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Abstract

This dissertation is devoted to the study of AdS;/CFT, correspondence, which is a
duality between N' = 4 Supersymmetric Yang-Mills theory in four dimensions and type
IIB superstring theory on AdSsxS°. In particular, we focus on a fundamental physical
quantity in N' = 4 supersymmetric Yang-Mills theory which is correlation functions. In
this thesis, there are two main results for computations of correlators of operators on the
1/2 BPS Wilson loop. The first result is a proposal for a finite coupling expression of
large-volume correlators by an integrability-based approach. The second result is that we
calculate finite-size corrections of the correlators at lower order from the perturbation.

After a general introduction, we begin with a brief review of the AdS5;/CFT4 correspon-
dence, and give generic preliminaries of correlators of N’ = 4 supersymmetric Yang-Mills
theory in Part [. The main text in this thesis is split into two parts explained in Part 11
and in Part III. Part II, the first half of the main contents of the thesis, deals with the
correlation functions of single trace operators, which correspond to an interaction process
of closed strings. Then, we review several developments of integrability-based approaches
for computations of correlators in a short course to explain a proposal for large-volume
correlators with finite coupling.

As a natural question, it is interesting to consider an open string version of the finite
coupling method. In Part III, the second half of the main contents of the thesis, we deal
with correlation functions of operators inserted into the 1/2 BPS Wilson loop. Such con-
figuration corresponds to open strings attached D3-brane in the dual AdS theory. Then,
we explain integrability-based computations of the correlators at lower order, and then
we propose large-volume correlators with finite coupling. In addition, we explain compu-
tations of finite-size corrections of the correlators at lower order from the perturbation.
It is a significant advantage to consider the open string configuration.
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Part 1

Introduction and AdS;/CFTy



Chapter 1

Introduction

1.1 Opening act

In 1997, Maldacena proposed a duality between d-dimensional conformal field theory and
d + 1-dimensional gravity theory on the anti-de Sitter space, which is so-called AdS/CFT
correspondence [1]. Since the AdS/CFT correspondence has many interesting aspects,
it has several ways to call it: holographic duality, gauge/gravity duality and so on. In
addition, many models with such duality have been discovered, and then many researchers
have studied or used the AdS/CFT correspondence in the various topics.

Among them, we focus on the most prototypical case of the AdS;/CFTy correspon-
dence, which is the duality between Type IIB superstring theory on AdSsxS® background
and N = 4 supersymmetric Yang-Mills theory in four-dimension (N'=4 SYM). Since the
AdS;/CFT, correspondence has a strong/weak property, we should be away from the
perturbative computation naively in order to verify it. This is, actually, not only a nice
property to be used, but also a cause of difficulty.

It is no doubt that one of the general goals in the context of the AdS;/CFT, cor-
respondence has been how to give a finite coupling result of correlation functions. In
the long history, the symmetry and integrability-based approach has been developed
greatly [2], for instance computations of correlators with finite coupling, since both sides
of the AdS;/CFT, correspondence have large symmetries and integrable structures [3-6].

At the initial stage in the long history, the study was focused on the computation of
two-point functions of single trace operators, that is, spectrum problem. Since an anoma-
lous dimension matrix in N/ =4 SYM is considered to be identified with a Hamiltonian
of spin chain system, the spectrum problem has been deeply related to a diagonaliza-
tion problem of the Hamiltonian.! With an assumption that the anomalous dimensions
correspond to the spin chain system at finite coupling,” S-matrices of magnons on the
spin chain are strongly constrained by the symmetry of the two-point functions in N' = 4

"'We believe that the identification is true even at finite coupling.
2And also, we assume that there is a finite coupling spin chain model.



SYM:
[\77 S] =0,

where J are generators of such symmetry. Solving the equation, one can analytically
determine the exact S-matrices [7-11]. Thus, momentums of the magnons are also deter-
mined by using the Bethe ansatz equation 1 = exp(ip,L) [ ], uS (P, p1). Finally, the dis-
persion relation teaches us the spectrum from the momentum [12].% Such a integrability-
based results were surprisingly matched to all perturbative results till now.

At the next stage, the study of three-point functions in the AdS;/CFT} correspondence
also has a long history.* The three-point functions in N' = 4 SYM are composed not only
of the anomalous dimensions but also of structure constants C'93 defined by the operator
product expansion (OPE) of the conformal field theory. On the string theory side, the
three-point functions can be interpreted as a three-string interaction, which is the joining
or splitting process of the three strings. The interaction of three operators is characterized
three-string string field theory vertex Vspr including three-string Hilbert spaces H,;:

’VSFT> € Hi ®Hy ® Hs, <VSFT|(’1> ® ‘2> ® ’3>)

In fact, in the context of the AdSs;/CFT, correspondence, it is shown that structure
constants in the pp-wave limit are related to the three-string field theory vertex in the
pp-wave string field theory [24-30]. However, for the general AdS; background, it is still
an open problem.’

Recently, a remarkable development for studying the three-point functions in the
AdS;/CFT, correspondence has been done. It is because the structure constants are
proposed at finite coupling [34]. Roughly speaking, the idea comes from the world sheet
picture interacting with three closed strings, that is, a pair of pants diagram, and such
diagram is graphically decomposed into two hexagon form factors:

Thus, the finite coupling method says that the structure constants in N' = 4 SYM are
given by a function of the hexagon form factor b:

Cias(h), b= (hl(|1) ®[2) @3)).

3Moreover, a resummation formula of the finite size correction called quantum spectrum curve was
also important development [13,14].

4Some researches are successful in analysing the three-point functions in the AdS;/CFT, correspon-
dence [15-23].

®Some developments are in [31-33]
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Figure 1.1: Chart for the three-point functions of the AdS;/CFT, correspondence

Then, the hexagon form factor is strongly constrained by the symmetry:
<h‘j =0,

where J is generators of symmetry of the three-point functions in N' = 4 SYM. Thereby,
the hexagon form factor is completely fixed by the symmetry and further integrability
constraints. Although we could get the finite coupling answer of the structure constants
(if we believe the hexagon method), we do not understand physical explanation at all.

The hexagon method is a technique introduced very recently. It certainly gives a new
aspect for studying the three-point functions in the AdS;/CFT, correspondence. Until
now, the weak coupling region in the AdS;/CFT} correspondence is sufficiently calculated
by perturbative gauge theory (perturbative gauge theory realm), and the strong coupling
region is also studied by classical string theory (classical string theory realm). In addition,
the hexagon method teaches us another region which is the finite coupling within large-
volume limit (hexagonailzation realm),® see in figure 1.1. In other words, each three
realm can be studied by using each of the established methods.” Then, we find the two
overlapping regions: between the classical string theory realm and hexagonalization realm
and between perturbative gauge theory realm and hexagonalization realm. It is worth
studying the relations since we will eventually have an ambitious question, how does the
string emerge from the gauge theory through the integrability realm in the future.

In what follows, we explain more specific motivation, and then we shall connect the
contents in this thesis. Then, notable topics are split into three directions.

6The large volume limit is a technical word which is used in the Hexagonalization realm. The volume
(or size) is defined in terms of a length ¢;; = (L; + L; — Ly)/2, where L;s are the length of the external
operators. The length ¢;; means the number of tree-level contractions between operators O; and O;.

"Rigorously, the hexagonalization method is a proposal. However, we will assume the validity of the
proposal in this thesis.

11



Perturbation and hexagonalization

In this thesis, we focus on studying the relation between the perturbative gauge theory
realm and hexagonalization realm. One of the main differences in these method is dia-
grams. The perturbative method is based on the calculation of Feynman diagrams. Fur-
thermore, loop diagrams produce divergences and regularization. However, the hexagon
method doesn’t know such familiar phenomena. On the other hand, the hexagon method
has the hexagon form factor, which is a 2-dimensional world-sheet like object. It is in-
teresting to reproduce such object from the perturbative method. The most hopeful task
is to produce the hexagon form factor from the tailoring method, which can calculate
tree-level structure constants by using both the perturbation and an integrability. In this
thesis, we shall see it in chapter 4 and 9.

Closed string and open string

As a natural question, we would like to consider an open string version of the hexagon
method. In the perturbative gauge theory realm, a gauge invariant operator corresponding
to the open strings attached D3-brane, is given by three local operators inserted into the
1/2-BPS Wilson loop. The three-point functions of the open strings can also apply the
hexagon method since it is decomposed into one hexagon and three boundaries in chapter
10:

boudnary

Surprisingly, in our proposal, the hexagon form factor in the three-point functions of the
open stings is the same object with one of the closed strings. One may seem that the closed
string correlator will be written in terms of the open string correlator at finite coupling.
Actually, we shall sometimes see that the open string correlator naturally appears in
computations of the closed string correlator in this thesis, for instance in chapter 3 and
7.

Open string correlator and finite-size corrections

Finally, we would like to mention a further motivation to consider the open string
correlator. One of the big differences from the closed correlator is the fact that the open
string worldsheet is always attached to the boundary. Because of that, we can define
diagrams propagated from a boundary to another boundary in N/ = 4 SYM:

12



Since such loop diagrams will have the order of operator length O(e%), it is often called
finite-size corrections (or mirror collections in terms of the integrability realm). In prac-
tice, the two-loop and the ladder resumed diagrams can be calculated by perturbative
method in chapter 8 and 10. This is one of the advantages to consider the open string
configuration.

13



1.2 Outline of this thesis

1.2.1 Organization of the thesis

This thesis is devoted to the study of correlation functions in the AdS;/CFT, correspon-
dence. Among them, we focus on computations of correlators of NV = 4 SYM from the
perturbation and an integrability-based approach. In the rest of Part I, we start with an
introduction of the AdS;/CFT, correspondence, and then we summarize basic things of
correlators of NV =4 SYM.

The Part 11 deals with correlators of single trace operators. In chapter 3, we calculate
correlators of single trace BPS operators up to one-loop by using the well known pertur-
bative method. In chapter 4, we review correlators of non-BPS operators. In particular,
we consider two-point functions at one-loop and three-point functions at tree-level. Then,
we use integrability techniques, spin chain system and tailoring method, in order to effi-
ciently solve an operator mixing problems. In chapter 5, we review a proposal for finite
coupling prescription of three- and four-point functions, which is called hexagon method
and hexagonalization. Such correlators are given by bootstrap techniques for symmetry
and integrability.

The Part III is a main part of this thesis, since all contents are composed by the
author’s published papers. There, we consider correlation functions of operators inserted
into the 1/2 BPS Wilson loop. After introducing the set-ups in chapter 6, we start
with calculation of correlators of BPS operators up to one-loop by using the perturbative
method in chapter 7. In chapter 8, we consider correlator of length zero operators, which
is defect changing operators, by using the perturbative method. Then, we calculate two-
loop and ladder-resummed diagrams [37]. In chapter 9, we calculate the three-point
functions of non-BPS operators at tree-level by using tailoring method. In section 10, we
propose a finite coupling conjecture of the correlator [35,37]. Thus, from the perturbative
results showed in chapter 7, we predict hexagonalization data whose integrability-based
calculations are difficult because it is technically challenging [36].

In Part IV, we discuss the results explained in this thesis and comment on further
directions. In Part V, we add some appendices to help reading the main contexts.

Before ending the organization of this thesis, it is better to more clarify which parts
of this thesis are on the basis of the author’s works. In Part II, the one-loop results of
sections 3.2 were proposed by previous papers [39]. However, the tree-level results in
section 3.1 and more rigorous proof of the one-loop results in section 3.2 was done by
the author in unpublished notes. In the section 4.2, the multi-magnon proof is also first
worked out by the author. In the Part 11, the chapter 8 are on the basis of the author’s
work [37]. On the other hand, the chapter 7, 9 and 10 are on the basis of the author’s
work heavily [35, 36].

1.2.2 Contents of the thesis organized in two figures

The story of this thesis is arranged in figure 1.2. The main text in this thesis is split into

14
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Figure 1.2: The arrangement of the contents based on the ordering of the chapters in this
thesis.

two parts: Part Il and Part III. The contents of Part II, which have from chapter 2 to
chapter 5, correspond to closed string configuration, and correlators of each chapter are
calculated by perturbation, not only perturbation but also integrability and integrability-
based approach respectively. The contents of Part III, which have from chapter 6 to
chapter 10, correspond to open string configuration, and most chapters have parallel
contents with Part III. However, the configuration in chapter 8, which is the correlators
of zero-length operators, is only on the open string side.

We can explain the arrangement of chapters in terms of studying the computations of
correlators of AdS;/CFEFT, correspondence in figure 1.3. The studies in chapter 3 and in
chapter 7 are located in the perturbation realm. In chapter 4 and chapter 9, these studies
are relied not only on perturbation but also on integrability techniques. In chapter 5 and
chapter 10, the studies with finite coupling are in the hexagonalization realm available
for the large-volume. Conversely, the configuration in chapter 8 is a zero-volume region
in the perturbative realm.

15
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Figure 1.3: Chapters in this thesis and AdS;/CFT, correspondence.
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Chapter 2

AdS;/CFT, correspondence and
N =4 SYM

The aim of this chapter is to introduce the AdS;/CFTy correspondence, which is the
duality between N/ = 4 Supersymmetric Yang-Mills theory in four-dimensions (N = 4
SYM) and type IIB superstring on AdSs x S°.

2.1 AdS;/CFT, correspondence

Let us start with the situation where there is a stack of N D3-branes in type IIB super-
string theory on the ten-dimensional flat space. Since the type IIB superstring theory is
a closed string theory, there is closed string interacting with the D3-branes. Furthermore,
an open string attached to the D3-branes is also included.

We would like to discuss the low energy limit of the situation from two different
prospectives: open string and closed string. The AdS;/CFT, correspondence shall be
stated as a duality between these two prospectives.

2.1.1 Open string side

We first focus on the open strings attached to the D3-branes. By quantizing them, the
action includes the four-dimensional vector field A*(u = 0 ~ 3) which live in parallel to
the four direction of D3-brane, six scalar fields ¢’(: = 1 ~ 6) which live in the six-direction
perpendicular to D3-brane and supersymmetric partners, four fermions ¢4(A = 1 ~ 4)
as a massless sector. The massless sector of the low energy effective action of the N

17



D3-branes is known as the action of N =4 SYM

S =2L d'z L, (2.1)
9ym
2 b2 _ .
c :Tr[ ~ D D1 “’QD”] + (Dugi)® + —[¢Z’2¢J] + i Dyt + 9T [y, Y] + 0"EDe + (9, A")? .
(2.2)

Unfortunately, the practical action, which comes from string theory includes not only
the massless sector but also massive sectors and interactions with the closed strings, which
are hard to deal with. In order to decouple and ignore these terms, we take a doubles
scaling limit: Iy — 0 and gs = fixed. Then, the mass and coupling constant of the closed
string become

1
Kk~ gsa? =0, moc— — oo (2.3)
o

Thereby, it is often called the decoupling limit.

From above, under the decoupling limit, A/ = 4 SYM appears in the low energy
effective theory of the D3-branes. In addition, there is ten-dimensional supergravity theory
from the closed string decoupling with the open string. Therefore, from the open string
side, we see the following theories:

4-dim N =4 SYM & 10-dim supergravity

2.1.2 Closed string side

We next discuss the situation from the closed string side. Immediately, we faced with a
problem of the scattering of the closed string by the D-branes. If we attempt to straight-
forwardly attack the problem, we must calculate the all passible Feynman diagrams, that
is, sum over Riemann surface with any number of holes. In order to avoid such terrible
and hopeless calculation, we image the scene that the light closed string move into the
potential made by the heavy D3-branes. In fact, it is known to the classical solution of
D3-brane in the supergravity theory, which is called black 3-brane as follows:

ds® = f~2datdw, + [ (dr? + r2d03), (2.4)

4
f=1+ —2, ro = 4mgsNI2.
r

After doing so, we should further consider the decoupling limit in the same way as the
open string. Here, it is better to divide the two regions: r > rg and r < rp, and discuss
separately:

r>Ty

In this region, the (2.4) become the ten-dimensional flat space metric

ds® = dx"dx, + dr® + r*dQ3. (2.5)

18



In the same argument as the open string side, the massive modes of the closed string
are decoupled. Therefore, we get a ten-dimensional flat space supergravity theory in the
region r > ry.

r<To

2
By performing coordinate transformation Z = TTO, we have

dx,dzt + dZ?
i = o (T o) 2.6

where is nothing but the AdS; x S° space-time with radius 9. Even though we take the
decoupling limit Iy, — 0, gs = fixed, it remains to show the curved metric. The fact is
understood as the red-shift. Thus, the massive modes cannot be neglected. Furthermore,
since the decoupling limit implies the limit ry — 0, it is so-called the near horizon limit.

From above arguments, we find that there is a ten-dimensional flat-space supergravity
in the r > 7o region and type IIB superstring on the AdSs x S° background in the r < rg:

type IIB superstring on AdSs x S® @ 10-dim supergravity

2.1.3 AdS;/CFT, correspondence

According to the arguments of both sides, we finally have the AdS5;/CFT, correspondence:
type IIB superstring on AdSs x S° <+ 4-dim N' =4 SYM

We further state of parameters of the correspondence. In N' = 4 SYM and type
IIB superstring theory on AdSs x S°, there are two parameters (gys, N) and (g, ')
respectively. Here, it is better for discussions below to introduce the so-called 't Hooft
coupling constant A = ¢g2,;N. Thus, the relations between the parameters are

R4
A=giyN=gN=—. (2.7)

04/2

Notice that the parameter o’ is proportional to the inverse of the A. Due to the fact, the
AdS5/CFT, correspondence is a duality of weak/strong. This is one of the nontrivial and
interesting feature of AdS;/CFT, correspondence.

In this thesis, we only discuss a special double scaling limit: N — oo and A\ = fixed,
which is called planar limit or large N limit [38]. In this limit, planar Feynman diagrams
are the only dominant contributions.

22 N=4SYM

In this section, we summarize basic properties of correlation functions in N' =4 SYM as
a preliminary.

19



We first recall the action of NV =4 SYM

s— [awr, (2.8)
9ym
2 12 _ .
L :Tr[ - M + (Dugzﬁ,-)Q + % + I Dy + YT ¢, Y] + 0D, + (E)MA”)2

(2.9)

with D, = 9, —i[A,, ]. The ¢ and ¢ are the ghosts and ' = (I'*,I'") are the ten-
dimensional Dirac matrices satisfying

tr(I0?) = 16645 (2.10)

Using this action, one can compute the propagators in the Feynman gauge as follows:

Cluon: g rrnss y = B0 O
b d 8n2  |r —y|?
Fermion : C;) 7777777777777 C‘; _ 9\2(1\/;::5“ . _1 7 '
host: % 77777777 5 - g%Néf::ébd |z —1 y|?

Here a-d are the color indices and all the propagators are proportional to §2¢§%.

2.2.1 Correlation functions and BPS operator

Since N' = 4 SYM is a conformal field theory, correlation functions are constrained by
conformal symmetry. Thus, two- and three-point functions of single trace operators have

following forms:

1

X —
1 |(L'12|2A1 7

(O1(21)Os(2)) =n

(O1(21)O2(x2)O3(x3)) _ Clas3 " 1 1 1 (2.12)
N VN ’x12|A12|3 |x23|A23\1 |x31|A31\2. :
where Ay = A + Aj — Ay A and Cjj, are conformal dimensions and the structure
constants respectively.

On the other hand, four-point functions

<01(3?1)(9\2/%)O4(934)> Glﬁ&él (2.13)
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is a nontrivial function of the cross ratios. To see this explicitly, we strip off the space-time
dependence from G234 as

1 1 21\ T g\ T
G = — — . 2.14
L2340 = 1 1A 1y, [Aa+As ($24> <$13) 91.23.4(X) (2.14)

Then, the remaining quantity ¢; 234 depends only on the cross ratios, defined by

2 2 .2

2
L19T34 _ L1403 —

= 2% =(1-2)(1-2) (2.15)
m%3x§4 7 x%3x§4 ’

As a special case, we next discuss correlation functions of BPS operators, which do
not receive the quantum correlations. In A/ =4 SYM, the BPS operator is given by
BPS(L; ,
O (@) = tal(Y; - @)™ (), (2.16)
where Y is a complex six-dimensional null vector Y?-Y? = 0. Then, contractions of
the operators produce not only the differences of the space-time variables z;;, but also

inner product of the SO(6) R-symmetry vector Y; - Y;. Namely, the two- and three-point
function of the BPS operators become

(O (2 )OF (25)) = nybr s X (dia)™

(OF ()05 (1) OF S w)) _ crag s et (247)

N = JN X (d12)" 2 (das)” 2 (ds1) )

where L;j, = L; + Lj — L;, is the combinations of the bare dimensions. Furthermore, d;
is defined as

AY Y.
4= 22 2.1
T 82 x?j (2.18)

The four-point functions also depend on cross ratios not only of the space-time but
also of R-symmetry denoted by o and a:

Lo—L Lg—L
<O]13PS(L1)(I1)O§PS(L2)($2)O§PS(L3)(Ig)OfPS(L4)(‘T4)> _ id#d# <d24> 2--1 <d13 L3—Lg . 234(X . @)
Nn1M2N3N4 TN 34 dy4 dy4 e AT

(2.19)

with
(Y1-Y5)(Y3-Y))
(Y1-Y3)(Y2 - Ya)

ad : L =(1-a)(1-a) (2.20)

2.2.2 Weak coupling expansion of correlators

In this subsection, we explain how to extract the anomalous dimensions and structure
constants from the actual perturbative computations. Because, the two- and three-point
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functions given in (2.12) are applied to the correlators of the renormalized operators. How-
ever, the actual perturbative computations have divergence due to the un-renormalized
(or equivalently bare) operators.

By introducing the cut off parameter € ~ A~!, the bare operator OF is related to the
renormalized operator O in general as follows:*

6_7
Ja
where a is the finite renormalization constant which need to bring the renormalized cor-

relator into a canonical form (2.12). Then, substituting (2.21) to (2.12), the two-point
functions of the un-renormalized operators are given by
a 1

(OB (£) 0P (t,)) = 222 (ol ? (2.22)

of=-——-07, (2.21)

where A© is the bare dimension. Both + and @ are functions of the ’t Hooft coupling
constant A = g2, N, and can be expanded as

a=1+Xxa® +X\2a® 4 ... 7= W A3 (2.23)

Here, we assumed the tree-level renormalized constant become one a|,_, = 1. By ex-
panding the right hand side of (2.22), we obtain the expression at weak coupling,

(14+AAW 4 X2A@) ...
Al®

(0% (21) 0% (w2)) =

, (2.24)
|f7012|2

with
AW = M) — 2~M og @ 7
€

2 (2.25)
A® — 4@ _ QG(I)W(I) log @ +2 (7(1) log |9312’) _ 27(2) log |19 ‘
€ € €

From the relation (2.21) and three-point functions of the renormalized operators (2.12),
we can also determine the structure constants Cjs3 of the un-renormalized operators at
weak coupling. To simplify the expression, below we set ¢ = 0 2. Then, using the
expansion of the structure constant,

Crag = O (14 Al + N2+ ) | (2:26)
one can write the result as

CE (1+ABW £ X2B® 1 ...

(OF (1) 05 (22) OF (23)) = (2.27)
1\ \F2)3 A3 0 A0 _A0 ), A0 _ A0 0 A0 _A0 > =
|19 |A0 +827 =057 | g0 | 8274857 A | g0 1A+ =47
'Here, we ignored the operator mixing. If there is an operator mixing , v should be anomalous
dimension matrix I' defined by I' = f‘flll‘;ggf where Of = Z,7O7.

2In fact, when we calculate correlation functions up to two-loop order, such a case occurred in chapter
8, we will see the condition a(*) = 0.
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with

BW =Y, — Z vV ogu; |

(2.28)
B(2 p— + Z Z (’y + 012371 > log U; —I— Z ,y(l)/y]l) ]-Og u; log U,] )

Here a; and ~; are the normalization and the anomalous dimension of the operator O;
respectively and w; is given by
LijThi (2.29)

U; =

Zji€

where {1, j, k} is a cyclic permutation of {1, 2, 3}.
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Part 11

Correlators of single trace operators
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Chapter 3

BPS operators — perturbation

In this chapter, we discuss the correlation functions of the BPS operators up to one-loop
by using the perturbative method.

The tree-level contribution is merely given by the Wick contraction. Actually, the
two- and three-point functions of the BPS operators at tree-level surely have following
contraction patterns:

(O (1) 077 (22)) tree = dby, (3.1)
Lygis Lagjn Lsipe
(O ()O3 (20) 0T (04)) oo = di? dy? dy? (3.2)

On the other hand, the four-point functions are non-trivial and have interesting structures.
Because, even if the operator’s lengths are minimum such as the length one, the four-point
functions have following three contraction patterns:!

d23d417 d12d34,
(O D (@) OV (1) OF”3 W (1) 0P (24)) e (3.3)
d13d24-

Furthermore, the contractions are corresponding to the diagrams in figure 3.1.

If the operator lengths become long, the four-point functions have a lot of contraction
patterns. Thereby, a structure of the four-point functions seems complicated problem even
though it is the tree-level computations. In section 3.1, we try to study the combinatorial
problems of the four-point functions. After doing so, we calculate the one-loop corrections
by dressing the tree-level diagrams in section 3.2.

3.1 Four-point functions at tree-level

Let us begin with the simplest operator set whose lengths are same and two: Ly = Ly =
L3 = Ly = 2. Then, there are six contraction patterns as follows:

'We now consider the length one operators. However, in practice, such an operator should vanish due
to the trace of the gauge group indices, ¢*Tr[T*] = 0.
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N e, O e,
o NG
AN ﬂé

Figure 3.1: Four-point functions of the length one operators.

d3sdiy, dsadyrdiadas, diydiy,
dazdsrdizday, dyadsadi3day,

2 g2
d13d24'

Notice that we now arranged the contractions in triangle. The arrangement shall be
suggestive for the generalization and for one-loop computation. Then, we first focus on
the contractions in the first line of the triangle:

0, N s 0, O
N o, NS o, N o,
dydy, dy3dyidindsy dhd3,

Here, we would like to mention following two points:

1. There are no cross contractions, that is, di3 or doy4, in the first line. In other words, all
contractions are parallel or vertical to the arrow being below the diagrams.

2. With following the directions of the arrow, the vertical contraction pairs, do3dy;, vanish
and the parallel contraction pairs, disdss, are added.

The remains diagrams in the triangle, the second line and the third line, are depicted in
figure 3.2
Then, we next mention the following properties:

3. The diagrams in n-th line have n — 1 pair cross contractions, dj; 'dy; *. Namely, the

diagrams in the second line have one-pair cross contraction, dizdss. On the other
hand, the diagrams in the third line have two-pair cross contractions di;d3,
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0N e, N e,
d23d4 1 dl 3d24 dl 2d34d1 3d24

Figure 3.2: The most-below diagram has contraction d2;d%,, which comes the one pair
cross contraction dizdss times common factor between the dogdsdisdas and diadssdizday.

4. a n-th diagram is given by the one-pair cross contraction times common contractions
of two diagrams in n + 1-th diagrams just above the n-th diagram.

With the lessons from 1.to 4., the contractions of the length-four operators are easily
given by

d3yd3,, d3yd3,dasdy, d1adssdssd]y, d3sd,
disd34di3day, d12d34da3dg1d13d2a, d35d3, dy3daa,
d12d34d%3d%47 d23 d41 d%3d347

3 3
d13d24‘

Here, we subtract the most combinations below di¥d5* from the all diagrams and intro-
duce the following notations?

diadzs (= s) and dyzdar (1-o)(1-a)

dizday XX disdayy (1= x)(1—=X)

Then, the contractions are simply written in terms of §,¢ down as:

t(=t1). (3.4)

Il
VAl

53, 52t, st 3,

In general, the four-point functions with any length operators will be following multi-
plet:

2The s and t are ordinary notations. On the other hand, we here used the inverse of them.
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Here, we don’t explain the details. Because the combination in the first line is the same
as the tree-level four-point functions of operators inserted into Wilson line explained in
section 7.1. Thereby, we devote to the section 7.1 for the more detail explanation of
generalization.

3.2 Correlation functions at one-loop

We now discuss the one-loop correlation functions by using the perturbative method. A
compact formula for n-point functions was suggested by Drukker and Plefka [39]. In
particular, the one-loop four-point functions are suggested as

<O]13PS(L1)02BPS(L2) O?PS(LS)OEPS(L4)>One,loop <35)
- L1L2L3L4 <D1234<O§L1_1)O§L2_1)O§L3_1)O§L4_l)>tree, disc
+ D1324<O§L1_1)OéLS_l)O£L2_1)02L4_1)>tree, disc

+ D1243<O§L1_1)OéLQ_l)O£L4_1)O§L3_1)>tree, disc>7 (36>
where

D1234 = CI)(Z, 2) (2d13d24 — ((]_ — Z) + (1 - 2))d14d23 - (Z + 2)d12d34) . (37)

3272
The ®(s,t) is a one-loop conformal integral and the explicit form is shown in appendix
A. The correlator (- - )iree, disc 1S the tree-level four-point functions of the four operators
at the boundary of the disc.

Referring the previous paper [39], we introduce the one-loop insertion formulas and
calculate the one-loop dressed diagrams from the tree-level result. Eventually, we shall
see that the compact formula (3.6) is reproduced.
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3.2.1 One-loop insertion formula

Let us begin with introducing the fundamental materials at one-loop in N = 4 SYM. Using
the Lagrangian, self-energy, scalar quartic interaction and gluon exchange are given by

Y] Y]
selfyp : 1o noaw = —\(Y] -3/2)[12—112 REREL ;
Lo

Y- Y, - p(xy)

Giazg é Y1 Yo)(Ys - Ya) 1o lsaFra 34,
#y) B(x)

Y- don) Y- ¢y
e >< 2V, ¥) (Vi i) — (V2 Ya)(Vi Vi) — (Vi Va)(% - Vi) Xizas,

;- hlx) Y, (xy)

(3.8)
where [19, Y193, Fi2.34 and X934 are usual functions to present the one-loop diagrams. We
summarized the details in appendix A.

