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Abstract
Quantum thermodynamics is thermodynamics extended to be applied to microscope

quantum systems. The conventional studies of quantum thermodynamics are based on
two assumptions: first, the dynamics of the microscope quantum system is described by
the unitary evolution; second, the work performed on an external agent is equal to the
energy loss of the microscope quantum system. However, several studies pointed out that
these assumptions are not compatible with each other.
As an alternative to the conventional approach, it has been proposed to describe the

dynamics of the microscope quantum system as a quantum measurement process. This
proposition made based on the analogy between the work extraction of thermodynamics
and the measurement process of quantummechanics, implying that quantum thermody-
namics is essentially quantum-measurement theory.
In the present thesis, we first derive a quantum version of the Jarzynski equality using

the new approach. Our derivation correctly contains information about the fluctuation of
the actual work, namely, the energy gain of the external agent. Our derivation enables us
to analyze the influence of the quantum measurement quantitatively.
Our derivation of the Jarzynski equality describes the fluctuation of the actual work

under the actual dynamics, but is unclear how the microscopic quantum system is oper-
ated by the external agent. To resolve this issue, we next consider the continuous mea-
surement of the control parameter and derive the quantum Jarzynski equality under the
continuously monitoring control parameter. We can thereby obtain the relation between
the control parameter and the second law of thermodynamics.
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Chapter 1

Introduction

Thermodynamics is one of the fundamental and important theories in physics [4]. It char-
acterizes tomacroscopic systems in terms of severalmacroscopic physical quantities with-
out resorting to microscopic details of the macroscopic systems. In other words, thermo-
dynamics is a universal theory on macroscopic systems.
Themost important characteristic of thermodynamics is the irreversibility of themacro-

scopic systems. This irreversibility is a unique property not found in other fundamental
theories of physics and is known as the second law of thermodynamics. The second law
of thermodynamics, yields limitations of dynamics of the macroscopic systems; for exam-
ple, an upper bound of the work performed by the macroscopic system and one of the
efficiency of macroscopic heat engines [1], which are transducers of the heat to the work.
Since themacroscopic system consists of a huge number of microscopic degrees of free-

dom, it is one of the major issues in physics to derive thermodynamics from microscopic
mechanics. One answer is statistical mechanics [10], which is a theory that associates
the statistical properties of microscopic degrees of freedom with the thermodynamics of
quantities, and thus describes the equilibrium of the macroscopic systems.
A new demand arises because the recent development of experimental technology lets

us observe and operate microscopic systems; we can perform experiments of molecular
motors in cells [21], a box containing a single electron [90] and so on [33, 59, 65, 72, 97,
98]. Because these experiments are performed onmicroscopic systems, we cannot directly
apply thermodynamics to them. Accordingly,many researchers have been trying to extend
thermodynamics in order to apply it to microscopic systems.
Quantum thermodynamics is thermodynamics extended to be applied to microscopic

quantum systems [116]. It utilizes a combination of statistical and quantum mechanics,
adopting amodel of a microscopic quantum system connected to an external agent. Many
conventional studies [8, 9, 23, 25, 27, 30, 32, 36, 39, 40, 42, 46, 48, 50, 52, 54, 68, 70, 71, 73,
79, 80, 85, 88, 94, 95, 103, 116] of quantum thermodynamics use two assumptions: first,
the dynamics of the microscopic quantum system is described by the unitary evolution
generated by a time-dependent Hamiltonian of the microscopic quantum system; second,
the work performed on the external agent is equal to the energy loss of the microscopic
quantum system. In this conventional approach, we can derive not only the second law of
thermodynamics [7, 9, 26, 43, 56, 57, 63, 69, 85, 89, 105, 115] but also many results such
as the fluctuation theorem [23, 25, 30, 40, 48], which describes the fluctuation of physical
quantities in microscopic systems, and information thermodynamics [46, 50, 54, 70, 71,
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Chapter 1 Introduction

73, 79, 80, 88, 94, 95, 103], which is thermodynamics with feedback processes taken into
account.
The conventional approach indeed gives some properties of thermodynamics. How-

ever, several studies [93, 114, 117, 119, 122] pointed out that the two assumptions above
are not compatible with each other. For example, if the actual dynamics of the micro-
scopic quantum system is approximated to the unitary evolution, the statistical properties
of the energy loss of the microscopic quantum system and the energy obtained by the ex-
ternal agent behave differently. Therefore, the assumptions of the conventional approach
is inappropriate to quantum thermodynamics. Accordingly, we needs to find a different
approach to study quantum thermodynamics.
As an alternative to the conventional approach, is has been proposed to describe the

dynamics of the microscopic quantum system as a quantum measurement process [93,
117, 120]. This proposition was made based on the analogy between the work extraction
in thermodynamics and the quantum measurement process. The work extraction is a
process in which an external agent operates a system and obtains quantities of the work.
On the other hand, the measurement is a process in which an external agent operates a
system to observe and obtains physical quantities. This approach implies that quantum
thermodynamics is essentially quantum-measurement theory. Therefore, we need to take
into account the influence of measurements in thermodynamics.
In the present thesis, we study quantum thermodynamics using the new approach,

which describes the work extraction processes as measurement processes. First, we con-
sider the Jarzynski equality, which describes a statistical property of the extracted work,
under the new approach to research the influence of the quantum measurement. Our
derivation of the Jarzynski equality correctly contains information about the fluctuation
of the actual work, namely, the energy gain of the external agent, and is essentially dif-
ferent from the conventional derivation of one [23, 25, 30, 40, 48]. The influence of the
measurement appears in the Jarzynski equality as the difference of a constant and the
constant is determined by the measurement process.
Our derivation of the Jarzynski equality describes the fluctuation of the actual work

under the actual dynamics. However, it is unclear as to how the microscopic quantum
system is operated by the external agent. To resolve this issue, we next consider the contin-
uousmeasurement of the control parameter, which describes the operation by the external
agent. By combining the now approach of the work extraction and the formulation of the
continuous measurement, we obtain the parameter-dependent Jarzynski equality as well
as the relation between the control parameter and the second law of thermodynamics.
The present thesis is organized as follows. In the chapter 2, we describe the general

theory of quantum dynamics and measurement. In the chapter 3, we review the conven-
tional approach of quantum thermodynamics and the derived results. This chapter has
the three sections about the definition of the conventional approach, the second law of
thermodynamics and the fluctuation theorems. In the chapter 4, we explain the problem
of the conventional approach of quantum thermodynamics and review the new approach
describing the work extraction of thermodynamics as the measurement process of quan-
tum mechanics [93, 117]. In the chapter 5, we derive a quantum version of the Jarzynski
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equality based on the new approach of the chapter 4. The results in the chapter 5 are based
on the references [119] under the author’s collaboration with Dr. H. Tajima and Prof. N.
Hatano. In the chapter 6, we derive a quantum version of the Jarzynski equality under
continuously monitored control parameter. The section 6.1.1 in the chapter 6 is a short
review of the time reversal introduced in the reference [121]. The other sections in the
chapter 6 is the results of the author under the collaboration with Dr. H. Tajima.

3





Chapter 2

Quantum dynamics and measurement

2.1 Quantum dynamics
In this section, wefirst describe a unitary evolution, which is a fundamental time evolution
in quantummechanics and is applicable to a closed quantum system. Next, we introduce
a general quantum dynamics, which can be applied both to a open and closed quantum
systems.

2.1.1 Unitary evolution
Let us consider a closed quantum system. In quantummechanics, the state of an isolated
quantum system is represented by a unit vector |𝜓⟩, whose time evolution follows the
Schrödinger equation

𝑖ℏ
𝑑
𝑑𝑡
|𝜓(𝑡)⟩ = 𝐻(𝑡) |𝜓(𝑡)⟩ , (2.1)

where𝐻(𝑡) is the generally time-dependent Hamiltonian of the system.
The time evolution

|𝜓(𝑡)⟩ = 𝑈(𝑡, 𝑡0) |𝜓(𝑡0)⟩ (2.2)

defined the unitary operator𝑈(𝑡, 𝑡0), which is satisfies𝑈(𝑡0, 𝑡0) = 𝐼with identity operator
𝐼. Inserting the equation (2.2) into the Schrödinger equation (2.1), we obtain

𝑖ℏ
𝑑
𝑑𝑡
𝑈(𝑡, 𝑡0) = 𝐻(𝑡)𝑈(𝑡, 𝑡0); (2.3)

in other words, the operator 𝑈(𝑡, 𝑡0) satisfies the Schrödinger equation. Therefore, the
operator 𝑈(𝑡, 𝑡0) is given by

𝑈(𝑡, 𝑡0) = 𝕋 exp [−
𝑖
ℏ
∫

𝑡

𝑡0
𝑑𝑠𝐻(𝑠)], (2.4)

where 𝕋 is time ordering. From the equation (2.4), we obtain

𝑈(𝑡2, 𝑡0) = 𝑈(𝑡2, 𝑡1)𝑈(𝑡1, 𝑡0), (2.5)
𝑈†(𝑡1, 𝑡0) = 𝑈(𝑡0, 𝑡1) (2.6)

5



Chapter 2 Quantum dynamics and measurement

for 𝑡0 ≤ 𝑡1 ≤ 𝑡2.
In the above description, the state of the system is represented by a unit vector and is

called a pure state. We can extend the state of the system to statistical mixture of pure
states, which is called a mixed state. The mixed state is described by a Hermitian operator
𝜌, which is called the density matrix. For the mixture of pure states |Ψ𝑖⟩ and the corre-
sponding probability 𝑝𝑖 satisfying∑𝑖 𝑝𝑖 = 1, the density matrix 𝜌 is given by

𝜌 = ∑
𝑖
𝑝𝑖||Ψ𝑗⟩⟨Ψ𝑗||. (2.7)

Using the Schrödinger equation (2.1) in the time derivative of the density matrix (2.7), we
obtain

𝑖ℏ
𝜕𝜌(𝑡)
𝜕𝑡

= [𝐻(𝑡), 𝜌(𝑡)] (2.8)

with [𝐴, 𝐵] ≔ 𝐴𝐵 − 𝐵𝐴. This is called the von Neumann equation. Similarly to the pure
state, the time evolution of the density matrix is given by the unitary operator 𝑈(𝑡, 𝑡0) of
the equation (2.4) in the form

𝜌(𝑡) = 𝑈(𝑡, 𝑡0)𝜌(𝑡0)𝑈†(𝑡, 𝑡0). (2.9)

2.1.2 General quantum dynamics
In the previous section, we showed that the time evolution of the closed quantum system
is represented by a unitary operator. However, in the case of an open quantum system, we
cannot generally represent the time evolution in terms of a unitary operator.
To consider the time evolution of the open quantum system, we introduce an environ-

ment interacting with the system of interest and trace it out after the time evolution.
We assume that the composition of the system S of interest and the environment E is a

closed quantum system. Hence, the composite system is evolved under a unitary operator
𝑈 of the composite system. Let 𝜌 and 𝜎E denote the initial states of the system S and the
environment E, respectively. Then, the time evolution of the system S is given by a map
𝒦 in the form

𝒦(𝜌) ≔ TrE[𝑈(𝜌 ⊗ 𝜎E)𝑈†], (2.10)
where TrE denotes the partial trace over the environment E. Thismap𝒦 describes the gen-
eral time evolution of the system S of interest and is called a quantum channel or quantum
operation in quantum information theory [24, 108]. Of course, the unitary evolution in
the section 2.1.1 is a simple case of the quantum channel. From the equation (2.9), the
map 𝒰𝑡,𝑡0 of the unitary evolution is given by

𝒰𝑡,𝑡0(𝜌) = 𝑈(𝑡, 𝑡0)𝜌𝑈†(𝑡, 𝑡0). (2.11)

The time-evolution map𝒦 of the equation (2.10) has the following properties:

Affine property (convex linear) For any density matrices 𝜌1 and 𝜌2 and for a real number
𝑝 ∈ [0, 1], there satisfies

𝒦(𝑝𝜌1 + (1 − 𝑝)𝜌2) = 𝑝𝒦(𝜌1) + (1 − 𝑝)𝒦(𝜌2). (2.12)
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2.2 Quantum measurement

Trace preserving For any density matrix 𝜌, there satisfies Tr(𝒦(𝜌)) = Tr(𝜌) .

Completely Positive For any positive operator 𝐴S on the system S,𝒦(𝐴S) is also the pos-
itive operator. Moreover, if we introduce an extra system R of arbitrary dimension,
(𝒦⊗ ℐR)(𝐴SR) is the positive operator for any positive operator 𝐴SR on the compos-
ite system SR, where ℐR denotes the identity map on the extra system R.

We can show the three properties of time-evolution map from the equation (2.10); in
other words, the time-evolution map is a trace-preserving completely positive (TPCP)
map [108]. Conversely, we can drive the equation (2.10) from any map 𝒦 that satisfies
the three properties of TPCP map. Therefore, the TPCP map can always represent the
environment model of the equation (2.10) [24, 108].
The time-evolution map (2.10) has another representation known as the Kraus repre-

sentation [108] and the operator-sumone [24]. TheKraus representation of theTPCPmap
is given by the following: for a TPCP map𝒦, there exists a set of linear operators { 𝐾𝑛 }𝑛
satisfying∑𝑛𝐾

†
𝑛𝐾𝑛 = 𝐼, where 𝐼 is the identity operator, such that

𝒦(𝜌) = ∑
𝑛
𝐾𝑛𝜌𝐾

†
𝑛 (2.13)

for an arbitrary operator 𝜌. The operator 𝐾𝑛 in the equation (2.13) is called the Kraus
operator.
Let us derive the Kraus operator explicitly. Assume the eigenvalue decomposition of

the initial state 𝜎E in the equation (2.10) in the form

𝜎E = ∑
𝑖
𝑞𝑖|𝜓𝑖⟩E⟨𝜓𝑖| (2.14)

with∑𝑖 𝑞𝑖 = 1 and ⟨𝜓𝑖 || 𝜓𝑗⟩E E
= 𝛿𝑖,𝑗. The equation (2.10) thereby becomes

𝒦(𝜌) = ∑
𝑖,𝑗
𝐾̃𝑖,𝑗𝜌𝐾̃

†
𝑖,𝑗 (2.15)

with 𝐾̃𝑖,𝑗 ≔ √𝑞𝑖 ⟨𝜓𝑗 || 𝑈 || 𝜓𝑖⟩E E
. Because the operator 𝐾̃𝑖,𝑗 satisfies

∑
𝑖,𝑗
𝐾̃†
𝑖,𝑗𝐾̃𝑖,𝑗 = ∑

𝑖,𝑗
𝑞𝑖TrE[|𝜓𝑖⟩E⟨𝜓𝑖|𝑈

†||𝜓𝑗⟩E⟨𝜓𝑗
||𝑈] (2.16)

= TrE[𝐼 ⊗ 𝜎E] = 𝐼, (2.17)

the set of the operators { 𝐾̃𝑖,𝑗 }𝑖,𝑗 is a set of the Kraus operators of the time-evolution map
𝒦. Thus, we can obtain a Kraus representation from the equation (2.10).

2.2 Quantum measurement
In this section, we describe measurement theory of quantum systems. We first introduce
the projection measurement and secondly the general quantum measurement. Finally,
we show a continuous measurement as a limitation of a series of repeated measurements.
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Chapter 2 Quantum dynamics and measurement

2.2.1 Projection measurement
The projection measurement is a fundamental measurement in quantummechanics. Let
us consider the projection measurement of a physical quantity 𝐴. The physical quantity
𝐴 is denoted by a Hermitian operator and has the spectral decomposition

𝐴 = ∑
𝑎
𝑎𝑃𝑎, (2.18)

where 𝑎 and 𝑃𝑎 denote the eigenvalue of the observable 𝐴 and the corresponding pro-
jection, respectively. Given a state 𝜌 of a system, the probability that the outcome of the
measurement is the eigenvalue 𝑎 is given by

Pr (𝐴 = 𝑎|𝜌) ≔ Tr[𝑃𝑎𝜌], (2.19)

which is called the Born rule [108]. Of course, the summation of the probability
Pr (𝐴 = 𝑎|𝜌) with respect to the outcome 𝑎 is equal to unity, because the projection 𝑃𝑎
satisfies∑𝑎 𝑃𝑎 = 𝐼 with the identity operator 𝐼.
In general, the state changes after the measurement. When we obtain an outcome 𝑎

by the projection measurement, the post-measurement state depends on the outcome 𝑎,
given by

𝜌𝑎 ≔
𝑃𝑎𝜌𝑃𝑎

Pr (𝐴 = 𝑎|𝜌)
. (2.20)

On the other hand, when we perform the projection measurement but do not know the
measurement outcome, the post-measurement state becomes the statistical mixture of the
equation (2.20) of each outcome, given by

𝜌′ ≔∑
𝑎
Pr (𝐴 = 𝑎|𝜌)𝜌𝑎 = ∑

𝑎
𝑃𝑎𝜌𝑃𝑎. (2.21)

The situations of the equations (2.20) and (2.21) are called selective measurement and
non-selective measurement, respectively [108].
In particular, when 𝑃𝑎 projects states onto the normalized eigenstate |𝜙𝑎⟩ of the eigen-

value𝑎, namely𝑃𝑎 = |𝜙𝑎⟩⟨𝜙𝑎|, the probability (2.19) is given byPr (𝐴 = 𝑎|𝜌) = ⟨𝜙𝑎 | 𝜌 | 𝜙𝑎⟩
and the corresponding selective measurement (2.20) becomes the pure state of the eigen-
state |𝜙𝑎⟩:

𝜌𝑎 =
|𝜙𝑎⟩⟨𝜙𝑎|𝜌|𝜙𝑎⟩⟨𝜙𝑎|

⟨𝜙𝑎 | 𝜌 | 𝜙𝑎⟩
= |𝜙𝑎⟩⟨𝜙𝑎|. (2.22)

2.2.2 General quantum measurement
To consider a general quantummeasurement, we canuse an indirectmeasurementmodel,
which is described by the time evolution of a system composed by a system of interest and
a measurement device. The measurement device interacts with the system of interest and
extracts information out of it. After the interaction, we observe the measurement device
and indirectly obtain the information of the system of interest from the measurement
device.

8



2.2 Quantum measurement

Let us assume that the system composed by the system S of interest and the measure-
ment device D is a closed quantum system. Let 𝜌 and 𝜎D denote an arbitrary initial state
of the system S and an initial state of the measurement device D, respectively. The initial
state of the composite system is given by 𝜌 ⊗ 𝜎D. Since the composite system is a closed
quantum system, it evolve accordingly to a unitary operator𝑈 into the state𝑈(𝜌 ⊗ 𝜎D)𝑈†.
After the time evolution, we measure a physical quantity 𝐴D of the measurement device
D, which is called a meter observable. The spectral decomposition of 𝐴D is given by

𝐴D = ∑
𝑎
𝑎𝑃D𝑎 (2.23)

where 𝑎 and 𝑃D𝑎 denote the eigenvalue of 𝐴D and the corresponding projection, respec-
tively.
Suppose that we obtain an outcome 𝑎 after the measurement of the meter observable,

which is the selective measurement of the composite system. The post-measurement
state (2.20) for the outcome 𝑎 is given by

𝜌SD𝑎 ≔
(𝐼S ⊗ 𝑃D𝑎 )𝑈(𝜌 ⊗ 𝜎D)𝑈†(𝐼S ⊗ 𝑃D𝑎 )

Pr (𝐴D = 𝑎|𝑈(𝜌 ⊗ 𝜎D)𝑈†) , (2.24)

where 𝐼S is the identity operator on S. Note that we replaced 𝑃𝑎 in the equation (2.20)
with 𝐼S ⊗ 𝑃D𝑎 because the measurement of the meter observable is not supposed to affect
the system S. The denominator Pr (𝐴D = 𝑎||𝑈(𝜌 ⊗ 𝜎D)𝑈†) is the probability of the specific
outcome 𝑎 given the state 𝑈(𝜌 ⊗ 𝜎D)𝑈† of the system S in the form

Pr (𝐴D = 𝑎||𝑈(𝜌 ⊗ 𝜎D)𝑈†) ≔ Tr[(𝐼S ⊗ 𝑃D𝑎 )𝑈(𝜌 ⊗ 𝜎D)𝑈†]. (2.25)

We now focus on the measurement of the system S of interest. Tracing the equa-
tion (2.24) over the measurement device D, we obtain the post-measurement state of the
system S depending on the outcome 𝑎 in the from

𝜌S𝑎 ≔ TrD[𝜌SD𝑎 ] =
ℳ𝑎(𝜌)

Pr (𝐴D = 𝑎|𝑈(𝜌 ⊗ 𝜎D)𝑈†) , (2.26)

where TrD is partial trace over the measurement device D and a mapℳ𝑎 depending on
the outcome 𝑎 as

ℳ𝑎(𝜌) ≔ TrD[(𝐼S ⊗ 𝑃D𝑎 )𝑈(𝜌 ⊗ 𝜎D)𝑈†(𝐼S ⊗ 𝑃D𝑎 )]. (2.27)

The probability (2.25) is written as

Pr (𝐴D = 𝑎||𝑈(𝜌 ⊗ 𝜎D)𝑈†) = Tr[ℳ𝑎(𝜌)]. (2.28)

Because the right hand side of the above probability depends on the initial state 𝜌 and the
outcome 𝑎, we can rewrite the equations (2.26) and (2.28) as

𝜌S𝑎 =
ℳ𝑎(𝜌)

Pr (𝐴D = 𝑎|𝜌)
, (2.29)

Pr (𝐴D = 𝑎|𝜌) = Tr[ℳ𝑎(𝜌)]. (2.30)
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Chapter 2 Quantum dynamics and measurement

Hence, the general quantummeasurement is given by the set of the maps {ℳ𝑎 }𝑎, whose
elements are given by the equation (2.27) in the indirect measurement model. Note that
the corresponding non-selective measurement is given by the map

ℳ ≔∑
𝑎
ℳ𝑎, (2.31)

which is a TPCPmap satisfying the those properties on the page 6. Because themap (2.31)
is given by

ℳ(𝜌) = Tr[𝑈(𝜌 ⊗ 𝜎D)𝑈†], (2.32)

it clearly denotes a general quantum dynamics in the section (2.10).
The quantum measurement {ℳ𝑎 }𝑎 is mathematically called a CP instrument. The

CP instrument is a set of completely positive (CP) linear maps whose sum is a TPCPmap.
Similarly to the general quantumdynamics of the section 2.1.2, an arbitraryCP instrument
can be represented as an indirect measurement model.
The CP instrument has the Kraus representation similarly to the TPCPmap. The Kraus

representation of the CP instrument is given as follows: for a CP instrument {ℳ𝑎 }𝑎,
the each CP mapℳ𝑎 can be represented by a set of linear operators { 𝑀𝑎,𝑛 }𝑛 satisfying
∑𝑛𝑀

†
𝑛,𝑎𝑀𝑛,𝑎 ≤ 𝐼 and∑𝑎,𝑛𝑀

†
𝑎,𝑛𝑀𝑎,𝑛 = 𝐼, where 𝐼 is the identity operator, such that

ℳ𝑎(𝜌) = ∑
𝑛
𝑀𝑎,𝑛𝜌𝑀

†
𝑎,𝑛. (2.33)

We thereby obtain the probability (2.30) in the form

Pr (𝐴D = 𝑎|𝜌) = ∑
𝑛
Tr[𝑀𝑎,𝑛𝜌𝑀

†
𝑎,𝑛]. (2.34)

In particular, when the echo CPmapℳ𝑎 of the CP instrument is represented by only one
operator𝑀𝑎, namely

ℳ𝑎(𝜌) = 𝑀𝑎𝜌𝑀
†
𝑎 (2.35)

for all outcome 𝑎, we call the operator𝑀𝑎 the measurement operator. When themeasure-
ment operator is a projection, the equation (2.35) becomes a projection measurement.
Finally, we show a POVM (positive operator valuedmeasure of probability operator val-

ued measure) measurement, which is a quantum measurement focused on a probability
of outcomes, ignoring a post-measurement state.
The POVMmeasurement of the physical quantity𝐴 is given by a set of positive Hermi-

tian operators { 𝐸𝑎 }𝑎 with the normalization∑𝑎 𝐸𝑎 = 𝐼. Then, we define the probability
Pr (𝐴 = 𝑎|𝜌) of an outcome 𝑎 given a state 𝜌 as

Pr (𝐴 = 𝑎|𝜌) ≔ Tr[𝐸𝑎𝜌]. (2.36)

The POVM measurement is an extension of the Born rule (2.19) and satisfies an affine
property:

Pr (𝐴 = 𝑎|𝑝𝜌1 + (1 − 𝑝)𝜌2) = 𝑝Pr (𝐴 = 𝑎|𝜌1) + (1 − 𝑝)Pr (𝐴 = 𝑎|𝜌2) (2.37)
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2.2 Quantum measurement

for any states 𝜌1 and 𝜌2 with a real number 𝑝 ∈ [0, 1]. On the other hand, the POVM
measurement can be derived from the affine property (2.37) [108].
The POVM measurement can be represented by the indirect measurement model, the

CP instrument and the Kraus representation. From the equations (2.25), (2.30) and (2.34),
we obtain

𝐸𝑎 = TrD[𝑈†(𝐼S ⊗ 𝑃D𝑎 )𝑈(𝐼S ⊗ 𝜎D)] (2.38)

=ℳ†
𝑎(𝐼S) (2.39)

= ∑
𝑛
𝑀†

𝑎,𝑛𝑀𝑎,𝑛, (2.40)

whereℳ†
𝑎 is the adjoint ofℳ𝑎 as defined in the appendix A.

