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Abstract

Since LIGO Scientific collaboration and Virgo collaboration has successfully
detected Gravitational waves (GWs) directly from a compact binary coales-
cence (CBC) comprising two black holes, new era of the astronomy - GW
astronomy - has begun. Astronomers and physicists expect that Gravita-
tional wave astronomy will reveal phenomena that have not been previously
clarified via electromagnetic astronomy. The precise discussion of the GW
astronomy requires the precise and homogeneous estimation of the GW pa-
rameters inserting from all over the sky. Detection of GWs involves using the
network of GW telescopes to observe a large sky region. However, owing to
the arrangement of the GW telescopes, parameter estimation accuracy dete-
riorates depending on the sky region of the GW source due to the ill-posed
nature of the inverse operator. The instability of the solution of the ill-posed
inverse problem causes the amplifying the amount of error in the result of
the inverse problem even if the error in the given data from GW telescopes
is small.

One key method that the deteriorated accuracy of the parameters makes
improve is called a regularization method. A regularization method provides
the mathematical framework to solve the ill-posed inverse problem stably by
adding an appropriate correction term to the ill-posed operator. To avoid the
ill-posed problem, certain solutions are suggested for detecting GWs by the
network of GW telescopes. However, conventional regularization methods
suggested for a GW data analysis focus on reducing the residual noise and
ignore the fact that estimated GW parameters can exceed the value range of
the actual parameters because the regulator adds bias noise. In other words,
conventional regularization methods cannot optimize all regulator parame-
ters completely.

Our study propose the new parameter estimation method to minimize a
whole of the noise including the bias noise and amplified noise due to ill-
posed inverse problem by optimizing all regulator parameters. To obtain the
optimized parameters for the estimation of amplitude parameters of GWs,
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the residual of the amplitude parameters of GWs, which is expressed by the
norm of the difference between the actual amplitudes and the estimated am-
plitudes evaluated using regularized data analysis, must be minimized. The
problem of the minimization is that the actual GW amplitudes cannot be
predetermined and the estimated point of GW parameters using a regular-
ization method frequently lying outside of the residuals when the bias error
exceeds the amplified error. To resolve these problems, we propose a La-
grange multiplier method with KKT condition for the norm of the difference
between the amplitude parameters estimated by the regularized data analysis
and amplitude parameters estimated by the non-regularization method, i.e.,
the a-posteriori parameter choice rule provides optimized regulator values.

The data analysis based on a Bayesian analysis is implemented by using
MultiNest software, which is the Bayesian inference software based on the
nested sampling algorithm. The data analysis results indicate that the regu-
larization method with the type 2 regulator reduces the credible region of the
accuracy of the amplitude parameters. For approximately 90% of the sky re-
gion, the credible region of inclination-distance is reduced by approximately
1.5 times and that of the polarization-initial phase is reduced by approxi-
mately 3.0 times. The shrinkage rate of the credible region increases with
a decreasing determinant value of the inverse operator So we demonstrate
that the proposed method can shrink the credible regions of inclination vs
luminosity distance and polarization vs initial phase significantly in the sky
wherein the accuracy of the amplitude parameters of GWs has been deteri-
orated.

The proposed method suppresses the systematic error of GWs depending
on the sky region and allows us investigating the cosmological information
more precisely.
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Chapter 1

Introduction

Gravitational waves(GWs) have been detected using extremely large laser
interferometers. i.e., GW telescopes. Km-scale GW telescopes, such as
LIGO[1] and Virgo[2] have been constructed and the KAGRA[3] is currently
under construction in Japan. LIGO Scientific collaboration and Virgo col-
laboration had successfully detected GWs directly from a compact binary
coalescence (CBC) comprising two black holes[4]. Astronomers and physi-
cists expect that GW astronomy will reveal phenomena that have not been
previously clarified via electromagnetic astronomy.

The detection of the GW event GW170817 from the coalescence of NS-NS
binary at 2017 August 17 by the network of the GW telescopes composed
of LIGO Hanford, LIGO Livingston and Virgo[5][6], short gamma-ray burst
event GRB 170817A observed by Fermi-GBM[7][8] and any other electromag-
netic counterparts[9] opened the new era of multi-messenger astrophysics,
which is the joint observation of gravitational wave and electromagnetic ra-
diation from single source[9]. The multi-messenger astrophysics is expected
to reveal the detail of the astronomical and cosmological phenomena.

In the astronomical viewpoint, exotic X-ray transient events, for instance,
whose the nature mechanism of the emission remains unclear have been
reported[10][11]. In particular, CDF-S XT1 is one of the latest exotic X-
ray transient events whose cannot detect associated multiwavelength tran-
sient emission expected to be able to observe according to conventional
researches[12]. While there are models to explain the properties of the
source[12][13][14], the inclination parameter, which can be estimated directly
by the precise determination of the amplitude parameters of GWs, is crucial
to classify wheather the model is correct or not.

The measurement of the GW amplitude from CBC provides the method
to determine the distance from the source of a transient to the earth directly,
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which is called “standard siren”[15][16]. In the cosmological viewpoint, the
measurement of the distance and redshift, which is determine by using elec-
tromagnetic observation, of the source is important to determine a Hubble
constant[15][17][18]. The estimation of the Hubble constant has been con-
ducted actually by using GW170817 data; the distance of the source is de-
termined by amplitude parameter of GWs and the redshift is measured by
the host galaxy NGC4993 determined by the celestial coordinate of the tran-
sient measured by electromagnetic radiations[19]. The measurement of the
Hubble constant has been conducted by electromagnetic observation such as
the cosmic microwave background(CMB)[20] and cosmic distance ladder[21].
However, these independent measurements indicate that the 3.4σ(99.9% con-
fidence) difference of the measured Hubble constants between the result of
CMB and cosmic distance ladder. Such differences suggest that the neces-
sity of additional independent measurements of the Hubble constant by using
standard siren, which doesn’t depend on the electromagnetic observation.

For implementing these important study, it is expected that more precise
estimation of GW waveforms or parameters will be achieved using a network
of GW telescopes[22], i.e., using multiple telescopes simultaneously to detect
GWs. With a network of GW telescopes, the SNR of GWs detection can
be increased and the independent mode of GWs can be determined. An
analysis method based on Bayesian statistics has been proposed[23] to esti-
mate GW waveforms detected by a network of GW telescopes. To estimate
the amplitude parameters of a GW, maximizing the likelihood of the output
of GW telescopes and the GW model are equivalent to solving an inverse
problem whose inverse operator considers the parameters of antenna-beam
pattern functions and detecting the SNR of a GW[23]. However, the solu-
tion of an inverse problem is unstable owing to the rank deficiency of the
inverse operator. The instability of the solution, i.e., an ill-posed problem,
makes it impossible to distinguish the independent modes of GW due to the
degeneration of these modes. In order to avoid the ill-posed problem, certain
solutions are suggested for detecting GWs by the network of GW telescopes,
especially for burst search of GWs. For instance, Rakhmanov formulated the
Maximum likelihood method with Tikonov regularization[24] and Mohanty
propose to constract a regulator by a variability of the SNR as the source is
displaced on the sky[25].

However, conventional regularization methods for a GW analysis focus
on reducing the residual noise and ignore the fact that estimated GW pa-
rameters can exceed the value range of the actual parameters because the
regulator adds bias noise[26]. This is a significant problem because it is
highly likely that the actual GW parameters are outside the credible region
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estimated using a regularization method. The bias noise introduced by a reg-
ulator can cause inaccurate estimation of parameter values. To implement
precise estimation of GW parameters, a regularization method is required
to reduce the amplified noise as small as possible while maintaining the bias
noise such that the estimation points of the GW parameters are not affected.
Thus, we propose a method to optimize regulator parameters for minimiz-
ing the influence of amplitude parameters amplified by the ill-posed inverse
operator in the analysis of a targeted CBC search. The proposed method
attempts to minimize the residual of the amplitude parameters expressed by
the sum of amplified and bias noise. The residual of the amplitude param-
eters of GWs, which is expressed by the norm of the difference between the
actual amplitudes and the estimated amplitudes evaluated using regularized
data analysis, must be minimized to obtain all of the optimized parameters
of a regulator. However, the actual GW amplitudes cannot be predeter-
mined. Thus, the optimized regulator parameters are selected based on an
a-posteriori parameter choice rule[26]. The estimated amplitude allows us to
evaluate the value of the norm. Then, it becomes possible to determine full
optimized parameters of a regulator. We implement data analysis with the
optimized regulator to improve the accuracy of the amplitude parameters of
GWs.

The remainder of this paper is organized as follows. In Chapter.2, we
describe the fundamental formulation of a targeted coherent CBC search.
The data analysis method using this thesis is discussed in Chapter.3. We ex-
plain the mathematical framework of the regularization method in Chapter.4
and how the optimized regulator in the coherent search method is determined
using an a-posteirori parameter choice rule in Chapter.5. In Chapter.6, we re-
view the regularized data analysis algorithm and describe MultiNest[27][28],
which is Bayesian inference software. In addition, we present the results of
regularized data analysis and describe the behavior of the reduction of the
amplified noise. Conclusions are given in Chapter.7.
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Chapter 2

Fundamental theory of
Gravitational waves

2.1 A brief review of Gravitational waves

In this section, we describe the brief summarize of a GW theory. We refer to
[29] and [30] to describe the details of the section.

All the classical gravitational theory including GWs is based on the Ein-
stein Equation such that

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2.1)

where gµν is the metric tensor of space-time, which is the function of the
space-time coordiantes xα. It also defined by using the invariant squared
distance element ds2 and the infinitisimal coordinate difference between the
two points dxα as

ds2 = gµνdx
µdxν . (2.2)

The metric tensor is invariant under transformation of an infinitisimal coor-
dinate, any physical quantity doesn’t depend on the choice of the coordinate
system.