By combing above three fundamental materials, we calculate the two- and three-
point functions as a preliminary. In addition, we make the Dj934 functions (3.7), which
constructs the four-point functions.

(i) Two-point functions

We first calculate the two-point functions with operator’s length L at one-loop. They have
L self-energy, quartic scalar interaction and gluon exchanges. Then, their contributions
are canceled out and the two-point functions vanish:

<O]13PS(2)($1)OQBPS(2) ($2)>one—1oop (2861f12 + Si212 + G1212) d12
= 0. (3.9)

The result implies the BPS property. Namely there are no quantum corrections of spec-
trum due to the supersymmetry.

(ii) Corner interactions and three-point functions

It is useful to combine the one-half of the self-energy and three-body interactions, and
such diagram appears at a corner of the diagrams:

Y3 plxs)

S
Y2~(/1(x2)< = % |:/ + & :|+ < + ©< = Cligsdiadas,  (3.10)
AN

Y- p(x)

where the corner interaction Clyy3 is given by

1 1 2
Clya3 = \Y] —t+—— . 3.11
123 123 ([12 Tos [31) ( )
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Using the function (3.10), one can show that the one-loop three-point functions also
vanish:

O3(x3)
(0P (@) 0" (22) 05 (23 onetoop = om0

one-loop

0y(xy)
2 dressed

= 2%(ClLia3 4 Clags + Claia)diadazdz = 0.
(3.12)
Therefore, the one-loop structure constants are also zero.

(iii) D-function

In order to construct the Djo34-functions, we start with the four-body interactions:

0,(x;) 0,(x) 0,(x)) 0y(xy) O_____ Ow)
. N = Si1234 + Gi23s + Gizoa. (3.13)

O4(xy) 05(x3) O4(xy) 05(x3) O4(xy) 05(x3)

Here, the Fi 43 function in the Gia34 diagram can be written as

X
AF1g 43dy2d3y = {)\ 123 (t—1)+ C112,43] di2d3y4, (3.14)
L3124

where Clj3 43 function is related as the corner interaction Cl;;j, by
1
Cliga3 = —5(01123 + Cly1o + Clgaq1 + Clagy — Cligg — Clagg — Clygy — Clsgo). (3.15)
Thus, subtracting the corner interactions, we obtain the Dj934-function as follows:
D134 = S1934 + Gio3a + Gigoa — Cligazdiadss — Cliyo3diadas

X
_ a2 (2dy3dag + (s — 1 — t)dyadog + (t — 1 — §)dyadsq)
L3124

= 1677'2(1)(8’ t) (2d13d24 + (S —-1- t)d14d23 + (t —1- S)d12d34). (316)

The function is manifestly cyclic-symmetric as well as the reflection symmetry 2 <+ 4 and
5 <> L.
3.2.2 Four-point functions

Let us calculate the four-point functions at one-loop and reproduce the suggestion (3.6).
Key point in the calculation is how to remove the corner interactions CI;;; and get only
the D1234 functions.
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Let us begin with the simplest correlator with length one operators. The tree-level
contributions were given by (3.3). Using the one-loop insertion formulas, we dress the
tree-level diagrams, and then we shall get the one-loop four-point functions. However,
when we use the one-loop dressed diagrams from tree-level contractions, we must be
careful of the ordering of the operators. For example, the one-loop dressed diagrams of
the tree-level contraction dssds; are

@ﬂ — %@4 @Iﬁ — %@4 ﬁlﬂ S %@4
= =+ + .-
O . ﬂﬁs one-loop AN ﬂ@ @3% o,

dressed

Then, the ordering of between the operators O, and (O3 in diagrams is irrelevant at
tree-level. However, we must distinguish them at one-loop level. In order to avoid such
difficulty, we fix the operators at the boundary on the disc:

e

@:% a 4 03 | one-loop

dressed

one-loop O
dressed

3 one-loop

dressed

Thus, we define a tree-level disc four-point function Disc{ba;"""™'°P whose length one

operators are arranged in the order of O;0,030, on the disc:

+o(1.1,1,1)one—loop —
DISC1234 -

one-loop
2
dressed ~

Then, other one-loop dressed diagrams are given only by the replacement of the operators.
Therefore, the one-loop four-point function is given by

- (1,1,1,1)one—loop - (1,1,1,1)one—loop - (1,1,1,1)one—loop
Disciysi + Discyso4 + Discyq51 (3.17)

Each term comes from the one-loop diagrams of the tree-level contraction (dozdy; +di2dsy),
(dazdyy + dizday) and (dasdys + diadsy) respectively, see also in figure 3.3. We find that
each edge of the triangle in the tree-level contractions corresponds to each disc one-loop
four-point function.

We next consider the length two operators. In the same way as the length one case, we
first divide the diagrams into three parts corresponding to the three edges of the triangle
at tree-level. Then, the one-loop four-point functions are given by

- (2,2,2,2)one—loop - (2,2,2,2)one—loop - (2,2,2,2)one—loop
Discys34 + Discy5a4 + Discyqa; ) (3.18)
. . 2,2,2,2)one—loop -
where the function Dlsc§234 ) P is defined as
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: o~ (1,1,1,1)one—loop
DlSClZS4

(dindai dydyy))

Disc(l,l,l,l)one—loop

s o~(1,1,1,1)one—loop
1324 Disc

4231

Figure 3.3: The tree-level contractions and one-loop diagrams in the disc. The

= (1,1,1,1)one—1 . :
DlSCEjkl Jone=1oop . es from the tree-level contraction of the operators arranged in the

order of O;0,;0,0; on the disc.

0, 6, 0 0, 0 04

s or(2:2,2,2)one—loop —
DISCIZ34 - ( + + )

0, 0, 0, 0, 0, 0, one-loop
dressed

From here, we discuss how to kill the corner interactions and how to produce the D34
functions.

Let us see the details of the function Disc{32"?"* °P. The function includes the

following one-loop diagrams, see also in figure 3.4
Disc%’ng’z)one_b()p = (S1234 + Gizsa + Guzoa) (di2dsa + dazdyn)
+ (Cligs + Clagy + Clsa1 + Clyio)(diodasdsadsy). (3.19)

Here, we used the property (3.9). Using the definition of the Djo34-function (3.16), the
disc four-point function become

Disci " = Digga(diadsy + dosday)
+ 0112743d%2d§4 + 0114723d%4dg3. (320)

It is because the corner interactions are canceled with a part of the CI;; ; function in the
D793, function as®

Clig3 + Clig 24 4 Clygg + Clagy + Clgyy + Clyip = 0. (3.21)

Although the corner interactions were not completely canceled out, the remained corner
interactions, Clyg3d3,d3, + Cli493d3,d3;, can be canceled with the corner interactions
) . . : . (2,2,2,2)one—1 . (2,2,2,2)one—1 .

in the other disc four-point functions Disc{za 2" ™°P and Disc\gn > functions.

Therefore, the one-loop four-point functions are given by

- (2,2,2,2)one—loop - (2,2,2,2)one—loop - (2,2,2,2)one—loop
Discy55; + Discysa, + Discys1

= Digga(diadss + dasdar) + Digoa(dizdas + dosdar) + Daozi (daadsi + dazdar). (3.22)

3When we prove the cancelation (3.21), we use the property Clja3 + Claz; + Clz12 = 0
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tree:
0, 04 0, 05 0, 0,
@‘ﬂ %@4 @1&7 0,0, 0, @‘ﬂ %@4
one-loop: % NAVAV)
AN o, os o, o0, o, N e,
o N 78 NG
NS e, NS e,
0, 04 0, A @lﬂ N @'f O,
0, (7@3 0, 67@3 @2% ﬁ@; 0, (7@3

Figure 3.4: One-loop diagrams of the Disc{222?°"*™°P_ It has six four-body diagrams

and four corner interactions diagrams.

As expected, the result is represented by only the Dqs34 functions. Furthermore, the pre-
factors of the D1934 functions are just tree-level disc four-point functions of the length one
operators. Therefore, we finally have
(OPPROFSROFSEONID) oy =24 (Diasa (O O OO e, e
+ Digoa (O OV O O ) e, e
+ Dygi (0o ol oMy, .. disc>- (3.23)
In particular, the four-point functions of the length two BPS operators are written as
OPSIOIIOIIAONID, e R, (324)
where the pre-factor Rp—4 is known as a universal refactor [40,41] given by

Rn—a = (2(dy2dss — dagdgy + dagrdas — disdas)) (Z(d12dsy — dasday + dardeg — dizday))
(3.25)

The above discussions can be easily generalized for the general four-point functions.
Namely, even though the operator lengths are general, the all corner interactions are
canceled out and the remaining functions are only the D;j;; function. In addition, the
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pre-factors become the tree-level disc four-point functions of the operator length L; —
1,Lo—1,L3—1,Ls— 1.

Here, it is instructive to consider the length-three operators. The tree-level contribu-
tion is surely written by the triangle in section 3.1. In the same way as the length-two
operators, we make the one-loop dressed diagrams from the three edges of the triangle
in tree-level combinatorics. Then, the Do34 functions are produced and the all corner
interactions are canceled out. As a result, the four-point function is given by

- (3,3,3,3)one—loop - (3,3,3,3)one—loop - (3,3,3,3)one—loop
Discyysy + Discyzo4 + Discyos1

= D1234 <O§2) 052) 05('32) 04(12) >trco, disc + D1324 <O§2) O;(gQ) 052) 04(12) >troe, disc
+ D4231 <Oz(12) O£2) O§2) O§2) >tree7 disc-

Although the diagrams corresponding to the edges of triangle are relevant, the inte-
rior of the triangle should vanish in order to produce the correct answer. So as to
check this, we now focus on the one-loop dressed diagram in the interior of the trian-
gle, dyodssdogdyidizdsy. The diagram is given by

7 : N O ' NG
| = Z (Clj; + ClL; + CI,) X Y 7 —o
{i..k} - :

6515 5293 one-loop @5?3' 5753

dressed

where ({1,2,4},{2,3,4},{1,3,4},{1,2,3}) € {i,7,k}. This imply that the all diagrams
in the interior of the triangle are given by the summation of the three-point functions.
Thereby, these contribution become zero.

Overall, we get the general four-point functions as follows:
(OPFS I O QRFSUD OIS | — Ly Lo Ly Ly ( Diaga (01 V0L DO DO ) i
+ D1324<O§Ll_1)O:(5L2_1)O§L3_1)O§L4_1)>tree, disc

+ D4231 <OA(1L1_1)O§L2_1)O§L3_l)O§L4_1)>tree, disc) .
(3.26)

The result is just the same as the suggestion by the Drukker and Plefka (3.6).
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Chapter 4

Non-BPS operators — perturbation
and integrability

In this chapter, we discuss the correlation functions with a non-BPS operator. In section
4.1, we first consider the two-point functions at one-loop. For the case of non-BPS opera-
tor, the operator has nontrivial anomalous dimensions due to operator mixings. Namely,
if there are no operator mixing, the all one-loop diagrams of two-point function vanish
such as (3.9). On the other hand, if the operators include impurity, the scalar quartic
interaction Sis34 exchange the position of the impurity. Such mixing has tensor structure
and the diagrams of two-point functions of operators with impurity are not canceled out.
As a result, the two-point functions produce anomalous dimensions. Then, to diagonalize
such tensor structure and calculate one-loop anomalous dimensions, we use an integrabil-
ity technique which is so-called spin chain system. The study is just the first discovery of
the relation between the integrability and N' = 4 SYM. In section 4.1, we briefly explain
the relation, following the paper [6].

We next consider the three-point functions at tree-level in section 4.2. Then, we
use the one-loop spin chain system. Even if it is the tree-level computation, we should
rely on the integrability technique in order to efficiently count the contractions. It is
because a large number of operators have the identical conformal dimensions, and the
degeneracy will be lifted by the one-loop corrections. Therefore, we need to use the one-
loop eigenstate, which correspond to the one-loop spin chain state, in the same way as
the standard degenerated perturbation theory in quantum mechanics. Such technique
to efficiently compute the tree-level structure constants is called tailoring method and
suggested by previous papers [42-45]. The section 4.2 is devoted to give the incentive
lessons for finite coupling method explained in next chapter 5.

4.1 Two-point functions at one-loop

In this section, we discuss the two-point functions of non-BPS operators which is in SU(2)
sub-sector at one-loop.
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4.1.1 The anomalous dimension matrix and XXX spin chain
Hamiltonian

Let us start with a special class of the single-trace operators which consist only of a scalar
fields as follows:

Oivig,... = tr]0i iy - -+, (4.1)

which is the so-called SO(6) sector. Notice that we do not impose the symmetric and null
property. The tree-level two-point functions of the operator is easily given by

A 1 5]&5]& L (4 2)
(87T2)L |x12‘2L i1 iz ' :
At one-loop level, the operators receive the quantum correction as the anomalous dimen-
sion v, A = L + 7. To determine the one-loop anomalous dimension, we calculate the
one-loop Feynman diagrams in the similar way as correlators of the BPS operator 3.8.
However, we must be careful of the SO(6) indices. The only scalar quartic interaction
has non-trivial tensor structure of the SO(6) indices. The interaction comes from the
commutator square term

(Oim,...(xl)Ojle""(iU2)>tree =

[0, 051> = 20500505 — 20ihih; b, (4.3)
in the action of N' =4 SYM. Therefore we have the following contribution:

A
1672

Since the others have trivial tensor structures, we use the previous results in 3.8.

J, J Jo Ji
(20706, = 870701 = O 0770 (4.4)

Je A Jo cJot1
1672 Ip " Ipyq 0

lppy——— Vi

1 J,
‘ ‘ A Jo cJot1
1672 Ip " Ipyq -

If+1 ‘,f+l

Adding all one-loop corrections, we therefore have

(Oisis,... (1) O (22)) = TonalE (1 — 2@ log(Alz12])) 67,67 -+ -
A
= 1671'2 Z<_2Pn,n+1 + 21n,n+1 + Kn,nJrl)’ (45>

n

where P, 11,1, 41 and K, 41 act on the SO(6) indices defined as
In7n+1|... 72'7j’...>:|... 7@'7']',...)’
Prit] iy =] diie-),

6
K| 7i,j,--->=5sz|--- ke ).

k=1
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Notice that if the state is the BPS, which satisfy the symmetric and null condition, we
can check that such anomalous dimension becomes zero due to

(=Punnt1 + 1nnt1)|BPS) = (=L i1 + 1h041)|BPS) =0, K, ,11/BPS) = 0. (4.6)

Here, we make a two complex scalars of four real scalars. For example, we define as
Z=¢1+1i02, Y = @3+ 104 (4.7)
Furthermore, we consider the operators of SU(2) sub-sector,
O=tr[--Z---Y--]. (4.8)

Then, we can identify the anomalous dimension matrix with the Hamiltonian of the XXX
Heisenberg spin chain:

A

I'—H =
XXX 1672

> (2P i1 + 2L 000). (4.9)

n

Namely, we define that the all Z operator, which is the BPS operator is a spin chain
vacuum state denoted uparrow 7. On the other hand, the Y scalars inserted in BPS
operator are corresponding to the excitation on the vacuum called magnon, which is
denoted downarrow |. Namely, the single trace operators are mapped to the spin chain
states are as follows:

tr[Z - Z) s [T 1), (4.10)
tr[ - ZY Z ] s | AL ). (4.11)

4.1.2 Anomalous dimensions and coordinate Bethe ansatz

In what follows, we explain the details of the spin chain states in coordinate Bethe ansatz.
By using the coordinate Bethe ansatz, we can capture the physical intuition from the
movement of the magnons, rather than the algebraic Bethe ansatz.

One-magnon state

We first start with the one-magnon state corresponding to the operator inserted one X
scalar, which is the one spin flipping state as follows:

Acting the Hamiltonian on the spin chain state, we have

A

~ 82

Hyxex| 1) = S5 (B = (L= 2)) [ o) = [ty = [ 4o,

(4.12)
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where L denoted the length of the spin chain. Here, we assume a eigenstate which is
so-called Bethe ansatz state as follows:

L

|p>zzeim|...¢u...>7 (4.13)

r=1 z
where p was the momentum of the magnon. Then, the magnon will satisfy the periodic
boundary condition: e* = 1, which is often called Bethe ansatz equation'. Using the
Bethe ansatz state, the Hamiltonian is diagonalized and the eigenvalue is given by

A 2

Hyxxlp) = c(p)lp), €(p) = 55 5in 5. (4.14)

Two-magnon state

We next consider the two-magnon state, which has the two down spins. The Bethe ansatz
state have two terms for the ordering of the magnons as follows:

L L
pLpa) = D ePTIIERL L L  S(pa,pr) Y PRI L
r1<x2 z1 T2 r1<T2 z1 z2

(4.15)

where S(ps, p1) is a factor of magnon scattering. In addition, the magnons will satisfy the
following Bethe ansatz equation:

e LS (py,p1) = 1. (4.16)

There is the S-matrix factor since the magnons are scattered when the magnon of the
momentum p; go around on the spin chain.

Then, we act the Hamiltonian on the Bethe ansatz state. If each magnon is not lived
in the site next to the other magnon: x5 > x; + 1, we have

HXXX|p17p2> = 4|p1,p2> - |p1 - 17]92) - |P1 + 17192) - ’2917292 - 1> - |p1,p2 + 1>- (4-17>
On the other case: x9 = x1 + 1, we have

Hxxx|p1,p2) = 2|p1,p2) — |1 — 1, p2) — 1,02 + 1). (4.18)

Solving these equations (4.17) and (4.18), the energy eigenvalue and S-matrix factor are
given by

A . .
e(p1,p2) = o2 <51n2 % + sin® %)
= €(p1) + €(p2) (4.19)

and
etP1+p2) _ 9,ip2 +1

(4.20)

S(p27p1> = _ei(p1+p2) — 2¢ip1 + 1'

!The one magnon state have the momentum p. However, due to the trace of the single trace operator,
the spin chain state is imposed the zero-momentum condition. Thereby, the only solution is p = 0 in the
case. It means that the one-magnon state cannot practically exist.
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Multi-magnon state

Finally, we consider the general spin chain system with M-magnon. The Bethe ansatz

state is given by

The o is a set of the momentums {- - -
permutations. In addition, the pre-factor A(o) satisfied the following relation:

A

oc€Pyy

1y Diy e

yPjsPiy

)

Al

y Piy Py

)

YORRS

= S(pj,pi)-

|p1)"'7pM>: Z \IIA(:L‘I) ,Z'M)l \l’i\l/>7 (421>
1<zi<..<zxp <L
where the wave function WA(xy,--- , x5/) is
M
VA, am) = Y Alo H s, (4.22)

}and > p means the sum over

(4.23)

For instance, if the number of magnon is three, >
following terms

sep, A(0) means the sum over the

A(p17p27p3)7 A(p17p37p2)7 A(p2ap1ap3>7 A(anp?npl)a A(p?nplapQ)a A(p?np?vpl)' (424)
Furthermore, by dividing the factor A(p1, ps, p3), each terms become
A(p1,p3, p2) A(p2,p1,p3) A(p3, p2, p1)
= =8(p3,p2); < =SW2m1), = =5(p3,p1),
A(p1,p2,p3) (ps.p2) A(p1, p2; p3) (p2.p1) A(p1,p2,p3) (ps.p1)
A ) ) A ) ) ) )
(pQ b3 pl) _ (p2 b3 pl) (p2 b1 p3) _ S<p3,p1)S(p2,p1),
A(p17p27p3) A(pQ)pl)p3) A(plap2ap3>
A 9 9 A 9 b] A ) )
(p3 h p2) _ (p3 b1 p2) (pl 25 p2> _ S(pg,p1)5(p3,p2).
A(p17p27p3) A(pl)p3)p2) A(plap2ap3>
Therefore, the wave function W(xy, -+ ,x)) can also be written as
\Ij(wla L, T Z H S pokapaj l_Ielp(7 :EJ' (425)
oePy j<k
O>0;
In addition, the Bethe ansatz equation is given by
M
e? T S(pe.pr) = 1. (4.26)

04k

Here, in order to write more simply, we introduce the rapidity v which is defined by

U= —cotg

4.27
Scott (427)
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Figure 4.1: Tailoring method: the three-point functions have three bridge edges. We
cut the three spin chains, and then we get three “two-point functions” with each bridge
length.

Using the rapidity expression, the notations of the spin chain system become more simple.
For example, the S-matrix factor and Bethe ansatz equation are written as

. iN L M .
_ u _|_ 2 _
S(up, ug) = Mt ( 2.) I1 U Z Ul (4.28)

.9 i ..
Up — Up — 1 -1 Up — Up — 1
b Ug U3/ gy Wk W

Furthermore, the energy eigenvalue is also simplified as

M
E = e(uk)
k=1
M
A 1
= — . 4.29
872 ; u% + 411 ( )

4.2 Three-point functions at tree-level

In this section, we discuss the three-point functions of the non-BPS operators which is in
SU(2) sub-sector at tree-level.

4.2.1 Structure constants at tree-level

In general, the tree-level computation is given by the Wick contractions. For the three-
point functions case, the contractions are divided by the three parts with the bridge length
lij = M in figure 4.1. Referring to the previous papers, to calculate the three-point
functions at tree-level, we first map the operators to spin chain states. Secondly, the spin
chain states are cut in respect to the bridge lengths and flipping the cut spin chain states.
Thirdly, the spin chain states are contracted with each other. Finally, we get the structure

constants at tree-level.
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Figure 4.2: Three-point functions with one-magnon: The Y excitation can be contracted
with only the operator Z.

One-magnon
Let us first consider the simplest configuration, which has one excitation as follows:
O, = Tr[Z1Y], Oy = Tr[Z12], O3 = Tx[Z%], (4.30)

where we set the scalars

Z = ¢ +idy, Y = 3+ i, (4.31)
Z:Z+Z;Y_Y. (4.32)

Also, the notation Z and Y are complex conjugate of Z and Y respectively.

In order to systematically calculate the structure constants, we go on spin chain sys-
tem. The operators are mapped to the each states with magnon as follows:

O1 — |ph :Zeipw|"'ZYZ"'>1,

T

Oy = [0)2 = |- )2,
)3-

Next, these states are decomposed into two states. Then we must be careful of range of
the excitations Y, because the excitation Y can only be contracted with the scalar Z in
fig 4.2. Namely, we have

T
O3 = |0)g=|-Z--

l12

(’)1—>Zei’”"|---ZYZ---)1®|---Z--->1,
r=1

Vo ®|---Z- )y,
.>3®|...Z...>3‘
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Also, we perform a flipping operation which is merely change from the bra-state to ket-
state for the right side states as follows:

l12

(91—>Zeipx\"-ZYZ"'>1® o Zeer,
=1

Vo ® of---Z---],
s ® 3<...Z...|‘

Oy —|--- 7 ..

O3 = - - 7..

Finally, by contracting them, the structure constants are given by
l12

Cloy o » e, (4.33)
r=1

Here, we normalized as (Z|Z) = (Y|Y) = 1. The geometric sum is calculated easy as

l12

. . 1
Do M= N1 =), Np) = (434
r1=1

It is important to interpret the above equation as a movement of the magnon on the spin
chain coordinate.

The magnon is denoted by the black dot. The first term of the right hand side shows that
the magnon lives at the start point of site 1. The second term shows that the magnon
lives at the end point of site £15 on the spin chain coordinate. The propagation factor
eP12 in (4.34) are raised when the magnon propagate from the start point to the end
point.

Two-magnon
Next, we consider the operator with two excitations

Or=Tx[---2YZ---2YZ---]. (4.35)
According to the section 4.1.2; the operator is mapped to the two-magnon state as follows:
Ip1, pa) = Z ] MZ};Z' ..Zgz...>+ S(pa, p1) Z eiparitipiez| ..Z};ZH.ZEZZW

x1<T2 r1<T2

(4.36)
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In addition, by cutting, flipping and contracting the states, the structure constants are
given by the geometric sum as follows:

C};Zoo x Z eiplx1+’ip2$2 =+ S<p2’p1) Z eipgx1+ip1x2' (437)

1<z <x2<l12 1<z <x2<l12

The first term become

l12
Z eip1961+ip21‘2 — N(p2) Z (ei(pl-i-m)xl o eiplu’vleipﬂm)
1<z1<z2<l12 x1=1
— N(pz)N(p1 _|_p2)(1 _ ei(Plerz)fu) . N(p1>N<p2)(eip2412 _ ei(P1+p2)f12).

(4.38)

This geometric sum can also be interpreted as a movement of the magnons on the spin
chain coordinate as follows:

GG ‘i
=N(p)N(p; +py) (= _ )= NN ( . )

When the two magnons are propagated together as a mass, the pre-factor become N (p; +
p2) rather than N(p;) or N(p2).

Then, we notice that the interpretation of the summation depends on the ordering of
the summation. Namely, if we first sum over x5 and then sum over x;, the summation is
given by

C1p %=1 ‘. |
=N(p)N(p,) (= - )= N(pN(p, + p,)eP( B :

Surely, it seems that the geometric sum apparently give the different answer as follows:

Z 6il71w1+i]92962 — N(p1)N(p2)(1 _ eipﬂu) _ N(pl)N(pl +p2)€—ip1(1 _ ei(P1+p2)512)‘
1<z1<w2<li2

(4.39)

It teaches us that the terms should be summarized in respect to the each propagation
factors, and then the representation has two types. According to the both (4.38) and
(4.39), the summation can be rewritten as

Y. eI = N(py)N(py +p2) — N(p2) N (pr)e™2 + N(py)N (py + py)e el r2)z),
1<z <wa<l2

(4.40)
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Notice that the non-trivial factors N(---) are related to the the number of magnons at
the left-(right-)most site. Thus, by substituting the result (4.40) for (4.37), we finally get
the structure constants as follows:

C’};?fo x N(p1)N(p2)[h(u1,us) — g2tz _ ASY(pl,pg)eiple12 + h(uy, u2)ei(p1+p2)412], (4.41)

where h(u,v) is defined by
u—"v
N(p1)N (p2)h(u,v) = N(pl)N(pQ)m (4.42)
= N(p2)N(p1 + p2) + S(p1, p2) N(p1)N(p1 + p2)
= N(p)N(p1 + p2)e ™" + S(p1, p2) N (p2) N (p1 + pa)e” "2

In the next section, we will see that the factor h(u,v) is just the tree-level hexagon form
factor. In addition, we find the significant property of the relation between the factor
h(u,v) and S-matrix

= S(u,v). (4.43)

As an another case, we explain the structure constants of the two-magnon in different

000

spin chain C735 in appendix B

Multi-magnon

Finally, we discuss the operator with multi-magnon. According to the section 4.1.2; the
Bethe ansatz state of the multi-magnon is given by

’pb 7pM Z q] .fCl, 7xM)‘ZY ’ YZ>7 (444>
x1<--<Tpr

U(zy, - => I @05, He% = (4.45)
oc€Pyy ]Ek
OR<<0j

Using the relation between S-matrix and A(u, v) function (4.43), the product of S-matrices
can be divided by

11 S@o,.00) = | TI Mtoua) | | 11 hug T | (4.46)

Uk:<‘7j Uk'<‘7j Uk<‘7
j<k j<k j<k

Furthermore, the first bracket can be decomposed as

H h(uo'k?uO'j) = H h(”O’k?“O’j) H h ng,ug ) (447>
0 <0 0,<0j 0 <0j J
i<k >k
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Next, by relabelling indices of the product, the S-matrices become

HS(uoj,uok):<Hh(uj,uk)> 11 h%,%) 11 hu(ﬂug) L (4.48)

0 <0oj i<k oR>0; o <0;
i<k i<k i<k

Overall, we get the following form of the product of the S-matrices:

H S(Us,;, Uo, ) (H h(uj,uk)> (H m> : (4.49)

0 <0oj ]<k ]<k
]<k

Therefore, the structure constants are written as

Chs®oc > Wy, ) (4.50)

1<z <z pr <l

:Hh(uj’uk Z (Hhua Uy )) M(Pffl"" 7PUM) (451>

j<k O’EPN[ j<k
with
M<P017"' 7PUM) = Z eiZijij' (452>
1<zy--<zpr<lia
Let us next treat the factor M (FP,,,--- , P,,,), which is evaluated by geometric series.

In advance, we state the result of the geometric sum of the multi-magnon:

i N 1 ip;
M(Palj ... ,PUM) = Z (—1)|a| (H €Zp]€12> (H e*izznszk _ 1) (H 1— ;Ek J+1Pk) '

a={1,...,m} JEQ JjEa
a={m+1,....,M}

JEQ
(4.53)

By checking above result, we recall the two-magnon case. The lessons of geometric sum
of the two-magnons are as follows:

e The non-trivial factors arise when the magnons are moved together as a mass.

e There are two different perspectives of the non-trivial factors, whether the magnons
are at left-most site or right-most site.