2.2.3 Continuous measurement
Let us consider measurement of a physical quantity 𝐴 in a closed quantum system. We
keep measuring it continuously between time 0 and 𝜏 and obtain a measurement record
[𝑎] ≔ { 𝑎(𝑡) | 𝑡 ∈ (0, 𝜏) }, where 𝑎(𝑡) is a path of the measurement outcome. We call this
procedure the continuous measurement.
We approximate the continuous measurement by a series of instantaneous measure-

ments, which we describe as CP instruments {ℳ𝑎,𝑡 }𝑎 of the physical quantity 𝐴 for
each time 𝑡 [17, 75]. The time evolution between successive two instrument measure-
ments {ℳ𝑎,𝑡 }𝑎 and {ℳ𝑎,𝑠 }𝑎 (𝑡 ≤ 𝑠) is the unitary evolution map 𝒰𝑠,𝑡 given by 𝒰𝑠,𝑡(𝜌) ≔
𝑈(𝑠, 𝑡)𝜌𝑈†(𝑠, 𝑡) for an arbitrary state 𝜌, where 𝑈(𝑠, 𝑡) is a unitary operator of evolution
between time 𝑡 to 𝑠.
We define the continuous-measurement mapℳ[𝑎] as the limitation of a series of rep-

resented instantaneous measurements in the form

ℳ[𝑎] ≔ lim
𝑁→∞

𝒰𝑡𝑁,𝑡𝑁−1ℳ𝑎𝑁−1,𝑡𝑁−1 𝒰𝑡𝑁−1,𝑡𝑁−2ℳ𝑎𝑁−2,𝑡𝑁−2

×⋯ ×𝒰𝑡2,𝑡1ℳ𝑎1,𝑡1 𝒰𝑡1,𝑡0, (2.41)

where 𝑡𝑛 ≔ 𝑛𝜏/𝑁 and 𝑎𝑛 ≔ 𝑎(𝑡𝑛). The set of the continuous-measurement maps
{ℳ[𝑎] }[𝑎] is a CP instrument, because the mapℳ[𝑎] is a CP map and its path integral
over all measurement records [𝑎] is trace preserving:

Tr[∫𝒟[𝑎]ℳ[𝑎](𝜌)] = Tr[𝜌] (2.42)

for any density matrix 𝜌, where ∫𝒟[𝑎] denotes a path integral defined by

∫𝒟[𝑎] ≔ lim
𝑁→∞

𝑁−1
∏
𝑛=1

∑
𝑎𝑛
. (2.43)

Hence, the probability 𝑃([𝑎]|𝜌) of a measurement record [𝑎] given a state 𝜌 is given by

𝑃([𝑎]|𝜌) ≔ Tr[ℳ[𝑎](𝜌)] (2.44)
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Chapter 2 Quantum dynamics and measurement

with
∫𝒟[𝑎] 𝑃([𝑎]|𝜌) = 1. (2.45)

12



Chapter 3

Time-dependent Hamiltonian approach on
conventional studies

One of the important points of thermodynamics is to distinguish the work and the heat
in the energy transferred from a system to another. In macroscopic thermodynamics, the
work is the energy transferred by varying external parameters of a thermodynamic system,
such as the volume and a magnetic field, whereas the heat is the energy transferred by
thermal contact with heat baths [10]. However, quantummechanics itself does not make
the distinction of the work and the heat. To construct quantum thermodynamic, it is
critical to know how to define the work and the heat quantum-mechanically.
In this chapter, we review a conventional approach to the definition of the work and

the heat in quantum thermodynamics by using a time-dependent Hamiltonian.

3.1 Time-dependent Hamiltonian and first law of
thermodynamics

In the conventional studies of quantum thermodynamics, a thermodynamic system op-
erated by an external agent is represented by a time-dependent Hamiltonian. This time
dependence is derived from the time variation of external parameters of the systemwhich
is caused by the operations of an external agent.
In this section, we define the work and the heat from the time-dependent Hamiltonian

and derive the first law of thermodynamics.

3.1.1 Work, heat, and first law of the thermodynamics

Let𝐻(𝑡) and 𝜌(𝑡) denote the time-dependent Hamiltonian of a driven system and its state
at time 𝑡, respectively. The change of the internal energy ∆𝑈 of the driven system from
the time 𝑡 = 0 to 𝜏 is given by

∆𝑈 = Tr[𝜌(𝜏)𝐻(𝜏)] − Tr[𝜌(0)𝐻(0)]. (3.1)

Since the work is the energy transferred owing to the change of the external parameters
and the heat is the energy transferred without the variation of the Hamiltonian, we define

13



Chapter 3 Time-dependent Hamiltonian approach on conventional studies

the average work performed by the system and the average heat absorbed by it as

⟨𝑊⟩ ≔ −∫
𝜏

0
𝑑𝑡Tr[𝜌(𝑡)𝐻̇(𝑡)], (3.2)

⟨𝑄⟩ ≔ ∫
𝜏

0
𝑑𝑡Tr[ ̇𝜌(𝑡)𝐻(𝑡)], (3.3)

respectively [8, 9, 27, 32, 36, 39, 42, 52, 68, 85, 116].
These definitions satisfy the first law of thermodynamic, namely the energy conserva-

tion. Indeed, deforming the equation (3.1) using derivation with respect to the time 𝑡, we
obtain

∆𝑈 = ∫
𝜏

0
𝑑𝑡

𝑑
𝑑𝑡
Tr[𝜌(𝑡)𝐻(𝑡)] (3.4)

= ∫
𝜏

0
𝑑𝑡 (Tr[ ̇𝜌(𝑡)𝐻(𝑡)] + Tr[𝜌(𝑡)𝐻̇(𝑡)]). (3.5)

Combining equations (3.2), (3.3) and (3.5), we obtain the energy conservation law in the
form of

∆𝑈 = ⟨𝑄⟩ − ⟨𝑊⟩ . (3.6)

Notice that the equation of the motion with respect to the state 𝜌(𝑡) is irrelevant in the
definitions (3.2) and (3.3). In other wards, we can apply them both to closed and open
quantum systems.
For example, consider the adiabatic dynamics of a closed quantum system for the driven

system 𝐻(𝑡). The evolution of the state 𝜌(𝑡) depends only on the Hamiltonian 𝐻(𝑡), and
hence follows the von Neumann equation

𝑖ℏ
𝜕𝜌(𝑡)
𝜕𝑡

= [𝐻(𝑡), 𝜌(𝑡)] . (3.7)

Calculating the average heat (3.3) using the von Neumann equation (3.7), we obtain

⟨𝑄⟩ =
𝑖
ℏ
∫

𝜏

0
𝑑𝑡Tr[[𝐻(𝑡), 𝜌(𝑡)]𝐻(𝑡)] (3.8)

=
𝑖
ℏ
∫

𝜏

0
𝑑𝑡 (Tr[𝐻(𝑡)𝜌(𝑡)𝐻(𝑡)] − Tr[𝜌(𝑡)𝐻(𝑡)𝐻(𝑡)]) (3.9)

= 0. (3.10)

Therefore, the change of the internal energy is equal to the average work:

∆𝑈 = − ⟨𝑊⟩ . (3.11)
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3.1.2 Thermodynamics system with heat baths

In the discussion above, the heat baths are represented by the influence on the driven
system except for the external parameters. However, some studies [25, 46, 56, 57, 63, 69,
95, 103, 106] of quantum thermodynamics consider the closed quantum system including
the driven system and the heat baths. In this approach, we assume that the Hamiltonians
of the heat baths do not change in time, and the work performed by the driven system and
the heat absorbed by it are equal to the energy decrements of the composite system and
the heat bath, respectively. We can thereby derive the first law of thermodynamics.
For simplicity, we consider the case of one heat bath and that the external operation

is performed from time 0 to 𝜏. Let 𝐻S(𝑡), 𝐻B and 𝑉(𝑡) denote the Hamiltonians of the
driven system, the heat bath and the interaction between the two systems, respectively.
The Hamiltonian 𝐻S(𝑡) of the driven system has time dependence with respect to the ex-
ternal operation. On the other hand, theHamiltonian𝐻B of the heat bath does not depend
on time. We assume that the interaction Hamiltonian 𝑉(𝑡) vanishes except during the ex-
ternal operation; 𝑉(𝑡) = 0 for 𝑡 ∉ (0, 𝜏). Hence, the Hamiltonian of the composite system
is given by

𝐻tot(𝑡) ≔ 𝐻S(𝑡) + 𝑉(𝑡) + 𝐻B. (3.12)

Let us first find the heat absorbed by the driven system. Since we assume that the com-
posite system is a closed quantum system, the state 𝜌(𝑡) of the composite system follows
the von Neumann equation with respect to the Hamiltonian (3.12) of the composite sys-
tem. Hence, the average heat of the composite system is zero (see equation (3.10)), and
we obtain

⟨𝑄⟩S ≔∫
𝜏

0
𝑑𝑡Tr[ ̇𝜌(𝑡)(𝐻S(𝑡) + 𝑉(𝑡))] = −∫

𝜏

0
𝑑𝑡Tr[ ̇𝜌(𝑡)𝐻B] (3.13)

= Tr[𝜌(0)𝐻B] − Tr[𝜌(𝜏)𝐻B]. (3.14)

The left-hand side of the above equality denotes the average heat absorbed by the driven
system including the contribution of the interaction, and the right-hand side is the energy
decrements of the heat bath. Thus, the energy decrements of the heat bath is equal to the
heat absorbed by the driven system.
Next, we find the work performed by the driven system. Since the composite system

is a closed system, the energy decrement of the composite system is equal to the average
work performed by the composite system (see equation (3.11)):

Tr[𝜌(0)𝐻tot(0)] − Tr[𝜌(𝜏)𝐻tot(𝜏)] = ∫
𝜏

0
𝑑𝑡Tr[𝜌(𝑡)𝐻̇tot(𝑡)]. (3.15)

From 𝐻̇tot(𝑡) = 𝐻̇S(𝑡) + 𝑉̇(𝑡), we obtain

Tr[𝜌(0)𝐻tot(0)] − Tr[𝜌(𝜏)𝐻tot(𝜏)] = ∫
𝜏

0
𝑑𝑡Tr[𝜌(𝑡)(𝐻̇S(𝑡) + 𝑉̇(𝑡))] ≕ ⟨𝑊⟩S . (3.16)
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The right-hand side of the above equality indicates the average work performed by the
driven system including contribution of the interaction. Thus, the energy decrements of
the composite system is equal to the work performed by the driven system.
Moreover, we define the change of the driven system including contribution of the in-

teraction as

∆𝑈S ≔ Tr[𝜌(𝜏)(𝐻S(𝜏) + 𝑉(𝜏))] − Tr[𝜌(0)(𝐻S(0) + 𝑉(0))]. (3.17)

We then arrive at the first law of thermodynamics for the driven system:

∆𝑈S = ⟨𝑄⟩S − ⟨𝑊⟩S . (3.18)

3.2 Second law of thermodynamics
The second law of thermodynamics represents the irreversibility, which is a characteris-
tic and important phenomenon in thermodynamics. To represent the irreversibility, we
define the (thermodynamic) entropy 𝑆th from a reversible thermodynamic process and
obtain the following statement: the entropy change ∆𝑆th of any thermodynamic process
satisfies

∆𝑆th ≥ ∑
𝑛

𝑄𝑛
𝑇𝑛

, (3.19)

where𝑄𝑛 is the heat absorbed by the 𝑛th heat bath at a temperature𝑇𝑛. This is well known
as the Clausius inequality, which is one of the statement of the second law.
Another representation of the second law of thermodynamics is focused on the ex-

tracted work. It is known as the principle of maximum work: the extracted work un-
der any isothermal process is maximal for a reversible isothermal process. To represent
the maximum work, we define the Helmholtz free energy as 𝐹eq ≔ 𝑈 − 𝑇𝑆th, where 𝑈
and 𝑇 are an internal energy and an temperature, respectively. Then, the maximumwork
is represented by the difference of the Helmholtz free energies. Hence, the principle of
maximum work is given by

𝑊 ≤ −∆𝐹eq, (3.20)
where𝑊 and∆𝐹eq are the extractedwork under any isothermal process and the difference
of the Helmholtz free energies between the initial and the final equilibriums, respectively.
In macroscopic dynamics, the equations of motion have the reversibility. Deriving the

irreversibility of thermodynamics from this microreversibility is an important issue of sta-
tistical physics, and has been studied by many researches.
In this section, we derive the second law of thermodynamic for quantum systems using

the time-dependent Hamiltonian approach.

3.2.1 Clausius inequality and entropy production
In quantum thermodynamic, we define the (nonequilibrium) entropy of the state 𝜌 with
the von Neumann entropy

𝑆(𝜌) ≔ −Tr[𝜌 log 𝜌]. (3.21)
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This definition comes from the analogy of (equilibrium) statisticalmechanics, and is equal
to the thermodynamic entropy except for the Boltzmann constant when the state is in the
equilibrium. Because the von Neumann entropy is unitary invariant, it does not change
in the closed quantum system.
The second law of thermodynamics is represented as

∆𝑆 ≥ ∑
𝑛
𝛽𝑛 ⟨𝑄𝑛⟩ , (3.22)

where∆𝑆 is the change of the von Neumann entropy of the driven system and ⟨𝑄𝑛⟩ is the
average heat that the driven system absorbs from the 𝑛th heat bath at the inverse tempera-
ture 𝛽𝑛. This is a representation of the Clausius inequality in quantum thermodynamics.
In nonequilibrium thermodynamics, the second law is often represented in another

formusing the entropy production. The entropy production is the entropy produced inside
the driven system and is given by

∆i𝑆 ≔ ∆𝑆 −∑
𝑛
𝛽𝑛 ⟨𝑄𝑛⟩ . (3.23)

From the equation (3.22), we have the second law in terms of the non-negativity of the
entropy production:

∆i𝑆 ≥ 0. (3.24)
The non-negativity of the entropy production has been shown in several situations [9,

56]. In this section, we show it in the case of the section 3.1.2, for the Hamiltonian (3.12).
Let 𝜌S(𝑡) denote the state of the driven system derived from the trace of 𝜌(𝑡) over the de-
grees of the heat bath. We assume that the initial state 𝜌(0) of the composite system does
not have entanglement between the driven system and the heat bath, and the initial state
of the heat bath is the canonical distribution at an inverse temperature 𝛽:

𝜌(0) = 𝜌S(0) ⊗ 𝜌eqB , 𝜌eqB ≔
𝑒−𝛽𝐻B

Tr[𝑒−𝛽𝐻B]
. (3.25)

Since the composite system is closed, its entropy does not change:

𝑆(𝜌(𝜏)) = 𝑆(𝜌(0)) = −Tr[𝜌S(0) log 𝜌S(0)] − Tr[𝜌eqB log 𝜌eqB ] (3.26)
= 𝑆(𝜌S(0)) − Tr[𝜌eqB log 𝜌eqB ], (3.27)

from which we obtain the change of the entropy of the driven system in the form

∆𝑆 ≔ 𝑆(𝜌S(𝜏)) − 𝑆(𝜌S(0)) (3.28)
= 𝑆(𝜌S(𝜏)) − 𝑆(𝜌(𝜏)) − Tr[𝜌eqB log 𝜌eqB ] (3.29)
= −Tr[𝜌S(𝜏) log 𝜌S(𝜏)] + Tr[𝜌(𝜏) log 𝜌(𝜏)] − Tr[𝜌eqB log 𝜌eqB ]. (3.30)

On the other hand, from the equation (3.14), we obtain the average heat absorbed by the
driven system S as

𝛽 ⟨𝑄⟩S = 𝛽(Tr[𝜌eqB 𝐻B] − Tr[𝜌(𝜏)𝐻B]) (3.31)
= Tr[𝜌(𝜏) log 𝑒−𝛽𝐻B] − Tr[𝜌eqB log 𝑒−𝛽𝐻B] (3.32)
= Tr[𝜌(𝜏) log 𝜌eqB ] − Tr[𝜌eqB log 𝜌eqB ]. (3.33)
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Therefore, the entropy production (3.23) is reduced to

∆i𝑆 ≔ ∆𝑆 − 𝛽 ⟨𝑄⟩S (3.34)
= −Tr[𝜌(𝜏) log (𝜌S(𝜏) ⊗ 𝜌eqB )] + Tr[𝜌(𝜏) log 𝜌(𝜏)] (3.35)

= 𝐷(𝜌(𝜏)‖‖𝜌S(𝜏) ⊗ 𝜌eqB ), (3.36)

where 𝐷(𝜌‖𝜎) ≔ Tr[𝜌 log 𝜌] − Tr[𝜌 log𝜎] is the quantum relative entropy. Because the
quantum relative entropy is non-negative [24], we obtain the second law of thermody-
namics, the equation (3.24).

3.2.2 Principle of maximum work and free energy
In the previous section, we define the entropy production ∆i𝑆 as the difference of the ab-
sorbed heat from the entropy change. Using the energy conservation law, we can describe
the entropy production in terms of the extracted work and derive the principle of maxi-
mum work under quantum thermodynamics.
We now assume the case of one heat bath. Then, the energy conservation (3.6) and the

entropy production (3.23) reduce to

∆𝑈 = ⟨𝑄⟩ − ⟨𝑊⟩ , (3.37)
∆i𝑆 = ∆𝑆 − 𝛽 ⟨𝑄⟩ , (3.38)

respectively, which are followed by

∆i𝑆 = ∆𝑆 − 𝛽∆𝑈 − 𝛽 ⟨𝑊⟩ . (3.39)

In the analogy of the Helmholtz free energy of thermodynamics, let us define the
nonequilibrium free energy [57, 63, 69, 76, 111] as

𝐹(𝜌;𝐻) ≔ Tr[𝜌𝐻] − 𝛽−1𝑆(𝜌). (3.40)

We therefore have

∆𝐹 ≔ 𝐹(𝜌(𝜏);𝐻(𝜏)) − 𝐹(𝜌(0);𝐻(0)) (3.41)
= ∆𝑈 − 𝛽−1∆𝑆, (3.42)

where we used the equation (3.1). We thus obtain the entropy production in terms of the
work in the form

∆i𝑆 = −𝛽(∆𝐹 + ⟨𝑊⟩). (3.43)

The nonequilibrium free energy (3.40) can be characterized by the reversible isothermal
process as well as the Helmholtz free energy in thermodynamics. Its difference represents
the maximum work between two general state. Indeed, the non-negativity of the entropy
production (3.24) and the equation (3.43) give

⟨𝑊⟩ ≤ −∆𝐹. (3.44)
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This is the principle of maximum work under quantum thermodynamics.
Finally, we show the relation between the nonequilibrium andHelmholtz free energies.

