [t|* and they are called the power reflectance and the power
transmittance, respectively.

Consider how the quadrature phase component changes due to mirror reflection. From
a simple calculation, the relationship between the incident light and the reflected light is

calculated as

ot —VR 0 VT 0| [é&n
ot £ 0 —vVR 0 VT||én Er
gge £y v 0 VR o0 ||é&r gn
Egut 0 VT 0 VR) \&r

Also, sidebands are reflected in the same way, and frequency components can be written

as

&g VR 0 VT 0| [é&
&t et 0 —vVR 0 VT|[|enr e
= = = : (A.43)
egut g vT 0 VR o0 ||é&n &y

eyt 0 VT 0 VR) \é&

Next, when the mirror moves, what kind of change will occur in the reflected light is
considered. Consider a case where a lossless mirror with a reflection matrix M moves as
much as z(t) as shown in Fig. A.5. Movement of the mirror is assumed to be sufficiently

small compared to the wavelength of the light. The reflected light can be written as

EYU(t) = —V/RE™(t — 2z(t) /c) + VTEX ),
ES"t(t) = VT E™(t) + VRER(t + 2x(t) /). (A.44)

These equations show that the reflection by the moving mirror can be expressed by a
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combination of reflection by the fixed mirror and light propagation. Since z(t) < A, the

response of the carrier light can be written as

&
gout! I + SR[—2Q7 (w)/c])ER Ein —&n
1 M ( [ oZ(w)/c])& M 1 +2QO\/E:L’(t) 1
gout’ (I + SR[2Q (w) /c])E &in ¢ gin
Ep

gi)ut 1{1

= + x(t). (A.45)
Eout R,

Here, R, and R; are coefficients representing the response of the light to mirror movement.
From Eq. (A.45), the carrier light is not changed from the reflection by the fixed mirror,
but a new sideband is induced by the movement of the mirror. The Fourier transform of

x(t) can be written as
x(t) = /OO Z—if(w)e_w. (A.46)

In the same way, the noise sideband can be derived from Eq. (A.43) as

&m(2) &) (R
=M + #(Q). (A.47)
e () €3 () R;

Considering the quadrature amplitude coordinate where the phase component of the
carrier light &, is 0, we see from a simple calculation that the effect of the moving mirror
appears only in the phase component. Therefore, mirror movement appears as the phase

modulation.
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Figure A.5: Reflection on the moving mirror

A.2 Fabry-Perot cavity

We have seen how a light changes in optical elements. Here we consider how the electric

field changes in a Fabry-Perot cavity.

A.2.1 Electric field inside of a cavity

First, consider the relationship between the light incident on the Fabry-Perot cavity and
the light emitted from the cavity. The two mirrors constituting the cavity are called the
front mirror and the end mirror. It is assumed that the front mirror is a fixed mirror and
the end mirror is a movable one. Let the length of the cavity be L. Consider that a laser
light with frequency €y and quadrature amplitude &, is incident on a cavity. Moreover,
assume that the incident light has noises as in Eq. (A.33), and let its Fourier component
at frequency w be €;,. Let the quadrature amplitude of the reflected and the incident light
of the front mirror inside the cavity be &1 and Epg, the reflected light and the incident
light of the end mirror inside the cavity be &g and Egs, the light reflected from the cavity
be &,, transmitted through the cavity be &. The e, represents the sideband at each
point, where « stands for one of F1, F2, E1, E2, r, and t. Let the change of position of
the end mirror be z(t), and the light transmittance and reflectance of the front mirror
and the end mirror be tp,rp,tg, and rg. The mirrors are assumed to be lossless. The

sign of the reflectance of each mirror surface is set as shown in Fig. A.6. The reflection
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matrices Ml and My of the front mirror and end mirror can be written as

Mp

0

tp

0

0
0

tr

lp
0

rr

0

0

tp

0

rp

7ME

e
0

tg

0

0

()]

0

lg

tg
0

0

0

tg

0

(A.48)

Erp is the electric field when £g; propagates the distance of L. Let the difference
between the resonance frequency of the cavity and the laser frequency be 2. From

Egs. (A.35) and (A.38)

Em(Q) =R [—%} £m1(Q), (A.49)
&) = e | -5F | e ). (A.50)

Changes in Ega(€g2) to Erz(€ro) are the same .

In the cavity, the incident light is reflected by the end mirror. If the end mirror is
moving, a new sideband appears as seen in Appendix A.1.5.