Furthermore, The Ricci tensor Rµν is defined as

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + Γρ

µνΓ
σ
ρσ − Γρ

µσΓ
σ
νρ, (2.3)

where Γρ
µν is a Christoffel symbol define as

Γµ
ρσ =

1

2
gµν [∂ρgσν + ∂σgρν − ∂µgρσ] . (2.4)
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The Ricci scalar R is defined as

R = gµνRµν . (2.5)

A GW theory is based on the linear perturbed theory of the gravitational
field. Here, we consider the background gravitational field is flat, which can
be expressed by the Minkowski space whose metric is such that

gbackµν = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.6)

Since a GW metric denoted by hµν is the perturbation on the background
metric such that ∥hµν∥ ≪ ∥gbackµν∥, the metric on the space is

gµν = ηµν + hµν . (2.7)

By substituting the metric Eq.(2.7) for the Einstein theory Eq.(2.1), we ob-
tain the linear Einstein equation such that

□hµν + ηµν∂
ρ∂σhρσ − ∂ν∂

ρhµρ − ∂µ∂
ρhνρ = −16πG

c4
Tµν , (2.8)

where

hµν = hµν −
1

2
ηµνη

αβhαβ, (2.9)

□ is the d’Alembert operator on the flat space such that

□ = − ∂2

∂t2
+∆, (2.10)

∆ is the laplacian operator on the flat space and ∂/∂t ≡ c∂0, ∂/∂xi ≡ ∂i,
where i = 1, 2, 3 is the index corresponding to the spatial coordinate of the
metric. To remove the degree of freedom, we impose the Lorentz gauge
condition such that ∂νhµν = 0 on the Eq.(2.8), we obtain the simple wave
equation of the GWs

□hµν = −16πG

c4
Tµν (2.11)

The general solution of the linear Einstein equation with the Lorentz gauge
condition Eq.(2.11) is obtained by using the retarded Green function

□G+(x− x′) = δ4(x− x′), (2.12)
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and the result is

hµν(x) = −16πG

c4

∫
d4x′G+(x− x′)Tµν(x

′), (2.13)

where x is the coordinate of the observer and x′ is the coordinate of the source
of gravity. The solution of the retarded Green function, which is obtained
by the theory of a complex variables function, is

G+(x− x′) = − 1

4π|x− x′|
δ(t− |x− x′| − t′). (2.14)

By substituting Eq.(2.14) for Eq.(2.13) and integrating it with respect to
the time of the coordinate of the source of gravity t′, we obtain the general
solution of the GW function such that

hµν(x) =
4G

c4

∫
d3x′ 1

|x− x′|
Tµν(t−

|x− x′|
c

,x′). (2.15)

Here, we impose the hypothesis, which is hold all over the source of the
GWs, that the size of the source d is far smaller than in scale than the
distance between the observer and the source |x| ≡ r such that

r ≫ d. (2.16)

By performing Taylor expansion of |x−x′| around the position of the source
x′ = 0, we obtain

|x− x′| = r − x′ · n̂+O
(
d2

r

)
, (2.17)

where n̂ is the spatial unit vector propagating the GWs in the direction out-
side the source. Eq.(2.17) provides the simple and appropriate approximation
formulation of the GW Eq.(2.15) such that

hµν(x) =
4G

c4r

∫
d3x′Tµν(t−

r

c
+

x′n̂

c
,x′) +O(1/r). (2.18)

While we have reduced 10 degrees of freedom of the GWs hµν to 6 degree
of freedom by imposing the Lorentz gauge condition which reduces the degree
of freedom with respect to the first order partial derivation of the perturba-
tion of gravity, we have rest the degree of freedom under the transformation
of the coordinate system. To reduce that, we impose the TT(Transverse-
traceless) gauge whose operator is such that

Λij,kl(n̂) = P i
kP

j
l − 1

2
P ijPkl, (2.19)

P ij ≡ δij − n̂in̂j (2.20)
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on the coordinate system. The physical property of the TT gauge(or TT
flame) is that particle in the flame is at rest before the arrival of the GWs
remains at rest even after the arrival of the GWs. In other words, the free
falling flame of the test masses remains at rest while the coordinate of the
TT flame is stretch themselves by responding the perturbation of the space
time as the GWs passes through. Therefore the GWs imposing the Lorentz
gauge condition and TT gauge condition hTT

µν is expressed by

hTT
ij (x) =

4G

c4r
Λij,kl(n̂)

∫
d3x′T kl(t− r

c
+

x′n̂

c
,x′). (2.21)

Since imposing TT gauge removes 4 degree of freedom, hTT
ij has the 2 degree

of freedom. It means that the GWs have 2 independent wave modes, which
are denoted h+ and h×. These mode are called the amplitude of the “plus”
and “cross” polarization of the wave. Fig. 2.1 shows the deformation of a
ring of test masses due to the plus and cross mode polarization.

Figure 2.1: The response of the test masses by plus and cross mode of the
GWs.

To apply Eq.(2.18) to the GW emission from the CBC system, we use
another approximation method called Low-velocity expansion. In a non-
relativistic system of the source, the typical velocity of the source v is always
much smaller than light speed c such that v ≪ c. The frequency of the GWs
ω we aim to observe is of order the rotational velocity of the source ω ≈ v/d.
Then typical wavelength of the GWs λ̄ ≈ cd/v has the relationship such that

λ̄ ≫ d,
ω

c
x′ · n̂ <

ωsd

c
≪ 1, (2.22)

where ωs is the rotational velocity of the system. Therefore, the energy-
momentum tensor Tµν in the Eq.(2.21) can be expanded with respect to
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Eq.(2.22), we can find

Tµν

(
t− r

c
+

x′ · n̂
c

,x′
)

=
∑
n

(x′ · n̂)n

cnn!

∂n

∂tn
Tµν

(
t− r

c
,x′
)
. (2.23)

Here, we define the momentum of the stress tensor T ij, where the index
i, j = 1, 2, 3 is the spatial component of the metric space, as a following:

Skl,i1i2···in(t) =

∫
d3xT kl(t,x)xi1xi2 · · ·xin , (2.24)

where the first and second indexes separated by comma commute respec-
tively, but we cannot exchange the first and second indexes each other. By
substituting Eq.(2.24) for Eq.(2.23) and Eq.(2.21), we obtain the GW func-
tion imposing the Low-velocity expansion such that

hTT
ij (x) =

4G

c4r
Λij,kl(n̂)

∑
α

1

cαα!
(∂α

0 S
kl,i1···iα)ni1 · · ·niα . (2.25)

From the definition of the momentum of the stress tensor Eq.(2.24), the size
of the n-th order moment can be estimated as O(dn) since the xik in the
moment correspond to the coordinate of the source of GWs. Furthermore,
the n-th order derivative with respect to time in Eq.(2.25) introduces the n-
th order of the rotational frequency of the source. In summarize, n-th order
of the component of Eq.(2.25) is of order O(vn/cn). Because of v ≪ c on
the Low-velocity expansion condition, the appropriate approximation of the
GW formalism can be estimated by evaluating low degree of the component
of the moment.

The appropriate explanation of the physical properties of the moment is
provided by a tensor spherical harmonics. First, we define that L denotes an
orbital angular momentum operator, S denotes a spin operator and J = L+S
denotes a total angular momentum. Second, we use the eigenfunctions of the
tensor spherical harmonics denoted by Y ls

jjz(θ, ϕ). The eigenfunctions satisfy

J2Y ls
jjz = j(j + 1)Y ls

jjz , (2.26)

J2
zY

ls
jjz = jzY

ls
jjz , (2.27)

L2Y ls
jjz = l(l + 1)Y ls

jjz , (2.28)

S2Y ls
jjz = s(s+ 1)Y ls

jjz , (2.29)

where l is an azimuthal quantum number, s is a spin quantum number, j is a
total angular momentum quantum number and jz is a magnetic momentum
quantum number.
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The explicit form of the tensor spherical harmonics can be obtained cou-
pling the spherical harmonics Yllz to the spin function χssz with the Clebsch-
Gordan coefficient such that

Y ls
jjz(θ, ϕ) = ⟨slszlz|jjz⟩Yllz(θ, ϕ)χssz (2.30)

Note that the solution of the spin function is

Sχssz = s(s+ 1)χssz . (2.31)

We are very interested in spin 2 state of the tensor spherical harmonics to
describe the behavior of the GWs. The spin function of wave for s = 2 with
definite value of sz denoted by t

(sz)
ik is obtained combining the two spin-1

function of wave ξm1
i and ξm2

k with appropriate Clebsch-Gordan coefficients
such that

t
(sz)
ik =

1∑
m1=−1

1∑
m2=−1

⟨11m1m2|2sz⟩ξm1
i ξm2

k , (2.32)

where

ξ±1 = ∓ 1√
2
(ex ± iey), ξ0 = ez, (2.33)

and ex, ey, ez are independent unit vector respectively.

