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Abstract
In this thesis, we perform a comprehensive study of the dimensional reductions from the

four-dimensional charged black holes in the near-extremal and the near-horizon limit.

We mainly consider dimensionally reducing the magnetically charged black holes in the

canonical (fixed charge) ensemble and the electrically charged black holes in the grand

canonical (fixed chemical potential) ensemble. For the magnetically charged black holes,

the near-extremal and the near-horizon limit of the dimensionally reduced theory leads

to the dilaton gravity theory which is called the Jackiw-Teitelboim model. On the other

hand for the electrically charged black hole, we obtain a di↵erent dilaton gravity theory

which is coupled to the two-dimensional Maxwell field. We show that these two theories

obey the same equations of motion with respect to the metric and the dilaton after

putting the Maxwell field in the latter theory on-shell. We also argue about how the

four-dimensional electromagnetic duality is encoded in these two dimensional gravity

theories in the semi-classical limit. By investigating the solutions of these theories and

performing the thermodynamical arguments, we found that they describe the black

holes in the asymptotically two-dimensional AdS spacetime in which the properties of

the near-extremal black holes in four dimensions are encoded. We also discuss the

relation to the so-called Schwarzian theory which also describes the infrared dynamics

of the so-called Sachdev-Ye-Kitaev model, which is a quantum mechanical model of the

Majorana fermions and argue about implications for the AdS/CFT correspondence.

We also computed a gravitational quantity, so-called holographic complexity of

these two-dimensional models in the AdS/CFT context. This quantity is conjectured

to be dual to the computational complexity of the CFT state. We found that these

two models lead to completely distinct behavior of the complexity at late times. We

compared them with the four-dimensional result of the holographic complexity.
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1 Introduction

Gravity attracts everything in our world; it has also attracted the greatest interests of

many people for a long time. In spite of many e↵orts, its true identity is still hidden

in a veil of mystery.

Albert Einstein, one of the greatest physicists in the 20th century, took a giant step

forward understanding the nature of gravity[1–6]. He recaptured gravity as the fabric of

the spacetime more than just one of the other forces such as the electromagnetic force.

In Einstein’s gravity theory, properties of the gravitational force and the principle of

relativity are elegantly unified by the spacetime. His idea has changed not only our

understanding of gravity but also shed light on the nature of space and time; it is not

just a box in which the physical processes occur but it itself is a dynamical object which

obeys the laws of physics and causes the gravitational force. Since the radical change of

worldview which he made, understanding gravity is strongly tied with one of the most

fundamental questions about our universe which people have always wondered ‘What

are space and time?’

Black holes, whose existence is also predicted by Einstein’s gravity theory, are the

most mysterious objects in our world [7]. Though they are objects within a framework

of Einstein’s theory, the existence of their singularities and horizons highlights the need

for altering our current understanding of gravity and the spacetime. According to the

Einstein’s gravity theory, once an object enters the black hole horizon it inevitably hits

the spacetime singularity, but which is the place where Einstein’s description of gravity

breaks down and we are deprived of the ability to predict anything.

Stephen W. Hawking also showed the limitation of our current understanding of

gravity by considering a quantum mechanics near the black hole horizon. He raised a

question, so-called ‘Hawking’s information paradox’, by predicting that the quantum

fluctuations around the horizon cause the black hole to evaporate and as a result, the

gravitational system thermalizes [8, 9]. Such a process is inconsistent with quantum

mechanical principle because the quantum pure state should not be turned into the

thermal states by the unitary time evolutions. Thermal nature of the black hole is well

expressed within his famous formula for the black hole entropy [8, 10]

SBH =
A

4GN

. (1.1)

It is known that the black hole has no hair (Hawking and his colleagues had success in

growing its hair recently[11, 12], but it is still not so hairy as the formula predicts1),

1Very recently there was a further development in a special case of three-dimensional BTZ black
holes[13].
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thus his formula seems to be claiming that the description of gravity in terms of the

spacetime is just a kind of the hydrodynamical approximations and we need to refine

our current understanding of gravity.

Josef Polchinski and his colleagues refined and redefined Hawking’s information

paradox recently [14–16]. Through the analyses of quantum e↵ects near the horizon

of a black hole, they reached a surprising conclusion which is known as the firewall

paradox. They claimed that there is a possibility that the geometrical descriptions

of black hole interior break down as long as one persists the quantum mechanical

principles! These problems seem to suggest the lack of our knowledge on gravity when

it is placed in the quantum mechanical systems.

People have struggled to look for a consistent framework which enables us to un-

derstand gravity and quantum mechanics consistently under the spell of the ‘quantum

gravity’. Physicists who were studying elementary particle theory tried to put this

problem into the framework of the quantum field theory which they used to handle

(for early work in this direction, see [17–23]). They focused on considering small fluc-

tuations of the metric on a fixed geometry and tried to quantize it just same as other

elementary particles. Such a quantum is called graviton. String theory is the most

successful theory in this approach which doesn’t lead to any inconsistencies and gives

us finite results of quantum physics of gravity at least within perturbative calculations.

However in this approach, the notion of the spacetime geometry, which plays the most

important role in the Einstein’s theory, is broken up into small quanta of graviton and

we cannot tell what position spacetime geometry occupies in the framework of quantum

gravity and how it emerges from its Hilbert space. In order to gain a deeper under-

standing of the quantum nature of gravity and resolve black hole paradoxes described

above, it seems that we need to recapture the concept of “spacetime” itself (rather

than graviton) from the perspective of quantum mechanics instead of presupposing its

existence as we usually do in the classical theory.

AdS/CFT correspondence, which was discovered by Juan Maldacena about twenty

years ago [24], is considered to give us a suitable stage on which we can pursue this

problem. It is a correspondence between the quantum gravity in d+1-dimensional Anti

de-Sitter (AdS) spacetime and certain kinds of d-dimensional conformal field theories

[24–26]. This enables us to analyze quantum gravity in AdS by using the CFT which

has a well-defined Hilbert space. In the context of AdS/CFT, the CFT is defined on

the boundary of AdS spacetime, thus the bulk geometry is expected to emerge from

quantum degrees of freedom in the CFT. People have been trying to understand the

bulk geometric quantities from the CFT perspective. One of the most famous formula in

this direction is so-called Ryu-Takayanagi formula [27], which relates the entanglement
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entropy and the area of the bulk co-dimension two surface as follows

SE =
A

4GN

. (1.2)

Very recently Leonard Susskind proposed an interesting connection between the com-

putational complexity of the CFT [28, 29]and the volume of the bulk co-dimension one

region, which we will also explain in detail in the main body of the thesis.

The key to the understanding of the quantum nature of gravity and spacetime

must be hidden in understanding the basic mechanism of the AdS/CFT correspon-

dence. AdS/CFT correspondence is expected to hold in several dimensions. In the

AdS3/CFT2 correspondence, the conformal symmetry is enhanced to the infinite di-

mensional symmetry, so-called Virasoro symmetry which governs the behavior of the

excitations of the gravitons in the AdS side. Taking the full advantage of the enhanced

symmetry, many fruitful results on the gravitational physics have obtained via CFT

calculations [30–34].

One might expect that the simplest example of the AdS/CFT would be “AdS2/CFT1”

which is the lowest dimensional one. However contrary to our expectations, “AdS2/CFT1”

is in a sense the most mysterious and strangest correspondence. One strange thing is

that AdS boundary has two disconnected pieces in two dimension. Only through the

bulk spacetime, they are causality connected with each other. If two CFTs describing

the holography lives on these boundaries independently, how such CFTs communicate

with each other without knowing about the existence of the bulk spacetime? Another

weird thing is that AdS2 spacetime seems to be unable to describe finite energy ex-

citations. From the CFT side, the reason can be explained simply as follows. When

the theory has one dimensional conformal (reparametrization) symmetry which is infi-

nite dimensional, the traceless condition is imposed on the energy-momentum tensor.

However for CFT1, it implies the vanishing Hamiltonian. Therefore one-dimensional

CFT is just a theory of a constraint and has no dynamics. Next we will give a brief

explanation about this problem from the gravitational point of view.

Near-Horizon Limit of the Charged Black Hole and AdS2

Maldacena, Michelson and Strominger [35] found the ‘finite energy excitation’ problem

described above by performing a comprehensive study the near horizon limit of the

four-dimensional charged black hole from which AdS2 geometry appears. Now let us

review their arguments. Let us consider the magnetically charged black hole in four
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dimension2

ds2 = �
(r � r+)(r � r�)

r2
dt2 +

r2

(r � r+)(r � r�)
dr2 + r2d⌦2

F =
gQ̃

p
4⇡GN

sin ✓d� ^ d✓

r± = gQ̃`P + E`2
p
±

q
2gQ̃E`3

P
+ E2`4

P
, (1.3)

where `P =
p
GN is the Plank length. We can take the near horizon limit of the

geometry by taking `P ! 0 while fixing the combination z = g2Q̃2`2
p
/(r � r+). The

geometry ends up to be AdS2 ⇥ S2 as we will explain in section 2. Let us investigate

how the physical quantities behave in the `P ! 0 limit. The excitation energy of the

extremality and the charge are related as

E = M �
gQ̃

`P
. (1.4)

Taking the near extremal case, we can find the energy E and the Hawking temperature

TH are related to each other as

E ⇠ 2⇡2g3Q̃3T 2

H
`P (1.5)

One can see that we cannot take the `P ! 0 limit while keeping the values E, Q̃ and

TH to be finite. If we fix Q̃, the system only has the ground state, which corresponds to

the extremal black hole. Let us remind ourselves that the Hawking radiations typically

have energies of order ⇠ TH . The semi-classical description breaks down when E ⇠ TH

which occurs at

Egap ⇠
1

g3Q̃3`P
. (1.6)

This corresponds to the energy of the lowest-lying excitation above the ground state.

taking the limit `P ! 0 leads to the infinite energy gap and no excitations above the

ground state. On the other hand, a higher dimensional AdS spacetime can be obtained

by taking the near horizon limit of the black p-brane geometry. In this case, the brane

has the transverse spatial volume of the brane Vp, then we have a relation

E ⇠ VpT
p+1

H
. (1.7)

2Here we just give a brief explanation. In section 2, we will study the near horizon limit in detail
including the asymptotically AdS case.

7



1 Introduction Kanato Goto

Here we can take the limit `P ! 0 safely in contrast to the AdS2 case. Similarly to the

arguments above, we have the energy gap

Egap ⇠
1

V
1

p�1

, (1.8)

which is finite even after taking the limit `P ! 0. The di↵erence comes from the fact

that the zero-dimensional object has zero volume, then we have a gapped spectrum

while a finite volume of the higher dimensional object leads to the continuous spectrum.

These arguments imply that in order to include the excitations above the gap, we

must not take the strict decoupling limit. This corresponds to moving a little bit from

the CFT fixed point [36]. In the AdS language, since we have UV/IR relation between

the CFT and the AdS, this corresponds to moving the AdS boundary a little bit into

the bulk. As we will explain later in section 4, it seems that so-called Jackiw-Teitelboim

gravity model (JT model in short) [37–39] in two dimensions which can describe the

near-extremal black holes actually taking this procedure. In this model, we have a

dynamical dilaton whose on-shell value diverges near the AdS boundary. In the usual

AdS/CFT dictionary, such a “non-normalizable mode” takes us away from the CFT

fixed point. In the AdS side, this corresponds to the fact that we have to cut o↵ the

AdS spacetime at a finite radius to avoid the divergence [40]. It is known that the

dynamics of such a cut-o↵ surface is controlled by the so-called Schwarzian action as

we will explain in subsection 4.2. As a result, we instead have the correspondence

between the nearly AdS and the nearly CFT, or NAdS2/NCFT1 in short.

This ingenious mechanism to obtain NAdS2/NCFT1 was first found in the CFT

side by the analyses of the so-called Sachdev-Ye-Kitaev (SYK) model [42–45]. Sachdev-

Ye-Kitaev model is a quantum mechanical model of Majorana fermions. The SYK

model has been extensively studied in recent years since it can be solvable in the strong

coupling (IR) limit while it shows a chaotic behavior then it can be an interesting toy

model of the holography. The SYK model has a reparametrization (one dimensional

conformal) symmetry at the strict IR point, but where physical quantities diverge. In

order to get their finite results, we must move away a little it from the CFT fixed point,

then the reparametrization symmetry is slightly broken. This is nothing but the mech-

anism I explained above. It also turns out that the pattern of the breaking symmetry

is again controlled by the Schwarzian action the same as the JT model [36, 45]. This

mechanism also is expected to shed new light on the higher dimensional holography and

might lead to some generalizations of the AdS/CFT correspondence which we currently

know.
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Main Aim of This Thesis

As described above, the analyses of the Jackiw-Teitelboim model are quite important

for a deeper understanding of the mechanism of the holography and they also might

lead us beyond the framework of the AdS/CFT correspondence which we currently

know. Jackiw-Teitelboim model is derived from the Einstein-Maxwell theory describ-

ing the charged near-extremal black holes by the dimensional reduction. The main aim

of this thesis is to perform the comprehensive study of the dimensional reduction of the

four-dimensional charged black holes. In the literature, people have mainly discussed

the JT model in the NAdS2/NCFT1 context, but we found that another dimension-

ally reduced theory describing AdS2 geometry can be derived from the four-dimensional

charged black holes under a certain di↵erent situation. We will analyze both theories in

details and compare their actions, equations of motions and thermodynamic quantities.

In four dimension, we have the electromagnetic duality between the magnetic solutions

and the electric solutions of the black holes [46–48]. We will discuss how the duality is

encoded in the dimensionally reduced theories which we derived. We will also see that

both theories lead to the Schwarzian action.

As we also explained above, recently people found interesting connections between

the quantum-information-theoretic quantities and the gravitational properties in the

AdS/CFT correspondence (for a review on recent progress, see also [49]). The most

famous connection is represented in the so-called Ryu-Takayanagi formula [27] which

relates the entanglement in CFT and the connectedness of the bulk spacetime [50, 51].

Very recently Susskind found that the properties of the entanglement are not enough

to explain the properties of some bulk geometrical quantity [28, 29, 53]. He conjec-

tured that the notion of the “computational complexity” of the CFT plays a role of

explaining such a bulk quantity. In the literature, corresponding bulk quantity is called

“holographic complexity,” whose behavior has been extensively computed on various

geometries using various prescriptions a part of which we will explain later (for a non-

extensive list, see [28, 29, 53–73]). Despite many attempts [75–88], a satisfactory defini-

tion of the computational complexity for generic QFTs has not known yet. Motivated

by that, we holographically computed the complexity of the SYK model using the JT

model and another dimensionally reduced model which we derived. Our analysis gives

us information about the complexity of SYK model. It becomes a starting point to

look for a suitable definition of complexity in higher dimensional CFTs and will shed

light on the fundamental role of the complexity in AdS/CFT.
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Outline of This Thesis

This thesis is organized as follows.

In section 2, we will review the charged black hole also called the Reissner-Nordström

black hole described by the Einstein-Maxwell theory in four dimensions and analyze its

near-extremal near-horizon geometry. We compute the first corrections of the gravita-

tional quantities in the near-extremal limit. We will see that the AdS geometry appears

at the leading order in the near horizon limit, and we also compute the first order cor-

rection of it. We will also review how the electromagnetic duality holds semi-classically

for the Einstein-Maxwell theory. We give additional arguments for the duality which

has not discussed in the literature in subsection 2.2.

Section 3 is one of the main parts of this thesis, where we performed a comprehen-

sive study of the dimensional reduction of the four dimensional charged black holes.

We will analyze the dimensional reductions from the magnetically charged black holes

as well as electrically charged black holes described by the four dimensional Einstein-

Maxwell action. They lead to di↵erent two dimensional dilaton gravity theories. We

analyze them in the near-horizon and near-extremal limit and obtain the linearized

model which captures the leading order behavior of the near-extremal near-horizon ge-

ometry of the four dimensional charged black holes. we will see that one of them is

equivalent to the JT model, but the other is a di↵erent dilaton gravity model which

is coupled to the two dimensional Maxwell field. In subsection 3.5, we will argue the

universality of the JT model from a more general perspective. In subsection 3.6, we

will discuss the solutions of the dimensionally reduced theories and describe their ther-

modynamics.

In section 4, we will see the relation between the SYK model and our two di-

mensional dilaton gravity models. We first review the thermodynamics of the SYK

model and see that they share common properties with the thermodynamics of the

black hole solutions in AdS2 of the dilaton gravity theories. We discuss that though

the SYK model has the emergent conformal (reparametrization) symmetry at the strict

IR limit, it is spontaneously and explicitly broken to a smaller subgroup of the original

symmetry. We review that the dynamics of the symmetry breaking pattern is governed

by the so-called Schwarzian action. In subsection 4.2, it is found that the same action

e↵ectively governs the gravitational dynamics of the AdS2 spacetime in the dilaton

gravity theories. We explain the gravitational interpretation of the conformal symme-

try breaking.

In section 5, we compute the holographic complexity using the two dimensional

dilaton gravity models we derived in section 3. Surprisingly while these two theories

10
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lead to the same geometry, we will find the late time behavior of the complexity is

completely distinct with each other. In order to investigate the origin of the di↵erence,

we also compute the holographic complexity in the four dimensional electrically and

magnetically charged Reissner-Nordström black hole solution described by the Einstein-

Maxwell theory and see the coincidence with the two dimensional results. W will also

explain how the electromagnetic duality is successfully interfaced with this distinct

behavior of the complexity.

In section 6, we will summarize our arguments and describe the future directions.

The contents of this thesis are mainly based on the joint work [89, 90].
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2 Reissner-Nordström Black Hole in AdS

We start with the discussion of the charged black holes in four dimension (for related ar-

guments, see for example [93–95]). The following arguments can be easily generalized to

higher dimensions if one further couples the gravitational theory to a (d�2)�form field

strength Fµ1···µd�2
which is the Hodge dual of the two-form Maxwell field strength Fµ⌫ .

For detailed arguments, see Appendix B. We are especially interested in the holography,

thus we mainly consider the spacetime with a negative cosmological constant ⇤ < 0,

but almost all the discussions below are still valid in the asymptotically flat spacetime

by taking the cosmological constant a special value ⇤ = 0. Reissner-Nordström black

holes are solutions of the Einstein-Maxwell theory which has the following action

IEM =
1

16⇡GN

Z

M
d4x
p

�ĝ(R̂� 2⇤) +
1

8⇡GN

Z

@M

p
��̂K̂

�
1

4g2

Z

M
d4x
p
�ĝFµ⌫F

µ⌫ , (2.1)

where the terms in the first line are Einstein-Hilbert action with so-called Gibbons-

Hawking-York boundary term [91, 92] which is needed for the variational principle to

be well defined. ⇤ is the cosmological constant in four dimensions and as explained

above we assume ⇤ < 0 in the most part of this section. In the second line, we have

the bulk action for the Maxwell field Fµ⌫ . In this section, we don’t consider a boundary

term for the Maxwell field. We will introduce it in the later section and describe the

role of such a boundary term.

This Einstein-Maxwell action yields the following Einstein equation

R̂µ⌫ �
1

2
ĝµ⌫R̂ + ⇤ĝµ⌫ = 8⇡GNTµ⌫ (2.2)

where Tµ⌫ is the stress tensor of the Maxwell field

Tµ⌫ =
1

g2
(ĝ↵�Fµ↵F⌫� �

1

4
ĝµ⌫ ĝ

↵� ĝ⇢�F�↵F⇢�) , (2.3)

and the equation for the Maxwell field

@µ(
p
�ĝF µ⌫) = 0 . (2.4)

Throughout this thesis, we use the rescaled field strength F 2/g2 ! F 2/GN and identify

the couple constant g for the Maxwell field with the Newton’s constantGN for simplicity

of the notation. These equations admit the Reissner-Nordström black hole solutions.

The metric takes the following form

ds2 = �f(r)dt2 +
1

f(r)
dr2 + r2d⌦2

2
(2.5)
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with the blackening factor f(r) defined as

f(r) = 1�
2GNM

r
+

Q2

e,m

4⇡r2
+

r2

L2
, (2.6)

where M is the mass of the black hole and Qe,m is the electric or magnetic charge

the solution carries. L is the radius of the AdS4 spacetime which is related to the

cosmological constant as

L =

s
3

|⇤|
. (2.7)

d⌦2 is the line element of the unit two sphere and can be parametrized as

d⌦2

2
= sin2 ✓d✓2 + d�2 . (2.8)

The solution of the Maxwell field takes the following form

Fe =
Qe

4⇡r2
dr ^ dt , Fm =

Qm

4⇡
sin ✓d� ^ d✓, (2.9)

for the electric solution and the magnetic solution respectively. Notice that we rescaled

the field strength, thus the natural definition of the charge Q̃ associated to the original

field strength is related to the charge above as

Q̃ =

s
GN

4⇡g2
Q . (2.10)

The solution has a symmetry under exchanging the electric charge and the magnetic

charge, which is nothing but electromagnetic dually. More generally we can mix both

charges by the rotation in the (Qe, Qm) plane. We will use this symmetry to work on

the purely magnetic case below. Notice that by taking the limit L ! 1, the solution

becomes the Reissner-Nordström black hole in the asymptotically flat spacetime, and

Q ! 0 limit reproduces the neutral AdS-Schwarzschild black hole.

It is interesting to rewrite the blackening factor as [95]

f(r) = 1�
r+
r

�
r3
+

L2r
�

Q2

4⇡r+r
+

Q2

4⇡r2
+

r2

L2
(2.11)

and the mass of the black hole

M =
1

2GN

✓
r+ +

r3
+

L2
+

Q2

r+

◆
. (2.12)
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in terms of the charge Q and a largest real positive root of f(r); r+ which we will

identify with the outer horizon of the black hole. The temperature is calculated via

surface gravity  = @f(r+)/2

T =


2⇡
=

1

4⇡r+

✓
1�

Q2

r2+
+

3r2
+

L2

◆
(2.13)

In order for the Reissner-Nordström metric to describe a charged black hole with a

non-singular horizon at r = r+, the following condition should be satisfied

3r4
+

L2
+ r2

+
� Q2 . (2.14)

If this condition is violated, the black hole has a naked curvature singularity at r = 0.

We are interested in the case where the above condition is satisfied. As we can see

easily, such a solution has zero temperature. When the inequality is saturated, we have

the extremal black hole whose the horizon is degenerate. In this case, we have the

extremal values of the mass and the charge

Mext =
rh
GN

✓
1 +

2r2
h

L2

◆
, (2.15)

Q2

ext
= 4⇡

✓
r2
h
+

3r4
h

L2

◆
= 4⇡

�
r2
h
� ⇤r4

h

�
, (2.16)

as well as the blackening factor

f(r) =
(r � rh)2

r2L2
(L2 + 3r2

h
+ 2rhr + r2) , (2.17)

where we specially write r+ as rh for the extremal solution. The inequality (2.14) and

the expression (2.12) imposes the bound on the black hole mass of the form M �

Mext(Q). One might think that if the theory is embedded in a supersymmetric theory,

the extremal state with M = Mext would give the supersymmetric state. However, the

BPS bound which comes from the supersymmetric algebra is instead M � Q/
p
4⇡GN

3.

For a finite L the inequality Mext > Q/
p
4⇡GN is always satisfied and one can find

that the extremal state is non-supersymmetric. On the other hand, if we take the flat

limit L ! 1, since we have an equality Mext = Q/
p
4⇡GN instead of the inequality,

thus the extremal state can be supersymmetric when the theory is embedded in a

supersymmetric theory. For the supersymmetric solution with a finite L, we have a

blackening factor [96]

f(r) =

✓
1�

Q

4⇡r

◆2

+
r2

L2
(2.18)

3This is the condition for the electric solutions. For the magnetic solutions, we have magnetic BPS
solutions [96] with M = 0 and Qm = ±2⇡L.
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2 Reissner-Nordström Black Hole in AdS Kanato Goto

Figure 1: The Penrose diagrams of the extremal and near-extremal Reissner-

Nordström black holes in the asymptotically flat and asymptotically AdS spacetimes.