Based on the above discussion, we can formulate the equations for the reflection on

the end mirror as

SEQ(Q) 8E1(Q) TEgEl(Q)
= Mg = , (A.51)
E(Q) 0 te€r1(Q)
=(©) (w) ) (w) R,
E2 _ M, El n W)
e (w) 0 R,
~(Q) -
rp€pl (W) + RiZ(w)
- ' , (A.52)
tpé (w)
where &£ represents the quadrature amplitude for each carrier light, and
202 Esp1(2)
R, = CTE (A.53)
_gc,El (Q>

From Egs. (A.49), (A.50), and (A.52), the electric field incident on the cavity and circu-
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lating through the cavity changes as

20 L
. 20 L . QL
ég)(w) = rpe 2wl/eR {— . } ég) (w) + e wL/°R [—T} R % (w). (A.55)
The reflection on the front mirror can be written as
E.(Q) En) ) [P (w) & (w)
= Mp , = Mp ) (A.56)
Eri(Q) En(Q)) \& () &y ()

From Egs. (A.54), (A.55), and (A.56), the quadrature amplitude inside the cavity can be

derived as .
B 20 L
8F1<Q) = (1 - T’FTER |:— 2QL:|) tFR |:—T:| SIH(Q) <A57)

C

: 20L7\ "
ég)(w) = (1 — rprpe” POL/CR {——}) ,
QL

X (tFe—%wL/CR {_T} e (W) + rpe @R {_T} le(w)). (A.58)

Eri_+

_gt

—_—

-
, >
gEZ /L,(T)
Figure A.6: Schematic view showing a Fabry-Perot cavity. &, &, and & are the electric

fields of the incident, the reflected and the transmitted light, respectively. &gy, Epo, Ex1,
and Egs are electric fields inside of the cavity.
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A.2.2 The reflected and transmitted light in Fabry-Perot cavity

Next, we will consider the reflected light and the transmitted light from a cavity. Let the
incident light be &, = (Ep, 0)". From Egs. (A.49), (A.51), (A.56) and (A.57), the reflected
light £,(£2) and the transmitted light & (€2) can be derived as

EAQ) = (1 —rpreR[=2¢]) " (=rp + reR [—2¢]) £En(Q)

1 —rr(1+7%) +re(l +7%) cos 2¢
- 2F\2 i 2 Eo,
C1—7¥*E>2{1+'0;J S ¢} rp(ri —1)sin2¢
(A.59)
E(D) = (1 —rpreR[=2¢]) " (trtpR [=3¢]) En(Q)
_ ity (1 —rgrp)coso 5, (4.60)

2 .
(1 =7pre)? {1 + (%) sin® (75} (1+rgrp)siné
where ¢ = QQL/c and the finesse F is given by

F=VITE (A.61)
1-— TFTE
From Egs. (A.59) and (A.60), the reflected power P, and the transmitted power P; can

be derived as

(rg —rr)? + drprpsin?(QL/c)
(1 —rprg)? {1 + (2.7-"/7r)2sinQ(QL/c)}7
(trtg)’
(1 —rprg)? {1 + (2?/71')28in2(QL/C)}.

PAQ) = |&(Q) = (A.62)

P(Q) = &(Q)]” = (A.63)
The internal power of the cavity is maximized when the transmitted power reaches a
maximum. From Eq. (A.63), when 2 = 0, the transmitted power is maximum. As (2
increases, the transmitted power decreases. Furthermore, when (2 shifts by Qpsg = 7c/L,
the resonance condition is satisfied again and the transmitted power reaches the maximum
again. This frequency separation is called the free spectral range (FSR). When the cavity

is on resonance, the transmitted power and the reflected power can be derived as

_ E,
g - _rtre , (A.64)
1-— TrTE
0
tpt Ey
g = £ (A.65)
1-— TFTE 0
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From Eq. (A.63), we can calculate the full width at half maximum Qpwy of the resonance

peak by solving the equation below

1 1
SR = —. (A.66)
1+ (2F /7)) sin*(QpwnamL/c) 2
Note QpwramL/c < 1 in general, then Qpwiyv can be written as
1

F is called finesse which is the ratio of Qpsg to Qpwnm. It is a quantity representing
the sharpness of the resonance peak. Figure A.7 shows the reflectance of cavities with
finesse of 10 and 100. As shown in Eq. (A.61) finesse is determined by the reflectance of
the mirrors of the cavity. A cavity composed of the mirror having the higher reflectance
has the higher finesse. Furthermore, from Eq. (A.57), the internal power of higher finesse
cavity is higher.

Reflectance of FP cavity

1 T

| |
n-1 n-0.5 n n+0.5 n+1

200
100 - .

phase
O
T
|

-100 - a

_200 | 1 |
n-1 n-0.5 n n+0.5 n+1

Normalized frequency [Q

FS R]

Figure A.7: Plots of the absolute value (upper) and the phase (lower) of the complex
reflectance of a Fabry-Perot cavity. Blue curves are for the cavity with finesse of 100 and
red curves are for one with finesse of 10. Horizontal axis represents the angular frequency
of the laser normalized by (lpgr, and n is an integer.

