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Abstract

This thesis studies multivariate linear mixed model with application to small area estimation.
In the small area estimation, the empirical best linear unbiased predictor (EBLUP) in the linear
mixed model is useful because it gives a stable estimate for a mean of a small area. For measuring
uncertainty of EBLUP, much of research is focused on second-order unbiased estimation of mean
squared prediction errors in the univariate case.

In this thesis, the multivariate Fay-Herriot model and nested-error regression model where
the covariance matrix of random effects is fully unknown are considered. When the EBLUP
is measured in terms of a mean squared error matrix (MSEM), a second-order approximation
of MSEM of the EBLUP and a second-order unbiased estimator of the MSEM are derived
analytically in closed forms. Confidence region and confidence interval of the small area mean
centered around EBLUP, which are second order correct are also constructed.
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Chapter 1

Introduction

Linear mixed models and model-based predictors in small area estimation have been studied
extensively and actively in recent years due to the growing demand for reliable small area esti-
mates. In small area estimation, direct design-based estimates for small area means have large
standard errors due to small sample sizes from small areas. In order to improve accuracy, the
linear mixed models are considered which consist of fixed effects based on common parametes
and random effects depending on areas, and the resulting empirical best linear unbiased predic-
tors (EBLUP) provide more reliable estimates by ‘borrowing strength’ from neighboring areas.
This is because EBLUP shrinks the sample mean of the small area towards a stable quantity
costructed by pooling all the data through the fixed effects, and the shrinkage arises from the
random eects. Then, EBLUP can be interpreted as the empirical Bayes estimator, which is
discussed by Efron and Morris (1975).

The linear mixed models used in small area estimation are the Fay-Herriot model for ana-
lyzing area-level data by Fay and Herriot (1978) and the nested error regression (NER) model
for analyzing unit-level data by Battese, Harter and Fuller (1988). Various extensions and gen-
eralizations of these models and many statistical methods for inference have been studied in the
literature.

In the linear mixed models, best linear unbiased predictors (BLUP) are derivated at first,
which cannot be used since they contain unknown variance components. Several methods for
estimation of these parameters are known. Two major methods are maximum likelihood and
restricted maximum likelihood methods based on the marginal density function of the observa-
tions. Other methods are moment estimators, which are proposed by Prasad and Rao (1990) and
Fay and Herriot (1979). Their properties are studied in the literatures and the most important
one is that they converge to the true values as the number of areas increases under the some
regularized conditions. EBLUP is obtained by plugging the estimates of variance components
in BLUP.

When EBLUP is used for the estimation of small area means, we need to evaluate the
uncertainty of EBLUP. Mean squared error (MSE) of EBLUP is usually considered for this, and
its estimator is needed in practice. MSE of EBULP is approximated at first with second-order
accuracy when the number of areas increases by Taylar’s expansion. Then, the second-order
unbiased edtimator of MSE is obtained in the same way as the MSE approximation. Another
method for assessing the reliability of EBLUP is the construction of confidence intervals of small
area means. Confidence intervals constructed by using EBLUP and estimates of its MSE based
on the standard statistical theory are known to have the coverage probabilities (CP) which have
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the second-order bias for the nominal confidence level. Several methods are proposed to correct
this. One is to derive the correction term analytically by approximating the distribution of the
satistic of interest via the Taylor’s expansion. Another is to approximate computationally the
distribution function of the statistic by the parametric bootstrap method.

For comprehensive reviews of small area estimation, see Ghosh and Rao (1994), Datta and
Ghosh (2012), Pfeffermann (2013) and Rao and Molina (2015).

When multivariate data with correlations are observed from small areas for estimating multi-
dimensional characteristics, like poverty and unemployment indicators, Fay (1987) suggested a
multivariate extension of the univariate Fay-Herriot model, called a multivariate Fay-Herriot
model, to produce reliable estimates of median incomes for four-, three- and five-person fam-
ilies. Fuller and Harter (1987) also considered a multivariate modeling for estimating a finite
population mean vector. Datta, Day and Basawa (1999) provided unified theories in empiri-
cal linear unbiased prediction or empirical Bayes estimation in general multivariate mixed linear
models. Datta, Day and Maiti (1998) suggested a hierarchical Bayesian approach to multivariate
small area estimation. Datta, et al . (1999) showed the interesting result that the multivariate
modeling produces more efficient predictors than the conventional univariate modeling. Porter,
Wikle and Holan (2015) used the multivariate Fay-Herriot model for modeling spatial data.
Ngaruye, von Rosen and Singull (2016) applied a multivariate mixed linear model to crop yield
estimation in Rwanda.

Although Datta, et al . (1999) developed the general and unified theories concerning the
empirical best linear unbiased predictors (EBLUP) and their uncertainty, it is definitely more
helpful and useful to provide concrete forms with closed expressions for EBLUP, the second-
order approximation of the mean squared error matrix (MSEM) and the second-order unbiased
estimator of the mean squared error matrix. Recently, Benavent and Morales (2016) treated
the multivariate Fay-Herriot model with the covariance matrix of random effects depending on
unknown parameters. As a structure in the covariance matrix, they considered diagonal, AR(1)
and the related structures and employed the residual maximum likelihood (REML) method
for estimating the unknown parameters embedded in the covariance matrix. A second-order
approximation and estimation of the MESM were also derived. For some examples, however, it
is difficult or impossible to assume specific structures without prior knowledge or information on
covariance matrices. Then, this thesis studies multivariate linear mixed model with application
to small area estimation where the structure of the covariance matrix of random effects is fully
unknown.

In this thesis, some problems are considered and new results are obtained. Firstly, the
multivariate Fay-Herriot model where the covariance matrix of random effects is fully unknown
is considered. The empirical best linear unbiased predictors are provided, and second-order
approximation of their mean squared error matrices and their second-order unbiased estimators
of the MSEM are derived with closed expressions. The problem of costructing confidence regions
for small area mean vectors is also cinsidered. These are achieved under tha normal assumption.
This assumption, however, is often strict in practice, and then we need the robust estimator
for the MSEM of EBLUP. This is considered in Chapter 3. In Chapter 4, the multivariate
nested-error regression model where the covariance matrix of random effects is fully unknown is
considered. The construction of the confidence interval for the liner combination of a small area
mean and some vector is also considered.
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Chapter 2

Multivariate Fay-Herriot Model

2.1 Motivation

In this chapter, the multivariate Fay-Herriot model where the covariance matrix of random
effects is fully unknown is considered. This situation has been studied by Fay (1987), Fuller and
Harter (1987), Datta, et al . (1998), and useful in the case that statisticians have little knowledge
on structures in correlation. As a specific estimator of the covariance matrix, Prasad-Rao type
estimators with closed forms and use the modified versions which are restricted over the space
of nonnegative definite matrices is employed. The empirical best linear unbiased predictors
are provided based on the Prasad-Rao type estimators, and second-order approximation of
their mean squared error matrices and their second-order unbiased estimators of the MSEM are
derived with closed expressions. These are multivariate extensions of the results given by Prasad
and Rao (1990) and Datta, et al . (2005) for the univariate case. It is noted that empirical best
linear unbiased predictors for small area means are empirical Bayes estimators and related to the
so-called James-Stein estimators. In this sense, the prediction in the multivariate Fay-Herriot
model corresponds to the empirical Bayes estimation of a mean matrix of a multivariate normal
distribution, which is related to the estimation of a precision matrix from a theoretical aspect
as discussed in Efron and Morris (1976). In this framework, several types of estimators are
suggested for estimation of the precision matrix, and it may be an interesting query whether
those estimators provide improvements in the multivariate small area estimation.

Another topic in this capter is the construction of confidence regions. Confidence regions are
more useful for measuring uncertainty of EBLUP, but there is no literature about confidence
regions for multivariate small area estimation problems to the best of our knowledge. Naive
confidence regions can be constructed easily by using the Bayes estimators of small area means
and their MSEM. As is the case in the univariate small area estimation problem, the coverage
probability of the naive methods cannot be guaranteed to be greater than or equal to the
nominal confidence coefficient 1 − α. Recently, in the univariate Fay-Herriot model, Diao,
Smith, Datta, Maiti and Opsomer (2014) constructed closed-form confidence intervals whose
coverage probability is identical to the nominal confidence coefficient up to the second-order for
small area means under the normality assumption. Although the approach discussed in this
chapter is a multivaliate extension of Diao et al. (2014), there are two difficulties: One is how to
construct a confidence region on the multi-dimensional space, and the other is how to construct
a positive-definite and consistent estimator of the covariance matrix of random effects. We here
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consider a confidence region based on the Mahalanobis distance centerd around EBLUP, and
use the asymptotic expansion of the characteristic function of this distance to approximate the
coverage probability based on the chi-square distributions. We obtain the correction term in
a closed form, and provide the confidence region that is second order correct. Concerning the
estimation of the covariance matrix, the Prasad-Rao type estimator with non-negative definite
modification can be given in a closed form by the moment method. When the covariance
matrix is estimated with the zero matrix or a singular matrix close to the zero matrix, however,
the correction term becomes instable in the confidence region. This fact is well known in the
univariate confidence interval. Thus, a new method for obtaining a positive-definite and sencon-
order unbiased estimator of the covariance matrix is suggested. Moreover, the extension of our
results to construction of corrected confidence regions for the difference of two small area mean
vectors is considered. Another approach to construction of corrected confidence regions is the
bootstrap method which needs heavy burden in computation. Because the corrected confidence
region suggested here is provided in closed forms, it is easy to implement, which is a merit of
our method.

This chapter is organized as follows: Section 2.2 introduces the multivariate Fay-Herriot
model and gives the EBLUP and its prediction risk approximation. In section 2.3, the second-
order approximation of MSEM of EBLUP and the second-order unbiased estimator of the MSEM
are derived. In section 2.4, the proposed confidence region is derived. Section 2.5 gives the
Prasad-Rao type estimator of the covariance matrix of the random effects and its positive-definite
modification with second-order unbiasedness and consistency. In section 2.6, the extension to
the confidence regions for the difference of two small area means is described. The performances
of our proposed methods are investigated in Section 2.7. This numerical study illustrates that
the proposals have good performances for the low-dimensional case. However, a k×k covariance
matrix has k(k + 1)/2 parameters, and we need more data so as to maintain the performances
of the proposals for higher-dimensional cases.

2.2 Multivariate Fay-Herriot Model and Empirical Best Linear
Unbiased Predictor

Suppose that area-level data (y1,X1), . . . , (ym,Xm) are observed, where m is the number of
small areas, yi is a k-variate vector of direct survey estimates and Xi is a k × s matrix of
covariates associated with yi for the i-th area. The multivariate Fay-Herriot model suggested
by Fay (1987) is described as

yi =Xiβ + vi + εi, i = 1, . . . ,m, (2.2.1)

where β is an s-variate vector of unknown regression coefficients, vi is a k-variate vector of
random effects depending on the i-th area and εi is a k-variate vector of sampling errors. It is
assumed that vi and εi are mutually independently distributed as

vi ∼ Nk(0,Ψ) and εi ∼ Nk(0,Di), (2.2.2)

where Ψ is a k × k unknown and nonsingular covariance matrix and D1, . . . ,Dm are k × k
known covariance matrices. This is a multivariate extension of the so-called Fay-Herriot model
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suggested by Fay and Herriot (1979). Letting θi = Xiβ + vi for i = 1, . . . ,m, we can rewrite
the model given in (2.2.1) and (2.2.2) as

yi | θi ∼Nk(θi,Di),

θi ∼Nk(Xiβ,Ψ),
(2.2.3)

for i = 1, . . . ,m. Thus, the multivariate Fay-Herriot model is interpreted as the Bayes model with
the prior distribution of θi. It may be convenient to express model (2.2.1) in a matrix form. Let
y = (y⊤1 , . . . ,y

⊤
m)⊤, X = (X⊤

1 , . . . ,X
⊤
m)⊤, v = (v⊤1 , . . . ,v

⊤
m)⊤ and ε = (ε⊤1 , . . . , ε

⊤
m)⊤. Then,

model (2.2.1) is expressed as
y =Xβ + v + ε, (2.2.4)

where v ∼ Nkm(0, Im ⊗Ψ) and ε ∼ Nkm(0,D) for D = block diag(D1, . . . ,Dm). Throughout
the paper, it is assumed that X is of full rank.

For example, we consider the crop data of Battese, Harter and Fuller (1988), who analyze
the data in the nested error regression model. For the i-th county, let yi1 and yi2 be survey
data of average areas of corn and soybean, respectively. Also let xi1 and xi2 be satellite data of
average areas of corn and soybean, respectively. In this case, yi, Xi and β correspond to

yi = (yi1, yi2)
⊤, Xi =

(
1 xi1 xi2 0 0 0
0 0 0 1 xi1 xi2

)
, β = (β1, . . . , β6)

⊤

for k = 2 and s = 6. Battese, et al . (1988) applied a univariate nested error regression model
for each of yi1 and yi2, while we can use the multivariate model (2.2.1) for analyzing both data
simultaneously.

We want to predict and construct a confidence region of θa for the a-th area. To this end,
we begin by deriving the Bayes estimator of θa. The posterior distribution of θi given yi and
the marginal distribution of yi are

θi | yi ∼Nk(θ̃a(β,Ψ), (Ψ−1 +D−1
i )−1),

yi ∼Nk(Xiβ,Ψ+Di),
i = 1, . . . ,m, (2.2.5)

where

θ̃a(β,Ψ) =X⊤
i β +Ψ(Ψ+Di)

−1(yi −Xiβ)

=yi −Di(Ψ+Di)
−1(yi −Xiβ),

which is the Bayes estimator of θi.

When Ψ is known, the maximum likelihood estimator or generalized least squares estimator
of β is

β̂(Ψ) ={X⊤(Im ⊗Ψ+D)−1X}−1X⊤(Im ⊗Ψ+D)−1y

=
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1yi. (2.2.6)

Substituting β̂(Ψ) into θ̃a(β,Ψ) yields the empirical Bayes estimator

θ̂a(Ψ) = ya −Da(Ψ+Da)
−1

{
ya −Xaβ̂(Ψ)

}
. (2.2.7)
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Datta, et al . (1999) showed that θ̂a(Ψ) is the best linear unbiased predictor (BLUP) of θa. It can
be also demonstrated that θ̂a(Ψ) is the Bayes estimator against the uniform prior distribution
of β as well as the empirical Bayes estimator as shown above, which is called the Bayes empirical
Bayes estimator.

Because Ψ is unknown, we need to estimate the covariance matrix Ψ. Estimators used in
the univariate case are the ANOVA type estimator given by Prasad and Rao (1990), the Fay-
Herriot estimator suggested by Fay and Herriot (1979), and the ML and REML methods used
in Datta and Lahiri (2000). Corresponding to the univariate case, we consider the general class
of estimators Ψ̂ of Ψ which satisfy the following conditions:

(H1) Ψ̂ is an even function of y ; Ψ̂(y) = Ψ̂(−y)
(H2) Ψ̂ is a translation invariant function ; Ψ̂(y +XT ) = Ψ̂(y) for any T ∈ Rs and all y.

The modified Prasad-Rao estimator suggested later in this paper and the ML method satisfy
these conditions. We replace Ψ in θ̂a(Ψ) with the estimator Ψ̂, and the resulting empirical
Bayes (EB) estimator is

θ̂
EB

a = θ̂a(Ψ̂) = ya −Da(Ψ̂+Da)
−1

{
ya −Xaβ̂(Ψ̂)

}
. (2.2.8)

This is also interpreted as the empirical best linear unbiased predictor (EBLUP) in the context
of the linear mixed models.

2.3 Second-order Approximation of Mean Squared Error Ma-
trix

For evaluating the uncertainty of θ̂
EB

a , we prepare three lemmas.

Lemma 2.3.1 β̂(Ψ) is independent of Py for P = I −X(X⊤X)−1X. Also, θ̂
EB

a − θ̂a(Ψ) is
a function of Py, and independent of β̂(Ψ).

The proof of Lemma 2.3.1 is given in the section 2.8. It is noted that θ̂
EB

a − θa = (θ̂a(Ψ)−
θa) + (θ̂a(Ψ)− θ̂

EB

a ). From Lemma 2.3.1, θ̂a(Ψ)− θ̂
EB

a is a function of Py and is independent
of θ̂a(Ψ)− θa. It is noted that

E[(θ̂a(Ψ)− θa)(θ̂a(Ψ)− θa)⊤]

=E[(θ̃a(β,Ψ)− θa)(θ̃a(β,Ψ)− θa)⊤ + (θ̂a(Ψ)− θ̃a(β,Ψ))(θ̂a(Ψ)− θ̃a(β,Ψ))⊤]

=G1a(Ψ) +G2a(Ψ),

where

G1a(Ψ) =(Ψ−1 +D−1
a )−1 = Ψ(Ψ+Da)

−1Da,

G2a(Ψ) =Da(Ψ+Da)
−1Xa{X⊤(Im ⊗Ψ+D)−1X}−1X⊤

a (Ψ+Da)
−1Da.

(2.3.1)

Because θ̂a(Ψ)− θa is independent of Py, it is observed that given Py, the conditional distri-
bution of θ̂a(Ψ)− θa is Nk(0,G1a(Ψ) +G2a(Ψ)). This implies the following lemma which will
be used for constructing a confidence region in the next section.
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Lemma 2.3.2 Under the conditions (H1) and (H2), the conditional distribution of θ̂
EB

a − θa
given Py is

θ̂
EB

a − θa|Py ∼ Nk(θ̂
EB

a − θ̂a(Ψ),Ha(Ψ)). (2.3.2)

for Ha(Ψ) = G1a(Ψ) +G2a(Ψ).

For evaluating uncertainty of the EBLUP asymptotically, we assume the conditions given
below for m → ∞:.

(H3) Ψ̂ is
√
m-consistent and second-order unbiased, namely Ψ̂−Ψ = O(m−1/2) and E[Ψ̂] =

Ψ+ o(m−1).

(H4) 0 < k < ∞, 0 < s < ∞.

(H5) There exist positive constants d and d such that d and d do not depend on m and satify
dIk ≤Di ≤ dIk for i = 1, . . . ,m.

(H6) X⊤X is nonsingular and X⊤X/m converges to a positive definite matrix.

Under these conditions, we can obtain the important approximations which will be useful

for evaluating the mean squared error (MSE) matrix of θ̂
EB

a and for constructing corrected

confidence region based on θ̂
EB

a .

Lemma 2.3.3 Under conditions (H1)-(H6), the following approximations hold:

(1) E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂
EB

a − θ̂a(Ψ)}⊤] = G3a(Ψ) +O(m−3/2), where

G3a(Ψ) =Da(Ψ+Da)
−1E

[
(Ψ̂−Ψ)(Ψ+Da)

−1(Ψ̂−Ψ)
]
(Ψ+Da)

−1Da, (2.3.3)

(2) E[G1a(Ψ̂)] = G1a(Ψ)−G3a(Ψ) +O(m−3/2).

The proof of Lemma 2.3.3 is given in the section 2.8. Using Lemma 2.3.2 and Lemma 2.3.3

(1), we can approximate the MSE matrix of θ̂
EB

a as

MSEM(θ̂
EB

a ) =G1a(Ψ) +G2a(Ψ) + E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂
EB

a − θ̂a(Ψ)}⊤]
=G1a(Ψ) +G2a(Ψ) +G3a(Ψ) +O(m−3/2). (2.3.4)

Using Lemma 2.3.3 (2), we can obtain the second-order unbiased estimator of MSEM(θ̂
EB

a ),
which is given by

msem(θ̂
EB

a ) = G1a(Ψ̂) +G2a(Ψ̂) + 2G3a(Ψ̂), (2.3.5)

namely, E[msem(θ̂
EB

a )] = MSEM(θ̂
EB

a )+O(m−3/2). Lemma 2.3.3 will be also used for deriving
corrected confidence region in the next section.

2.4 Confidence Region with Corrected Coverage Probability

We now construct a confidence region of θa based on θ̂
EB

a with second-order accuracy. WhenΨ is
known, it follows from Lemma 2.3.2 that the confidence region based on the Mahalanobis distance
with 100(1− α)% confidence coefficient is {θa | (θa − θ̂a(Ψ))⊤H−1

a (Ψ)(θa − θ̂a(Ψ)) ≤ χ2
k,1−α}
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for Ha(Ψ) = G1a(Ψ) +G2a(Ψ), where χ2
k,1−α is the 100α% upper quantile of the chi-squared

distribution with degrees of freedom k. For a matrix A(Ψ), A−1(Ψ) denotes the inverse matrix
of A(Ψ). Since Ψ is unknown, we replace Ψ with estimator Ψ̂ to get the naive confidence region

CR0 = {θa | (θa − θ̂a(Ψ̂))⊤H−1
a (Ψ̂)(θa − θ̂a(Ψ̂)) ≤ χ2

k,1−α}. (2.4.1)

Under appropriate conditions, it can be shown that the coverage probability tends to the nominal
confidence coefficient 1 − α, namely limm→∞ P (θa ∈ CR0) = 1 − α. However, this confidence
region has the second-order bias, because P (θa ∈ CR0) = 1 − α + O(m−1). Thus, we want to
derive a corrected confidence region CR such that P (θa ∈ CR) = 1− α+O(m−3/2).

Define B1, B2 and B3 by

B1 =B1(Ψ) = −1

2
tr
(
E[Ka(Ψ̂)H−1

a (Ψ)Ka(Ψ̂))]
)
,

B2 =B2(Ψ) = −1

8

{
E[tr 2(Ka(Ψ̂))] + 2tr

(
E[(Ka(Ψ̂))2]

)}
,

B3 =tr (H−1
a (Ψ)G3a(Ψ)),

(2.4.2)

where Ka(Ψ̂) = H
−1/2
a (Ψ)(G1a(Ψ̂) −G1a(Ψ))H

−1/2
a (Ψ) and tr 2(A) = (trA)2 for matrix A.

It can be seen that B1 = O(m−1), B2 = O(m−1) and B3 = O(m−1). Then, we provide the main
theorem which will be proved in the section 2.8.

Theorem 2.4.1 Under the conditions (H1)-(H6), it holds that

P{(θ̂
EB

a − θa)⊤H−1
a (Ψ̂)(θ̂

EB

a − θa) ≤ x}
= Fk(x) + 2(B1 −B2 −B3)fk+2(x) + 2B2fk+4(x) + o(m−1), (2.4.3)

where Fk(x) and fk(x) are the cumulative distribution and probability density functions of the
chi-squared distribution with the degree of freedom k, respectively.

We can consider the Bartlett-type correction using the asymptotic expansion (2.4.3). For
h = O(m−1), it is observed that

P{(θ̂
EB

a − θa)⊤H−1
a (Ψ̂)(θ̂

EB

a − θa) ≤ x(1 + h)}
=Fk(x) + hxfk(x) + 2(B1 −B2 −B3)fk+2(x) + 2B2fk+4(x) + o(m−1).

Note that hxfk(x) + 2(B1 − B2 − B3)fk+2(x) + 2B2fk+4(x) is of order O(m−1). Thus, the
second-order term vanishes if

hxfk(x) = −2(B1 −B2 −B3)fk+2(x)− 2B2fk+4(x) = 0. (2.4.4)

Since Γ(x+ 1) = xΓ(x) for the gamma function Γ(x), the solution of the equation (2.4.4) on h
is

h∗(Ψ) = −2{(B1 −B3 −B2)/k +B2x/k(k + 2)}. (2.4.5)

For h∗(Ψ) given in (2.4.5), it holds that for any x > 0,

P{(1 + h∗(Ψ̂))−1(θ̂
EB

a − θa)⊤H−1
a (Ψ̂)(θ̂

EB

a − θa) ≤ x} = Fk(x) + o(m−1).

Hence, the corrected confidence region is given by

CR = {θa | (θa − θ̂
EB

a )⊤H−1
a (Ψ̂)(θa − θ̂

EB

a ) ≤ {1 + h∗(Ψ̂)}χ2
k,1−α}. (2.4.6)
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Corollary 2.4.1 Under conditions (H1)-(H6), it holds that

P (θa ∈ CR) = 1− α+ o(m−1).

2.5 Derivation of a Second-order Unbiased and Positive-definite
Estimator of the Covariance Matrix of Random Effects

We here provide a new method for deriving a second-order unbiased and positive-definite esti-
mator of Ψ. As well known in the univariate case, the Prasad-Rao estimator of the ‘between’
component of variance takes a negative value with a positive probability, and the nonnegative
estimator which truncates it at zero is used. The maximum likelihood (ML) and restricted
maximum likelihood (REML) estimators take values of zero with positive probabilities. To fix
this drawback, Li and Lahiri (2010) suggested the adusted maximum likelihood method for giv-
ing a positive and consistent estimator. As pointed out by Yoshimori and Lahiri (2014), this
problem causes instability of the corrected confidence interval. In the multivariate case, since
G2a(Ψ) = O(m−1), it is seen that H−1

a (Ψ) = G−1
1a (Ψ) + O(m−1) = Ψ−1 +D−1

a + O(m−1).
This means that the correction function h∗(Ψ) takes a large value when some eigenvalues of
estimator Ψ̂ are zero.

To derive a positive-definite and consistet estimator of Ψ, let U be a k × k orthogonal
matrix U such that Ψ̂ = ULU⊤ for a diagonal matrix L = diag (ℓ1, . . . , ℓk). Then, we consider
adjusted estimators of the form

Ψ̂(A) =
1

2
(Ψ̂− aIk +UL(A)U

⊤), (2.5.1)

where

L(A) = diag (

√
(ℓ1 − â)2 + b̂1, . . . ,

√
(ℓk − â)2 + b̂k),

for some statistics â and b̂1, . . . , b̂k.

Proposition 2.5.1 Assume that â = Op(m
−1), E[â2] = o(m−1) and that b̂i’s are positive almost

surely and b̂i = Op(m
−1) for i = 1, . . . , k. Let Ψ̂ be a consistent estimator of Ψ as m → ∞.

(1) Ψ̂(A) given in (2.5.1) is positive-definite almost surely, and Ψ̂(A) = Ψ̂+Op(m
−1).

(2) If Ψ̂ is second-order unbiased, namely, E[Ψ̂] = Ψ + o(m−1), and if b̂i = 4â(ℓi − â)0 is
almost surely positive, then Ψ̂(A) is positive definite almost surely and second-order unbiased.

Proof. It is clear that Ψ̂(A) is positive definite almost surely. Note that there exists positive

λi such that ℓi converges to λi, because Ψ̂ is consistent. Since â = Op(m
−1) and E[â2] = o(m−1),

it is seen that P (λi − â < 0) = o(m−1). Then, the eigenvalues of Ψ̂(A) are approximated as

ℓi − â+

√
(ℓi − â)2 + b̂i =ℓi − â+

√
(ℓi − λi + λi − â)2 + b̂i

=ℓi − â+ |λi − â|

√
1 +

2(λi − â)(ℓi − λi) + (ℓi − λi)2 + b̂i
(λi − â)2

=2ℓi − 2â+
b̂i

2(λi − â)
+ op(m

−1). (2.5.2)
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This implies that Ψ̂(A) = Ψ̂+Op(m
−1), which shows part (1). For part (2), let b̂i = 4â(λi − â).

Then we can see that the second term is equal to the third term in RHS of (2.5.2), and the
second-order bias vanishes. Thus, the part (2) is shown by replacing λi with ℓi. □

Before constructing the estimator Ψ̂(A) with specific â and b̂i’s, we obtain estimator Ψ̂ which
satisfies conditions (H1), (H2) and (H3). WhenΨ is a fully unknown covariance matrix, it is hard
to derive the ML and REML estimates numerically. Instead, we begin by deriving a Prasad-Rao
type estimator based on the moment method. Because E[(yi −Xiβ)(yi −Xiβ)

⊤] = Ψ +Di

for i = 1, . . . ,m, we have
∑m

i=1E[(yi −Xiβ)(yi −Xiβ)
⊤] = mΨ+

∑m
i=1Di. Substituting the

ordinary least squares estimator β̂
OLS

= (X⊤X)−1X⊤y into β, we get the Prasd-Rao type
consistent estimator

Ψ̂
PR

0 =
1

m

m∑
i=1

{
(yi −Xiβ̂

OLS
)(yi −Xiβ̂

OLS
)⊤ −Di

}
. (2.5.3)

It is noted that this estimator has a second-order bias. In fact, the bias, given by Bias
Ψ̂

PR
0

(Ψ) =

E[Ψ̂
PR

0 ]−Ψ, is

Bias
Ψ̂

PR
0

(Ψ) =
1

m

m∑
i=1

Xi(X
⊤X)−1

{ m∑
j=1

X⊤
j (Ψ+Dj)Xj

}
(X⊤X)−1X⊤

i

− 1

m

m∑
i=1

(Ψ+Di)Xi(X
⊤X)−1X⊤

i − 1

m

m∑
i=1

Xi(X
⊤X)−1X⊤

i (Ψ+Di).

(2.5.4)

Substituting Ψ̂
PR

0 into Bias
Ψ̂

PR
0

(Ψ) provides the bias-corrected estimator

Ψ̂
PR

= Ψ̂
PR

0 − Bias
Ψ̂

PR
0

(Ψ̂
PR

0 ). (2.5.5)

The estimator Ψ̂
PR

satisfies conditions (H1), (H2) and (H3). However, it still has a drawback
of taking a negative value with a positive probability. For applying the method suggested in
Proposition 2.5.1, let

â = tr (Ψ̂
PR

)/mk and b̂i = max{4â(ℓPR
i − â), 1/m}, for i = 1, . . . , k,

where ℓPR
i ’s are eigenvalues of Ψ̂

PR
. Note that P{â(ℓPR

i − â) < 1/(4m)} = o(m−1). Then, we
suggest the adjusted estimator

Ψ̂
PR

(A) =
1

2
(Ψ̂

PR
− âIk +U

PRLPR
(A)(U

PR)⊤), (2.5.6)

where column vectors of UPR are the eigenvectors of Ψ̂
PR

and

LPR
(A) = diag (

√
(ℓPR

1 − â)2 + b̂1, . . . ,

√
(ℓPR

k − â)2 + b̂k).

It follows from Proposition 2.5.1 that Ψ̂
PR

(A) is positive-definite and second-order unbiased.

Before calculating some moments given in B1, B2 and B3, we need a closed-form expression
of G3a(Ψ) given in (2.3.3), which is stated in the following lemma.