The most left panel corresponds to the extremal black hole in the asymptotically flat

spacetime and the figure in the middle is for the near-extremal black hole in the asymp-

totically flat spacetime. The singularity is represented as the zigzag lines colored in

red. Black real lines represent the spacetime infinity: I + is the future null infinity

and I � is the past null infinity. The right two figures are extremal and near-extremal

Reissner-Nordström black holes in the asymptotically AdS spacetime.Black real lines

represent the AdS boundary placed at the spacetime infinity. In both flat and AdS

black holes, the causal structures are drastically changed when we go from the extreme

ones to non-extreme ones. The near-extremal black hole has two horizons: r = r± the

outer horizon and the inner horizon while the extremal black hole has a degenerate

horizon rh. The near horizon region is colored in the green. Each region leads to the

(nearly) AdS2 spacetime (times S2).

which is always positive, then the solution has the naked singularity. Next let us

consider the near horizon geometry of the extremal black hole. In the near horizon

region we have r� rh ⌧ rh, thus we expand the metric in (r� rh)/rh then we find that

the metric can be approximated to the AdS2 metric up to O( r�rh
rh

) corrections

ds2 = �
(r � rh)2

L2

2

dt2 +
L2

2

(r � rh)2
dr2 + r2

h
d⌦2

2
, (2.19)
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with the radius of the two dimensional AdS defined by

L2

2
=

L2

6 + L2

r
2

h

. (2.20)

Notice that this radius is finite even we take the asymptotically flat space limit L ! 1,

thus the near horizon geometry of the extremal solution of the Reissner-Nordström

black hole in the asymptotically AdS or flat spacetime approaches AdS2 ⇥ S2. AdS2

geometry has the radius L2 while that of sphere S2 is rh. In the flat space limit L ! 1,

they become equivalent and the AdS part and the sphere of the geometry have the same

radius. It might be interesting to rewrite (2.20) as

|⇤2| = |⇤|+
Q2

ext

4⇡r2
h

, (2.21)

where |⇤2| = 1/L2

2
. We can see that the two dimensional cosmological constant can be

expressed as a sum of the four dimensional cosmological constant and the charge of the

black hole.

Near-Extremal Black Holes

We explained features of extremal black holes, but our interest lies in near extremal

ones. The non-extremal solutions satisfy the inequality (2.14) has two horizons, that

is outer horizon expressed as r+ and the inner horizon r� which is the smaller real

positive root of f(r). Causal structure of the non-extremal black hole are drastically

di↵erent from the extremal one as depicted in Figure 1. From the Penrose diagram in

Figure 1, we can see that the inner horizon r� as well as the horizon rh in the extremal

black hole is the Cauchy horizon which lies at the lightlike boundary of the validity of a

Cauchy surface while the outer horizon r+ is the event horizon beyond which physical

objects cannot escape. It is known that the Cauchy horizon is unstable due to the av-

eraged weak energy condition and any small perturbation on the Cauchy surface grows

infinitely at this horizon. This implies that we cannot go outside of the their horizons

even if the causal structures of the Penrose diagrams seem to allow.

We will now consider near-extremal black holes by taking the horizons to be

r± = rh ± �rh (2.22)

with an assumption

�rh
rh

⌧ 1 , (2.23)
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to make sure the temperature very small. The temperature and the entropy of the

system increase proportionally to �rh and they are given by

T ⇡
�rh
2⇡L2

2

, (2.24)

S =
⇡r2

+

GN

⇡
⇡r2

h

GN

+
2⇡�rhrh
GN

. (2.25)

Moreover, if we are considering a near-extremal black hole, it means that we need to

slightly deviate from the parameters of the extremal black hole. We choose to work

in an ensemble of fixed charge, hence what changes with respect to extremality is the

mass

M = Mext + �M , (2.26)

where

�M =
rh�r2h
2GNL2

2

=
2⇡2

GN

rhT
2L2

2
. (2.27)

Notice that the deviation of the mass comes at the order �r2
h
and hence it is proportional

to T 2. This feature is common with the so-called Jackiw-Teitelboim model, which is

two-dimensional dilaton gravity theory derived from the four-dimensional charged black

holes by the dimensional reduction of the action (2.1). We will discuss it in detail later.

The choice of a fixed charge ensemble is encoded in action (2.1) and the use of a

magnetic charge as we will explain in the later section.

Finally we consider the first order corrections from AdS2 ⇥S2 for the near horizon

geometry of the near-extremal black hole. Up to the order O(((r � rh)/rh)2) and

O((�rh/rh)2), we can find the metric of the following form

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2

h

✓
1 +

2(r � rh)

rh

◆
d⌦2

2
,

f(r) =
(r � r+)(r � r�)

L2

2

✓
1�

4

3

r � rh
rh

◆
, (2.28)

where we focus on the large black hole rh � L and omit terms negligible in this limit.

The leading order of this geometry is again given by AdS2⇥S2. In section 3, we integrate

out the S2 factor of the geometry by dimensionally reducing our spacetime, and obtain

the two-dimensional theories which can capture the near horizon geometry of the near

extremal Reissner-Nordström black holes. We dimensionally reduce both electrically

charged and magnetically charged black holes described by the four dimensional action

(2.1). We will see that the geometry (2.28) is correctly reproduced from the analyses

of the dimensionally reduced theories.
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2.1 Electriomagnetic Duality

We saw that the Einstein-Hilbert action coupled a Maxwell field in the four dimensions

admits the electrically charged black hole and the magnetically charged one. Montonen

and Olive [97] conjectured that there is a duality, so-called S-duality between electri-

cally charged elementary particles and magnetically charged monopoles which is shown

later to hold in the d = 4 N = 4 supersymmetric Yang-Mills theory. They claimed that

monopoles in the original theory with the coupling g behave like the elementary elec-

trically charged particles in the original theory with the coupling g0 = 1/g. S-duality is

expected to hold full quantum mechanically. Black holes can be regarded as the soli-

tons of the gravitational theory, on the other hand, it is also known that some extremal

black holes are identified with elementary states in string theory. Thus it is natural to

wonder whether the electromagnetic duality holds for the magnetically charged black

holes and the electrically charged black holes. We can see that the symmetry holds at

the level of the equation of the Maxwell field since the duality operation

?Fµ⌫ =
1

2
✏µ⌫⇢�F

⇢� (2.29)

which exchanges the role of the electric field and the magnetic field keeps the equation

of motion invariant. However, it is not obvious whether it is a symmetry of quantum

theory. Maxwell action consists of the term F 2
⇠ B2

� E2, but we can see that the

sign changes if we consider the magnetic charge instead of the electric charge. In this

section, we will see that we can indeed regard it as a symmetry of the quantum theory

of gravity at least when we focus on the parameter region where the semi-classical

approximation is valid.

In the semi-classical approximation, the partition function of the gravitational sys-

tem given by the Euclidean path integral is dominated by the solutions of the equa-

tions of motion with the given boundary conditions. These solutions are given by the

Reissner-Nordström black holes. Thus the partition function is approximated by ex-

ponential of the Euclidean on-shell action evaluated on the Reissner-Nordström black

hole solution

Z =

Z
Dgµ⌫DAµe

�IEH-Max ⇠ e�I
RN

EH-Max . (2.30)

To evaluate the partition function, we consider the solutions of the Einstein-Maxwell

system in the Euclidean regime. If we wick rotate the Lorenzian action (2.1) and the
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solution (2.5)(2.6)(2.9) by ⌧ = it, the Einstein-Maxwell action can be written as

IEM =�
1

16⇡GN

Z

M
d4x

p
gE(R̂� 2⇤)�

1

8⇡GN

Z

@M

p
�EK̂

+
1

4GN

Z

M
d4x

p
gEFµ⌫F

µ⌫ . (2.31)

and the solution for the metic becomes

ds2 = f(r)d⌧ 2 +
dr2

f(r)
+ r2d⌦2

2
., (2.32)

with

f(r) = 1�
2GNM

r
+

Q2

e,m

(4⇡r)2
+

r2

L2
. (2.33)

The electric solution of the Maxwell field can be written as

Fe = �i
Q

4⇡r2
dr ^ d⌧ , (2.34)

thus we obtain the on-shell Euclidean action for the electric field as

Ielectric
Max

=
1

4GN

Z
d4x

p
gEFµ⌫F

µ⌫ = �
Q2

2GN

Z
d4x

p
gE

1

(4⇡r2)2
(2.35)

On the other hand, the magnetic solution

Fm =
Q

4⇡
sin ✓d� ^ d✓ , (2.36)

leads to the on-shell action

Imagnetic

Max
=

1

4GN

Z
d4x

p
gEFµ⌫F

µ⌫ =
Q2

2GN

Z
d4x

p
gE

1

(4⇡r2)2
, (2.37)

thus the sign is flipped if we exchange the magnetic solution with the electric one.

To see why the di↵erence in sign of the on-shell action is not inconsistent with the

electromagnetic duality, let us remind ourselves of the variation principle of the action

(2.1), which gives us

�IMax = (terms giving equations of motion)

�
1

GN

Z

@M
d3x

p
�EF

µ⌫nµ�A⌫ , (2.38)
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where nµ is the outward directed normal vector to the boundary. Since we want to get

rid of the boundary terms coming from the variation, we set �Ai = 0 at the boundary

where i denotes the directions along the boundary In the case of the magnetically

charged black hole, this corresponds to fixing the magnetic change since the magnetic

charge is given by the integral of F over S2 on the boundary

Qm =

Z

S2

F . (2.39)

and we can determine F purely from the boundary value of Ai. On the other hand, for

the electrically charged case, the electric charge is given by the integral of the Hodge

dual of F , which is not determined just by the boundary value of A⌫ . Instead of fixing

the charge, for the electric case the condition �A⌫ = 0 fixes the chemical potential µ

defined on the boundary as

µ =
1

GN

lim
r!1

At . (2.40)

Therefore magnetically charged black holes described by the action (2.1) are in the

canonical ensemble (fixed charge ensemble) while electrically charged black holes are in

the grand canonical ensemble (fixed chemical potential ensemble). This is the reason

why the di↵erent actions (2.37)(2.35) does not necessarily imply the contradiction with

the electromagnetic duality. In order to see the quantum equivalence between the

electric solution and the magnetic solution, we should compare them by putting them in

the same ensemble. It is easier to put the electric solution in the fixed charge (canonical)

ensemble. To give the canonical ensemble, we should add a Maxwell boundary term to

the original action as [46–48]

I 0
Max

= IMax �
1

GN

Z

@M
d3x

p
�EF

µ⌫nµA⌫ . (2.41)

The variation of this action gives us

�I 0
Max

= (terms giving equations of motion)

�
1

GN

Z

@M
d3x�(

p
�EF

µ⌫nµ)A⌫ . (2.42)

Therefore vanishing condition of the boundary term imposes �(
p
�EF µ⌫nµ) = 0 which

amounts to fixing the electric charge. Notice that due to the equation of motion

rµF µ⌫ = 0, we have

F µ⌫Fµ⌫ = 2r⌫F
µ⌫Aµ , (2.43)
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for the solution of the Maxwell field. Thus if we put the on-shell value of the electric

Maxwell field to the Maxwell boundary term, it can be expressed as

Ielectric
Max

0
= Ielectric

Max
�

1

2GN

Z

M
d2x

p
gEF

µ⌫Fµ⌫

=
Q2

2GN

Z
d4x

p
gE

1

(4⇡r2)2

= Imagnetic

Max
(2.44)

when F is on-shell. Thus we proved the equivalence of the on-shell actions between the

electric solution and the magnetic solution in the canonical ensemble, which implies

the semiclassical approximations to the Euclidean path integral for dual electric and

magnetic solutions are identical.

Let us make some comments on the thermodynamics of the charged black holes

here. In the semi-classical approximation, the partition function is written as Z = e�I

where I is the on-shell action evaluated on the solution. In the canonical ensemble, the

partition function ZC is expressed in terms of the Helmholtz free energy as logZC =

��F , i.e, �F ' IC where IC is the on-shell value of the action in the canonical ensemble

(2.44). The Helmholtz free energy is expressed in terms of the mass temperature and

the entropy of the black hole solution as

F = M � TS . (2.45)

On the other hand, in the grand canonical ensemble, logZGC is given by the Gibbs free

energy G which is identified with the on-shell action in the grand canonical ensemble

IGC in the semi-classical approximation. The Gibbs free energy is written in terms of

the mass temperature and the entropy and the chemical potential of the solution as

G = M � TS � µQ . (2.46)

Thus the Helmholtz free energy and the Gibbs energy are related as

F = G+ µQ . (2.47)

On the other hand, as we saw in the electric case the on-shell action in the canonical

ensemble and the grand canonical ensemble are related via the Maxwell boundary term

as

Ielectric
C

= Ielectric
GC

+ IMax,bdy , (2.48)

where

IMax,bdy = �
1

GN

Z

@M
d3x

p
�EF

µ⌫

e
nµAe,⌫ . (2.49)
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We have an electric solution

Ae

⌧
= i

✓
Qe

4⇡r
� µ

◆
, F e

r⌧
= �i

Qe

4⇡r2
, (2.50)

where µ is the chemical potential defined at infinity

µ =
i

GN

lim
r!1

A⌧ =
Qe

4⇡GNr+
. (2.51)

Here we have chosen the gauge so that the gauge field is regular at the outer horizon.

Electric charge is defined as the integral of the Hodge dual of F at the boundary

Qe =

Z

S2

?F , (2.52)

thus we can rewrite the Maxwell boundary term as

IMax,bdy = �µQe , (2.53)

where we used the fact that the Euclidean time has the periodicity �. Therefore we

can write the Helmholtz free energy as

�F ⇡ Ielectric
C

��
on-shell

= Ielectric
GC

��
on-shell

+ IMax,bdy

= �G+ �µQ . (2.54)

and we can reproduce the relation between the Helmholtz free energy and the Gibbs free

energy F = G+µQ. As we can see, adding the Maxwell boundary term to the Euclidean

action produces the Legendre transform to the Helmholtz free energy, associated with

the canonical ensemble where the total (electric) charge Q is held fixed. One can see

some related arguments in [46–48, 98] and for the AdS/CFT context in [99, 100]. The

thermofield double state dual to the black holes in the canonical ensemble described

by IC reads

|TFD(tL, tR)iC = Z�1/2
X

↵

e��E↵/2e�iE↵(tL+tR)
|E↵,�QiL|E↵, QiR , (2.55)

where every state has the same charge Q. If we trace out the states in either boundary

we get a density matrix corresponding to a canonical ensemble with the inverse tem-

perature � and fixed charge Q. Had we chosen to work with the action IGC , we would

be in a fixed chemical potential ensemble. In this case, the dual state reads

|TFD(tL, tR)iGC = Z�1/2
X

↵,�

e��(E↵�µQ�)/2e�iE↵(tL+tR)
|E↵,�Q�iL|E↵, Q�iR . (2.56)

22



2 Reissner-Nordström Black Hole in AdS Kanato Goto

Notice that in this case the charge is allowed to fluctuate and so we sum over states

which possess di↵erent charges. If we trace out the states in either boundary we get a

density matrix corresponding to a grand canonical ensemble with the inverse temper-

ature � and fixed chemical potential µ.

2.2 More on the Maxwell Boundary Term

In the previous subsection, we saw that the Einstein-Maxwell theory describing the

electric solutions are semi-classically equivalent to the one describing the magnetic

solutions by introducing the Maxwell boundary term

IMax,bdy = �
1

GN

Z

@M
d3x

p
�EF

µ⌫nµA⌫ , (2.57)

to the original action (2.1). In this subsection, we will consider whether we can do

the converse arguments, namely we will consider whether the on-shell action with the

Maxwell boundary terms such like (2.57) describing the magnetic solutions is the same

as the one without it describing the electric solution. To consider the Maxwell boundary

term (2.57) for the magnetic field, we should remind ourselves of the existence of the

Dirac string. If we would neglect the existence of the Dirac string and assume that

the relation F = dA holds globally even for the magnetic solution, by the following

manipulation

1

2GN

Z

M
d4x

p
gEF

µ⌫Fµ⌫ =
1

GN

Z

M
d4x

p
gEF

µ⌫
rµA⌫

�
1

GN

Z

M
d4x

p
gErµF

µ⌫A⌫

(2.58)

and using the equation of motion

rµF
µ⌫ = 0 (2.59)

and Stokes’ theorem, we could write

1

2GN

Z

M
d4x

p
gEF

µ⌫Fµ⌫ =
1

GN

Z

@M
d⌃µF

µ⌫A⌫ . (2.60)

However this leads a contradiction: for the magnetic solutions F only has support

on angular directions and therefore the right-hand side (2.60) will always vanish if we

simply take @M to be the boundary and has no e↵ect in the action of magnetically

charged black holes, while on the left-hand side, it does not vanish. This problem arises

because F = dA is not globally well defined for a magnetic monopole and hence we

must be careful when using Stokes’ theorem.
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Let us remind ourselves that the magnetic solution of the Maxwell field takes the

following form

A =
Qm

4⇡
(1� cos ✓) d� , F =

Qm

4⇡
sin ✓d� ^ d✓ . (2.61)

The existence of the Dirac string can be easily seen from the fact that the vector

field vµ = (4⇡)2F µ⌫A⌫ for the magnetic solution in which we are applying the Stokes’

theorem, can be expressed as

v =
Q2

m

r4 sin ✓
(1� cos ✓)

@

@✓
. (2.62)

Clearly, v has a singularity at ✓ = ⇡. This could be a coordinate artifact but for this

reason, it is problematic to apply the divergence theorem to v. In order to solve this

problem, we will have to split the spheres S2 at each point of spacetime into two open

hemispheres S2

N
with 0  ✓ < ⇡/2 and S2

S
with ⇡/2 < ✓  ⇡ and define a di↵erent

gauge field for each one such that we can safely apply the divergence theorem on each

hemisphere. Namely, we will take the gauge fields to be

AN =
Qm

4⇡
(1� cos ✓) d� ,

AS = �
Qm

4⇡
(1 + cos ✓) d� . (2.63)

in each hemisphere. Notice that F is the same for both gauge fields through F = dA.

Now, the vector fields in each hemisphere are given by

vN =
Q2

m

r4 sin ✓
(1� cos ✓)

@

@✓
,

vS = �
Q2

m

r4 sin ✓
(1 + cos ✓)

@

@✓
. (2.64)

We can see that both vector fields are well defined over the corresponding hemisphere.

Therefore, we can apply the divergence theorem separately on each hemisphere. Since

the surface ✓ = ⇡/2 is a set of zero measure for the bulk integral, we can write

1

2GN

Z

M
d4x

p
gEF

µ⌫Fµ⌫ =
1

2GN

Z

MN[MS

d4x
p
gEF

µ⌫Fµ⌫ , (2.65)

where MN = N ⇥S2

N
, MS = N ⇥S2

S
and N is the rest of the manifold apart from the

sphere. Using (2.58), (2.59) and Stokes’ theorem for the region MN [MS, it follows

that
1

2GN

Z

M
d4x

p
gEF

µ⌫Fµ⌫ =
1

GN

Z

@(MN[MS)

d⌃µF
µ⌫A⌫ . (2.66)
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Thus we see that the boundary that should enter the Stokes’ theorem is not just

the boundary of the manifold M but also an additional boundary at ✓ = ⇡/2. In

particular, for the magnetic solution (2.61), this is the only boundary that contributes.

For consistency, let us check that (2.66) indeed holds. We have

1

GN

Z

@(MN[MS)

d⌃µF
µ⌫A⌫ =

1

GN

Z

✓=
⇡
2

d⌃N

µ
F µ

⌫
A⌫

N
+

1

GN

Z

✓=
⇡
2

d⌃S

µ
F µ

⌫
A⌫

S
, (2.67)

where

d⌃N = r2 sin ✓d✓ , d⌃S = �r2 sin ✓d✓ . (2.68)

It follows that

1

GN

Z

@(MN[MS)

d⌃µF
µ⌫A⌫ =

Q2

m

GN

Z

N
d2x

1

(4⇡r2)2
, (2.69)

which matches the left-hand side integral of (2.66) after we integrate over the sphere

S2.

Thus we can see that the on-shell action with the Maxwell boundary term

IMax,bdy = �
1

GN

Z

@(MN[MS)

d3x
p
�EF

µ⌫nµA⌫ . (2.70)

for the magnetic solution gives

Imagnetic

Max
+ IMax,bdy =

1

4GN

Z
d4x

p
gEFm,µ⌫F

µ⌫

m
�

1

2GN

Z
d4x

p
gEFm,µ⌫F

µ⌫

m

= �
1

4GN

Z
d4x

p
gEFm,µ⌫F

µ⌫

m

=
Q2

2GN

Z
d4x

p
gE

1

(4⇡r2)2
,

=
1

4GN

Z
d4x

p
gEFe,µ⌫F

µ⌫

e
. (2.71)

Thus semi-classically the theory which describes the magnetic solution with the Maxwell

boundary term (2.57) is equivalent to the one which describes the electric solution with-

out the boundary term.
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3 Dimensional Reduction

In this section, we study the dimensional reduction of the four-dimensional Einstein-

Maxwell theory

IEM =
1

16⇡GN

Z

M
d4x
p

�ĝ(R̂� 2⇤) +
1

8⇡GN

Z

@M

p
��̂K̂

�
1

4GN

Z

M
d4x
p
�ĝFµ⌫F

µ⌫ . (3.1)

by compactifying S2 part of the AdS4 metric. We assume the metric of the form

ds2 = ĝµ⌫dx
µdx⌫

= gµ⌫dx
µdx⌫ + 2d⌦2

2
, (3.2)

and derive the two-dimensional theories which capture the spherically symmetric dy-

namics of the near-extremal near-horizon of the black hole. From the analysis in section

2, the near horizon geometry is approximated to AdS2 ⇥ S2, thus we expect that the

dimensionally reduced theories can describe the AdS2 geometry. Before starting to

discuss the dimensional reduction, we introduce the coordinate systems in AdS2 space-

time.

3.1 Coordinate Systems of AdS2

In this subsection, we introduce coordinate systems in the AdS2 spacetime which we

will use in the later arguments. It is convenient to use the embedding coordinates

X = (XM)M=�1,0,1 in R2,1 which obeys the constraint

�(X�1)2 � (X0)2 + (X1)2 = �L2

2
, (3.3)

where L2 is the AdS2 scale. The induced metric on the surface (3.3) is given by

ds2 = �(dX�1)2 � (dX0)2 + (dX1)2 . (3.4)

This embedding surface is invariant under so(2, 1) = sl(2,R) rotation,which means that

AdS spacetime has an isometry of sl(2,R). The surface (3.3) represents only a part of

the AdS spacetime: we have to take the universal cover of this manifold. The surface is

originally periodic under the 2⇡ rotation on the (X�1, X0) plane, but in order to take

the universal cover, we should unroll this timelike cycle. It is convenient to introduce

the global AdS coordinate which covers the whole AdS2 spacetime to see how taking

the universal cover of (3.3) works.
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The global AdS2 coordinate (⌧, ⌘) can be obtained by the following parametrization

X�1 = L2

cos ⌧

cos ⌘
, X0 = L2

sin ⌧

cos ⌘
, X1 = L2 tan ⌘ . (3.5)

The metric of the global coordinate is written as

ds2 = L2

2

�dt2 + d⌘2

cos2 ⌘
, �

⇡

2
 ⌘ 

⇡

2
. (3.6)

The original hyperboloid is covered with ⌧ 2 [�⇡, ⇡], but to avoid closed timelike curves,

we instead take ⌧ 2 R by taking the universal cover of the manifold. As a result, the

global coordinate covers the entire AdS spacetime. Notice that the boundary of the AdS

spacetime is located at ⌘ = ±⇡/2. Thus the boundary of AdS2 has two disconnected

pieces. This is a contrast to the higher dimensional AdSd spacetime, which has a single

conformally cylindrical boundary R⇥ Sd�2.

We introduce another convenient coordinate system (t, r) as

X�1 =
L2

2
p
µ

r � rh
L2

, X0 =
L2

2
p
µ

p
f(r) sinh

p
µ

L2

2

t , X1 =
L2

2
p
µ

p
f(r) cosh

p
µ

L2

2

t , (3.7)

where we defined

f(r) ⌘
(r � r+)(r � r�)

L2

2

, r± = rh ±
p
µ . (3.8)

p
µ parametrizes the positions of the outer and inner horizons r±. The metric is

expressed as

ds2 = �
(r � r+)(r � r�)

L2

2

dt2 +
L2

2

(r � r+)(r � r�)
dr2 . (3.9)

This coordinate system is especially convenient when we relate our two-dimensional

system to the higher dimensional Reissner-Nordström black holes. Thus we sometimes

call this coordinate as the Reissner-Nordström-like coordinate of AdS2. In the section

2, we already discussed how this AdS2 coordinate arises from the near horizon geometry

of the four dimensional Reissner-Nordström metric.

Notice that if we shift the radial coordinate by rh as r0 = r � rh, we obtain the

so-called Rindler(-AdS) coordinate (t, r0), whose metric is expressed as

ds2 = �
r02 � µ

L2

2

dt2 +
L2

2

r02 � µ
dr02 . (3.10)

If we wick rotate the Lorentzian time t into the Euclidean time ⌧ = it, it can be seen

from (3.7) that the coordinate ⌧ is periodic under � = 2⇡L2

2
/
p
µ. Thus these coordinate
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Figure 2: The figures correspond to the global AdS coordinate (3.6), thermal

(Reissner-Nordström-like) coordinate (3.9) and the Poincaré coordinate (3.11) from

the left. The arrows of the time flow are depicted in the real lines in each figure.

