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Chapter 1

Introduction

1.1 Life as a Homeostatic System

What is life? Many researchers have been discussing this significant question,
e.g., self-reproduction; dissipative structure; self-organization; minimizing
entropy; autopoiesis are the important aspects of living organisms. It is
difficult to propose a definition of life that convinces everyone. However,
Pauling said: “In connection with the origin of life, I should like to say that
it is sometimes easier to study a subject than to define it.” [1]. It is worth
examining necessary functions for living systems.

Living systems must maintain itself in order to exist. A property to sta-
bilize internal states in the systems is called homeostasis [2]. For example,
many variables of the body of living organisms are regulated to stabilize
it within physiological limits (e.g., body temperature, glucose concentra-
tions, pH, etc). Although homeostasis had been limited in physiological
term, Ashby extended homeostasis to more general term, in a movement
of cybernetics [3]. Ashby argued that the brain is an adaptive machine for
maintaining homeostasis, and proposed a theory of ultrastability in which
the system has two type of homeostasis, and if the first regular homeosta-
sis is unstable and its essential variables exceed the limits then the second
homeostasis works to rearrange the system dramatically. The system will re-
construct itself by trial and error until a stable homeostasis can be acquired.
Ashby implemented this theory as a system called homeostat consisting of
four modules. Ashby suggests that biological systems are ultrastable with
these two types of homeostasis.

Homeostasis can involve not only internal mechanisms in systems but
also behaviors that is output of systems. For example, the amount of glucose
in the blood can be regulated by secretion of adrenaline or glucagon (i.e.,

1



CHAPTER 1. INTRODUCTION 2

internal mechanisms), and also by eating carbohydrate (i.e., behaviors). In
this way, to maintain their own internal states, the systems have to adapt to
their environment: the system must maintain the homeostasis through the
interaction with the environment. Thus adaptation is regarded as a way, or
an outcome of homeostasis like Ashby says “a form of behavior is adaptive
if it maintains the essential variables within physiological limit.” [4]

How do living systems adapt to environment for homeostasis? Dennett
classifies living systems in four classes: Darwinian creatures, Skinnerian crea-
tures, Popperian creatures, and Gregorian creatures [5]. Darwinian creatures
are reactive systems designed thorough evolution. Darwinian creatures adapt
to the environment by pre-designed behaviors. Skinnerian creatures have a
phenotype that has plasticity by which, for example, the creatures can ac-
quire sensory-motor coupling that is suitable for the current environment
by trial and error. Although the creatures can adapt to the environment
by learning new behaviors, the creatures apt to make fatal failures leading
to the death in the process of the trial and error. Popperian creatures can
simulate an outcome of their own action and environmental states in their
brain, and select a good action based on the simulation. The creatures can
avoid behaviors which apparently bring about such fatal consequences, and
select behaviors which bring about good consequences. Thus they become
more adaptable than Skinnerian. In addition to such simulation, Gregorian
creatures use wisdom of ancestors. In other words, the ancestors leave their
experience in a form of culture and the descendants use it to increase their
adaptability. Dennett also argues that these types of creatures have been
evolved in the order.

The ways of adaptation of these creatures can be roughly divided into
two types: adaptation by hard-wired systems and adaptation by learning
systems.

In the case of adaptation by hard-wired systems, systems must adapt
to environment with pre-determined functions. In this case, the systems
maintain the homeostasis by the pre-designed behaviors that can exploit the
environmental state that is valuable for them (e.g., taking food reactively
to specific sensor patterns). The systems can adapt to small environmental
changes adjusting regulatory functions designed in advance (e.g., perspira-
tion to temperature change). In this way, even if only the pre-determined
functions can be used, the systems can adapt to the environment. However,
such systems cannot adapt to large environmental changes (e.g., changes of a
signal for foods) in an individual-level, and the systems adapt to such changes
in a species-level through evolutionary process. Thus, this type of systems
should have a shorter lifetime than the timescale of the large changes to adapt
it. This strategy is effective to a situation that the environmental changes
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are huge and require changing a design of the body rather than changing
behavior, to survive there.

In the case of adaptation by learning systems, systems adapt to environ-
ment not only by pre-designed behaviors but changing behaviors. In this case,
the systems can adapt to the large environmental change. By the learning
ability, a prediction becomes possible and the systems can decide a behavior
based on the prediction for the homeostasis in the future. This makes their
adaptability higher in a situation in which the environmental change or the
subsequence of action to the environment are predictable. In addition, a
niche construction in a species-level (e.g., human society) becomes possible
because the systems can learn from the remains constructed by the ancestors.

In this way, the way of adaptation does not simply indicate a level of
progress, and effective ways vary depending on environment. Furthermore,
the predictive systems need to be more complicated and larger than reactive
systems to have a capability of prediction. This requires the systems to shift
from microscopic world to more macroscopic world. For instance, Ashby ad-
vocated a Law of Requisite Variety [6]: in order to adapt to the diversity of
the environment, the systems must have more diversity in itself; It is impos-
sible to adapt the environment without having such diversity. Therefore, the
adaptive learning systems require larger brain and body, and in a microscopic
world, only simple adaptive hard-wired systems can exist and are effective.

In recent years many researchers have argued that prediction is most
important for intelligence [7, 8]. Although it might be difficult to propose the
definition of intelligence that convinces everyone, assuming that intelligence
is adaptability in a macroscopic world which human can percept, prediction
is essentially important for the adaptation since the outcomes of our action
and the environmental states is somewhat predictable in the individual life
timescale. (Evolution can be regarded as prediction in a species timescale:
evolution imply prediction that descendants of survivors in current situations
will adapt more in the future than that of non-survivors. Thus prediction
might be essentially important regardless of timescale.)

To enhance the prediction, it is important to generalize phenomena as
some sort of symbol (i.e., compressed information) and operate it. Con-
sciousness might be evolved for simulating the world by treating such com-
pressed information (e.g., counterfactual). For example, Aleksander proposed
five axioms of consciousness (Here, A is an agent, S is sensorily-accessible
world for A): Depiction: “A has perceptual states that depict parts of S.”,
Imagination: “A has internal imaginational states that recall parts of S or
fabricate S-like sensations.”, Attention: “A is capable of selecting which
parts of S to depict or what to imagine.”, Planning: “A has means of con-
trol over imaginational state sequences to plan actions.”, Emotions: “A has
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additional affective states that evaluate planned actions and determine the
ensuing action.” [9], although Aleksander does not argue the axioms are
sufficient. All of these concern a process of determining action by simulating
environment including the systems: depiction, imagination, attention and
planning are required to simulate the environment and the system itself, and
emotions is required to decide next action based on the simulation. After
the emergence of the ability of generalization, by sharing the generalized
symbols with others, languages considered to have emerged (i.e., evolution
from Popperian creatures to Gregorian creatures). These ability make their
adaptability higher in the macroscopic world.

In this way, living systems must maintain homeostasis taking suitable
ways of adaptation to environment. If the systems live in the macroscopic
world, the learning or predictive abilities become crucial, and as the conse-
quence, learning or predictive system like brain have been evolved. In this
thesis, we focus on such a homeostasis that is acquired by the systems with
neural plasticity.

There are various theories and models of living systems based on such
homeostasis.

In recent years, many researchers have argued that the most important
function of the brain is prediction [7, 8] and the experimental results in vivo
also support the argument [10, 11]. A modeling brain from the view point of
prediction is called predictive coding and there are a lot of studies about it
[12, 7]. In predictive coding, the networks reduce the error (prediction error)
between input information and top-down prediction. This can be regarded
as that the input information is suppressed by the prediction signal, and this
directly leads to the stability of the internal state.

Friston has proposed an active inference in Free Energy Principle (FEP)
[13, 14] based on Bayesian inference by extending the predictive coding to
an action. For minimizing the prediction error (i.e., surprise) in FEP, the
way of reconfiguring the internal model like predictive coding is called a
perceptual Inference; on the other hand, reducing such surprise by actions
is called an active inference. Both ways of reducing surprise should lead to
maintain homeostasis. Indeed, Friston discusses the relationship between the
homeostatic adaptive behavior of animals and the active inference [15, 16, 17].
There are some similar concepts to Friston’s free energy minimization: a
principle of redundancy reduction [18], maximization of Bayesian surprise
[19], maximizing information transfer [20, 21].

There are also many pieces of research on the homeostatic adaptive system
in the field of Artificial Life, that is a research field for studying on living
systems by constructive approach. For example, Di Paolo and Iizuka reported
that adaptive behavior is an indispensable outcome of homeostatic neural
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dynamics [22, 23, 24], and Ikegami and Suzuki proposed homeodynamics
where an autonomous self-moving state emerges from a homeostatic state
[25].

In the next section, we introduce our framework and some more related
researches.

1.2 Principle of Stimulation Avoidance

Some physiologists had long advocated theories on adaptive behaviors on
the basis of animal experiments [26, 27]. Marom summarized such physio-
logical theories and termed it Stimulation Regulation Principle (SRP) [28].
The principle consists of two properties: (i) a persistence of stimulation from
outside drives the neural connectivity to explore the different topology (Mod-
ifiability); (ii) when removing the stimulus, there is no longer driving force to
the connectivity and the network is stabilized in its last configuration (Sta-
bility). These two functions lead to that the system can acquire the behavior
to avoid the stimulus.

Shahaf demonstrated that a dissociated neuronal culture can learn a de-
sired behavior using a following protocol [29]. At first, an electrical stimu-
lation with a fixed low frequency (e.g., 1-2Hz) is sent to a predefined input
zone of the network; When the desired behavior appeared, the stimulation
is removed; Repeating this protocol, the network learned to produce the de-
sired behavior in response to the stimulation. In practice, the authors showed
that the network learned to produce spikes at predefined output zone, in a
predefined time window (within 40-60 ms after each stimulus) in response
to the stimulation applied at the input zone. The results are promising in
that behaviors for avoiding stimulation will be autonomously learned even
without global reward. The authors argue that the results can be explained
by SRP. However, the two properties which constitute SRP are macroscopic
phenomenological explanations and these are not a concrete mechanism. Fur-
thermore, assuming that modifiability is correct, learned configurations are
destroyed at every stimulation; if stability is correct, it should not be neces-
sary to repeat such cycle as in the experiment explained above.

In previous studies, we proposed a possible mechanism at a microscale
of neural behavior similar to Shahaf’s results, termed Learning by Stimu-
lation Avoidance (LSA) [30, 31]. LSA states that spiking neural networks
autonomously learn to avoid external stimuli by learning available behav-
iors. These behaviors emerge from spike-timing dependent plasticity (STDP)
which has been found broadly in vitro [32, 33] and also in vivo [34, 35, 36],
and the computational model has been proposed [37]. STDP causes changes
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in synaptic weights between two firing neurons depending on the timing of
their activity. Assuming there are presynaptic neuron i, postsynaptic neu-
ron j, and synaptic connection from i to j (Fig. 1.1). If the presynaptic
neuron i fires directly before the postsynaptic neuron j, the synaptic weight
increases (long-term potentiation [LTP]), and if the presynaptic neuron A
fires directly after the postsynaptic neuron B, the synaptic weight decreases
(long-term depression [LTD]).

Figure 1.1: Spike-timing dependent plasticity in two neurons. There are
presynaptic neuron i, postsynaptic neuron j, and synaptic connection from i
to j (wji). Green circles represent presynaptic neuron; Red circles represent
post synaptic neurons. Green bars represent spikes of synaptic neurons; Red
bars represent spikes of post synaptic neurons. If the presynaptic neuron i
fires directly before the postsynaptic neuron j, the synaptic weight increases
with ∆w (long-term potentiation). If the presynaptic neuron i fires directly
after the postsynaptic neuron j, the synaptic weight decreases with ∆w (long-
term depression) .

In LSA, two dynamics for avoiding stimulation emerge based on STDP.
To explain the two dynamics, here, we think about a minimal case with
three neurons: an input neuron, an output neuron, a hidden neuron, and
the connections from the input neuron to the other neurons (Fig. 1.2). The
first dynamics is a reinforcement of behavior leading to a decrease in stimu-
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lation by LTP (Fig. 1.2A). We assume an embodiment in which if the output
neuron fires right after stimulation from its environment, then the stimula-
tion is removed for a while. In that case, the connection strength from the
input neuron to the output neuron increases because the the effect of LTP
is stronger than LTD. On the other hand, the connection from the input
neuron to the hidden neurons does not change much because the effect of
LTP and LTD is almost same. Thus the behavior leading to the decrease
in the stimulation is reinforced. The second one is a weakening of behaviors
leading to an increase in stimulation by LTD (Fig. 1.2B). We assume an
embodiment in which if the output neuron fires, then stimulation from en-
vironment to the input neuron starts. In that case, the connection strength
from the input neuron to the output neuron decreases because the the effect
of LTD is stronger than LTP. On the other hand, the connection from the
input neuron to the hidden neurons does not change much because the effect
of LTP and LTD is almost same. Thus the behavior leading to the increase
in stimulation is weakened.
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Figure 1.2: Learning by Stimulation Avoidance in three neurons: input neu-
ron; output neuron; and hidden neuron. A: Reinforcement dynamics of LSA.
Assuming an embodiment in which if the output neuron fires right after stim-
ulation from its environment, then the stimulation is removed for a while.
In that case, normally ∆tp1 < ∆td1, thus the effect of LTP to the connec-
tion from input to output is stronger than LTD, leading to reinforce the
connection. On the other hand, normally ∆tp2 ≈ ∆td2, thus the effect of
LTP and LTD to the connection from input to hidden is almost same. B:
Weakening dynamics of LSA. Assuming an embodiment in which if the out-
put neuron fires, then stimulation to the input neuron starts. In that case,
normally ∆tp1 > ∆td1, thus the the effect of LTD to the connection from
input to output is stronger than LTP, leading to weaken the connection. On
the other hand, normally ∆tp2 ≈ ∆td2, thus the effect of LTP and LTD to
the connection from input to hidden is almost same.

Although we considered about the minimal case, these dynamics should
work in larger networks which can express more output patterns. Among
those output patterns, output patterns which lead to decrease stimulation are
reinforced by the first dynamics, and output patterns which lead to increase
stimulation are weakened by the second dynamics. Actually, our previous
study showed that LSA scales to large networks consists of 100 neurons [31].
Note that although the networks avoid the stimulation from the environment
by LSA, the emerging behaviors are not limited to avoiding behaviors (e.g.,



CHAPTER 1. INTRODUCTION 9

object avoidance). What kind of behavior emerge depends on the embodi-
ment of the agent (see Section 6.3).

In this way, LSA explains the property of trying to avoid stimulation by
the two dynamics: reinforcement of behaviors leading to a decrease in stim-
ulation; weakening of behaviors leading to an increase in stimulation. Unlike
SRP, LSA is not a phenomenological explanation because LSA is based on
STDP observed in vitro and in vivo. Nevertheless, LSA can also explain the
experimental results by Shahaf. Particularly important in LSA is that be-
haviors for avoiding external stimulation emerge without any global rewards,
if following two conditions are satisfied: the plasticity of the embodied neural
network is driven by STDP; The network constitutes a closed-loop with the
environment. This can be regarded as an intrinsic motivation emerged from
the local dynamics of neurons (see Section 7.4).

The previous studies about LSA showed, embodied neural networks au-
tonomously learn to avoid stimulation by “action”. This can also be regarded
as another neural implementation of Friston’s active inference [14]. In ad-
dition, as introduced above, there are many experimental results supporting
predictive coding in vivo. Predictive modules in the predictive coding can
be regarded as a function which reduces an error between an input signal
and a top-down prediction. If such the predictive module is regarded as
an agent, such reducing error is equal to a reducing the influence of stim-
uli from the environment to the internal system. Thus it can be regarded as
avoiding stimulation by suppressing input based on “prediction”. Some stud-
ies showed that predictive coding can be implemented using spiking neural
networks [38, 39, 40, 41], although the predictive networks in these stud-
ies require some well-designed structures or other functions than STDP. In
this thesis, we show that spiking neural networks with STDP learn to avoid
stimulation by prediction without preparing well-designed structures and a
particular function other than STDP. It is suggestive that although Friston
explains active inference and perceptual inference in the same framework
FEP based on Bayesian inference, we show that such action and prediction
emerge in a bottom-up manner based on STDP in neuronal cultures and
spiking neural networks. In addition, we also show that another property
to avoid stimulation by “selection” emerges in cultured neural networks and
spiking neural networks: when an input neuron is uncontrollable (i.e., the
networks cannot learn actions to avoid stimulation), the neuron is separated.

It means that at least three functions of avoiding stimulation emerge in
embodied neural networks based on STDP: Stimulation Avoidance by Ac-
tion (SAA); Stimulation Avoidance by Prediction (SAP); Stimulation Avoid-
ance by Selection (SAS) (Fig. 1.3). We argue that these three functions
can emerge from same neural network with STDP at the same time, and
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which function emerges depends on a quality of stimuli: controllable inputs
induce action, predictable inputs induce prediction and uncontrollable in-
puts (noise) induce selection. In other words, various functions emerge from
stimulation avoidance as a principle of behavior. We integrate such mecha-
nisms of stimulation avoidance in neural networks as Principle of Stimulation
Avoidance (PSA). Stimulation avoidance can produce homeostasis: since un-
expected stimulation to an agent from an environment represents environ-
mental changes, avoiding the stimulation lead to decrease the influence of
environmental changes to the internal state of the agent. It is interesting
that some kinds of homeostasis directly emerges from synaptic dynamics,
such as STDP. In this thesis, we present two approaches: analyzing cultured
neural networks and modeling spiking neural networks, exploring the idea of
PSA both theoretically and experimentally.

Figure 1.3: Principle of Stimulation Avoidance. Stimulation avoidance by ac-
tion (SAA): when inputs are controllable, networks learn an action to avoid
stimulation. Stimulation avoidance by prediction (SAP): when inputs are
predictable, networks learn to predict target stimuli to suppress input neu-
rons avoiding an effect of the stimulation to the internal network. Stimulation
avoidance by selection (SAS): when inputs are uncontrollable (i.e., networks
cannot learn actions or prediction to avoid stimulation), input neurons are
separated avoiding an effect of the stimulation to the internal network.



CHAPTER 1. INTRODUCTION 11

1.3 Scope of This Thesis

In Chapter 2, we explain the common methods used in the following chapters.
In Chapter 3, we focus on SAA by showing the results of the experiments in
the embodied cultured neural networks. In Chapter 4, we focus on SAP by
showing the results of the experiments in spiking neural networks on simple
prediction that is possible to work in the dissociated neuronal cultures that
we used in the experiments in Chapter 3. In Chapter 5, we find SAS in
cultured neural networks, and we show computational model of spiking neural
networks with asymmetric-STDP can reproduce the behavior. In Chapter 6,
we discuss scalability and application of PSA (especially SAA) based on
the experiments in the large spiking neural network models (Section6.1),
estimation of the scalability on network size (Section 6.2), and the application
on a humanoid robot experiments (Section 6.3) . In Chapter 7, we discuss
some future problems regarding plasticity of neural networks and homeostatic
properties.