15



Lemma 2.5.1 By using the Prasad-Rao type estimetor given in (2.5.5) or (2.5.6), we can write
G3a(Ψ) in (2.3.3), as

G3a(Ψ) =
1

m2
Da(Ψ+Da)

−1
[ m∑

i=1

(Ψ+Di)(Ψ+Da)
−1(Ψ+Di)

+

m∑
i=1

{tr [(Ψ+Di)(Ψ+Da)
−1]}(Ψ+Di)

]
(Ψ+Da)

−1Da.

(2.5.7)

Finally, we calculate some moments given in B1, B2 and B3 for the estimator Ψ̂
PR

(A). This
calculation is used for providing the correction function h∗(Ψ).

Lemma 2.5.2 Assume conditions (H4)-(H6). For Ψ̂
PR

(A) as in (2.5.6), the values of B1 and B2

in (2.4.2) are given by

B1 =− 1

2m2

m∑
i=1

{
tr
(
(Ψ+Da)

−1DaH
−2
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di)

× (Ψ+Da)
−1DaH

−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di)
)

+ tr
(
(Ψ+Da)

−1DaH
−2
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di)
)

× tr
(
(Ψ+Da)

−1DaH
−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di)
)}

+ o(m−1),

B2 =− 1

4m2

m∑
i=1

{
tr
(
((Ψ+Da)

−1DaH
−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di))
2
)

+ tr
(
((Ψ+Da)

−1DaH
−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di))
2
)

+ tr 2
(
((Ψ+Da)

−1DaH
−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di))
)}

+ o(m−1),

and the value of B3 in (2.4.2) is B3 = tr (H−1
a (Ψ)G3a(Ψ)) for G3a(Ψ) given in (2.5.7).

By substituting these values into (2.4.5), we can construct the confidence region in the closed-
form. Moreover, by substituting (2.5.7) into (2.3.5), we can obtain an estimator of closed-form

approximation of the MSE matrix of θ̂
EB

a as a by-product.

2.6 Confidence Region for the Difference of Two Small Area
Means

In this section, we extend the results in Section 2.4 to the construction of a confidence region
for θa − θb for a ̸= b. This enables us to conduct a statistical test under the null hypothsis
H0 : θa = θb. Since the corrected confidence region of θa − θb can be constructed by the same
arguments as in Section 2.4, we here provide the sketch of the result.
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Let Gab(Ψ) =Ha(Ψ) +Hb(Ψ)−G2ab(Ψ), where G2ab(Ψ) = E[(θ̂
EB

a − θa)(θ̂
EB

b − θb)⊤] +
E[(θ̂

EB

b − θb)(θ̂
EB

a − θa)⊤]. Then, it can be evaluated as

G2ab(Ψ) =Da(Ψ+Da)
−1Xa{X⊤(Im ⊗Ψ+D)−1X}−1X⊤

b (Ψ+Db)
−1Db

+Db(Ψ+Db)
−1Xb{X⊤(Im ⊗Ψ+D)−1X}−1X⊤

a (Ψ+Da)
−1Da.

The asymptotic expansion of the cumulative distribution function is

P{(θ̂
EB

a − θa − θ̂
EB

b + θb)
⊤G−1

ab (Ψ̂)(θ̂
EB

a − θa − θ̂
EB

b + θb) ≤ x}
=Fk(x) + 2(B̃1 − B̃2 − B̃3)fk+2(x) + 2B̃2fk+4(x) + o(m−1),

where B̃1, B̃2 and B̃3 are

B̃1 =− 1

2
tr
(
E[G

−1/2
ab (Ψ)(G1a(Ψ̂)−G1a(Ψ) +G1b(Ψ̂)−G1b(Ψ))G−2

ab (Ψ)

× (G1a(Ψ̂)−G1a(Ψ) +G1b(Ψ̂)−G1b(Ψ))G
−1/2
ab (Ψ)]

)
,

B̃2 =− 1

8

{
E[tr 2((G1a(Ψ̂)−G1a(Ψ) +G1b(Ψ̂)−G1b(Ψ))G−1

ab (Ψ))]

+ 2tr
(
E[((G1a(Ψ̂)−G1a(Ψ) +G1b(Ψ̂)−G1b(Ψ))G−1

ab (Ψ))2]
)}

,

B̃3 =tr (G−1
ab (Ψ)(G3a(Ψ) +G3b(Ψ)−G2ab(Ψ))),

(2.6.1)

Setting h̃∗ = −2{(B̃1 − B̃3 − B̃2)/k + B̃2x/k(k + 2)}, we have

P ((1 + h̃∗)−1(θ̂
EB

a − θa − θ̂
EB

b + θb)
⊤G−1

ab (Ψ̂)(θ̂
EB

a − θa − θ̂
EB

b + θb) ≤ x) = Fk(x) + o(m−1),

namely, P (θa − θb ∈ CRab) = 1− α+ o(m−1) for the corrected confidence region

CRab = {θa − θb|(θ̂
EB

a − θa − θ̂
EB

b + θb)
⊤G−1

ab (Ψ̂)(θ̂
EB

a − θa − θ̂
EB

b + θb) ≤ (1 + h̃∗)χ2
k,1−α}.

When the adjusted Prasd-Rao type estimator Ψ̂
PR

(A) given in (2.5.6) is used for estimating Ψ,

the functions B̃1 and B̃2 are calculated as Then, we have

B̃1 =− 1

2
tr (V 1aa + V 1bb + V 1ab + V 1ba) + o(m−1),

B̃2 =− 1

4m2

m∑
i=1

tr
({

(Ψ+Da)
−1DaG

−1
ab Da(Ψ+Da)

−1(Ψ+Di)

+ (Ψ+Db)
−1DbG

−1
ab Db(Ψ+Db)

−1(Ψ+Di)
}2)

− 1

4
tr (V 2aa + V 2bb + V 2ab + V 2ba) + o(m−1),
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where for (c, d) = (a, a), (a, b), (b, a) and (b, b),

V 1cd =G
−1/2
cd (Ψ)Dc(Ψ+Dc)

−1

×
[ 1

m2

m∑
i=1

{
(Ψ+Di)(Ψ+Dc)

−1DcG
−2
cd (Ψ)Dd(Ψ+Dd)

−1(Ψ+Di)

+ tr ((Ψ+Dc)
−1DcG

−2
cd (Ψ)Dd(Ψ+Dd)

−1(Ψ+Di))(Ψ+Di)
}]

×Dd(Ψ+Dd)
−1G

−1/2
cd (Ψ),

V 2cd =G
−1/2
cd (Ψ)Dc(Ψ+Dc)

−1

×
[ 1

m2

m∑
i=1

{
(Ψ+Di)(Ψ+Dc)

−1DcG
−1
cd (Ψ)Dd(Ψ+Dd)

−1(Ψ+Di)

+ tr ((Ψ+Dc)
−1DcG

−1
cd (Ψ)Dd(Ψ+Dd)

−1(Ψ+Di))(Ψ+Di)
}]

× (Ψ+Dd)
−1DdG

−1/2
cd (Ψ).

Also, B̃3 is obtained by using the expression in (2.5.7).

2.7 Simulation and Empirical Studies

2.7.1 Finite sample performances

We now investigate finite sample performances of EBLUP in terms of MSEM and the second-
order unbiased estimator of MSEM by simulation.

[1] Setup of simulation experiments. We treat the multivariate Fay-Herriot model
(2.2.1) for k = 2, 3 and m = 30, 60 without covariates, namely Xi = Ik. As a setup of the
covariance matrix Ψ of the random effects, we consider

Ψ =

{
ρψ2ψ

⊤
2 + (1− ρ)diag(ψ2ψ

⊤
2 ) for k = 2,

ρψ3ψ
⊤
3 + (1− ρ)diag(ψ3ψ

⊤
3 ) for k = 3,

where ψ2 = (
√
1.5,

√
0.5)⊤, ψ3 = (

√
1.5, 1,

√
0.5)⊤, and diag(A) denotes the diagonal matrix

consisting of diagonal elements of matrix A. Here, ρ is the correlation coefficient, and we handle
the three cases ρ = 0.25, 0.5, 0.75. The cases of negative correlations are omitted, because we
observe the same results with those of positive ones.

Concerning the dispersion matrices Di of sampling errors εi, we treat the two Di-patterns:
(a) 0.7Ik, 0.6Ik, 0.5Ik, 0.4Ik, 0.3Ik and (b) 2.0Ik, 0.6Ik, 0.5Ik, 0.4Ik, 0.2Ik. In the univariate Fay-
Herriot model, these cases are treated by Datta, et al . (2005). There are five groups G1, . . . , G5

corresponding to these Di-patterns, and there are six and twelve small areas in each group for
m = 30 and 60, respectively, where the sampling covariance matrices Di are the same for areas
within the same group.

[2] Comparison of MSEM. We begin with obtaining the true mean squared error matrices

of the EBLUP θ̂
EB

a = θ̂a(Ψ̂
+
) by simulation. Let {y(r)i , i = 1, . . . ,m} be the simulated data
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in the r-th replication for r = 1, . . . , R with R = 50, 000. Let Ψ̂
+(r)

and θ
(r)
a be the values of

Ψ̂
+

and θa in the r-th replication. Then the simulated value of the true mean squared error
matrices is calculated by

MSEM(θ̂
EB

a ) = R−1
R∑
i=1

{
θ̂a(Ψ̂

+(r)
)− θ(r)a

}{
θ̂a(Ψ̂

+(r)
)− θ(r)a

}⊤
.

As an estimator of Ψ, we here use the simple estimator Ψ̂
+

0 , because there is little difference

between Ψ̂
+

0 and Ψ̂
+

1 in simulated values of MSEM under the setup of Xi = Ik. Simulated
values of the mean squared error matrices, averaged over areas within groups Gt, are reported
in Tables 2.1, 2.3, and 2.5. To measure relative improvement of EBLUP, we calculate the

percentage relative improvement in the average loss (PRIAL) of θ̂
EB

a over ya, defined by

PRIAL(θ̂
EB

a ,ya) = 100×
[
1− tr {MSEM(θ̂

EB

a )}
tr {MSEM(ya)}

]
.

It is also interesting to compare θ̂
EB

a with the EBLUP θ̂
uEB

a derived from the univariate Fay-
Herriot model. Thus, we calculate the PRIAL given by

PRIAL(θ̂
EB

a , θ̂
uEB

a ) = 100×
[
1− tr {MSEM(θ̂

EB

a )}

tr {MSEM(θ̂
uEB

a )}

]
,

and those values are reported in Tables 2.2, 2.4 and 2.6.

Table 2.1 reports the simulated values of the true MSEM of θ̂
EB

a for k = 2, Di-patterns (a),
m = 30, 60 and ρ = 0.25, 0.5, 0.75. For fixed m, the values of MSEM decrease as the correlation
ρ in the random effect becomes large. For fixed ρ, the values of MSEM decrease as m becomes

large. Table 2.2 reports the values of PRIAL of θ̂
EB

a over ya and θ̂
uEB

a under the same setup

as in Table 2.1. In all the cases, θ̂
EB

a improves on ya largely and the improvement rates are

larger for larger ρ. In comparison with θ̂
uEB

a , the univariate EBLUP θ̂
uEB

a is slightly better than

θ̂
EB

a for ρ = 0.25, but the difference is not significant. The values of PRIAL of θ̂
EB

a over θ̂
uEB

a

get larger as ρ increases. In the case of m = 60, the improvements of θ̂
EB

a in light of PRIAL

get larger for larger ρ. In the case of ρ = 0.25, the improvement of θ̂
EB

a over θ̂
uEB

a is better
for m = 60 than for m = 30. This is because the low accuracy in estimation of the covariance
matrix Ψ has more adverse influence on prediction than the benefit from incorporating the small
correlation into the estimation.

The comparison of performances between Di-patterns (a) and (b) is investigated in Tables

2.3 and 2.4. The simulated values of the MSEM of θ̂
EB

a in Di-patterns (a) and (b) are reported
in Table 2.3 for k = 2, m = 30, 60 and ρ = 0.5. As the increment of variance of sampling error
in G1, the MSEM in G1 becomes larger, and the other groups have slightly larger MSEM except

G5. The values of PRIAL of θ̂
EB

a over ya and θ̂
uEB

a are given in Table 2.4 for Di-patterns (a)

and (b). under the same setup as in Table 2.3. As seen from the table, the improvement of θ̂
EB

a

over ya in G1 is larger for Di-pattern (b) because of the large sampling variance. However, θ̂
EB

a
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is not better than θ̂
uEB

in G4 and G5 for m = 30 and in G5 for m = 60 in Di-pattern (b). This
implies that incorporating the information of areas with large sampling variances affects more
adversely estimation of areas with small sampling variances in the multivariate model than in
the univariate model.

Tables 2.5 and 2.6 report the values of MSEM and PRIAL for k = 3, m = 30, ρ = 0.5 and

Di-pattern (a). From Table 2.6, it is revealed that PRIAL of θ̂
EB

a over ya and θ̂
uEB

a are larger
for k = 3 than for k = 2 in the case of ρ = 0.75, but smaller in the case of ρ = 0.25. When
m is fixed as m = 30, the accuracy in estimation of the covariance matrix Ψ gets smaller for
the larger dimension. This demonstrates that it is not appropriate to treat the multivariate
Fay-Herriot model with a large covariance matrix when m is not large.

m = 30

ρ = 0.25 ρ = 0.5 ρ = 0.75

G1

[
49.8 3.8
3.8 32.6

] [
48.7 8.1
8.1 30.1

] [
46.5 13.8
13.8 25.3

]
G2

[
44.7 3.1
3.1 30.4

] [
43.8 6.5
6.5 28.3

] [
41.4 11.6
11.6 23.7

]
G3

[
39.0 2.4
2.4 27.9

] [
38.0 5.3
5.3 26.3

] [
36.6 9.2
9.2 21.8

]
G4

[
33.1 1.7
1.7 25.3

] [
32.4 3.8
3.8 23.6

] [
30.6 6.8
6.8 19.8

]
G5

[
26.1 1.1
1.1 21.6

] [
25.6 2.3
2.3 20.4

] [
24.2 4.6
4.6 17.4

]
m = 60

ρ = 0.25 ρ = 0.5 ρ = 0.75

G1

[
49.0 4.1
4.1 30.7

] [
47.4 8.2
8.2 28.0

] [
45.2 14.0
14.0 23.6

]
G2

[
43.5 3.4
3.4 28.6

] [
42.5 7.0
7.0 26.5

] [
40.3 11.7
11.7 22.1

]
G3

[
37.9 2.6
2.6 26.0

] [
37.1 5.7
5.7 24.5

] [
35.2 9.6
9.6 20.4

]
G4

[
31.9 1.8
1.8 23.4

] [
31.4 4.1
4.1 21.8

] [
29.8 7.3
7.3 18.5

]
G5

[
25.2 1.2
1.2 19.8

] [
24.8 2.7
2.7 18.7

] [
23.8 5.1
5.1 16.1

]
Table 2.1: Simulated values of mean squared error matrices of θ̂

EB
a multipled by 100 for k = 2, Di-patterns (a)

[3] MSEM approximation and its estimator. We next investigate the performance

of the second-order approximation of MSEM of EBLUP θ̂
EB

a given in (2.3.4) and the second-

order unbiased estimator msem(θ̂
EB

a ) of MSEM given in (2.3.5). The values of the second-order
approximation of MSEM are given in Table 2.7 for k = 2, m = 3 andDi-pattern (a). Comparing
the values in Table 2.7 with the corresponding true values of the MSEM in Table 2.1, we can
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θ̂
EB

a vs ya θ̂
EB

a vs θ̂
uEB

a

m = 30 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.25 ρ = 0.5 ρ = 0.75
G1 41.2 43.8 48.9 -0.5 3.8 11.6
G2 37.2 40.1 45.7 0.0 3.5 12.3
G3 33.0 35.8 41.8 -0.7 3.4 11.8
G4 27.3 29.8 37.2 -1.9 1.8 11.0
G5 20.8 23.5 30.4 -2.5 1.1 10.0

θ̂
EB

a vs ya θ̂
EB

a vs θ̂
uEB

a

m = 60 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.25 ρ = 0.5 ρ = 0.75
G1 43.2 45.8 51.0 -0.6 4.6 13.9
G2 39.8 42.4 48.1 0.2 5.1 13.6
G3 35.6 38.7 44.2 1.3 4.6 14.3
G4 30.6 33.7 39.8 0.3 3.5 13.2
G5 24.8 27.5 33.6 0.4 2.9 11.0

Table 2.2: PRIAL of θ̂
EB
a over ya and θ̂

uEB
a for k = 2, Di-patterns (a)

m = 30 Pattern (a) Pattern (b) m = 60 Pattern (a) Pattern (b)

G1

[
48.7 8.1
8.1 30.1

] [
89.9 19.7
19.7 42.9

]
G1

[
47.4 8.2
8.2 28.0

] [
86.8 20.1
20.1 40.0

]
G2

[
43.8 6.5
6.5 28.3

] [
44.5 6.0
6.0 30.2

]
G2

[
42.5 7.0
7.0 26.5

] [
42.9 6.5
6.5 27.8

]
G3

[
38.0 5.3
5.3 26.3

] [
39.3 4.7
4.7 28.3

]
G3

[
37.1 5.7
5.7 24.5

] [
37.8 5.0
5.0 25.8

]
G4

[
32.4 3.8
3.8 23.6

] [
33.4 3.2
3.2 25.9

]
G4

[
31.4 4.1
4.1 21.8

] [
32.0 3.6
3.6 23.8

]
G5

[
25.6 2.3
2.3 20.4

] [
19.1 0.1
0.1 18.8

]
G5

[
24.8 2.7
2.7 18.7

] [
18.1 0.6
0.6 16.4

]
Table 2.3: Simulated values of mean squared error matrices of θ̂

EB
a multipled by 100 for k = 2, ρ = 0.5
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θ̂
EB

a vs ya θ̂
EB

a vs θ̂
uEB

a

m = 30 Pattern (a) Pattern (b) Pattern (a) Pattern (b)
G1 43.8 66.4 3.8 2.1
G2 40.1 37.0 3.5 0.8
G3 35.8 32.1 3.4 1.0
G4 29.8 26.2 1.8 -0.2
G5 23.5 4.2 1.1 -8.5

θ̂
EB

a vs ya θ̂
EB

a vs θ̂
uEB

a

m = 60 Pattern (a) Pattern (b) Pattern (a) Pattern (b)
G1 45.8 68.5 4.6 3.1
G2 42.4 40.7 5.1 3.1
G3 38.7 36.2 4.6 2.7
G4 33.7 30.6 3.5 1.3
G5 27.5 13.9 2.9 -2.7

Table 2.4: PRIAL of θ̂
EB
a over ya and θ̂

uEB
a for k = 2, m = 30, 60, ρ = 0.5, Di-patterns (a), (b)

m = 30

ρ = 0.25 ρ = 0.5 ρ = 0.75

G1

 50.0 3.4 3.5
3.4 44.3 3.4
3.5 3.4 33.3

  48.0 7.0 6.4
7.0 41.1 6.5
6.4 6.5 29.5

  42.0 12.3 10.0
12.3 34.8 9.4
10.0 9.4 23.1


G2

 45.2 2.6 2.8
2.6 39.8 2.9
2.8 2.9 31.2

  42.8 5.8 5.4
5.8 37.7 5.5
5.4 5.5 28.2

  38.2 10.0 8.3
10.0 31.8 8.0
8.3 8.0 21.7


G3

 40.0 2.0 1.9
1.9 36.1 2.1
1.9 2.1 29.0

  37.5 4.1 3.9
4.1 33.9 4.1
3.9 4.1 25.8

  33.5 7.7 7.0
7.7 28.8 6.4
7.0 6.4 20.5


G4

 33.4 1.3 1.5
1.3 31.0 1.6
1.5 1.6 26.0

  32.1 2.7 2.9
2.7 29.2 3.0
2.9 3.0 20.7

  29.2 5.6 5.1
5.6 25.2 5.1
5.1 5.1 18.4


G5

 26.3 0.7 0.7
0.7 25.4 1.0
0.7 1.0 22.7

  25.8 1.6 1.5
1.6 24.1 1.8
1.5 1.8 20.7

  23.4 3.1 3.2
3.1 21.0 3.4
3.2 3.4 16.5


Table 2.5: Simulated values of mean squared error matrices of θ̂

EB
a multiplied by 100 for k = 3, m = 30, Di-patterns

(a)
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θ̂
EB

a vs ya θ̂
EB

a vs θ̂
uEB

a

k = 2 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.25 ρ = 0.5 ρ = 0.75
G1 41.2 43.8 48.9 -0.5 3.8 11.6
G2 37.2 40.1 45.7 0.0 3.5 12.3
G3 33.0 35.8 41.8 -0.7 3.4 11.8
G4 27.3 29.8 37.2 -1.9 1.8 11.0
G5 20.8 23.5 30.4 -2.5 1.1 10.0

θ̂
EB

a vs ya θ̂
EB

a vs θ̂
uEB

a

k = 3 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.25 ρ = 0.5 ρ = 0.75
G1 39.5 43.6 52.4 -1.9 5.9 20.3
G2 35.2 40.0 48.9 -2.6 4.8 19.2
G3 30.3 35.1 44.6 -3.9 3.2 18.2
G4 25.2 29.7 39.6 -4.4 1.9 15.7
G5 17.6 21.6 32.0 -5.7 -0.3 12.8

Table 2.6: PRIAL of θ̂
EB
a over ya and θ̂

uEB
a for k = 2, 3, m = 30, Di-patterns (a)

see that the second-order approximation can approximate the true MSEM precisely for every
Gt and ρ.

Concerning the performance of the second-order unbiased estimator msem(θ̂
EB

a ) given in

(2.3.3), we compute the simulated values of relative bias of the estimator msem(θ̂
EB

a ), averaged
over areas within groups Gt. Those values are reported in Table 2.8 for k = 2, m = 30, 60 and
Di-pattern (a). It is revealed from Table 2.8 that the relative bias gets larger for larger ρ. Also,
the values of the relative bias are smaller for m = 60 than for m = 30, namely, the relative bias
gets small as m increases.

m = 30

ρ = 0.25 ρ = 0.5 ρ = 0.75

G1

[
49.8 3.7
3.7 32.6

] [
48.6 7.9
7.9 30.3

] [
46.2 13.2
13.2 25.9

]
G2

[
44.6 3.1
3.1 30.4

] [
43.6 6.6
6.6 28.4

] [
41.5 11.1
11.1 24.4

]
G3

[
38.9 2.4
2.4 27.8

] [
38.1 5.2
5.2 26.1

] [
36.3 8.9
8.9 22.6

]
G4

[
32.6 1.7
1.7 24.7

] [
32.0 3.8
3.8 23.3

] [
30.6 6.6
6.6 20.5

]
G5

[
25.7 1.1
1.1 20.7

] [
25.3 2.4
2.4 20.0

] [
24.4 4.3
4.3 17.8

]
Table 2.7: Second order approximations of mean squared error matrices of θ̂

EB
a multiplied by 100 for k = 2, Di-patterns

(a)
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Pattern (a)

m = 30 ρ = 0.25 ρ = 0.5 ρ = 0.75

G1

[
−0.3 −2.6
−2.6 1.1

] [
−0.9 −4.1
−4.1 2.9

] [
0.6 −9.5

−9.5 10.1

]
G2

[
0.6 3.1
3.1 0.9

] [
0.3 −3.5

−3.5 2.7

] [
1.1 −10.4

−10.4 13.1

]
G3

[
−0.6 −5.8
−5.8 1.2

] [
1.3 −7.8

−7.8 4.6

] [
1.2 −16.7

−16.7 13.6

]
G4

[
−0.4 −4.6
−4.6 2.9

] [
0.4 −10.8

−10.8 4.7

] [
1.2 −23.4

−23.4 17.8

]
G5

[
0.3 −24.4

−24.4 2.2

] [
0.6 −26.1

−26.1 7.7

] [
3.4 −42.3

−42.3 23.1

]
Pattern (a)

m = 60 ρ = 0.25 ρ = 0.5 ρ = 0.75

G1

[
−0.1 −2.3
−2.3 −0.5

] [
0.2 −0.2

−0.2 −0.5

] [
0.4 −0.7

−0.7 1.7

]
G2

[
0.7 −3.4

−3.4 −0.2

] [
0.4 −0.8

−0.8 −0.5

] [
0.8 −0.0

−0.0 2.1

]
G3

[
0.2 −5.1

−5.1 −0.2

] [
0.1 −1.5

−1.5 0.1

] [
0.3 −1.4

−1.4 2.9

]
G4

[
−0.1 −5.1
−5.1 −0.4

] [
−0.4 −2.4
−2.4 0.3

] [
1.4 −2.9

−2.9 3.6

]
G5

[
0.2 −3.3

−3.3 −0.2

] [
0.3 −5.9

−5.9 −0.1

] [
0.6 −8.1

−8.1 5.1

]
Table 2.8: Simulated values of percentage average relative bias of mean squared error matrices of θ̂

EB
a multiplied by 100

for k = 2, m = 30, 60, Di-pattern (a)
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[4] Confidence region. We next investigate finite sample performances of the proposed
confidence regions by simulation in the multivariate Fay-Herriot model (2.2.1) for k = 2, 3 and
m = 30. The design matrix, Xi is a k × 2k matrix, such that

Xi =

(
1 xi1 0 0
0 0 1 xi2

)
,Xi =

1 xi1 0 0 0 0
0 0 1 xi2 0 0
0 0 0 0 1 xi3


for k = 2, 3 respectevely, where xij ’s are generated from the uniform distribution on (−1, 1),
which are fixed through the simulation runs. As a setup of the covariance matrix Ψ of the
random effects, we consider

Ψ =

{
ρψ2ψ

⊤
2 + (1− ρ)diag(ψ2ψ

⊤
2 ) for k = 2,

ρψ3ψ
⊤
3 + (1− ρ)diag(ψ3ψ

⊤
3 ) for k = 3,

where ψ2 = (
√
1.6,

√
0.8)⊤, ψ3 = (

√
1.6,

√
1.2,

√
0.8)⊤, and diag(A) denotes the diagonal matrix

consisting of diagonal elements of matrix A. Here, ρ is the correlation coefficient, and we handle
the three cases ρ = 0.2, 0.4, 0.6. The cases of negative correlations are omitted, because we
observe the same results with those of positive ones.

The dispersion matrices Di of sampling errors εi are set in the smae way as before. Then,
we treat the two Di-patterns: (a) 0.7Ik, 0.6Ik, 0.5Ik, 0.4Ik, 0.3Ik and (b) 2.0Ik, 0.6Ik, 0.5Ik,
0.4Ik, 0.2Ik. There are five groups G1, . . . , G5 corresponding to theseDi-patterns, and there are
six small areas in each group for m = 30, respectively, where the sampling covariance matrices
Di are the same for areas within the same group. Concerning the underlying distributions for
vi and εi, we consider two kinds of distributions, that is, multivariate normal distributions and
multivariate normalized chi-squared distributions with degrees of freedom 2, which are denoted
by M1 and M2, respectively. The chis-quared distribution is used for investigating robustness
of the proposed method against the misspecification of distributions of vi and εi. The values of
coverage probabilities (CP) of the corrected confidence region and the naive confidence region
and the values of the Bartlett-type correction term h∗ are obtained based on 10, 000 simulation
run, where the nominal confidence coefficient is 95%.

The values of CP and the correction term in the case of k = 2 are reported in Tables 2.9
and 2.10 for Di-patterns (a) and (b), respectively. From the tables for normal distributions, the
corrected method has CP values larger than the nominal confidence coefficient. In contrast, CP
values of the naive confidence region are much smaller than the nominal confidence coefficient.
For example, CP value for G1 in Table 2.10 is about 89%. These show that the naive method
is not appropriate for a confidence region and the correction by h∗ works well. For chi-square
distributions, CP values of the corrected method satisfies the nominal confidence coefficient in
most cases except few cases where CP values are slightly smaller than, but close to 95%, while
the performance of the naive method is worse than that in the normal distributions. Thus,
the corrected method remains good and robust for the chi-square distributions. Concerning the
Bartlett-type correction, it increases as sampling variances or correlation coefficients ρ increase.

Table 2.11 reports the results for k = 3 and Di-pattern (a). Comparing Tables 2.9 and 2.11,
we can observe that CP values of the naive confidence region are worse in k = 3 than those in
k = 2. The corrected confidence region satisfies the nominal confidence coefficient for k = 3 in
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most cases except the case of ρ = 0.2 in chi-square distributions. Hence, the corrected method
works well and is robust still for k = 3.

We next investigate the finite sample performance of the corrected confidence region for the
difference of two small area means, θa − θb for k = 2 and Di-pattern (a), where the corrected
method is provided in Section 2.6. In each area group, we consider the difference between
the first two small areas means. Table 2.12 reports values of the coverage provabilities (CP)
and the Bartlett-type correction term h∗ for θa − θb. From Table 2.12, it is revealed that the
performances are similar to the results in Table 2.9, while values of the Bartlett-type correction
term h∗ are larger for θa − θb.

Normal chi-square
ρ 0.2 0.4 0.6 0.2 0.4 0.6

G1 CP 0.955 0.968 0.974 0.939 0.945 0.956
(0.917) (0.923) (0.917) (0.898) (0.901) (0.907)

h∗ 0.429 0.492 0.760 0.636 0.697 0.841
G2 CP 0.962 0.960 0.977 0.941 0.942 0.954

(0.923) (0.913) (0.922) (0.902) (0.899) (0.912)
h∗ 0.534 0.571 0.865 0.598 0.640 0.758

G3 CP 0.958 0.962 0.978 0.939 0.947 0.953
(0.921) (0.921) (0.922) (0.901) (0.906) (0.912)

h∗ 0.470 0.530 0.843 0.669 0.731 0.849
G4 CP 0.959 0.965 0.973 0.939 0.944 0.953

(0.928) (0.928) (0.925) (0.905) (0.908) (0.911)
h∗ 0.388 0.441 0.688 0.552 0.610 0.742

G5 CP 0.954 0.962 0.976 0.951 0.947 0.955
(0.923) (0.927) (0.930) (0.914) (0.914) (0.924)

h∗ 0.441 0.470 0.734 0.480 0.519 0.622

Table 2.9: Coverage probabilities (CP) for nominal 95% confidence regions for k = 2 and Di-
pattern (a). (the corrected method in the first line and the naive method in parentheses)

2.7.2 Illustrative example

This example, primarily for illustration, uses the multivariate Fay-Herriot model (2.2.1) and data
from the 2016 Survey of Family Income and Expenditure in Japan, which is based on two or
more person households (excluding agricultural, forestry and fisheries households). The target
domains are the 47 Japanese prefectural capitals. The 47 prefectures are divided into 10 regions:
Hokkaido, Tohoku, Kanto, Hokuriku, Tokai, Kinki, Chugoku, Shikoku, Kyushu and Okinawa.
Each region consists of several prefectures except Hokkaido and Okinawa, which consist of one
prefecture.