The tensor t
s[z]

ik has 5 tensors depending on sz = 0,±1,±2. These tensors
are symmetric and traceless. By substituting Eq.(2.32) for Eq.(2.30), we
obtain the spin-2 tensor spherical harmonics:

(Tl
jjz)ik ≡ (Y l2

jjz)ik

=
l∑

lz=−l

2∑
sz=−2

⟨2lszlz|jjz⟩Yllz(θ, ϕ)t
(sz)
ik (2.34)

From the classification of the Thorne[31], the five tensor spherical harmonics
are given by

TS0
jjz = a11T

j+2
jjz

+ a12T
j
jjz

+ a13T
j−2
jjz

, (2.35)

TE1
jjz = a21T

j+2
jjz

+ a22T
j
jjz

+ a23T
j−2
jjz

, (2.36)

TE2
jjz = a31T

j+2
jjz

+ a32T
j
jjz

+ a33T
j−2
jjz

, (2.37)

TB1
jjz = b11iT

j+1
jjz

+ b12iT
j−1
jjz

, (2.38)

TB2
jjz = b21iT

j+1
jjz

+ b22iT
j−1
jjz

, (2.39)

for j ≥ 2. The coefficient included by the classification is in Table. 2.1.
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a11

[
(j+1)(j+2)

(2j+1)(2j+3)

]1/2
a12 −

[
2j(j+1)

3(2j−1)(2j+3)

]1/2
a13

[
2j(j−1)

(2j−1)(2j+1)

]1/2
a21 −

[
2j(j+2)

(2j+1)(2j+3)

]1/2
a22 −

[
3

(2j−1)(2j+3)

]1/2
a23

[
2(j−1)(j+1)
(2j−1)(2j+1)

]1/2
a31

[
j(j−1)

2(2j+1)(2j+3)

]1/2
a32

[
3(j−1)(j+2)
(2j−1)(2j+3)

]1/2
a33

[
(j+1)(j+2)

2(2j−1)(2j+3)

]1/2
b11

[
j+2
2j+1

]1/2
b12 −

[
j−1
2j+1

]1/2
b13 −

[
j−1
2j+1

]1/2
b14 −

[
j+2
2j+1

]1/2
Table 2.1: The coefficients of the Thorne’s classification.

These tensors can be expressed in terms of the scalar spherical harmonics
as follows:

(TS0
lm)ik = [ninj − (1/3)δij]Ylm, (2.40)

(TE1
lm)ik = c

(1)
l (r/2)(ni∂j + nj∂i)Ylm, (2.41)

(TB1
lm )ik = c

(1)
l (i/2)(niLj + njLi)Ylm, (2.42)

(TE2
lm)ik = c

(2)
l r2Λij,i′j′(n̂)∂i′∂j′Ylm, (2.43)

(TB2
lm )ik = c

(2)
l rΛij,i′j′(∂i′Lj′ + ∂j′Li′)Ylm, (2.44)

where

c
(1)
l =

[
2

l(l + 1)

]1/2
, c

(2)
l =

[
2
(l − 2)!

(l + 2)!

]1/2
. (2.45)

In the classification of the tensor spherical harmonics, TS0
lm has l ≥ 0,

TE1
lm and TB1

lm have l ≥ 1 and TE2
lm and TB2

lm have l ≥ 2. Furthermore, the
transversality of the GWs nihTT

ij = 0, which comes from the hypothesis that
the graviton is massless, eliminates 3 degree of freedom from the 5 tensors.
It allows us to remove TS0, TE1 and TB1 from the basis of the GWs since
these don’t have the transversality. As a result of the discussion, we obtain
another general solution of the GWs such as

hTT
ij =

1

r

G

c4

∞∑
l=2

l∑
m=−m

[
ulm(T

E2
lm)ij + vlm(T

B2
lm )ij

]
. (2.46)
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Comparing Eq.(2.25) and Eq.(2.46), we can determine the coefficient ulm

and vlm of the Eq.(2.46). To multiply both side of Eq.(2.25) and Eq.(2.46)
and integrate over the surface of the sphere, we obtain

ulm =
∑
α

4

α!
(∂α

0 S
ij,i1···iα)

∫
dΩ(TE2

lm)∗ijni1 · · ·niα , (2.47)

and

vlm =
∑
α

4

α!
(∂α

0 S
ij,i1···iα)

∫
dΩ(TB2

lm )∗ijni1 · · ·niα . (2.48)

Since Eq.(2.34) indicates Tl
jjz ∝ Ylm and the constant STF tensor of the

spherical harmonics(see Appendix.A) is expressed by Eq.(A.24), we obtain∫
dΩTl

jjzni1 · · ·niα ∝
∫

dΩTlmni1 · · ·niα ,

= Y lm
nj1

···njl

∫
dΩnj1 · · ·njlni1 · · ·niα . (2.49)

Furthermore, the integral of the unit vectors over polar coordinate is

1

4π

∫
dΩni1 · · ·ni2l =

1

(2l + 1)!!

(
δi1i2 · · · δi(2l−1)i2l + sym[(l − 1)!!]

)
. (2.50)

If α < l, Eq.(2.49) is vanished because there is a inner product of Y , which is
traceless term, and at least one Kronecker delta involving two indices of the
group j1 · · · jl. Then Eq.(2.43) and Eq.(2.44) is also vanished when α < l.
Furthermore, Eq.(2.43) has the l+ 2 and l− 2 angular momentum quantum
number and Eq.(2.44) has the l + 1 and l − 1 angular momentum quantum
number. While the condition of α < l requires the angular momentum
quantum number should be larger than α, The Low-velocity expansion tells
us that Eq.(2.47) and Eq.(2.48) are of order O(vα/cα). Then we can obtain
appropriate approximation of Eq.(2.47) and Eq.(2.48) by using the lowest
order α = l − 2 and λ = l − 1. Then we find

ulm ≈ a33
4

(l − 2)!

(
∂l−2
0 Skli1···il−2

) ∫
dΩ(Tl−2

lm )∗klni1 · · ·nil−2
, (2.51)

vlm ≈ −ib22
4

(l − 1)!

(
∂l−1
0 Skli1···il−1

) ∫
dΩ(Tl−1

lm )∗klni1 · · ·nil−1
. (2.52)

Since Eq.(2.40c) and Eq.(2.40e) of Thorne[31] indicates

(Tl−2
lm )ij =

[
l(l − 1)

(2l − 1)(2l + 1)

]1/2
Y lm

iji1···il−2
ni1 · · ·nil−2

, (2.53)

11



and

(Tl−1
lm )ij = i

[
2l(l − 1)

(l + 1)(2l + 1)

]1/2
ϵpq(iY lm

j)qi1···il−2
npni1 · · ·nil−2

, (2.54)

where () in the index of the STF tensor indicates that the index surrounded
by the parenthesis is commute. Then we have

ulm ≈
[

(l + 1)(l + 2)

2(2l − 1)(2l + 1)

]1/2
4

(l − 2)!

[
l(l − 1)

(2l − 1)(2l + 1)

]1/2
× ∂l−2

0 Siji1···il−2Y lm∗
ijj1···jl−2

∫
dΩni1 · · ·nil−2

nj1 · · ·njl−2
,

=
4

(l − 2!)

[
l(l − 1)(l + 1)(l + 2)

2[(2l − 1)(2l + 1)]2

]1/2
4π

(2l − 3)!!
(l − 2)!∂l−2

0 Siji1···il−2Y lm∗
iji1···il−2

,

=
16π

(2l + 1)!!

[
1

2
l(l − 1)(l + 1)(l + 2)

]1/2
∂l−2
0 Siji1···il−2Y lm∗

iji1···il−2
, (2.55)

vlm ≈ −
[
l + 2

2l + 1

]1/2
4

(l − 1)!

[
2l(l − 1)

(l + 1)(2l + 1)

]1/2
× ∂l−1

0 Siji1···il−1ϵpq(iY lm∗
j)qj1···jl−2

∫
dΩnpnj1 · · ·njl−2

ni1 · · ·nil−1
,

= − 4

(l − 1)!

[
2l(l − 1)(l + 2)

(l + 1)(2l + 1)2

]1/2
4π

(2l − 1)!!
(l − 1)!∂l−1

0 Siji1···il−1ϵi1q(iY lm∗
j)qi2···il−1

,

= − 16π

(2l + 1)!!

[
2l(l − 1)(l + 2)

(l + 1)

]1/2
∂l−1
0 Siji1···il−1ϵi1q(iY lm∗

j)qi2···il−1
. (2.56)

The two modes of the GWs Eq.(2.46) are called “mass mode” and “cur-
rent mode”, respectively, due to the physical properties of these modes.

First, we present the mass mode corresponding to TE2. Here, we intro-
duce the new moment called mass moment which is the moment of the energy
density T00 of the source such as

M i1···il ≡ 1

c2

∫
d3xT 00xi1 · · ·xil . (2.57)

From the energy conservation low of the energy-momentum tensor in a flat
space ∂µT

µν = 0, we obtain ∂0T
00 = ∂iT

0i. Then 2 order derivatives with

12



respect to time for the mass moment M̈ ≡ c2∂2
0M is given by

M̈ i1···il =

∫
d3x∂2

0T
00xi1 · · ·xil ,

=

∫
d3x∂i∂jT

ijxi1 · · ·xil ,

=

∫
d3xT ij∂i∂j(x

i1 · · ·xil), (2.58)

where we suppose that the energy momentum tensor vanishes on the bound-
ary of the integration.

For l ≥ 2, we have

∂i∂j(x
i1 · · ·xil) = (∂i∂jx

i1xi2)xi3 · · ·xil + · · · ,
= (δi1i δ

i2
j + δi2i δ

i1
j )x

i3 · · ·xil + · · · , (2.59)

where the number of the terms on the right side of Eq.(2.59) is lC2 = l(l −
1)/2. By using a constant STF tensor, we obtain

Y lm∗
i1···ilS

i1i2,i3···il =
1

l(l − 1)
Y lm∗

i1···ilM̈
i1···il . (2.60)

By substituting Eq.(2.60) for Eq.(2.55), we have

ulm ∼ 16π

(2l + 1)!!