Chapter 2

Methodology

2.1 Introduction

Biological neuronal cells cultured in vitro have been used to study neural
systems [42, 43, 44, 45] because such neuronal cultures are easier to study
than in vivo, they are composed of a relatively smaller number of neurons,
and cultured in a more stable environment. Using neuronal cultures is also
advantageous because potential unknown complex features in neuronal cells
can be used, that are still difficult to implement in artificial neural networks.
Although neuronal cultures are much simpler than real brains, they have
essential properties, including spontaneous activity, various types and distri-
bution of cells, high connectivity, and rich and complex controllability [46].

It has become easier and more popular to study the coupling between
neuronal cultures and external systems [47, 48, 49]. In the previous studies,
neuronal cultures were connected to an external system, such as a mobile
robot in a real space. The sensory information coming from the external
system was used to stimulate the neuronal cells, and the resulting neural
activity controlled the external system. This change of external system pro-
vided feedback to the neuronal cell states, and this process could be repeated.
This is called “closed-loop” and regard it as a model of primitive sensorimotor
couplings. By studying such closed-loop systems, we can examine a learning
or adaptability of a neural system with respect to embodiments.

Studies of closed-loop systems have been documented. For example, cul-
tured neuronal cells were trained to achieve a desired behavior applying mul-
tiple stimulation patterns [45]. Another method were proposed for a cul-
tured neural network to incrementally learn to respond in a particular way
to a particular input [50]. One drawback of these studies is that they used a
conventional microelectrode array as a recording device; this type of device

12
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does not have sufficient spatial resolution so that it is difficult to stimu-
late and accurately detect a single neuronal state. In order to overcome the
drawbacks, we used a recently developed device (high-density microelectrode
array using complementary metal-oxide semiconductor [CMOS] technology)
to detect activity of individual neurons with high precision. The details of
this recording device are described in the following sections. The other draw-
back in those closed-loop studies is that an external evaluation function must
be prepared and designed properly. A unique feature of our study is the ex-
amination of the self-development of such an evaluation function from the
closed-loop system itself. We included this feature because we believe that
self-development of an evaluation function is how adaptive behavior emerges
spontaneously with most animals.

Such biological neuronal cells are often implemented and tested as a model
in artificial neural networks to understand learning mechanisms [51]. Re-
cently, the simulation of the more realistic artificial neural networks have
become computationally efficient, by introducing models of spiking neurons
[52, 53] and of synaptic plasticity [37, 54, 33]. These more realistic models
can lead to theoretical understanding of biological neural networks. Many
studies introduced previous chapter use abstract models, such an approach is
thought to be important in understanding living systems, however, it is also
meaningful to study using the more biologically plausible neural networks,
since the brain functions is still not well known. There should be many things
we can learn from the biological neural networks. Biologically plausible [55]
or biologically inspired models [52] are not driven in a top-down manner, but
driven by the local rules in a bottom-up manner. Such models also have the
advantages that it is easier to implement as hardwares highly parallelized
and processed asynchronously like brain, than such abstract models. Thus, a
research on biologically plausible or biollogically inspired models would give
important suggestions for the study of neuromorphic computing [56].

For these reasons, in this thesis we mainly used biological cultured neural
networks and biologically inspired spiking neural networks for studying the
homeostatic properties in embodied neural networks. In this section, the
methods commonly used in the following chapters are described in the fol-
lowing section. Some additional methods or some modifications of following
methods are described in each chapters.
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2.2 Cultured Neural Networks

2.2.1 Neuronal Cell Cultures

The neuronal cultures were prepared from the cerebral cortex of E18 Wistar
rats as previously reported [57, 58, 59]. The cortical area was trypsinized
with 0.25% trypsin, and the dissociated cells were plated and cultured on
a recording device (Fig. 2.1). The surfaces of the electrodes on the device
were coated with 0.05% polyethylenimine and laminin to improve plating
efficiency. The cells were cultured in Neurobasal Medium (Life Technologies)
containing 10% L-Glutamine (Life Technologies) and 2% B27 supplement
(Life Technologies) for the first 24 h. Half of the plating medium was replaced
with growth medium (Dulbeccos modified Eagles medium (Life Technologies)
containing 10% horse serum, 0.5 mM GlutaMAX (Life Technologies), and 1
mM sodium pyruvate) after the first 24 h. The cultures were placed in an
incubator at 37◦C with an H2O-saturated atmosphere consisting of 95% air
and 5% CO2. During cell culturing, half of the medium was replaced once
after several days with the growth medium. The all cultures used in our
experiments consisted with about 100 cells and were sufficiently matured to
show global burst synchronization [28].

Figure 2.1: Dissociated neuronal cells cultured on recording device. (Copy-
right ETH Zürich)
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2.2.2 High-Density CMOS Arrays

A high-density CMOS electrode array [60] was used to measure the extra-
cellular electrophysiological activity of the cultured neurons (Fig. 2.2). This
CMOS array is superior to the conventional multielectrode array (MEA) used
previously [42, 43, 44] in that it has far higher spatio-temporal resolution.
The number of electrodes in conventional MEAs is small, usually about 64,
and the locations of the recording electrodes are predetermined with an inter-
electrode distance of about 200 µm; thus, it is difficult to identify signals from
an individual cell. In contrast, the CMOS arrays have 11,011 electrodes. The
diameter of the electrode is 7 µm with an inter-electrode distance of 18 µm
over an area of 1.8 mm × 1.8 mm. The device can record electrical activity
on 126 electrodes at one time at a sampling rate of 20 kHz. Figure 2.3 shows
a whole recording system including the CMOS arrays.

Figure 2.2: High-density CMOS electrode array. The device has 11,011
recording sites, a diameter of 7 µm, and an inter-electrode distance of 18
µm. The left figure shows the appearance of the device. The right figure
shows partial enlargement of a part of the electrode array.

2.2.3 Estimation of Neuronal Somata Locations

Before recording the neural activity, we scanned almost all the 11,011 elec-
trodes on the CMOS array to obtain an electrical activity map to estimate
the locations of the neuronal somata. In each of the 95 recording sessions,
the electrical activity were recorded for 60 sec with about 110-120 electrodes
at the same time. In the recordings, sampling frequency set to 20 kHz and
band path filter set to 0.5-20 kHz. An electrical activity map was obtained
by averaging the height of the action potentials for each electrode. We ap-
plied a Gaussian filter to the map and assumed that the neuronal somata
were located near the local peaks in the Gaussian-filtered map (Fig. 2.4).
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Figure 2.3: Overview of the whole recording system. Data of action potentials
obtained in the CMOS arrays were processed: a frequency filtering, a signal
amplifying and an analog-to-digital conversion. The processed data was sent
to a recording software (MEABench) on PC via Neurolizer which take on
roles: a power supplying to the CMOS arrays, sending data to and receiving
data from the CMOS arrays. FPGA is a interface between the Neurolizer
and the PC.

At most 126 of the all peaks were selected in descending order as the posi-
tions of neural cells, and the nearest electrodes to the peaks were selected for
recording the neural activity. If the number of local peaks was fewer than
126, then all the peaks were used. By using the method, one electrode can
ideally represent a single neural state, if cell size is less than 126.

2.2.4 Estimation of Excitatory and Inhibitory Synap-
tic Conductances

A type of neuronal cells are mainly divided to two types: excitatory neuron
and inhibitory neuron. A spike of excitatory neuron increase the probabil-
ity of firing of postsynaptic neuron of the excitatory neuron. On the other
hand, a spike of inhibitory neuron decrease the probability of firing of post-
synaptic neuron of the inhibitory neuron. In our experiments, identifying
these type of neurons is important, since recording neural activity or stim-
ulation was carried out for each neuron rather than group of neurons. A
type of neuronal cell is classified as excitatory or inhibitory using the spike
time series recorded for 10 min before the main experiment. Since the shapes
of the action potential of these two neural types differ: In action potential
of excitatory neuron, the distance between the maximum potential and the
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Figure 2.4: Estimation sample for location of neuronal somata. Left figure
shows the results of applying Gaussian filter to the electrical activity map.
Right figure shows selected peaks on the Gaussian filtered map. Red dots in
a circle represent selected electrode and the number is the channel index.

minimum potential are longer than that of inhibitory neuron (Fig. 2.5), we
classified the type of neuronal cell by using k-means clustering based on the
difference of the shape.

Figure 2.5: Estimation sample of neuron types. Left figure shows an action
potential estimated as an excitatory neuron. Right figure shows an action
potential estimated as an inhibitory neuron. The distances between the
maximum potential and the minimum potential are depicted as red lines.
A group of the longer distance was estimated as excitatory neurons. A group
of the shorter distance was estimated as inhibitory neurons.
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2.2.5 Recording and Preprocessing of Action Poten-
tials

For detecting and recording the spikes of cultured neurons, we used the
MEABench software developed by Wagenaar et al. (Fig. 2.6) [61]. All
recordings were performed at a 20 kHz sampling rate using the real-time
spike detection algorithm LimAda in MEABench. There are two type of
recording data format: raw data and spike data (Fig. 2.7). Raw data format
was used only in estimation for neuron type explained above. On the other
hand, in all experiments and analysis in this thesis, spike data format was
used. As the LimAda algorithm detects a spike that exceeds the threshold
without distinction of positive and negative value, unexpected double de-
tection of spikes can occur. These unexpected double-detected spikes were
removed from the data before analysis: If the double detection occurred in
3.7 msec, second detected spike were removed.

Figure 2.6: User Interface of MEABench. The neural activity can be observed
in real time.

In experiments explained below, we need to detect the spike and stimu-
late the cultured neuronal cell at the same time. However, by sending the
electrical stimuli to a neuronal cell through the electrodes, artifacts might
occur. The Salpa filter in MEABench was used to remove the artifact in real
time [62].
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Figure 2.7: Example of recorded data. A: Raw data (30 msec). As the raw
data format, time series of electric potentials of the electrodes is recorded. B:
Spike data (170 msec). As the spike data format, time series of spike timing
is recorded.

2.3 Spiking Neural Networks

2.3.1 Izhikevich neuron model

The model for spiking neuron proposed by Izhikevich [63] was used to simu-
late excitatory neurons and inhibitory neurons. This model is well know as
it can be regulated to reproduce the dynamics of many variations of corti-
cal neurons, and it is computationally efficient. The equations of the neural
model are defined as:

dv

dt
= 0.04v2 + 5v + 140− u+ I,

du

dt
= a(bv − u),

if v ≥ 30 mV, then

{
v ← c

u← u+ d

(2.1)

Here, v represents the membrane potential of the neuron, u represents
a variable related to the repolarization of membrane, I represents the input
current from outside of the neuron as explained in detail in the following
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section, t is the time, and a, b, c, and d are other parameters [63] controlling
the shape of the spike. The neuron is regarded as firing when the membrane
potential v ≥ 30 mV. The parameters for excitatory neurons (regular-spiking
neuron) are set as: a = 0.02, b = 0.2, c = −65 mV, and d = 8, and for
inhibitory neurons (fast-spiking neuron) are set as: a = 0.1, b = 0.2, c =
−65 mV, and, d = 2 (Fig. 2.8). The simulation time step ∆t is 1 ms.

Figure 2.8: Dynamics of regular-spiking and fast-spiking neurons simulated
using the Izhikevich model. Regular-spiking neurons are used as excitatory
neurons and fast-spiking neurons are used as inhibitory neurons.

2.3.2 Spike-Timing Dependent Plasticity

STDP is a most important factor in our framework and used as a model for
synaptic plasticity which changes the synaptic weight between two neurons
depending on the timing of their spiking; when the presynaptic neuron fires
right before the postsynaptic neuron, the synaptic weight increases, and when
the presynaptic neuron fires right after the postsynaptic neuron, the synaptic
weight decreases. The weight variation ∆w is defined as:

∆w =

{
ALTP (1− 1

τLTP
)∆t, if ∆t > 0

−ALTD(1− 1
τLTD

)−∆t, if ∆t < 0
(2.2)

Here, ∆t represents the relative spike timing between the presynaptic
neuron a and the postsynaptic neuron b: ∆t = tb − ta (ta represents the
time of the spike of neuron a, and tb represent the timing of the spike of
neuron b). In this thesis, we change the parameters: ALTP , ALTD, τLTP , τLTD,
depending on experiments to use various shapes of STDP. Figure 2.9 shows
the variation of ∆w in an example of rotating symmetry STDP depending
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on ∆t; ∆w becomes negative when the postsynaptic neuron fires first, and is
positive when the presynaptic neuron fires first.

The weight value w between excitatory neurons varies as:

Figure 2.9: STDP function. The weight variation ∆w of the synapse from
neuron a to neuron b depends on the relative spike timing. The figure shows
the values with the parameters: ALTP , ALTD = 0.1; τLTP , τLTD = 20 ms.

wt = wt−1 +∆w . (2.3)

The maximum possible weight is fixed to wmax (the values depends on
experiments), and if w > wmax, w is reset to wmax. The minimum possible
value of weight is fixed to wmin = 0, and if w < wmin, w is reset to wmin.

In addition to STDP, a weight decay function was also applied to the
weights. The decay function is defined as:

wt+1 = (1− µ)wt (2.4)

The parameter µ was fixed as µ = 5× 10−7.

2.3.3 Short-Term Plasticity

The input current were added for each neuron ni at each time step as:
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Ii = I∗i + ei +mi

I∗i =
n∑

j=0

fjwjisj

fj =

{
1, if neuron j is firing

0, otherwise.

(2.5)

Here, m represents Zero-mean Gaussian noise with a standard deviation
σ = 3 mV that was delivered to each neuron at each time step as internal
noise input; e represents external stimulation (conditions and frequency and
strength of external stimulation depends on experiments); s represents short-
term plasticity variables defined in (2.6). A phenomenological model of short-
term plasticity (STP, [64]) was used, and s varies for each neuron nj as:

sj = ujxj

dx

dt
=

1− xj

τd
− uj xj fj

du

dt
=

U − uj

τf
+ U(1− uj) fj

(2.6)

Here, x represents the amount of available resources, and u represents the
resource used by each spike [64]. The parameters were set to τd = 200ms,
τf = 600ms, and U = 0.2 mV.

STP is not necessarily required for LSA, but it is efficient to suppress
global burst synchronization [31] and stabilizes the firing rate independent
from the network size. Although LSA can be achieved only by a parameter
tuning without STP (e.g., strength of noise input), it can be easily achieved
with STP. We thus used the STP model in this study. Figure 2.10, 2.11
show the results of preliminary experiments for the STP function [65]. As
adding an STP function, the burstiness index (an indicator for measuring
global burst levels [61]) and firing rate was relatively stabilized regardless of
the network size. Without STP, these variables significantly change with the
network size.
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Figure 2.10: Dependence of burstiness index on network size. Error bars
represent standard errors of the mean (n = 10). The burstiness index was
not depending on network size with STP.

Figure 2.11: Dependence of firing rate on network size. Error bars represent
standard errors of the mean (n = 10). The firing rate was not depending on
network size with STP.



Chapter 3

Stimulation Avoidance by
Action

3.1 Introduction

Autonomous agent have been a major research topic in the field of both
artificial life and artificial intelligence from the beginning. For example,
Braitenberg shown even various behaviors emerge from sensory motor cou-
plings without brain; Brooks’ subsumption architecture [66] was adopted to
make “behavior-based” robots. Karl Sims proposed evolutionary approach to
optimize the embodiment [67] and such an approach have been taken to evo-
lutionary robotics [68]. In addition, learning agent have also been studied in
many field, for example, bio-inspired reinforcement learning mechanism has
been studied [69, 70], and in recent years, reinforcement learning with deep
neural networks have been studied actively and received much attentions
[71, 72]. These examples represent the adaptation by learning. However, a
global utility function is still required to ensure the desired behaviors. For
example, the neural architectures evolved according to a genetic algorithm
and the agent’s behaviors is reinforced based on the global rewards. In these
approach, without using such a global utility function, we cannot expect the
emergence of the desired behavior or other meaningful behaviors. However,
in recent years, intrinsic motivation has attracted much attention in the con-
text of autonomous agent, in particular in the field of reinforcement learning
[73, 74]. Intrinsic motivation is a driving force to satisfy its own desire (inter-
nal reward). Applying intrinsic motivations, the agent can learn behaviors
without global utility function. Usually intrinsic motivation is given to the
agent in a top-down manner, thus it can also be regarded as indirect global
utility function.

24
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Shahaf and Marom demonstrated the interesting learning results where
cortical cell cultures can learn a desired behavior as if it is motivated to
avoid stimulation from environment, by following protocols [29, 28]. First, an
electrical stimulation with a fixed low frequency (e.g., 1-2Hz) is delivered to
the part of the network. When a desired behavior appeared, the stimulation
is removed. Repeating these protocols, the network learned to produce the
expected behavior in response to the stimulation. In practice, the authors
showed that the networks learned to produce spikes at predefined output
sections that was different from an input location in the network, and in a
predefined time window (within 40-60 ms after each stimuli) in response to
the stimulation applied at the input location.

They claimed that the cultured networks has two property: modifiability
and stability, and the networks can learn a behavior to avoid the stimulation
by these properties. However, these two properties seem to be impossible in
small networks (e.g., 2 neurons). In addition, they showed almost no neural
dynamics analysis, and since the learning task is very simple that can be
achieved by just increasing whole firing rate of the networks, thus it is not
clear whether the learning results are attained by merely increasing a whole
firing rates of the networks or by changing the connectivity between input
neurons and output neurons with a synaptic plasticity.

In a previous study, we proposed a possible mechanism at the micro scale
of neural behavior similar to Shahaf and Marom’s results, termed LSA [30, 31]
(see Section 1.2). LSA is an emergent property of spiking networks coupled
to STDP consisting closed-loop with environment. LSA states that the net-
works learn to avoid external stimuli by learning available behaviors. Such
behaviors emerge based on STDP, which has been found in small networks
both in vivo and in vitro (see Section 2.3.2). Thus LSA should work even
in a small number of neuronal culture. In addition, LSA can be regarded
as intrinsic motivation emerged from simple Hebbian rule such as STDP in
a bottom-up manner. We discuss more about such stimulation avoidance
behaviors as intrinsic motivation later (see Section 7.4).

This chapter focuses on LSA that cause Stimulation Avoidance by Action
(SAA), in neuronal cultures. In following sections, we first show experiments
on a simple embodied agent in a one dimensional virtual space using smaller
size of neuronal cultures (approx. 100 neurons) than the previous study by
Shahaf. Second we applied more complex closed-loop system to the small
networks, where the networks connected to a mobile robot and placed on a
two dimensional real space.
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3.2 Autonomous Behavior in Neuronal Cell

Cultures with Simple Embodiment

In this study, we first performed learning experiments using a smaller size of
cultured neuronal cells than the previous works [29] to show such a learning
mechanism scale from small to large cultured neural networks. In addition,
we used high-density micro electrode arrays for recording neural activity,
which can record each neuron’s activity respectively, and analyzed the neu-
ral dynamics to examine whether neuronal cultures changed their network
structure with synaptic weight to achieve a learning task.

