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Abstract

A gravitational wave (GW) detector called KAGRA is under construction in Japan. KA-

GRA is the first underground cryogenic GW detector in the world. KAGRA has two

arms with the length of 3 km, and KAGRA has a design sensitivity that can detect a GW

signal radiated by a coalescence of a pair of 1.4 solar mass neutron stars 140 Mpc away

from the earth. Since the first detection of the GW signal by Advanced LIGO (aLIGO)

in the U.S., several GW signals have been detected by aLIGO and advanced VIRGO in

Italy.

In such a situation, the mission imposed on KAGRA is to achieve a sensitivity good

enough to observe a GW signal and to join the GW detector network in the world as

soon as possible. The design sensitivity of KAGRA is similar to those of other detectors

at the frequencies above 10 Hz, and KAGRA has better sensitivity at the frequencies

below 10 Hz. KAGRA has a potential to detect signals that cannot be observed by

other detectors. For the GW astronomy, the position determination of the GW source

is important. To determine the direction of the GW source, three or more detectors are

necessary. When KAGRA joins the GW detector network, the probability that three or

more machines are in operation improves to 80% from 50 %. Furthermore, the accuracy

of position determination when four detectors are in operation is predicted to be improved

to 9.5 deg2 from 30.25 deg2 as a result of a simulation. Therefore, the participation of

KAGRA in the GW detector network is an urgent matter in the development of the GW

astronomy.

To achieve the design sensitivity, several noises in the GW detector have to be reduced

properly. One of such noises is the noise included in the laser light, such as the frequency

noise, the intensity noise, and the beam jitter noise. We have developed an input optics

subsystem, which is a subsystem responsible for the reduction of such laser source noises.

The input optics aims to provide low-noise light to the main interferometer. The laser

light needs to be stabilized, and the input optics performs the laser frequency stabilization,

the laser intensity stabilization, the beam jitter reduction, and spatial mode cleaning.

The author is responsible for the design, the installation, the investigation, and the

integration of a pre-stabilized laser (PSL) and an input mode-cleaner (IMC). The PSL is

the in-air optics for the beam stabilization, and the IMC is the 50 m round trip length

cavity with three suspended mirrors. The PSL and the IMC are the main part of the

input optics, and almost all stabilization is done with the PSL and the IMC. The theme

of this thesis is the installation and the investigation of the frequency stabilization system

(FSS), which is one of the most important systems in the input optics.

The FSS has two requirements; one is the requirement for the duty cycle of 95%, and

the other is the requirement for the frequency noise of 1 Hz/
√
Hz at 100 Hz. The frequency

noise needs to have a smaller contribution to the GW sensitivity than other fundamental
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noises such as the quantum noise, the thermal noise, and the seismic noise. The control

of the FSS is automated, and it is possible for the FSS to keep locked for approximately

a week. Furthermore, even once the lock gets lost, the FSS can return to the locked state

within 1 minute. Therefore, the FSS of KAGRA satisfies the requirement for the duty

cycle. Each actuator of the FSS is calibrated by using several transfer function measure-

ments, and a model of the FSS is constructed. The noise budget has been made based on

the model, and the noises which limit the frequency stability in almost all bands are iden-

tified. The noises included in this noise budget are as follows: the frequency noise of the

laser source, the shot noise, the electronics noises in the photodetectors and the control

servos, the length fluctuations of the cavities used as the frequency references, the phase

noise of the voltage-controlled oscillator(VCO) used as the driver for the acousto-optic

modulator(AOM), and the residual amplitude modulation (RAM) noise. We simulate

the optimization of the control configuration with the model of the FSS. From this sim-

ulation, it is shown that the IMC length fluctuation by the seismic motion is dominant

at the frequencies below 100 Hz, and that the RAM noise and the VCO phase noise at

the higher frequencies than 100 Hz. Furthermore, the RAM noise and the VCO phase

noise don′t satisfy the requirement at the higher frequencies than 2 kHz. However, the

noises can meet the requirement in the frequency band below 1 kHz where the GW signals

are expected. Moreover, by installation of the pre-mode cleaner (PMC), using the phase

noise improved VCO, and adding the faster actuator such as the electro-optic modulator

(EOM) to the second loop, those noises can be improved and satisfy the requirement in

the whole frequency band.

The most recent task of KAGRA is to participate in the third observation run (O3)

as the fourth GW detector in the GW detector network. The O3 is scheduled in 2019,

and for that purpose, it is necessary to reach a sensitivity to detect a GW signal from a

binary neutron stars coalescence located within at least 10 to 20 Mpc away.

The FSS, for which the author is responsible, gets ready to participate in the O3. From

now on, the author continues to work on the installation of the input optics such as the

intensity stabilization system, the pre-mode cleaner which is the cavity for the beam jitter

reduction and the spacial mode cleaning.
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1 INTRODUCTION

1 Introduction

The gravitational wave (GW) is a physical phenomenon predicted by Einstein’s general

theory of relativity in 1916 [1], which is a distortion of space-time propagating at the

speed of light. In 1989, Taylor and Weisberg indirectly proved the existence of the GW

from the observation of a binary pulsar [2]. Assuming that the attenuation of the rev-

olution period of the binary pulsar called PSR 1913 is due to the radiation of the GW,

the attenuation almost agrees with the observation. Subsequently in 2015, 100 years after

the prediction, direct detection of the GW signal from a black hole binary was achieved

by Large Interferometer Gravitational wave Observatory (LIGO), which is a large inter-

ferometric GW detector in the U.S. [3]. The first detection of the GW signal was a very

significant scientific event. Since the gravitational interaction is much weaker than the

electromagnetic interaction, GWs carry information that electromagnetic waves cannot

provide. Therefore, GW signals provide a new brunch of astronomy different from the

current astronomy using electromagnetic waves and neutrinos. Furthermore, by analyzing

many GW events, experimental verification of the general theory of relativity becomes

possible.

In this chapter, we first describe the theoretical background of GWs in Section 1.1, and

the principle of GW detectors and several optical configurations are described in Section

1.2. After that, we describe the new astronomy by means of GWs in Section 1.3. In

the same section, the GW detectors in the world and the significance of KAGRA, which

is the GW detector under construction in Japan, are described. Then, we describe the

input optics of KAGRA, which is the main theme of this thesis, and the outline of this

thesis briefly in Section 1.4

1.1 Gravitational wave

1.1.1 Metric tensor and geodesic equation

In the general theory of relativity, the nature of space-time is described by a metric tensor

gµν . A proper length between two points xµ and xµ + dxµ is denoted as

ds2 = gµνdx
µdxν , (1.1)

where the Einstein summation is used to shorten the equation. In the Einstein summation,

the summation is taken over all the values of the indices, when the same index appears in

superscript and subscript. Hereafter, the coordinates are defined as x0 = ct, x1 = x, x2 =

y, and x3 = z. Subscripts and superscripts of Roman letters represent 1, 2, or 3, and

those of Greek letters represent 0, 1, 2, or 3. This ds shows the geometric properties of
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1 INTRODUCTION

space-time.

A motion of a free falling particle, to which no force other than gravity is applied,

depends only on geometric properties of space-time. The particle satisfies the geodesic

equations,
d2xλ

dτ 2
= −Γλ

µν
dxµ

dτ

dxν

dτ
, (1.2)

where Γλ
µν is called the Christoffel symbol and is a function only of the metric tensor. It

can be written as

Γλ
µν =

1

2
gλα
(
∂gαµ
∂xν

+
∂gαν
∂xµ

− ∂gµν
∂xα

)
. (1.3)

A geodesic equation multiplied by the mass of the particle can be regarded as an equation

of motion. Therefore, the Christoffel symbol represents the strength of a gravitational

field. Also, since the Christoffel symbol is represented by a derivative of a metric tensor,

a metric tensor is regarded as a gravitational potential.

Curvature of space is described by the Ricci curvature tensor Rµν , and the Ricci curva-

ture tensor Rµν is described by the Riemann curvature tensor Rµ
ναβ, which is a function

of Christoffel symbols, and they are written as

Rµ
ναβ =

∂Γµ
νβ

∂xα
− ∂Γµ

να

∂xβ
+ Γµ

γαΓ
γ
νβ − Γµ

γβΓ
γ
να, (1.4)

Rµν = Rα
µαν . (1.5)

The Ricci scalar R is a scalar derived from the Ricci tensor as

R = Rα
α. (1.6)

1.1.2 Einstein equation

A metric tensor gµν with mass follows the Einstein equation,

Gµν ≡ Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.7)

where G is a Newtonian constant of gravitation, and c is the speed of light, Gµν is called

the Einstein tensor, Tµν is called the energy-momentum tensor which represents a mass

distribution.

A metric tensor in flat space-time is called as the Minkowski metric and it is expressed

as ηµν = diag(−1, 1, 1, 1). Now a metric tensor in general space-time gµν can be written

as gµν = ηµν + hµν , where hµν is the difference from the Minkowski space-time. Here, hµν

10



1 INTRODUCTION

is assumed to be small. The following quantities are defined for later.

h ≡ hα
α, (1.8)

h̄µν ≡ hµν −
1

2
ηµνh. (1.9)

A Christoffel symbol can be written as

Γλ
µν =

1

2

(
∂h̄λ

µ

∂xν
+

∂h̄λ
ν

∂xµ
− ∂h̄µν

∂xλ

)
. (1.10)

Now an approximation of the Einstein equation, taking the first-order of hµν by per-

turbation expansion, is effective. Such an approximation is called a linear approximation.

In the linear approximation of the Einstein equation, the Lorentz gauge is taken. In the

Lorentz gauge,
∂h̄µν

∂xν
= 0. (1.11)

By using the Lorentz gauge, the Einstein tensor can be derived as

Gµν = −1

2
□h̄µν , (1.12)

where

□ = ηµν
∂

∂xµ

∂

∂xν
. (1.13)

From the above, the linearized Einstein equation can be written as

□h̄µν = −16πG

c4
Tµν . (1.14)

1.1.3 Gravitational wave

In the vacuum, since there is no mass, Tµν = 0. Therefore, the linearized Einstein equation

(1.14) can be written as

□h̄µν = 0. (1.15)

This is the wave equation for h̄µν . In other words, h̄µν , which represents the distortion

from the Minkowski space, is transmitted in space-time as a wave. This wave of the

distortion of space-time is called a gravitational wave (GW).

A monochromatic plane wave solution of Eq. (1.15) can be derived as

h̄µν = Aµνexp(ikαx
α), (1.16)

where Aµν is the amplitude and kα is the wave number for each axis of the GW. For h̄µν

11



1 INTRODUCTION

to satisfy the Einstein equation (1.14) and the Lorentz gauge condition (1.11),

Aµνk
ν = 0, (1.17)

kµk
µ = 0. (1.18)

Since this solution has the degrees of freedom in selecting coordinates, we take the

Transverse Traceless gauge (TT gauge), as a gauge condition together with the Lorentz

gauge condition,

Aα
α = 0, (1.19)

AµνU
ν = 0, (1.20)

where Uν is an arbitrary time-like unit vector.

In Eq. (1.20), if Uν = δν0 (time base of the Minkowski space), a time component of

h̄µν is zero from Eq. (1.20) and the trace of h̄µν is also zero from Eq. (1.19).

Taking the traveling direction of the GW along with the z-axis, a plane wave solution

is derived as

h̄TT
µν = Aµνe

iω(t−z/c), (1.21)

Aµν =



0 0 0 0

0 h̄+ h̄× 0

0 h̄× −h̄+ 0

0 0 0 0


, (1.22)

where h̄+ and h̄× are amplitudes of each polarization of the GW described later. From

Eq. (1.21), we can see that the GW travels at the speed of light. Furthermore, Eq. (1.22)

shows the GW is a transverse wave with two degrees of freedom.

Equation (1.21) can be generalized as

h̄TT
µν =

∑
A=+,×

hA(n̂)e
A
µνe

iω(t−xn̂/c), (1.23)

where x is a position vector of an observation point, n̂ is a unit vector in the direction of

the GW propagation, and e+µν , e
×
µν are polarization tensors. e+µν and e×µν can be written as

e+µν ≡ ûµûν − v̂µv̂ν , (1.24)

e×µν ≡ ûµûν + v̂µv̂ν , (1.25)

where û and v̂ are unit vectors orthogonal to n̂. Since superposition of all directions and
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1 INTRODUCTION

frequencies is an actually observed GW, the GW strength can be written as

h̄TT
µν =

∑
A=+,×

∫ ∞

−∞
dω

∫
d3n̂hA(ω, n̂)e

A
µνe

iω(t−xn̂/c). (1.26)

1.1.4 Gravitational wave radiation

Next, we think about GW radiation. By solving the linearized Einstein equation (1.14),

we can discuss the radiation of a GW. Equation (1.14) can be solved by using a retarded

potential as

h̄µν(x
0,x) =

4

G

∫
Tµν(x

0 − |x−x′|
c

,x′)

|x− x′|
d3x′. (1.27)

If we assume that a mass distribution of a GW source is sufficiently compact and the

source is sufficiently far from an observer, Eq. (1.27) can be approximated by using the

quadrupole moment Qij of the mass distribution as

h̄µν =
2G

c4r
Q̈ij(t

′), (1.28)

where r = |x − x′| and t′ = t − r/c. Qij can be written by using the mass distribution

ρ(x′, t′) as

Qij(t
′) =

∫
ρ(x′, t′)

(
x′
ix

′
j −

1

3
δijx

′ix′j
)
. (1.29)

Unlike electromagnetic waves, GWs are not radiated from dipoles. This is because the

dipole moment is always zero when we employe the coordinate system which takes the

center of mass as the origin. Therefore, GWs are not radiated from an axial symmetrical

motion of an object with an axial symmetrical mass distribution.

1.1.5 Interaction between gravitational wave and space-time

To detect GW signals, we need to know how GWs interact with space-time. To think

about the interaction of the GW and space-time, we first consider an effect of a GW on

a free particle on the Minkowski space-time. In this case,

dxµ

dτ
= (1, 0, 0, 0). (1.30)

From the geodesic equation (1.2) and Eq. (1.10), acceleration of the particle is derived as

d2xλ

dτ 2
= −Γλ

00

=
1

2

(
∂h̄λ

0

∂x0
+

∂h̄λ
0

∂x0
− ∂h̄00

∂xλ

)
= 0. (1.31)
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Therefore, the GW does not give any acceleration to the free particle. The TT gauge can

be regarded as a gauge whose coordinates change so that the particle’s coordinates do not

change due to GWs and remain stationary. However, since this is a characteristic inherent

to the TT gauge, it is necessary to introduce proper distances among free particles so as

not to depend on the coordinates, in order to consider general interactions.

Consider that a GW traveling in the z direction is incident on two adjacent free particles

P1(0, 0, 0, 0), P2(0, ξ1, 0, 0). If the proper distance hlbetween these particles changes by δξ,

δξ can be written as

ξ + δξ =

∫ P2

P1

∣∣ds2∣∣ 12
=

∫ P2

P1

|gµνdxµdxν |
1
2

=

∫ ξ

0

|g11|
1
2 dx

=

(
1 +

1

2
h̄11

)
ξ, (1.32)

⇒ δξ =
1

2
h̄11ξ. (1.33)

Equation (1.32) shows that the GW changes the proper distance between the free particles.

Next, let us consider a case where two free falling masses P1 and P2 are separated by

a tiny distance ξi, and a GW traveling in the z-axis direction enters there. The distance

between P1 and P2 changes byδξ1

δξ2

 =
1

2

h̄+ h̄×

h̄× h̄+


ξ1

ξ2

 eik(ct−z)

=
1

2
h̄+

 ξ1

−ξ2

 eik(ct−z) +
1

2
h̄×

ξ2

ξ1

 eik(ct−z). (1.34)

Therefore, the two degrees of freedom of a GW correspond to the two modes: one in

which the y-axis contracts as the x-axis extend (+ mode) and the other in which the +

mode is inclined by 45◦ (× mode). GWs have the action of extending and contracting

the space in this way. Figure 1.1 shows how each polarization of the GW changes the

distance between particles.
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Figure 1.1: Schematic view of polarization modes of the GW. The circles in the pictures
represent the movement of free falling masses when the GW in each mode propagates.

1.2 Gravitational wave detector

1.2.1 Principle of the gravitational wave detector

For direct detection of GW signals, it is necessary to observe minute changes in the proper

length between free falling masses. Since this change is tiny, we need a detector with high

sensitivity. The first attempt to directly detect the GW signal was made by Weber in the

1960’s with a resonant GW detector [4]. This type of detector detects the GW signal by

measuring a change in length of an elastic body of the detector, which is caused by an

elastic vibration mode excited by a tidal force of the GW.

In recent years, the development of a large GW detector using a laser interferometer has

been the mainstream. An interferometric type of a GW detector uses an interferometer

to observe a differential motion in two arms.

A conceptual diagram of the laser interferometer is shown in Fig. 1.2. A light emitted

from a laser source is divided into two arms by a beam splitter (BS). The light reflected

by a mirror placed at the end of each arm is recombined on the BS, and the power of the

interference light is measured with a photodetector (PD). There are two output ports of

the light in the Michelson interferometer. They are called an anti-symmetric (AS) port and

a reflection (REFL) port as shown in Fig. 1.2. The interference fringe changes due to the

difference in phase change caused during the light travel in each arm. When the difference

between two arm lengths fluctuates, the phase difference changes. Then, it causes the

change in the fringe. The BS and mirrors are suspended and can be regarded as free
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falling masses at the frequencies higher than the resonance frequency of the suspension.

When a GW comes in the interferometer, the proper distance between the mirrors and

the BS fluctuates differentially as can be seen in Fig. 1.1, so that the interference fringes

change. The interferometric detector measures this change and detects a GW signal.

Laser

PD

BS

AS port

REFL port

Mirror

Mirror

Figure 1.2: Schematic view of a Michelson interferometer

Let us consider the response to the GW in the Michelson interferometer. An electric

field of the incident light can be written as

E(t) = E0e
iΩt, (1.35)

where Ω is an angular frequency of the incoming light and E0 is an amplitude of the electric

field of the light. This light is split into two by the BS. It is reflected by the mirror and

the reflected light is recombined on the BS. Then, the power of the recombined light is

detected by a PD on the AS port. The electric field of the light detected by the PD can

be written as

EPD = Exe
i(Ωt−ϕx) + Eye

i(Ωt−ϕy), (1.36)

where ϕx and ϕy are the phase changes of the light in each arm, respectively, and Ex and

Ey are the amplitudes of the two divided lights. Therefore, the power of the recombined
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light can be derived as

PPD = |EPD|2

= E2
x + E2

y + 2ExEy cos(ϕx − ϕy)

=
Pmax + Pmin

2
+

Pmax − Pmin

2
cos(ϕx − ϕy), (1.37)

where

Pmax = (Ex + Ey)
2, (1.38)

Pmin = (Ex − Ey)
2. (1.39)

From Pmax and Pmin, a contrast of an interferometer can be defined as

c =
Pmax − Pmin

Pmax + Pmin

. (1.40)

From Eq. (1.37), an interferometer whose contrast is closer to 1 is more sensitive to the

phase difference.

Let the proper distances from the BS to each mirror be ξx and ξy, respectively. As-

suming that each arm is on the xy axis and the GW of the + polarization is incident in

the z-axis direction. The phase rotations ϕx and ϕy can be written as

ϕx(t) =
2ξxΩ

c
+

Ω

2

∫ t

t−2ξx/c

dt′h(t′), (1.41)

ϕy(t) =
2ξyΩ

c
− Ω

2

∫ t

t−2ξy/c

dt′h(t′), (1.42)

where h(t) is an amplitude of the GW. Note that signs of the interactions of the GW in

the x direction and the y direction are opposite. Then, if we assume that ξx ∼ ξy ∼ ξ,

the difference between the phase rotations ϕx and ϕy can be derived as

ϕx − ϕy =
2(ξx − ξy)Ω

c
+ δϕGW, (1.43)

where

δϕGW = Ω

∫ t

t−2ξx/c

h(t′)dt′

= Ω

∫ t

t−2ξx/c

dt

∫ ∞

−∞
dωh(ω)

=

∫ ∞

−∞
dω

2Ω

ω
sin

(
ξω

c

)
e−iξω/ch(ω)eiωt

≡
∫ ∞

−∞
dωHMI(ω)h(ω)e

iωt, (1.44)
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where δϕGW is the difference in the phase rotations caused by a GW, and HMI(ω) is the

sensitivity of the interferometer to the GW. Equation (1.44) shows the information on

the GW is included in the phase of the light. From Eq. (1.37), the power of the light on

the PD can be written as

PPD ≃ Pmax + Pmin

2
+

Pmax − Pmin

2

{
cos

(
2(ξx − ξy)Ω

c

)
+ δϕGW sin

(
2(ξx − ξy)Ω

c

)}
= AδϕGW + (DC term), (1.45)

where A is the coefficient of the signal to the phase rotation caused by the GW. Therefore,

the power on the PD changes by the GW, and we can detect the GW signal by using the

signal from the PD.

The frequency responses of the Michelson interferometers with some arm lengths are

shown in Fig. 1.3. At the low frequencies, the sensitivity increases as the arm length be-

comes longer, whereas at high frequencies, the sensitivity cannot be improved by changing

the arm length. That is because the GW, which has a shorter period than a storage time

of the light in the interferometer, is canceled during a round trip in the arm. The angular

frequency ωc at which the sensitivity gets maximum can be derived as

ωc =
πc

2ξ
. (1.46)

Above ωc the sensitivity decreases because of the cancellation.

Figure 1.3: Sensitivities of Michelson interferometers with the arm length of 3 km, 30 km,
and 300 km, respectively.
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1.2.2 Optical configuration of GW detectors

The optical configuration of GW detectors currently being operated or constructed is

not a simple Michelson interferometer, but the one combining several optical cavities to

improve the sensitivities. Several optical configurations are listed below:

Fabry-Perot Michelson interferometer

The sensitivity of a GW detector becomes best when it detects the GW signal of the

frequency satisfying Eq. (1.46). The arm length with the maximum sensitivity to the 1-

kHz GW signal is about 75 km. However, it is impossible to construct an interferometer

with such a long arm. Therefore, in the GW detector, the sensitivity is improved by

using Fabry-Perot cavities (described in Appendix A) as the arms and extending the

effective arm lengths. This interferometer configuration is called a Fabry-Perot Michelson

interferometer (FPMI). Two mirrors constituting the Fabry-Perot cavity are called an

input test mass1 (ITM) and an end test mass (ETM). The schematic diagram of the

FPMI is shown in Fig. 1.4.

The sensitivity HFPMI(ω) of the FPMI [5] can be written as

HFPMI(ω) =
2αΩ

ω

sin γ

1− rF rEe−2iγ
e−iγ, (1.47)

where rF and rE are the values of reflectivitiy of the ITM and the ETM, respectively, γ

and α are written as

α =
t2F rE

−rF + (r2F + t2F )rE
, (1.48)

γ =
ξω

c
, (1.49)

where tF is the transmittance of the ITM. The absolute value of the sensitivity HFPMI(ω)

can be derived as

|HFPMI(ω)| =
2αΩ

ω(1− rF rE)

| sin γ|√
1 + (2Fπ)2 sin2 γ

, (1.50)

where F is the finesse (described in Appendix A.2.1) of the arm cavity. The sensitivities

of FPMIs with several values of finesse are shown in Fig. 1.5. The arm length is assumed

to be 3 km in all the cases. The FPMI with high finesse cavities has the low cut-off

frequency above which the sensitivity starts to get worse, and the low cut-off frequency

leads to the high sensitivity at low frequencies. This is because the average bounce number

is proportional to the finesse, and the higher finesse cavity has a longer effective length

1In GW detectors, the main mirrors are often called test masses.
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and a longer storage time. The average bounce number NFPMI can be derived as

NFPMI =
2F
π

. (1.51)

Laser

PD

BS
AS port

REFL port

FP cavity

ITMX ETMX

ITMY

ETMY

Figure 1.4: Schematic view of an FPMI. Fabry-Perot cavities are used to extending the
effective arm lengths. An ITMX(Y) and an ETMX(Y) represent the input test mass and
the end test mass of the x(y)-arm.

Figure 1.5: Sensitivities of FPMIs with the arm length of 3 km and finesse of 100, 300,
and 1000, respectively.
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Laser

PD

BS

SRM

PRM

Figure 1.6: Schematic view of a DRMI. A PRM increases the effective power in the
interferometer, and an SRM amplifies the GW signal.

Dual recycling Michelson interferometer

Another configuration to improve the GW sensitivity of the interferometer is a dual

recycling Michelson interferometer (DRMI). A schematic diagram of the DRMI is shown

in Fig. 1.6.

Normally, in a GW detector, the mirror is controlled at a position, where the light

does not come out to AS port, to reduce the shot noise. We call this control a dark

fringe lock. In this case, all the power of the light returns to the REFL port. Here, by

reflecting the returned light in phase with the incident light, the effective power in the

interferometer can be increased. The cavity formed by the Michelson interferometer and

the power recycling mirror (PRM) installed at the REFL port is called a power recycling

cavity (PRC). The PRC reduces the shot noise by increasing the effective power in the

interferometer. The ratio of the laser power on the BS with the PRM to that without the

PRM is called a power recycling gain.

In the case of the dark fringe lock, all GW signals are transmitted to the AS port.

By reflecting this signal to the interferometer, it is possible to amplify the signal. The

mirror installed at the AS port is called a signal recycling mirror (SRM), and the cavity

composes of the SRM and the Michelson interferometer is called a signal recycling cavity

(SRC).

As shown in Eq. (1.44), the length of the arm that gives the maximum sensitivity

is determined by the GW frequency. This is because the GW whose period is shorter

than a storage time of the light in the interferometer is canceled during a round trip in
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the arm. Since the GW signal is transmitted to the AS port, the PRC does nothing for

the GW signal. Therefore, the cut-off frequency of the GW signal is not affected. On

the other hand, the SRC changes the cut-off frequency since the SRM reflects the GW

signal and extends the storage time. Therefore, even if the FPMI and the SRC are used

in combination, there is not a significant merit. However, by combining the PRC and

the SRC, the sensitivity can be improved. Such a configuration is called a dual-recycling

Michelson interferometer (DRMI).

Laser

PD

BS

SRM

PRM

FP cavity

ITMX ETMX

ITMY

ETMY

Figure 1.7: Schematic view of an RSE interferometer. The configuration itself seems to
be the combination of an FPMI and a DRMI, though the role of SRC is opposite to that
in the DRMI interferometer.

Resonant sideband extraction interferometer

The optical configuration of a resonant sideband extraction (RSE) interferometer is a

combination of an FPMI and a DRMI [6]. The schematic view of the RSE interferometer

is shown in Fig. 1.7. Although the arm cavity and the PRC play the same role as in the

FPMI and the DRMI, the role of the SRC is exactly opposite to the DRMI in the RSE

interferometer. The length of the SRC in the DRMI and that in the RSE are shifted by

a half wavelength of the laser. As a result, the SRC works to lower the effective finesse

of the arm cavities with respect to the GW signal. Therefore, the cut-off frequency of

the frequency response gets higher, which means that the sensitivity gets better up to

higher frequencies. On the other hand, since the finesse of the arm cavity with respect to

the incident light is not changed by the SRM, a large power is accumulated in the arm

cavity, and the GW signal itself is enhanced. In the RSE interferometer, the arm cavity is
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designed to have high finesse, so that the signal strength is increased. At the same time,

high sensitivity can be achieved up to higher frequencies by the SRM.