[
1

2
l(l − 1)(l + 1)(l + 2)

]1/2
∂l−2
0 Sij,i1···il−2Y lm∗

iji1···il−2
,

=
16π

(2l + 1)!!

[
1

2
l(l − 1)(l + 1)(l + 2)

]1/2
1

l(l − 1)
Y lm∗

i1···il∂
l
0M

i1···il ,

=
1

cl−2

16π

(2l + 1)!!

[
(l + 1)(l + 2)

2l(l − 1)

]1/2
Y lm∗

i1···il
dl

dtl
M i1···il ≡ dl

dtl
Ilm,(2.61)

where

Ilm ≡ 1

cl−2

16π

(2l + 1)!!

[
(l + 1)(l + 2)

2l(l − 1)

]1/2
Y lm∗

i1···ilM
i1···il , (2.62)

=
1

cl−2

16π

(2l + 1)!!

[
(l + 1)(l + 2)

2l(l − 1)

]1/2 ∫
d3xrlT 00Y ∗

lm. (2.63)

Eq.(A.24) brings Eq.(2.63) from Eq.(2.62). Therefore, we conclude that the
E2 mode of the GWs corresponds to a mass mode arisen from the mass
density of the source.
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Meanwhile, TB2 is connected to the concept of the current mode. Here, we
also introduce the new moment called angular moment which is the moment
of the density T 0i of the source such as

P i,i1···il =
1

c

∫
d3xT 0ixi1···il . (2.64)

In the same way deriving Eq.(2.58), we have the derivative of Eq.(2.64) with
respect to time such as

Ṗ i,i1···il =

∫
d3x∂0T

0ixi1···il ,

= −
∫

d3x∂jT
ijxi1···il ,

= −
∫

d3xT ij∂j(x
i1···il),

= −
∫

d3xT ij(δi1j x
i2···il + · · ·xi1···il−1δilj ),

= −(Sii1,i2···il + Sii2,i1i3···il + · · · ), (2.65)

where Ṗ i,i1 consists of the lth number of moment with respect to S. Then,
by using Levi-Civita symbol ϵijk, the number of terms of the ϵii1qṖ

i,i1···il is
l − 1 since i and i1 in Sii1,ji2···il−1 are commute. So we have

Y lm∗
jqi2···il−1

ϵii1qS
ij,i1···il−1 = − 1

l − 1
Y lm∗

jqi2···il−1
ϵii1qṖ

i,ji1···il−1 . (2.66)

By substituting Eq.(2.66) for Eq.(2.56), we obtain

vlm = − 16π

(2l + 1)!!

[
2l(l − 1)(l + 2)

(l + 1)

]1/2
∂l−1
0 Siji1···il−1ϵi1q(iY lm∗

j)qi2···il−1
,

= − 16π

(2l + 1)!!

[
2l(l − 1)(l + 2)

(l + 1)

]1/2
∂l−1
0 Siji1···il−1ϵii1qY lm∗

jqi2···il−1
,

=
1

cl−1

32π

(2l + 1)!!

[
l(l + 2)

2(l − 1)(l + 1)

]1/2
dl

dtl
Y lm∗

ii1i2···il−1
ϵijkP

j,ki1···il−1 ,

≡ dl

dtl
Slm, (2.67)

where

Slm ≡ 1

cl
32π

(2l + 1)!!

[
l(l + 2)

2(l − 1)(l + 1)

]1/2
Y lm∗

ii1i2···il−1
ϵijkP

j,ki1···il−1 . (2.68)
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The physical meaning of Eq.(2.67) is explained by the angular moment of
the source. Since T 0i indicates the momentum density pi in non-relativistic
scale, which also satisfies the condition of the Low-velocity expansion. we
have

ϵijkP
j,ki1···il−1 =

1

c
ϵijk

∫
T 0jxkxi1···il−1d3x,

=
1

c

∫
(p× x)xi1···il−1d3x. (2.69)

Then the physical meaning of ϵijkP
j,ki1 is a angular momentum of the source.

Therefore, we conclude that the B2 mode of the GWs corresponds to a current
mode arisen from angular momentum of the source.

The motion of the source including the revolution of the trajectory of
the CBC classifies the mass mode discussed above because the motion of the
binary system can be interpreted as kinetic motion of the two point particles.
Then we discuss the Eq.(2.61) and E2 mode to describe the formulation of
the GWs from CBC. Since Eq.(2.61) is of order O(vl/cl) because of the
result of the Low-velocity expansion and the lowest order of the angular
momentum quantum number is l = 2 due to Eq.(2.51), which implies the
angular momentum of the E2 mode must be l − 2 ≥ 0, the coefficient of the
lowest order of the mass mode can be described as

u2m =
16π

5
√
3
Y2m∗

ij M̈ij. (2.70)

By substituting Eq.(2.70) for Eq.(2.46) with vlm = 0 and using Eq.(A.20),
we obtain

hTT
ij =

1

r

G

c4

2∑
m=−2

[
16π

5
√
3
Y2m∗

ab M̈ab

(
1

12

)1/2

r2Λij,i′j′∂i′∂j′Y2m(θ, ϕ)

]
,

=
1

r

G

c4
8π

15
M̈abr

2Λij,i′j′
15

8π
∂i′∂j′

(
nanb −

1

3
δab

)
. (2.71)

Here, the derivation of the unit vector is

∂i′∂j′

(
nanb −

1

3
δab

)
= r−2[δi′aδj′b + δi′bδj′a − 2(δi′anj′nb + δi′bnj′na

+ δj′ani′nb + δj′bni′na + δi′j′nanb)

+ 8ni′nj′nanb]. (2.72)

However, these terms of the unit vector in Eq.(2.72) are vanished when we
take the inner product by the unit vector TT operator Λij,i′j′ because the TT
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operator is a tracefree tensor with respect to the pairs of the index ij or i′j′.
Finally, we obtain the simple formalization of the GWs for the lowest order
of mass mode such as

hTT
ij =

2

r

G

c4
Λij,abM̈

ab, (2.73)

=
2

r

G

c4
(PM̈P )ij −

1

2
PijTr(PM̈). (2.74)

The TT operator allows us to know where the GW signal is injected from
the celestial coordinate to the observer. First, we consider the case that the
GW signal is injected along with the z-axis of the observer’s coordinate such
that n̂ = (0, 0, 1) and the corresponding matrix of Eq.(2.20) is given by

P =

 1 0 0
0 1 0
0 0 0

 (2.75)

. Therefore, we obtain

Λij,abM̈ab =

 M̈11 M̈12 0

M̈21 M̈22 0
0 0 0


ij

− M̈11 + M̈22

2

 1 0 0
0 1 0
0 0 0


ij

,

=

 (M̈11 − M̈22)/2 M̈12 0

M̈21 −(M̈11 − M̈22)/2 0
0 0 0


ij

. (2.76)

The two independent modes named plus or cross mode are then obtained
such that

h+ =
1

r

G

c4
(M̈11 − M̈22), (2.77)

h× =
1

r

G

c4
M̈12. (2.78)

Next, we consider the case that the GW signal is injected along with the
arbitrary axis of the observer’s coordinate such that n̂ = (sin θ sinϕ, sin θ cosϕ, cos θ).
Here, we consider that the rotational transformation of the coordinate of the
source. In other words, we transform the matrix of the mass moment in
Eq.(2.73) into

Mij = RikRjlM
′
kl, (2.79)
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where

Rij =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ


ij

(2.80)

is the operator of the rotational transformation. As a result of the transfor-
mation, we obtain the transformed modes of the GWs such that

h+ =
1

r

G

c4
[M̈11(cos

2 ϕ− sin2 ϕ cos2 θ) + M̈22(sin
2 ϕ− cos2 ϕ cos2 θ)

− M̈33 sin
2 θ − M̈12 sin 2ϕ(1 + cos2 θ) + M̈13 sinϕ sin 2θ + M̈23 cosϕ sin 2θ],(2.81)

h× =
1

r

G

c4
[(M̈11 − M̈22) sin 2ϕ cos θ + 2M̈12 cos 2ϕ cos θ

− 2M̈13 cosϕ sin θ + 2M̈23 sinϕ sin θ]. (2.82)

2.2 Gravitational waves from compact binary

coalescence

In the application of the GW theory, the GWs emitted from Compact Binary
Coalescence(CBC) are important source of the GW emission. In this section,
we describe the details of the formalism of the GWs emitted from CBC. We
refer to [29] and [30] to describe the details of the section.