First, we consider that the magnons are at the right-most site. For the cases of one-, two-
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and three-magnon, the geometric sums are given by

l12 P
E eP1T — : (1 _ elmﬁm)’
1 —ewr
r1=1
l12 x2—1 ) ] l12 . eipl .
E E :62p1$1+2p2$2 _ § etP2r2 o (_1) ezm(mz—l) 4.
1 — e
xo=1x1=1 ro=1
_ —1 i(p1+p2)l
= N(p1)N(p1 + p2)e e (p1tp2)liz

et(P1+p2) )
_ el(p1+Pz)512 4.

o (1 —eP)(1— ei(p1+p2))

(12 w3—lz2—1 A A b et(p1+p2) A
E E E eiP1T1tipaTatipsTs E eIP3T3 o (_1)2 eiPrtp2)(zs=1) o .
(1 _ eipl)(l _ ei(p1+p2))
xr3=1xo=121=1 r3=1
ei(P1+p2+p3)

=(-1)* : : :
(1 —eirr)(1 — el(p1+p2)(1 — ez(pl-i-pz-i-pa))

It is easy to find the rules. Using the mathematical induction, the summation is given by

M L12 M-1 oibi
ipi My oy (1M1 - el L .. (454
> Iem=2e O e o (459)
1<zy-<xpr<liz2 =1 =1 i=1
_ )M H eimbiz (4.55)

i=1 1_6ZZJ b

The left-most side is also given by the same way as the right-most side:

DI | (R | ey (40

1<zq- <$1\4<£12 =1 =1 €

Therefore, in respect to the number of magnons at the left-(right-)most site, by using
the (4.55) and (4.56), the summation (4.52) in figure 4.3 is rewritten as

elpk

Z - Z ‘O‘| H —12] P 1 In 1— eizlepj ePrl12 (4.57)
[

1<zy<xpr<lia a={1,...,m} i€
a={m+1,...M}

where a and @ denote the magnons lived at the left-(right-)most site. Thus, the structure
constants become

Clys® o [T h(ujowe) > (=1 (Haﬁﬂw) II | Fle)F(a) (4.58)

j<k ala={1,...M} JjEQ W]
1EQ,JEQ
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Z = Z (= Dal e =
a

X1 X
1<x)--<xy <), LM ) ‘l{z {ilmiy[} a
a={m+1,..,
X es

= ) (b

a={l,., m} a a

= Z (= 1)"’|H 12 > H z ePiln

a={l,.,m} i€Ea € —1 keal—e 1P

el Pttt

>

Figure 4.3: The summation of propagation factors is divided into sum over partitions of
magnons in « and a.

with

F(1,2,..m)= Y _ (H W) ) (H eim_jp% - 1) , (4.59)

ceP,, \i<j j=1

_ m eip"j

F(172,...7m) = Z (Hh uo_ Juo_ ) (H m) . (460)
oc€Py \i< v J Jj=1

They seem tedious functions. However, we turn out that these functions can become
following smart product

F(1,2,...,m)=F(1,2,...m) = ﬁz(uk +1/2). (4.61)

Here, we deal with the relation of F'(1,2,...,m). The function can be shown by the
mathematical induction. For the preparation, the each factors in F'(1,2,...,m) are written
as

1
My om) =] =7 —

H(pla"' 7pm) =

|
—

1
= || X H(py o pt).
h X (pla » D 1)
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Using this relations, the function F'(1,2,...,m) become

O’GPm

1 1
F(17 27 7m> = Z (e‘iZZL1 PUk — 1 IJ;I h(uok7u0m> 8 M<p01’ - ’pamil)H(pUl? - 7pU7,L1)>

1 " 1 .
= X F(i, ,j, e m),
eIkt Pk — ] gzlg h(“k,“j) ( )

where F(i,---,j,---,m) means that j-th excitation does not contribute. Thereby, we
assume

FOL2,.m) = Z H 1 Hkle i(ug +1/2)
g Ly eeny —sz 1Pk — ] 4 mriy Uk, Z(U]+1/2) .

Here, by using the following counter integral, we can see

(e_izylpk_l):Huk_i/sz{ dz 1 k—Z—i/Q ZH 1
o Ukt i2 0 2miz \u — 2+ /2 —a h(ug, u) i(u; + 1/2)°
(4.62)

Therefore, we arrive at the relation
F(1,2,...m) = [ [ i(ux +/2). (4.63)
k=1

Overall, by considering the normalization, which is called the Gaudin norm [46,47],
we finally have the following correct form of the tree-level structure constants

A
\/HKJ' S (ui, Uj) det 8uj¢k

Ch9° = (4.64)

A= Hh(uj,uk) Z (—1)l (H eipjﬁlz) H h ) | (4.65)

i<k aUa={1,...,M} jEQ . zge
I€EQ,jEQ
where ¢; is defined by the Bethe equation as
€% = il H S(uj, ug). (4.66)

k]

This form (4.65) is written as the sum over partitions of the magnons in o and a. It will
be really helpful to the generalization for the finite coupling method.
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4.2.2 Weight factors and Tree-level hexagon form factor

In this subsection, we would like to mention short interpretation about the tree-level
hexagon form factor. In the (4.42), we define the function h(pi,p2). As you can see
later in subsection (5.1.4), the function is just the tree-level hexagon form factor. Then,
we found how to produce the tree-level hexagon form factor from the tailoring method.
Therefore, we would like to summarise the results here.

Let us recall the sum over the position of the magnons as

l12

D et = N(p)(1L —e™?). (4.67)

r=1

Of course, the result is written as the difference of the propagation factors and the weight
factor N(p). In other word, the factor N(p) is given by the weight factor when one magnon
move, and we depict as follows:

weight [ ——e—— 1= N(p) .

Furthermore, by replacing the momentum p to p; + po, the two-magnon weight factor,
which arise when two-magnons move together, is simply given as

weight [ —e—— 1= N(p, +p2)'

Then, the tree-level hexagon form factor with two-magnon is given by

weight [ ——e— ] weight [ —e— ]

h(py,p,) = +S(py,
(Pr-P2) weight [ —e—— ] (Pr-) weight [ —e—— ]

Namely, the tree-level hexagon form factor with two-magnon is given by the sum over
ordering with S-matrix for the two-magnon weight factors factor normalised one-magnon
weight factors. Thus, the multi-magnon hexagon form factor can be written as:

N(p; + -+ py)

h(p],"',PM) = 2 H S(Pok’poi) N(p,)

oE€P), J <k
0. <o

k]

( Np+ - +py) weight [ —e=o——]

N(p,) " weight[ —e——]
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Chapter 5

Complete method — integrability

In the context of the AdS;/CFT, correspondence, one of the goals is surely to give a finite
coupling solution. In this chapter, we explain a formalism which gives such result.

In the section 5.1, we discuss the three-point functions at finite coupling, which is
so-called hexagon method [34]. ' The tree-level method, tailoring method, should be
included into the hexagon method. In fact, these methods are deeply related to each
other. Therefore, we start with the result in the section 4.2 and go to the discussion of
the hexagon method.

In the section 5.2, we discuss a four-point functions at finite coupling, which is so-
called hexagonalization [48,49]. In particular, we consider the four-point functions of the
BPS operators. Thus, we would like to see how to reproduce the results in section 3.2,
which was the one-loop four-point functions of the BPS operators.

5.1 Structure constants at finite coupling

Let us first recall the result of the three-point functions at tree-level (4.65). Using the
relation between the factor h(u,v) and S-matrix (4.43), we immediately find that the
(4.65) can be rewritten as

Atree — Z (_1)\64 H eip;,reeélg H Stree(uj’ uk)f}_[tree(a/>]{tree>(07)7 (51)

ava={1,..,M} jea j<k
jeakEa

Htree(a) _ H htree<ui7uj)7 Htree(d) _ H htree(ui’uj)7 (52>
i<j 1<j
,JEQ ,JEQ

where we added the subscript “tree” to the momentum, S-matrix and the function h(u, v)
in order to clarify that they are tree-level functions. Here, we try to replace the tree-level

IThe good review is for example [50]
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Figure 5.1: The pair of pants diagram is decomposed into two hexagons form factors.

factors by finite coupling functions as

Atree - Aﬁnite . pzpree — pzﬁnite’ Stree<uj’ uk) — Sﬁnite(uj7 uk); %tree(a) - Hﬁnite(a)‘

(5.3)
Immediately, we suggest asymptotic structure constants at finite coupling
Aﬁnite
CMeo — . —, (5.4)
\/Hi<j Sﬁmte (ui’ uj) det au]- ¢2nlte
where plitit® is given by
. finite r\u + l 1
ezpﬁ te(u) — M with © = g (gj + —) , (55)
r(u—3) x

and Stite(y, ¢) is the Beisert’s S-matrix, see [7,8]. The remained unknown factor is
only Hi*(q). Surely, we should add a factor occurred by loop correction. Such factor
is known as a finite-size correction explained in subsection 5.1.5. In other wards, the
proposal (5.4) should be called asymptotic structure constants. * In what follows, we
would like to suggest a solution from the symmetry and integrability argument.

Before we begin with the discussion, we comment the strong coupling description of
the three-point functions. At the strong coupling, the three-point functions are depicted
as the pair of pants diagram. Here, we try to decompose the pair of pants diagram into
two hexagons in the similar way as the cutting in the tailoring method in figure 5.1. On
the other hand, we consider two-magnons of the A in (5.4):

A=H({u, uz} = )H({} = @) — e H({w} = A)H({uz} = @)

— S(p1,p2)e™ 2 H({uz} = )H({ur} = @) + PP ({} = a)H({ur, us} = (Zf;-@

Here, we remove the subscript “finite” due to illegiblity. Assuming the existence of the
finite coupling spin chain, the factors H(«), H(@) in (5.6) seems to be interpreted as figure
5.2. In this picture, we assume that the H(@) is a hexagon form factor with magnons,
which is given by the decomposition of the pair of pants diagram. Notice that we ignored
the remaining sign factor (—1)/%, Because we can’t mention anything until now.

20f course, we cannot be denied any other correction.
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Figure 5.2: If we assume that the H (@) is an object like a hexagon form factor, the A58
can be interpreted as a movement of the magnon on the object.

5.1.1 Symmetry of the three-point functions

The symmetry of the N'=4 SYM is PSU(2,2|4). Considering the correlation functions
of N =4 SYM, the symmetry is broken. We first recall the symmetry of the two-point
functions of the BPS operators

{trZ (0)trZ* (00)). (5.7)

Choosing this vacuum, the correlator has the SO(4) rotation for the R-symmetry in addi-
tion to SO(4) rotation around the origin. Adding the fermionic part and central charges,
Beisert proposed the centrally-extended PSU(2|2)? algebra. We write the generators as

Lorentz : L%, LdB, R — symmetryR%,, Ré‘b,

N
X

Centralcharges : P, K, C.

Supersymmetry : @y, Superconformal : §%, S%

The central charges extend by the anti-commutators of the fermionic generators:
{Qaa7 Qﬁb} - Eaﬁeabpa
{55, S5} = ePeasK,
{Q%,, SZ} = og Ry + S5 %+ 5252‘6’.
The symmetry of the three-point functions is less than the case of two-point functions.

In the same way as the two-point functions, we start with the canonical configuration of
the three-point functions. For example, we take

0.(0) = trzi |x1:(0,0,0,0)a
Oy(1) = tI'ZL2|x2:(l,O,0,O)’

(93(00) = tI‘ZL3|I3:(OO70,070).
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The boson symmetry part is O(3) Lorentz symmetry® and O(3) R-symmetry®. It shows
that it has the single PSU(2|2) symmetry, which is the diagonal part of the PSU(2]2)?
symmetry. We denote the generators of the diagonal PSU(2|2) as follows:

ﬁaﬁ — aﬁ + LaB’ Rab — (lb _|_ Rab

,&'ab

Q% = Q% +ice; S, 8% =5+ - 6@ (58)

In addition, one central charge P = P — K extend by the commutator between Q and &
as follows

{Qaaa Q/Bb} = 60Qgeczb’]D;
{Sg,Sg} = —eabeaﬂ?,
{Q%, S5} = 05RE + 00L%.

Therefore, the three-point functions, moreover the hexagon form factor, should be invari-
ant under the above centrally-extended diagonal PSU(2|2) symmetry.

5.1.2 Symmetry and hexagon form factor

From here, we consider the strong coupling region, and then we use the fact of the
AdS;/CFTy correspondence that the symmetries discussed above are equivalent to the
one in the strong coupling. Furthermore, we introduce a hexagon vertex (H|, and we
assume that the function H(«) is equal to the hexagon vertex contracted three spin chain
states, which is the hexagon form factor:®

H(a) = (H[(|lo) @0) @ [0)). (5.9)

Here, we introduce the notation: XAA € a, which is labeled by PSU(2|2)%. The represen-
tations x4 = y* ® x* are given by
X =005 et X = (007004, (5.10)

where ¢* and ¢ are bosonic and fermionic fields respectively. Furthermore, the excitation
x4 are related to the fields in N' =4 SYM as follows:

Pl=x, o2=vy, ¢¥ =y, o2 =_X, (5.11)
Y = D*Z others = fermion, (5.12)
where ®% = ¢2¢?.
3The three operators can be arranged in a line. Then, we find that they are invariant under the
rotation of the line in four-dimension.

41t is the rotation symmetry of the remained scalars ¢*, ¢°, ¢°.
5The small consistency check of the ansatz is comparison with tailoring method in subsection 5.1.4.
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The property of the hexagon vertex is only symmetry constraint as:
<H|\7 = O’ ‘] € {‘Ca 9 aba Ova‘s‘aa}' (513)

Namely, the hexagon vertex should vanish by the generators of the centrally-extended
diagonal PSU(2|2) symmetry. Using this fact, we can consider the following identity:

0= (H| (J]a) ®10)  [0)). (5.14)

One-magnon state

We first calculate the identity for the case of the one-magnon state
0= (HITM). (5.15)

Here, we used the short hand notation. For example, we choose the generators of the
R-symmetry R% and scalar excitation ®?.

0 = (H|R%|D™). (5.16)

By calculating the operation by R%, we have

RL[0%) = [¢! @ ¢'), (5.17)
RL|0%2) = [¢' @ ¢°) + |¢* ® o). (5.18)
Thus, we get
0= (H|¢' ®¢'), (5.19)
(H]o' ® ¢%) = —(H|$* @ ¢'). (5.20)

They show that the one-scalar magnon hexagon form factor is determined up to a constant
6
L as

(H]|DP) = —i\ /e, (5.21)

Here, p will be a measure factor. Using the other generators, we can determine the other
one-magnon hexagon form factors as

(HID™) = Jjie®?, (5.22)
(H|we?) = 0. (5.23)

In short, for the one-magnon the hexagon form factor with magnon x4 ® )’(A is given by
the e-tensor contraction up to normalization in figure 5.3:

(Hx*) oc et (5.24)

6The coefficients of the € is just the convention.
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Figure 5.3: Hexagon form factor with one-magnon.

Two-magnon state

We next consider the two-magnon hexagon form factor. In the same way as the one-
magnon hexagon form factors, we consider the following identities:

0= (HITIx*XPP) @ |0) @ |0). (5.25)
Calculating them, we have
(’H!@ﬁbd@gi’) Ay 6ab ba %(Au - Blg)eabedi’,
(MDD = Grae™e™, (H|DGIRY) = Lygede,
(H|D?‘5‘D§B) Dypeebt %(Dm _ 612)6ab6dl},
(HNUY) = LCoaee®?, (M) = Hanehe™,
(H| WYY = JCppetae? | (1| Tae 0y = ]—" ¢ibeas (5.26)

The coefficients are also given by

Arg = higArg, Bia = hiaBia,

G2 = h12NoGra, Lig = hiaNi Ly,

D1y = —h1aN1NoCha, €12 = —h1a N1 NoEpa,

Ciz = —h1aN1Noz ™ 'Cla, Fio = —zhiaFla,
Kia = hiaNoKia, Hiz = —hia N1 His. (5.27)
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and

T —
2 1
A12: — T
Ty — Ty
+ - 2 + 4 +
Ty — @) 1 —¢°/2x5x] x5 — x]
By = —= —(1-2 5 = ,
Ty — ] 1 —¢?/2x5x] x5 — x]
2 + +
Cu = 9 1 Ty — ¥
12 — — 1 22 — )
aryry 1 — g% /22507 x5 — 1]
D12:_17
2 /9, .+~ -
Brp=-{1-2 2 /9t ot + )
+ —\ (ot - — -
F12__204(x2 —x5) (2] — ) 1 Ty =T
- +. .+ o+ - T+
Y2Y1T9 g 1 —g*/2x5 2] x5 — o]
+ +
G Ty — Xy
2= —"——7T,
Ty — Ty
+ +
Y1 Ly — Ty
H12=—_—+,
Y2 Ty — Xyq
+ +
Y2 Xy — Xy
Klzz—_—Jr,
1Ty — Ty
€Ty — Ty
1 1
[BQ—.I’l

In fact, the results are completely match the Beisert’s S-matrix up to unknown scalar
factor hio.” In short, the two-magnon hexagon form factor is given by

(MM 2242) = (=12 Ry (G2 Sia | xd2), (5.29)

where Sy is the Beisert’s S-matrix [7,8] in figure 5.4:

Multi-magnon conjecture

From the above lessons, we now propose the multi-magnon hexagon form factors. The
form factors are composed two factors

<H’XA1A1 . ,XA]\/IAJM> — denHmat (530)

where Hgy, denotes the product of the scalar factor h(u;, u;)

Hayn = [ ] P, ), (5.31)

i<j

Strictly speaking, we take the S¥, = 1 in the Beisert’s S-matrix.
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Figure 5.4: Hexagon form factor with two-magnon
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Figure 5.5: Hexagon form factor with multi-magnon

where we called the dynamics part. The H,,,; denotes the matrix part determined by the
Beisert’s S-matrix:

Hmat - <_1)T<XA]A\14M e X{h |‘9|XIl41 U XJI?/[M>‘ (532>

The matrix part can be fixed by the symmetry of the hexagon. Furthermore, the matrix
part is depicted as figure 5.1.2. From the discussions so far, we find that the most parts of
the hexagon form factor can be fixed only by the symmetry up to scalar factor. Although,
we can determine the scalar factor (including the measure factors) by using the power of
the integrability as well.

5.1.3 Integrability and hexagon form factor
In this subsection, we finally determine the scalar factor and measure factor, which is

the dynamic part of the hexagon form factor. These factors can be fixed by integrability
constraints which are Watson equation and decoupling equation.

Watson equation

Watson equation is known as one of the axioms of the form factor bootstrap [51, 52].
Thus, it is composed by the Yang-Baxter equation and Unitarity relation as
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\_/

The equation is given by

(H|(Siipr — D] - x My iy = o. (5.33)

decoupling equation

The decoupling equation says the decoupling of particle anti-particle pair®. Using the
crossing relation and Yang-Baxter relation, the equation is depicted as

; M
Thus, the equation is given by

—iRes [(Hx()x(®)x1 - xar)] = (Hlxa -+ xar). (5:34)

Solutions

Solving these equations, Both the scalar factor and measure factor are given by

e R e D |
h(u,v):xﬁ T, Jx, )

x; —arl—1/xtat o(u,v)

B (1—1/x%z™)?
H) = T = 1)

where o(u, v) is the Beisert-Eden-Staudacher(BES) dressing phase [53].

(5.35)

(5.36)

8In the context of the form factor, the anti-particle is given by the mirror transformation. In the
section 5.1.5, we will explain in detail.
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5.1.4 Three-point functions at tree-level

We now calculate the hexagon form factor at tree-level.

u—"v

RYY (u,v) = S (5.37)

In the case of two Y’s excitations, the hexagon form factor is given by
(H|920'%) = A, (5.38)
= h12A1o. (5.39)

The hexagon form factor is divided into two parts: the matrix part Hy,,; and the dynamics
part Hgyn. The matrix part was given by the Beisert’s S-matrix. In this case, the matrix
part is Ay and the dynamical part is hio. Each function is expanded at the weak coupling
constant as follows:

Ap = — + O()\) (5.40)
hig = —— + O()) (5.41)

Therefore, we could find that the result by the tailoring method (4.42) is reproduced from
the weak coupling expansion of the hexagon form factor:

u—v

(H|D12012) = (5.42)

U—v+1

= H(u,v) (5.43)

Even the other configurations, the ansatz (5.9) is corrected at tree-level.

5.1.5 Finite-size correction and mirror transformation

Until now, we have discussed the finite coupling expression of the three-point functions
(5.2). Surely, the proposal could be reproduced the tree-level result given by the tailoring
method. However, the formula is not still complete. Because, it has been known that there
are corrections with dumping factor of the bridge lengths e =% from the loop order. When
the bridge lengths are small, the corrections of the dumping factors can’t be ignored. Such
correction is called finite-size correction [54-57]. Namely, the proposal (5.2) is available
only when the all bridge lengths are long ¢;; >> 1 and the finite-size corrections are
neglected.

In terms of the hexagon method, the finite-size corrections come from the gluing two
hexagons by exchanging the mirror particles which live on the dashed edges of the hexagon
form factor in figure 5.6
Then, we must calculate the hexagon form factors with mirror magnon. To do this, we
here discuss how to get the mirror particles in terms of the (hexagon) form factor theory.

29



a a ¢ 2
e e — —

NN N\ S
v P

Figure 5.6: At the loop order, the structure constants receive the finite-size correction
from the asymptotic result. Then, the correction is given by the gluing mirror edges. In
other words it is given by a correction of mirror particles inserted in the glued edges.
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N

Figure 5.7: The square form factor is given by the cutting the cylinder.

Mirror transformation

Let us begin with the cylinder configuration, which is the two-point functions. Cutting
the cylinder, we get the square form factor with two glued lines in figure 5.7. Then, we
consider the energy and momentum of the magnon at finite coupling:

. + 11+ =
er=" p=-_Tate (5.44)
x 21— 4=

The Zhukowski variables were given by

2_4 2
UtV TR (5.45)

x(u) = 2

Here we defined as z*(u) = x(u % %). Since the Zhukowski variables have branch cuts
[—2g +1i/2,2g 4+ i/2], we should understand the physical meaning when we pass through
different sheets. It is simple to consider what happen by the analytic continuation. It is
because when we pass through the branch cut, the variable become

1
r(u) = ——. 5.46
) = o (5.46)
Then, we define a mirror transformation which is the analytic continuation in the u-plane.

Thus, u* means : we first pass through the branch cut [—2g —i/2,2g — /2], after doing
so we pass through the branch cut [-2¢g + i/2,2¢ + i/2] in figure 5.8. Then, the both
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u’

Figure 5.8: Mirror transformation is given by the crossing of the Zhukowski cut. When
the magnon pass through the below cut +2¢g — i/2, the magnon is mirror transformed
once. On the other hand, When the magnon pass through the both cut £2¢ — /2 and
+2g + /2, the magnon is mirror transformed twice.
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\ 4
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u

Figure 5.9: Under the twice mirror transformation, the in-coming particles are converted
into out-going particles. On the other hand, the once mirror transformation corresponds
to conversion into the mirror particle.

variables ¥ are transformed to 1/x*. Thus, the momentum and energy also transform
2v:p— —p, E— —F. (5.47)

It shows that the 2v transformation convert the particles into anti-particles in figure 5.9.
Thereby, it is just the crossing transformation.

On the other hand, if we consider the half-transformation of the crossing transforma-
tion, we path through only the branch cut [-2g —i/2,2g — i/2]. Namely, the Zhukowski
variables are transformed as

yizt = 1/a", o= —a. (5.48)

Then, the particles are on the dashed line. In terms of such a particle, the space and
time seems to be changed as figure 5.1.5, which is so-called mirror transformation [58,59].
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Figure 5.10: The mirror transformation means the double Wick rotation, which exchange
space direction into time direction and vice verse.

Furthermore, the particle is called mirror particles. Therefore, the mirror transformation
lead to exchange between the momentum and energy [60,61]

v:p—1iE, E— —ip. (5.49)

Furthermore, the transformation rules are as follows:

u—u:  axt—=1/xt, T =T,
u—u?: T = 1/et, 1T = 1/a,
u—u¥ T =1/, 2T —a,
u— u T — T, T — .

In the same way, the mirror particles on the hexagon form factor is defined by the
mirror transformation:

% v u’

NAN

Furthermore, the S-matrix of the mirror particles is also given by

h(u?,v7)

S(UV,UW) = W

(5.50)

5.2 Four-point functions and hexagon method

In this section, we calculate the four-point functions of the BPS operators at one-loop by
extending the hexagon method. Thus, we would like to reproduce the perturbative result
(3.6).
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perturbatlon hexagonalization world-sheet

Figure 5.11: The most-left figure is in perturbative gauge theory realm, the middle figure
is in hexagonalization realm and the most-right figure is in classical string theory realm.

The world-sheet diagram of the four-point functions is decomposed into four hexagons
in figure 5.2. Since the BPS operator don’t have any excitations, there are no magnons on
the operator edge. Therefore, the one-loop correction comes from only the contributions
of the mirror particles and gluing dashed edge:

pay .
& o =0 |+

dressed

oo
+

5.2.1 Length two BPS operators

Let us consider the length two BPS operators. As discussed in section 1, the tree-level
diagrams in this case are three disconnected diagrams and three connect diagrams. How-
ever, the disconnected diagrams have not correct power 1/N"~2. Therefore, we consider
following connected diagrams:

d12 d23 d34d41 ) d12d13d34d24 ) d23 d13d41 d24 . (5 D 1)

In particular, we focus on one-mirror magnon on the zero-length edge between the oper-
ators O; and Os:
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Figure 5.12: Using the conformal transformation, the operator O, is located at the point
written by the cross ratio (z, z).

As mentioned in section (5.1.5), the mirror contribution have the propagation factor
e’F%i_ Then, the energy is a function of the coupling constant. Therefore, if we consider
the mirror correction at the lower order of the coupling constants, we should put the
mirror particles on the zero-bridge length ¢;; = 0. For the other diagrams in (5.51), we
can obtain by the replacement of the operators.

In order to reproduce the perturbative results, we should get the cross-ratio dependence
and one-loop conformal integral from this mirror particle contribution. In what follows,
we discuss how to glue the these hexagons for four-point functions.

5.2.2 Conformal transformation of the hexagon

We now recall the three-point functions with diagonal PSU(2(2,4) symmetry. When we
consider the hexagon in terms of the symmetry, the operators were put on the canonical
configuration. In the same way, we put a hexagon H; on the canonical positions as follows:

01 LT = (O, 0,0,0), 02 LTy = (1,0,0,0), 03 LT3 = (O0,0,0, O) (552)

On the other hand, the other hexagon with operator O, should depend the cross ratios.
Thus, the hexagon H, is not canonical and is given by the conformal transformation (see
figure 5.12)

e—Dlog|z\eiL¢57 (553)

where L and ¢ are combinations of the elements of the PSU(2]2)?

1 . ) A
Lzﬁuﬂ—Lz—Lg—L@,a¢zv€. (5.54)
z
In the same argument, the R-symmetry part is also transformed as
€J10g|a|€iR9 (555>

with

(EVJ%—RH—W%(ﬁzwg (5.56)



| L | R
YU +1/2]7 0
Y| —=1/2] 0
o 0 | +1/2
o> | 0 | —1/2

Table 5.1: Charges of the fundamental magnons

Combing them, the generator which is transformed Hs to H; is given by

g= e—Dlog |z\eiL¢€J log \a|6iR0 (557>

Thus, using the notation of the mirror momentum

D—J
= E = ip, (5.58)
we have
g = e~ 2010812 (Jup iy giRub (5.59)
with
o _ 2‘ 5.60
€ ‘ z1 e

5.2.3 Gluing the hexagons

In order to glue the hexagons, the idea is that we first transform the hexagons to the
canonical configuration and we second insert the complete basis:

(HaleBs|Hy) — 3 (Halo) (] P2 glo) (] H). (5.61)
P

where g is a generator of diagonal PSU(2|2). The Z¢ means sum over rapidity, bound
states and flavors. Then, the factor (H;]y) is just the ordinary canonical hexagon form
factor.

Here, referring the generator of PSU(2|2)?, the generator g is given by
g — G—Qiﬁw log |z|€2J¢<p€i[~/w¢€iR¢9‘ (562)
where L and R is defined as

L=

N | —

(L} —12), R==(R! - R} (5.63)

N | —

The charges of the left and right parts are given in table 5.1.
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In the computation of (5.61), the non-trivial part is the trace of the generator g. We
now compute the trace of the flavor part with bound state. In particular, we first treat
the following part

tro[(—1)Fetlotife), (5.64)

where a is bound state indices and F' is a fermion number. The basis including the bound
states which have been known as the a-th anti-symmetric representation are given by

Yoy -+ Yau) + 00, D10y V) + 0, (5.65)
|¢2%1 o '¢aa71> +eee |¢1¢2¢a1 o '1/J04a72> T (566>

with a; = 1,2. Then, the trace of the flavors are given by

a a—1 a—2
tra[(_l)FeigbL—i—iOR] _ (_1)a (eiaqﬁ Z G—Qinqb — 92¢0s gei(a—l)qﬁ Z 6—22'71(75 + 6i(a—2)¢ Z e—2in¢>
n=0 n=0

(5.67)
2(—1)"(cos ¢ H)Sm i (5.68)
=2(—=1)*(cos ¢ — cos : :
sin ¢
Finally, we consider the .J-charge factor’. Then, the result is modified as
tro[(—1)F 2/ HOLHOR) — 9(_1)%(cos f — cosh p cos 6) o af. (5.69)
sin
5.2.4 BPS four operators at one-loop
Using the result (5.69), the contributions of the gluing the hexagons are given by
int1—3(0) = 2(cos @ — cogh ¢ cos f) sin a(b,ua(v”)e_%ﬁ(”) log |#] o~ B3 (5.70)
sin ¢
We now set £13 = 0 and use the weak-coupling expansions of the measure factor
a0 = O, (5.71)
¢ 1672 (v2 + a?/4)?
Then, the integrand is given by
nt1=3(v) = 2X(cos 0 — cosh ¢ cos 0) sin ap a - (5.72)

1672 sin ¢ (V2 + a?/4)?

9Due to the supersymmetry, it is known that the J-charge is shifted since the supercharges have 4-1/2
J-charges:|) 93, |Z*+1/2¢), where Z called Z-marker and modify the difference of the .J-charge.
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Therefore, by summing over the bound states and rapidity, one mirror-magnon con-
tribution on the edge between the hexagons H; and Hy at one-loop is given by

> dv .
M., = Z} / Pinta(v) (5.73)

2(z+2) — (@' +a (22 + aa)|®(z, 2). (5.74)

~ 1672

Here, ®(z, 2) is the so-called one-loop conformal integral

2Liy(z) — 2Lig(2) + log(zZ) log

z—2Z

D(z,2) = 1:; (5.75)

Using this result, we can reproduce the perturbative result. In particular, we con-
sider the four-point functions of the BPS operators with length two. For the tree-level
contraction dyodasdssdyr, we get the following one-loop result:

@, H e H + @ H, H, = 2l 1 odyydr3diady

In addition, the other contributions are given by the replacement of the space-time labels.
Namely, the others are given by the transformations z — 1 — z and z — z/(z — 1).
Therefore, the four-point function is given by

<O]13PS(2) (xl ) 0123P8(2) (xQ)O;?]?PS@) (Z’g) OfPS(Q) <x4>>0nefloop

=2 <d12d24d34d13Mz7a + digdagdosdiaMi_; 1o + diadazdzadis M

z e
z—17a—1

A -
= —@ngﬂ)(z, 5).

where }?1234 is given by

(z—a)(z—a)(z—a)(z—a)

2Z2(1—2)(1 — 2)

é1234 = d%3d§4 (576)

The result completely match as the perturbation result (3.25).