The spacelike surfaces (radial axes) are depicted in the dotted lines. The Reissner-

Nordström coordinate has two horizons r± just the same as the Reissner-Nordström

black hole. The Poincaré coordinate only covers a part of the AdS spacetime.

systems look like thermal with temperature T =
p
µ/2⇡L2

2
. This is just the artifact of

the coordinate choice, but as we will see in subsection 3.6, the solutions of the dilaton

gravity theories which we will introduce nicely fit these coordinates and the systems

actually become thermal (black holes).

We also introduce the Poincaré coordinate (t̃, z) given by the following embedding

X�1 =
L2

2
+ z2 � t̃2

2z
, X0 = L2

t̃

z
, X1 =

L2

2
� z2 + t̃2

2z
, (3.11)

where the coordinates (t̃, z) ranges as z 2 [0,1] and t̃ 2 R. The metric becomes

ds2 = L2

2

�dt̃2 + dz2

z2
. (3.12)

Seen from the Figure 2 that the Poincaré coordinate only covers a part of the entire

AdS spacetime, which is called Poincaré patch. We will use this coordinate system in

subsection 4.2.
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3.2 Magnetically Charged Black Hole in the Canonical Ensemble

We first consider the dimensional reduction of the Einstein-Maxwell theory in a near-

extremal magnetically charged black hole in the canonical ensemble. We make the

following ansatz for the metric and the magnetic gauge field

ds2 = gabdx
adxb + 2d⌦2

2
,

F�✓ 6= 0, (other components of F ) = 0 . (3.13)

where  parametrize the radius of the charged black hole. We can use this ansatz to

solve the equation of motion for F and obtain the solution of the form

F =
Q

4⇡
sin ✓d� ^ d✓ . (3.14)

As we explained, the magnetically charged black holes described by the action (2.1) are

in the canonical (fixed charge) ensemble, thus we take the charge to be the extremal

one Q = Qext. We want to integrate out the spherical degrees of freedom and obtain the

dimensionally reduced action. In this procedure, we fix the metric of the sphere while

we leave the metric gab and the radius of the sphere  as dynamical degrees of freedom

in two dimensions. For the magnetically charged black hole with F�✓ =
1

4⇡
Qext sin ✓, we

have

4⇡F 2 =
Q2

ext

2⇡ 4
. (3.15)

In general, if we have the warped product geometry given by

ds2 = ds2
(1)

+ e2⌧(x
(1)

)ds2
(2)

, (3.16)

then we can decompose the Ricci curvature as

R̂ = R(1) + e�2⌧R(2) � 2dr2

(1)
⌧ � d(d+ 1)gab@a⌧@b⌧ , (3.17)

where d is the dimensionality of the ds2
(2)

part. In our case,  = e⌧ and d = 2, thus the

Ricci scalar can be decomposed as

R̂ = R +
2

 2
� 4r2 log �

6

 2
(r )2 , (3.18)

where not-hatted quantities refer to the two-dimensional geometry which survives after

integrating out the spherical part of the metric. The determinant of the metric
p
�ĝ

is written in terms of the one in two dimension
p
�g as

p
�ĝ =  2

p
�g sin ✓ . (3.19)

29



3 Dimensional Reduction Kanato Goto

Then dimensionally reduced theory from a magnetically charged black hole is written

as

Imagnetic

C
=

1

4GN

Z

M
d2x

p
�g

✓
 2R + 2(r )2 + 2� 2 2⇤�

Q2

ext

2⇡ 2

◆

�
1

2GN

Z

@M
dx

p
��nµ

rµ 
2 . (3.20)

where the surface term comes from the integration by parts which we performed to get

the above action and it is canceled with the dimensionally reduced GHY-term

IGHY =
1

8⇡GN

Z

@M

p
��̂K̂

=
1

4GN

Z

@M

p
�� 2K +

1

2GN

Z

@M
dx

p
��nµ

rµ 
2 . (3.21)

Near-Horizon Expansion at the Level of Equations of Motion

Now that we have the dimensionally reduced action (3.20) derived from the magnetic

solution, then we will next derive the equations of motion from the full action (3.20)

and take the near-horizon expansion around the horizon at the level of the equation of

motion. The equations of motion derived from the action (3.20) are given by

0 = R� 2⇤+
Q2

ext

2⇡ 4
�

r
2 

 
, (3.22)

0 = rµr⌫ 
2
� gµ⌫r

2 2
� gµ⌫

✓
⇤ 2

� 1 +
Q2

ext

4⇡ 2

◆
�2rµ r⌫ + gµ⌫(r )

2 . (3.23)

We now expand  2 as

 2 =
�0 + �

4⇡
. (3.24)

around some constant �0 and express the equations (3.22)(3.23) at the leading order

of �/�0. We choose the value of the extremal dilaton �0 as the area of the extremal

black hole

�0 = 4⇡r2
h

(3.25)

and introduce the radius of the AdS2 geometry

⇤2 ⌘ ⇤�Q2

ext
/(4⇡r4

h
) = 2⇤�

1

r2
h

. (3.26)

The above definition is the same as one we considered in (2.21). Notice that for the

large black holes, we obtain a simple relation ⇤2 ' 2⇤.
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Then expanding  in (3.22)(3.23) around �0 = 4⇡r2
h
, we can obtain the following

form of the equations of motions

0 = R� 2⇤2 + 2

✓
⇤2 �

1

r2
h

◆
�

�0

�
r

2�

�0

, (3.27)

0 = rµr⌫�� gµ⌫r
2�� gµ⌫⇤2� , (3.28)

up to the order O((�/�0)2). At the leading order in �/�0, the first equation reduces

to

R = 2⇤2 +O(�/�0) . (3.29)

Since ⇤2 < 0, this implies that we have an AdS2 solution at the leading order. Our

strategy to solve these coupled equations with respect to the metric and the dilaton is as

follows. We first solve the equation (3.27) at the order O(1) and then using the leading

order solution for the metric we solve the second equation (3.28) for the dynamical

dilaton � at the leading order, then finally we take into account of the back reaction to

the metric at order �/�0 according to the equation (3.27) by using the leading order

solution for �. Using the metric of the AdS2 (3.9), we can solve the second equation

for the dilaton � as

� = �b

r � rh
rh

. (3.30)

If we take a normalization as �b = 2�0 with �0 = 4⇡r2
h
, we obtain a simple expression

for the combination  = (�0 + �)/4⇡ of the following form

 2 = r2
h

✓
1 +

2(r � rh)

rh

◆
' r2 , (3.31)

which nicely fits the spherical part of near horizon geometry (2.28), which can be

expressed as  2d⌦2

2
. Since the equation (3.28) implies r2� = �2⇤2�, thus using the

solution (3.30) with �b = 2�0,�0 = 4⇡r2
h
, we can write the first equation as

R +
2

L2

2

=
8

L2

2

r � rh
rh

. (3.32)

where we consider a large four-dimensional black hole and neglect terms suppressed by

L/rh. The metric deviates from AdS2 according to this equation due to the existence

of the dynamical dilaton � according to the above equation. By solving the above

equation, we can find that the metric deviates from the AdS2 at the order O(�/�0) as

ds2 = �f(r)dt2 +
1

f(r)
dr2 ,

f(r) =
(r � r+)(r � r�)

L2

2

✓
1�

4

3

r � rh
rh

◆
. (3.33)
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This is consistent with the (t, r) part of the metric (2.28) which we directly derived

by taking the near-horizon limit of the near-extremal Reissner-Nordström black hole

metric.

Near-Horizon Expansion at the Level of Action

Next, we consider expanding the action itself in � instead of doing so at the level of

the equation of motion. We keep the linear order of � and neglect the kinetic term of

�, then we end up with the following action

IJT =
�0

16⇡GN

Z

M
d2x

p
�gR +

1

16⇡GN

Z

M
d2x

p
�g� (R� 2⇤2) . (3.34)

This action is nothing but the one of the Jackiw-Teitelboim (JT) model [37–39]. Thus

we confirmed that the JT model can be derived from the four-dimensional magnetically

charged black holes in the canonical ensemble. For more general arguments to derive

the JT action, see subsection 3.5 and Appendix B.

This action yields the following equations of motion

0 = R� 2⇤2 , (3.35)

0 = rµr⌫�� gµ⌫r
2�� gµ⌫⇤2� . (3.36)

Notice that the first equation deviates from (3.27) at the linear order in �. The term

2⇤2
�

�0

comes from the quadratic term in � of the action (3.20) and r2
�

�0

from the kinetic

term of  , thus they do not appear in the equation of motion from the action of the

JT model. Therefore, the linearized action (3.34) only captures the geometry and the

dilaton profile both at the leading order. The important feature of the action (3.34)

is that it truncates higher order terms of the original action “self-consistently”: even

after plugging the solution of the equations of motion back into the action, the action

is still the order of O(�/�0) and higher order terms do not show up.
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3.3 Electrically Charged Black Hole in the Grand Canonical Ensemble

Next we consider the dimensionally reduced theory of the Einstein-Maxwell action (2.1)

derived from the near-extremal electrically charged black hole. Let us remind ourselves

that the electric solutions described by the action (2.1) is in the grand canonical ensem-

ble. Thus in this subsection, we try to obtain the dimensionally reduced theory which

captures the near-horizon geometry of the near-extremal electrically charged black holes

in the grand canonical ensemble.

We make the following ansatz for the four-dimensional solution

ds2 = gabdx
adxb + 2d⌦2

2
,

Fab 6= 0, (other components of F ) = 0 . (3.37)

When we dimensionally reduce the Einstein-Maxwell theory, we leave the metric gab
and the radius of the sphere  as dynamical degrees of freedom. In contrast to the

magnetic case, in order to solve the equation for the Maxwell field Fab, we need the

information of the components of the metric gab which remain the dynamical degrees

of freedom in two dimensions. Thus when deriving the action of the reduced theory,

we should also leave the Maxwell field to be o↵-shell degrees of freedom4.

Performing the same procedure of the dimensional reduction, we end up with the

following dimensionally reduced action

Ielectric
GC

=
1

4GN

Z

M
d2x

p
�g
�
 2R + 2(r )2 + 2� 2 2⇤� 4⇡ 2F 2

�
, (3.38)

up to the surface term appeared in (3.20), which is absorbed by the dimensionally re-

duced GHY-boundary term. Notice that in addition to the metric and the dilaton  ,

there is also a term for the Maxwell field Fµ⌫ in two dimensions. Thus the dimension-

ally reduced theory is a system where the metric, the dilaton and the Maxwell field are

coupled with each other.

Near-Horizon Expansion at the Level of Equations of Motion

We have the dimensionally reduced action (3.38) derived from the electric solution,

then we will next derive the equations of motion from the full action (3.38) and take

the near-horizon expansion around the horizon at the level of the equation of motion

and try to solve this coupled system as we did in the magnetic case.

4For related arguments, see [101]
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From the action (3.38), we obtain the following equations of motions

0 = @µ(
p
�g 2F µ⌫) (3.39)

0 = R� 2⇤� 4⇡F 2
�

r
2 

 
(3.40)

0 = rµr⌫ 
2
� gµ⌫r

2 2
� gµ⌫(⇤ 

2
� 1) + 8⇡ 2(Fµ�F⌫

�
�

1

4
gµ⌫F

2)

� 2rµ r⌫ + gµ⌫(r )
2. (3.41)

As we did for the magnetically charged black holes, we expand the dilaton around some

constant �0

 2 =
�0 + �

4⇡
. (3.42)

We first solve the equation of motion for F and plug it back into the other equations

of motions. In the equation (3.39), the Maxwell field is coupled both to the metric and

the dilaton. In order to solve the equation for F , it is reasonable to take an ansatz for

the two dimensional metric of the following form

ds2 = �f(r)dt2 +
1

f(r)
dr2 ,

f(r) =
(r � r+)(r � r�)

L2

2

✓
1� c

r � rh
rh

◆
(3.43)

with an O(1) constant c up to O(( r�rh
rh

)2) . Ricci scalar for this metric is computed as

R = �
2

L2

2

+
6c

L2

2

r � rh
rh

. (3.44)

With this ansatz, we can solve the equation of motion for the gauge field (3.39) as

Fµ⌫ =
Q

4⇡ 2
✏µ⌫ , F 2 = �

2Q2

(4⇡ 2)2
. (3.45)

up to O(( r�rh
rh

)2). Notice that the charge Q can take any values and in general, and it

can deviate from the extremal value of the charge Qext. This represents the fact that

we dimensionally reduced the solution in the grand canonical ensemble, so the charge

of the solution in four dimensions can fluctuate. We want to obtain the theory which

describes the near-extremal black holes, thus we write the deviation of the charge from

its extremal value as

�Q = Q�Qext (3.46)
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and assume that �Q is small, more precisely we assume that the quantity �Q/Qext is

at most the same order as �/�0. Plugging the solution for Fµ⌫ (3.45) back into the

equations of motion, and expanding  2 around a constant

�0 = 4⇡r2
h
, (3.47)

we obtain the following equations

0 = R� 2⇤2 + 2

✓
⇤2 �

1

r2
h

◆"
�̃

�0

�
1

r2
h
⇤2

�Q

Qext

#
�

r
2�̃

�0

,

0 = rµr⌫�̃� gµ⌫r
2�̃� ⇤2gµ⌫�̃ . (3.48)

up to the order O(( r�rh
rh

)2) and O((�/�0)2). We introduced the dilaton shifted as

�̃ = �+ �q where

�q = �

✓
⇤2 �

1

r2
h

◆
�Q

Qext

�0

⇤2

. (3.49)

If we consider a four-dimensional black hole large and neglect terms suppressed by L/rh,

then we end up with the same equations of motion as the magnetic case (3.27)(3.28)

but with an additional shift of the dilaton by �q. At the leading order in �, they also

reduce to the equations of motion of the JT model. We have an AdS2 solution for the

metric up to corrections of the order O( r�rh
rh

) and O(�/�0).

Next we try to see how the metric deviates from AdS2 in the presence of the dilaton

�̃. The strategy is the same as the magnetic case. Using the AdS2 metric (3.9) obtained

by solving at the leading order, we can obtain a solution for the dilaton �̃ just like the

magnetic case as

�̃ = 2�0

r � rh
rh

, (3.50)

where we choose the normalization constant �b so that total dilaton  2 takes a simple

form as follows

 2
'
�0

4⇡

✓
1 +

�Q

Qext

◆✓
1 + 2

r � rh
rh

◆
'

Q

Qext

r2 . (3.51)

When we consider a large black hole in four dimensions, we can show that the deviation

of the metric from the AdS2 obeys the following form

ds2 = �f(r)dt2 +
1

f(r)
dr2 ,

f(r) =
(r � r+)(r � r�)

L2

2

✓
1�

4

3

r � rh
rh

◆
, (3.52)
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which is consistent with the ansatz (3.43) by taking the constant c as c = 4/3. This is

also consistent with (3.33) and (2.28).

Near-Horizon Expansion at the Level of Action

We now construct the linearized action which captures small deviations from the ex-

tremal throat for the electric solution in the canonical ensemble just in the same way

as we derived the JT model. Linearly expanding the action Ielectric
GC

and the neglecting

the kinetic term of  under the same philosophy as the JT model, we obtain

ĨJT-Max =
1

2GN

Z

M
d2x

p
�g +

1

16⇡GN

Z

M
d2x

p
�g(�0 + �)

�
R� 2⇤� 4⇡F 2

�

= IJT �
1

16⇡GN

Z

M
d2x

p
�g(�0 � �)

✓
⇤2 �

1

r2
h

◆
�

1

4GN

Z

M
d2x

p
�g(�0 + �)F

2 .

(3.53)

This action seems to only contain linear terms in � and the higher terms are correctly

truncated, but that is not the case. In Appendix A, we performed the analyses of the

action (3.53), then we found the equations of motion derived from the action (3.53)

inevitably contain the infinitely higher order terms in �. Thus this action fails to

truncate the higher order terms “self-consistently”: if we plug the solution of this

“linearized” action back into itself, the higher order terms inevitably come in. The

reason why that happens is that the solution for field strength contains the (total)

dilaton in its denominator as we saw in (3.45). Then if we expand it around a constant

�0, infinitely many higher order terms appear. In this case, we also wish to only capture

small corrections (linear order) to the extremal field strength

4⇡F 2

0
= �2Q2

ext
/4⇡r4

h
= ⇤2 �

1

r2
h

. (3.54)

Hence, we expand the field strength as

Fµ⌫ = (F0)µ⌫ + F̃µ⌫ = 2@[µ(A0)⌫] + 2@[µÃ⌫] (3.55)

by decomposing the gauge potential Aµ = (A0)µ + Ãµ. Here F̃ captures corrections

of order �/�0 relative to F0. Then we re-expand the bulk action (3.53) to the linear

order in both � and F̃ , the resulting action takes the following form

IJT-Max = IJT �
1

16⇡GN

Z

M
d2x

p
�g(�0 � �)

✓
⇤2 �

1

r2
h

◆

�
1

4GN

Z

M
d2x

p
�g
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i
. (3.56)
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We treat A0 as a dynamical field, however, our prescription is that the solution is always

chosen to yield precisely the extremal field strength in (3.54). This action (3.56) leads

to the following equations of motion

0 = @µ(
p
�g�0F

µ⌫

0
) (3.57)

0 = @µ(
p
�g[�0F

µ⌫ + �(F0)
µ⌫ ]) (3.58)

0 = R� 2⇤2 �

✓
4⇡F 2

0
� ⇤2 +

1

r2
h

◆
(3.59)

0 = rµr⌫�� gµ⌫r
2�� ⇤2gµ⌫��

1

2

✓
⇤2 �

1

r2
h

◆
gµ⌫(�0 � �)

+ 2⇡(�0 + �)
�
4(F0)µ�(F0)⌫

�
� gµ⌫F

2

0

�
+ 4⇡�0

⇣
2(F0)µ�F̃

�

⌫
+ 2F̃µ�(F0)⌫

�
� gµ⌫F

⇢�

0
F̃⇢�

⌘
.

(3.60)

The first equation comes from the variation of the gauge field Ãµ, and the second

equation is derived from the variation with respect to (A0)µ. The third and the fourth

equations are derived from the variations with respect to � and gµ⌫ respectively. The

first equation can be solved as (F0)µ⌫ = C✏µ⌫ . There is a family of constant solutions

parametrized by C, but as we explained above, we are interested in expanding the field

strength around its extremal value, then we focus on the solution

(F0)µ⌫ =
Qext

�0

✏µ⌫ , (3.61)

where we choose the constant �0 = 4⇡r2
h
. We can see that if we plug this solution into

the third equation (3.59), we obtain the equation R = 2⇤2, thus the solution (3.61)

leads to the AdS2 geometry with the cosmological constant ⇤2. Moreover, by using the

solution for (F0)µ⌫ , we can show the following equality

2⇡(�0 + �)
�
4(F0)µ�(F0)⌫

�
� gµ⌫F

2

0

�
=

1

2

✓
⇤2 �

1

r2
h

◆
gµ⌫(�0 + �), (3.62)

then the sum over the third term, the fourth term in the first line and the first term

in the second line of (3.60) gives �gµ⌫�/r2h. The second equation (3.58) for the field

strength F̃ gives the solution of the following form

F̃µ⌫ =


�Q

�0

�
Qext

�2

0

�

�
✏µ⌫ , (3.63)

where we used the solution for (F0)µ⌫ (3.61). Notice that we assumed that F̃µ⌫ to be

very small, at most of the order O(�/�0), thus we introduced a small parameter �Q
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which scales as �Q/Qext . O(�/�0). It is interesting to see the total field strength

Fµ⌫ = (F0)µ⌫ + F̃µ⌫ is given by

Fµ⌫ =
Qext

�0


1 +

�Q

Qext

�
�

�0

�
✏µ⌫ (3.64)

then if we define the “total charge” as Q ⌘ Qext + �Q, this agrees with the solution

(3.45) linearly expanded with respect both to � and �Q. Since we can find that the

following combination gives

4⇡�0

⇣
2(F0)µ�F̃

�

⌫
+ 2F̃µ�(F0)⌫

�
� gµ⌫F

⇢�

0
F̃⇢�

⌘

=

✓
⇤2 �

1

r2
h

◆
gµ⌫

�Q

Qext

�0 � gµ⌫

✓
⇤2 �

1

r2
h

◆
� , (3.65)

thus we end up the equations

0 = R� 2⇤2 (3.66)

0 = rµr⌫�̃� gµ⌫r
2�̃� gµ⌫⇤2�̃. (3.67)

with the background of the Maxwell fields

(F0)µ⌫ =
Qext

�0

✏µ⌫ , F̃µ⌫ = �
Qext

�2

0

✓
�̃�

1

r2
h
⇤2

�Q

Qext

�0

◆
✏µ⌫ , (3.68)

where we introduced the dilaton shifted as �̃ = �+�q. The equations of motions we ob-

tained reproduce the solution (3.45) and equations for the metric and the dilaton (3.48)

at the leading order of �. The equations (3.3) (3.48) reduces the equations of the JT

model with replacement �! �̃. Thus we found that the action (3.56) self-consistently

truncates the higher order terms in � correctly reproduces the equations of motion de-

rived from the full action (3.38) at the leading order. Thus the two-dimensional dilaton

gravity theory (3.56) can be regarded as the counterpart of the JT model in the electric

case and it correctly captures the physics of the four-dimensional electrically charged

black holes in the grand canonical ensemble.

Comments on the Dimensional Reduction of the Dyonic Black Holes

We finally comment on the dimensional reduction of the dyonic black holes which have

both the electric and magnetic charges. We take the following ansatz for the metric

and the components of the field strength

ds2 = ĝµ⌫dx
µdx⌫ = gabdx

adxb + 2d⌦2

2
,

Frt 6= 0 , F�✓ 6= 0 . (3.69)
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We can use this ansatz and obtain the solution of the form

F =
Qext

4⇡
sin ✓d� ^ d✓ . (3.70)

where we set Qm = Qext for simplicity. Then integrating out the spherical degrees part

of the integral, we obtain the follwing two-dimensional action

Idyonic =
1

4GN

Z

M
d2x

p
�g

✓
 2R + 2(r )2 + 2� 2 2⇤�

8⇡Q2

ext

 2
� 4⇡ 2F 2

◆
.

(3.71)

It might be interesting to explore the following linearized theory

Idyonic = IJT �
1

4GN

Z
d2x

p
�g(�0 + �)F

2 . (3.72)

The action simply describes the JT model coupled to the field strength Fµ⌫ . This action

yields the following equations of motion

0 = @µ(
p
�g(�0 + �)F

µ⌫) (3.73)

0 = R� 2⇤2 � 4⇡F 2 (3.74)

0 = rµr⌫�� gµ⌫r
2�� gµ⌫⇤2�+ 2⇡(�0 + �)

�
4Fµ�F⌫

�
� gµ⌫F

2
�
. (3.75)

Unlike the IJT and IJT�Max, it seems that these equations do not reduce to the equations

of the JT model even after we keep the terms of the linear order in �.