A.2.3 Passive filtering of Fabry-Perot cavity

As we have seen, the intensity noise and the frequency noise of laser light can be expressed
by using sidebands imposed on the laser light. Here, we show how the noise sideband of

a light incident on the cavity changes in an output light.
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When 2 = nQlpsg where n is an integer, the Fourier component of the noise sideband

in the outgoing light €;(w) can be obtained from Eq. (A.58) as

. tFtEe_iwL/céin(W) + ’I“FtEe_QiWL/CRlii‘(W)

1— TFTEG—inL/c

é(w) (A.68)

From Eq. (A.68), we can obtain the frequency response Hg¥' (w) of the sideband amplitude
from the incident light to the outgoing light as

e tFtEe—iwL/c
Fp (W) =

- 1 — TFrEefﬂwL/c'

(A.69)

From Eq. (A.36), the noise on the outgoing light from the cavity can be derived as

5Et,noise - et,c<t) COS Qot + €t,s (t) sin Qot

=/ —w~t,c(w)€_m COSQot+/ Q—Wét,s(w)e_wtsmﬁot
™

€
oo 2T

—0o0

= / —waﬂ%"(w)(éinvc(w) sin Qot + €y s(w) cos Qot)e "

o 2T
> dw cav n —iw
= / %HFP (w) Ein noise (w)e ™" (A.70)

where Ein’noise(w) is the Fourier component of the noise on the incident light. Therefore,
HEY (w) is the frequency response of the noise from the incident light to the outgoing light
from the cavity. When wlL/c < 1, that is, w < Qpgg, the absolute value of the frequency

response Hg¥ (w) can be obtained as

trte 1

1 —rprg \/{1 + (2F/7)*sin®(wL/e)}
. trtg 1
1 —rprg V14 ((2F/7) x (wL/c))?
trtg 1
T 1= rprp V14 2w/Qewin)? AT

|Hip (w)| =

From Eq. (A.71), the Fabry-Perot cavity acts as a first-order low-pass filter with a cutoff
frequency w. = Qpwnn/2 for the noise sideband. Therefore, the frequency noise and the
intensity noise of the light transmitted through the cavity are reduced in the frequency
band above the cutoff frequency w.. This is because the noise with periods shorter than
the storage time of the cavity is averaged in the cavity. The storage time 7 can be obtained

from the cutoff frequency as

T=1/w,. (A.72)

The cutoff frequency w, is often called a cavity pole frequency.
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A.2.4 Application of a Fabry-Perot cavity

The Fabry-Perot cavity is used as a frequency reference because of its frequency selectivity.
When the resonance frequency of the cavity is sufficiently stable, the frequency of the laser
can be stabilized by controlling the laser frequency to follow the resonance frequency.

As we will see below, the Fabry-Perot cavity also has selectivity for the laser’s spatial
mode. Therefore, it is possible to clean up the spatial mode of the light by letting the
light resonate in and pass through the cavity. A cavity used for such an application is
called a mode cleaner.

A beam jitter can be expressed as an intensity fluctuation of the first-order spatial
mode. Therefore, the beam jitter can be reduced by passing the light through the cavity
and filtering the first-order spatial mode.

A.3 Control of Fabry-Perot cavity

Usually, when using a cavity, the length of the cavity or the input light frequency has
to be controlled to maintain the resonance state. As will be described below, it can be
seen that changes in the cavity length or the laser frequency are included in the phase
component of the reflected light. Therefore, to obtain an error signal, it is necessary to
read the phase component. Pound, Drever, Hall, et al. have devised a readout technique
called the Pound-Drever-Hall method (PDH method) [57]. In this section, we describe
the signal extraction for the cavity control by the PDH method.

A.3.1 Frequency response of Fabry-Perot cavity

Before discussing the PDH method, let’s see how the reflected light changes when the
laser frequency deviates from the resonance frequency or when the cavity length changes.
First, let’s consider what signal can be obtained when the cavity length L changes.
Assume that the cavity length fluctuates around the resonance. Information on the change
in the cavity length is included in the sidebands of the reflected light, in which the Fourier
component of the sideband can be derived from Eq. (A.58) as
(—rp + rpe” 2@ éy (W) + tpe MR T (W)

e = , . A.
() et (A.73)

Assuming the electric field of the incident light is €;, = (Fjp,0)", then from Eqs. (A.53)
and (A.55)

. 2Q7“E tF 0

R,
c 1—rprg

(A.74)
—E,
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Therefore, when the cavity length changes, the phase component of the reflected light
changes. Assuming that w < Qpsg and rrp ~ rg ~ 1, the frequency response from the

cavity length change to the reflected light Hi,(w) can be obtained as

€r S(CL)) 20rg tp tpeiiWL/CEo
HL — 5 — . A75
rp(w) Z(w) ¢ 1—rprgl —rprge2iwl/c ( )
20 thrp 1 —2iwL/c
¢ l—rprgl—rprg(l1 —2iwL/c) 0
Lo 1 cav
~ — Hip (w), (A.76)
where z. is a length representing a width of the resonance peak,
A
e = —, A.T7
T oF (A.T7)

where A is the wavelength of the light. Hf%'(w) is a transfer function of a low pass filter,

cav 1

Next, consider the case where the frequency of the incident light changes. From Ap-

pendix A.1.2, when the laser frequency (2 fluctuates around the resonance frequency €2 by

0Q(w)
o L

Therefore, if we use the approximation that w < w,, the frequency response from the

0Q(w), it can be regarded as the same as when the cavity length fluctuates with

laser frequency fluctuation to the reflected light can be derived as

L E cav
HPEP<M) = EHI«EP(W) = W_OHLP (w). (A.79)