Transforming the definition (3.40) using the canonical distribution at the inverse temper-
ature 𝛽,

𝜌eq(𝛽;𝐻) ≔
𝑒−𝛽𝐻

𝑍(𝛽;𝐻)
(3.45)

with 𝑍(𝛽;𝐻) ≔ Tr[𝑒−𝛽𝐻], we obtain

𝐹(𝜌;𝐻) = −𝛽−1(Tr[𝜌 log 𝜌eq(𝛽;𝐻)] + log𝑍(𝛽;𝐻)) − 𝛽−1Tr[𝜌 log 𝜌] (3.46)
= −𝛽−1 log𝑍(𝛽;𝐻) + 𝛽−1𝐷(𝜌‖𝜌eq(𝛽;𝐻)), (3.47)

where 𝐷(𝜌‖𝜎) ≔ Tr[𝜌 log 𝜌] − Tr[𝜌 log𝜎] is the quantum relative entropy. The first term
is the Helmholtz free energy 𝐹eq(𝛽;𝐻) ≔ −𝛽−1 log𝑍(𝛽;𝐻). The non-negativity of the
quantum relative entropy in the second term therefore gives

𝐹(𝜌;𝐻) − 𝐹eq(𝛽;𝐻) = 𝛽−1𝐷(𝜌‖𝜌eq(𝛽;𝐻)) ≥ 0. (3.48)

Thus, the nonequilibrium free energy is always greater than the Helmholtz at the same
temperature, and is equal to it when the state is at equilibrium.
In particular, if the initial state is the canonical distribution 𝜌eq(𝛽;𝐻(0)), the nonequi-

librium free energy is equal to the Helmholtz one: 𝐹(𝜌eq(𝛽;𝐻(0));𝐻(0)) = 𝐹eq(𝛽;𝐻(0)).
Using the equations (3.44) and (3.48), we can obtain a quantum counterpart of the equa-
tion (3.20):

⟨𝑊⟩ ≤ 𝐹(𝜌eq(𝛽;𝐻(0));𝐻(0)) − 𝐹(𝜌(𝜏);𝐻(𝜏)) (3.49)
= 𝐹eq(𝛽;𝐻(0)) − 𝐹eq(𝛽;𝐻(𝜏)) ≕ −∆𝐹eq. (3.50)

3.2.3 Second law of thermodynamics with information

Macroscopic thermodynamics focuses on macroscopic systems and gives universal laws
without depending on microscopic details of thermodynamic systems. In order to derive
this property from microscopic mechanics, we calculate statistical properties of the col-
lection of many particles in the thermodynamic system, not the motion of each particle.
If we can know the motion of each particle, can we obtain the thermodynamic laws?
To this question, Maxwell, in 1871, considered a thought experiment in which an agent

performsmeasurements on each particle andmake operations on the thermodynamic sys-
tem depending on the measurement results. He thus showed that the second law of ther-
modynamics is a stochastic law derived from statistical properties [2]. He demonstrated
that this agent can separate gas at a certain temperature into two boxes of gas at different
temperatures without affecting the gas, and claimed that the second law of thermodynam-
ics was therefore broken. At the present time, this agent is calledMaxwell’s demon and the
breaking of the second law of thermodynamics is called the paradox of Maxwell’s demon.
It is one of the most important topics in thermodynamics [29, 53].
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Many researchers have studied to understand and solve this paradox. Particularly, Lan-
dauer’s principle [5] is the most famous. Landauer’s principle claims that any logical ir-
reversibility, such as the erasure process of information, corresponds to the thermody-
namic irreversibility and increases the corresponding entropy. Bennett, in 1982, applied
this principle to the paradox of Maxwell’s demon, and solved the paradox [11]. Because
a physically possible demon cannot store information limitlessly, it can increase the en-
tropy. Thus, the composite system of a thermodynamic system and the demon obeys the
second law of thermodynamics.
After the solution of the paradox using Landauer’s principle, researchers have studied

Maxwell’s demon inmore detail; this research field is called information thermodynamics.
Today, we know an extended second law, called the second law of information thermody-
namics, in the following form [46, 50, 80–82]: When the initial state of a thermodynamic
system is the canonical distribution at an inverse temperature 𝛽, the average work ⟨𝑊⟩
performed by the thermodynamic system satisfies

⟨𝑊⟩ ≤ − ⟨∆𝐹eq⟩ + 𝛽−1𝐼, (3.51)

where ⟨∆𝐹eq⟩ is the average change of the Helmholtz free energy and 𝐼 is the amount of
information obtained by the demon from the thermodynamic system. When the thermo-
dynamic system is a classical system, the amount of information 𝐼 is the mutual informa-
tion between the system and the demon, while for a quantum system, the amount 𝐼 is the
information gain by the quantummeasurement, which is defined by Groenewold [6] and
Ozawa [12] and is called QC-mutual information by Sagawa and Ueda [46].
As we can see in the equation (3.51), the upper limit of the extracted work exceeds the

one in the second law of thermodynamics by the amount of information 𝐼. Indeed, for
the (classical) Szilard engine [3], which is a famous model of Maxwell’s demon, we have
⟨𝑊⟩ = 𝛽−1 log 2, ∆𝐹eq = 0, and 𝐼 = log 2. Hence, the work of the Szilard engine breaks
the conventional second law and achieves the equality of (3.51). The quantum version of
the Szilard engine functions in the same way [70].
Let us now regard Maxwell’s demon as a thermodynamic system and find inequalities

regarding the quantities of the demon. Let ⟨𝑊⟩meas and ⟨𝑊⟩eras denote the average work
required by the measurement and the information erasure of the demon, respectively, We
find the second laws of information thermodynamics with respect to the demon in the
following form [54]:

⟨𝑊⟩meas ≥ ⟨∆𝐹eqdemon⟩ − 𝛽−1(𝐻 − 𝐼), (3.52)
⟨𝑊⟩eras ≥ −⟨∆𝐹eqdemon⟩ + 𝛽−1𝐻, (3.53)

where ⟨∆𝐹eqdemon⟩ is the average change of the Helmholtz free energy of the demon and𝐻
is the Shannon entropy regarding the measurement outcome.
Combining the above three equations (3.51), (3.52) and (3.53), we obtain

⟨𝑊⟩ − ⟨𝑊⟩meas − ⟨𝑊⟩eras ≤ − ⟨∆𝐹eq⟩ . (3.54)

Hence, we thus recover the second law of thermodynamics for the combined system of
the thermodynamic system and the demon.
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In this way, we obtain a relation between the thermodynamics and the information
from the feedback operation, an operation that depends on the measurement outcome of
the thermodynamic system, which is nothing but what Maxwell’s demon. The amount
of information in the equations (3.51), (3.52) and (3.53) is large when the probability of
the measurement outcome has wide tails. Because a microscopic system fluctuates larger
than a macroscopic one, the second law of information thermodynamics is important in
the microscopic system.
In quantum systems, we can derive the three versions of the second law, (3.51), (3.52)

and (3.53) using the entanglement [93–95, 103]. To understand quantum thermodynam-
ics, it is not important only the relation of the information but also the entanglement.

3.3 Fluctuation theorems

From statistical mechanics, we know that the state of a system fluctuates. This fluctua-
tion is small when the system size is large enough. Thus, we have no problem in deriving
macroscopic thermodynamics. When we consider thermodynamics in microscopic sys-
tems, on the other hand, we cannot ignore the fluctuation. Are there rules that govern
the fluctuation? The fluctuation theorem indeed is a statement for physical quantities in
nonequilibrium processes, such as the work, the heat and the entropy production.
A typical form of the fluctuation theorem is given by the following equation on the

probability 𝑝F(Ω) of a thermodynamic quantity Ω in a nonequilibrium process [66, 83]:

𝑝F(Ω) = 𝑒𝑎(Ω−𝑏)𝑝B(−Ω), (3.55)

where 𝑎 and 𝑏 are appropriate constants and 𝑝B(Ω) is the probability for the backward
process. For example, the work performed by a thermodynamics system satisfies the work
fluctuation relation

𝑝F(𝑊) = 𝑒−𝛽(𝑊+∆𝐹eq)𝑝B(−𝑊), (3.56)

where 𝛽 is the inverse temperature and∆𝐹eq is the change of the Helmholtz free energy of
the thermodynamic system. This work fluctuation relation is called Crooks’ fluctuation
theorem [18].
The fluctuation theorem stochastically permits the quantities to violate the second law

of thermodynamics. In the case of Crooks’ fluctuation theorem [18], the work beyond the
principle of maximum work𝑊 ≤ −∆𝐹eq occurs with a non-zero probability.
The expectation with respect to the probability 𝑝F(Ω) of the fluctuation theorems (3.55)

gives

⟨𝑒−𝑎(Ω−𝑏)⟩ ≔ ∫𝑑Ω𝑝F(Ω)𝑒−𝑎(Ω−𝑏) = 1. (3.57)

The above equation is also a kind of the fluctuation theorem, and is called the integral
fluctuation theorem [83]. Particularly when the quantity Ω is the work𝑊, we obtain

⟨𝑒𝛽𝑊⟩ = 𝑒−𝛽∆𝐹eq, (3.58)
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which is called the Jarzynski equality [14]. Applying the Jensen inequality ⟨𝑒𝑓⟩ ≥ 𝑒⟨𝑓⟩ to
the Jarzynski equality, we obtain

⟨𝑊⟩ ≤ −∆𝐹eq. (3.59)

In other words, the second law holds for the expectation value.
The fluctuation theoremhas been theoretically derived in various situations [14–16, 18–

20, 22, 23, 25, 27, 28, 30, 31, 34, 35, 37, 38, 40–42, 44, 45, 47–49, 55, 58, 60, 61, 64, 66, 67,
71, 77, 78, 83, 84, 86–88, 91, 92, 99–101, 104, 106, 107, 109, 112, 113, 118] and have been
experimented in various microscopic systems [33, 59, 65, 72, 90, 97, 98]. In the following,
we show a quantum version of the fluctuation theorem, particularly the work fluctuation
relations [23, 25, 30, 40, 48].

3.3.1 Work fluctuation relations
We show a quantum version of the fluctuation theorem with respect to the work.
To consider the work fluctuation, we define the work extracted by a single operation,

not the average work. Kurchan [23] and Tasaki [25] defined the work in a single operation
as the difference of the outcomes of two energy measurements.
We now consider a closed quantum systemwith the time-dependent Hamiltonian𝐻(𝑡).

The instantaneous spectral decomposition of 𝐻(𝑡) is given by

𝐻(𝑡) = ∑
𝑛
𝐸𝑛(𝑡)𝑃𝑛(𝑡), (3.60)

where 𝐸𝑛(𝑡) is the energy eigenvalue at each time and 𝑃𝑛(𝑡) is the corresponding eigen-
projection.
We assume the work extraction preformed from time 0 to 𝜏. Then we consider the fol-

lowing process:

1. The initial state is the equilibrium state at the inverse temperature 𝛽, namely, is
given by

𝜌can0 ≔
𝑒−𝛽𝐻(0)

𝑍0
(3.61)

with 𝑍0 ≔ Tr[𝑒−𝛽𝐻(0)].

2. We measure the energy of the driven system using the energy projection 𝑃𝑛(0). We
assume that the energy outcome is 𝐸𝑛(0).

3. After the energy measurement, we let the driven system evolve from time 0 to 𝜏.
This time evolution is given by the unitary operator

𝑈 ≔ 𝕋 exp (−
𝑖
ℏ
∫

𝜏

0
𝑑𝑡𝐻(𝑡)), (3.62)

where 𝕋 is time ordering.
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4. Finally, we measure the energy of the driven system using the energy projection
𝑃𝑚(𝜏) and assume that the energy outcome is 𝐸𝑚(𝜏).

For the above process, we obtain the joint probability of the two specific energy outcomes
𝐸𝑛(0) and 𝐸𝑚(𝜏) in the form

𝑝𝑛,𝑚 ≔
𝑒−𝛽𝐸𝑛(0)

𝑍0
Tr[𝑃𝑚(𝜏)𝑈𝑃𝑛(0)𝑈†]. (3.63)

Accordingly to the energy conservation law, we assume that the extracted work is equal
to the energy loss of the driven system. Then, the probability distribution of the extracted
work𝑊 in this process is given by

𝑝F(𝑊) ≔ ∑
𝑛,𝑚

𝛿(𝑊 − 𝐸𝑛(0) + 𝐸𝑚(𝜏))𝑝𝑛,𝑚 (3.64)

= ∑
𝑛,𝑚

𝛿(𝑊 − 𝐸𝑛(0) + 𝐸𝑚(𝜏))
𝑒−𝛽𝐸𝑛(0)

𝑍0
Tr[𝑃𝑚(𝜏)𝑈𝑃𝑛(0)𝑈†], (3.65)

where 𝛿(𝑥) is the delta function. Using the property of the delta function 𝛿(𝑥 − 𝑥0)𝑓(𝑥) =
𝛿(𝑥 − 𝑥0)𝑓(𝑥0) and the cyclic property of the trace, we obtain

𝑝F(𝑊) =
𝑍𝜏
𝑍0
𝑒−𝛽𝑊 ∑

𝑛,𝑚
𝛿(𝑊 − 𝐸𝑛(0) + 𝐸𝑚(𝜏))

𝑒−𝛽𝐸𝑚(𝜏)

𝑍𝜏
Tr[𝑃𝑛(0)𝑈†𝑃𝑚(𝜏)𝑈], (3.66)

where 𝑍𝜏 ≔ Tr[𝑒−𝛽𝐻(𝜏)].
The summand in the equation (3.66) is the probability distribution of the work when

the initial state is the canonical distribution of the final Hamiltonian 𝐻(𝜏) and the time
evolution is the unitary operator 𝑈†, which is a backward time evolution. Let us define
the backward probability distribution of the work as

𝑝B(𝑊) ≔ ∑
𝑛,𝑚

𝛿(𝑊 − 𝐸𝑚(𝜏) + 𝐸𝑛(0))
𝑒−𝛽𝐸𝑚(𝜏)

𝑍𝜏
Tr[𝑃𝑛(0)𝑈†𝑃𝑚(𝜏)𝑈]. (3.67)

We thereby obtain
𝑝F(𝑊) = 𝑒−𝛽(𝑊+∆𝐹eq)𝑝B(−𝑊), (3.68)

where ∆𝐹eq is the difference of the Helmholtz free energy in the form

∆𝐹eq ≔ 𝐹eq𝜏 − 𝐹eq0 = −𝛽−1 log
𝑍𝜏
𝑍0

(3.69)

with 𝐹eq𝜏 ≔ −𝛽−1 log𝑍𝜏. This is a quantum version of the fluctuation theorem [23, 26, 48].
Calculating the expectation of 𝑒𝛽𝑊, we obtain a quantum version of the Jarzynski equa-

tion in the form
⟨𝑒𝛽𝑊⟩ ≔ ∫𝑑𝑊𝑝F(𝑊)𝑒𝛽𝑊 = 𝑒−𝛽∆𝐹eq. (3.70)
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3.3.2 Work fluctuation relation under feedback

Similarly to the argument of Maxwell’s demon in the section 3.2.3, we can consider the
fluctuation theorems under feedback processes. For simplicity, we show a quantum fluc-
tuation theorem under the feedback process with a classical error. The classical error
means that the measurement outcome changes according to a conditional probability.
We consider the following process for a closed quantum system:

1. Let 𝐻(0), 𝐸𝑛(0) and 𝑃𝑛(0) denote the initial Hamiltonian, its eigenvalues and the
corresponding eigenprojections, respectively. The initial state of the system is the
canonical distribution at an inverse temperature 𝛽:

𝜌eq0 ≔
𝑒−𝛽𝐻(0)

𝑍0
= ∑

𝑛

𝑒−𝛽𝐸𝑛(0)

𝑍0
𝑃𝑛(0) (3.71)

with 𝑍0 ≔ Tr[𝑒−𝛽𝐻(0)]. The corresponding Helmholtz free energy is given by 𝐹eq0 ≔
−𝛽−1 log𝑍0.

2. We measure the energy of the system using the projection 𝑃𝑛(0). We assume that
the energy outcome is 𝐸𝑛(0).

3. After the energy measurement, we let the system evolve from time 0 to 𝜏meas fol-
lowing the time-dependent Hamiltonian 𝐻(𝑡). The time evolution is given by the
unitary operator

𝑈 ≔ 𝕋 exp (−
𝑖
ℏ
∫

𝜏meas

0
𝑑𝑡𝐻(𝑡)), (3.72)

where 𝕋 is time ordering.

4. At the time 𝜏meas, we perform an intermediate measurement using the projection
Π𝑥 and obtain the outcome 𝑥.

5. The intermediate measurement outcome 𝑥 is changed to the outcome 𝑦 following
the conditional probability 𝑝(𝑦|𝑥) because of the classical error.

6. After the intermediatemeasurement, we perform the feedback operation depending
on the outcome 𝑦. We let the system evolve from time 𝜏meas to 𝜏 following the time-
dependentHamiltonian𝐻𝑦(𝑡)which depends on 𝑦; we here implement the feedback
operation by means of the 𝑦-dependence. Then, the time evolution is given by the
unitary operator

𝑈𝑦 ≔ 𝕋 exp (−
𝑖
ℏ
∫

𝜏

𝜏meas
𝑑𝑡𝐻𝑦(𝑡)). (3.73)

The corresponding Helmholtz free energy is given by 𝐹eq𝑡,𝑦 ≔ −𝛽−1 log𝑍(𝑦)𝑡 with
𝑍(𝑦)𝑡 ≔ Tr[𝑒−𝛽𝐻𝑦(𝑡)].
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7. We perform the energy measurement using the eigenprojection 𝑃(𝑦)𝑚 (𝜏) of the final
Hamiltonian 𝐻𝑦(𝜏). Assume that we obtain the eigenvalue 𝐸

(𝑦)
𝑚 (𝜏) as the energy

outcome.

We obtain the probability of the specific outcomes 𝐸𝑛(0), 𝑥, 𝑦 and 𝐸
(𝑦)
𝑚 (𝜏) in the form

𝑝𝑛,𝑥,𝑦,𝑚 ≔
𝑒−𝛽𝐸𝑛(0)

𝑍0
Tr[𝑃(𝑦)𝑚 (𝜏)𝑈𝑦Π𝑥𝑈𝑃𝑛(0)𝑈†Π𝑥𝑈

†
𝑦]𝑝(𝑦|𝑥). (3.74)

Similarly to the section 3.3.1, we define the extracted work as the energy loss of the
system:

𝑊𝑛,𝑦,𝑚 ≔ 𝐸𝑛(0) − 𝐸(𝑦)𝑚 (𝜏). (3.75)

We also define the difference of the Helmholtz free energy and the (non-average) mutual
information as

∆𝐹eq𝑦 ≔ 𝐹eq𝜏,𝑦 − 𝐹eq0 , (3.76)
𝐼𝑥,𝑦 ≔ log𝑝(𝑦|𝑥) − log𝑝𝑦 (3.77)

with 𝑝𝑦 ≔ ∑𝑛,𝑥,𝑚 𝑝𝑛,𝑥,𝑦,𝑚, respectively. Calculating the expectation of

𝑒𝛽(𝑊𝑛,𝑦,𝑚+∆𝐹
eq
𝑦 )−𝐼𝑥,𝑦 with respect to the probability (3.74), we obtain the quantum

Jarzynski equality with the (classical) information in the form

⟨𝑒𝛽(𝑊+∆𝐹eq)−𝐼⟩ ≔ ∑
𝑛,𝑥,𝑦,𝑚

𝑝𝑛,𝑥,𝑦,𝑚𝑒𝛽(𝑊𝑛,𝑦,𝑚+∆𝐹
eq
𝑦 )−𝐼𝑥,𝑦 (3.78)

= ∑
𝑛,𝑥,𝑦,𝑚

𝑒−𝛽𝐸
(𝑦)
𝑚 (𝜏)

𝑍(𝑦)𝜏
Tr[𝑃(𝑦)𝑚 (𝜏)𝑈𝑦Π𝑥𝑈𝑃𝑛(0)𝑈†Π𝑥𝑈

†
𝑦]𝑝𝑦 (3.79)

= ∑
𝑦
Tr[𝜌eq𝜏,𝑦]𝑝𝑦 = 1, (3.80)

where 𝜌eq𝜏,𝑦 ≔ 𝑒−𝛽𝐻𝑦(𝜏)/𝑍(𝑦)𝜏 is the canonical distribution of the final Hamiltonian for the
outcome 𝑦.
Because we here suppose that the intermediate measurement is the projection with the

classical error, the equation (3.80) includes the classical mutual information. In the case
of more general quantum measurements [88], the classical mutual information in the
equation (3.80) is replaced by an information gain whose expectation is the QC-mutual
information in the equation (3.51). Thus, applying the Jensen inequality ⟨𝑒𝑓⟩ ≥ 𝑒⟨𝑓⟩ to
the equation (3.80), we can obtain the second law of information thermodynamics of the
equation (3.51).
Moreover, calculating the expectation of 𝑒𝛽(𝑊𝑛,𝑦,𝑚+∆𝐹

eq
𝑦 ), we obtain another type of the
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quantum Jarzynski equality under the feedback operation in the form

⟨𝑒𝛽(𝑊+∆𝐹eq)⟩ ≔ ∑
𝑛,𝑥,𝑦,𝑚

𝑝𝑛,𝑥,𝑦,𝑚𝑒𝛽(𝑊𝑛,𝑦,𝑚+∆𝐹
eq
𝑦 ) (3.81)

= ∑
𝑛,𝑥,𝑦,𝑚

𝑒−𝛽𝐸
(𝑦)
𝑚 (𝜏)

𝑍(𝑦)𝜏
Tr[𝑃(𝑦)𝑚 (𝜏)𝑈𝑦Π𝑥𝑈𝑃𝑛(0)𝑈†Π𝑥𝑈

†
𝑦]𝑝(𝑦|𝑥) (3.82)

= ∑
𝑥,𝑦

Tr[Π𝑥𝑈
†
𝑦𝜌

eq
𝜏,𝑦𝑈𝑦Π𝑥]𝑝(𝑦|𝑥) ≕ 𝛾. (3.83)

Using the Jensen inequality ⟨𝑒𝑓⟩ ≥ 𝑒⟨𝑓⟩, we obtain another type of the second law of
information thermodynamics in the form

⟨𝑊⟩ ≤ − ⟨∆𝐹⟩ + 𝛽−1 log 𝛾. (3.84)

The quantity 𝛾 characterizes the efficiency of the feedback operation [62] because the ex-
tracted work is bounded by it. It has been measured by an experiment in a classical sys-
tem [65].
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Chapter 4

Work extraction as measurement process
In this chapter, we review a new approach of work extraction in quantum thermodynam-
ics instead of the conventional approach using time-dependent Hamiltonian. Our new
formulation is based on a quantum measurement process.

4.1 Problems of time-dependent Hamiltonian approach
In the previous chapter, we analyzed quantum thermodynamics using a time-dependent
Hamiltonian of a driven system. To define the extracted work, this approach made the
following assumptions:

• The time evolution of the thermodynamic system, which is the driven system with
heat baths, is described by the unitary operator generated from the time-dependent
Hamiltonian of the thermodynamics system.

• The work performed on the external agent is equal to the energy loss of the thermo-
dynamic system.

These assumptions have the following problems. First, the actual dynamics of quantum
system is not generally described by a unitary operator. Because the external agent is
also a physical system that interacts with the thermodynamic system, the thermodynamic
system is an open quantum system. Hence, the dynamics of the thermodynamic system
is not generally the unitary evolution. Next, the statistical property of the work given by
the external agent is not corresponding to one of the energy loss of the thermodynamic
system.
Several studies [93, 114, 117, 119, 122] of these problems, indeed showed that the two as-

sumptions are not compatible with each other. In other words, when the dynamics of the
thermodynamic system is described by the unitary evolution, we cannot truly describe the
statistical property of the extracted work as the energy loss of the thermodynamic system;
see an example of a two-level system in the section 5.1. For that reason, we necessarily
describe the work extraction different form the time-dependent Hamiltonian approach.
In order to resolve this problem, we can consider two approaches of thework extraction.

One is to introduce an external agent which obtains the work from the thermodynamic
system and the other is to consider the work extraction in the framework of quantum
measurement theory. In several studies [102, 105] of the first approach, they introduced
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Control system C 

State  𝜆 C 

Thermodynamics system S 

 

Hamiltonian  

𝐻SC ≔ 𝐻S 𝜆 ⊗  𝜆 C 𝜆 

𝜆

 Total Hamiltonian: 

Figure 4.1: Illustration of the thermodynamic system S, such as a gas, controlled by the
control system C, such as a piston. The Hamiltonian of the total system is
given by the time-independent Hamiltonian𝐻SC defined by the equation (4.1).
Whereas the Hamiltonian of the total system does not change in time, one
of the thermodynamic system S changes according to the state of the control
system C.

a work-storage device, such as a battery, as an external agent that obtains the energy from
the thermodynamic system and derived the second law of quantum thermodynamics. On
the other hand, in several studies [93, 117] of the other approach, they considered an
analogy between the work extraction and a quantum measurement process and intro-
duce a new formulation of the work extraction, which is called the measurement-based
work extraction. Note that the two approaches of the work extraction may have a simi-
lar relation between an indirect measurement model and a map representation of quan-
tum measurement, because the approach using the work-storage device may reduce to
the measurement-based work extraction when the work-storage device is traced out. We
adopt the latter in the present thesis and describe it in the present chapter.