If we plug the solution for Fµ⌫ back into the action (3.71), the higher order terms

show up in the same reason as the electric case. Therefore to obtain self-consistent

truncated theory, we further expand the Maxwell field as (3.55) the same as we did for

the model IJT-Max. Then we obtain the action

Idyonic = IJT �
1

4GN

Z

M
d2x

p
�g
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i
. (3.76)

This action yields the following equations of motion

0 = @µ(
p
�g�0F

µ⌫

0
) (3.77)

0 = @µ(
p
�g[�0F

µ⌫ + �(F0)
µ⌫ ]) (3.78)

0 = R� 2⇤2 � 4⇡F 2

0
(3.79)

0 = rµr⌫�� gµ⌫r
2�� gµ⌫⇤2�+ 2⇡(�0 + �)

�
4(F0)µ�(F0)⌫

�
� gµ⌫F

2

0

�

+ 4⇡�0

⇣
2(F0)µ�F̃

�

⌫
+ 2F̃µ�(F0)⌫

�
� gµ⌫F

⇢�

0
F̃⇢�

⌘
. (3.80)
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Similarly to the previous arguments, we can find solutions for (F0)µ⌫ and F̃µ⌫ as

(F0)µ⌫ =
Qext

�0

✏µ⌫ , F̃µ⌫ =


�Q

�0

�
Qext

�2

0

�

�
✏µ⌫ . (3.81)

Plugging these solutions back into the equations (3.79) and (3.80)

0 = R� 2⇤̃2 (3.82)

0 = rµr⌫�̃� gµ⌫r
2�̃� gµ⌫⇤̃2�+

1

3
gµ⌫⇤̃2�0 , (3.83)

where we redefined the AdS scale as ⇤2 ! ⇤̃2 = ⇤2 + 2⇡F 2

0
= 3⇤2/2 and shifted the

dilaton as � ! �̃ = � �
2�Q

3Qext

�0. We can see that the second equation di↵ers from

that of the JT model at the order O(1).
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3.4 Semiclassical Duality between the Dimensionally Reduced Theories

We dimensionally reduced the action (2.1) in a magnetically and an electrically charged

black hole and obtained the action (3.20) and (3.38) respectively. From these actions,

we derived linearized actions (3.34)(3.56) which are given by

IE
JT

= �
�0

16⇡GN

Z

M
d2x

p
gER�

1

16⇡GN

Z

M
d2x

p
gE� (R� 2⇤2) (3.84)

IE
JT-Max

= IE
JT

+
1

16⇡GN

Z

M
d2x

p
gE(�0 � �)

✓
⇤2 �

1

r2
h

◆

+
1

4GN

Z

M
d2x

p
gE
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i
. (3.85)

where IE
JT

and IE
JT-Max

are the action of the JT model and the linearized action derived

from the electric solution in the Euclidean regime respectively. In the previous sub-

sections, we confirmed that these actions reproduce the equations of motions derived

from the original action (3.20) and (3.38) at the leading order. We already discussed

how the duality between the magnetic solutions and the electric solutions in four di-

mensions appear in the gravitational system. The important point was that if we put

them in the same ensemble, the on-shell actions evaluated on the magnetic and electric

solutions are equivalent. Let us remind ourselves that the magnetic solutions described

by the Einstein-Maxwell action (2.1) are in the canonical ensemble. Since the action

of the JT model is derived from such solutions described by (2.1) in the near-extremal

near-horizon limit, thus it is expected to capture the s-wave physics in the near-horizon

region of the near extremal black holes in the canonical ensemble. On the other hand,

the electrically charged solutions described by the action (2.1) are in the grand canonical

ensemble. Since the dimensionally reduced action (3.88) is derived from such solutions,

thus it can describe the near horizon physics of near-extremal electrically charged black

holes in the grand canonical ensemble. In this subsection, we will compare these two

actions and confirm the semi-classical electromagnetic duality is reproduced by the two

dimensional actions. Let us take a solution of the two dimensional Maxwell field F with

the extremal charge Q = Qext and then we have the following solutions with respect to

(F0)µ⌫ and F̃µ⌫

(F0)µ⌫ =
Qext

�0

✏µ⌫ , F̃µ⌫ = �
Qext

�2

0

�✏µ⌫ ,

(A0)t =
Qext

�0

(r0 � r0
+
) , Ãt = �

Qext

2�2

0

�b(r
02
� r02

+
) . (3.86)
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We plug the solution back into the original action and obtain the on-shell value of the

linearized Maxwell action of the following form

IMax =
1

4GN

Z

M
d2x

p
gE
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i

=
1

16⇡GN

Z

M
d2x

p
gE(�0 � �)

✓
⇤2 �

1

r2
h

◆
. (3.87)

This leads to the following on-shell action of the theory IJT-Max

IE
JT-Max

��
F0,F̃ :on-shell

= IE
JT

+
1

8⇡GN

Z

M
d2x

p
gE(�0 � �)

✓
⇤2 �

1

r2
h

◆
. (3.88)

Clearly, it deviates from the action of the JT model. It is not strange since we derived

these actions from di↵erent ensembles. In four dimension, by introducing the Maxwell

boundary term

IMax,bdy = �
1

GN

Z

@M
d3x
p
�̂EF

µ⌫

e
nµAe,⌫ . (3.89)

we can describe the electrically charged black holes in the canonical ensemble and

confirm the equivalence between the on-shell actions evaluated on the magnetic and

the electric solutions. Here we will play the same game in two dimension by introducing

the two dimensional counterpart of the Maxwell boundary term in four dimensions. The

most natural candidate here is the action

IMax,bdy = �
1

GN

Z

@M
d⌧

p
�⌧⌧nµ

h
(�0 + �)F

µ⌫

0
(A0)⌫ + �0(F

µ⌫

0
Ã⌫ + F̃ µ⌫(A0)⌫)

i
.(3.90)

where �⌧⌧ is the metric on the boundary of the manifold @M. Indeed by the variation

of the action IJT-Max + IMax,bdy with respect to the Maxwell field gives

�(IJT-Max + IMax,bdy)

= (terms giving equations of motion)

�
1

GN

Z

@M
d⌧

p
�⌧⌧
h
�(F µ⌫

0
nµ)[(�0 + �)(A0)⌫ + �0Ã⌫ ] + �(F̃ µ⌫nµ)�0(A0)⌫

i
, (3.91)

Thus vanishing condition of the boundary term fixes the electric charge both for F0

and F̃ . Thus in this subsection we take the boundary term (3.90) and consider the

action IJT-Max + IMax,bdy which describes the solution with the fixed charge. When the

Maxwell field satisfies the equation of motion

0 = rµ(�0F
µ⌫

0
) , 0 = rµ(�0F

µ⌫ + �(F0)
µ⌫) (3.92)
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we have the following equality

(�0 + �)F
2

0
+ 2�0F

µ⌫

0
F̃µ⌫ = 2rµ

h
(�0 + �)F

µ⌫

0
(A0)⌫ + �0(F

µ⌫

0
Ã⌫ + F̃ µ⌫(A0)⌫)

i
.

(3.93)

Then by the Stokes’ theorem, we can convert the Maxwell boundary term into the bulk

term as

IMax,bdy|F0,F̃ :on-shell
= �

1

2GN

Z

M
d2x

p
gE
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i

= �
1

8⇡GN

Z

M
d2x

p
gE(�0 � �)

✓
⇤2 �

1

r2
h

◆
. (3.94)

Here we used the solutions for F0 and F̃ in the second equality. Thus we can confirm

the on-shell equivalence between the action of the JT model and the action IJT-Max

with the Maxwell boundary term

IJT-Max + IMax,bdy|F0,F̃ :on-shell
= IJT . (3.95)

This implies that two theories are equivalent at least semi-classically GN ! 0

ZJT[g,�] =

Z
Dgµ⌫D�e

�I
E
JT

⇡ ZC

JT-Max
[g,�, A0, A] =

Z
Dgµ⌫D�DA0DAe�I

E
JT-Max

�I
E
Max,bdy , (3.96)

thus electromagnetic duality is indeed hidden in the two-dimensional actions while we

no longer have the magnetic solutions since there are no spherical degrees of freedom.

For the later purpose, let us define the chemical potential associated with the

Maxwell fields (A0)µ and Ãµ in general case �Q 6= 0 as

µ0 =
1

GN

lim
r!rc

(A0)t , µ̃ =
1

GN

lim
r!rc

Ãt. (3.97)

for gauge fields with a general �Q 6= 0

(F0)µ⌫ =
Qext

�0

✏µ⌫ , F̃µ⌫ = �
Qext

�2

0

✓
�̃br

0
�

1

r2
h
⇤2

�Q

Qext

�0

◆
✏µ⌫ ,

(A0)t =
Qext

�0

(r0 � r0
+
) , Ãt = �

Qext

�2

0

✓
1

2
�̃b(r

02
� r02

+
)�

1

r2
h
⇤2

�Q

Qext

�0(r
0
� r0

+
)

◆
.

(3.98)

The simple calculations lead to

IMax,bdy = �(µ0Q+ µ̃Qext) (3.99)
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where we used the fact that the Euclidean time is periodic under ⌧ ! ⌧ + � and Q is

the “total charge” defined as Q = Qext + �Q. Since when we consider the linearized

action, we are neglecting the terms O((�/�0)2) and we assumed �Q/Qext . O(�/�0),

we can rewrite the above relation as

IMax,bdy = �µQ (3.100)

up to O((�/�0)2) by defining the chemical potential for the total gauge potential

Aµ = (A0)µ + Ãµ as µ = µ0 + µ̃. We will use this expression in subsection 3.6.
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3.5 Universality of the JT model

In this subsection, we will take the general form of the dimensionally reduced action

which describes the AdS2 spacetime and discuss the (non-)universality of the JT model

both at the level of the equation of motion and the action. Similar arguments are found

in [102]. It is known that a large number of situations we obtain the dimensionally

reduced action which takes the form of

I =
1

4GN

Z

M
d2x

p
�g
�
 2R + � (r )2 � U( 2)� f( 2)F 2

�
. (3.101)

First we consider the situation where we have f( 2) = 0 . In this case, the action is

simplified to

I =
1

4GN

Z

M
d2x

p
�g
�
 2R + � (r )2 � U( 2)

�
. (3.102)

Such an action arises for example from the magnetically charged black holes described

by the action (2.1) by identifying the parameter � and the function U( 2) as

� = 2 , U( ) = �2� 6
 2

L2
+

8⇡Q2

m

 2
. (3.103)

In this subsection, we keep � and U( 2) in general. The equations of motion for the

action (3.102) are given by

0 = R� @ 2U( 2)� �
r

2 

 
,

0 = rµr⌫ 
2
�r

2 2gµ⌫ �
1

2
U( 2)gµ⌫ � �rµ r⌫ + gµ⌫

�(r )2

2
. (3.104)

Motivated by the fact that the near horizon geometry of extremal black holes is AdS2,

we will demand that the action has a constant solution 4⇡ 2 = �0 which describes the

AdS2 spacetime R = 2RAdS with a negative constant RAdS < 0. In that case, (3.104)

reduces to

U(�0) = 0 ,

@ 2U(�0) = RAdS < 0 . (3.105)

Now, we consider a small deviation from the constant solution (3.105) as

 2 =
�0 + �

4⇡
, (3.106)

such that �/�0 ⌧ 1. This small expansion leads to the following bulk action 5

I ⇡
�0

16⇡GN

Z

M
d2x

p
�gR +

1

16⇡GN

Z

M
d2x

p
�g� (R�RAdS) (3.107)

5The contribution coming from the kinematic term is also neglected.
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This allows us to see that an equation of the form (3.102) leads quite generally to

the JT model by demanding (3.105). In the particular case where we come from the

dimensional reduction of an extremal magnetically charged Reissner-Nordström black

hole and we have (3.103), we can show that the constant solution is given by

�0 = 4⇡r2
h

(3.108)

where rh is the position of the event horizon of the extremal black hole. In order to

do this, notice that the charge parameter of the extremal black hole can be written in

terms of rh as

Q2

ext
= 4⇡

✓
r2
h
+ 3

r4
h

L2

◆
. (3.109)

Hence, replacing (3.109) in the first equation of (3.105) we get that the constant solution

is indeed (3.108). Moreover, using the second equation in (3.105), we find

RAdS = �
2

L2

2

= 2⇤2 , (3.110)

with

L2

2
=

L2

6 + L2/r2
h

. (3.111)

With the Maxwell Field

Equivalence at the Level of Equations of Motion

We next consider more general case where the dimensionally reduced action has dy-

namical Maxwell field F in two dimension

I =
1

4GN

Z

M
d2x

p
�g
�
 2R + � (r )2 � U( 2)� 4⇡f( 2)F 2

�
. (3.112)

This situation arises when we derive the action from the electrically charged black hole

with identifications

� = 2 , U( 2) = �2� 6
 2

L2
, f( 2) =  2 . (3.113)

The action (3.112) leads to the following equations of motion

0 = @µ
�p

�gf( 2)F µ⌫
�
, (3.114)

0 = R� @ 2U( 2)� 4⇡@ 2f( 2)F 2
� �

r
2 

 
= 0

0 = rµr⌫ 
2
�r

2 2gµ⌫ �
1

2
U( 2)gµ⌫ � 4⇡f( 2)

✓
1

2
F 2gµ⌫ + 2Fµ�F

�

⌫

◆

� �rµ r⌫ + gµ⌫
�(r )2

2
. (3.115)
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Solving for the gauge field assuming that
p
�g =const. , yields

F µ⌫ =
Q✏µ⌫

4⇡f( 2)
(3.116)

and inserting it back in (3.114) leads to

0 = R� @ 2U( 2) + 2@ 2f( 2)
Q2

4⇡f( 2)2
� �

r
2 

 
, (3.117)

0 = rµr⌫ 
2
�r

2 2gµ⌫ �
1

2
U( 2)gµ⌫ �

Q2

4⇡f( 2)
� �rµ r⌫ + gµ⌫

�(r )2

2
.

We then see that equations (3.117) are the same as (3.104) if we redefine

U( 2) ! U( 2) +
2Q2

4⇡f( 2)
. (3.118)

Notice that, if we consider the specific case of the Reissner-Nordström black hole,

this redefinition leads to a precise matching between (3.113) with (3.103) by idetifying

Q = Qm.

Di↵erence at the Level of Action

Now that we see the equivalence of the equations of motions derived from the action

(3.102) and (3.112), next let us consider the di↵erence between them at the level of the

o↵-shell action. We consider a constant solution 4⇡ 2 = �0 and F 2 = F
2

0
, leading to

the equations of motion

U(�0)� 4⇡f(�0)F
2

0
= 0 ,

RAdS � @ 2U(�0)� 4⇡@ 2f(�0)F
2

0
= 0 . (3.119)

Inserting this information in (3.112) and considering a small deviation from the constant

solution as

 2 =
�0 + �

4⇡
,

Fµ⌫ = (F0)µ⌫ + F̃µ⌫ (3.120)

such that �/�0 ⌧ 1, F̃ /F0 ⌧ 1. We have

4⇡ 2R ⇡ (�0 + �)R (3.121)

U( 2) ⇡ U(�0) +
�

4⇡
@ 2U(�0) = 4⇡f(�0)F

2

0
+
�

4⇡
@ 2U(�0) . (3.122)
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4⇡f( 2)F 2
⇡ 4⇡f(�0)F

2

0
+ �@ 2f(�0)F

2

0
+ 8⇡f(�0)F

µ⌫

0
F̃µ⌫ . (3.123)

Notice that joining two of the expression, we have

U( 2) + 4⇡f( 2)F 2
⇡ RAdS

�

4⇡
+ (4⇡f(�0)� �@ 2f(�0))F

2

0

+ (4⇡f(�0) + �@ 2f(�0))F
2

0
+ 8⇡f(�0)F

µ⌫

0
F̃µ⌫ . (3.124)

Then we have the following bulk action

I ⇡IJT �
F

2

0
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Z

M
d2x

p
�g(4⇡f(�0)� �@ 2f(�0))
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2

0
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0
F̃µ⌫

i
. (3.125)

Let us fix the function f by considering the one that comes from the dimensional

reduction. In this case, assuming �0 = 4⇡r2
h
as before, we can see that the first

equation in (3.119) implies

4⇡F2

0
= �

6

L2
�

2

r2
h
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1

r2
h

. (3.126)

Again, the second equation in (3.119) implies (3.110). Moreover, considering the par-

ticular action that comes from the dimensional reduction, we see that it leads to

I ⇡IJT �
1

16⇡GN

Z

M
d2x
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�g(�0 + �)

✓
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1
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◆
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0
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i
. (3.127)
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Figure 3: Left: The Penrose diagram of the Reissner-Nordström black hole solution

of the Einstein-Maxwell theory (2.1) and its near horizon region, whose geometry is

approximated to AdS2 ⇥ S2. Right: The AdS2 solution of the two-dimensional dilaton

gravity theories (3.128)(3.129) depicted in the global AdS coordinate. For both figures,

the singularity is depicted with the zigzag lines colored in red. They share the com-

mon causal structure. If we let us remind ourselves that the theories (3.128)(3.129)

are derived from the near horizon region of the four-dimensional Reissner-Nordström

solution, we should also restrict AdS2 geometry within the region (colored in green)

which corresponds to the near horizon region in the four-dimensional black hole. This

restriction introduces a finite radial cut-o↵ of the AdS2 geometry drawn with the blue

curves.

3.6 Nearly AdS2 Solution

In the previous subsections, we see that the sectors which only contain the metrics and

the dilatons of the dimensionally reduced theories

IJT =
�0

16⇡GN

Z

M
d2x

p
�gR +

1

16⇡GN

Z

M
d2x

p
�g� (R� 2⇤2) (3.128)

IJT-Max = IJT �
1

16⇡GN

Z

M
d2x

p
�g(�0 � �)

✓
⇤2 �

1

r2
h

◆

�
1

4GN

Z

M
d2x

p
�g
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i
(3.129)
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are both described by the equations of motion in the JT model as

R� 2⇤2 = 0 , (3.130)

rµr⌫�̃�gµ⌫r
2�̃� gµ⌫⇤2�̃ = 0 . (3.131)

while the actions depend on what type of charge and what kind of ensemble from

which we derive the dimensionally reduced theories6. In this subsection, we describe

the solution to these equations and implications for the thermodynamics of the solutions

(for related arguments, see [39, 103]).

To make the variation principle well defined and obtain the equations of motion

above, we should fix the boundary condition. We choose the Dirichlet boundary

condition which fixes the boundary value of the metric and the dynamical dilation

�� = ��tt = 0. We write the values of them on the boundary @M : r = rc as

�tt|@M = �
r2
c

L2

2

�̃|@M = �̃b = �̃brc . (3.132)

with some positive constant �̃b as we take rc ! 1. The first equation (3.130) implies

that the theories describe the AdS2 spacetime with a radius L2

2
= �1/⇤2. It turns out

that the most general solution to the second equation (3.131) is given by

�̃ = Z ·X = Z�1X
�1 + Z0X

0 + Z1X
1 (3.133)

where Z is an arbitrary vector in the embedding space and Y is a vector which represents

a point in the AdS2 spacetime X = (X�1, X0, X1) . From this form of the solution,

we can see that the dilaton is constant along the intersections of the embedded surface

with a hypersurface which is normal to the vector Z. Notice that the AdS boundary

is sitting at the spacelike infinity X1
! ±1. If we take a spacelike vector Z, our

boundary condition (3.132) contradicts with the behavior of the solution (3.133) since

on one of the boundaries X1
! ±1, the dilaton takes a large negative value. Therefore

we take a timelike vector Z. Using the SO(1, 2) symmetry, we can take Z0 = Z1 without

loss of generality. Thus we can take

�̃ =
�̃h

L2

X�1 . (3.134)

In the global coordinate (3.5), we can express it as

�̃ = �̃h

cos ⌧

cos ⌘
(3.135)

6Notice that for the JT model, we have �q = 0, and thus �̃ reduces to �.
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and in the shifted Rindler (Reissner-Nordström-like) coordinate (3.7) as

�̃ =
�̃h

p
µ
(r � rh) . (3.136)

Notice that �̃h denotes the value of the dynamical dilaton at the horizon r = rh +
p
µ.

As depicted in Figure3, this solution represents the Reissner-Nordström like black hole

spacetime with two horizons where the dilaton takes value �̃ = ±�̃h. The horizon

can be characterized by the condition @U �̃ = @V �̃ = 0 where (U, V ) is the light-cone

coordinate which is defined in the coordinate (3.7) as U = t� r⇤(r) and V = t+ r⇤(r)

with the tortoise coordinate r⇤

r⇤ = �

Z 1

r

dr

f(r)
. (3.137)

In the four-dimensional black hole, a light ray moving inside the apparent horizon

toward the future direction feels the area the sphere  2 shrinking and having a hunch

that it will inevitably hit the singularity where the area of the sphere becomes zero.

On the other hand, if it is traveling outside the horizon, it feels the area expanding as

it moves in the future direction. Thus the apparent horizon can be characterized as

the position where the area of the sphere is unchanged along the null direction. This

condition reduces to @U �̃ = @V �̃ = 0 in two dimensions, and we can see that it actually

coincides with the horizon of the coordinate (3.7). We could expect that the black hole

singularity in this theory is sitting at the position of  2 = 0 i.e,

�̃ =
�̃h

p
µ
(r � rh) = �̃h

cos ⌧

cos ⌘
= �q � �0 , (3.138)

and it can be spacelike when T >
p
µ

2⇡L
2

2

�0��q

�̃h
and null when T =

p
µ

2⇡L
2

2

�0��q

�̃h
and the

timelike when T <
p
µ

2⇡L
2

2

�0��q

�̃h
as depicted in Figure4.

Restriction to the Near-Horizon & Near-Extremal

Here let us remind ourselves that we study two-dimensional theories(3.128)(3.129) as

dimensionally reduced theories derived from the near horizon limit of the near-extremal

black holes. Under the assumption that we restrict ourselves in the near horizon re-

gion, we neglected higher order term in �/�0. Therefore the spacetime region beyond

�/�0 < 1 is no longer precisely captured by the actions (3.128)(3.129). Thus we restrict

the spacetime region which satisfies

�̃ =
�̃h

p
µ
(r � rh) ⌧ �0 (3.139)
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Figure 4: The positions of the black hole singularity depicted in the global AdS

spacetime. It can be spacelike, null or timelike according to the black hole temperature.

If we let us remind ourselves that the theories (3.128)(3.129) are derived from the

near-extremal Reissner-Nordström black holes, the temperature is very small and the

singularity would sit at a timelike curve (at least it is outside of the near horizon region

depicted in Figure 3).

and moreover, to keep the near extremality we also demand

�̃h ⌧
�̃h

p
µ
rc . (3.140)

Thus when we treat the theories (3.128)(3.129) as the dimensionally reduced theories

which capture the near-horizon near-extremal physics in the four-dimensional black

holes, we should restrict ourselves on the region

�̃h ⌧
�̃h

p
µ
rc ⌧ �0 . (3.141)

This implies that we cannot send rc to the infinity and we should cut o↵ the spacetime

at finite radial position r = rc before the �̃ becomes too large as first pointed out in

[40]. This one-dimensional cut-o↵ surface plays a role of the physical boundary of the

AdS2 spacetime. This cutout spacetime only has SL(2) symmetry as the asymptotic

symmetry of AdS2 while before we cut o↵ we have full conformal (reparametrization)

symmetry. As we explained in the introduction, on the one-dimensional boundary of

AdS2 the stress tensor has only one component, and if there is the full reparametrization

symmetry on the boundary, we have the traceless condition on the stress tensor and it

implies the theory has not finite excitations above the vacuum. On the other hand, the
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spacetime cut-o↵ reduces the symmetry to the subgroup SL(2) of the full conformal

symmetry and allows the theory to have finite energy excitations. This fact is also

important in the SYK model and we will see that our actions (3.128) (3.129) reduce

to the Schwarzian action which is invariant under SL(2) and governs the low energy

dynamics of the SYK model in the following section. This cutout AdS2 spacetime is

also called the nearly AdS2 and sometimes written as NAdS2 in short in the literature.

Notice that the black hole singularity placed at (3.138) is outside of the region

(3.141) where the theory is reliable as the dimensionally reduced theory. Before one

hits the singularity the higher order corrections in � will dominate over the leading

order physics described by (3.128)(3.129), and the spacetime descriptions governed by

the equations (3.130)(3.131) are no longer available.

Thermodynamics

Here we discuss the thermodynamic properties, namely, we aim to compute the tem-

perature, the entropy and the mass of the black holes solutions described by the actions

IE
JT

= �
�0

16⇡GN

Z

M
d2x

p
gER�

1

16⇡GN

Z

M
d2x

p
gE� (R� 2⇤2) (3.142)

IE
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= IE
JT

+
1

16⇡GN

Z

M
d2x

p
gE(�0 � �)

✓
⇤2 �

1

r2
h

◆

+
1

4GN

Z

M
d2x

p
gE
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i
. (3.143)

which describe the AdS2 geometry with the dilaton profile

�̃ = �+ �q = �̃b

r0

r0
c

. (3.144)

Notice that here we should set �q = 0 for the JT model. In this subsection, we sloppily

write �̃ as � for both theories for simplicity. In subsection 3.4, we saw that the on-

shell (Euclidean) action of IJT-Max is equivalent to the JT action by adding the Maxwell

boundary term

IMax,bdy = �
1

GN

Z

@M
d⌧

p
�⌧⌧nµ

h
(�0 + �)F

µ⌫

0
(A0)⌫ + �0(F

µ⌫

0
Ã⌫ + F̃ µ⌫(A0)⌫)

i

.(3.145)

The temperature is proportional to the surface gravity  = @rf(r+)/2 and expressed as

T =
1

4⇡
@rf(r+) =

p
µ

2⇡L2

2

. (3.146)
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Identifying the parameter
p
µ = �rh, we can find that the solutions to the theories

(3.142) (3.143) have the same temperature as the four-dimensional black hole (2.24)

from which the theories are derived.