A.3.2 Pound Drever Hall method

As we have seen, a signal for controlling a cavity is included in a phase component of
the reflected light. To read the phase component, a phase modulation is applied to the
incident light with a modulation frequency w,, and a modulation index d,,, and a beat
signal between sidebands and carrier lights is measured. The incident light can be written
from Eq. (A.29) as

o 0
Ent = + = Ein + em, (A.80)

0 OmEq cos wy,t

where &£;, is the carrier light and e,, is a sideband of the phase modulation. Note that
the incident light also has noise sidebands omitted in Eq. (A.80)
For the sidebands applied for signal extraction, we choose the modulation frequency to

satisfy w,, > w.. Therefore, when the carrier light is resonating, the sideband for signal
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extraction is not resonant. In this case, almost entirely reflected by the front mirror,
and the cavity reflectance for the sideband is approximately rp. Let the frequency of
the incident light fluctuate with 0£2(¢) around the resonance frequency €2y, and the cavity
length fluctuates by z(t) around L.

Fourier transform of the cavity length fluctuation x(¢) and the laser frequency fluctu-

ation §€)(t) can be written as

x(t) = /_OO d—wi(w)e’im, (A.81)

oo 2m

o0(t) = / h d—wéﬁ(w)e’m. (A.82)

oo 2m

From Egs. (A.64), (A.76), and (A.79), the reflected light £ can be obtained as

_ e/ 5 , 0
EFt = TF—W&H +/ = <H§Pi(w) + HIEP(SQ(w)> e "t + rrey,
1—rprg oo 2T 1
—rp+r “dw [ T(w Q(w , 0
_ F Egin + EO / hatad ( ) + ( ) Hﬁzlijv (w)e—zwt + rp€m
1—rprg oo 2m Le We 1
=& +e,+rre,, (A.83)

where &€, is the carrier light in the reflected light from the cavity and e, is a signal

sideband. The reflected power Pf* can be derived as

Pt = |0 = |E. + e, + rren|’

—TF +7TE
1 — TrTE

2
EO) + |es|? + Rp (0 cos wpt )2 E2

* duw (f(w) . 5 (w)

oo 2T T, We

+ 25mE§ COS Wyt /

) HES (w)e ™t (A.84)

In Eq. (A.84), the first and the second terms are static components, the third term is
a component oscillating at the frequency of 2w,,, and the fourth term is a component
oscillating at the frequency of w,, which contains information on the cavity length and
the laser frequency. Therefore, to obtain the error signal, the output of the PD detecting
the reflected light is demodulated with cosw,,t. The demodulated signal Pm°d can be

derived as

P;iemod — P:ot cos(wmt) — 5mEg/ _w (ZL’(C«)) + (w)> Hﬁ%v<w)€fzwt + (AC term),

2 Te We

—00

(A.85)

where (AC term) includes component that oscillates at frequency 2w,,. By removing this
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oscillation component with a low pass filter, the error signal €(f) can be obtained. The

Fourier component of the error signal can be written as

T(w 0w
Ew) = /2P P, ( fC ) 4 %) HE (w), (A.86)
where Py = E? is the direct current (DC) power of the incident light, and Py = (,,Fp)?/2
is the DC power of the modulation sidebands. The reflectivity of the cavity and the error
signal are plotted in Fig. A.8. The central signal in the plot corresponds to when the
carrier light resonates, and similar signals seen on the left and the right are generated

when the lower sideband and the upper sideband resonate, respectively.

Error signal of PDH method
T T T

0.8

G061 i

[0}

| L L L
—8.1 5 -0.1 -0.05 0 0.05 0.1

© © o o
- o = N W

-0.2

error signal [arb. units]

-0.3 ;
-0.15 -0.1 -0.05 0 0.05 0.1

Frequency [QFSR]

Figure A.8: Plots of the reflectance (upper) and the error signal of a Fabry-Perot cavity
by a PDH method (lower). Horizontal axis is the deviation from a resonance frequency
in unit of Qpgg. In this calculation, the modulation frequency is set to Qpsgr/10
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A.4 Mode cleaning

Because of the spatial mode selectivity of a cavity, it can be used as a mode cleaner. The
nature of this mode cleaning is also used to reduce a beam jitter. In this section, we

consider a spatial mode of the light and see how the cavity cleans it.

A.4.1 Spatial mode

Up to here, a laser light has been considered as a one-dimensional ideal plane wave.
However, in reality, it is a beam with a transverse spatial profile. The wave equation

which the electric field u should satisfy can be written as
Au — k*u = 0. (A.87)

When it is solved using the paraxial approximation [58], we obtain a solution called a
Gaussian beam, since its spatial distribution of the intensity in the fundamental mode has
a Gaussian distribution. The normalized transverse intensity distribution of a Gaussian

beam propagating in the z-axis direction can be written as

2 -r* Lot
Upo(r, 2) = Wexp (W —ikz — ZkQR(z) + ZC(Z)) : (A.88)

where 7 is the distance from the central axis of the beam and k is the wave number. w(z)
is the radius of the beam spot, at which the strength of the electric field is 1/e times of

the value at the center r = 0 where e is Napier’s constant. w(z) can be written as