4.2 Control system

Instead of the previous approach using the time-dependent Hamiltonian, we use a time-
independent Hamiltonian in order to consider the work extraction of quantum thermody-
namics. For the actual thermodynamic system, the Hamiltonian clearly seems to change
along time. We solve this gap by introducing a control system [89, 93, 105, 110, 117].
Let us assume that the Hamiltonian of the thermodynamic system S depends on a pa-

rameter 𝜆 as in 𝐻S(𝜆). We define the control system as a quantum system having an or-
thonormal basis { |𝜆⟩C }𝜆 corresponding to the value of the parameter 𝜆. The Hamiltonian
of the system composed by the thermodynamic system S and the control systemC is given
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by
𝐻SC ≔∑

𝜆
𝐻S(𝜆) ⊗ |𝜆⟩C⟨𝜆|. (4.1)

Using a cylinder as an example, the thermodynamic system S and the control system C
are a gas in the cylinder and its piston, respectively (see the figure 4.1). The Hamiltonian
of the thermodynamic system S changes according to the state of the control system C.
For example, if the state of the composite system is the direct product of the state 𝜌S of the
thermodynamic system S and the state |𝜆0⟩ of the control system C, the average energy of
the composite system is equal to the average energy of the thermodynamic system 𝜆 = 𝜆0:

Tr[𝐻SC(𝜌S ⊗ |𝜆0⟩C⟨𝜆0|)] = Tr[𝐻S(𝜆0)𝜌S]. (4.2)

We can thus analyze quantum thermodynamic using the time-independent Hamiltonian
of the composite system of the thermodynamic system and the control system.

4.3 Measurement-based work extraction

As an alternative to the approach of time-dependent Hamiltonian, it has been proposed
to regard the work extraction as a quantum measurement process [93, 117, 120].
The work extraction in thermodynamics is a process in which an external agent oper-

ates a system and obtain quantities of the work, and consequently the state of the sys-
tem changes. On the other hand, the measurement in quantum mechanics is a process
in which an external agent observes a system and obtain physical quantities, and conse-
quently the state of the system changes. Therefore, we can regard the work extraction
in quantum thermodynamics as a measurement process obtaining the quantities of the
work.
Based on this analogy, we define the work extraction process as a CP instrument {𝒦𝑗 }𝑗

corresponding to a set of outcomes of the work { 𝑤𝑗 }𝑗. Hence, the work extraction is rep-

resented by the set of themeasurement processes and the outcomes {𝒦𝑗, 𝑤𝑗 }𝑗. According
to the theory of quantum measurement in the section 2.2.2, the probability 𝑃𝑗 of the ex-
tracted work 𝑤𝑗 is given by

𝑃𝑗 ≔ Tr[𝒦𝑗(𝜌)], (4.3)

where 𝜌 is the state of the thermodynamic system. The average of the extracted work is
given by

⟨𝑊⟩ ≔ ∑
𝑗
𝑤𝑗𝑃𝑗 = ∑

𝑗
𝑤𝑗Tr[𝒦𝑗(𝜌)]. (4.4)

We expect the work extraction to satisfy the first law of thermodynamics, namely, the
energy conservation law. We add the energy conservation law to the work extraction
{𝒦𝑗, 𝑤𝑗 }𝑗 as follows. Suppose that the thermodynamic system is a closed quantum system
with a time-independent Hamiltonian 𝐻. The energy conservation for the expectation is
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given by
⟨𝑊⟩ = Tr[𝜌𝐻] −∑

𝑗
Tr[𝒦𝑗(𝜌)𝐻] (4.5)

for all state 𝜌 of the thermodynamic system. Note that it is sufficient for this energy con-
servation to be satisfied for the expectation; the work extracted by a single operation is
not necessarily equal to the energy loss of the thermodynamic system. In other words,
the equation (4.5) is a weak condition of the energy conservation for the work extraction
{𝒦𝑗, 𝑤𝑗 }𝑗.
On the other hand, we can consider a strong condition of the energy conservation of

the work extraction {𝒦𝑗, 𝑤𝑗 }𝑗. Let 𝐸𝑛 and |𝑛⟩ denote the eigenvalue of the Hamiltonian
𝐻 and the corresponding eigenstate, respectively. The strong condition of the energy con-
servation is given by [117]

𝒦𝑗(|𝑛⟩⟨𝑛|) = 𝑃𝐸𝑛−𝑤𝑗𝒦𝑗(|𝑛⟩⟨𝑛|)𝑃𝐸𝑛−𝑤𝑗 (4.6)

for all 𝑛 and 𝑗, where 𝑃𝐸 ≔ ∑𝑚;𝐸𝑚=𝐸
|𝑚⟩⟨𝑚|. This energy conservation dictates that the

transition occurs between the energy eigenstates with the energy loss always equal to the
extracted work 𝑤𝑗. Of course, the condition (4.6) satisfies the condition (4.5).
Beside the above conditions, Hayashi and Tajima proposed two other conditions of the

energy conservation [117]. The difference in these energy conservation conditions origi-
nated in the difference in the state of the external agent and the interaction between two
systems.

4.4 Fully quantum model of work extraction
Similar to the setup in the indirect measurement model for the quantum measurement
(see the section 2.2.2), we can consider the external agent obtaining the work from a ther-
modynamic system as a quantum system [93, 117].
We consider the thermodynamic system S and the external agent E with the Hamilto-

nians𝐻S and𝐻E, respectively. Let the spectral decomposition of 𝐻E given by

𝐻E = ∑
𝑗
𝜀𝑗𝑃E𝑗 . (4.7)

We suppose that the composition of the two systems are a closed quantum systems and its
time evolution is given by a unitary operator 𝑈.
Let 𝜎E denotes the initial state of the external agent. The work extraction {𝒦𝑗, 𝑤𝑗 }𝑗 is

given by [117]

𝒦𝑗(𝜌) ≔ TrE[(𝐼S ⊗ 𝑃E𝑗 )𝑈(𝜌 ⊗ 𝜎E)𝑈†], (4.8a)
𝑤𝑗 ≔ 𝜀𝑗 − Tr[𝜎E𝐻E], (4.8b)

where 𝜌 and 𝐼S are the initial state and the identity operator of the thermodynamic system
S, respectively, and TrE denotes the partial trace over the external agent E.
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This work extraction (4.8) does not generally satisfy the energy conservation. Thus,
we additionally require the energy conservation of the unitary operator 𝑈 of the work
extraction (4.8):

[𝐻S +𝐻E, 𝑈] = 0. (4.9)

The work extraction (4.8) thereby satisfies the weak energy conservation (4.5) for an arbi-
trary initial state 𝜎E of the external agent E. In particular, when the initial state 𝜎E of the
external agent E resides in a specific energy eigenspace, the work extraction (4.8) satisfies
the strong energy conservation (4.6). Note that the equation (4.9) is a sufficient condition
but not a necessary condition of the energy conservations (4.5) or (4.6).
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Chapter 5

Quantum Jarzynski equality of
measurement-based work extraction

In the previous chapter, we described the problems of the conventional approach of quan-
tum thermodynamics and reviewed the new formulation of work extraction, which is
based on a quantum measurement process. What is the difference in applying the new
formulation of work extraction from the conventional approach?
In order to show the difference, we derive a quantum version of the Jarzynski equality

using the new formulation of work extraction introduced in the chapter 4 instead of using
the conventional approach reviewed in the section 3.3.1.
We first demonstrate the problem of the conventional approach using a two-level sys-

tem. Next, we derive the quantum Jarzynski equality using the new formulation. To derive
this, we first consider the case of a cyclic process, and then the case of a non-cyclic process
by extending the case of the cyclic process using a control system given in the section 4.2.
Finally, we calculate a quantity appearing in the new derivation using a simple system and
show its behavior.
The study in this chapter is based on the reference [119] under the present author’s

collaboration with Dr. H. Tajima and Prof. N. Hatano.

5.1 Example of problem of time-dependent Hamiltonian
approach

In this section, we exemplify the problem of time-dependent Hamiltonian approach using
a toy model. We show that energy loss of a thermodynamic system and energy obtained
by an external agent have difference behaviors of statistical when we approximate the
time evolution of the thermodynamic system to a unitary one. Specifically, we compare
variances of both energy changes.
We consider that a thermodynamic system S is a two-level system in which a cyclic pro-

cess is performed by an external agent E. The cyclic process means that the final Hamilto-
nian of the thermodynamic system S is equal to the initial one. Let𝐻S and𝐻E denote the
(initial) Hamiltonians of the thermodynamic system S and the external agent E, respec-
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Thermodynamics system S

|0〉S

|1〉S
Ω

HS =
Ω

2

(
|1〉S〈1| − |0〉S〈0|

)

External agent E

|m− 1〉E

|m〉E

|m+ 1〉E

|m+ 2〉E

Ω

Ω

Ω

HE =
∑
m∈Z

mΩ |m〉E〈m|

Interaction

Figure 5.1: Illustration of the systems in the section 5.1. The operators𝐻S and𝐻E denote
the Hamiltonians of the thermodynamic system S and the external agent E,
respectively, and the parameter Ω denotes the level spacing.

tively (the figure 5.1):

𝐻S ≔
Ω
2
(|1⟩S⟨1| − |0⟩S⟨0|), (5.1)

𝐻E ≔ ∑
𝑚∈ℤ

ℎ𝑚|𝑚⟩E⟨𝑚|, (5.2)

where Ω is the level spacing and ℎ𝑚 ≔ 𝑚Ω is the eigenvalues of 𝐻E.
Let 𝜌S and 𝜎E denote initial state of the thermodynamic system S and the external agent

E. Because the thermodynamic system S is the two-level system, we can write the initial
state 𝜌S in the form

𝜌S ≔ 𝑝|0⟩S⟨0| + (1 − 𝑝)|1⟩S⟨1| + 𝑞|0⟩S⟨1| + 𝑞∗|1⟩S⟨0| (5.3)

with 0 ≤ 𝑝 ≤ 1, 𝑞 ∈ ℂ and |𝑞|2 ≤ 𝑝(1 − 𝑝) ≤ 1/4.
We assume that the time evolution of the total system is unitary one given by an unitary

operator 𝑈SE and conserves the total energy as in

[𝐻S +𝐻E, 𝑈SE] = 0. (5.4)

From energy conservation (5.4), we can write the unitary operator 𝑈SE in the form

𝑈SE = ∑
𝑛,𝑛′

𝐾𝑛,𝑛′ ⊗ |𝑛⟩E⟨𝑛
′| (5.5)

with

𝐾𝑛,𝑛′ ≔ 𝛿𝑛,𝑛′(𝑎𝑛|0⟩S⟨0| + 𝑏𝑛|1⟩S⟨1|) + 𝛿𝑛−1,𝑛′𝑐𝑛|0⟩S⟨1| + 𝛿𝑛+1,𝑛′𝑑𝑛|1⟩S⟨0| (5.6)
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for all integers 𝑛 and 𝑛′, where the coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 and 𝑑𝑛 are complex numbers.
Because 𝑈SE is the unitary operator, we obtain ∑𝑚𝐾†

𝑚,𝑛𝐾𝑚,𝑛′ = 𝛿𝑛,𝑛′𝐼S, where 𝐼S is an
identity operator on the thermodynamic system S, and thereby obtain

|𝑎𝑛|
2 + |𝑑𝑛−1|

2 = 1, (5.7a)

|𝑏𝑛|
2 + |𝑐𝑛+1|

2 = 1, (5.7b)
𝑎∗𝑛𝑐𝑛 + 𝑑∗𝑛−1𝑏𝑛−1 = 0 (5.7c)

for all integers 𝑛. Then, the time-evolutionmap𝒦 of the thermodynamic system S is given
by

𝒦(𝜌S) ≔ TrE[𝑈SE(𝜌S ⊗ 𝜎E)𝑈
†
SE] (5.8)

= ∑
𝑛,𝑛′,𝑛′′∈ℤ

E ⟨𝑛′ | 𝜎E | 𝑛′′⟩E𝐾𝑛,𝑛′𝜌S𝐾
†
𝑛,𝑛′′, (5.9)

where TrE is partial trace over the external agent E.
For the time evolution of the thermodynamic system S to approximate to the unitary

one, we choose the initial state 𝜎E and the unitary operator 𝑈SE as

𝜎E = |𝜓⟩E⟨𝜓|, |𝜓⟩E ≔
1
√𝑀

𝑀
∑
𝑚=1

|𝑚⟩E , (5.10a)

𝑈SE = ∑
𝑛,𝑛′=0,1

|𝑛⟩S⟨𝑛|𝑈S|𝑛′⟩S⟨𝑛
′| ⊗𝑊𝑛′−𝑛

E (5.10b)

for an arbitrary unitary operator𝑈S on the thermodynamic system S, where𝑀 is a natural
number and𝑊E ≔ ∑𝑚∈ℤ |𝑚 + 1⟩E⟨𝑚| is the shift operator on the external agent E. Then,
we can approximate the time-evolution map𝒦 of the equation (5.9) to the unitary evolu-
tion given by the unitary operator𝑈S when the natural number𝑀 in the equation (5.10a)
becomes large enough [93, 96]:

𝒦(𝜌S)
𝑀→∞
−−−−→ 𝑈S𝜌S𝑈S. (5.11)

The coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 and 𝑑𝑛 of the equation (5.6) become

𝑎𝑛 = S ⟨0 |𝑈S | 0⟩S ≕ 𝑢0,0, (5.12a)
𝑏𝑛 = S ⟨1 |𝑈S | 1⟩S ≕ 𝑢1,1, (5.12b)
𝑐𝑛 = S ⟨0 |𝑈S | 1⟩S ≕ 𝑢0,1, (5.12c)
𝑑𝑛 = S ⟨1 |𝑈S | 0⟩S ≕ 𝑢1,0 (5.12d)

for all integers 𝑛.
First, we consider the variance of the energy loss of the thermodynamic system S. To

calculate the variance of the energy loss, we define a single-shot energy loss by a differ-
ence of energy-measurement outcomes before and after the time evolution (5.9). In the
time-dependent Hamiltonian approach, particularly quantum fluctuation theorems, this
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quantity is defined as the work extracted by the external agent (see the sections 3.3.1 or
4.1). From the time evolution (5.9) of the thermodynamic system S, the probability of the
energy loss of the thermodynamic system

𝜐𝑘,𝑙 ≔ 𝑒𝑘 − 𝑒𝑙 (5.13)

is given by
𝑞𝑘,𝑙 ≔ S ⟨𝑘 | 𝜌S | 𝑘⟩S Tr[|𝑙⟩S⟨𝑙|𝒦(|𝑘⟩S⟨𝑘|)], (5.14)

where 𝑒0 ≔ −Ω/2 and 𝑒1 ≔ Ω/2 are the eigenvalues of the Hamiltonian in the equa-
tion (5.1). Because the time evolution (5.9) satisfies the trace preserving, the average of
𝜐𝑘,𝑙 is equal to the average energy loss of thermodynamic system S:

⟨𝜐⟩S ≔∑
𝑘,𝑙
𝜐𝑘,𝑙𝑞𝑘,𝑙 = Tr[𝜌S𝐻S] − Tr[𝒦(𝜌S)𝐻S]. (5.15)

We now define the variance of the energy loss of the thermodynamic system by

VarS[𝜐] ≔ ⟨𝜐2⟩S − ⟨𝜐⟩2S . (5.16)

Since 𝑒0 = −Ω/2 and 𝑒1 = Ω/2, the square of the energy loss 𝜐2𝑘,𝑙 is equal to zero or Ω
2.

Therefore, we obtain ⟨𝜐2⟩S ≤ Ω2. From ⟨𝜐⟩2S ≥ 0, we obtain an upper bundle on the
variance VarS[𝜐] in the from

VarS[𝜐] ≤ Ω2. (5.17)
Note that this upper bound holds regardless of a form of the time evolution of the thermo-
dynamic system S. Hence, the variance VarS[𝜐] of the energy loss of the thermodynamic
system S is always smaller thanΩ2 when the time evolution of the thermodynamic system
S is approximated to the unitary one.
We next consider the variance of the energy obtained by the external agent E. By refer-

ring to the section 4.4, we define

𝑤𝑗 ≔ ℎ𝑗 − TrE[𝜎E𝐻E] (5.18)

as the energy obtained by the external agent E and its probability is given by

𝑝𝑗 ≔ Tr[|𝑗⟩E⟨𝑗|𝑈SE(𝜌S ⊗ 𝜎E)𝑈
†
SE] (5.19)

= ∑
𝑛,𝑛′∈ℤ

E ⟨𝑛 | 𝜎E | 𝑛′⟩E Tr[𝐾
†
𝑗,𝑛′𝐾𝑗,𝑛𝜌S], (5.20)

where Tr is trace over all systems. From the equations (5.4), the average of 𝑤𝑗 is equal to
the average energy loss of the thermodynamic system S of the equation (5.15):

⟨𝑤⟩E ≔ ∑
𝑗∈ℤ

𝑤𝑗𝑝𝑗 (5.21)

= Tr[𝐻E𝑈SE(𝜌S ⊗ 𝜎E)𝑈
†
SE] − TrE[𝜎E𝐻E] (5.22)

= Tr[(𝐻S +𝐻E)(𝜌S ⊗ 𝜎E)] − Tr[𝐻S𝑈SE(𝜌S ⊗ 𝜎E)𝑈
†
SE] − TrE[𝜎E𝐻E] (5.23)

= Tr[𝜌S𝐻S] − Tr[𝒦(𝜌S)𝐻S] (5.24)
= ⟨𝜐⟩S . (5.25)
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We define the variance of the obtained energy 𝑤𝑗 by

VarE[𝑤] ≔ ⟨𝑤2⟩
E − ⟨𝑤⟩2E (5.26)

= ⟨ℎ2⟩E − ⟨ℎ⟩2E , (5.27)

where ⟨ℎ⟩ and ⟨ℎ2⟩ are the average and the means square of ℎ𝑗, respectively, with respect
to the probability 𝑝𝑗.
We now assume that the time evolution of the thermodynamic system S is approxi-

mated to the unitary one using the equations (5.10). Then, the probability 𝑝𝑗 in the equa-
tion (5.20) reduces to

𝑝𝑗 =
1
𝑀
Tr[𝐾̃†

𝑗𝐾̃𝑗𝜌S] (5.28)

with

𝐾̃𝑗 ≔
𝑀
∑
𝑚=1

𝐾𝑗,𝑚 = ∑
𝑛,𝑛′=0,1

𝑀
∑
𝑚=1

𝛿𝑗−𝑛′+𝑛,𝑚𝑢𝑛,𝑛′|𝑛⟩S⟨𝑛
′| (5.29)

We can write ⟨ℎ⟩E and ⟨ℎ
2⟩
E in the forms

⟨ℎ⟩E =
Ω
𝑀
∑
𝑗
𝑗Tr[𝐾†

𝑗𝐾𝑗𝜌], (5.30)

⟨ℎ2⟩E =
Ω2

𝑀
∑
𝑗
𝑗2Tr[𝐾†

𝑗𝐾𝑗𝜌]. (5.31)

From the equation (5.29), we find

𝐾̃𝑗 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑢1,0|1⟩S⟨0| for 𝑗 = 0
𝑈S − 𝑢0,1|0⟩S⟨1| for 𝑗 = 1
𝑈S for 2 ≤ 𝑗 ≤ 𝑀 − 1
𝑈S − 𝑢1,0|1⟩S⟨0| for 𝑗 = 𝑀
𝑢0,1|0⟩S⟨1| for 𝑗 = 𝑀 + 1
0 otherwise

, (5.32)

and thereby obtain

𝐾̃†
𝑗𝐾̃𝑗 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

||𝑢1,0||
2 |0⟩S⟨0| for 𝑗 = 0

𝐼S − ||𝑢0,1||
2 |1⟩E⟨1| + 𝑢∗0,1𝑢0,0|1⟩S⟨0| + 𝑢0,1𝑢∗0,0|0⟩S⟨1| for 𝑗 = 1

𝐼S for 2 ≤ 𝑗 ≤ 𝑀 − 1
𝐼S − ||𝑢1,0||

2 |0⟩E⟨0| + 𝑢∗1,0𝑢1,1|0⟩S⟨1| + 𝑢1,0𝑢∗1,1|1⟩S⟨0| for 𝑗 = 𝑀
||𝑢0,1||

2 |1⟩S⟨1| for 𝑗 = 𝑀 + 1
0 otherwise

.