5.2.5 Some developments of the hexagonalization

As a short comment, we would like to introduce some developments of hexagonalization.
However, each content is highly technical to explain here, and we do not explain details.
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For the three-point functions, the contributions of a few mirror magnons were calculated
in [62-64]. For the four-point functions, the contributions of the multi-mirror magnons
on one edge were sufficiently calculated in [65-68]. In addition, the non-planar correlator
were also done in [69, 70].
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Chapter 6

Maldacena-Wilson loop

6.1 Maldacena-Wilson loop

Wilson loop is a nonlocal quantity which stems from a very massive quark in the funda-
mental representation moving along the loop [71]. In N' =4 SYM, however, there are no
fields in the fundamental representation since the all fields in N' = 4 SYM belong to ad-
joint representation of the gauge group. In order to consider such a field in the context of
the AdS;/CFTy correspondence, one consider the SU(N + 1) N’ =4 SYM and construct
a heavy W-boson by breaking gauge symmetry to SU(N) x U(1) [72].

After doing so, the Wilson loop in AdS5;/CFT, correspondence, which is often called
the Maldacena-Wilson loop [73,74], is introduced by

W(C) = %tr Pexp []{c dr (iAu(z)i" + ¢y(z)n’|2)) (6.1)

with n?2 = 1. The important role of the quantity is what the supersymmetry is par-
tially remained, even though there is the Wilson loop [75]. Under the supersymmetry
transformations of the gauge and scalar fields

6 A, =UT e, 6.0(x) =T, (6.2)
the exponent of the Wilson loop become
U (il ,i"(1) — T8 a(7)]) e (6.3)

Due to the property of the gamma matrices {I'", '} = —21""1, the square of the Dirac
matrices (i[',2#(7)—T;0"|2(7)|)? equal to zero and half of the supersymmetry is remained.
In addition, the case is occurred when the integrand is 7 independent. This is only straight
line case since @#(7) is a constant. Thus, in the straight line configuration, the Wilson
line operator is a BPS operator. Namely, it is independent of the coupling constant and

<W>line =1 (64)

On the other hand, when the path of the Wilson loop is not line, for example loop or
rectangular, the expectation value has divergences. More generally, the Wilson line has a
cusp, it has nontrivial divergences.
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AdS

Figure 6.1: Wilson loop and minimal surface.

6.1.1 Wilson loop at the strong coupling

From the string in AdS point of view, the above discussion is corresponding to the config-
uration with a separated single D3-brane and N stacked D3-branes. In addition, an open
string is stretched between them. Then, when we consider the infinite distance between a
separated D3-bran and stacked D3-branes, the mass of the stretched open string become
infinite corresponding to the heavy W-boson. In the AdS side the heavy open string inter-
acted with closed string is propagated with the boundary condition characterized by the
path C. Thereby, in the AdS/CFT correspondence the expectation value of the Wilson
loop is given by the path integral of the string propagating with boundary on the path
C:

(W) = / DX exp (~VAS[X)) (6.5)
0X=C
Here, X represents bosonic and fermionic coordinates. In particular, for the large \ case,
the path integral is estimated by the area of the minimal surface bounded by the path
C [76]):
(W) ~ exp <—\/X X area) (6.6)

Namely, the expectation value of the Wilson loop with path C' is related to the minimal
surface of the open string bounded by the path C' in figure 6.1.

6.1.2 Wilson loop in perturbation theory

In the Wilson loop, the one-loop correction is given by

§ i IR =500 ) o)

o) — a2
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The |(m)||%(72)| term in the integrand comes from the scalar exchange in the Wilson
loop. Furthermore, the (7)) - (7)) term comes from the gauge field exchange.

We now take the line configuration, that is, x(7) = (7,0,0,0). In this case, the one-
loop correction trivially vanishes. It’s implied the BPS condition. On the other hand, for
the case of the loop configuration, that is, x(7) = (cosT,sinT,0,0), the denominator is
written as

lz(1) — z(r)]* = 2(1 — &(11) - 2(7)). (6.8)

Thus, the one-loop correction have nontrivial value

()| — () () L[ (20
g amm S e = 5 f anm = S5 (6:9)

Fortunately, thanks to the supersymmetry, the contribution other than the ladder
diagrams are canceled out. Thereby, using the recursion relation of the ladder diagrams,
we can solve the finite coupling result of the expectation value of the circle Wilson loop
as follows [77,78]:

2
W circ — —I <\/X> 5 6.10
(W) Ah (6.10)
where I is modified the Bessel function. The leading order in large A [72,79] can be also
given by
(WHsrons — e, (6.11)

circ

6.2 Cusp and operator insertions in Wilson loop

In what follows, we basically consider the line configurations of the Wilson line, which
is surely BPS configuration and the expectation value become trivial one. Then, we can
consider the deformations of them. The deformations are to make cusps in the Wilson
loop. Due to the existence of the cusps, the expectation values have several divergences
which have an important meaning for physics [80-83].

We first introduce the geodesic cusp. Namely, two Wilson lines are meeting with angle
¢ in RY. As a different point of view by using the conformal transformation, the two lines
run along the time direction in S®xR, see figure 6.2. For ¢ = 0, the cusp disappears and
the configuration is infinity line, which is the BPS. On the other hand, for ¢ = 7, the two
lines are very close. Expectation value of such a configuration is related as the potential
of the quark antiquark pair.

The other deformation is realized by two different scalars coupled into Wilson loop,
see figure 6.3. We now introduce the deformation parameter # as an inner product of the
two SO(6) vectors 7 - iy = cosf. For § = 0, the scalars coupled to each Wilson line
are same scalar field, which is the BPS configuration. For § = m, the two vectors are
orthogonal. It means that the two scalars are completely different scalars.
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W g
in R* in xR

Figure 6.2: A cusped Wilson loop with the geodesic angle ¢

Figure 6.3: A cusped Wilson loop with the internal angle ¢

As a further generalization, we can consider the operator insertion into the Wilson
loop. While retaining the gauge invariance, we can insert local operators in the trajectory
of the Wilson loop. In R*, such a local operator shall be inserted at the cusp. In terms of
S3xR, the local operator is at past infinity and make the excitation of the Wilson loop,
see figure 6.4. Furthermore, it will be corresponding to the excitation of the world sheet
in AdS.

6.3 Set-up and notations

As mentioned in the section 6.1.2, the Maldacena-Wilson loop is given by
1 )
wW(C) = Ntr P exp {f dr (iA#(x)x'“ + @l(x)n’|x|)] ) (6.12)
c

Using the non-local operator, the n-point functions of the operators inserted into the
Wilson loop can be introduced by

(W[O1(21) - - Op()]) = <%Tr [P (01(961) e On(xn)efc(iA”iH+©6|i‘)d8>] > . (6.13)

More explicitly, the one operator insertion of the corrector (6.13) can be written as

Pexp ( / dr'iA,i" + qﬁiniw) ZY Pexp < / dr'"iA, it + miy:fc“])] > ,

(W[0]) = <Tr
? (6.14)
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Figure 6.4: Operator inserted Wilson loop with geodesic cusp.

where Z is a complex scalar field.

Precisely speaking, to make contact with the defect CFT data, we should consider
the normalized correlator which is obtained by dividing the correlator by the expectation
value of the Wilson loop as [85, 112]

WIO:(21) - - - On(@n)])
W)
For the straight-line Wilson loop, this manipulation is trivial since the expectation value

of the Wilson loop is unity while for the circular Wilson loop it involves the division by
the planar expectation value,

(O (1) - - Onlzn)))

(6.15)

2
<W>Circle - ﬁh(\/}) 5 (616)
with A being the ‘t Hooft coupling constant A = ¢%,,N. The spacetime dependence of
these correlators is constrained by the SL(2, R) symmetry [85]. For instance, the two-
and the three-point functions are given by

(O1(21)Oa(22))) = N1, 01, 1, X (di2) ™
Los|1 L3i)2 (617)

<<01(%(553)» _ CLi,/%LS v (dlz)Llj‘S (do3)™ 2 (ds1)" 2,

where N is the rank of the gauge group, Lijx = L; + L;j — L, and d;; is the free-field Wick
contraction which takes the following form for the straight-line Wilson loop:

_ ANy 22 = |y — 4] (6.18)
straight line 87’(’2 $2 ) 1] ? a0 .
)

dij|

The quantity cr, 1, 1, is the structure constant of the defect CF'T while ny, is the normal-
ization of the two-point function. For the circular Wilson loop, one just needs to replace
A Y- Y

circle 872 (2 sin n;q—j )2 )

d;j| (6.19)
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where 7; parametrizes the position of the insertion on the circle and ranges from 0 to 2.
Note that the two expressions (6.18) and (6.19) are related by the conformal transforma-
tion.

On the other hand, the four-point function

<<01($1)02($2)O3(x3)04(x4)>> = GLl’L2’L3’L4 , (620)

VIR NN, N

is a nontrivial function of the cross ratios. To see this explicitly, we strip off the space-time
(and the R-symmetry) dependence from Gy, 1, 141, 88

L1;L2 L3;L4 doa
GL17L2,L3,L4 = d12 d34

Lo—Ly L3—Ly
2

d 2
( 13) ng,L2,L3,L4(X,Oé,@) . (6'21>

dus duy

Then, the remaining quantity gr, r,. 1,1, depends only on the cross ratios.

Let us now make one important remark: In one-dimensional (defect) CFTs, one should
be careful about the ordering of the operators since the correlators with different orderings
are not related by a simple analytic continuation even in the Euclidean kinematics. This
is in marked contrast to the higher-dimensional CFT's in which one can continuously move
one operator around another to reach a different configuration. In terms of the conformal
cross ratio, the different orderings correspond to different ranges of y as'

{2134} : x € [—00,0], {1234} : x €10,1], {1324} : x € [1,00], (6.22)

where {ijkl} signifies the correlator with the operator ordering 0;0;0;0;. Thus the
above statement translates to the fact that the correlators with different values of x
are not simply related by the analytic continuation. In the rest of this paper, to avoid
any possible confusions arising from this point, we always consider the correlators in the
ordering {1234}. In other words, we always assume that the cross ratio y takes the value
between 0 and 1.

'These are all possible orderings in the presence of the parity invariance.
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Chapter 7

BPS operators — perturbation

In this chapter, we compute two-, three- and four-point functions of BPS operators up to
one loop from perturbation theory.

As a set-up, we use the Maldacena-Wilson loop that mentioned in section 6.3. In this
chapter, we, however, choose a specific scalar field coupled to Wilson loop to six-direction

¢°:
wW(C) = %tr Pexp [}{C dr (1AL (z)3" + ¢g(x)|2]) ]| - (7.1)

Instead, the BPS operator we consider in this chapter, don’t include the scalar ¢°:

OF (i) = (Vi ) (o),

]

where Y7 satisfy Yg = 0 and >, Y?Y? = 0. In this configuration, there are no direct
propagators between the BPS operators and Wilson loop.

7.1 Four-point functions at tree-level

As a warm up, let us consider the most trivial case, which has all the operator lengths
one. Then, it has two contraction patterns:

0, 0, 0, o,

0, @3 @2 @3
dl 2d34 d23d4l

Here. we would like to mention that the contraction di3zdss are not dominant in this
Wilson loop correlator since such contraction is suppressed in the large NV limit. By using
the double line notation, we can easily see the fact as:
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6, 6,
6, o, 6, o,
dl 2d34 dl 3d24

In the left picture, the number of unicursal lines are four. On the other hand, the number
of unicursal lines are two in the right picture. This shows that the contraction dizdsy
become a non-planar correction in the large N theory.

Here it may be bit interesting to recall the single trace operator case. Because, the
cross contraction di3dsy were dominant for the that case, for instance in the double line
notation:

0, 0, 0, 05
diydsy, dy3dyy

The above figure states that the number of unicursal lines of the contraction diodss are
same with the one of the di3dys. More precisely, if there is a boundary such as the
Wilson loop, the location of the operators are fixed and they have only contraction with
the nearest neighbor operators. On the other hand, if there are no such boundaries,
we should take into account the permutations of the operators. For that reason, the
cross contraction is also dominant in the single trace operator case even the large N
theory. This is one of the important differences between the “open” (with boundary) and
“closed” (without boundary) operators theory.

The next simple examples are cases in which all the operators have length two and
three, and then one have following contraction patterns.

length two: diyd3y,  diadssdoadyr, dagds;.
length three: d?gdgm d%2d§4d23d41, d12d34d33d31, d§3dil

It is easy to find that the tree-level diagrams of all the operator length L can be simply
written as follows

length L : diy *dgy dyydsy, x=1[0,--- L] (7.2)

Namely, the tree-level diagrams of the correlators of the operators with boundary arranged
in a low with one-dimensional parameter x, see in figure 7.1. Also here, we can mention
the relation with the tree-level diagrams of the single trace operators.

Let us recall the tree-level diagrams in section 3.1, the contractions were arranged in
triangle as
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L gL L—1L-1 L—x jL—x jx Jx L—1 gL—1 L gL
d]2d34 dl2 d34 d41d23 d12 d34 d41d23 d12d34d4l d23 d23d41

Figure 7.1: Tree-level four-point correlators which have all same operator lengths. The
tree-level diagrams are on the one-parameter.

L JL L gL
d12d34 e d23d41

L JL
d13d24

Briefly, by using the double-parameters, they are summarized as
df;xiydi’];;xiydglv4d§3d?{3dg47 T = [07 e 7L - y]? Y= [07 e 7L] (73>

Namely, the tree-level diagrams of the operators on the defect are simply given by a
sub-multiplet, such as y = 0, of the cases without the defect.

In this section, we try to generalize to the correlator with the operator lengths (L1, Lo, L3, Ly).
First of all, we divide the diagrams into three cases: L1+ L3z = Lo+ Ly, L1+ L3 < Lo+ Ly,
and Ly + Ls > Ly + L4, which corresponds whether there are cross contractions, di3 or
dsy, Or Not:

6, — 0, 6, — 0, 6, — 0,
6, 0 6, 0 0, 0
Li+L<L+1, Li+Ly=L,+1, Li+Ly>L+1,

If we can get the correlator for the case of Ly + L3 = Lo + Ly, the other cases are easily
obtained by simple extensions. Therefore, we first consider the only L + Ly = Lo + Ly
case in what follows.
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Case L1 =Lyand L3y =L, in Case L| + L3 =Ly + L4

We further divide the diagrams and first consider the case of Ly = Ly and L3 = Ly.
The most-left contraction in the one-parameter diagrams is written as the digd%#. Then,
the one-parameter is continued until that the lengths either ¢15 or (34 vanishes. Namely
the diagram of the end of the one-parameter, which is at the most-right diagram, are
characterized as min(Lq, L) such as

o, o, 0, 0,
L L,
+—> +—>
@2 @3 @2 @3
L, jL. L,—1 4L,—1 in(L,,Ly) in(L,,L,) yL,—min(L,,L,) jL,—min(L,,L,)
diyd; diy i ldy e Rl L) gemin s

Therefore, for the case of L; = Ly and L3 = Ly, the diagrams are given by
dys " dgi T dsydyy, = [0, ,min(Ly, Ly)], (7.4)
where we defined the function min(Z;, L;) as follows:

L, L;>L;

min(L;, L;) = {

Case L, > Lo and Ly < Ly in Case L; + Ly=1Ls+ Ly

Secondly we consider the case of Ly > L, and L3 < Ly4. In this case, the most-left
contraction become di2d5idii ~*2. In addition, by using the same one-parameter argument
with the case of ;| = Ly and L3 = Ly, the diagrams are written as

0, I 0, 0, on
Ly—-L,
+—> +—>
L, Ly
0, 05 0, 03
Ly gLy gL,—L Ly—1 jLy—1 jL,—L+1 v min(Ly,Ly) 7Ly—Li+min(LyLs) jL,—min(Ly,Ls) 7Ls—min(L,,Ls)
dlzzdazfdzuz 1 dlz2 d343 d412 Tdys d23 d41 d12 d41

Therefore, for the case of Ly > Ly and L3 < Ly, the diagrams are given by

diz= dsrdsdiz~ g =10, min(Ls, Ls)]. (7.6)
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Case L1 < Lyand L3 > L, in Case L{ + Ly =Ly + Ly

Lastly, we consider the case of L.y < Ly, and L3 > Ls. The diagrams of this case are also
parametrized as

0, 0, 0, 0,
L, Ly
+—> +—>
I L,—L,
0, 05 0, 03
Ly gL, JL L—1 jL,—1 jL,—L,+1 Ly—=Lo+min(L;,Ly) ymin(Ly,Ly) L—min(L;,Ly) jL—min(Ly,Ly)
diydyidy ™" dy dymdy T dy e dyg Ty

Therefore, for the case of L; < Ly and L3 > Ly, the diagrams are given by

di b rds dii et 2 =10, ,min(Ly, Ly)). (7.7)

Case L1 + L3 = Ly + L4: gathering three-pieces

By gathering three cases (7.4), (7.6) and (7.7), we can put together as

min(L1,L2)—z ymin(L3,Lq) max(0,Le—L1)+x ymax(0,L1—Lg)+x
d12 (F.L2) d34 o d X(Okamt) dQSX( 1he) (78>

with xr = [0, ce 7miH<L17 LQ, Lg, L4)]

Case 1 + Ls< Ly+ Ly and Case Ly + L3 > Ly + Ly

In this cases, the diagrams have additional cross contractions. Such cross contractions
have the following bridge lengths:

1
U3 = —(L1+ Ly — Ly — Ly), loy =

5 (Ly+ Ly — Ly — L3).

N | —

By taking into account these corrections to (7.8), we can write down tree-level contractions
of the three-point functions of the BPS operators as follows:

Li,Ly, L3, Ly min(ﬂl,iz)—x min(ig,l:4)—m maX(O,ﬂg—il)—&—x max(O,il—ig)—l—x max(0,£13) ymax(0,024)
H:I: :d12 d34 d41 d23 d13 d24

with =10, ,min(Ly, Ly, Ls, Ly)], (7.9)
where

Li=1L, — max(0, £13), Ly=1Lz— max(0, £13),

Ly = Ly — max(0, ly;), Ly = Ly — max(0, ly).

Notice that the left-most diagrams, which is Hé vlels b have diagrams in figure 7.2
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Li+ L3y < La+ Ly Ly +Ls=La+ Ly Ly+Ls> Lo+ Ly

1 4 1 4 1 4
Li+Li>Ly+Ls

2 3 2 3 2 3

1 4 1 4 1 4
Li+Ly=Ly+ L3

2 3 2 3 2 3

1 4 1 4 1 4
Li+Ly<Lo+Ls

2 3 2 3 2 3

Figure 7.2: The left-most diagrams in the one-parameter, which is Hg Lz lsLa

7.2 One-loop correlation functions of the BPS oper-
ators on the Wilson loop

In this section, we calculate the one-loop correlation functions of the BPS operators on
the Wilson loop. Then, the one-loop diagrams are divided into two cases: whether the
one-loop diagrams are contracting with the Wilson loop boundary or not. The cases of
not contracting with the Wilson loop boundary has same diagrams with the correlation
functions of the single trace operators in the section 3.2. However, each coefficient of
the functions the we consider here is slightly different from the one of the single trace
operators due to the boundary.

7.2.1 One-loop insertion formulas without Wilson loop bound-
ary

Basic one-loop dressed diagrams not contracting with the Wilson loop in N’ = 4 SYM are
self-energy, gluon exchange and quartic scalar vertex diagrams in figure 7.3. First of all,
the self-energy, which is two-body diagrams, has the same contribution with the case of
the single trace operator such as

A
selfio = = (—210g % — 2> . (7.10)

On the other hand, the other four-body diagrams should be added 1/2 factors from

boundary

the result of the Gig34 and Sie34. Roughly speaking, the gluon propagator in Giss,

and scalar quartic interaction in SPosr®™ can be contracted only at inside of the four-
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2 3 2 3
2
boundary boundary
selfq2 Glos S1234

Figure 7.3: Basic one-loop diagrams on the Wilson loop boundary

1 1
5C1123d12d23 =2

Figure 7.4: Corner diagrams on the Wilson loop boundary

operators." Therefore, we have
1 1
G}fggfdary = §G1234, S}fggfdary = 581234- (7.11)

Thus, the corner interaction with boundary in figure 7.4 has also half contribution as

oundar; 1 1 oundar; oundar;
01?23 d yd12d23 = 501123(112(123 = |:Z(Self12 + Selfgg) + Glf223d y:| dlgdgg + 811)223(1 y‘
(7.12)

Furthermore, the D534-function is also given by

]' oundar 1 oundaar 1 oundar
§D1234 = (G}f234d Y — 5C112,43> dy2dss + (Gzlzgd Y — 50114,23) dyadas + Sll)234d Y

- 3;2@(2, 2) (2disdas — (1 — 2) + (1 — 2))dados — (2 + 2)diadss) . (7.13)

7.2.2 One-loop insertion formulas with Wilson loop boundary

We next calculate the one-loop insertion formulas contracting with the Wilson loop bound-
ary. In the Lagrangian of N' = 4, such contractions are occurred only through the scalar-
scalar-gauge vertex and the gauge field comes from the Wilson loop. In what follows, we
calculate the line configurations for all diagrams.

1On the other hand, the diagrams without boundary, Gi234 and Sy334, include the contribution that
contracted at the out side of the four-operators. More rigorously, we can see the 1/2 factor from the
difference of the trace of the gauge group.
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6, 06, 0, o0, 6, 0, 0, 0,

circle line

Figure 7.5: Four-point boundary diagrams T3 14

It is useful to first introduce the four-point boundary diagram in figure 7.5. The
diagram in the straight line configuration is given by

xr1 2 .
Tansadas = [ ar (TGS a(on)] (2 [ T4, 000} ) )
—00 YM
o 2 -
b [T ar (et (2 [ammo.0014,0,000) ).
T4 YM
(7.14)
where ®; =n; - ¢, i =(1,2,3,4) and A = A,3". By calculating them, we get

A .| P21 .| %43

Tausa = o 4602+ 26 | 2] + 20(2)00n |22 )
— (g g Cifgn g (7.1

The function Lig[z] = 55 (Liz[2] + 5logzlog(l — x)) is so-called Roger’s Dilogarithm,
which has a “crossing” like property:

Thus, the other four-body diagram in figure 7.6 is given by

Tiazs = # (8§(2) +2¢(2)Lig {%} +2((2)Lig [@D

31 L42
1

2 (CIEZ?ndary . CIZf;ndary + Cllif;ndary . Cllljzgndary)' (717)

Notice that we must be careful that the diagram Tss14 is not simply related to the
diagram T,493 by the rotation of the space-time. The difference comes from whether
the gluon propagator go to infinity or not. Although it may seem strange, there are no
problem. It is Because it is no reason that the diagram has rotation property at the each
diagrammatic level. In fact, there is the rotation property at the correlator level.

We next calculate the three-body diagrams in figure 7.7. Such diagrams are given
by collapsed limit of the space-time points from the four-body diagram Tas 14 and T4 03.
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circle line

Figure 7.6: Four-point boundary diagrams T4 23

1 4 1ﬂf 4 1 4 1 5\‘14
21‘71 3 2 3 2 FHJG 2 3

L1223 L2120 L334.23 Ldsga

Figure 7.7: Three-point basic boundary diagrams

Then, we use the point-splitting regularization since the diagrams have divergence. For
instance, the L1;s 93 is given as follows:

L434y41 = xlalgqulLe T34,x1 . (7 18)

In the same way, by calculating the other diagrams, we obtain 2

>\ . [ Z21 ] 1 boundar boundar
Lligo3 = 32 (5 —2¢(2 —108;— +2¢(2)Lig x_gl ) + 3(01123 V= Clzy ),
)\ 1 1 a1 . -x21 ] 1 boundar boundar
L2941 = g (5 - QQ 5 10% - = QC( )LlR _x_41_ 5(01412 V- Cliay y)’
1
2

(CIboundary . CIboundary)’

234 243

OJl’—‘

1 o
—2¢(2 —log— +2C(2)Lig |22 )
2 T2 |

| =

boundary boundary
(01341 - CI431 )

Ldgym = j\r (——2C( )+ 11 g%—2§( 2)Lig —%_> +

2 L L41 |

3

Furthermore, the two-body diagrams in fig (7.8) are given by the further limit and we
have

A
DKy = (1 +2¢[2] + log %) , (7.19)
A
8 2

2The pictures are written as the circle configuration for simplicity. However, the equations are line
configuration results. As a consistency check, we directly calculate the three-body diagrams, and we saw
that these results are exactly match.

DKy = = (1-4¢[2) + log %) . (7.20)
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2 2
DKj» DKoy

Figure 7.8: Two-point basic boundary diagrams

It is useful to combine some diagrams to make cross ratio functions without divergence:
1 1
Lig34 = (Llig23 + L21941 + L33423 + Ldgy 1) + §Self12 + §S€1f34
A : boundary
~ 82 (—=8¢(2) + 2¢(2)Lir [2]) — Clyzas (7.21)
— boundary boundary 1 1
Table s34 = (L212741 + L434741 + T23714) + 01123 -+ C1234 + Zselflg -+ Zself34

= A (280(2) + 2((2)Lin [2]) — Oy (7.22)

8m2
1
B12 = DK12 + §Self12
A

= a¢2) (7.23
1
B112 = DK21 + §Self12

A

= —(—4((2)). 7.24
2 (-4¢(2) (7.24)
Then, we used the five-term relation for the Rogers Dilogarithm
1— 1—
Lig [2] + Lig [y] — Lir [u} ~ Lig {u} — Lig [zy] = 0. (7.25)
1—ay 1 —xzy

7.3 One-loop correlation functions

7.3.1 Two- and three-point functions

By using the one-loop insertion formulas discussed above, we would like to calculate the
one-loop correlation functions. We first consider the two-point functions with the operator
length L. Then, there are a lot of one-loop diagrams:

(L — 1) Shoundary (1, — 1) Goow™Y | L selfy, DKyy, DKy;. (7.26)
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LA A 1-loop 2 ....................................
dressed

Figure 7.9: One-loop dressed diagram with zero-bridge length

Using the explicit form of the functions of Sig93 and Gygo1 in appendix A, we find
SIS+ G o selfy =0, (1.27)

Then, the remaining diagrams are only By, and B},. Namely, the two-point functions are
given by

A

BPS(L) ,ABPS(L

<<01 ( )01 ( )>>1—100p - <B12 + B’12)df2 = _@2«2)61{42' (7'28>
Notice that the two-point function of the BPS operators on the Wilson loop doesn’t vanish

unlike one of the single-trace BPS operators.?

Next, we calculate the three-point functions in the same way as the two-point func-
tions. The difference is what the three-point functions have two-type contractions at the
tree-level whether there is a zero-bridge length. The case which there is a zero-bridge
length, has one-loop dressed diagrams in figure 7.9. Using the property (7.27), we have

<<O]13PS(L1) (II)OEPS(LQ) (xZ)O;BPS(L?,) ($3)>>€13:0 |171
\/T1MaNng oop

oundar >\ 1 )\ 1
— [015323 Y L By 4 Bosg + Ligg + ?3«2) dizdss = @§(2)d’{;d§§3. (7.29)

8

The last term in the bracket, which is the 8%3(’ (2), is the normalization term from the
two-point functions. The other diagram, which is the triangle diagram, become

(O™ 1) O™ () O g7
NDTn e

ounaar; oundar ounaar; )\
= {Cl‘fgg T CLE + O™ + Bia + Bog + By + 2 53C(2) | dif i

A
= 35X Qg dt, (7.:30)

3Surely, the anomalous dimensions vanish.
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Unified two-type three-point functions, we can write as

BPS(L1) BPS(L2) BPS(Ls) A
(07 ()0 " wa) Oy T ) (3= 20,,)C(2) iy dy dst, (7.31)
A/ T1MaNng 8

where 0y, is Kronecker delta functions and defied as follows:

8, = { 0 020" (7.32)

7.3.2 Four-point functions

Let us calculate the four-point functions. As a form up, we firstly consider the four-point
functions with all operator lengths are one Ly = Ly = L3 = Ly = 1. The one-loop
diagrams not contracting with the Wilson loop part is given by

0, [on 0, O,

1 oundaar; oundaar,
= §D1234 + CI]1D2,43d Ydiadzs + CI]1D4,23d Ydydas.

not contracting
with Wilson loop

0, 05 0, 05

In addition, The one-loop diagrams contracting with the Wilson loop parts given by

= (L2314 + B12 + B3y — norm) dyadsy

contracting
with Wilson loop

)\ . oundar
(—2((2)L1R[z] — CIyy Y> dyodsy. (7.33)

82

6, 0,

)\ . oundar;
(@2C(2)L1R[1 — Z] - 01?4723(1 y) d23d41.

contracting
with Wilson loop

0, 0,

By combing them, all the corner interactions are canceled with each other and we get

(0PN (1) 053 (1) O3 (25) OFF D (4))) |
,—n1n2n3n4 1—loop
1 A

. A .
= §D1234 + QQC(Z)LIR[Z]dud;M —|— QQC(Q)LlR[l — Z]d23d41 (734)

In the same argument, by collecting the appropriate one-loop insertion formulas, the
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four-point functions of the length L operators is given by *
BPS(L BPS(L BPS(L BPS(L
(O )03 (@) O ) O ),
A/ T 112314 Toop

_ 1D1234 <O]13PS(L1—1)OEPS(LQ—I)O?PS(Lg—l)OfPS(L4—1)>

tree

2
\ L-1
N 9 HLLoL.L
+5560(2) (2} : )
A A
+ =2¢(2)Lig[z]Hy M + =2¢(2)Lig[1 — 2]HP W 0F (7.35)
82 872

The first term is the same with the one-loop four-point functions of the single trace
operators up to 1/2 factor. The other terms come from the existence of the Wilson loop
boundary.