1+ (%)1 : (A.89)

where A is the wavelength of the laser light, and w(z) has the minimum value wy called

w(z)? = wp

waist size at z = 0. R(z) represents the radius of curvature of the wavefront and is given

by
1+ <WA—I§>2] . (A.90)

The beam radius w(z) can be regarded as being proportional to z when z > zg, where

R(z) =z

zr = mwi /A. This means that the beam can be regarded as a cone at the region far from
the beam waist. The angle between the line r = w(z) and the beam center axis r = 0 is

called the divergence angle of the beam, and it is given as
Qg — —. (Agl)
((z) is called the gouy phase and represents the deviation of the phase from the plane
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wave e %% Tt can be written as

((z) = tan™* <A—ZQ> : (A.92)

Tw§

The degrees of freedom necessary to describe a Gaussian beam are only the waist size
wo and the waist position, in addition to the wave number and the intensity. Therefore,
the spatial mode of the laser can be described by the waist size and the waist position.
These parameters change when transmitting through a lens or reflected by a curved mirror.

Equation (A.87) has a general solution as
Ui (2,9, 2) = Uj(z, 2)Up(y, 2)exp{—tkz +i(l + m + 1){(z)}, (A.93)

where [ and m are the orders of mode on the x and y axes, and they represent the number

of nodes on each axis. Here,

e = (i) (i) (55) o |- (85 -

where H; is the [th-order Hermite polynomial. Modes in which the Hermite polynomi-

. (A.94)

als represent the intensity distribution of the beam cross-section are called a Hermite

Gaussian modes. Equation (A.93) can be rewritten by using the fundamental mode as

Um(z,y,2) = MQZl!lem!Hl (1\1{(2;3;) H,, (%) expli(l + m)((2)|Upo(x, y, z)]. (A.95)

Hermite Gaussian modes are denoted as TEM, (transverse electromagnetic) modes

by using its orders [ and m. Note that in a higher-order TEM;,, mode, the phase rotates
by an extra amount (I + m)((z) compared to the TEMyy mode. Regarding the TEMjy,
TEM;g, and TEMyg, the cross-sections on the zx plane are shown in Figs.A.9, A.10 ,and
A.11, respectively.
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Figure A.9: Cross-section of the amplitude of TEMy, mode. The horizontal axis is in
unit of the wavelength of the light, and the vertical axis is in unit of the waist size of the
beam.

Figure A.10: Cross-section of the amplitude of TEM;y, mode. The horizontal axis is in
unit of the wavelength of the light, and the vertical axis is in unit of the waist size of the
beam.
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Figure A.11: Cross-section of the amplitude of TEMy; mode. The horizontal axis is in
unit of the wavelength of the light, and the vertical axis is in unit of the waist size of the
beam.

A.4.2 Resonant spatial mode of a Fabry-Perot cavity

When thinking in one dimension, only the frequency was considered in the resonance
condition. However, in reality, it is necessary to satisfy the resonance condition also for
the spatial mode. For a cavity to resonate, it is necessary for the spatial mode of the
incident light to coincide with the wavefront of the light after traveling around the cavity.
Here, we use the complex beam parameter q to describe the eigenmode of the cavity. It
can be written as
Tw?

q(z) =2z + ZTO =2 +izg, (A.96)
where zp = mwi /) is called the Rayleigh length. This ¢ represents the spatial mode of
the beam. Taking the reciprocal of ¢, then

1 1 A
() R(z) wuwi(z)

(A.97)

Using ¢, the radius of curvature R of the wavefront and the beam size w(z) can be easily
calculated.
Consider the eigenmode of the cavity using the complex beam parameter q. Suppose

q changes from ¢ to g2 when the light is reflected by a mirror or passes through a lens.

141



A FABRY-PEROT CAVITY

This transformation is described in a matrix form as

q2 A B q1
=a : (A.98)
1 cC D 1
This can be solved as 4 B
Q1+
= A .99
q2 Ca+D ( )

This matrix is called an ABCD matrix.
Let us see the ABCD matrix of each optical component or propagation. Firstly con-

sidering when light propagates for a distance of L. ¢o can be written as
G =L+ q. (A.100)

Therefore, the ABCD matrix can be written as

T, (L) = . (A.101)

Next, consider the case where the light passes through a lens with a focal length of f.
By passing through the lens, the light converts the spherical wavefront with the radius of
curvature R into a spherical wavefront with the radius of curvature R,. The relationship

between R; and Ry can be written as [59]

1 1 1
_— = — — —. A.102
BT (A.102)

Note that the beam size does not change immediately before and after the lens, then from

Eq. (A.97)

1 1 1

- A.103
2 g f ( )
R — (A.104)
—qi/f+1
Therefore, the ABCD matrix can be written as
1 0
Tlens(f) = . (A105)
-1/f 1

Finally consider a reflection by a curved mirror. The reflection from the mirror with

the radius of curvature R works in the same way as a lens with focal length f = R/2.
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Therefore, the ABCD matrix can be written as

1 0
Tmirror(R> - . (A106)

~2/R 1

Using these ABCD matrices, the ABCD matrix of travel around a Fabry-Perot cavity
with two mirrors of the radii of curvature of Rp, Rp and a cavity length of L can be

written as

TFP(L7 RF, RE) = Tmirror(RF)Tp(L)Tmirror(RE)Tp<L)' (A107)

The eigenmode of the cavity can be obtained by calculating the eigenvector for this matrix
Tep(L, Rr, Rg).