3.2.1 Methods

We used neuronal cultures with a smaller number of neurons (approx. 100
neurons) and CMOS-electrode arrays for recording the neural activity and
stimulation to the neurons (see Section 2.2); Using the CMOS-electrode ar-
rays, we can record each neuronal activity respectively, if the number of
neuron is less than 126.

Input and Output Channels

Input and output neurons were determined in the following way: input neu-
rons were randomly chosen from channels that are classified as an excitatory
neuron by the estimation method explained above (see Section 2.2). The
number of input neurons depends on each experiment (2 or 10 neurons). Be-
fore starting learning experiments, 20 stimulations (1 Hz) were delivered to
the input neurons and neural activity were recorded. Based on the recorded
data, 10 output neurons were randomly chosen from excitatory neurons as
to satisfy the following requirement: during the 20 stimulations, less than 5
neurons on average fired during the task window. This procedure was per-
formed with 10 selected input neurons, and if there was no combination of
such output neurons found, this procedure was performed with 2 selected
input neurons.



CHAPTER 3. STIMULATION AVOIDANCE BY ACTION 27

Figure 3.1: Illustration of the experimental setup. A: Stimulation phase and
resting phase. The learning experiment consisted of the stimulation phase
(in which stimulation was delivered to input neurons) and the resting phase
(in which the stimulation was removed after 5 min when a learning task was
achieved). B: Task window. The learning task was defined as more than 5
output neurons fired in the predefined task window (blue region) immediately
after each stimulus.
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Stimulation and Learning Task

Input currents as an external stimulation were delivered with a fixed fre-
quency of 1 Hz to only input neurons (stimulation phase) and removed for
5 min (resting phase) when a learning task was achieved (Fig. 3.1A). After
the resting phase, the stimulation starts again. This procedure was repeated
10 times per experiment. The learning task was defined as that more than 5
output neurons fired within a predefined time window (task window) immedi-
ately following a stimulus (20-40 ms; Fig. 3.1B). When the task was achieved,
the stimulation would stopped. Control experiments were performed where
the stimulus input stopped at random regardless of the neural activity of the
networks (the other setup was same as the learning experiment).

This closed-loop between the cultured neurons and the environment is
regarded as an embodied agent in a virtual one-dimensional space as follows:
without the stimulation, the agent moves forward at a constant speed; if
the robot approaches a wall of the space, the sensors stimulate the input
neurons and if more than 5 out of 10 output neurons fire within 20 to 40 ms
after the stimulation, the robot turns away from the wall by rotating at 180
degrees and there is no stimulation until the robot approaches the wall in
the opposite direction (Fig. 3.2).

We performed six experiments with three different cultures (10-43 days
in vivo) on the settings.

Figure 3.2: Conceptual diagram of the embodied agent in one-dimensional
virtual space. In either end of the space, there is wall; When the robot
contact with the wall, the robot will get stimulation. The robot moves from
one side to the other side for 5 min.

3.2.2 Results

Evaluation of Wall Avoidance Behavior

We evaluated the learning results with a reaction time to the stimulation.
The reaction time was defined as a time from start of stimulation to a time
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of wall avoidance. Here, we defined a success of learning as that the reaction
time is decreased by 30% or more. The average reaction time in the first 3
trials and the last 3 trials were used for calculating the success rate.

The success rate was 100% (6/6) in the learning experiment, while 16.7%
(1/6) in control experiment (the success rate is not sensitive to the improve-
ment rate with 30% above: e.g., the improvement rate with 20% or 40 % lead
to same conclusion). Therefore, we found that the small cultured networks
learn an action to avoid the stimulation well.

Figure 3.3 shows the average learning curves (n = 6), where a value
on the learning curve represents the reaction time (lower value indicates
higher learning ability). As shown in this figure, in the learning experiments
(LSA), the number of stimulations rapidly lowered and stabled, indicating the
higher learning ability. In the control experiments (Random), the number of
stimulations did not stabilize at lower values and the variance was higher than
LSA. This result is similar to previous results with large cultured neurons
[29], showing that such learning behavior is scalable from small to large
cultured neural networks.
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Figure 3.3: Learning curve in the learning experiment (LSA) and the con-
trol experiment (Random). The values of the learning curve represent the
reaction time until the task was achieved (stimulation frequency was 1 Hz,
thus the reaction time was equal to the number of stimuli to input neurons
until task was achieved), so that lower value in the learning curves indicates
higher learning ability. Error bars represent standard errors of the mean (n
= 6).

In following sections, we show the analysis of the neural dynamics during
the experiments.

Neural dynamics in stimulus-evoked spikes

This section focuses on analysis results of the stimulus-evoked spikes.
Figure 3.4 shows typical examples of an evoked firing pattern of output

neurons. As shown in Fig. 3.4A, the number of spikes increased centering
on the task-window and the spikes often decreased outside the task window,
while the number of spikes in the control case did not increase (Fig. 3.4B).
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Figure 3.4: A: Evoked spikes of output neurons (200 ms) in LSA case. Upper
panel is the time series of the evoked spikes of the output neurons. Lower
panel is the heatmap illustration of evoked spikes of each output neurons.
The masked regions represent the task windows. B: Evoked spikes of output
neurons (200 ms) in the control case. Same conventions as in A.

Figure 3.5A shows mean spikes of the output neurons in the task-window.
As shown in this figure, the mean spikes at the end of the experiment were
significantly larger than those in the beginning of the experiment (Wilcoxon
signed-rank test, n = 6, p = 0.018), while there was no significant difference
in the controls (Wilcoxon signed-rank test, n = 6, p = 0.866). Figure 3.5B
shows the mean spikes in not only the task window but the whole stimulation
phase, and there was no significant difference between the mean spikes at the
beginning of the experiment and those at the end in both LSA case and the
controls. Therefore the results quantitatively show the number of spikes
increased centering on the task-window.
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Figure 3.5: A: Mean spikes in task window. Error bars represent standard
error of the mean (n = 6). In the learning experiment (LSA), the mean spikes
in task window at the end of experiment (post) was significantly larger than
at beginning of the experiment (pre) (p<0.03). B: Mean spikes in whole
stimulation phase. Error bars represent standard error of the mean (n = 6).
There was no significant difference in both the learning experiments (LSA)
and the controls (Random).

Although task was very simple and thus the network can avoid the stim-
ulation by just increasing the firing rate in a whole time, the network in-
creased the firing rate only near the predefined task-window. This suggest
that cultured networks can learn such temporal pattern to avoid electrical
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stimulation.
Figure 3.6 shows a typical example of evoked firing pattern with all neu-

rons. As shown qualitatively in this figure, the firing pattern at the end of
the experiment (post) was different from the beginning of the experiment
(pre 1 and pre 2).

Figure 3.6: A typical example of evoked spikes of all neurons. pre1: the first
5 min in the experiment; pre2: the second 5 min in the experiment; post:
the last 5 min in the experiment. The horizontal axis represents time and
the vertical axis represents neurons; The order of neurons was sorted by the
number of spikes in pre1 in a ascending order. The evoked spikes at the end
of the experiment (post) differ from at the beginning of the experiments (pre
1 and pre 2).

To evaluate the change of the evoked spike pattern qualitatively, we used
Jensen-Shannon divergence (JSD) to measure the similarity between the
evoked spikes. JSD is a symmetrical variation of Kullback-Leibler divergence
(KLD) [75], and defined as:
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JSD(P ||Q) =
1

2
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i=0

pi log
qi
pi

(3.1)

where M = (P +Q)/2.
Figure 3.7 shows that JSD between a baseline and a probability distribu-

tion of evoked firings; the baseline is a probability distribution of the evoked
firings in the first 5 min in the experiment. This figure shows the probability
distribution at the end of the experiment (post: the last 5 min) was signifi-
cantly different from the value of the beginning of the experiment (pre: the
second 5 min) in LSA case (Wilcoxon signed-rank test, n = 6, p = 0.027),
and there was no significant difference in the controls (Wilcoxon signed-rank
test, n = 6, p = 0.753). This quantitatively shows that not just firing rate
but the firing pattern changed during the learning experiments.

Figure 3.7: Mean JSD of the probability distributions of evoked firings with
the baseline. Error bars represent standard error of the mean (n = 6). The
value at the end of the experiment (post) was significantly different from the
value at the beginning of the experiment (pre) (p<0.03).
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In addition, in some of the control experiments, the firing rates in the
evoked firing patterns at the end of the experiments (post) were considerably
decreased, while such a transition did not occurred in the learning experi-
ments. The study of this dynamics are described later (see Section 5.2).

Connectivity inferred with transfer entropy

This section focuses on the whole neural activity in the stimulation phase
rather than the stimulus-evoked spikes.

We used transfer entropy to estimate the synaptic connectivity of the
networks. Transfer entropy measures directed information transfer [76]. For
instance, a higher transfer entropy from one neuron to another indicates
that the former neuron strongly affects the latter. Thus, transfer entropy
enables to discover the effective synaptic connectivity. We used an extended
version of transfer entropy that is more suited to neural activity and called
higher-order transfer entropy [77]. We applied it whole neural activity in the
stimulation phase to see how the connectivity between input neurons and
output neurons changed.

Higher-order transfer entropy (TE) from time series J to I is defined as

TEJ,I(d) =
∑

p(it+1, i
(k)
t , j

(l)
t+1−d)log

p(it+1 | i(k)t , j
(l)
t+1−d)

p(it+1 | i(k)t )
(3.2)

where it denotes the value at time t of I; jt denotes the value at time t of
J ; it+1 denotes the value at time t+1 of I, and these values could be either 1
or 0, indicating whether a neuron is fired or not. The parameters k and l give
the order of TE, implying the number of time bins in the past that are used
to calculate the histories of time series I and J and set to k = l = 3 here.
The parameter d is time delay, and varies from 1 to 60. There is a synaptic
time delay between neurons, and to account for such time delays, the time
bin of J was shifted with d (1 to 60), thus TE was defined as a function of
time delay d. After calculating TE with each d (1 to 60), the peak value was
regarded as a connection strength between I and J .

Figure 3.8 shows a typical example of estimated functional networks with
TE, where white points represent the input neurons, black points represents
the output neurons. The neurons that have at least one connection, and the
connections which have top ten percent of the TE value were depicted. This
figure shows that at the beginning in the experiment (pre), there were strong
connections only between the input neurons, however, at the end (post) there
were many strong connections between the input and output neurons.
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Figure 3.8: Typical example of functional networks inferred with transfer
entropy between input and output neurons. White nodes represent input
neurons and black nodes represents output, and only neurons which have
a connection was depicted. Larger node indicates having higher inputs or
outputs, and thicker line represents stronger connection. pre: the first 5 min
in the experiment. post: the last 5 min.

Figure 3.9 shows mean number of connections inferred by TE between
the input and output neurons. If the value of TE exceeds a threshold, there
is considered to be a connection between the neurons. The threshold was
determined to include connections that have top ten percent of TE value
calculated with data in the first 5 min of the experiment. As shown in this
figure, the number of connections at the end of the experiment (post) was
significantly higher than the beginning (pre) in LSA case (Wilcoxon signed-
rank test, n = 6, p = 0.018), although there was no significant difference in
the control experiments (Wilcoxon signed-rank test, n = 6, p = 0.753).

These results indicate that information flow between the input and out-
put neurons increased. Although these were the estimated functional net-
works, the results suggest that the network structure in the neuronal cultures
changed with the synaptic plasticity.
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Figure 3.9: Mean number of connections inferred with TE between the input
neurons and the output neurons. Error bars represent standard error of the
mean (n = 6). In the learning experiment (LSA), the number of connections
between input and output became significantly larger (p<0.03). There was
no significant change in the control.

3.2.3 Conclusions

The learning experiment was performed with the smaller number of cultured
neuronal cells (approx. 100 cells) than the previous work (approx. 10,000-
50,000) [29], where the external stimulation was delivered to the input neu-
rons with the fixed frequency of 1 Hz and the stimulation was removed for
5 min when expected neural behavior appeared; this closed-loop can be re-
garded as embodied agent in virtual one-dimensional space. We found that
the smaller number of cultured neuronal cells can learn the simple behavior
to avoid the stimulation as well as the case of larger number of neuronal cells
in the previous work [29].

In this study, high-density micro electrode arrays capable of recording
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each neuron’s activity was used. The results of analyzing these neuronal ac-
tivity revealed that learning results were attained by increasing firing rates
only near the predefined task window and the evoked firing patterns gradu-
ally changed over time. In addition, observing connectivity between the input
neurons and the output neurons, inferred by TE, revealed that the functional
networks changed during the experiments. These results suggest that cul-
tured neurons can learn the simple behavior by changing their network struc-
tures with synaptic plasticity rather than a state transition with response to
the external stimulus (e.g., just increasing whole firing rate). These results
suggest that learning such stimulus avoiding behaviors is caused by synaptic
plasticity, such as STDP, thus LSA works in neuronal cultures.

3.3 Autonomous Behavior in Neuronal Cell

Cultures with Complex Embodiment

In previous section, we demonstrated that embodied neural networks with
the small number of cultured neurons can autonomously learned the simple
behavior to avoid the stimulation. In this section, in order to investigate
whether such learning system can scale to a more complicated embodiment
and environment, we performed learning experiments coupling the cultured
neurons to a mobile robot in a two-dimensional real space.

3.3.1 Methods

We used neuronal cultures and CMOS-electrode arrays for recording the
neural activity and stimulation to the neurons (see Section 2.2).

Colsed-Loop System

We implemented a closed-loop system between an embodied cultured net-
works with the mobile robot and the environment. This system mainly
composed of three components: a recording system monitoring the cultured
networks, the robot as body of the cultured networks, and the interface con-
necting them. The system setup is depicted in Fig. 3.10.
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Figure 3.10: Overview of the closed-loop system composed of the high-density
CMOS electrode array monitoring the neuronal cultures, a mobile robot, and
the interface connecting them. The robot communicated with the interface by
radio frequency, and the recording system communicated with the interface
via TCP/IP.

The sensory information of the robot coming from environment were pro-
cessed to stimulate the neuronal cells, and the resulting neural activity were
processed to control motions of the robot. This change of movements of the
robot provided feedback to the neuronal cell states, and this process could be
repeated. Thus the system constitutes a closed-loop and regard it as a model
of primitive sensorimotor couplings. In the recording system, the CMOS ar-
ray and the MEABench software were used for recording and stimulating
neuronal cells (see Section 2.2). Elisa-3 (GCtronic, Ticino, Switzerland) was
used as the mobile robot (Fig. 3.11). Elisa-3 is a circular small robot of 5
cm diameter and has two independently controllable wheels. Only the front
right and left distance sensors were used as sensory signals for stimulating
the neuronal cells. The refresh rate of the robot was set at 10 fps.
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Figure 3.11: Appearance of mobile robot (Elisa3).

The interface played a role in receiving a sensor value from the robot and
stimulating the neuronal cells based on the sensor value thorough the CMOS
array. A maximum frequency of the stimulation is 10 Hz. The interface also
played a role in receiving detected spike data from the CMOS array in real
time and calculating a wheel speed based on the spike data and sending it
to the robot. In this way, the robot and the neuronal cells form a closed-
loop. More details of the sensorimotor mapping are described in the following
section.

Sensorimotor mapping

A simple sensorimotor mapping was applied to the robot and the neuronal
cells on the CMOS array (Fig. 3.12). We randomly selected two channels
that were estimated as excitatory neurons as the left and right input neu-
rons for sending the electrical stimuli. At given time intervals (100 ms), the
probability PL,R for electrical stimulation to the input neuron was controlled
by the sensory value of the mobile robot. Specifically, the probability was
calculated as:

PL,R =

{
0 (SL,R < T )
SL,R/Smax (SL,R ≥ T )

If sensor value SL,R (0-950) was less than a threshold T , PL,R becomes
zero. Otherwise PL,R is calculated by SL,R/Smax. Smax denotes a maximum
value of the sensor input (950). Whether the stimulus will be delivered to
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the input neuron or not was determined with this probability every 100 ms.
The threshold T was set to 100. According to this form, the distance from
the robot to the wall was encoded as the stimulation frequency.

We also randomly selected 20 neurons that were estimated as excitatory
neurons for calculating each left and right wheel speed; a half of them were
used as left output neurons and the others were used as right output neurons.
The wheel speeds were calculated based on the number of spikes of the output
neurons that were integrated every 100 ms. The left and right wheel speeds
VL,R was calculated as:

VL,R = k
∑

i∈NL,R

vi + CL,R

These virtual neural states vi take positive integers, which are equal to the
number of spikes of the output neurons over a given time interval (100 ms),
and sum them with the negative constant weight k and a positive constant
C as a default wheel speed was added. NL and NR were set of channel
number of left and right output neurons. Here, as k is a negative value and
C is a positive value, the robot moves forward when the output neurons
are not active. k was set to -0.3. The default values of CL,R are 12.5 and
the values were adjusted respectively so that the robot go straight before
experiment. As the activity of the output neurons increase, the speed of the
forward movement decreases and finally the robot moves backwards. As the
two wheels of the robot are independent, the robot can also turn, when the
speeds are different.
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Figure 3.12: Sensorimotor mapping between the robot and the cultured net-
works. Two electrodes on the CMOS array were selected as input neurons;
the input neurons got stimulation based on the value of distance sensors of
the mobile robot. 20 electrodes were selected as output neurons: a half of
them were used as left output neurons and the others were used as right
output neurons. The spikes of the output neurons were used for calculating
the left and right wheel speed of the mobile robot.

Experimental Setup

A robot (5 cm diameter) was placed in the 60 cm × 60 cm arena (Fig. 3.13),
and the neural activity were recorded (1 h). We also recorded the right and
left sensor input values of the robot, that indicate the distance between the
robot and the wall on the environment.

We performed six experiments with three different cultures (26-61 days
in vivo) (In one of the experiments, the technical issue occurred, thus the
recorded data of the rest five experiments were analyzed.)
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Figure 3.13: Experimental environment in real space. The robot was placed
in the two dimensional square arena (60 cm × 60 cm).

3.3.2 Results

Evaluation of wall-avoidance behavior

This section focused on whether the mobile robot could improve wall-avoidance
behavior autonomously.

We used a reaction time for evaluating the wall-avoidance behavior. The
reaction time R was defined as:

R = t2 − t1

Here, t1 denotes a time at which the sensory input value exceeds a thresh-
old T and t2 denotes a time at which the value is below T ; T = 100 (the
maximum sensor value is 950). When the robot collides with a wall or stands
close to it, the sensor becomes activated, otherwise it receives a weaker sig-
nal. Therefore the lower reaction time indicates a higher performance of
wall-avoidance. Here, the success was defined as: the reaction time is de-
creased by 30% or more. The average reaction time in the first 10 min and
the last 10 min of the experiments were used for calculating the success rate.

The success rate of learning the wall avoidance behavior was 40% (2 out
of 5 experiments; Fig. 3.14).
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Figure 3.14: Time series of reaction time. The reaction time is defined as the
duration between a time in which a sensor-input value exceeds a threshold
(100) and the time in which the sensor-input value is below the threshold.
Success was defined as: the reaction time is decreased by 30% or more.
The average reaction time in the first 10 min and the last 10 min of the
experiments were used for calculating the success rate.