Next we consider the (L + Ly < Lo + L3) and (L; + L4 > Ly + L3) cases in no cross,
ly3 = U9y = 0, condition (Ly + L3 # Lo+ Ly). In this case, the difference from the (7.35) is
only the contribution from the left-(right-)most diagrams. Then the diagrams are given
by

A ‘ » 4
- @(QC(Q) + 2C(2)L1R[2])H5 Lo,L3,L
_ CIll)gzr?l)daryHéq,Lg,LS’Lz{

= 8—;(%(2) + 2¢(2)Lig[1 — z])Hél,LQ,L&M

boundaryyyLi,L2,L3,L4
- 0114723 HL :

Therefore, by adding the (7.35), the four-point functions with (L; + Lz # Lo + L4) are

4Notice that the tree-level contribution is denoted as <O]13PS(L) (wl)OQBPS(L) (xz)OEPS(L) (acg)(’)fPS(L) (x4)) =
ZL—O HEL-L.L,L
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given by

(07 () OF ) (1) O () O (g o=t

1—loop
A/ T1M2MN3Ty

_ %D1234<O?PS(L1—1)O]QBPS(LQ—I)O?}’BPS(L?,—I)OEPS(L4—1)>

tree

min(L1,L2,L3,L4)—1

A
6C(2 HL1,L2,L3,L4
pgasce| X w

A . 1,L2 4
+ @<2C(2)(5£14 + 5323 - 26514 ’ 5523) + 2<(2)L1R[z])HOL kol

A
+ @(2((2)(5@12 + 5534 - 25€12 ’ 5434) + 2C(2)L1R[1 - Z])HEI’LQ’LS’I%’ (736>

It shows that if it is #14 = lo3 = 0 (L1+ L4 = Lo+ L3), the single ((2) for the leftmost vanish
and it has 2¢(2)Lig[z]. On the other hand, if it is £14 = 0 or o3 = 0 (L1 + Ly # Lo+ L3),
the leftmost become 2¢(2) + 2¢(2)Lig[2].

Lastly we consider the most general four-point functions, which has cross contractions.
By using the one-loop insertion formulas, the four-point functions with cross contraction
has following contributions:

Left-most

Middle

Right-most

A A
= 8—77245(2), = WZC(Z)

0,

From the lessons of above and the one-loop insertion formulas, we can see the following
statement for the general four-point functions.
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1. If the four-point functions have cross contractions, there are no %D1234 functions
since four-body diagrams cannot contribute.

2. The Left-(and Right-)most diagrams receive the contributions of the zeta function
¢(2) in respect to the number of the zero-bridge lengths: If the number of the zero-
bridge lengths is one, it has #4{ (2). On the other hand, If the number of the
zero-bridge lengths is two, it has #2( (2).

Therefore we have

(O (1) 052 (5) O (1) OF ) (g 1070 o 0

A/ M1M2N3Tiy

|1—loop

min(L1,L2,L3,L4)—1

A
_ 6C(2 HLtL2,L3,La
=T DD

L1,L2,L3,Ly

A

+ @(2C(2)(1 + 5514 + 5523 - 25414 ’ 5123))H0
A

+ @(2C(2>(1 + 5512 + 5434 - 25@12 ’ 5534))H£17L27L37L4' (737>

Summing up the results (7.36) and (7.37), we finally have the complete form of the
one-loop four-point functions of the BPS-operators as follows:

(O (1) OF73) (20) O (2) O ()

123y

|1—loop

1 nlin(il,ig,Z3,i4) A\ min(zl,ig,ig,ﬂl)—l
L1,Ls,Ls,L 2: L1,Lo,L3,L
- §D12345513 * Ot34 E Hpmemsmt |+ @64“(2) H e
=0 =1

A . 1,L2 4
* @(2c(2)<1 - 6513 ’ 5524 + 5€14 + 5123 - 25514 : 5523) + QC(2)L1R[Z])H(€I ok

A
+ @(QC(Q)@ - 5413 ’ 5524 + 5312 + 5434 - 25512 : 5f34) + 2((2)LiR[1 - z])Hﬁl’LQ’L&LZI
(7.38)
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Chapter 8

Zero-length operators — perturbation

In this chapter, we study the three-point functions of zero-length operators inserted into
the Wilson loop. Such a zero-length operator is constructed as follows

OPCO . 7L 120 b,

where the DCO means the defect changing operator. It is because insertion of the zero-
length operator into the Wilson loop merely change the polarization of the R-symmetry
of the SO(6) scalars as

W[OP] = &P |exp ( / dT/iAu$“+¢ini‘$“‘)\DCO,( / dT”Z’Aui’“‘+¢iﬁi\¢“1>
—o0 (©DCO T

(8.1)

The main topic of this chapter is the three-point functions of the DCQO’s. Then, the
Wilson loop has three-type scalars. To characterized these three scalars, we introduce
the 6-dimensional unit vector n;j, see figure 8.1. Namely, the three-point functions of the
DCOs are written as

(OPC (1) 07 (£2) 05O (1))

t1 1)
= (Tr {Pexp (/ dr iA,a" + ¢ingl|:t”|) Pexp (/ dr iA,z" + (biniz|:ic”|) (8.2)
] :

—00 1

t3 ) [e%s) )
Pexp </ dr iA,z" + ¢in§3|:t“|) Pexp (/ dr iA,z!" + ¢in§1|js“|)] )
to t3
Notice that the inner product of the unit vectors are often written in terms of the angle
0; as
cosf] =nz1 - nia, C€oslhy =Mnqy-Nag, €OSO3 =ng3-n3p. (8.3)

In order to calculate and extract the structure constants of the three-point functions up
to two-loop, we should first calculate the two-point functions and determine the normal-
ization. We perform them in section 8.1 and see what the known anomalous dimensions in
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Nn31 n12 n23 n31

11 to t3

Figure 8.1: The DCOs are located at t;,i = (1,2,3). The each blue, green and red
segment show the each Wilson loop coupled scalar with the polarization ng;, nis and ng;
respectively.

the literature [80] are reproduced. Next we compute the three-point functions at two-loop
in section 8.2. After doing so, we discuss a theory in the ladder limit whose contributions
are only ladder diagrams rather than other interactive diagrams. In the ladder limit, the
structure constants are evaluated at finite coupling by solving the SD-equation.

8.1 Two-point functions at two loops

8.1.1 One loop

Figure 8.2: Two-point function of DCO’s. The DCOs are located at t; and t,

The two-point functions of DCOs are of the following form, see also figure 8.2:

(OPO(1)OPO (1)) = (Tr [Pexp ( /_ t;df PAL + ¢iﬁi|x'“|>

. . (8.4)
Pexp (/ dr iA, it + (bmi\x'“|) Pexp </ dr iA, it + (b@ﬁz\x“o] ) -
t1 [2)

In the perturbative computation, we have to expand the exponentials in (8.4) and take
the contractions them with the vertices in A’'=4 SYM. Then the result should depend on
the inner product n - n.

At the one-loop level, there are no vertices contribution in A" = 4 SYM. Since the
Wilson loop include both the gauge field and scalar field, we use the following single
propagators:

Al
) Scalar propadeter : (n; - ng)——-, (8.5)

Gauge propadeter : ———
8¢ Prob 812 72,

2.2
82 Ty

The extra minus sign for gluons comes from factors of 7 in the exponentials in (8.4). As
is clear from (8.5), the contributions from the gauge field and the scalar field cancel out
if n; = ny and ny - ny = 1, which is the BPS configuration explained in previous chapter.
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Figure 8.3: Two-point function of DCOs at one-loop. Owing to the cancellation between
gluon propagator and scalar propagator, the survived diagrams are only propagators con-
necting two different segments of the Wilson loop.

The remained diagrams are propagators connecting two segments with different po-
larizations n;, see figure 8.3. Then, we must be careful of the UV divergence when we
compute such diagrams. We introduce a point-splitting regularization by cutting out a
small circle €/2 around the DCO’s and we have

_ ]_ 129 o) 1
«O?CO(tl)Ogco(t2>>>1_1oop n n (/ dTl/ d72—+/ dTl/ d72—2> y
tf tF T2

2

with t& = t; £+ ¢/2. Using the following integration formula

we can easily evaluate as

)\(Tl ‘N — 1) tlg

<<0113Co(t1)(92DCO(t2))) Lloop = e log - + O(e) . (8.8)

Comparing the weak coupling expansions with (2.24), we can determine the one-loop
normalization ") and the anomalous dimension v as

1—ny -
=0, V= (8.9)

The result for 4! of course matches the one in the literature [80]. Furthermore, we find
that the one-loop normalization a(!) vanishes in our set-up.

8.1.2 Two loops

Next we compute the two-point functions of DCO’s at two-loop. At two loop order, there

are three types diagrams; the ladder, the vertex and the self-energy diagrams. Below
sub-subsections, we evaluate them one by one.

Ladder diagrams
We first consider the ladder diagrams, which consist only of propagators. In the similar

manner as the one-loop computations in the previous subsection, the cancellation between
the scalars and the gluons occurrs.
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L1 L2 L3

Figure 8.4: Ladder diagrams that contribute to the two-point function at two loops. Here,
thick black curves represent either a scalar propagator or a gluon propagator.

Thus only non-zero diagrams are the ones depicted in figure 8.4, which are given by

-1)
le((nl e > / dTl/ dTg/ d7'3/ d7'4 ——,
-1)
(<”1 e ) / dﬁ/ dTQ/ dTg,/ dry —— (8.10)
Tio T3y
-1)
((nl 12 > / dTl/ dTQ/ d7'3/ d7'4 —_—
7'14 723
Thus, we have

ng — A\ | 72 tyy 1 tor )’
L1=L1L3= (M> 7T——log£—|—§<log£> ] + O(e),
€ €

L2

L3

82 6
- 8.11
L2 = (n1 2 = DA\ | ™+ (1og 2 2 +O(e) o
N 82 6 S ‘
Summing three terms, we get

ny — DA\ | 72 tor )’

L=litrotra (o= DA™ ) —+2 og2) | . (812
812 6 €

Vertex diagrams

We second consider the diagrams which contain one interaction vertex. Written explicitly,
they arise from the Wick contraction of the following terms:

o [ andran (BPAEAmRAR] (- [ E0T0,4/0 4,060 A0 ) )
o [ andradn (TP ) Al (- [ T 0,000 ) 00 ) )

Here A= A, 3" and ®; = (¢ - n;)|2| with ny .
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Vi V2

V3 Vi

|

Vb

Figure 8.5: The interaction vertex diagrams for two-loop diagrams. Each black line can
be either scalar propagator or gluon propagator.

Let us focus on the diagram V1 in figure 8.5. The contribution in the diagram V1
include the three different terms of the scalar-scalar-gauge vertex by the path-ordering:

; / dridr / s [(Tr (A(75)Bs(72)®a(1)))
’7'1,7'2‘I§[<_Tzovt1} Tgé[tl,tg] (813)

+(Tr (@1(73) A(72) P2(71))) + (Tr (@1(73)P2(72)A(11)))] -

Here ®; = n;-¢, i = (1,2), and we did not write the interaction vertex for brevity. Among
these three terms, since two scalars are in the same segment [—00, 1], ng-ng = 1, the first
term does not contribute to the final answer. On the other hand, from the second term
we get

A(n-n)

(SeCOIld term) = —m

/ dTldTg/ dT3 (—671Y123 + 373Y123) > (814)
T1,T2T§[foo,t1] T3€[t1,t2]

with (see Appendix A for more details)

! 1 1 1
Yizs <E /—d o ) — o2 ( o8 |me] | loglma| | 0g|7‘23|) . (8.15)

2.2 .2
T15L25L35 T13723 T12T32 T21731

In (8.14), the term —9;, Y193 comes from the contraction with the interaction [ d*z Tr(9,¢A,¢)
while the term 8,,Yi23 comes from the contraction with — [ d*z Tr(9,¢$A,). Similarly
the third term (8.13) yields'

A(n-n)

(thlrd term) = —m

/ dTldTg/ dTg (—87—3}/123 + 87-2}/123) . (816)
Tl,TQG[—OO,tl] T3€[t1,t2]

T1<T2

1Here —0,, Y123 comes from the contraction with f d*z Tr(0,¢A,¢) while 07, Y123 comes from the
contraction with — [ d*z Tr(9,¢pA,,).

95



Adding up the two terms, (8.14) and (8.16), and also the contributions from the three-
gauge vertex, we arrive at the following result for the diagram V1:

- 1)
V1= — e: / dTl/ d72/ drs €(Ty — T2)0r, Y103 . (8.17)

47T2

Here we used the permutation symmetry of Yoz, Yio3 = Yo13 etc., to simplify the result
and €(z) = 0(z) — 0(—x) with 6(z) being the step function.

By performing the similar analysis, we arrive at the following results for other dia-
grams:

— 1
Vo — — A*(na - / dT1/ dTg/ drs €(T9 — 73)0r, Y103,

47T2

_ n2—1
V3 = W / dr [ d
d

dT3€ 72 - 73)8721/123,

(8.18)

n

gA
A
g8

47?2

d
d drs (07, Y123 — 0-,Y123) .

7'2/
9 — 1
Ty dTg €(m1 — 72)0r, Y123
)\ * Moy — 1
V6 = — 471‘2 / d 7'2/

To proceed, we perform the integration by parts to each contribution and rewrite them

using O0,€(x) = 26(x) as

A2(ng-ng—1) [ [t t2 h i 2
Vi = — (41(47T22)3 ) /Ood72 /t+ dfgy;l_23—2/oodﬁ /OOdTQ /t+ dr3 0(m1 — 72) Y123

/\2(7’Ll Ny — 1) [ ty ty iy ty
= — 4(471'2)3 /_oo d7'2 \/t1+ d7'3 }/;1—23 -2 /_OO d7'2 /t1+ dTg }/223 (819)
We thus get
V=V1+V2+V3+V44VE =
A (ny-ng —1)
g (8.20)

ty 00
+ / dr / drs (Ytl_23 + Vigon + Yoo + Yigs)
t t

t ty ty 0
—2/ dTQ/ drs (5/223—1-3/233)—2/Jr dTQ/+ drs (Yoo + Yass)
t £ t3
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Figure 8.6: The self-energy diagrams that contribute to the two-loop two-point function.
The sum of these two diagrams is given by (8.22).

Self-energy diagrams

We next compute the self-energy diagrams, see figure 8.6. The one-loop correlation of the
scalar propagators were introduced in the section 3.8. We here recall them as

5ac5bd6
poor @ v = T(Bngrngs)

AGesHs, (8.21)
i — —J = T(Y223+Y233)

Here again §%¢6%? is the color factor. Using them, the contribution if the self-energy
diagrams are given by

A (ny-ng —1)
S = — 471'22 [/ dTg/ drs (Yaos + Yass) / d7'2/ drs (Yazs + }/233)]

(8.22)
Surprisingly, the contribution from the self-energy diagrams cancels the divergent terms
in the vertex diagrams (8.20).

Using the expression for Yjo3 (8.15), one can straightforwardly evaluate the remaining
integral”® to get

V+S=-2(ng-ny—1) (#)2 (%21 fy +3¢(3 )) (8.23)

Final result

Summing up all the contributions:the ladder (8.12) and the vertex and self-energy (8.23),
we finally get the two-point function of DCQO’s at two loop:

(nl-n2—1)2<%2—21g—+2( ))

8.24)

(OP(11)OFO (1)) = (i)

872

2In terms of polylogarithms.
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Figure 8.7: The one-loop diagrams with the coefficient (njy - nog — 1) for the three-point
functions. The result of the computation is given in (8.27).

By comparing the weak coupling expansion of the two-point function (2.28), one can finally
©) ©)

obtain the two-loop anomalous dimension 7, and the constant term a;™ as follows:
@_ 1 7 2 -
1 i
2) _ 2 -

The result for v matches the one in the literature [80] again.

8.2 Three-point functions at two loop

In this section, we calculate the three-point functions of DCO’s.

8.2.1 One loop

At one-loop level, the three-point functions have three patterns: the coefficients are (nqs -
ngg — 1), (ngz-m3; —1) and (n3;-nis —1). However, we only focus on the diagrams with the
(n12 - meg — 1) in figure 8.7. It is because other diagrams are obtained by the permutation
of the operator labels. The diagram of figure 8.7 can straightforwardly be evaluated as

Y . —1) . -1 to1l
(n12 - M3 / dﬁ/ de S A(n1z - nog ) log 2132 (8.27)
872 72 82 t31€
By taking into account the symmetrization, the one-loop result become
A tiitik
{OPO (t1) 0P (t2) OF° (t3) N1-100p = 32 > (nij - njx — 1) log ﬁ a (8.28)

{i.5,k}
where the sum is over {i,j, k} = {1,2,3},{2,3,1},{3,1,2}. Comparing with the weak
coupling expansion given in (2.28), one can read off the one-loop anomalous dimension
and the one-loop structure constant as®

@ _ (L= - np) O
VT T g Cro3 = 0.
As expected the result for the anomalous dimension matches the previous result (8.9).
This also shows that the one-loop structure constant is exactly zero.

3Here we already used the fact that the one-loop normalization a(*) vanishes in our scheme. See (8.9).
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= A A

(n12 * Nag — 1)2 (n12 s Na3 — 1)(7123 s 31 — 1)

Figure 8.8: The two-loop ladder diagrams. The left diagram produces the term propor-
tional to (nys - o3 — 1)? while the right two diagrams produce the term proportional to

(n12 *Na3 — 1)(”23 *N31 — 1)-

8.2.2 Two loop

At the two-loop order, there are three-types of the diagrams in the same way as the
two-point functions: ladder, self-energy and vertex.

Ladder diagrams

In the ladder diagrams, we only focus on the diagrams with (n1s-n93 —1)% and (n4o - ng3 —
1)(nas3 - ng; — 1) in figure 8.8. Then, the diagram with (ns - no3 — 1)? can be evaluated as

e — DIANN? [t ty ty ty 11
( (nm n232 ) ) / d7'1 / de / d7'3 / dT4 5 o
87T tJr T t;r T3 T14 7—23
(n12 - ngz — 1)A 72 1 2
= — = — (1 )
( 872 6 AR

Next the diagram with (ng - nog — 1) nog - n3; — 1) is given by

= s =) ()| [ [ [ [T
/ dry / dr / drs / dr EEJ (8.30)

(R - Moy — 1)(nag - g1 — 1) ( A ) (% ~log ) .

82

(8.29)

t12t23 t12l23

l31€ l31€

ta3t31
t126

t12ta3
t31€

log

Self-energy and vertex diagrams

Next we consider the self-energy and vertex diagrams. In the three-point functions case,
the divergence parts are canceled each other. Therefore, the relevant terms are only finite
part of the vertex diagrams in figure 8.9. However, since the computations are tedious
task, we devote the detail of the computation to Appendix C. We present only the final

result here:
2\ 2 2
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Figure 8.9: The two-loop diagram with one interaction vertex for the three-point functions.
Notice that the each diagram produce the single (nq3 - ng3 — 1).

The result

Adding and symmetrizing them, we get the two-loop three-point functions as
<<O]1)CO (tl)OIQDCO (tZ)O?I,)CO <t3)» 2-loop —

A\ 2 tiitan 1 tiitin 2
— E o — 12 = =1 Y ~ (1 Y]
(8#) = [O” ok = 1) (6 % e +2(0g rie
1’7]7
8.32)
m tigtjn |\ | Lintei (
~ o= =1 (o 22 o 1]

2

(g = 1) (36030 + T tog ) |

tkiE
Here, the Z{i,j,k} means the sum over {i,7, k} = {1,2,3},{2,1,3},{3,1,2}.
Comparing (8.32) with the weak-coupling expansion (2.28) and using the two-point

functions result, we can read off the two-loop anomalous dimension and the two-loop
structure constant as follows:

2
(2) 1 2 | T
e s — 1 ~—(ny-ng— 1), 8.33
7 (872)2 {(nj Nk )"+ 3 (nij - nji )} ( )
@ _ 1 W_QE o — D2 =2 — V(g - g — 1 8.34
Cio3 = N2 [(nw Tk ) (45 - njk ) (- Mg )] - (8.34)
(87w2)2 12 i

As expected, the result for the two-loop anomalous dimension matches with the previous
paper [80].
8.3 Three-point functions in the ladders limit

In this section, we consider a ladders limit. In this limit, the only specific diagrams survive
and one can resumm them by solving the Schwinger-Dyson equation (SD-equation). We
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Figure 8.10: The ladder diagram.

perform such a resummation for the computation of the structure constant of DCOs as
we explain below.

8.3.1 Set-up

The ladders limit is a double scaling limit:the 't Hooft coupling constant A goes to zero
while the angle 8, between the neighboring polarizations (cos § = nq-ns), goes to imaginary
negative infinity:

)\(nl . ng)

A= 0, (ny-ny) — oo with A = 5

: fixed. (8.35)
Since n-ny sent to infinity, all the diagrams which contain gluon propagators or interaction
vertices disappear in the limit. The only diagrams that survive are the ones which have
scalar propagators connecting the two segments, which called ladder diagrams (See figure

8.10.). Tt is because the coefficients of the ladder diagram is (ny - ny) of order of loop ;)

the other hand, the diagrams that vanish here have (n; - ny)(® of order of loop)-1

The three-point function has three polarizations and we thus have three different angles
cosb; = nij - njg, i = (1,2,3). We can therefore define three rescalled couplings®

cos O; A
2

Ai (i=1,2,3). (8.36)

Here, there are various different limits whether A=0or A # 0, depending on how we
scale 6;’s, in figure 8.11.

The simplest case among them is the limit in which one of the angle, say cos 6, sent
to infinity while the others are kept finite. In this limit, the rescalled coupling constants
become following configurations:

bs5. CaseI: A =X3=0, Ay # 0, (8.37)

The survive ladder diagrams are the connected two neighboring segments of 0. In what
follows, the operators whose effective coupling is zero, are called trivial operators such as
O; and Oj3 in this case. On the other hand, the operator Oy with non-vanishing effective
coupling is a nontrivial operator.

The next simplest limit is the following limit,
1.2.§7 Case I : X1 7é07 XQ 7é07 5\3:0 (838)

4See (8.3) for definitions of 6;’s
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Figure 8.11: From the left diagrams to right diagrams, each structure constant are Case
I, the Case II and the Case III.

’ = mﬂ

T1 T2 73 T4

Figure 8.12: The bridge-kernel is defined as a sum over all the ladder diagrams.

The structure constants have two trivial DCOs, O;, O,, and one nontrivial DCO, Os.
Lastly, the most complicated structure constant case is in the following limit:

Crss, CaseIII: M\ #0, X #0, A #0. (8.39)

These three cases are discussed in subsections 8.3.4-8.3.6.

8.3.2 Bridge kernel and the SD-equation

In order to compute the ladder resumed diagrams, we first introduce a building block.
It is defined as a sum over all the ladder diagrams see also figure 8.12 and we call the
bridge-kernel K (1, 2|73, T4).

The SD-equation of the bridge-kernel K (7, 72|73, 74) is shown in figure 8.13 and given
by

T2 T4
K(m,m|m3,1) =14+ / ds/ dt P(t — s)K (7, s|t, 14), (8.40)
where P(z) = ﬁ# is a scalar propagator connecting the two segments between [r, 73]

and [r3,74]. Then, we differentiate in respect to the variables 7 and 7, and derive a
differential equation for the bridge-kernel as follows:

872873[( = —P(Tg - TQ)K. (841)

Furthermore, for simplicity, we here use the one-dimensional cross ratio

p= 1203 (8.42)
T13T24
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Figure 8.13: The SD-equation satisfied by the bridge-kernel K.

Using the variable, cross ratio, we can rewrite’ bridge-kernel (8.41) as a differential equa-
tion of the variable z:

z(l—z)d——i-(l—z)di A

e e sy K(2)=0. (8.43)

Since this is a second-order differential equation, there are two linearly independent so-
lutions®. TImposing the boundary condition which is K(z = 0) = 1 (or equivalently
K|; o = K|rsr, = 1), we can get correct solution. As a result, the bridge-kernel is
given by the hypergeometric function

K(z)=(1—2)"%F (-9, -Q,1;2), (8.44)

1 A
Q==[-1+1/1+5]. (8.45)
2 2

Using the bridge-kernel, we compute a physically important quantity which we call
the vertex function I'c(S,T). Roughly speaking, the function is given by the limit 7 — 73
in the bridge-kernel, see in figure 8.14. However, since such a quantity has UV divergence,
one has to be cut off to regularize such divergence. Then, we introduce the point-splitting
cut off in the same way as the two loop calculation in the previous section. Thus, the
precise definition is given by

with

I (S, T)=K(-S,—€¢/2 | ¢/2,T) = K (Ei :r ?;g; ?;) (8.46)

Notice that from the differential equation of the bridge-kernel (8.41) the vertex function
I'.(S,T) also satisfies the following differential equation

0s07T.(S,T) = P(S + T)T.(S,T), (8.47)

From the bridge-kernel written by the hyper geometric function, we can calculate the
expansion in the region S,T > e,

I.(S,T) = Ag) <% + %) +0(e), A(Q) = ?%Q—:l;) (8.48)

Then, we define the leading term of the € as

°To rewrite the differential equation, we used 0., = —714/(712724) 9, and 0., = T14/(T13734) 0.
6The other (incorrect) solution is (1 — 2)~%[oF}(—Q,—Q,1;2) +logz o 1 (—Q, —Q,1;2)], with
oFf (a,b,¢;2) = (0g + Op + 20.)2Ff (a, b, ¢; 2).

103



5
v

SR ) — :Z /f—\\%

Figure 8.14: Thevertex function. is defined as a sum of diagrams whose end-points are in
[—S, —€¢/2] and [¢/2,T] and the € is a cut off parameter by point-splitting regularization.

. /2

— —FE

Figure 8.15: The resummation of the ladder diagrams for the two-point function. The
left diagram, which has single vertex functions will be denoted as Single. On the other
hand, the right diagram , which has double vertex functions will be denoted as Double.

s = 22 (1)

As discussed in appendix D, there is an intriguing relation between the vertex function
and the solutions to the Schrodinger equation.

8.3.3 Two-point functions and renormalization

In this subsection, we calculate the two-point functions of DCO’s for the ladder resumed
diagrams and determine the renormalization to calculate the three-point functions.

Using the vertex functions introduced the previous subsection, the two-point functions
are in figure 8.15. The contributions of the two-point functions come from two parts:single
vertex operator and double vertex operators

Single = I';(00, T21),

Ty 8] (8.49)
Double = / ds/ dtT(o0,s — 1) P(t — s)Te(m0 — 5,1 — 7).
o '

In advance, we state the important comment:for the contribution single, the order of the
¢ become Single ~ ¢ . On the other hand, the Double has the order Double ~ ¢~ %2
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Therefore, in the ¢ — 0 limit, the diagrams Double are relevant, rather than Single.
In what follows, we check the fact and determine the renormalization from the diagrams
Double.

We easily find that using the I'ir, the divergence part of the Single is evaluated as
. To1\ ¥
Single ~ I'g(00, m01) = (—) . (8.50)
€

The second diagram can be written as
Ty oo
Double = / ds/ dtT (00, s — 1) (—0s0:)[e(m2 — 5,1 — T2) (8.51)
e

Here, we used the differential equation (8.47). Thus, computing the total derivative and
the fact ['c(x,¢/2) = K(u)|,—0 = 0, we get

+
1

—/ " ds (00,8 — 71)0 (12 — 5, 00) (8.52)

Unlike the first contribution, there is a priori no reason to expect that I'. can be approx-
imated by I'ig in (8.52) since the arguments of I'c can be of order O(e). Nevertheless, it
turns out that the leading singular piece in the limit € < 1 can be computed by replacing
I'. with I''g. 7 Replacing the vertex operators I'. with I'tg, the diagram Double become

straightforward:
<t _ (AN ™ AN [

Double = — (—) / ds (5 — 11)%0,(m5 — 5) = ( Q ) Q/ ds 5 (1 — 59t
1 € 0

Ry

. F(ZQ -+ ].) |T12|QQ
TTQ+1)2 e

(8.54)
In the second equality, we changed the variable as 5§ = (s — 71)/(71 — 72). Furthermore, in
the last equality we used the property of the Beta function

I(a + 1)T(b)

TatisD (8.55)

1
B(a,b) = b/ ds5(1 —35)""! =

0
Therefore we get the two-point functions of the bare DCQO’s for ladder diagrams as

€<§1 F(QQ —|— 1) |7’12|2Q

OBDCO (1) OBPCO (. 8.56
< ( 1) ( 2)) F(Q+1)2 29 ( )

"Roughly speaking, this is because the difference between I'. and I'ig,
vy =T —I'r, (8.53)

is of order eI'tg whenever the arguments are O(1) while it is of O(1) only when the arguments are in a
small interval of length € near the origin. Therefore the contribution from I'yy is always O(e) smaller
than the contribution from I'lg. See Appendix E for more detailed arguments.
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Figure 8.16: The three-point functions for the Case I.

Through the definition of the renormalized operator @ = Z~Y20P | the renormalized
two-point function has a following canonical form:

B 1
’7'12|2A .

(OPO(1) 0P (1)) = Z71{O,DCO(1,) O, DCO(73)) (8.57)

Therefore, by comparing (8.56) with (8.57), we can get the conformal dimension and the
renormalization factor of the DCO as follows:

AN =-Q, Z(\) = S (8.58)
As expected, the result for the conformal dimension matches the result in the literature
[81]. Finally, we defined the renormalized vertex function I'? for later discussions as

1 1\ ®
FR(S,T)zlinéz—l/QFm(S,T)z A(Q) (§+T> . (8.59)

8.3.4 Case I: one nontrivial and two trivial DCOs

We now compute the three-point function of one nontrivial DCO and two trivial DCOs,
see figure 8.16. In the figure, a nontrivial operator is in the middle and the structure

[e] Ie)

constants are C735. Here and in what follows, the symbols o and e signify a trivial DCO

@00

and a nontrivial DCO respectively. On the other hand, the others, for example C7s3,
whose nontrivial operator is in the most-left, can be obtained as the same value with

C135. Therefore, we only consider the C735 case. Thus, the configuration is easily given
by the single vertex function as follows:

o . o C’0.0
(OY0° ()07 (12) 05 (13)) = D (mar, 732) = —7_797_13?274] )
I( 921 3)21/231 (8.60)
oeo 2 _|_ 1
Gz = VAWR) = TQ+1)

At weak coupling of the effective coupling constant ), the result can be expanded from

(8.45) as , ,
%=1+ % (4—22) - (% + <<3)> (%) + OO, (8.61)

The result up to two loops reproduces the perturbative result for the ladder diagrams
in the previous section. At strong coupling (A > 1), on the other hand, the result
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Figure 8.17: The structure constant C7g5, which is in Case I. The structure constants

@00 [e] le]

155 are given by the two diagrams unlike the C735 in figure 8.16.

exponentiates and is given by

(o] Ie) \/X

@00

On the other hand, we can compute the structure constant Cjs5. As shown in figure
8.17, we have

000 FR K t
123 — PR(c0,73) 4 2/ ds/ dt RSBt g6

72197'3%731 (t —5)?