To derive other thermodynamic quantities, we need to evaluate the Euclidean on-

shell actions IE by wick rotating ⌧ = it. Let us remind that the action IE
JT

or (at

least semi-classically) equivalently the action IE
JT-Max

+ IE
Max,bdy

describes the solutions

in the canonical ensemble thus the partition function can be written in terms of the

Helmholtz free energy F as

ZC = e��F . (3.147)

Since the partition function can be expressed as the Euclidean path-integral and semi-

classically we can approximate it by the saddle point which is given by the Euclidean

on-shell action evaluated on the black hole solution

�F ⇡ IE
JT

��
on-shell

= (IE
JT-Max

+ IE
Max,bdy

)
��
on-shell

. (3.148)

Let us remind that the Helmholtz free energy F can be written in terms of the mass,

temperature and the entropy as

�F = �M � S . (3.149)

On the other hand, the theory IE
JT-Max

describes the solutions in the grand canonical

ensemble and its partition function is written by the Gibbs free energy G

ZGC = e��G . (3.150)

Using the same logic as above, semi-classically, the partition function is approximated

by the exponential of the Euclidean on-shell action and we have

�G ⇡ IE
JT-Max

��
on-shell

. (3.151)

Notice that the Gibbs free energy G can be expressed as

�G = �M � S � �µQ (3.152)

where µ is the chemical potential for the total gauge potential Aµ. Let us remind

ourselves that we can rewrite the Maxwell boundary term as (3.100)

IE
Max,bdy

= �µQ , (3.153)
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Therefore we can confirm that the relation between the Helmholtz free energy F and

the Gibbs free energy G

F = G+ µQ (3.154)

and the relation between IE
JT

and IE
JT-Max

IE
JT

= IE
JT-Max

+ IE
Max,bdy

(3.155)

are consistent with each other. Since for both theories: IJT and IJT-Max, the entropy is

given by

S = �2
@F

@�
= �2

@G

@�
= �2

@

@�
IE
JT
/� , (3.156)

thus we will focus on evaluating the on-shell action of the JT model. Including the

Gibbons-Hawking-York boundary term, the Euclidean action of the JT model can be

written as

IE
JT

= �
�0

16⇡GN

Z

M
d2x

p
gER + 2

Z

@M
K

�

�
1

16⇡GN

Z

M
d2x

p
gE� (R� 2⇤2) + 2

Z

@M
�K

�
(3.157)

The extrinsic curvature K is computed via

K = r↵n
↵ , (3.158)

where n↵ is the outward directed normal vector to the boundary. The term in the first

line is purely topological IE
top

and we can evaluate it as

IE
top

= �
�0

16⇡GN

Z

M
d2x

p
gER + 2

Z

@M
K

�
= �

�0

4GN

(3.159)

The bulk term in the second line of (3.157) is zero by putting the solution of the

equation R = 2⇤2, thus as a result we obtain

IE
JT

��
on-shell

= �
�0

4GN

�
1

8⇡GN

Z

@M
�K . (3.160)

Using the definition of the extrinsic curvature (3.158), we can evaluate the on-shell JT

action as

IE
JT

��
on-shell

= �
�0

4GN

�
�b�

8⇡GNL2

2

(rc � rh) , (3.161)
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where we write the boundary value of the dynamical dilaton �b ⌘ �|@M. To subtract

the divergent part appeared as we send rc ! 1, we introduce the boundary counter

term

Ict =
1

8⇡GNL2

Z

@M

p
�⌧⌧�b

=
�b�

p
f(rc)

8⇡GNL2

. (3.162)

This prescription for subtracting the divergence when rc ! 1 is common in the context

of the AdS/CFT correspondence [104]. Since we can evaluate the divergent factorp
f(rc) as

p
f(rc) ⇡

rc � rh
L2

✓
1�

µ

2(rc � rh)2

◆
, (3.163)

thus we obtain

(IE
JT

+ Ict)
��
on-shell

= �
�0

4GN

�
�b

p
µ

8GNr0c
. (3.164)

up to higher order in µ. We can compute the entropy of the two-dimensional system

as7

S = �
@

@T
T (IE

JT
+ Ict)

��
on-shell

=
1

4GN

(�0 + �h) , (3.165)

where we used �h = �b

p
µ. Here S0 = �0/4GN is the extremal entropy associated to

the grand state of the black hole and S = �h/4GN is the entropy associated to �, i.e,

the small deviations from the extremality. Notice that the sum of �0 and �h gives the

area of the black hole in four dimensions, thus it reproduces the Hawking-Bekenstein

formula for the black hole entropy. The mass is computed via M = (IE
JT

+ Ict + S)/�

and the result can be expressed as

M =
�bµ

16⇡GNL2

2
r0
c

. (3.166)

One can see that the mass in the dimensionally reduced theories in two dimensions

corresponds to the deviation of the mass (2.27) away from extremality in the four-

dimensional Reissner-Nordström black hole with an identification of a parameter �b/r0c =

8⇡rh.
7In the case of the theory IJT-Max, �h in the expression of the entropy should be replaced by

�h + �q.
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4 Relation to the Sachdev-Ye-Kitaev model

4.1 The Sachdev-Ye-Kitaev model

We investigate the relation between the two-dimensional dilaton gravity theories ana-

lyzed in the previous section and the so-called Sachdev-Ye-Kitaev (SYK) model [42–

45]. The SYK model is the one-dimensional quantum mechanical model of Majorana

fermions. It is extensively studied recently since it is solvable in the strong coupling

and large N limit. Since it shows the chaotic behavior, it is also expected to capture

the black hole physics in two dimensions holographically. We review the SYK model

in this subsection [36, 45] and we will see the relation to the dimensionally reduced

theories in the next subsection. The Hamiltonian of the SYK model is written as

H = iq/2
NX

1q1···iqN

Ji1···iq i1
· · ·  iq , (4.1)

where  is the Majorana fermion and Ji1···iq is a random coupling chosen from the

Gaussian distribution with zero mean and variance

hJ2

i1···iqi =
J2(q � 1)!

N q�1
. (4.2)

Originally, this model was proposed in the case q = 4 by Kitaev [42, 43] and it was

generalized to an arbitrary number of q by Maldacena et. al in [45]. We first derive the

master equation of the bi-local fields G and ⌃ which governs the large N dynamics of

the SYK model. We will work on the Euclidean signature. We define the sum of the

time ordered two-point functions

G(⌧) =
1

N

X

i

Gij(⌧) , (4.3)

where Gij is defined as

Gij ⌘ hT i(⌧) j(0)i = ✓(⌧)h i(⌧) j(0)i � ✓(�⌧)h i(0) j(⌧)i . (4.4)

In the free theory limit J = 0, we have

Gfree

ij
(⌧) =

1

2
�ijsgn⌧ , Gfree

ij
(!) =

Z
d⌧ei!⌧Gfree

ij
(⌧) = �

1

i!
�ij , (4.5)

where we also wrote the Fourier transformed version of Gfree

ij
. Now let us compute the

two-point function using this free propagator, The corrections come from the taking

into account of the interaction of the Hamiltonian (represented in real lines) and the

averaging with respect to the disorder (represented in dashed lines) as Figure 5.
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Each diagram is called a melon diagram. Notice that each link corresponding to

the disorder average scales like J2.

Figure 5: Diagrams which compute the corrections to the two-point function. The

two-point function in the free limit is depicted with the solid line. Dashed lines represent

the averaging over disorder. We write this in the case of q = 4,

We can summarize these simple diagrams in the following self-consistency equations

Figure 6: Diagrams which represent the self-consistency condition between the full

two-point function G and the one particle irreducible contributions ⌃ in the q = 4 case.

where ⌃(⌧, ⌧ 0) is a self-energy, which includes all the one particle irreducible contribu-

tions to the propagator. We can write these self-consistency equations as

1

G
= @⌧ � ⌃ , ⌃(⌧, ⌧ 0) = J2G(⌧, ⌧ 0)q�1 . (4.6)

We can derive the above equations as the classical equations of motion derived from

the saddle point of path-integral with respect to an action of the bi-local fields G and

⌃ in the large N limit. The original Euclidean path-integral of the SYK model can be
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written as

ZSYK

=

Z
dJijklexp

"
�

N3

2 · 3!J2
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#Z
D iexp
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 i@⌧ i +
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Jijkl i j k l

!#
.

(4.7)

The Gaussian integration over the random coupling Jijkl can be easily performed and

as a result, we have the path-integral of the following form

ZSYK
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Z
D iexp

"
�
1

2

Z
d⌧
X

i
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Z Z
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X

i

 i(⌧) i(⌧
0))4
#
, (4.8)

where in the second line we used the property  2

i
(⌧) = 0.

We insert the following expression of “1”

1 =

Z
DG�(NG(⌧, ⌧ 0)�

X

i

 i(⌧) i(⌧
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 i i
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(4.9)

in the path-integral. Here we regard G and ⌃ as dynamical fields to be path-integrated.

Then we obtain the following expression for the partition function

ZSYK

=

Z
D iDGD⌃exp
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�
1
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Z
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i

 i@⌧ i +

Z Z
d⌧d⌧ 0
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N

X

i

 i i

!!#
.

Performing the fermion path-integral leads to the determinant (det(@⌧ � ⌃))N/2, then

we finally obtain the partition function expressed by the path-integral over the bi-local

fields G and ⌃ as

ZSYK =

Z
D iDGD⌃e�NI[G,⌃] (4.10)

with the action of G and ⌃ of the following form

I[G,⌃] = �
1

2
log det(@⌧ � ⌃) +

1

2

Z Z
d⌧d⌧ 0(⌃G�

1

4
J2G4) . (4.11)
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Here N plays a role of ~�1 and the in the large N limit, the saddle point approximation

is valid. As a result, we obtain the set of equations (4.6) as the equations of motion for

the action (4.11).

First we compute the two-point functions by solving the equations (4.6) in the IR

limit. Since J has the dimension of the energy, in the IR limit we can discard the low

frequencies compared to J . This corresponding to discarding @⌧ in the equations (4.6)

in the coordinate space. Then we have a set of equations
Z

d⌧ 00G(⌧, ⌧ 00)⌃(⌧ 00, ⌧ 0) = ��(⌧ � ⌧ 0) , ⌃(⌧, ⌧ 0) = J2G(⌧, ⌧ 0)q�1 . (4.12)

in the IR limit. Notice that these equations are invariant under the reparametrizations

⌧ ! f(⌧) provided the fields transforms as

G(⌧, ⌧ 0) ! [f 0(⌧)f 0(⌧ 0)]�G(f(⌧), f(⌧ 0)) , ⌃(⌧, ⌧ 0) ! [f 0(⌧)f 0(⌧ 0)]�(q�1)⌃(⌧, ⌧ 0) .(4.13)

with � = 1/q. Therefore these two fields both transforms like the conformal two-point

functions with � = 1/q. Then we obtain the solution to the equations (4.12) of the

same form as the two-point function in the conformal theory in a line as

Gc(⌧) =
b

|⌧ |2�
sgn(⌧) , (4.14)

where the constant b can be calculated as

bq =
1

⇡J2

✓
1

2
�

1

q

◆
tan

⇡

q
. (4.15)

Notice that this reparametrization (two-dimensional conformal) symmetry, which maps

solutions to solutions is emergent symmetry in the IR obtained by discarding the deriva-

tive term @⌧ in the equations (4.6). The symmetry is explicitly broken by the existence

of the derivative term. This is the expression in the Euclidean Poincaré coordinate,

and if we perform a reparametrization as f(⌧) = tan ⇡⌧

�
, we can obtain the expression

in the Euclidean Rindler coordinate

Gc(⌧) = b

"
⇡

� sin ⇡⌧

�

#2�
sgn(⌧) . (4.16)

where the solution looks thermal, i.e, it is periodic under ⌧ ! ⌧+�. The reparametriza-

tions of the solution above are also other solutions. The SL(2,R) transformation

⌧ !
a⌧ + b

c⌧ + d
, ad� bc = 1 (4.17)
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keep the form of the solution (4.14) invariant. Therefore, the reparametrization sym-

metry is also spontaneously broken to SL(2,R). This is similar to the situation where

in two-dimensional conformal field theory which has the full Virasoro symmetry, since

the vacuum breaks a part of the symmetry and it is only invariant under its SL(2,R)
subgroup, thus two-point functions on the vacuum is also invariant under the SL(2,R)
symmetry. If we are away from the strict IR point, we will see the violation of the

reparametrization symmetry suppressed by 1/�J .

Schwarzian Action

The SYK model has the emergent reparametrization symmetry in the IR limit, which

also corresponds to the strong coupling limit �J ! 1. Therefore there are directions

of the path integration where the pre-factor of the action is lowered by 1/�J and which

describes the dynamics of the reparametrization modes f(⌧). We will find the action

which governs such dynamics. Since in the action (4.11) we have a reparametrization

invariant part

1

2

Z Z
d⌧d⌧ 0(⌃G�

1

4
J2G4) ⇢ I[G,⌃] , (4.18)

thus we can consider the e↵ective action which takes in the e↵ect of the reparametriza-

tion of the following form

Ie↵ [f ] = �
1

2
log det

�
@⌧ � ⌃

f

⇤
�
+

1

2
log det(@⌧ � ⌃⇤) (4.19)

where ⌃⇤ denotes the true saddle point and ⌃f

⇤ is its reparametrization.

Now we formally expand the e↵ective action with respect to @⌧ , then we obtain

Ie↵ [f ] ⇡
1

2
(Tr[@⌧ (⌃

f

⇤)
�1])� Tr[@⌧ (⌃⇤)

�1])

=
1

2
(Tr[@⌧G

f

⇤ ])� Tr[@⌧G])

= �
1

2

Z
d⌧d⌧ 0@⌧ 0�(⌧ � ⌧ 0)(@⌧G

f

⇤(⌧, ⌧
0)� @⌧G(⌧, ⌧ 0)) (4.20)

where in the second line we used (⌃f

⇤)
�1 = Gf

⇤ +O(@⌧ ) and (⌃⇤)�1 = G⇤+O(@⌧ ). More

precisely, in order to avoid divergences, we have to replace the delta function �(x) by a

smooth function �✏(x) which approaches to the delta function in the limit ✏ ! 0 [36].

At the same time, we have to smoothen all the derivatives of the theory as we did above

and use the solution G⇤✏ of such an alternative theory instead of the original one G⇤,
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but here we neglect such subtleties. Since we have

Gf

⇤(⌧, ⌧
0)�G⇤(⌧, ⌧

0) =


f 0(⌧)f 0(⌧ 0)

(f(⌧)� f(⌧ 0))2

�1/q
sgn(⌧ � ⌧ 0)�

1

|⌧ � ⌧ 0|2/q
sgn(⌧ � ⌧ 0)

⇡ |⌧ � ⌧ 0|2�2/q


1

12q
Sch(f, ⌧) +O(⌧ � ⌧ 0)

�
(4.21)

with the Schwarzian derivative Sch(f, ⌧) defined by

Sch(f, ⌧) = �
1

2

f 002

f 02 +

✓
f 00

f 0

◆0

, (4.22)

we finally obtain the so-called Schwarzian action

Ie↵ [f ] /
1

J

Z
d⌧Sch(f, ⌧) . (4.23)

The 1/J suppression means that these modes are easily excited in the region 1 ⌧ �J ⌧

N . Therefore the pattern of the conformal symmetry breaking of the SYK model near

the IR limit is governed by the Schwarzian action. We will see in the next subsec-

tion that the Schwarzian action can be also obtained from the dimensionally reduced

theories we derived in section 3 in the bulk side Thus SYK model shares the same mech-

anism of the conformal symmetry breaking as the AdS2 geometry. The interpretation

of the conformal symmetry breaking in the AdS side will be explained in subsection 4.2.

Thermodynamics

Finally we will make a brief comment on the thermodynamics of the SYK model to

compare with the AdS2 black holes. At the large N limit, the free energy F is calculated

by the saddle point approximation

�F/N = � logZSYK/N ⇡ �
1

2
log det(@⌧ � ⌃⇤) +

1

2

Z Z
d⌧d⌧ 0(⌃⇤G⇤ �

1

q
J2Gq) ,

where we generalized the action (4.11) to an arbitrary even integer q. We have an exact

solution in the large q limit [45]

G =
1

2
sgn(⌧)e

g(⌧)
q�1 with eg(⌧)/2 =

cos ⇡v

2

cos[⇡v
2
(1� 2⌧

�
)]
, �J =

⇡v

cos ⇡v

2

, (4.24)

where J =
p
qJ/2

q�1

2 . Using this solution, we can evaluate the free energy as [36, 45]

��F = ��E + S (4.25)
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where the energy E and the entropy S is given by

E = �
NJ

q2
sin

⇡v

2
, S = N

✓
1

2
log 2�

⇡2v2

4q2

◆
. (4.26)

Since we can expand v in 1/�J as

v = 1�
2

�J
+

4

(�J )2
�

(24 + ⇡2)

3(�J )3
+ · · · , (4.27)

thus the ground state energy and entropy, and the first order corrections of them are

given by

E0 = �
NJ

q2
, �E =

N⇡2

2q2J �2
, S0 = N

✓
1

2
log 2�

⇡2

4q2

◆
, �S =

N⇡2

2q2J �
(4.28)

The most interesting feature here is that we have ground state (zero temperature)

entropy S0 of the order N . The leading contribution N

2
log 2 can also be explained as

follows. In the large q limit, theory essentially approaches a free theory J = 0 which

is seen from the expansion of (4.24) in 1/q: G = 1

2
sgn(⌧)(1 + g(⌧)/q + · · ·) and the

corresponding quantity in the free limit (4.5). When J = 0, the Hamiltonian vanishes

H = 0 and all the states in the Hilbert space whose dimension is 2N/2 is degenerate at

the ground state, thus the ground state entropy becomes N

2
log 2. One might think that

the ground state degeneracy is an unusual thing, but is necessary for the SYK model

to describe the black hole microstates quantum mechanically. The ground state � = 1

corresponds to the extremal black hole. Thus the ground state degeneracy explains

how the SYK model can describe quantum black holes which have the microstates of

the extremal black hole in the classical limit. It might be interesting to compare these

results with the corresponding quantities in the bulk two-dimensional dilaton gravity

theories which describe the black holes in the nearly AdS2 spacetime.

�M =
�b⇡L2

2

2GN�2
, S0 =

�0

4GN

, �S =
�b⇡L2

2

2GN�
. (4.29)

Since we expect to have the relation N ⇠ L2

2
/GN , we can see the interesting coincidence

in the thermodynamic quantities between the SYK model and the gravitational theories

except for the lack of the ground state energy in the bulk side, which we neglected

because of divergences.

To summarize this subsection, the SYK model shares the same thermodynamic

behavior with the bulk gravitational theories and as another important property, it

has emergent reparametrization symmetry at the strict IR limit. As we saw, the

reparametrization symmetry is spontaneously broken by the vacuum and also explicitly
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broken away from the IR point by that the reparametrization modes acquires the ac-

tion, so-called the Schwarzian action. The breaking patterns of the reparametrizations

are governed by the action.

In the next subsection, we will see how the Schwarzian action appears the gravity

side and how we can interpret the breaking of the reparametrization symmetry in the

gravitational picture.
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4.2 Bulk Dynamics of the Schwarzian Action

In order to find the relation between the dimensionally reduced theories and the

Schwarzian action which describes IR dynamics of the SYK model, let us remind our-

selves the following action of the JT model

IJT =
�0

16⇡GN

Z

M
d2x

p
�gR + 2

Z

@M
K

�

+
1

16⇡GN

Z

M
d2x

p
�g� (R� 2⇤2) + 2

Z

@M
�(K � 1)

�
, (4.30)

where we subtracted “�1” from the extrinsic curvature by adding the boundary counter

term (3.162). The linearized theory derived from the dimensional reduction from the

electric solutions in the grand canonical ensemble is given by the following action

IJT-Max = IJT �
1

16⇡GN

Z

M
d2x

p
�g(�0 � �)

✓
⇤2 �

1

r2
h

◆

�
1

4GN

Z

M
d2x

p
�g
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i
. (4.31)

First let us consider the topological part of the JT model

Itop
JT

=
�0

16⇡GN

Z

M
d2x

p
�gR + 2

Z

@M
K

�
. (4.32)

It gives the same number as long as we consider the same topology of the manifold.

We have a large amount of symmetry generated by zero modes of this action. In order

to see that more explicitly, we choose the Poincaré coordinate

ds2 = L2

2

�dt̃2 + dz2

z2
. (4.33)

We write the proper time on the boundary z = ✏ as u and parametrize the boundary

trajectory by u

(t̃(u), z(u)) . (4.34)

As we did in subsection 3.6 in the Rindler coordinate, we choose the Dirichlet boundary

condition which fixes the boundary value of the metric and the dynamical dilation

�� = ��t̃t̃ = 0. We write the values of them on the boundary @M : z = ✏ as

�uu|@M = �
L2

2

✏2

�|@M =
�b

✏
. (4.35)
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Figure 7: The gravitational dynamics in the two-dimensional dilaton gravity theories

reduces to the dynamics of the boundary trajectory which is governed by the Schwarzian

action (left picture). The solution of the Schwarzian action nicely fits a finite radial

cut-o↵ r = rc in the Rindler coordinate (right picture). We can obtain the thermal

solution of AdS2 purely from the boundary dynamics.

with some positive constant �b and we take ✏ to be very small. The Dirichlet boundary

condition (4.35) relates time coordinate t̃ and radial coordinate z on the boundary as

z ⇡ ✏t̃0 +O(✏3) , (4.36)

thus the boundary position is determined a single function t̃(u). We can regard this

function as the dynamical mode of the gravitational system (4.30) and (4.31). The

topological part of the JT model is invariant under the choice of t̃(u). It can be

regarded as a symmetry under the reparametrizations t̃(u) ! f(u). While some of

the reparametrizations fix the boundary curve, most of them map a given boundary

trajectory to a di↵erent one. Since the isometry of the AdS2 is SL(2,R), thus the

SL(2,R) subgroup

t(u) !
at(u) + b

ct(u) + d
, ad� bc = 1 (4.37)

of all reparametrization fixes the shape of the boundary curve.

The dynamical part of the JT action

Idyn
JT

=
1

16⇡GN

Z

M
d2x

p
�g� (R� 2⇤2) + 2

Z

@M
�(K � 1)

�
(4.38)

plays a role of breaking the reparametrization symmetry down to SL(2,R). Notice that
in both actions the dynamical dilaton � appears linearly, thus it is essentially Lagrange
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multiplier. Performing the path-integral over � gives a constraint on the metric

R = 2⇤2 , (4.39)

for the JT model. Thus the metric is forced to be AdS2. For the model IE
JT-Max

, we

consider the situation where the gauge coupling g of the Maxwell field is very small

while keeping the Newton constant GN to be an arbitrary value for simplicity. In this

case, we can use the classical solution for F0 and performing the path-integral over �

also gives a constraint on the metric (4.39). Thus now we focus on the AdS geometry

and ignore the degrees of freedom of the Maxwell field.

Therefore the dynamical gravitational part of each action reduces to the Gibbons-

Hawking-York boundary term

Idyn
GHY

=
1

8⇡GN

Z

@M
�(K � 1) . (4.40)

Using the boundary condition (4.35) and the proper time u, one can express the bound-

ary term as

Idyn
GHY

=
�bL2

8⇡GN

Z

@M

du

✏2
(K � 1) . (4.41)

The most important observation here is that in the Poincaré coordinate, one can eval-

uate the extrinsic curvature and express it in terms of the Schwarzian derivative which

appears in the SYK model as well [40]!

K =
t̃0(t̃02 � z02 � z0z00) + zz0t̃00

(t̃002 � z02)3/2

= 1� ✏2Sch(t̃, u) +O(✏4) (4.42)

Here Sch(t̃, u) is the Schwarzian derivative defined by

Sch(t̃, u) = �
1

2

t̃002

t̃02
+

✓
t̃00

t̃0

◆0

. (4.43)

Thus the JT action also reduces to the Schwarzian action

Idyn
GHY

/ �
1

8⇡GN

Z

@M
du Sch(t̃, u). (4.44)

Notice that the Schwarzian action is invariant under the SL(2,R) transformations

Sch(t̃, u) ! Sch

✓
at(u) + b

ct(u) + d
, u

◆
, ad� bc = 1 (4.45)
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then we can see that the full reparametrization symmetry breaks down to the sub-

group SL(2,R) and the pattern of conformal symmetry breaking is governed by the

Schwarzian action.