We guess that one of the reasons of the lower success rate than one-
dimensional virtual agent is that the learning of wall avoiding behavior in
this section is more difficult than the wall-avoidance in the previous section,
because the networks have to show the spatio-temporal pattern to avoid the
wall (e.g., the left-wheel speed is much higher than the right to turn away
from the wall).

In the previous simulation experiment with the similar experimental setup
to the experiment here, the spiking networks can learn such a wall avoidance
behavior well [31], and the previous study also shown that a burst suppression
was required in such selective learning. Even in neuronal cultures, burst
suppression is possible by inserting a noise input [61], however we did not
apply the burst suppressing in this experiment, thus the bursting behavior
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remained even during the stimulation phase (Fig. 3.15). In our future work,
we need to examine whether learning such more complex behavior is improved
by suppressing such bursting behavior.

In addition to the burst synchronization, the connectivity might be one
of the causes of the failures. To evaluate the connectivity between the input
neurons and the output neurons, we defined the connectivity measure as: the
ratio of connections between input neurons and output neurons which have
low time delay (40 ms). The time delay of each connection was estimated
based on the argument of the maximum value of the cross-correlation between
the spike time series of input neurons and output neurons in first 1 min in
the experiments. Figure 3.16 shows a correlation between the connectivity
measure and a success measure. The success measure was defined as improve
rate of reaction time: (R0 − R1)/R0 where R0 denotes an average reaction
time in the first 10 min of the experiment and R1 denotes the last 10 min
of the experiments. As shown in this figure the connectivity and the success
measure have strong correlation. This suggest the connections with short
time delay between input neurons and output neurons are required for this
learning. Since the number of sample is small (n = 5), the p-value was a little
bit high, thus additional experiments are required in our future research.

Figure 3.15: Burst synchronizations during the experiment. This figure shows
a typical example of the experiments in the failure cases.
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Figure 3.16: Correlation between the connectivity measure and the success
measure. The correlation coefficient: r = 0.884 (p=0.046). Black line repre-
sents the linear regression.

Moreover, we found that the evoked-spikes tended to decrease in the
all failure cases. This suggests that plasticity tends to work to separate
uncontrollable inputs that are difficult to learn by LSA. We study more on
this property in the sections below (see Section 5.2)

3.3.3 Conclusions

The learning experiment was performed more complex closed-loop than the
previous section. The success rate of learning the wall avoidance behavior
was 40%. As the success late of spatio-temporal task (selective learning) in
the previous study is also low (about 50%) [29], it suggest that similar results
are reproduced independently of the number of neurons. We hypothesized
that there were two reasons of the low success rate: burst synchronization
and connectivity.
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3.4 Discussions

In this study, we demonstrated that SAA emerged in the embodied cultured
neural networks even with the smaller number of neurons than the previous
works [29]. We implemented the closed-loop system for connecting the cul-
tured neuronal cells and the virtual or real robot, and conducted the experi-
ment using this system. The results showed that the networks autonomously
learned the simple behavior well in the virtual space (the success rate was
100%) and the more complex behavior in two dimensional real space par-
tially (the success rate was 40%). The analysis of neural dynamics suggest
that cultured neurons can learn a simple behavior by changing their network
structures with the synaptic plasticity implying LSA based on STDP work
in biological neural networks.

Shahaf and Marom showed that cultured networks can learn behaviors to
stop stimuli from environment with large networks (10,000-50,000). In this
chapter, we demonstrated the smaller network (about 100 neurons) learned
the simple task to avoid the stimulation. These results suggest that SAA
scales from small to large cultured networks. Although modifiability and
stability proposed by Shahaf cannot emerge in very small number of neurons
(e.g., 2 neurons), LSA scales from 2 neurons to 100 neurons [31] (In addition,
in following sections, we also demonstrate that LSA scale to the larger spiking
neural networks (see Section 6.1 and Section 6.2)). LSA is based on STDP
which found in vitro and in vivo. Therefore we argue that LSA is a basic
learning mechanism for SAA in neuronal cultures. To support the assertion,
we need to conduct experiments with minimal size of neuronal cultures (e.g.,
2 neurons).

In LSA, there must be some necessary conditions for structure of the
closed-loop system. Here we discuss on the necessary conditions (Fig. 3.17).
We identify one necessary condition for the network, Connectivity: Input
neurons must be able to directly or indirectly transmit stimulation from the
environment to the output neurons; additionally, there is a time constraint on
this condition: the stimulation must reach the output neurons in less time
than τ . τ is the time window during which the network can evaluate the
consequences of a specific action that it took: for example, in a minimal net-
work with 2 neurons, τ should be equal to the working time window of STDP
(e.g., 20ms). The analysis of the correlation between the connectivity mea-
sure and the success measure (Fig. 3.16) supports that this conditions should
be require for the neuronal cultures. We identify an additional condition for
the environment, Controllability: There must be an output pattern from the
network that can inhibit the stimulation through some action (e.g., turning
away from the wall); there is also a time constraint on this condition: after



CHAPTER 3. STIMULATION AVOIDANCE BY ACTION 48

Input

Output

Controllability
0 ≤ Δt2 < 

Connectivity 
0 < Δt1 ≤  

Network Environment

Input
neurons

Output
neurons

Transmission
Δt1

Inhibition
Δt2 

Figure 3.17: Necessary conditions for stimulation avoidance by action: Con-
nectivity: Input neurons must be able to directly or indirectly transmit stim-
ulation from the environment to the output neurons; the stimulation must
reach the output neurons in less time than the time constant τ . Controlla-
bility: There must be an output pattern from the network that can inhibit
the stimulation through some action; after the output is exhibited, the stim-
ulation must stop in less time than τ .

the output is exhibited, the stimulation must stop in less time than the time
constant τ . In the control experiment in Section 3.2 where Controllability
is not respected (i.e., the stimulation is random and no output stop it), the
networks did not learn the reactive behavior to avoid the stimulation. This
result support this conditions should be require for the neuronal cultures.
We argue that if these conditions are satisfied in closed-loop with embodied
neural networks which have synaptic plasticity, such as STDP, then agents
autonomously learn an action to avoid stimulation.

In this study, we focused on the wall-avoidance behavior. The networks
learned the action to avoid the external stimulation based on LSA, however,
emerging behaviors of agents should not limited to such avoiding behavior
(e.g., object avoidance). Other adaptive behaviors can emerge from other
couplings of embodiments and environment (see Section 6.3). For example,
if an agent has sensors which has reverse dynamics of the distance sensors
we used (i.e., if there is no object in front of the agent, stimulation start,
and when an object appears in front of the agent, the stimulation stops.),
the agent should learn object seeking behavior. Therefore, what kind of be-
haviors learned by agents to avoid stimulation depends on its embodiment.
Coupling SAA with evolution of the embodiment, more various types of be-
havior should emerge. A drawback of the robot-neural platform here is that
it uses the entire network of the neuronal cultures for making one style of be-
havior. This can be improved by using modular networks connecting multiple
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neuronal cultures. We must study whether LSA works in such modularized
networks in our future research.



Chapter 4

Stimulation Avoidance by
Prediction

4.1 Minimal Predictive Networks in Spiking

Neural Networks

4.1.1 Introduction

The previous studies showed that spiking neural networks can learn actions
to avoid stimuli from environments [31]. In addition, the previous chapter
showed that cultured networks learn actions in the same way. This behav-
ior of the agents leads to maintain their homeostasis since the environmental
changes can cause the changes of internal state of the agent. In the evolution-
ary perspective, next to such a learning reactive behaviors, prediction should
be evolved. Because such a reactive agent who can only learn a reaction to
avoid stimulation, cannot initiate an action before getting an actual stimu-
lus. Thus, even if the agent can learn a reaction to an undesirable stimulus
(e.g., damaging for the agent), the agent cannot avoid the stimulus before
actually getting the stimuli. In such situations, if the agent can predict the
incoming stimulus, the agent can initiate an avoiding behavior before getting
damaged.

Prediction has recently been argued to be the definition of intelligence
[7, 8] and predictive coding [12] attracts much attention. We consider that
the predictive coding can be regarded as a function which reduces an error
between an input signal and a top-down prediction. If such a predictive
module is regarded as an agent, such reducing error is equal to a reducing
the influence of stimuli from the environment to the internal system. Thus
this can be regarded as Stimulation Avoidance by Prediction (SAP). At least,

50
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the prediction is a powerful way to maintain homeostasis of an agent in a
niche at macroscale where a lot of events in the environment are predictable
within the individual lifetime (see Section 1.1).

There are some studies on prediction of temporal sequence in spiking
neural networks [38, 39, 40, 41]. However, these predictive networks require
some well-designed structures or other factors than STDP, thus it seems
these predictive networks do not emerge in a primitive neural networks such
as dissociated neuronal cultures we used in this thesis.

In this chapter, we focus on prediction in spiking neural networks based
on STDP. We first demonstrate minimal predictive networks consists of 3-
6 neurons can learn to predict some sequences of stimulation and finally
demonstrate that even large random networks (100 neurons) without the
well-designed structure can learn to predict a simple sequence of stimulation.

4.1.2 Methods

We performed some experiments using spiking neural networks. The model
for spiking neuron proposed by Izhikevich [52] was used to simulate excita-
tory neurons and inhibitory neurons (see Section 2.3.1). The network size
depends on the experiments (3-100). We used STDP as dynamics of neu-
ral plasticity (see Section 2.3.2). Note that, there was the neural plasticity
by STDP not only for the connections between excitatory neurons but also
for the connections to and from inhibitory neurons. Although STDP in in-
hibitory connections is still controversial, here we applied the same STDP
function for all connections (ALTP , ALTD=1.0; τLTP , τLTD=20). In the most
of the experiments, there was no synaptic time delay, however, in one of
the experiments, there was a synaptic time delay between a timing of firing
of presynaptic neuron and a timing of reaching the signal of the firing to
postsynaptic neurons. In the experiments with the synaptic time delay, the
function fj which is the part of the functions for adding input current to each
neuron (Eq 2.5; see Section 2.3.3) was modified for the synaptic time delay
as:

fj =

{
1, t− tsj = tdij

0, otherwise.
(4.1)

where t denotes the current simulation time, tsj represents the timing
of firing of presynaptic neuron j and tdij represents the synaptic time delay
between neuron i and neuron j. In the experiments with the synaptic delay,
each pair of excitatory neurons and inhibitory neurons had 15 synapses (td
of each synapse is varied from 1 to 15 ms).
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Figure 4.1 shows the basic network topology for a minimal predictive
network used in the following experiments. The network consisted of some
excitatory neurons as input neurons and one inhibitory neuron, and the input
neurons were not connected to each other, but all had an output and input
weight with the same inhibitory neuron. The number of input neurons de-
pended on the experiments (3-5). The weight values w between each neuron
were initialized as 15.

We also used larger networks for evaluating its scalability. The network
consisted of 80 excitatory neurons and 20 inhibitory neurons, and its topology
was not well-designed and fully connected. The weight values w between each
neuron were randomly initialized with uniform distributions as 0 < w < 5 for
connections from excitatory neurons, −5 < w < 0 for connections from in-
hibitory neurons. There was the synaptic plasticity in all connections except
for the connections from the inhibitory neurons to the inhibitory neurons.
There were three input neuron group (EG0-2), and 10 excitatory neurons
were randomly selected for each input neuron group.

Figure 4.1: Basic topology for a minimal predictive network. The network
consists of some excitatory neurons as input neurons and one inhibitory neu-
ron. E represent the excitatory neurons. The number of E depends on
experiments (3-5). En get random stimulus input as control; The other Ei

get a part of specific stimulation sequence. I represents inhibitory neuron.
The excitatory neurons were not connected to each other, but all had an
output and input weight with the same inhibitory neuron. The black arrow
represents excitatory synapses, The red arrows represents inhibitory synapses
(the circles are the end of the arrows).
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Figure 4.2: Stimulation sequence patterns of stimulation. The red squares
represent stimuli that are part of the stimulation sequences. The green
squares represent random stimuli. A: Minimal sequence. The sequence
consisted of two stimuli (one anticipatory (first) stimulus and one target
stimulus). B: Spatial sequence. The sequence consisted of four stimuli (one
anticipatory (first) stimulus and three target stimuli). C: Temporal sequence.
The sequence consisted of four stimuli (one anticipatory (first) stimulus and
three target stimuli).

Three types of sequences of stimulation were applied to the networks:
minimal sequence, spatial sequence, temporal sequence (Fig. 4.2). In the
minimal sequence of stimulation, the sequence consisted of two stimuli (one
anticipatory stimulus and one target stimulus): the anticipatory (first) stim-
ulus was delivered to a specific input neuron and after a fixed time delay
the target (second) stimulus was delivered to another specific input neuron
(Fig. 4.2A). For the large networks, the minimal sequence consisted of two
stimulus groups; Each stimulus group was delivered to the corresponding
input neuron groups. In the spacial sequence of stimulation, the sequence
consisted four stimuli (one anticipatory stimulus and three target stimuli):
the anticipatory stimulus was delivered to a specific input neuron and after a
fixed time delay the target stimuli were delivered to three other specific input
neurons at the same time (Fig. 4.2B). In the temporal sequence of stimula-
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tion, the sequence also consisted of four stimuli (one anticipatory stimulus
and three target stimuli): the anticipatory stimulus was delivered to a specific
input neuron and after a fixed time delay the first target stimulus was deliv-
ered to other specific input neuron and after a fixed time delay the second
target stimulus was delivered to other specific input neuron and continued
to the third target stimulus (Fig. 4.2C). For the every sequence patterns, the
strength of each stimulus was 100 mV (10 mV for the large networks), the
intervals of each stimulus was 10 ms that is sufficiently smaller than working
time window of STDP (20ms), and the intervals of each sequence was 300 ms
which is sufficiently larger than the working time window of STDP. In ad-
dition to those sequential stimulations, random stimulation with the same
frequency to the sequential stimulations was delivered into another specific
input neuron (or input neuron group for large networks) as the control.

4.1.3 Results

We first performed the experiment with the minimal network (3 neurons)
with the minimal sequence of stimulation without synaptic time delay (n = 20).
The networks consisted of three input neurons and one inhibitory neuron and
the input neurons were not connected to each other, but all had an output
and input weight with the same inhibitory neuron (Fig. 4.1). If the inputs
are correctly predicted, the input neurons should be inhibited at the timing
at which the stimulation is delivered. In Fig. 4.3, we look at the firing rates
of all input neurons. We see that the firing rates of E1 which got the target
stimulus decreased, whereas the firing rate of E0 which got the anticipa-
tory stimulus and that of E2 which got the random stimulus did not change
much: the networks gradually learned to predict the target stimuli, while the
random stimulus was not predicted. This implies that the inhibitory neu-
ron suppressed the E1 at the timing of the target stimuli, thus the network
learned to predict the target stimuli.

Figure 4.4 and 4.5 show that the weight from the anticipatory neuron to
the inhibitory neuron has increased, as did the weights from the inhibitory
neuron to the target neurons. This path from E0 to I and from I to E1 is
required to predict target stimuli to E1. In contrast, the weights to and from
the random neuron did not change much.
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Figure 4.3: Time series of the firing rates of input neurons with the minimal
sequence in the small network. The shaded regions represent standard errors
of the mean (n = 20). The firing rate of E1 which got second stimulus of
the minimal sequence decreased but E0 which got anticipatory stimulus and
E2 which got random stimulus did not change much.

Figure 4.4: Time series of synaptic weights in small networks with minimal
sequence. The shaded regions represent standard errors of the mean (n =
20). A: The weights from the inhibitory neurons to the excitatory neurons:
E0, E1, E2. B: The weight from the excitatory neurons: E0, E1, E2, to the
inhibitory neurons.
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Figure 4.5: Obtained network in the small networks with the minimal se-
quence. A pathway from E0 to the inhibitory neuron and from the inhibitory
neuron to E1 was strengthened. This path is required to predict target stim-
uli to E1. The black arrow represents excitatory synapses, The red arrows
represents inhibitory synapses (the circles are the end of the arrows). The
weight value of connections from inhibitory neurons is treated as the negative
value for distinction from the excitatory synapse.

We evaluated whether the networks learn to predict more complex se-
quences: the spatial sequence and the temporal sequence. We first applied
the spatial sequence of stimulation to the networks (n = 20) where two more
input neurons were added to the minimal network above. Figure 4.6 shows
that the firing rate of E1-3 which got the target stimuli of the spatial se-
quence decreased whereas E0 which got the anticipatory stimulus and E4
which got random stimulus did not change much: the networks gradually
learned to predict the spatial sequence, while the random stimulus was not
predicted. This implies the inhibitory neuron suppressed the E1-3 at the
timing of the target stimuli and thus the network learned to predict the spa-
tial sequence. On the other hand, the same networks did not learn to predict
the temporal sequence, because there is only one inhibitory neuron, the net-
work cannot learn to predict a longer temporal sequence than the minimal
sequence consists of two stimuli.
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Figure 4.6: Time series of the firing rate of the input neurons with the spatial
sequence. The shaded regions represent standard errors of the mean (n = 20).
The firing rate of E1-3 which got the target stimuli of the spatial sequence
decreased but E0 which got the anticipatory stimulus and E4 which got
random stimulus did not change much.

For the networks to predict the longer temporal sequence, we hypothe-
sized it must have more inhibitory neurons or more synapses between the
input neurons and the inhibitory neuron which have different synaptic time
delays, to encode information of such a longer temporal sequence. Therefore
we applied 15 synapses between each input neuron and inhibitory neuron in
the networks with different synaptic time delays (1-15ms).

Figure 4.7 shows that the firing rate of E1-3 which got the target stimuli
of the temporal sequence decreased whereas E0 which got the anticipatory
stimulus and E4 which got random stimulus did not change much: the net-
works gradually learned to predict the temporal sequence, while the random
stimulus was not predicted. This implies inhibitory neuron suppressed the
E1-3 at the timing of the target stimuli and thus the network with the synap-
tic time delay learned well to predict the temporal sequence.
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Figure 4.7: Time series of the firing rate of the input neurons with the
temporal sequence. The shaded regions represent standard errors of the
mean (n = 20). The firing rate of E1-3 which got the target stimuli of the
temporal sequence decreased but E0 which got the anticipatory stimulus and
E4 which got random stimulus did not change much.
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We examined whether SAP scales to the large networks. We applied the
minimal sequence of stimulation to the random networks consisted of 100
neurons (n = 20). Figure 4.8 shows that the networks gradually learned to
predict the minimal sequence, while the random stimulation was not pre-
dicted. The green line represents the firing rate of hidden neurons that are
the excitatory neurons exclude the input neurons. This can be regarded as
the baseline of firing rate in the networks. The firing rate of EG1 (excita-
tory neuron group 1) which got target stimuli of minimal sequence gradually
decreased to near the value of the hidden neurons, thus, the accuracy of the
prediction was not bad.