1.2.3 Noise of the gravitational wave detector

In a GW detector, it is necessary to detect a tiny distance change, so that various dis-

turbances must be identified as noise. All the noises have to be sufficiently suppressed to

detect the GW signal. Furthermore, most efforts are devoted to noise reductions. This

subsection explains the main noise sources in the GW detector.

Seismic noise

The seismic motion shakes mirrors of a GW detector, and this mirror motion is the

displacement noise in the GW detector. The mirrors are isolated from a seismic motion

by being suspended.

Assuming that the movement of the suspended mass, as shown in Fig. 1.8, is sufficiently

small, the equation of motion can be derived as

mẍ = −mg

l
(x− xg)− γẋ, (1.52)

where m is the mass, g is the acceleration of gravity, xg is the ground motion, l is the

length of the suspension, and γ is the viscous damping coefficient. Here, the third term

on the right side represents the damping force proportional to the velocity of the mass.

Equation (1.52) can be solved by Fourier transformation as

x̃(ω) =
ω2
0

−ω2 + iQω0ω + ω2
0

x̃g(ω), (1.53)

where ω0 is the resonance angular frequency of the suspension, and Q is the quality factor.

They can be derived as

w0 =

√
g

l
, (1.54)

Q = m
ω0

γ
. (1.55)

As the quality factor represents the magnitude of energy dissipation, the oscillation is

damped faster in a larger quality factor system.
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Figure 1.8: Schematic view of the pendulum in a viscous medium, where m is the mass,
g is the acceleration of gravity, xg is the ground motion, l is the length of the suspension,
and γ is the viscous damping coefficient.

As shown in Eq. (1.53), the transfer function of the suspension from the ground mo-

tion to the mass motion is inversely proportional to the square of the frequency in the

frequency region satisfying ω ≫ ω0. Therefore, the longer suspension, which has the lower

resonance frequency, can attenuate the seismic motion more efficiently at high frequen-

cies. Furthermore, in the case of the multi-stage suspension, each stage has the seismic

isolation as represented by Eq. (1.53), and the whole suspension works as the cascading

seismic isolation filters.

The mirrors of the GW detector are suspended by long suspensions which have several

stages to reduce the seismic motion. However, since there is a limit to lowering the

resonance frequency, it is difficult to provide sufficient vibration isolation in the low-

frequency region as ω ≪ ω0. Therefore, the seismic noise becomes a problem at low

frequencies (typically below several tens of Hz).

Thermal noise

A thermal noise limits the sensitivity at the frequency range around 100 Hz. Since the

mirrors of an interferometer are in contact with a heat bath of a finite temperature, the

contact causes thermal vibration, and this vibration also induces a displacement noise.

Besides, since the suspension suspending the mirror is also in contact with the heat bath,

the vibration mode is excited and causes the displacement of the mirror. It is known that

the dissipation of the system determines the thermal noise by the fluctuation-dissipation

theorem [7, 8]. This noise can be reduced by using a mirror with a substrate of a high

quality factor or by using a suspension with a fiber of a high quality factor. Therefore,
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fused silica which has a high quality factor at room temperature is used as a substrate

material in mirrors of current GW detectors [9].

The thermal noise can be reduced by cooling mirrors and suspensions. In the next

generation GW detectors, the thermal noise will be suppressed by cooling mirrors to a

cryogenic temperature. However, since the quality factor of fused silica is low at cryogenic

temperatures, fused silica cannot be used in cryogenic detectors. On the other hand,

sapphire and silicon have high quality factors at cryogenic temperatures and high thermal

conductivities. Therefore, they are used as a mirror substrate material for cryogenic

interferometers [10, 11].

Quantum noise

A quantum fluctuation of light causes a quantum noise. It is one of the noises limiting

the sensitivity of a GW detector. The quantum noise includes a shot noise and a radiation

pressure noise. The shot noise is caused when the power of light is measured on a PD

due to a fluctuation of the number of photons reaching the detector by the uncertainty

principle. Furthermore, since photons have momenta, they apply forces to the mirror

when the mirror reflects them, and this force also fluctuates due to the fluctuation of

the number of photons. As a result, the mirror of the interferometer is shaken, and the

displacement noise is induced. This is called the radiation pressure noise.

Although the shot noise can be reduced by increasing the laser power, the radiation

pressure noise is simultaneously increased. Due to this trade-off relationship, there is a

sensitivity limit which cannot be overcome only by changing the power, and this limit is

called a standard quantum limit [12]. To surpass the standard quantum limit, techniques

such as squeezing of light have been developed [13].

Noise of laser source

The fluctuations of the laser frequency and the laser intensity can cause the noises in

a GW detector.

First, consider the frequency noise. The frequency noise can be regarded as equivalent

to the phase noise, since the differentiation of the phase noise is the frequency noise.

Therefore, we consider the phase noise here. Let a phase fluctuation be δϕ(t), then

Eq. (1.37) can be rewritten as

PPD =
Pmax + Pmin

2

+
Pmax − Pmin

2
cos[ϕx − ϕy + {δϕ(t− ξx/c)− δϕ(t− ξy/c)}]. (1.56)

When the lengths of the arms are equal, the phase fluctuation is not a problem. However,

if there is asymmetry in the lengths of the arms, the phase fluctuation becomes noise on

the GW signal. In the FPMI or the RSE interferometer, the asymmetry in finesse of each

arm cavity also causes the phase noise. The ratio at which the phase noise is suppressed
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by the symmetry of the interferometer is called a common mode reduction ratio (CMRR).

In a GW detector, the frequency noise is reduced by controlling the frequency of the laser

using an optical cavity as a reference.

Next, consider the intensity noise. Let Ex = Ey = E0/2, ϕx − ϕy = (2n + 1)/2π +

ϕ− + δϕGW, where n is an integer, and the intensity noise be δP . Equation (1.37) can be

rewritten as

PPD =
P0 + δP

2
+

P0 + δP

2
cos(ϕx − ϕy)

≃ P0 + δP

2
(δϕGW + ϕ−)

≃ P0

2
δϕGW +

δP

2
ϕ−. (1.57)

Therefore, by controlling the arm length such as ϕx − ϕy = (2n + 1)/2π, the intensity

noise can be suppressed. However, the arm lengths cannot be controlled perfectly, so the

intensity noise becomes a problem. The intensity noise can be reduced by measuring the

laser power with a PD and feeding back the signal to an amplitude actuator.

When higher-order spatial modes are mixed in the laser, the contrast of the inter-

ferometer decreases and the performance of the interferometer deteriorates. Also, if the

propagation direction of the beam spatially fluctuates, this beam motion, which is called

the beam jitter, couples with the cavity to become noise. As will be described in Appendix

A.4.3, these noises can be reduced by using optical cavities.

1.3 Gravitational wave astronomy

1.3.1 Gravitational wave astronomy

GWs are radiated from any motion of a mass involving a change in a quadrupole moment

of a mass distribution. For example, a strength of a GW from an object that moves at

velocity v with mass M , can be roughly estimated from Eq. (1.28) as

h ∼ G

c4
Mv2

r

= 10−16

(
M

M⊙

)(
10 kpc

r

)(v
c

)2
. (1.58)

As seen in Eq. (1.58), the amplitude of the generated GW is tiny, and it is impossible

with current technologies to observe the GW signal generated from motions of objects on

the earth. Since the strength of the GW depends on the mass and the velocity of the

source, an astronomical event in which a massive object moves at high speed can be a

detectable GW source.

The reason why the GW signal is difficult to be detected is the weakness of the grav-
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itational interaction. The strength of the electromagnetic interaction is characterized by

the fine-structure constant α = e2/ℏc = 1/137, where e is the elementary charge, and

the corresponding constant representing the strength of the gravitational interaction is

as small as αG = Gm2
p/ℏc = 7 × 10−37, where mp is the mass of a proton. This tiny

interaction of gravity is a disadvantage in the sense of detection of GW signals.

On the other hand, the weakness of the gravitational interaction can be an advantage

from the astronomical and the astrophysical viewpoints. For example, when considering

a formation process of a neutron star in a supernova explosion, the information obtained

by light is at most about the surface of the star. Photons carrying information about the

inside of the neutron star is scattered and absorbed by many electrons and atoms. On

the other hand, since the interaction of the GW is weak, a GW generated in the central

region of the neutron star is hardly scattered and absorbed. Therefore, it is possible to

observe the GW signal carrying the information on the central region of the neutron star.

The advantage and the significance of the GW astronomy is that the GW allows us to

explore astrophysics and universe beyond reach of conventional astronomical probes using

the electromagnetic waves.

1.3.2 Sources of gravitational waves

As mentioned above, astronomical events are the detectable GW source. Several types of

gravitational wave sources are listed in this subsection.

Compact binary coalescence

There are many binary systems in the universe formed of compact stars with huge

mass like neutron stars and black holes. In these binary systems, two stars rotate around

each other, and this rotational motion generates a GW. Since the generation of the GW

involves energy dissipation, the distance between the two stars gradually decreases, and

the rotation frequency increases accordingly. This stage is called an in-spiral phase, and

a frequency of a GW generated in this phase increases with time. This frequency sweeps

from 10 Hz up to about 1 kHz in the binary neutron stars, and hundreds of Hz′s in the

binary black holes.

The frequency and strength evolution of the GW in the in-spiral phase can be written

approximately as [14]

fGW(τ) ∼ 1.9 Hz

(
1.4M⊙

Mc

) 5
8
(
1 day

τ

) 3
8

, (1.59)

h(τ) ∼ 1.7× 10−23

(
Mc

1.4M⊙

) 5
4
(

τ

1 day

)− 1
4
(
15 Mpc

r

)
, (1.60)

where τ is the time to coalescence, r is the distance between the source and the observer,

27



1 INTRODUCTION

and Mc is the chirp mass. The chirp mass is defined as Mc = (m1m2)
3/5(m1 +m2)

−1/5,

where m1 and m2 are the mass of each compact object.

After the in-spiral phase, the two compact objects collide and coalesce. In this coa-

lescence phase, the waveform of the GW generated from the binary black holes can be

accurately predicted by the general theory of relativity. Therefore, if the waveform of the

GW radiated by the coalescence of the binary black holes is analyzed, the general theory

of relativity is verified.

The waveform of the GW generated by the coalescence of the binary neutron stars

depends on the mass and the state equation of inside of each neutron star. The mass of

each neutron star can be determined by the waveform in the in-spiral phase. Therefore,

it is expected that we can know the state equations of neutron stars by observing and

analyzing GW signals from the coalescence of binary neutron stars.

As we will describe later, the first detection of the GW signal was from the coalescence

of the binary black holes in 2015. Since the binary black holes had not been found until

this first GW detection, this detection was not only the first detection of the GW signal,

but also the first evidence for the binary black holes. Therefore, this historical event

opened a new window of the astronomy, i.e. the GW astronomy.

Rotation of compact stars

A rotating compact star like a neutron star can be a GW source, when it has axial

asymmetry in its mass distribution. Such a rotating star is called a pulsar. An amplitude

of a GW from a pulsar depends on the magnitude of the asymmetry and it can be written

as [15]

h ∼ 1.1× 10−25
( ϵ

10−6

)( I

1038 kg m2

)(
10 kpc

r

)(
fGW

1 kHz

)
, (1.61)

where I is the moment of inertia around the axis of rotation and ϵ is the asymmetry of

the pulsar. The asymmetry is defined as ϵ = (I1−I2)/I, where I1 and I2 are the moments

of inertia around the axes orthogonal to the rotation axis.

The magnitude of asymmetry of the neutron star depends on the state equation of the

neutron star. Therefore, by analyzing the amplitude of GW signals radiated from pulsars,

there is a possibility that some knowledges about the mechanism of the asymmetry and

the state equation of the neutron star can be obtained.

Supernova

A supernova explosion is a major explosion that occurs when a massive star ends its

lifetime. The supernova explosion mechanism has not been fully understood. Therefore,

the magnitude and the waveform of the radiated GW is not well predicted. Along with

recent improvements in supercomputer performance and numerical simulation techniques,

quantitative understanding is expected to further advance in the near future. The GW
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strength from the supernova explosion at 20 Mpc far from the earth is estimated as

h = 10−21 − 10−22 and the frequency of the GW is predicted as widespread around 1

kHz [16].

Stochastic background

A stochastic background of the GW includes GWs from numerous unresolved astro-

physical sources, cosmological origins in the early universe, and cosmic strings. In partic-

ular, GWs from the early universe are interesting. As the universe has been filled with

plasma for 380,000 years since the universe was born, electromagnetic waves could not

travel freely in this period. On the other hand, GWs could travel freely even in plasma be-

cause the gravitational interaction is weak. Therefore, by observing GW signals generated

immediately after the universe creation, it is possible to directly observe the early uni-

verse. The prediction of the strength and frequency of these GWs varies widely according

to the theoretical models.

One example of the stochastic GW background is a GW generated in the inflation [17].

It is predicted that GWs were generated by the quantum fluctuation of space-time during

the inflation, and the GWs generated at that time still remain as background. If we can

detect the GWs derived from the inflation, we will have evidence for the inflation model

in the early universe.

1.3.3 Detection of gravitational wave signals

The first detection of GW signals was one of the most important scientific events in the

last several decades. With the detection of a GW signal from a coalescence of binary

black holes [3] as a start, two more GW signals from binary black holes coalescences were

detected [18, 19] by Advanced LIGO. In 2017, the first detection with three detectors,

two detectors of Advanced LIGO and Advanced Virgo was achieved [20]. Moreover, a

GW signal from a coalescence of binary neutron stars was detected [21].

The first event observed in 2015 is named GW150914. This event was not only the first

detection of the GW signal but also the first evidence for the binary black holes and their

coalescence. According to the analysis, this GW source is the binary black holes located

about 410 Mpc away from the earth and their masses were 36M⊙ and 29M⊙, respectively.

The GW signal frequency was swept from 35 Hz to 150 Hz during 0.2 seconds. After the

coalescence, the waveform called a ring down, which occurs for a short period after the

coalescence, appeared around 250 Hz. This waveform of the GW was in accordance with

the one expected by the general theory of relativity. Figure 1.9 shows the waveform of

this event.

What is surprising in GW150914 was that the GW source was not binary neutron stars

but binary black holes. Until the first observation, many scientists expected to observe
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GW signals from coalescences of binary neutron stars first. This observation gave us

an important suggestion on the event rate of coalescences of binary black holes, namely,

9-240 events per year within the range of 1 Gpc, which is far more than the predicted

value of 0.1-1 events per year. It was also a surprise that their masses were about 30M⊙.

The mass of a celestial compact object that had been a candidate for a black hole by the

X-ray observations so far was approximately 10M⊙.

Since the first observation, the GW signals from three coalescences of binary black holes

have been observed by two detectors of Advanced LIGO. In August 2017, Advanced Virgo

in Italy participated in the observation, and GW signals from a coalescence of the binary

black holes and a coalescence of the binary neutron stars were detected simultaneously

by the three detectors of Advanced LIGO and Advanced Virgo. These events are named

GW170814 and GW170817, respectively. The source position determination accuracy

of GW150914 was 600 deg2, as the position was determined by the two detectors. On

the other hand, in the case of GW170814, the source position determination accuracy

was improved to be 60 deg2, as the position was determined by the three detectors.

From the above, one sees that simultaneous observations by three or more detectors

are indispensable, when determining the position of the GW source. In addition, We

emphasize that GW170817 was also an important event in the multi-messenger astronomy

described in the next section.

The masses and the distances of the compact objects of each event are summarized in

Table 1.1.

Event Source Primary mass [M⊙] Secondary mass [M⊙] Final mass [M⊙] Distance [Mpc]

GW150914 [3] BH-BH 36+5
−4 29+4

−4 62+5
−4 410+160

−180

GW151226 [18] BH-BH 14+8.3
−3.7 7.5+2.3

−2.3 20.8+6.1
−1.7 440+180

−190

GW170104 [19] BH-BH 31.2+8.4
−6.0 19.4+5.3

−5.9 48.7+5.7
−4.6 880+450

−390

GW170608 [22] BH-BH 12+7
−2 7+2

−2 18.0+4.8
−0.9 340+140

−140

GW170814 [20] BH-BH 30.5+5.7
−3.0 25.3+2.8

−4.2 53.2+3.2
−2.5 540+130

−210

GW170817 [21]

(Low-spin priors) NS-NS 1.36− 1.60 1.17− 1.36 2.74+0.04
−0.01 40+8

−14

(High-spin priors) NS-NS 1.36− 2.26 0.86− 1.36 2.82+0.47
−0.09 40+8

−14

Table 1.1: Parameters of the GW source for each event. BH represents a black hole and NS represents a
neutron star.
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Figure 1.9: Waveform of GW150914 [3].

1.3.4 Multi messenger astronomy

Some GW sources have mechanisms that radiate electromagnetic waves and neutrinos. In

the case of such a GW source, the simultaneous observations of GW signals, electromag-

netic waves, and neutrinos can provide more information than the individual observation

can. The astronomy based on coordinated observations in such a way is called the multi-

messenger astronomy.

For the multi-messenger astronomy, the quick communication among the relevant ob-

servations is essential. A particularly important thing for the GW observation is to

determine the arrival direction of GWs accurately and to communicate it to the other

observations. There is a big difference in angular resolution between a GW detector and

other detectors. For example, typical optical telescopes can determine the arrival direc-

tion of light with one telescope, while the GW detector cannot precisely determine the

arrival direction of a GW with one detector. In order to determine the arrival direction,

it is necessary to use the difference in the arrival time of the GW by using several GW

detectors. For this purpose, three or more GW detectors are necessary.

By the multi-messenger astronomy that includes GWs, research on γ-ray burst (GRB)
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is expected to make progress. A GRB is a phenomenon in which γ-rays are observed like a

flash. A GRB with a short duration of about 2 seconds are called a short GRB. Although

it was assumed that the source of the short GRB was a coalescence of binary neutron

stars, there was no experimental verification. However, in August 2017 when the GW

signal from the coalescence of the binary neutron stars was detected by Advanced LIGO

and Advanced Virgo, the GRB was also observed with a delay of 1.7 seconds [23]. This

event demonstrated that short GRBs originated from coalescences of the binary neutron

stars. The γ-ray intensity emitted from GRB170817A was lower than those emitted from

any other short GRBs ever observed. It is an open question whether such dark short

GRBs have just been overlooked or GRB170817A is special. In any case, if similar GRBs

are observed with multi-messenger observations with GWs, it is expected that they will

provide new knowledge on astrophysics.

1.3.5 Gravitational wave detectors in the world

LIGO

Large Interferometer Gravitational wave Observatory (LIGO) is a GW observatory

composed of two sites in the U.S. One is located in Hanford, Washington State, and the

other in Livingstone, Louisiana State. LIGO is divided into three phases.

The first phase is called initial LIGO (iLIGO) [24]. In this phase, there were one

detector with 4 km arm length and another with 2 km arm length in the Hanford site,

and another with 4 km arm length in the Livingstone site. The optical configuration

was a Power recycled Fabry-Perot Michelson interferometer (PRFPMI) which combines

an FPMI and a PRC. The laser source was a 10 W Nd:YAG laser. To isolate the test

masses from the seismic vibration, they are suspended by single-stage pendulums which

are mounted on four-layer passive vibration isolation platforms. iLIGO was sensitive to

detect the GW signal from a coalescence of a pair of 1.4-solar mass neutron stars at about

15 Mpc far from the earth. Figure 1.10 shows the iLIGO sensitivity curves during the

fifth science run of iLIGO.
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Figure 1.10: Designed sensitivity of iLIGO (magenta), together with measured sensitivity
curves of the iLIGO during the final science run (red, green, and blue) in strain amplitude
spectral density [24].

After iLIGO, LIGO shifted to the second phase called Enhanced LIGO (eLIGO) [25].

In this phase, the laser power was increased to 35 W, and a signal acquisition method

was changed from the RF demodulation method (developed from the Pound-Drever-Hall

(PDH) method described in Appendix A.3) to what is called the DC readout method [26].

In the RF demodulation method, the interferometer is locked on a dark fringe, and the

signal of differential motion of the arm lengths, which includes GW information, is ac-

quired by the beat signal between the RF sideband and the carrier light. Even in the case

of dark fringe lock, junk lights such as RF sidebands and higher-order spatial mode lights

leak out to the AS port. Since junk lights increase the shot noise, they should be reduced

somehow. The junk lights can be filtered by a cavity, however, it will also filter out the

RF sideband including the GW signal. On the other hand, in the DC readout method,

the control point in the mirrors is microscopically shifted from the dark fringe, so that

the weak DC light leaks to the AS port. In this case, the intensity of the DC light leaking

to the AS port varies in proportion to the GW signal, so the RF sideband is unnecessary.

Therefore, the cavity to filter the junk lights at the AS port can be used to reduce the

shot noise. This cavity is called an output mode cleaner (OMC) and installed in eLIGO.

After eLIGO, a major improvement was made. This third phase is called Advanced

LIGO (aLIGO) [27]. aLIGO has a design sensitivity 10 times better than that of iLIGO.

aLIGO can observe GW signals from a coalescence of binary neutron stars at 190 Mpc far

away, and it is expected to detect about 10 coalescences of binary neutron stars per year.
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In fact, aLIGO has successfully observed GW signals from five coalescences of binary black

holes and from one coalescence of binary neutron stars. aLIGO uses the iLIGO building

and the vacuum tanks, but the detector part is completely new. aLIGO composes of two

detectors with 4-km arm length, one in each site. The laser power is increased up to 125

W, and the optical configuration is an RSE interferometer. As with eLIGO, the signal

acquisition method is the DC readout method, and the OMC is also used.

Compared to eLIGO, the vibration isolation system has been greatly improved in

aLIGO, and the test masses are isolated by three-stage vibration isolation systems. In

the first step, a basic system chamber (BSC), in which a test mass is stored, is isolated

by an active seismic isolation platform called a hydraulic external pre-isolator (HEPI). In

the BSC, an internal seismic isolator (BSC-ISI), which is an in-vacuum two-stage seismic

isolator, is mounted as the second stage of the seismic isolation system. The BSC-ISI is a

system that combines the active seismic isolation with the passive one. Figure 1.11 shows

the schematic view and the CAD diagram of the HEPI and the BSC-ISI. As the final

stage, the test mass is suspended from the BSC-ISI platform by a quadruple suspension.

The CAD diagram of the quadruple suspension is shown in Fig. 1.12.

aLIGO completed the construction of the equipment in mid 2014 and the first obser-

vation as aLIGO was done for 4 months from September 2015. During that observation,

aLIGO succeeded in the first detection of the GW signal from the coalescence of the bi-

nary black holes, GW150914. At that time, the observation range for GW signals from

the coalescence of binary neutron stars was 60 Mpc.

Figure 1.11: (a) Schematic and (b) CAD diagram of the isolation system supporting the
core optics in the BSC chambers [28].
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Figure 1.12: CAD diagram of the quadruple pendulum suspension for the core optics of
the interferometer [27].

Virgo

Virgo is a GW detector with arm length of 3 km built near Pisa, Italy. The Virgo

project can be divided into two phases, Virgo [29] and Advanced Virgo (AdV) [30].

Virgo′s interferometer configuration was a PRFPMI like iLIGO. It is noteworthy that

test masses are suspended by using a seismic isolation system called a superattenuator.

The superattenuator is effective above 10 Hz and it is a prototype of what is now used in

AdV. Figure 1.13 shows the CAD diagram of the superattenuator. The superattenuator is

a vibration isolation system similar to that in KAGRA described in Chapter 2, consisting

of inverted pendulums, seismic filters, and a mirror payload. The inverted pendulum is

a horizontal mechanical oscillator with an ultralow resonance frequency by balancing a

restoring force of a metal elastic rod and an anti-spring force due to the weight of a mass.

Figure 1.14 shows the schematic view of the inverted pendulum. Each pendulum chain has

the seismic isolation system in the vertical direction using cantilever blade springs. The

seismic filter incorporates a mechanism that reduces the spring constant of the cantilever

blade spring by using the anti-spring effect of the magnet to lower the resonance frequency.

The detection range for the GW signal from coalescence of binary neutron stars of Virgo

was 7 Mpc. Since 2007, Virgo and LIGO have fully cooperated in the data analysis. They

actually took 5-month data simultaneously and the data analysis was made in cooperation.
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This was the beginning of the current GW detector network.

After that, Virgo started the AdV project that uses the infrastructure of Virgo and up-

dates detectors from Virgo. AdV will achieve the sensitivity 10 times higher than Virgo′s

design sensitivity using technologies such as a high power laser, an RSE interferometer

configuration, a DC readout, and an OMC. When the design sensitivity is achieved, the

detection range for a GW signal from a coalescence of binary neutron stars will reach 140

Mpc. AdV completed the construction of the equipment in mid 2016. After improving its

sensitivity, AdV joined the simultaneous observation with LIGO in August 2017. During

that observation, AdV detected the GW signals from the coalescences of the binary black

holes [20] and of the binary neutron stars [21].

Figure 1.13: CAD diagram of the Virgo superattenuator [29].

KAGRA

KAGRA is a GW detector with arm length of 3 km under construction in the mine of

Kamioka, Hida City, Gifu Prefecture, Japan. iLIGO and Virgo is called the first generation

detectors, and aLIGO and AdV are called the second generation detectors. On the other

hand, KAGRA is called the 2.5th generation detector. This is because the KAGRA

incorporates several more advanced features. KAGRA is constructed underground for a
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restoring force

Figure 1.14: Schematic view of the inverted pendulum. The gravity acts as the anti-spring
force. The effective spring constant gets small when anti-spring force and restoring force
get balanced, which means the resonance frequency gets low.

quiet seismic motion and a stable environment, and the mirrors and suspensions will be

cooled down to cryogenic temperatures to suppress thermal noises in them. Furthermore,

the test masses are isolated from the seismic motion by a large seismic isolation system

similar to the Virgo superattenuator. The detail of each feature will be described in

Chapter 2.

KAGRA has a design sensitivity that can detect a GW from a coalescence of binary

neutron stars at the distance of 140 Mpc. In the case of the coalescence of a pair of 30-solar

mass black holes, the detection range reaches 1.27 Gpc, corresponding to the expected

event rate of 24-440 events per year [31]. Figure 1.15 shows the design sensitivity of

KAGRA. The sensitivity of KAGRA is limited by the seismic noise at low frequencies, the

quantum noise at high frequencies, and the thermal noise in the middle. A comparison

of the sensitivities among aLIGO, AdV, and KAGRA is shown in Fig. 1.16. At the

frequencies around 100 Hz, where GWs from coalescences of binary neutron stars and

binary black holes sweep, all detectors have the design sensitivity at a similar level. On

the other hand, KAGRA shows the best sensitivity in the band below 10 Hz, thanks

both to the quiet seismic motion level at the Kamioka mine where KAGRA is located

and to the mirrors isolated from the seismic motion with huge seismic isolation systems.

In addition, the sensitivity of KAGRA is slightly better than that of the other detectors

around 100 Hz. This is because the thermal noise in the mirrors is reduced by cooling

them.

Other detectors

Prototype detectors such as GEO600 [32] in Germany, 40-m prototype [33] in the U.S.,

TAMA300 [34], and CLIO [35] in Japan, were in operation before, and they mostly serve

as technology development sites for the current large GW detectors.
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Figure 1.15: Sensitivity curve of KAGRA (black). The sensitivity is limited by the
seismic noise (brown), the suspension and the mirror thermal noise (cyan and red), and
the quantum noise (magenta).

