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Linear mixed models and model-based predictors in small area estimation have been studied
extensively and actively in recent years due to the growing demand for reliable small area esti-
mates. In small area estimation, direct design-based estimates for small area means have large
standard errors due to small sample sizes from small areas. In order to improve accuracy, the
linear mixed models are considered which consist of fixed effects based on common parametes
and random effects depending on areas, and the resulting empirical best linear unbiased predic-
tors (EBLUP) provide more reliable estimates by ‘borrowing strength’ from neighboring areas.
This is because EBLUP shrinks the sample mean of the small area towards a stable quantity
costructed by pooling all the data through the fixed effects, and the shrinkage arises from the
random eects.

When multivariate data with correlations are observed from small areas for estimating multi-
dimensional characteristics, like poverty and unemployment indicators, it is desirable to incorpo-
rate all the data to the one multivariate model and construct multivariate model-based predictors
rather than to handle the data separately.

In this thesis, the consideration is the multivariate linear mixed models, especially the models
used in small area estimation, that is, the Fay-Herriot model for analyzing area-level data and
the nested error regression (NER) model for analyzing unit-level data, and the following three
problems are mainly discussed.

At first, the multivariate Fay-Herriot model where the covariance matrix of random effects is
fully unknown is considered. As a specific estimator of the covariance matrix, Prasad-Rao type
estimators with closed forms and use the modified versions which are restricted over the space
of nonnegative definite matrices is employed. The empirical best linear unbiased predictors are
provided based on the Prasad-Rao type estimators, and second-order approximation of their
mean squared error matrices (MSEM) and their second-order unbiased estimators of the MSEM
are derived with closed expressions.

Confidence regions for multivariate small area means are also constructed. Naive confidence
regions can be constructed easily by using the Bayes estimators of small area means and their
MSEM. However, the coverage probability of the naive methods cannot be guaranteed to be
greater than or equal to the nominal confidence coefficient. To overcome this problem, a confi-
dence region based on the Mahalanobis distance centerd around EBLUP is considered here, and



the asymptotic expansion of the characteristic function of this distance is used to approximate
the coverage probability based on the chi-square distributions. Then, the correction term is
obtained in a closed form, and the confidence region that is second order correct is provided.
Concerning the estimation of the covariance matrix, the Prasad-Rao type estimator with non-
negative definite modification can be given in a closed form by the moment method. When the
covariance matrix is estimated with the zero matrix or a singular matrix close to the zero matrix,
however, the correction term becomes instable in the confidence region. This fact is well known
in the univariate confidence interval. Thus, a new method for obtaining a positive-definite and
sencon-order unbiased estimator of the covariance matrix is suggested. Moreover, the extension
of our results to construction of corrected confidence regions for the difference of two small area
mean vectors is considered. Another approach to construction of corrected confidence regions is
the bootstrap method which needs heavy burden in computation. Because the corrected confi-
dence region suggested here is provided in closed forms, it is easy to implement, which is a merit
of the proposed method.

Next, the multivariate Fay-Herriot model without assuming multivariate normal distribu-
tions for random effects and sampling errors is considered. The differences between the method
discussed above and the existing research are as follows: (1) The existing research assumes that
the error terms have univariate normal distributions with known variances, while no distribu-
tional assumptions are imposed on the random effects. The present method does not assume the
normality for the error terms, but assumes that the second and fourth moments are known. (2)
The present method handles the multivariate Fay-Herriot model where the covariance matrix
of random effects is fully unknown without nomality assumption, while the existing research
treated the univariate Fay-Herriot model with unknown variance of random effects.

A consistent and nonnegative-definite estimator of the covariance matrix of the random
effects is suggested, and the EBLUP for a vector of small-area characteristics is provided. A
second-order approximation of the mean squared error matrix (MSEM) of the EBLUP is derived
and the second-order unbiased estimator of the MSEM is obtained. This MSEM estimator is
achieved only under the moment assumptions for random effects, and then, our estimator of
MSEM is useful because the normality assumption is very resrtrictive and the specification of
the underlying distributions for random effects and sampling errors are difficulut in practice.
However, in the multivariate problem, when deriving a second-order approximation of the MSEM
of EBLUP and a second-order unbiased estimator of the MSEM, we cannot use the standard
technique of approximation via the Taylor’s expansion. Then, the results for the multivariate
version are not obvious and we must consider them separately from the univariate problem.

Lastly, multivariate nested error regression models (MNER) is considered. The MNER
model has the two components of covariance: ‘between’ component and ‘within’ component.
Here, an exact unbiased estimator for ‘within’ component is used, and for ‘between’ component,
a nonnegative definite and consistent estimator which is a second-order unbiased estimator
is suggested. Substituting these estimators for the components of covariance into the Bayes
estimator and estimating fixed effects by the generalized least squares estimator, one gets the
empirical Bayes estimator or EBLUP. A second-order approximation of the MSE matrix of the
EBLUP is derived analytically and a closed form expression of a second-order unbiased estimator
is provided. Another topic is the confidence interval problem. One difficulty with traditional
confidence intervals is that the coverage probabilities do not have second-order accuracy. It is also
numerically confirmed that the coverage probabilities are smaller than the nominal confidence



coefficient. Here, the confidence interval for the liner combination of a small area mean and some
vector is constructed in the closed-form whose coverage probability is identical to the nominal
confidence coefficient up to second order.

Finite sample performances of all the results obtained above are investigated by numeri-
cal simulation studies. In both of Fay-Herriot model and nested error regression model, the
multivariate EBLUP improves the prediction risk of the direct estimator significantly for all
simulation setup. Similarly, the multivariate EBLUP improves the univariate EBLUP when the
correlation of random effects are considerably large. However, the multivariate EBLUP is worse
than the univariate EBLUP when the correlation of random effects are small. This is because
the low accuracy in estimation of the covariance matrix has more adverse influence on prediction
than the benefit from incorporating the small correlation into the estimation.

A second-order approximations of the MSEM of the EBLUP and a second-order unbiased
estimators are also investegated by comparing these values with the simulated true MSEM of
the EBLUP, and the approximations seem to be well done.

Lastly, the proposed confidence regions and intervals are investigated numerically. From the
simulation results, it can be seen that the proposed methods achieve the coverage probability
equal to the nominal confidence coefficient up to second order while the coverage probability of
naive methods is considerably smaller than the nominal confidence coefficient.