The mass moment Mij can be evaluated by using the orbital motion of
the binary system when we consider the CBC. Here, we choose the cartesian
coordinate system (x, y, z) in such a way that the orbit of the binary system
lies in the 2d plane (x, y). In this case, the trajectory of the binary system
x0(t) is given by

x0(t) = R cos
(
ωst+

π

2

)
, (2.83)

y0(t) = R sin
(
ωst+

π

2

)
, (2.84)

z0(t) = 0, (2.85)

where R is the orbital radius and ωs is the rotational frequency of the bi-
nary system. Since the 00 component of the energy momentum tensor of
particles[32] is expressed by

T 00(t,x) =
∑
N

γNmNc
2δ(x− xA(t)), (2.86)
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where γA = (1 − v2N/c
2)−1/2 and mN is the mass of the Nth particle. By

substituting Eq.(2.86) for Eq.(2.57), the second mass moment for a non-
relativistic two particles is given by

M ij(t) = m1x
i
1x

j
1 +m2x

i
2x

j
2. (2.87)

The coordinate system of the trajectory expressed by Eq.(2.83) to Eq.(2.85)
is in the center of mass frame. Then Eq.(2.87) is transformed into

M ij = µxi
0(t)x

j
0(t), (2.88)

where µ = m1m2/(m1 +m2) is the reduced mass. So we find

M̈11 = −M̈22 = −2µR2ω2
s cos 2ωst, (2.89)

M̈12 = 2µR2ω2
s sin 2ωst. (2.90)

By substituting these equation for Eq.(2.81) and Eq.(2.82) and using the
Kepler’s law

ω2
s =

Gm

R3
, (2.91)

we obtain

h+(t) =
4

r

(
GMc

c2

)5/3(
πf

c

)2/3
1 + cos2 θ

2
cos(2πft+ 2ϕ), (2.92)

h×(t) =
4

r

(
GMc

c2

)5/3(
πf

c

)2/3

cosθ sin(2πft+ 2ϕ), (2.93)

where

Mc ≡
(m1m2)

3/5

(m1 +m2)1/5
(2.94)

is a chirp mass. Note that the orbital phases can be expressed in terms of
the time and the orbital velocity v:

2πft =
(v
c

)3 c3t

GM
, (2.95)

where M = m1 +m2.
Next, we discuss the phase evolution of the GWs from CBC[33][34]. Be-

cause of the emission of GWs, the energy of the rotation of the binary system
reduces. The decaying of the orbit of the binary system causes that the evo-
lution of the phases of the GWs doesn’t increase uniformly. Calculating the
evolution of the phase requires the energy flux of the orbital system. Here,
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we define two dimensionless functions: the energy function E(v) is defined
by

E(v)−Mc2 ≡ Mc2E(v), (2.96)

where E(v) is the total energy of the binary system and the flux function
F(v) is defined by

LGW(v) ≡ c5

G
F(v), (2.97)

where LGW(v) is the luminosity of GWs. Since LGW = −dE/dt, we have

dt

dv
= −GM

c3
1

F
dE
dv

. (2.98)

For the Newtonian case, these two quantities are

E = −1

2
η
(v
c

)2
, (2.99)

F =
32

5
η2
(v
c

)10
, (2.100)

where η = µ/M . By substituting Eq.(2.99) and Eq.(2.100) for Eq.(2.98) and
taking the integral, we obtain

t(v) = tcoal −
5

256η

GM

c3

(v
c

)−8

, (2.101)

where tcoal is the time when the coalescence of the binary system occurs. In
summarize, we obtain

h+(t) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4(
1 + cos2 ι

2

)
cos(Ψ(τ) + Φ),(2.102)

h×(t) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4

cos ι sin(Ψ(τ) + Φ), (2.103)

where

Ψ(τ) = −2

(
5GMc

c3

)−5/8

τ 5/8, (2.104)

and τ = tcoal − t.
According to [35], a response function h(t) can be written in the time

domain as
h(t) = F+(t)h+(t) + F×(t)h×(t), (2.105)
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where F+(t) and F×(t) are called beam-pattern functions. These functions
depend the geometry of a GW telescope and the local sidereal time(LST) at
a GW telescope:

F+(t) = sin ζ [F+,0(t) cos 2Φ + F×,0(t) sin 2Φ] , (2.106)

F×(t) = sin ζ [−F×,0(t) cos 2Φ + F+,0(t) sin 2Φ] , (2.107)

where ζ is the angle between the arms of a GW telescope, and Φ is the po-
larization angle. F+,0(t) and F×,0(t) are the functions when the polarization
angle is set to 0[35].

According to [36], the response function of a GW telescope can be de-
composed into 4 independent terms as follows:

h(t) = A1F+,0(tcoal)h0(t) + A2F×,0(tcoal)h0(t)

+ A3F+,0(tcoal)hπ/2(t) + A4F×,0(tcoal)hπ/2(t)

≡ Aµhµ(t). (2.108)

The meaning of the parameters in the function are as follows: the mutually
independent phase h0 and hπ/2 are given by

h0(t) =
1

c

(
GMc

c2

)5/4(
5

cτ

)1/4

cosΨ(τ), (2.109)

hπ/2(t) =
1

c

(
GMc

c2

)5/4(
5

cτ

)1/4

sinΨ(τ), (2.110)

The GW amplitudes Aµ (µ = 0, 1, 2, 3) are given by

A0 =
c

r

[
1 + cos2 ι

2
cos 2Φ cosϕcoal − cos ι sin 2Φ sinϕcoal

]
,

A1 =
c

r

[
1 + cos2 ι

2
sin 2Φ cosϕcoal + cos ι cos 2Φ sinϕcoal

]
,

A2 =
c

r

[
−1 + cos2 ι

2
cos 2Φ sinϕcoal − cos ι sin 2Φ cosϕcoal

]
,

A3 =
c

r

[
−1 + cos2 ι

2
sin 2Φ sinϕcoal + cos ι cos 2Φ cosϕcoal

]
,

where ι is the inclination of a binary system, and an initial phase ϕcoal is
the phase at tcoal. Note that we suppose the beam-pattern functions are
constants during detecting GWs by the use of the network of GW telescopes.
The approximation is reasonable because the time over detecting GWs is too
short to change the value of beam-pattern functions.
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Chapter 3

The method of Bayesian
inference

In this chapter, we introduce the basic theory and one of the algorithm
of Bayesian inference. On the Bayesian inference, Markov-Chain Monte
Carlo(MCMC) method[37][38] is frequently used as the algorithm of Bayesian
inference. The nested sampling algorithm, described by Skilling[39] is a re-
versal of typical Bayesian inference such as MCMC aimed to compute the
evidence integral directly and produce the posterior PDF. In this thesis, the
MultiNest[27][28] software, which is the implementation of the Nested sam-
pling algorithm and modified to be able to calculate multimodal likelihood
function by using clustering method, is used to estimate the parameters of
CBC. Therefore, we explain the fundamental theory and functions of the
Bayesian inference at first. Second, we discuss the Nested sampling algo-
rithm and next, we show the details of the MultiNest software.

3.1 The basic theory of Bayesian inference

We refer to[40][34][41][42] to describe the fundamental theory and functions
of Bayesian inference.

Bayesian statistical conclusions about parameters θi we want to estimate
are made in terms of probability statement which is conditional on the ob-
served value denoted by y. Here, p(A) denotes a probability distribution of
the event A and we define the conditional probability distribution p(A|B)
such as the probability of the event A when the event B is true. In addition,
we also define the joint probability distribution p(A ∩ B) such as the prob-
ability when the event A and B are true simultaneously. Since A and B in
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the joint probability distribution is commute, the statement is correct:

p(A|B)p(B) = p(A ∩B) = p(B ∩ A) = p(B|A)p(A). (3.1)

By using these terms and definitions, we can construct the relationship be-
tween the conditional probability distribution and the joint probability dis-
tribution on the observed data and parameters:

p(θi ∩ y) = p(θi)p(y|θi), (3.2)

and then we also define the conditional probability distribution by using these
terms:

p(y|θi) ≡
p(θi ∩ y)

p(θi)
. (3.3)

By using Eq.(3.1) and Eq.(3.2), we get a important function of the Bayesian
statistics named Bayes’ theorem:

p(θi|y) =
p(y|θi)p(θi)∑k
j=1 p(y|θj)p(θj)

, (3.4)

where k is the number of parameters we want to estimate and p(y) =∑k
j=1 p(y|θj)p(θj).
Eq.(3.4) plays a central role in probability and statistics. It means we can

calculate the probability distribution of the parameters θi from the given,
observed data y then the prediction of the parameters is available. Appeared
terms in the Bayes’ theorem have names and roles respectively:

p(θi) prior probability distribution: it is the probability distribution of the
parameters without knowing any observed data. Then it means the
knowledge of the model of the parameters in advance.

p(y|θi) likelihood function: it is the probability distribution of the observed
data given the specific parameters. The data y affect the posterior
distribution only through the likelihood.

p(y) evidence: it is the probability distribution of the observed data. In
practice, this probability acts as a normalization constant.

p(θi|y) posterior probability distribution: it is the probability distribution of
the parameters after the observed data have been collected. Obtain-
ing the posterior probability distribution is the ultimate target of a
statistical analysis.
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Therefore, the nature of the Bayes’ theorem concludes the following relation-
ship:

(posterior probability) ∝ (likelihood)× (prior probability). (3.5)

In other words, Bayes’ theorem provides a way to update the prior knowledge
on the model parameters by using given data and to estimate the posterior
probability distribution, which means the estimation of the parameters by
obtained data, as a result of the update.

The other expression of the posterior distribution, named odds ratio, is
also useful for a Bayesian statistics. A odds ratio is defined that the ratio
of the posterior distribution evaluated at the points θ1 and θ2 under a given
model:

O(θ2|y) = O(θ2)Λ(θ2|y), (3.6)

where,

O(θ2|y) ≡ p(θ2|y)/p(θ1|y), (3.7)

O(θ2) ≡ p(θ2)/p(θ1), (3.8)

and Λ(θ2|y) ≡ p(y|θ2)/p(y|θ1) is called likelihood ratio.

3.2 Bayesian analysis of the GWs from CBC

and Matched filtering method

We refer to [34] [43] and [23] to describe the functional properties of the
bayesian analysis for detecting and estimating the GWs from CBC.

In this section, we describe a coherent search method[23] with a network
of GW telescopes. One fundamental detection statistics of a coherent search
method in this thesis is the matched filtering; it is an optimal detection
statistics testing a statistical hypothesis. The key idea of the filtering is
to calculate the correlation between the output signal and a modeled GW
waveform. For simplification, we suppose the terms of the GW phase have
Newtonian approximation because we focus on the improvement of the ac-
curacy the parameters of GW amplitude which include the inclination of a
binary system, the luminosity distance, the polarization and the initial phase.
The accuracy of these parameters is mainly improved by application of the
regularization method to the inverse operator into a likelihood. It will be
discussed later chapter in details.
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First, we discuss the method to apply the Bayesian statistics to the esti-
mation of the parameters of the GWs from CBC. Here, we consider that the
time-series data obtained by an observation using GW telescope is

s(t) = h(t) + n(t), (3.9)

where h is a GW signal and n is a noise of a GW telescope. We suppose that
the noise is a stationary random process.