Figure 1.16: Sensitivity curves of each detector. The designed sensitivity curves of KA-
GRA (blue), LIGO (red), and Virgo (yellow) are shown, together with the measured
sensitivity of the Hanford site (magenta) in the first observation run (O1) of aLIGO in
2015.
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1.3.6 Significance of KAGRA

Before the first GW detection in 2015, GW150914, the GW detectors in the world were

trying to observe the first GW event. However, the situation has changed completely.

aLIGO and AdV have already succeeded in detecting the GW signals from the several

events. In this situation, we would like to confirm the significance of KAGRA once again.

As shown in Fig. 1.16, the sensitivity at lower frequencies than 10 Hz is better than

other detectors. Figure 1.17 shows the spectra of the GW150917 and the typical neutron

star binary coalescence with the designed sensitivity curves of KAGRA and aLIGO [36].

As shown in Fig. 1.17, KAGRA can measure the GW signal at the frequencies where

aLIGO cannot measure. This means that KAGRA can measure GW signals in the in-

spiral phase for a longer time than the other detectors. As mentioned in Subsection 1.3.2,

the mass of each star is determined by the waveform in the in-spiral phase. Therefore, the

longer measurement of the GW signal in the in-spiral phase by KAGRA can determine

the mass more accurately. Furthermore, the predicted GW signal of the known spinning

pulsars are shown in Fig. 1.18 [37]. The amplitude is calculated under the assumption

that the observed spin-down rate is fully dominated by the gravitational wave emission.

As shown in Fig. 1.18, the frequencies of many of the GWs from the pulsars are below 10

Hz, where only KAGRA has the sensitivity for the GW signal, and actually only KAGRA

can detect the GW signals from some of such pulsars with the designed sensitivity.

The second significant contribution of KAGRA as the fourth detector is the improve-

ment of the duty cycle of the GW detector network. It is necessary for the interferometer

to control the distance between the mirrors and lock it to the operating point. The in-

terferometers easily lose lock, and until it gets re-locked, the observation stops. If we

assume each detector has the 80 % duty cycle, the duty cycle, when all detectors in a

three-detector network are operated in coincidence, is approximately 50 %. If the fourth

detector join to the detector network, the duty cycle, when more than three detectors are

in operation, is approximately 80 %.

The third significant contribution is the improvement of the ability to localize the GW

sources. By using the Monte Carlo simulation, the sky localization accuracy with three

detectors as well as with four detectors are calculated [38]. By this simulation, with the

three detectors of aLIGO and AdV assumed, the average accuracy of the sky localization

of a GW from a coalescence of binary neutron stars is 30.25 deg2. On the other hand, with

the four detectors including KAGRA assumed, the sky localization accuracy improves to

9.5 deg2.

Position determination accuracy, which is important in the future development of the

GW astronomy, will be greatly improved by KAGRA joining the GW detector network.

Therefore, the task currently required to KAGRA is to achieve the sensitivity necessary

to the GW observation as soon as possible and to participate in the GW detector network.
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The most recent task is to participate in the third observation (O3) by aLIGO and AdV

planned in 2019. For this purpose, it is necessary to reach the sensitivity corresponding

to the observation range of at least 10 to 20 Mpc for a coalescence of the binary neutron

stars. It is urgent to construct every subsystem in KAGRA to achieve such a sensitivity.

Figure 1.17: Strain spectra of the GW150917 and a typical coalescence of a neutron star
binary with the designed sensitivities of KAGRA and aLIGO. A neutron star binary with
the chirp mass of 1.4M⊙ is assumed as the typical neutron star binary. Black solid and
dashed curves are the designed sensitivity of KAGRA and aLIGO, respectively.

Figure 1.18: Predicted GW signals from pulsars with the KAGRA and aLIGO designed
sensitivities with 1 year observation.
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1.4 Research target and outline of this thesis

As mentioned above, KAGRA has to join the GW detector network in the world as

soon as possible, and for that, the reduction of noises is an essential task. The GW

detectors consist of various components such as a laser system, suspensions, mirrors,

cryogenic systems, vacuum systems, a data management system, a data analyzing system,

an environmental monitoring system, and so on. In the GW detector project, various

subsystems work on each subsystem to reduce each noise.

Among them, a subsystem for reducing the noise of the laser and supplying low-noise

light to the interferometer is called an input optics subsystem. The roles required for the

input optics are as follows:

• Reduction of the frequency noise and the intensity noise.

• Reduction of the beam jitter.

• Mode matching to the main interferometer

Another requirement is for the duty cycle. The input optics has the several optical

cavities through which the laser passes. If the cavities are not locked on the resonance,

no light is provided into the main interferometer. The input optics must not disturb the

main interferometer operation. During the first observation run of aLIGO, the percentage

of time, when the interferometer is in the state of observing or locking, was about 80

% [39]. KAGRA should aim at a duty cycle equal to or higher than that. Therefore, the

requirement for the duty cycle of the input optics was set to 95%.

The stabilization of the incident light to the main interferometer is one of the essential

tasks in order to participate in the GW detector network. Installation of the input optics

is ongoing in KAGRA, and up to now the installation of the in-air optics which are called

pre-stabilized laser (PSL) and the triangular optical cavity called input mode cleaner

(IMC) has been completed.

The requirements at 100 Hz for each noise are as follows:

• Frequency noise at the IMC output: δf < 1 Hz/
√
Hz

• Relative intensity noise at the IMC output: δp < 10−8 /
√
Hz

• Beam jitter at the output of the PSL:
√

(δx/w0)2 + (δθ/α0)2 < 3× 10−10 /
√
Hz

Here, δf is the frequency noise, δp is the relative intensity noise, δx is the transverse

motion of the beam, δθ is the angular motion of the beam, w0 is the waist size of the

beam, and the α0 is the divergence angle of the beam (see Appendix A.4.1).

The frequency stabilization system is one of the most important systems in the input

optics subsystem. The frequency stabilization system uses optical cavities as the frequency

reference. The linear cavity, called the reference cavity (RC), located on the PSL table
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and the IMC are the optical cavities used as the frequency reference in KAGRA. In

the frequency stabilization, if the length of the frequency reference cavity fluctuates due

to seismic vibration, the frequency stability gets worse. Therefore, the cavities for the

frequency references need to be isolated from the seismic motion. For example, a schematic

view of seismic isolation system of the input mode cleaner which is one of the reference

cavities of aLIGO is shown in Fig. 1.19. The input mode cleaner is isolated from seismic

motion by using the HEPI, which is also used for vibration isolation of the test mass,

and the HAM (Horizontal Access Module chamber)-ISI, which is the seismic isolated

chamber simplified from BSC-ISI, and the mirrors are further suspended with a 3-stage

suspension. Also in AdV, the vibration isolation of the input mode cleaner is performed

by a suspension called a short superattenuator which reduces the six-stage seismic filter of

a supperattenuator to the three-stage one. On the other hand, as mentioned in Subsection

3.2.3, KAGRA has a very simple seismic isolation system with a passive vibration isolation

by stacks and a two-stage suspensions for the input mode cleaner. This is thanks to

the fact that the seismic motion of the KAGRA site is quiet. However, it is necessary

to confirm that such a simplified system can actually satisfy the requirement for the

frequency stability.

The author is responsible for the design, the installation, the investigation, and the

integration of the pre-stabilized laser table and the input mode cleaner in KAGRA. The

frequency stabilization system which is one of the main role of the PSL and the IMC is

the main theme of this thesis. In this thesis we describe the modeling based on actual

measurements and performance evaluation of the frequency stabilization system. Further-

more, the simulation of the improved frequency stabilization system necessary to achieve

the requirement is described. The main target of my research written in this thesis is

to construct the frequency stabilization system which satisfies the requirement for the

frequency noise and the duty cycle.

The outline of this thesis is as follows. Chapter 2 explains the KAGRA overview.

Firstly each feature of the KAGRA such as the optical configuration, the suspensions,

and the cryogenic systems is described. Then, we move to the input optics and describe

the component and the stabilization system. In Chapter 3, we describe installation works

of the input optics. As described in Chapter 2, the KAGRA project is divided into two

phases: initial KAGRA (iKAGRA) and baseline KAGRA (bKAGRA). The input optics

also has two phases, and the installation works in both phases are described. In Chapter

4, we explain the frequency stabilization system. The frequency stabilization system was

investigated and modeled by the several measurements, and we estimated the frequency

noise based on this model. Then, we compare this estimated noise with the requirement,

and evaluate the performance of the frequency stabilization system. Chapter 5 summarizes

this thesis and describes future works.
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Figure 1.19: (a) Schematic view and (b) CAD diagram of the isolation systems supporting
the input mode cleaner in the HAM chambers in aLIGO [27].
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2 GRAVITATIONAL WAVE DETECTOR KAGRA

2 Gravitational wave detector KAGRA

KAGRA is a gravitational wave (GW) detector currently under construction in Japan.

KAGRA is built underground to suppress the noise due to the seismic motion. Further-

more, by cooling mirrors and suspensions to a cryogenic temperature, the thermal noise

is suppressed and the improvement in sensitivity is expected. These two features are not

employed in other GW detectors such as aLIGO and AdV constructed so far.

A low-noise light source is indispensable for the GW detector. It is the role of input

optics to provide the low-noise light to the main interferometer. In this chapter, we will

first describe the features of KAGRA in Section 2.1. Then, we focus on the input optics

in Section 2.2.

2.1 Overview of KAGRA

KAGRA is the GW detector constructed under the Ikenoyama of Kamioka, Hida city, Gifu

prefecture (36◦24′43′′N in latitude, 137◦18′21′′E in longitude). An excavation of a tunnel

with a total length of 6 km took over 1 year and 10 months. Figure 2.1 shows a top view

of KAGRA. A control room is located at the Mozumi office in the upper left corner of the

figure. It takes about 10 minutes by car from the Mozumi office to the Atotsu entrance

which is the entrance to the KAGRA tunnel. Facilities such as Super-Kamiokande (SK)

and CLIO are also built under Ikenoyama.

Figure 2.1: Top view of KAGRA. The control room is located at the Mozumi office, and
the Atotsu entrance is the entrance of the KAGRA tunnel.
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KAGRA has three features: the location of the underground, cryogenic mirrors and

suspensions, and an RSE interferometer. In general, the sensitivity of the GW detector

is limited by the seismic noise at the low frequencies below 10 Hz, by the thermal noise

at the intermediate frequencies between 10 Hz and 200 Hz, and by the shot noise at the

high frequencies above 200 Hz. By constructing the interferometer in the underground

of Kamioka, where the seismic motion is small, the seismic noise is smaller than in other

detectors. Also by cooling the mirrors and the suspensions, the thermal noise can be

suppressed. Furthermore, by using the RSE interferometer, the shot noise can be reduced.

Therefore, by these techniques, it is possible to improve the sensitivity at the whole

frequency range to the level which allows us to detect GW signals. In this section, each

feature will be explained in detail.

2.1.1 Optical configuration of KAGRA

The configuration of KAGRA is an RSE interferometer with an arm length of 3 km. In

Fig. 2.2, the overview of KAGRA is shown. In KAGRA, we cannot inject the high power

laser light so as to keep the mirrors at the cryogenic temperature. If the power transmitted

through the ITMs is too high, the input test masses will be heated by absorption of the

laser power in the substrate. Therefore, high finesse arm cavities are used to amplify

the GW signal by raising the power accumulated in the cavities, and then the cut off

frequency of the GW signal is brought up to 100 Hz by utilizing the effect of the signal

extraction of the RSE interferometer. In this configuration, the injection power and the

power recycling gain don′t need to be so high. The design finesse of the KAGRA′s arm

cavities is 1530, while the design finesse of the LIGO′s arm cavities is 450. As a result,

the incident laser power to achieve the design sensitivity in KAGRA is 78 W which is

about 60% of that of aLIGO.
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Figure 2.2: Overview of the KAGRA interferometer. The input test masses (ITMX and
ITMY) and the end test masses (ETMX and ETMY) compose the arm cavities. The
power recycling mirror (PRM) and the signal recycling mirror (SRM) compose the power
recycling cavity (PRC) and the signal recycling cavity (SRC), respectively.

2.1.2 Underground detector

KAGRA is built underground. By excavating a L-shaped tunnel horizontally, we built

an interferometer underground at a depth of 200 m. A primary purpose is to reduce the

seismic noise described in Subsection 1.2.3. The seismic motion level at the interferometer

is 1/100 lower than that in Chiba prefecture which is located in the suburb of Tokyo, by

setting up the interferometer in the tunnel on the hard rock ground. The plot in Fig. 2.3

shows a spectrum of the seismic motion around the KAGRA site. Since CLIO is located

underground of the same mountain as KAGRA, the CLIO seismic spectrum is equivalent

to that of KAGRA. The seismic motion level of KAGRA is hundred times lower than that

in Kashiwa City, Chiba Prefecture [40].

Another advantage of the underground site is an environmental stability. The temper-

ature and the humidity in the tunnel are constant throughout the year, which makes it

possible to keep the environment inside the tunnel optimal for the experiment. Changes

in the environment cause changes in the interferometer conditions such as an alignment of

the beam, suspension lengths, and so on. These changes in the interferometer conditions

prevent a stable operation. Therefore, the underground environment has a significant
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advantage in operating the GW detector.

The gravity gradient causes another noise limiting the sensitivity of the GW detector.

The gravitational field fluctuates due to a change in a density distribution caused by the

seismic motion, and the gravitational fluctuation shakes the mirrors in the GW detector.

This noise is called the gravity gradient noise. In KAGRA, the calculation shows that the

gravity gradient noise is about ten times lower than that in aLIGO [41].
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Figure 2.3: Spectrum of the seismic motion. The Atotsu entrance and the Mozumi office
are shown in Fig. 2.1. Although the Atotsu entrance and the Mozumi office are located on
the ground surface, the seismic motions at these places are quieter than that in Kashiwa
which is in the suburb of Tokyo. This is because the Kamioka area is on the hard rock.
Furthermore, the seismic motion around CLIO is quieter than that at Atotsu and Mozumi
in the higher frequency rage than 2 Hz, because CLIO is located underground. As KAGRA
is located underground inside the same mine as CLIO, the seismic motion at the KAGRA
site is expected to have the same level as at the CLIO site [40].
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2.1.3 Type-A suspension

In a GW detector, mirrors are suspended to be isolated from the seismic motion. A

vibration isolation performance of a suspension is determined by the resonance frequency

and the number of stages of the suspension as described in Subsection 1.2.3. Therefore,

the longer suspension has the better isolation performance due to the lower resonance

frequency. In KAGRA, the seismic isolation is done by suspending the test mass with a

eight-stage suspension with a total length of 13.5 m. This suspension is called type-A,

and it is divided into a room temperature part and a cryogenic temperature part. The

room temperature part is called a type-A tower, and the cryogenic temperature part is

called a cryogenic payload. We describe the cryogenic payload in the next subsection.

Figure 2.4 shows the schematic view of the type-A suspension and the CAD diagram of

the type-A suspension chamber.

The type-A tower is similar to the Virgo′s superattenuator. At the first stage, inverted

pendulums (IPs) are used to isolate the seismic motion at low frequencies. The IP can

adjust the resonance frequency by the load weight, and it can realize the resonance fre-

quency of 0.1 Hz or less. Therefore, the IP can isolate the mirror from the seismic motion

in the frequency band from 0.2 Hz to 0.5 Hz called a micro seismic motion. The micro

seismic motion is the ground motion excited by the waves in the sea. A stage called a

top filter, which has a vertical vibration isolation system, is mounted on the IP. Then,

four vertical vibration isolation stages are suspended from the top filter. The top three

among the four stages are called standard filters, and the bottom one is called a bottom

filter. Those stages have the vertical isolation filters called geometric anti-spring (GAS)

filters [42]. The GAS filter is a vibration isolator using cantilever blades. By balancing the

upward restoring force of the cantilever and the gravitational force, the effective spring

constant can be reduced and the resonance frequency can be lowered. Figure 2.5 shows

the schematic view of the GAS filter. From the bottom filter, the cryogenic payload is

suspended.

The difference between the Type-A suspension and the Virgo superattenuator is the

length of the IP. Since the IP is mounted on the ground in AdV, it is necessary to lengthen

the IP to construct the long suspension. For this reason, the IP with the height of about

10 m is used in AdV. However, mechanical resonances exist in the low frequency region

due to its length, and it may cause the seismic noise and the difficulty in control of the

interferometer. On the other hand, the IP with the length of about 2 m is enough for

KAGRA, since we can excavate a tunnel of 2 floors and hang the suspension from the

second floor.
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~14 m

cryogenic payload

Type-A Tower

IP

Standard filters

Top filter

Bottom filter

Platform

MN

IM

TM

Figure 2.4: Schematic view of the Type-A suspension (left) and the CAD drawing of the
Type-A suspension chamber (right). The top filter is isolated by the inverted pendulum
(IP). Four vertical vibration isolation stages are suspended from the top filter, and the top
three stages are called standard filters. The forth stage is called the bottom filter, and the
cryogenic payload is suspended from the bottom filter. The cryogenic payload has four
stages, and these stages are called the platform, the marionette (MN), the intermediate
mass (IM), and the test mass (TM) from the top.

restoring force of 

cantilever blades

cantilever blades

Figure 2.5: Schematic view of the GAS filter. The cantilever blade has the restoring
upward force. The effective spring constant gets small when the gravitational force and
restoring force get balanced, which means the resonance frequency gets low.
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2.1.4 Cryogenic Payload

To reduce the thermal noise, the test masses are cooled down to the cryogenic tempera-

tures in KAGRA. As mentioned in Subsection 1.2.3, the thermal noise is one of the noises

limiting the sensitivity of a GW detector, and it is the noise caused by the thermal vibra-

tion of mirrors and suspensions. Therefore, the thermal noise can be reduced by cooling

them at cryogenic temperature. In KAGRA, the thermal noise is reduced by cooling the

mirrors and the suspensions to 20 K. Reduction of the thermal noise is demonstrated by

CLIO, which is a prototype detector with a cryogenic interferometer built in the same

mine [35].

According to the fluctuation-dissipation theorem, the thermal noise is caused by the

dissipation of the system. Therefore, mirrors and suspensions need to have high quality

factors. Fused silica which is usually used for a mirror substrate has a low quality factor

at cryogenic temperatures. Therefore, KAGRA uses sapphire, which has a high quality

factor even at the cryogenic temperature, as the substrate material of the mirror.

The suspension thermal noise is also caused by the dissipation of the suspension. There-

fore, the suspension with a high quality factor is needed to reduce the suspension thermal

noise. The quality factor of the suspension is determined by the quality factor of the

material and the mechanical loss of the suspension. To achieve the high quality fac-

tor, the cryogenic payload consists of sapphire fibers, sapphire ears, and sapphire blade

springs [43]. The CAD diagram of the cryogenic payload is shown in Fig. 2.6. The bond-

ing method of the sapphire test mass, the sapphire fibers, and the sapphire blade springs

determine how much the mechanical loss of cryogenic payload can be reduced. In KA-

GRA, a hydroxide catalysis bonding technique [44] is used to attach a sapphire ear to a

sapphire mirror. The sapphire ear has slits, while the sapphire fiber has nail heads at

both ends. The sapphire fiber hooks the sapphire ear. The upper part of the sapphire

fiber is hooked up by the sapphire blade spring. By using the Hydroxide catalysis bonding

technique, the test mass and the sapphire ears can be bonded with very thin bonds, so

the mechanical loss can be reduced.

The cryogenic payload consists of 4 vertical stages, as shown in Fig. 2.6. Located at

the top is the part called platform which has a vertical vibration isolation filter using a

blade spring. Next, there is a stage called a marionette (MN) which is a stage mainly for

aligning the test mass in the angular direction. The third stage, a bottom intermediate

mass (IM), is suspended by the MN. The fourth stage, a sapphire mirror, is suspended

by the bottom IM with the sapphire fibers. There is another chain suspended from the

platform stage to actuate each stage of the main chain, consisting of an MN recoil mass,

an IM recoil mass, and a TM (test mass) recoil mass.

The sapphire mirror is cooled by heat conduction through heat links. The heat links

are connected from the bottom IM to the cryogenic shield via the MN, the platform, and
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the MN recoil mass. Heat exchange between the test mass and the bottom IM is done

through the sapphire fibers. The cryogenic shield is connected to the cryogenic cooler,

and it cools down the test mass to 20 K.

MN recoil mass

IM recoil mass

TM recoil mass

Heat links

(a) (b) (c)

coil-magnet
 actuators

Figure 2.6: (a) Schematic view of the cross-section, and (b) CAD drawing of the cryogenic
payload and (c) the CAD drawing of the TM part.

2.1.5 Installation schedule

KAGRA is under construction and the installation is underway in each subsystem. The

installation schedule is divided into two phases, the first phase is called iKAGRA (initial

KAGRA) and the second phase is called bKAGRA (baseline KAGRA) [41]. iKAGRA

refers to the period of the test operation conducted in May 2016, and the purposes are

to confirm alignment of the entire facility, to prepare for the final configuration, and to

demonstrate the operation of the GW detector by actually controlling a large interferom-

eter. Therefore, the configuration is simple. The optical configuration was a Michelson

interferometer with an arm length of 3 km without arm cavities, a PRC and an SRC. Mir-

rors were suspended with double pendulums of about 1 m in height and the interferometer

was operated at room temperature.

After the iKAGRA test run, KAGRA started to work on the next phase, bKAGRA.

While the goal of iKAGRA was an operation of a large interferometer, bKAGRA aims to

detect a GW signal with an RSE interferometer. As the first stage of bKAGRA, we had

a test operation at cryogenic temperature for the first time from April to May 2018. In

this test operation, the optical configuration is a Michelson interferometer like iKAGRA,

but the end mirror is suspended by a Type-A suspension as described in Subsection 2.1.3
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and the interferometer is operated at the cryogenic temperature. After that, we will

sequentially install arm cavities, the PRC, and the SRC. On the way to the designed

sensitivity, we will achieve the same level of sensitivity as the current aLIGO and AdV to

participate in the 3rd observation run (O3) by aLIGO and AdV planned in 2019.

2.2 KAGRA input optics

For GW detectors using interferometers, a low-noise light source is indispensable. The

light emitted from the laser light source contains the intensity noise and the frequency

noise, and they degrade the sensitivity of the detector. Moreover, the beam jitter causes

a noise, and higher-order spatial modes worsen the performance of the interferometer as

shown in Subsection 1.2.3. Therefore, it is necessary to stabilize the light before entering

the interferometer. The input optics subsystem is responsible for the stabilization of the

laser light. The overview of the input optics is shown in Fig. 2.7 and the place where the

input optics is located in the whole KAGRA is shown in Fig. 2.2. The input optics has

components as below; A pre-mode cleaner (PMC), a modulation system, a reference cavity

(RC), an input mode cleaner (IMC), an input Faraday isolator (IFI), and an input mode

matching telescope (IMMT). In the following subsections, each component is described.

Figure 2.7: Overview of the bKAGRA input optics. There are the PMC, the RC and
the laser source on the pre-stabilized laser (PSL) table. The modulation system is also
located on the PSL table, but it was omitted in the figure. Then, the IMC, the IFI, and
the IMMTs are set up following the PSL table, and they are inside the vacuum chamber.
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2.2.1 Components of input optics

Laser source

The contribution of the shot noise decreases in proportion to the square root of the

laser power. Therefore, to increase the sensitivity, it is necessary to use a high power

laser. KAGRA will use a laser with an output of 180 W. A nonplanar ring oscillator

(NPRO) [45] with the output power of 400 mW is used as the seed laser source. The seed

laser injected to a fiber amplifier is split into two paths, and the laser power in each path

is increased up to 40 W. Then, they are added coherently and pass through the solid-state

amplifier to be amplified up to 180 W [46].

Pre-mode cleaner

A pre-mode cleaner (PMC) is an optical cavity located at the most upstream in the

input optics. The primary role of the PMC is the reduction of the intensity noise in

the radio frequency (RF) band, the reduction of the beam jitter, and the spatial mode

cleaning. The parameters of the PMC used in KAGRA are shown in Table 2.1, while

the principle of the optical cavity and the meaning of each parameter are described in

Appendix A.

A piezoelectric transducer (PZT) is attached to one mirror of the PMC. The cavity

length is controlled so that a resonance frequency of the PMC follows the laser frequency.

A slow signal below 0.1 Hz is fed back to a heater attached to the spacer, and the thermal

expansion is used to control the cavity length.

Since the noise with periods shorter than the storage time of an optical cavity is

averaged in the cavity, the optical cavity acts as a first-order low-pass filter for the intensity

noise and the frequency noise (see Appendix A.2.3). The cut-off frequency of this low-

pass filter is called the cavity pole. In the case of the PMC, the cavity pole is 600

kHz. Therefore, the intensity noise and the frequency noise are filtered out at the higher

frequencies than 600 kHz.

The PMC is designed so that a round trip gouy phase rotation ζ0 (see Appendix.A.4.1)

is not the integer multiple of π for the mode cleaning performance and the beam jitter

reduction (see Appendix A.4.3). The designed power transmittance of the fundamental

mode and the higher-order modes are shown in Fig. 2.8. As shown in Fig. 2.8, the PMC is

designed such that the lower-order mode has low transmittance. The lowest-order mode

whose amplitude transmittance exceeds 0.1 is the 18th-order mode. The beam jitter

noise reduction ratio expressed by the ratio between the transmitted amplitude of the

fundamental mode and that of the first-order mode is 0.0164. The phase of the laser

light is modulated to obtain the control signal by the Pound-Drever-Hall (PDH) method

(described in Appendix A.3.2). This modulation frequency is chosen such that the phase

modulation frequency does not coincide with the resonance frequency of the higher-order
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modes.

Shape Bow-tie

Round trip length LPMC = 2 m

ROC of input and output mirrors RPMC = 3 m

ROC of monitor mirrors ∞

FSR fFSR
PMC = 149 MHz

Finesse FPMC = 125

Cavity pole f c
PMC = 600 kHz

Table 2.1: Parameters of the PMC

Figure 2.8: Calculation plots of the power transmittance of the PMC for higher-order
modes. The upper blue line is the transmittance of TEM00, and each peak represents the
transmittance of the nth-order mode, respectively. The horizontal axis shows the phase
rotation ϕ during the round trip in the cavity. Here, ϕ = arg(exp(iΩL/c)), where Ω is
the angular frequency of the laser light and L is the cavity length. The PMC is designed
such that the lower-order mode has low transmittance.
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Reference cavity

To reduce the frequency noise of a laser, an optical cavity, which has a resonance

frequency more stable than the frequency fluctuation of the laser, is used as a frequency

reference. One of the cavities used for this purpose is a reference cavity (RC). Since the

stability of the cavity length is essential for the frequency stabilization, a spacer made of

ultralow expansion (ULE) glass which has little thermal expansion is placed in a vacuum

chamber. A heater and a thermometer are attached to the vacuum chamber, and the

local temperature is controled. The parameters of the RC are shown in Table 2.2. The

details of the RC will be described in Subsection 3.2.2.