Figure 4.8: Time series of the firing rates of the input neurons with the
minimal sequence in the large networks (100 neurons). The shaded regions
represent standard errors of the mean (n = 20). The firing rate of EG1 which
got the target stimuli decreased but EG0 which got anticipatory stimuli and
E2 which got random stimuli did not change much. The firing rate of hidden
neurons can be regarded as a baseline of firing rate in the network.

Figure 4.9 shows the typical example of the raster plot of spikes of each
neuron in the large network. The figures show that in the first phase of the
experiment, almost all neurons in EG1 fired at the timing they got the target
stimuli, but in the last phase of the experiment, the neurons did not much
fire at the timing and their firing patterns were almost same with hidden
neurons. This implies that inhibitory neurons suppressed the firing of the
neurons in EG1 at the timing of the target stimuli, suggesting the networks
learned well to predict the minimal sequence of stimulation.
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Figure 4.9: Raster plots of spikes in large network. Each dot represents one
spike: red dots represent spikes of EG0 which got the anticipatory stimuli,
blue dots represent spikes of EG1 which get the target stimuli, black dots
represent spikes of the other groups (EG2, Hidden and Inhibitory). A: Spikes
in the first 3,000 msec. Almost all neurons in EG1 fired at the timing they
got the target stimuli. B: Spikes in the last 3,000 msec. The neurons in EG1
did not much fire at the timing and their firing patterns were almost the
same as hidden neurons.

Figure 4.11 shows the time series of the synaptic weights between each
neuron groups and its dynamics looks similar to that of the small networks.
Thus this suggest that the mechanisms for prediction in the small networks
scaled to the large networks.

Figure 4.10 shows the typical example of the initial weights and the last
weights of the network, and Fig. 4.12 shows obtained topology of the network.
Importantly, there was a strong pathway from EG0 to inhibitory neurons and
from inhibitory neurons to EG1; this path is required for the prediction. In
addition, there was a pathway from EG0 to hidden neurons, hidden neurons
to inhibitory neurons and inhibitory neurons to EG1; this pathway might be
required to adjust the timing of suppression of EG1.
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Figure 4.10: Initial weights and final weights of the large network. Color rep-
resents connection weight. The weight value from inhibitory neurons treated
as negative value for distinction from excitatory synapse.

Figure 4.11: Time series of synaptic weights in large networks with minimal
sequence. A: The weights from the inhibitory neurons to the excitatory
neuron groups: EG0, EG1, EG2, and hidden neurons. B: The weight from
the excitatory neuron groups: EG0, EG1, EG2, and hidden neurons to the
inhibitory neurons.
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Figure 4.12: Obtained network from the large network. A connection be-
tween each group was depicted, if its absolute mean weight value is larger
than 5.0: thick line represents larger weight value than 10.0, thin line repre-
sents less value than 10.0, black lines represent excitatory synapses and red
lines represent inhibitory synapses. The weight values of connections from
inhibitory neurons is represented with red arrows and treated as negative
value for distinction from excitatory synapse.

These results show that spiking neural networks learn to predict some
simple sequences of stimulation based on STDP.

4.1.4 Discussion

In this study, we demonstrated that the spiking neural networks learned to
predict some causal inputs from the environment, based on STDP. In the
prediction in this study, the input neurons which got the target stimuli was
suppressed by the inhibitory neuron at the timing of receiving the stimulus.
This leads to decreasing the influence of stimulation from the environment to
the networks. Thus it can be regarded as SAP. We also showed this property
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scales to the large random networks (100 neurons) without preparing well-
designed structures and other particular functions than STDP. Therefore
this suggests that SAP can also emerge in dissociated neuronal cultures like
we used in the previous chapter. We must study further on the learning
prediction in neuronal cultures in our future research.

As Stimulation Avoidance by Action (SAA) requires some necessary con-
ditions for the structure of the closed-loop (see Section 3.4), SAP must have
some necessary conditions. Here we first discuss the minimal conditions for
the predictive network, then we also discuss how to integrate the predictive
networks with the reactive agent (see Section 3.4) to a proactive agent.

Input
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Figure 4.13: Conditions for predictive networks: Predictability: the time
delay between the stimulus at T1 (unpredictable anticipatory stimulus) and
the stimulus at T2 (predictable target stimulus) must be constant, i.e., the
environment must provide predictable stimuli in order for predictions to be
learned. Controllability: The time delay between the stimulus at T1 and the
stimulus at T2 (predictable target stimulus) must be less than τ ; τ is the time
window during which the network can evaluate the consequences of a specific
action that it took. Connectivity: Input neurons must be able to directly or
indirectly transmit and receive stimulation from the inhibitory neurons.

For the minimal predictive networks, some modifications were required
to the conditions for the learning action (see Section 3.4). In Fig. 4.13, com-
pared to Fig. 3.17 the role of output has been shifted from the environment
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into the network itself. Instead of output neurons acting upon the environ-
ment inhibiting external stimulation in SAA, now inhibitory neurons must
act on the input neurons inhibiting external stimulation. This is a minimal
shift in perspective, which only requires to add inhibitory neurons and its
synaptic plasticity in the network. The dynamics of the prediction as fol-
lows: inhibitory neurons must learn to inhibit input neurons at time T2; the
input neurons must learn to control inhibitory neurons at time T1 in order to
make inhibition at T2 possible. On the environment, we have two condition,
Predictability: the time delay between the stimulus at T1 (unpredictable
anticipatory stimulus) and the stimulus at T2 (predictable target stimulus)
must be constant, i.e., the environment must provide predictable stimuli in
order for predictions to be learned, Controllability: The time delay between
the stimulus at T1 and the stimulus at T2 (predictable target stimulus) must
be less than τ ; τ is the time window during which the network can evalu-
ate the consequences of a specific action that it took. On the network, we
still have the Connectivity condition, this time involving inhibitory neurons:
Input neurons must be able to directly or indirectly transmit and receive
stimulation from the inhibitory neurons.

In a evolutionary perspective, it is difficult to discuss a prediction itself
without an action. To enhance an adaptability by prediction for the reactive
agent which learn the reactive behavior to stimulus discussed in the previous
chapter, the structure of the reactive agent and the predictive network must
be integrated to a single agent. Here, we discuss how the predictive agent
and the reactive agent can be combined to have proactive behavior: actions
that are based on predictions.

Figure 4.14 shows how a conceptual shift on the conditions for learning
predictions (Fig. 4.13) can give the conditions for proactive behaviors. We
insert output neurons between the input neurons and inhibitory neurons.
Their position is similar as for the reactive agent (Fig. 3.17), but this time
the “action on the environment that stops stimulation” is an action on in-
hibitory neurons that also ends up stopping stimulation, through the same
prediction process as in Fig. 4.13. Here for clarity, the output and input
neurons are separated, but in the simplest case, a neuron can act both as an
input (by receiving external stimulation) and as an output (by outputting
directly to an inhibitory neuron). More interesting cases are possible when
we have several neurons: predictions can aggregate input from several input
neurons, and predictions can be stacked hierarchically by aggregating several
output neurons. As we have seen, input neurons receiving a predictable se-
quence of stimulation become inhibited by inhibitory neurons, except for the
neurons receiving anticipatory stimuli. Therefore any proactive behavior (ac-
tions based on prediction) must rely on information from these anticipatory
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neurons.
We need to study further to show such a proactive agent actually emerge

with the proposed conditions here in the future works.
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Figure 4.14: Conditions to learn proactive behavior: Predictability: the time
delay between the stimulus at T1 (unpredictable anticipatory stimulus) and
the stimulus at T2 (predictable target stimulus) must be constant, i.e., the
environment must provide predictable stimuli in order for predictions to be
learned. Controllability: The time delay between the stimulus at T1 and the
stimulus at T2 (predictable target stimulus) must be less than τ ; τ is the
time window during which the network can evaluate the consequences of a
specific action that it took. Connectivity: Transmission from input neurons
to other input neurons through output neurons and inhibitory neurons must
be less than τ .



Chapter 5

Stimulation Avoidance by
Selection

5.1 Introduction

In the previous chapters, we showed that Stimulation Avoidance by Action
(SAA) and Stimulation Avoidance by Prediction (SAP) can emerge in cul-
tured neural networks and spiking neural networks. In this study, as the
results of experiments using the cultured networks (see Chapter 3), we found
that if the network cannot learn a behavior that stops an external stimula-
tion, its responses to the stimulation are gradually suppressed as if it sep-
arates the uncontrollable input neurons. Such kind of response to repeated
stimulation has been known as a neural adaptation or a sensory adaptation
in neuroscience [78]. One of the possible mechanism is a synaptic fatigue
[79]: Repeated stimulations cause exhaustion of neurotransmitters in synapse
leading weakening the response to the stimulation. However, it seems that
the observed behavior to the repeated stimulation in our experiment is not
caused by the synaptic fatigue but synaptic plasticity, especially LTD. In
addition, we demonstrate such kind of neural adaptation is reproduced by
spiking neural networks without synaptic fatigue but with STDP. It means
that in addition to SAA and SAP, there is the third property to avoid the
stimulation, where the network avoids the stimulation by weakening the con-
nection strength from the input neurons if it is hard to learn a behavior to
avoid the stimulation.

In this Chapter, we focus on the Stimulation Avoidance by Selection
(SAS) in both cultured neural networks and spiking neural networks. The
selection behavior here means that weights from input neurons with control-
lable inputs is reinforced, and weights from input neurons with uncontrollable
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inputs is depressed.

5.2 Synaptic Selection in Neuronal Cell Cul-

tures

In this section, we focus on SAS in cultured neural networks showing the
further analysis of the experimental data in Chapter 3.

5.2.1 Methods

We analyzed the neural activity in the experiment using the cultured neurons
that we previously conducted (see Chapter 3).

In the analysis, we used two experimental data: experiment 1: SAA in
one-dimensional virtual space (see Section 3.2); experiment 2: SAA in two-
dimensional real space (see Section 3.3). In both cases, the stimulation was
delivered as the sensor input when the robot contacted with the wall, and
the sensor input stopped when the robot moves away from the wall.

In experiment 1, without stimulation the agent moves forward at a con-
stant speed; If the agent approaches a wall, the sensors stimulate the input
zone and if more than 5 out of 10 output neurons fire within 20 to 40 ms
after the stimulation, the agent turns away from the wall by rotating at 180
degrees [80] (see Section 3.2). We also conducted the control experiment
under the condition that the stimulus input stopped at random regardless of
their neural activity and the other settings are the same as the experiments.

In experiment 2, the robot as the embodiment of the agent had two
infrared sensors on the front left and right of the body, and two motor wheels
on the left and the right side of its body. As the agent approaches the
wall, the sensor values become higher and the stimulus input was delivered.
The number of firings of output neurons was the coefficient of left and right
motor speeds of the robot, thus in order to avoid the wall, the robot needs to
control the motor speeds [81] (see Section 3.3). It is a more difficult condition
compared with the experiment 1.

In order to investigate the neural behavior in conditions where it is diffi-
cult to learn a stimulus-avoiding behavior, we focused on the results of the
control condition in experiment 1 in which the robot cannot learn the behav-
ior and the failure cases of experiment 2 in which it is more difficult to learn
the behavior than experiment 1.
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5.2.2 Results

In Section 3.2, we showed that the embodied cultured neural networks learned
to avoid the wall in virtual one-dimensional space. Interestingly, however,
we found that the stimulus-evoked spikes decreased remarkably in some cases
of the control experiments in which the stimulation was randomly removed
regardless of their activity (Fig.5.1).

Figure 5.1: Evoked spikes of all neurons in the control experiments. The color
indicates the number of spikes of each neuron. pre1: the first 5 min of the
experiment; pre2: the second 5 min; post: the last 5 min. In both examples,
the evoked spikes at the end of the experiment (post) were decreased.

Figure 5.2 shows mean evoked firing rate with standard errors. The
evoked firing rate except for input neurons (Fig. 5.2A) consists of spikes
in 200 msec after each stimulus. The evoked firing rate of input neurons
(Fig. 5.2B) consists of spikes in 50 msec after each stimulus, since we want
to focus on the evoked spikes by each stimulus rather than the evoked spikes
by the feedback from other neurons. Besides the qualitative results above,
the statistical results show that mean evoked firing rate of all neurons ex-
cept for input neurons significantly decreased in the last 5 min of experiment
relative to the first 5 min (Wilcoxon signed-rank test, n = 6, p = 0.012)
(Fig. 5.2A), on the other hand, that of input neurons did not change signif-
icantly (Fig. 5.2B). These results imply that decreasing evoked spikes was
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not caused by decreasing firing rate of input neurons.

Figure 5.2: Mean evoked firing rates in the controls. Error bars represent
standard errors of the mean (n = 6). pre: first 5 min in the experiment; post:
the last 5 min. A: mean evoked firing rate of all neurons except for input
neurons (p<0.03). B: mean evoked firing rate of input neurons.
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Figure 5.3: Evoked spikes of all neurons in failure cases in experiment 2. The
color indicates the number of spikes of each neuron. pre: the first 5 min of
the experiment; post: the last 5 min. In all examples, the evoked spikes at
the end of the experiment (post) decreased.

In experiment 2, the success rate of the learning of wall avoidance be-
havior in two-dimensional real space was 40% (2 out of 5 experiments) (see
Section 3.3). We focus on dynamics of the failure cases for examining whether
similar dynamics with the control in experiment 1 are observed in this more
difficult task case.

As shown in Fig. 5.3, the stimulus-evoked spikes decreased gradually in
the failure cases. These results look similar to the result of the controls in
experiment 1.

Figure 5.4 shows the evoked firing rates of input neurons and other neu-
rons. The evoked firing rate of output neurons consisted of spikes in 200
msec after each stimulus. The evoked firing rate of input neurons consisted
of spikes in 50 msec after each stimulus, since we want to focus on the evoked
spikes by stimuli itself rather than the evoked spikes by feedback of the other
neurons. As shown in Fig.5.4, the evoked firing rate of other neurons was
gradually decreased, but the evoked firing rates of input neurons did not
decrease.

Statistical results show that mean evoked firing rate of all neurons except
for input neurons significantly decreased in the last 5 min of the experiment
relative to the first 5 min (Wilcoxon signed-rank test, n = 3, p = 0.023)
(Fig. 5.5A), on the other hand, mean evoked firing rate of input neurons did
not change significantly between the first 5 min in the experiment and the
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Figure 5.4: Time series of evoked firing rates in the failure cases. The values
represent the evoked firing rates with standard errors (n = 3) in the specific
time window after delivering a stimulus (50 ms for input neurons and 200
ms for other neurons).

last 5 min. (Fig. 5.5B).
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Figure 5.5: Mean evoked firing rates in the failure cases. Error bars represent
standard errors of the mean (n = 3). pre: first 5 min of the experiment; post:
the last 5 min. A: mean evoked firing rate of all neurons except for input
neurons. (p<0.03). B: mean evoked firing rate of input neurons.

These results imply that the decreasing of firing rates of all neurons ex-
cept for input neurons was not caused by decreasing of evoked spikes of the
input neurons but decreasing the synaptic connection strength from the in-
put neurons to the others. Therefore, it suggests that embodied cultured
neural networks try to learn an action to avoid external stimulation, but if
the learning is difficult, the networks tend to ignore the external stimulation
weakening the connection strength from the input neurons.

5.2.3 Conclusions

In this study, we demonstrated that if it is impossible or difficult to learn
the action to avoid stimulation, the response to the stimulation decreased in
the cultured networks. It was not caused by decreasing firing rate of input
neurons suggesting it was not caused by the synaptic fatigue but caused by
decreasing synaptic weight by LTD. Therefore, the neural dynamics works to
separate the input neurons which has uncontrollable input, as if it prohibits
the rest of the network from getting information from the uncontrollable
neurons.
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5.3 Synaptic Selection in Spiking Neural Net-

works with Asymmetric-STDP

In this section, we focus on SAS in spiking neural networks. In previous chap-
ters, although we used symmetric-STDP (LTP and LTD is rotational sym-
metry), STDP broadly found in vitro [32] is rotational asymmetric (e.g., the
working time window of LTD is larger than LTP). Applying such asymmetric-
STDP, we show the spiking neural networks reproduce the neural behaviors
observed in the cultured networks in the previous section.

5.3.1 Methods

We performed a learning experiment using spiking neural networks, that has
similar experimental settings to experiment 1 in the previous section, and the
control experiments where the stimulation was randomly removed regardless
of the output of the network (i.e., the network can not learn the behavior to
avoid the stimulation in the control conditions).

The model for spiking neuron proposed by Izhikevich [52] was used to
simulate excitatory neurons and inhibitory neurons (see Section 2.3.1). The
network consisted of 80 excitatory neurons and 20 inhibitory neurons. This
ratio of 20% inhibitory neurons is standard in simulations [63, 52] and simi-
lar to biological values [82]. The excitatory neurons were divided into three
groups: Input (10 neurons), Output (10 neurons), Hidden (60 neurons). The
networks were fully connected; The weight values w between each neuron
were randomly initialized with uniform distributions as 0 < w < 5 for excita-
tory neurons, −5 < w < 0 for inhibitory neurons. Only connections between
excitatory neurons had synaptic plasticity based on STDP; The weight val-
ues of other connections did not change. Zero-mean Gaussian noise m with
a standard deviation σ = 3 mV was delivered to each neuron at each time
step for a spontaneous firing.

The number of input neurons was fixed to 10. The input neurons got the
stimulation from the environment (frequency: 100 Hz; strength: 10 mV). If
more than 5 out of 10 output neurons fired within 10 ms after the stimula-
tion, the stimulation was removed for 1,000-2,000 ms (randomly chosen every
time). In non-learnable condition as a control experiment, the stimulation
was randomly removed regardless of the firing of output neurons, thus the
network cannot learn any behaviors to avoid the stimulation.

Various shapes of STDP function were used for the synaptic dynamics
(see Section 2.3.2). Here, as symmetric-STDP, the parameters of LTP and
LTD that were symmetric (ALTP , ALTD=1.0; τLTP , τLTP=20) were used;
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as asymmetric-STDP, the dynamics of LTP and LTD that were asymmetric
(ALTP=1.0, ALTD=0.8-1.5; τLTP=20, τLTD=20-30) were used. ALTP and
ALTD are the parameter for the strength of the effect of LTP and LTD in
STDP. τLTP and τLTD are the parameter for the working time window of
LTP and LTD in STDP. Figure 5.6 shows the curve of the symmetric-STDP
and some examples of the asymmetric-STDP. In addition, we used STP and
decay function for the synaptic dynamics explained above (see Section 2.3.3).

Figure 5.6: Parametric variations of STDP curve. A: Symmetric-STDP:
ALTP , ALTD=1.0; τLTP , τLTP=20. B: Example of asymmetric-STDP:
ALTP=1.0, ALTD=1.1; τLTP=20, τLTP=24. C: Example of asymmetric-
STDP: ALTP=1.0, ALTD=0.95; τLTP=20, τLTP=28. D: Example of
asymmetric-STDP: ALTP=1.0, ALTD=1.4; τLTP=20, τLTP=30.

5.3.2 Results

We performed the experiments for examining whether spiking neural net-
works with STDP reproduce SAS observed in the cultured networks.