The odds ratio defined by Eq.(3.6) requires two kind of events θ1 and
θ2 in their function. Here, we consider two kind of events H0 and H1 with
respect to detect GWs as follows:

H0 null hypothesis: there is no GW signal in the data s(t) = n(t).

H1 alternative hypothesis: these is GW signal in the data s(t) = h(t)+n(t).

Then, the odds ratio Eq.(3.6) for GWs can be described as

O(H1|s) = O(H1)Λ(H1|s), (3.10)

where Λ(H1|s) ≡ p(s|H1)/p(s|H0).
Since the noise of a GW telescope is supposed to be stationary random

process, the probability density distribution of the null hypothesis and alter-
native hypothesis is given by

p(s|H0) ∝ e−(s,s)/2, (3.11)

and
p(s|H1) ∝ e−(s−h,s−h)/2 = e−(s,s)/2+(s,h)−(h,h)/2, (3.12)

where the inner product of the probability distribution of a gaussian is given
by Eq.(B.18). The details of the properties of the time-series data with
stationary random process is described by Appendix.B. Then the likelihood
ratio of the GWs is

Λ(H1|s) =
e−(s−h,s−h)/2

e−(s,s)/2
,

= e(s,h)−(h,h)/2. (3.13)

We call (s, h) a matched filter.
The concept of the matched filter is connected to the optimal detection

statistics[44], [45], which realizes the optimal signal to noise ratio of the GWs.
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First, we define

ŝ =

∫ ∞

−∞
dts(t)K(t), (3.14)

where K(t) is an arbitrary filter function. The ensemble average of Eq.(3.14),
which is corresponding to expected value of ŝ denoted by S, is

S =

∫ ∞

−∞
dt⟨s(t)⟩K(t),

=

∫ ∞

−∞
dt⟨h(t)⟩K(t),

=

∫ ∞

−∞
df⟨ĥ(f)⟩K̂∗(f), (3.15)

where f is frequency and ⟨n(t)⟩ = 0. While the expected value of the noise
is corresponding to the variance of the null hypothesis such that

N2 =
[
⟨s(t)2⟩ − ⟨s(t)⟩2

]
,

=

∫ ∞

−∞

∫ ∞

−∞
dtdt′⟨n(t)n(t′)⟩K(t)K(t′),

=

∫ ∞

−∞

∫ ∞

−∞
dtdt′K(t)K(t′)

∫ ∞

−∞

∫ ∞

−∞
dfdf ′e2πi(f

′t′−ft)⟨ñ∗(f)ñ∗(f ′)⟩,

=

∫ ∞

−∞
df

1

2
Sn(f)

∣∣∣K̃(f)
∣∣∣2 . (3.16)

The definition of the power spectral density of the noise Sn is given by
Eq.(B.2). Then the signal to noise ratio S/N is obtained as

S

N
=

∫∞
−∞ df⟨ĥ(t)⟩K̂∗(t)[∫∞

−∞ df 1
2
Sn(f)

∣∣∣K̃(f)
∣∣∣2]1/2 , (3.17)

=
S

N
=

(u, h)

(u, u)1/2
, (3.18)

where

ũ(f) =
1

2
Sn(f)K̃(f). (3.19)

The optimal signal to noise ratio is obtained by searching the unit vector
n̂ = u/(u, u)1/2 such that (u, h) is maximum, which corresponds to the case
that n̂ and h are parallel. Thus we obtain the optimized filter such that

K̃(f) = const× h̃(f)

Sn(f)
. (3.20)
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By substituting Eq.(3.20) for Eq.(3.14), we obtain the matched filter (s, h).
So we conclude that the matched filter provides the method to maximum the
signal to noise ratio of the detecting GWs.

Next, we describe the concrete formalism of a coherent search method
for the GWs from a CBC by using multiple GW telescopes. The index X
indicates the X-th GW telescope belonging to the network of GW telescopes:

hX(t) = AµhX
µ (t). (3.21)

We suppose that the output data from each of the GW telescopes is

sX(t) = hX(t) + nX(t), (3.22)

where nX(t) is the noise of the X-th GW telescope. The noise of a GW
telescope is assumed to be stationary and gaussian. It is characterized by
the noise power spectral density(PSD) SX

n (f) defined by using Eq.(B.3) such
as ⟨

ñX(f)ñY ∗(f ′)
⟩
≡ δXY δ(f − f ′)SX

h (f). (3.23)

A likelihood ratio, the ratio of the hypothesis that GW signal h contains
in the output of a GW telescope to null hypothesis, provides the output of
the matched filtering. The likelihood ratio is defined by

Λ(h) =
p(s|h)
p(s|0)

=
e−(sX−hX ,sX−hX)/2

e−(sX ,sX)
, (3.24)

A log-likelihood ratio, the logarithmic form of the likelihood ratio, is
expressed by

lnΛ = (s, h)− 1

2
(h, h). (3.25)

The estimation of the GW parameters are evaluated by maximizing Eq.(3.25)
over GW parameters.

A coherent search method employs the value summed up with each of the
log-likelihood ratios calculated by the use of the output of corresponding GW
telescopes[23]. The log-likelihood ratio for the multiple telescopes is given by

lnΛ = Aµ(s,hµ)−
1

2
AµMµνA

ν , (3.26)

where the matrix Mµν is defined by

Mµν ≡ (hµ,hν). (3.27)
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The inner product of the multiple data is expressed by the sum of each of
the inner products:

(a, b) ≡
∑
X

(
aX , bX

)
. (3.28)

Since the oscillation of GWs in the sensitive frequency band of a GW
telescope is fast enough, the phases h0 and hπ/2 is regarded as orthogonal
each other. The orthogonality of phases leads to express the inner product
of phases as followings:(

hX
0 , h

X
π/2

)
= 0, (3.29)(

hX
0 , h

X
0

)
=

(
hX
π/2, h

X
π/2

)
≡ (σX)2. (3.30)

Therefore, Eq.(3.27) can be expressed in terms of the inner product of phases
and beam-pattern functions:

Mµν =


A C 0 0
C B 0 0
0 0 A C
0 0 C B

 , (3.31)

where

A =
∑
X

(σXFX
+ )2, (3.32)

B =
∑
X

(σXFX
× )2, (3.33)

C =
∑
X

(σXFX
+ )(σXFX

× ). (3.34)

According to Eq.(3.31), the log-likelihood ratio Eq.(3.26) can be decomposed
into two parts;

lnΛ1 = Ai(s,hi)−
1

2
AiMijA

j, (3.35)

lnΛ2 = Ak(s,hk)−
1

2
AkMklA

l, (3.36)

where i, j = 0, 1 and k, l = 2, 3.

3.3 Nested sampling algorithm

We refer to [39][43] and [46] to describe the concept of the nested sampling
algorithm to implement the Bayesian inference in numerical analysis.
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The key concept of the nested sampling algorithm is to calculate the
evidence directory producing the posterior distribution. Here, we put the
terms of a Bayesian inference as followings:

• π(θ): prior distribution

• L(θ): likelihood function

• Z: evidence

• p(θ): posterior distribution

, where θ denotes vector space of the parameters we want to estimate. By
using Bayes’ theorem Eq.(3.4), we have

L(θ)π(θ)dθ = Zp(θ)dθ. (3.37)

The integration of the posterior distribution over vector space of parameters
Ωθ is 1 since the posterior distribution has been normalized. It leads to the
following equation:

Z =

∫
Ωθ

L(θ)π(θ)dθ. (3.38)

We should calculate Eq.(3.38), but it is computationally expensive in general
since Eq.(3.38) needs multiple integration of the parameter space. Nested
sampling algorithm resolves the problem to replace the multiple integration
with single integration by sorting the likelihood values. Here, we define the
cumulant prior mass X as

X(λ) ≡
∫
L(θ)>λ

π(θ)dθ, (3.39)

and we also define the element of the prior mass dX as

dX = π(θ)dθ. (3.40)

The cumulant prior mass covers all likelihood values greater than λ. The
enclosed mass X decreases from 1 to 0 depending on increasing λ. Then the
evidence becomes a one-dimensional integral over unit range such that

Z =

∫ 1

0

L(X)dX. (3.41)

Accomplishing the transformation from multiple parameters θ to single pa-
rameter X involves dividing the unit prior mass into tiny elements, and
sorting them by likelihood.
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To compute Eq.(3.41) on a numerical analysis, we need to express Eq.(3.41)
as a discrete approximation form. Here, We use a discrete prior mass Xi

which is the fraction of the prior volume enclosed by the ith contour of the
equal likelihood in the parameter space such that Li = L(Xi). The right-to-
left sequence of N points of the discrete prior mass is

0 < XN < · · · < X2 < X1 < X0 = 1. (3.42)

The relation between the parameter space and the discrete prior volume is
illustrated as Fig. 3.1.

Figure 3.1: Nested likelihood contours are sorted to enclosed prior mass. The
left panel is the contour line of the equal likelihood in a parameter space.
The right panel is the sorted prior mass and corresponding likelihood. The
each points corresponds to the live points.