Shape Linear

Round trip length LRC = 10 cm

ROC of the input mirror RRC = 50 cm

ROC of the output mirror ∞

FSR fFSR
RC = 1.5 GHz

Finesse FRC = 11100

Cavity pole f c
RC = 67.6 kHz

Table 2.2: Parameters of the RC

Modulation system

Control signals of the IMC (described later) and the main interferometer are obtained

by the PDH method. For that, it is necessary to apply modulations, which is one of the

input optics’ roles. The modulation required to use PDH method is the phase modulation,

and the phase modulation is usually applied to the light by using an electro-optic modula-

tor (EOM). The EOM is an optical device which can modulate the phase of the light. The

EOM crystal can change the optical path length by changing the refractive index with

applying a voltage to the crystal exhibiting an electro-optic effect. The change in the

optical path lengh causes the phase difference in the outcoming light. The KAGRA input

optics uses EOMs to apply phase modulations. At the same time, the tunable amplitude

modulation is also applied by using a Mach-Zehnder interferometer (MZI) together with

EOMs [47]. In an RSE interferometer, the frequency of the extracting GW signal can be

adjusted by tuning the SRC length microscopically [6]. The tunable amplitude modula-

tion is used for the SRC length tuning.
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Pre-stabilized laser table

The in-air optical table and the components on it are called the pre-stabilized laser

(PSL) table. The PMC, the RC, and the modulation system are located on the PSL

table. Figure 2.9 shows the bKAGRA PSL layout.
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Figure 2.9: Layout of the bKAGRA PSL. The PMC area has the PMC, mode matching
lenses, and an RF PD for the PDH method. The light outcoming from one mirror of the
PMC goes into the FSS path. There are the double path acousto-optic modulator (AOM)
(described in Subsection 3.2.5), mode matching lenses, the RC, and an RF PD in the FSS
path. In the modulation system, one EOM modulates the phase of the laser, and two
EOMs constitute the MZI for tunable amplitude modulation.

Input mode cleaner

An input mode cleaner (IMC) is an optical cavity through which the light stabilized

on the PSL table passes before entering the main interferometer. The cavity axis is on

the horizontal plane. It is one of the largest and the most important components in the

input optics. The main roles of the IMC are the frequency stabilization and the spatial

mode cleaning. The IMC is the triangular cavity with a cavity length of 53.3 m in a round

trip. Since the mirrors constituting the IMC are isolated from the seismic motion with a

double pendulum, it works as a reference cavity more stable than the RC in the frequency

band above the resonance frequency of the pendulum. As we will see later, the frequency

stabilization is done in two loops using the RC and the IMC. The IMC parameters are

shown in Table 2.3. The details of the IMC are described in Subsection 3.2.3
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Since the resonance frequency of the IMC is stable at high frequencies, the laser fre-

quency is controlled to be kept at the resonance frequency of the IMC. On the other hand,

since the RC is a more stable cavity than the IMC at low frequencies, the cavity length

of the IMC is controlled for the resonance frequency to follow the laser frequency. The

cavity length is controlled by using the coil-magnet actuator attached to each mirror.

Shape Triangular

Round trip length LIMC = 53.3 m

ROC of the end mirror RIMC = 37.33 m

ROC of the input and output mirrors ∞

FSR fFSR
IMC = 5.62 MHz

Finesse FIMC = 540

Cavity pole f c
IMC = 6.13 kHz

Table 2.3: Parameters of the IMC

Input Faraday isolator

A light incident on the main interferometer is reflected by the interferometer and

returns to the REFL port. The reflected light includes the control signal of the main

interferometer. Therefore, it is necessary to separate the reflected light from the incident

light. Moreover, if the light comes back to the laser source by chance, the operation of

the laser source becomes unstable. For this purpose, an optical element called a Faraday

isolator is used. The Faraday isolator is an optical element to isolate going and returning

light using the Faraday effect. The Faraday effect refers to a phenomenon by which the

polarization direction rotates during light passes through a material to which a magnetic

field is applied. The Faraday isolator separates the reflected light with a polarizer by

changing the polarization directions of incident light and reflected light by 90 degrees

using the Faraday effect.

KAGRA uses a large Faraday isolator after the IMC to separate the reflected light.

This is called an input Faraday isolator (IFI). The IFI is made with the cooperation of

the University of Florida [48]. The IFI is compatible with ultrahigh vacuum and high

input laser power.

Input mode matching telescope

For a light cleaned by the IMC, it is necessary to match the spatial mode to the

resonance mode of the main interferometer. For this purpose, we use two curved mirrors

after the IFI and call this an input mode-matching telescope (IMMT). The two mirrors

of the IMMT are seismically isolated by double pendulums of the same type as the one

used for the mirror of the IMC. Also, since the mirrors of the IMMT can be rotated by

using the coil-magnet actuator, they are also used to align the incident light to the main
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interferometer.

2.2.2 Stabilization system

The input optics has an active stabilization system as follows.

Frequency stabilization

As mentioned above, a frequency stabilization system (FSS) at KAGRA is an active

stabilization system with a hierarchical control using several optical cavities as frequency

references. The schematic diagram of the FSS control loop is shown in Fig. 2.10. The

laser frequency is stabilized by using the RC in the first loop, and achieves the further

stability by using the IMC in the second loop. Figure 2.11 shows the designed frequency

noises suppressed by each FSS loop. As is shown in Fig. 2.11, the designed frequency

stability meets the requirement for the frequency noise.

Figure 2.10: Schematic diagram of the FSS loop. The symbols employed in this diagram
correspond to those in the block diagrams shown in Fig. 4.2 and Fig. 4.3.
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Figure 2.11: Frequency stabilization by the FSS. The first loop controls the RC as a
frequency reference, and the second loop refers to the IMC.
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Intensity stabilization

The intensity of the laser should also be stabilized in the input optics. The reduction

of the intensity noise is performed by measuring a power of the light using a PD and

controlling the power of the light by the PD signal. Ideally, the intensity stabilization is

limited by the shot noise. Therefore, the higher power of the light is incident on the PD,

and the intensity stability gets the better.

The intensity stabilization system (ISS) is also a hierarchical stabilization system simi-

lar to the FSS. The sensor in the first loop is a PD placed on the PSL, and the second loop

uses another PD that receives the transmitted light of the IMMT in the vacuum. Higher

power is injected to the PD in the second loop than the one in the first loop to achieve

the lower shot noise. The requirement for the intensity noise is calculated from the design

sensitivity and the coupling transfer function from the intensity noise to the output signal

of the main interferometer. In the lower frequency band than 2 Hz, the seismic noise

limits the GW sensitivity, and it increases rapidly as the frequency decreases. Therefore,

the requirement for the intensity noise gets relaxed in this frequency band. Above 2 Hz,

the quantum noise limits the sensitivity and the quantum noise starts to get larger at 50

Hz. This is the reason why the noise requirement above 50 Hz gets relaxed. The require-

ment becomes tighter again at the frequencies above 1 kHz. This is because the intensity

fluctuation shakes the mirror by the radiation pressure, and this mirror motion becomes

the dominant noise at this frequency band. The requirement for a relative intensity noise

(RIN) is shown in Fig. 2.12.

Figure 2.12: Requirement for the RIN
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3 INSTALLATION OF KAGRA INPUT OPTICS

3 Installation of KAGRA input optics

As mentioned in Section 2.1.5, KAGRA is currently in the phase of bKAGRA. In iKA-

GRA, the interferometer was simplified, and the input optics was also simplified. Espe-

cially, the stabilization system was simplified. For the frequency stabilization, only the

IMC worked as a frequency reference, and the IMC control signal was fed back directly

to the laser frequency. Also, the intensity stabilization was not installed. This is because

iKAGRA has no requirement for sensitivity and there was no need for stabilization of an

intensity noise and a frequency noise. So we focused on demonstrating the input optics

with as simple a system as possible.

On the other hand, the role of bKAGRA input optics is to provide the laser light stable

enough to observe GWs. As seen in Subsection 1.2.3, the intensity noise, the frequency

noise, the beam jitter noise, and mixing of higher-order spatial modes are the noises in

the GW detector. The input optics reduces these noises so that they do not limit the

sensitivity of the GW detector.

We installed the PSL table and the IMC in iKAGRA, and the input optics successfully

provided the main interferometer with the laser light. After that, We also installed the

FSS and evaluated its performance. Then, We finished designing the control loop which

satisfies the requirement. The intensity stabilization is being installed by collaborators

from Toyama Univ.

In this chapter, first, we show the installation works of iKAGRA input optics briefly

in Section 3.1. Then, we move on to the bKAGRA input optics installation in Section

3.2.

3.1 iKAGRA input optics

An overview of the iKAGRA input optics is shown in Fig. 3.1. As mentioned above,

the iKAGRA input optics was rather simple, compared with the bKAGRA configuration.

The main goal of iKAGRA was to gain the experience in the operation of the large scale

interferometer, and the main purpose of the iKAGRA input optics is a test of remote

operation of each component. Therefore, iKAGRA did not have any requirement for the

detector sensitivity. That means there was no frequency or intensity stability requirements

for iKAGRA, and iKAGRA input optics did not need any stabilization system. The

iKAGRA input optics had only the PMC and the IMC and no frequency and intensity

stabilization systems. Also, the PMC was different from the one which will be used in

bKAGRA. The cavity pole was high and the filtering performance of the RF intensity

noise was not as good as the bKAGRA PMC.
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Figure 3.1: Overview of the iKAGRA input optics.

In such a simplified system, only the IMC was the same as the bKAGRA IMC. The

main interferometer does not receive any laser light without the IMC being locked. There-

fore, the duty cycle of the IMC is one of the essential factors determining the duty cycle

of iKAGRA itself. The IMC control loop was connected to the digital control system, and

the script called Guardian [49] was used to monitor the IMC′s states and re-locked the

IMC, when the IMC lost lock. In addition to the robustness of the IMC control loop itself,

the Guardian script significantly improved the IMC duty cycle. Figure 3.2 is the plot of

the duty cycle of the IMC and the main interferometer during the iKAGRA test run. The

duty cycle through the second half run was 98.2% [41], and it satisfied the requirement of

95%. Actually, the IMC duty cycle is much higher than the main interferometer. There-

fore, the IMC did not disturb the main interferometer, and we can say that the iKAGRA

input optics achieved sufficient performance in the iKAGRA test observation.

Figure 3.2: Duty cycle of the IMC and the main Michelson interferometer (MICH) during
the iKAGRA test run. The test run started on 25th March and ended on 25th April in
2016. The blank between 31st March and 11th April was the maintenance term of the
interferometer when the test run was stopped.
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3.2 bKAGRA input optics

3.2.1 Pre-stabilized laser

Figure 3.3 shows a photo of the current status of the bKAGRA PSL table. Currently,

a 2-W NPRO laser is used as a laser light source. The main path up to the IMC has

been already installed. The PMC is being installed now. The RC, which is a frequency

reference of the FSS first loop, has been installed.

Figure 3.3: Photo of the current bKAGRA PSL.

3.2.2 Reference cavity

The RC on the PSL table is used as the frequency reference in the first loop of the FSS.

The RC is a rigid linear cavity. The spacer is made of ULE (ultralow expansion) glass

with dimensions of 100-mm diameter and 100-mm width. A flat mirror and a curved

mirror with an ROC of 50 cm are optically contacted to the spacer. Figure 3.4 is a photo

of the RC spacer.

The RC must be isolated from external fluctuations such as the thermal extension,

the seismic motion, and optical length fluctuations due to residual gas. Therefore, the

RC should be housed in a proper container with an appropriate support. The cavity is

mounted on a Zerodur support with a radiation shield inside. Zerodur is a glass-ceramics

composite material composed of an amorphous base material and a crystalline dispersion
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material. Materials with different expansion coefficients are mixed to reduce the expansion

coefficient near the room temperature. Viton balls are inserted between the support and

the spacer for the vibration isolation. The RC is housed inside a vacuum chamber, and a

heater is attached to the can. The vacuum chamber is wrapped with a thermal insulator

and put into an aluminum shell. Figure 3.5 shows a photo of the inside of the aluminum

shell and the vacuum chamber.

The ULE glass has a zero-crossing temperature of 29.5 ◦C according to the data sheet,

at which the coefficient of thermal expansion is zero. Therefore, the local temperature

will be maintained at this temperature.

Figure 3.4: Photo of the RC spacer.
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Figure 3.5: A vacuum chamber is located inside an aluminum shield. A semitransparent
plate is a Zerodur support, on top of which a cavity as well as a radiation shield are
mounted. After closing the vacuum chamber, a heater is attached on a vacuum flange.
The cavity is not seen in the photo. A thermal insulator is installed between the vacuum
chamber and the aluminum shield.

3.2.3 Input mode cleaner

The stabilized laser frequency by the RC is further stabilized by the second loop by using

the IMC as the frequency reference. The IMC performs the beam jitter reduction and

the spatial mode cleaning. Since the intracavity power of the IMC reaches more than 10

kW, if there is a dust on the mirror, it will burn and damage the coating of the mirror.

Therefore, the IMC is installed in a vacuum. Careful attention was paid to eliminate the

contamination during the installation work.

The IMC mirrors are made of synthetic quartz glass with dimensions of 100-mm di-

ameter and 30-mm thickness. The input and the output mirrors are flat mirrors, and the

end mirror is a curved mirror with an ROC of 37.3 mm. (The definition of each mirror is

shown in Fig. 2.7.) The transmittances of the input and the output mirrors are around

6000 ppm, and that of the end mirror is 5 ppm.

As we have seen, when using a cavity as a frequency reference, the fluctuation of the

cavity length deteriorates the frequency stability of the laser. Thus, the IMC mirrors

have to be isolated from the seismic motion. The IMC has two seismic isolation systems,
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one is a vacuum-compatible vibration isolation stack [50], and the other is a two-stage

suspension called Type-C [51]. Figure 3.6 shows a schematic view of the IMC seismic

isolation systems.

The stacks isolate a breadboard on which the IMC suspension is located from the

seismic motion of the baseplate which is fixed on the ground. Each of the three legs of

the breadboard has 3-layer stacks. The isolation bandwidth is above 10 Hz.

Figure 3.7 shows an overview of a Type-C suspension. Type-C suspensions were de-

veloped to suspend the test masses of the TAMA300 detector [51]. Four tungsten wires

suspend an intermediate mass from an upper stage, and the IMC mirror is suspended by

four tungsten wires from the intermediate mass. The intermediate mass has eddy current

dumping, and the IMC mirror mass has coil-magnet actuators. Picomotors are installed

on the upper stage to move the whole suspension horizontally.

Figure 3.8 shows a modeled transfer function from the ground motion to the IMC

mirror motion of the Type-C suspension. As described in Section 4.3.1, the first reso-

nance frequency of the longitudinal motion is estimated to be around 0.95 Hz, and the

Q value is 4-5. The second resonance is calculated by rigid-body modeling described in

the reference [42]. The second resonance frequency and the Q value were calculated as

around 4 Hz and 2-3, respectively. Figure 3.9 shows a spectrum of the seismic motion of

the IMC mirrors. The spectrum is estimated using a ground motion spectrum based on

a 1.5-year-long measurement.

68



3 INSTALLATION OF KAGRA INPUT OPTICS

Figure 3.6: Schematic view of the seismic isolation systems of the IMC. The vacuum-
compatible stacks are located between a breadboard and a baseplate.
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Figure 3.7: Picture of a Type-C suspension.
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Figure 3.8: Transfer function from the ground motion to a test mass motion of Type-C
suspension.

Figure 3.9: Estimated seismic motion of a test mass of the Type-C suspension based on
a 1.5-year-long measurement of the ground motion.
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3.2.4 First loop of the frequency stabilization

As shown in the Fig. 2.10, the first loop of the FSS stabilizes the laser frequency by using

the RC as a frequency reference.

Actuators

The first loop has three different bandwidth actuators; a heater for temperature tun-

ing of laser crystal as a slow actuator, a laser PZT as a middle speed actuator, and a

broadband EOM as a fast actuator. The FSS servo circuit has the two analog filters for

the broadband EOM and the PZT. The servo circuit is connected to the digital control

system, which can control the gains of the servo filters, turn the control loop on and off,

inject an excitation signal, and make a servo filter for the temperature control remotely.

Open loop gain

As shown in Appendix B, an open loop gain (OLG) determines the stability of the

feedback system. To increase the OLG and suppress noises more efficiently, it is necessary

to make the unity gain frequency (UGF) as high as possible. On the other hand, if it is

too high, the phase margin disappears, and the system becomes unstable. Therefore, it is

necessary to adjust the servo gains, in order to set the UGF that can obtain a sufficient

OLG while securing the enough phase margin. Besides, it is necessary to adjust the servo

gain of the PZT loop and that of the EOM loop by considering the phase difference of

the OLG at the crossover frequency. If the crossover frequency is too high, the phase

difference gets close to 180◦ due to the phase delay of the PZT. In contrast, if it is too

low, the control signal to the EOM gets saturated.

The servo circuit, which is installed in the first loop of the FSS, has two variable gain

stages. One of them can change the overall gain of the first loop, while the other can

change only the gain of the PZT loop. The UGF is determined by the OLG of the EOM

loop and the crossover frequency is determined by the relative gain between the PZT

loop and the EOM loop. Therefore, it is possible to adjust the UGF and the crossover

frequency independently with these two gains.

Figure 3.10 shows the OLG of the current first loop. From Fig. 3.10, the UGF fUGF,

the phase margin θPM, the crossover frequency fco, and the phase difference θco at the

crossover frequency can be read off as follows:

fUGF = 500 kHz,

fco = 18 kHz,

θPM = θUGF + 180 = 26◦,

and θco = θEOM
co − θPZTco = 108◦.
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The phase in a Bode diagram is often written in the range of −180◦ to 180◦. When the

phase is delayed by more than -180◦, the curve is not continuous and jumps from -180◦ to

180◦. However, an actual phase delay is continuous. In Fig. 3.10, the phase of the OLG

of the PZT loop can be read off as θPZTco = 158◦, but in fact θPZTco = 158◦ − 360◦ = −202◦.

Figure 3.10: Bode diagram of the OLGs of the first loop. The orange line is the estimated
OLG of the entire loop, and yellow and purple dashed lines are the OLG of the PZT loop
and the EOM loop, respectively. These plots are estimated by the parameters described
in Section 4.3. The UGF fUGF is 500 kHz, and the phase margin θPM is θUGF+180 = 26◦.
The crossover frequency fco is 18 kHz, and the phase difference between the PZT loop
and the EOM loop is θEOM

co − θPZTco = −94◦ − (−202◦) = 108◦.

3.2.5 Second loop of the frequency stabilization

The second loop of the FSS stabilizes the laser frequency by using the IMC as a frequency

reference.

Actuator

The second loop of the FSS uses an AOM as an actuator to control the laser fre-

quency [52]. A PZT is attached to the AOM crystal, and this PZT generates a sound

wave in the crystal. The frequency of this sound wave is determined by the frequency of

the input signal to the PZT. When the laser light is incident on the AOM crystal where

the sound wave is generated as described above, the emitted light from the AOM has a
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diffraction angle θ, since the density gradient in the AOM crystal caused by the sound

wave acts as a diffraction grating. This diffraction angle can be written from the Bragg’s

condition as

θ =
λΩ

v
, (3.1)

where Ω is the RF angular frequency of the sound wave and v is the sound speed in the

crystal. In addition to this, since the light exchanges the energy with the sound wave, the

frequency of the outgoing light shifts as

ωout = ωin ± Ω, (3.2)

where ωin and ωout are the incoming and the outgoing light angular frequencies. As

described above, when we change the angular frequency of the RF signal Ω, not only the

outgoing light frequency ωout but also the diffraction angle θ changes. Therefore, if the

light emitted from the AOM is incident on the RC directly, the change in the diffraction

angle misaligns the cavity axis and the laser light. To avoid this misalignment, a curved

mirror with an ROC of R is put at a place away from the AOM by the distance of R, as

shown in Fig. 3.11. In this case, since the light is perpendicularly incident on the curved

mirror, it returns to the AOM again through the same path regardless of the diffraction

angle. The AOM diffracts the light again, but the incident light and the reflected light

on the AOM follow the same path, because the diffraction angle is the same as the first

diffraction angle. If this light is incident on the RC, the alignment is kept. Such a

configuration is called a double path configuration.

An AOM driver consists a voltage-controlled oscillator (VCO), a mixer, and an ampli-

fier. The VCO is an electric element whose frequency of the output signal varies depending

on the input voltage. By using the VCO, we control the amount of the frequency shift Ω

by the AOM. Here, in the case of the double path configuration, since the laser frequency

is shifted twice, it is shifted by twice the frequency of the output signal from the VCO.
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Figure 3.11: The configuration of a double path AOM.

Open loop gain

Figure 3.12 shows the OLG of the current second loop. From Fig. 3.12, the UGF

fUGF, the phase margin θPM, the crossover frequency fco, and the phase difference at the

crossover frequency θco can be read off as follows:

fUGF = 39 kHz,

fco = 4 Hz,

θPM = θUGF + 180◦ = 30◦,

and θco = θSUS
co − θAOM

co = 56◦.

The phase margins at the UGF and the crossover frequency are larger than 30 degrees.

Therefore, these margins can be considered to be sufficient.

The IMC has been locked for more than six days in bKAGRA and this confirms this

system is sufficiently robust. Figure 3.13 is a plot of transmitted light power from the

IMC. The transmitted light power is normalized to 1 as the locked state on 28th December

in 2017. This plot demonstrates that the IMC was kept locked for more than six days.
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Furthermore, in case the IMC loses lock, it takes less than one minute for the IMC to be

re-locked owing to the Guardian script. Therefore, under the assumption that the IMC

loses lock once a week, the duty cycle will be 99.99%. This obviously means that the FSS

satisfied the requirement of the duty cycle to be better than 95%.

Figure 3.12: Bode diagram of the OLGs of the second loop. The solid orange line is the
estimated OLG of the second loop, and yellow and purple dashed lines are the OLG of
the AOM loop and the suspension loop, respectively. These plots are estimated by the
parameters described in Section 4.3. The UGF fUGF is 39 kHz, and the phase margin
θPM is θUGF + 180◦ = 30◦. The crossover frequency fco is 4 Hz, and the phase difference
between the AOM loop and the suspension loop is θSUS

co − θAOM
co = 56◦.

Figure 3.13: Plot of the transmitted power from the IMC. The vertical axis is the trans-
mitted power normalized to 1, when it is locked. The IMC is kept locked for more than
six days. There was a power drift however, this was caused by the change of the alignment
of the IMC. The lack of the data is due to the trouble in the data acquisition system.
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4 Frequency stabilization

As we have seen, the frequency stabilization is done by using optical cavities. A reference

cavity (RC) and an input mode cleaner (IMC) are used as the frequency references in

bKAGRA. Although we have not mentioned so far, the arm cavity of the main interfer-

ometer is also used as a frequency reference, and the frequency stabilization system (FSS)

has hierarchical control of three stages in total. The schematic diagram of the first loop

and the second loop, which use the RC and the IMC as the frequency reference, is shown

in Fig. 2.10.

This chapter describes the detail of the frequency stabilization system, which is the

main theme of this thesis. First, we show the requirement for the frequency noise in

Section 4.1. Then, the modeling of the control loop is described in Section 4.2. After

that, the calibration of the parameters in the model is described in Section 4.3. In

Section 4.4, the simulation about the optimization of the control loop necessary for the

frequency stablization to meet the requirement is described. Finally, the noise budget

with the optimized configuration is described in Section 4.5.

4.1 Requirement for the frequency noise

The requirement for the frequency noise is set under the condition that it becomes smaller

than fundamental noises such as the quantum noise or the thermal noise. The requirement

includes the safety margin of 10. As described in Subsection 1.2.3, when considering the

frequency noise, it is necessary to consider a common mode reduction ratio (CMRR). In

the case of an RSE interferometer, CMRR can be derived as

CMRR =
δL

L
+

δF
F

, (4.1)

where δL and δF are the differences in the arm lengths and in the finesse values between

the two arms. The arm lengths have a designed asymmetry as δL/L = 1/1000. For

the finesse, we assume that the asymmetry of the cavity loss is 10 ppm corresponding to

δF/F = 1/200 as shown in Eq. (A.61). In the GW detectors, typically the cavity loss

is the order of 100 ppm and 10 % asymmetry is reasonable. Therefore, the CMRR is

calculated as 1/200. The requirement for the frequency noise in the IMC output is shown

in Fig. 4.1.
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Figure 4.1: Frequency noise requirement for the IMC output. CMRR is assumed as 1/200.

.

4.2 Modeling of the frequency stabilization

4.2.1 First loop with the reference cavity

In the first loop of the FSS, the RC is used as a frequency reference, and a laser frequency

is controlled to a resonance frequency of the RC. In the first loop, the control is performed

by actuators with three different speeds to take the control band as wide as possible and

secure a large control range. The slowest and the largest range actuator is a heater tuning

the temperature (TEMP) of the nonplanar ring oscillator (NPRO) laser crystal. It can

actuate the laser frequency in a range of several GHz′s with a bandwidth of 0.1 Hz. The

second actuator is a piezoelectric transducer (PZT) actuator attached to the laser crystal.

It can actuate the laser frequency, by changing the effective length of the laser crystal,

in a range of about 200 MHz with a bandwidth of 100 kHz. The fastest actuator is a

broadband electro-optic modulator (EOM). The EOM controls the phase of the laser light

with a bandwidth of 1 MHz. The error signal to control the laser frequency is generated

by the Pound-Drever-Hall (PDH) method.

Figure 4.2 shows a block diagram of the FSS first loop. We can evaluate the transfer

function from the free-run laser frequency fluctuation flaser to the stabilized output laser
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frequency fluctuation fRC
out by this block diagram. Blocks in the figure stand for actuator

responses Ax, servo transfer functions Fx, and cavity transfer functions DRC and CRC,

where subscript x is an indicator of the actuator corresponding to either TEMP, PZT or

EOM, CRC is the transfer function of a low-pass filter due to the cavity pole of the RC

described in Eq. (A.78), and DRC is called an optical gain which is the coefficient of the

error signal proportional to the frequency variation. There are two kinds of measurable

signals, the error signal V RC
err and the feedback signal V x

fb to each actuator.

In addition to the laser frequency fluctuation, four noise sources are shown in the block

diagram, the servo electrical noise δvRC
F , the shot noise δfRC

shot, the resonance frequency

fluctuation of the RC δfRC
res , and the sensor noise δvRC

sen .

The output frequency fluctuation fRC
out can be derived as

fRC
out =

1

1 +GRC

(flaser + AFtot(δv
RC
sen + δvRC

F ) + AFtotDRCδf
RC
shot +GRCδf

RC
res ), (4.2)

where AFtot =
∑

xAxFx is the sum of the product of each actuator response and servo

filter, and GRC = CRCDRCAFtot is the open loop gain (OLG). The error signal and the

feedback signal can be calculated as

V RC
err =

1

1 +GRC

(HRC(flaser + δfRC
res +

δfRC
shot

CRC

) + δvRC
sen +GRCδv

RC
F ), (4.3)

V x
fb =

1

1 +GRC

(HRCFx(flaser + δfRC
res +

δfRC
shot

CRC

) + Fx(δv
RC
sen + δvRC

F )), (4.4)

where HRC = DRCCRC. If the OLG GRC is much larger than one, Eqs. (4.2), (4.3), and

(4.4) can be written as

fRC
out ≃

flaser
GRC

+ δfRC
res +

δfRC
shot

CRC

+
δvRC

sen

HRC

+
δvRC

F

HRC

, (4.5)

V RC
err ≃ HRC

GRC

(flaser + δfRC
res +

δfRC
shot

CRC

+
δvRC

sen

HRC

+GRC
δvRC

F

HRC

), (4.6)

and V x
fb ≃ 1

Ax

(flaser + δfRC
res +

δfRC
shot

CRC

+
δvRC

sen

HRC

+
δvRC

F

HRC

). (4.7)

Therefore, the laser frequency fluctuation is suppressed by the OLG GRC. However, the

resonance frequency fluctuation of the RC is not suppressed in the output frequency.