With the symmetric-STDP (Fig. 5.6A), the synaptic weight from the
input neurons increased in both the learning experiments and the control
experiments (Fig. 5.7A). The results show there was no dynamics leading
to separation of the uncontrollable neurons with the symmetric-STDP. On
the other hand, with asymmetric-STDP (ALTP=1.0, ALTD=1.1; τLTP=20,
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τLTP=24; Fig. 5.6B), the synaptic weights from the input neurons to the other
neurons increased in the learning experiment (learnable), but it decreased in
the control experiment (non-learnable; Fig. 5.7B). Therefore, we found that

Figure 5.7: Time series of the mean connection strength from the input
neurons to the other neurons. In the learnable case, the networks can learn
the behavior to avoid the stimulation. In non-learnable case, stimulation
were randomly removed, thus the networks cannot learn the behavior. The
shaded regions represent standard errors of the mean (n = 20). A: The
results of symmetric-STDP. B: The results of asymmetric-STDP: ALTP=1.0,
ALTD=1.1; τLTP=20, τLTP=24.
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spiking neural networks with asymmetric-STDP can reproduce the behavior
to separate the uncontrollable input neurons observed in the experiments
using the cultured networks.

For examining how this behavior works, we explored the parameter space
changing ALTD and τLTD. ALTD represents the parameter for the strength
of LTD. τLTD represents the working time window of LTD.

In Fig. 5.8A, the color indecates the value of selection indicator (SI)
which is defined as:

SI = LWinput −NWinput (5.1)

where LWinput denotes an average weights from input neurons to other
neurons in the learnable cases and NWinput denotes that in the non-learnable
cases. SI can be regarded as the indicator of selection behavior: the higher
value indicates a higher selection tendency. The results of asymmetric-STDP
with the parameters: ALTP=1.0, ALTD=1.1; τLTP=20, τLTP=24 (Fig. 5.6B),
shows the maximum value of SI in this parameter space. With the param-
eter: ALTP=1.0, ALTD=0.95; τLTP=20, τLTP=28 (Fig. 5.6C), the shape of
STDP function is more close to classical STDP function observed in vitro
and in vivo [33]: the peak of LTD is lower than the peak of LTP, and the
working time window of LTD is longer than that of LTP. The value of SI
in this region was still positive implying it separate the uncontrollable input
neurons. This suggests that in addition to SAA and SAP, SAS can also occur
in biological neural networks.

Figure 5.8B shows the integral value of STDP function with those param-
eters. In blue color regions, LTD is stronger than LTP, thus random spikes
in presynaptic neurons should cause decreasing weights from the neurons in
theoretically. As shown in Fig. 5.8A, SAS occurred in those blue regions.
However, if such decreasing effect was too strong (e.g., with the parameter:
ALTP=1.0, ALTD=1.4; τLTP=20, τLTP=30; Fig. 5.6D), both SAA and SAS
was not be observed and both LWinput and NWinput were decreased (Fig 5.9),
because LTD was too strong compared to LTP thus the almost all weights
decreased and the networks cannot learn anything. Therefore, we found that
both SAA and SAS are only occurred at the same time in the balanced region
where the integral value of LTD is stronger but not too much stronger than
that of LTP.
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Figure 5.8: A: Dependence of the performance of SAS on ALTD and τLTD.
Color indicates the mean selection indicator (SI) with those parameters (n =
20). B: Dependence of the characteristic of STDP curve on ALTD and τLTD.
Color indicates the integral value of STDP function with those parameters.
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Figure 5.9: Time series of the mean connection strength from the input
neurons to the other neurons in asymmetric-STDP: ALTP=1.0, ALTD=1.4;
τLTP=20, τLTP=30. The shaded regions represent standard errors of the
mean (n = 20).

5.3.3 Conclusions

In this study, we demonstrated that spiking neural networks with asymmetric-
STDP reproduced the behavior observed in the cultured networks in which if
it was impossible or difficult to learn a behavior that avoids stimulation, the
response to the stimulation decreased. As the results of the parameter search
with ALTD and τLTD, we found that such behavior to select connections are
limited in specific parameter space in which effect of LTD should be stronger
but not too much stronger than the effect of LTP.

5.4 Discussion

In this study, we found that in both cultured networks and spiking networks,
if it is difficult to learn an action to avoid a stimulus input, the plasticity
works to suppress the influence of the uncontrollable stimulus input to the
networks by weakening the connection strength from the input neurons.

In neuroscience, this kind of phenomena where constant sensor input
gets ignored is known as neural adaptation, sensory adaptation or stimulus-
specific adaptation, and this phenomena are observed in many regions in
the brain (e.g., in the auditory system [83, 84, 85, 86]) and also in vitro
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[78]. Such adaptation can be divided into two types: fast adaptation (less
than one second) and slow adaptation (more than a few minutes) [87]. The
mechanism of the slow adaptation is considered to be synaptic plasticity like
LTD. While one of the possible mechanism of the fast adaptation is synaptic
fatigue [79]: Repeated stimulation cause depletion of neurotransmitters in the
synapse, weakening the response to the stimulation. Some studies suggest
that synaptic fatigue is caused by high-frequency stimulation, and occurs in
presynaptic neurons [79].

In our experiment with the neuronal cultures, low-frequency stimulation
(1 Hz) was used, and the results showed that the evoked spikes of the presy-
naptic neuron (input neurons) did not decrease, and the evoked spikes of the
all other neurons were decreasing for more than 20 minutes. Therefore our
results with neuronal cultures suggest that the observed behavior was not
fast adaptation caused by the synaptic fatigue, but slow adaptation caused
by LTD. The spiking neural networks with the asymmetric-STDP reproduced
the observed slow adaptation (although the networks have STP that has sim-
ilar dynamics with synaptic fatigue, STP stabilize the firing rate within 1 sec
thus the slow adaptation can not be caused by STP). Moreover, we found
that the phenomena observed in some parameter spaces where the shape
of STDP function was more similar to the shape broadly observed in vitro.
Therefore, we argue that the same mechanism should be work in biological
neural networks.

Here we discuss what kind of connections are weakened by this mech-
anism. To be simplified, we think about a minimal case in which there
are 2 neuron and 1 connection (Fig. 5.10) with asymmetric-STDP compar-
ing with the case with symmetric-STDP. In the asymmetric-STDP case, if
∆tp ≈ ∆td and ∆tp < τLTP , ∆td < τLTD, the connection decrease because
with the asymmetric-STDP, LTD has stronger effect than LTP (Fig. 5.10A;
τLTP and τLTD are working time windows of LTP and LTD in STDP function
[see Section 2.3.2]). In the symmetric-STDP case, the connection does not
change much because LTP and LTD effect equally to the connection with
the symmetric-STDP (Fig. 5.10B). Thus, with the asymmetric-STDP, if the
mean value of spike interval which cause LTP (∆tp) and the mean value of
spike interval which cause LTD (∆td) is close:

∑N
t=1

∆tpi
N
≈

∑N
t=0

∆tdi
N

, the
connection will disappear. In the large networks, such situations are apt to
be occurred if the presynaptic neuron fired independent from the other neu-
rons with a high frequency. Therefore, connections from input neurons which
get stimulation with high frequency should tend to decrease based on the dy-
namics of the asymmetric-STDP (e.g., more than 20 Hz, if τLTP + τLTD = 50
msec). There must be the conditions for the stimulation frequency F [Hz]
in SAS: e.g., F ≥ k where k ≈ 103/(τLTP + τLTD) (This is for minimal case
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with 2 neurons, and this might be modified for larger networks.).

Figure 5.10: Stimulation avoidance by selection in two neurons: A presynap-
tic neuron, a post synaptic neuron and the connection between them. Green
circles represent presynaptic neuron; Red circles represent post synaptic neu-
rons. Green bars represent spikes of synaptic neurons; Red bars represent
spikes of post synaptic neurons. A: Asymmetric-STDP case. If ∆tp ≈ ∆td
and ∆tp < τLTP , ∆td < τLTD (τLTP and τLTD are working time windows
of LTP and LTD in STDP function), the connection decrease because with
asymmetric-STDP, LTD has stronger effect than LTP. B: Symmetric-STDP
case. The connection does not change much, even if the same conditions as
A are satisfied, because LTP and LTD effect equally to the connection with
the symmetric-STDP.

In our experiments, we focus on SAS for input neurons, however, SAS

should also be work between other internal neurons. In the case of internal
neurons, decreasing a synaptic weight from one of the internal neurons that
has higher firing rate, leads to decrease the neurons’ firing rate since there
should be some feedback loop, thus, the synaptic weight should be decreased
but less than completely separating like the case of input neurons. This
effect should lead to stabilize the network, thus SAS might work to regulate
internal network to be stabilized especially at a developmental stage.

We demonstrated that even without the plasticity of connections to and
from inhibitory neurons, the networks can select the controllable input neu-
ron rather than uncontrollable input neuron. However, applying the plastic-
ity to connections to and from inhibitory neurons the networks might be able
to avoid the effect of the uncontrollable neurons by suppressing the firing by
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the inhibitory neurons. We need to study further to show whether such other
mechanism for SAS actually can realize or not.

Our results suggest that if SAA and SAP is not possible or difficult, then
SAS work to maintain the homeostasis. This two-layered homeostatic princi-
ple looks similar to Ashby’s theory of ultrastability in which the system has
two type of homeostasis, and if the first regular homeostasis is unstable and
its essential variables exceed the limits then the second homeostasis works to
rearrange the system dramatically [4]. The system will reconstruct itself by
trial and error until a stable homeostasis can be acquired. Ashby suggests
that biological systems are ultrastable with these two types of homeostasis.
Our results suggest such a behavior can emerge thanks to local dynamics of
neurons in cultured networks and spiking neural networks with STDP.

Moreover, the simulation results showed that ignoring an uncontrollable
constant stimuli is a strong feature of spiking neural networks with asymmetric-
STDP. Almost all connections from the input neurons decreased to zero. On
the other hand, the weights from input neurons with controllable input (sen-
sor input that the agent can learn to avoid) increased. This suggests that the
networks can isolate the input neurons which have uncontrollable stimulus
input, and it can be regarded as dynamics trying to regulate self and non-
self autonomously (Fig. 5.11). Here closed-loop of sensor and motor in which
motor outputs control sensor stimulation like sensorimotor contingency [88]
is regarded as self, on the other hand, open-loop of sensor and motor is re-
garded as non-self. The open-loop will be collapsed by isolating the sensor
neuron. It is interesting that the dynamics emerge from just the simple local
dynamics of neurons.

How to discriminate self from non-self reminds us a theory of autopoiesis
proposed by [89]. In addition to the structural viewpoint of regulating self
boundary above, here we discuss the result of self-regulating behavior from
an autopoietic point of view.

In autopoiesis, the discrimination comes with the boundary between self
and non-self. It is not a physical rigid boundary, but a dynamical one: it
should be constantly produced and maintained by system’s own processes.

In 1974, Varela et al. reported a simple mathematical model using ar-
tificial chemistry featuring autopoiesis [90]. Two metabolite particles (S)
generate one boundary particle (L) catalyzed by a catalytic particle (C).
Those boundary particles are connecting to each other to form a connected
boundary, which encloses C and L. The boundary constantly decays and is
being repaired by the free boundary particles L. This self-organizing pro-
cess of encapsulating C and L defines self-discrimination. No single particle
defines the self boundary. Self-entity only emerges at a certain collective
level.
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This picture becomes much clearer by taking the immune systems as an
example. Vertebrates establish self/non-self discrimination by forming an
idiotype network: antibody- antigen chain reaction exists among antibod-
ies according to N.K. Jerne’s hypothesis [91]. The current understanding
of self/non-self discrimination has a molecular biological basis, however, ac-
quired immunity still needs to be exploited. A candidate is the autopoietic
picture. Each antibody can adaptively change the self-boundary. By self-
organizing an idiotype network, self/non-self discrimination emerges as a
result of the network reactions: the antigen-antibody reaction is suppressed
locally for the self-antigens, but the reaction will be percolated for the non-self
antigens. The reaction network determines the self/non-self discrimination
similar to the Varela et al’s simple artificial chemistry.

Coming back to the present study, we saw that each neural responses
did not determine the self/non-self boundary. Only at the level of neural
network of a certain size, a self/non-self boundary emerges. A neural net-
work determines the self/non-self as well as the immune system does. The
boundaries of self/non-self for immune systems and for neural systems are
processed dynamically. It is not explicit for the network whether a certain
firing pattern depends on what comes from outside or from inside. Like the
immune system, a pattern which makes the network respond strongly to and
causes structural change of the network is regarded as non-self here.

For example, the controllable input above is initially regarded as a pattern
from outside (non-self). However, as the change of the network progresses
and the network learns the behavior to control it, the input will no longer
cause the large changes and will be regarded as a pattern from inside (self). In
the case of the uncontrollable input, initially, it is regarded as a pattern from
outside (non-self) like the case of controllable inputs, however, by weakening
the connections from the sensor based on the dynamics proposed in this
paper, explicit boundaries like Varela ’s cellular boundary can be created,
thus the inputs explicitly isolated from the inside and no longer affects to
the internal network (self).

In addition, our previous results with a simulated minimal network con-
sisting of three neurons (two excitatory neurons and a inhibitory neuron) with
almost the same models in this paper could predict a simple causal sequence
of stimuli [92]. In that case, like the controllable input, predictable input
is initially regarded as an external pattern (non-self) that causes structural
changes in the network, however, when the network would learn to predict
the input, the input will be no longer affect to the network and is regarded
as a pattern from inside (self).

Although we have discussed only the patterns from environment, the same
dynamics should also work inside the network (although regulation by action
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does not occur inside the network and requires a coupling with environment).
Inside the network, the dynamics such as isolation of uncontrollable pattern
and prediction of predictable pattern work to regulate the boundaries, and
the network converge to stable states in which the network shows transitions
of several patterns. In this way, the neural network can also be regarded as
a system that acquires its own stability through the autopoietic process by
means of action, prediction, selection.

Figure 5.11: Autonomous regulation of self and non-self: When inputs are
uncontrollable (i.e., networks cannot learn actions or prediction to avoid
stimulation), input neurons are separated as non-self avoiding an effect of
the stimulation to the internal network.



Chapter 6

Scalability and Application

In the previous chapters we described some studies on three ways of stimula-
tion avoidance (Stimulation Avoidance by Action (SAA), Stimulation Avoid-
ance by Prediction (SAP), and Stimulation Avoidance by Selection (SAS))
based on the synaptic plasticity, such as STDP in the cultured neural net-
works and the spiking neural networks. These studies suggest that such
a principle for avoiding stimuli can emerge in both biological and artificial
networks. However, in the previous chapters, we have not much discussed
about its scalability and application. Therefore, in this chapter, we show
some studies on the scalability and the application of SAA based on LSA. In
the following sections, Section 6.1 shows the scalability of LSA against net-
work size using spiking neural networks, Section 6.2 shows estimation of the
scalability of LSA using the network analytical approach, Section 6.3 shows
the application to autonomous humanoid robot and its experimental results.

6.1 Learning by Stimulation Avoidance Scales

to Large Spiking Neural Networks

6.1.1 Introduction

This section focuses on the scalability of LSA that is a mechanism for SAA.
In our studies using cultured neural networks, we demonstrated that even
the cultured networks with small number of neurons (about 100 neurons)
learned the desired behavior (see Chapter 3), although previous studies used
much larger networks (10,000-50,000 neurons) [29]. These studies imply that
such a homeostatic property scales from 100 neurons to 50,000 neurons in
cultured neural networks.

Although our previous study shows that LSA in spiking neural networks

84
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scales from 2 neurons to 100 neurons [31], some specific conditions for “selec-
tive learning task” where the networks must learn a spatial pattern to avoid
the external stimulation, were required: (1) external stimuli were delivered to
the input neurons every timestep (1,000 Hz), (2) other external stimulation
were delivered in 10 ms to all neurons excluding inhibitory neurons and one
of the output neuron groups, after n ≥ 1 neurons in the output group fired.
These conditions are somewhat unnatural. In addition, it is still unclear
whether LSA scales to larger networks (more than 100 neurons) or not.

In this section, using spiking neural networks, we first demonstrate LSA
works well in networks consists of 100 neurons with more natural conditions.
Second we demonstrate this learning behavior scales to larger networks (at
least 3,000 neurons).

6.1.2 Methods

The model for spiking neuron proposed by Izhikevich [52] was used to simu-
late excitatory neurons and inhibitory neurons (see Section 2.3.1). Randomly
connected networks of 100-3,000 neurons with 80% excitatory and 20% in-
hibitory neurons were simulated. This ratio of 20% inhibitory neurons is
standard in simulations [63, 52] and similar to biological values [82]. The
excitatory neurons were divided into four groups: Input, Output A, Output
B, and Hidden (Fig. 6.5). Input group consisted of 20% neurons and external
stimulation was delivered only to this group. Output A group and Output
B group consisted of 10% neurons each and the desired behavior that the
network learn was composed of these groups. Hidden group consisted of 40%
neurons. The connection size of each neuron depended on the experiments
(10-300). There were no direct connections between Input and Output group,
and self-connections (e.g., from neuron i to neuron i) were forbidden. The
weight values w between each neuron were randomly initialized with uniform
distributions as 0 < w < 5 for excitatory neurons, −5 < w < 0 for inhibitory
neurons. The weights between excitatory neurons change based on STDP
function (see Section 2.3.2).

There were three types of input to the neurons. (1) Zero-mean Gaussian
noise m with a standard deviation σ = 3 mV was delivered into each neuron
at each time step. This is required for spontaneous firing of the neurons.
(2) External stimulation e was delivered to Input group. There were two
conditions for the stimulation. Condition 1: input current (10 mV) was
stimulated with a fixed frequency (100 Hz). When more than 40% of Output
A fired and less than 40% of Output B fired, the external stimulation to
the Input was removed in 1,000-2,000 ms (it was randomly determined every
time). Condition 2: when neurons in Output B fire more than neurons in
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Output A, input is stimulated once at 30 mV (with a maximum frequency
of 100 Hz). These conditions imply that the goal for the network is to avoid
external stimulation by increasing the firing rate of Output A compared to
Output B. (3) Synaptic current from other neurons: when a neuron a spiked,
the value of the weight wa,b was added as an input to neuron b without delay.
All these input were added for each neuron (Eq. 2.5). Here we also applied
STP to each synapse, thus the input from other neurons was weighted with
STP term (see Section 2.3.3). Although STP is not indispensable for LSA
to work, applying STP make firing rates and a burstiness index [61] stable
against the network size (see Section 2.3.3).

In the control experiment, stimulations of condition 1 and 2 were ran-
domly delivered to Input group and other experimental settings were same
as the explained above.

To evaluate the whether LSA works well or not, we defined a measure of
success MS as

MS =
(FA − FB)

N
(6.1)

Here, FA represents the mean number of spikes of Output A in the last
20,000 ms, FB represents the mean number of spikes of Output B and N
represents the total number of spikes of Output A and B. When Output A
is fired more than Output B, MS becomes positive, and in the opposite case,
MS becomes negative. To increase MS, the firing rate of Output A should
be increased and that of Output B should be decreased: the higher value of
MS indicates that the network learned to avoid the stimulation well in the
both condition 1 and condition 2 explained above.