Now we try to find the boundary curve which is the solution of the Schwarzian

action. The equation of motion becomes

⇥
Sch(t̃, u)

⇤0

t0
= 0 , (4.46)

then we should find the solution t̃0 6= 0 with a constant Schwarzian. To find a solution,

we move from the Poincaré coordinate to the Rindler coordinate via the map

t̃ = tanh
⇡

�
t , (4.47)

where 1/� =
p
µ/2⇡L2

2
. Schwarzian action can be written in terms of the Rindler time

t(u) as

Idyn
GHY

/ �
1

8⇡GN

Z

@M
duSch(t̃, u)

= �
1

8⇡GN

Z

@M
du


Sch(t, u) +

t02

2

�
. (4.48)

We see that when t0 = 0, we have Sch(t̃, u) = Sch(t, u), then the Schwarzian is constant

and we have a solution. The solution is expressed

t = u (4.49)

then for this solution the boundary sits along the flow of the Rindler time, i.e, the

constant r = rc slice. Since the Euclidean Rindler time is periodic with period �, this

solution describes the thermal (black hole) solution which we discussed in subsection

3.6.

We can summarize arguments in this section as follows. First we found that the

divergent behavior of the dilaton forces us to move the AdS boundary into the bulk

and as a result, the full reparametrization symmetry is broken. In the boundary theory

perspective, it corresponds to the situation where we move a little bit away from the

conformal fixed point by introducing the source term which corresponds to the dilaton

in the bulk, and which is the case for the SYK model as we saw. In the bulk side,

the gravitational dynamics reduces to the dynamics of the boundary trajectory in

the fixed AdS geometry. This is not surprising since dilaton gravity theories in two

dimensions have no propagating degrees of freedom. Both in the bulk and the boundary
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side, the symmetry is broken to SL(2,R) and the patterns of the symmetry breaking

are governed by the Schwarzian action. In the bulk side, di↵erent breaking patterns

correspond to the di↵erent boundary trajectories. In this way, we found a complete

match in the descriptions between the bulk dilaton gravity theory and the SYK model.
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Figure 8: Ryu-Takayanagi surface in the Poincaré coordinate in the AdS which cal-

culates the entanglement entropy in the CFT.

5 Holographic Complexity of NAdS2

In the last few years, a deep connection between spacetime geometry and quantum

information theoretic properties of the dual field theory has been found in the con-

text of the AdS/ CFT correspondence. The most famous example is the so-called

Ryu-Takayanagi formula [27] for the entanglement entropy which relates the spacetime

connectivity to the entanglement in the CFT by the following equality

SE(R) = min
@A=@R

AR

4GN

. (5.1)

Here SE(R) in the left hand side represents the entanglement entropy for the region R

in the CFTd and AR in the right hand side is the area of the co-dimension two spacelike

surface in the d+1-dimensional asymptotically AdS spacetime which is anchored on the

boundary of the region R. It is known that the entanglement entropy in the holographic

CFT can capture many interesting semi-classical gravitational properties.

It is natural to ask whether the entanglement in the CFT can explain all the

properties of the spacetime geometry in AdS. Let us consider the eternal black hole

which is described by the thermofield double state on the CFT

|TFDi =
1

p
Z

X

E

e��E/2
|EiL|EiR . (5.2)
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Figure 9: Left:The bulk picture corresponding to the thermofield double state in the

CFT. It is dual to the eternal black hole geometry in the AdS. We can consider two

ways of the time evolution generated by Htot or H̃tot. Each evolution corresponds to

the middle or the right picture in the bulk side. As seen from the picture, the Htot is

the symmetry of the state while H̃tot is not.

Here |EiL,R are energy eigenstates in the left/right CFT and � is the inverse temper-

ature and Z is the partition function of the system. A seen above, the thermofield

double state is expressed as an entangled state between the two CFTs. In the bulk,

it is dual to a wormhole spacetime with two asymptotically AdS regions connected by

the Einstein-Rosen bridge. The entanglement of the CFT state (5.2) is represented

as spacetime connectivity in the AdS side. This state has a time translation symme-

try which is generated by the sum of the Hamiltonian in the left and the right CFTs

Htot = HL �HR

(HL �HR)|TFDi = 0. (5.3)

In the bulk picture: Figure 9, this generator moves time “backward” on the left and

forwards on the right. Therefore the thermofield state is an “eternal” or static state

with respect to the total Hamiltonian Htot. On the other hand, we can also think the

time evolution with respect to the Hamiltonian H̃tot = HL+HR. It moves time forwards

both on the left and right as the right picture in Figure 9. Under this generator, the

thermofield double state is no longer invariant and time evolved state is expressed as

|TFD(tL, tR)i =
1

p
Z

X

E

e��E/2e�iE(tL+tR)
|EiL|EiR . (5.4)

If the system evolves in time, it reaches the thermal equilibrium after some time. Ther-

malization time is estimated by a polynomial of the number of the degrees of the system.

After the system is thermalized, many physical quantities, including the entanglement

entropy, saturates at their equilibrium values. In the bulk side, the saturation of the
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entanglement entropy can be explained as follows [105]. Let us consider taking region

R to be a sum of finite strips with width L on left and right sides and consider the min-

imal surface which extends from @R to the bulk which gives the entanglement entropy

via Ryu-Takayanagi formula. At early times the minimal surface extends to across the

black hole interior from one asymptotic region to the other, then it captures the time

evolution of the size of the black hole interior. After t becomes compatible with the

size of the region R, the minimal surface consists of two disconnected pieces and each

piece stays on each exterior region. Thus the entanglement entropy stops to probe the

evolution of the size of the black hole interior and saturates at some value. Even after

the entanglement entropy stops growing, the black hole interior is expected to continue

to grow forever at least classically as seen from the Figure 9. Thus it is natural to ask

whether there is a CFT quantity which can probe the time evolution of the size of the

black hole interior even after the thermalization.

Very recently, Susskind proposed that the eternal growth of the black hole interior

reflects the growth of the computational complexity of the quantum state in the CFT

rather than entanglement of the state [28, 29]. Computational Complexity is a notion

in the quantum information theory and it measures how di�cult it is to transform a

simple reference state | 0i to some other state | i. The complexity of the state | i is

roughly defined as the number of the elementary operations which one need to apply

to the reference state | 0i to get the state | i. Though a satisfactory definition of the

complexity for generic CFTs is not known yet, several interesting approaches have been

considered [75–88]. As a general property of the complexity, it is expected to continue

growing linearly in time for a very long time even after the thermalization. Therefore

it is expected to be holographic dual to the eternal growth of the black hole interior.

Conversely, for this reason, the size of the black hole interior in this context is called

“holographic complexity” in the literature.

Susskind and Brown et al. gave two di↵erent proposals for the holographic com-

plexity. One is called “Complexity=Volume” [28, 52](or CV in short) and the size of

the black hole interior at a time t = t0 is measured by the maximal volume of the

spacelike slice anchored at the boundary at a time t0

CV ⌘
1

GNL
max
⌃=@B

V(B) (5.5)

where L is an arbitrary length scale which we often take it to be the AdS scale and

the V is the volume of the slice ⌃ connecting two boundaries of the eternal black

hole which is anchored at t = t0 slice B on the boundary. Since we expect that the

complexity is proportional to the number of the degrees of freedom in the system,

thus it is proportional to the Newton’s constant GN in the bulk side. Moreover, it
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Figure 10: Complexity=Volume proposal (left) and the Complexity= Action proposal

(right). The red line in the left panel represents the maximal volume slice and the blue

region in the right panel represents the WDW patch.

should be a dimensionless quantity thus we should divide it by some length L. The

Complexity=Volume proposal has at least two shortcomings. One is that we have to

introduce an arbitrary length scale L in its definition. Another is that we don’t have

any particular reason why we should choose the maximal volume slice out of other

di↵erent spacelike slices.

The other proposal is “Complexity=Action” proposal [53, 54](or CA in short) that

the holographic complexity is given by the gravitational action IWDW evaluated on a

region of the spacetime called “Wheeler-DeWitt patch” (WDW patch), which corre-

sponds to the causal development of any of the bulk surfaces B, it is written explicitly

as8

CA ⌘ IWDW/~ . (5.6)

In this proposal, we don’t need to introduce a length scale L and we don’t have to

choose a special spacelike slice to compute the complexity either. Since we don’t have an

appropriate definition of the complexity in CFT side, it is not known yet which proposal

correctly leads to the behavior of the complexity of CFT or whether each proposal leads

to a di↵erent definition or interpretation of the complexity. However there have been

several checks which imply both of these definitions can be good candidates [28, 29, 53–

73] .

Compared with simple qubit systems where the suitable definition of complexity is

already known, the generic quantum field theories is so complicated that we still cannot

8In the literature, the Complexity=Action is defined as IWDW
⇡~ and it di↵ers from our definition by

a factor ⇡.

73



5 Holographic Complexity of NAdS2 Kanato Goto

find a good way to define it. Recently it was found that the so-called SYK model can

capture the gravitational physics in AdS2 holographically, and certain aspects of the

SYK models such as IR physics, 1/N corrections, and its generalizations and modifica-

tions e.t.c. have been extensively studied in the literature. The SYK model is a simple

quantum mechanical model of Majorana fermions, thus it can be considered as the most

appropriate model to start with when we consider the definition of the complexity in

the holographic context. We expect that to know about the complexity of the SYK

model becomes a starting point to look for a suitable definition of complexity in higher

dimensional CFTs and it will also shed light on the fundamental role of the complexity

in AdS/CFT.

In previous sections, we studied the dimensional reduction of the four-dimensional

electrically and magnetically charged black hole solutions and we derived two di↵erent

linearized two-dimensional actions: One for the magnetic solutions in the canonical

ensemble

Ibulk
JT

=
�0

16⇡GN

Z

M
d2x

p
�gR +

1

16⇡GN

Z

M
d2x

p
�g� (R� 2⇤2) , (5.7)

and the other for electric solutions in the grand canonical ensemble

Ibulk
JT-Max

= Ibulk
JT

�
1

16⇡GN

Z

M
d2x

p
�g(�0 � �)

✓
⇤2 �

1

r2
h

◆

�
1

4GN

Z

M
d2x

p
�g
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i
. (5.8)

We also found that both actions lead to the so-called Schwarzian action which describes

the IR physics of the SYK model. In this sense, it can be thought that both theories are

describing certain gravitational aspects of the SYK model holographically. Therefore

it is very important to know about the behavior of the holographic complexity of these

models in order to obtain information on the complexity of the SYK model. In this

section, we will compute the holographic complexity of the models (5.7)(5.8) both in

the CA and CV proposal.
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Figure 11: We compute the maximal volume which anchored at tR = tL = t/2 on the

boundary. The boundary point (tR, rc) corresponds to (⌘b, ⌧b) in the global coordinate.

The curve which gives maximal volume can be approximated to the geodesic up to the

order O(�/�0).

5.1 Complexity= Volume

In this section, we compute the holographic complexity of the JT model IJT and the

linearized theory IJT-Max derived from electric solution in the grand canonical ensemble

in the CV proposal

CV ⌘
1

GNL
max
⌃=@B

V(B) , (5.9)

i.e, using the volume of the maximal surface that goes through the wormhole. We

found that both theories lead to the (nearly) AdS2 solution

� = �b(r � rh)

ds2 = �
(r � r+)(r � r�)

L2

2

dt2 +
L2

2

(r � r+)(r � r�)
dr2 , (5.10)

in the Reissner-Nordstrom like coordinate and

� = �b

p
µ
cos ⌧

cos ⌘

ds2 = L2

2

�d⌧ 2 + d⌘2

cos2 ⌘
(5.11)

in the global coordinate. Therefore we should evaluate the maximal volume in the AdS2

background. We consider the maximal volume which is anchored at the time on the
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right boundary tR and the left boundary tL respectively. In this section, we focus on

the symmetric case where we vary t ⌘ tL + tR while fixing tL = tR for simplicity. Since

the volume of the co-dimension one surface becomes the length of the one-dimensional

curve, naively, one could just compute the volume of the maximal slice in this geometry

V =

Z
d�

p
�h , (5.12)

where h is the induced metric on the curve of which we compute the length. Clearly,

this is just given by the length of the geodesic in AdS2. However, since we want our

result to replicate one in the higher dimensional black hole, the most natural thing to

do is to consider the two-dimensional quantity which corresponds to the volume in the

higher dimensional spacetime. The volume in the four-dimensional spacetime can be

expressed as

V =

Z
d�d2⌦2

p
�h0 = 4⇡

Z
d�

p
�h 2 , (5.13)

where h0 is the induced metric on the three-dimensional surface of which we compute

the volume and h is again the induced metric on the curve. Thus we want to find the

curve that extremizes this integral and the compute the volume complexity via

CV =
1

GNL2

max
�

Z

�

d�
p
�h(�0 + �) . (5.14)

To compute the volume in the AdS2 geometry, it is convenient to use the global coordi-

nate (3.6). We parametrize the curve in term of ⌘ as (⌘, ⌧(⌘)), then the volume (5.13)

can be expressed as
Z

�

d�
p
�h(�0 + �) = L2

Z
⌘c

�⌘c

d⌘

cos ⌘

p
1� ⌧̇ 2[�0 + �(⌘, ⌧(⌘))] , (5.15)

where we write ⌧̇ ⌘
d⌧

d⌘
.

In order to consider the variation of the integral (5.15) to look for the extremal

curve, we define the following Lagrangian

L(⌘, ⌧, ⌧̇) =

p
1� ⌧̇ 2

cos ⌘
[�0 + �(⌘, ⌧(⌘))] (5.16)

This Lagrangian yields the following Euler-Lagrange equation

⌧̇ = �⌧̇

✓
�

�0

+ cot ⌘
d

d⌘

✓
�

�0

◆◆
+ (⌧̇ 2 � 1) cot ⌘

@

@⌧

✓
�

�0

◆
. (5.17)
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Figure 12: The growth rate of the volume complexity in the Jackiw-Teitelboim model.

It shows the linear growth at late times as expected. The growth rate approaches a

finite value which is proportional to the temperature of the system. Here, we set

�0 = �b = L2 = 1.

Therefore, we can see that the solution ⌧(⌘) should satisfy

⌧̇ = 0 (5.18)

up to O(�/�0), i.e, the solution is given by the geodesic at the leading order and the

corrections come from the order �/�0. Plugging this solution into (5.19), we have

CV =
1

GNL2

max
�

Z

�

d�
p
�h[�0 + �(⌘, ⌧(⌘))] .

=
1

GN

Z
⌘c

�⌘c

d⌘

cos2 ⌘
[�0 + �(⌘, ⌧b)] +O((�/�0)

2) . (5.19)

This shows that volume V can be written as the integral over the geodesic

max
�

Z

�

d�
p
�h[�0 + �] =

Z

geodesic

d�
p
�h[�0 + �] +O((�/�0)

2) , (5.20)

then it coincides with our naive definition of the volume in two dimensions (5.12).

Then one can easily compute the maximal volume anchored at a point (⌘b, ⌧b) on the

boundary as

CV =
�0

GN

log

✓
1 + sin ⌘b
1� sin ⌘b

◆
+

2�b

p
µ

GN

cos ⌧b tan ⌘b +O(µ) . (5.21)

Using the relation between two coordinate systems (3.9) and (3.6), we can see that

the first term grows linearly in t as �0

p
µt/GNL2

2
while the second term approaches
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some finite value when t ! 1. Thus at late times, the contribution from the extremal

degrees of freedom are the most relevant for the complexification. The growth of the

complexity approaches

lim
t!1

dCV
dt

= 2S0T (5.22)

as we take t ! 1. This result reproduces the higher dimensional result. Since we

neglect terms proportional to T 2 in our near-extremal approximation, thus the result

above reproduces the expected rate of the linear growth of complexity dC/dt = 2ST .

Proper Time on the Boundary

Above, we took the time derivative with respect to the coordinate time t, but more

generally we can consider the situation where the boundary does not sit on the line

r = rc in the coordinate (3.9), for example, see [40, 90, 106]. For the generic boundary

trajectory, we can use the proper time as the time on the boundary. In our case, the

only e↵ect of doing this is a constant redshift factor

dCA
du

=
1p
f(rc)

dCA
dt

, (5.23)

where u is the proper time.

5.2 Complexity= Action

In this section, we study the growth of the holographic complexity for the JT model

using the Complexity=Action conjecture

CA ⌘
IWDW

~ . (5.24)

Since the WDW patch is enclosed by the null boundaries, thus we especially need to

be careful about the boundary terms. First let us remind ourselves the prescription of

the CA proposal in four dimensions.

Dimensional Reduction Including Null Boundaries

In four dimensions, the most general form of the gravitational part of the action when

the boundary of the region of interest contains the null segment can be written as

Itot = Ibulk + Isurf + Ict . (5.25)

Here Ibulk is the bulk term which will be evaluated in the WDW patch. The next term

Isurf contains various surface terms needed to make the variational principle well-defined
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for the metric,

Isurf =
1

8⇡GN

Z

B
d3x
p

|h|K +
1

8⇡GN

Z

⌃

d2x
p
�⌘

+
1

8⇡GN

Z

B0
d� d2✓

p
�+

1

8⇡GN

Z

⌃0
d2x

p
�a ,

(5.26)

This contains the usual Gibbons-Hawking-York term [91, 92] for time-like and space-like

boundary segments, the Hayward terms [107, 108] for intersections of these segments

in the first line. We also have the GHY and joint terms introduced in [57] for null

boundary segments in the left part of the second line9. The coordinates ✓A label the

null hypersurface and � is a parameter along each generator. � is the cross-sectional

metric of a bundle of the null generators.  is a constant defined by the equation

k⇢
r⇢k

µ = kµ , kµ
⌘

dxµ

d�
(5.27)

where k is the future directed tangent vector on the null hypersurface. It measures the

failure of � to be an a�ne parameter on the null generators. The last term in (5.64) is

the joint terms whose contributions come from the intersections of the null boundaries.

� is the determinant of the metric induced at the intersection and a is defined as

a = ✏ log |ki · kj| , (5.28)

where ki, kj are the future directed tangent vectors associated with the hypersurfaces

i and j respectively. we take ✏ = 1 for the future and past corners and ✏ = �1 for the

left and the right corners. We also introduce the boundary counterterm

Ict =
1

8⇡GN

Z

B0
d� d2✓

p
�⇥ log (`ct⇥) , (5.29)

which is not needed for the variational principle, but it was introduced in [57] to ensure

reparametrization invariance on the null boundaries. Here `ct is an arbitrary constant

length scale and ⇥ is the expansion of the null boundary generators, which measures

the rate of change of the cross-sectional area
p
�d2✓ of a bundle of the null generators.

⇥ = @� log
p
� . (5.30)

In order to consider the counterparts of them in two dimensions, we will consider

the dimensional reduction of these terms. Generally, the bulk term reduces to

Ibulk =
1

4GN

Z

M
d2x

p
�g
�
 2R + � (r )2 � U( 2)� f( 2)F 2

�

�
1

2GN

Z

@M
dx

p
��nµ

rµ 
2 . (5.31)

9see [57] for a complete discussion.
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Notice that here we have a boundary term in the second line which arises from the bulk

action in four dimensions while we neglected this piece in the previous sections. The

GHY term gives rise to

IGHY =
1

2GN

Z

@M
dx

p
��nµ

rµ 
2 +

1

2GN

Z

@M

p
�h 2K , (5.32)

where the first term could cancel the boundary term that arises from the bulk action.

Even though the boundary term in (5.31) is canceled for spacelike and timelike bound-

aries, it survives for the WDW patch which is enclosed only by the null boundaries.

We can simplify this boundary term by turning it into a corner contribution

Ilap = �
1

2GN

Z

@M
dx

p
��nµ

rµ 
2

=
1

4⇡GN

(�0 + �)

����
f

l

+
1

4⇡GN

(�0 + �)

����
p

r

, (5.33)

where f , p, l and r label the value of � on the future, past, left and the right corners

of the WDW patch respectively. The GHY term for the null boundaries are given by

IGHY-null =
1

8⇡GN

Z

B0
d� d2✓

p
�

=
1

8⇡GN

Z

B0
(�0 + �) (5.34)

and the joint terms for the corners arising from the intersection of null boundaries are

Ijoint =
1

8⇡GN

Z

⌃0
dd�1x

p
�a

=
1

8⇡GN


(�0 + �)|f log |k1 · k2|+ (�0 + �)|p log |k3 · k4|

�

�
1

8⇡GN


(�0 + �)|r log |k2 · k3|+ (�0 + �)|l log |k4 · k1|

�
, (5.35)

where ki, kj are the future directed tangent vectors associated to the null line i and j

respectively (Figure 13). Finally, the boundary counterterm is calculated as

Ict =
1

8⇡GN

Z

B0
d� d2✓

p
�⇥ log (`ct⇥)

=
1

8⇡GN

Z

B0
d� (�0 + �)⇥ log (`ct⇥) . (5.36)
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Figure 13: The WDW patch anchored at tR = tL on the boundary. The outer and

inner horizons appear at r = r±.

where the expansion of the null generators are expressed in terms of the two-dimensional

quantities as

⇥ = @� log(�0 + �) . (5.37)

Complexity=Action in the Jackiw-Teitelboim Model IJT

Now we evaluate the Complexity=Action CA for the JT model. The JT model

admits the nearly AdS2 solution

� = �b(r � rh)

ds2 = �
(r � r+)(r � r�)

L2

2

dt2 +
L2

2

(r � r+)(r � r�)
dr2 , (5.38)

then we evaluate the action in the WDW patch on this background. We take the WDW

patch which is anchored on boundary r = rc at a time t = tL/2 = tR/2 as depicted

in Figure 13. We can see that the future edge will approach the inner horizon of the

black hole at late times and never touches the singularity while it does for the black

hole which has the spacelike singularity in higher dimensions. It is possible to show

that the equations for the meeting points in the interior are given by

t

2
+ r⇤(rc)� r⇤(r1

m
) = 0 ,

t

2
+ r⇤(rc)� r⇤(r1

m
) = 0 . (5.39)
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Using the definition of the tortoise coordinate, these equations imply

dr1
m

dt
=

f(r1
m
)

2
,

dr2
m

dt
= �

f(r2
m
)

2
. (5.40)

The action of the JT model in the WDW patch is given by

I = IJT
bulk

+ IGHY�null + Ilap + Ijoint + Ict , (5.41)

where the bulk term is expressed as

IJT
bulk

=
�

16⇡GN

Z

WDW

d2x
p
�gR +

1

16⇡GN

Z

WDW

d2x
p
�g� (R� 2⇤2) , (5.42)

and we also have the GHY term for the null boundaries of the WDW patch of the form

IGHY-null =
1

8⇡GN

Z

@WDW

(�0 + �) (5.43)

which is evaluated on the WDW patch and the joint term contributions and the bound-

ary counter term

Ilap + Ijoint + Ict =
1

4⇡GN

(�0 + �)

����
f

l

+
1

4⇡GN

(�0 + �)

����
p

r

+
1

8⇡GN


(�0 + �)|f log |k1 · k2|+ (�0 + �)|p log |k3 · k4|

�

�
1

8⇡GN


(�0 + �)|r log |k2 · k3|+ (�0 + �)|l log |k4 · k1|

�

+
1

8⇡GN

Z

@WDW

d� (�0 + �)⇥ log (`ct⇥) , (5.44)

evaluated at the edges and corners of the WDW patch. Using the reparametrization

invariance, we can choose an a�ne parametrization of null vectors such that  = 0 with

which we can throw all boundary contributions to the corners, then we have

IGHY-null = 0 . (5.45)

For simplicity, this is what we will always do below. Again due to the reparametrization

invariance, we can also impose the following condition on the null vectors

k · t̂ = c (5.46)
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for simplicity, where c is some constant and t̂ is the vector associated with the time in

the coordinate (3.9). More explicitly, the future directed tangent null vectors are given

by

1 : kµ@µ = ↵

✓
@t

f(r)
� @r

◆
, 2 : kµ@µ = ↵

✓
@t

f(r)
� @r

◆
,

3 : kµ@µ = ↵

✓
@t

f(r)
+ @r

◆
, 4 : kµ@µ = ↵

✓
@t

f(r)
+ @r

◆
,

(5.47)

for each null line where we are using the same normalization constant ↵ for every vector

for simplicity. Using this parametrization, contributions from the joint terms and the

boundary counterterm can be computed as

Ilap + Ijoint + Ict =�
1

8⇡GN


(�0 + �) log

✓
`2
ct
�2

b
|f(r)|

�2

0

◆
� 2�

�r1m

rc

�
1

8⇡GN


(�0 + �) log

✓
`2
ct
�2

b
|f(r)|

�2

0

◆
� 2�

�r2m

rc

. (5.48)

As expected, the ↵ dependence disappears in the final expression thanks to the existence

of the boundary counterterm. On the other hand, the bulk action can be simplified if

we put the on-shell value of the metric which satisfies R = 2⇤2 as

IJT
bulk

=
1

16⇡GN

Z

WDW

d2x
p
�gR =

⇤2

8⇡GN

Z

WDW

d2x
p
�g . (5.49)

This can be calculated easily and it is expressed as

IJT
bulk

=


�0

16⇡GN

log |f(r)|

�r1m

rc

+


�0

16⇡GN

log |f(r)|

�r1m

rc

. (5.50)

Notice that the most dominant contributions to the complexity at late times which

are proportional to �0 log |f(r)| are exactly canceled between the bulk term and the

other terms. This cancelation can be explained more generally by the fact that the

topological term in the JT action always gives zero contribution to the action

IJT
top

=
1

16⇡GN

Z

WDW

d2x
p
�gR�

1

8⇡GN


log |f(r)|

�r1m

rc

�
1

8⇡GN


log |f(r)|

�r2m

rc

= 0 , (5.51)

irrespectively of the shape of the WDW patch. Furthermore, even when the metric

deviates from the AdS2, the statement explained above still holds. We prove this in
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Appendix C. The time derivative can be determined by the dynamics of the future

and past boundaries of the WDW patch r1
m
and r2

m
via the relation (5.40), and we can

evaluate the growth rate of the complexity as

dCA
dt

= �
�b

16⇡2GN


f(r) log

✓
`2
ct
�2

b
|f(r)|

�2

0

◆�r1m

r2m

. (5.52)

At late times, points r1
m
and r2

m
approach r1

m
! r� and r2

m
! r+ respectively, and thus

it is easy to see that this leads to

lim
t!1

dCA
dt

= 0 . (5.53)

Surprisingly, we see that the JT action leads to a puzzling vanishing complexity growth

rate at late times. This is particularly surprising when we consider that the JT model

is supposed to capture the low energy dynamics of the SYK model, which is maximally

chaotic and hence expected to have non-trivial complexity growth for long times. Next

we will see whether we have the same behavior of the complexity growth for the di-

mensionally reduced theory IJT-Max in the CA proposal.