In this study, as observations (yi1, yi2)
⊤, we use the reported data of the yearly averaged

monthly spendings on ‘Education’ and ‘ Cultural-amusement’ per worker’s household, scaled
by 1,000 Yen, at each capital city of 47 prefectures. In addition, we use the data in the 2014
National Survey of Family Income and Expenditure. The average spending data in this survey
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Normal chi-square
ρ 0.2 0.4 0.6 0.2 0.4 0.6

G1 CP 0.974 0.980 0.990 0.952 0.957 0.963
(0.897) (0.895) (0.899) (0.876) (0.876) (0.891)

h∗ 1.288 1.645 2.571 1.962 2.145 2.270
G2 CP 0.969 0.980 0.987 0.953 0.960 0.967

(0.905) (0.908) (0.909) (0.885) (0.894) (0.897)
h∗ 1.493 1.870 2.979 2.207 2.380 2.466

G3 CP 0.967 0.976 0.984 0.954 0.961 0.969
(0.912) (0.908) (0.908) (0.894) (0.898) (0.901)

h∗ 1.288 1.730 2.876 1.933 2.173 2.332
G4 CP 0.967 0.974 0.982 0.953 0.958 0.965

(0.916) (0.918) (0.914) (0.898) (0.898) (0.907)
h∗ 1.107 1.433 2.319 1.695 1.854 1.950

G5 CP 0.966 0.973 0.980 0.954 0.957 0.965
(0.926) (0.921) (0.922) (0.904) (0.909) (0.917)

h∗ 1.169 1.494 2.471 1.696 1.857 1.928

Table 2.10: Coverage probabilities (CP) for nominal 95% confidence regions for k = 2 and
Di-pattern (b). (the corrected method in the first line and the naive method in parentheses)

Normal chi-square
ρ 0.2 0.4 0.6 0.2 0.4 0.6

G1 CP 0.964 0.977 0.987 0.941 0.953 0.964
(0.897) (0.903) (0.917) (0.877) (0.884) (0.887)

h∗ 0.527 0.675 0.809 0.816 0.890 1.284
G2 CP 0.964 0.976 0.989 0.950 0.951 0.965

(0.897) (0.897) (0.920) (0.883) (0.878) (0.886)
h∗ 0.570 0.734 0.882 0.884 0.975 1.440

G3 CP 0.966 0.975 0.986 0.943 0.955 0.967
(0.903) (0.903) (0.917) (0.879) (0.884) (0.889)

h∗ 0.579 0.744 0.876 0.891 0.981 1.454
G4 CP 0.965 0.973 0.985 0.940 0.952 0.965

(0.908) (0.910) (0.923) (0.881) (0.889) (0.893)
h∗ 0.488 0.630 0.755 0.772 0.843 1.252

G5 CP 0.964 0.972 0.983 0.944 0.953 0.968
(0.916) (0.912) (0.922) (0.893) (0.898) (0.904)

h∗ 0.474 0.610 0.727 0.761 0.826 1.247

Table 2.11: Coverage probabilities (CP) for nominal 95% confidence regions for k = 3 and
Di-pattern (a). (the corrected method in the first line and the naive method in parentheses)
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Normal chi-square
ρ 0.2 0.4 0.6 0.2 0.4 0.6

G1 CP 0.975 0.983 0.990 0.960 0.966 0.973
(0.912) (0.919) (0.928) (0.895) (0.911) (0.911)

h∗ 0.940 0.957 1.364 1.114 1.373 1.969
G2 CP 0.977 0.986 0.986 0.960 0.967 0.975

(0.922) (0.933) (0.929) (0.907) (0.912) (0.927)
h∗ 0.742 0.770 1.087 0.914 1.106 1.543

G3 CP 0.971 0.971 0.988 0.959 0.961 0.971
(0.928) (0.917) (0.932) (0.912) (0.908) (0.911)

h∗ 0.715 0.727 1.028 0.870 1.067 1.491
G4 CP 0.974 0.976 0.983 0.950 0.965 0.978

(0.936) (0.931) (0.924) (0.904) (0.912) (0.913)
h∗ 0.675 0.712 1.035 0.834 1.049 1.514

G5 CP 0.979 0.977 0.985 0.959 0.961 0.967
(0.933) (0.930) (0.935) (0.920) (0.915) (0.910)

h∗ 0.772 0.752 1.088 0.885 1.112 1.648

Table 2.12: Coverage probabilities (CP) for nominal 95% confidence regions of the difference
between two small area means for k = 2 and Di-pattern (a). (the corrected method in the first
line and the naive method in parentheses)

are more reliable than the Survey of Family Income and Expenditure since the sample sizes
are much larger. However, this survey is conducted only once in every five years. As auxiliary
variables, we use the data of the average spendings on ‘Education’ and ‘ Cultural-amusement’,
which is denoted by EDUi and CULi, respectively. Then the regressor in the model (2.2.1) is

Xi =

(
1 EDUi 0 0
0 0 1 CULi

)
.

Then we apply the multivariate Fay-Herriot model (2.2.1), where sampling covariance matrices
Di of the i-th region for i = 1, . . . , 10 are calculated based on data of yearly averaged monthly
spendings on ‘Education’ and ‘ Cultural-amusement’ in the past ten years (2006-2015), where
Di is given as the average of the sampling covariance matrices of prefectures within the i-th
region. That is, the sampling covariance matrixDi are the same for prefectures within the same
region.

The estimates of the covariance matrix Ψ, the correlation coefficient ρ and the regression
coefficients are

Ψ̂ =

(
8.99 3.19
3.19 10.84

)
, ρ̂ = 0.323 and β̂ = (4.49, 0.82, 12.16, 0.65)⊤.

The values of EBLUP and direct estimate of spendings on ‘Education’ and ‘ Cultural-
amusement’ are reported in Table 2.13. We only pick up the three prefectures from three
different regions: Tokyo prefecture from the Kanto region, Osaka prefecture from the Kinki
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region and Fukushima prefecture from the Tohoku region, whose sampling covariance matrices
are (

1.1 0.3
0.3 3.0

)
,

(
1.1 −0.2
−0.2 3.9

)
and

(
4.7 3.5
3.5 4.9

)
,

respectively. It is seen that as the sampling variances become larger, the direct estimates are
more shrunken by the EBLUP in the sense of (direct estimate - EBLUP)/(direct estimate).

Table 2.13: EBLUP and direct estimates

Tokyo Osaka Fukushima

direct estimator (EDU) 32.5 19.0 13.3
EBLUP (EDU) 31.8 19.4 12.6

direct estimator (CUL) 41.8 24.9 29.9
EBLUP (CUL) 40.6 26.1 29.0

The uncertainty of EBLUP is provided by the second-order unbiased estimator of MSEM
of EBLUP. Table 2.14 reports the estimates of MSEM averaged over prefectures within each
region for 10 regions. We also calculate the percentage relative improvement in the average loss

estimate (PRIAL estimate) of θ̂
EB

a over ya and θ̂
uEB

a . Table 2.15 reports the average of those
values over each region for spendings on education and cultural-amusement. It is revealed from
Table 2.15 that the multivariate EBLUP improves on the direct estimates significantly and that
the multivariate EBLUP is slightly better than the univariate EBLUP for most regions except
Okinawa, which has a smaller sampling covariance matrix.

Table 2.14: Estimates of the mean squared error matrices of θ̂
EB
a

Hokkaido Tohoku Kanto Hokuriku Tokai[
0.5 0.7
0.7 3.8

] [
3.2 2.2
2.2 3.4

] [
1.0 0.3
0.3 2.5

] [
1.0 0.6
0.6 4.7

] [
1.4 0.6
0.6 1.8

]
Kinki Chugoku Shikoku Kyushu Okinawa[

1.0 −0.0
−0.0 2.8

] [
1.5 0.3
0.3 2.6

] [
4.2 0.9
0.9 3.5

] [
1.0 0.7
0.7 1.8

] [
3.0 0.8
0.8 1.7

]

Table 2.16 reports the reduction rates of areas of confidence regions with 95% nominal
confidence coefficient for each area group based on EBLUP, which is calculated by (S(ya) −
S(θ̂

EB

a ))/S(ya), where S(ya) and S(θ̂
EB

a )) are areas of confidence regions based on direct esti-
mators and confidence regions given in (2.4.6). Table 2.16 also reports the the size of sampling
covariance matrices for each area group, which is defined as tr (D2

j )/2 for j = 1, . . . , 10. It is
seen that the reduction rate of area of confidence regions based on EBLUP is larger as the size
of sampling covariance matrix is large. This is a reliable result because direct estimators for
areas with large sampling variances are more shrunk and shows the usefulness of our proposed
method.
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Table 2.15: PRIAL estimates of θ̂
EB
a over ya and θ̂

uEB
a

θ̂
EB

a vs ya
Hokkaido Tohoku Kanto Hokuriku Tokai Kinki Chugoku Shikoku Kyushu Okinawa

82.4 84.7 80.9 84.1 80.5 81.5 81.6 85.7 80.1 81.0

θ̂
EB

a vs θ̂
uEB

a

Hokkaido Tohoku Kanto Hokuriku Tokai Kinki Chugoku Shikoku Kyushu Okinawa
4.1 7.1 1.9 5.3 1.1 4.5 2.4 3.9 1.3 -33.9

Hokkaido Tohoku Kanto Hokuriku Tokai Kinki Chugoku Shikoku Kyushu Okinawa

reduction rate (%) 17.3 24.2 13.4 24.6 11.9 16.6 17.1 34.7 9.8 19.4
sampling variance 15.8 35.7 5.2 29.9 3.9 7.4 6.7 37.0 3.2 11.5

Table 2.16: Reduction rate of areas of confidence regions based on EBLUP and direct estimates

2.8 Proofs

2.8.1 Proof of Lemma 2.3.1

The covariance of Py and β̂(Ψ) is

E[Py(β̂(Ψ)− β)⊤]{X⊤(Im ⊗Ψ+D)−1X}

= E[(y −Xβ̂
OLS

)(y −Xβ)⊤](Im ⊗Ψ+D)−1X

=
[
(Im ⊗Ψ+D)−X{X⊤(Im ⊗Ψ+D)−1X}−1X⊤

]
(Im ⊗Ψ+D)−1X

= 0.

This implies that β̂(Ψ) is independent of Py. Next, we prove that θ̂
EB

a − θ̂a(Ψ) is a function

of Py. From (H2), Ψ̂ is a function of Py. Rewrite θ̂
EB

a as θ̂
EB

a (Ψ̂(y),y), θ̂a(Ψ) as θ̂a(Ψ,y)
and β̂(Ψ) as β̂(Ψ,y). Since β̂(Ψ,y +XT ) = β̂(Ψ,y) + T , from (2.2.7) and (2.2.8), we have

θ̂
EB

a (Ψ̂(y +XT ),y +XT )− θ̂a(Ψ(y +XT ),y +XT )

=θ̂
EB

a (Ψ̂(y),y +XT )− θ̂a(Ψ(y),y +XT )

=ya +XaT −Da(Ψ̂(y) +Da)
−1

{
ya +XaT −Xaβ̂(Ψ̂(y))−XaT

}
− ya −XaT +Da(Ψ+Da)

−1
{
ya +XaT −Xaβ̂(Ψ)−XaT

}
=ya −Da(Ψ̂(y) +Da)

−1
{
ya −Xaβ̂(Ψ̂(y))

}
− ya +Da(Ψ+Da)

−1
{
ya −Xaβ̂(Ψ)

}
=θ̂

EB

a (Ψ̂(y),y)− θ̂a(Ψ(y),y).

Thus, θ̂
EB

a − θ̂a(Ψ) is translation invariant, which implies that θ̂
EB

a − θ̂a(Ψ) is a function of

Py. Hence, θ̂
EB

a − θ̂a(Ψ) is independent of β̂(Ψ). □
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2.8.2 Proof of Lemma 2.3.3

For the proof of part (2), note that

(Ψ̂+Di)
−1 = (Ψ+Di)

−1 − (Ψ+Di)
−1(Ψ̂−Ψ)(Ψ̂+Di)

−1. (2.8.1)

Then, G1a(Ψ̂) is rewritten as

G1a(Ψ̂) =(Ψ̂
−1

+D−1
a )−1 =Da −Da(Ψ̂+Da)

−1Da

=G1a(Ψ) +Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1Da (2.8.2)

−Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1(Ψ̂−Ψ)(Ψ+Da)
−1Da +Op(m

−3/2),

which implies that E[G1a(Ψ̂)] = G1a(Ψ)−G3a(Ψ) +O(m−3/2).

For the proof of part (1), it is noted that

θ̂
EB

a − θ̂a(Ψ) =Da{(Ψ+Da)
−1 − (Ψ̂+Da)

−1}(ya −Xaβ) +Da(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β}

−Da(Ψ+Da)
−1Xa{β̂(Ψ)− β}.

Using the equation in (2.8.1), we can see that

Da{(Ψ+Da)
−1 − (Ψ̂+Da)

−1}(ya −Xaβ)

=Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ̂+Da)

−1(ya −Xaβ)

=Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ) +Op(m
−1)

and

Da(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β}

=Da(Ψ+Da)
−1Xa{β̂(Ψ̂)− β} −Da(Ψ+Da)

−1(Ψ̂−Ψ)(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β}

=Da(Ψ+Da)
−1Xa{β̂(Ψ̂)− β}+Op(m

−1).

Thus, we have

θ̂
EB

a − θ̂a(Ψ) =Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ)

+Da(Ψ+Da)
−1Xa{β̂(Ψ̂)− β̂(Ψ)}+Op(m

−1)

=I1 + I2 +Op(m
−1). (say)

For I2, it is noted that

β̂(Ψ̂)− β̂(Ψ)

=
[{ m∑

j=1

X⊤
j (Ψ̂+Dj)

−1Xj

}−1
−

{ m∑
j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1]
×

m∑
i=1

X⊤
i (Ψ̂+Di)

−1(yi −Xiβ)

+
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1
m∑
i=1

X⊤
i

{
(Ψ̂+Di)

−1 − (Ψ+Di)
−1

}
(yi −Xiβ)

=I21 + I22.
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We can evaluate I21 as

I21 =
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1{ m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1Xi

}
{β̂(Ψ̂)− β}

=Op(m
−1),

because
∑m

j=1X
⊤
j (Ψ + Dj)

−1Xj = O(m),
∑m

i=1X
⊤
i (Ψ + Di)

−1(Ψ̂ − Ψ)(Ψ + Di)
−1Xi =

Op(m
1/2) and β̂(Ψ̂)− β = Op(m

−1/2). We next estimate I22 as

I22 =−
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1{ m∑
i=1

X⊤
i A(Ψ̂,Di)Xi

}
×
{ m∑

i=1

X⊤
i A(Ψ̂,Di)Xi

}−1
m∑
i=1

X⊤
i A(Ψ̂,Di)(yi −Xiβ)

for A(Ψ̂,Di) = (Ψ̂+Di)
−1(Ψ̂−Ψ)(Ψ+Di)

−1. It can be seen that I22 = Op(m
−1) from the

same arguments as in I21. Thus, it follows that I2 = Op(m
−1). Hence, we have

E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂
EB

a − θ̂a(Ψ)}⊤]

=Da(Ψ+Da)
−1E

[
(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ)(ya −Xaβ)
⊤(Ψ+Da)

−1(Ψ̂−Ψ)
]

× (Ψ+Da)
−1Da +O(m−3/2).

Let Ψ̂(−a) be an estimator of Ψ from the data except the ath area. If we add or remove the
data of one area in the estimation of Ψ, there is a negligible change in the value of the above
expectation since Ψ̂− Ψ̂(−a) = Op(m

−1). Thus, we have

E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂
EB

a − θ̂a(Ψ)}⊤]

=Da(Ψ+Da)
−1E

[
(Ψ̂(−a) −Ψ)(Ψ+Da)

−1(ya −Xaβ)(ya −Xaβ)
⊤(Ψ+Da)

−1(Ψ̂(−a) −Ψ)
]

× (Ψ+Da)
−1Da +O(m−3/2)

=Da(Ψ+Da)
−1E

[
(Ψ̂(−a) −Ψ)(Ψ+Da)

−1(Ψ̂(−a) −Ψ)
]
(Ψ+Da)

−1Da +O(m−3/2)

=Da(Ψ+Da)
−1E

[
(Ψ̂−Ψ)(Ψ+Da)

−1(Ψ̂−Ψ)
]
(Ψ+Da)

−1Da +O(m−3/2),

which is equal to G1a(Ψ)+O(m−3/2), where the second equation follows from the independence
of the data of different areas, and the the third equation follows form the same reason mentioned
above. □

2.8.3 Proof of Theorem 2.4.1

Let za =H
−1/2
a (Ψ)(θ̂

EB

a −θa− θ̂
EB

a + θ̂a(Ψ)). From Lemma 2.3.2, the conditional distribution
of za given Py is za ∼ Nk(0, Ik), and the mahalanobis distance is approximated as

(θ̂
EB

a − θa)⊤H−1
a (Ψ̂)(θ̂

EB

a − θa)
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=z⊤aH
1/2
a (Ψ)H−1

a (Ψ̂)H1/2
a (Ψ)za + 2(θ̂

EB

a − θ̂a(Ψ))⊤H−1
a (Ψ̂)H1/2

a (Ψ)za

+ (θ̂
EB

a − θ̂a(Ψ))⊤H−1
a (Ψ̂)(θ̂

EB

a − θ̂a(Ψ))

=z⊤a

[
Ik −H−1/2

a (Ψ)(Ha(Ψ̂)−Ha(Ψ))H−1/2
a (Ψ)

+H−1/2
a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H−2

a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H−1/2
a (Ψ)

]
za

+ 2(θ̂
EB

a − θ̂a(Ψ))⊤H−1
a (Ψ̂)H1/2

a (Ψ)za

+ (θ̂
EB

a − θ̂a(Ψ))⊤H−1
a (Ψ̂)(θ̂

EB

a − θ̂a(Ψ)) + o(m−1)

=z⊤a (Ik −G12a(Ψ̂))za + 2g2a(Ψ̂)⊤za + g3a(Ψ̂) + o(m−1), (2.8.3)

where

G12a(Ψ̂) =H−1/2
a (Ψ)(Ha(Ψ̂)−Ha(Ψ))H−1/2

a (Ψ)

−H−1/2
a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H−2

a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H−1/2
a (Ψ),

g2a(Ψ̂)⊤ =(θ̂
EB

a − θ̂a(Ψ))⊤H−1
a (Ψ̂)H1/2

a (Ψ),

g3a(Ψ̂) =(θ̂
EB

a − θ̂a(Ψ))⊤H−1
a (Ψ̂)(θ̂

EB

a − θ̂a(Ψ)).

From (2.8.3), the characteristic function φ(t) = E[exp{it(θ̂
EB

a − θa)⊤H−1
a (Ψ̂)(θ̂

EB

a − θa)}] is
approximated as

φ(t) =E exp
(
it{z⊤a (Ik −G12a(Ψ̂))za + 2g2a(Ψ̂)⊤za + g3a(Ψ̂)}

)
+ o(m−1)

=E
[
eitz

⊤
a za

{
1 + it{−z⊤aG12a(Ψ̂)za + 2g2a(Ψ̂)⊤za + g3a(Ψ̂)}

− t2

2
{−z⊤aG12a(Ψ̂)za + 2g2a(Ψ̂)⊤za + g3a(Ψ̂)}2

}]
+ o(m−1)

=E
[
eitz

⊤
a za

{
1 + it{−z⊤aG12a(Ψ̂)za + 2g2a(Ψ̂)⊤za + g3a(Ψ̂)}

− t2

2
{(z⊤aG12a(Ψ̂)za)

2 + 4z⊤a g2a(Ψ̂)g2a(Ψ̂)⊤za − 4z⊤aG12a(Ψ̂)zag2a(Ψ̂)⊤za}
}]

+ o(m−1),

because G12a(Ψ̂) = Op(m
−1/2), g2a(Ψ̂) = Op(m

−1/2) and g3a(Ψ̂) = Op(m
−1). From the law of

iterated expectations and the conditional normality of za, the above equation reduces to

φ(t) =E
[
eitz

⊤
a za

{
1 + it{−z⊤aG12a(Ψ̂)za + g3a(Ψ̂)}

− t2

2
{(z⊤aG12a(Ψ̂)za)

2 + 4z⊤a g2a(Ψ̂)g2a(Ψ̂)⊤za}
}]

+ o(m−1).

For some deterministic matrix A and z ∼ Nk(0, Ik), it holds that

E
[
eitz

⊤zz⊤Az
]
=(2π)−k/2

∫
e−

(1−2it)z⊤z
2 z⊤Azdz = (1− 2it)−k/2−1tr (A),

E
[
eitz

⊤z(z⊤Az)2
]
=(2π)−k/2

∫
e−

(1−2it)z⊤z
2 (z⊤Az)2dz = (1− 2it)−k/2−2(tr 2(A) + 2tr (A2)).
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Using these equalities, from the law of iterated expectations, we have

φ(t) =(1− 2it)−k/2
[
1 + it

{
− (1− 2it)−1tr (E[G12a(Ψ̂)]) + E[g3a(Ψ̂)]

}
+

(it)2

2

{
(1− 2it)−2{E[tr 2(G12a(Ψ̂))] + 2tr (E[G2

12a(Ψ̂)])}

+ (1− 2it)−14tr (E[g2a(Ψ̂)g2a(Ψ̂)⊤])
}]

+ o(m−1).

For notational simplicity, let C = E[tr 2(G12a(Ψ̂))] + 2tr (E[G2
12a(Ψ̂)]). Let s = (1− 2it)−1, or

it = (s− 1)/2s. Then, (1− 2it)−k/2φ(t)− 1 can be written as

it
{
− (1− 2it)−1tr (E[G12a(Ψ̂)]) + E[g3a(Ψ̂)]

}
+

(it)2

2

{
(1− 2it)−2C + (1− 2it)−14E[g2a(Ψ̂)⊤g2a(Ψ̂)]

}
=

1

2s

{
E[g2a(Ψ̂)⊤g2a(Ψ̂)]− E[g3a(Ψ̂)]

}
+
{1

2
tr (E[G12a(Ψ̂)]) +

1

2
E[g3a(Ψ̂)] +

C

8
− E[g2a(Ψ̂)⊤g2a(Ψ̂)]

}
+
{
− 1

2
tr (E[G12a(Ψ̂)])− C

4
+

1

2
E[g2a(Ψ̂)⊤g2a(Ψ̂)]

}
s+

C

8
s2 + o(m−1). (2.8.4)

which is a second-order polynomial of s.

We shall evaluate the moments in (2.8.4). First, G12a(Ψ̂) can be expanded as

G12a(Ψ̂) =H−1/2
a (Ψ)(Ha(Ψ̂)−Ha(Ψ))H−1/2

a (Ψ) (2.8.5)

−H−1/2
a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H−2

a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H−1/2
a (Ψ) + op(m

−1).

From Lemma 2.3.3, the expectation of the first term in (2.8.5) is −H−1/2
a (Ψ)G3a(Ψ)H

−1/2
a (Ψ)+

o(m−1), so that

E[G12a(Ψ̂)] = −H−1/2
a (Ψ)G3a(Ψ)H−1/2

a (Ψ)− E[Ka(Ψ̂)H−1
a (Ψ)Ka(Ψ̂)] + o(m−1),

for Ka(Ψ̂) =H
−1/2
a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H

−1/2
a . Thus,

tr (E[G12a(Ψ̂)]) = −B3 + 2B1 + o(m−1), (2.8.6)

for B1 and B3 defined in (2.4.2). Noting that the first term in (2.8.5) is of order O(m−1/2) and
the second term is of order O(m−1), we can expand G2

12a(Ψ̂) and tr 2(G12a(Ψ̂)) as

G2
12a(Ψ̂) =H−1/2

a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H−1
a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H−1/2

a (Ψ) + op(m
−1),

tr 2(G12a(Ψ̂)) =tr 2(H−1/2
a (Ψ)(G1a(Ψ̂)−G1a(Ψ))H−1/2

a (Ψ)) + op(m
−1),

which lead to E[G2
12a(Ψ̂)] = E[{Ka(Ψ̂)}2] + o(m−1) and E[tr 2(G12a(Ψ̂))] = E[tr 2(Ka(Ψ̂))] +

o(m−1). Thus,

C = E[tr 2(Ka(Ψ̂))] + 2E[{Ka(Ψ̂)}2] + o(m−1) = −8B2 + o(m−1), (2.8.7)
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for B2 defined in (2.4.2). It can be also observed that

g2a(Ψ̂)⊤g2a(Ψ̂) =(θ̂
EB

a − θ̂a(Ψ))⊤H−1
a (Ψ̂)Ha(Ψ)H−1

a (Ψ̂)(θ̂
EB

a − θ̂a(Ψ))

=(θ̂
EB

a − θ̂a(Ψ))⊤H−1
a (Ψ)(θ̂

EB

a − θ̂a(Ψ)) + op(m
−1),

g3a(Ψ̂) =(θ̂
EB

a − θ̂a(Ψ))⊤H−1
a (Ψ̂)(θ̂

EB

a − θ̂a(Ψ))

=(θ̂
EB

a − θ̂a(Ψ))⊤H−1
a (Ψ)(θ̂

EB

a − θ̂a(Ψ)) + op(m
−1),

both of which lead to

E[g2a(Ψ̂)⊤g2a(Ψ̂)] = E[g3a(Ψ̂)] = tr (H−1
a (Ψ)G3a(Ψ)) + o(m−1) = B3 + o(m−1). (2.8.8)

Combining (2.8.6), (2.8.7) and (2.8.8), we can see that the constant term and the coefficient
of s2 in (2.8.4) are B1−B3−B2 and −B2 given in (2.4.2), respectively. Thus, the characteristic

function of (θ̂
EB

a − θa)⊤H−1
a (Ψ̂)(θ̂

EB

a − θa) can be written as

φ(t) = (1− 2it)−k/2(1 +B1 −B3 −B2 + (−B1 +B3 + 2B2)s−B2s
2) + o(m−1).

From the fact that the characteristic function of the chi-squared distribution with degrees of
freedom k + 2h is given by (1 − 2it)−k/2−h = (1 − 2it)−k/2sh, it follows that the asymptotic

expansion of the cumulative distribution function of (θ̂
EB

a − θa)⊤H−1
a (Ψ̂)(θ̂

EB

a − θa) is

Fk(x) + (B1 −B3 −B2)Fk(x) + (−B1 +B3 + 2B2)Fk+2(x)−B2Fk+4(x) + o(m−1),

where Fk(x) is the cumulative distribution function of the chi-squared distribution with degrees
of freedom k. Note that Fk+r−2(x) − Fk+r(x) = 2fk+r(x), where fk(x) is the density function
of the chi-squared distribution with degrees of freedom k. Then, it is expressed as

P ((θ̂
EB

a − θa)⊤H−1
a (Ψ̂)(θ̂

EB

a − θa) ≤ x)

=Fk(x) + 2(B1 −B3 −B2)fk+2(x) + 2B2fk+4(x) + o(m−1),

which proves Theorem 2.4.1. □

2.8.4 Proof of Lemma 2.5.1

From Proposition 2.5.1, it is sufficient to show this approximation for Ψ̂
PR

instead of Ψ̂
PR

(A). It

is noted that Ψ̂
PR

−Ψ is approximated as

Ψ̂
PR

−Ψ =
1

m

m∑
i=1

{(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)}+Op(m

−1), (2.8.9)
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which is used to evaluate

E
[
(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ)(ya −Xaβ)
⊤(Ψ+Da)

−1(Ψ̂−Ψ)
]

=
1

m2

m∑
i=1

m∑
j=1

E
[
{uiu

⊤
i − (Ψ+Di)}(Ψ+Da)

−1uau
⊤
a (Ψ+Da)

−1{uju
⊤
j − (Ψ+Di)}

]
+O(m−3/2)

=
1

m2

m∑
i=1

E
[
{uiu

⊤
i − (Ψ+Di)}(Ψ+Da)

−1uau
⊤
a (Ψ+Da)

−1{uiu
⊤
i − (Ψ+Di)}

]
+O(m−3/2),

because E
[
{uiu

⊤
i − (Ψ+Di)}(Ψ+Da)

−1uau
⊤
a (Ψ+Da)

−1{uju
⊤
j − (Ψ+Di)}

]
= 0 for i ̸= j.