(5.33)
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Using the relations (5.7) and (5.12), we obtain

∑
𝑗
𝑗𝐾̃†

𝑗𝐾̃𝑗 =
𝑀(𝑀 + 1)

2
𝐼S −𝑀(||𝑢1,0||

2 |0⟩E⟨0| − ||𝑢0,1||
2 |1⟩S⟨1|)

+ (𝑀 − 1)(𝑢∗1,0𝑢1,1|0⟩S⟨1| + 𝑢1,0𝑢∗1,1|1⟩S⟨0|), (5.34)

∑
𝑗
𝑗2𝐾̃†

𝑗𝐾̃𝑗 =
𝑀(𝑀 + 1)(2𝑀 + 1)

6
𝐼S −𝑀2 ||𝑢1,0||

2 |0⟩E⟨0| + 𝑀(𝑀 + 2) ||𝑢0,1||
2 |1⟩S⟨1|

+ (𝑀2 − 1)(𝑢∗1,0𝑢1,1|0⟩S⟨1| + 𝑢1,0𝑢∗1,1|1⟩S⟨0|). (5.35)

Using the equation (5.3), the equations (5.30) and (5.31) are respectively given by

⟨ℎ⟩E
Ω

=
(𝑀 + 1)

2
− ||𝑢1,0||

2 𝑝 + ||𝑢0,1||
2 (1 − 𝑝) + 2(1 −𝑀−1)Re[𝑢∗1,0𝑢1,1𝑞], (5.36)

⟨ℎ2⟩E
Ω2 =

(𝑀 + 1)(2𝑀 + 1)
6

−𝑀 ||𝑢1,0||
2 𝑝 + (𝑀 + 2) ||𝑢0,1||

2 (1 − 𝑝)

+ 2(𝑀 −𝑀−1)Re[𝑢∗1,0𝑢1,1𝑞]. (5.37)

From the equation (5.18), we can obtain

⟨ℎ⟩E = ⟨𝑤⟩ + TrE[𝜎E𝐻E] = ⟨𝑤⟩ +
𝑀 + 1
2

Ω. (5.38)

Comparing the above equation and (5.36), we obtain

⟨𝑤⟩E = Ω[||𝑢0,1||
2 (1 − 𝑝) − ||𝑢1,0||

2 𝑝 + 2(1 −𝑀−1)Re[𝑢∗1,0𝑢1,1𝑞]], (5.39)

and thereby obtain

⟨ℎ2⟩E =
(𝑀 + 1)(2𝑀 + 1)

6
Ω + (𝑀 + 1)Ω ⟨𝑤⟩E +Ω2(||𝑢1,0||

2 𝑝 + ||𝑢0,1||
2 (1 − 𝑝)). (5.40)

Inserting the equations (5.38) and (5.40) into the equation (5.27), we obtain

VarE[𝑤] =
𝑀2 − 1
12

Ω2 − ⟨𝑤⟩2E +Ω2(||𝑢1,0||
2 𝑝 + ||𝑢0,1||

2 (1 − 𝑝)). (5.41)

Because ⟨𝑤⟩E = Ω𝑂 (1) as 𝑀 → ∞ from the equation (5.39), the variance VarE[𝑤] be-
comes

VarE[𝑤] = Ω2𝑂(𝑀2) (𝑀 → ∞). (5.42)

Hence, the variance of the energy obtained by the external agent E diverges when the
time evolution of the thermodynamic system S is approximated to the unitary one. This
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5.1 Example of problem of time-dependent Hamiltonian approach

behavior is clearly difference from the variance of the energy loss of the thermodynamic
system S of the equation (5.17).
The above demonstration proves a problem of the time-dependent Hamiltonian ap-

proach, which employ a unitary evolution of the thermodynamic system and regard its
energy loss as the work. In particularly, because the energy obtained by the external agent
is the actual work, we can recognize that the quantum version of the work fluctuation
relations derived in the conventional approach (see the sections 3.3.1 and 3.3.2) do not
contain relevant information about the fluctuation of the actual work. In order to resolve
this problem, we derive in the section 5.2 the quantum Jarzynski equality using the new
formulation of the chapter 4.
Incidentally, we show that we cannot approximate the time evolution to a unitary one

in the case𝑀 = 1. To show it, we calculate the quantity

min
𝑈†𝑈=𝐼S

𝑑(𝒦(𝜌S), 𝑈𝜌S𝑈†), (5.43)

where 𝑑(𝐴, 𝐵) ≔ (1/2)Tr |𝐴 − 𝐵| is the trace distance [24, 108] of operators 𝐴 and 𝐵. For
𝑀 = 1, the initial state of the external agent E is a pure energy eigenstate. We now choose
a energy eigenstate of a fixed energy level 𝑛0 as the initial state 𝜎E, namely, 𝜎E = |𝑛0⟩E⟨𝑛0|.
Then, the time-evolution map (5.9) reduces to

𝒦(𝜌S) = ∑
𝑛∈ℤ

𝐾𝑛,𝑛0𝜌S𝐾
†
𝑛,𝑛0

= [||𝑎𝑛0||
2 𝑝 + ||𝑐𝑛0+1||

2 (1 − 𝑝)]|0⟩S⟨0| + [||𝑏𝑛0||
2 (1 − 𝑝) + ||𝑑𝑛0−1||

2 𝑝]|1⟩S⟨1|

+ 𝑎𝑛0𝑏
∗
𝑛0|0⟩S⟨1| + 𝑎∗𝑛0𝑏𝑛0|1⟩S⟨0|. (5.44)

From the equations (5.7) and (5.24), we obtain

⟨𝑤⟩E = Ω[𝑥(1 − 𝑝) + 𝑦𝑝] (5.45)

with 𝑥 ≔ ||𝑐𝑛0+1||
2 and 𝑦 ≔ ||𝑑𝑛0−1||

2.
Let us calculate the equation (5.43). Because the state 𝜌S is a positive semi-definite

operator, we obtain its eigenvalues 𝜆± ≔ (1/2) ± 𝑅 with

𝑅 ≔√(𝑝 −
1
2
)
2
+ |𝑞|2 (5.46)

and define ||𝜙±⟩ as normalized eigenstates of 𝜆±, respectively. Then, we obtain

𝜌S =
1
2
𝐼S + 𝑅(|𝜙+⟩S⟨𝜙+| − |𝜙−⟩S⟨𝜙−|). (5.47)

Similar to the state 𝜌, eigenvalues of the state𝒦(𝜌S) are given by 𝜆′± ≔ (1/2) ± 𝑅′ with

𝑅′ ≔√((1 − 𝑥 − 𝑦)𝑝 + 𝑥 −
1
2
)
2
+ (1 − 𝑥)(1 − 𝑦) |𝑞|2, (5.48)
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Chapter 5 Quantum Jarzynski equality of measurement-based work extraction

and we define ||𝜙′±⟩ as normalized eigenstates of 𝜆′±, respectively. We obtain

𝒦(𝜌S) =
1
2
𝐼S + 𝑅(|𝜙′+⟩S⟨𝜙

′
+| − |𝜙′−⟩S⟨𝜙

′
−|). (5.49)

Combining the equations (5.47) and (5.49), we obtain

𝒦(𝜌S) − 𝑈𝜌S𝑈†

= 𝑅′(|𝜙′+⟩S⟨𝜙
′
+| − |𝜙′−⟩S⟨𝜙

′
−|) − 𝑅(𝑈|𝜙+⟩S⟨𝜙+|𝑈

† −𝑈|𝜙−⟩S⟨𝜙−|𝑈
†), (5.50)

where 𝑈 is an arbitrary unitary operator.
The arbitrary unitary operator 𝑈 can be given by

𝑈 = 𝑒𝑖𝜙(𝛼|𝜙′+⟩S⟨𝜙+| − 𝛽∗|𝜙′+⟩S⟨𝜙−| + 𝛽|𝜙′−⟩S⟨𝜙+| + 𝛼∗|𝜙′−⟩S⟨𝜙−|), (5.51)

where 𝛼 and 𝛽 are complex parameters satisfying |𝛼|2 + |𝛽|2 = 1 and 𝜃 is a real parameter.
Using above representation, we obtain

𝒦(𝜌S) − 𝑈𝜌S𝑈†

= [𝑅′ − 𝑅(|𝛼|2 − |𝛽|2)]|𝜙′+⟩S⟨𝜙
′
+| − [𝑅′ + 𝑅(|𝛽|2 − |𝛼|2)]|𝜙′−⟩S⟨𝜙

′
−|

− 2𝛼𝛽𝑅|𝜙′+⟩S⟨𝜙
′
−| − 2𝛼∗𝛽∗𝑅|𝜙′−⟩S⟨𝜙

′
+|. (5.52)

From |𝛼|2 + |𝛽|2 = 1, the eigenvalues of 𝒦(𝜌S) − 𝑈𝜌S𝑈† are given by

±√𝑅′2 + 𝑅2 − 2 |𝛼|2 |𝛽|2 𝑅𝑅′, and we thereby obtain

1
2
Tr ||𝒦(𝜌S) − 𝑈𝜌S𝑈†|| = √𝑅′2 + 𝑅2 − 2 |𝛼|2 |𝛽|2 𝑅𝑅′. (5.53)

The equation (5.43) is minimization of the above equation with respect to the unitary
operator 𝑈, namely, the parameters 𝛼 and 𝛽. We therefore obtain

min
𝑈†𝑈=𝐼S

𝑑(𝒦(𝜌S), 𝑈𝜌S𝑈†) = min
|𝛼|2+|𝛽|2=1

√𝑅′2 + 𝑅2 − 2 |𝛼|2 |𝛽|2 𝑅𝑅′ (5.54)

= √𝑅′2 + 𝑅2. (5.55)

In case of 𝑥 = 𝑦 = 0, the quantity 𝑅′ reduces to 𝑅 and the distance of the equation (5.55)
is then equal to zero. This means that the time evolution can be approximated to the
unitary one. However, the average work of the equation (5.45) is always equal to zero. For
that reason, we have to consider cases other then 𝑥 = 𝑦 = 0. If we choose the initial state
of the thermodynamic system S as 𝑝 = 1/2 and |𝑞| = 0, the distance of the equation (5.55)
is not equal to zero without 𝑥 = 𝑦 = 0 (the figure 5.2(a)). Similarly, if we choose the
initial state as 𝑝 = |𝑞| = 1/2, the distance of the equation (5.55) is not equal to zero for
𝑥 = 𝑦 ≠ 0 (the figure 5.2(b)). Therefore, we cannot approximate the time evolution of the
thermodynamic system S to the unitary one in the case𝑀 = 1.
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Figure 5.2: Plots of the equation (5.55) taking the parameters (a) (𝑝, |𝑞|) = (1/2, 0) and (b)
(1/2, 1/2).

5.2 Jarzynski equality
From the previous section, we showed a problem of the quantum version of the Jarzyn-
ski equality derived the conventional approach [23, 25, 48, 66], which assumes a unitary
evolution of a thermodynamic system and regard the energy loss of the thermodynamic
system as the work. To resolve this problem, we here derive the quantum version of the
Jarzynski equality using the new formulation of work extraction in the chapter 4.

5.2.1 Cyclic process
We first consider the case of a cyclic process, in which the final Hamiltonian is equal to
the initial one. We assume that a thermodynamic system is performed the cyclic process
by an external agent and the external agent obtain the energy from the thermodynamic
system as the work.
Let 𝐻S and 𝐻E denote the initial Hamiltonian of the thermodynamic system S and the

external agent E. The eigenvalue decompositions of 𝐻S and𝐻E are denoted by

𝐻S ≔∑
𝑥
ℎ𝑥|ℎ𝑥⟩S⟨ℎ𝑥|, (5.56)

𝐻E ≔∑
𝑖
𝑒𝑖|𝑒𝑖⟩E⟨𝑒𝑖|, (5.57)

where ℎ𝑥 and 𝑒𝑖 are the eigenvalues of 𝐻S and𝐻E (the figure 5.3(a)).
Referring to fully quantummodel of work extraction in the section 4.4, we assume that

the cyclic process of the total system is given by the unitary evolution given by a unitary
operator 𝑈SE which satisfies the energy conservation

[𝐻S +𝐻E, 𝑈SE] = 0. (5.58)

We further assume that the initial state of the thermodynamic system S and the external
agent E are given by the canonical distribution at an inverse temperature 𝛽 and a pure
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Figure 5.3: (a) Illustration of the cyclic process of the thermodynamic system S performed
by the external agent E. The cyclic process means that the final Hamiltonian is
equal to the initial one. We now represent the cyclic process by the unitary evo-
lution𝑈SE of the total system. After the cyclic process, we measure the energy
of the external agent E using the projection ||𝑒𝑗⟩E⟨𝑒𝑗

|| and define𝑤𝑗 ≔ 𝑒𝑗−𝑒0 as
the work extracted by the external agent E. (b) Illustration of the cyclic process
of the thermodynamic system S after trace over the external agent E. The cyclic
process reduces to thework extraction process𝒦𝑗 defined by themeasurement
process (5.65) and the corresponding work is 𝑤𝑗. The work extraction process
𝒦𝑗 satisfies the strong energy conservation of the equation (5.66).

energy eigenstate of energy 𝑒0, respectively:

𝜌S ≔∑
𝑥

𝑒−𝛽ℎ𝑥

𝑍S
|ℎ𝑥⟩S⟨ℎ𝑥|, (5.59)

𝜎S ≔ |𝑒0⟩E⟨𝑒0| (5.60)
(5.61)

with 𝑍S ≔ Tr[𝑒−𝛽𝐻S].
According to the fully quantummodel of work extraction in the section 4.4, we consider

the following process (see the figure 5.3(a)):

1. We set the initial states of the thermodynamic system S and the external agent E
given by the equations (5.59) and (5.60): the initial state of the total system is given
by

𝜌S ⊗ 𝜎E. (5.62)
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2. We evolves the total system according to the unitary operator 𝑈SE: the state of the
total system becomes

𝑈SE(𝜌S ⊗ 𝜎E)𝑈
†
SE. (5.63)

The key point is to consider the unitary evolution of the total system, not of the
thermodynamic system S.

3. To know the amount of the extracted work, we finally measure the energy of the
external agent E using the projection ||𝑒𝑗⟩E⟨𝑒𝑗

|| and define

𝑤𝑗 ≔ 𝑒𝑗 − 𝑒0 (5.64)

as the work extracted by the external agent E. It is essential that at this point the
“work” 𝑤𝑗 is not a fixed value but given probabilistically.

In the above process, we obtain the work extraction process of the specific extracted
work 𝑤𝑗 in the form

𝒦𝑗(𝜌S) ≔ TrE[||𝑒𝑗⟩E⟨𝑒𝑗
||𝑈SE(𝜌S ⊗ 𝜎E)𝑈

†
SE], (5.65)

where TrE is partial trace over the external agent E (the figure 5.3(b)). Because the unitary
evolution of the total system satisfies the energy conservation (5.58) and the initial state of
the external agent E is the pure energy eigenstate (5.60), the work extraction process 𝒦𝑗
satisfies the strong energy conservation of the equation (4.6) in the section 4.3, namely,
satisfies

𝒦𝑗(|ℎ𝑥⟩S⟨ℎ𝑥|) = 𝑃ℎ𝑥−𝑤𝑗𝒦𝑗(|ℎ𝑥⟩S⟨ℎ𝑥|)𝑃ℎ𝑥−𝑤𝑗 (5.66)

for all 𝑗, 𝑥, where 𝑃ℎ ≔ ∑𝑦 𝛿ℎ,ℎ𝑦||ℎ𝑦⟩S⟨ℎ𝑦
|| (see the section 4.4).

We then define the probability distribution of a random variable𝑊 with respect to the
extracted work by

𝑃(𝑊) ≔ ∑
𝑗
𝛿(𝑊 − 𝑤𝑗)Tr[𝒦𝑗(𝜌S)], (5.67)

where 𝛿(𝑥) and Tr are the delta function and the trace over all system, respectively. Be-
cause 𝒦𝑗 is a linear map and∑𝑦

||ℎ𝑦⟩S⟨ℎ𝑦
|| = 𝐼S, where 𝐼S is the identity operator on the

thermodynamic system S, we obtain

𝑃(𝑊) = ∑
𝑗,𝑥,𝑦

𝛿(𝑊 − 𝑤𝑗)
𝑒−𝛽ℎ𝑥

𝑍S
Tr[||ℎ𝑦⟩S⟨ℎ𝑦

||𝒦𝑗(|ℎ𝑥⟩S⟨ℎ𝑥|)]. (5.68)

From the strong energy conservation of the equation (5.66), the extractedwork𝑤𝑗must be
equal to the energy loss ℎ𝑥 −ℎ𝑦 of the thermodynamic system S after the work extraction
process𝒦𝑗. Hence, we find

𝑃(𝑊) = ∑
𝑗,𝑥,𝑦

𝛿(𝑊 − 𝑤𝑗)
𝑒−𝛽(𝑤𝑗+ℎ𝑦)

𝑍S
Tr[||ℎ𝑦⟩S⟨ℎ𝑦

||𝒦𝑗(|ℎ𝑥⟩S⟨ℎ𝑥|)] (5.69)

= 𝑒−𝛽𝑊∑
𝑗
𝛿(𝑊 − 𝑤𝑗)Tr[𝜌S𝒦𝑗(𝐼S)]. (5.70)
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Let us denote the average with respect to the probability distribution 𝑃(𝑊) by

⟨𝑓(𝑊)⟩ ≔ ∫𝑑𝑊𝑓(𝑊)𝑃(𝑊), (5.71)

where 𝑓(𝑊) is a function of the random variable𝑊. Using the equation (5.70), we then
obtain the Jarzynski equality under the cyclic process in the form

⟨𝑒𝛽𝑊⟩ = 𝛾 (5.72)

with
𝛾 ≔ Tr[𝜌S𝒦(𝐼S)], (5.73)

where𝒦 is the time-evolution map of the thermodynamic system S defined by

𝒦(𝜌S) ≔ ∑
𝑗
𝒦𝑗(𝜌S) = TrE[𝑈SE(𝜌S ⊗ 𝜎E)𝑈

†
SE]. (5.74)

Note that we did not use the detail of the external agent E to derive the equation (5.72) but
the strong energy conservation (5.66) of the work extraction process𝒦𝑗 of the thermody-
namic system S.
Applying Jensen’s inequality ⟨𝑒𝑓⟩ ≥ 𝑒⟨𝑓⟩ to the equation (5.72), we obtain the second

law of thermodynamics under the measurement-based work extraction in the form

⟨𝑊⟩ ≤ 𝛽−1 log 𝛾. (5.75)

Let us assume that the time evolution of the thermodynamics system S is a “natural”
thermodynamic process. The “natural” thermodynamic process means the work extrac-
tion processwhich does not operator a feedback operation and satisfies the first and second
laws of thermodynamics for an arbitrary initial state. From the strong energy conserva-
tion of the equation (5.66), the work extraction process𝒦𝑗 clearly satisfies the first law of
thermodynamics for an arbitrary initial state. On the other hand, to satisfy the second law
for an arbitrary initial state, we append the following condition to the time-evolutionmap
𝒦:

𝑆(𝜌) ≤ 𝑆(𝒦(𝜌)) (5.76)

for an arbitrary initial state 𝜌 of the thermodynamic system S, where 𝑆(𝜌) ≔ −Tr[𝜌 log 𝜌]
is the vonNeumann entropy. As a necessary and sufficient condition of the equation (5.76)
for an arbitrary initial state, the time-evolution map𝒦must be a unital map [51]:

𝒦(𝐼S) = 𝐼S. (5.77)

Inserting the equation (5.77) into the equation (5.73), we obtain 𝛾 = 1 and thereby obtain

⟨𝑒𝛽𝑊⟩ = 1, (5.78)
⟨𝑊⟩ ≤ 0. (5.79)
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Hence, we can obtain the same form as the quantum Jarzynski equality derived the con-
ventional approach [23, 25, 48, 66] under the cyclic process when the work extraction
process is a “natural” thermodynamic process.
The difference of the right-hand side of the Jarzynski equality from unity is known for

feedback processes [62, 71, 74, 106] and/or absolutely irreversible process [100, 106]. The
difference is represented as an feedback efficiency [62] for the feedback process, on the
other hand, comes from a probability of the singular part [100] for the absolutely irre-
versible. In case of this section, we do not apply the absolutely irreversible to the equa-
tion (5.72), because the initial state (5.59) of the thermodynamic system S is the canonical
distribution and thereby does not have the singular part. On the other hand, because the
time-evolution map 𝒦 includes the feedback process, we can regard the coefficient 𝛾 of
the equation (5.73) as the feedback efficiency.
We stress that the quantum Jarzynski equation of this derivation is essentially different

from those of the conventional derivation [23, 25, 48, 66] in the section 3.3.1. The con-
ventional derivation of the quantum Jarzynski equality defined the measured value of the
energy loss of the unitary-evolving thermodynamic system as the random variable𝑊, and
thereby did not appropriately contain information about the fluctuation of the energy ob-
tained by the external agent. Aswe have shown in the section 5.1, the variance of thework
𝑊 in the conventional derivation is completely different from that of the energy obtained
by the external agent, which is the actual work that we can use, under the approximation
of the unitary evolution of the thermodynamic system. Therefore, the quantum Jarzyn-
ski equality of the conventional derivation does not give relevant information about the
fluctuation of the actual work.
On the other hand, the present derivation of the quantum Jarzynski equality is different

in this point. Because we now employ the unitary evolution of the total system satisfy-
ing the energy conservation of the equation (5.58), we also define the measured value of
the energy loss of the thermodynamic system as a random variable𝑊, but it is equal to
the measured value of the energy obtained by the external agent. Therefore, the present
derivation correctly contains the information about the fluctuation of the actual work.

5.2.2 Non-cyclic process

We next consider the case of a non-cyclic process, extending the case of the cyclic process
in the section 5.2.1 using a control system in the section 4.2. For a non-cyclic process,
the Hamiltonian of a system of a driven system is different between the initial and final
ones. To apply the derivation for the cyclic process to the non-cyclic one, we divide the
thermodynamic system S into two subsystem [89, 93, 105, 110, 117]. One of the subsystem
is an internal system I which is a working substance, such as a gas. The other subsystem
is a control system C which controls the Hamiltonian of the internal system I as piston
(the figure 5.4). We consider the work extracted from the internal system I.
Referring the section 4.2, let { |𝜆⟩C }𝜆 denotes an orthonormal basis of the control system

C corresponding to the value of the control parameter 𝜆. We assume the initial Hamilto-
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Control system C
State !𝜆⟩$Internal system I

(working substance)

Hamiltonian𝐻& 𝜆

Thermodynamics system S Hamiltonian: 𝐻' ≔ ∑ 𝐻& 𝜆 ⊗ |𝜆⟩$⟨𝜆|-

Figure 5.4: To apply the formalism for the cyclic process of the section 5.2.1 to the
non-cyclic one, we divide the thermodynamic system S into two subsystems,
namely an internal system I and a control system C (see the section 4.2).

nian (5.56) of the thermodynamic system S in the form

𝐻S ≔∑
𝜆
𝐻I(𝜆) ⊗ |𝜆⟩C⟨𝜆|

= ∑
𝜆
∑
𝑥(𝜆)

ℎ𝑥(𝜆)||ℎ𝑥(𝜆), 𝜆⟩IC⟨ℎ𝑥(𝜆), 𝜆
||, (5.80)

where 𝐻I(𝜆) is the Hamiltonian of the internal system I, whose eigenstate and corre-
sponding eigenvalue are denoted as ||ℎ𝑥(𝜆)⟩I andℎ𝑥(𝜆), respectively; and

||ℎ𝑥(𝜆), 𝜆⟩IC denotes
||ℎ𝑥(𝜆)⟩I ⊗ |𝜆⟩C. We change the control parameter 𝜆, making the non-cyclic process. Note
that the index 𝑥(𝜆) depends on the control parameter 𝜆, because the set of the eigenvalues
of the Hamiltonian𝐻I(𝜆) depends on the control one 𝜆. From the strong energy conserva-
tion (5.66) of the work extraction process𝒦𝑗, the energy of the internal system I changes
from ℎ𝑥(𝜆) to ℎ𝑥(𝜆)−𝑤𝑗 after the work extraction process𝒦𝑗 of the specific extracted work
𝑤𝑗.
To start the internal system I from the equilibriumwith a fixed parameter 𝜆i, we replace

the initial state (5.59) of the thermodynamic system S by the canonical distribution of the
internal system I with a pure state |𝜆i⟩C of the control system C (the figure 5.5):

𝜌S(𝜆i) ≔ ∑
𝑥(𝜆i)

𝑒−𝛽ℎ𝑥(𝜆i)

𝑍I(𝜆i)
||ℎ𝑥(𝜆i), 𝜆i⟩IC⟨ℎ𝑥(𝜆i), 𝜆i

||

= 𝜌I(𝜆i) ⊗ |𝜆i⟩C⟨𝜆i| (5.81)

with 𝑍I(𝜆) ≔ Tr[𝑒−𝛽𝐻I(𝜆)] and 𝜌I(𝜆) ≔ 𝑒−𝛽𝐻I(𝜆)/𝑍I(𝜆). The Helmholtz free energy of the
internal system I for a specific parameter 𝜆 is given by

𝐹I(𝜆) ≔ −𝛽−1 log𝑍I(𝜆). (5.82)
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Control system C
Initial state !𝜆#⟩%⟨𝜆#|

Work extraction process
(measurement process)

𝒦)

Work (outcome)
𝑤)

Projection of C
!𝜆+⟩%⟨𝜆+|

Outcome
𝜆+

Internal system I

Initial state

𝜌- 𝜆# ≔
𝑒0123 45
𝑍- 𝜆#

Thermodynamics system S

Figure 5.5: Illustration of the non-cyclic process of the thermodynamics system S. To ap-
ply the formalism for the cyclic process of the section 5.2.1 to the non-cyclic
process using the division of the thermodynamic system S, we replace the ini-
tial state of the thermodynamic systemSby the canonical distribution of the in-
ternal system I with a pure state |𝜆i⟩C of the control systemC. Thework extrac-
tion process𝒦𝑗 satisfies the strong energy conservation of the equation (5.66)
in the section 5.2.1, and the extracted work is denoted by 𝑤𝑗. After the work
extraction, we observe the control system C using the projection |𝜆f⟩C⟨𝜆f| to
know the destination of the non-cyclic process.