When the light is incident on the cavity, it is necessary to match the spatial mode
of the light with the eigen spatial mode of the cavity. This operation is called mode
matching, and lenses or curved mirrors are used to achieve it. The coupling ratio between

the incident laser mode and the cavity eigenmode is called the mode matching ratio.

A.4.3 Spatial mode selectivity

A Fabry-Perot cavity also has selectivity for a spatial mode, not only for a frequency. This
is because the phase rotation during propagation inside a cavity depends on the order of
the mode. This property can be used to clean the spatial mode of the incident light, and
a cavity used in this application is called a mode cleaner.

Regarding an eigenmode of the cavity, let the distance from the position of the beam
waist to the front mirror and the end mirror be dr and dg, respectively. From Eq. (A.92),

the rotation of gouy phase between the mirrors can be written as

Co = C(dg) + C(dr). (A.108)

From Eq. (A.93), the resonance condition including the higher-order modes can be written
as

% :mo+(l+m+1)%, (A.109)
where my is an integer. Therefore, unless (y/7 is an integer, the fundamental mode and
the higher-order modes do not satisfy the resonance condition simultaneously. Therefore,
when designing a mode cleaner, one must determine the curvatures of the mirrors by

considering this point.
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A.4.4 Beam jitter reduction

Taking advantage of the mode cleaning properties of a cavity, a beam jitter can be reduced,
since the beam jitter is represented by an intensity fluctuation of the first-order mode
contained in the beam. The intensity distribution of TEMy, can be expanded around
2" = 0 in the coordinate system (2, %/, z’), which is shifted by dx in the z-axis direction [60)]

as
ox

) U10(13/7y/,0). (AllO)
Wo

Uoo(@, Y, 2) =0 == Ugo(2', 9/, 0) + <

Also, the TEMyy mode can be expanded in the coordinate system rotated with the angle

of 66 around the y axis as

, (60
Ugo(l’, Yy, Z)|Z/:0 ~ Uoo(l’,, Yy ,O) +1 (Oé_o) Ulo(l‘/, y/, 0) (Alll)

Figure A.12 shows the intensity distributions of TEMgg and TEM;q, i.e., Uy, Uyp and
their linear combination Uy + (dx/w)Uyy on the x-axis. The TEMg, translated in the
x-axis direction is represented by a linear combination of TEMy, and TEM;q. Therefore,
the beam jitter is expressed by the intensity fluctuations of the first-order modes. The
cavity has the spatial mode selectivity, so the first-order mode is filtered by the cavity,

that is, the beam jitter can be reduced by passing through a mode cleaner.
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Figure A.12: Plot of the cross-section of amplitudes of TEMgg, TEM;y and their linear
combination. Blue dashed line is the plot of Uyg and red dashed line is that of Uyq. Yellow
solid line is the plot of Uy + (d2/w)Uyg. The linear combination is the shifted TEMqg
mode.
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A.5 Noise Source in frequency stabilization

When a cavity is used as a frequency reference, a fluctuation in the cavity length causes
the noise for the frequency stabilization. Also, a quantum fluctuation of the light, a light
intensity fluctuation, etc. can be noise sources. In this section, we will consider each type

of noise.

A.5.1 Shot noise

The shot noise occurs when the light is detected by a PD. Its amplitude spectral density
(ASD) can be written as follows using the DC current Ipc of the PD.

5]Sh0t(w) =\ 26]]30, (All?)

where e is the elementary charge. When the DC laser power Pp¢ is incident on the PD,

the generated current can be written as

enPpc
Ine = A.113
DC hQ() ) ( )

where 7 is the reduced Planck constant, n is the quantum efficiency of the PD, and €2 is
the laser frequency. Therefore, Eq. (A.112) can be rewritten as

3 Pyt (w) = 4 2th0 Ppe. (A.114)

The ASD of the shot noise occurring when the reflected light is detected on the PD is

210
0 Papot = ; 0 pPDH (A.115)

where PEEM is the laser power incident on the PD at resonance. From Eq. (A.84), it can

be written as

1 — TrTE 2
= Rpp Py + P, (A.116)

2
- 5:mEo)?
PDP(]?H:( TF"‘TEE) +(m 0)

where Rpp is the power reflectance of the cavity, Fy and P, are the power of the carrier
light and the sideband in the reflected light, respectively. If PSR is demodulated with
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COS W,
* dw
gpdemed — coge, ¢ —§Pyore” !
oo 2T

shot
dw 7%@6 —twmt + eiwmt
= — 0Pt Y ————
oo 2T 2

dw

_ /_ S0P ™ (A.117)

Then, the ASD of frequency fluctuation due to the shot noise can be written as

1 0Py,
OV (Wor = o g/ahgzt
fLHg;y Hew (@)’ :

where h is the Plank constant, ¢ is the speed of light, A is the wavelength of the laser, F

and L are finesse and the length of the cavity, respectively.