6.1.3 Results

We performed the learning experiments in small (100 neurons) and large net-
works (1000-3000 neurons) for examining scalability of LSA. First, the results
of the small networks are shown before the results of larger size networks.
Each experiment were performed with 20 networks.

Small Networks

The previous study showed the learning rate of LSA for more simple task
changes depending on the connection size between neurons [31]. Therefore
we first show the success measure varies with the connections size in the ex-
perimental setup here. Figure 6.1 shows the relationship between the success
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measure and the connection size. As shown in this figure, when the con-
nections size of each neuron was from 40 to 90, the success measures were
significantly larger than the control experiments (random), and the success
measure was maximized at 50 connection size. Below, we focus on the results
of the experiments with 50 connection size.

Figure 6.1: Dependence of success measure on connection size in the small
networks. In learning experiment (LSA), the success measure varied depends
on the network size. Error bars represent standard error of the mean (n = 20).
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Figure 6.2: Time series of the success measure in the small networks (100
neurons with 50 connections per neuron). The success measure gradually
increased and stabilized at the higher values than the control experiment
(random). Error bars represent standard error of the mean (n = 10).

Figure 6.2 shows the time series of the success measure. The success
measure in the learning experiments (LSA) gradually increased in 15,000-
40,000ms and stabilized at the higher value, on the other hand, the success
measure did not increased in the control experiments .

Figure 6.3 shows a typical example of a raster plot of spikes in the ex-
periment with 50 connection size. At the beginning of the experiment, the
spikes of Hidden gradually increased, then the spikes of Output A increased,
but the spikes of Output B did not change much. This actual spiking pattern
shows qualitatively that the firing rate of Output A became larger than that
of Output B, which implies that the network had high success measure.
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Figure 6.3: Raster plot of spikes in the small network (100 neurons with 50
connections per neuron). Each dot represents one spike: Black dots represent
spike of inhibitory neurons, input neurons and hidden neurons; Red dots
represent spikes of Output A; Blue dots represent spikes of Output B. A:
First 200,000 ms. The spikes of Output A and Output B were almost same.
The spikes of Hidden gradually increased. B: Second 200,000 ms. The spikes
of Output A gradually became larger than that of Output B.

Figure 6.4 shows a typical example of the network diagram for the ob-
tained network. The connections from Input to Hidden, and the connections
from Hidden to Output A were larger than initial values thus information
from Input can be transmitted to Output A via Hidden. On the other hand,
there were almost no connections from other groups to Output B. The connec-
tions from Output B to other neurons were strengthened due to the counter
to the fact that the connection to Output B from the others were weakened.
The more abstract network diagram in Fig. 6.5 was drawn based on the net-
work diagram. Since there are no direct connection from Input to Output
A, to transmit information from Input to Output A, Hidden must mediate
the transmission. Thus this network topology is a optimal for avoiding the
external stimulations in this settings. This suggest that through LSA, the
networks autonomously yielded the optimal sensory-motor coupling to avoid
external stimulation in the environments.
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Figure 6.4: Typical example of a obtained network in the small network (100
neurons with 50 connections per neuron). Each node represent a neuron.
Each edge represents a connection between two neurons. The width of the
edge represents the weight value and the color of the edge represents the
direction of the edge. The edges direct to node with same color (e.g., pink
edge represents the edges to Hidden). There are many strong edges from
Hidden to Output A, but almost no edge from Hidden to Output B.
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Figure 6.5: Network topology of the initial and the obtained networks in
the small networks (100 neurons with 50 connections per neuron). In the
obtained topology, There was a route from Input to Output A via Hidden,
although, there was no route from Input to Output B.

In this way, we found that LSA worked well in 100 neurons with more
natural settings than previous study [31]. The learning results was clear at
both the neural activity level and the network structure level.

Large Networks

To examine whether LSA scales to larger networks, the learning experiments
with larger networks were performed using the same experimental settings
as the experiments above with 100 neuron except for the network size.

Figure 6.6 shows time series for the success measure of the large networks
with the parameter: 50 connections. The success measure increased and
stabilized at the higher values only for the networks with 1,000 neurons,
although longer time were required to learn it compared to smaller networks
(100 neurons).

However, we found that the larger networks than 1,000 neurons can in-
crease the success measure with other parameters. For example, in the net-
works consists of 3,000 neurons with 300 connections (other settings are same
with the settings above), the success measure gradually increased, although
the deviation was larger than the smaller networks (Fig. 6.7).

These results suggest that when the network size is larger, the learning
becomes more difficult compared to the smaller networks because it took
more time to learn and the deviation was larger than smaller networks. In
addition, it also suggest the parameter region for high success measure in the
larger networks was different from the smaller networks.
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Figure 6.6: Time series of the success measures in the large networks (1,000-
3,000 neurons with 50 connections per neurons). Only in the experiments
with 1,000 neurons, the success measure gradually increased and stabilized
at a high values. Error bars represent standard error of the mean (n = 10).

Figure 6.7: Time series of the success measure in the large networks (3,000
neurons with 300 connection per neurons). The success measure gradually
increased, although the deviation was larger than in the smaller networks.
Error bars represent standard error of the mean (n = 5).
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We examined wether the parameter regions for high success measure ac-
tually differ depending on the network size using small networks (100-300
neurons). Figure 6.8 shows the dependence of the success measure on the
connection size and the stimulation strength differ depending on their net-
work size (100-300). Here, the stimulation intervals was set to 20 ms. Fig-
ure 6.9 shows that the dependence of the success measure on the stimulation
interval and the stimulation strength differ depending on their network size
(100-200). Here, the connection rate was set to 0.5. These results shows the
parameter region for high success measure differ depending on the network
size. In addition, Fig. 6.9 shows that there is upper limit of the stimulation
intervals for the learning success, this supports the controllability condition
we discussed previously (see Section 3.4).

Figure 6.8: Dependence of the success measure on the connection size and
the stimulation strength (100-300 neurons). The stimulation intervals was
set to 20 ms. The color indicates the success measure. A: The result in the
networks with 100 neurons. B: The result in the networks with 200 neurons.
C: The result in the networks with 300 neurons.
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Figure 6.9: Dependence of the success measure on the stimulation intervals
and the stimulation strength (100-200 neurons). The connections rate was
set to 0.5. The color indicates the success measure. A: The result in the
networks with 100 neurons. B: The result in the networks with 200 neurons.



CHAPTER 6. SCALABILITY AND APPLICATION 95

6.1.4 Discussion

The learning experiments were performed based on LSA that cause SAA, and
revealed that LSA can scale to the larger networks (at least 3,000 neurons)
compared to the previous works (100 neurons) [31]. However, the parameter
region where LSA works well depends on the network size and it seems that
the learning difficulties increase with the network size. In the experimental
setup, there were no direct connections between Input and Output so that
if the network size becomes larger with same connection size per neuron,
the average path length between Input and Output would becomes larger.
We assumed that this larger path length made the learning in the large
network more difficult (or impossible, because ∆t1 in Fig. 3.17 might exceed
the threshold of the connectivity conditions; see Section 3.4) so that larger
networks require the larger connection size which get the path length smaller,
for high success measure.

The larger networks with the larger connections requires more computa-
tional resources to be simulated, and this make the parameter search more
difficult, thus in next section, we estimate the scalability using a network
analytical approach rather than actual simulation of the large networks.

6.2 Estimation of Scalability by Network Anal-

ysis Approach

6.2.1 Introduction

As shown in the previous section, the parameter region where LSA works well
was limited, and its parameter region also varied depending on the network
size. Since learning experiments searching for parameters in a large network
require large computational resources, we take a network analytical approach
to estimate the scalability of LSA focusing on a signal-to-noise ratio (SNR),
rather than actual simulation for spiking neural networks. In the estimation,
first we experimentally define the value of SNR at which LSA works well,
then, to estimate the scalability, we generate random networks changing the
network size and analyze the network topology to examine how large networks
can maintain the SNR.

6.2.2 Methods

For determining the SNR, we performed learning experiments of LSA using a
one-dimensional chain network consisted of an input neuron, an output neu-
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ron, and hidden neurons. Stimulation (signal inputs) with fixed frequency
were delivered to the input neuron. There were also noise inputs to other
neurons except for the input neuron, which model input currents from other
neurons which are not on the route from the input neuron to the output neu-
ron (Fig. 6.10). We used Izhikevich model and STDP for the network (see
Section 2.3), and the network consisted of only excitatory neuron for simplic-
ity. In the learning experiments, the embodiment of the networks was simple:
stimulation was delivered to the input neuron with a certain frequency, and
if the output neuron fired within a certain time τ after the stimulation to the
input neuron, then the stimulation to input was removed for a certain time
(1,000-2,000 ms). Specifically, the stimulation frequency was 100 Hz and the
interval of each stimulus was 10 ms. τ was set to 10 ms. Here, success of
the learning was defined as that if all connection strengths that are directed
from input to output are larger than the connection strengths in the opposite
direction. This was defined in order to examine whether information from
the input neuron can be reached to the output neuron.

Figure 6.10: One-dimensional chain network consists of an input neuron, an
output neuron and hidden neurons. The signal input was delivered to the
input neuron, and the noise inputs were delivered to each neuron.

We calculated the SNR changing the number of hidden neurons and the
intensity of the noise input. The SNR is defined as

SNR =
Isignal
Inoise

(6.2)

Here, Isignal demotes a mean value of the initial connection strength con-
necting the path from the input neuron to the output neuron, and Inoise is a
mean value of the noise inputs to all neurons. We defined lb-SNR as lower
bound of the SNR at which the network with 10 more hidden neurons learn
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well to avoid the stimulation: i.e., if the SNR is lower than the lb-SNR, it
indicates the network cannot learn the behavior to avoid the stimulation. In
other words, the lb-SNR is the lower limit of the SNR required to convey
information from the input neuron to the output neuron.

Second, to estimate the scalability, we examined how the large networks
can maintain the higher SNR than lb-SNR obtained by the above method.
For calculating the SNR, we did not simulate for the dynamics of spiking
neural networks, but estimated with the topology of the network in following
ways: (1) we randomly generated a network, and (2) find paths that connect
input to output through hidden neurons, (3) calculated the SNR regarding
the hidden neurons on the path as a signal neuron, and the connection from
the signal neurons as signal, and the number of connection from the other
neurons as noise input (Figs. 6.11). When generating the network, each neu-
ron has two uniformly distributed random number as its position (x and y),
and the probability of connection between neurons is determined according
to inversely proportion to the square of the distance between the neurons.

Figure 6.11: Conceptual diagram of a randomly generated network. Each
nodes represents a neuron: one input neuron, one output neuron, and some
hidden neurons (S and N). Each edges represents a connection between
two neurons. Hidden neurons on a path directed from input to output, was
defined as a signal neuron (S), and other neurons as noise neuron (N). The
input from the signal neurons was defined as a signal, and the input from
the other neurons as a noise.
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6.2.3 Results

We first performed the simulation experiments to calculate the lb-SNR of the
one-dimensional chain networks, changing the parameters: the noise input
and the number of hidden neurons. Figure 6.12 shows success rates when
strength of noise input and the number of hidden neurons are changed in
one-dimensional chain networks. As shown in this figure, if the noise input
became stronger, the network cannot learn with the large number of hidden
neurons. The lb-SNR as the lower bound of the SNR at which the network
that has 10 more hidden neurons can learn the behavior, was 0.4 (signal =
20, noise = 50).

We calculated the SNR of randomly generated network by the method
above, changing the network size. Figure 6.13 shows the relation between the
network size and the topologically estimated SNR of the randomly generated
networks. Here, the dotted line represents the value of lb-SNR experimentally
determined with the above methods. When the SNR is larger than this value,
it is estimated that the learning will be success. Thus the result suggest that
LSA scales to about 50,000 neurons.

Figure 6.12: Dependence of the success rate on the noise input and the num-
ber of hidden neurons. The color indicates the mean success rate (n = 10).
The lb-SNR was 0.4 (signal = 20, noise = 50).
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Figure 6.13: Dependence of estimated SNR on the number of neurons. The
dotted line represents the value of lb-SNR. Error bars represent standard
error of the mean (n = 20).

6.2.4 Discussion

In this study, we proposed a method to estimate the scalability of LSA from a
network analysis approach focusing on the SNR, and estimated the scalability
of LSA based on that method. The results suggested that the LSA scaled to
larger network with 50,000-60,000 neurons.

In the learning experiments using cultured networks by Shahaf et al,
they used the neuronal cultures with the cell number of about 10,000 to
50,000, and showed the network can learn such simple task [29]. The value
estimated in this study is not inconsistent with the results. This support
that the SAA in the cultured neural networks was obtained by LSA based
on such local neural dynamics as STDP rather than the more macroscopic
mechanism proposed in the previous studies; modifiability and stability [29,
28]. However, as this was estimated results, we need to simulate large spiking
neural networks with more than 50,000 neurons to examine it in our future
research.

The results in this section and previous sections also suggests that LSA
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can work in animals that have the small number of neurons or the large
number of neurons but modularized. Some animals with small nervous sys-
tem such as C. elegans, leech, Aplysia california, and also cortical columns
in some mammalian brain, have less than about 20,000 neurons [93, 94, 95],
suggesting the LSA might be able to work in these systems. However, in LSA
based on STDP, the timing of the input and the output should be closed in
a specific time window (see Section3.4) since STDP can only work within
specific short time window (e.g., less than 20 ms). Thus, whether LSA works
depends not only on the network size but also on the network structure. We
need to further study to examine whether the LSA works in such structured
networks. In order to learn the relationship between input and output in the
longer time window, it should be required other factors rather than STDP
(e.g., short-term memory or dopamine system). In our future research, we
need to discuss more about the relation between LSA and other functions
observed in vivo rather than STDP.

6.3 Applying Learning by Stimulation Avoid-

ance to Complex Embodiments

6.3.1 Introduction

In this section, we show our preliminary results in designing an autonomous
agent applying LSA to a humanoid robot. As explained in the previous
sections, LSA states that networks learn to avoid external stimuli by self-
organizing the neural architecture (SAA). By adjusting the network archi-
tecture, the networks can actually remove the “cause” of the stimulus in the
environment. In this sense, LSA is essentially embodied. It requires input
from the environment, and the output from the network changes the envi-
ronment. When the network removes the cause from the environment, the
stimulus to the input stops and LTP in STDP works to reinforcement such
behavior modifying the weight strength. On the other hand, when the net-
work make the cause of the stimulus, the stimulus to inputs starts and LTD
in STDP works to weakening such behavior modifying the weight strength.
Thus the desired input-output relationship for avoiding stimulation is en-
hanced in the system. It is presumed that even if external input stimulation
patterns change, the network learns new behavior to avoid the new stimula-
tion. It is thus homeostatic adaptation [23, 24]. Applying LSA to a humanoid
robot, the robot can autonomously learn an adaptive behavior without any
external rewards system. In LSA, kind of intrinsic motivation for decreasing
stimulation emerges from neural dynamics in a bottom-up manner and the
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behavior of this autonomous robot is learned based on the intrinsic motiva-
tion (see the further discussion in Section 7.4)). We consider that this study
is first step to build a autonomous humanoid robot.

In the previous sections, we did not apply various tasks to the agent.
In this study, we applied LSA to the humanoid robot and conducted two
learning experiments including more complex task than we done before, using
spiking neural networks consists of 1,000 neurons. We demonstrate that LSA
can be applicable to learn various tasks: i.e., the emerging behavior depends
on the embodiment of the agents and environment.

We performed the experiments at the National Museum of Emerging
Science and Innovation (Tokyo) between July 30 and August 6, 2016 [96]
using humanoid robot named Alter (Fig. 6.14). In this ”Exhibition of Alter,”
Alter was located in the middle of the exhibition room, where the audience
could see its motions. We sampled the data collected from the motions of
Alter, the spiking neural networks, and analyzed these data to understand
how its behavior changed during experiments. Note that the research project
for Alter is a collaboration work where our team developed the software and
the other team developed the hardware, and in the exhibition, Alter consisted
of not only spiking neural networks based on LSA but also coupled-phase
oscillators as central pattern generator, and autonomous sensor networks as
its sensory organs which make its internal dynamics based on the sensor input
[97]. So far, although we were not only focused on LSA in the research project
and the exhibition, in this chapter we focus on the learning experiments with
only LSA, conducted independent of these other functions.
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Figure 6.14: The appearance of the humanoid robot: Alter. The body was
fixed to a pedestal. The total height is approximately 155 cm. (Photo by
Kenshu Shintsubo.)

6.3.2 Methods

Alter’s body had 42 movable air actuator axes, and its action production was
controlled by an air compressor with a specially developed operating system
for this humanoid (Geminoid server). Specifically, its action was controlled
by special commands (e.g., MOVEAXIS AXISNAME (int 1-42) POSITION
(int 1-255)). These commands were executed from an external computer
using TCP/IP through a Geminoid server. Each axis had a potentiometer,
which sends the actual value of the current axis’s position to the computer.
The refresh rate was every 50 msec.

In this study, we used the spiking neural networks 2.3 to generate the
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motions of Alter’s arms (six axes each). The networks consists of 1,000
neurons of which 80 % were excitatory neurons and 20% were inhibitory
neurons. This ratio of 20% of inhibitory neurons is standard in simulations
and close to real biological values [98]. Neurons in the network were fully
connected; The initial weights were randomly chosen (uniform distribution:
0 < w < 5 for excitatory neurons, −5 < w < 0 for inhibitory neurons). The
only weights between excitatory neurons change based on STDP function
(see Section 2.3.2). The all neurons received zero-mean Gaussian noise m
with a standard deviation σ = 3 mV at each time step for a spontaneous
spiking (see Section 2.3.3).

The network had input neurons and output neurons. The input neurons
were chosen randomly from the excitatory neurons; 25 neurons per sensor
input were chosen. They received stimuli from the distance sensors or the
potentiometers; The input sources depended on the learning tasks. The
output neurons were also chosen randomly from the excitatory neurons; 10
neurons per axis in the arms were chosen. The value of the axis was decided
based on the number of firing neurons at each time step. Thus, Alter produces
action by translating the micro-neural firing into macro-body motion.

We studied two tasks with Alter:
(i) “Raising hands” task: When Alter was surrounded by people, the

input neurons were stimulated, and if Alter raised its hand, the stimulation
removed for a while (1.65 sec). This can be interpreted as that Alter has a
desire for greeting to surrounded people with raising its hands. The distance
between Alter and a person was detected by distance sensor. The distance
sensor value d was taken to determined the external stimuli e to each input
neuron group at every time step as:

e =

{
d/2, if d ≥ 60

0, if d < 60
(6.3)

The success rate of this tasks S was measured as follows:

S =
Nsuccess

Nstimuli

(6.4)

where Nstimuli represents the number of stimuli per minute and Nsuccess

is the number of times that position of the hand exceed the threshold per
minute.