We then define the probability distribution of the random variable 𝑊 with respect to
the extracted work during the process in which the state of the control system C changes
from |𝜆i⟩C to |𝜆f⟩C as

𝑃𝜆i→𝜆f(𝑊) ≔ ∑
𝑗

𝛿(𝑊 − 𝑤𝑗)
𝑝𝜆i→𝜆f

Tr[|𝜆f⟩C⟨𝜆f|𝒦𝑗(𝜌I(𝜆i) ⊗ |𝜆i⟩C⟨𝜆i|)], (5.83)

where
𝑝𝜆i→𝜆f ≔ Tr[|𝜆f⟩C⟨𝜆f|𝒦(𝜌I(𝜆i) ⊗ |𝜆i⟩C⟨𝜆i|)] (5.84)

is the transition probability that the control parameter changes from 𝜆i to 𝜆f (see the fig-
ure 5.5). In the same way as in the equation (5.70) of the section 5.2.1, we obtain

𝑃𝜆i→𝜆f(𝑊) = 𝑒−𝛽(𝑊+∆𝐹I(𝜆i,𝜆f))

×∑
𝑗

𝛿(𝑊 − 𝑤𝑗)
𝑝𝜆i→𝜆f

Tr[𝜌I(𝜆f) ⊗ |𝜆f⟩C⟨𝜆f|𝒦𝑗(𝐼I(𝜆i) ⊗ |𝜆i⟩C⟨𝜆i|)], (5.85)

where ∆𝐹I(𝜆i, 𝜆f) ≔ 𝐹I(𝜆f) − 𝐹I(𝜆i) is the difference of the Helmholtz free energy of the
internal system I and 𝐼I(𝜆) ≔ ∑𝑥(𝜆)

||ℎ𝑥(𝜆)⟩I⟨ℎ𝑥(𝜆)
|| is the identity operator of the internal

system I with fixed control parameter 𝜆.
Modifying the average (5.71) with respect to the probability distribution 𝑃(𝑊) to

⟨𝑓(𝑊)⟩𝜆i→𝜆f
≔∫𝑑𝑊𝑓(𝑊)𝑃𝜆i→𝜆f(𝑊), (5.86)
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we therefore obtain the quantum Jarzynski equality under a non-cyclic process in the form

⟨𝑒𝛽𝑊⟩𝜆i→𝜆f
= 𝛾𝜆i→𝜆f𝑒

−𝛽∆𝐹I(𝜆i,𝜆f) (5.87)

with

𝛾𝜆i→𝜆f ≔
𝑝𝜆i→𝜆f
𝑞𝜆f→𝜆i

, (5.88)

𝑞𝜆f→𝜆i ≔ Tr[𝜌I(𝜆i) ⊗ |𝜆f⟩C⟨𝜆f|𝒦(𝐼I(𝜆i) ⊗ |𝜆i⟩C⟨𝜆i|)]. (5.89)

Note thatwe observe the initial andfinal states of the control systemC, not its intermediate
state. During the dynamics between these states, we cannot tell the path of the change of
the control parameter, such as the position of a piston, nor can we tell the motion of the
internal system I. It is in contrast with the fact that the motion of the system is fully
determined by a given path of a parameter in the conventional derivation of the quantum
Jarzynski equality [23, 25, 48, 66].
We now argue that the coefficient 𝛾𝜆i→𝜆f is not necessarily unity for a unital map as 𝛾 of

the equation (5.73) was for the cyclic process. When the time-evolution map𝒦 is unital,
namely the “natural” thermodynamic process defined in the section 5.2.1, the coefficient
𝛾𝜆i→𝜆f gives the ratio of the forward and backward transition probabilities. When the time-
evolution map 𝒦 is unital, trace preserving and completely positive, so is its adjoint 𝒦†.
In other words, the adjoint map 𝒦† is regarded as another time evolution. Therefore,
the equation (5.89) gives the backward transition probability that the control parameter
changes from 𝜆f to 𝜆i:

𝑞𝜆f→𝜆i = Tr[|𝜆i⟩C⟨𝜆i|𝒦
†(𝜌I(𝜆f) ⊗ |𝜆f⟩C⟨𝜆f|)]. (5.90)

As can be seen from the calculation of a simple model in the section 5.3, the backward
transition probability (5.90) is not necessarily equal to the forward one (5.84). Hence, the
coefficient 𝛾𝜆i→𝜆f is not necessarily unity for the unital map.
When the time-evolution map𝒦 is not unital, incidentally, we cannot regard the equa-

tion (5.89) as a transition probability. Because the adjoint𝒦† of a non-unital map𝒦 does
not satisfy trace preserving, the sum of the equation (5.89) over 𝜆i is not unity:

∑
𝜆i
𝑞𝜆f→𝜆i = Tr[𝜌I(𝜆i) ⊗ |𝜆f⟩C⟨𝜆f|𝒦(𝐼S(𝜆i))] (5.91)

= Tr[𝒦(𝜌I(𝜆i) ⊗ |𝜆f⟩C⟨𝜆f|)] ≠ 1, (5.92)

where 𝐼S ≔ ∑𝜆 𝐼I(𝜆) ⊗ |𝜆⟩C⟨𝜆| is the identity operator of the thermodynamic system S.
Finally, we show that the equation (5.87) reduces to the case of the cyclic process (5.72)

when the control system C has only one eigenstate. In this case, the state of the control
system C cannot changes from the initial state, and we thereby obtain 𝑝𝜆i→𝜆i = 1 and
∆𝐹I(𝜆i, 𝜆i). Therefore, the equation (5.85) reduces to

𝑃𝜆i→𝜆f(𝑊) = 𝑒−𝛽𝑊∑
𝑗
𝛿(𝑊 − 𝑤𝑗)Tr[𝜌I(𝜆i) ⊗ |𝜆i⟩C⟨𝜆i|𝒦𝑗(𝐼I(𝜆i) ⊗ |𝜆i⟩C⟨𝜆i|)]. (5.93)

Because the control system C has only one eigenstate in this case, we obtain 𝐼S = 𝐼I(𝜆i) ⊗
|𝜆i⟩C⟨𝜆i| and 𝜌S = 𝜌I(𝜆i) ⊗ |𝜆i⟩C⟨𝜆i|, and thereby the equation (5.93) is equivalent to the
equation (5.70).
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5.3 Calculation for a simple model
In this section, we evaluate the coefficient 𝛾𝜆i→𝜆f of the section 5.2.2 using a simple system.
We suppose that the Hamiltonian of the simple thermodynamic system S and the internal
system I is given by

𝐻S(𝜔) ≔ ∑
𝜆=0,1

𝐻I(𝜆; 𝜔) ⊗ |𝜆⟩C⟨𝜆|, (5.94)

𝐻I(𝜆; 𝜔) ≔
𝜔
2
(𝜆 + 1)𝜎I𝑧, (5.95)

where 𝜔 is level spacing and 𝜎I𝑧 ≔ |1⟩I⟨1| − |0⟩I⟨0|. The canonical distribution of the
internal system I at the inverse temperature 𝛽 is given by

𝜌I( ̃𝛽, 𝜆) ≔ ∑
𝑛=0,1

𝜋𝑛( ̃𝛽, 𝜆)|𝑛⟩I⟨𝑛|, (5.96)

𝜋𝑛( ̃𝛽, 𝜆) ≔
1

1 + exp ((−1)(1−𝑛)(𝜆 + 1) ̃𝛽)
, (5.97)

where ̃𝛽 ≔ 𝛽𝜔 is the dimensionless inverse temperature.
We suppose that the work extraction process 𝒦𝑗 on the thermodynamic system S is

given by the following equation using a unitary operator 𝑈eff:

𝒦𝑗(𝜌S) ≔ 𝐾𝑗𝜌S𝐾
†
𝑗 , (5.98)

𝐾𝑗 ≔ ∑
𝜆,𝜆′=0,1

∑
𝑥(𝜆),𝑦(𝜆′)=0,1

𝛿𝑤𝑗,ℎ𝑥(𝜆)−ℎ𝑦(𝜆′)Π𝑦(𝜆′)𝑈effΠ𝑥(𝜆) (5.99)

with ℎ𝑥(𝜆) ≔ (−1)1−𝑥(𝜆)(𝜆 + 1)𝜔/2 andΠ𝑥(𝜆) ≔ |𝑥(𝜆), 𝜆⟩IC⟨𝑥(𝜆), 𝜆|. Then, the correspond-
ing time-evolutionmap𝒦 ≔ ∑𝑗𝒦𝑗 is unital and, therefore, is not a feedback process. The
unitary operator𝑈eff is represented as the tracing out the external agent from the time evo-
lution of the total system. We define the effective Hamiltonian by 𝐻eff ≔ −𝑇−1 log𝑈eff,
where 𝑇 is the operation time of the work extraction process𝒦𝑗. For simplicity, we sup-
pose that the effective Hamiltonian𝐻eff is given by

𝐻eff(𝜔, 𝜉, 𝜂) ≔ 𝐻S(𝜔) + 𝑉eff(𝜉𝜔) + 𝐻hop(𝜂𝜔), (5.100)
𝑉eff(𝛼) ≔ 𝛼𝐼I ⊗ |1⟩C⟨1|, (5.101)

𝐻hop(𝛼) ≔ 𝜎I𝑥 ⊗ (𝛼|1⟩C⟨0| + 𝛼∗|0⟩C⟨1|), (5.102)

where the parameters 𝜉 and 𝜂 are real and complex numbers, respectively, and 𝜎I𝑥 ≔
|1⟩I⟨0| + |0⟩I⟨1|. The operators 𝑉eff(𝛼) and 𝐻hop(𝑥) represent potential and hopping terms
of the effective Hamiltonian𝐻eff (the figure 5.6). The unitary operator𝑈eff is rewritten by

𝑈eff(𝜉, 𝜂, ̃𝑇) ≔ exp (−𝑖 ̃𝑇𝐻eff(1, 𝜉, 𝜂)), (5.103)

where ̃𝑇 ≔ 𝜔𝑇/ℏ is the dimensionless operation time.
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E = 0

E = −ω/2
|0, 0〉IC

E = ω/2
|1, 0〉IC

E = −ω
E = (−1 + ξ)ω

|0, 1〉IC
ξω
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ηω

η∗ω
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η∗ω

Figure 5.6: Illustration of the effective Hamiltonian of the equation (5.100). The param-
eter 𝜉 is a real number representing the energy shift by the potential and the
parameter 𝜂 is a complex number representing the hopping amplitude.

Then, the forward and backward transition probabilities (5.84) and (5.89) in the sec-
tion 5.2.2 are given by

𝑝𝜆i→𝜆f(𝜉, 𝜂, ̃𝛽, ̃𝑇) ≔ ∑
𝑛=0,1

𝜋𝑛( ̃𝛽, 𝜆i)𝑝
(𝑛)
𝜆i→𝜆f(𝜉, 𝜂, ̃𝑇), (5.104a)

𝑞𝜆f→𝜆i(𝜉, 𝜂, ̃𝛽, ̃𝑇) ≔ ∑
𝑛=0,1

𝜋𝑛( ̃𝛽, 𝜆f)𝑞
(𝑛)
𝜆f→𝜆i(𝜉, 𝜂, ̃𝑇), (5.104b)

with

𝑝(𝑛)𝜆i→𝜆f(𝜉, 𝜂, ̃𝑇) ≔ Tr[|𝜆f⟩C⟨𝜆f|𝑈eff(𝜉, 𝜂, ̃𝑇)(|𝑛⟩I⟨𝑛| ⊗ |𝜆i⟩C⟨𝜆i|)𝑈
†
eff(𝜉, 𝜂, ̃𝑇)], (5.105a)

𝑞(𝑛)𝜆f→𝜆i(𝜉, 𝜂, ̃𝑇) ≔ Tr[|𝜆i⟩C⟨𝜆i|𝑈
†
eff(𝜉, 𝜂, ̃𝑇)(|𝑛⟩I⟨𝑛| ⊗ |𝜆f⟩C⟨𝜆f|)𝑈eff(𝜉, 𝜂, ̃𝑇)] (5.105b)

for 𝑛 = 0, 1.
Let us calculate the coefficient 𝛾𝜆i→𝜆f of the equation (2.10). We now define unitary

operators

𝑆1 ≔ 𝐼I ⊗ (|1⟩C⟨1| + 𝑒𝑖𝜒|0⟩C⟨0|), (5.106)
𝑆2 ≔ 𝜎I𝑥 ⊗ 𝐼C, (5.107)

where 𝜒 is any real number, and a operator 𝐾 as the complex-conjugate operator. These
operators satisfy

𝑆1 |𝑛, 𝜆⟩IC = |𝑛, 𝜆⟩IC , (5.108a)
𝑆2 |𝑛, 𝜆⟩IC = |1 − 𝑛, 𝜆⟩IC , (5.108b)
𝐾 |𝑛, 𝜆⟩IC = |𝑛, 𝜆⟩IC (5.108c)
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for 𝑛 = 0, 1 and 𝜆 = 0, 1, where |𝑛, 𝜆⟩IC ≔ |𝑛⟩I ⊗ |𝜆⟩C. The effective Hamiltonian 𝐻eff of
the equation (5.100) satisfies

𝑆1𝐻eff(𝜔, 𝜉, 𝜂)𝑆
†
1 = 𝐻eff(𝜔, 𝜉, 𝑒𝑖𝜒𝜂), (5.109a)

𝑆2𝐻eff(𝜔, 𝜉, 𝜂)𝑆
†
2 = −𝐻eff(𝜔, −𝜉, −𝜂), (5.109b)

𝐾𝐻eff(𝜔, 𝜉, 𝜂)𝐾 = 𝐻eff(𝜔, 𝜉, 𝜂∗), (5.109c)

and we thereby obtain

𝑆1𝑈eff(𝜉, 𝜂, ̃𝑇)𝑆†1 = 𝑈eff(𝜉, 𝑒𝑖𝜒𝜂, ̃𝑇), (5.110a)

𝑆2𝑈eff(𝜉, 𝜂, ̃𝑇)𝑆†2 = 𝑈†
eff(−𝜉,−𝜂, ̃𝑇), (5.110b)

𝐾𝑈eff(𝜉, 𝜂, ̃𝑇)𝐾 = 𝑈†
eff(𝜉, 𝜂∗, ̃𝑇). (5.110c)

Inserting the equations (5.108) and (5.110) into the equations (5.105), we obtain

𝑝(𝑛)𝜆i→𝜆f(𝜉, 𝜂, ̃𝑇) = 𝑝(𝑛)𝜆i→𝜆f(𝜉, 𝑒
𝑖𝜒𝜂, ̃𝑇) (5.111a)

= 𝑞(1−𝑛)𝜆i→𝜆f (−𝜉,−𝜂, ̃𝑇) (5.111b)

= 𝑞(𝑛)𝜆i→𝜆f(𝜉, 𝜂
∗, ̃𝑇). (5.111c)

As can be seen from the above equations, the equations (5.105) do not depend on the phase
of the parameter 𝜂, and we obtain

𝑝(𝑛)𝜆i→𝜆f(𝜉, |𝜂| , ̃𝑇) = 𝑝(𝑛)𝜆i→𝜆f(𝜉, 𝜂, ̃𝑇) (5.112a)

= 𝑝(1−𝑛)𝜆i→𝜆f (−𝜉, 𝜂, ̃𝑇) (5.112b)

= 𝑞(𝑛)𝜆i→𝜆f(𝜉, 𝜂, ̃𝑇). (5.112c)

Therefore, we obtain

𝑝𝜆i→𝜆f(𝜉, 𝜂, ̃𝛽, ̃𝑇) = 𝑞𝜆i→𝜆f(𝜉, 𝜂, ̃𝛽, ̃𝑇)

= ∑
𝑛=0,1

𝜋𝑛( ̃𝛽, 𝜆i)𝑝
(0)
𝜆i→𝜆f((−1)

𝑛𝜉, |𝜂| , ̃𝑇), (5.113)

and hence

𝛾𝜆i→𝜆f(𝜉, 𝜂, ̃𝛽, ̃𝑇) ≔
𝑞𝜆f→𝜆i(𝜉, 𝜂, ̃𝛽, ̃𝑇)
𝑝𝜆i→𝜆f(𝜉, 𝜂, ̃𝛽, ̃𝑇)

=
𝑝𝜆f→𝜆i(𝜉, 𝜂, ̃𝛽, ̃𝑇)
𝑝𝜆i→𝜆f(𝜉, 𝜂, ̃𝛽, ̃𝑇)

. (5.114)

As can be seen from the above result, the coefficient 𝛾𝜆i→𝜆f satisfies 𝛾1→0 = 1/𝛾0→1, and is
always equal to unity if 𝜆i = 𝜆f, namely, 𝛾0→0 = 𝛾1→1 = 1.
Let us find 𝛾1→0. Calculating 𝑝1→0(𝜉, 𝜂, ̃𝛽, ̃𝑇) and 𝑝0→1(𝜉, 𝜂, ̃𝛽, ̃𝑇), we obtain

𝑝1→0(𝜉, 𝜂, ̃𝛽, ̃𝑇) = 𝑝0→1(−𝜉, 𝜂, ̃𝛽, ̃𝑇) = |𝜂|2 ̃𝑇2sinc2(𝑓(𝜉, |𝜂|) ̃𝑇) (5.115)
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with

sinc(𝑥) ≔
sin (𝑥)
𝑥

, (5.116)

𝑓(𝜉, |𝜂|) ≔
√√

√
|𝜂|2 + (

3 − 2𝜉
4

)
2

. (5.117)

Inserting the equation (5.115) into the equation (5.113), we obtain

𝑝1→0(𝜉, 𝜂, ̃𝛽, ̃𝑇) = |𝜂|2 ̃𝑇2 ∑
𝑛=0,1

𝜋𝑛( ̃𝛽, 0)sinc2(𝑓((−1)𝑛𝜉, |𝜂|) ̃𝑇)

= |𝜂|2 ̃𝑇2[
sinc2(𝑓(𝜉, |𝜂|) ̃𝑇)

1 + 𝑒−2 ̃𝛽
+
sinc2(𝑓(−𝜉, |𝜂|) ̃𝑇)

1 + 𝑒2 ̃𝛽
], (5.118)

𝑝0→1(𝜉, 𝜂, ̃𝛽, ̃𝑇) = |𝜂|2 ̃𝑇2 ∑
𝑛=0,1

𝜋𝑛( ̃𝛽, 1)sinc2(𝑓((−1)𝑛𝜉, |𝜂|) ̃𝑇)

= |𝜂|2 ̃𝑇2[
sinc2(𝑓(𝜉, |𝜂|) ̃𝑇)

1 + 𝑒− ̃𝛽
+
sinc2(𝑓(−𝜉, |𝜂|) ̃𝑇)

1 + 𝑒 ̃𝛽
]. (5.119)

We thereby plotted 𝛾1→0 in the figures 5.7. The coefficient 𝛾1→0 wildly fluctuates around
unity, even exceeding unity often. This fluctuation of 𝛾𝜆i→𝜆f should be detectable in exper-
iments and provide evidence for the conventional derivation.
The conditions for 𝛾1→0 = 1 are ̃𝛽 = 0 or the parameters 𝜉 and 𝜂 satisfying

sinc2(𝑓(𝜉, |𝜂|) ̃𝑇) = sinc2(𝑓(−𝜉, |𝜂|) ̃𝑇) (5.120)

which does not depend on the dimensionless inverse temperature ̃𝛽 (the figures 5.7(b) and
5.7(c)).

5.4 Summary of this chapter
In this chapter, we have demonstrated the problem of the conventional approach of quan-
tum thermodynamic using the two-level system and derived the quantum version of the
Jarzynski equality using the new formulation of the work extraction.
For the demonstration in the section 5.1, we have shown that the variance of the en-

ergy obtained by the external agent diverges when the time evolution of the thermody-
namic system is approximated to a unitary one. Because of this, the conventional ap-
proach, which assumes the unitary dynamics of the thermodynamic system, is unsuitable
for quantum thermodynamics and we have to adopt the new formulation of the work ex-
traction.
In the section 5.2, we have adopted themeasurement-based work extraction introduced

in the chapter 4 as the new formulation of the work extraction and shown the difference
between the conventional approach and the measurement-based work extraction using
the Jarzynski equality. As a result, the difference between the two approach appears in
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Figure 5.7: (a) Dependence of ̃𝛽−1 log 𝛾1→0 on the parameters 𝜉 and |𝜂| for the dimension-
less operation time ̃𝑇 = 5 and the dimensionless inverse temperature ̃𝛽 = 0.4.
Its cross sections for (b) |𝜂| = 4𝜋/5 and (c) 𝜉 = 6𝜋/5. The unity of 𝛾1→0 (namely,
the zero of log 𝛾1→0) does not depend on the dimensionless inverse temperature
̃𝛽.

the coefficient 𝛾 of the equation (5.72) in the cyclic process and the coefficient 𝛾𝜆i→𝜆f of the
equation (5.87) in the non-cyclic process. Both coefficients are not generally equal to unity
in contrast to the case of the conventional approach, in which the coefficients were always
equal to unity. This difference is caused by describing the work extraction in terms of the
quantummeasurement process. In the case of the cyclic process, the coefficient 𝛾 is equal
to unity if and only if the time evolution is a “natural” thermodynamic process, in other
works, the time-evolutionmap is a unital. On the other hand, in the case of the non-cyclic
process, the coefficient 𝛾𝜆i→𝜆f does not generally become unity when the time evolution is
a “natural” thermodynamic process and widely fluctuates around unity in a simple model
of the section 5.3. This fluctuation can be expected to be detected experimentally and can
provide evidence for the present approach.
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Chapter 6

Quantum Fluctuation theorem under
continuously monitored control
parameter

In the previous chapter, we derived a quantum version of the Jarzynski equality using the
new formulation of work extraction in order to compare the conventional approach and
new formulation. As a result, we obtain the difference between the two approaches.

Note that the following difference exists between the work extraction processes in the
two approaches: the conventional approach clearly describes themotion of the controller,
such as a piston, because its motion is represented by a time-dependent parameter; on
the other hand, the new formulation in the section 5.2.2 does not clearly describe one
because we do not observe a control system except at the beginning and the end of the
work extraction them. Using the piston of a cylinder as an example, in the conventional
approach, we can distinguish between pushing the piston after pulling it and pulling it
after pushing; on the other hand, in the new formulation, we cannot distinguish.

In order to compare the two approaches under the more similar situations, we here
introduce the continuousmeasurement of the control systemand derive another quantum
version of the Jarzynski equality for it.

In this chapter, we continuously observe a physical quantity of the control system to
describe the operation received the internal system and derive a quantum version of the
Jarzynski equality and the second law under this observation. To use for the derivation,
we first show time reversal introduced by Åberg [121]. We next derive a fluctuation rela-
tion under the continuously monitoring process using Åberg’s time reversal. After that,
we derive the Jarzynski equality under the continuously monitoring the control parame-
ter. Finally, we show the relation between the parameter change given the continuously
monitoring process and the second law of thermodynamics.

The contents of this chapter except the section 6.1.1 are the present results of the author
under the collaboration with Dr. H. Tajima.
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Chapter 6 Quantum Fluctuation theorem under continuously monitored control parameter

6.1 Time reversal of completely positive map

6.1.1 Åberg’s time reversal
In the standard quantum mechanics, time-reversal transformation for a state vector is
given by an antiunitary operator. In contrast, Åberg [121] defined a time-reversal map as
a linear map 𝒯 satisfying the following conditions [121]:

𝒯(𝐴𝐵) = 𝒯(𝐵)𝒯(𝐴), (6.1a)

𝒯(𝐴†) = (𝒯(𝐴))†, (6.1b)
Tr[𝒯(𝜌)] = Tr[𝜌], (6.1c)

𝒯2 = ℐ, (6.1d)

where𝐴 and 𝐵 are bounded operators, 𝜌 is a trace-class operator, Tr denotes the trace and
ℐ is the identity map. Then we can derive the following properties of the time-reversal
map 𝒯 [121]:

1. For the identity operator 𝐼, it satisfies 𝒯(𝐼) = 𝐼.

2. When an operator 𝑄 is positive, 𝒯(𝑄) is also positive.

3. When an operator 𝑈 is a unitary operator, 𝒯(𝑈) is also a unitary one.

4. When an operator 𝑃 is a projection, 𝒯(𝑃) is also a projection. Furthermore, when
the projection 𝑄 is orthogonal to 𝑃, 𝒯(𝑄) is orthogonal to 𝒯(𝑃).