Letting zi = (Ψ+Di)
−1/2ui, we can see that zi ∼ Nk(0, Ik). Then,

1

m2

m∑
i=1

E
[
{uiu

⊤
i − (Ψ+Di)}(Ψ+Da)

−1uau
⊤
a (Ψ+Da)

−1{uiu
⊤
i − (Ψ+Di)}

]
=

1

m2

∑
i ̸=a

(Ψ+Di)
1/2E

[
(ziz

⊤
i − I)Bzaz⊤aB⊤(ziz

⊤
i − I)

]
(Ψ+Di)

1/2 +O(m−2),

for B = (Ψ+Di)
1/2(Ψ+Da)

−1/2. Let C = BB⊤ = (Ψ+Di)
1/2(Ψ+Da)

−1(Ψ+Di)
1/2. For

i ̸= a,

E[(ziz
⊤
i − I)Bzaz⊤aB⊤(ziz

⊤
i − I)]

=E[ziz
⊤
i Bzaz

⊤
aB

⊤ziz
⊤
i +Bzaz

⊤
aB

⊤ − ziz⊤i Bzaz⊤aB⊤ −Bzaz⊤aB⊤ziz
⊤
i ]

=E[ziz
⊤
i Cziz

⊤
i −C] = C + (trC)Ik,

because E[ziz
⊤
i Cziz

⊤
i ] = 2C + (trC)Ik. Thus,

1

m2

∑
i ̸=a

(Ψ+Di)
1/2{C + (trC)Ik}(Ψ+Di)

1/2

=
1

m2

m∑
i=1

(Ψ+Di)
1/2{C + (trC)Ik}(Ψ+Di)

1/2 +O(m−2),

which leads to the expression in (2.5.7) from Lemma 2.3.3 (1). □

2.8.5 Proof of Lemma 2.5.2

From Proposition 2.5.1, it is sufficient to show this approximation for Ψ̂
PR

instead of Ψ̂
PR

(A).
For some deteministic matrix A and multivariate standard normal variables zi, i = 1, . . . , k,
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E[(Ψ̂
PR

−Ψ)A(Ψ̂
PR

−Ψ)] is, from (2.8.9), approximated as

E[(Ψ̂
PR

−Ψ)A(Ψ̂
PR

−Ψ)]

=
1

m2

m∑
i=1

m∑
j=1

E
[{

(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)

}
A

×
{
(yj −Xjβ)(yj −Xjβ)

⊤ − (Ψ+Dj)
}]

+O(m−3/2)

=
1

m2

m∑
i=1

m∑
j=1

(Ψ+Di)
1/2E[(ziz

⊤
i − I)Ci(zjz

⊤
j − I)](Ψ+Dj)

1/2 +O(m−3/2),

for Ci = (Ψ+Di)
1/2A(Ψ+Di)

1/2. For i ̸= j, E[(ziz
⊤
i − I)Ci(zjz

⊤
j − I)] = 0, we have

m∑
i=1

m∑
j=1

E[(ziz
⊤
i − I)Ci(zjz

⊤
j − I)] =

m∑
i=1

E[ziz
⊤
i Ciziz

⊤
i −Ci].

Because E[ziz
⊤
i Ciziz

⊤
i ] = 2Ci + (trCi)Ik, it is concluded that

E[(Ψ̂
PR

−Ψ)A(Ψ̂
PR

−Ψ)] =
1

m2

m∑
i=1

((Ψ+Di)A(Ψ+Di) + tr (A(Ψ+Di))(Ψ+Di)).

Using this equality, we have

E[(Ψ̂
PR

−Ψ)(Ψ+Da)
−1DaH

−2
a (Ψ)Da(Ψ+Da)

−1(Ψ̂
PR

−Ψ)]

=
1

m2

m∑
i=1

{
(Ψ+Di)(Ψ+Da)

−1DaH
−2
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di)

+ tr ((Ψ+Da)
−1DaH

−2
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di))(Ψ+Di)
}
+ o(m−1),

and

E[(G1a(Ψ̂
PR

)−G1a(Ψ))H−1
a (Ψ)(G1a(Ψ̂

PR
)−G1a(Ψ))]

=DaH
−1
a (Ψ)

[ 1

m2

m∑
i=1

{
(Ψ+Di)(Ψ+Da)

−1DaH
−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di)

+ tr ((Ψ+Da)
−1DaH

−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di))(Ψ+Di)
}]

(Ψ+Da)
−1Da + o(m−1),

which leads to the first and third expressions in the lemma. From (2.8.2),

E[tr 2(G12a(Ψ̂
PR

))] =E[tr 2(H−1
a (Ψ)(G1a(Ψ̂

PR
)−G1a(Ψ)))] + o(m−1)

=E[tr 2((Ψ+Da)
−1DaH

−1
a (Ψ)Da(Ψ+Da)

−1(Ψ̂
PR

−Ψ))] + o(m−1).
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Letting ui = yi −Xiβ, we can see that

tr ((Ψ+Da)
−1DaH

−1
a (Ψ)Da(Ψ+Da)

−1(Ψ̂
PR

−Ψ))

=
1

m

m∑
i=1

tr ((Ψ+Da)
−1DaH

−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di)
1/2(uiu

⊤
i − Ik)(Ψ+Di)

1/2)

+ o(m−1)

=
1

m

m∑
i=1

tr ((Ψ+Da)
−1DaH

−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di)
1/2uiu

⊤
i (Ψ+Di)

1/2)

− 1

m

m∑
i=1

tr ((Ψ+Da)
−1DaH

−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di)) + o(m−1).

Thus we have

E[tr 2(G12a(Ψ̂
PR

))] =
2

m2

m∑
i=1

tr
(
((Ψ+Da)

−1DaH
−1
a (Ψ)Da(Ψ+Da)

−1(Ψ+Di))
2
)
+ o(m−1),

which leads to the expression in the lemma. □
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Chapter 3

Robust Estimation of Mean Squared
Error Matrix of Small Area
Estimators in a Multivariate
Fay-Herriot Model

3.1 Motivation

In this chapter, we treat the multivariate Fay-Herriot model without assuming multivariate nor-
mal distributions. We suggest a consistent and nonnegative-definite estimator of the covariance
matrix of the random effects, and provide the EBLUP for a vector of small-area characteris-
tics. We derive a second-order approximation of the mean squared error matrix (MSEM) of
the EBLUP and obtain the second-order unbiased estimator of the MSEM. This second-order
unbiased estimator of the MSEM is robust, because it does not depend on any distributions
of the random effects. This is a multivariate extension of the result given in Lahiri and Rao
(1995). The difference between the approach discussed here and Lahiri and Rao (1995) is clari-
fied as follows: (1) Lahiri and Rao (1995) assumes that the error terms have univariate normal
distributions with known variances, while no distributional assumptions are imposed on the
random effects. The present approach does not assume the normality for the error terms, but
assumes that the second and fourth moments are known. (2) The present approach handles the
multivariate Fay-Herriot model where the covariance matrix of random effects is fully unknown
without nomality assumption, while Lahiri and Rao (1995) treated the univariate Fay-Herriot
model with unknown variance of random effects.

In Section 3.2, as a specific estimator of the covariance matrix, we employ a Prasad-Rao type
estimator with a closed form and use the modified version which is restricted over the space of
nonnegative definite matrices. The consistency is also shown. The EBLUP is provided based
on the Prasad-Rao type estimator.

In Sections 3.3, we derive the second-order approximation of the mean squared error matrix
and the second-order unbiased estimator of the MSEM with a closed form. Similarly to Lahiri
and Rao (1995), this MSEM estimator is achieved only under the moment assumptions for
random effects, and then, our estimator of MSEM is useful because the normality assumption
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is very resrtrictive and the specification of the underlying distributions for random effects and
sampling errors are difficulut in practice. However, in the multivariate problem, when deriving a
second-order approximation of the MSEM of EBLUP and a second-order unbiased estimator of
the MSEM, we cannot use the standard technique of approximation via the Taylor’s expansion
as Lahiri and Rao (1995). Then, the results for the multivariate version are not obvious and we
must consider them separately from the univariate problem.

The performances of EBLUP and the MSEM estimator are investigated in Section 3.4
through simulation and empirical studies. The proofs of the main theorems are given in the
section 3.5, where the details of tedious calculations are given in the Supplemental Matrial.

3.2 Empirical Best Linear Unbiased Prediction

We assume that area-level data (y1,X1), . . . , (ym,Xm) are observed, where m is the number
of small areas, yi is a k-variate vector of direct survey estimates and Xi is a k × s matrix of
covariates associated with yi for the i-th area. Then, we consider the multivariate Fay-Herriot
model

yi =Xiβ + vi + εi, i = 1, . . . ,m, (3.2.1)

where β is an s-variate vector of unknown regression coefficients, vi is a k-variate vector of
random effects depending on the i-th area, εi is a k-variate vector of sampling errors, and
vi and εi are mutually independent for i = 1, . . . ,m. The distributional assumption of the
standard extension of the Fay-Herriot model is that vi ∼ Nk(0,Ψ) and εi ∼ Nk(0,Di) for
unknown covariance matrix Ψ and known error covariance matrices D1, . . . ,Dm. Instead of
this assumption, we here assume some moment conditions for

vi = Ψ1/2ui and εi =D
1/2
i ei, (3.2.2)

namely, Eui = Eei = 0, Var(ui) = Var(ei) = Ik, Eu4ij = κv and Ee4ij = κε for i = 1, . . . ,m

and j = 1, . . . , k, where ui = (ui1, . . . , uik)
⊤ and ei = (ei1, . . . , eik)

⊤. Following the setup of the
Fay-Herriot model, we assume that Ψ and κv are unknown, but κε and Di’s are known.

Let y = (y⊤1 , . . . ,y
⊤
m)⊤, X = (X⊤

1 , . . . ,X
⊤
m)⊤, v = (v⊤1 , . . . ,v

⊤
m)⊤ and ε = (ε⊤1 , . . . , ε

⊤
m)⊤.

Then, model (3.2.1) is expressed in a matrix form as

y =Xβ + v + ε, (3.2.3)

where E[v] = 0,Cov (v) = Im⊗Ψ, E[ε] = 0 andCov (ε) =D forD = block diag(D1, . . . ,Dm).

For the a-th area, we want to predict the quantity θa = Xaβ + va. Then, the best linear
unbiased predictor (BLUP) of θa can be provided by

θ̂a(Ψ) = ya −Da(Ψ+Da)
−1

{
ya −Xaβ̂(Ψ)

}
, (3.2.4)

where β̂(Ψ) is the generalized least squares estimator

β̂(Ψ) ={X⊤(Im ⊗Ψ+D)−1X}−1X⊤(Im ⊗Ψ+D)−1y

=
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1yi. (3.2.5)
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Since Ψ is unknown, we need to estimate Ψ consistently. It is noted that E[(yi−Xiβ)(yi−
Xiβ)

⊤] = Ψ + Di for i = 1, . . . ,m, which implies that
∑m

i=1E[(yi − Xiβ)(yi − Xiβ)
⊤] =

mΨ+
∑m

i=1Di. Substituting the ordinary least squares estimator β̃ = (X⊤X)−1X⊤y into β,
we get the consistent estimator

Ψ̂0 =
1

m

m∑
i=1

{
(yi −Xiβ̃)(yi −Xiβ̃)

⊤ −Di

}
. (3.2.6)

Taking the expectation of Ψ̂0, we can see that E[Ψ̂0] = Ψ+Bias
Ψ̂0

(Ψ), where

Bias
Ψ̂0

(Ψ) =
1

m

m∑
i=1

Xi(X
⊤X)−1

{ m∑
j=1

X⊤
j (Ψ+Dj)Xj

}
(X⊤X)−1X⊤

i

− 1

m

m∑
i=1

(Ψ+Di)Xi(X
⊤X)−1X⊤

i − 1

m

m∑
i=1

Xi(X
⊤X)−1X⊤

i (Ψ+Di). (3.2.7)

Substituting Ψ̂0 into Bias
Ψ̂0

(Ψ), we get a bias-corrected given by

Ψ̂1 = Ψ̂0 − Bias
Ψ̂0

(Ψ̂0). (3.2.8)

For notational convenience, we use the same notation Ψ̂ for Ψ̂0 and Ψ̂1 without any con-
fusion. It is noted that both estimators are not necessarily nonnegative definite. In this case,
there exist a k × k orthogonal matrix H and a diagonal matrix Λ = diag (λ1, . . . , λk) such that
Ψ̂ =HΛH⊤. Let Λ+ = diag (max{0, λ1}, . . . ,max{0, λk}), and let

Ψ̂
+
=HΛ+H⊤.

ReplacingΨ in θ̂a(Ψ) with the estimator Ψ̂
+
, we get the empirical best linear unbiased predictor

(EBLUP)

θ̂
EB

a = θ̂a(Ψ̂
+
). (3.2.9)

To guarantee asymptotic properties of Ψ̂
+
, we assume the following conditions:

(H1) 0 < k < ∞, 0 < s < ∞.
(H2) There exist positive constants d and d such that d and d do not depend on m and satify

dIk ≤Di ≤ dIk for i = 1, . . . ,m.
(H3) X⊤X is nonsingular and X⊤X/m converges to a positive definite matrix.
Then, we obtain the next theorem, which is proved in the section 3.5.

Theorem 3.2.1 Under conditions (H1)-(H3), the following properties hold for Ψ̂ = Ψ̂0 and
Ψ̂1:

(1) Bias
Ψ̂0

(Ψ) = O(m−1), which means that Ψ̂0 has the second-order bias, while Ψ̂1 is a
second-order unbiased estimator of Ψ.

(2) Ψ̂−Ψ = Op(m
−1/2) and β̂(Ψ̂)− β = Op(m

−1/2).

(3) The nonnegative defnite matrix Ψ̂
+

is consistent for large m, and P (Ψ̂
+

̸= Ψ̂) =
O(m−K) for any K, provided 4K-th moments of vi’s and εi’s exist.
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3.3 Evaluation of the Mean Squared Error Matrix of EBLUP

Uncertainty of the EBLUP θ̂
EB

a in (3.2.9) is measured by the mean squared error matrix

(MSEM), defined as MSEM(θ̂
EB

a ) = E[{θ̂
EB

a − θa}{θ̂
EB

a − θa}⊤]. We begin by deriving the

second-order approximation of MSEM(θ̂
EB

a ) under the assumptions (H1)-(H3) and the following
assumption:

(H4) The eighth moment of ui and ei given in (3.2.2) exist, namely E(uiu
⊤
i )

4 = O(1) and
E(eie

⊤
i )

4 = O(1) for i = 1, . . . ,m.

Let θ∗a(β,Ψ) = ya −Da(Ψ+Da)
−1(ya −Xaβ). The difference θ̂

EB

a − θa is written as

θ̂
EB

a − θa = {θ∗a(β,Ψ)− θa}+ {θ̂a(Ψ)− θ∗a(β,Ψ)}+ {θ̂
EB

a − θ̂a(Ψ)}.

Thus, the mean squared error matrix is decomposed as

MSEM(θ̂
EB

a )

= E[{θ∗a(β,Ψ)− θa}{θ∗a(β,Ψ)− θa}⊤] + E[{θ̂a(Ψ)− θ∗a(β,Ψ)}{θ̂a(Ψ)− θ∗a(β,Ψ)}⊤]

+ E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂
EB

a − θ̂a(Ψ)}⊤] (3.3.1)

+ E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂a(Ψ)− θa}⊤] + E[{θ̂a(Ψ)− θa}{θ̂
EB

a − θ̂a(Ψ)}⊤].

Because θ̂a(Ψ) − θ∗a(β,Ψ) = −Da(Ψ + Da)
−1Xa{β̂(Ψ) − β}, the first two terms in (3.3.1)

can be easily evaluated as E[{θ∗a(β,Ψ) − θa}{θ∗a(β,Ψ) − θa}⊤] = G1a(Ψ) and E[{θ̂a(Ψ) −
θ∗a(β,Ψ)}{θ̂a(Ψ)− θ∗a(β,Ψ)}⊤] = G2a(Ψ), where

G1a(Ψ) =(Ψ−1 +D−1
a )−1 = Ψ(Ψ+Da)

−1Da,

G2a(Ψ) =Da(Ψ+Da)
−1Xa{X⊤(Im ⊗Ψ+D)−1X}−1X⊤

a (Ψ+Da)
−1Da.

(3.3.2)

For the third term and the last two terms in (3.3.1), define G3a(Ψ) and G̃3a(Ψ) as

G3a(Ψ)

=
1

m2
Da(Ψ+Da)

−1
[ m∑

i=1

(Ψ+Di)(Ψ+Da)
−1(Ψ+Di)

+
m∑
i=1

{tr [(Ψ+Di)(Ψ+Da)
−1]}(Ψ+Di) +m(κv − 3)Ψ1/2diag(Ψ1/2(Ψ+Da)

−1Ψ1/2)Ψ1/2

+
m∑
i=1

(κε − 3)D
1/2
i diag(D

1/2
i (Ψ+Da)

−1D
1/2
i )D

1/2
i

]
(Ψ+Da)

−1Da, (3.3.3)

and

G̃4a(Ψ) =
1

m
Da(Ψ+Da)

−1
{
− (κv − 3)Ψ1/2diag(Ψ1/2(Ψ+Da)

−1Ψ1/2)Ψ1/2(Ψ+Da)
−1Da

+ (κε − 3)D1/2
a diag(D1/2

a (Ψ+Da)
−1D1/2

a )D1/2
a (Ψ+Da)

−1Ψ
}
. (3.3.4)

Then, we can prove the following lemmas, where the proofs are given in the section 3.5.
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Lemma 3.3.1 Under the assumptions (H1)-(H4), it holds that E[{θ̂
EB

a −θ̂a(Ψ)}{θ̂
EB

a −θ̂a(Ψ)}⊤] =
G3a(Ψ) +Op(m

−3/2).

Lemma 3.3.2 Under the assumptions (H1)-(H4), it holds that E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂a(Ψ) −
θa}⊤] = G̃4a(Ψ) +Op(m

−3/2).

Let G4a(Ψ) = G̃4a(Ψ) + {G̃4a(Ψ)}⊤. Combining (3.3.1), (3.3.2) and Lemmas 3.3.1 and
3.3.2, one gets the following theorem.

Theorem 3.3.1 Assume (H1)-(H4). Then, the mean squared error matrix of the EBLUP θ̂
EB

a

is approximated as

MSEM(θ̂
EB

a ) = G1a(Ψ) +G2a(Ψ) +G3a(Ψ) +G4a(Ψ) +O(m−3/2). (3.3.5)

When vi’s and εi’s are normally distributed, the second-order approximation of MSEM(θ̂
EB

a )
can be simplified as

G1a(Ψ) +G2a(Ψ) +
1

m2
Da(Ψ+Da)

−1
{ m∑

i=1

[
(Ψ+Di)(Ψ+Da)

−1

+ tr {(Ψ+Di)(Ψ+Da)
−1}Ik

]
(Ψ+Di)

}
(Ψ+Da)

−1Da,

because κv = κε = 3.
We next obtain a second-order unbiased estimator of the mean squared error matrix of the

EBLUP θ̂
EB

a in (3.2.9). A naive estimator of MSEM(θ̂
EB

a ) is the plug-in estimator of (3.3.5)

given by G1a(Ψ̂
+
)+G2a(Ψ̂

+
)+G3a(Ψ̂

+
)+G4a(Ψ̂

+
), but this has a second-order bias, because

E[G1a(Ψ̂
+
)] = G1a(Ψ) +O(m−1). Thus, we need to correct the second-order bias. Let

G5a(Ψ) = −Da(Ψ+Da)
−1Bias

Ψ̂
(Ψ)(Ψ+Da)

−1Da, (3.3.6)

where Bias
Ψ̂
(Ψ) is the bias of Ψ̂ given by

Bias
Ψ̂
(Ψ) =

{
Bias

Ψ̂0
(Ψ) for Ψ̂ = Ψ̂0,

0 for Ψ̂ = Ψ̂1,

for Bias
Ψ̂0

(Ψ) given in (3.2.7), because Bias
Ψ̂0

(Ψ) = O(m−1) and Bias
Ψ̂1

(Ψ) = O(m−2).

In the following theorem, which will be proved in the section 3.5, we obtain the second-order
unbiased estimator given by

msem(θ̂
EB

a ) = G1a(Ψ̂
+
) +G2a(Ψ̂

+
) + 2G3a(Ψ̂

+
) +G4a(Ψ̂

+
) +G5a(Ψ̂

+
). (3.3.7)

Theorem 3.3.2 Under the assumptions (H1)-(H4), it holds that E[G1a(Ψ̂
+
) + G3a(Ψ̂

+
) +

G5a(Ψ̂
+
)] = G1a(Ψ) +O(m−3/2), and

E[msem(θ̂
EB

a )] = MSEM(θ̂
EB

a ) +O(m−3/2),

namely, msem(θ̂
EB

a ) is a second-order unbiased estimator of MSEM(θ̂
EB

a ).
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Although G3a(Ψ) and G4a(Ψ) depend on the unknown kurtosis κv of the distirbution of the
random effects, it can be shown that 2G3a(Ψ) +G4a(Ψ) is independent of κv. In fact,

2G3a(Ψ) +G4a(Ψ)

=
2

m2
Da(Ψ+Da)

−1
[ m∑

i=1

(Ψ+Di)(Ψ+Da)
−1(Ψ+Di)

+

m∑
i=1

{tr [(Ψ+Di)(Ψ+Da)
−1]}(Ψ+Di)

+
m∑
i=1

(κε − 3)D
1/2
i diag(D

1/2
i (Ψ+Da)

−1D
1/2
i )D

1/2
i

]
(Ψ+Da)

−1Da

+
κε − 3

m
Da(Ψ+Da)

−1D1/2
a diag(D1/2

a (Ψ+Da)
−1D1/2

a )D1/2
a (Ψ+Da)

−1Ψ

+
κε − 3

m
Ψ(Ψ+Da)

−1D1/2
a diag(D1/2

a (Ψ+Da)
−1D1/2

a )D1/2
a (Ψ+Da)

−1Da,

which does not depend on κv. Thus, we do not have to estimate κv when we provide the

estimator msem(θ̂
EB

a ). In other words, the estimator msem(θ̂
EB

a ) is the same form as in the
case that the random effects have the multivariate normal distribution, which imples that this
estimator is robust over distribution of random effects.

Corollary 3.3.1 The second-order unbiased estimator msem(θ̂
EB

a ) is robust over any distribu-
tions of vi’s.

When vi’s and εi’s are normally distributed, the second-order unbiased estimator msem(θ̂
EB

a )

is given by replacing Ψ with Ψ̂
+
in the expression

G1a(Ψ) +G2a(Ψ) +
1

m2
Da(Ψ+Da)

−1
{ m∑

i=1

[
(Ψ+Di)(Ψ+Da)

−1

+ tr {(Ψ+Di)(Ψ+Da)
−1}Ik

]
(Ψ+Di)

}
(Ψ+Da)

−1Da

−Da(Ψ+Da)
−1Bias

Ψ̂
(Ψ)(Ψ+Da)

−1Da,

because κv = κε = 3.

3.4 Simulation and Empirical Studies

3.4.1 Finite sample performances

We now investigate finite sample performances of a second-order unbiased estimator of the mean

squared error matrix of the EBLUP θ̂
EB

a given in (3.3.7).

We treat the multivariate Fay-Herriot model (3.2.1) for k = 2 and m = 40. The design
matrix, Xi is a k × 2k matrix, such that

Xi =

(
1 xi1 0 0
0 0 1 xi2

)
,
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where xij ’s are generated from the uniform distribution on (−1, 1), which are fixed through the
simulation runs. As a setup of the covariance matrix Ψ of the random effects, we consider

Ψ = ρψ2ψ
⊤
2 + (1− ρ)diag(ψ2ψ

⊤
2 )

where ψ2 = (
√
1.6,

√
0.8)⊤ and diag(A) denotes the diagonal matrix consisting of diagonal

elements of matrix A. Here, ρ is the correlation coefficient, and we handle the three cases
ρ = 0.2, 0.4, 0.6. The cases of negative correlations are omitted, because we observe the same
results with those of positive ones.

Concerning the dispersion matricesDi’s of sampling errors εi’s, we treat the twoDi-patterns:
(a) 0.7Ik, 0.6Ik, 0.5Ik, 0.4Ik, 0.3Ik and (b) 2.0Ik, 0.6Ik, 0.5Ik, 0.4Ik, 0.2Ik. In the univariate Fay-
Herriot model, these cases are treated by Datta, et al . (2005). There are five groups G1, . . . , G5

corresponding to these Di-patterns, and there are eight small areas in each group, where the
sampling covariance matrices Di are the same for areas within the same group.

Concerning the underlying distributions for vi and εi, we consider three kinds of distribu-
tions, that is, multivariate normalized t distributions with degrees of freedom 5, multivariate
normalized chi-squared distributions with degrees of freedom 2 and multivariate normalized
lognormal distributions Λ(0, 1), which are denoted by M1, M2 and M3, respectively.

We begin with obtaining the true mean squared error matrices of the EBLUP θ̂
EB

a = θ̂a(Ψ̂
+
)

by simulation. Let {y(r)i , i = 1, . . . ,m} be the simulated data in the r-th replication for r =

1, . . . , R with R = 100, 000. Let θ
(r)
a , θ̂

(r)

a (Ψ) and θ̂
EB(r)

a be the values of θa, θ̂a(Ψ) and θ̂
EB

a

in the r-th replication. Then the simulated value of the true mean squared error matrices is
calculated by

MSEM(θ̂
EB

a ) = G1a(Ψ) +G2a(Ψ) +R−1
R∑
i=1

{θ̂
EB(r)

a − θ̂
(r)

a (Ψ)}{θ̂
EB(r)

a − θ̂
(r)

a (Ψ)}⊤

+R−1
R∑
i=1

{θ̂
EB(r)

a − θ̂
(r)

a (Ψ)}{θ̂
(r)

a (Ψ)− θ(r)a }⊤ +R−1
R∑
i=1

{θ̂
(r)

a (Ψ)− θ(r)a }{θ̂
EB(r)

a − θ̂
(r)

a (Ψ)}⊤.

To measure performances of a second-order unbiased estimator of the MESM of θ̂
EB

a , we

obtain the Frobenius risk of a second-order unbiased estimator of the MESM of θ̂
EB

a with and
without the normal assumption for vi and εi by simulation. A second-order unbiased estimator

of the MESM of θ̂
EB

a with the normal assumption is the same with (3.3.7), but κv and κε are
eaqual to 0.

Let θ̂
EB(r∗)

a be the EBLUP for the ath area in the r∗-th replication for r∗ = 1, . . . , R∗ with
R∗ = 10, 000. The simulated Frobenius risk of a second-order unbiased estimator of the MESM

of θ̂
EB

a is calculated by

R∗−1
R∗∑

r∗=1

tr
(
msem(θ̂

EB(r∗)

a )−MSEM(θ̂
EB

a )
)(

msem(θ̂
EB(r∗)

a )−MSEM(θ̂
EB

a )
)⊤

,

where MSEM(θ̂
EB

a ) is a simulated true MESM of θ̂
EB

a .
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Tables 3.1 and 3.2 report the simulated Frobenius risks of a second-order unbiased estimator
of the MESM for Di-patterns: (a) and (b), respectively. The simulated Frobenius risk of a
second-order unbiased estimator of the MESM with a normality assumption is displayed in
parenthesis.

It can be seen that for almost all the cases, the frobenius risks of the MSEM estimator
without a normality assumption are smaller than those with a normality assumption. For the
stable sampling error variances, that is, Di-patterns: (a), there is a littele difference between
the simulated Frobenius risk with and without a normality assumption for all ρ patterns and
for all area groups when the underlying distribution of random effects and sampling errors
are t distributions. On the other hand, when the underlying distribution of random effects
and sampling errors have long tails, especially they are log-normal distributions, there are well-
marked improvements for the second-order unbiased estimator of the MESM without a normality
assumption. This is because kurtosis of the distribution which have long tails tend to be large
and there is large difference between the second-order unbiased estimator of the MESM with
and without a normality assumption.

When sampling error variances for some area groups are extremely large, that is, for Di-
patterns: (b), the results are similar to for that is, Di-patterns: (a). In this case, however, the
values of risks of the MESM estimator are larger especially for the area groups with an extremely
large and extremely small sampling variance, and there are considerable improvements for the
second-order unbiased estimator of the MESM without a normality assumption for all disribution
patterns. Then, we can say that a second-order unbiased estimator of the mean squared error

matrix of θ̂
EB

a given in (3.3.7) have robustness for specifying the distribtions of random effects
and samplin errors.

t chi-square Log-normal
ρ 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

G1 0.115 0.126 0.137 0.171 0.187 0.208 0.789 0.633 0.536
(0.137) (0.146) (0.167) (0.177) (0.193) (0.216) (1.202) (1.037) (0.912)

G2 0.076 0.083 0.087 0.115 0.126 0.143 0.263 0.281 0.272
(0.098) (0.102) (0.109) (0.119) (0.132) (0.150) (0.540) (0.577) (0.572)

G3 0.046 0.055 0.051 0.075 0.088 0.081 0.119 0.386 0.119
(0.064) (0.078) (0.065) (0.080) (0.093) (0.087) (0.346) (0.695) (0.317)

G4 0.018 0.022 0.022 0.037 0.042 0.041 0.025 0.030 0.024
(0.049) (0.052) (0.056) (0.057) (0.075) (0.074) (0.045) (0.062) (0.047)

G5 0.007 0.006 0.010 0.013 0.014 0.013 0.040 0.033 0.039
(0.039) (0.028) (0.030) (0.026) (0.025) (0.027) (0.023) (0.035) (0.077)

Table 3.1: Frobenius risk of estimator of MSEM with Di-patterns: (a). Values in parenthesis
are the risk of estimator of MSEM multiplied by 10 under normality assumption.

3.4.2 Illustrative example

Data from the 2016 Survey of Family Income and Expenditure in Japan, which is based on
two or more person households (excluding agricultural, forestry and fisheries households) can be
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t chi-square Log-normal
ρ 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

G1 1.397 1.341 1.392 1.796 1.833 1.604 9.375 4.752 4.180
(1.571) (1.450) (1.651) (1.835) (1.874) (1.632) (12.24) (6.603) (5.907)

G2 0.039 0.042 0.071 0.082 0.092 0.078 0.141 0.180 0.298
(0.082) (0.078) (0.075) (0.097) (0.112) (0.090) (0.423) (0.374) (0.969)

G3 0.021 0.033 0.087 0.035 0.034 0.041 0.834 0.558 0.845
(0.037) (0.033) (0.037) (0.046) (0.043) (0.046) (0.082) (0.142) (0.077)

G4 0.043 0.073 0.173 0.014 0.015 0.030 1.529 1.450 1.649
(0.107) (0.156) (0.297) (0.066) (0.059) (0.095) (1.801) (1.815) (1.973)

G5 0.339 0.534 1.182 0.174 0.279 0.512 10.82 9.075 11.27
(0.417) (0.655) (1.437) (0.246) (0.379) (0.702) (11.91) (10.05) (12.52)

Table 3.2: Frobenius risk of estimator of MSEM with Di-patterns: (b). Values in parenthesis
are the risk of estimator of MSEM multiplied by 10 under normality assumption.

obtained and we apply these data to the multivariate Fay-Herriot model (3.2.1) for illustration.
The 47 Japanese prefectural capitals are the target domains, and these are divided into 10
regions: Hokkaido, Tohoku, Kanto, Hokuriku, Tokai, Kinki, Chugoku, Shikoku, Kyushu and
Okinawa. Each region consists of several prefectures except Hokkaido and Okinawa, which
consist of one prefecture.