This means that the stability of the laser frequency is determined by the stability of the

cavity length of the RC, when the other noises are sufficiently small. This is because the

PDH method cannot distinguish between the cavity length fluctuation and the frequency

fluctuation, as can be seen from Eq. (A.86). The servo electrical noise and the sensor

noise can be reduced by increasing the optical gain DRC by increasing either the laser

power on a photodetector (PD) or the modulation depth of RF sidebands as shown in

Eq. (A.86).

Note that the error signal or the feedback signal does not carry any information to
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distinguish the sensor noise from the resonance frequency fluctuation of the cavity because

generally, δvRC
sen/HRC, δf

RC
res , and δfRC

shot are smaller than flaser. From the signal inside the

loop, we can only derive the free-running laser frequency fluctuation flaser as AxV
x
fb.

res

Figure 4.2: Block diagram of the first loop of the FSS. The schematic diagram of the whole
FSS is shown in Fig. 2.10. flaser is the free-run frequency fluctuation of the laser source,
fRC
out is the stabilized laser frequency fluctuation. We have three actuators, the heater
tuning the temperature of the laser crystal, the PZT attached to the laser crystal, and
the broadband EOM. ATEMP, APZT, and AEOM are the corresponding actuator responses.
The error signal V RC

err and feedback signals V TEMP
fb , V PZT

fb , and V EOM
fb are the signals which

we can measure. Four noises, the resonance frequency fluctuation of the RC δfRC
res , the

shot noise δfRC
shot, the sensor noise δvRC

sen , and the servo electrical noise δvRC
F are included

in the diagram.

4.2.2 Second loop with the input mode cleaner

In the second loop of the FSS, the laser frequency is locked to the resonance frequency of

the IMC. The IMC is much more stable in the high-frequency band than the RC, since

the IMC mirrors are suspended. On the other hand, the resonance frequency of the RC

is more stable than that of the IMC in the lower-frequency band, as the IMC suspensions

move more than the RC spacer. Therefore, the laser frequency is controlled to follow the

IMC resonance frequency in the high-frequency band, and the IMC length is controlled

to follow the laser frequency, which is stabilized by the RC, in the lower-frequency band.

For this control, two actuators are used in the IMC loop. The first one is a coil-magnet

actuator attached to one of the IMC mirrors. It controls the cavity length of the IMC

with a bandwidth of about 10 Hz. The other is an acousto-optic modulator (AOM) used

in a double pass configuration. As shown in Fig. 2.10, the AOM is placed in the path
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towards the RC and shifts the frequency of the incident laser light to the RC. As a result,

the laser frequency in the main path to the IMC and the resonance frequency of the RC

are shifted, so that the RC and the IMC can resonate at the same time. The AOM has

the several tens of MHz range with a bandwidth of more than 100 kHz.

Figure 4.3 shows the block diagram of the second loop of the FSS. The first loop part

is wrapped into GRC. Blocks in Fig. 4.3 represent IMC loop actuators, servos, and an

optical response of the IMC. AAOM and ASUS are the actuator responses of the double pass

AOM and the coil-magnet actuator of the IMC mirror suspension, respectively. F IMC
AOM and

F IMC
SUS are the transfer function of each servo filter, respectively. CIMC is a low-pass filter

due to the cavity pole of the IMC, and DIMC is the optical gain of the IMC.

Figure 4.3: Block diagram of the FSS second loop. The schematic diagram of the whole
FSS is shown in Fig. 2.10. We have two actuators, a double pass AOM and a coil-magnet
actuator on the IMC mirror. AAOM and ASUS are the corresponding actuator responses.
The error signal V IMC

err and feedback signals V AOM
fb and V SUS

fb are signals which we can
measure. Resonance frequency fluctuation of the IMC δf IMC

res , shot noise δf IMC
shot , sensor

noise δvIMC
sen , servo electrical noises δvAOM

F and δvSUS
F , and electrical noises of actuator

drivers δvAOM
act and δvSUS

act are included as new noises in the second loop.
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The noise sources included in the diagram are the servo electrical noises δvSUS
F and

δvAOM
F , the shot noise δf IMC

shot , the resonance frequency fluctuation of the IMC δf IMC
res , and

the sensor noise δvIMC
sen . δvAOM

act and δvSUS
act are the actuator noises of the AOM and the

coil-magnet actuator. Since the AOM and the coil-magnet actuator of the suspension are

controlled by using the driver with the electric circuit, the electric circuit noise has to be

taken into account. On the other hand, the PZT and the EOM, which are the actuators

in the first loop, are controlled by directly applying the voltage of the control signal, so

no such a noise is included.

The transfer function from fAOM to fout
′ can be derived as

fout
′ =

−GRC

1 +GRC

fAOM. (4.8)

The unity gain frequency (UGF) of the second loop is lower than that of the first loop.

Therefore, the OLG of the first loop GRC is much larger than 1 at all frequencies in the

second loop bandwidth and Eq. (4.8) can be rewritten as fout
′ = −fAOM. Therefore, the

stabilized output frequency from the IMC f IMC
out can be derived as

f IMC
out =

CIMC

1 +GIMC

((1 +GIMC
SUS )(f

RC
out + AAOM(δv

AOM
act + FAOMδv

AOM
F ))

+ FAOMAAOM(δv
IMC
sen +DIMCδf

IMC
shot ) +GIMC

AOM(δf
IMC
res + ASUS(δv

SUS
act + F IMC

SUS δv
SUS
F ))),

(4.9)

where GIMC
SUS = CIMCDIMCF

IMC
SUS ASUS and GIMC

AOM = CIMCDIMCF
IMC
AOMAAOM are the OLGs of

each actuator loop, and GIMC = GIMC
SUS +GIMC

AOM is the total OLG of the second loop. Then,

the error signal and feedback signals can be calculated as

V IMC
err =

1

1 +GIMC

(HIMC(f
RC
out + AAOM(δv

AOM
act + FAOMδv

AOM
F ))

+ (δvIMC
sen +DIMCδf

IMC
shot ) +HIMC(δf

IMC
res + ASUS(δv

SUS
act + F IMC

SUS δv
SUS
F ))),

(4.10)

V AOM
fb =

F IMC
AOM

1 +GIMC

((HIMC(f
RC
out + AAOMδv

AOM
act ) + vAOM

F )

+ (δvIMC
sen +DIMCδf

IMC
shot ) +HIMC(δf

IMC
res + ASUS(δv

SUS
act + F IMC

SUS δv
SUS
F ))),

(4.11)

and V SUS
fb =

F IMC
SUS

1 +GIMC

(HIMC(f
RC
out + AAOM(δv

AOM
act + FAOMδv

AOM
F ))

+ (δvIMC
sen +DIMCδf

IMC
shot ) +HIMC(δf

IMC
res + ASUSδv

SUS
act ) + δvSUS

F ), (4.12)

where HIMC = DIMCCIMC.

Here, the control band of the second loop is divided into two, and the frequency

fluctuation of the outgoing light in each frequency band is discussed.

First, think about the lower frequency band where the suspension control is stronger
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than the AOM control, that is GIMC
SUS ≫ GIMC

AOM. This is a lower frequency band than the

resonance frequency of the IMC suspension, and since the cavity length of the RC is more

stable, the cavity length of the IMC is controlled in this frequency band. The output

frequency fluctuation can be derived as

f IMC
out ≃ fRC

out +
GIMC

AOM

GIMC
SUS

(δf IMC
res +

δf IMC
shot

CIMC

+
δvIMC

sen

HIMC

)

+ (
δvAOM

F

HIMC

+
AAOM

GIMC

δvAOM
act ) +GIMC

AOM(
δvSUS

F

HIMC

+
ASUS

GIMC

δvSUS
act ). (4.13)

Next, consider the higher frequency band where the AOM control is stronger than the

suspension control, that is GIMC
SUS ≪ GIMC

AOM. Since the IMC is a stable frequency reference

in this band, the frequency of the laser is controlled to follow the IMC resonance frequency.

In this band, the output frequency fluctuation can be derived as

f IMC
out ≃ 1 +GIMC

SUS

GIMC
AOM

fRC
out + δf IMC

res +
δf IMC

shot

CIMC

+
δvIMC

sen

HIMC

+ (1 +GIMC
SUS )(

δvAOM
F

HIMC

+
AAOM

GIMC

δvAOM
act ) +GIMC

SUS (
δvSUS

F

HIMC

+
ASUS

GIMC

δvSUS
act ). (4.14)

As seen from Eq. (4.13), the frequency stability of the outgoing light is determined by

the residual frequency fluctuation fRC
out of the first loop in the band where GIMC

SUS ≫ GIMC
AOM.

In this frequency band, since the cavity length of the IMC follows the frequency of the

laser, it does not work as a frequency reference, and it is natural that the RC determines

the frequency stability. On the other hand, the resonance frequency fluctuation of the

IMC δf IMC
res determines the frequency stability of the laser in the band where GIMC

SUS ≪
GIMC

AOM. However, as you can see from the first term of Eq. (4.14), the resonance frequency

fluctuation of the RC will shake the IMC, if GIMC
SUS > 1. As a result, the frequency

of the outgoing light also fluctuates. Therefore, it is necessary to suppress the gain of

the suspension loop at as low frequency as possible. Similarly from the second term of

Eq. (4.13), if the OLG of the suspension loop GIMC
SUS is larger than 1, the residual frequency

fluctuation fRC
out makes the output frequency stability worse by shaking the IMC via the

IMC suspension loop.

In the intermediate frequency band where GIMC
SUS ∼ GIMC

AOM, the residual frequency fluc-

tuation fRC
out and the resonance frequency fluctuation of the IMC δf IMC

res are not suppressed

in the second loop. However, the crossover frequency, at which GIMC
SUS = GIMC

AOM, is around

1 Hz in the second loop, and the IMC resonance frequency fluctuation δf IMC
res is much

larger than the residual frequency fluctuation fRC
out at the frequency around 1 Hz. There-

fore, in this intermediate frequency band, the frequency stability of the outgoing light is

determined by δf IMC
res .

The servo noises δvAOM
F and δvSUS

F can be suppressed by increasing the optical gain
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DIMC. However, we cannot suppress the actuator noises δvAOM
act and δvSUS

act without de-

creasing each loop gain.

4.2.3 Third loop with arm cavities

Error signals from the arm cavities are fed back to the end test massed (ETMs) in the

lower-frequency band below 10 Hz and fed back to the IMC suspension in the higher-

frequency band. Therefore, in the fast frequency band, the resonance frequency of the

IMC follows the resonance frequency of the arm cavities. The arm cavities are more

stable than the IMC, and the stability of the laser frequency is ideally determined by the

frequency stability of the arm cavities. The formulation of the third loop is a repetition

of the second loop. Therefore, we will skip it.

84



4 FREQUENCY STABILIZATION

4.3 Calibration of the frequency stabilization system

4.3.1 Actuators

For an investigation of the FSS performance, the FSS must be modeled accurately. In

general, to model the feedback loop system, we need to know a plant transfer function,

an actuator response, and a servo filter transfer function. The transfer function of the

servo filter can be easily measured. In the FSS case, the plant is the optical cavity and

the measurement the optical gain is difficult since there are no good out-of-loop sensors

which can measure the frequency fluctuation of the laser light. However, if the actuator

response can be calibrated, the optical gain can be estimated from the OLG, the transfer

function of the servo filter, and the actuator response. Therefore, the calibration of the

actuator response is the critical issue for the modeling of the FSS.

The basic idea of calibration is to set one absolute reference and to take a ratio to

the reference. Let us think of the simple feedback system with two actuators as shown

in Fig. 4.4. Inject the excitation signal Vexc between one servo and actuator pair. The

transfer function, V2/V1 can be derived as

V2

V1

=
G1

1 +G2

, (4.15)

where G1 = HF1A1 and G2 = HF2A2 are the OLGs of each loop. If G2 is much greater

than than 1,
V2

V1

≃ F2A2

F1A1

. (4.16)

Therefore, if A1, F1, and F2 are known, A2 can be derived from V2/V1 without H which is

the optical response of the cavity in the FSS case. In this calibration, the AOM is chosen

as the absolute reference, based on which we calibrate the other actuators.

Figure 4.4: Block diagram with two actuators. A,F , and H are transfer functions of an
actuator, a servo filter, and a plant respectively.

• AOM calibration

The amount of a shift frequency in the laser light by an AOM is the same as the
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frequency of a sound wave in the AOM crystal, as is shown in Eq. (3.2). It is easy

to know the frequency by measuring an output RF signal frequency from a voltage-

controlled oscillator (VCO). Therefore, the AOM is the most appropriate actuator

as the absolute reference for the FSS calibration. Figure 4.5 shows the measured

frequency of the output RF signal from the AOM driver as a function of an input

voltage to the VCO. The output frequency was measured with a network analyzer.

The slope of the plot is 5.01 MHz/V. Therefore, the actuator efficiency of the AOM

aAOM is calibrated as

aAOM = 10.02± 0.01MHz/V. (4.17)

Here, note that the actuator efficiency becomes twice as large as the slope due to the

double path configuration.

Figure 4.5: Plot of output signal frequency from the AOM driver as a function of the FM
input voltage. Blue points are the measured data and red line is a fitted curve.

The bandwidth of the AOM is important to design the second loop. Therefore, the

actuator response of the AOM was measured in addition to the actuator efficiency.

The first loop was locked with the PZT, and the OLG was measured. Then, the

excitation signal was injected into the AOM driver. The transfer function from the

excitation signal Vexc to the error signal Verr can be derived as

Verr

Vexc

=
HRCAAOM

1 +GPZT

. (4.18)

The OLG GPZT was measured, and the cavity pole of the RC is obtained by an-
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other measurement described in Subsection 4.3.2. Therefore, the actuator response

is derived as

AAOM =
Verr

Vexc

1 +GPZT

HRC

. (4.19)

Figure 4.6 shows the calculated actuator response AAOM by using the measured

transfer function Verr/Vexc, HRC, and GPZT. Since we are not interested in the overall

gain, the calculated actuator response AAOM is normalized by the DC gain. From

Fig. 4.6, the actuator response can be assumed as the first-order low-pass filter. The

gain of a first-order low-pass filter at pole frequency is -3 dB. Therefore, the pole

frequency of the AOM response can be read off as

fp−AOM = 167± 4 kHz, (4.20)

where this measured value and its error are based on five measurements.

Figure 4.6: Calculated actuator response of the AOM AAOM. It is the first-order low-pass
filter and it has one pole at 167 kHz.
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• NPRO PZT calibration

For the calibration of the NPRO PZT, the FSS first loop was locked only with

the PZT. Then, the control signal to the PZT was divided into two, of which one

was injected into the AOM. In this case, A1 and A2 in Eq. (4.16) are the actuator

response of the PZT and that of the AOM, respectively. Moreover, as F1 = F2 holds,

the transfer function can be written as V2/V1 = APZT/AAOM at frequencies below

the UGF. The measured transfer function of V2/V1 = 0.127 below the UGF. The

actuator efficiency of the NPRO PZT is obtained as

APZT = 1.27± 0.05MHz/V. (4.21)

• Broadband EOM calibration

For the calibration of the broadband EOM, the FSS first loop was locked with

the PZT and the broadband EOM. The measurement was done in the PZT loop.

Since the transfer function is measured in the frequency band of GEOM ≫ 1, from

Eq. (4.16),
V2

V1

=
FPZTAPZT

FEOMAEOM

. (4.22)

Therefore, the frequency response of the EOM can be derived as

AEOM =
FPZTAPZT

FEOM

V1

V2

. (4.23)

The frequency response calculated by using the obtained data is shown in Fig. 4.7.

The obtained actuator response is

AEOM(f) = (160± 10)

(
f

10 kHz

)
Hz/V. (4.24)

Note here that the EOM does not modulate a frequency but a phase. Therefore, the

actuator response is proportional to the Fourier frequency f .
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Figure 4.7: Frequency response of the broadband EOM. Blue dots are the calculated data
with the measured value by Eq. (4.23) and red line is a fitted curve.

• IMC suspension calibration

The actuator response of the suspension can be derived from the equation of motion.

The equation of motion can be written as

mẍ = −mg

l
x− γẋ+ F, (4.25)

wherem is the mass of the test mass, g is the gravitational acceleration, l is the length

of the suspension, F is the external force, and γ is the viscous damping coefficient.

Equation (4.25) can be solved in the same manner as Eq. (1.52). The external force

can be written as F = AV , where A is the actuator efficiency of the actuator, and

V is the input voltage. Therefore, the frequency response from the input voltage to

the displacement of the IMC mirror can be derived as

x̃(f) =
ASUSf

2
0

−f 2 + iff0/Q+ f 2
0

Ṽ (f), (4.26)

where x̃(f) and Ṽ (f) are the Fourier components of the displacement and the input

voltage to the actuator, f0 is the resonance frequency, Q is a quality factor, and ASUS

is an actuator efficiency at low frequencies.

For the IMC suspension calibration, the second loop was locked with the AOM and

the IMC suspension. The transfer function V2/V1 was measured in the suspension

loop. From a similar calculation to that for the broadband EOM calibration, the
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suspension response can be derived as

ASUS =
FAOMAAOM

FSUS

V2

V1

. (4.27)

The calculated frequency response by using the measured data is shown in Fig. 4.8.

The resonance frequency f0 can be obtained by reading off the peak frequency. By

using the frequency f1, f2 at which the gain is
√
2 times lower than the peak height,

the quality factor Q can be obtained as

Q =
f0

f2 − f1
. (4.28)

The obtained parameters of the suspension actuator response are as follows:

f0 = 0.95± 0.05Hz, (4.29)

Q = 4.8± 0.7, (4.30)

and ASUS = 42± 3MHz/V, (4.31)

where each measured value and its error are based on ten measurements.

Figure 4.8: Frequency response of the IMC suspension. Blue dots are the calculated data
with measured value by Eq. (4.27) and red line is a fitted curve. f0 is the resonance
frequency, and Q can be derived as Q = f0/(f2 − f1).

.
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4.3.2 Cavity parameters

Cavity pole

As described in Appendix A.2.3, an optical cavity works as a low-pass filter for noises

with a cutoff frequency of a cavity pole. The cavity pole is another important parameter

to investigate the system. Cavity poles of the RC and the IMC were estimated by different

methods

• Reference cavity

To measure the cavity pole of the RC, an excitation signal was injected into an

amplitude modulation port of the AOM driver. This means that the amplitude

modulation (AM) was applied to the injection light. Then, the transfer function

Ptrans/Prefl was measured, where Ptrans and Prefl are the transmitted and reflected

power, respectively. The AM is reduced by the low-pass filter of the cavity as shown

in Appendix A.2.3, and the high-frequency component is cut in the outgoing light.

Therefore, the cavity pole can be obtained from the transfer function Ptrans/Prefl.

Figure 4.9 shows the measured transfer function Ptrans/Prefl and the fitted curve.

The estimated cavity pole fRC
cp is

fRC
cp = 67± 2 kHz. (4.32)

Figure 4.9: Transfer function Ptrans/Prefl. Blue dots are measured data, and red curve is
fitted with the low-pass filter with the cutoff frequency of 67 kHz.
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• IMC

The IMC cavity pole was measured by the transfer function from a control signal

of the AOM to an error signal. The measured transfer function corresponds to

AAOMHIMC, where AAOM is almost flat below 100 kHz as shown in Fig. 4.6. Therefore,

the shape of this transfer function is the same as that of the cavity low-pass filter.

The measured transfer function is shown in Fig. 4.10. The estimated cavity pole

f IMC
cp is

f IMC
cp = 6.1± 0.3 kHz. (4.33)

Figure 4.10: Transfer function Ptrans/Prefl. Blue dots are measured data and red curve is
fitted with the low-pass filter with the cutoff frequency of 6.1 kHz.

Free spectral range

• Reference cavity

A free spectral range (FSR) is equivalent information to a cavity length. The RC

cavity length of 10 cm was employed from the designed value. Then, the FSR of the

RC is calculated as

νRC
FSR = 1.5GHz. (4.34)

• IMC

To control the IMC, the incident light to the IMC is modulated in phase. The

PDH signal cannot be obtained, when the modulation frequency and the FSR of the

IMC become equal. This is because the sideband for obtaining the beat signal also
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resonates with the IMC. Namely, the relative phase between the sideband and the

carrier remains unchanged in the reflected light and the phase modulation of the

reflected light is kept. The obtained FSR is

νIMC
FSR = 5.6242± 0.0003MHz. (4.35)

Finesse

From the FSR and the cavity pole, finesse can be calculated. The values of finess of

each cavity are as follows:

FRC = 11100± 300, (4.36)

FIMC = 458± 20. (4.37)

Optical gain

As mentioned above, an optical gain of a cavity can be estimated from an OLG. The

OLG of the first loop and the second loop can be written as

GRC = DRCCRC(APZTFPZT + AEOMFEOM), (4.38)

GIMC = DIMCCIMC(ASUSFSUS + AAOMFAOM), (4.39)

where C is the transfer function of low-pass filter and D is the optical gain of each cavity,

and C,A, and F are already obtained. Therefore, from OLGs, the optical gain can be

obtained as

DRC = 7.6± 0.5V/MHz, (4.40)

DIMC = 7.8± 0.7V/MHz. (4.41)

(4.42)

In Figs.3.10 and 3.12, the modeled OLGs with the obtained parameters are shown with

measured OLGs.
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4.3.3 Error estimation

Each parameter is estimated by the fitting of each transfer function. We took ten mea-

surements for each transfer function and fitting was performed for each measured data

to estimate the parameters. The error of the parameter was estimated by taking the

standard error of the ten estimated values for each parameter.

When we make the noise budget, these errors propagate to the error of the noise

calculation. For instance, the error in an optical gain propagates in the whole frequency

range, and a cavity pole error propagates in the frequency range higher than the cavity

pole. However, almost all errors are less than 10 % of each parameter, and the requirement

includes the safety margin of 10. Therefore, these errors are small enough to make the

noise budget.

4.3.4 Parameter list in the frequency stabilization system model

As a summary of this section, the parameter list obtained above is shown in Table 4.1.
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Actuator parameters

Actuator efficiencies AAOM = 10.02 MHz/V

APZT = 1.27 MHz/V

AEOM = 160 Hz/V @ 10kHz

suspension AIMC = 40 MHz/V @ DC

pole of the AOM fp−AOM= 167 kHz

resonance frequency of the IMC suspension f0 = 0.955 Hz

Q-factor of the IMC suspension Q =4.8

Cavity parameters

Optical gain DRC=7.6 V/MHz

DIMC=7.8 V/MHz

FSR fRC
FSR = 1.5 GHz

f IMC
FSR = 5.6242 MHz

cavity pole νRC
cp = 67 kHz

νIMC
cp = 6.1 kHz

Finesse FRC = 11100

FIMC = 460

Table 4.1: Parameters of the FSS.
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4.4 Optimization of the control configuration

We simulated the OLGs of the FSS loops with an optimal configuration. Figures 4.11 and

4.12 show the optimal OLGs. The improvements in the simulated model of each loop are

as follows:

First loop

• The servo gain of the PZT path is increased by 16 dB.

The original laser frequency noise does not meet the requirement at higher frequencies

than 6 kHz. Therefore, the PZT path gain is increased by 16 dB to suppress the

laser frequency noise. In Fig. 4.11, the optimized OLG is the orange line, and it is

larger than that before the optimization by 16 dB in the frequency band below 10

kHz where the PZT loop is dominant.

• The servo gain of the EOM path is decreased by 3 dB.

To optimize the UGF and earn the phase margin as much as possible, the servo

gain of the EOM path is decreased by 3 dB. As a result, the phase margin is 32◦.

Typically, the phase margin of 30◦ is enough for the robust control of the cavity, and

the system will not oscillate. In Fig. 4.11, the optimized OLG is the orange line, and

it is larger than that before the optimization by 3 dB in the frequency band higher

than 300 kHz where the EOM loop is dominant.

Second loop

• The laser power on the PD is increased up to 2.5 mW from 50 µW.

The servo noise of the second loop does not meet the requirement above 2 kHz, and

the shot noise does not meet the requirement above 6 kHz as well. From Eq. (A.118)

the shot noise is inversely proportional to the square root of the laser power. Also

from Eq. (4.14), the higher optical gain suppresses the servo noise contribution. This

is because the servo gain necessary for realizing the same OLG becomes small, if the

optical gain is high. The contribution of the servo noise becomes small as a result.

Therefore, higher laser power is required to be injected into the PD in order to

improve the contribution of the shot noise and the servo noise in the second loop.

In the simulation, the laser power on the PD is increased from the current power

of 50 µW to 2.5 mW. This assumption is feasible, because the main laser power is

increased up to 40 W from 2 W.

• The mode matching ratio of the IMC is improved up to 80 % from 20 %

The mode matching ratio is also important to increase the optical gain of the cavity.

The more laser power couples with the cavity of the higher mode matching ratio,
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which increases the optical gain of the cavity. The mode matching ratio is improved

from 20% up to 80 %. The mode matching ratio of the IMC in the test operation of

iKAGRA was above 85%. Therefore, this assumption is feasible.

The optical gain is assumed to get higher by factor of 200 than current value by the

improvement of the mode matching ratio and the power increasing.

• A second-order high-pass filter with the cutoff frequency of 0.5 Hz is added to the

AOM loop.

At the lower frequencies below 1 Hz, the cavity length of the RC is more stable than

that of the IMC. Therefore, the control signal should not be fed back to the AOM,

since the IMC length fluctuation propagates to the laser frequency. The high-pass

filter cuts off the control signal to the AOM at the lower frequencies.

• A boost filter to earn the servo gain in the band from 10 Hz to 10 kHz is added to

the AOM loop.

The residual amplitude modulation (RAM) noise in the first loop limits the perfor-

mance of the frequency stabilization in the frequency band from 10 Hz to 10 kHz.

Since the RAM noise can be suppressed by the second loop, the boost filter was

added in order to increase the OLG of the second loop.

Because of this boost filter, the phase difference between two OLGs of each actuator

loop gets slightly closer to 180◦. Therefore, the total OLG at the frequencies around

2 Hz gets smaller by this optimization. That means the suppression ratio becomes

worse and several noises increase at these frequencies. However, the noises at these

frequencies satisfy the requirements by huge margins, and the differences are small

enough compared to these margins.

Open loop gains

The UGF and phase margin are as follows:

f 1st
UGF = 390 kHz, f 2nd

UGF = 34 kHz,

f 1st
co = 61 kHz, f 2nd

co = 2 Hz,

θ1stPM = 32◦, θ2ndPM = 64◦,

and θ1stco = 158◦, θ2ndco = 212.6◦.

The phase margins are enough for the both loops. θ1stco is close to 180◦ and actually

the OLG of the total first loop has a dip at the crossover frequency. Nonetheless, this

optimized system is a stable system, as the gain of the OLG is more than 20 dB at the

crossover frequency.
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Figure 4.11: Bode diagram of the simulated OLGs of the first loop. The solid orange line
is the estimated OLG of the first loop, and yellow and purple dashed lines are the OLGs
of the PZT loop and the EOM loop, respectively. Blue thin line is the current OLG. The
optimized UGF fUGF is 390 kHz, and the phase margin θPM is θUGF + 180◦ = 32◦. The
crossover frequency fco is 61 kHz, and the phase difference between the PZT loop and the
EOM loop is θEOM

co − θPZTco = −136◦ − (−294◦) = 158◦.