Complexity=Action in the Linearized Model IJT-Max

We discuss complexity=action for the dimensionally reduced theory derived from the

grand canonical ensemble. We evaluate the on-shell action The action of the JT model

in the WDW patch is given by

I = IJT-Max

bulk
+ IGHY�null + Ilap + Ijoint + Ict , (5.54)

where only the di↵erence from the case of the JT model comes from the bulk term

Ibulk
JT-Max

= Ibulk
JT

�
1

16⇡GN

Z

WDW

d2x
p
�g(�0 � �)(⇤2 � 1/r2

h
)

�
1

4GN

Z

WDW

d2x
p
�g
h
(�0 + �)F

2

0
+ 2�0F

µ⌫

0
F̃µ⌫

i
. (5.55)

Putting it on-shell, it gives

IJT-Max

bulk
= Ibulk

JT
�

�0

8⇡GN

Z

WDW

d2x
p
�g


1�

�

�0

+
�Q

Qext

�✓
⇤2 �

1

r2
h

◆
(5.56)

We found that the late-time growth rate of the holographic complexity vanished for the

JT model, and so in the theory IJT-Max, the late-time growth rate will come entirely
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from the time derivative of this term,

�
�0

8⇡GN

d

dt

Z

WDW

d2x
p
�g


1�

�

�0

+
�Q

Qext

�✓
⇤2 �

1

r2
h

◆

= �
�0

8⇡GN

✓
1 +

1

⇤2r2h

�Q

Qext

◆
r �

�br2

2�0

�r2m

r1m

✓
⇤2 �

1

r2
h

◆
. (5.57)

At late times, points r1
m

and r2
m

again approach r1
m

! r� and r2
m

! r+ respectively,

but this time there remains a finite contribution as

lim
t!1

dCJT-Max

A
dt

=
�0

p
µ

4⇡GN

✓
1 +

1

r2
h
⇤2

�Q

Qext

◆✓
⇤2 �

1

r2
h

◆
, (5.58)

This result nicely match the higher dimensional result (5.82) at the leading order, i.e,

to the order O(
p
µ) and O(�Q/Qext) while O(

p
µ�Q/Qext) terms disagree.

Only keeping the leading order of the near-extremal and the large black hole limit,

this reduces to

lim
t!1

dCJT-Max

A
dt

'
�0

p
µ

4⇡GNL2

2

= 2S0T . (5.59)

This result is equivalent to the late time growth in the Complexity=Volume proposal.

This result is natural since the result should reflect how the dual SYK model is com-

plexified by the time evolution, and it should be proportional to the entropy and the

temperature of the system. It might be intriguing to rewrite the late time behavior of

the complexity (5.59) defining the chemical potential defined at the inner and outer

horizon

µ� =
1

GN

lim
r!r�

((A0)t + Ãt) =
Qext

�0GN

✓
1 +

1

r2
h
⇤2

�Q

Qext

◆
(r0� � r0

+
) ,

µ+ =
1

GN

lim
r!r+

((A0)t + Ãt) = 0 , (5.60)

then we obtain the expression

lim
t!1

dCJT-Max

A
dt

= µ�Qext � µ+Qext . (5.61)

It is intriguing to compare this expression with the corresponding higher dimensional

one (5.87).

85



5 Holographic Complexity of NAdS2 Kanato Goto

Figure 14: The growth rate of the action complexity in the dimensionally reduced

theories. The solid lines correspond to the JT model IJT and the dotted lines correspond

to IJT-Max. As seen from the plots, the complexity of the JT model stops growing at late

times while for IJT-Max the complexity grows linearly and it growth rate approaches a

finite value which s proportional to the temperature. Here, we set �0 = �b = 1,

L2 = 1, `ct =
p
10 and rc = 3.

5.3 Comparison with Higher Dimensional Black Holes

In this section, we compare the results we show above with results in higher dimensional

Reissner-Nordström black holes in AdS. As we explained in the previous section, we

divide the action for four-dimensional Einstein-Maxwell theory in terms of the usual

Einstein-Hilbert and Maxwell actions, as well as various possible surface terms

Itot = IEH + IMax + Isurf + Ict + IµQ , (5.62)

where the first two terms are integrated over the bulk of the manifold of interest

IEH =
1

16⇡GN

Z

M
d4x

p
�g

✓
R̂ +

6

L2

◆
,

IMax = �
1

4GN

Z

M
d4x

p
�g Fµ⌫F

µ⌫ .

(5.63)

The next term Isurf contains various surface terms needed to make the variational

principle well-defined for the metric,

Isurf =
1

8⇡GN

Z

B
d3x

p
��K +

1

8⇡GN

Z

⌃

d2x
p
�⌘

+
1

8⇡GN

Z

B0
d� d2✓

p
�+

1

8⇡GN

Z

⌃0
d2x

p
�a ,

(5.64)
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The null surface counter term which is necessary to ensure reparametrization invariance

on the null boundaries is defined as

Ict =
1

8⇡GN

Z

B0
d� d2✓

p
�⇥ log (`ct⇥) . (5.65)

The final contribution in (5.62) is a boundary term for the Maxwell field

IµQ =
�

GN

Z

@M
d⌃µ F

µ⌫ A⌫ (5.66)

which changes the boundary conditions that must be imposed for consistency of the

variational principle.

For the calculations which are immediately following, we will drop the Maxwell

boundary term (5.66) by setting the parameter � = 0. That is, we examine the holo-

graphic complexity working with the action

I0 = Itot(� = 0) . (5.67)

With this action, we apply the CA proposal to study the holographic complexity for a

spherically symmetric dyonic Reissner-Nordstrom-AdS black hole whose metric is given

by

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2 (d✓2 + sin2 ✓d�2)

with f(r) = 1�
2GNM

r
+

Q2

e
+Q2

m

4⇡r2
+

r2

L2
. (5.68)

As indicated above, the black hole carries both electric and magnetic charges. The

corresponding Maxwell field strength and vector potential can be written as

A =
Qm

4⇡
(1� cos ✓) d�+

✓
Qe

4⇡r+
�

Qe

4⇡r

◆
dt ,

F =
Qe

4⇡r2
dr ^ dt+

Qm

4⇡
sin ✓ d� ^ d✓ . (5.69)

where Qe and Qm denote the electric and magnetic charges.

Following the conventions of [60], we write the tortoise coordinates for the black

hole spacetime (5.68), as

r⇤(r) = �

Z 1

r

dr̃

f(r̃)
. (5.70)

The Eddington-Finkelstein coordinates, v and u, for ingoing and outgoing rays (from

the right boundary), respectively, are given by

v = t+ r⇤(r) , u = t� r⇤(r) . (5.71)
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Complexity Growth

Next, we evaluate the growth rate of the holographic complexity for the dyonic black

hole (5.68). We anchor the WDW patch symmetrically on the left and right asymptotic

boundaries with tL = tR = t/2. The time evolution of the WDW patch can be encoded

in the time dependence of points where the null boundaries intersect in the bulk, i.e.,

the future boundaries meet at r = r1
m
(and t = 0) while the past boundaries, at r = r2

m

(and t = 0). The position of these meeting points is determined by [60]

t

2
� r⇤(r1

m
) = 0 ,

t

2
+ r⇤(r2

m
) = 0 , (5.72)

and then the rate at which these positions change is simply given by

dr1
m

dt
=

f(r1
m
)

2
,

dr2
m

dt
= �

f(r2m)

2
. (5.73)

Bulk contribution

We start by evaluating the time derivative of the two bulk terms in (5.63). With the

Reissner-Nordstrom geometry (5.68) and the Maxwell field (5.69), these terms yield

Ibulk = IEH + IMax =
1

4GN

Z

WDW

dr dt r2
✓
�

6

L2
+

2 (Q2

e
�Q2

m
)

4⇡r4

◆
, (5.74)

where we have used the trace of Einstein equations: R̂ = �
12

L2 . Notice that in the

Maxwell contribution (i.e., the second term in the integrand), the electric and magnetic

charges appear with opposite signs as we saw in the dimensionally reduced theories.

This fact is directly related to the vanishing of the late time rate of complexity for

magnetic black holes, as we will see below. Following [60, 63], the time derivative of

the bulk action reduces to the di↵erence of terms evaluated at the future and past

meeting points,

dIbulk
dt

=
1

2GN


r3

L2
+

Q2

e
�Q2

m

4⇡r

�r1m

r2m

. (5.75)

Joint contributions

To avoid the divergences, the WDW patch should be cut o↵ by a UV regulator surface

at some large r = rmax. However, the boundary contributions coming from this time-

like surface segment and the corresponding joints yield a fixed constant, i.e., they do

not contribute to the time derivative of the action. Further, with a�nely-parametrized

null normals (for which  = 0), the null surface term in (5.64) vanishes. This leaves
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only the joint terms at the meeting points, r = r1
m

and r2
m
. The final result for these

joint contributions is given by [60]

Ijoint = �
1

2GN


(r1

m
)2 log


|f(r1

m
)|

⇠2

�
+ (r2

m
)2 log


|f(r2

m
)|

⇠2

��
, (5.76)

where ⇠ is the normalization constant appearing in the null normals, i.e., k · @t|r!1 =

±⇠. In a moment, the addition of the counterterm (5.65) will eliminate the ⇠ dependence

of the action. Using (5.72), the time derivative of (5.76) becomes

dIjoint
dt

= �
1

4GN


2rf(r) log

|f(r)|

⇠2
+ r2@rf(r)

�r1m

r2m

. (5.77)

Note that at late times, r1,2
m

approach the horizons and so the first term above vanishes.

Hence only the second term contributes to the late-time growth rate.

Counterterm contribution

The boundary counterterm (5.65) requires evaluating the expansion scalar⇥ = @� log
p
�

in the null boundaries of the WDW patch and the final result is given by

Ict =
r2
max
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✓
4⇠2`2

ct

r2
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+ 1

�
(5.78)
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.

The term in the first line comes from the UV regulator surface and again only con-

tributes a fixed constant. Hence the time dependence comes only from the terms

evaluated at the meeting points in the second line. The time derivative of (5.78) has a

compact form,

dIct
dt

= �


rf(r)

2GN

log

✓
4⇠2`2

ct

r2

◆�r1m

r2m

. (5.79)

Again at late times, this contribution vanishes and so it only changes the transient
behavior in the growth rate at early times. It is useful to combine (5.77) and (5.3) to
explicitly see that the ⇠ dependence is eliminated,

d

dt
(Ijoint + Ict) = �

1

4GN


2rf(r) log


|f(r)|4`2

ct
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. (5.80)

Note that in contrast to (5.75), the electric and magnetic charges contribute with the

same sign above.
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Total growth rate

The growth rate of the holographic complexity is then given by the sum of eqs. (5.75)

and (5.80), which yields

dCA
dt

=
d

dt
(Ibulk + Ijoint + Ict) =

Q2

e

4⇡GNr

����
r
1
m

r2m

�
r f(r)
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log


|f(r)|4`2

ct

r2

�r1m

r2m

. (5.81)

At late times, the past and future meeting points meet the outer and inner horizons,

respectively, and so the second term vanishes. This leaves the surprising result

lim
t!1

dCA
dt

=
Q2

e

4⇡GN r

����
r�

r+

. (5.82)

Hence if we consider a purely magnetic black hole withQe = 0, the growth rate vanishes!

More generally, we might introduce (5.82) as

Q2

T
⌘ Q2

e
+Q2

m
and � ⌘

Qe

Qm

, (5.83)

which allows us to re-express (5.82) as

lim
t!1

dCA
dt

=
�2

1 + �2

Q2

T

4⇡GN r

����
r�

r+

. (5.84)

Now fixing QT , which fixes the spacetime geometry (e.g., r±), this expression reveals a

nontrivial dependence of this growth rate on �, the ratio of the electric and magnetic

charges. In particular, we see that as we put more of the charge QT into the magnetic

monopole with �! 0, the late-time growth rate shrinks to zero.

Figure 15 illustrates the full time-dependence of the growth rate, as we change the

ratio of the electric and magnetic charges while keeping the spacetime geometry fixed.

To compare with the dimensionally reduced theory IJT-Max, we consider the pure

electric case Qm = 0 and the consider the near-extremal black hole with extremal

charge Qe = Qext,

lim
t!1

dCA
dt

' 2S0T , (5.85)

which is agrees with the result (5.59). Moreover if we defined the chemical potential

µ± =
Qe

4⇡r±
, (5.86)

we can rewrite the result

lim
t!1

dCA
dt

= µ�Qe � µ+Qe . (5.87)
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Figure 15: The rate of change of complexity for the dyonic black hole given by (5.68),

with r� = 0.3 r+, L = 0.5 r+ and `ct = L. We fix the parameters that determine the

geometry, but vary the ratio between electric and magnetic charges. As predicted by

(5.82), when the charge is mostly magnetic, the growth rate of complexity approaches

zero at late times. The limit Qm ! 0 essentially matches the top curve for � = 10.

Similarly the Qe ! 0 and the � = 0.1 curves are indistinguishable on this scale.

The results presented here correctly reproduce the complexity growth of the dimen-

sionally reduced theories IJT and IJT-Max.

Maxwell Boundary Term

In the following, we will argue how the Maxwell boundary term changes the be-

havior of the complexity growth

IµQ =
�

GN

Z

@M
d⌃µ F

µ⌫ A⌫ . (5.88)

Let us remind ourselves that we use the Maxwell equations rµF µ⌫ = 0, then the

boundary term (5.88) can be converted into a bulk term via Stokes’ theorem as

IµQ

��
on shell

=
�

2GN

Z

M
d4x

p
�g F µ⌫Fµ⌫ , (5.89)

Thus combining (5.89) with IMax yields

IMax + IµQ

��
on-shell

=
2� � 1

4GN

Z

M
d4x

p
�g F µ⌫Fµ⌫ . (5.90)

Hence in evaluating the WDW action for the general action Itot(�), i.e., including the

contribution of the Maxwell boundary term in (5.62), the only change that has to be
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made to the previous calculation is to change the overall coe�cient of the Maxwell

contribution in (5.74). As a result, (5.75) is replaced by

d

dt
(Ibulk + IµQ) =

1

2GN


r3

L2
� (2� � 1)

Q2

e
�Q2

m

4⇡r

�r1m

r2m

. (5.91)

Subsequently, the final result for the late-time growth rate for the complexity be-

comes

lim
t!1

dCA
dt

=
((1� �)Q2

e
+ �Q2

m
)

4⇡GNr

����
r�

r+

. (5.92)

Therefore if we set � = 1, the dependence on the electric charge drops out of the

numerator and the late-time growth rate is primarily sensitive to the magnetic charge.

In particular then, with this choice of �, the late-time growth rate drops to zero for an

electrically charged black hole at late times.
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6 Summary and Future Directions

In this thesis we performed a comprehensive study of the dimensional reductions of the

four-dimensional Reissner-Nordström black holes and investigate various properties of

the reduced theories. We mainly chose two types of the black holes: the magnetically

charged black holes in the canonical ensemble and the electrically charged black holes

in the grand canonical ensemble. Each black hole leads to a certain two-dimensional

dilaton gravity theory. We considered the near-extremal and the near-horizon limit

of the Reissner-Nordström black holes where the dynamical dilaton in the dimension-

ally reduced theories takes very small values. Under this limit, we constructed the

linearized actions with respect to the dynamical dilaton from the full dimensionally

reduced actions. For the magnetic case, we obtained the so-called Jackiw-Teitelboim

model. For the electric case, we instead obtained a di↵erent dilaton gravity theory

coupled to the two-dimensional Maxwell field. While their o↵-shell actions take the

completely di↵erent form, they both lead to the same equations of motion with respect

to the metric and the dynamical dilaton. We investigated the nearly-AdS2 solutions of

the two theories and computed thermodynamical quantities.

In four dimensions, it is known that electromagnetic duality holds semi-classically

between the electric solutions and the magnetic solutions. We also considered how the

four-dimensional duality is hidden in the two-dimensional dilaton gravity theories.

We also argued on the relation between our dilaton gravity theories and the so-

called SYK model, which is a quantum mechanical model of Majorana fermions. We

found that they share various common features. One of the most important features

is that in both sides, the reparametrization symmetry is broken to SL(2,R) and the

pattern of the symmetry breaking is governed by the so-called Schwarzian action.

To see the di↵erence between the two theories, we also computed a gravitational

quantity which is called “holographic complexity”. In the Complexity=Volume pro-

posal, both theories give the same answer. This is because the volume only captures

the information about background geometry which is common to the two theories.

We also computed the complexity in the Complexity=Action proposal. While both

theories lead to the same geometry, the behavior of the complexity is completely dis-

tinct between them since their on-shell actions are di↵erent. For the JT model we

see the vanishing growth of the complexity at late times. For the theory derived from

the electric solution, the Complexity=Action gives the same late time behavior as the

Complexity=Volume proposal. To see the origin of the di↵erence, we also computed the

Complexity=Action in the four-dimensional Reissner-Nordström black holes. We found

a complete match in the late time behavior of the complexity with the two-dimensional

theories.
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Future Directions

Permeable Boundary of the JT Model

In this thesis, we analyzed the role of the Maxwell boundary term both in the four-

dimensional Einstein-Maxwell theory and the dimensionally reduced theories. In the

literature, people mainly have analyzed it for the electric case and stayed away from the

magnetic solutions, thus we additionally gave the arguments on the Maxwell bound-

ary term for the magnetic solutions in subsection 2.2. A subtlety comes from the

existence of the Dirac monopole. We found a correct prescription which reproduces

the electromagnetic duality. We saw that the JT model is derived from the magnetic

solution in the canonical ensemble described by the Einstein-Maxwell action without

the Maxwell boundary term. We naively expect that adding a dimensionally reduced

Maxwell boundary term to the JT model leads to making the boundary of the JT

model permeable to the “magnetic charge”. However, we didn’t give fully satisfactory

arguments in this direction in this thesis. The di�culty comes from the fact that we

don’t know how to treat the Maxwell term for “Dirac monopole” in two dimensions.

Moreover the magnetic charge in four dimensions is “absorbed” by the cosmological

constant of the two-dimensional AdS spacetime and it is no longer a charge associated

to the Maxwell field in two dimensions. These di�culties prevent us from making the

permeable boundary of the JT model. What we can do at most in the related direction

is to add the on-shell bulk action which is derived from the dimensional reduction of

(2.69), but this is an unusual thing to do. We want to explore this direction to obtain

a better understanding of the pearmeable boundary for the JT model. This will also

help us to give a fully satisfactory explanation on how the electromagnetic duality in

four dimensions is encoded in the two-dimensional theories.

Complexity of the JT Model

In this thesis, we computed a quantity which is called “holographic complexity” in the

two-dimensional models derived by the dimensional reduction from the four dimensions.

We obtained a favorable result for the theory derived from the electric solution since

the growth rate at late times approaches a finite value which is commonly expected

for the chaotic systems. On the other hand, for the JT model we have the vanishing

growth rate at late times. We saw that both models can describe the IR physics of

the SYK model by the Schwarzian action. Therefore both theories can be candidates

for the holographic duals of (a sub-sector of) the SYK model. (Notice that even if the

theory derived from the electric solution could be dual to the SYK model, it would

describe some kind of the generalization of the SYK model such as the“charged SYK

model” rather than the SYK model itself.) It will be intriguing to see which theory is

more favorable from the viewpoint of the complexity behavior as a dual to the SYK
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model by defining and computing the complexity of the SYK model itself. While higher

dimensional strongly coupled CFTs are so complicated that we cannot have a fully sat-

isfactory definition of complexity (though there are some proposals), but since the SYK

model is just the quantum mechanical model of Majorana fermions, we may be able to

work on it more easily. Such arguments will also become a starting point to look for a

suitable definition of complexity in higher dimensional CFTs and may be able to shed

light on the fundamental role of the complexity in AdS/CFT.

Wheeler DeWitt Wave Functions and the Brown-Teitelboim Mechanism

In this thesis, we focused on the semi-classical analyses of the two-dimensional models.

It will be interesting to construct Wheeler DeWitt (WDW) wave functions of these

models to perform the full quantum gravity analyses. For the JT model, some people

already discussed the WDW wave function for the JT model [74, 103, 109]. In [74],

they argued the complexity of the JT model using the WDW wave function. It will

interesting to compare their approach with ours and the proposal given by [79]. In [79],

they proposed a definition of complexity for the wave function the CFT state and holo-

graphically reproduced the Complexity=Action proposal using their definition. It is

interesting to see how the Complexity=Action proposal can be derived from the WDW

wave function of the bulk theory.

In this thesis, we found two-dimensional theories (3.56), (3.76) where the dynam-

ical dilaton and the two-dimensional Maxwell field are coupled with each other. Con-

structing the WDW wave function of such theories, we will be able to argue about

the so-called Brown-Teitelboim mechanism [110, 111] in AdS/CFT context. Brown-

Teitelboim mechanism is the model which describes the dynamical change of the cos-

mological constant of the universe by introducing the d-form flux in the d-dimensional

Einstein’s gravity. In this mechanism, the value of cosmological constant varies due

to the existence of the d-form field source. We want to argue about how the Brown-

Teitelboim mechanism works for the two-dimensional dilaton gravity theory. It might

be possible to describe the situation where the cosmological constant of the spacetime

flows from the negative one (=AdS2 spacetime) to the zero or positive one. Therefore it

will give us the insight into the generalizations of AdS/CFT to the gravity theories with

dynamical cosmological constant as well as the holography for the de-Sitter spacetimes.

Relation to the T T̄ Deformation of AdS3/CFT2

We saw that in order for the JT model or the SYK model to describe the AdS2 space-

time, it is important to break conformal symmetry by cutting o↵ the IR part of the

AdS geometry. Holography at a finite radial cut-o↵ is also extensively argued recently

in the context of the AdS3/CFT2 correspondence. This can be achieved by deforming
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the CFT2 with the irrelevant operator T T̄ and moving it away from the CFT fixed

point[112–117]. This mechanism might be related to the mechanism of the conformal

symmetry breaking in AdS2/CFT1 described by the JT model, thus it is interesting

to compare them into details. In the holography of AdS2/CFT1, in some sense, the

appropriate coordinate system is chosen dynamically. As we saw in the subsection

4.2, the dynamics of the boundary trajectory is governed by the Schwarzian action.