In this study, the reported data of the yearly averaged monthly spendings on ‘Education’
and ‘ Cultural-amusement’ per worker’s household, scaled by 1,000 Yen, at each capital city of
47 prefectures are observed as (yi1, yi2)

⊤. In addition, we use the data in the 2014 National
Survey of Family Income and Expenditure. The average spending data in this survey are more
reliable than the Survey of Family Income and Expenditure since the sample sizes are much
larger. However, this survey is conducted only once in every five years. As auxiliary variables,
we use the data of the average spendings on ‘Education’ and ‘ Cultural-amusement’, which is
denoted by EDUi and CULi, respectively. Then the regressor in the model (3.2.1) is

Xi =

(
1 EDUi 0 0
0 0 1 CULi

)
.

We assume that the sampling covariance matrixDi of the i-th region are the same for prefectures
within the same region. Then, these matrices Di for i = 1, . . . , 10 are estimated by data of
yearly averaged monthly spendings on ‘Education’ and ‘ Cultural-amusement’ in the past ten
years (2006-2015), that is, Di is given as the average of the sampling covariance matrices of
prefectures within the i-th region.

Kurtosis κε of sampling errors is estimated by sample kurtosis after standardizing data of
yearly averaged monthly spendings on ‘Education’ and ‘ Cultural-amusement’ in the past ten
years (2006-2015) by sampling covariance matrices D1, . . . ,D10. Then, we obtain κε = 4.70.
The estimates of the covariance matrix Ψ and the correlation coefficient ρ is

Ψ̂ =

(
8.98 3.19
3.19 10.83

)
and ρ̂ = 0.32.
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The estimates of the regression coefficients are β̂ = (4.49, 0.82, 12.16, 0.65)⊤.

The values of direct estimate and EBLUP of spendings on ‘Education’ and ‘ Cultural-
amusement’ are reported in Table 3.3. We pick up one prefecture from each region: Hokakido,
Fukushima, Tokyo, Nigata, Aichi, Osaka, Hiroshima, kochi, Fukuoka and Okinawa.

direct estimator (EDU) EBLUP (EDU) direct estimator (CUL) EBLUP (CUL)
Hokkaido 15.1 15.0 31.5 30.7
Fukushima 13.3 12.7 29.9 29.0

Tokyo 32.5 31.9 41.8 40.6
Nigata 15.4 15.5 28.4 29.7
Aichi 20.2 20.6 30.9 30.6
Osaka 22.8 22.5 29.4 30.1

Hiroshima 19.4 18.7 30.7 30.4
Kochi 27.2 26.3 31.1 30.6

Fukuoka 13.5 13.8 28.0 28.1
Okinawa 13.2 13.3 19.4 20.2

Table 3.3: Direct estimates and EBLUP (1,000yen)

The uncertainty of EBLUP is provided by the second-order unbiased estimator of MSEM
of EBLUP. Table 3.4 and 3.5 report the estimates of MSEM averaged over prefectures within
each region for 10 regions with and without a normality assumption. It can be seen that the
estimates of MSEM with a normality assumption slightly under estimate the risk of EBLUP
than those without a normality assumption.

Hokkaido Tohoku Kanto Hokuriku Tokai[
0.51 0.73
0.73 3.84

] [
3.20 2.20
2.20 3.41

] [
1.00 0.30
0.30 2.46

] [
0.96 0.58
0.58 4.78

] [
1.37 0.64
0.64 1.78

]
Kinki Chugoku Shikoku Kyushu Okinawa[

0.95 −0.04
−0.04 2.82

] [
1.47 0.29
0.29 2.57

] [
4.23 0.88
0.88 3.53

] [
0.99 0.65
0.65 1.74

] [
3.02 0.78
0.78 1.68

]
Table 3.4: Estimates of the mean squared error matrices of θ̂

EB
a without a normality assumption.

Hokkaido Tohoku Kanto Hokuriku Tokai[
0.51 0.71
0.71 3.73

] [
3.12 2.13
2.13 3.33

] [
0.99 0.30
0.30 2.42

] [
0.96 0.56
0.56 4.60

] [
1.36 0.63
0.63 1.76

]
Kinki Chugoku Shikoku Kyushu Okinawa[

0.94 −0.03
−0.03 2.76

] [
1.46 0.29
0.29 2.53

] [
4.05 0.86
0.86 3.44

] [
0.99 0.64
0.64 1.73

] [
2.94 0.77
0.77 1.67

]
Table 3.5: Estimates of the mean squared error matrices of θ̂

EB
a with a normality assumption.
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3.5 Proofs

Proof of Theorem 3.2.1

We begin by writing Ψ̂0 −Ψ as

Ψ̂0 −Ψ =
1

m

m∑
i=1

{(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)}+

1

m

m∑
i=1

Xi(β̃ − β)(β̃ − β)⊤X⊤
i

− 1

m

m∑
i=1

(yi −Xiβ)(β̃ − β)⊤X⊤
i − 1

m

m∑
i=1

Xi(β̃ − β)(yi −Xiβ)
⊤,

which yields the bias given in (3.2.7). It is easy to check that the bias is of order O(m−1).

For (2), it is noted that Ψ̂−Ψ is approximated as

Ψ̂−Ψ =
1

m

m∑
i=1

{(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)}+Op(m

−1)

=
1

m

m∑
i=1

{uiu
⊤
i − (Ψ+Di)}+Op(m

−1), (3.5.1)

where ui = yi − Xiβ, having Nk(0,Ψ + Di). It is here noted that (uiu
⊤
i − (Ψ + Di))/m

for i = 1, . . . ,m are mutually independent and E(uiu
⊤
i − (Ψ +Di))/m = 0 for i = 1, . . . ,m.

Then the consistency follows because
∑m

i=1E(uiu
⊤
i − (Ψ +Di))

2/m2 =
∑m

i=1(2(Ψ +Di)
2 +

tr (Ψ+Di)Ik)/m
2 = O(m−1) under condition (H2). Using condition (H2) and the finiteness of

moments of normal random variables, we can show that
√
m(Ψ̂−Ψ) converges to a multivariate

normal distribution, which implies that Ψ̂−Ψ = Op(m
−1/2).

We next verify that β̂(Ψ̂)−β = Op(m
−1/2). Note that β̂(Ψ̂)−β is decomposed as {β̂(Ψ̂)−

β̂(Ψ)}+ {β̂(Ψ)− β}. For β̂(Ψ)− β, it is noted that

β̂(Ψ)− β =
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1(yi − Eyi). (3.5.2)

Then, Var(β̂(Ψ)−β) =
{∑m

i=1X
⊤
i (Ψ+Di)

−1Xi

}−1
= O(1/m) and this implies β̂(Ψ)−β =

Op(m
−1/2). We next evaluate β̂(Ψ̂)− β(Ψ) as

β̂(Ψ̂)− β(Ψ)

=
{ m∑

i=1

X⊤
i (Ψ̂+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ̂+Di)

−1yi

−
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1yi

=
{ m∑

i=1

X⊤
i (Ψ̂+Di)

−1Xi

}−1
m∑
i=1

X⊤
i

{
(Ψ̂+Di)

−1 − (Ψ+Di)
−1

}
yi
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+
[{ m∑

i=1

X⊤
i (Ψ̂+Di)

−1Xi

}−1
−
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1] m∑
i=1

X⊤
i (Ψ+Di)

−1yi

= I1 + I2. (3.5.3)

First, I1 is written as

I1 = −
{ m∑

i=1

X⊤
i (Ψ̂+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ̂+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1yi, (3.5.4)

which is of order Op(m
−1/2), because

∑m
i=1X

⊤
i (Ψ̂ + Di)

−1Xi = Op(m) and
∑m

i=1X
⊤
i (Ψ̂ +

Di)
−1(Ψ̂−Ψ)(Ψ+Di)

−1yi = Op(m
1/2). Next, I2 is rewritten as

I2 =−
{ m∑

i=1

X⊤
i (Ψ̂+Di)

−1Xi

}−1
m∑
i=1

X⊤
i

{
(Ψ̂+Di)

−1 − (Ψ+Di)
−1

}
Xi

×
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1yi

=
{ m∑

i=1

X⊤
i (Ψ̂+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ̂+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1Xi

×
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1yi, (3.5.5)

which is also of order Op(m
−1/2), because

∑m
i=1X

⊤
i (Ψ̂ +Di)

−1Xi = Op(m),
∑m

i=1X
⊤
i (Ψ̂ +

Di)
−1(Ψ̂−Ψ)(Ψ+Di)

−1Xi = Op(m
1/2),

∑m
i=1X

⊤
i (Ψ+Di)

−1Xi = O(m) and
∑m

i=1X
⊤
i (Ψ̂+

Di)
−1yi = Op(m). Thus, we have β̂(Ψ̂)−β(Ψ) = Op(m

−1/2), and it is concluded that β̂(Ψ̂)−
β = Op(m

−1/2).

For (3), let λ̂1, . . . , λ̂k be eigenvalues of Ψ̂, and let λ1, . . . , λk be eigenvalues of Ψ. Then, for
j = 1, . . . , k,

P (λ̂j < 0) = P (λ̂j − λj < −λj) = P (−(λ̂j − λj) > λj) ≤ P (|
√
m(λ̂j − λj)| >

√
mλj).

Note that λj > 0. It follows from the Markov inequality that for any K > 0,

P (|
√
m(λ̂j − λj)| >

√
mλj) ≤

E[{|
√
m(λ̂j − λj)|}2K ]

(
√
mλj)2K

= O(m−K),

because the 4K-th moments exist and λ̂j − λj = Op(m
−1/2) from Ψ̂−Ψ = Op(m

−1/2). □

3.5.1 Proof of Lemma 3.3.1

From (2) in Theorem 3.2.1, it is sufficient to show this approximation for Ψ̂ instead of Ψ̂
+
. It

is observed that

θ̂
EB

a − θ̂a(Ψ) =Da{(Ψ+Da)
−1 − (Ψ̂+Da)

−1}(ya −Xaβ) +Da(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β}

−Da(Ψ+Da)
−1Xa{β̂(Ψ)− β}.
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Using the equation

(Ψ̂+Di)
−1 = (Ψ+Di)

−1 − (Ψ+Di)
−1(Ψ̂−Ψ)(Ψ̂+Di)

−1, (3.5.6)

we can see that

Da{(Ψ+Da)
−1 − (Ψ̂+Da)

−1}(ya −Xaβ)

=Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ̂+Da)

−1(ya −Xaβ)

=Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ) +Op(m
−1)

and

Da(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β}

=Da(Ψ+Da)
−1Xa{β̂(Ψ̂)− β} −Da(Ψ+Da)

−1(Ψ̂−Ψ)(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β}

=Da(Ψ+Da)
−1Xa{β̂(Ψ̂)− β}+Op(m

−1).

Thus, we have

θ̂
EB

a − θ̂a(Ψ) =Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ)

+Da(Ψ+Da)
−1Xa{β̂(Ψ̂)− β̂(Ψ)}+Op(m

−1)

=I1 + I2 +Op(m
−1). (say)

For I2, it is noted that

β̂(Ψ̂)− β̂(Ψ)

=
[{ m∑

j=1

X⊤
j (Ψ̂+Dj)

−1Xj

}−1
−
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1]
×

m∑
i=1

X⊤
i (Ψ̂+Di)

−1(yi −Xiβ)

+
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1
m∑
i=1

X⊤
i

{
(Ψ̂+Di)

−1 − (Ψ+Di)
−1

}
(yi −Xiβ)

=I21 + I22.

We can evaluate I21 as

I21 =
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1{ m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1Xi

}
{β̂(Ψ̂)− β}

=Op(m
−1),

because
∑m

j=1X
⊤
j (Ψ + Dj)

−1Xj = O(m),
∑m

i=1X
⊤
i (Ψ + Di)

−1(Ψ̂ − Ψ)(Ψ + Di)
−1Xi =

Op(m
1/2) and β̂(Ψ̂)− β = Op(m

−1/2) from Theorem 1 (2). We next estimate I22 as

I22 =−
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1{ m∑
i=1

X⊤
i A(Ψ̂,Di)Xi

}
×
{ m∑

i=1

X⊤
i A(Ψ̂,Di)Xi

}−1
m∑
i=1

X⊤
i A(Ψ̂,Di)(yi −Xiβ)
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for A(Ψ̂,Di) = (Ψ̂+Di)
−1(Ψ̂−Ψ)(Ψ+Di)

−1. It can be seen that I22 = Op(m
−1) from the

same arguments as in I21. Thus, it follows that I2 = Op(m
−1).

Then, we only need to evaluate E[I1I
⊤
1 ] for the approximation of E[{θ̂

EB

a − θ̂a(Ψ)}{θ̂
EB

a −
θ̂a(Ψ)}⊤]. Let J1 = E[(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ)(ya −Xaβ)
⊤(Ψ+Da)

−1(Ψ̂−Ψ)]. It
is noted from (3.5.1) that Ψ̂−Ψ is approximated as

Ψ̂−Ψ =
1

m

m∑
i=1

{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}+Op(m
−1),

which is used to evaluate

J1 =
1

m2

m∑
i=1

m∑
j=1

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da)

−1(va + εa)(va + εa)
⊤(Ψ+Da)

−1

× {(vj + εj)(vj + εj)⊤ − (Ψ+Di)}
]
+O(m−3/2)

=
1

m2

m∑
i=1

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da)

−1(va + εa)(va + εa)
⊤(Ψ+Da)

−1

× {(vi + εi)(vi + εi)⊤ − (Ψ+Di)}
]
+O(m−3/2)

=
1

m2

∑
i ̸=a

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da)

−1{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}
]

+O(m−3/2)

=
1

m2

∑
i ̸=a

{
E
[
(vi + εi)(vi + εi)

⊤(Ψ+Da)
−1(vi + εi)(vi + εi)

⊤
]

− (Ψ+Di)(Ψ+Da)
−1(Ψ+Di)

}
+O(m−3/2).

The second equality follows since E
[
{(vi+ εi)(vi+ εi)⊤− (Ψ+Di)}(Ψ+Da)

−1(va+ εa)(va+

εa)
⊤(Ψ+Da)

−1{(vj + εj)(vj + εj)⊤− (Ψ+Dj)}
]
= 0 for i ̸= j, and the third equality follows

since the term for i = a in the summation is of order O(m−2). For i ̸= a,

E
[
(vi + εi)(vi + εi)

⊤(Ψ+Da)
−1(vi + εi)(vi + εi)

⊤
]

=E
[
viv

⊤
i (Ψ+Da)

−1viv
⊤
i + 2viv

⊤
i (Ψ+Da)

−1εiε
⊤
i + 2εiε

⊤
i (Ψ+Da)

−1viv
⊤
i

+ εiv
⊤
i (Ψ+Da)

−1viε
⊤
i + viε

⊤
i (Ψ+Da)

−1εiv
⊤
i + εiε

⊤
i (Ψ+Da)

−1εiε
⊤
i

]
.

We evaluate E[viv
⊤
i (Ψ+Da)

−1viv
⊤
i ] and E[εiε

⊤
i (Ψ+Da)

−1εiε
⊤
i ]. We can write

E[viv
⊤
i (Ψ+Da)

−1viv
⊤
i ] = Ψ1/2E[uiu

⊤
i Ψ

1/2(Ψ+Da)
−1Ψ1/2uiu

⊤
i ]Ψ

1/2.

The (a, d)-element of E[uiu
⊤
i Buiu

⊤
i ] for some symmetric matrix B is

∑
b,cE[uiauibBbcuicuid],

where Bbc is the (b, c)-element of B. Since ui ∼ (0, Im), we only need to evaluate four cases;

52



(1) a = b = c = d, (2) a = d, b = c and a ̸= b, (3) a = b, c = d and a ̸= c, and (4) a = c, b = d
and a ̸= b. For the case (1), we have∑

b,c

E[uiauibBbcuicuid] = E[u4iaBaa] = κvBaa.

For the case (2), we have∑
b,c

E[uiauibBbcuicuid] =
∑
b̸=a

E[u2iau
2
ibBbb] =

∑
b

Bbb −Baa.

These imply that the diagonal elements of E[uiu
⊤
i Buiu

⊤
i ] is those of (κv − 1)B + tr (B)Im.

For the case (3), we have∑
b,c

E[uiauibBbcuicuid] = E[u2iau
2
idBad] = Bad.

For the case (4), we have∑
b,c

E[uiauibBbcuicuid] = E[u2iau
2
idBad] = Bad.

These imply that the off-diagonal elements of E[uiu
⊤
i Buiu

⊤
i ] is those of 2B. Hence, we have

E[uiu
⊤
i Buiu

⊤
i ] = (κv − 1)diagB + tr (B)I + 2(B − diagB) = (κv − 3)diagB + 2B + tr (B)Im.

Therefore,

E[viv
⊤
i (Ψ+Da)

−1viv
⊤
i ]

=(κv − 3)Ψ1/2diag(Ψ1/2(Ψ+Da)
−1Ψ1/2)Ψ1/2 + 2Ψ(Ψ+Da)

−1Ψ+ tr (Ψ(Ψ+Da)
−1)Ψ.

In the same way, we have

E[εiε
⊤
i (Ψ+Da)

−1εiε
⊤
i ]

=(κε − 3)D
1/2
i diag(D

1/2
i (Ψ+Da)

−1D
1/2
i )D

1/2
i + 2Di(Ψ+Da)

−1Di + tr (Di(Ψ+Da)
−1)Di.

Hence, for i ̸= a,

E
[
(vi + εi)(vi + εi)

⊤(Ψ+Da)
−1(vi + εi)(vi + εi)

⊤
]

=E
[
viv

⊤
i (Ψ+Da)

−1viv
⊤
i + 2viv

⊤
i (Ψ+Da)

−1εiε
⊤
i + 2εiε

⊤
i (Ψ+Da)

−1viv
⊤
i

+ εiv
⊤
i (Ψ+Da)

−1viε
⊤
i + viε

⊤
i (Ψ+Da)

−1εiv
⊤
i + εiε

⊤
i (Ψ+Da)

−1εiε
⊤
i

]
=(κv − 3)Ψ1/2diag(Ψ1/2(Ψ+Da)

−1Ψ1/2)Ψ1/2 + 2Ψ(Ψ+Da)
−1Ψ+ tr (Ψ(Ψ+Da)

−1)Ψ

+ 4Ψ(Ψ+Da)
−1Di + tr (Ψ(Ψ+Da)

−1)Di + tr (Di(Ψ+Da)
−1)Ψ

+ (κε − 3)D
1/2
i diag(D

1/2
i (Ψ+Da)

−1D
1/2
i )D

1/2
i + 2Di(Ψ+Da)

−1Di + tr (Di(Ψ+Da)
−1)Di

=2(Ψ+Di)(Ψ+Da)
−1(Ψ+Di) + tr ((Ψ+Di)(Ψ+Da)

−1)(Ψ+Di)

+ (κv − 3)Ψ1/2diag(Ψ1/2(Ψ+Da)
−1Ψ1/2)Ψ1/2 + (κε − 3)D

1/2
i diag(D

1/2
i (Ψ+Da)

−1D
1/2
i )D

1/2
i
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Hence, we have

J1 =
1

m2

m∑
i=1

[
(Ψ+Di)(Ψ+Da)

−1(Ψ+Di) + tr ((Ψ+Di)(Ψ+Da)
−1)(Ψ+Di)

+ (κv − 3)Ψ1/2diag(Ψ1/2(Ψ+Da)
−1Ψ1/2)Ψ1/2 + (κε − 3)D

1/2
i diag(D

1/2
i (Ψ+Da)

−1D
1/2
i )D

1/2
i

]
+O(m−3/2),

which leads to the expression in (3.3.3) by multipling J1 by Da(Ψ+Da)
−1 and (Ψ+Da)

−1Da

from left and right sides, respectively. □

3.5.2 Proof of Lemma 3.3.2

We can decompose

E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂a(Ψ)− θa}⊤]

=E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂a(Ψ)− θ∗a}⊤] + E[{θ̂
EB

a − θ̂a(Ψ)}{θ∗a − θa}⊤]. (3.5.7)

Since θ̂a(Ψ)− θ∗a = O(m−1/2), using the statement in the proof of Lemma 3.3.1, the first term
in (3.5.7) can be written as

E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂a(Ψ)− θ∗a}⊤]

=−Da(Ψ+Da)
−1E

[
(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ){β̂(Ψ)− β}⊤
]
X⊤

a (Ψ+Da)
−1Da +O(m−3/2).

In the same way, we have

E
[
(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ){β̂(Ψ)− β}⊤
]

=
1

m

m∑
i=1

m∑
j=1

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da)

−1(va + εa)(vj + εj)
⊤
]

×Xj(X(Im ⊗Ψ+D)−1X⊤)−1 +O(m−3/2)

=
1

m
E
[
{(va + εa)(va + εa)⊤ − (Ψ+Da)}(Ψ+Da)

−1(va + εa)(va + εa)
⊤
]

×Xa(X(Im ⊗Ψ+D)−1X⊤)−1 +O(m−3/2)

=O(m−3/2),

since the expectation is zero for i ̸= a or j ̸= a. Hence, we have E[{θ̂
EB

a − θ̂a(Ψ)}{θ̂a(Ψ) −
θ∗a}⊤] = O(m−3/2).

Next, we evaluate the second term in (3.5.7). It is noted that

θ∗a − θa = −v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ = O(1)

and

θ̂
EB

a − θ̂a(Ψ)

=Da{(Ψ+Da)
−1 − (Ψ̂+Da)

−1}(ya −Xaβ) +Da(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β}

−Da(Ψ+Da)
−1Xa{β̂(Ψ)− β}.

(3.5.8)
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We evaluate the expectation of the product of θ∗a − θa and the first term in (3.5.8), namely
DaE[{(Ψ+Da)

−1 − (Ψ̂+Da)
−1}(ya −Xaβ){θ∗a − θa}⊤]. Using the equation,

(Ψ+Da)
−1 − (Ψ̂+Da)

−1

=(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1

− (Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1(Ψ̂−Ψ)(Ψ+Da)
−1 +O(m−3/2),

this can be written as

Da(Ψ+Da)
−1

{
E
[
(Ψ̂−Ψ)(Ψ+Da)

−1(ya −Xaβ){θ∗a − θa}⊤
]

+ E
[
(Ψ̂−Ψ)(Ψ+Da)(Ψ̂−Ψ)(Ψ+Da)(ya −Xaβ){θ∗a − θa}⊤

]}
+O(m−3/2)

=Da(Ψ+Da)
−1(K1 +K2) +O(m−3/2). (say)

(3.5.9)

Recall that

Ψ̂−Ψ =
1

m

m∑
i=1

{(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)}+

1

m

m∑
i=1

Xi(β̃ − β)(β̃ − β)⊤X⊤
i

− 1

m

m∑
i=1

(yi −Xiβ)(β̃ − β)⊤X⊤
i − 1

m

m∑
i=1

Xi(β̃ − β)(yi −Xiβ)
⊤.

(3.5.10)

We can write K1 = K11 +K12 +K13 +K14, where

K11 = E
[{ 1

m

m∑
i=1

{(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)}(Ψ+Da)

−1(ya −Xaβ){θ∗a − θa}⊤
]
,

K12 = E
[ 1

m

m∑
i=1

Xi(β̃ − β)(β̃ − β)⊤X⊤
i (Ψ+Da)

−1(ya −Xaβ){θ∗a − θa}⊤
]
,

K13 = −E
[ 1

m

m∑
i=1

(yi −Xiβ)(β̃ − β)⊤X⊤
i (ya −Xaβ){θ∗a − θa}⊤

]
,

and

K14 = −E
[ 1

m

m∑
i=1

Xi(β̃ − β)(yi −Xiβ)
⊤(Ψ+Da)

−1(ya −Xaβ){θ∗a − θa}⊤
]
.

K11 can be written as

K11 =
1

m

m∑
i=1

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da)

−1(va + εa)

× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=
1

m
E
[
{(va + εa)(va + εa)⊤ − (Ψ+Da)}(Ψ+Da)

−1(va + εa)

× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=
1

m
E
[
(va + εa)(va + εa)

⊤(Ψ+Da)
−1(va + εa){−v⊤a (Ψ+Da)

−1Da + ε
⊤
a (Ψ+Da)

−1Ψ}
]
,
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since the expectation is zero for i ̸= a. Using the results from Lemma 3.3.1, the first term in
the last eqation is

− 1

m
E
[
(va + εa)(va + εa)

⊤(Ψ+Da)
−1(va + εa)v

⊤
a

]
(Ψ+Da)

−1Da

=− 1

m
E
[
vav

⊤
a (Ψ+Da)

−1vav
⊤
a + 2εaε

⊤
a (Ψ+Da)

−1vav
⊤
a + vaε

⊤
a (Ψ+Da)

−1εav
⊤
a

]
(Ψ+Da)

−1Da

=− 1

m

{
(κv − 3)Ψ1/2diag(Ψ1/2(Ψ+Da)

−1Ψ1/2)Ψ1/2 + 2Ψ(Ψ+Da)
−1Ψ+ tr (Ψ(Ψ+Da)

−1)Ψ

+ 2Da(Ψ+Da)
−1Ψ+ tr (Da(Ψ+Da)

−1)Ψ
}
(Ψ+Da)

−1Da,

and the second term is

1

m
E
[
(va + εa)(va + εa)

⊤(Ψ+Da)
−1(va + εa)ε

⊤
a

]
(Ψ+Da)

−1Ψ

=− 1

m
E
[
εaε

⊤
a (Ψ+Da)

−1εaε
⊤
a + 2vav

⊤
a (Ψ+Da)

−1εaε
⊤
a + εav

⊤
a (Ψ+Da)

−1vaε
⊤
a

]
(Ψ+Da)

−1Ψ

=− 1

m

{
(κε − 3)D1/2

a diag(D1/2
a (Ψ+Da)

−1D1/2
a )D1/2

a + 2Da(Ψ+Da)
−1Da + tr (Da(Ψ+Da)

−1)Da

+ 2Ψ(Ψ+Da)
−1Da + tr (Ψ(Ψ+Da)

−1)Da

}
(Ψ+Da)

−1Ψ.

Thus, we have

K11 =− 1

m
(κv − 3)Ψ1/2diag(Ψ1/2(Ψ+Da)

−1Ψ1/2)Ψ1/2(Ψ+Da)
−1Da

+
1

m
(κε − 3)D1/2

a diag(D1/2
a (Ψ+Da)

−1D1/2
a )D1/2

a (Ψ+Da)
−1Ψ.

K12 can be written as

K12 =
1

m

m∑
i=1

m∑
j=1

m∑
k=1

E
[
Xi(X

⊤X)−1X⊤(vj + εj)(vk + εk)
⊤X(X⊤X)−1X⊤

i (Ψ+Da)
−1(va + εa)

× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=
1

m

m∑
i=1

E
[
Xi(X

⊤X)−1X⊤(va + εa)(va + εa)
⊤X(X⊤X)−1X⊤

i (Ψ+Da)
−1(va + εa)

× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=O(m−2),

The third equality follows since for j ̸= a or k ̸= a, the expectation is zero, and the last equality
follows since X⊤X = O(m). For the same reason, K13 can be written as

K13 =
1

m

m∑
i=1

m∑
j=1

E
[
(vi + εi)(vj + εj)

⊤X(X⊤X)−1X⊤
i (Ψ+Da)

−1(va + εa)

× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=
1

m
E
[
(va + εa)(va + εa)

⊤(X⊤X)−1XX⊤
a (Ψ+Da)

−1(va + εa)
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× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=O(m−2).

Similarly, K14 is of order O(m−2). Hence, we have

Da(Ψ+Da)
−1E[K1]

=
1

m
Da(Ψ+Da)

−1
{
− (κv − 3)Ψ1/2diag(Ψ1/2(Ψ+Da)

−1Ψ1/2)Ψ1/2(Ψ+Da)
−1Da

+ (κε − 3)D1/2
a diag(D1/2

a (Ψ+Da)
−1D1/2

a )D1/2
a (Ψ+Da)

−1Ψ
}
+O(m−3/2).

Next, we evaluate K2, which can be written as by (3.5.10)

K2 =E
[{ 1

m

m∑
i=1

{(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)}+

1

m

m∑
i=1

Xi(β̃ − β)(β̃ − β)⊤X⊤
i

− 1

m

m∑
i=1

(yi −Xiβ)(β̃ − β)⊤X⊤
i − 1

m

m∑
i=1

Xi(β̃ − β)(yi −Xiβ)
⊤
}
(Ψ+Da)

×
{ 1

m

m∑
j=1

{(yj −Xjβ)(yj −Xjβ)
⊤ − (Ψ+Dj)}+

1

m

m∑
j=1

Xj(β̃ − β)(β̃ − β)⊤X⊤
j

− 1

m

m∑
j=1

(yj −Xjβ)(β̃ − β)⊤X⊤
j − 1

m

m∑
i=1

Xj(β̃ − β)(yj −Xjβ)
⊤
}
(ya −Xaβ){θ∗a − θa}⊤

]
.

To evaluate the order of K2, we need to evaluate the following expectations,

K21 = E
[ 1

m2

m∑
i=1

{(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)}(Ψ+Da)

×
m∑
j=1

{(yj −Xjβ)(yj −Xjβ)
⊤ − (Ψ+Dj)}(ya −Xaβ){θ∗a − θa}⊤

]
,

K22 = E
[ 1

m2

m∑
i=1

{(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)}(Ψ+Da)

×
m∑
j=1

Xj(β̃ − β)(β̃ − β)⊤X⊤
j (ya −Xaβ){θ∗a − θa}⊤

]
,

K23 = E
[ 1

m2

m∑
i=1

{(yi −Xiβ)(yi −Xiβ)
⊤ − (Ψ+Di)}(Ψ+Da)

×
m∑
j=1

(yj −Xjβ)(β̃ − β)⊤X⊤
j (ya −Xaβ){θ∗a − θa}⊤

]
,
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K24 =
1

m2

m∑
i=1

m∑
j=1

E
[
Xi(β̃ − β)(β̃ − β)⊤X⊤

i (Ψ+Da)Xj(β̃ − β)(β̃ − β)⊤X⊤
j

× (Ψ+Da)(ya −Xaβ){θ∗a − θa}⊤
]

K25 =
1

m2

m∑
i=1

m∑
j=1

m∑
k=1

E
[
Xj(β̃ − β)(β̃ − β)⊤X⊤

j (Ψ+Da)

× (yk −Xkβ)(β̃ − β)⊤X⊤
k (Ψ+Da)(ya −Xaβ){θ∗a − θa}⊤

]
,

and

K26 =
1

m2

m∑
i=1

m∑
j=1

E
[
Xi(β̃ − β)(yi −Xiβ)

⊤(Ψ+Da)

× (yj −Xjβ)(β̃ − β)⊤X⊤
j (Ψ+Da)(ya −Xaβ){θ∗a − θa}⊤

]
.