Here, we define ∆Xi = Xi−Xi−1. The evidence evaluated by the discrete
prior mass is approximated by

Z ≈
N∑
i=1

Li∆Xi. (3.43)

The way to choose the discrete prior volume is the key of the nested sampling
algorithm. Since the prior volume is sorted in dependence order, the next
step of the prior volume is set stochastically such that

Xi = tiXi−1, (3.44)

where ti ∈ U(0, 1), denoted by shrinkage ratio, is drown from the uniform
distribution. Such a stochastic sampling of the prior volume to generate N
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sample is called live point. The probability of the shrinkage ratio is

p(ti) = NtN−1
i (3.45)

since ti ∝ (ti−1 · · · t1)−1. The volume enclosed at each iteration shrinks ge-
ometrically, ensuring the speedy convergence of the integral. The mean de-
crease in the volume at each iteration and estimated statistical standard
deviation are as follows:

E[log(t)] =

∫ 1

0

log(t)p(t)dt

=

∫ 1

0

log(t)NtN−1dt

=
[
log(t)tN

]1
0
−
∫ 1

0

tN−1dt

= −N−1, (3.46)

σ[log(t)] =

√∫ 1

0

(log(t)− E[log(t)]2) p(t)dt

= N−1. (3.47)

Eq.(3.46) and Eq.(3.47) shows that the prior mass is expected to shrink
depending on increasing the iteration numbers. Since individual log t is in-
dependent, can write the fractional prior volumes

logXi ∼ −(i±
√
i)/N, (3.48)

Xi ∼ exp(−i/N). (3.49)

Therefore, the procedure of the Nested sampling algorithm when there
are to be j iterative steps is as a following:

The last step fills in the missing band 0 < X < Xj of the desired integral
with weight w = N−1Xj for each surviving point. Note that the algorithm
tells us it isn’t necessary to select N points at each iteration because N−1 of
them remaining live points after removing one indicated the worst likelihood
are already available.

The termination of the main loop is determined that the amount of the
increment of the evidence in the iteration of the algorithm, which decreases
with increasing the number of iteration, is less than the use-define value
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Algorithm 1 Nested sampling procedure

Draw N points θi · · · θN from prior π(θ) and calculate these likelihood Li;
initialize Z = 0, X0 = 1 and i = 0;
while i = j do
i = i+ 1;
record the lowest of the current likelihood values as Li;
set Xi = exp(−i/N);
set ∆Xi = Xi −Xi−1;
set Zi = Zi−1 + Li∆Xi;
replace the live point of the lowest likelihood by new one drawn from
the prior π(θ) within L(θ) > Li;

end while
Z = Zj +N−1(L(θ1) + · · ·+ L(θN))Xj.

named tolerance. Such a increment of the evidence in a final step is easily
written by

∆Zi = LmaxXi, (3.50)

where Lmax is the largest likelihood in live points of the current step.
To evaluate the posterior distribution from the Nested sampling algorithm

is the most interest one. Nested sampling algorithm provides the sequence
of the parameters and its likelihood from the stored live points. By using
Eq.(3.37), the posterior distribution is generated by the stored live points
and produced evidence. Therefore we can write the posterior distribution of
the ith point from the nested sampling output as

pi(θ) =
Li∆Xi

Z
. (3.51)

By collecting these posterior distributions, the joint posterior PDF can be
easily calculated by post processing the obtained data from nested sampling
algorithm.

The error of the evidence evaluated by nested sampling algorithm, which
is introduced by the democratization of the integral such as Eq.(3.43), is
expressed by the negative relative entropy defined by

H =

∫
log

(
dP

dX

)
dX ≈

N∑
i=1

Liwi

Z
log

(
Li

Z

)
, (3.52)

where P denotes the posterior. Most of the contribution to the final evidence
value comes from the final step of the iteration. Typically, the contribution
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occupies a small fraction such that

X ≈ e−H . (3.53)

Since Eq.(3.48), the number of necessary step i of the procedure to shrink
down to the bulk of the posterior is

−H ∼ logXi,

−H ∼ −(i±
√
i)/N,

i ∼ NH ±
√
NH. (3.54)

Substituting Eq.(3.54) into Eq.(3.48), the standard deviation of the loga-
rithm prior mass is

√
H/N . This uncertainty is transmitted to the evidence

Z then the evidence with uncertainty is expressed by

logZ = log

(
N∑
i=1

Liwi

)
±
√

H

N
. (3.55)

3.4 MultiNest software

We refer to [27][28][47] and [46] to describe key concept of the MultiNest
software which implement a Bayesian inference based on nested sampling
algorithm described in Sec.3.3 briefly.

The main challenges in implementing the computational nested sampling
algorithm is to draw unbiased samples efficiently from the prior constrained
by likelihood enclosed by the outermost live point and to evaluate the mul-
timodal posterior modes with high dimensional estimation parameter space
efficiently in one algorithm. The MultiNest software made by F. Feroz, M.P.
Hobson and M. Bridges resolves the problems by using an ellipsoidal sampling
method and Recursive clustering method in principle.

Ellipsoidal sampling method[48] provides to approximate the likelihood
contour constituted by the same likelihood value in parameter space to be re-
placed by multi-dimensional ellipsoid determined from the covariance matrix
of the current set of live points. In general, exact contour of the likelihood is
an intricate construction then it is inefficient to replace the live point indi-
cating the lowest likelihood in current set of the live points and the next live
point being constrained by likelihood increasing the previous point. However,
approximating the likelihood as a ellipsoid provides the simple construction
of the contour of the likelihood to select the next step of live point from the
prior within this ellipsoidal bound. The problem of the ellipsoid sampling
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method is that the ellipse does not always restrict the sampling region within
the lowest likelihood in current live points to avoid overestimating the ev-
idence. To resolve the problem, generated ellipsoid is enlarged by a fixed
enlargement factor which is larger than 1. This technical treatment allows
the ellipse to encompass all live points at any steps in most case.

The ellipsoidal sampling method provides an genius solution for efficient
implementation of a nested sampling algorithm, but it isn’t well approxima-
tion when there are multimodal posterior modes since it cannot express one
ellipsoid. To resolve the problem and be able to implement the MultiNest for
the multimodal posterior distribution problem, recursive clustering method
is the useful extension.

The key concept of the recursive clustering method is to split one ellipsoid
into multiple ellipsoids centered on individual isolated peaks in the posterior.
The division of the ellipsoid and live points begins when two conditions are
accepted:

1. the total volume of the two ellipsoids is less than some fraction of the
original pre-clustering ellipsoid

2. clusters are sufficiently separated by some distance to avoid overlapping
regions

The k-mean clustering is used the clustering of the individual ellipsoid. It can
greatly reduce the region of sampling region and increases sampling efficiency.

The summarize picture of the MultiNest algorithm is shown in Fig. 3.2.

Figure 3.2: The overview picture of ellipsoidal nested sampling from a bi-
modal distribution. The left panel indicates that the ellipsoid represents a
good bound to the region of the live points. The two center panels indicate
that the acceptance rate will rapidly decrease as the bound steadily worsens.
The right panel indicates that the increase in efficiency obtained by sampling
from each clustered region separately.
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Chapter 4

A regularization method

4.1 Introduction: ill-posedness of the inverse

problem

To obtain the solution of a linear problem such as Tx = y, we solve an
inverse problem such that x = T−1y, where T−1 is a inverse operator of
T . This solution provides the quantity of x, which is not able to measure
directly, by using the given data y and the operator T . The estimation of
the unknown quantity through solving the inverse problem should fulfill the
Hadamard’s definition of well-posedness conditions[49]:

• a solution exists;

• the solution is unique;

• the solution depends continuously on the data.

The first and second condition imply that the inverse operator T−1 exists
and the third condition implies that the inverse operator is continuous and
stability of the solution, which indicates that the small function of the given
data y give rise to a small change in the solution x. The stability of the
solution is important for physics because it ensures that if the error in the
given data or model is small, the error in the result of the inverse problem will
also be small. However, the inverse problem frequently violates the condition
of the well-posedness and it called ill-posedness of the inverse problem or ill-
posed problem.

One simple example of the ill-posed problem is the solution of the simulta-
neous equation with noisy data. The solution can be estimated by finding the
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point of the intersection of the lines on graph, which corresponds to the solu-
tion of the inverse problem. However, the estimated region of the equation is
amplified when the two lines on graph is almost parallel respectively, which
implies the third condition of the well-posedness is violated. The figure. 4.1
shows the picture of the above situation - the estimated region corresponding
to the red circle is amplified because of the overlap area of the two lines with
noise is larger than the case when the two lines on graph is not parallel.

Figure 4.1: The example of the ill-posed problem.

Therefore, the ill-posed problem faces the difficulty of physics - even if the
error in the given data or model is small, the error in the result of the inverse
problem will be large. The regularization method introduced in this chapter
provides the way to reduces the effect of the amplification of the estimation
result due to the ill-posedness of the inverse problem. We present the general
framework of the inverse problem named generalized inverse problem as a
preparation of the explanation of the regularization method in Sec.4.2 at
first. Next, we present the mathematical framework of the regularization
method in Sec.4.3 to Sec.4.5. The application of the regularization method
for the parameter estimation of a GW provides the next chapter.

4.2 Generalized inverse problem

The non-singular system of linear equations expressed by

Ax = b, (4.1)
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where A ∈ Cn×n and b ∈ Cn, has a unique solution with respect to x by
taking inverse of the operator A, which is denoted by A−1, such that

x = A−1b. (4.2)

However, such a inverse problem denoted by Eq.(4.2) cannot always solve
uniquely. Especially for the inconsistent system of linear equations

Ax = b, (4.3)

where A ∈ Cn×m with n ̸= m and b /∈ R(A), has no longer unique solution
with respect to x.