If two independent NCFTs (=the SYK models) or Schwarzian actions describe the

AdS geometry, the Rindler coordinate is the most natural choice since the boundary

trajectory sits along the fixed radial position r = rc in the Rindler coordinate. As a

result, the system describes the thermal (black hole) state. On the other hand, if we

consider the situation where the two SYKs or two Schwarzian actions are coupled with

each other, it describes the global AdS spacetime since now the boundary trajectory

sit at a finite radial position ⌘ = ⌘c in the global coordinate [118]. In this case, two

disconnected boundaries are causality related with each other10. Such a dynamical

mechanism of choosing the coordinate system has not be considered in the higher di-

mensional AdS/CFT since the boundary of the AdS is always put at infinity r = 1 and

the dual field theory defined on the boundary has the exact conformal symmetry. It is

interesting to see whether the same mechanism can be considered in two-dimensional

CFTs by deforming the CFT with irrelevant operators such as T T̄ operator. This mech-

anism might give us insight into the resolution of the black hole paradoxes explained

in the introduction because the choice of the coordinate system is deeply related to

the nature of the gravity and the black hole paradoxes such as Hawking’s information

problem and the firewall problem are related to the problem about how we can consis-

tently consider the general coordinate covariance in quantum gravity [119–121] (One of

the most famous arguments related to that is the black hole complementarity proposal

given in [120, 121]). Some di�culties are known in understanding the physics when we

impose the Dirichlet boundary condition at a finite radial cut-o↵ of the AdS spacetime

[114, 122–124]. Such boundary condition induces the negative image mass on “the

other side” of the boundary cut-o↵ and they screen the gravitational force. This might

lead to the violation of the causality in the bulk and lack of the UV-completion of the

dual field theory. On the other hand, it seems that we do not have similar di�culties

in the NAdS2/NCFT1 correspondence. We want to understand these issues better by

comparing the higher dimensional case with the mechanism of the conformal symmetry

breaking in the JT model and the SYK model.

10This explains one of the strangeness of AdS2/CFT1, that is, the fact that two disconnected
boundaries of AdS2 can communicate causality with each other through the bulk spacetime
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A More on the linearized theory

In this section, we investigate the “linearized” reduced action (3.53)

IJT-Max = IJT �
1
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(A.1)

This action seems to only contains the linear terms in �, however it is not “self-

consistently” truncated while the JT model is. That is, as we will see, plugging the

solution of the equations of motion derived from this theory back into the original

action, higher order terms show up, and the on-shell action is no longer linearized.

This is because the solution of the field strength above contains the dynamical dilaton

� in the denominator and if we expand it round �0, it contains infinite higher terms.

For this reason, in subsection 3.3, we also consider the small deviation of the field

strength F̃µ⌫ from its extremal value F 2

0
= (⇤2 � 1/r2

h
)/4⇡ and truncated higher order

terms than the linear order with respect both to � and F̃µ⌫ . As a result, we obtained

the self-consistent truncated theory (3.56). In this section, we stick to the action (A.1)

and derive the equations of motion.

The action (A.1) yields the following equations of motion
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We assume that the solution of the metric take form (3.43) and solve the equation of

motion for Fµ⌫ as

Fµ⌫ =
Q

(�0 + �)
✏µ⌫ =

Q

�0

✏µ⌫

✓
1�

�

�0

◆
+O((�(/�0)

2) ,

F 2 = �
2Q2

(�0 + �)2
= �

2Q2

�2

0

✓
1�

2�

�0

◆
+O((�/�0)

2) . (A.5)

We choose a constant �0 as

�0 = 4⇡r2
h
. (A.6)
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Since we can approximately compute the following terms using the solution for Fµ⌫

(A.5)
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then the equations (A.3)(A.4) reduce to
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0 = rµr⌫�̃� gµ⌫r
2�̃� gµ⌫⇤2�̃+O(�2/�0), (A.9)

where we shifted the dynamical dilaton �̃ = �+�q. If we only keep the leading order

terms both in the equations, it reduces the equations for the JT model. We can see

that these equations contain higher order terms O(�2), and even if we truncated them,

once we plug the solutions back into the original action, the on-shell action inevitably

contains higher order terms. Let us compare the result with the equations (3.48) which

are obtained from the full action by performing the near-horizon approximations at

the level of the equation. The only di↵erence �r
2�/� in the first line of (3.48) comes

from the absence of the kinetic term of  in action (3.38). Therefore the “linearized”

action (A.1) cannot lead to the correct equations even at the linear order of �, then in

this sense (A.1) is not a good truncation of the full theory.

B Dimensional Reduction From Higher Dimensional Theories

In this section, we give general arguments on the dimensional reduction of a Reissner-

Nördstrom black hole in d+ 1 dimensions. We start with the action

I =
1

16⇡GN

Z

M
dd+1x

p
�ĝ
⇣
R̂� 2⇤

⌘
+

1

8⇡GN

Z

B
ddx
p
��̂K

�
1

4g2

Z

M
dd+1x

p
�ĝFµ1...µd�1

F µ1...µd�1

The first line contains the standard Einstein-Maxwell action, including the Ricci scalar

R̂, the cosmological constant ⇤ = �d(d � 1)/(2L2) with the Gibbons-Hawking-York

(GHY) surface term. In the second line, we have the (d � 1)�form field strength F .

The equations of motion and the Bianchi identity for F read

rµF
µ⌫1...⌫d�2 = 0 , r[µF⌫1...⌫d�1]

= 0 . (B.1)
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The energy momentum tensor is given by

Tµ⌫ =
d� 1

2g2

✓
Fµ⌫1...⌫d�2

F⌫

⌫1...⌫d�2 �
1

2(d� 1)
gµ⌫F

2

◆
, (B.2)

thus we should solve a pair of the equations of motion

Rµ⌫ �
1

2
gµ⌫R + ⇤gµ⌫ = 8⇡Tµ⌫ (B.3)

with (B.1). This system has the charged black hole solution

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2d⌦2

d�1
, (B.4)

with the blackening factor

f(r) =
r2

L2
+ 1�

!d�2

rd�2
+

q2

r2(d�2)
. (B.5)

and the background magnetic (d� 1)-form

F = g

s
(d� 1)(d� 2)

4⇡GN(d� 1)!
qd⌦k,d�1 . (B.6)

The blackening factor (B.5) has two real roots, r+ and r� (where r+ � r�) correspond-

ing to the outer and inner horizons respectively. The parameters ! and q are constants

which are related to the mass and the charge of the solution, respectively. The F 2 term

can be calculated as

Fµ1...µd�1
F µ1...µd�1 =

g2(d� 1)(d� 2)

4⇡GN

q2

r2(d�1)
. (B.7)

The Near Horizon Region

We will now explore the properties of the near horizon region of (near)-extremal black

holes in a fixed charge ensemble. At extremality, we find

!d�2

ext
= 2

✓
d� 1

(d� 2)L2
+

1

r2
h

◆
rd
h
, (B.8)

q2
ext

= r2d�4

h

✓
1 +

dr2
h

(d� 2)L2

◆
, (B.9)

where rh is the position of the horizon of the extremal black hole. The two equations

(B.8) and (B.9) come from solving for f(rh) = 0, which determines the position of the

horizon, and @rf(rh) = 0 which sets the temperature of the black hole to zero. Inserting
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(B.9) and (B.8) in (B.5), in the near-horizon region r�rh ⌧ rh, we find that at leading

order the metric (B.4) becomes

ds2 = �
(r � rh)2

L2

2

dt2 +
L2

2

(r � rh)2
dr2 + r2

h
d⌦2

d�1
, (B.10)

with

L2

2
=

L2

d (d� 1) + (d� 2)2 L2

r
2

h

. (B.11)

This corresponds to an AdS2⇥⌦d�1 spacetime, where AdS2 has curvature scale L2 and

the sphere ⌦d�1 has curvature scale rh. This is a feature of extremal black holes, but

our interest lies in near-extremal ones. We will now consider a small deviation from

extremality by taking the horizons to be

r± = rh ± �rh . (B.12)

In this case, at leading order in the parameters that give the deviation from extremality

and from the horizon, we have

f(r) =
(r � rh)

2

L2

2

+ (...)�r2
h
. (B.13)

If we are very close to the horizon, the di↵erence between the extremal and near-

extremal geometries is relevant and therefore AdS2 ⇥ ⌦d�1 is not the geometry of the

near-horizon region of a near-extremal black hole. However, there is a region given by

rh � r � rh � �rh , (B.14)

where, to leading order, the near-extremal geometry is well approximated by the ex-

tremal one (B.10).

The temperature and the entropy of the near-extremal black hole are given, at

leading order, by

T =
@rf(r+)

4⇡
⇡

�rh
2⇡L2

2

, (B.15)

S =
⌦d�1r

d�1

+

4GN

⇡
⌦d�1r

d�1

h

4GN

+
(d� 1)⌦k,d�1�rhr

d�2

h

4GN

=
⌦d�1r

d�1

h

4GN

+
(d� 1)⌦d�1⇡L2

2
rd�2

h
T

2GN

.

(B.16)

Moreover, if we are considering a near-extremal black hole, it means that we need to

slightly deviate from the parameters of the extremal black hole. We choose to work
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in an ensemble of fixed charge, hence what changes with respect to extremality is the

mass

M = Mext + �M , (B.17)

where

�M =
(d� 1)⌦d�1r

d�2

h
�r2

h

16⇡GNL2

2

=
(d� 1)⌦d�1⇡

4GN

rd�2

h
T 2L2

2
(B.18)

and Mext is the mass of the extremal black hole with mass parameter (B.8).

Dimensional Reduction

We now consider dimensionally reducing the action (B.1). In general, consider a warped

product geometry given by

ds2 = ds2
(1)

+ e2⌧(x(1))ds2
(2)

. (B.19)

Then, we have

R̂ = R(1) + e�2⌧R(2) � 2Dr
2

(1)
⌧ �D(D + 1)gab

(1)
@a⌧@b⌧ (B.20)

Inserting (B.7) and (B.20) in the bulk action of (B.1) and integrating out the transverse

degrees of freedom in the bulk part leads to the following contribution

Ibulk =
⌦d�1

16⇡GN

Z

M
d2x

p
�g

✓
 2 (R� 2⇤) + ( 2)

d�3

d�1 (d� 1)(d� 2) + 4
(d� 2)

(d� 1)
(r )2

◆

�
⌦d�1(d� 1)(d� 2)q2

16⇡GN

Z

M
d2x

p
�g

1

 2

�
⌦d�1

8⇡GN

Z

@M
d⌃↵@↵( 

2) ,

(B.21)

where the first line comes from the dimensional reduction of the Einstein-Hilbert action,

the second line arises from the Maxwell action and the third line is a boundary term

which appears due to integration by parts. In (B.21),  2 = rd�1 and R and g refer to the

two-dimensional metric that remains after the dimensional reduction of the transverse

directions of the higher dimensional metric. We still need to dimensionally reduce the

boundary terms present in the action (B.1). The GHY term gives rise to

IGHY =
⌦d�1

8⇡GN

Z

@M
d⌃↵@↵

�
 2
�
+
⌦d�1

8⇡GN

Z

@M

p
�� 2K , (B.22)

where the first term cancels the boundary term that arises from the bulk action in

(B.21).
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After doing the full dimensional reduction of (B.1), the action reads

I =
⌦d�1

16⇡GN

Z

M
d2x

p
�g
�
 2R + � (r )2 � U( )

�
+
⌦d�1

8⇡GN

Z

B

p
�� 2K (B.23)

with

� = 4
(d� 2)

(d� 1)
, (B.24)

U( 2) = �( 2)
d�3

d�1 (d� 1)(d� 2) + 2 2⇤+
(d� 1)(d� 2)q2

 2
. (B.25)

The bulk part of the action (B.23) is able to capture a wide range of dimensional

reductions of higher dimensional spacetimes with di↵erent choices of � and U( 2).

These have been studied in the literature recently [39]. Let us check that the bulk part

of this action captures the near horizon region of the extremal Reissner-Nördstrom

black hole. In order to write the equations of motion coming from this action, let’s

work in a gauge where the two-dimensional metric takes the following form

ds2 = �e2!dt2 + e�2!dr2 . (B.26)

We know that the higher dimensional metric is supposed to take the form AdS2⇥⌦(d�1)

in the near horizon region, so we want to look for solutions where the dilaton is a

constant  2 =  2

h
representing the length scale of the manifold ⌦(d�1). In this case, we

find the following equations of motion for the action (B.23)

U( h) = 0 (B.27)

4(!0)2 + 2!00 + e�2!@ 2U( h) = 0 (B.28)

From the first equation, we get that

 h = r
d�1

2

h
, (B.29)

where rh is the location of the event horizon of the extremal black hole with charge

parameter qext. One can also check that AdS2 is a solution to the second equation of

motion. Considering a metric of the form

ds2 = �
(r � rh)2

L2

2

dt2 +
L2

2

(r � rh)2
dr2 , (B.30)

we have

! = log
r � rh
L2

, (B.31)
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One can check that this is a solution of (B.28) when

L2

2
=

L2

d (d� 1) + k (d� 2)2 L2

r
2

h

, (B.32)

which matches (B.10) and (B.11).

Deriving the Jackiw-Teitelboim Model

Starting with the action (B.23), assuming that we have an AdS2 solution for constant

dilaton  =  h leads to

U( h) = 0 , (B.33)

@ 2U( h) +
2

L2

2

= 0 . (B.34)

In order to deviate from extremality, we will now add a small perturbation to the

constant solution rh
r = rh(1 +  ) , (B.35)

where

 =
r � rh
rh

(B.36)

is a small parameter. This leads to

 = r
d�1

2

h

✓
1 +

d� 1

2
 

◆
. (B.37)

This small perturbation is encoding the deviation from extremality around the near-

horizon region of the black hole. We can now expand the potential U( 2) in a series

U( 2) ⇡ @ 2U( 2

h
)
�
(d� 1)rd�1

h
 
�
= �(d� 1)rd�1

h
 

2

L2

2

. (B.38)

Moreover, assuming that we are working with an AdS geometry, we can show that the

kinetic term (r )2 is subleading with respect to the rest. Notice that using (B.30) and

(B.37), we have asymptotically

(r )2 = gµ⌫@µ @⌫ /  2 . (B.39)

but we will be working to linear order in  and so this term is negligible. Our assump-

tion that we have an AdS geometry is reasonable because, as we commented before,

there is a region of the near-extremal black hole where AdS2 ⇥ ⌦d�1 is a good ap-

proximation and that is the place where we are going to introduce the boundary of

the model. Even though the geometry of the black hole deviates from AdS at linear
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order in  , this correction would be negligible in computing the above derivative. The

dimensionally reduced action (B.23) then leads to

I ⇡
⌦d�1r

d�1

h

16⇡GN

✓Z

M
d2x

p
�gR+ 2

Z

B

p
��K

◆

+
(d� 1)⌦d�1r

d�1

h

16⇡GN

✓Z

M
d2x

p
�g 

✓
R+

2

L2

2

◆
+ 2

Z

B

p
�� K

◆ (B.40)

If we make the following definitions

�0 ⌘ ⌦d�1r
d�1

h
, (B.41)

� ⌘ (d� 1)⌦d�1r
d�2

h
(r � rh) , (B.42)

we can rewrite the action (B.40) as

I =
�0

16⇡GN

✓Z

M
d2x

p
�gR + 2

Z

B

p
��K

◆

+
1

16⇡GN

✓Z

M
d2x

p
�g�

✓
R +

2

L2

2

◆
+ 2

Z

B

p
���K

◆
.

(B.43)

This is the action of the Jackiw-Teitelboim model.

We see that �0 corresponds to the area of the sphere ⌦d�1 that appears in the

near horizon region of the extremal black hole and � is a dynamical dilaton which

gives deviations from this area which capture the near-extremal regime. We emphasize

that although we have in the back of our mind that this model is arising from the

charged black hole, the action (B.43) arises generally from a small expansion of the

action (B.23) with di↵erent choices of U( ) and �.

In getting this model, it was assumed that

�

�0

⌧ 1 . (B.44)

Notice that working to linear order in  means, indeed, linear order in the ratio �

�0

.

Besides that, we will also take
�h

�b
⌧ 1 , (B.45)

where h and b label the values of � at the horizon and at the boundary, respectively.

In short, we must cut the spacetime in a place where � is large but still much smaller

than �0. If we did not introduce this cut-o↵ boundary, � would grow indefinitely and

become bigger than �0 as can be seen from (B.42). Our full condition on the dilaton

then reads

1 �
�b

�0

�
�h

�0

. (B.46)
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Explicitly for the model arising from the charged black hole, we have from (B.42)

�h = (d� 1)⌦d�1r
d�2

h
�rh , (B.47)

�b = (d� 1)⌦d�1r
d�2

h
(rb � rh) , (B.48)

where rb is the location of the boundary. We then see that the condition (B.46) we are

imposing in the dilaton is equivalent to the condition (B.14) which tells us the region in

the near-extremal black hole where AdS2 ⇥⌦d�1 is a good approximation. This allows

for identification of the boundary of the two-dimensional model with a timelike slice in

the black hole spacetime that satisfies (B.14). However, we should keep in mind that

the geometry of the near-extremal black hole deviates from AdS in linear order in  at

the boundary, so the geometries of both cases are not precisely the same. Moreover,

close to the horizon, there are additional corrections proportional to �r2
h
.

We emphasize that in deriving the JT model, we assumed that we were working

in an ensemble of fixed charge by using the action (B.1). For this reason, we can only

expect the JT model to capture the properties of black holes with fixed charge but not

with fixed chemical potential.

C Topological Part of the Jackiw-Teitelboim Action

Figure 16: The generic region for the WDW patch.
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In this section, we consider the topological term in the JT model

I top =
�0

4GN

Z

M
d2x

p
�gR� 2 log |f(r)||r

1
m

r4m
� 2 log |f(r)||r

2
m

r3m

�
, (C.1)

where r3
m
and r4

m
are the values of r at the right and the left corner of the WDW patch

respectively, and explicitly check that this action is indeed independent of the metrics

and the regions M for WDW patches under the assumption that the metric of the

following form

ds2 = �f(r)dt2 +
1

f(r)
dr2 . (C.2)

The scalar curvature of the metric (C.2) is calculated as

R = �f 00(r) . (C.3)

We take the WDW patch, which is anchored at the left corner (tl, r⇤l ) and the right

corner (tr, r⇤r), where r⇤ is the tortoise coordinate defined by

r⇤ =

Z
r dr

f(r)
. (C.4)

We also define light cone coordinates u and v as

u = t� r⇤ , v = t+ r⇤ . (C.5)

We can express the integral
Z

M
d2x

p
�gR (C.6)

in terms of integration variable r and v. First we consider the constant v slice of

the WDW patch and perform the r integration. Let us assume that the constant v

slice intersects with the line u = ul = tl � r⇤
l
at a point (ul, r1(v)) and with the line

u = ur = tr � r⇤
r
at a point (ur, r2(v)). Then the integral can be calculated as
Z

M
dudrR = �

Z
dv(f 0(r2(v))� f 0(r1(v))) . (C.7)

Next we consider the v integral. We can see that the integration should be performed

along the u = ur line and the u = ul line respectively. Since v = u + 2
R

r dr

f(r)
, we can

parametrize v on the u = ul line in terms of r1 and on the u = ur line in terms of r2 as

v|u=ul
= ul + 2

Z
r1 dr

f(r)
, v|u=ur = ur + 2

Z
r2 dr

f(r)
. (C.8)
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Therefore, the v integral can be evaluated as

Z

M
d2x

p
�gR = 2

Z
r
1
m

r4m

dr1
f 0(r1)

f(r1)
� 2

Z
r
3
m

r2m

dr2
f 0(r2)

f(r2)

= 2 log |f(r)||r
1
m

r4m
+ 2 log |f(r)||r

2
m

r3m
. (C.9)

Thus the topological term is always zero

I top = 0 (C.10)

independently of the choices of f(r) and the regions M. From this fact, we can see that

the topological term doesn’t contribute to the holographic complexity CA even when

we take into account of the deviation of the metric from AdS2 as (3.33) (3.52).

D Free massive particles in AdS

We analyze the motion of a free scalar particle in AdS whose Lagrangian is expressed

as

S = m

Z
d⌧ = m

Z
dt

r
gµ⌫(X(t))

dXµ

dt

dXµ

dt
(D.1)

Introducing the Lagrange multiplier ↵, we get

S =

Z
dt

✓
1

2↵
gµ⌫(X(t))

dXµ

dt

dXµ

dt
+
↵

2
m2

◆
(D.2)

In the case of AdS2, we can take Xµ(t) = (t, ⌘(t)), thus we obtain

S = m

Z
dt

cos ⌘

p
1� ⌘̇2. (D.3)

The canonical momentum conjugate to ⌘ is

P⌘ =
@L

@⌘̇
= �

m⌘̇

cos ⌘
p
1� ⌘̇2

(D.4)

Using this momentum, we can construct the Hamiltonian

H ⌘ P⌘⌘̇ � L =

s
m2

cos2 ⌘
� P 2

⌘
(D.5)
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The smartest way to consider the equations of motions of a free particle is to consider a

particle motion in R2,1 constrained to move on the hypersurface YaY a = Y 2

�1
+(Y 0)2 �

(Y 1)2 = 1

S =

Z
ds

✓
1

2↵
ẎaẎ

a + �(1� YaY
a) +

↵

2
m2

◆
. (D.6)

where

↵ =
1

m

q
ẎaẎ a. (D.7)

Equation of motion becomes

Ÿ a = ��Y a (D.8)

along with the constraint equation

YaY
a = 1. (D.9)

We e↵ectively have three choices: � = 1, 0, or � 1. These three choices correspond to

timelike, null, or spacelike trajectories in AdS. We focus on the massive particles whose

trajectories are timelike � = 1. The momentum conjugate to Y a is given by

Pa =
@L

@Ẋa
=

1

↵
Ẏa =

mẎap
ẎaẎ a

= mẎa (D.10)

where we used

ẎaẎ
a = �ŸaY

a = �YaY
a = � = 1. (D.11)

Using these momenta, we can construct SL(2) generators (angular momentum or boost

generators) as

La = m✏abcY
b@sY

c. (D.12)

These generators are perpendicular to the geodesic since

L · Y = LaY
a = m✏abcY

aY b@sY
c = 0 (D.13)

and constant along the geodesic

@sLa = m✏abcY
b@2

s
Y c = �m✏abcY

bY c = 0. (D.14)
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Thus we can associate conserved SL(2) charges to each particle trajectory. Note that

the length of the vector La is given by the mass of the particle

L2 = m2. (D.15)

From the arguments above we can see that a geodesic is lying on the plane perpendicular

to a fixed vector La. Thus we get a geodesic trajectory as an intersection between the

hypersurface YaY a = Y 2

�1
+ (Y 0)2 � (Y 1)2 = 1 and a plane perpendicular to La and

contains the origin Y = (0, 0, 0) of R2,1.

The most simple geodesic is given by an intersection between the hypersurface and

Y 1 = 0

Y �1 = cos s

Y 0 = sin s

Y 1 = 0. (D.16)

This represents a particle sit at ⌘ = 0. In this case, the proper time s is naturally

associated with the global time ⌧(since the global coordinate is coordinate naturally

associated with the static observer at ⌘ = 0). For this particle, one can associate a

SL(2) charge as

L�1 = 0

L0 = 0

L1 = m. (D.17)

A more general solution is given by

Y �1 =
cos s

cos ⌘⇤
Y 0 = sin s

Y 1 = tan ⌘⇤ cos s. (D.18)

which represents the particle is oscillating back and forth between ⌘ = ±⌘⇤. In this

case, one can associate a SL(2) charge as

L�1 = �m tan ⌘⇤

L0 = 0

L1 =
m

cos ⌘⇤
. (D.19)

Notice that the Hamiltonian takes constant value H = |~L| = m along the geodesic of a

free scalar particle.
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Figure 17: A geodesic of a free massive particle as an intersection between the hyper-

surface and a plane which is perpendicular to ~L and contains the origin ~Y = 0.

E Massive charged particles in AdS

Next we consider the motion of a charged particle in AdS whose trajectory is along

⇢r = ⇢0 curve. Due to the curvature of AdS, these trajectory needs an extra electric field

which overcomes the gravitational attraction. The Lagrangian for a charged particle is

expressed as

S =

Z
ds

✓
1

2↵
ẎaẎ

a + �(1� YaY
a) +

↵

2
m2 + qẎaA

a(Y (s))

◆
. (E.1)

Equation of motion becomes

m(Ÿ a + Y a) + qF abẎb = 0 (E.2)

along with the constraint equation

YaY
a = 1, (E.3)

where we take s as a proper time of the particle ẎaẎ a = 1 and � = m. We consider

the electric field which takes a form

F a

b
= ✏a

bc
Y c. (E.4)

In this case, the equation of motion reduces to

m(Ÿ a + Y a) + q✏a
bc
Y bẎ c = 0. (E.5)

This particle trajectory can be obtained by an intersection of the hyperbolic and a

plane which is perpendicular to SL(2) vector Qa

Qa = m✏abcY
b@sY

c
� qYa. (E.6)
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and contains a point Y a = Qa. Actually,

QaY
a = �q (E.7)

and

Q̇a = m✏abcY
b@2

s
Y c

� q@sYa

= ✏abcY
b(�q✏c

de
Y dẎ e)� q@sYa

= �qY b(�ad�be � �ae�bd)Y
dẎ e

� q@sYa

= �qY aY bẎb = 0 (E.8)

implies that the SL(2) charge is conserved along the particle trajectory.
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