(*)

Using the differential equation of the SD-equation (8.41), and boundary condition K (*, *'|x, x) =
1, the integration can be evaluated in appendix F and we obtain the expected result

123 = Ciog = VA(Q). (8.64)

8.3.5 Case II: two nontrivial and one trivial DCOs

Next we calculate the structure constant for Case II. Since the operators have two non-

trivial conformal dimensions A; = —€);, the structure constant have following form:
DCOe DCOe DCOo 1.2.§
<Ol (TI)O2 (TQ)OSS <T3)> = T I0 -0 -5 -4 (8'65>
To1 T32 T31

The diagrams of Case II is in 8.3.3. The diagrams also include two patterns:single
vertex functions and double vertex functions. However, in the same argument as the
Casel, the relevant diagrams are just with a maximal number of vertex functions.

The renormalized three-point function is given by

(OPCOsODCO DCO0) / ds/ dt/ du/ dv (—0,0,) T (11 —u,v — )

X Kl(’U, S|T3, OO)(-@Sat)F2 (7'2 — S,t — 7'2) .
(8.66)
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Figure 8.18: The three-point functions for Case II have four diagrams. However, the
most dominant contribution in the limit € — 0 is only double vertex functions.

Here we used the SD-equation (8.41). In (8.66), the integral of u can be easily computed.
Thus, the integral of v is just the same with (8.63)

s o 91
/ dv 0,T (00, v — 1) K1 (v, 8|73, 00) = 752! (S Tl) A() (8.67)

T3 — S

Therefore, (8.66) become

<OPCO.OQDCO.O?COO =7 \/7/ dS/ dt(

941
) (00T E (13 — s, — 73)

T3 — S

o s Qs
7'31 7'32 A A(Qs) / ds( 3—3) 0s (73_8) )
(8.68)

The last integral can be done explicitly® by performing the following change of variables,
which amounts to performing the Mobius transformation (7, 79, 73) — (0,1, 00):

S —T1 Ty — T3

§= : (8.69)
S —T3Ty —T1
As a result, we finally get the two nontrivial structure constant
L2 + 1)Y2T (20 + 1)1/2
Chas = VAU A(Q)I (2, Q) = @ + 1) (22 + 1) (8.70)

T(+ Qo+ 1)

@00

Surely, setting the €2y = 0, we can reproduce the C}35. Weak coupling expansion of the
result is

A= 2)2 (A= X2)2(A1 + M) (72 4+ 6¢(3))

o0 5\4 71
Cis =1+ g 3840 O, (8.71)
whereas at strong coupling we have
20, 20 Vs
InCte3 ~ Q41 Qo1 Q; ~ . 8.72
n0123 1n91+Q2+ 2nQ1+Q2’ 21 ( )

The result at two loops at weak coupling matches the ladder contribution to the pertur-
bative result given in section 8.2.

8The integral reduces to the integral for I(a,b) given in (8.55).
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Figure 8.19: The three-point functions for Case III. It seems that there are a lot of
diagrams. However, in the same argument as the previous cases, the dominant diagrams
in the limit € — 0 are only triple vertex diagrams.

8.3.6 Case III: three nontrivial DCOs

In this subsection, we compute the most general three-point functions of DCOs,

(1 1]
(O (1) 07 (12) 05 (1)) = —o—a7ay 0,0, Tor 0501705 (8.73)
Ta1 T3 T31

As shown in figure 8.19, there are 24 diagrams for the Case III. However, only three
diagrams which are a, b and c in figure 8.19, are relevant diagrams since they contain a
maximal number of vertex functions. 8.3.3.
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We first consider the diagram b and given by

/ds/ dt/ du/ dv/ dw/dexs|uoo)

X (=00 ) TR (w — 7y, 2 — 1) (=00, T (19 — 5,1 — 7)) (—=0u0,) T (13 — v, u — 73)

:H\/A—/ ds/ dt/ (5—2_(1;—71))91

=1

X(_&@)C@-@xp-@v93h<@r¢xu—ﬁvﬁj

t—s

(8.74)
Then, performing the integration by parts for the variable u, we get the contribution of
the diagram a as a surface term:

b=-a+1l, (8.75)
with
/ ds/ dt/ du/ dv T (00,5 — 71)(—0s0) (12 — 5, — 72)
X (=0, 0T (13 — u,v — 73) .76)
HW‘—/ is [ arts— o000 (2 e IR
and

IQZﬁm/TTQdS/fdt/TOOdu(—ﬁu) ((8—;1)_@8—71))91

-0y (=)™ (= m)™

t—s u—t

(8.77)

The contribution from the diagram c can be evaluated in a similar manner and the
result reads

- [ [ ()

(8.78)
(-9 (2220 —m)% (e >) |
t—s u—1
Summing up three contributions, we get

(O10505) =a+b+c=IL+c (8.79)

To further proceed, we perform the following change of variables,
s=miTn o g Tl g TeUTT (8.80)

T21 S — T3 ngt—Tl T13U — T2



After doing so, the three-point function have the following simple form:

Ot = (H \/Am;)) x J

(8.81)
JE—AdaéﬁAdm%MQO}  [9(5.5%] 3 [g(F, 1) ] .

with g(z,y) = (1—x) ' +y~' — 1. The integral J can be evaluated explicitly. The tedious
expression is in Appendix G.

Then, the weak coupling expansion of the effective coupling X is given by

oo 1 : 32 DR
Ol =1+ 5 (Z 22— 22&&-)

i 1<J

(8.82)

L T 6C(3) <Z A=Y +M§>) § T3 6B)5 55, 1+ o).

384w 19276
1<j

We can explicitly check the result with the two-loop calculation in section 8.2. Further-
more, when we take the limits )\;, we can reproduce the results in the previous subsections.

In order to evaluate the strong coupling expansion (5\Z > 1), we use the saddle-point
approximation of the integral J,

l/@/ﬁ/dw .
5,1,

) = = log g(u1, 5) — Qplog g(5, 1) — Qs log g(F, u) + O(In X) .
By analyzing the saddle-point approximation of J, that is d;g = drg = 039 = 0, we find

the two solutions. However, the relevant solution for the integral, which is inside the
integration region is given by

—x Ik —%k Ql Q2 Q3 )
) = , , . 8.84
(5 @) (91+Qz Qo+ Q37" Qg 4+ ( )

At the saddle point (8*,t*,u*), we get the strong coupling expansions as follows:

20 20 20)
InCs ~ Oy —1+Q210gQ 2 + Q4 >
1

1 =2 log — =B (3.85
8O+t O T+, 8O+ + O (8.85)
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Chapter 9

Non-BPS operators — perturbation
and integrability

In this chapter, we calculate the three-point functions of non-BPS operators inserted into
the Wilson loop. In the same way as the single trace operators, first of all, we choose the
following state:

Olile, OQZZLl, 0322L3:(2+2+Y—Y)L3. (9].)

Furthermore, we insert the another complex scalar Y as an excitation. Then, we used
the total scalars ¢',i = (1,2,3,4) in the operators. On the other hand, we have a choice
what the scalar coupled to the Wilson loop is. If we choose the Wilson loop scalar as
the same scalar of the operators, there are direct contractions between the operator and
Wilson loop:

0, 0,

Furthermore, if we take the ¢, i = (1,2, 3,4) scalar in the Wilson loop, such a configura-
tion can’t be BPS even if the operators are ordinary vacuums state (9.1). For the other
choices, the Wilson loop scalar is ¢° or ¢°, there are not direct contracting diagrams and it
becomes BPS state when the operators are (9.1). Therefore, the choice of the Wilson loop
scalar is very important. In this chapter, we ordinarily choose the Wilson loop coupled
to the scalar ¢° as follows:

W = exp [/dT(iAMx'“ + gz56|:t"|)], (9.2)

In the section 9.1, we first explain the open spin chain under the coordinate Bethe
ansatz. Next, in the section 9.2 we calculate the structure constants by using the tailoring
method.
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9.1 Open spin-chain and wave functions

In our set up, the one-loop anomalous dimension is corresponding to the eigenvalue of
the XXX/, open spin-chain Hamiltonian [85]. Thus, the open spin-chain Hamiltonian
introduced in [86] is given by
-1
Hopen = O _(Tiser1 — Pris) + C1(1 — QF°) + Cr(I — QF), (9.3)
k=1
where I}, ;41 is the identity operator in flavor-space and Py, ;41 is the permutation operator
which switches two scalars at site k and at site £+ 1 each other. Here, the operators Q(fﬁ

and Qfﬁ appear since we chose the scalar in the Wilson loop as ¢g. As a result, Q‘fﬁ and
Q% are defined as'

Qlpe) =0, QPIZ-)=1Z---),

Qrl-¢e) =0, QPl-2)=1-2). (9-4)
The coefficients C', and C}, determine the boundary condition of the Bethe wave function.
For example, if the excitations are the Y scalar, the boundary coefficients are given as
C7 = Cp = 0 and the wave function satisfies the Neumann boundary condition. On the
other hand, the excitations include the ¢° scalar, the boundary coefficients C; and C},
become non-zero. In fact, the boundary coefficients depend on the contraction between
the operator and Wilson loop.

9.1.1 One-magnon

Let us begin by giving the explicit form of the open spin-chain state for a few number of
magnons in our conventions. The eigenfunction for one-magnon | \Ifgi,)e@ is defined as

7{0pen‘qy(1) > — Zf(l)yqy(l) (9'5)

open open>'

Then, the Bethe state is written as

T

1
O = Y @22y Z--- Z),

U(0) = A0)(Ale.) + P By Al ) with Bu(p) =~ — L
(9.6)

where A'(p) is a normalization factor of the wave function. The propagation factor is
defined as A(x,p) = eP(@=3)  Notice that the factor is half-step shifted, such feature is
first mentioned in [88]. The wave function can be interpreted as a dynamical processes
on the spin chain coordinate, see also figure 9.1. The details of the wave function are
analyzed in appendix H.

!The notation was introduced in [87]. In addition, although we shall not introduce the computations,
we actually have calculated the SO(6) Hamiltonian by evaluating all Feynman diagrams, and could check
that the result is written as the above form.
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Az, p) et x Br(p) x e Az, —p)

Figure 9.1: The first term A(z,p) in the wave function (H.2) shows that the magnon
is propagated from the site at 1/2 to the site at x. The second term e*PL By (p)A(z, —p)
is factorized to LBy (p)e?* A(x,—p). Tt shows that the magnon first go to the other
boundary at L+ 1/2 and reflected denoted by boundary factor By (p). After doing so, the
magnon return back to the site at z.

9.1.2 Two-magnon

Next the two-magnon eigenfunction is given by

Hopen| V2. ) = B0 (9.7)

open 0pen>‘
The Bethe ansatz state for the two-magnon is

1 T2

4 4
) = Y W ()2 ZY 22 Y Z),
1<z1<x2<L
O (21, 22) A (1, p2) = f(1,p1; 2, p2) + €272 Br(p2) f (w1, p1; T2, —p2)
+ 5(p2>pl)S(—p%pl)eziplLBL(pl)f(-Th —P1; T2, P2) (9.8)

+ S(pQ,pl)S(—Pz,P1)€2i(pl+p2)LBL<p1)BL(p2)f($1, —P1; T, —D2),

where A’(p1,pe) is a normalization factor. Note that the S-matrix for SU(2) sector is
given as

U—v—1
Sl = =5y

where u = cot & and v = cot £ are ordinary rapidity notations. Notice that the S-matrix
is the same with the closed spin chain’s one and has the following property:

S(=pj,pi) = S(=pi, p;)-
The factor f(z1,p1;22,p2) is defined as

[ (@1, p1; 2, p2) = A(wr, p1)A(we, p2) + S(p2, p1)A(z1, p2) A2, p1), (9.9)

The terms are just the summation over the permutations property, which appear in the
closed spin chain system. The dynamical processes of the two-magnon wave function are
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1/2 xr1 X2 L+1/2 1/2 T1 o L+1/2
A(x1,p1) X A(x2,p2) 2L x By (py) x eir2(b—(22-1/2))

% eim“S(fpz,pl)eipl(Lfm) x Br(p1) x Bipl(waz)S(,ph ,pz)eim(rrzl)

Figure 9.2: For the first term A(zq,p1)A(x2,p2), the red magnon first go to site xs.
After doing so, the blue magnon go to the site x;. For the final term, each red and blue
magnon go to the other boundary and return back to the site x5 and z; respectively
after reflecting by the boundary. Then, the ordering of the positions of the magnons
are changed each other. By taking account into such contribution, we add the S-matrix
factors appropriately.

understood as in figure 9.2.% In the two-magnon wave functions (9.8), we found that the
wave function is basically constructed by the summation over the sign flipping terms of
f(z1,p1; 22, p2) as follows:

f(xlapl;x%pZ)? f(xb _p1§332>p2)> f(flf1,p1;332, _p2)7 f(xb —P1; T2, _pQ) (910>

In addition, because of the scatterings of the magnons, we must insert the boundary co-
efficient, S-matrix factor and propagation factors such as e*P1L By (p1)S(p2, p1)S(—p2, p1)-
Such a factors are inserted when the sign of the momentum p; is flipped. For multi-magnon
case, the factor is generalized as

P By (p) [T S 0w 1) S(—pi. p1). (9.11)
k>1

Based on these systematic constructions, we can find the multi-magnon open spin chain
wave function.
9.1.3 Multi-magnon

The M-magnon wave function can be decomposed into two parts: summation over the sign
flipping terms with appropriate factors and summation over the permutation. Thereby it

2For intuitive understanding, it may be better to rewrite the S-matrix factor S(p2, p1)S(—p2,p1) as
S(p2,p1)S(=p1,p2).
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is written down:

,ébopen = Z H(emplL)Hs(pkapl)s(_pkapl) f(ﬁh 7]5M)7

PLUP_={1,..,M} |leP_ k>l

P
summation over the sign flipping terms with appropriate factors

f(ﬁla"' 7]3]\/[) = Z H S p037p0'k H A :BTTL?pUm (912)

o1#Foy j<k
Uk<‘7g

(. J/
~~

summation over the permutation

where p; is defined as
i € P
P = {p PET (9.13)
—Di 1eP_

Notice that the f(pq,--- ,par) in the wave functions is the same with the closed spin chain
wave function.

9.2 Structure constants and the hexagon form factor

Using the open spin chain wave functions discussed above, we now calculate the structure
constants at tree-level by using the tailoring method. Surprisingly, the hexagon form
factors, which are introduced in the structure constants of the single trace operators,
appear as a fundamental black.

9.2.1 A nontrivial operator with one-magnon : C}5}

We first consider the following configurations

Oy Y z7yzh=et 0,2 0: 7%, (9.14)

According to the ordinary tailoring method explained in section 4.2, we first do mapping,
cutting and flipping and we have

01_>|Z ®Z¢(()%))en1 ZYZ|7

Oy = |- Z-Vo® ol---Z---|,
(93_>|...2...>3® 3<...Z...|_
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Figure 9.3: The first term means that a magnon is located at the start point ¢15, which
is shifted by the normalization. The second term has the propagation factor 2?43, It
shows that the magnon is propagated to the right-boundary and return back to the start
point.

Contracting them, the structure constants are given by

Cl5; o Z Ul e () (9.15)

zo=l12+1

The summation of the propagator A(z,p) in the wave function becomes

Ly
> Alzp) = M(p)(eP2 — M), (9.16)
xo=Cl12+1
where the factor M(p) = (e7'2 — €'2)~! obeys a useful identity M(p) = —M(—p).

Therefore, we get
Cllgg M(p) (eip€12 _ vl e_ipgm)
= Mﬂlg (p)(]- — 62ip€13)’ MZ12 (p) = M(p)eip£12 (917>

Then, we defined the normalization including the exponent of the bridge length 2. It
means that we should interpret as the start point of the magnon is changed to the point
(15, rather than 1/2.

9.2.2 A nontrivial operator with two-magnon : C1.>°

Next we consider the case of a nontrivial operator with two excitations as follows:

Oy: Y Z°yzv ety zh-th 0, 78 0: 7%, (9.18)

<y

Then, the structure constants become

C’1}/2?300 X Z Zﬁopen(xl?‘r2 Z Z djopen T, l’g) (919>

1<z1<z2<Ly r1=f12+1 z2o=21+1
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Notice that we extend the summation range because the contribution of 1 = L; becomes
zero. The summation of the product of the propagators A(xy, p1)A(xa,p2) in the two-
magnon wave function @b(()%)en is written as

S Al p) Al a)

1<z <w2 <Ly

1+ 20 - - 14 2v <
_ i(pi+p2)liz _ ipaLi ipiliz ( _ 1) i(p1+p2)L1 }
M(pl)M(pg){Q(u+v)e e e + 200+ ) +1])e
(9.20)

Here, there are nontrivial factors 2@_2;]) Such factors come from the geometric series and

we can give the appropriate expression in the same way as the three-point functions of
the closed string in section 4.2.

Next we substitute the result (9.20) in the two-magnon wave function (9.8) and we
get the structure constant as follows:

u—v —u—"v

C«%/ono X Mﬁm (pl)Mfu (pZ){ — S(pg, pl)S(—pQ, pl)eziplé13

T —U—V
—u—+v }
i—u+vl)’

1+u—v
U+ v
t+u—+v

_ 621'1)2@13

+ S(p2, p1)S(—pa, pr) e 1) (9.21)

Here, we obtained nontrivial factors, i.e. Z7=-. Actually, this factor is known as the
hexagon form factor, which is introduced in the three-point functions of the closed string,
at tree-level

u—v

+ O(g).

Pl = R

As an another case, we calculate the structure constants C1,%° in appendix K

9.2.3 A nontrivial operator with M-magnon : Clyéfoo

By doing similar tasks, we would like to get the structure constants for the multi-magnon.
The wave function for the multi-magnon is naively written as

> i@, (9.22)
1< <Tpf

From a few magnons lessons, we expect that the summation of positions for the multi-
magnon wave function should be obtained by summing the hexagon form factor over all
patterns such as flipping momentum signs with the negative weight. To justify the above
statement, we prove the following two lemmas:

1. Bridge length dependent terms : the bridge length dependent terms such as e?P1+--+ra)h
produce the multi-magnon hexagon form factors.

2. Bridge length independent terms : The others terms which are independent of the
bridge length, completely vanish.
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1. Multi-magnon hexagon form factor

We first focus on the sum over the permutation parts of the multi-magnon wave function
(9.12):

Z f(pr, -+ pmr)

r1<--<Tpf

- Z Z H S(p0j7p0'k)"4<x17p0'1) T A(«'L’MJ)UM)- (923)

1< <Tp 017 FO N Tk <]

j<k
As the above summation for a few number of magnons is relatively manageable, it is given
in appendix I. The evaluation of the equation is the similar to the closed spin chain case.
In fact, we start to recall the relation between the S-matrix and the hexagon form factor:

h(v,u)

S(u,v) = h(a.0)’

(9.24)

By using this, the product of S-matrices can be transformed as

1 8np0) = | TT #ltocno) | | T s |- (9.25)

O'k<'-'"j f"k<f’j o‘k<crj h uo-j’ uak)
Jj<k Jj<k Jj<k

Using the same discussion with the closed case, we therefore can be rewritten the sum-
mation (9.23) as

h(ulv"' 7UM) Z (H %) Z A($1,pgl)"‘A(l’M,ng>- (926)

U, U
o1#Foy \j<k ( 952 Uk) r1<-<Tp

Then, we used the following identity:
B, ) = [] A, i), (9.27)
i<k

Because the multi-magnon hexagon form factor can be decomposed by the two-magnon
hexagon form factor.

The remaining part is the summation over the positions for the multi-product of the
propagation factors

Y Ay pey) A o), (9.28)

x1<--<x )M
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1
> Z - = ¢ 2 Mp) ———=e— +
T
={12 y=z+1 612 y £12
~~ -
P11 i (P2t 4P )y ei(p1+"'+pM)1‘ irrelevant
L
g'2—M )(p) Z ;(_ = 4 2-M )(p) g 1-M )(p) +
z=Ll12 {12 Lo

ei(P1+"'+PM)€12

Figure 9.4: Let us consider the summation of the positions for a magnon at site x and
M — 1 magnon at site y. We first sum over the position y. From this, we get a nontrivial

function ¢g>=M = m After doing so, we sum over the position z and get the

further factor gt=M) = W Thereby, the coefficients of the e!(P1++Pm) hecome

the product of the g@?=M) and ¢g(—M),

which is easily evaluated by geometric series. For one- and two-magnon cases, they
respectively become

i 1 ;
_ 5P iplia .
Em A(z,p) =e 2 e LA R

1 1
e—ip2 — ] g—i(p2tp1) — ]

Z A(xy, p1)A(zo, p2) = e~ a(P1tr2) eiprp2)liz

r1<T2

Then, we would expect the summation for the multi-magnon wave function

M M
i 1 .
E _II —3P Il—l(p+--~+p Yz L
'A(xl)pl) A(vapM) = e 2tk | e_iZkM:jpk . 16 ! M )€12 + )
1< <T N k=1 ]:1

(9.29)

Pictorially, the geometric series in the summation can be sketched in figure 9.4.

From above argument the summation (9.23) becomes

M
H c o (H h us’ Ut ) Z <H h Uag;uok ) H e—iz%il’m — 16i(p1+m+pM)£12 + -

s<t o1#£Foy \j<k n=1
(9.30)
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We finally prove the following relations :

F(py, - va):ﬁi(uk+%> : (9.31)

M
Flpi,--spm) = Y (H ; ugﬁu%)> 1T e—iz%_ipm — (9.32)

o1#Foy \j<k n=1

by mathematical induction. First, relating F'(p;) for the M = 1 case is trivially found.
Next, we assume that the relation holds for M — 1 case. Then, we extract the expression
F(p1,---,pj,--- ,pm) where the j-th excitation does not contribute :

<p17 7pM) _sz 1pk—1z (Hhuk,u])> (pb 7p]7 :PM) (9 33)

We finally have

1 - 1 M i(ug +1/2
Flp - pw) = W; (H h(ug, u, > L i_(uj(+ 14/_2)/ ) (9:34)

= L Ny e 5)

Here, the expression

1
sz 1Pk — ] Z (H h(ug, u ) U] +1/2) (9.35)

Jj=1

can be handled by introducing a residue integral which is given as
dz 1 up — 2z —1/2
S 9.36
mez(lnuk—z—Hﬂ )’ (9.36)
where the integrand has poles at z = 0 and z = uy + i/2. Picking up the pole at z = 0,

we get
M .
7{ L | U R (9.37)
om0 2z \ 1 uk — 2 +0/2

Otherwise, from the other poles, we have

dz 1 Up — 2 — /2 1
jézukJri/Q 2mi 2 (1}_[ wp—z2+1/2 ) Z (H A, u ) i, 1 1/2) (9.38)

Jj=

From those, we could completely get the following relation :

F(py,--+ ,pu) = H (uw > (9.39)

k=1

M
=1]—— p—— (9.40)

k=1

121



Thus, the summation (9.23) becomes

Yoo > 1 Sepe) A pe) - Alzas pay) (9.41)

1< <Tp O1FEFOM TR

i<k
M
= [T M@e) [T nug, ug)e®rttmtz 4o (9.42)
k=1 i<k

2. Bridge length independent terms

Next we prove the second lemma, which is for the terms which have exponent of the
spin-chain length, eP1t-+Pa)li  Ag a more simpler case, we explain a few magnon case
in appendix J for helping to understand. ® By applying the result of the multi-magnon
hexagon form factor, the summation (9.22) for the wave function with Neumann boundary
condition is given by:

M
Y dhalen e/ [T M)
1 <--<Tp =1

- Z H (—e*™h) Hs(pk,pl)s(—pk,Pl) Hh(ﬁi,ﬁj)ei(ﬁlJr"’JrﬁM)Ll e

PLUP_={1,.,M} |keP_ 1<k i<j

(9.43)

First of all, the propagation factor can be trivially picked out:

eiP1t+par) L Z H (_)Hs(pk,pl)s(—pk,pz) Hh(ﬁz’aﬁj) +oe (9'44)

PLUP_={1,.,M} |keP_ 1<k i<j

By dividing the factor such as

H h(pi; pr) H h(pi, —pr), (9.45)

i<k i<k

the leading term (p1,--- ,pas) becomes

elP1t-+par)L _ 1 .
[[ 1m0 [T 1= (Hkkh(pl,pk)mk o) Hh(p“”)

<k <k 1<j

= 't T n(pr, i) [ [ Aou —pi) (H ;> : (9.46)

1<k 1<k 1<k h(pr, —pr)

3For a naive discussion, when we consider the case, for example £15 = 0, 13 # 0 and f93 # 0, the
structure constants don’t have any non-trivial factors because the Bethe state can’t contract with other
states. This shows that the structure constants are independent for the spin chain length L;.
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On the other hand, the next to leading term which is the term for p; — —p; is written as

_ eilprttpm)L H h(pr, i) H h(pi, —pi)
1<k 1<k

- (Hz x "(p1; i) Il—L k. HSpk’pl pk’pl)Hh(—plapi) H h(ﬁij))

h(pr, — l<k i—1 1£i<j

i(p1t-- +pM)LHh Dis Pk Hh i, —Dk) (th1,pk H hpl, — ), (9.47)

I<k I<k 1#£l<k

where the expression in brackets is just the negative k part of (9.46). Generally, the
equation (9.44) becomes

ei(P1+~..+PM)L H h(pu}%) H h(pl, —pk) Z H H h pl . (948)

1<k 1<k PLUP_={1,.,M} | keP_ 1<k

From this, we shall show that

G(p:) = > 11~ Ilhm’ =0 (9.49)

PLUP_={1,.,M} |keP_ I<k

by investigating the poles. The function G(p;) has poles at u; = tuy, because of

L 40 (9.50)
h(u,v) u—v '
However, these poles are irrelevant since the residues of such poles become zero. Now let
us move to the pole at p,, = p,, (n < m). Then we can simply show that the residue is

1 1 1
> 1L, <7Hm W0 £5m) 1L 7 77 W, 50

Pm—D
PLUP_={1,..,M}/{mn} |keP_ e

1 1 1
| ey }Thipn, S

i<n#Em

— 0. (9.51)

Therefore, the function G(p;) does not have any poles. Thus, the remaining one is deter-
mined by the u — co behavior. Since it trivially becomes zero such as

Glui = o00)=1—14+1—1+-..=0, (9.52)

~
2M terms

we showed that the function G(p;) is precisely zero. This fact means that the summation
of the spin-chain length dependent terms doesn’t contribute to the structure constants.
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As aresult, we can write down the final result for the multi-magnon structure constants
at tree-level as

IYQJ;OO|tree X | |M i(p1+-+par)li2

x Z H(_e%pkgls)Hs(pk,pl)s(—pk,pl) th;eye(pm )

PLUP_={1,.,M} |keP_ 1<k i<j

(9.53)

We would like to emphasize that the structure constants depend on only the exponential
of the bridge length terms and the hexagon form factor, which is the same with the closed
sting case, naturally appears.
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Chapter 10

Complete method — integrability

In this chapter, we would like to suggest the finite coupling correlators of the open strings
or operators inserted into the Wilson loop. In the section 10.1, we conjecture a finite
coupling structure constants naively, following the original hexagon paper [34]. After
doing so, we suggest a more refined form in section 10.2. It is because the conjecture in
section 10.1 is slightly different from the one-loop perturbative results. The accuracy of
the result in section 10.2 was supported at higher loops by using the recent developed
localization techniques [90].

10.1 Conjecture for finite coupling structure constants

In the previous chapter, the result of tree-level structure constants are given by

Y]WOO tree+ +ptree Y
123 |tree X HM Yoz

% Z H (_62721;21-@6@13) H Stroc<pk,pl)5trcc — i pl H htroc b, ] :

P UP_={1,..M} |keP_ 1<k i<j

(10.1)

with

i € P
pi = {p LeTe (10.2)
—p; 1€ P_

Then, in the same argument of three-point functions of the closed strings in section 5.1,
we replace the tree-level quantities to finite coupling functions:

0123|tree N 0123|ﬁnite plsree pﬁnite’ Stree(u’v> SN Sﬁnite(u,v), htree(u’v) N hﬁnite(u,v).

1
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In addition, by inserting the reflection amplitude B(p) at finite coupling given in [83,89)]
and correct norm explained in appendix ., we propose the structure constants at finite
coupling!

[e]e] 2 Z 1 1
(0%3 ) - ey (10.3)
55 ) 4et(0u,6) [Tie, S(py, po)eit ok

where the denominator is a norm part by a product of S-matrices times the open-chain
version of Gaudin norm factor which is a determinant of differential ¢ defined from

el = ?ipiln HS(uk,uj)BL(pj)S(—uk,uj)Bl(—pj) (10.4)
k#j

with respect to rapidity variables u; (not the momentum), and by the propagation factor
for the length of the operator O;. Also, we define

K= > IT (=™ Br(p) TT Sprp)S(—pi.p) | H(p),  (10.5)

PLUP_={1,.,M} |keP_ 1<k

where H(p) = Hi<j hyy (Pi, Ps)-
We now give some comments for this result. First, we here recall the result of the
three-point functions of the closed string (5.2):

Adesed = N (I e [T S(uy,u)H (o) H(a) (10.6)
ava={1,...,M} jea i<k
jEa.kex

The closed sting version is written as the sum over partitions and there are two hexagons.
On the other hand, comparing the results, the open sting version has one hexagon and
sum over the sign flipped momentum by the reflection amplitude. Pictorially, the three-
point function of operators inserted on the Wilson loop is implemented by a hexagonal
object. Cutting the three seams, the hexagonal object can be described by one hexagon
with three mirror edges contracted by the boundary states |B), see figure 10.1.