A.5.2 Residual amplitude modulation noise

When amplitude fluctuations are present in the incident light at the modulation frequency
W, an intensity component of the carrier light rides on the error signal when demodulated,
resulting in a control noise. There are many sources of the residual amplitude modulation
(RAM). For instance, when the polarization axis of an EOM deviates from the polarization
axis of the incident light, the EOM also modulates the intensity of the light. Scattered
light can also be a RAM source. Here, we consider RAM noise.

Let the amplitude modulation index be €,,(¢). From Eq. (A.16), Eq. (A.80) can be

rewritten using the new sideband eray as

tot
En = Ein + e, + eram

€m(t) cos(wpmt)
= 81n + e, + Eo. (Allg)

Om€m () cos? (wpnt)
Then, we can obtain the reflected light intensity. Here,

28, - enan = 2—F T TE e () (A.120)
1-— TrFTE
2€,, - eram = 262, Poep(t) cos® (wpt)

= chnPoem(t) + (AC term). (A.121)

A new term 6Pray oscillating at the frequency wy, is added to Eq. (A.84). It can be
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written as
—rp+r1E  3rpdten(t)

dPram = <2 - > Poen(t) coswp,t. (A.122)

].—TFTE 4

If rp and rg ~ 1, by the demodulation with cos(w,,t) we obtain the demodulated signal

as

- + g 37”]5(52
5Pdemod _ 'F m ) p l(t
RAM (I—TFT‘E + 3 0€m (t)

30 em(t)

S (A.123)

Therefore. the RAM noise can be written as

demod

v(W)ram = %W
3 1 1
= — — 0, €, —_— A.124
16VFSRF5m€m(w) HE%)V7 ( )

where €,,(w) is the Fourier component of RAM.

A.5.3 Residual gas noise

When gas exists in the optical path inside the cavity, the refractive index changes due to
molecular motion of gas. This causes a change in the optical path length and the effective
cavity length. Therefore, residual gas generates a noise. The change in the optical path

length due to the residual gas is expressed by the following equation [61, 55].

e S ()(®)

where ng is the refractive index of the gas, Ag = 6.02 x 10?3 is the Avogadro’s number,
ug is the average speed of the molecule, Vy = 2.24 x 1072 m? is the volume of gas with
the amount of 1 mol under the standard state, pg = 1 atm is the standard pressure,
Ty = 273.15 K is the standard temperature, [ is the cavity length, and A\ is the wave
length of the laser.

A.5.4 Seismic noise

A fluctuation of the cavity length due to seismic motion also generates a noise. When
the mirrors constituting the cavity are independent of each other, the relative vibration
spectrum of the mirror is simply the fluctuation of the cavity length. In the case of a rigid
cavity whose mirrors are fixed on a spacer, if acceleration is applied to the cavity due to

the ground vibration, the elastic modes are excited, and the cavity length fluctuates. The
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fluctuation spectrum of the cavity length due to the ground vibration can be written as
Olace(w) = ALa(w), (A.126)

where a(w) is the spectrum of the acceleration of the seismic motion, L is the cavity length,

and A is the coupling constant between the acceleration and the length fluctuation.

A.5.5 Other noise

In the case of a rigid cavity, the spacer expands or shrinks due to temperature changes,
and the cavity length is changed. This also generates noise, and it is a very slow noise
due to the thermal inertia of the spacer. Usually, a temperature sensor and a heater are
attached to the cavity, and this noise is reduced by locally controlling the temperature.

A thermal noise is also a fundamental noise source. The thermal noise is generally due
to the thermal motion of mirror substrate, mirror coatings, suspensions suspending the
mirrors or the spacer.

Furthermore, an electric noise of circuits used for control can also be a noise.
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B Fundamentals of the control theory

In this section, we briefly explain the fundamentals of the control theory. As a simplest
system, consider a negative feedback system consisting of a plant that measures a con-
trolled variable z, an actuator, and a servo filter. H, A, and F' represent the frequency
response of the plant, the actuator, and the servo filter, respectavely. The block diagram
of this system is shown in Fig.B.1. dx represents a disturbance. It is the purpose of the
feedback control to keep the controlled variable z at 0 by the feedback when the controlled
variable x changes by the disturbance dx. In the case of an FSS, a controlled variable z
is a difference between a laser frequency and a resonance frequency of a cavity, while a
plant is the cavity. The disturbance dx corresponds to the cavity length change and the
frequency fluctuation of the laser, while the actuator A to a laser frequency actuator or
a cavity length actuator. An output V., of the plant H is called an error signal, and a
servo filter output Vp, is called as a control signal or a feedback signal. In the negative

feedback system, the control signal is fed back with the sign reversed.