Figure 4.12: Bode diagram of the OLGs of the second loop. The solid orange line is the
estimated OLG of the second loop, yellow and purple dashed lines are the OLG of the
AOM loop and the suspension loop, respectively. Blue thin line is the current OLG. The
UGF f 2nd

UGF is 34 kHz, and the phase margin θ2ndPM is θ2ndUGF + 180◦ = 64◦. The crossover
frequency f 2nd

co is 4 Hz, and the phase difference between the AOM loop and the suspension
loop is θSUS

co − θAOM
co = 212.6◦.
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4.5 Noise budget of the frequency stabilization sys-

tem

With the parameters estimated in the previous section, we can make a model of the whole

FSS loop. Then, as described in Section 4.2, the contributions of each noise in the FSS

have been estimated. By using this noise budget, the control loop is designed so that all

the noises satisfy the requirements. In this section, first of all, the simulated results of

the optimized OLGs are shown. Then, the contributions of measured or estimated noises

in the FSS with the current and the optimized configurations are shown and compared

with the requirement.

4.5.1 Laser frequency noise

The original laser noise is suppressed by the first and the second loops. The current laser

source is the NPRO laser, and it is not the same as the final laser of bKAGRA. However,

it is worth checking the contribution of the original noise of the NPRO laser, since the

final laser of bKAGRA also uses an NPRO laser as a seed laser [53]. The laser frequency

noise is assumed as

flaser(f) = 100

(
100Hz

f

)
Hz/

√
Hz. (4.43)

Figure 4.13 is the contribution of the NPRO laser frequency noise. The laser frequency

noise has a larger suppression after the optimization by increasing the OLG of the first

loop and the second loop. By increasing the servo gain of the PZT loop in the first loop,

the noise is suppressed by 16 dB up to 10 kHz. Furthermore, the boost filter in the second

loop suppresses the noise at the frequencies from 10 Hz to 1 kHz.
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Figure 4.13: Contributions of the NPRO laser frequency noise to the frequency noise
in the outgoing light from the IMC. The red curve is the contribution with the current
configuration, and the yellow curve is that with the simulated optimal configuration. By
increasing the OLG of the first loop and the second loop, the noise meets the requirement.

4.5.2 Noise from resonance frequency fluctuation of the refer-

ence cavity

The resonance frequency fluctuation due to residual gas and a seismic motion is estimated.

From Eq. (A.125), the resonance frequency fluctuation due to residual gas can be derived

as

δνgas = δlgas
ΩFSR

λ
=

1

4π

8
√
2√
π

(n0 − 1)2

(A0/V0)u0

√
lλ

(
p

p0

)(
T0

T

)
ΩFSR

λ
, (4.44)

where ΩFSR is the FSR of the RC, λ is the laser wavelength, n0 is the refractive index of

gas, A0 = 6.02× 1023 is the Avogadro’s number, u0 is the average speed of the molecule.

V0 = 2.24 × 10−2 m3 is the volume of gas for the amount of 1 mol under standard state

in which the pressure is the standard pressure of p0 = 1 atm and the temperature is

the standard temperature of T0 = 273.15 K. The pressure p is assumed as 1 Pa and the

temperature T is assumed as 300 K. Molecules of the gas are assumed as mixture of O2

and N2 with a ratio of 1:4. Average speed u0 can be derived as

u0 =

√
3kbT

2m0

, (4.45)
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where kb is the Boltzmann constant and m0 is the average mass of the molecule. Then,

δνgas can be obtained as

δνgas = 2.0× 10−4 Hz/
√
Hz. (4.46)

Molecular masses of O2 and N2 and their refractive indices at the wavelength of 1064 nm

are listed in Table 4.2.

The cavity length fluctuation due to the seismic motion can be derived from Eq. (A.126).

The coupling constant A between the cavity length fluctuation and the acceleration of

the seismic vibration is assumed as

A = 10−10 (m/s2)−1. (4.47)

The coupling constant A assumed above is the product of that obtained by the experiment

using the same type of a cavity with the safety factor 10 [54]. The measured seismic motion

spectrum in Kamioka is used to derive the seismic acceleration spectrum, as shown in

Fig. 2.3.

The contributions of these noises are summarized in Fig. 4.14. All the noise levels

satisfy the requirement even before the optimization.

The molecular mass mO2 = 5.3×10−23 g

mN2
= 4.7×10−23 g

Refractive index nO2
= 1 + 2.97× 10−4

nN2 = 1 + 2.72× 10−4

Table 4.2: Molecular masses and refractive indices for the residual gas noise estimation under the standard
state.
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Figure 4.14: Contributions of resonance frequency fluctuation of the RC to the frequency
noise in the outgoing light from the IMC. Red and yellow curves are the contributions of
the RC length fluctuation due to the seismic motion with the current configuration and
with the simulated optimal configuration, respectively. Magenta and green curves are
the contributions of residual gas noise with the current configuration and the simulated
optimal configuration, respectively. All of the noises meet the requirement, and the boost
filter in the second loop suppresses these noises at the frequencies from 10 Hz to 1 kHz.
At the frequencies around 2 Hz, the noises increase because of the new boost filter in the
AOM loop as mentioned in Section 4.4.

4.5.3 Noise from the IMC length fluctuation

The seismic motion of the IMC mirrors is estimated as shown in Fig. 3.9. Since the OLG

of the second loop around 1 Hz is lowered, the suppression of the seismic noise gets small

at the frequencies around 1 Hz. On the other hand, the contribution of the seismic noise is

suppressed at the frequencies below 0.1 Hz. That is because the propagation of the IMC

length fluctuation to the laser frequency was reduced by the high-pass filter added to the

AOM loop. At the frequencies higher than 10 Hz the suspension loop has no difference

in the optimization. Therefore, we cannot see any difference.

Here, the IMC length fluctuation was determined with an assumption that all three

mirrors move independently. However, when all three mirrors move in the same direc-

tion, the cavity length does not change. If the seismic motion is correlated with each

mirror, actual cavity length fluctuation is smaller than our expectation due to this corre-

102



4 FREQUENCY STABILIZATION

lation mainly in the low-frequency band. Therefore, note that the IMC length fluctuation

estimated here is an overestimation, and even so it meets the requirement.

The contributions of these noises are shown in Fig. 4.15. All the noise levels satisfy

the requirement.

Figure 4.15: Contributions of the IMC length fluctuation to the frequency stability in the
outgoing light from the IMC. The red curve is the contribution with the current servo
filter, and the yellow curve is that with the simulated optimal servo filter. All noises meet
the requirement.

4.5.4 Servo noise

The servo noise spectra were measured at the output port of each servo filter with the

input port terminated. Then, those are divided by transfer functions of each servo filter

and converted to input equivalent noise spectra. Figure 4.16 shows the contributions of

servo noises of each servo filter.

The second loop servo noise does not satisfy the requirement with the current control

configuration. By increasing the optical gain of the IMC, the contribution of the servo

noise in the second loop is expected to be suppressed by a factor of 200. In the system

with the increased optical gain, that noise will meet the requirement.
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Figure 4.16: Contributions of the servo noise to the frequency noise in the outgoing light
from the IMC. Orange and yellow curves are the contributions of the first loop servo noise
with the current configuration and with the simulated optimal configuration, respectively.
The servo noise of the first loop is suppressed by the boost filter added to the second loop.
Magenta and green curves are the contributions of the second loop servo noise with the
current optical gain and with the simulated higher optical gain, respectively. By increasing
the optical gain of the IMC, all of the noises meet the requirement.

4.5.5 Shot noise

From Eq. (A.118), the shot noise can be estimated. The RC and the IMC are cavities

designed as Rf = Re, where Rf and Re are the reflectance of input and output mirrors.

Therefore, the reflectance of the cavity can be derived as 0, as shown in Eq. (A.63). If we

assume the quantum efficiency of the PD as a typical value of 0.8, the shot noise can be

obtained as

δνshot = 1.2× 10−4 10
4

F
10 cm

L

√
1064 nm

λ

√
2 mW

Pc

Hz/
√
Hz, (4.48)

where F is the finesse of the cavity, L is the cavity length, and Pc is the carrier power

on the PD. Figure 4.17 shows the shot noise contributions. Originally, they almost fulfill

the requirement, and they satisfy the requirement with further margin by increasing the

carrier power on the PD.
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Figure 4.17: Contributions of the shot noise on the IMC and the RC control signals to
the frequency noise in the outgoing light from the IMC. Orange and yellow curves are the
contributions of the first loop shot noise with the current servo filter and with the simu-
lated servo filter, respectively. The shot noise of the first loop is suppressed by the boost
filter added to the second loop. Magenta and green curves are the contributions of the
second loop servo noise with the current laser power and with the increased laser power,
respectively. Due to increasing the laser power, all of the noises meet the requirement.
At the frequencies around 2 Hz, the noises increase because of the new boost filter in the
AOM loop as mentioned in Section 4.4.

4.5.6 Dark noise of the second loop RF PD

A dark noise of an RF PD to obtain the error signal of the second loop was measured.

The dark noise was measured at the output of a demodulator, in other words, the error

point of the second loop. The noise was measured with and without laser injection. The

noise level with the laser was the same as that without the laser. Therefore, this noise is

supposed to be the electric noise of the PD. Figure 4.18 shows the contributions of the

IMC PD dark noise. The PD dark noise is also suppressed by increasing the optical gain

of the IMC. This is because the cavity with the higher optical gain generates the larger

signal, and the signal to noise ratio is improved as a result.

105



4 FREQUENCY STABILIZATION

Figure 4.18: Contributions of the RF PD dark noise of the second loop to the frequency
noise in the outgoing light from the IMC. The orange curve is the contribution with
the current optical gain, and the yellow curve is that with the higher optical gain. By
increasing the optical gain and improving the signal to noise ratio, the noise is suppressed
and meets the requirement.

4.5.7 Residual amplitude modulation noise

An RAM noise, as shown in Appendix A.5.2, is one of the noises which are inherent in

the PDH method. As mentioned above, the RF PD dark noise level of the second loop

does not show any difference between with and without the laser injection. This means

that the RAM noise of the second loop has not been measured so far, since the injected

power on the second loop PD is too small to detect the RAM noise. Therefore, the RAM

index ϵ̃m(ω) in Eq. (A.124) is assumed to be 10−5 by referring to the RAM obtained in a

similar experiment [55, 56]. Then, from Eq. (A.124), the contribution of the RAM noise

can be derived as δν(f) = 2 × 10−4 Hz/
√
Hz with the designed phase modulation index

δm = 0.01 in the first loop of the FSS. It almost meets the requirement.

The first loop has a large RAM noise compared with the second loop between 10 Hz

to 1 kHz. The RAM noise was measured by demodulating the signal from the RF PD

on which the injection light to the RC was directly incident. The modulation index of

the RAM was measured as ϵm ∼ 10−3 at 100 Hz. Figure 4.19 shows the contribution of

the measured RAM noise to the frequency noise calculated from Eq. (A.124) with the
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designed modulation index δm = 0.2. After the optimization, it satisfies the requirement

in the frequency band below 2 kHz, where gravitational wave (GW) signals are expected

from compact objects.

To reduce the RAM noise above 2 kHz, we have to align the polarization direction

and the crystal axis of the EOM to generate the sideband for the PDH method. If they

are misaligned, the EOM modulates not only the phase but also the amplitude of the

laser. Moreover, the linearity of the polarization of the laser light is also important. An

elliptically polarized light is represented by a linear combination of linearly polarized lights

in two directions having different phases. Therefore, the EOM modulates the amplitude

of the elliptically polarized light. The polarization ratio of the laser was measured as

about 1/50. The thin film polarizer used in LIGO can isolate linearly polarized lights in

two directions with the polarization ratio of 1/100. By using such a polarizer and aligning

more precisely, the RAM noise can be reduced. Furthermore, the pre-mode cleaner (PMC)

works as a passive filter of the RAM. The cavity pole of the PMC is 600 kHz, and the

modulation frequency for the PDH method in the first loop is 51 MHz. As shown in

Appendix A.2.3, the RAM is expected to be reduced by a factor of (51 MHz)/(600 kHz)

= 85. Therefore, after the installation of the PMC, the RAM noise introduced before the

PMC is expected to be suppressed. By reduction of the RAM by the PMC and the fine

alignment of the polarization, the RAM noise is expected to meet the requirement even

above 2 kHz.
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Figure 4.19: Contribution of the RAM noise of the first loop to the frequency noise of
the outgoing light from the IMC. The orange curve is the contribution with the current
configuration, and the yellow curve is that with the simulated configuration. Even after
increasing the OLG of the second loop, the noise does not meet the requirement above 2
kHz.

4.5.8 VCO phase noise

The VCO has the phase noise which causes the frequency noise of the laser. To estimate

the VCO noise, the IMC was used as an out-of-loop sensor to measure the frequency

noise. At first, the first loop was locked, and the IMC was locked only with the IMC

suspension. Then, we measured and calibrated the feedback signal to the suspension.

The AOM driver was turned on, and a DC signal was injected into an input port of the

VCO during one measurement and turned off during the other measurement. Figure 4.20

shows the calibrated feedback signal to the AOM. When the VCO was turned on, the

frequency noise increased above 3 kHz. This means that the frequency noise above 3

kHz is due to the phase noise of the VCO. From this measurement, the VCO noise was

determined as

δνVCO = 0.3Hz/
√
Hz (4.49)

From the experience, the noise was assumed to be flat for all frequencies.

The contribution of the VCO noise is shown in Fig. 4.21. After the optimization, the

VCO noise satisfies the requirement in the frequency band below 2 kHz
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To reduce the VCO phase noise, one possibility is to use the lower phase noise VCO.

Actually, the VCO used in aLIGO has the better phase noise by a factor of 20 than the

VCO of KAGRA. Even with such a high performance VCO, the phase noise does not

satisfy the requirements above 4 kHz. Another possibility is to add a broadband EOM

to the second loop as a fast actuator. If the crossover frequency between the AOM loop

and the EOM loop is assumed as 20 kHz, the OLG of the second loop at 8 kHz will be

increased by more than 20 dB. Therefore, it is possible to satisfy the requirements by the

improvement of the VCO and adding the EOM as the fast actuator.

Figure 4.20: Calibrated feedback signals for the VCO noise measurement into the fre-
quency noise. The VCO phase noise appears above 3 kHz.
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Figure 4.21: Contributions of the VCO phase noise to the frequency noise in outgoing
light from the IMC. The red curve is the contribution with current configuration and
the yellow curve is with the optimized configuration. At the frequencies around 2 Hz,
the noises get worse because of the new boost filter in the AOM loop as mentioned in
Section 4.4.

4.5.9 Confirmation of the noise budget

Figure 4.22 is the noise budget curve of the feedback signal to the AOM. This is equivalent

to the out-of-loop measurement of the first loop, since the IMC can be regarded as the

frequency sensor of the outgoing light from the pre-stabilized laser (PSL) table. The

RAM noise and the VCO noise limit the first loop. The feedback signal can be explained

by the noises which have been discussed so far in almost all bands. If we had other

unknown noises in the first loop, the feedback signal would be larger than our expectation.

Therefore, we conclude that the correct estimation of the noise is performed in the first

loop.

The actual performance of the second loop cannot be measured at this point. After

locking the arm cavity of the main interferometer, the out-of-loop measurement of the

second loop can be done. Then, the actual frequency stability will be measured.
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Figure 4.22: Noise budget of the feedback signal. The blue line is the measured signal and
the orange line is the sum of the estimated noises. The other noises such as the NPRO
laser noise, the resonance frequency fluctuation noise of the RC, the first loop servo noise,
the shot noise, and the PD dark noise on the second loop are omitted in this plot, because
these noises are lower than the other noises at all of the frequencies.

4.5.10 Summary of the noise budget

As we have seen, by the optimization of the control configuration, it is possible to suppress

all the noises to satisfy the requirements at the frequency band below 2 kHz which is the

frequency band of the target gravitational wave signals such as the coalescence of the

binary compact objects . Figure 4.23 shows the noises currently limiting the frequency

stability. In the frequency band lower than 100 Hz, the stability is limited by the resonance

frequency fluctuation of the IMC. That means the stability of the laser frequency is

determined by the stability of the resonance frequency of the IMC.

There are two noises which do not meet the requirement in the band higher than 2 kHz.

Our data acquisition system can acquire the signal with the frequency of up to 8 kHz.

Therefore, it is preferable to stabilize it so that the frequency noise do not deteriorate the

sensitivity up to 8 kHz. As for the RAM noise, one of the reasons why RAM noise can

be caused is that the crystal axis of the EOM for the PDH method and the polarization

direction of the light are not correctly aligned. Therefore, after the alignment of the

polarization direction, the RAM noise is expected to be improved. Also, the PMC will

filter the RAM noise above its cavity pole frequency, and the expected suppression ratio
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of the RAM is 1/85. After installation of the PMC and fine alignment between the

polarization and the EOM crystal axis, this noise is expected to meet the requirement.

Another one is the noise due to the VCO. Currently, the VCO used in bKAGRA is not

a VCO with the low noise. Therefore, the lower noise VCO can help to suppress the noise

contribution. For instance, in aLIGO, a VCO with a phase noise lower by about ten times

than our VCO has been developed and used. Another way to suppress the VCO phase

noise is to add a new fast actuator to the second loop like a broadband EOM. If that

actuator can control the laser frequency up to 160 kHz, the frequency stabilization can gain

the factor of about 20 at the frequency of 8 kHz. Since the broadband EOM can control

at the frequencies up to 500 kHz in the first loop, this control loop is feasible enough.

Then, it is possible that the VCO phase noise is reduced and satisfy the requirement.

Figure 4.23: Noise budget of the frequency noise. The IMC seismic noise and the RAM
noise are dominant at the frequencies below 100 Hz. In contrast, above 100 Hz, the RAM
noise and the VCO noise are dominant, and they meet requirement below 2kHz, where
GW signals are expected from compact objects. The seismic noise of the RC and the
residual gas noise of the RC are not included in this plot because those noises are much
lower than other noises.
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5 Conclusion

5.1 Summary

A gravitational wave (GW) detector called KAGRA is under construction in Japan. KA-

GRA is the first underground cryogenic GW detector in the world. KAGRA has two arms

with the length of 3 km, and KAGRA has a design sensitivity that can detect GW signals

radiated by a coalescence of the pair of 1.4 solar mass neutron stars 140 Mpc away from

the earth. Since the first detection of the GW signal by Advanced LIGO (aLIGO) in the

U.S., several GW signals have been detected by aLIGO and advanced VIRGO (AdV) in

Italy.

In such a situation, the mission imposed on KAGRA is to achieve a sensitivity good

enough to observe a GW signal and to join the GW detector network in the world as soon

as possible. The design sensitivity of KAGRA is similar to those of the other detectors

at frequencies above 10 Hz, and KAGRA has better sensitivity at the frequencies below

10 Hz. KAGRA has the potential to detect signals that cannot be observed by the

other detectors. For the GW astronomy, the position determination of the GW source

is important. To determine the direction of the GW source, three or more detectors are

necessary. When KAGRA joins the GW detector network, the probability that three or

more machines are in operation improves to 80% from 50 %. Furthermore, the accuracy

of position determination when four detectors are in operation is predicted to be improved

up to 9.5 deg2 as a result of a simulation. Therefore, a participation of KAGRA in the

GW detector network is an urgent matter in the development of the GW astronomy.

For this purpose, each subsystem in the KAGRA project has to reduce noises so that

these noises do not deteriorate the performance of the GW detector. The input optics is

one of these subsystems, and the role of the input optics is to provide the stabilized laser

light to the main interferometer. The author is responsible for the design, the installation,

the investigation, and the integration of a pre-stabilized laser (PSL) and an input mode-

cleaner (IMC). The PSL is the in-air optics for the beam stabilization, and the IMC is

the 50-m round trip length cavity with three suspended mirrors. The PSL and the IMC

are the main part of the input optics, and almost all stabilization is done with the PSL

and the IMC. Development of the input optics for bKAGRA began in April 2016 when

the test operation of iKAGRA was completed, and almost all optical elements of the PSL

and the IMC have been installed. Regarding the frequency stabilization system (FSS),

the installation has been done, and performance evaluation is completed.

Control of the FSS is robust, and it has been demonstrated that it can continue to be

locked for a week without any adjustment. Furthermore, even if they lost lock, it takes

less than one minute to be re-locked, and therefore the requirement for the duty cycle of

95% can be said to be satisfied.
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Regarding the frequency stability, the requirement was decided so that the contribution

of the frequency noise to the GW sensitivity gets smaller than the contribution of other

fundamental noise such as the quantum noise and the thermal noise. We evaluated the

performance and confirmed whether the frequency noise meets the requirement. Although

some are not satisfied at present, almost all the noises meet the requirement when the

control configuration is optimized in the frequency band of the target GW signals.

A noise due to a residual amplitude modulation (RAM) and a noise due to the phase

noise of the voltage-controlled oscillator (VCO) do not satisfy the requirement at frequen-

cies above 2 kHz, and it is preferable for those noises to satisfy in all frequency band

where the data can be acquired. As for the RAM, the fine alignment of the polarization

of the light and the crystal axis of the electro-optic modulator (EOM), and the PMC in-

stallation are expected to reduce the RAM, and it is possible for the RAM noise to satisfy

the requirement. As for the VCO phase noise, if we use an existing high performance one,

we can expect a performance improvement roughly by a factor of ten. And a new faster

actuator like a broadband EOM will help to increase the open loop gain (OLG) up to 10

kHz. If these measures are taken, the requirement is expected to be satisfied.

The KAGRA FSS is a similar system to those of aLIGO and AdV. The reference

cavity (RC) and the IMC are also used as frequency references in aLIGO and AdV. What

is noteworthy in KAGRA′s FSS is the simplicity of the vibration isolation system. The

KAGRA’s IMC has a vibration isolation system that suspends a mirror with a two-stage

pendulum and places it on a vibration-isolated breadboard with three-layer stacks, and

the RC has no vibration isolation system. Moreover, we don′t have any active local control

for seismic isolation in the FSS. On the other hand, the RC has an active seismic isolation

system in aLIGO. Besides, the mirror of the IMC is suspended with the complex system

described in Section 1.4. We confirm that KAGRA does not need such an elaborate

vibration-isolation system thanks to a quiet seismic motion. KAGRA’s FSS achieves the

frequency stability required for the GW detection with the simplest configuration in the

world.

5.2 Future work

As mentioned several times in this thesis, the most recent task is to participate in the

third observation run, the O3, which is planned in 2019.

By the O3, the input optics is required to increase the laser power to 40 W, to in-

stall the PMC and intensity stabilization system, and to provide the light to the main

interferometer stably. On the current schedule, the commissioning of the main interfer-

ometer toward the O3 is scheduled from September 2018. Therefore, by August 2018

it is required to finish these upgrades. The PMC has already been assembled, and it is

now being installed. As for the intensity stabilization, a prototype experiment and the
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hardware installation have already been completed by the author and the collaborators

from Toyama Univ. We will develop the control design and evaluate its performance.

As for the FSS, the performance evaluation with current configuration has been com-

pleted, and there are some noises which do not achieve the required value. Therefore,

it is necessary to optimize the control configuration as discussed in this thesis. After

optimization and installation of the PMC and the high power laser, the frequency sta-

bility have to be investigated again, and be confirmed to satisfy the requirement. One

concern about the high power laser installation is that some new noises might limit the

frequency stability. For example, the fluctuation of the cavity length of the IMC due

to the classical radiation pressure could be a problem. If the laser power fluctuates, the

radiation pressure of the laser will also fluctuate and shake the IMC mirrors. Since the

radiation pressure is proportional to the power of the laser, even if it is not a problem at

the current laser power, there is a possibility that it becomes a problem, when the laser

power is increased. Reduction of the intensity noise is indispensable to reduce this noise.

The intensity stabilization system is being installed and it is expected to reduce this noise

to satisfy the requirement.

Although only the IMC length is controlled so far, the alignment control of the IMC is

also required. The signal for the alignment control is acquired by a method called wave

front sensing. In this method, an alignment control signal is obtained by the beat signal

between TEM00 component of the phase modulation sideband and TEM10 mode of the

carrier light. The preparation of hardware devices such as a photodetector (PD) for signal

acquisition and circuits for demodulation is completed. By the time when the O3 starts,

we need to install them and stabilize the control loop.

With respect to the beam jitter noise, it is also necessary to check whether this noise

will limit the sensitivity or not. We will evaluate the current jitter noise using the IMC,

and reduce it if it is necessary.
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A Fabry-Perot Cavity

A Fabry-Perot cavity is an optical element composed of two or more mirrors. Light inci-

dent on the Fabry-Perot cavity circulates many times inside the cavity to cause multiple

interferences. When internal light and newly incident light are aligned in phase, the light

power accumulates inside the cavity. This state is called resonance of the cavity, and

keeping the cavity on the resonance is called locking the cavity. A cavity resonates when

a round-trip phase rotation is an integral multiple of 2π, i.e., the newly incident light is

in phase with the circulating light, and this is called a resonance condition.

The Fabry-Perot cavity has frequency selectivity. By using this characteristic, it is

possible to stabilize the frequency by controlling the frequency of the laser as locking it

to the cavity resonance frequency. Also, due to the relatively long storage time of light

in the cavity, the cavity has the property of a passive filter, reducing a frequency noise

and an intensity noise in the high-frequency band. Furthermore, it has selectivity to the

spatial mode of the incident light, and the light can be mode-cleaned by passing through

the cavity.

In most of the GW detectors in the world, we use several Fabry-Perot cavities to

stabilize the laser light and to increase the sensitivity of the detector. In this chapter, we

show the properties of a Fabry-Perot cavity.

A.1 Expression of the light

A.1.1 Parameters for the light expressions

To understand the principle of a Fabry-Perot cavity, first, consider how to express light in

equations. Here, to simplify, light is treated as an ideal plane wave with linear polarization.

Consider light propagating in the positive direction of the x axis. This light can be

expressed by the strength of the electric field. The strength of this electric field E(t−x/c)

is a sinusoidal function with respect to ζ = t− x/c. E(ζ) can be expressed as follows:

E(ζ) = E0 cos(Ω0ζ − ϕ0), (A.1)

= Ec cosΩ0ζ + Es sinΩ0ζ, (A.2)

=
EeiΩ0ζ + E∗e−iΩ0ζ

√
2

, (A.3)

where Ω0 is the angular frequency of the light. In this chapter we refer to angular frequen-

cies when the term frequency is used. These three equations all represent the electric field

of the light with either two complex or two real parameters. Equation (A.1) is a simple

representation of a wave and E0 and ϕ0 are called an amplitude and a phase, respectively.

117



A FABRY-PEROT CAVITY

Equation (A.2) is a representation using real parameters Ec and Es, called quadrature

amplitudes and Eq. (A.3) uses a complex amplitude, E . The relationship between the

parameters can be written as 　

E0 =
√

E2
c + E2

s =
√
2|E|, tanϕ0 = Es/Ec = argE ,

Ec =
E + E∗
√
2

=
√
2Re[E ] = E0 cosϕ0, Es =

E − E∗

i
√
2

=
√
2Im[E ] = E0 sinϕ0, (A.4)

E =
Ec + iEs√

2
=

E0√
2
eiϕ0 .

Figure A.1 shows these parameters on a complex plane. In this way, the electric field

of the light is expressed using a vector on the complex plane, which is called a phasor

diagram.

The electromagnetic wave as a plane wave is a function depending only on the argument

ζ. Therefore, even if only the point of x = 0 is considered and let E(ζ) ≡ E(t), generality

is not lost. 　

Figure A.1: Parameters in a phasor diagram. The red solid vector represents the light
rotating at the frequency Ω0 and the red dashed vector represents the initial state of the
light. The coordinate system represented by the green arrows consisting of quadrature
amplitudes turns with the light. From this, it can be considered that the quadrature
amplitude is the magnitude of each component in the coordinate system in which the
vector representing the light stands still.