5. Let 𝒯𝐴 and 𝒯𝐵 denote the time-reversal map on the systems A and B, respectively.
Then, the following is satisfied: TrB[(𝒯𝐴 ⊗ 𝒯𝐵)(𝑂AB)] = 𝒯𝐴(TrB𝑂AB), where TrB is
the partial trace over the system B and 𝑂AB is any operator on the composite system
AB.

As can be seen from the condition (6.1a), the time-reversal map 𝒯 has a property of the
transpose. For a finite-dimensional system, let 𝑇 denote the transpose defined by

𝐴𝑇 ≔ ∑
𝑛,𝑛′

⟨𝜓𝑛′ | 𝐴 | 𝜓𝑛⟩ |𝜓𝑛⟩⟨𝜓𝑛′|, (6.2)

where 𝐴 is an arbitrary operator and { |𝜓𝑛⟩ }𝑛 is an orthonormal basis set. Note that the
transpose depends on the choice of orthonormal basis. When 𝑇′ denotes the transpose
defined with respect to another orthogonal basis set { |𝜙𝑛⟩ }𝑛 and a unitary operator𝑊 is
a transformation from { |𝜓𝑛⟩ }𝑛 to { |𝜙𝑛⟩ }𝑛, the relation between two transposes is given
by [121]

𝐴𝑇′ = 𝑊𝑊𝑇𝐴𝑇(𝑊𝑊𝑇)†. (6.3)

The time-reversal map 𝒯 can be represented by [121]

𝒯(𝐴) = 𝑈𝐴𝑇𝑈†, (6.4)
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where 𝑇 is the transpose defined with respect to { |𝜓𝑛⟩ }𝑛 and 𝑈 is a unitary operator
uniquely determined by 𝒯 and { |𝜓𝑛⟩ }𝑛.
Let us describe the reason of calling the linear map 𝒯 as “time reversal”. We assume

that a system is a quantum closed one with the Hamiltonian 𝐻. Let 𝜌i denote the initial
state of its time evolution. Then, the state 𝜌f after time 𝑡 is given by

𝜌f ≔ 𝑈𝜌i𝑈† (6.5)

with 𝑈 ≔ 𝑒−𝑖𝐻𝑡/ℏ. Using the conditions (6.1a) and (6.1b), we obtain

𝒯(𝜌f) = 𝒯(𝑈𝜌i𝑈†) = 𝒯(𝑈)†𝒯(𝜌i)𝒯(𝑈). (6.6)

From the condition (6.1c) and the property 2, 𝒯(𝜌i) and 𝒯(𝜌f) are states, too. Moreover,
from the property 3, the time-reversed unitary operator𝑈 is a unitary operator. Therefore,
we obtain

𝒯(𝜌i) = 𝒯(𝑈)𝒯(𝜌f)𝒯(𝑈)
†. (6.7)

This equation describes the unitary evolution from the time-reversed final state 𝒯(𝜌f) to
the time-reversed initial one 𝒯(𝜌i) under the unitary operator 𝒯(𝑈). In particular, if the
map 𝒯 satisfies 𝒯(𝐻) = 𝐻, which means that the Hamiltonian is invariant under the
time reversal, the time-reversed unitary operator 𝒯(𝑈) satisfies 𝒯(𝑈) = 𝑈. Then, the
equation (6.7) becomes

𝒯(𝜌i) = 𝑈𝒯(𝜌f)𝑈†. (6.8)

This equation describes the forward unitary evolution from the time-reversed final state
𝒯(𝜌f) to the time-reversed initial one 𝒯(𝜌i). Hence, the linear map 𝒯 satisfying the condi-
tions (6.1) represents a time-reversal operation.
We note that the conditions (6.1) are not the most general definition of the time rever-

sal [121]. For the standard quantum mechanics, the time reversal is represented by an
antiunitary operator Θ [13]. The corresponding map is given by 𝒯Θ(𝜌) ≔ Θ𝜌Θ†. How-
ever, the map 𝒯Θ is an antilinear map, not a linear map. Therefore, the map 𝒯Θ does not
satisfies the conditions (6.1).
We now rewrite the equation (6.5) as

𝜌f = 𝒰(𝜌i), (6.9)

where the map 𝒰 is a unitary time-evolution map with respect to the unitary operator 𝑈
and is given by 𝒰(𝜌) ≔ 𝑈𝜌𝑈† for any state 𝜌. Then, we can rewrite the time-reversed
unitary evolution of the equation (6.8) as

𝒯(𝜌i) = 𝒰⊖(𝒯(𝜌f)), (6.10)

where⊖ is defined by
𝜙⊖ ≔ 𝒯𝜙†𝒯 (6.11)

for any completely positive (CP) map 𝜙 [121]. Therefore, the translation from a time evo-
lution to a time-reversed one is represented by the⊖ translation of the equation (6.11).
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Chapter 6 Quantum Fluctuation theorem under continuously monitored control parameter

6.1.2 Time reversal of continuous measurement
Can we obtain a time-reversed continuous measurement from the⊖ translation? To con-
sider the continuous measurement, we first show the ⊖ translation of the general mea-
surement process. Letℳ𝑎 denote a measurement process with respect to a specific out-
come 𝑎 and is given by an indirect measurement model in the form

ℳ𝑎(𝜌) ≔ TrD[(𝐼S ⊗ 𝑃D𝑎 )𝑈(𝜌 ⊗ 𝜎D)𝑈†], (6.12)

where TrD, 𝜌, 𝐼S, 𝑃D𝑎 , 𝜎D and 𝑈 are the partial trace over a measurement device D, 𝜌 is an
initial state of a system of interest S, the identity operator of S, an projection of specific
eigenvalue 𝑎 of a meter observable 𝐴D on D, an initial state of D, and an unitary operator
on the total system, respectively The adjoint of a completely positive (CP) map given in
the appendix A gives

ℳ
†
𝑎(𝜌) ≔ TrD[(𝐼S ⊗ 𝜎D)𝑈†(𝜌 ⊗ 𝑃D𝑎 )𝑈]. (6.13)

and thereby obtain

ℳ
⊖
𝑎 (𝜌) = 𝒯 ∘ℳ†

𝑎 ∘ 𝒯(𝜌) (6.14)
= TrD[𝒯SD((𝐼S ⊗ 𝜎D)𝑈†(𝒯(𝜌) ⊗ 𝑃D𝑎 )𝑈)] (6.15)

= TrD[(𝐼S ⊗ 𝒯D(𝜎D))𝒯SD(𝑈)(𝜌 ⊗ 𝒯D(𝑃D𝑎 ))𝒯SD(𝑈)
†], (6.16)

where 𝒯 and 𝒯D are the time-reversal map on the system of interest S and the measure-
ment device D, respectively, and𝒯SD ≔ 𝒯⊗𝒯D. From the condition (6.1c) and the proper-
ties (2), (3) and (4) of the time-reversal map in the section 6.1.1, the operators𝒯D𝜎,𝒯SD(𝑈)
and 𝒯D𝑃D𝑎 are also a state of D, a unitary operator of the total system and a projection on
D, respectively. Defining another measurement process given by

ℳ̃𝑎(𝜌) ≔ TrD[(𝐼S ⊗ 𝒯D(𝑃D𝑎 ))𝒯SD(𝑈)
†(𝜌 ⊗ 𝒯D(𝜎D))𝒯SD(𝑈)] = 𝒯 ∘ℳ𝑎 ∘ 𝒯(𝜌), (6.17)

we obtain
ℳ

⊖
𝑎 = ℳ̃†

𝑎. (6.18)
Therefore, the⊖ translation of the measurement process becomes the adjoint of another
measurement process. In general, the adjoint of the measurement process is not a mea-
surement process, because, the summation of the adjoint of the measurement processes
does not satisfy the trace preserving. However, when the summation is a unital map, the
adjoint of themeasurement process becomes ameasurement process. Hence, the⊖ trans-
lation of the measurement processℳ⊖

𝑎 is a measurement process if and only if the sum-
mation∑𝑎ℳ𝑎 is a unital map.
Let us consider the ⊖ transformation of the continuous measurement. From the sec-

tion 2.2.3, the continuous measurement with respect to a measurement record [𝑎] ≔
{ 𝑎(𝑡) | 𝑡 ∈ (0, 𝑇) }, where 𝑎(𝑡) is a path of the measurement outcome, is given by

ℳ[𝑎] ≔ lim
𝑁→∞

𝒰𝑡𝑁,𝑡𝑁−1ℳ𝑎𝑁−1,𝑡𝑁−1 𝒰𝑡𝑁−1,𝑡𝑁−2ℳ𝑎𝑁−2,𝑡𝑁−2

×⋯ ×𝒰𝑡2,𝑡1ℳ𝑎1,𝑡1 𝒰𝑡1,𝑡0, (6.19)
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where 𝒰𝑠,𝑡 is a unitary evolution given by a unitary operator 𝑈(𝑠, 𝑡) from time 𝑡 to 𝑠,ℳ𝑎,𝑡
is an instantaneous measurement process at time 𝑡 with respect to a specific outcome 𝑎,
𝑡𝑛 ≔ 𝑛𝑇/𝑁 and 𝑎𝑛 ≔ 𝑎(𝑡𝑛). To operator the⊖ translation to the continuousmeasurement
of the equation (6.19), we obtain

ℳ
⊖
[𝑎] ≔ lim

𝑁→∞
𝒰
⊖
𝑡1𝑡0ℳ

⊖
𝑎1,𝑡1 𝒰

⊖
𝑡2,𝑡1ℳ

⊖
𝑎2,𝑡2 ×⋯ ×𝒰⊖

𝑡𝑁−1,𝑡𝑁−2ℳ
⊖
𝑎𝑁−1,𝑡𝑁−1 𝒰

⊖
𝑡𝑁,𝑡𝑁−1, (6.20)

where we use the property (𝜙𝜒)⊖ = 𝜒⊖𝜙⊖ of the⊖ translation.
For simplify, we assume that the time-reversal map 𝒯 satisfies 𝒯(𝑈(𝑠, 𝑡)) = 𝑈(𝑠, 𝑡) for

any time 𝑡 and 𝑠. Then, the unitary evolution𝒰𝑠,𝑡 is the invariant under the⊖ translation:

𝒰
⊖
𝑠,𝑡 = 𝒰𝑠,𝑡. (6.21)

In the other hand, from the equation (6.18),ℳ⊖
𝑎,𝑡 is the adjoint of another measurement

process ℳ̃†
𝑎,𝑡. Hence, the⊖ translation of the continuous measurement (6.19) is given by

ℳ
⊖
[𝑎] ≔ lim

𝑁→∞
𝒰𝑡1𝑡0 ℳ̃

†
𝑎1,𝑡1 𝒰𝑡2,𝑡1 ℳ̃

†
𝑎2,𝑡2 ×⋯ ×𝒰𝑡𝑁−1,𝑡𝑁−2 ℳ̃

†
𝑎𝑁−1,𝑡𝑁−1 𝒰𝑡𝑁,𝑡𝑁−1. (6.22)

As we can see the equation (6.22), the orders of unitary evolutions 𝒰(𝑡𝑛,𝑡𝑛−1) and the (in-
stantaneous) outcomes 𝑎𝑛 is a time-reversed one, however, ℳ̃

†
𝑎 is not a (instantaneous)

measurement process. Hence, the ⊖ translation of the continuous measurement is a
backward-like map, not a backward continuous measurement. Here, the “backward”
means that the measurement record is the reverse order given by [ ̃𝑎] ≔ { ̃𝑎(𝑡) | 𝑡 ∈ (0, 𝑇) }
with ̃𝑎(𝑡) ≔ 𝑎(𝑇 − 𝑡).

6.2 Fluctuation relation under continuously monitoring
process

We consider the fluctuation relation of a work extraction process with continuously mon-
itored control parameter. Let us consider a quantum closed system including an internal
system I, a control system C and an external agent E. The internal system is controlled by
a physical quantity Λ of the control system C, which is regarded as a control parameter
of the internal system I. The external agent E interacts with the composite system IC of
the internal system I and the control system C, and receives the energy as the work. We
assume that the interaction between the composite system IC and the external agent E
is activated from time 0 to 𝑇 and is deactivated the other times. To monitor the change
of the control parameter, we measure the physical quantity Λ during the interaction (the
figure 6.1).
Let 𝐻IC and 𝐻E denote the Hamiltonian of the composite system IC and the external

agent E, respectively. We assume that the Hamiltonian𝐻IC of the composite system IC is
given by

𝐻IC ≔∑
𝜆
𝐻I(𝜆) ⊗ |𝜆⟩C⟨𝜆|, (6.23)
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Control system C 

State  𝜆 C 

Internal system I 

 

Hamiltonian  

Hamiltonian of  IC: 𝐻IC ≔  𝐻I 𝜆 ⊗  𝜆 C 𝜆 𝜆  

External agent E 

 

Hamiltonian 𝐻𝐸 

Interaction Hamiltonian 𝐻int 

𝐻IC + 𝐻E, 𝐻int = 0 

Quantum closed system  

Continuous measurement of  

Λ ≔  𝜆 𝜆 C 𝜆 𝜆   

Figure 6.1: Illustration of the quantum closed system in the section 6.2. The quantum
closed system is composed by three subsystems; an internal system I, a con-
trol system C and an external agent E. The continuous measurement of the
physical quantity Λ of the control system C is represented by the repetition
of the instantaneous measurement {ℳ𝜆 }𝜆 of the physical quantity 𝜆 (see the
equation (6.31)).

where𝐻I(𝜆) is theHamiltonian of the internal system I depending on a specific eigenvalue
𝜆 of the physical quantity Λ and |𝜆⟩ is the corresponding eigenstate. According to this
Hamiltonian, the Hamiltonian of the internal system I is controlled by the state of the
control system (see the section 4.2). We assume that the initial state of the composite
system IC is the canonical distribution of the internal system I with a pure state |𝜆i⟩ of the
control system C:

𝜌IC(𝜆i) ≔
𝑒−𝛽𝐻I(𝜆i)

𝑍I(𝜆i)
⊗ |𝜆i⟩C⟨𝜆i|, (6.24)

where 𝛽 is an inverse temperature and 𝑍I(𝜆i) ≔ Tr[𝑒−𝛽𝐻I(𝜆i)] is the partition function. The
corresponding Helmholtz free energy is given by 𝐹I(𝜆i) ≔ −𝛽−1 log𝑍I(𝜆i).
Let 𝐻int denote the interaction Hamiltonian between the composite system IC and the

external agent E. The Hamiltonian of the total system between time 0 and 𝑇 is given by

𝐻tot ≔ 𝐻IC +𝐻E +𝐻int, (6.25)

and the time evolution of the total system from time 𝑡 to 𝑡′ (𝑡, 𝑡′ ∈ [0, 𝑇]) without mea-
surement is given by the unitary operator

𝑈(𝑡′ − 𝑡) ≔ exp [−
𝑖
ℏ
𝐻tot(𝑡′ − 𝑡)]. (6.26)

We here assume that the interaction Hamiltonian𝐻int satisfies the energy conservation
in the from

[𝐻IC +𝐻E, 𝐻int] = 0. (6.27)
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Then, the unitary operator 𝑈 satisfies the energy conservation

[𝐻IC +𝐻E, 𝑈(𝑡)] = 0 (6.28)

for 𝑡 ∈ [0, 𝑇].
Let us measure the physical quantity Λ of the control system during the interaction to

monitor the change of the control parameter, using the continuous measurement in the
section 2.2.3. Let {ℳ𝜆 }𝜆 denote the set of the instrument measurement of the physical
quantity Λ on the total system. We assume the energy conservation

[𝐻IC +𝐻E,𝑀𝑛,𝜆] = 0 (6.29)

for all measurement outcomes 𝜆 and any integral 𝑛, where { 𝑀𝑛,𝜆 }𝑛 is the set of the Kraus
operator ofℳ𝜆 given byℳ𝜆(𝜌) = ∑𝑛𝑀𝑛,𝜆𝜌𝑀

†
𝑛,𝜆. This means that themeasurement pro-

cesses {ℳ𝜆 }𝜆 do not cause a net energy transfer and the energy extracted by the external
agent E only comes from the composite system IC. The energy conservation (6.29) gives

ℳ𝜆𝒫𝐻IC+𝐻E,ℎ = 𝒫𝐻IC+𝐻E,ℎℳ𝜆 (6.30)

for all outcomes 𝜆 and all eigenvalues ℎ of 𝐻IC + 𝐻E, where a map 𝒫𝐴,𝑎 of a Hermitian
operator 𝐴 and the eigenvalue 𝑎 of 𝐴 is defined by 𝒫𝐴,𝑎(•) ≔ 𝑃𝑎 • 𝑃𝑎 with the projection
𝑃𝑎 of the eigenvalue 𝑎.
We define the continuous measurement of the physical quantity Λ with respect to a

specific measurement record [𝜆] ≔ { 𝜆(𝑡) | 𝑡 ∈ (0, 𝑇) }, where 𝜆(𝑡) is a path of the mea-
surement outcome, in the total system by

ℳ[𝜆] ≔ lim
𝑁→∞

𝒰𝜏ℳ𝜆𝑛−1 𝒰𝜏ℳ𝜆𝑛−2 ×⋯ ×𝒰𝜏ℳ𝜆1 𝒰𝜏 (6.31)

with 𝜏 ≔ 𝑇/𝑁, 𝜆𝑛 ≔ 𝜆(𝑛𝑇/𝑁) and 𝒰𝑡(𝜌) ≔ 𝑈(𝑡)𝜌𝑈†(𝑡). Because of the energy conserva-
tions of the equations (6.28) and (6.30), the continuous measurementℳ[𝜆] satisfies

ℳ[𝜆]𝒫𝐻IC+𝐻E,ℎ = 𝒫𝐻IC+𝐻E,ℎℳ[𝜆] (6.32)

for any measurement record [𝜆] and all eigenvalue ℎ of 𝐻IC +𝐻E, and thereby we obtain

ℳ[𝜆]𝒥𝛼(𝐻IC+𝐻E) = 𝒥𝛼(𝐻IC+𝐻E)ℳ[𝜆] (6.33)

for any real number 𝛼 and any measurement recored [𝜆], where the map 𝒥𝐴 is defined by
𝒥𝐴(•) ≔ 𝑒−𝐴/2 • 𝑒−𝐴/2.
Let 𝒯IC and 𝒯E denote time-reversal maps on the composite system IC and the external

agent E, respectively. We assume that the time-reversal maps do not change the Hamilto-
nians:

𝒯IC(𝐻IC) = 𝐻IC, (6.34)
𝒯E(𝐻E) = 𝐻E, (6.35)

(𝒯IC ⊗ 𝒯E)(𝐻int) = 𝐻int. (6.36)

61



Chapter 6 Quantum Fluctuation theorem under continuously monitored control parameter

Then, the unitary operator 𝑈(𝑡) of the equation (6.26) satisfies 𝒯(𝑈(𝑡)) = 𝑈(𝑡). As in the
section 6.1.2, we define the backward-like map of the continuous measurement (6.31) by

ℳ̃[𝜆̃] ≔ℳ
⊖
[𝜆] = lim

𝑁→∞
𝒰𝜏 ℳ̃𝜆̃𝑛−1 𝒰𝜏 ℳ̃𝜆̃𝑛−2 ×⋯ ×𝒰𝜏 ℳ̃𝜆̃1 𝒰𝜏, (6.37)

where ℳ̃𝑎 ≔ 𝒯ℳ𝑎𝒯, [ ̃𝜆] ≔ { ̃𝜆(𝑡) || 𝑡 ∈ (0, 𝑇) } with ̃𝜆(𝑡) ≔ 𝜆(𝑇 − 𝑡) and ̃𝜆𝑛 ≔ ̃𝜆(𝑛𝜏).
From the above setup, let us derive thefluctuation relationunder the continuouslymon-

itoring process. The initial state of the composite system IC of the equation (6.24) and the
continuous measurement on the total system of the equation (6.31) yield the continuous
measurement in the external agent E in the form

ℱ𝜆f,[𝜆],𝜆i(𝜎) ≔ TrIC[|𝜆f⟩C⟨𝜆f|ℳ[𝜆](𝜌IC(𝜆i) ⊗ 𝜎)] (6.38)

for an arbitrary initial state 𝜎 of the external agent E. Using the equation (6.37), we define
the backward-like map on the external agent E by

ℛ𝜆̃f,[𝜆̃],𝜆̃i(𝜎) ≔ TrIC[|| ̃𝜆i⟩C⟨
̃𝜆i||ℳ̃[𝜆̃](𝜌IC( ̃𝜆f) ⊗ 𝜎)], (6.39)

where 𝐼I ⊗ || ̃𝜆𝛼⟩C⟨
̃𝜆𝛼|| ≔ 𝒯IC(𝐼I ⊗ |𝜆𝛼⟩C⟨𝜆𝛼|) for 𝛼 = i, f.