In the case of two magnon, the above expression is simply written as

K = hyy (u,v) — S(p27pl)S(—p%pl)BL(pl)BQiplgwhYY(_U?U)

— Br(p2)e?P2"3 hyy (u, —v) 4 S(pa, p1)S(p1, _pZ)BL(pl)BL(pQ)e%(p1+p2)£13hYY(_ua —v).
(10.7)

It shows that the structure constant is given by the summation over the sign flipping
hexagon form factor with negative sign and appropriate factors related dynamical processes
of the magnons. Furthermore, the two-magnon structure constants at finite coupling is
depicted in figure 10.2.

'The meaning of question mark ? is explained in the next section.
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S 609 ~N e  ——
& % L7 \B)
~ s
o 2 I =
Wilson loop
N =4SYM hexagon

Figure 10.1: In the N' = 4 SYM, the configuration can be pictorially written as a hexagon.
In the hexagon method of open string attached D-brane, we cut the world sheet and make
one hexagon and three square like figures. Then, we identify the three square like figures
are boundary states.

10.2 Hexagonalization and the perturbation

In this section, we would like to predict the hexagonalization data from the perturbation.
In advance, we mention the summary of the relations between the hexagonalization and
perturbation method in the subsection 10.2.1. After doing so, we explicitly see how to
predict the hexagonalization data from the perturbation in subsection 10.2.2.

10.2.1 Summary of the hexagonalization and perturbation

One interesting (and perhaps peculiar) outcome of our analysis is that the integrability
computation does not give the normalized correlator ((*)), which is the result (10.3). Tt
rather corresponds to the ratio of the correlators on the circular Wilson loop,

<W[Ol e OmDClrcle
Hk 1 \/ OkOk 01rc1e

where W[O0;Ok])’iae denotes the space-time independent part of the two-point function
on the circular loop; namely (W[OrOk]).ice = 1L, X (W)circle- In terms of normalized
correlators, the conjecture (10.8) can be rewritten as

- v (01 0,)
Hexagonalization = (W)circe) 2 —mm—--
l V1=

Although we do not have a strong argument as to why the hexagonalization computes the
correlators on the circle rather than the normalized correlators, we check this conjecture
explicitly for the three- and four-point functions at one loop.

(10.8)

Hexagonalization =

(10.9)
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(Bi|_o B (Bi|_os—IBL)

\ / =S8(pa p1)S(=p1, P2)B(p))e \ /

(Bi|_IBp) (Bi|_,. °IBy)

\ / +S(P2vP1)S(_P1vpz)BL(P1)BL(P2)92i(p‘+p2)f‘3 \ /

Figure 10.2: The red and blue magnons on the hexagon form factors give the hexagon
form factors hyy (u,v). Then, the four terms shows the propagating process on the edge
of the hexagon form factor and boundary states.

2ip,ty3

_BL(pz)EZipzfls

10.2.2 Hexagonalization data from the one-loop correlators

Assembling some 1-loop BPS correlation functions, we shall try to predict hexagonaliza-
tion data, which should also be calculated from integrability method. Because, in our
conjecture, the BPS correlation functions are given by summing of hexagonalization data
with having mirror-magnon on the gluing edge. In fact, by counting the power of the
coupling constant, there are three-type hexagon data related up to three mirror-magnon,
as long as we consider the 1-loop calculation by the perturbation. The aim in this section
is to read the three hexagonalization data from the 1-loop BPS correlation functions.

As a beginning step to be good at but including essences, let us consider the three
three-point functions whether it has a zero-bridge lengths or not. The 1-loop results are
given by

«O?PS@)(l’l)OgPS(Q)(IQ)O?PS(Q)(I3)>>‘ A 3C(2)dyodasd (10.10)
—loop — 5 o5 12423431, .
A/ T1MaMN3 ! 87T2
<<O]13PS(2)(xl)ol;PS(l)(:L,Q)O?PS(l)(xg)»| A <(2)d d (10 11)
—loop — 5 5 12431 - .
\/T1MaoNg ! 87T2

The first shape with one triangle and three objects like crescent moon has all non-zero
bridge length. On the other hand, the second shape has zero bridge length. The difference,
in terms of the hexagonalization, shows a mirror magnon on the gluing edge between the
boundary state and the hexagon in figure 10.3. As mentioned the original hexagonalization
paper, only single-particle states on zero-length bridges can contribute at 1-loop. However
it is curious why the three-point function of the first shape has non-zero value since it
cannot have any contribution from hexagonalization method. We find that it implies
that the hexagonalization data are related to the perturbation results divided by the
expectation value of the Wilson loop. Namely, the three-point functions divided by the
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Vam Y
A G N

zero-length

Figure 10.3: The left figure is the ((O?PS(Q) (xl)OQBPS(Q)(xQ)O?PS(Q)(xg)». The right corre-
lator is <<(91BPS(2) (ml)O];PS(l)(xQ)O?PS(l)(xg))), which have zero-bridge length.

one with the appropriate power become

(0P (1) 055 () OF5® ()

irele) 2 oo = 10.12

(<W>c1rcle) \/W ’1 loop Oa ( 0 )
L UOBPS@) (1 \BPSM) (. ) HBPS() \

(W) OO0 0D, a2, (1019

In the second line, the coefficient £ (—2¢(2)) should be reproduced by a hexagonalization
data in hexagonalization method which has one mirror-magnon on the gluing edge between

hexagon and boundary state,

~225((2). (10.14)

Considering a next beginning step is a four-point function with the operator length
Ly=5Ly=L3y=Ly=3and Ly =4,Ly = L3 = Ly = 2. The tree-level diagrams are in
figure 10.4. They are given by

(O3 (1) OF5®) (25) O3 (25) OFTP ()

|17100p
VAL IR Y

A A A
= @4§(2)d§’2d§4d41d13 + @6C(2)d32d23d34d21d13 + @4§(2)dud§3dild13, (10.15)

(0T (1) O3 (25) OF5P (25) OFFP) () |
,—n1n2n3n4 1—loop
A A

= @4§(2)d%2d34d41d13 + @4C(2)d12d23d21d13. (1016)

We found that the 4¢(2) terms come from the tree-level diagrams with zero-bridge lengths.
It implies that the contributions in terms of the hexagonalization came from the one-mirror
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length : (5,3,3,3)

0, 0, o, 0, o, 0,

0, 0, 0, 05 0, ° <3
length : (4,2,2,2)

0,

o, o, o,

Figure 10.4: . The gree—level ; diagrams of the corre-
BP BP BP BP

latoBrPS(4) BPS(2) «Ol BS;((;)H)OQ Bl(jS)((;).z)(l)3 (3)(x3>04 (3)(3;4)» and

(O (1) Oy "7 (22) O3 "7 (w3) Oy 77 (24))-

particle between the hexagon and boundary state. On the other hand, the existence of
the 6((2) term is not so good. Because we cannot see the well interpretation in the
hexagonalization theory. It is also implied that we should dived by the expectation value
of the Wilson loop. For the four-point function, it is turned out well by divided by
((W)eiretle) ' Then we have

- (07 (1) 0P (29) O3 (1) O3 (4))

( <W> circle m | 1—loop
A A
= @(—QC(Q))digdgzldudlg + @(—QC(Q))dlzdggdidlSa (10.17)
(<W> . )_1 <<OIBPS(4) (ml)O];PS(z) (xQ)O?])SPS(Q) (xg)OEPS(Q) (l’4)>> |
circle ,—n1n2n3n4 1—loop
A A
— @(—zc@))dfgd%dﬂdlg + @(—25(2))d12d23d§1d13. (10.18)

We now call each hexagonalization data which have mirror-magnon on the bottom, right,
up, left edge between the hexagon and the boundary states to HBbottom, HBright,
HBup and HBleft respectively, see figure 10.5. Using these notations, in our conjecture,
the each equation (10.17) and (10.18) would be respectively equal to

(10.17) = (HBbottom)d:,d3,ds d13 + (HBright)dodssds, dis,

(1018) = (HBbottom)d%2d34d41d13 + (HBI‘ight)dlgdgg,dildlg.

By solving two simultaneous equations, we have the hexagonalization data:
A
(HBbottom) = (HBright) = —2—((2).

82
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HHBbottom HHBright HHBup HHBIeft

Figure 10.6: The two-mirror particle on two hexagon form factors and boundary state.

In the same way, we can get other hexagonalization data which have mirror-magnon on
the up and left edge between the hexagon and the boundary states?, HBup and HBleft.
They also have same value HBup=HBleft= —QB%Q (2). We can see that these values
are the same with the three-point function (10.14). From these facts, we find that the
hexagonalization data with one-magnon on the edge gluing between the hexagon and the
boundary state will be —2225¢(2).

More hexagonalization data with two-mirror magnon defined in 10.6 can be predicted
from other 1-loop four-point functions. For example, we consider the four-point functions
with L1 = 2,L2 == ].,Lg == 2,L4 =3 and L1 == 37L2 == 2,L3 == 3,L4 =4 1in 10.7:

2In this case, for example, we consider the four-point functions with the operator length L, = Lo =
L3:3,L4:5andL1:L2:L3:27L4:4.
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length : (2,1,2,3)

0, N 0, O,

0, 0, 0, ' 0,
length : (3,2,3,4)

6, 04 0, 04 0, on

0, [N 0, 05 0, 05

Figure 10.7: Tree-level diagrams of correlator (0PFS® (z,)0BP5M (2,)0EFS®) (24)0PP5G) (1)) and
(O (@) 0y (22) 057 (23) 07 (24))

O (@) OV () O3 (1) OFP P (24) )

(<W>circle>_ \/W ‘l—loop

1
= §D1234d34d41

A : A . 2
—+ @(—4C<2) + 2C(2)L1R[ ])d12d34d41 + ( 4C< ) + 2<(2)L1R[1 — Z])d23d34d41.

(10.19)
(<W> | )71 «O?PS(S)<$1)05P8(2)(x2)o?])3PS(3)(x3>OfPS(4)($4)>>‘
circle ,—n1n2n3n4 1—loop
1

= §D1234(d12d;2:,4d41 + d23d34d4211)

4 25 AC) + 2 Dinle s + 5 (~40(2) + 2@ LinlL — 2] ydiad
(10.20)
In the hexagonalization picture, the equations (10.19) and (10.20) should be equal to
(10.19) = M(dy2d34ds1 + dasdsadsy)
+ (HHBbottom + HBbottom)d,,d3,dy; + (HHBleft + HBleft)dysdssd3,,
(10.20) = M(diyds,day + diadosdiydyy + dogdaadsy)
+ (HHBbottom + HBbottom)d3,ds,dy; + (HHBleft + HBleft)d5,d34d5,,

where M = m (zfl) +m (Z; ), m = 16’;2 (Z+Z);(°‘+°‘)<I>(z,2) is the one-mirror particle

contribution between hexagon form factors calculated in section 5.2, see figure 10.8. Then,
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Figure 10.8: The one-mirror particle on the hexagons.

the Dj934 function can be also written in terms of the m(z) as

z z—1
Digzs = m ( ) dasdy +m < ) dyodsy.
z—1 z

Since we have already known the M, HBbottom and HBleft, by solving the equations
for the unknown hexagonalization data HHBbottom and HHBIleft, we get

1 A
(HHBbottom) = m (1 — z) - @QC(Q)LiR[l —z],

(HHBIeft) — m C) 520(2)Lin[z].

From the other four-point functions, we find

HHBbottom = HHBup and HHBleft = HHBright.

Finally, we consider the four-point functions with Ly = Ly = 2, L3 = Ly = 1 and
Ll = 2,[/2 = 1, L3 = 1, L4 =2in (109)

(O (1) 055 ®) (a9) 057 (23) OFT W () |
,—nl TaNala 1—loop

= 11712:),40512 + i( 6¢(2) +2¢(2)Lir[2 ])d12d34 + 4 ( 4¢(2) 4 2¢(2)Lir[1 — z])d12d2sdas,

(W)eircte) ™

2
(10.21)
(<W> | )71 <<O]13PS(2) (xl)OQBPS(l) (xZ)O:];PS(I) (x?))OEPS(Z) (m))} |
circle ,—n1n2n3n4 1—loop
1 A

= §D1234d41 + —( 4¢(2) + 2¢(2)Lig|[z])d12d3sdsr + i( 6¢(2) + 2¢(2)Lig[1 — z])dasd3; .
(10.22)

In the hexagonalization picture, they include the hexagon data with three-mirror particle
in figure 10.10. The each correlators (10.21) and (10.22) should be equal to
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length : (2,2,1,1)

0, 0, 0, 0,

@2 @3 @2 @3
length : (2,1,1,2)

@1 @4 @1 @4

0, 0, 0, 0,

Figure 10.9: Tree-level diagrams of correlator <<(9]13PS(2) (xl)OQBPS@) (@)O?PS(U (xg)OfPS(l) (x4)))
and (07" (210" (22) 05" (25) 01" (24))

(10.21) = M(d2ydsys + dyadasdyy)
+ (BHHBvertical + HHBdown + HHBup + HBdown + HBup)d;,d34
+ (HHBright + HBright)d;sds3dy,

(10.22) = M(dy2dsadyy + dozdy,)
+ (BHHBhorizon + HHBleft + HHBright + HBleft + HBright)dy3d3,
+ (HHBdown + HBdown)d;d34dy; -

By solving the equations, we get

(BHHBvertical) = —m b + i2§(2)L1R[1 —z],
11—z 82
(BHHBhorizon) — —m [+ ) + —*-2¢(2)Lin[2]
orizon) = —m | 52 ir[z].

The result is just the opposite signs of HHBbottom and HHBIleft respectively.
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Figure 10.10: The three-mirror particle on two hexagon form factors and two boundary
states.
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Part 1V

Conclusions and future directions
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Chapter 11

Conclusions

The main topic of this thesis was to study the correlation functions of the N’ = 4 SYM
in the AdS;/CFT, correspondence. Among them, we mentioned three directions of the
notable topics in the introduction of chapter 1. In what follows, we indicate conclusions
and discussions of the each paragraphs.

Closed string and open string

In the section 10.1, we proposed the asymptotic structure constants on the Wilson loop
at finite coupling by using the hexagon method, and the result was (10.3). As a result,
the structure constants were given by the hexagon form factor and three boundary states.
Furthermore, the hexagon form factor in our studies was the same as the one introducing
in original closed string correlators. Our proposal was reminiscent of the KLT relation
between open and closed string tree-level amplitudes in flat space [102]. Actually, the
number of hexagons for the correlators on the Wilson loop was precisely half the number
for the correlators of single trace operators:

- L T . s
\ T

n—pt

Ty \ ) U of closed =\ /
D It

. - J 7L ., -2
/ \ ~ Y ﬁiﬁ ~ N/ of open " N/

N

Of course, the analogy is more complicated, rather than KLT relation. Although, it
will be interesting what we try to do more clearly the analogy and study the folklore
(closed string) = (open string)? in the future work.

Open string correlator and finite-size corrections
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In section 8.2, we calculated the three-point functions of DCOs on the Wilson loop
at two-loop. All calculations were performed by perturbation method. In terms of the
hexagon method, the two-loop results should correspond a lot of mirror particles on the
hexagon form factor and boundary state. It was a great advantage of studying DCOs that
we could get such contributions from the perturbation. In addition, it may be further value
that one could perform perturbative computation for the contribution corresponding to
mirror particle. It is because the information of the mirror particles seems rather less than
“physical” magnons which is in ordinary integrable spin chain system such as coordinate
(and algebraic) Bethe ansatz, Bethe ansatz equation and so on. In other words, I want
to know what is a Hamiltonian of the mirror particle if it exists. I hope to discover the
similar argument with the paper by Minahan and Zarembo for mirror particles.

In the section 8.3, by solving the SD-equations, we calculated the ladder resumed
diagrams for the three-point functions of the DCOs at finite coupling. Recently, some
calculable resummed diagrams models with dual bulk theory have been studied, for in-
stance SYK model [103-108] and fishnet model [109-111]. As a next step for studying
our model, it is interesting to understand the AdS dual of the ladders limit, that is,
“tensionless string”.

In the section 10.2, we predicted the hexagonalization data from the perturbative
computation. Thereby, we found the correct relation between the hexagonalization and
perturbation (10.8). Moreover, if we try to calculate hexagonalization data corresponding
to the predictions, it is highly technical and difficult problem. Although, the future work
is surely to reproduce the data from integrability-based computation.

Perturbation and hexagonalization

In the subsection 4.2.2, we shortly commented how to reproduce the hexagon form
factor from the tailoring method. The result was sum over ordering with S-matrix for
normalized multi-magnon weight factors occurred when the magnons move together. As
a natural question, it is interesting to extend the higher-loop. Then, we will need the
two-loop wave function of the spin chain, and the geometric sum will be generalized

D et 7, (11.1)

On the other hand, the hexagon form factor was identified with hexagon vertex con-
tracted spin chain states (5.9) as

H(a) = (H|(le) ©0) @ |0)). (11.2)

However, we do not sure how to understand the relation between the weight factors and
hexagon vertex formalism.
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Chapter 12

Future directions

12.1 Higher rank sector

In the section 9.2, we calculate the non-BPS structure constants of SU(2) sector by using
the tailoring method. As a natural extension, to calculate the higher rank sector is open
problem.! For example, if we consider an excitation including ¢g, which is the same
scalar with the one coupled to Wilson loop, we must consider the contraction between
the operators and Wilson loop even the tree-level diagram. Then, due to the boundary
reflection matrix, the excitation will be mixing at the boundary. Therefore, the extension
for the general excitation is not so easy problem.

12.2 1/N correction

In this thesis, we discuss the correlation functions of the BPS operators by using the
perturbative method. Then, to study the 1/N correction is not so hopeless problem.
Because, since the 1/N correction is comes from only the traces of the gauge group,
the fundamental one-loop insertion formulas can be used continuously. Furthermore, the
tree-level diagrams including 1/N can be easily written down by dressed three parts:

C-C 0K

Two-body diagram Three-body diagram Four-body diagram

By calculating them, we will predict the hexagonalization data for 1/N.

!The SL(2) and the diagonal SO(6) sector were already calculated in unpublished note.
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12.3 Hexagonalization of multi-magnon

In the section 10.2, we predicted the hexagonalization data from the perturbation. How-
ever, the direct calculation from the hexagonalization is so complicated but not a hopeless
problem.

As an interesting comment, we would like to see the “relations” between the mirror-
particles. the one-mirror magnon on the both two hexagons are given by the one-loop
conformal integral:

B(z) = —(1—2) 1zg((11_—z§) —logz

(12.1)

On the other hand, the one-mirror magnon on the between hexagon from factor and
boundary state had roughly ((2) contribution, which is given by the integration ®(z)
with respect to z:

/UOO O(2)dz = 8C(2). (12.2)

Furthermore, the two-magnons on the two hexagons and one boundary state was given
by the Roger’s Dilogarithm. Thus, the derivative of the Roger’s Dilogarithm times ((2)
is equal to the one-loop conformal integral:

d

7 (C(2)Lir[2]) = ©(2) (12.3)

Namely, these mirror particle contributions may relate as follows:

e N 0 ey J e N
K . ] N | i i [ ]
. e ( A _ 0 \ . e 4

It is interesting to clarify these mirror particle contributions.

12.4 Application to higher spin holography

It may be useful to apply the hexagon decomposition method to other theories. For exam-
ple, as a simple integrable CFT model, there is the three-dimensional O(N) vector model
as free boson (fermion) theory. The theory is trivially integrable since it is a free theory.
The simplest dual gauge invariant operator is given by the bi-fundamental operator. The
operator would map to a sort of open spin-chain with only two sites. Furthermore, this

2As a simple discussion, we noted the one-dimensional one-loop conformal integral, which is defined
as ®(z)limz_,, ®(z, 2)
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theory has an attractive property, so-called 3d-bosonization [91,92]. The boson theory
and a fermion theory can be interchanged by the Chern-Simons coupling constants. How
this information is realized in the hexagon framework would be an interesting question.
The AdS dual description of this model is the Vasiliev’s higher spin theory which is de-
fined as a bulk theory [93-96]. The coupling to Chern-Simons amounts to changing the
boundary condition on the Vasiliev side. On the other hand, the hexagon method is based
on the world-sheet formalism, since the hexagon is basically obtained by the cutting the
world-sheet. Therefore, if we can express the three-point function of the three dimen-
sional O(N) vector model in terms of the hexagon method, it may give a useful hint for
the world-sheet formulation of the higher spin theory.
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Part V

Appendix
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Appendix A

Basic integrals

Here we introduce basic integrals following [97], which appear in the perturbative com-
putation. The fundamental integrals are defined by

1
Ly = ——5— Al
e A
Yio3 = /d4W[1w12w[3w7 (A.2)
Xig34 = /d4W[1wfzw[3wI4w, (A.3)
H12,34 - /d4Ud4UI1u[2uLw[3,UI4. (A4>

The third integral is the so-called 1-loop conformal integral and can be evaluated explicitly
98] as

w2d(z, z . 2Liy(2) — 2Liy(2) + log 2z log ==
X1234 — —8( 3 )2 , cb(Z,Z) = — ! ) (A5)
(2m)Bz 1525 Z—z
where z and z are the usual conformal cross ratios:
2 .2 2,2
oz = 2128 (1—2)(1—z) = 14238 (A.6)
L13L24 L13L24
The second integral can be evaluated using X234 as
2 ! =
L 5 o _ me(, 7))
Yios = x}lgﬂm@ﬁ) Ty X934 = —(2@%%3 ) (A7)
with
I%Q / / x%i’y
T3 13
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When all external points are on a single line, these integrals further simplify to

~27% (log(|momas|) | log(|mismed|) | log(|TiaTas])
X1234’li = - 3 + +
ne (27T) T13T24T14723 T12T34T14732 T12T43T13T42 (A 9)
212 [log |t log |7 log |7 ‘
Y123\1- _ g |72 1 g |73 . g |73 7
e (277)6 T13723 T12732 T21T31

where 7;’s are the positions of the external points on the line and 7,; = 7; — 7;. The fourth
integral is accompanied by derivative in the calculation of the Feynman one-loop diagram
as

(al - 82) : (83 - 84)H12,34 o X1234 X1234

Ja — = — Gias — G G312 — G
12,34 Tialon Tialos  Tialos + G134 2,34 T G312 1(1,12, |
A.10
Y, Y]
Gia1 = == (A.11)
Iy I3

When any two points are collided, the integrals become divergent. Such a value is
useful to calculate the two- and three-point functions at one-loop. Therefore, we further
note the results in the point-splitting regularization

Yiip = Y L (€ 9)s
pu— e n —_—
112 122 167T2 l‘%g 12,
12 e2x?
Xiios = ——— Iiolis (1 5 — 2) :
167 23,13,
1 2 1 1 2
= — | -2 Y, _—t — - —
1213 1672 (nx§3 > T (112 * I3 ]23) ’
2 €
X1122 = 2]12 (ln 5 1) s
12
1 €2
F12712 = ——I2 (ln— - 3) .
82 12 3,

Finally, the fundamental one-loop diagrams are written as

L21
selfyy = ( 2log 2 - 2) (A.12)
G1234 |: 1 - Z)(l — 2) — 1) + 012743:| , (Al?))
51234 = 167‘(‘2(1)( ) <2d13d24 — (1 — Z)(l — Z)d23d41 — ZZd12d34) (A14>
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Appendix B

Three-point functions with

double-magnon states at tree-level

XXo
0123

We first consider the three-point functions of the two non-BPS operators with each exci-
tation X or X and one BPS operator as following:

O, = Tr[Z971X], Oy = Te[Z"271X], O3 = Te[Z%4], (B.1)
where we recall definition of the scalars

Z = ¢1+ig2, Y =¢3+igs, X = @5+ ids, (B.2)
Z7=7Z+Z+Y Y. (B.3)

Also, the notation Z,Y and X are complex conjugate of Z, Y and X respectively. In this
set up, while the excitation X of operator O; is only contracting with the excitation X
of operator Oy, see figure B.1.

In order to systematically calculate the structure constants, we go on spin chain sys-
tem. First of all, the operators are mapped to the each “spin chains” with magnon as
follows:

0 — ‘p>1:Z€ipx|“'ZXZ"'>1,
s> lg)a =" |- ZXZ -+,

(93_”0)3:‘...2...)3.

Next, these “spin chains” states are decomposed into two states. Then we must be careful
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Figure B.1: CXXe

of range of the excitations X and X

L12

(91—>Zeipx|---ZXZ--->1®|---Z--->1,
=1

Lo
Oy =] Z )y ® Z €| ZX T )y,
r={12+1
@3_>|...Z...>3®|...Z...>3‘

Also, we define a flipping operation which is merely change from the bra state to ket state
and act the flipping operator to the right side states

£12

01—>Z€ipx\"‘ZXZ"‘>1® oo Ze,
=1

Lo
@2_>|...Z...>2® Z eiqa}2<...ZX'Z...|’

r={12+1
(93_>,...Z...>3® 3<...Z...|_

Finally, by contracting the states like in fig, the structure constants are given by

£12

Cl)gg(o x Z eiprtig(Li—z+1) (B4)
=1

Calculating the geometric sum, we finally have
O o N (PN (g) o (1 + ePorce2), (B.5)

Then, we got the nontrivial factor —i/(u—wv). The factor is interpreted as a weight factor,
when two magnons are propagated as a mass:

1 ‘1
—— — —

AN

= N(p)N(g—

L T )
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Thus, the factor is just the tree-level hexagon form factor

l

hxx(u,v) = hxx(V®,u) = — + O(g). (B.6)

uU—v
Finally, the asymptotic structure constants at finite coupling in this set-up is given by
Aﬁnite — hﬁ(ril)t_(e(u’ U)(l . eipfsleiqhz)_ (B.7)

Notice that, the one-particle hexagon form factor for X excitation is zero: hx(u) = 0 by
(5.21).
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Appendix C

Vertex and self-energy diagrams for
the three-point functions

In this appendix, we explain the contributions from the vertex diagrams and self-energy
diagrams for three-point functions at two-loop. Then, the diagrams are divided into three-
parts:the coefficients have (nis - no3 — 1), (123 - n3; — 1). and (n3; - n12 — 1). However, we
explicitly write down the (njs - no3 — 1) diagrams. Because, the others are obtained by
the replacement of the operator.

The vertex diagrams are listed in figure 8.9 and we have

/\2 n12 Nog — 1

Tl =— / dTl/ dTg/ dTg €7 — 7'2)87-1}/123 -+ (perm )

4(472)3

)\ n12 No3z — 1

T2 — — / d7-1/ dTQ/ drs €(To — 73)0y, Y123 + (perm.),

4(4m2)3
(1)
A2( - 1)
13— _ Al e / ar, / i, / 073 (Or Yizs — Oy Yizg) + (perm.)
A( - 1)
T4 — — n12477:223 / dﬁ/ dTQ/ dr3 (0r, Y123 — Or,Yi123) + (perm.) .

Calculating them, some integrals produce the divergent terms. However, fortunately,
these terms are completely canceled by the self-energy diagrams in the same way as the
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two-point functions. Therefore, the remained finite terms are given by

- )\ (nlg No3 — 1
T|ﬁnite - 47T2

tr ty tr ty

+/ dry /+ d7'3(Yt;23 - )/;51*23) +/ dr /+ dT3(Y;52+23 N )/;5:?23) (C.2)
—00 t3 —00 ty
ta 00 ty o]

+/t; dry /t; dTg(Ytzgg—Ytjgzz,)‘i‘/tir dr /t; d73<Yt;r23_Yt;23)

Thus, performing the integration, we get

l12ta3
t31€

Tlﬁnite = —(ng - no3 — 1) <#> <3C(3) + % log ) ) (C.3)
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Appendix D

Excited states and conformal
descendants

In this appendix, we explain the relation between the vertex function I'. and the Schrodinger
equation in [81,99]. In particular, we clarify the physical meaning of the wave functions of
the Schrodinger equation by showing that they correspond to the three-point functions of
DCOs, and that the excited states of the Schrodinger equation correspond to conformal
descendants.

For this purpose, let us quickly review how the Schrodinger equation comes about
from the differential equation for I'. (8.47). To begin with, we rewrite the equation in
terms of the “radial coordinate”!

S =exp(—z+y), T =exp(x +y), (D.1)

to get

A 1

—-——— 5| c=0. D.2
472 (2coshz)? |~ ° 0 (D:2)

1
-y
Physically this rewriting corresponds to considering the theory on R x S3: x describes
the (Euclidean) time difference of the two endpoints while y corresponds to the time of
the “center of mass”. Then, assuming the form of the solution to be

I, = Z eneNY N () (D.3)
N

one can reduce the differential equation (D.2) to the following one-dimensional Schrodinger
equation:

Un(z) = —0% Ty (z). (D.4)

dx? 472 cosh® z

[d25\1

'If we instead rewrite the equation in terms of the coordinates s = S+ T and t = S — T, one arrives
at the “conformal quantum mechanics” [100]; the Schrodinger equation with the inverse square potential.
This description, however, is not very useful for our purpose and we will not discuss it here.
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The Schrodinger equation with this potential (called the Pdschl-Teller potential) has the
SL(2,R) symmetry” and is known to be exactly solvable. This can be seen explicitly by

the change of the variable
1

"1 + e®
which maps the problem to the hypergeometric differential equation.

, (D.5)

By using the explicit form of I'. shown in (8.46), one can determine which wave

functions appear in the expansion (D.3). The result turns out to be given by a sum of

two families of solutions?®

Te=Y ce® 0, ( 4—2{3 Y (2 (D.7)
n=0
with 3
QW =Q—n, QM =_Q—-n-1,

W (2) = ((1— )

JF(QM -0 0 Q41,14+ 00 ), (D.8)

~ a(n) ~ ~ ~
U,(z) = (2(1—2)) 2 2R Q™ —Q, QMW 4+ Q41,14 QM: 2).