A.1.2 Propagation of the light

Then, we consider how each parameter changes due to light propagation. Let the electric

fields of the light at two spatially separated points x1 = 0 and x2 = L be E(0)(t) and

E(L)(t), then obviously E(L)(t) = E(0)(t− L/c). Therefore, the complex amplitude E can

be easily denoted as 　

E (L) = e−iΩ0L/cE (0). (A.5)
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Also, the quadrature amplitude E = (Ec, Es)T can be written as ,

E (L) =

 cosϕL sinϕL

− sinϕL cosϕL


E (0)

c

E (0)
s

 = R(−ϕL)E (0), (A.6)

where ϕL = Ω0L/c, and R(θ) is a rotation matrix in the quadratic plane. Furthermore,

consider the case where the propagation distance L is sufficiently shorter than the wave-

length λ. In this case, the change in the quadrature amplitude and the complex amplitude

can be written as

E(L) = (1− iϕL)E
(0), (A.7)

E (L) =

 1 ϕL

−ϕL 1

E (0)

= (I + δR(−ϕL))E (0), (A.8)

where δR(−ϕL) is a matrix showing how much the quadrature amplitude has changed

during propagation from the start point to the end point .

Consider the case where the light whose frequency changes by δΩ(t) around Ω0 prop-

agates the distance L. The electric fields can be written as

E(0)(t) =
Eei(Ω0+δΩ(t))t + E∗e−i(Ω0+δΩ(t))t

√
2

, (A.9)

E(L)(t) =
Eei(Ω0+δΩ(t−L/c))(t−L/c) + E∗e−i(Ω0+δΩ(t−(L/c)))(t−L/c)

√
2

. (A.10)

Here, assuming that the frequency change δΩ(t) is sufficiently slow with respect to the

propagation time L/c. Then, δΩ(t − L/c) ≃ δΩ(t), and from Eq. (A.10), E (L)(t) can be

derived as

E (L)(t) = exp(−i(Ω0 + δΩ(t))
L

c
)E (0)(t)

= exp

(
−iΩ0(1 +

δΩ(t)

Ω0

)
L

c

)
E (0)(t). (A.11)

Therefore, the frequency change can be regarded as the propagation of the additional

distance of (δΩ(t)/Ω0)L

A.1.3 Modulation

In this section, we consider how the parameters change when the light is modulated.

Consider a light with frequency Ω0, amplitude E0, initial phase ϕ0 = 0, and modulate this
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light. This light before the modulation can be expressed as 　

Ecar(t) = E0 cosΩ0t = Re[E0eiΩ0t]. (A.12)

Hereafter this light is called the carrier light. There are two modulations, amplitude

modulation and phase modulation. Consider how each modulation is represented.

Amplitude modulation

Let the amplitude-modulated electric field be EAM(t), which is modulated at a single

frequency of ω. Then, the electric field can be written as 　

EAM(t) = E0(1 + ϵm cos(ωt+ ϕm)) cosΩ0t, (A.13)

where Ω0 ≫ ω. ϵm is called the modulation depth and represents the modulation strength.

Typically, ϵm ≪ 1. By transforming Eq. (A.13), we can write

EAM(t) = Re[E0e−iΩ0t +
E0ϵm
2

e−iϕme−i(Ω0+ω)t +
E0ϵm
2

eiϕme−i(Ω0−ω)t]. (A.14)

From this equation, light modulated in intensity has a component that oscillates at the

frequency Ω0 and components oscillating at Ω0 ±ω that are separated by the modulation

frequency around the carrier frequency. These components standing on both sides of

the carrier light are called sidebands. A representation of the state of this light by a

phasor diagram is shown in Fig. A.2. Since the axes in Fig. A.2 represent quadrature

components, the vector representing the carrier light does not rotate. In contrast, each

sideband rotates at ±ω. Each sideband is called upper sideband or lower sideband.

When such a modulation is applied, the complex amplitude and the quadrature am-

plitude can be written as

　

EAM(t) =
E0√
2
(1 + ϵm cos(ωt+ ϕm)), (A.15)

Ec,AM(t) = E0(1 + ϵm cos(ωt+ ϕm)), (A.16)

Es,AM = 0. (A.17)

When amplitude modulation is applied, the effect appears in the cosine part of the quadra-

ture phase component.

By generalizing the above results, we can get the expression of an amplitude-modulated

light by an arbitrary modulation function A(t) =
∫∞
−∞

dω
2π
Ã(ω)e−iωt, where Ã(ω) is the

Fourier transform of A(t). The electrical field of the amplitude-modulated light can be
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written as

EAM(t) = Re
[
E0(1 + ϵm(t))e

−iΩ0t
]
.

(A.18)

Here, the quadrature amplitude is derived as

Ec,AM(t) = E0(1 + ϵm

∫ ∞

−∞

dω

2π
Ã(ω)e−iωt). (A.19)

Therefore, the Fourier transform of the quadrature amplitude Ẽc,AM(ω) can be written as

Ẽc,AM(ω) = ϵmE0Ã(ω), (A.20)

Figure A.2: Schematic view showing the amplitude modulation by a phasor diagram. By
the rotation of the sideband, the amplitude modulation is represented.
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Phase modulation

Next, phase modulation is considered in the same way. Considering phase modulation

at a single frequency ω, an electric field EPM can be written as 　

EPM(t) = E0 cos(Ω0t+ δm cos(ωt+ ϕm))

= Re[E0eiΩ0te−iδm cos(ωt+ϕm)], (A.21)

where δm ≪ 1. Here, eiδm cos(ωt+ϕm) can be expanded with Bessel functions of the k-th-

order Jk(δm) as

eiδm cos(ωt+ϕm) =
∞∑

k=−∞

ikJk(δm)e
ik(ωt+ϕm). (A.22)

Here

J0(δm) = 1− δ2m
4

+O(δ4m), (A.23)

J1(δm) =
δm
2

+O(δ3m), (A.24)

and Jk(δm) =
1

k!

(
δm
2

)k

+O(δkm + 2). (A.25)

Then Eq. (A.21) can be approximated to the first-order term of δm as

EPM(t) ≃ Re[E0eiΩ0t + i
δmE0
2

eiϕmei(Ω0+ω)t + i
δmE0
2

e−iϕmei(Ω0−ω)t]. (A.26)

As in the amplitude modulation, it can be seen that the sidebands are established around

the carrier frequency Ω0 even when phase modulation is applied. Figure A.3 shows these

phasor diagrams.

The complex amplitude and quadrature amplitude when phase modulation is applied

can be written as

EPM(t) =
E0√
2
eiδm cos(ωt+ϕm), (A.27)

Ec,PM(t) = E0 cos[δm cos(ωt+ ϕm)] ≃ E0, (A.28)

Es,PM(t) = E0 sin[δm cos(ωt+ ϕm)] ≃ δmE0 cos(ωt+ ϕm). (A.29)

It can be seen that the phase modulation appears in the sine component, whereas the

amplitude modulation appears in the cosine component of the quadrature amplitude as

in Eq. (A.16). From this, the two quadrature components are called amplitude and phase

components, respectively.
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Figure A.3: Schematic view showing phase modulation by phasor diagram. Light fluctu-
ates in the phase direction by the sideband.

We can generalize the above results and obtain the modulated light with an arbitrary

modulation function Φ(t) =
∫∞
−∞

dω
2π
Φ̃(ω)e−iωt

EPM(t) = Re
[
E0eiδmΦ(t)e−iΩ0t

]
= Re

[
E0(1 + iδmΦ(t))e

−iΩ0t
]
.

(A.30)

Therefore, the quadrature amplitude is expressed by using the Fourier transform Φ(ω) of

Φ(t) as

Es,PM(t) ≃ δmE0
∫ ∞

−∞

dω

2π
Φ̃(ω)e−iωt. (A.31)

Therefore, the Fourier transform of the quadrature amplitude Ẽs,PM(ω) can be written as

Ẽs,PM(ω) = δmE0Φ̃(ω). (A.32)
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A.1.4 Noise of the laser light

In this section, we show how noises of the laser source are expressed. In the discussions

so far, the laser light has been treated as an ideal single frequency light, but the actual

laser light includes intensity fluctuations and frequency fluctuations. We can write such

an actual laser electric field using Eq. (A.1) as

E(t) =(E0 + an(t)) cos(Ω0t+ ϕ0 + ϕn(t))

=(E0 +
∫ ∞

−∞

dω

2π
ãn(ω)e

−iωt) cos(Ω0t+ ϕ0 +

∫ ∞

−∞

dω

2π
ϕ̃n(ω)e

−iωt), (A.33)

where an(t) is an intensity noise and ϕn(t) is a phase noise, and ã(ω) and ϕ̃(ω) are Fourier

components of each noise. Note that a frequency noise δνn(t) can be derived from the

phase noise as

δνn(t) =
1

2π

∂ϕn(t)

∂t
. (A.34)

From Eq. (A.33), the laser intensity and phase noise can be regarded as the amplitude

modulation and the phase modulation for the laser light as the carrier light, respectively.

In other words, it means that sidebands are generated by the intensity noise and the

frequency noise. As we have seen, a quadrature amplitude expression is convenient to

express the the modulations. Furthermore, it is easy to calculate the propagation of

quadrature amplitude with a matrix calculation. Therefore, the quadrature amplitude

expression is the most suitable for considering the laser noise. Hereafter, let noises in the

quadrature amplitude expression be ec(t), es(t), respectively. Their Fourier expansion can

be written as

ec,s(t) =

∫ ∞

−∞

dω

2π
ẽc,s(ω)e

−iωt, (A.35)

where ẽc,s are the Fourier components of ec,s. The relationship between an(t), ϕn(t) and

ec(t), es(t) can be obtained from Eq. (A.4).

Consider how this laser noise propagates through free space. Regarding propagation

of a carrier light, it is the same as shown in Appendix A.1.2. However, a correnction is

necessary for the noise sideband, since the frequency is different from the carrier frequency

by the sideband frequency ω. The strength of the noise electric field δEnoise can be written

as

δEnoise(t) = ec(t) cosΩ0t+ es(t) sinΩ0t. (A.36)

When the carrier light travels a distance L, the change in the intensity of the noise electric

field can be derived as

δE
(L)
noise(t) = δE

(0)
noise(t− L/c). (A.37)

From this and Eq. (A.35), propagation of the noise sideband at the sideband frequency ω
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can be written as

ẽ(L)(ω) = e−iωL/c

 cosϕL sinϕL

− sinϕL cosϕL

 ẽ(0)(ω) = e−iωL/cR[−ϕL]ẽ
(0)(ω). (A.38)

Compared with the carrier light, the phase is shifted by eiωL/c. Therefore, we must

compute the phase shift for each frequency component when we consider the propagation

of the sidebands.

A.1.5 Reflection from a mirror

Next, we show how the reflection from a mirror can be expressed. Assume an ideal

mirror without loss, and define the electric field of an incident light, a reflected light, the

reflectance and the transmittance on each surface as shown in Fig. A.4.

Figure A.4: Schematic view showing the reflection from a mirror. Ein
1 and Ein

2 are electric
fields of incident beams from the left side and the right side, respectively. Eout

1 and Eout
2

are electric fields of outcoming beams from the left side and right side, respectively. r
and r′ are the reflectances of the left side and the right side, respectively. t and t′ are the
transmittances of the left side and the right side, respectively.

The relationship between the incident light and the reflected light can be expressed by

using a 2× 2 matrix asEout
1

Eout
2

 =

r t

t r′


Ein

1

Ein
2

 = M

Ein
1

Ein
2

 . (A.39)

We can characterize the mirror by the matrixM . r, t, r′, and t′ are the complex reflectance

and transmittance of the mirror. From the energy conservation, these must satisfy the
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following relationships

|r| = |r′|, |t| = |t′|, |r|2 + |t|2 = 1, r∗t′ + r′t∗ = 0, r∗t+ r′t′∗ = 0. (A.40)

In order to satisfy Eq. (A.40), the matrixM needs to be unitary. The matrixM satisfying

Eq. (A.40) is not uniquely determined and has a degree of freedom. So we will use the

following matrix

M =

−
√
R

√
T

√
T

√
R

 , (A.41)

where R = |r|2 and T = |t|2 and they are called the power reflectance and the power

transmittance, respectively.

Consider how the quadrature phase component changes due to mirror reflection. From

a simple calculation, the relationship between the incident light and the reflected light is

calculated as

Eout
1c

Eout
1s

Eout
2c

Eout
2s


=

Eout
1

Eout
2

 =



−
√
R 0

√
T 0

0 −
√
R 0

√
T

√
T 0

√
R 0

0
√
T 0

√
R





E in
1c

E in
1s

E in
2c

E in
2s


= M

E in
1

E in
2

 . (A.42)

Also, sidebands are reflected in the same way, and frequency components can be written

as 

ẽout1c

ẽout1s

ẽout2c

ẽout2s


=

ẽout
1

ẽout
2

 =



−
√
R 0

√
T 0

0 −
√
R 0

√
T

√
T 0

√
R 0

0
√
T 0

√
R





ẽin1c

ẽin1s

ẽin2c

ẽin2s


≡ M

ẽin
1

ẽin
2

 . (A.43)

Next, when the mirror moves, what kind of change will occur in the reflected light is

considered. Consider a case where a lossless mirror with a reflection matrix M moves as

much as x(t) as shown in Fig. A.5. Movement of the mirror is assumed to be sufficiently

small compared to the wavelength of the light. The reflected light can be written as

Eout
1 (t) = −

√
REin

1 (t− 2x(t)/c) +
√
TE in

2 (t),

Eout
2 (t) =

√
TEin

1 (t) +
√
REin

2 (t+ 2x(t)/c). (A.44)

These equations show that the reflection by the moving mirror can be expressed by a
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combination of reflection by the fixed mirror and light propagation. Since x(t) ≪ λ, the

response of the carrier light can be written as

Eout
1

′

Eout
2

′

 = M

(I + δR[−2Ω0x̃(ω)/c])E in
1

(I + δR[2Ω0x̃(ω)/c])E in
2

 = M

E in
1

E in
2

+
2Ω0

√
R

c
x(t)



E in
1s

−E in
1c

E in
2s

E in
2c



=

Eout
1

Eout
2

+

R1

R2

x(t). (A.45)

Here,R1 andR2 are coefficients representing the response of the light to mirror movement.

From Eq. (A.45), the carrier light is not changed from the reflection by the fixed mirror,

but a new sideband is induced by the movement of the mirror. The Fourier transform of

x(t) can be written as

x(t) =

∫ ∞

−∞

dω

2π
x̃(ω)e−iωt. (A.46)

In the same way, the noise sideband can be derived from Eq. (A.43) asẽout
1 (Ω)

ẽout
2 (Ω)

 = M

ẽin
1 (Ω)

ẽin
2 (Ω)

+

R1

R2

 x̃(Ω). (A.47)

Considering the quadrature amplitude coordinate where the phase component of the

carrier light Es is 0, we see from a simple calculation that the effect of the moving mirror

appears only in the phase component. Therefore, mirror movement appears as the phase

modulation.
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Figure A.5: Reflection on the moving mirror

A.2 Fabry-Perot cavity

We have seen how a light changes in optical elements. Here we consider how the electric

field changes in a Fabry-Perot cavity.

A.2.1 Electric field inside of a cavity

First, consider the relationship between the light incident on the Fabry-Perot cavity and

the light emitted from the cavity. The two mirrors constituting the cavity are called the

front mirror and the end mirror. It is assumed that the front mirror is a fixed mirror and

the end mirror is a movable one. Let the length of the cavity be L. Consider that a laser

light with frequency Ω0 and quadrature amplitude Ein is incident on a cavity. Moreover,

assume that the incident light has noises as in Eq. (A.33), and let its Fourier component

at frequency ω be ẽin. Let the quadrature amplitude of the reflected and the incident light

of the front mirror inside the cavity be EF1 and EF2, the reflected light and the incident

light of the end mirror inside the cavity be EE1 and EE2, the light reflected from the cavity

be Er, transmitted through the cavity be Et. The ẽα represents the sideband at each

point, where α stands for one of F1, F2, E1, E2, r, and t. Let the change of position of

the end mirror be x(t), and the light transmittance and reflectance of the front mirror

and the end mirror be tF , rF , tE, and rE. The mirrors are assumed to be lossless. The

sign of the reflectance of each mirror surface is set as shown in Fig. A.6. The reflection
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matrices MF and ME of the front mirror and end mirror can be written as 　　

MF =



−rF 0 tF 0

0 −rF 0 tF

tF 0 rF 0

0 tF 0 rF


,ME =



rE 0 tE 0

0 rE 0 tE

tE 0 −rE 0

0 tE 0 −rE


. (A.48)

EF1 is the electric field when EE1 propagates the distance of L. Let the difference

between the resonance frequency of the cavity and the laser frequency be Ω. From

Eqs. (A.35) and (A.38)

EE1(Ω) = R
[
−ΩL

c

]
EF1(Ω), (A.49)

ẽ
(Ω)
E1 (ω) = e−iωL/cR

[
−ΩL

c

]
ẽ
(Ω)
F1 (ω). (A.50)

Changes in EE2(ẽE2) to EF2(ẽF2) are the same .

In the cavity, the incident light is reflected by the end mirror. If the end mirror is

moving, a new sideband appears as seen in Appendix A.1.5.

Based on the above discussion, we can formulate the equations for the reflection on

the end mirror as EE2(Ω)

E t(Ω)

 = ME

EE1(Ω)

0

 =

rEEE1(Ω)

tEEE1(Ω)

 , (A.51)

ẽ
(Ω)
E2 (ω)

ẽ
(Ω)
t (ω)

 = ME

ẽ
(Ω)
E1 (ω)

0

+

R1

R2

 x̃(ω)

=

rEẽ
(Ω)
E1 (ω) +R1x̃(ω)

tEẽ
(Ω)
E1 (ω)

 , (A.52)

where E represents the quadrature amplitude for each carrier light, and

R1 =
2ΩrE
c

 Es,E1(Ω)

−Ec,E1(Ω)

 . (A.53)

From Eqs. (A.49), (A.50), and (A.52), the electric field incident on the cavity and circu-
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lating through the cavity changes as

EF2(Ω) = rER
[
−2ΩL

c

]
EF1(Ω), (A.54)

ẽ
(Ω)
F2 (ω) = rEe

−2iωL/cR
[
−2ΩL

c

]
ẽ
(Ω)
F1 (ω) + e−iωL/cR

[
−ΩL

c

]
R1x̃(ω). (A.55)

The reflection on the front mirror can be written as E r(Ω)

EF1(Ω)

 = MF

E in(Ω)

EF2(Ω)

 ,

ẽ
(Ω)
r (ω)

ẽ
(Ω)
F1 (ω)

 = MF

ẽ
(Ω)
in (ω)

ẽ
(Ω)
F2 (ω)

 . (A.56)

From Eqs. (A.54), (A.55), and (A.56), the quadrature amplitude inside the cavity can be

derived as

EF1(Ω) =

(
1− rF rER

[
−2ΩL

c

])−1

tFR
[
−2ΩL

c

]
E in(Ω) (A.57)

ẽ
(Ω)
F1 (ω) =

(
1− rF rEe

−2iωL/cR
[
−2ΩL

c

])−1

,

×
(
tF e

−2iωL/cR
[
−2ΩL

c

]
ẽ
(Ω)
in (ω) + rF e

−iωL/cR
[
−ΩL

c

]
R1x̃(ω)

)
. (A.58)

Figure A.6: Schematic view showing a Fabry-Perot cavity. Ein, Er, and Et are the electric
fields of the incident, the reflected and the transmitted light, respectively. EF1, EF2, EE1,
and EE2 are electric fields inside of the cavity.
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A.2.2 The reflected and transmitted light in Fabry-Perot cavity

Next, we will consider the reflected light and the transmitted light from a cavity. Let the

incident light be Ein = (E0, 0)
t. From Eqs. (A.49), (A.51), (A.56) and (A.57), the reflected

light Er(Ω) and the transmitted light Et(Ω) can be derived as

E r(Ω) = (1− rF rER [−2ϕ])−1 (−rF + rER [−2ϕ]) Ein(Ω)

=
1

(1− rF rE)2
{
1 +

(
2F
π

)2
sin2 ϕ

}
−rF (1 + r2E) + rE(1 + r2F ) cos 2ϕ

rE(r
2
F − 1) sin 2ϕ

E0,

(A.59)

E t(Ω) = (1− rF rER [−2ϕ])−1 (tF tER [−3ϕ]) Ein(Ω)

=
tF tE

(1− rF rE)2
{
1 +

(
2F
π

)2
sin2 ϕ

}
(1− rErF ) cosϕ

(1 + rErF ) sinϕ

E0, (A.60)

where ϕ = ΩL/c and the finesse F is given by

F =
π
√
rF rE

1− rF rE
. (A.61)

From Eqs. (A.59) and (A.60), the reflected power Pr and the transmitted power Pt can

be derived as

Pr(Ω) = |Er(Ω)|2 =
(rE − rF )

2 + 4rF rE sin2(ΩL/c)

(1− rF rE)2
{
1 + (2F/π)2 sin2(ΩL/c)

} , (A.62)

Pt(Ω) = |Et(Ω)|2 =
(tF tE)

2

(1− rF rE)2
{
1 + (2F/π)2 sin2(ΩL/c)

} . (A.63)

The internal power of the cavity is maximized when the transmitted power reaches a

maximum. From Eq. (A.63), when Ω = 0, the transmitted power is maximum. As Ω

increases, the transmitted power decreases. Furthermore, when Ω shifts by ΩFSR = πc/L,

the resonance condition is satisfied again and the transmitted power reaches the maximum

again. This frequency separation is called the free spectral range (FSR). When the cavity

is on resonance, the transmitted power and the reflected power can be derived as

Er =
−rF + rE
1− rF rE

E0

0

 , (A.64)

E t =
tF tE

1− rF rE

E0

0

 . (A.65)
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From Eq. (A.63), we can calculate the full width at half maximum ΩFWHM of the resonance

peak by solving the equation below

1

1 + (2F/π)2 sin2(ΩFWHML/c)
=

1

2
. (A.66)

Note ΩFWHML/c ≪ 1 in general, then ΩFWHM can be written as

ΩFWHM =
1

F
ΩFSR. (A.67)

F is called finesse which is the ratio of ΩFSR to ΩFWHM. It is a quantity representing

the sharpness of the resonance peak. Figure A.7 shows the reflectance of cavities with

finesse of 10 and 100. As shown in Eq. (A.61) finesse is determined by the reflectance of

the mirrors of the cavity. A cavity composed of the mirror having the higher reflectance

has the higher finesse. Furthermore, from Eq. (A.57), the internal power of higher finesse

cavity is higher.

Figure A.7: Plots of the absolute value (upper) and the phase (lower) of the complex
reflectance of a Fabry-Perot cavity. Blue curves are for the cavity with finesse of 100 and
red curves are for one with finesse of 10. Horizontal axis represents the angular frequency
of the laser normalized by ΩFSR, and n is an integer.

A.2.3 Passive filtering of Fabry-Perot cavity

As we have seen, the intensity noise and the frequency noise of laser light can be expressed

by using sidebands imposed on the laser light. Here, we show how the noise sideband of

a light incident on the cavity changes in an output light.
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When Ω = nΩFSR where n is an integer, the Fourier component of the noise sideband

in the outgoing light ẽt(ω) can be obtained from Eq. (A.58) as

ẽt(ω) =
tF tEe

−iωL/cẽin(ω) + rF tEe
−2iωL/cR1x̃(ω)

1− rF rEe−2iωL/c
. (A.68)

From Eq. (A.68), we can obtain the frequency response Hcav
FP (ω) of the sideband amplitude

from the incident light to the outgoing light as

Hcav
FP (ω) =

tF tEe
−iωL/c

1− rF rEe−2iωL/c
. (A.69)

From Eq. (A.36), the noise on the outgoing light from the cavity can be derived as

δEt,noise = et,c(t) cosΩ0t+ et,s(t) sinΩ0t

=

∫ ∞

−∞

dω

2π
ẽt,c(ω)e

−iωt cosΩ0t+

∫ ∞

−∞

dω

2π
ẽt,s(ω)e

−iωt sinΩ0t

=

∫ ∞

−∞

dω

2π
Hcav

FP (ω)(ẽin,c(ω) sinΩ0t+ ẽin,s(ω) cosΩ0t)e
−iωt

=

∫ ∞

−∞

dω

2π
Hcav

FP (ω)Ẽin,noise(ω)e
−iωt. (A.70)

where Ẽin,noise(ω) is the Fourier component of the noise on the incident light. Therefore,

Hcav
FP (ω) is the frequency response of the noise from the incident light to the outgoing light

from the cavity. When ωL/c ≪ 1, that is, ω ≪ ΩFSR, the absolute value of the frequency

response Hcav
FP (ω) can be obtained as

|Hcav
FP (ω)| =

tF tE
1− rF rE

1√{
1 + (2F/π)2 sin2(ωL/c)

}
≃ tF tE

1− rF rE

1√
1 + ((2F/π)× (ωL/c))2

=
tF tE

1− rF rE

1√
1 + (2ω/ΩFWHM)2

. (A.71)

From Eq. (A.71), the Fabry-Perot cavity acts as a first-order low-pass filter with a cutoff

frequency ωc = ΩFWHM/2 for the noise sideband. Therefore, the frequency noise and the

intensity noise of the light transmitted through the cavity are reduced in the frequency

band above the cutoff frequency ωc. This is because the noise with periods shorter than

the storage time of the cavity is averaged in the cavity. The storage time τ can be obtained

from the cutoff frequency as

τ = 1/ωc. (A.72)

The cutoff frequency ωc is often called a cavity pole frequency.
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A.2.4 Application of a Fabry-Perot cavity

The Fabry-Perot cavity is used as a frequency reference because of its frequency selectivity.

When the resonance frequency of the cavity is sufficiently stable, the frequency of the laser

can be stabilized by controlling the laser frequency to follow the resonance frequency.

As we will see below, the Fabry-Perot cavity also has selectivity for the laser’s spatial

mode. Therefore, it is possible to clean up the spatial mode of the light by letting the

light resonate in and pass through the cavity. A cavity used for such an application is

called a mode cleaner.

A beam jitter can be expressed as an intensity fluctuation of the first-order spatial

mode. Therefore, the beam jitter can be reduced by passing the light through the cavity

and filtering the first-order spatial mode.

A.3 Control of Fabry-Perot cavity

Usually, when using a cavity, the length of the cavity or the input light frequency has

to be controlled to maintain the resonance state. As will be described below, it can be

seen that changes in the cavity length or the laser frequency are included in the phase

component of the reflected light. Therefore, to obtain an error signal, it is necessary to

read the phase component. Pound, Drever, Hall, et al. have devised a readout technique

called the Pound-Drever-Hall method (PDH method) [57]. In this section, we describe

the signal extraction for the cavity control by the PDH method.

A.3.1 Frequency response of Fabry-Perot cavity

Before discussing the PDH method, let’s see how the reflected light changes when the

laser frequency deviates from the resonance frequency or when the cavity length changes.

First, let’s consider what signal can be obtained when the cavity length L changes.