K21 can be written as

K21 =
1

m2

m∑
i=1

m∑
j=1

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da){(vj + εj)(vj + εj)⊤ − (Ψ+Dj)}

× (Ψ+Da)(ya −Xaβ){−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=
1

m2
E
[
{(va + εa)(va + εa)⊤ − (Ψ+Da)}(Ψ+Da){(va + εa)(va + εa)⊤ − (Ψ+Dj)}

× (Ψ+Da)(ya −Xaβ){−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=O(m−2),

since the expectation is zero for i ̸= a or j ̸= a. K22 can be written as

K22 =
1

m2

m∑
i=1

m∑
j=1

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da)Xj(β̃ − β)(β̃ − β)⊤X⊤

j

× (Ψ+Da)(ya −Xaβ){−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=
1

m2

m∑
i=1

m∑
j=1

m∑
k=1

m∑
ℓ=1

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da)Xj(X

⊤X)−1X⊤(vk + εk)

× (vℓ + εℓ)
⊤X(X⊤X)−1X⊤

j (Ψ+Da)(va + εa){−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=
1

m2

m∑
j=1

m∑
k=1

E
[
{(va + εa)(va + εa)⊤ − (Ψ+Da)}(Ψ+Da)Xj(X

⊤X)−1X⊤(vk + εk)(vk + εk)
⊤

×X(X⊤X)−1X⊤
j (Ψ+Da)(va + εa){−v⊤a (Ψ+Da)

−1Da + ε
⊤
a (Ψ+Da)

−1Ψ}
]
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=
1

m2

m∑
j=1

∑
k ̸=a

E
[
{(va + εa)(va + εa)⊤ − (Ψ+Da)}(Ψ+Da)Xj(X

⊤X)−1X⊤(Ψ+Dk)

×X(X⊤X)−1X⊤
j (Ψ+Da)(va + εa){−v⊤a (Ψ+Da)

−1Da + ε
⊤
a (Ψ+Da)

−1Ψ}
]
+O(m−2)

=O(m−2),

since the expectation is zero for i ̸= a or k ̸= ℓ and (XX⊤)−1 = O(m−1). K23 can be written
as

K23 =
1

m2

m∑
i=1

m∑
j=1

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da)(vj + εj)(β̃ − β)⊤X⊤

j

× (Ψ+Da)(va + εa){−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]

=
1

m2

m∑
i=1

m∑
j=1

m∑
k=1

E
[
{(vi + εi)(vi + εi)⊤ − (Ψ+Di)}(Ψ+Da)(vj + εj)(vk + εk)

⊤

×X(X⊤X)−1X⊤
j (Ψ+Da)(va + εa){−v⊤a (Ψ+Da)

−1Da + ε
⊤
a (Ψ+Da)

−1Ψ}
]

=
1

m2
E
[
{(va + εa)(va + εa)⊤ − (Ψ+Da)}(Ψ+Da)(va + εa)(va + εa)

⊤

×X(X⊤X)−1X⊤
a (Ψ+Da)(va + εa){−v⊤a (Ψ+Da)

−1Da + ε
⊤
a (Ψ+Da)

−1Ψ}
]

+
1

m2

m∑
j ̸=a

E
[
{(va + εa)(va + εa)⊤ − (Ψ+Da)}(Ψ+Da)(Ψ+Dj)

×X(X⊤X)−1X⊤
j (Ψ+Da)(va + εa){−v⊤a (Ψ+Da)

−1Da + ε
⊤
a (Ψ+Da)

−1Ψ}
]

=O(m−2),

since the expeqtation is zero for i ̸= a and XX⊤ = O(m). K24 can be written as

K24 =
1

m2

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

m∑
p=1

m∑
q=1

E
[
Xi(X

⊤X)−1X⊤(vk + εk)(vl + εl)
⊤X(X⊤X)−1X⊤

i

× (Ψ+Da)Xj(X
⊤X)−1X⊤(vp + εp)(vq + εq)

⊤X(X⊤X)−1X⊤
j (Ψ+Da)(va + εa)

× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]
.

If all k, l, p and q are not equal to a, the expectation is zero, and these terms in the summation
vanish. If one of k, l, p and q is equal to a, the expectation is zero unless the others, which are
not equal to a are the same, which implies these terms in the summation are of order O(m−3)
since X⊤X = O(m). If two of k, l, p and q are equal to a, the expectation is zero unless the
others, which are not equal to a are the same, which implies these terms in the summation are
of order O(m−3) since X⊤X = O(m). If three of k, l, p and q are equal to a, the expectation is
zero, and these terms in the summation vanish. If all k, l, p and q are equal to a, this term is
of order O(m−4) since X⊤X = O(m). Then, the above equation is of order O(m−3). K25 and
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K26 can be written as

K25 =
1

m2

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

m∑
p=1

m∑
q=1

E
[
Xj(X

⊤X)−1X⊤(vl + εl)(vp + εp)
⊤X(X⊤X)−1X⊤

j (Ψ+Da)(vk + εk)

× (vq + εq)
⊤X(X⊤X)−1X⊤

k (Ψ+Da)(va + εa){−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
]
,

and

K26 =
1

m2

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

E
[
Xi(X

⊤X)−1X⊤(vk + εk)(vi + εi)
⊤(Ψ+Da)(vj + εj)(vl + εl)

⊤

×X(X⊤X)−1X⊤
j (Ψ+Da)(va + εa){−v⊤a (Ψ+Da)

−1Da + ε
⊤
a (Ψ+Da)

−1Ψ}
]
.

These are of order O(m−3) for the similar reason for K24. Hence, K2 is of order O(m−3/2).

Next, we evaluate the expectation of the product of θ∗a − θa and the second term in (3.5.8),
namely DaE[(Ψ̂+Da)

−1Xa{β̂(Ψ̂)− β}{θ∗a − θa}⊤]. We can write

E[(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β}{θ∗a − θa}⊤]

=E[(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β̂(Ψ)}{θ∗a − θa}⊤] + E[(Ψ̂+Da)

−1Xa{β̂(Ψ)− β}{θ∗a − θa}⊤]

=(Ψ+Da)
−1XaE[{β̂(Ψ̂)− β̂(Ψ)}{θ∗a − θa}⊤] + (Ψ+Da)

−1XaE[{β̂(Ψ)− β}{θ∗a − θa}⊤]

− (Ψ+Da)
−1E[(Ψ̂−Ψ)(Ψ+Da)

−1Xa{β̂(Ψ)− β}{θ∗a − θa}⊤] +O(m−3/2),

(3.5.11)

since β̂(Ψ̂)− β̂(Ψ) = O(m−1), β̂(Ψ)− β = O(m−1/2) and Ψ̂−Ψ = O(m−1/2). Recall that

β̂(Ψ̂)− β̂(Ψ)

=
[{ m∑

j=1

X⊤
j (Ψ̂+Dj)

−1Xj

}−1
−
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1]
×

m∑
i=1

X⊤
i (Ψ̂+Di)

−1(yi −Xiβ)

+
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1
m∑
i=1

X⊤
i

{
(Ψ̂+Di)

−1 − (Ψ+Di)
−1

}
(yi −Xiβ).

(3.5.12)

The first term of (3.5.12) can be approximated as

[{ m∑
j=1

X⊤
j (Ψ̂+Dj)

−1Xj

}−1
−
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1] m∑
i=1

X⊤
i (Ψ̂+Di)

−1(yi −Xiβ)

=−
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1{ m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1Xi

}
×
{ m∑

i=1

X⊤
i (Ψ̂+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ̂+Di)

−1(yi −Xiβ)
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=
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1{ m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1Xi

}
×
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1{ m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1Xi

}
×
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1(yi −Xiβ) +O(m−3/2),

and the second term of (3.5.12) can be approximated as{ m∑
j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1
m∑
i=1

X⊤
i

{
(Ψ̂+Di)

−1 − (Ψ+Di)
−1

}
(yi −Xiβ)

=−
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1
m∑
i=1

X⊤
i (Ψ̂+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1(yi −Xiβ)

=−
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1(yi −Xiβ)

+
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1

×
m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1(Ψ̂−Ψ)(Ψ+Di)

−1(yi −Xiβ) +O(m−3/2).

Then, the expectation in the first term of (3.5.11) is

E{β̂(Ψ̂)− β̂(Ψ)}{θ∗a − θa}⊤

=E
[{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1{ m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1Xi

}
×
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1{ m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1Xi

}
×
{ m∑

i=1

X⊤
i (Ψ+Di)

−1Xi

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1(yi −Xiβ)
]

× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}

− E
[{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1
m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1(yi −Xiβ)

+
{ m∑

j=1

X⊤
j (Ψ+Dj)

−1Xj

}−1

×
m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1(Ψ̂−Ψ)(Ψ+Di)

−1(yi −Xiβ)
]

× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}.
(3.5.13)
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Let S = {
∑m

i=1X
⊤
i (Ψ+Di)

−1Xi}−1. The first term of (3.5.13) is

S

m∑
i=1

m∑
j=1

m∑
k=1

E
[
X⊤

i (Ψ+Di)
−1(Ψ̂−Ψ)(Ψ+Di)

−1XiSX
⊤
j (Ψ+Dj)

−1(Ψ̂−Ψ)

× (Ψ+Dj)
−1XjSX

⊤
k (Ψ+Dk)

−1(yk −Xkβ)
]
{−v⊤a (Ψ+Da)

−1Da + ε
⊤
a (Ψ+Da)

−1Ψ},

and second term of (3.5.13) is

−ES
m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1(vi + εi)

+ S
m∑
i=1

X⊤
i (Ψ+Di)

−1(Ψ̂−Ψ)(Ψ+Di)
−1(Ψ̂−Ψ)(Ψ+Di)

−1(vi + εi)
]

× {−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}.

Since S is of order O(m−1), these are of order O(m−3/2) for the same reason for the second term
of (3.5.9). Since β̂(Ψ)− β = (X⊤(Im ⊗Ψ+D)−1X)−1

∑m
i=1X

⊤
i (Ψ+Di)

−1(yi −Xiβ), the
expectation in the second term of (3.5.11) is

E{β̂(Ψ)− β}{θ∗a − θa}⊤

=(X⊤(Im ⊗Ψ+D)−1X)−1E

m∑
i=1

X⊤
i (Ψ+Di)

−1(yi −Xiβ){−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}

=(X⊤(Im ⊗Ψ+D)−1X)−1X⊤
a (Ψ+Da)

−1E(va + εa){−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}
=0,

whcich implies that the expectation of the product of θ∗a − θa and the third term in (3.5.8) is
zero, and the expectation in the third term of (3.5.11) is

E(Ψ̂−Ψ)(Ψ+Da)
−1Xa{β̂(Ψ)− β}{θ∗a − θa}⊤

=E(Ψ̂−Ψ)(Ψ+Da)
−1Xa(X

⊤(Im ⊗Ψ+D)−1X)−1

×
m∑
i=1

X⊤
i (Ψ+Di)

−1(vi + εi){−v⊤a (Ψ+Da)
−1Da + ε

⊤
a (Ψ+Da)

−1Ψ}

=O(m−2),

for the similar reason for K1 in (3.5.9). Hence, we have EDa(Ψ̂+Da)
−1Xa{β̂(Ψ̂)− β}{θ∗a −

θa}⊤ = O(m−3/2). □

3.5.3 Proof of Theorem 3.3.2

From (2) in Theorem 3.2.1, it is sufficient to show this approximation for Ψ̂ instead of Ψ̂
+
.

Using the equation in (3.5.6), we can rewrite G1a(Ψ̂) as

G1a(Ψ̂) =(Ψ̂
−1

+D−1
a )−1 =Da −Da(Ψ̂+Da)

−1Da

=G1a(Ψ) +Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1Da (3.5.14)

−Da(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1(Ψ̂−Ψ)(Ψ+Da)
−1Da +Op(m

−3/2).
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We shall evaluate each term in RHS of the above equality. It is easy to see from (3.5.1) that
E[Ψ̂ − Ψ] = Bias(Ψ̂), which is written as (3.2.7). From Lemma 3.3.1, the expectation of the
second term is

−EDa(Ψ+Da)
−1(Ψ̂−Ψ)(Ψ+Da)

−1(Ψ̂−Ψ)(Ψ+Da)
−1Da = −G3a(Ψ) +O(m−3/2).

The above arguments imply that a second-order unbiased estimator of G1a(Ψ) is G1a(Ψ̂
+
)+

G3a(Ψ̂
+
) +G5a(Ψ̂

+
). The estimators G2a(Ψ̂

+
), G3a(Ψ̂

+
) and G4a(Ψ̂

+
) do not have second-

order biases, and the results in Theorem 3.3.2 are established. □
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Chapter 4

Multivariate Nested-Error
Regression Models

4.1 Motivation

In this chapter, we consider multivariate nested error regression models (MNER) with fixed
effests based on a vector of regression coefficients β and vectors of random effects vi and sampling
errors εij for the j-th unit in the i-th area. When θa, defined by θa = c⊤a β+va, is a characteristic
of interest for the a-th area and constant ca, the Bayes estimator of θa in the Bayesian context
is

θ̃a(β,Ψ,Σ) = c⊤a β +Ba(ya −X
⊤
a β),

for Ba = Ψ(Ψ+ n−1
a Σ)−1, where Σ and Ψ are covariance matrices of εij and vi, respectively,

na is a size of a sample from the a-th area, and ya and Xa are sample means of response
variables and the associated explanatory variables in the a-th area. When components of vi and
εij are mutually independent, namely Ψ and Σ are diagonal matrices, it is enough to treat the
estimation of each component of θa separately. When components of vi or εij are correlated
each other, however, it could be better to consider the estimation of θa simultaneously. For
example, the survey and satellite data of Battese, et al . (1988) consist of two crop areas under
corn and soybean, and it should be reasonable that the two crop areas are correlated each other.

The multivariate small area estimation has not been studied so much, while most results in
small area estimation have been provided in the univariate cases. Fay (1987) proposed a multi-
variate Fay-Herriot model for analyzing multivariate area-level data. Porter, Wikle and Holan
(2015) and Benavent and Morales (2016) suggested multivariate spatial Fay-Herriot models
with covariance matrices in which spatial dependence is embedded. Concerning the multivari-
ate nested error regression (MNER) models, Fuller and Harter (1987) obtained the empirical
Bayes estimator or the EBLUP and the analytical results for its uncertainty, and Datta, Day
and Maiti (1998) developed the fully Bayesian approach. Datta, Day and Basawa (1999) also
provided general theoretical results for the multivariate empirical Bayes estimators, but did not
give concrete expressions in the fully unknown case of covariance matrices.

The MNER model has the two components of covariance: ‘between’ component Ψ and
‘within’ component Σ. We here use an exact unbiased estimator Σ̂ for Σ, and for Ψ, we suggest
a nonnegative definite and consistent estimator Ψ̂ which is a second-order unbiased estimator of
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Ψ. For the other estimation methods, see Calvin and Dykstra (1991a, b). Substituting Ψ̂ and
Σ̂ into Ψ and Σ in the Bayes estimator θ̃a(β,Ψ,Σ) and estimating β by the generalized least

squares estimator β̂, one gets the empirical Bayes estimator or EBLUP θ̂
EB

a = θ̃a(β̂, Ψ̂, Σ̂). We
derive analytically a second-order approximation of the MSE matrix of the EBLUP and provide

a closed form expression of a second-order unbiased estimator, denoted by msem(θ̂
EB

a ), of the
MSE matrix of the EBLUP. These results are extensions of the univariate case. It is noted that
similar results were given by Fuller and Harter (1987) who considered to estimate Ba nearly
unbiasedly, which is slightly different from the approach of this paper.

Another topic addressed in this chapter is the confidence interval problem. As pointed out in
Diao, Smith, Datta, Maiti and Opsomer (2014), one difficulty with traditional confidence inter-
vals is that the coverage probabilities do not have second-order accuracy. It is also numerically
confirmed that the coverage probabilities are smaller than the nominal confidence coefficient.
Diao et al. (2014) suggested the construction of accurate confidence interval based on the
EBLUP and the estimator of MSE of EBLUP so that the coverage provability is correct up to
second order. For other studies on the confidence interval problem, see Datta, Ghosh, Smith,
Lahiri (2002), Basu, Ghosh and Mukerjee (2003), Chatterjee, Lahiri and Li (2008), Kubokawa
(2010), Sugasawa and Kubokawa (2015) and Yosimori and Lahiri (2014). In this paper, we
consider the confidence interval for the liner combination ℓ⊤θa for ℓ ∈ Rk. The naive confidence

interval is given by ℓ⊤θ̂
EB

a ±zα/2×
√
ℓ⊤msem(θ̂

EB

a )ℓ where zα/2 is the 100(1−α/2)% percentile
of the standard normal distribution. Because this confidence interval does not have second-order
accuracy, using similar aguments as in Diao et al. (2014), we construct the closed-form confi-
dence interval whose coverage probability is identical to the nominal confidence coefficient 1−α
up to second order.

This chapter is organized as follows: In Section 4.2, we probide an exact unbiased estimator
Σ̂ for Σ and a nonnegative definit, consistent and second-order unbiased estimator Ψ̂ of Ψ.
Substituting these estimators into the Bayes estimator yields the empirical Bayes estimator or
EBLUP θ̃a(β̂, Ψ̂, Σ̂). In Section 4.3, we derive a second-order approximation of the MSE matrix
of the EBLUP and a second-order unbiased estimator of the MSE matrix analytically. Section
4.4 presents the confidence interval with second-order accuracy.. The numerical investigation
and emprical studies are given in Section 4.5.

4.2 Empirical Best Linear Unbiased Prediction

In this paper, we assume that data (yij ,Xij) for i = 1 . . . ,m and j = 1, . . . , ni are observed,
where m is the number of small areas, ni is the number of the subjects in an i-th area such
that

∑m
i=1 ni = N , yij is a k-variate vector of direct survey estimates and Xij is a s× k matrix

of covariates associated with yij for the j-th subject in the i-th area. Then, we assume the
multivariate nested-error regression model described as

yij =X
⊤
ijβ + vi + εij , i = 1, . . . ,m, j = 1, . . . , ni, (4.2.1)

where β is an s-variate vector of unknown regression coefficients, vi is a k-variate vector of
random effects depending on the i-th area and εij is a k-variate vector of sampling errors. It is
assumed that vi and εij are mutually independently distributed as

vi ∼ Nk(0,Ψ) and εij ∼ Nk(0,Σ),

65



where Ψ and Σ are k × k unknown and nonsingular covariance matrices.

We now express model (4.2.1) in a matrix form. Let yi = (y⊤i1, . . . ,y
⊤
ini

)⊤, y = (y⊤1 , . . . ,y
⊤
m)⊤,

Xi = (Xi1, . . . ,Xini)
⊤, X = (X⊤

1 , . . . ,X
⊤
m)⊤, εi = (ε⊤i1, . . . , ε

⊤
ini

)⊤ and ε = (ε⊤1 , . . . , ε
⊤
m)⊤.

Then, model (4.2.1) is expressed as

yi =Xiβ + 1ni ⊗ vi + εi, (4.2.2)

where 1ni ⊗ vi ∼ Nkni
(0,Jni ⊗Ψ) and εi ∼ Nkni

(0, Ini ⊗Σ) for Jni = 1ni1
⊤
ni
.

For the a-th area, we want to predict the quantity θa = c⊤a β + va, which is the conditional
mean E[ya | va] given va when

ca =Xa = n−1
a

na∑
j=1

Xaj .

A reasonable estimator can be derived from the conditional expectation E[θa | ya] = c⊤a β +
E[va | ya]. The conditional distribution of vi given yi and the marginal distribution of yi are

vi | yi ∼Nk(ṽi(β,Ψ,Σ), (Ψ−1 + niΣ
−1)−1),

yi ∼Nkni
(Xiβ,Jni ⊗Ψ+ Ini ⊗Σ),

i = 1, . . . ,m, (4.2.3)

where
ṽi(β,Ψ,Σ) = Ψ(Ψ+ n−1

i Σ)−1(ȳi − X̄
⊤
i β), (4.2.4)

where yi = n−1
i

∑ni
j=1 yij . Thus, we get the estimator

θ̃a(β,Ψ,Σ) =c⊤a β + E[va | ya] = c⊤a β + ṽa(β,Ψ,Σ)

=c⊤a β +Ψ(Ψ+ n−1
a Σ)−1(ya −X

⊤
a β), (4.2.5)

which corresponds to the Bayes estimator of θa in the Bayesian framework.

When Ψ and Σ are known, the maximum likelihood estimator or generalized least squares
estimator of β is

β̂(Ψ,Σ) = (X⊤D−1X)−1X⊤D−1y,

where D = block diag(D1, . . . ,Dm) and Di = Jni ⊗Ψ+ Ini ⊗Σ for i = 1, . . . ,m. Substituting

β̂(Ψ,Σ) into θ̃a(β,Ψ,Σ) yields the estimator

θ̂a(Ψ,Σ) = c⊤a β̂(Ψ,Σ) +Ψ(Ψ+ n−1
a Σ)−1(ya −X

⊤
a β̂(Ψ,Σ)). (4.2.6)

It can be easily verified that this estimator is the best linear unbiased predictor (BLUP) of θa.

We provide consistent estimators of the covariance componentsΣ andΨ. Concerning estima-
tion ofΣ, it is noted that E[{yij−yi−(Xij−Xi)

⊤β}{yij−yi−(Xij−Xi)
⊤β}⊤] = (1−n−1

i )Σ for

i = 1, . . . ,m and j = 1, . . . , ni, which implies that
∑m

i=1

∑ni
j=1E[{yij−yi−(Xij−Xi)

⊤β}{yij−
yi−(Xij−Xi)

⊤β}⊤] = (N−m)Σ. Let ỹi = ((yi1−yi)⊤, . . . , (yini
−yi)⊤)⊤, ỹ = (ỹ⊤1 , . . . , ỹ

⊤
m)⊤,
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X̃i = (Xi1 − Xi, . . . ,Xini − Xi)
⊤ and X̃ = (X̃

⊤
1 , . . . , X̃

⊤
m)⊤. Substituting the statistic

β̃ = (X̃
⊤
X̃)−1X̃

⊤
ỹ into β, we get an unbised estimator of the form

Σ̂ =
1

N −m− s0
(ỹ − X̃β̃)(ỹ − X̃β̃)⊤, (4.2.7)

where s0 is the rank of X̃. For estimation of Ψ, it is noted that E[(yij−X⊤
ijβ)(yij−X⊤

ijβ)
⊤] =

Ψ + Σ for i = 1, . . . ,m and j = 1, . . . , ni, which implies that
∑m

i=1

∑ni
j=1E[(yi −Xiβ)(yi −

Xiβ)
⊤] = N(Ψ+Σ). Substituting the ordinary least squares estimator β̂

OLS
= (X⊤X)−1X⊤y

and Σ̂ into β and Σ, we get the consistent estimator

Ψ̂0 =
1

N

m∑
i=1

ni∑
j=1

(yij −X⊤
ijβ̂

OLS
)(yij −X⊤

ijβ̂
OLS

)⊤ − Σ̂. (4.2.8)

Taking the expectation of Ψ̂0, we can see that E[Ψ̂0] = Ψ+Bias
Ψ̂0

(Ψ), where

Bias
Ψ̂0

(Ψ,Σ) =
1

N

m∑
i=1

ni∑
j=1

X⊤
ij(X

⊤X)−1XD−1X(X⊤X)−1Xij

− 1

N

m∑
i=1

ni∑
j=1

(ΣX⊤
ij − niΨX

⊤
i )(X

⊤X)−1Xij

− 1

N

m∑
i=1

ni∑
j=1

X⊤
ij(X

⊤X)−1(XijΣ− niXiΨ), (4.2.9)

where D = block diag(D1, . . . ,Dm) for Di = Jni ⊗ Ψ + Ini ⊗ Σ, i = 1, . . . ,m. Let Ψ̂1 =
Ψ̂0 −Bias

Ψ̂0
(Ψ̂0, Σ̂). Then, Ψ̂1 is a second-order unbiased estimator of Ψ. Because Ψ̂1 takes a

negative value, we modify it as

Ψ̂ =Hdiag {max(λ1, 0), . . . ,max(λk, 0)}H⊤, (4.2.10)

where H is an orthogonal matrix such that Ψ̂1 =Hdiag (λ1, . . . , λk)H
⊤.

The consistency of Σ̂ and Ψ̂ can be shown under the assumptions:
(A1) The number of areas m tends to infinity, and k, s and ni’s are bounded with respect

to m.
(A2) X⊤X is nonsingular and X⊤X/m converges to a positive definite matrix.

Theorem 4.2.1 Assume conditions (A1) and (A2). Then, the following asymptotic properties
hold for Σ̂ and Ψ̂:

(1) Ψ̂ is a second-order unbiased estimator of Ψ, while Σ̂ is an unbiased estimator of Σ.
(2) Σ̂−Σ = Op(m

−1/2), Ψ̂−Ψ = Op(m
−1/2) and β̂(Ψ̂, Σ̂)− β = Op(m

−1/2).

(3) For any δ > 0, P (Ψ̂ ̸= Ψ̂1) = O(m−δ).

The proof is given in the section 4.6 Since Σ̂ and Ψ̂ are consistent, we can substitute them
into (4.2.6) to get the empirical best linear unbiased predictor (EBLUP)

θ̂
EB

a = c⊤a β̂(Ψ̂, Σ̂) + Ψ̂(Ψ̂+ n−1
a Σ̂)−1(ya −X

⊤
a β̂(Ψ̂, Σ̂)). (4.2.11)
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4.3 Evaluation of Uncertainty of EBLUP

The EBLUP suggested in (4.2.11) is expected to have a small estimation error, and it is im-
portant to measure how much the estimation error is. In this section, we derive a second-
order approximation of the mean squared error matrix (MSEM) of the EBLUP and provide a

second-order unbiased estimator of the MSEM. The MSEM of the EBLUP is MSEM(θ̂
EB

a ) =

E[{θ̂
EB

a − θa}{θ̂
EB

a − θa}⊤]. It is noted that

θ̂
EB

a − θa = {θ̃a(β,Ψ,Σ)− θa}+ {θ̂a(Ψ,Σ)− θ̃a(β,Ψ,Σ)}+ {θ̂
EB

a − θ̂a(Ψ,Σ)},

where θ̃a(β,Ψ,Σ) and θ̂a(Ψ,Σ) are given in (4.2.5) and (4.2.6). The following lemma which
will proved in the section 4.6 is useful for evaluating the mean square error matrix.

Lemma 4.3.1 β̂(Ψ,Σ) is independent of y−Xβ̂
OLS

and ỹ−X̃β̃, which implies that β̂(Ψ,Σ)

is independent of Σ̂ and Ψ̂. Also, β̂(Ψ,Σ) is independent of θ̂
EB

a − θ̂a(Ψ,Σ).

Noting that θ̂a(Ψ,Σ) − θ̃a(β,Ψ,Σ) = {c⊤a − Ψ(Ψ + n−1
a Σ)−1X

⊤
a }{β̂(Ψ,Σ) − β}, from

Lemma 4.3.1, we can decompose the MSEM as

MSEM(θ̂
EB

a ) =E[{θ̃a(β,Ψ,Σ)− θa}{θ̃a(β,Ψ,Σ)− θa}⊤]

+ E[{θ̂a(Ψ,Σ)− θ̃a(β,Ψ,Σ)}{θ̂a(Ψ,Σ)− θ̃a(β,Ψ,Σ)}⊤]

+ E[{θ̂
EB

a − θ̂a(Ψ,Σ)}{θ̂
EB

a − θ̂a(Ψ,Σ)}⊤]

=G1a(Ψ,Σ) +G2a(Ψ,Σ) + E[{θ̂
EB

a − θ̂a(Ψ,Σ)}{θ̂
EB

a − θ̂a(Ψ,Σ)}⊤],

where

G1a(Ψ,Σ) =(Ψ−1 + naΣ
−1)−1 = n−1

a ΨΛ−1
a Σ,

G2a(Ψ,Σ) =(c⊤a −ΨΛ−1
a X

⊤
a )(X

⊤D−1X)−1(ca −XaΛ
−1
a Ψ),

(4.3.1)

for Λa = Ψ + n−1
a Σ. In the following theorem which will be proved in the section 4.6, we

approximate the third term as

G3a(Ψ,Σ) =
n−2
a

N2
ΣΛ−1

a

m∑
i=1

n2
i

{
ΛiΛ

−1
a Λi + tr (Λ−1

a Λi)Λi

}
Λ−1

a Σ

+
n−2
a

N2(N −m)
(NΨ+mΣ)Λ−1

a

{
ΣΛ−1

a Σ+ tr (Λ−1
a Σ)Σ

}
Λ−1

a (NΨ+mΣ).

(4.3.2)

Theorem 4.3.1 The mean squared error matrix of the empirical Bayes estimator θ̂
EB

a is ap-
proximated as

MSEM(θ̂
EB

a ) = G1a(Ψ,Σ) +G2a(Ψ,Σ) +G3a(Ψ,Σ) +O(m−3/2). (4.3.3)
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We next provide a second-order unbiased estimator of the mean squared error matrix of

the EBLUP. A naive estimator of MSEM(θ̂
EB

a ) is the plug-in estimator of (4.3.3) given by
G1a(Ψ̂, Σ̂)+G2a(Ψ̂, Σ̂)+G3a(Ψ̂, Σ̂), but this has a second-order bias, because E[G1a(Ψ̂, Σ̂)] =
G1a(Ψ,Σ)+O(m−1). Correcting this second-order bias, we can derive the second-order unbiased
estimator

msem(θ̂
EB

a ) = G1a(Ψ̂, Σ̂) +G2a(Ψ̂, Σ̂) + 2G3a(Ψ̂, Σ̂). (4.3.4)

Theorem 4.3.2 Under the coditions (A1) and (A2), it holds that E[G1a(Ψ̂, Σ̂)+G3a(Ψ̂, Σ̂)] =
G1a(Ψ,Σ) +O(m−3/2) and

E[msem(θ̂
EB

a )] = MSEM(θ̂
EB

a ) +O(m−3/2),

namely, msem(θ̂
EB

a ) is a second-order unbiased estimator of MSEM(θ̂
EB

a ).