(ii) “Smooth movement” task: Alter got stimulation, when the difference
between the motion command and the actual value of potentiometers ex-
ceeded the threshold: i.e., if Alter moved its arm as it wanted, it receive no
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stimulation. This can be regarded as that Alter has a desire for controlling
its body as expected. We expected the neural network would learn to have
smoother motions to avoid the internal stimulation. Since every axis was
controlled by air pressure, both the real position (i.e., the value produced by
the potentiometer) and the desired position sent by the computer was apt to
be varied. The difference between these values was taken as external stimuli
e to the input neuron group i at every time step as

ei =
k|Ci − Pi|

255
(6.5)

where C is the value sent from the computer (0-255) and P is the actual
value of the potentiometer (0-255). Here, parameter k is set to 30.

The success rate of this tasks S was measured as follows:

S =
Nsuccess

Nstimuli

(6.6)

where Nstimuli represents the number of stimuli per minute and Nsuccess

represents the number of times that e fell below the threshold (0.1) per
minute.

We performed the experiments at the National Museum of Emerging
Science and Innovation (Tokyo) between July 30 and August 6, 2016. In
this “Exhibition of Alter,” Alter was located in the middle of the exhibition
room, where the audience could see its motions (Fig. 6.15).
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Figure 6.15: View of the Exhibition of Alter at the National Museum of
Emerging Science and Innovation. The audience could clearly see Alter’s
motions. The distance sensors were installed at Alter’s feet.

6.3.3 Results

Figure 6.16 shows the success rate of the “raising hands” task. The success
rate was rapidly increased in the first 1000 sec and stabled at the higher
value (near 70%). Therefore, Alter successfully learned to raise the hands to
audience in front of Alter.

Figure 6.17 shows the success rate of the “smooth movement” task. The
success rate was gradually increased to the higher value (near 75%) in the
end; Over the course of the experiment, Alter learned and evolved so that
it could move its hands much more smoothly in the end (i.e., matching the
commands from the computer and the actual body motion). When Alter
moved using pneumatic pressure, deviations occurred between the value sent
from the computer (i.e., the brain) and the actual movement. In other words,
there was a gap between Alter’s intention and its movement. LSA worked
well to resolve this discrepancy.
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Figure 6.16: The time series of the success rate of the“raising hands” task.
The horizontal axis represents time. The error bars represent the standard
error.

Figure 6.17: The time series success rate for the “smooth movement” task.
The horizontal axis represents time . The error bars represent the standard
error.
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We also analyzed the time series for both neural activity and potentiome-
ters in the experiment (“smooth movement” task). Figure 6.18 presents the
results of the Principal Components Analysis (PCA) performed on every po-
tentiometer. The colors represent the time course. As shown in this figure,
Alter’s body dynamics changed gradually over time. Figure 6.19 presents the
time course of the neural activity in the PCA space. Their colors represent
the time course and is consistent with those used in the previous figure. This
figure also shows that the activity of the neural network changed gradually
over time. In particular, the activity during the second half was more diverse
than in the first half. On the other hands, the activity generated by the uni-
form random noise inputs (black dots) were widely spreading and there were
no explicit time evolutions.

Figure 6.18: PCA of every potentiometer. Each point represents the average
of 100 time steps of each potentiometer. The colors represent the time course
(blue to yellow, through green) and the time interval is the same as that
depicted in Fig 6.17.
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Figure 6.19: PCA of every neural activity. Each point describes the average
of 100 time steps of every neuron. The colors describe the time course, and
the time interval is the same as that depicted in Figure 6.17 (blue to yellow,
through green). The black dots represent the pattern when the neural net
received the uniform random noise (the range is the same as e (Eq. 6.5)).

6.3.4 Discussion

In this section, we applied LSA to the humanoid robot named Alter. As the
results, we found that LSA works well with large network (1,000 neurons)
for various tasks. Importantly, the networks should avoid the external stim-
ulation based on LSA, however, the emergent behavior of the agent is varied
depending on the design of the system (i.e., design of body, internal reward
system, and environment). We need to further study about LSA coupled to
the evolution of the embodiment in our future research.
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During the exhibition, many people stopped and gazed at in front of
Alter for a long time, and not a few people said that they did not lose
interest in watching Alter. When we see living organism, we rarely lose
interest in watching it, probably because it is an autonomous system and
shows unexpected behavior occasionally. We believe that similar phenomena
happened in Alter and this project is first step to build an autonomous
humanoid robot.



Chapter 7

General Discussion

7.1 Summary of Thesis

In this thesis, we studied on homeostasis, particularly in regards to synaptic
plasticity in both biological neuronal cultures and artificial spiking neural
networks. Significantly, on the basis of synaptic plasticity, such as STDP,
we found that three functions of avoiding stimulation (which we name Stim-
ulation Avoidance by Action (SAA), Stimulation Avoidance by Prediction
(SAP), Stimulation Avoidance by Selection (SAS)) which lead to homeosta-
sis emerged in the embodied neural networks. We argue that these three
functions can emerge in a same neural network (like Fig. 5.11), and which
function emerges depends on a quality of stimuli: controllable inputs induce
action, predictable inputs induce prediction and uncontrollable inputs (noise)
induce selection. In other words, various functions emerge from stimulation
avoidance as a principle of behavior. We termed these emerging properties
of neural homeostasis as Principle of Stimulation Avoidance (PSA).

In each chapter, we studies these three aspects of stimulus avoidance. In
Chapter 3, we showed that stimulation avoidance was self-organized by action
(SAA) in embodied cultured neural networks even with a smaller number
of neurons than the previous work [29]. The analysis of neural dynamics
suggests that SAA in neuronal cultures is realized by changing their network
structures with synaptic plasticity.

In Chapter 4 we demonstrated that SAP emerged in the spiking neural
networks with STDP. The networks learned to predict sequence patterns of
stimulation. We also demonstrated SAP scaled to the larger random net-
works consists of 100 neurons without preparing well-designed structures.
This suggests that SAP can also emerge in primitive biological neural net-
works, such as dissociated neuronal cultures.

110
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In Chapter 5, we found that neuronal cultures have a property of stimula-
tion avoidance by selecting which external information is received or declined
(SAS). We demonstrated that the spiking neural networks with asymmetric-
STDP can reproduce such a behavior. Even if the shape of the asymmetric-
STDP is similar to the shape broadly observed in vitro, SAS was also ob-
served. Therefore, the same mechanism should work in biological neural
networks, such as dissociated neuronal cultures.

In Chapter 6, we estimated LSA scales to about 50,000 neurons, and
we applied LSA to humanoid robot to demonstrate that various behaviors
emerged depending on different embodiments.

These three properties (SAA, SAP, SAS) emerge from a simple Hebbian
rule (such as STDP), maintaining the homeostasis of the systems. As stim-
ulation to an agent represents environmental changes, avoiding stimulation
decreases the influence of environmental change on an agent’s internal state.
It is interesting that these three kinds of homeostasis directly emerge from
the same synaptic plasticity, such as STDP in biological and biologically
inspired neural networks.

In the following sections, we discuss these findings from some other per-
spectives.

7.2 Evolutionary Perspective

Action, prediction, and classification are three useful functions for embodied
agents that must learn from their environment. In Chapter 4, we discussed
the evolutionary pathway from a reactive agent (action) to a predictive agent
and a proactive agent (prediction). In this section, we further extend this
discussion to an inductive agent (classification).

Even without neural plasticity, an agent can act reactively, using hard-
wired abilities. However, such hard-wired reactive behavior can have bad
consequences if environmental changes happen in a short time scale (i.e.,
the scale of an individual life).. For example, a behavior resulting in a
food reward might result in getting poisoned in the future. In such envi-
ronments, learning reactive behaviors is an effective way to help an agent
survive. When excitatory neurons and synaptic plasticity evolve, agents can
learn their sensory-motor coupling to adapt to the environment. As shown in
Chapter 3 and Chapter 5, SAA and SAS emerge from random networks com-
prising excitatory neurons with STDP; thus, those two type of homeostasis
can be realized at that time frame. At this evolutionary stage, agents can
avoid environmental changes to protect themselves, and the agents can also
regulate their self-boundaries by selecting connections, such as separating
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connections from uncontrollable neurons to stabilize the network.
As we discussed in Chapter 4, in addition to the learning actions, a predic-

tion can lead to better adaptation of the agents. The reactive agent discussed
above cannot initiate an action before receiving an actual stimulus. For ex-
ample, even if the agent could learn a reaction to a undesirable stimulus (e.g.,
something damaging to the agent), the agent cannot avoid the damage before
actually getting the stimuli. In such situations, if the agent can predict the
incoming stimulus, the agent can initiate avoidance behavior before being
damaged. To enhance the adaptability of a reactive agent, that agent and
its predictive network must be integrated into a proactive agent. As shown
in Chapter 4, random networks comprise excitatory neurons and inhibitory
neurons learn to predict stimulus sequences based on STDP. Thus, to realize
such a proactive agent, inhibitory neurons must be evolved in addition to
excitatory neurons explained above. At this evolutionary stage, the proac-
tive agents can predict some events and initiate a behavior before the events
actually occur.

For proactive agents, generalization is an advanced way to improve adapt-
ability. For example, the proactive agents without generalization can only
make a prediction if its current inputs are exactly the same as previously
learned inputs. Therefore, the ability to generalize is an advantage when the
environment is variable or noisy. To realize this ability, the agent must learn
to abstract relevant signals from variable inputs. This can be achieved by
simple statistical grouping (classification) of inputs. A simple way to classify
the various inputs is to convolute the inputs to a single output. At the upper
layer of convolution, some similar input patterns can be treated as identical.
A neural network can achieve the integration of inputs through neurons that
take several inputs and have a single output. Therefore, in addition to the
random network comprising excitatory neurons and inhibitory neurons, such
a specific type of excitatory neuron is required to realize an inductive agent.
At this evolutionary stage, with such a classification, the inductive agent be-
comes more adaptive. In our future work, we must conduct further studies to
show that the proactive agent and the inductive agent also actually emerge
with the proposed framework.

Although we have discussed the evolutionary pathway from reactive agent
to inductive agent, our proposed minimal system is so primitive that agents
can only execute simple actions, predictions, classifications, or combinations
thereof. A link from primitive agent to higher-order cognitive functions is
still missing.

What is necessary for higher-order cognitive functions, such as conscious-
ness or mind? Although, we used a simple embodiment in our research,
a more complex embodiments might be important. For example, Damasio
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proposed a three-layered consciousness: proto self, core consciousness, and
extended consciousness [99].

Proto self is still not a conscious state but a pre-conscious state and a
base of consciousness. The proto self is regarded as a collection of neural
patterns that represent the body’s internal state. Thus, the primitive agent
discussed above might be placed in this stage.

Core consciousness is the conscious state of living organisms that are
only self-aware in the “here and now”. This consciousness strongly relates to
emotions and feeling. In Damasio’s theory, emotion is regarded as an uncon-
scious body reaction to external stimuli (e.g., cursing and crying); feeling is a
state that senses the changes caused by emotions. With core consciousness,
the organisms can be aware of the feeling of emotion. This consciousness is
important for agents to decide their action based on the feeling of emotion.
Emotion can be regarded as an evolutionarily designed, hard-coded signal of
the body to evaluate the current situation, while feeling is modifiable based
on experience with emotion. Core consciousness cannot be separated from
emotion and feeling; thus, to evolve this type of consciousness requires at
least coupling neural networks and body that cause emotions.

Extended consciousness is a conscious state that is self-aware not only in
the “here and now” but also of the past and future, of imaginary states, and
the act of inferring another’s mind. This consciousness relates to working
memory, long-term memory, and language; furthermore, it could not emerge
without the predecessors: proto self and core consciousness. To evolve this
type of consciousness, the neural networks must at least combine the complex
embodiment described above with working memory and long-term memory.

This kind of higher-order cognitive function produces homeostasis effec-
tively. In our future work, we must study about relation with our framework
and such higher-order cognitive systems (e.g., evolutionary process coupling
the neural network to such complex embodiment, and applying working mem-
ory and long-term memory to the systems).

7.3 Stimulation Avoidance in Brain

In Section 6.2, we estimated SAA based on LSA scales to about 50,000 neu-
rons. Thus, LSA might work in animals with a central nervous system com-
prising less than 50,000 neurons—for exmaple, C. elegans (302 neurons) [93],
leech (about 8,400 neurons) [94], and Aplysia californica (less than 10,000
neurons) [95]. Even in systems comprising more than 50,000 neurons, if there
are small modular structures, such as functional columns in the human brain,
LSA might work effectively. For SAP, it would be possible to realize a chain
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of learning in which the output of one module can also be an input of the
next module, provided that the second module predicts and suppresses the
first module’s input. For SAA, however, a duration from stimulus reception
to output must be closed within a certain time frame since STDP can only
work between neurons spiked in a short time (e.g., 20 ms). For example,
preliminary results of the parameter search in the networks consist of 100
neurons show that the input and the output are must be closed within 40 ms
to learn a behavior that avoids the an environmental stimulus. For SAA to
work on a large network, it seems that other functions (e.g., short-term mem-
ory or dopaminergic systems) are required. further discuss the possibility of
LSA in the brain, we must especially study the relation between LSA and
well-structured networks, as well as the relation between LSA and functions
other than than STDP.

SAA, SAP, and SAS, proposed in this thesis, are based on STDP. STDP
has been found in vitro and in vivo [33, 100], though, as yet STDP can only
be observed in limited conditions [101], and some experimental results for
biological neurons cannot be explained by classic STDP (e.g., plasticity in
the case of triplet of the spikes of a presynaptic neuron and a postsynaptic
neuron, or that of quadruplet [102]). In recent years, memristor has attracted
much attention as a voltage-based synaptic plasticity model. Memristor is
the fourth passive element (after register, capacitor, and inductor), in which
the conductance changes according to a potential difference between either
end of memristor. Some studies shown that various types of synaptic dy-
namics, including STDP can be reproduced by a combination of wave forms
connected to either ends of memristor [103]. Memristor can also reproduce
the synaptic dynamics of triplets [104] which cannot be reproduced by clas-
sic STDP. These studies imply that memristor might be more versatile as
a synaptic model than computational models of traditional interpretations
of STDP are. In our future research, we must study whether homeostatic
behaviors like SAA, SAP, and SAS can also emerge from the dynamics of
models such as memristor, which reproduces a greater variety of behaviors
for biological synaptic plasticity than classic STDP.

Although some forms of stimulation avoidance emerge from the classic
STDP function we used in this thesis, other types should emerge from other
synaptic dynamics. For example, if the curve of classic STDP functions are
reflected on the x-axis, then the agent should have a characteristic utterly
opposed to classic STDP: seeking stimulation from the environment. How-
ever, such shapes of STDP function have not been broadly found in vivo
and in vitro. From an evolutionary perspective, this implies that stimulation
avoidance (not stimulation seeking) behavior has contributed to maintaining
homeostasis in agents. However, various type of synaptic dynamics rather
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than classic STDP have been found in vivo and in vitro [33, 100]; therefore,
we must study what kind of behavior emerges when combining these various
types of synaptic dynamics in our future work.

7.4 Stimulation Avoidance as Intrinsic Moti-

vation

LSA is a basic mechanism of an autonomous agent trying to maintain home-
ostasis by autonomously avoiding stimulation without global rewards. This
can also be regarded as an intrinsic motivation that emerges from local dy-
namics, such as STDP, in a bottom-up manner.

In general, an agent’s motivation is divided into two types of motiva-
tion: extrinsic motivation and intrinsic motivation. “Extrinsic motivation
is a construct that pertains whenever an activity is done in order to attain
some separable outcome” [105]. On the other hand, “intrinsic motivation
is defined as the doing of an activity for its inherent satisfactions rather
than for some separable consequence. […] for the fun or challenge entailed
rather than because of external prods, pressures, or rewards” [105]. From an
evolutionary perspective, intrinsic motivation should also lead to some sepa-
rable consequence (not directly but indirectly) with greater causal distance.
Furthermore, the separable consequences from intrinsic motivations are less
specific than those of an extrinsic motivation (e.g., food), their generality
leading to open-ended or lifelong learning.

In recent years, intrinsic motivations have attracted much attention in the
field of Artificial Intelligence, with researchers trying to create autonomous
agents, in particular in the field of reinforcement learning [73, 74]. Reinforce-
ment learning is a biologically inspired learning model that reinforces actions
that could receive rewards [70]. One of the critical problems of reinforcement
learning is that until acquiring rewards, the systems cannot learn any behav-
iors (e.g., if the reward space is sparse, it is difficult to acquire rewards and
learn actions without external instructions). To learn such difficult tasks, he
agent must receive some manually designed curriculum in which the difficulty
level of the task gradually increases.

Applying intrinsic motivations that drives to satisfy the agent’s own de-
sires (internal reward) can, to some extent, solve such problems in reinforce-
ment learning (e.g., even if the reward is sparse, the agent can learn new
behaviors according to its intrinsic motivations). Finally, the agent could be
rewarded for using combinations of learned behaviors. In this way, intrinsic
motivations seems to play important roles for autonomous agents. Ideally,
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intrinsic motivation should lead to open-ended, lifelong learning (i.e., with
an intrinsic motivation, the agent should continue to adapt well to the en-
vironment). Applying intrinsic motivations to reinforcement learning might
lead to an autonomous agent that learns throughout its life. In our future
works, we must further study how to integrate the PSA with such reward
systems (e.g., dopaminergic system).

Many studies can be regarded as models of such intrinsic motivations
[106], and the motivations is often given by manually in a top-down manner
(e.g., empowerment maximization [107], free energy minimization [15, 16, 17]
and novelty-seeking behavior[108]). In living organisms, it is impossible to
given intrinsic motivation in a top-down manner, and it can only be hard-
coded in the body to feel pleasure (or displeasure) in the form of emotions and
the systems control (e.g., maximize or minimize) it. In that case, emotions
can be regarded as a hard-wired signal evolved to evaluate situations.

Some studies take an evolutionary approach to optimize intrinsic motiva-
tions [109, 110]. Feeling emotions and generating actions based on the emo-
tions are sophisticated processes, requiring higher-order cognitive systems,
like a mind or consciousness (see Section 7.2). For more primitive systems
without such higher-order cognition, intrinsic motivations can be regarded
as a function of action generation, which does not directly lead to specific
separable consequence (e.g., food) but can indirectly lead to a greater variety
of separable consequences (e.g., open-ended learning). The PSA is not given
in a top-down manner, and it can be regarded as a primitive intrinsic motiva-
tion, such as stimulation avoidance, which emerges from synaptic dynamics,
such as STDP, in a bottom-up manner. The characteristic of stimulation
avoidance can also be regarded as a kind of primitive emotions or origin of
an agent’s capacity to like or dislike something. It is interesting that such
a primitive emotion can emerge with the dynamics of synaptic plasticity for
even a system without an explicit emotion (e.g., caused by chemicals like
dopamine or serotonin). In our future research, we must discuss in greater
detail the evolutionary path from primitive emotions and motivations to more
explicit emotions, motivations, and consciousness.
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