Assume that the cavity length fluctuates around the resonance. Information on the change

in the cavity length is included in the sidebands of the reflected light, in which the Fourier

component of the sideband can be derived from Eq. (A.58) as

ẽr(ω) =
(−rF + rEe

−2iωL/c)ẽin(ω) + tF e
−iωL/cR1x̃(ω)

1− rF rEe−2iωL/c
. (A.73)

Assuming the electric field of the incident light is E in = (E0, 0)
t, then from Eqs. (A.53)

and (A.55)

R1 =
2ΩrE
c

tF
1− rF rE

 0

−E0

 . (A.74)
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Therefore, when the cavity length changes, the phase component of the reflected light

changes. Assuming that ω ≪ ΩFSR and rF ∼ rE ∼ 1, the frequency response from the

cavity length change to the reflected light HL
FP(ω) can be obtained as

HL
FP(ω) =

er,s(ω)

x̃(ω)
= −2ΩrE

c

tF
1− rF rE

tF e
−iωL/cE0

1− rF rEe−2iωL/c
(A.75)

≃ 2Ω

c

t2F rE
1− rF rE

1− 2iωL/c

1− rF rE(1− 2iωL/c)
E0

≃ E0

xc

Hcav
LP (ω), (A.76)

where xc is a length representing a width of the resonance peak,

xc =
λ

2F
, (A.77)

where λ is the wavelength of the light. Hcav
LP (ω) is a transfer function of a low pass filter,

Hcav
LP (ω) =

1

iω/ωc + 1
. (A.78)

Next, consider the case where the frequency of the incident light changes. From Ap-

pendix A.1.2, when the laser frequency Ω fluctuates around the resonance frequency Ω0 by

δΩ(ω), it can be regarded as the same as when the cavity length fluctuates with δΩ̃(ω)
Ω

L.

Therefore, if we use the approximation that ω ≪ ωc, the frequency response from the

laser frequency fluctuation to the reflected light can be derived as

HF
FP(ω) =

L

Ω
HL

FP(ω) =
E0

ωc

Hcav
LP (ω). (A.79)

A.3.2 Pound Drever Hall method

As we have seen, a signal for controlling a cavity is included in a phase component of

the reflected light. To read the phase component, a phase modulation is applied to the

incident light with a modulation frequency ωm and a modulation index δm, and a beat

signal between sidebands and carrier lights is measured. The incident light can be written

from Eq. (A.29) as

Etot
in =

E0

0

+

 0

δmE0 cosωmt

 = E in + em, (A.80)

where E in is the carrier light and em is a sideband of the phase modulation. Note that

the incident light also has noise sidebands omitted in Eq. (A.80)

For the sidebands applied for signal extraction, we choose the modulation frequency to

satisfy ωm ≫ ωc. Therefore, when the carrier light is resonating, the sideband for signal
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extraction is not resonant. In this case, almost entirely reflected by the front mirror,

and the cavity reflectance for the sideband is approximately rF . Let the frequency of

the incident light fluctuate with δΩ(t) around the resonance frequency Ω0, and the cavity

length fluctuates by x(t) around L.

Fourier transform of the cavity length fluctuation x(t) and the laser frequency fluctu-

ation δΩ(t) can be written as

x(t) =

∫ ∞

−∞

dω

2π
x̃(ω)e−iωt, (A.81)

δΩ(t) =

∫ ∞

−∞

dω

2π
δΩ̃(ω)e−iωt. (A.82)

From Eqs. (A.64), (A.76), and (A.79), the reflected light E tot
r can be obtained as

E tot
r =

−rF + rE
1− rF rE

E in +

∫ ∞

−∞

dω

2π

(
HL

FPx̃(ω) +HF
FPδΩ̃(ω)

)
e−iωt

0

1

+ rFem

=
−rF + rE
1− rF rE

E in + E0

∫ ∞

−∞

dω

2π

(
x̃(ω)

xc

+
δΩ̃(ω)

ωc

)
Hcav

LP (ω)e−iωt

0

1

+ rFem

= E r + es + rFem, (A.83)

where E r is the carrier light in the reflected light from the cavity and es is a signal

sideband. The reflected power P tot
r can be derived as

P tot
r =

∣∣E tot
r

∣∣2 = |E r|2 + |es + rFem|2

=

(
−rF + rE
1− rF rE

E0

)2

+ |es|2 +RF (δm cosωmt)
2E2

0

+ 2δmE
2
0 cosωmt

∫ ∞

−∞

dω

2π

(
x̃(ω)

xc

+
δΩ̃(ω)

ωc

)
Hcav

LP (ω)e−iωt. (A.84)

In Eq. (A.84), the first and the second terms are static components, the third term is

a component oscillating at the frequency of 2ωm, and the fourth term is a component

oscillating at the frequency of ωm which contains information on the cavity length and

the laser frequency. Therefore, to obtain the error signal, the output of the PD detecting

the reflected light is demodulated with cosωmt. The demodulated signal P demod
r can be

derived as

P demod
r = P tot

r cos(ωmt) = δmE
2
0

∫ ∞

−∞

dω

2π

(
x̃(ω)

xc

+
δΩ̃(ω)

ωc

)
Hcav

LP (ω)e−iωt + (AC term),

(A.85)

where (AC term) includes component that oscillates at frequency 2ωm. By removing this
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oscillation component with a low pass filter, the error signal ϵ(t) can be obtained. The

Fourier component of the error signal can be written as

ϵ̃(ω) =
√

2P0Ps

(
x̃(ω)

xc

+
δΩ̃(ω)

ωc

)
Hcav

LP (ω), (A.86)

where P0 = E2
0 is the direct current (DC) power of the incident light, and Ps = (δmE0)

2/2

is the DC power of the modulation sidebands. The reflectivity of the cavity and the error

signal are plotted in Fig. A.8. The central signal in the plot corresponds to when the

carrier light resonates, and similar signals seen on the left and the right are generated

when the lower sideband and the upper sideband resonate, respectively.

Figure A.8: Plots of the reflectance (upper) and the error signal of a Fabry-Perot cavity
by a PDH method (lower). Horizontal axis is the deviation from a resonance frequency
in unit of ΩFSR. In this calculation, the modulation frequency is set to ΩFSR/10
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A.4 Mode cleaning

Because of the spatial mode selectivity of a cavity, it can be used as a mode cleaner. The

nature of this mode cleaning is also used to reduce a beam jitter. In this section, we

consider a spatial mode of the light and see how the cavity cleans it.

A.4.1 Spatial mode

Up to here, a laser light has been considered as a one-dimensional ideal plane wave.

However, in reality, it is a beam with a transverse spatial profile. The wave equation

which the electric field u should satisfy can be written as

∆u− k2u = 0. (A.87)

When it is solved using the paraxial approximation [58], we obtain a solution called a

Gaussian beam, since its spatial distribution of the intensity in the fundamental mode has

a Gaussian distribution. The normalized transverse intensity distribution of a Gaussian

beam propagating in the z-axis direction can be written as

U00(r, z) =

√
2

w(z)2
exp

(
−r2

w(z)2
− ikz − ik

r2

2R(z)
+ iζ(z)

)
, (A.88)

where r is the distance from the central axis of the beam and k is the wave number. w(z)

is the radius of the beam spot, at which the strength of the electric field is 1/e times of

the value at the center r = 0 where e is Napier’s constant. w(z) can be written as

w(z)2 = w2
0

[
1 +

(
λz

πw2
0

)2
]
, (A.89)

where λ is the wavelength of the laser light, and w(z) has the minimum value w0 called

waist size at z = 0. R(z) represents the radius of curvature of the wavefront and is given

by

R(z) = z

[
1 +

(
πw2

0

λz

)2
]
. (A.90)

The beam radius w(z) can be regarded as being proportional to z when z ≫ zR, where

zR = πw2
0/λ. This means that the beam can be regarded as a cone at the region far from

the beam waist. The angle between the line r = w(z) and the beam center axis r = 0 is

called the divergence angle of the beam, and it is given as

α0 =
λ

πw0

. (A.91)

ζ(z) is called the gouy phase and represents the deviation of the phase from the plane
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wave e−ikz. It can be written as

ζ(z) = tan−1

(
λz

πw2
0

)
. (A.92)

The degrees of freedom necessary to describe a Gaussian beam are only the waist size

w0 and the waist position, in addition to the wave number and the intensity. Therefore,

the spatial mode of the laser can be described by the waist size and the waist position.

These parameters change when transmitting through a lens or reflected by a curved mirror.

Equation (A.87) has a general solution as

Ulm(x, y, z) = Ul(x, z)Um(y, z)exp{−ikz + i(l +m+ 1)ζ(z)}, (A.93)

where l and m are the orders of mode on the x and y axes, and they represent the number

of nodes on each axis. Here,

Ul(x, z) =

(
2

πw(z)2

)1/4(
1

l!2l

)1/2

Hl

(√
2x

w(z)

)
exp

[
−
(

x

w(z)

)2

− i
k

2R(z)
x2

]
, (A.94)

where Hl is the lth-order Hermite polynomial. Modes in which the Hermite polynomi-

als represent the intensity distribution of the beam cross-section are called a Hermite

Gaussian modes. Equation (A.93) can be rewritten by using the fundamental mode as

Ulm(x, y, z) =

√
1

2ll!2mm!
Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp[i(l +m)ζ(z)]U00(x, y, z)]. (A.95)

Hermite Gaussian modes are denoted as TEMlm (transverse electromagnetic) modes

by using its orders l and m. Note that in a higher-order TEMlm mode, the phase rotates

by an extra amount (l +m)ζ(z) compared to the TEM00 mode. Regarding the TEM00,

TEM10, and TEM20, the cross-sections on the zx plane are shown in Figs.A.9, A.10 ,and

A.11, respectively.
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Figure A.9: Cross-section of the amplitude of TEM00 mode. The horizontal axis is in
unit of the wavelength of the light, and the vertical axis is in unit of the waist size of the
beam.

Figure A.10: Cross-section of the amplitude of TEM10 mode. The horizontal axis is in
unit of the wavelength of the light, and the vertical axis is in unit of the waist size of the
beam.
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Figure A.11: Cross-section of the amplitude of TEM20 mode. The horizontal axis is in
unit of the wavelength of the light, and the vertical axis is in unit of the waist size of the
beam.

A.4.2 Resonant spatial mode of a Fabry-Perot cavity

When thinking in one dimension, only the frequency was considered in the resonance

condition. However, in reality, it is necessary to satisfy the resonance condition also for

the spatial mode. For a cavity to resonate, it is necessary for the spatial mode of the

incident light to coincide with the wavefront of the light after traveling around the cavity.

Here, we use the complex beam parameter q to describe the eigenmode of the cavity. It

can be written as

q(z) = z + i
πw2

0

λ
= z + izR, (A.96)

where zR = πw2
0/λ is called the Rayleigh length. This q represents the spatial mode of

the beam. Taking the reciprocal of q, then

1

q(z)
=

1

R(z)
− i

λ

πw2(z)
. (A.97)

Using q, the radius of curvature R of the wavefront and the beam size w(z) can be easily

calculated.

Consider the eigenmode of the cavity using the complex beam parameter q. Suppose

q changes from q1 to q2 when the light is reflected by a mirror or passes through a lens.
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This transformation is described in a matrix form asq2

1

 = a

A B

C D


q1

1

 . (A.98)

This can be solved as

q2 =
Aq1 +B

Cq1 +D
. (A.99)

This matrix is called an ABCD matrix.

Let us see the ABCD matrix of each optical component or propagation. Firstly con-

sidering when light propagates for a distance of L. q2 can be written as

q2 = L+ q1. (A.100)

Therefore, the ABCD matrix can be written as

Tp(L) =

1 L

0 1

 . (A.101)

Next, consider the case where the light passes through a lens with a focal length of f .

By passing through the lens, the light converts the spherical wavefront with the radius of

curvature R1 into a spherical wavefront with the radius of curvature R2. The relationship

between R1 and R2 can be written as [59]

1

R2

=
1

R1

− 1

f
. (A.102)

Note that the beam size does not change immediately before and after the lens, then from

Eq. (A.97)

1

q2
=

1

q1
− 1

f
(A.103)

∴ q2 =
q1

−q1/f + 1
. (A.104)

Therefore, the ABCD matrix can be written as

Tlens(f) =

 1 0

−1/f 1

 . (A.105)

Finally consider a reflection by a curved mirror. The reflection from the mirror with

the radius of curvature R works in the same way as a lens with focal length f = R/2.
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Therefore, the ABCD matrix can be written as

Tmirror(R) =

 1 0

−2/R 1

 . (A.106)

Using these ABCD matrices, the ABCD matrix of travel around a Fabry-Perot cavity

with two mirrors of the radii of curvature of RF , RE and a cavity length of L can be

written as

TFP(L,RF , RE) = Tmirror(RF )Tp(L)Tmirror(RE)Tp(L). (A.107)

The eigenmode of the cavity can be obtained by calculating the eigenvector for this matrix

TFP(L,RF , RE).

When the light is incident on the cavity, it is necessary to match the spatial mode

of the light with the eigen spatial mode of the cavity. This operation is called mode

matching, and lenses or curved mirrors are used to achieve it. The coupling ratio between

the incident laser mode and the cavity eigenmode is called the mode matching ratio.

A.4.3 Spatial mode selectivity

A Fabry-Perot cavity also has selectivity for a spatial mode, not only for a frequency. This

is because the phase rotation during propagation inside a cavity depends on the order of

the mode. This property can be used to clean the spatial mode of the incident light, and

a cavity used in this application is called a mode cleaner.

Regarding an eigenmode of the cavity, let the distance from the position of the beam

waist to the front mirror and the end mirror be dF and dE, respectively. From Eq. (A.92),

the rotation of gouy phase between the mirrors can be written as

ζ0 = ζ(dE) + ζ(dF ). (A.108)

From Eq. (A.93), the resonance condition including the higher-order modes can be written

as
2L

λ
= m0 + (l +m+ 1)

ζ0
π
, (A.109)

where m0 is an integer. Therefore, unless ζ0/π is an integer, the fundamental mode and

the higher-order modes do not satisfy the resonance condition simultaneously. Therefore,

when designing a mode cleaner, one must determine the curvatures of the mirrors by

considering this point.
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A.4.4 Beam jitter reduction

Taking advantage of the mode cleaning properties of a cavity, a beam jitter can be reduced,

since the beam jitter is represented by an intensity fluctuation of the first-order mode

contained in the beam. The intensity distribution of TEM00 can be expanded around

z′ = 0 in the coordinate system (x′, y′, z′), which is shifted by δx in the x-axis direction [60]

as

U00(x, y, z)z′=0 ≃ U00(x
′, y′, 0) +

(
δx

w0

)
U10(x

′, y′, 0). (A.110)

Also, the TEM00 mode can be expanded in the coordinate system rotated with the angle

of δθ around the y axis as

U00(x, y, z)|z′=0 ≃ U00(x
′, y′, 0) + i

(
δθ

α0

)
U10(x

′, y′, 0) (A.111)

Figure A.12 shows the intensity distributions of TEM00 and TEM10, i.e., U00, U10 and

their linear combination U00 + (δx/w)U10 on the x-axis. The TEM00 translated in the

x-axis direction is represented by a linear combination of TEM00 and TEM10. Therefore,

the beam jitter is expressed by the intensity fluctuations of the first-order modes. The

cavity has the spatial mode selectivity, so the first-order mode is filtered by the cavity,

that is, the beam jitter can be reduced by passing through a mode cleaner.
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Figure A.12: Plot of the cross-section of amplitudes of TEM00, TEM10 and their linear
combination. Blue dashed line is the plot of U00 and red dashed line is that of U10. Yellow
solid line is the plot of U00 + (δx/w)U10. The linear combination is the shifted TEM00

mode.
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A.5 Noise Source in frequency stabilization

When a cavity is used as a frequency reference, a fluctuation in the cavity length causes

the noise for the frequency stabilization. Also, a quantum fluctuation of the light, a light

intensity fluctuation, etc. can be noise sources. In this section, we will consider each type

of noise.

A.5.1 Shot noise

The shot noise occurs when the light is detected by a PD. Its amplitude spectral density

(ASD) can be written as follows using the DC current IDC of the PD.

δIshot(ω) =
√

2eIDC, (A.112)

where e is the elementary charge. When the DC laser power PDC is incident on the PD,

the generated current can be written as

IDC =
eηPDC

ℏΩ0

, (A.113)

where ℏ is the reduced Planck constant, η is the quantum efficiency of the PD, and Ω is

the laser frequency. Therefore, Eq. (A.112) can be rewritten as

δPshot(ω) =

√
2ℏΩ0

η
PDC. (A.114)

The ASD of the shot noise occurring when the reflected light is detected on the PD is

δPshot =

√
2ℏΩ0

η
PPDH
DC , (A.115)

where PPDH
DC is the laser power incident on the PD at resonance. From Eq. (A.84), it can

be written as

PPDH
DC =

(
−rF + rE
1− rF rE

E0

)2

+
(δmE0)

2

2

= RFPP0 + Ps, (A.116)

where RFP is the power reflectance of the cavity, P0 and Ps are the power of the carrier

light and the sideband in the reflected light, respectively. If PPDH
DC is demodulated with
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cosωmt,

δP demod
shot = cosωmt

∫ ∞

−∞

dω

2π
δPshote

−iωt

=

∫ ∞

−∞

dω

2π
δPshote

−iωt e
−iωmt + eiωmt

2

=

∫ ∞

−∞

dω

2π
δPshote

−iωt. (A.117)

Then, the ASD of frequency fluctuation due to the shot noise can be written as

δν(ω)shot =
1

2π

δPshot

ϵ̃/δΩ

=

√
hc3

8π

√
1

η

√
RFP

Ps

+
1

P0

√
1

λ

1

F
1

L

1

Hcav
LP (ω)

, (A.118)

where h is the Plank constant, c is the speed of light, λ is the wavelength of the laser, F
and L are finesse and the length of the cavity, respectively.

A.5.2 Residual amplitude modulation noise

When amplitude fluctuations are present in the incident light at the modulation frequency

ωm, an intensity component of the carrier light rides on the error signal when demodulated,

resulting in a control noise. There are many sources of the residual amplitude modulation

(RAM). For instance, when the polarization axis of an EOM deviates from the polarization

axis of the incident light, the EOM also modulates the intensity of the light. Scattered

light can also be a RAM source. Here, we consider RAM noise.

Let the amplitude modulation index be ϵm(t). From Eq. (A.16), Eq. (A.80) can be

rewritten using the new sideband eRAM as

Etot
in = E in + em + eRAM

= E in + em +

 ϵm(t) cos(ωmt)

δmϵm(t) cos
2(ωmt)

E0. (A.119)

Then, we can obtain the reflected light intensity. Here,

2E r · eRAM = 2
−rF + rE
1− rF rE

P0ϵm(t) (A.120)

2ẽm · eRAM = 2δ2mP0ϵm(t) cos
3(ωmt)

=
3

4
δ2mP0ϵm(t) + (AC term). (A.121)

A new term δPRAM oscillating at the frequency ωm is added to Eq. (A.84). It can be
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written as

δPRAM =

(
2
−rF + rE
1− rF rE

− 3rEδ
2
mϵm(t)

4

)
P0ϵm(t) cosωmt. (A.122)

If rF and rE ∼ 1, by the demodulation with cos(ωmt) we obtain the demodulated signal

as

δP demod
RAM =

(
−rF + rE
1− rF rE

+
3rEδ

2
m

8

)
P0ϵm(t)

≃ 3δ2mϵm(t)

8
P0 (A.123)

Therefore、the RAM noise can be written as

δν(ω)RAM =
1

2π

δP demod
RAM

ϵ̃/δΩ

=
3

16
νFSR

1

F
δmϵ̃m(ω)

1

Hcav
LP

, (A.124)

where ϵ̃m(ω) is the Fourier component of RAM.

A.5.3 Residual gas noise

When gas exists in the optical path inside the cavity, the refractive index changes due to

molecular motion of gas. This causes a change in the optical path length and the effective

cavity length. Therefore, residual gas generates a noise. The change in the optical path

length due to the residual gas is expressed by the following equation [61, 55].

δlgas =
1

4π

8
√
2√
π

(n0 − 1)2

(A0/V0)u0

√
lλ

(
p

p0

)(
T0

T

)
, (A.125)

where n0 is the refractive index of the gas, A0 = 6.02 × 1023 is the Avogadro’s number,

u0 is the average speed of the molecule, V0 = 2.24 × 10−2 m3 is the volume of gas with

the amount of 1 mol under the standard state, p0 = 1 atm is the standard pressure,

T0 = 273.15 K is the standard temperature, l is the cavity length, and λ is the wave

length of the laser.

A.5.4 Seismic noise

A fluctuation of the cavity length due to seismic motion also generates a noise. When

the mirrors constituting the cavity are independent of each other, the relative vibration

spectrum of the mirror is simply the fluctuation of the cavity length. In the case of a rigid

cavity whose mirrors are fixed on a spacer, if acceleration is applied to the cavity due to

the ground vibration, the elastic modes are excited, and the cavity length fluctuates. The
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fluctuation spectrum of the cavity length due to the ground vibration can be written as

δlacc(ω) = ALa(ω), (A.126)

where a(ω) is the spectrum of the acceleration of the seismic motion, L is the cavity length,

and A is the coupling constant between the acceleration and the length fluctuation.

A.5.5 Other noise

In the case of a rigid cavity, the spacer expands or shrinks due to temperature changes,

and the cavity length is changed. This also generates noise, and it is a very slow noise

due to the thermal inertia of the spacer. Usually, a temperature sensor and a heater are

attached to the cavity, and this noise is reduced by locally controlling the temperature.

A thermal noise is also a fundamental noise source. The thermal noise is generally due

to the thermal motion of mirror substrate, mirror coatings, suspensions suspending the

mirrors or the spacer.

Furthermore, an electric noise of circuits used for control can also be a noise.
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B Fundamentals of the control theory

In this section, we briefly explain the fundamentals of the control theory. As a simplest

system, consider a negative feedback system consisting of a plant that measures a con-

trolled variable x, an actuator, and a servo filter. H,A, and F represent the frequency

response of the plant, the actuator, and the servo filter, respectavely. The block diagram

of this system is shown in Fig.B.1. δx represents a disturbance. It is the purpose of the

feedback control to keep the controlled variable x at 0 by the feedback when the controlled

variable x changes by the disturbance δx. In the case of an FSS, a controlled variable x

is a difference between a laser frequency and a resonance frequency of a cavity, while a

plant is the cavity. The disturbance δx corresponds to the cavity length change and the

frequency fluctuation of the laser, while the actuator A to a laser frequency actuator or

a cavity length actuator. An output Verr of the plant H is called an error signal, and a

servo filter output Vfb is called as a control signal or a feedback signal. In the negative

feedback system, the control signal is fed back with the sign reversed.

Figure B.1: Block diagram of the simple feedback system. H,A, and F are transfer
functions of the plant, actuator and servo filter, respectively. Verr is an error signal and
Vfb is a feedback signal.

The transfer function from the disturbance δx to the error signal Verr can be calculated

as

Verr = H(δx− AFVerr),

∴ Verr =
Hδx

1 +G
, (B.1)

where G = HAF is called an open loop gain (OLG) or open loop transfer function. If

|G| ≫ 1, then

x =
δx

1 +G

≃ δx

G
. (B.2)

On the other hand, in the case of |G| ≪ 1, Eq.B.2 can be written as x ≃ δx. If |G| is
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greater than 1, the disturbance is suppressed to 1/|G|, and if |G| is less than 1, nothing is

controlled. Therefore, a system which has larger OLG can suppress the controlled variable

x more efficiently. The frequency fUGF at which |G| = 1 is called as a unity gain frequency

(UGF).

Next, consider the stability of the feedback system. For example, considering a positive

feedback system in which the control signal is fed back with the same sign, the disturbance

will be amplified and the controlled variable x will diverge. Such a system is called

an unstable system. Howling of a microphone is an example of an unstable feedback

system. As a criterion of identifying the stability of the system, there is a criterion using

poles of the system, the Nyquist stability criterion using a vector locus on the complex

plane of an OLG [62], and the Routh-Hurwitz stability criterion using coefficients of a

polynomial of a denominator of an OLG [63]. Here, a pole is a complex frequency at

which the denominator of the transfer function is 0, while a complex frequency at which

the numerator is 0 is called a zero. We often use the Nyquist stability criterion, which

will be explained below.

Now we assume that all of the poles of the OLG do not have a positive real part. This

assumption is equivalent to that the open loop system itself is a stable system, and if a

feedback system includes only stable actuators, plants and servo filters, this assumption

is automatically satisfied. Consider the vector locus of an OLG increasing the frequency

from −∞ to +∞ (this is called the Nyquist diagram). If the Nyquist diagram makes no

encirclements around the point (-1,0), the system is stable. In Fig.B.2, a Nyquist diagram

Γ1 of an OLG with one pole at ω = −1, and a Nyquist diagram Γ2 of an OLG with three

poles at ω = −1. The gain at ω = 0 is 10 for both. From this Nyquist diagram, we can

see that the feedback system with Γ1 is stable and the other with Γ2 is unstable.
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Figure B.2: Nyquist diagram. Γ1 is the Nyquist plot of the OLG G1 = 10/(iω+1) and Γ2

is the Nyquist plot of the OLG G2 = 10/(iω+ 1)3. Γ2 is the Nyquist plot of the unstable
system.

When discussing how a system is stable based on the Nyquist stability criterion, we can

judge the stability of the system by how far the Nyquist diagram is from the point (-1, 0).

Therefore, the system becomes unstable if the phase θUGF of an OLG at a UGF is delayed

by −180◦. Thus, the stability can be discussed with a phase margin θPM = π + θUGF.

The system is stable when the phase margin is positive, and unstable when it is negative.

Similarly, the system is stable, if the absolute value of an OLG |Gc| is less than 1 at the

frequency where the phase is delayed by 180◦. A gain margin GGM = −20log|Gc| can
also be used for discussing the stability. A system with a small phase margin and a gain

margin will easily become unstable when the system changes by an external disturbance.

A Bode diagram is useful for this determination. The Bode diagram is a plot of an

absolute value and a phase of a transfer function. The Bode diagram visualize an UGF,

allowing us to intuitively estimate a phase margin and a gain margin. The UGF can be

estimated by reading off the frequency at which the gain crosses 0 dB, and the phase

margin can be estimated by checking the phase at that frequency. The Bode diagrams of

OLGs G1 and G2 which are the same as these in Fig.B.2 are shown in Fig.B.3. Each phase

margin can be estimated as θPM|Γ1 = 180−θUGF,1 = 95◦ and θPM|Γ2 = 180−θUGF,2 = −7◦,

and again we can see Γ2 is unstable.
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Figure B.3: Bode diagrams of the OLG G1 = 10/(iω+1) and of the OLG G2 = 10/(iω+
1)3. θUGF,1 = −85◦ and θUGF,2 = −187◦ are the phases at the UGF.

Finally, consider a system with two actuators as shown in Fig.B.4, where A1 and A2

are the actuator responses, F1 and F2 are the transfer function of the servo filters. Then,

a transfer function from the disturbance δx to the error signal Verr can be calculated as

Verr =
Hδx

1 +G1 +G2

, (B.3)

where G1 = HA1F1 and G2 = HA2F2. To discuss the stability in this system, we should

consider not only the phase margin and the gain margin of an OLG of the whole system

Gtot = G1+G2, but also a phase difference between the two OLGs at the frequency where

|G1| = |G2|. This frequency is called a cross over frequency. When the phase difference

between the two OLGs at a cross over frequency is 180 ◦, then, Gtot = 0. Namely, the

system is not under control at the cross over frequency. Therefore, the control loop should

be designed so that the phase difference at the cross over frequency is not close to 180◦.
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11

2 2

Figure B.4: Block diagram of the system with two actuators
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