4.4 Confidence Interval for Linear Combination of EBLUP with
Corrected Coverage Probability

In this section, we consider the confidence interval of the liner combination ℓ⊤θa for ℓ ∈ Rk for
the a-th area in the MNER.

We begin by estimating the linear combination ℓ⊤θa = ℓ⊤(c⊤a β+va), which is the conditional
mean E[ℓ⊤ya | va] given va. A reasonable estimator is provided by the conditional expectation
E[ℓ⊤θa | ya] = ℓ⊤θ̃a(β,Ψ,Σ), where θ̃a(β,Ψ,Σ) is given by (4.2.5). By replacing β with the
generalized least estimator β̂(Ψ,Σ) = (X⊤D−1X)−1X⊤D−1y, the BLUP of ℓθa is provided by
ℓ⊤θ̂a(Ψ,Σ), where θ̂a(Ψ,Σ) is given in (4.2.6). Substituting (4.2.7) and (4.2.10) into the BLUP

yields the EBLUP ℓ⊤θ̂
EB

a for θ̂
EB

a given in (4.2.11). The mean squared error is E[(ℓ⊤θ̂
EB

a −
ℓ⊤θa)

2] = ℓ⊤MSEM(θ̂
EB

a )ℓ and and its second-order unbiased estimator is ℓ⊤msem(θ̂
EB

a )ℓ,
namely

E[ℓ⊤msem(θ̂
EB

a )ℓ] = E[(ℓ⊤θ̂
EB

a − ℓ⊤θa)2] + o(m−1),

where MSEM(θ̂
EB

a ) and msem(θ̂
EB

a ) are given in (4.3.3) and (4.3.4).

We now construct the confidence interval. The naive confidence interval is given by

INCI : ℓ⊤θ̂
EB

a ± zα/2 ×
√
ℓ⊤msem(θ̂

EB

a )ℓ, (4.4.1)

where zα/2 is the 100(1 − α/2)% percentile of the standard normal distribution. However,

this confidence interval does not have the second-order accuracy, namely P (ℓ⊤θa ∈ INCI) =
1−α+O(m−1). To derive a confidence interval with second-order accuracy, we need to evaluate

the second moment of ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ. Let

V (θ̂
EB

a ) =
n−4
a

N2

m∑
i=1

n2
i

{
(ℓ⊤ΣΛ−1

a Λiℓ)
2 + ℓ⊤ΣΛ−1

a ΛiΛ
−1
a Σℓ× ℓ⊤Λiℓ

}
+

2n−4
a m2

N2(N −m)
(ℓ⊤ΣΛ−1

a ΣΛ−1
a Σℓ)2 +

2n−2
a

N −m
(ℓ⊤ΨΛ−1

a ΣΛ−1
a Ψℓ)2

− 2n−3
a m

N(N −m)

{
ℓ⊤ΨΛ−1

a ΣΛ−1
a Ψℓ× ℓ⊤ΣΛ−1

a Σℓ+ (ℓ⊤ΣΛ−1
a ΣΛ−1

a Ψℓ)2
}
.

(4.4.2)
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Lemma 4.4.1 Under the coditions (A1) and (A2), it holds that

E
[{
ℓ⊤msem(θ̂

EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ
}2]

= V (θ̂
EB

a ) + o(m−1),

and for c ≥ 3,

E
[{
ℓ⊤msem(θ̂

EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ
}c]

= o(m−1).

Theorem 4.4.1 Under the coditions (A1) and (A2), it holds that for any z,

P
(
ℓ⊤θ̂

EB

a − {ℓ⊤msem(θ̂
EB

a )ℓ}1/2z ≤ ℓ⊤θa ≤ ℓ⊤θ̂
EB

a + {ℓ⊤msem(θ̂
EB

a )ℓ}1/2z
)

=2Φ(z)− 1− V (θ̂
EB

a )

4{ℓ⊤MSEM(θ̂
EB

a )ℓ}2
(z3 + z)ϕ(z) + o(m−1),

where Φ(·) and ϕ(·) are the distribution and density functions of the standard normal distribution.

Solving the equation

2Φ(z)− 1− V (θ̂
EB

a )

4{ℓ⊤MSEM(θ̂
EB

a )ℓ}2
(z3 + z)ϕ(z) = 1− α,

we get the solution given by

z∗ = zα/2 + (z3α/2 + zα/2)V (θ̂
EB

a )/8{ℓ⊤MSEM(θ̂
EB

a )ℓ}2,

which provides the improved confidence interval

IICI : ℓ⊤θ̂
EB

a ± {ℓ⊤msem(θ̂
EB

a )ℓ}1/2z∗. (4.4.3)

Then from Theorem 4.4.1, it follows that P (ℓ⊤θa ∈ IICI) = 1− α+ o(m−1).

4.5 Simulation and Empirical Studies

4.5.1 Finite sample performances

We now investigate finite sample performances of EBLUP in terms of MSEM and the second-
order unbiased estimator of MSEM by simulation.

[1] Setup of simulation experiments. We treat the multivariate Nested-Error model,

yij =X
⊤
ijβ + vi + εij , i = 1, . . . ,m, j = 1, . . . , ni.

We takem = 40, k = 2, 3 and β = (0.8,−0.5,−0.3, 0.6)⊤ for k = 2 and β = (0.8,−0.5,−0.3, 0.6, 0.4,−0.2)⊤

for k = 3. Moreover, we equally divided areas into four groups (G = 1, . . . , 4), so that each group
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has ten areas and the areas in the same group has the same sample size nG = 3G − 2. The
design matrix, Xij is 2k × k matrix, such that

Xij =

(
1 xi1 0 0
0 0 1 xi2

)⊤
,Xij =

1 xi1 0 0 0 0
0 0 1 xi2 0 0
0 0 0 0 1 xi3

⊤

for k = 2, 3 respectevely. We generate xij from uniform distribution on (−1, 1), which are fixed
through the simulation runs. As a setup of the covariance matrix Ψ of the random effects, we
consider

Ψ =

{
ρψ2ψ

⊤
2 + (1− ρ)diag(ψ2ψ

⊤
2 ) for k = 2,

ρψ3ψ
⊤
3 + (1− ρ)diag(ψ3ψ

⊤
3 ) for k = 3,

where ψ2 = (
√
1.5,

√
0.5)⊤, ψ3 = (

√
1.5, 1,

√
0.5)⊤, and diag(A) denotes the diagonal matrix

consisting of diagonal elements of matrix A. Here, ρ is the correlation coefficient, and we handle
the three cases ρ = 0.25, 0.5, 0.75. The cases of negative correlations are omitted, because we
observe the same results with those of positive ones. Concerning the dispersion matrices Σ
of sampling errors εi, we set Σ = Ik. We consider three patterns of distribution of vi, that
is, M1: vi is normally distributed, M2: vi follows multivariate t distribution with degrees of
freedom 5 and M3: vi follows multivariate chi-squared distribution with degrees of freedom 2.
The distribution of εi is normal.

[2] Comparison of MSEM. We begin with obtaining the true mean squared error matrices

of the EBLUP θ̂
EB

a = θ̂a(Ψ̂, Σ̂) by simulation. Let {y(r)i , i = 1, . . . ,m} be the simulated data

in the r-th replication for r = 1, . . . , R with R = 50, 000. Let Ψ̂
(r)

, Σ̂
(r)

and θ
(r)
a be the values

of Ψ̂, Σ̂ and θa =X
⊤
a β+va in the r-th replication. Then the simulated value of the true mean

squared error matrices is calculated by

MSEM(θ̂
EB

a ) = R−1
R∑
i=1

{
θ̂a(Ψ̂

(r)
, Σ̂

(r)
)− θ(r)a

}{
θ̂a(Ψ̂

(r)
, Ψ̂

(r)
)− θ(r)a

}⊤
. (4.5.1)

To measure relative improvement of EBLUP, we calculate the percentage relative improvement

in the average loss (PRIAL) of θ̂
EB

a over ya, defined by

PRIAL(θ̂
EB

a ,ya) = 100×
[
1− tr {MSEM(θ̂

EB

a )}
tr {MSEM(ya)}

]
.

It is also interesting to compare θ̂
EB

a with the EBLUP θ̂
uEB

a derived from the univariate Nestd-
Error model. Thus, we calculate the PRIAL given by

PRIAL(θ̂
EB

a , θ̂
uEB

a ) = 100×
[
1− tr {MSEM(θ̂

EB

a )}

tr {MSEM(θ̂
uEB

a )}

]
,

and those values are reported in Figure 4.1 and 4.2.

Figure 4.1 reports the PRIAL for k = 2 and three patterns of distribution of vi; M1, M2 and

M3. We can see that the performances of θ̂
EB

a are stable regardless of the distribution of vi. In
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all the cases, θ̂
EB

a improves on ya largely and the improvement rates are larger for larger ρ; for

normal case (M1). On the other hand, θ̂
EB

a improves on θ̂
uEB

a for large ρ, but the univariate

EBLUP θ̂
uEB

a is slightly better than θ̂
EB

a for ρ = 0.25 for some areas, but the difference is not
significant. This is because the low accuracy in estimation of the covariance matrix Ψ and Σ has
more adverse influence on prediction than the benefit from incorporating the small correlation
into the estimation. Moreover, the PRIAL is larger for the groups with small sample size. This
is reasonable because the benefit given by incorporating the information from neibouring areas
is large for such groups.

Figure 4.2 reports the PRIAL for k = 3 and a pattern of distribution of vi; M1. The results
are almost the same with the case for k = 2. The PRIAL is larger for k = 3 than for k = 2 in the
case of ρ = 0.75, but smaller in the case of ρ = 0.25. This is because when m is fixed as m = 40,
the accuracy in estimation of the covariance matrices gets smaller for the larger dimension.
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Figure 4.1: PRIAL for ρ = 0.25 (real line), ρ = 0.5 (dashed line) and ρ = 0.75 (dotted line) in
case of k = 2.

[3] Finite sample performances of the MSEM estimator. We next investigate the

performance of the second-order unbiased estimator msem(θ̂
EB

a ) of MSEM given in Theorem
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Figure 4.2: PRIAL for ρ = 0.25 (real line), ρ = 0.5 (dashed line) and ρ = 0.75 (dotted line) in
case of k = 3.

4.3.2. We use the same data generating process as mentioned above and we take only k = 2.
We consider the normal case (M1) as a pattern of distributions for vi. The simulated values
of the MSEM are obtained from (4.5.1) based on R = 50, 000 simulation runs. Then, based on
R = 5, 000 simulation runs, we calculate the relative bias (RB) of MSEM estimators given by

RBa =
1

R

R∑
r=1

msem(θ̂
EB(r)

a )−MSEM(θ̂
EB

a )

MSEM(θ̂
EB

a )

where msem(θ̂
EB(r)

a ) is the MSEM estimator in the r-th replication. In Table 4.1, we report
mean values of RBa in each group. For comparison, results for the naive MSEM estimator,
without any bias correction, are reported in Table 4.1 as well. The naive MSEM estimator is the
plug-in estimator of the asymptotic MSEM (4.3.3). The relative bias is small for the diagonal
elements, less than 10% in almost the cases, whereas considerably large for off-diagonal elements.
The naive MSEM estimator is more biased than the analytical MSEM estimator for diagonal
elements in all cases, so that the bias correction in MSEM estimator is successful. On the other
hand, the analytical MSEM estimator is more biased slightely than the naive MSEM estimator
for off-diagonal elements in some cases.

[4] Finite sample performances of the confidence interval. We investigate the perfor-
mance of the improved confidence interval given in (4.4.3). Table 4.2 reports values of coverage
probabilities (CP) and average length (AL) for 1 − α = 95% confidence coefficient, where the
setup of the simulation experiment is the same as above, namely the three patterns of distribu-
tions of vi, M1, M2 and M3 and the three cases of ρ = 0.25, 0.5, 0.75 are treated. Table 4.2 also
reports values of CP and AL in parentheses for the naive confidence interval (4.4.1).

For all patterns of distributions of vi and correlation coefficients, values of CP are close to the
nominal level of 0.95 and are higher than those for the naive method, especially for areas with
small sample size. This is coincident with Diao et al. (2014), which considered the confidence
interval estimator under the Fay-Herriot model. Values of CP for areas with large sample sizes
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ρ = 0.25 ρ = 0.5 ρ = 0.75
RB NRB RB NRB RB NRB

G1

[
−3.5 0.8
0.8 −8.1

] [
−6.5 −0.6
−0.6 −12.2

] [
−4.6 −1.8
−1.8 −7.7

] [
−7.7 −3.2
−3.2 −11.8

] [
−3.5 −2.7
−2.7 −7.6

] [
−6.3 −4.3
−4.3 −11.7

]
G2

[
−1.9 26.7
26.7 −4.1

] [
−4.0 36.1
36.1 −8.8

] [
−0.5 0.9
0.9 −3.1

] [
−2.8 8.1
8.1 −8.5

] [
−0.6 3.7
3.7 −4.7

] [
−3.3 9.8
9.8 −11.4

]
G3

[
−0.7 54.8
54.8 −2.7

] [
−2.3 77.1
77.1 −6.9

] [
−0.4 19.3
19.3 −2.1

] [
−2.3 37.5
37.5 −7.2

] [
−1.7 9.9
9.9 −2.9

] [
−4.3 26.9
26.9 −10.6

]
G4

[
−0.2 30.2
30.2 −0.5

] [
−1.5 56.5
56.5 −4.2

] [
0.5 5.6
5.6 −0.3

] [
−1.1 29.9
29.9 −5.0

] [
0.4 0.1
0.1 0.6

] [
−2.3 28.1
28.1 −7.8

]

Table 4.1: The Mean Values of Percentage Relative Bias in Each Group (RB) and Relative Bias
of Naive MSE Estimator (RBN).

are slightly higher than those for the naive method, but the differences are negligibly small.
Values of AL are also larger than those for the naive method for areas with small sample size,
and the diferrence is negligible for areas with large sample size.

Normal t chi-square
ρ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

G1 CP 0.949 0.950 0.957 0.946 0.945 0.950 0.940 0.940 0.943
(0.936) (0.933) (0.928) (0.935) (0.929) (0.923) (0.927) (0.924) (0.918)

AL 3.700 3.330 2.768 3.655 3.279 2.733 3.615 3.239 2.705
(3.501) (3.108) (2.512) (3.459) (3.073) (2.472) (3.412) (3.023) (2.434)

G2 CP 0.947 0.943 0.941 0.945 0.941 0.937 0.941 0.940 0.935
(0.945) (0.940) (0.937) (0.943) (0.940) (0.932) (0.939) (0.938) (0.931)

AL 2.340 2.239 1.978 2.357 2.218 1.948 2.339 2.197 1.924
(2.364) (2.226) (1.950) (2.343) (2.204) (1.925) (2.321) (2.177) (1.898)

G3 CP 0.947 0.947 0.946 0.947 0.947 0.947 0.948 0.946 0.945
(0.946) (0.946) (0.944) (0.947) (0.946) (0.945) (0.947) (0.944) (0.943)

AL 1.920 1.845 1.706 1.905 1.833 1.687 1.896 1.822 1.673
(1.909) (1.839) (1.690) (1.897) (1.826) (1.676) (1.886) (1.811) (1.661)

G4 CP 0.949 0.949 0.951 0.951 0.949 0.951 0.950 0.951 0.952
(0.947) (0.948) (0.949) (0.950) (0.948) (0.950) (0.949) (0.950) (0.950)

AL 1.653 1.607 1.531 1.643 1.600 1.520 1.639 1.595 1.514
(1.644) (1.602) (1.520) (1.636) (1.594) (1.512) (1.630) (1.586) (1.505)

Table 4.2: Coverage probabilities (CP) and coverage length (AL) for nominal 95% confidence
intervals.

4.5.2 Illustrative example

This example, primarily for illustration, uses the multivariate Nested-Error regression model
(4.2.1) and data from the posted land price data along the Keikyu train line from 1998 to 2001.
This train line connects the suburbs in the Kanagawa prefecture to the Tokyo metropolitan area.
Those who live in the suburbs in the Kanagawa prefecture take this line to work or study in
Tokyo everyday. Thus, it is expected that the land price depends on the distance from Tokyo.
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The posted land price data are available for 53 stations on the Keikyu train line, and we consider
each station as a small area, namely, m = 53.

For the i-th station, data of ni land spots are available, where ni varies around 4 and some
areas have only one observation. For i = 1, . . . ,m, observations yij = (yij1, yij2, yij3)

⊤ denotes
the difference between the value of the posted land price (Yen/1,000) for the unit meter squares
of the j-th spot from 1998 to 2001, where yij1 is the a difference between 1998 and 1999, yij2
is the a difference between 1999 and 2000 and yij3 is the a difference between 2000 and 2001.
As auxiliary variables, we use the data (Ti, Dij , FARij). Ti is the time to take from the nearby
station i to the Tokyo station around 8:30 in the morning, Dij is the value of geographical
distance from the spot j to the station i and FARij denotes the floor-area ratio, or ratio of
building volume to lot area of the spot j. Then the regressor in the model (4.2.1) is

Xij =

 1 FARij Ti Dij 0 0 0 0 0 0 0 0
0 0 0 0 1 FARij Ti Dij 0 0 0 0
0 0 0 0 0 0 0 0 1 FARij Ti Dij

⊤

.

The estimates of the covariance matrix Ψ and Σ are

Ψ̂ =

43.4 27.3 28.4
27.3 33.4 20.4
28.4 20.4 28.5

 and Σ̂ =

169.2 127.3 101.0
127.3 113.5 85.3
101.0 85.3 77.6

 .

Thus, the estimated correlation coefficient of random effects ρ = (ρ12, ρ13, ρ23)
⊤ is (0.72, 0.81, 0.66),

where ρab is the correlation coefficient of va and vb. The estimates of the regression coefficients
are β̂ = (−4.28, 16.67,−1.79,−0.13, 6.32, 13.16,−2.34,−0.02,−4.22, 11.16,−0.33,−0.06)⊤.

All the estimated values of regression coefficients of Ti and Dij are negative values which
leads to the natural result that the Ti and Dij have negative influence on yij , whose magnitude
are almost unchanged for three years. On the other hand, the magnitude of the influence of
FARij on yij decreases during the same time. The obtained values of EBLUP for a difference
between the posted land price data in 2000 and 2001 given in (4.2.11) are give in Table 4.3 for
selected 15 areas. To see the difference of predicted values of MNER and NER, Figure 4.3 reports

the difference between the degree of shrinkage, which is caluculated by |dif(θ̂
EB

) − dif(θ̂
uEB

)|
where dif(θ) = |yij3−θij3|. It can be seen that the difference gets smaller as an area sample size
ni gets larger. This is because the smaple mean is reliable when ni is large, so that the sample
mean does not be shrunk and the the degree of shrinkage of MNER and NER have almost no
difference. In Table 4.3, we also provide the estimats of squared root of MSE (SMSE) given in
(4.3.4). It is revealed from Table 4.3 that SMSE of MNER is smaller than that of NER when
ni is small. On the other hand, SMSE of MNER is larger than that of NER when ni is large,
particularly larger than 5. This is because the low accuracy in estimation of the covariance
matrix Ψ and Σ has more adverse influence on prediction than the benefit from incorporating
the small correlation into the estimation. Table 4.4 reports lower bounds (LB) and upper bounds
(UB) of the 95% confidence interval estimator of the difference between the value of the posted
land price from 1998 to 2001, that is ℓ⊤θa where ℓ = (1, 1, 1)⊤, for selected 15 areas.

4.6 Proofs

In this section, we use the notations Λi = Ψ+ n−1
i Σ and Λ̂i = Ψ̂+ n−1

i Σ̂ for i = 1, . . . ,m.
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sample MNER NER
area ni mean EBLUP SMSE EBLUP SMSE

16 1 3.0 2.94 4.93 9.66 5.03
17 1 23.0 29.70 4.85 27.32 4.96
31 1 75.0 38.93 4.74 41.33 4.85
21 2 19.5 19.12 4.29 24.76 4.35
22 2 9.0 11.37 4.29 13.80 4.35
13 3 14.0 16.35 3.87 15.46 3.89
34 3 37.66 36.83 3.87 35.06 3.89
12 4 27.75 28.50 3.58 28.02 3.57
35 4 25.0 25.81 3.56 24.05 3.56
9 5 9.2 9.05 3.38 9.38 3.35
7 6 21.33 18.65 3.15 19.32 3.11
26 7 17.14 18.34 2.95 18.02 2.92
40 8 13.63 11.48 2.81 11.40 2.77
52 10 6.0 6.33 2.58 6.52 2.54
41 11 17.0 14.50 2.47 14.71 2.43

Table 4.3: The estimated results for PLP Data for selected 15 areas.

area ni sample mean EBLUP LB UB

16 1 73.0 48.99 14.97 83.02
17 1 74.0 107.75 74.24 141.24
31 1 261.0 136.79 103.93 169.65
21 2 132.5 109.78 80.78 138.78
22 2 64.0 63.46 34.48 92.44
13 3 50.0 58.86 32.61 85.11
34 3 113.66 120.87 94.63 147.11
12 4 103.5 104.60 80.20 129.00
35 4 71.75 80.66 56.43 104.89
9 5 23.2 21.91 -1.28 45.11
7 6 67.0 56.34 34.68 77.99
26 7 65.86 69.62 49.25 89.99
40 8 35.13 28.40 8.99 47.82
52 10 14.9 15.38 -2.55 33.31
41 11 47.55 38.91 21.75 56.06

Table 4.4: 95% confidence interval estimator for PLP Data for selected 15 areas.
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Figure 4.3: Plots of the difference of shrinkage degree against area sample size in MNER and
NER.
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4.6.1 Proof of Theorem 4.2.1

We first show the results (1) and (2) for the estimators Ψ̂1 and Σ̂. Clearly, E[Σ̂] = Σ. To
show that E[Ψ̂1 −Ψ] = O(m−3/2), we begin by writing Ψ̂0 −Ψ as

Ψ̂0 −Ψ =
1

n

m∑
i=1

ni∑
j=1

{(yij −X⊤
ijβ)(yij −X⊤

ijβ)
⊤ − (Ψ+Σ)}

+
1

n

m∑
i=1

ni∑
j=1

X⊤
ij(β̂

OLS
− β)(β̂

OLS
− β)⊤Xij −

1

n

m∑
i=1

ni∑
j=1

(yij −X⊤
ijβ)(β̂

OLS
− β)⊤Xij

− 1

n

m∑
i=1

ni∑
j=1

X⊤
ij(β̂

OLS
− β)(yij −Xijβ)− (Σ̂−Σ),

which yields the bias given in (4.2.9). Since Σ̂ is unbiased, the bias Bias
Ψ̂0

(Ψ,Σ) of Ψ̂0 is of

order O(m−1). Using the results that Ψ̂0−Ψ = Op(m
−1/2) and Σ̂−Σ = Op(m

−1/2), which will

be shown below, we can see that Ψ̂1 = Ψ̂0−Bias
Ψ̂0

(Ψ̂0, Σ̂) is a second-oder unbiased estimator
of Ψ.

For (2), it is noted that Σ̂−Σ is approximated as

Σ̂−Σ =
1

N −m

m∑
i=1

{ ni∑
j=1

(εij − ε̄i)(εij − ε̄i)⊤ − (ni − 1)Σ
}
+Op(m

−1). (4.6.1)

It is here noted that {
∑ni

j=1(εij−ε̄i)(εij−ε̄i)⊤−(ni−1)Σ}/(N−m) for i = 1, . . . ,m are mutually

independent and E{
∑ni

j=1(εij − ε̄i)(εij − ε̄i)⊤− (ni− 1)Σ}/(N −m) = 0 for i = 1, . . . ,m. Then

we can show that
√
m(Σ̂−Σ) converges to a multivariate normal distributionthe because of the

finiteness of moments of normal random variables, which implies that Σ̂−Σ = Op(m
−1/2).

Concerning Ψ̂1 − Ψ = Op(m
−1/2), from the fact that Bias

Ψ̂0
(Ψ̂0, Σ̂) = Op(m

−1), it is

sufficient to show that Ψ̂0 −Ψ = Op(m
−1/2). Then Ψ̂0 −Ψ is approximated as

Ψ̂0 −Ψ =
1

N

m∑
i=1

{ ni∑
j=1

(vi + εij)(vi + εij)
⊤ − ni(Ψ+Σ)

}
− (Σ̂0 −Σ) +Op(m

−1). (4.6.2)

It is here noted that {
∑ni

j=1(vi + εij)(vi + εij)
⊤ − ni(Ψ+Σ)}/N for i = 1, . . . ,m are mutually

independent and E{
∑ni

j=1(vi + εij)(vi + εij)
⊤ − ni(Ψ + Σ)}/N = 0 for i = 1, . . . ,m. Then

we can show that
√
m(Ψ̂0 −Ψ) converges to a multivariate normal distribution because of the

finiteness of moments of normal random variables, which implies that Ψ̂0 −Ψ = Op(m
−1/2).

We next prove (3) from the fact that
√
m(Ψ̂1 − Ψ) = Op(1). The difference between Ψ̂

and Ψ̂1 is in the case that Ψ̂1 is not nonegative definite. Thus, we evaluare the probability
P (a⊤Ψ̂1a < 0) for some a ∈ Rk. It is noted that the event a⊤Ψ̂1a < 0 is equivalent to
−
√
ma⊤(Ψ̂1 −Ψ)a > a⊤Ψa. Using the Markov inequality, we observe that for any δ > 0,

P (a⊤Ψ̂1a < 0) =P (−
√
ma⊤(Ψ̂1 −Ψ)a >

√
ma⊤Ψa)

≤P (|
√
ma⊤(Ψ̂1 −Ψ)a| >

√
ma⊤Ψa)

≤E
[( |√ma⊤(Ψ̂1 −Ψ)a|√

ma⊤Ψa

)2δ]
= O(m−δ),

78



which proves (3) of Theorem 4.2.1.

Using the result (3) of Theorem 4.2.1, we can show that E[Ψ̂]−Ψ = O(m−3/2) and Ψ̂−Ψ =
Op(m

−1/2).

Finally we verify that β̂(Ψ̂, Σ̂)− β = Op(m
−1/2). Note that β̂(Ψ̂, Σ̂)− β is decomposed as

{β̂(Ψ̂, Σ̂)− β̂(Ψ,Σ)}+ {β̂(Ψ,Σ)− β}. For β̂(Ψ,Σ)− β, it is noted that

β̂(Ψ,Σ)− β = (X⊤D−1X)−1X⊤D−1(y −Xβ).

Then, Cov(β̂(Ψ,Σ)−β) = (X⊤D−1X)−1 = O(1/m) and this implies β̂(Ψ,Σ)−β = Op(m
−1/2).

We next evaluate β̂(Ψ̂, Σ̂)− β̂(Ψ,Σ) as

β̂(Ψ̂, Σ̂)− β̂(Ψ,Σ)

=(X⊤D̂
−1
X)−1X⊤D̂

−1
y − (X⊤D−1X)−1X⊤D−1y

=(X⊤D̂
−1
X)−1X⊤(D̂

−1
−D−1)y + {(X⊤D̂

−1
X)−1 − (X⊤D−1X)−1}X⊤D−1y

=I1 + I2, (4.6.3)

where D̂ is obtained by replacing Σ and Ψ in D with Σ̂0 and Ψ̂0 respectively. First, I1 is
written as

I1 = −(X⊤D̂
−1
X)−1X⊤D̂

−1
(D̂ −D)D−1y, (4.6.4)

which is of order Op(m
−1/2), because (X⊤D̂

−1
X) = Op(m) and X⊤D̂

−1
(D̂ − D)D−1y =

Op(m
1/2). Next, I2 is rewritten as

I2 =− (X⊤D̂
−1
X)−1X⊤(D̂

−1
−D−1)X(X⊤D−1X)−1X⊤D−1y

=(X⊤D̂
−1
X)−1X⊤D̂

−1
(D̂ −D)D−1X(X⊤D−1X)−1X⊤D−1y (4.6.5)

which is of order Op(m
−1/2), becauseX⊤D̂

−1
X = Op(m),X⊤D̂

−1
(D̂−D)D−1X = Op(m

1/2),

X⊤D−1y = Op(m). Thus, we have β̂(Ψ̂, Σ̂)− β̂(Ψ,Σ) = Op(m
−1/2), and it is concluded that

β̂(Ψ̂, Σ̂)− β = Op(m
−1/2). □

4.6.2 Proof of Lemma 4.3.1

The covariance of y −Xβ̂
OLS

and β̂(Ψ,Σ) is

E[(y −Xβ̂
OLS

)(β̂(Ψ,Σ)− β)⊤]X⊤D−1X

=E[{(y −Xβ)−X(β̂
OLS

− β)}(y −Xβ)⊤]D−1X

=(I −X(X⊤X)−1X⊤)E[(y −Xβ)(y −Xβ)⊤]D−1X

=(I −X(X⊤X)−1X⊤)DD−1X = 0,
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which implies that β̂(Ψ,Σ) is independent of y −Xβ̂
OLS

. We next note that ỹ = Qy and

X̃ = QX where Q = block diag(P 1 ⊗ Ik, . . . ,Pm ⊗ Ik) for P i = Ini − n−1
i Jni . Then,

E[(ỹ − X̃β̃)(β̂(Ψ,Σ)− β)⊤]X⊤D−1X

=E[{(ỹ − X̃β)− X̃(X̃
⊤
X̃)−X̃

⊤
(ỹ − X̃β)⊤}(y −Xβ)⊤]D−1X

={Q−QX(X⊤Q⊤QX)−X⊤Q⊤Q}E[(y −Xβ)(y −Xβ)⊤]D−1X

=QX −QX(X⊤Q⊤QX)−X⊤Q⊤QX,

which is equal to zero from the property of the generalized inverse. Thus, β̂(Ψ,Σ) is independent

of ỹ − X̃β̃, so that β̂(Ψ,Σ) is independent of Σ̂ and Ψ̂.
It is also noted that

θ̂
EB

a − θ̂a(Ψ,Σ)

=c⊤a {β̂(Ψ̂, Σ̂)− β̂(Ψ,Σ)}+ Ψ̂Λ̂
−1

a {ya −X
⊤
a β̂(Ψ̂, Σ̂)} −ΨΛ−1

a {ya −X
⊤
a β̂(Ψ,Σ)}

=c⊤a {β̂(Ψ̂, Σ̂)− β̂(Ψ,Σ)}+ (Ψ̂Λ̂
−1

a −ΨΛ−1
a )(ya −X

⊤
a β̂

OLS
)

− Ψ̂Λ̂
−1

a X
⊤
a {β̂(Ψ̂, Σ̂)− β̂

OLS
}+ΨΛ−1

a X
⊤
a {β̂(Ψ,Σ)− β̂

OLS
},

which is a function of y−Xβ̂
OLS

and Σ̂, because β̂(Ψ,Σ))−β̂
OLS

= (X⊤D−1X)−1X⊤D−1(y−
Xβ̂

OLS
)− (X⊤X)−1X⊤(y −Xβ̂

OLS
). Hence, θ̂

EB

a − θ̂a(Ψ,Σ) is independent of β̂(Ψ,Σ). □

4.6.3 Proof of Theorem 4.3.1

We shall prove that E[{θ̂
EB

a − θ̂a(Ψ,Σ)}{θ̂
EB

a − θ̂a(Ψ,Σ)}⊤] = G3a(Ψ,Σ) + Op(m
−3/2). It

is observed that

θ̂
EB

a − θ̂a(Ψ,Σ)

=(Ψ̂Λ̂
−1

a −ΨΛ−1
a )(ya −X

⊤
a β) + (c⊤a − Ψ̂Λ̂

−1

a X
⊤
a ){β̂(Ψ̂, Σ̂)− β}

− (c⊤a −ΨΛ−1
a X

⊤
a ){β̂(Ψ,Σ)− β}.