(SlL‘ﬁ;E . > H ‘F‘Zerr

/
]‘fﬂ )

A K F

Figure B.1: Block diagram of the simple feedback system. H, A, and F are transfer
functions of the plant, actuator and servo filter, respectively. V... is an error signal and
Vi, is a feedback signal.

The transfer function from the disturbance dz to the error signal V., can be calculated

as

V:err = H(5$ - AF%rr);
Héx

'«‘/;err:—y
1+G

(B.1)
where G = HAF is called an open loop gain (OLG) or open loop transfer function. If

|G| > 1, then

o ox
C1+G
N5x

~ o

(B.2)
On the other hand, in the case of |G| < 1, Eq.B.2 can be written as z ~ dz. If |G| is
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greater than 1, the disturbance is suppressed to 1/|G|, and if |G| is less than 1, nothing is
controlled. Therefore, a system which has larger OLG can suppress the controlled variable
x more efficiently. The frequency fuar at which |G| = 1 is called as a unity gain frequency
(UGF).

Next, consider the stability of the feedback system. For example, considering a positive
feedback system in which the control signal is fed back with the same sign, the disturbance
will be amplified and the controlled variable z will diverge. Such a system is called
an unstable system. Howling of a microphone is an example of an unstable feedback
system. As a criterion of identifying the stability of the system, there is a criterion using
poles of the system, the Nyquist stability criterion using a vector locus on the complex
plane of an OLG [62], and the Routh-Hurwitz stability criterion using coefficients of a
polynomial of a denominator of an OLG [63]. Here, a pole is a complex frequency at
which the denominator of the transfer function is 0, while a complex frequency at which
the numerator is 0 is called a zero. We often use the Nyquist stability criterion, which
will be explained below.

Now we assume that all of the poles of the OLG do not have a positive real part. This
assumption is equivalent to that the open loop system itself is a stable system, and if a
feedback system includes only stable actuators, plants and servo filters, this assumption
is automatically satisfied. Consider the vector locus of an OLG increasing the frequency
from —oo to +oo (this is called the Nyquist diagram). If the Nyquist diagram makes no
encirclements around the point (-1,0), the system is stable. In Fig.B.2, a Nyquist diagram
I'; of an OLG with one pole at w = —1, and a Nyquist diagram I's; of an OLG with three
poles at w = —1. The gain at w = 0 is 10 for both. From this Nyquist diagram, we can
see that the feedback system with I'; is stable and the other with I'y is unstable.
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Nyquist diagram
8 T T T

Figure B.2: Nyquist diagram. I'; is the Nyquist plot of the OLG G; = 10/(iw+1) and Ty
is the Nyquist plot of the OLG G5 = 10/(iw + 1)3. T’y is the Nyquist plot of the unstable
system.

When discussing how a system is stable based on the Nyquist stability criterion, we can
judge the stability of the system by how far the Nyquist diagram is from the point (-1, 0).
Therefore, the system becomes unstable if the phase fygr of an OLG at a UGF is delayed
by —180°. Thus, the stability can be discussed with a phase margin 6py = 7 + Ougr.
The system is stable when the phase margin is positive, and unstable when it is negative.
Similarly, the system is stable, if the absolute value of an OLG |G| is less than 1 at the
frequency where the phase is delayed by 180°. A gain margin Gguy = —20log|G.| can
also be used for discussing the stability. A system with a small phase margin and a gain
margin will easily become unstable when the system changes by an external disturbance.

A Bode diagram is useful for this determination. The Bode diagram is a plot of an
absolute value and a phase of a transfer function. The Bode diagram visualize an UGF,
allowing us to intuitively estimate a phase margin and a gain margin. The UGF can be
estimated by reading off the frequency at which the gain crosses 0 dB, and the phase
margin can be estimated by checking the phase at that frequency. The Bode diagrams of
OLGs G and G5 which are the same as these in Fig.B.2 are shown in Fig.B.3. Each phase
margin can be estimated as Opyi|r, = 180 —60ygr1 = 95° and Opy|r, = 180 —0ygr2 = —7°,

and again we can see I'y is unstable.
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Bode diagram _

gain [dB]
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Figure B.3: Bode diagrams of the OLG G = 10/(iw + 1) and of the OLG G = 10/ (iw +
1)3. fycr1 = —85° and Oycgr2 = —187° are the phases at the UGF.

Finally, consider a system with two actuators as shown in Fig.B.4, where A; and A,
are the actuator responses, I and F, are the transfer function of the servo filters. Then,

a transfer function from the disturbance dz to the error signal V,,, can be calculated as

Héx

‘/err:—a
1+ G+ Gy

(B.3)

where G| = HA1F; and Gy = HAyF5. To discuss the stability in this system, we should
consider not only the phase margin and the gain margin of an OLG of the whole system
Giot = G1+ Go, but also a phase difference between the two OLGs at the frequency where
|G1| = |G3|. This frequency is called a cross over frequency. When the phase difference
between the two OLGs at a cross over frequency is 180 °, then, G, = 0. Namely, the
system is not under control at the cross over frequency. Therefore, the control loop should

be designed so that the phase difference at the cross over frequency is not close to 180°.
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Figure B.4: Block diagram of the system with two actuators
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