From the equation (6.33), we obtain

ℳ[𝜆](𝜌IC(𝜆i) ⊗ 𝜎) =
1

𝑍I(𝜆i)
ℳ[𝜆] ∘ 𝒥𝛽(𝐻IC+𝐻E)(|𝜆i⟩C⟨𝜆i| ⊗ 𝒥−1𝛽𝐻E

(𝜎)) (6.40)

=
1

𝑍I(𝜆i)
𝒥𝛽(𝐻IC+𝐻E) ∘ℳ[𝜆](|𝜆i⟩C⟨𝜆i| ⊗ 𝒥−1𝛽𝐻E

(𝜎)). (6.41)

Inserting the above equation into the equation (6.38), we obtain

ℱ𝜆f,[𝜆],𝜆i(𝜎) =
𝑍I(𝜆f)
𝑍I(𝜆i)

𝒥𝛽𝐻E(TrIC[𝜌IC(𝜆f)ℳ[𝜆](|𝜆i⟩C⟨𝜆i| ⊗ 𝒥−1𝛽𝐻E
(𝜎))]) (6.42)

= 𝑒𝛽∆𝐹I(𝜆f,𝜆i)𝒥𝛽𝐻E(TrIC[𝜌IC(𝜆f)ℳ[𝜆](|𝜆i⟩C⟨𝜆i| ⊗ 𝒥−1𝛽𝐻E
(𝜎))]), (6.43)

where ∆𝐹I(𝜆f, 𝜆i) ≔ 𝐹I(𝜆f) − 𝐹I(𝜆i) is the difference of the Helmholtz free energies. On
the other hand, from the equations (6.37) and (6.39), we obtain

ℛ
⊖
𝜆̃f,[𝜆̃],𝜆̃i

(𝜎) = TrIC[𝜌IC(𝜆f)ℳ[𝜆](|𝜆i⟩C⟨𝜆i| ⊗ 𝜎)]. (6.44)

Combining the equations (6.43) and (6.44), we obtain

ℱ𝜆f,[𝜆],𝜆i(𝜎) = 𝑒𝛽∆𝐹I(𝜆f,𝜆i)𝒥𝛽𝐻E ∘ ℛ
⊖
𝜆̃f,[𝜆̃],𝜆̃i

∘ 𝒥−1𝛽𝐻E
(𝜎). (6.45)

Because the equation (6.45) satisfies any initial state 𝜎 of the external system, we can
rewrite the equation (6.45) as

ℱ𝜆f,[𝜆],𝜆i = 𝑒𝛽∆𝐹I(𝜆f,𝜆i)𝒥𝛽𝐻Eℛ
⊖
𝜆̃f,[𝜆̃],𝜆̃i

𝒥−1𝛽𝐻E
. (6.46)

The equation (6.46) is a relation between the forward and the backward-like processes
and the extension of the fluctuation relation between the forward and backward process
derived in the reference [121]. In particular, when the summation∑𝜆ℳ𝜆 of the instru-
mentmeasurement {ℳ𝜆 }𝜆 in the continuousmeasurement (6.31) is unitalmap, the equa-
tion (6.46) becomes the relation between the forward and backward continuous measure-
ment processes.
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6.3 Jarzynski equality

6.3 Jarzynski equality
In this section, we derive the Jarzynski equality from the equation (6.46). We define the
work extracted by the external agent E in terms of the difference between the measured
energies before and after the process.
Let us denote the spectral decomposition of the Hamiltonian𝐻E by

𝐻E = ∑
𝑛
𝐸𝑛𝑃𝑛, (6.47)

where 𝐸𝑛 and 𝑃𝑛 are the eigenvalue of 𝐻E and the corresponding projection, respectively.
Because the map ℱ𝜆f,[𝜆],𝜆i is a continuous measurement process, we can define the proba-
bility distribution of the extracted work𝑊, the final state |𝜆f⟩ of the control system C and
the measurement recored [𝜆] under the initial state |𝜆i⟩ of the control system C by

𝑃F(𝑊, 𝜆f, [𝜆]|𝜆i) ≔ ∑
𝑛,𝑚

𝛿(𝑊 − 𝐸𝑚 + 𝐸𝑛)Tr[𝑃E𝑚ℱ𝜆f,[𝜆],𝜆i(𝑃
E
𝑛𝜎𝑃E𝑛)], (6.48)

where 𝛿(𝑥) is the delta function. In addition, the probability of the final state |𝜆f⟩ of the
control systemC and themeasurement recored [𝜆] under the initial state |𝜆i⟩ of the control
system C is given by

𝑃F(𝜆f, [𝜆]|𝜆i) ≔ ∫𝑑𝑊𝑃F(𝑊, 𝜆f, [𝜆]|𝜆i) (6.49)

= ∑
𝑛,𝑚

Tr[𝑃E𝑚ℱ𝜆f,[𝜆],𝜆i(𝑃
E
𝑛𝜎𝑃E𝑛)] (6.50)

= Tr[ℱ𝜆f,[𝜆],𝜆i ∘ 𝒫𝐻E(𝜎)], (6.51)

where 𝒫𝐴(•) ≔ ∑𝑎𝒫𝐴,𝑎(•) = ∑𝑎 𝑃𝑎 • 𝑃𝑎 with the projection 𝑃𝑎 of the eigenvalue 𝑎 of
the Hermitian operator 𝐴. Because 𝒫𝐴 is the trace preserving, 𝒫𝐻IC+𝐻E = 𝒫𝐻IC ⊗𝒫𝐻E and
𝒫𝐻IC satisfies

|𝜆f⟩C⟨𝜆f|𝒫𝐻IC(𝐴) = 𝒫𝐻IC(|𝜆f⟩C⟨𝜆f|𝐴), (6.52)
𝒫𝐻IC(𝜌IC(𝜆i)) = 𝜌IC(𝜆i) (6.53)

for any operator 𝐴. We thereby have

ℱ𝜆f,[𝜆],𝜆i ∘ 𝒫𝐻E(𝜎) = TrIC[|𝜆f⟩C⟨𝜆f|ℳ[𝜆](𝜌IC(𝜆i) ⊗ 𝒫𝐻E(𝜎))] (6.54)

= TrIC[|𝜆f⟩C⟨𝜆f|ℳ[𝜆] ∘ 𝒫𝐻IC+𝐻E(𝜌IC(𝜆i) ⊗ 𝜎)] (6.55)

= TrIC[|𝜆f⟩C⟨𝜆f|𝒫𝐻IC+𝐻E ∘ℳ[𝜆](𝜌IC(𝜆i) ⊗ 𝜎)] (6.56)

= 𝒫𝐻E(TrIC[𝒫𝐻IC(|𝜆f⟩C⟨𝜆f|ℳ[𝜆](𝜌IC(𝜆i) ⊗ 𝜎))]) (6.57)
= 𝒫𝐻E ∘ ℱ𝜆f,[𝜆],𝜆i(𝜎), (6.58)

which is followed by
𝑃F(𝜆f, [𝜆]|𝜆i) = Tr[ℱ𝜆f,[𝜆],𝜆i(𝜎)]. (6.59)
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Using Bayes’ rule, we obtain the probability distribution of the extracted work𝑊 under
the measurement recored [𝜆] and the initial |𝜆i⟩ and final |𝜆f⟩ states of the control system
C as in

𝑃F(𝑊|𝜆f, [𝜆], 𝜆i) ≔
𝑃F(𝑊, 𝜆f, [𝜆]|𝜆i)
𝑃F(𝜆f, [𝜆]|𝜆i)

. (6.60)

We define the conditional average by

⟨𝑓(𝑊)⟩𝜆f,[𝜆],𝜆i ≔∫𝑑𝑊𝑓(𝑊)𝑃F(𝑊|𝜆f, [𝜆], 𝜆i), (6.61)

where 𝑓(𝑊) is an arbitrary function of the extracted work𝑊.
Let us calculate ⟨𝑒𝛽𝑊⟩𝜆f,[𝜆],𝜆i. Using the relation (6.46), we obtain

Tr[𝑃E𝑚ℱ𝜆f,[𝜆],𝜆i(𝑃
E
𝑛𝜎𝑃E𝑛)] = 𝑒𝛽∆𝐹I(𝜆f,𝜆i)Tr[𝑃E𝑚𝒥𝛽𝐻E ∘ ℛ

⊖
𝜆̃f,[𝜆̃],𝜆̃i

∘ 𝒥−1𝛽𝐻E
(𝑃E𝑛𝜎𝑃E𝑛)] (6.62)

= 𝑒𝛽∆𝐹I(𝜆f,𝜆i)𝑒−𝛽(𝐸𝑚−𝐸𝑛)Tr[𝑃E𝑚ℛ
⊖
𝜆̃f,[𝜆̃],𝜆̃i

(𝑃E𝑛𝜎𝑃E𝑛)], (6.63)

which is followed by

𝑃F(𝑊, 𝜆f, [𝜆]|𝜆i)

= 𝑒𝛽∆𝐹I(𝜆f,𝜆i) ∑
𝑛,𝑚

𝛿(𝑊 − 𝐸𝑚 + 𝐸𝑛)𝑒−𝛽(𝐸𝑚−𝐸𝑛)Tr[𝑃E𝑚ℛ
⊖
𝜆̃f,[𝜆̃],𝜆̃i

(𝑃E𝑛𝜎𝑃E𝑛)] (6.64)

= 𝑒𝛽∆𝐹I(𝜆f,𝜆i)𝑒−𝛽𝑊 ∑
𝑛,𝑚

𝛿(𝑊 − 𝐸𝑚 + 𝐸𝑛)Tr[𝑃E𝑚ℛ
⊖
𝜆̃f,[𝜆̃],𝜆̃i

(𝑃E𝑛𝜎𝑃E𝑛)]. (6.65)

Therefor, we obtain

⟨𝑒𝛽𝑊⟩𝜆f,[𝜆],𝜆i = 𝑒𝛽∆𝐹I(𝜆f,𝜆i)
Tr[ℛ⊖

𝜆̃f,[𝜆̃],𝜆̃i
∘ 𝒫𝐻E(𝜎)]

𝑃F(𝜆f, [𝜆]|𝜆i)
. (6.66)

Similarly to the equation (6.58), we obtain

ℛ
⊖
𝜆̃f,[𝜆̃],𝜆̃i

𝒫𝐻E = 𝒫𝐻Eℛ
⊖
𝜆̃f,[𝜆̃],𝜆̃i

, (6.67)

and thereby obtain
⟨𝑒𝛽𝑊⟩𝜆f,[𝜆],𝜆i = 𝛾𝜆i,[𝜆],𝜆f 𝑒

𝛽∆𝐹I(𝜆f,𝜆i) (6.68)

with

𝛾𝜆i,[𝜆],𝜆f ≔
Tr[ℛ⊖

𝜆̃f,[𝜆̃],𝜆̃i
(𝜎)]

𝑃F(𝜆f, [𝜆]|𝜆i)
. (6.69)

This is the quantum Jarzynski equality under the continuously monitored control param-
eter.
Note that the equation (6.68) focuses on the external agent E, not the composite system

IC; the coefficient 𝛾𝜆i,[𝜆],𝜆f is given from the continuousmeasurement in the external agent
E. On the other hand, the quantum Jarzynski equality in the chapter 5 focuses on the
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composite system IC. However, we can rewrite the coefficient (6.69) as the coefficient
given from the continuous measurement in measurement of the composite system IC as
follows.
Let us define the continuous measurement of the composite system IC by

𝒦[𝜆](𝜌) ≔ TrE[ℳ[𝜆](𝜌 ⊗ 𝜎)], (6.70)

where 𝜌 is an arbitrary state of the composite system IC and TrE is the partial trace over
the external agent E. Then, we obtain

𝑃F(𝜆f, [𝜆]|𝜆i) = Tr[ℱ𝜆f,[𝜆],𝜆i(𝜎)] (6.71)

= Tr[|𝜆f⟩C⟨𝜆f|ℳ[𝜆](𝜌IC(𝜆i) ⊗ 𝜎)] (6.72)

= Tr[|𝜆f⟩C⟨𝜆f|𝒦[𝜆](𝜌IC(𝜆i))]. (6.73)

On the other hand, using the equation (6.44), the numerator of the coefficient (6.69) is
rewritten by

Tr[ℛ⊖
𝜆̃f,[𝜆̃],𝜆̃i

(𝜎)] = Tr[𝜌IC(𝜆f)ℳ[𝜆](|𝜆i⟩C⟨𝜆i| ⊗ 𝜎)] (6.74)

= Tr[𝜌IC(𝜆f)𝒦[𝜆](|𝜆i⟩C⟨𝜆i|)]. (6.75)

Therefore, we obtain the coefficient 𝛾𝜆i,[𝜆],𝜆f given from the continuous measurement𝒦[𝜆]
of the composite system IC.
Applying the Jensen inequality ⟨𝑒𝑓⟩ ≥ 𝑒⟨𝑓⟩ to the quantum Jarzynski equality (6.68), we

obtain
⟨𝑊⟩𝜆f,[𝜆],𝜆i ≤ −∆𝐹I(𝜆f, 𝜆i) + 𝛽−1 log 𝛾𝜆i,[𝜆],𝜆f. (6.76)

This inequality is the second law under the continuously monitored control parameter.
Similarly to the chapter 5, the difference between the conventional approach and the

new formulation of the work extraction is given by the coefficient 𝛾𝜆i,[𝜆],𝜆f. Obviously, the
coefficient 𝛾𝜆i,[𝜆],𝜆f is not generally equal to unity, and does not generally become unity
when the time evolution is a unital map. In particular, when the coefficient 𝛾𝜆i,[𝜆],𝜆f is
greater than unity, the equation (6.76) permits the extracted work to break the second law.
However, as you will see in the next section, we show the fact that the probability of the
measurement record breaking the second law is very small.

6.4 Relation between control parameter and second law

Let us show the relation between the probability of the measurement record and the sec-
ond law.
Translating the equation (6.76), we obtain

𝑃F(𝜆f, [𝜆]|𝜆i) ≤ Tr[ℛ⊖
𝜆̃f,[𝜆̃],𝜆̃i

(𝜎)]𝑒−𝛽(⟨𝑊⟩𝜆f,[𝜆],𝜆i+∆𝐹I(𝜆f,𝜆i)). (6.77)
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Using the equation (6.75) and Tr[𝒦[𝜆](𝜌)] ≤ 1 for an arbitrary state 𝜌 of the composite
system IC, we obtain

Tr[ℛ⊖
𝜆̃f,[𝜆̃],𝜆̃i

(𝜎)] = Tr[𝜌IC(𝜆f)𝒦[𝜆](|𝜆i⟩C⟨𝜆i|)] (6.78)

≤ 𝑝max(𝜆f)Tr[|𝜆f⟩C⟨𝜆f|𝒦[𝜆](𝐼I ⊗ |𝜆i⟩C⟨𝜆i|)] (6.79)

≤ 𝑝max(𝜆f)Tr[𝒦[𝜆](𝐼I ⊗ |𝜆i⟩C⟨𝜆i|)] (6.80)
≤ 𝐷I 𝑝max(𝜆f), (6.81)

where 𝐼I is the identity operator on the internal system I,𝐷I is the dimensional of the inter-
nal system I and 𝑝max(𝜆) is themaximal eigenvalue of 𝜌IC(𝜆). Inserting the equation (6.81)
into the equation (6.77), we obtain

𝑃F(𝜆f, [𝜆]|𝜆i) ≤ 𝑝max(𝜆f)𝑒
−𝛽(⟨𝑊⟩𝜆f,[𝜆],𝜆i+∆𝐹I(𝜆f,𝜆i)−𝛽

−1 log𝐷S), (6.82)

As we can see in the equation (6.82), the probability of the measurement record breaking
the upper limit of the second law of information thermodynamics

⟨𝑊⟩ ≤ −∆𝐹I + 𝛽−1 log𝐷I (6.83)

exponentially decreases.
In particular, if the non-selective continuousmeasurement𝒦 ≔ ∫𝒟[𝜆]𝒦[𝜆] of the com-

posite system IC is a unital map, we obtain

𝒦[𝜆](𝐼I ⊗ |𝜆i⟩C⟨𝜆i|) ≤ 𝒦(𝐼I ⊗ |𝜆i⟩C⟨𝜆i|) ≤ 𝒦(𝐼I ⊗ 𝐼C) = 𝐼I ⊗ 𝐼C, (6.84)

where 𝐼C is the identity operator on the control system C. Then, using the equation (6.75),
we obtain

Tr[ℛ⊖
𝜆̃f,[𝜆̃],𝜆̃i

(𝜎)] ≤ Tr[𝜌IC(𝜆f)(𝐼I ⊗ 𝐼C)] = 1, (6.85)

and thereby obtain
𝑃F(𝜆f, [𝜆]|𝜆i) ≤ 𝑒−𝛽(⟨𝑊⟩𝜆f,[𝜆],𝜆i+∆𝐹I(𝜆f,𝜆i)). (6.86)

As we can see in the above equation, the probability of the measurement record breaking
the upper limit of the second law of thermodynamics exponentially decreases.

6.5 Summary of this chapter
In this chapter, we introduced the continuousmeasurement of the control system in order
to compare the conventional approach and the new formulation of the work extraction
under the closer situation.
In the section 6.1, we described the time reversal introduced byÅberg [121] and the time

reversal of continuous measurement to derive another quantum version of the Jarzynski
equality. From consideration of the time reversal of continuous measurement, we intro-
duced a backward-like continuous measurement, whose measurement record is given by
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the reverse order of a forward measurement record but which does not satisfies the prop-
erties of quantum measurement.
In order to derive the quantum version of the Jarzynski equality, we first considered

the relation between the forward and backward-like continuous measurements in the
section 6.2. As a result, we obtained the fluctuation relation between the forward and
backward-like continuous measurements of the equation (6.46). This relation is an exten-
sion of the fluctuation relation between the forward and backward processes, which was
derived in the reference [121].
Using the fluctuation relation in the section 6.2, we derived the quantum version of the

Jarzynski equality under the continuous measurement. As a result, we obtained the coef-
ficient 𝛾𝜆i,[𝜆],𝜆f as the difference from the conventional derivation of the Jarzynski equality.
Similarly to the quantum version of the Jarzynski equality in the chapter 5, the coefficient
𝛾𝜆i,[𝜆],𝜆f is not generally equal to unity. In other words, the influence of the work extraction
as the measurement process is not erased by the continuous measurement of the control
system C.
The coefficient 𝛾𝜆i,[𝜆],𝜆f can be greater than unity, in which case the second law is vio-

lated. However, we can find that the measurement record violating the second law hap-
pens only with a small probability, and hence the second law is not violated in the expec-
tation over all the measurement records. In other words, we may experimentally detect
the difference between the conventional approach and the new formulation of the work
extraction with a small but finite probability.
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Chapter 7

Conclusion

In the present thesis, we derived quantum versions of the Jarzynski equality under the
two situations in the chapters 5 and 6.
In the chapter 5, we first showed that the variance of the energy obtained by the external

agent diverges when the time evolution of the thermodynamic system is approximated to
a unitary one. This result is a good counterexample of the conventional approach using
a time-dependent Hamiltonian. This counterexample revealed that the work extraction
of the conventional approach is unsuitable for quantum thermodynamics. We claim that
thework extraction from amicroscope quantum system should be described as a quantum
measurement process in the chapter 4. We have applied the new approach to the quantum
Jarzynski equality. Our derivation of the quantum Jarzynski equality is essentially differ-
ent from the conventional derivation; our derivation correctly contains information about
the fluctuation of the actual work, namely, the energy gain of the external agent. The dif-
ference between the conventional and our derivation of the quantum Jarzynski equality
appears as the coefficient 𝛾 in the cyclic process and the coefficient 𝛾𝜆i→𝜆f in the non-cyclic
process. In the case of the conventional derivations in the cyclic and non-cyclic processes,
these coefficients 𝛾 and 𝛾𝜆i→𝜆f are always equal to unity, but those in the case of our deriva-
tion are not generally equal to unity. This differences are caused by describing the work
extraction in terms of the quantum measurement process. The coefficient 𝛾 in the cyclic
process is equal to unity when the work extraction is the “natural” thermodynamic pro-
cess, which satisfies the second law of thermodynamic for an arbitrary operation. Hence,
the condition 𝛾 ≠ 1 is caused by the feedback effect of quantum measurement. On the
other hand, the coefficient 𝛾𝜆i→𝜆f in the non-cyclic process is not generally equal to unity
even when the work extraction is the “natural” thermodynamic process and widely fluc-
tuates around unity, which we exemplified for a simple model in the section 5.3. This
comes from the irreversibility of the control system. We expect to detect this fluctuation
experimentally and to provide evidence for the new approach.
In the chapter 6, we derived the quantum Jarzynski equality under the continuously

monitored control parameter and the relation between the continuously monitored con-
trol parameter and the second law of thermodynamics. Because the quantum Jarzynski
equality in the chapter 6 is unclear as to how the microscope quantum system is operated
by the external agent, we have resolved it by observing the control parameter continu-
ously. Similarly to the quantum version of the Jarzynski equality in the chapter 5, we
obtain the coefficient 𝛾𝜆i,[𝜆],𝜆f, which is not generally equal to unity, as the difference from
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the conventional derivation.. Hence, the influence of the work extraction in terms of the
measurement process is not erased by the continuouslymonitored control parameter. The
coefficient 𝛾𝜆i,[𝜆],𝜆f can be greater than unity, in which case the second law is violated. On
the other hand, we find that the measurement record violating the second law happens
only with a small probability. Hence, the second law is not violated in the expectation over
all themeasurement records. In other wards, wemay experimentally detect the difference
from the conventional derivation with a small but finite probability.
Let us finally summarize two tasks remaining to be resolved. In the chapters 5 and 6,

we have assumed that the measurement process of the work extraction can measure the
energy loss of the internal system without errors; in other words, it can convert all of the
energy loss into the work. However, since the actual external agent is a thermodynamics
system, the energy transfer may be separated into the work and the heat. The work extrac-
tion process corresponding to this should be an incomplete process in which the extracted
work is not equal to the energy loss. In is an important issue to be resolved.
Moreover, in the chapter 6, we have assumed that the continuous measurement of the

control parameter preserves the energy of the total system. However, the actual contin-
uously monitoring of an observable generally gives rise to the energy exchange between
themeasurement device and themonitored system. The continuousmeasurement should
take into account the energy change by the monitoring.
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Appendix A

Adjoint of CP map

An adjoint map𝒦† of a completely positive (CP) map𝒦 is defined in

Tr[𝒦†(𝐵)𝐴] = Tr[𝐵𝒦(𝐴)], (A.1)

where 𝐴 and 𝐵 are arbitrary bounded operators. For the Kraus representation 𝒦(𝐴) =
∑𝑛𝐾𝑛𝐴𝐾

†
𝑛, we have

𝒦†(𝐴) = ∑
𝑛
𝐾†
𝑛𝐴𝐾𝑛. (A.2)

Therefore, the adjoint𝒦† is also a CPmap. Note that the adjoint of a trace preserving (TP)
CPmap does not generally preserve the trace, because Tr[𝒦†(𝐵)] = Tr[𝐵𝒦(𝐼)] ≠ Tr[𝐵] for
any operator 𝐵, where 𝐼 is the identity operator. The adjoint of a TPCP map 𝒦 preserves
the trace if and only if the TPCP map𝒦 is a unital map, which satisfies𝒦(𝐼) = 𝐼.
Let𝒦 and ℒ denote CP maps. Then, the adjoint of 𝒦ℒ is equal to ℒ†𝒦†, because

Tr[(𝒦ℒ)†(𝐵)𝐴] = Tr[𝐵(𝒦ℒ)(𝐴)] = Tr[𝒦†(𝐵)ℒ(𝐴)] = Tr[ℒ†𝒦†(𝐵)𝐴]. (A.3)

We now consider the adjoint using the reference system. Let 𝑈 denotes a unitary op-
erator on the system composed by a system S of interest and a reference system R. Then,
the CP map can be given by

𝒦(𝐴) ≔ TrR[(𝐼S ⊗ 𝑃R)𝑈(𝐴 ⊗ 𝑄R)𝑈†], (A.4)

where 𝑃R and 𝑄R are positive operators on the reference system R, 𝐼S is the identity oper-
ator on the system S and TrR denotes the partial trace over the reference system R. Using
the cyclic property of the trace, we obtain

Tr[𝐵𝒦(𝐴)] = Tr[𝐵TrR[(𝐼S ⊗ 𝑃R)𝑈(𝐴 ⊗ 𝑄R)𝑈†]] (A.5)
= Tr[(𝐵 ⊗ 𝑃R)𝑈(𝐴 ⊗ 𝑄R)𝑈†] (A.6)
= Tr[𝑈†(𝐵 ⊗ 𝑄R)𝑈(𝐴 ⊗ 𝑄R)] (A.7)
= Tr[TrR[(𝐼S ⊗𝑄R)𝑈†(𝐵 ⊗ 𝑃R)𝑈]𝐴]. (A.8)

Therefore, the adjoint of 𝒦 is represented by [121]

𝒦†(𝐴) = TrR[(𝐼S ⊗𝑄R)𝑈†(𝐴 ⊗ 𝑃R)𝑈]. (A.9)
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