We can see that

(Ψ̂Λ̂
−1

a −ΨΛ−1
a )(ya −X

⊤
a β)

=
{
Ψ̂(Λ̂

−1

a −Λ−1
a ) + (Ψ̂−Ψ)Λ−1

a

}
(ya −X

⊤
a β)

=
{
(Ik − Ψ̂Λ̂

−1

a )(Ψ̂−Ψ)− Ψ̂Λ̂
−1

a n−1
a (Σ̂−Σ)

}
Λ−1

a (ya −X
⊤
a β)

=
{
n−1
a ΣΛ−1

a (Ψ̂−Ψ)−ΨΛ−1
a n−1

a (Σ̂−Σ)
}
Λ−1

a (ya −X
⊤
a β) +Op(m

−1)

and

(c⊤a − Ψ̂Λ̂
−1

a X
⊤
a ){β̂(Ψ̂, Σ̂)− β}

=(c⊤a −ΨΛ−1
a X

⊤
a ){β̂(Ψ̂, Σ̂)− β} − (Ψ̂Λ̂

−1

a −ΨΛ−1
a )X

⊤
a {β̂(Ψ̂, Σ̂)− β}

=(c⊤a −ΨΛ−1
a X

⊤
a ){β̂(Ψ̂, Σ̂)− β}

+
{
n−1
a Σ̂Λ̂

−1

a (Ψ̂−Ψ)− Ψ̂Λ̂
−1

a n−1
a (Σ̂−Σ)

}
Λ−1

a X
⊤
a {β̂(Ψ̂, Σ̂)− β}

=
{
c⊤a −ΨΛ−1

a X
⊤
a

}
{β̂(Ψ̂, Σ̂)− β}+Op(m

−1).
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Thus, we have

θ̂
EB

a − θ̂a(Ψ,Σ) =
{
n−1
a ΣΛ−1

a (Ψ̂−Ψ)−ΨΛ−1
a n−1

a (Σ̂−Σ)
}
Λ−1

a (ya −X
⊤
a β)

+ (c⊤a −ΨΛ−1
a X

⊤
a ){β̂(Ψ̂, Σ̂)− β}+Op(m

−1)

=I1 + I2 +Op(m
−1). (say)

For I2, it is noted that

β̂(Ψ̂, Σ̂)− β̂(Ψ,Σ) =
{
(X⊤D̂

−1
X)−1 − (X⊤D−1X)−1

}
X⊤D̂

−1
(y −Xβ)

+ (X⊤D−1X)−1X⊤(D̂
−1

−D−1)(y −Xβ)
=I21 + I22, (say).

We can evaluate I21 as

I21 = (X⊤D−1X)−1X⊤D̂
−1

(D̂ −D)D−1X{β̂(Ψ̂,Σ)− β} = Op(m
−1),

becauseX⊤D−1X = O(m),X⊤D̂
−1

(D̂−D)D−1X = Op(m
1/2) and β̂(Ψ̂, Σ̂)−β = Op(m

−1/2)
from Theorem 4.2.1 (2). We next estimate I22 as

I22 =− (X⊤D−1X)−1
{ m∑

i=1

X⊤
i A(Ψ̂, Σ̂)Xi

}
×
{ m∑

i=1

X⊤
i A(Ψ̂, Σ̂)Xi

}−1
m∑
i=1

X⊤
i A(Ψ̂, Σ̂)(yi −Xiβ),

where

A(Ψ̂, Σ̂) = (Jni ⊗ Ψ̂+ Ini ⊗ Σ̂)−1
{
Jni ⊗ (Ψ̂−Ψ) + Ini ⊗ (Σ̂−Σ)

}
(Jni ⊗Ψ+ Ini ⊗Σ)−1.

It can be seen that I22 = Op(m
−1) from the same arguments as in I21. Thus, it follows that

I2 = Op(m
−1).

From equations (4.6.1) and (4.6.2),

θ̂
EB

a − θ̂a(Ψ,Σ)

=
{
n−1
a ΣΛ−1

a (Ψ̂−Ψ)−ΨΛ−1
a n−1

a (Σ̂−Σ)
}
Λ−1

a (ya −X
⊤
a β) +Op(m

−1) (4.6.6)

=
[n−1

a

N
ΣΛ−1

a

m∑
i=1

ni∑
j=1

{
(vi + εij)(vi + εij)

⊤ − (Ψ+Σ)
}

− n−1
a

N −m
(Ψ+Σ)Λ−1

a

m∑
i=1

ni∑
j=1

{
(εij − ε̄i)(εij − ε̄i)⊤ − (1− n−1

i )Σ
}]

×Λ−1
a (ya −X

⊤
a β) +Op(m

−1)

=
n−1
a

N
ΣΛ−1

a

m∑
i=1

ni

{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}
Λ−1

a (va + ε̄a)
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− n−1
a

N(N −m)
(NΨ+mΣ)Λ−1

a

m∑
i=1

ni∑
j=1

{
(εij − ε̄i)(εij − ε̄i)⊤ − (1− n−1

i )Σ
}

×Λ−1
a (va + ε̄a) +Op(m

−1)

=A1(y)−A2(y) +Op(m
−1), (say). (4.6.7)

Note that E[A1(y){A2(y)}⊤] = 0 because vi + ε̄i is independent of εij − ε̄i. Hence, we need to
evaluate E[A1(y){A1(y)}⊤] and E[A2(y){A2(y)}⊤].

Concerning E[A1(y){A1(y)}⊤], it can be seen that

E
[ m∑

i=1

ni

{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}
Λ−1

a (va + ε̄a)(va + ε̄a)
⊤Λ−1

a

m∑
j=1

nj

{
(vj + ε̄j)(vj + ε̄j)

⊤ −Λj

}]
=

m∑
i=1

n2
iE

[{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}
Λ−1

a (va + ε̄a)(va + ε̄a)
⊤Λ−1

a

{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}]
=
∑
i ̸=a

n2
iE

[{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}
Λ−1

a

{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}]
+O(1)

=
∑
i ̸=a

n2
i

{
ΛiΛ

−1
a Λi + tr (Λ−1

a Λi)Λi

}
+O(1) =

m∑
i=1

n2
i

{
ΛiΛ

−1
a Λi + tr (Λ−1

a Λi)Λi

}
+O(1),

so that we have

E[A1(y){A1(y)}⊤] =
n−2
a

N2
ΣΛ−1

a

m∑
i=1

n2
i

{
ΛiΛ

−1
a Λi + tr (Λ−1

a Λi)Λi

}
Λ−1

a Σ+O(m−2). (4.6.8)

Concerning the evaluation of E[A2(y){A2(y)}⊤], let W =
∑m

i=1

∑ni
j=1(εij − ε̄i)(εij − ε̄i)⊤

for simplicity. Then, W has the Wishart distribution Wk(N − m,Σ). Because va + ε̄a is
independent of εij − ε̄i, it follows that

E
[ m∑

i=1

ni∑
j=1

{
(εij − ε̄i)(εij − ε̄i)⊤ − (1− n−1

i )Σ
}
Λ−1

a (va + ε̄a)(va + ε̄a)
⊤Λ−1

a

×
m∑
k=1

nk∑
ℓ=1

{
(εkℓ − ε̄k)(εkℓ − ε̄k)⊤ − (1− n−1

k )Σ
}]

=E
[
{W − (N −m)Σ}Λ−1

a (va + ε̄a)(va + ε̄a)
⊤Λ−1

a {W − (N −m)Σ}
]

=E
[
{W − (N −m)Σ}Λ−1

a {W − (N −m)Σ}
]
.

From the properties of the Wishart distribution, it is noted that E[W ] = (N − m)Σ and
E[WΛ−1

a W ] = (N −m)(N −m+ 1)ΣΛ−1
a Σ+ (N −m)tr (Λ−1

a Σ)Σ. Thus,

E[A2(y){A2(y)}⊤] =
n−2
a

N2(N −m)2
(NΨ+mΣ)Λ−1

a E
[
{W − (N −m)Σ}Λ−1

a {W − (N −m)Σ}
]

×Λ−1
a (NΨ+mΣ)

=
n−2
a

N2(N −m)
(NΨ+mΣ)Λ−1

a

{
ΣΛ−1

a Σ+ tr (Λ−1
a Σ)Σ

}
Λ−1

a (NΨ+mΣ).

(4.6.9)

Combining (4.6.7), (4.6.8) and (4.6.9) gives the expression in (4.3.2). □
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4.6.4 Proof of Theorem 4.3.2

From (2) in Theorem 4.2.1, it is sufficient to show this approximation for Ψ̂. We can rewrite
G1a(Ψ̂) as

G1a(Ψ̂, Σ̂) =n−1
a Ψ̂(Ψ̂+ n−1

a Σ̂)−1Σ̂

=G1a(Ψ,Σ) + n−2
a ΣΛ−1

a (Ψ̂−Ψ)Λ−1
a Σ+ n−1

a ΨΛ−1
a (Σ̂−Σ)Λ−1

a Ψ

− n−2
a ΣΛ−1

a (Ψ̂−Ψ)Λ−1
a (Ψ̂−Ψ)Λ−1

a Σ− n−2
a ΨΛ−1

a (Σ̂−Σ)Λ−1
a (Σ̂−Σ)Λ−1

a Ψ

+ n−2
a ΣΛ−1

a (Ψ̂−Ψ)Λ−1
a (Σ̂−Σ)Λ−1

a Ψ+ n−2
a ΨΛ−1

a (Σ̂−Σ)Λ−1
a (Ψ̂−Ψ)Λ−1

a Σ

+Op(m
−3/2),

which implies that

G1a(Ψ,Σ)− E[G1a(Ψ̂, Σ̂)]

=E
[
n−2
a ΣΛ−1

a (Ψ̂−Ψ)Λ−1
a (Ψ̂−Ψ)Λ−1

a Σ+ n−2
a ΨΛ−1

a (Σ̂−Σ)Λ−1
a (Σ̂−Σ)Λ−1

a Ψ

− n−2
a ΣΛ−1

a (Ψ̂−Ψ)Λ−1
a (Σ̂−Σ)Λ−1

a Ψ− n−2
a ΨΛ−1

a (Σ̂−Σ)Λ−1
a (Ψ̂−Ψ)Λ−1

a Σ
]

+O(m−3/2),

because Ψ̂ is second-order unbiased and Σ̂ is unbiased. On the other hand, from (4.6.6), it
follows that

E[{θ̂
EB

a − θ̂a(Ψ,Σ)}{θ̂
EB

a − θ̂a(Ψ,Σ)}⊤]

=E
[{

n−1
a ΣΛ−1

a (Ψ̂−Ψ)−ΨΛ−1
a n−1

a (Σ̂−Σ)
}
Λ−1

a (ȳa − X̄
⊤
a β)

× (ȳa − X̄
⊤
a β)

⊤Λ−1
a

{
(Ψ̂−Ψ)Λ−1

a n−1
a Σ− n−1

a (Σ̂−Σ)Λ−1
a Ψ

}]
+O(m−3/2)

=E
[{

n−1
a ΣΛ−1

a (Ψ̂−Ψ)−ΨΛ−1
a n−1

a (Σ̂−Σ)
}
Λ−1

a

{
(Ψ̂−Ψ)Λ−1

a n−1
a Σ− n−1

a (Σ̂−Σ)Λ−1
a Ψ

}]
+O(m−3/2).

Thus, we have

G1a(Ψ,Σ)− E[G1a(Ψ̂, Σ̂)] = E[{θ̂
EB

a − θ̂a(Ψ,Σ)}{θ̂
EB

a − θ̂a(Ψ,Σ)}⊤] +O(m−3/2),

which yields G1a(Ψ,Σ)−E[G1a(Ψ̂, Σ̂)] = G3a(Ψ,Σ)+O(m−3/2). Since G3a(Ψ,Σ) = O(m−1),
one gets

G1a(Ψ,Σ) = E[G1a(Ψ̂, Σ̂) +G3a(Ψ̂, Σ̂)] +O(m−3/2),

and Theorem 4.3.2 is established. □

4.6.5 Proof of Theorem 4.4.1

The proof is done along the line given in Diao et al. (2014). Let PX = Ik −X(X⊤X)−1X⊤.

From Lemma 4.3.1, ℓ⊤(θ̂
EB

a −θ̂a(Ψ,Σ)) is a function of PXy and is independent of ℓ⊤(θ̂a(Ψ,Σ)−
θa) given PXy. It is noted that E[ℓ⊤(θ̂a(Ψ,Σ) − θa)(θ̂a(Ψ,Σ) − θa)⊤ℓ] = ℓ⊤E[(θ̂a(Ψ,Σ) −
θ̃a(β,Ψ,Σ))(θ̂a(Ψ,Σ)−θ̃a(β,Ψ,Σ))⊤+(θ̃a(β,Ψ,Σ)−θa)(θ̃a(β,Ψ,Σ)−θa)⊤]ℓ = ℓ⊤(G1a(Ψ,Σ)+
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G2a(Ψ,Σ))ℓ, where G1a(Ψ,Σ) and G2a(Ψ,Σ) are given in (4.3.1). Then the conditional dis-

tribution of ℓ⊤(θ̂
EB

a − θa) given PXy is

ℓ⊤(θ̂
EB

a − θa)|PXy ∼ Nk(ℓ
⊤(θ̂

EB

a − θ̂a(Ψ,Σ)), ℓ⊤Ha(Ψ,Σ)ℓ), (4.6.10)

where Ha(Ψ,Σ) = G1a(Ψ,Σ) +G2a(Ψ,Σ). This implies that

P
( ℓ⊤(θ̂

EB

a − θa)

{ℓ⊤msem(θ̂
EB

a )ℓ}1/2
≤ z

)

=E
[
P
(ℓ⊤(θ̂EB

a − θa)− ℓ⊤(θ̂
EB

a − θ̂a(Ψ,Σ))

{ℓ⊤Ha(Ψ,Σ)ℓ}1/2

≤ {ℓ⊤msem(θ̂
EB

a )ℓ}1/2z − ℓ⊤(θ̂
EB

a − θ̂a(Ψ,Σ))

{ℓ⊤Ha(Ψ,Σ)ℓ}1/2
|PXy

)]
=E

[
Φ
({ℓ⊤msem(θ̂

EB

a )ℓ}1/2z − ℓ⊤(θ̂
EB

a − θ̂a(Ψ,Σ))

{ℓ⊤Ha(Ψ,Σ)ℓ}1/2
)]

.

Thus, it is observed that

P
(
ℓ⊤θ̂

EB

a − {ℓ⊤msem(θ̂
EB

a )ℓ}1/2z ≤ ℓ⊤θa ≤ ℓ⊤θ̂
EB

a + {ℓ⊤msem(θ̂
EB

a )ℓ}1/2z
)

=E
[
Φ
({ℓ⊤msem(θ̂

EB

a )ℓ}1/2z − ℓ⊤(θ̂
EB

a − θ̂a(Ψ,Σ))

{ℓ⊤Ha(Ψ,Σ)ℓ}1/2
)

− Φ
(−{ℓ⊤msem(θ̂

EB

a )ℓ}1/2z − ℓ⊤(θ̂
EB

a − θ̂a(Ψ,Σ))

{ℓ⊤Ha(Ψ,Σ)ℓ}1/2
)]

=E
[
Φ(r1a − r2a)− Φ(−r1a − r2a)

]
= E

[
Φ(r1a + r2a) + Φ(r1a − r2a)

]
− 1,

where

r1a ={ℓ⊤msem(θ̂
EB

a )ℓ}1/2z/{ℓ⊤Ha(Ψ,Σ)ℓ}1/2,

r2a =ℓ⊤(θ̂
EB

a − θ̂a(Ψ,Σ))/{ℓ⊤Ha(Ψ,Σ)ℓ}1/2.

By the Taylor series expansion, for r∗1a ∈ (r1a, r1a + r2a) and r∗∗1a ∈ (r1a, r1a − r2a), we have

Φ(r1a + r2a) + Φ(r1a − r2a) = 2Φ(r1a) + r22aϕ
(1)(r1a) +

1

24
r42a(ϕ

(3)(r∗1a) + ϕ(3)(r∗1a∗)), (4.6.11)

where ϕ(1)(·) and ϕ(3)(·) are the first and third derivatives of the standard normal density ϕ(·).
The Taylor series expansion is also used to get

{ℓ⊤msem(θ̂
EB

a )ℓ}1/2 ={ℓ⊤MSEM(θ̂
EB

a )ℓ+ ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ}1/2

={ℓ⊤MSEM(θ̂
EB

a )ℓ}1/2
(
1 +

ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ

2ℓ⊤MSEM(θ̂
EB

a )ℓ

− (ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ)2

8{ℓ⊤MSEM(θ̂
EB

a )ℓ}2
+ · · ·

)
.

(4.6.12)
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We evaluate the expectation of the first term 2Φ(r1a) in (4.6.11). By the Taylor series expansion,
for z∗ ∈ (z, r1a), it is seen that

Φ(r1a)− Φ(z) = (r1a − z)ϕ(z) +
(r1a − z)2

2
ϕ(1)(z) +

(r1a − z)3

6
ϕ(2)(z) +

(r1a − z)4

24
ϕ(1)(z∗).

(4.6.13)

From (4.6.12), we can evaluate E[r1a] as

E[r1a] =
(ℓ⊤MSEM(θ̂

EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ

)1/2
z
[
1 +

E[ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ]

2ℓ⊤MSEM(θ̂
EB

a )ℓ

− E[(ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ)2]

8{ℓ⊤MSEM(θ̂
EB

a )ℓ}2
+

E[(ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ)3]

16{ℓ⊤MSEM(θ̂
EB

a )ℓ}3

+
1

16

5

8
E
[ ∫ ℓ⊤MSEM(θ̂

EB
a )ℓ

ℓ⊤msem(θ̂
EB
a )ℓ

{ℓ⊤MSEM(θ̂
EB

a )ℓ}−1/2x−7/2(ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ)3
]]
.

(4.6.14)

Since MSEM(θ̂
EB

a ) = O(1) and msem(θ̂
EB

a ) is a second order unbised estimator of MSEM(θ̂
EB

a ),
the second term in the bracket of (4.6.14) is of order o(m−1). From Lemma 4.4.1, the moments of

higher than three are of order o(m−1), and we have E[{ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ}2] =
V (θ̂

EB

a ) + o(m−1). Then, using

(ℓ⊤MSEM(θ̂
EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ

)1/2
= 1 +

1

2

ℓ⊤G3a(θ̂
EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ
+ o(m−1),

we have

E[r1a]− z =
(ℓ⊤MSEM(θ̂

EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ

)1/2
z
[
1− V (θ̂

EB

a )

8{ℓ⊤MSEM(θ̂
EB

a )ℓ}2

]
− z + o(m−1)

=
{(ℓ⊤MSEM(θ̂

EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ

)1/2
− 1−

(ℓ⊤MSEM(θ̂
EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ

)1/2 V (θ̂
EB

a )

8{ℓ⊤MSEM(θ̂
EB

a )ℓ}2

}
z

+ o(m−1)

=
{1

2

ℓ⊤G3a(θ̂
EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ
− V (θ̂

EB

a )

8{ℓ⊤MSEM(θ̂
EB

a )ℓ}2

}
z + o(m−1), (4.6.15)

because G3a(θ̂
EB

a ) and V (θ̂
EB

a ) are of order O(m−1).

Since E[r21a] = E[ℓ⊤msem(θ̂
EB

a )ℓz2/ℓ⊤Ha(Ψ,Σ)ℓ = z2ℓ⊤MSEM(θ̂
EB

a )ℓ/ℓ⊤Ha(Ψ,Σ)ℓ +
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o(m−1) and E[(r1a − z)2] = E[r21a]− 2zE[r1a − z]− z2, it is observed that

E[(r1a − z)2]

=z2
ℓ⊤MSEM(θ̂

EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ
− 2z

((ℓ⊤MSEM(θ̂
EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ

)1/2
z
[
1− E[(ℓ⊤msem(θ̂

EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ)2]

8{ℓ⊤MSEM(θ̂
EB

a )ℓ}2

]
− z

)
− z2 + o(m−1)

=
{(ℓ⊤MSEM(θ̂

EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ

)1/2
− 1

)2
+
(ℓ⊤MSEM(θ̂

EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ

)1/2 V (θ̂
EB

a )

4{ℓ⊤MSEM(θ̂
EB

a )ℓ}2

}
z2 + o(m−1)

=
V (θ̂

EB

a )

4{ℓ⊤MSEM(θ̂
EB

a )ℓ}2
z2 + o(m−1). (4.6.16)

This implies that r1a − z = Op(m
−1/2). Then, the expectation of the third and forth terms of

(4.6.13) is of order O(m
−3/2).

We evaluate the expectation of the second term in (4.6.11). Since E[r22a] = ℓ
⊤G3aℓ/ℓ

⊤Haℓ
and E[r1a]− z are of order O(m−1), we have

E[r22aϕ
(1)(r1a)] = E[r22aϕ

(1)(z)] + o(m−1) =
ℓ⊤G3aℓ

ℓ⊤Haℓ
ϕ(1)(z) + o(m−1). (4.6.17)

Since r42a = O(m−2) and E[r∗1a]− z = O(1), the expectation of the third term in (4.6.11) is
of order O(m−2).

Combining (4.6.11), (4.6.13), (4.6.15), (4.6.16) and (4.6.17) gives

P
(
ℓ⊤θ̂

EB

a − {ℓ⊤msem(θ̂
EB

a )ℓ}1/2z ≤ ℓ⊤θa ≤ ℓ⊤θ̂
EB

a + {ℓ⊤msem(θ̂
EB

a )ℓ}1/2z
)

=2Φ(z) + 2
{1

2

ℓ⊤G3a(θ̂
EB

a )ℓ

ℓ⊤Ha(Ψ,Σ)ℓ
− V (θ̂

EB

a )

8{ℓ⊤MSEM(θ̂
EB

a )ℓ}2

}
zϕ(z)

+
V (θ̂

EB

a )

4{ℓ⊤MSEM(θ̂
EB

a )ℓ}2
z2ϕ(1)(z) +

ℓ⊤G3aℓ

ℓ⊤Haℓ
ϕ(1)(z)− 1 + o(m−1)

=2Φ(z)− 1− V (θ̂
EB

a )

4{ℓ⊤MSEM(θ̂
EB

a )ℓ}2
(z3 + z)ϕ(z) + o(m−1),

which establishes Theorem 4.4.1. □

4.6.6 Proof of Lemma 4.4.1

It is noted that

G1a(Ψ̂, Σ̂)−G1a(Ψ,Σ) = n−2
a ΣΛ−1

a (Ψ̂−Ψ)Λ−1
a Σ+ n−1

a ΨΛ−1
a (Σ̂−Σ)Λ−1

a Ψ+Op(m
−1),
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and G2a(Ψ̂, Σ̂), G2a(Ψ,Σ), G3a(Ψ,Σ) and G3a(Ψ̂, Σ̂) are of order O(m−1). Thus,

E[(ℓ⊤msem(θ̂
EB

a )ℓ− ℓ⊤MSEM(θ̂
EB

a )ℓ)2]

=ℓ⊤E(n−2
a ΣΛ−1

a (Ψ̂−Ψ)Λ−1
a Σ+ n−1

a ΨΛ−1
a (Σ̂−Σ)Λ−1

a Ψ)ℓℓ⊤

× (n−2
a ΣΛ−1

a (Ψ̂−Ψ)Λ−1
a Σ+ n−1

a ΨΛ−1
a (Σ̂−Σ)Λ−1

a Ψ)ℓ+ o(m−1),

and the moment of ℓ⊤msem(θ̂
EB

a )ℓ − ℓ⊤MSEM(θ̂
EB

a )ℓ of order higher than three is of order
o(m−1).

From equations (4.6.1) and (4.6.2), it follows that

n−2
a ΣΛ−1

a (Ψ̂−Ψ)Λ−1
a Σ+ n−1

a ΨΛ−1
a (Σ̂−Σ)Λ−1

a Ψ)

=
n−2
a

N
ΣΛ−1

a

m∑
i=1

ni

{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}
Λ−1

a Σ

−
[ n−2

a m

N(N −m)
ΣΛ−1

a

m∑
i=1

ni∑
j=1

{
(εij − ε̄i)(εij − ε̄i)⊤ − (1− n−1

i )Σ
}
Λ−1

a Σ

− n−1
a

N −m
ΨΛ−1

a

m∑
i=1

ni∑
j=1

{
(εij − ε̄i)(εij − ε̄i)⊤ − (1− n−1

i )Σ
}
Λ−1

a Ψ
]
+Op(m

−1)

=B1(y)−B2(y) +Op(m
−1), (say).

Since vi + ε̄i is independent of εij − ε̄i, it is seen that E[B1(y)ℓℓ
⊤{B2(y)}⊤] = 0. Thus, we

shall evaluate E[B1(y)ℓℓ
⊤{B1(y)}⊤] and E[B2(y)ℓℓ

⊤{B2(y)}⊤]. For the proofs, we can use
the same arguments as in (4.6.7), (4.6.8) and (4.6.9).

Concerning E[B1(y)ℓℓ
⊤{B1(y)}⊤], it is observed that

E
[ m∑

i=1

ni

{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}
Λ−1

a Σℓℓ⊤ΣΛ−1
a

m∑
j=1

nj

{
(vj + ε̄j)(vj + ε̄j)

⊤ −Λj

}]
=

m∑
i=1

n2
iE

[{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}
Λ−1

a Σℓℓ⊤ΣΛ−1
a

{
(vi + ε̄i)(vi + ε̄i)

⊤ −Λi

}]
=

m∑
i=1

n2
i {ΛiΛ

−1
a Σℓℓ⊤ΣΛ−1

a Λi + tr (Λ−1
a Σℓℓ⊤ΣΛ−1

a Λi)Λi},

so that we have

E[B1(y)ℓℓ
⊤{B1(y)}⊤] =

n−4
a

N2

m∑
i=1

n2
i {ΛiΛ

−1
a Σℓℓ⊤ΣΛ−1

a Λi + tr (Λ−1
a Σℓℓ⊤ΣΛ−1

a Λi)Λi}.

(4.6.18)

Concerning E[B2(y)ℓℓ
⊤{B2(y)}⊤], recall thatW =

∑m
i=1

∑ni
j=1(εij − ε̄i)(εij − ε̄i)⊤ has the
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Wishart distribution Wk(N −m,Σ). Then, we have

E[B2(y)ℓℓ
⊤{B2(y)}⊤]

=E
{ n−2

a m

N(N −m)
ΣΛ−1

a

{
W − (N −m)Σ

}
Λ−1

a Σ− n−1
a

N −m
ΨΛ−1

a

{
W − (N −m)Σ

}
Λ−1

a Ψ
}

× ℓℓ⊤
{ n−2

a m

N(N −m)
ΣΛ−1

a

{
W − (N −m)Σ

}
Λ−1

a Σ− n−1
a

N −m
ΨΛ−1

a

{
W − (N −m)Σ

}
Λ−1

a Ψ
}

=
n−4
a m2

N2(N −m)
ΣΛ−1

a

{
ΣΛ−1

a Σℓℓ⊤ΣΛ−1
a Σ+ tr (Λ−1

a Σℓℓ⊤ΣΛ−1
a Σ)Σ

}
Λ−1

a Σ

+
n−2
a

N −m
ΨΛ−1

a

{
ΣΛ−1

a Ψℓℓ⊤ΨΛ−1
a Σ+ tr (Λ−1

a Ψℓℓ⊤ΨΛ−1
a Σ)Σ

}
Λ−1

a Ψ

− n−3
a m

N(N −m)
ΣΛ−1

a

{
ΣΛ−1

a Σℓℓ⊤ΨΛ−1
a Σ+ tr (Λ−1

a Σℓℓ⊤ΨΛ−1
a Σ)Σ

}
Λ−1

a Ψ

− n−3
a m

N(N −m)
ΨΛ−1

a

{
ΣΛ−1

a Ψℓℓ⊤ΣΛ−1
a Σ+ tr (Λ−1

a Ψℓℓ⊤ΣΛ−1
a Σ)Σ

}
Λ−1

a Σ.

(4.6.19)

Multipling ℓ by (4.6.18) and (4.6.19) from both sides, we get the expression given in (4.4.2). □
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