These solutions have several interesting properties. First, they are the only solutions to
(D.4) for which the hypergeometric function reduces to a polynomial. Second, the first
family of solutions with n < ) decay at z = Foo and correspond to the bound states
of the Schrodinger equation (D.4), as discussed in [81]. Note also that, to reconstruct
I'c, one needs to include “unphysical solutions” which blow up at x = 400, in addition
to such bound state solutions. Although it might seem counter-intuitive, it has natural
interpretation in terms of the OPE in the defect CFT as we see below.

To see this, recall that the vertex function is obtained as a limit of the four-point
ladder kernel I'.(S,T) = K(—S,—€/2 | €¢/2,T). A crucial observation is that the ladder
kernel itself can be interpreted as a certain four-point function of (trivial) DCOs,

L(S,T) = K(=5,—¢/2 | ¢/2,T) = (07(=5)03(—¢/2)O3(¢/2) O4(T)) , (D.9)

and the limit € — 0 corresponds to the OPE limit where O, and O3 approach. Using the
OPE, one can replace the product of Oy and O3 with an infinite sum?,

O5(~¢/2)03(¢/2) = 3 00,50(0). (D.10)

(@)
2The difference from the usual conformal quantum mechanics [100] lies in that the “dilatation gen-
erator” of the SL(2,R) is identified not with the Hamiltonian itself but with its square root. See for
instance [101].
3As in the main text € is defined by

Q()\)—{—l—k 1+7T—A2 . (D.6)

4Here we used the fact that the trivial DCOs have zero conformal dimensions.
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Here the sum on the right hand side is over both primaries and descendants, and cy,p
denotes the structure constant. Using this OPE inside the four-point function (D.9), we
get the following infinite-sum representation for the vertex function

Le(S,T) = ) e20ey36(07(=S)O(0)O5(T)). (D.11)

(@]

Let us now compare this sum with the sum over wave functions (D.7). To do so, one has

to know the behavior of (O7(—S5)O(0)O3(T')) (both for primaries and descendants) and
express it in terms of the x and y coordinates. When O is primary, the behavior of the
three-point function is well-known”,

S+T>A | (D.12)

<O(1)<_S)@primary(0)OZ<T>> 0.8 <S—T
On the other hand, the behavior for the descendants can be computed by differentiation

as

(O3(=8)0 Oy 0)05(T)) o (S;—TT)AZ () D g

(D.13)
with (z); being the Pochhammer symbol. Re-expressing this in terms of x and y, we
obtain

(D13) =G S () DO 1)

k=0

(D.14)

= T(a(1 - 2)) [Z () DM@t z)’f] -

k=0

In the second line, we further rewrote it in terms of z = 1/(1 + ¢*). The polynomial in
the bracket turns out to be summed into a hypergeometric function oF;(—n,1 — 2A —
n,1 — A —n,z). We thus get the expression

(O1(=5)9" Oprimary (0)O4(T))
(D.15)

_A+n

o e BTY(L(1—2) 2 GF (—n,1—2A —n, 1 — A —n,z2).

_ With the identifications A = —Q and A = 1 + ), this coincides with S, and
e ¥, in (D.8) respectively. We can therefore interpret the sum (D.7) really as the OPE
expansion and the wave functions are identified with the three-point functions:

Le= Y Y ey, (05(=9)0" 0% (0)05(T))
X=DCO,shadow n=0

(OF(=8)"Oho (OLT)) 4+ ™00, (D.16)

(03(=9)0" Ol 0)O5(T)) < MV,

shadow

5For the sake of brevity, below we omit writing the subscript O in Ag.
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Here Opp is a nontrivial DCO, which we studied in the main text, and O 4., 1S its
shadow operator®, which has dimension Aghadow = 1 — Apco = 1 + Q. This provides a
clear physical interpretation of the wave functions for the Schrédinger equation (D.4).

In unitary CFTs, the shadow operators do not usually show up in the spectrum since they are often
below the unitarity bound. However, the possibility of having both an operator and its shadow in the
spectrum is not totally ruled out. In fact, it is known that some long-range CFTs have such a spectrum.
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Appendix E

Contribution from the integral of
[yv

In this appendix, we show that, in the ¢ — 0 limit, the integrals involving the vertex
function I', can be approximated by replacing I'. with its IR counterpart, I''r. More
precisely the goal is to show that the ratio between the contributions from ['yy and 'y
is given as follows:

[ds [dtTuy(s,t)f(s,t)
[ds [dtTir(s,t)f(s,1)

Here f(s,t) denotes the rest of the integrand, which may contain other vertex functions,
propagators and the ladder kernels K.

< O (eloge) 0. (E.1)

For this purpose, it is convenient to split the vertex function in a slightly different way

as follows: ~ ~
Fe(u) = FIR(U) + FU\/(U) s

A(Q) (E.2)
(1—w)®

Since the ratio (I'g — I'r)/ ['g is always of order O(e) (regardless of their arguments), it
is enough to show (E.1) for I'\g and Iyy.

fIR(U) =

Now, let us estimate the maximal value of I'yy. In all the examples studied in the

main text, the cross ratio u = % takes values in [0,1 — ¢/C]' with a O(1)

positive constant C. In this region, the UV vertex I'yy monotonically decreases in u for
Q2 < 1 while it monotonically increases in u for € > 1%. Therefore, the maximal absolute
value of the UV vertex is given by

: _ [ N=AQ)] (= Tuv(0))) for Q <1
max [Cuy (u) _{ O(-%) (= |Fov(1—€/C))) forQ>1"

u can reach 1 only when S = T = co. However, we never encounter an integral whose integration
regions both extend to infinity.

20One can easily verify this by using the definitions of the vertex functions (8.46) and (E.2), and the
series expansion of the hypergeometric function.

(E.3)

1
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Hence, the integral of fUV can be bounded from above as follows:

/ds/dtfuv(s,t)f(s,t) < Egﬁ_l/ds/dtf(s,t). (B.A)

In all the cases encountered in the main text, the integral of f(s,t) can produce at most
logarithmic divergences® [ ds [ dt(s —t)~2 ~ loge. We thus have

log €
/ds/thUv s, 1) f(s,t) <O(EQ 1+|f|> (E.5)

where ¢/l is the singularity contained already in the integrand, f ~ O(e~1f1).

On the other hand, since 'z ~ e @ x k(s,t) with k(s,t) being the O(1) function, we
can easily estimate its integral as

/ ds / AT (s,t)f(s, 1) > o( QL fl) (E.6)

Combining (E.5) and (E.6), we get the estimation (E.1) for I'yy and Tig.

3This inverse square behavior comes from a propagator contained in f(s,t).
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Appendix F

Explicit calculation of the C755 in

(8.63)

In this chapter, we explicitly calculate the following integral

@00 R
0123 -Q =T (OO T21 +—/ ds/ dtr 0,5 — (t )K(S 7—2|7—37t)'

0. -« _
To1 T32T31 s)?

Using the SD-equation and performing the t integral, we get

(Crec° T2
— B == / ds 9,1 (00,5 — 71) K (s, 72|73, 00).

T21 7'3%7'31 1
Thus, by substituting the explicit form of the bridge kernel K, we have

O dS s [(s = )" (13— 5)" 21 (—Q, —0,1; 2 S) :

—Q_0_—Q _
To1 T32731 T3 1 73— S
Furthermore, we perform the following change of variables:

S —ToT1 — T3

xr = ,
S —T37T1 — T2

and use the identity o F(a, b, c;2) = (1 — 2)"* "% Fi(c — a,c — b, c; 2) to get
Cooo 1
9153 = QAT (1 — ) / de(1—2)* ' R (Q4+1,Q+1,1;02) ,
T 7327'31 0

with o = 751 /730. To proceed, we rewrite o[ using the integral representation as
1
[Q+1)
One can then perform the x integral to get!
Cii /A1 -a

7o T e HQ+1Hr(-Q)

2F1(Q—|—1,Q—|—1,1,0éﬂf) =

) / dy (1 —4) (1 — ay) ™

o | = ey,

(F.1)

(F.2)

(F.7)

'Here we used the integral expression for the hypergeometric function and the identity o F (a, 1, a; 2) =

(1—2)"1
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This is again a hypergeometric integral and we can compute it as follows:

000
C’123

Q2 0, —Q
To1 T32731

A3 (1 —a)F (1,2 +1,1;a) .

Finally, using the identity o/} (1,2 + 1, 1;a) = (1 — a) "1, we arrive at

000
CT23 i A(Q2)
-Q_ 0. -9 _-Q9Q . —-Q°
To1 T32731 To1 T32731
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Appendix G

An infinite sum representation for
C...
123

In this appendix, we perform the integral of the structure constants (8.81). As a result,
we can see the infinite-sum representation, rather than integral representation.

First we perform the change of variables as follows:

1—a 1—t
= -—— :1_ 1_77 - - . 1
—(1—9’ Yy 1-5u, z2=-——-— (G.1)

v 1-(1—-a)

Here the Jacobean is given by m Then we have

3 1 1 1
J = HQZ/ dw/ dy/ dzaLySh 1
il 0 0 0 (G.2)

(1= )M HH (1= )% (1 = 2)% (1 = ) Rt (] )@t

The integrals of x and z yield the hypergeometric functions,

3 1
L T(Q3)(Qs + 2)

J=11 | dyy™(1—y)Pt Fi(Q3,95 + 1,00 4+ Qg + 2;
H /0 vy ( ?/) F(Qg+93+2)2 1(€23, 2 3 y)
i=1 (G.3)

Q)T (2 +2)

(29 +2)

o F1 (4, 4+ Qo — Q3+ 1,20 + 2;y).

Using the series expansion of the hypergeometric function, the y integral is also calculated.
After doing so, using the Euler integral representation for the generalized hypergeometric
function

041,61/2,053.’2 _ F(ﬂl)F(BQ)
3k ( Br,B2 > P(Oél)r(ﬁl - Oél)r(a2)r(52 - 042) (G 4)

1 1
X / ds/ dts 711 — s)rmon—lgea=l(] _ pyfamee=l(] _ p5p) 708,
0 0
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we finally obtain the infinite-sum representation of the structure constants

3

T(Q + 1)2T( + 2)0(Q + DIT(Qs + 2)T(Q5 + 1)
C(... — A Q
12 ALY () T2 + 2)T(Qs + Qs + 2)T(Q + Qs + 1)
y (W) A1) (1), o (- L+ k41
(o Qo+ 2kl (U + D+ 1"\ 20420+ D t+k+1

(G.5)
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Appendix H

Open spin chain wave functions

In this appendix, we discuss the wave functions of the open spin chin in Coordinate Bethe
ansatz.

H.1 One-magnon

We first recall the eigenfunction equation and wave function ansatz

Hopen| Ulpen) = BV UL (H.1)

open> :

The Bethe state is written as

x

1
’\Ijg))en> = Z w(()i))en(xHZZY ZZ>7

w(()}))en(x> _ A/(p) (A(Qi,p) + 622'10LBL(p)_/4(3;7 —p)) with Bp(p) = _16__”’(1__(10;)253;,7
(H.2)

The wave function of x = 1, L and others satisfy following constraint:

EDopen(1) = (14 C1)open(1) = Lopen(2), (H.3)
EWtgpen() = 20(2) — topen(® — 1) — Popen(z + 1), (H.4)
EMopen(L) = (1 + CL)vopen(L) = topen(L — 1). (H.5)
Furthermore, we take the following general boundary conditions:
Yopen(0) = (1 = C1)open(1), Popen(L + 1) = (1 = CL)tbopen(L) (H.6)

Thus the Bethe equation become
1 = e*P2 By (—p)BL(p) (H.7)
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where B;(p) and By (p) are defined as
_—wAlP) _ e?—(1-C)

B = = — :
1<p) A(p) 1 — (1 N Cl>e_1p7
. A(—p) er — (1 —CL)
Br(p) = —e Pe 2Pl 2 — . H.8
L(p) = —e e ) T~ (1—Cp)er (H.8)
H.2 Two-magnon
Next for two-magnon wave functions, the eigenfunction equation become
E(2)¢open(17 $2) = (1 + Cl)wopen(la x2) + 2¢open(17 IZ) - wopen<2a x?)
- wopen(lwa - 1) - wopen(LxQ + 1)7 (H9>
E(2)wopen(zl>$2) = 4wopen(x1>$2) - wopen(xl - 171'2) - ¢open(x1 + 17 :UQ)
— wopen(x17$2 - 1) - wopen<xlax2 + 1)7 (Hl())
E(Q)wopen<xlu T + 1) = 2wopen(xl7x1 + 1) - wopen(xl - 17 T + 1) - zbopen(xb%? + 2)7
(H.11)

E(2)wopen(x17 L) = (1 + CL)wopen(xly L) + 2wopen($17 L) - wopen(xlu L — 1)
- wopen(xl + 17 Ll) - onpen(xl - ]-7 Ll) (H12>

We have the boundary conditions as follows:

wopen<0a x2) = (1 - Cl)wopen(17$2)7 wopen(mla L + 1) = (1 - CL)wopen(-%la L) (H13)
The constraints (H.10) and (H.11) for the bulk wave functions give the following equation

0= 2¢open(~r17 1+ 1) - wopen(xl + 171;1 + 1) - ¢open<x17 l’1>. (H14>
By solving the equation, we obtain the bulk S-matrix
U—v—1

S S H.15

(p27p1) U—U—i-l" ( )

The S-matrix is completely same with the closed spin chain system. Finally, the Bethe
equation for two-magnon is given as

1= e "2 By (py) BL(—p2) S (p2, p1) S (p2, —p1).- (H.16)

In the literature [86], the wave functions have another notation. we comment on these
relation. In [86], the wave function was written as

Yopen = A(pl’pQ)ei(pwﬁmzz) _ A(_p17p2)€—i(p1x1—pzx2) — A(py, _pQ)ei(mm—mm)
+ A(=pi, —pa)e PP A(py, py)e! PRI o A(py, —py e P2rmp2)

+ A(_p%pl)ei(mm*plmz) . A(—pg, _pl)efi(p2$1+p1:v2)'
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It is useful to introduce the half-step shift which means that the first and the last sites
are the © 1/2-th " and the * L 4+ 1/2-th ’ sites respectively.

1/)c(>§)en =A (pbp2)ei(p1(“*%)+p2(“*%)) — A/(—plapz)eii(pl(mi%)im(mi%))

1

— A (p1, —po) ! M@= 7222)) L A (e (P11 raaamy)

~A (p2apl)ei(m(x_%)ﬁpl(m_%)) + A'(p,, —p1)ei(m(“—%)—l’l(ﬂcz—%ﬁ

+ A (—py, pr)e 1m0 m@0)) _ g (L, p et (P@ma) e ey)
where

A (p1,p2) = 2P T2 A(py, po).

By using the Bethe equation, bulk and boundary S-matrices S(p;, p;) = ﬁg??;’ Br(p) =
2}
—2ipaLAWL=P2) 1 o oot our notation

A(p1,p2)

—2ip1 L A(p2,—p1)
A(p2,p1)

S (1, 22) /A (1, p2) =

g(xlupl; 552,]92) + S(p27pl)S(_p%p1>e2ip1LBL(p1)g($l7 —P1; 3327192)

—e"Ple and Br(p2) = —e P2

+ BQiPQLBL(pz)Q(JUl,pl; Z2, —p2) + S(p2apl)S(—pmp1)€2i(p1+p2)LBL(Pl)BL(pQ)g(iUl7 —P1; T2, —pz)

where the function g(xy, p1; 2, p2) is defined as

g(x1,p1; 02, p2) = A1, p1) A2, p2) + S (P2, P1)A(21, P2) A(22, 1)
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Appendix 1

Multi-magnon hexagon form factor

In section 9.2.3, we explained the multi-magnon structure constant buying the tailoring
method. As a result, we got the multi-magnon hexagon form factor. However, these
arguments are quite tedious. Therefore in this appendix, we express again for a few
magnon case.

For the most simple case, which have one-magnon, the sum over positions of the
propagation factor become

Ly
E A(gj p) — efép—l eip€12 4+ ...
7 e —1
x1=~012+1

= M(p)h(u)e?a2 4 ... (I.1)

Here h(u) is the one-magnon hexagon form factor.

Next for two-magnon case, we have

Ly Ly
Z Z (-/4(%,]?1)“4(1327172) + S(p27p1)A(I1,p2)A($2,p1))
r1=0l12+1 z2=21+1

= e 2R () )

1 1 1 1 1 1 (p1-4p2)¢
( - , + : : )62171 p2)12_|__._
h(pr,p2) e72 — Le~w2trt) — 1 = Ni(py, p1) et — Lemiletp) — 1
= M(p1) M(p2)h(u, uz)e' P2z 4o (1.2)
where in the second line we used the property S(v,u) = % and the terms in bracket

1
(e=P1—-1)(e~*P2—-1)"
factor from the geometric sum.

become

Also in this case, we could get the two-magnon hexagon form
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Next for three-magnon case, it is bit difficult and we start with

S Y (Awnp)A@s, p2) Alws, ps) + (o2, 1) Alwr, pa) Ala, 1) Al ps) )

z1=l12+1 z2=71+1 T3=22+1

+ S(p3, p2) A(z1, p1)A(72, p3) A(xs, p2) + S(ps, p1) A1, p3) A(x2, p2) A(zs, p1)
+ 5(1727171)5(1337171)-/4(371,pQ)A(xzap?))A(iUs,pl) + S(p37p2)5(p37p1)v4($17p3)A($2>p1)¢4($3ap2)7

(1.3)
where we used the following property of the summation
Ly Ly Ly
Z Z Z A(wy, p1) Az, p2) A(zs, p3)
z1=l12+1 za=x1+1 x3=w2+1
; 1 1 1 ,
_ —=(p1+p2+p3) i(p1+p2+ps3)l
— o3 (P1tp2tps — 1 ) 1 ) 1 1+p2ps)liz ) (1.4)
For the bridge length dependent terms, we have
efé(pﬁpﬁpg)h(pl,pz)h(plap:a)h(]?z,m)
{ M(p1, 2, p3) M(p2, p1, p3) M(p1,ps3, p2)
h(p1, p2) (D2, p3)h(p1,ps) — h(p2, p)h(pr, ps)h(pa, ps) — h(p1, p2)h(p1, ps)h(ps, pa)
M(ps, p2, p1) i M(p2, 3, p1) i M(p3, p1, p2) }
h(p1, p2)h(ps, p1)R(p2,p3) — h(p2; p)(ps, p1) (P2, p3) — P(p1, p2)h(ps, p2)h(ps, 1)
(I.5)
Using the identity
_ M(pa,p3)
M(pryp2,03) =~ T i) 1 (L6)
we get
_i , 1
€ 2(p1+p2+p3)h(plap2)h(plapS)h(anpf})m

M(pz,p?,) M(P?,,pz) 1 M(pljpz) M(pz,pl) 1
{(Mmmg*‘Mmmg)h@mmmmm@+<h@hm>*fm@m>)mmmanma

M(p1,p3) | M(ps,p1) 1
" ( h(p1,ps3) " h(ps,p1) > h(P2,p3)h(P27P1)}' (L.7)

By mathematical induction, we have

z- 1 1
— < (p1+p2+p3)
e 2T h(p17p2>h(]917p3)h(p2,p3)e_i(p1+p2+p3) (e=r1 — 1)(e=ip2 — 1) (e~ — 1)
e—ipl -1 e—ips -1 e—ipg -1
n n } 18
WA TSR TrarR T R Tr Ty (18)
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Finally, by using the following residue integral
dz 1 (Srup — 2 —i /2
—— _ =1, 1.9
mez(Euk—z—i-z/Z (19)
we find the relation
1 e~ — 1 e~rs — 1 e~ — 1

; = + + . 1.10
e—i(p1+p2-+p3) h(pl’pQ)h(pl,p:,)) h(p37p1)h(p3,p2) h<p2,p3)h(p2’pl) ( )

Therefore we get the following expression for three-particle hexagon form factor :
M(pr) M(p2) M(ps)h(us, uz, ug). (L11)

From these lessons, we would be able to expect the multi-magnon hexagon form factor as
follows:

h’YY(ulv T JuM)

1 M
- M(p1) - M(py) Z Z H S(pakapak)HA(%pal)- (I1.12)

1< <BN O1F e FOM Ok <Tj =1
j<k
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Appendix J

Bridge length independent terms

In section 9.2.3, we found that the bridge length independent terms (9.43) are irrelevant.
In this appendix, we write down the same arguments but for two- and three-magnon cases.

First let us consider the case of two-magnon. The bridge length independent terms in
the calculation of the sum over the positions of wave functions are given by

Z w(Z) <x17 x2)/M(p1)M<p2)€i(pl+p2)L
= h(u, ug) — S(ug, ur)S(—ug, ur)h(—ur, ug) — h(uy, —us) + S(ug, u1)S(—ug, uy)h(—uy, —us),

¢;; independent (J' 1)

which can be straightforwardly rewritten as

1 1 1 1
h(uy, ug)h(uy, —us) (h(ul,—UQ) T Cm =)  hGnm) + h(—u1,u2)> . (J2)

Although it seems that we have poles at u; = Fuy, their residues are all zero:

1 1
res + =1—1=0.
u—v (h(uh tuy) - h(—uy, $U2))
This shows that all the poles at u; = “+uy are spurious poles. After doing so, we only

focus on the no-pole part, rigorously u — oo behavior. By taking account into the inverse
of the hexagon form factor is written as

(J.3)

l
=1
h(u,v) t i

we can say that the u — oo behavior is also canceled with each other. Namely, the the
spin chain length dependent terms for two-magnon are exactly zero.
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For the three-magnon case, the terms are given by

Z ¢(3) (21, 29, x3) / M (u1) M(uz) M (u3)M(u3)ei(m+p2+p3)L

¢,; independent

= h(uy, ug,us) — h(uy, us, —us)

— S(ug,uq)S(—ug, ur)S(us, ur)S(—ug, ur ) {h(—uy, us, ug) — h(—uy, ug, —us)}

— S(us, ug)S(—us, ug){h(uy, —ug, ug) — h(uy, —ug, —ug)}

+ S(usz, u9)S(—us, us)S(ug, ur)S(—ug, ur)S(ug, ur)S(—us, ur){h(—uy, —us, uz) — h(—uy, —ug, —us)}.

By taking [T, _; h(ui, uj)h(u;, —u;) in front of whole expression, we could obtain

h(ug, uz)h(ug, —uz)h(uy, ug)h(uy, —ug)h(ur, uz)h(ur, —us)

1 1
(h(ul,ug)h(ul, —ug)h(ug, uz) B h(uy, ug)h(uy, uz)h(—ug, us)
1 1
" h(—ug, ug)h(—u1, —us)h(us, us) * h(—uy, ug)h(—uy, usz)h(—us, us)
1 1
B h(uy, —ug)h(uy, —us)h(us, —us) * h(uy, —ug)h(uy, us)h(—us, —us)
1 1

i h<_u1> —U2>h(—u1, —U3>h(U3, _U2> a h<—U1, —UQ)h(—ul, U3)h<—U3, —u2)>' (J4>

Similarly, this expression appears to have poles at u; = tug,u; = F+ug and uy = tus.
However, the residues are zero again:

1 1
w1 s (h(ul, +ug)h(uy, —us)h(ug, tus) B h(uy, £ug)h(uy, uz)h(—us, £us)
+ ! - ! ) —0
h(—uy, Fus)h(—uy, —uz)h(ug, Fus)  h(—uy, Fug)h(—uy, uz)h(—us, Fus) ’
res ( L - L
wi—Eus \h(uy, ug)h(uy, tug)h(Fus, us)  h(uy, —ug)h(ur, Tug)h(Fus, —us)
+ ! - ! ) =0
h(—uy, ug)h(—uy, Fus)h(Fuz,us)  h(—u1, —uz)h(—uy, Fuz)h(Fus, —us) ’
res ( L — !
us—Fuz \ h(uy, ug)h(uy, Fug)h(Fus, ug)  h(—uq, ug)h(—uy, Fug)h(Lus, us)
N 1 _ 1 ) —0.
h(uy, —us)h(uy, £ug)h(Fus, —us)  h(—uy, —ug)h(—uy, Tus)h(Fus, —us)

Through the same argument as the two-magnon case, we can say that the contributions
of the u — oo behavior are canceled with each other. Therefore the spin chain length
dependent terms for the three-magnon are exactly zero.
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Appendix K

Two nontrivial operators with

one-magnon : C’l}%/o

In this appendix, we calculate another configuration which has two-magnons on each
different spin chains. Specifically, we consider the following configuration:

Ol : Z ZIYZLI_($+1), 02 : ZZ$YZL2_($+1), 03 : ZL3

With this configuration, there exist two possible ways to contract local operators together
for obtaining the structure constant :

YYo direct indirect
C1123 C(123 + C1123 )

l12
Ofége(:t Z 77Z)(()i))cn(x pl)qu)opcn(LQ — T+ ]-7p2)7
=1
L3
OigglreCt & Z ¢open T p Zd}open y pQ (K1>
z=l12+1

Here we decomposed into two part:direct and indirect. These contributions are repre-
sented in figure K.1. The summation of the propagators in C{itet and in CIadrect are
respectively calculated as

120 .
3 Al p)A(Ls — 24 1,ps) = M(p)M(pa) —— (52 — cntiagimts) - (K)
Z A(z, pr ZA(y,pg) = —M(p)M(po) (P12 — P E)(1 — eP2f). (K.3)
r=~12+1
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3 . direct indirect
Figure K.1: C755" and C}55

By adding the two parts, we have

U—v—1 - —Uu—v—1
YYo 2ip14
0123 x Mfu (pl)Mbs <p2)[ U—1v — T —u— v
_ 62@”2512 utv—u1 + 621'171513621'172512 —utv—u1 (K 4)
uU—+v —u+v

Even here, there are nontrivial factors, which came from the geodesic summation i.e.
“%”;i. In the same way as the structure constant Clyzzoo, the nontrivial factors are just
the tree-level hexagon form factor. However, in this case, the nontrivial factors in the
CYYe are surely different. Because, the hexagon form factors that appear here should be
defined by the mirror transformation twice. Namely,

U—v—1

By (vlu) = hyy (w27, ) 1 O(g). (K.5)

u—"v

Thus the result (K.4) can also generalized to the finite coupling conjecture as (see figure
K.2)

O ¢ My (p1) My (p2) [ By () — €752y (v] = )

— eQip2612hy|y(—v|u) + eQip1£1362ip2el2hy|y(—v| —u) (K.6)
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o e2ip2l1z \ / + e2i(p1+p2)tas \ /

Figure K.2: By appropriate propagation factors e??113 and e*P2%12 the each terms can
be interpreted as the each magnon with (py, pa), (—p1, p2), (p1, —p2) and (—p1, —p2) lived
on the hexagon.
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Appendix L

On norms of structure constants for
open string

Here we would like to mention the norm of the structure constant for open strings. In
ordinary, the correct structure constants including normalizations at tree-level are given

by
2
CMoo 2 1
( 131) ~ NG ( Z %ﬂ@(fcb ’xM)> ’
123 lio+1<z1 < -<zp <Ly
where

NOD =% 0 @) 5

1<z1<--- <Ly

where subscript f is the flipping operation introduced in [45].

In this appendix, we specifically calculate for one- and two-magnon norm. After doing
so, we see that the result is given by the Gaudin norm for open spin chain system. By
using the lessons, we try to suggest the multi-magnon norm.

Let us start with recalling the one-magnon wave function:

WU (2) = Pe2) 4 2PLemin(r—3)
open °

By flipping operation it can be easily found that § : ¢tk — eipL(wc()Qen)*.l Notice that
we found a curious property of the open spin chain wave function that the conjugated
wave function is the exactly same with the original wave function for the one-magnon :
(w(()%,)en)* = C(,%))en. By computing the summation of the square of the wave function, we
can get the following identity for the norm N():

N = (M(p))* (8u9). (L.1)

'For the closed spin chain, the operation is slightly different such as (w(l) )= 6ip(L+1)’(/)(1)

closed closed”
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where the derivative is performed for the rapidity variable and ¢ is defined from the Bethe
Yang equation for open spin-chain :

"¢ = el (L.2)
Furthermore, remember that the factor M(p) came from the main part of the structure
constant.

For two-magnon case, the wave function is written by

2ip1 L

V&) (1, 29) =g(21, P15 T2, p2) + S(pa2, p1)S(—p2, 1) L g(x1, —p1; 22, po)

+ 2P g (1, pr; e, —pa) + S (P2, p1)S(=pa, p1) e PP g2y, —pi; 2, —po),

where

g(xlapl; $27p2) = A<xlap1)"4<x2ap2) + S(pg,pl)A(xl,pQ)A(x2,p1).

The flipping operation can be written again by the original wave function such as § :
Yopen = ¢ PIPIS (. 1) (pen)” and (Uipen)” = S(pr,p2)S (pr, —pa)e PP,
Thus, we can expect the general magnon case

i tipen = (W) [ ] (s, po)e ot
i<j

and

WSe) =TT S Wi pj)S(pi, —pj)e 2@t rly ().

i<j
From the summation for the wave function, we can obtain the norm for open spin-chain :
D (W) i = (MP)M(p2))’ det(Du,y). (L3)
1<z1<x9<Ly

Here, the determinant det(d,,¢;) is known as the Gaudin norm [46,47], where the ¢; is
defined from the Bethe-Yang equation for the open spin-chain such as?

et = ¥ S (py, pr1) S (—p2, p1),
6i¢2 — 62iP2L15(p1’p2)S<_p17p2)'
Therefore, the norm A'® can be given in terms of the Gaudin norm :

N = (M(p1)M(ps))* det (D, 6;)S (pa, pr ) 72" (L.4)

We finally expect that the norm for the multi-magnon is given as

2
A (HM(]%)) det(&ui@-) HS(pj,pi>ei(pl+m+pM)L~ (L.5)

i<j
We emphasize that we checked validity of (I..5) by numerically solving the Bethe ansatz
equations.

2We have B(p) = 1 in our basis.
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