Can we find or “estimate” an appropriate matrix X that x = Xb indi-
cates the solution of a general linear equation Ax = b? In general, the X
fulfilling above condition is called the operator of a generalized inverse. The
most popular operator of the generalized inverse is a Moor-Penrose inverse
(abbreviated as the M-P inverse). In this section, we discuss the properties
of a M-P inverse as the method to obtain the solution for a general inverse
problem. The description of this section is based on [50].

First, we introduce the definition the M-P inverse:

Definition 4.2.1. A Moor-Penrose inverse
Let A ∈ Cm×n. The matrix X ∈ Cn×m satisfying the Penrose conditions

such that

• AXA = A,

• XAX = X,

• (AX)∗ = AX,

• (XA)∗ = XA,

is called the Moor-Penrose inverse of A denoted by A†.

To investigate the properties of the M-P inverse, we introduce some useful
definitions with respect to the subspaces of a matrix at first.

Definition 4.2.2. Range and null space of a linear operator
For A ∈ Cm×n, we denote the range of A as

R(A) = {y ∈ Cm|y = Ax, x ∈ Cn} . (4.4)

The null space of A as

N (A) = {x ∈ Cn|Ax = 0} . (4.5)
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From the definitions, we can construct the following relationship between
the range and the null space of a linear operator:

Lemma 4.2.3. From the Definition.4.2.2, the following formula is hold:

R(A)⊥ = N (A∗), (4.6)

where R(A)⊥ is the orthogonal complementary subspace of R(A)

Proof. Eq.(4.5) allows us to define the null space of A∗ such that

N (A∗) = {y ∈ Cm|A∗y = 0} . (4.7)

The orthogonal complementary subspace means the set of all vectors
which are orthogonal to every vector in a subspace. So we can express as a
following:

R(A)⊥ =
{
y ∈ Cm|A′y = 0, A′ ∈ Cn×m

}
. (4.8)

Taking A′ = A∗ in Eq.(4.8), we have the desired result.

Remark 4.2.4. From Lemma.4.2.3, every vector x ∈ Cm can be expressed
uniquely as the sum

x = y + z, y ∈ R(A), z ∈ R(A)⊥. (4.9)

Thus, the domain of a M-P inverse operator D(A†) is limited in such as

D(A†) = R(A) +R(A)⊥. (4.10)

The expression of the A† is determined by a least-squares solution of Ax =
b which provides a best-approximate solutions of linear operator equations
by minimizing the residual ∥Ax− b∥.

Definition 4.2.5. A least-squares solution and minimum-norm least squares
solution

Let A ∈ Cm×n and b ∈ Cm.
(1) A vector u ∈ Cn is called a least squares solution of Ax = b if ∥Au−

b∥ ≤ ∥Av − b∥ for all v ∈ Cn.
(2) A vector u ∈ Cn is called a minimum-norm least squares solution of

Ax = b if u is a least-squares solution of Ax = b and ∥u∥ < ∥v∥ for any other
least-squares solution w

The next two theorems show the M-P inverse A† is derived from the
least-squares solution and we get the expression of A†.
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Theorem 4.2.6. a minimum-norm least squares solution and M-P inverse
Let A ∈ Cm×n and b ∈ Cm, then A†b is the minimum-norm least-squares

solution of Eq.(4.3).

Proof. Let b = b1 + b2, where

b1 = AA†b ∈ R(A) (4.11)

b2 = (I − AA†)b ∈ R(A)⊥, (4.12)

then
∥Ax− b∥2 = ∥Ax− b1∥2 + ∥b2∥2. (4.13)

From Eq.(4.13), x is a least-squares solution iff x is a solution of the con-
sistent system Ax = AA†b. From the Definition of Eq.(4.7), Eq.(4.8) and
Lemma.4.2.3, we obtain the expression of the null space of A such that

N (A) = N (A†A) = R(I − A†A) =
{
(I − A†A)h|h ∈ Cn

}
. (4.14)

Since x = A†b ∈ R(A) is a trivial particular solution, the general solution of
the consistent system Ax = AA†b is given by

x = A†b+ (I − A†A)h. (4.15)

Since

∥x∥2 = ∥A†b+ (I − A†A)h∥2 = ∥A†b∥2 + ∥(I − A†A)h∥2

> ∥A†b∥2, (4.16)

x = A†b is the minimum-norm least-squares solution.

Theorem 4.2.7. Let A ∈ Cm×n and b ∈ Cm, then the following statements
are equivalent:

1. u is a least-squares solution of Ax = b;

2. u is a solution of Ax = AA†b;

3. u is a solution of A∗Ax = A∗b;

4. u is of the form A†b+ h, where h ∈ N (A).
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Proof. From Theorem.4.2.6, the equivalent relations between 1,2 and 4 has
been proofed. So we discuss the equivalent relation about 3. If 1 holds, then
A∗Ax = A∗b also holds. On the other hand, multiplying A∗Au = A∗b with
A∗†, the following equation holds because of a Penrose condition:

A∗†A∗Au = A∗†A∗b

(AA†)∗Au = (AA†)∗b

AA†Au = AA†b

Au = AA†b. (4.17)

Consequently,
u = A†(AA†b) + h = A∗b+ h. (4.18)

Thus 4 holds.

Therefore, we get a expression of the M-P inverse operator A† as

A† = (A∗A)−1A∗. (4.19)

Remark 4.2.8. Let A ∈ Cm×n and m = n = rank(A), then we have

A† = (A∗A)−1A∗ = A−1(A∗)−1A∗ = A−1. (4.20)

This remark indicates A† = A−1 when the operator A is a regular ma-
trix. Note that we discuss the theory of regularization method by using M-P
inverse operator, but the same discussion is able to apply to the invertible
matrix.

4.3 The mathematical framework of a regu-

larization method

This section introduces the basic theory of an regularization method. The
explanation of the theory of the regularization method refers to [26] and [51].
The mathematical framework of the regularization method is based on the
Hilbert space theory. A brief summarize of the Hilbert space is provided by
Appendix.C.

As mentioned before, a regularization method provides the way to obtain
the stable solution of the ill-posed problem. First, we introduce the definition
of a regularization method. Here, x† = T †y is a solution of the M-P inverse
Tx = y discussed Sec.4.2 and y is a exact data, which is the given data
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eliminating noise so it is not known precisely in general. Moreover, yδ is a
noisy data and δ is a noise level. The noisy data corresponds to an output
data from the observation of an experiment.

Definition 4.3.1. A regularization method
Let T : X → Y be a bounded linear operator between the Hilbert spaces

X and Y . For every α ∈ (0, α0), where α0 ∈ (0,∞], let

Rα : Y → X (4.21)

be a continuous linear operator. The family Rα is called a regularization
operator if there exists a parameter choice rule α = α(δ, yδ) such that

lim
δ→0

sup
{∥∥Rα(δ,yδ)y

δ − T †y
∥∥ |yδ ∈ Y ,

∥∥yδ − y
∥∥ ≤ δ

}
= 0 (4.22)

holds for every y ∈ D(T †).Here,

α : R×Y → (0, α0) (4.23)

is determined by

lim
δ→0

sup
{
α(δ, yδ)|yδ ∈ Y ,

∥∥yδ − y
∥∥ ≤ δ

}
= 0. (4.24)

As discussed Sec.4.1, the solution of the inverse problem with noisy data
xδ = T †xδ is unstable when T is an ill-posed operator. The key concept of a
regularization method is to replace the ill-posed operator T † by a parameter-
dependent family {Rα} of continuous operator. In other words, a regular-
ization method provides the mathematical framework to solve the ill-posed
inverse problem stably by adding an appropriate correction term to the ill-
posed operator. Eq.(4.22) and Eq.(4.24) ensure that the solution of the
regularization method converses to the x† when the noise level tends to 0.

Here, we reconsider the case of the simultaneous equation discussed Sec.4.1.
In this case, a regularization method makes the lines on graph be not parallel
respectively and reduce the overlap area of the two lines with noise such as
figure. 4.2. The amount of change is determined by the parameter α.

It indicates that the choice of the regularization parameter α is very
important to optimize the error amplified by the ill-posed problem. The way
to determine the parameter α is called parameter choice rule. The definition
of the parameter choice rule is as following:

Definition 4.3.2. A parameter choice rule
Let α be a parameter choice rule. If α only depend on the noise level δ

so that α = α(δ), we call α an a-priori parameter choice rule. Otherwise,
especially for α = α(δ, yδ), we call α an a-posteriori parameter choice rule.
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Figure 4.2: The concept of the regularization method.

The fundamental explanation of the convergence properties is in common
both of the parameter choice rules. Thus we construct regularization op-
erators by an a-priori parameter choice rule at first and next we construct
the same one by an a-posteriori parameter choice rule based on a common
discussion. Next, we define some of the important words and formulas for a
discussion of a regularization method.

Definition 4.3.3. A convergence rate
Let xα be a solution of the exact data y by a regularization operator such

that
xα ≡ Rαy (4.25)

and let xδ
α(δ,yδ)

be a solution of the noisy data yδ by a regularization operator
such that

xδ
α(δ,yδ) ≡ Rα(δ,yδ)y

δ. (4.26)

Then we can define a convergence rate as a difference between xδ
α(δ,yδ)

and

x† such that∥∥∥xδ
α(δ,yδ) − x†

∥∥∥ ≤
∥∥xα(δ,yδ) − x†∥∥+ ∥∥∥xδ

α(δ,yδ) − xα(δ,yδ)

∥∥∥ . (4.27)

In the right hand side of the triangle inequality,

∥xα(δ,yδ) − x†∥ (4.28)
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indicates the residuals noise introduced by a regularization method and we
call it a bias noise. Moreover,

∥xα(δ,yδ) − xδ
α(δ,yδ)∥ (4.29)

indicates the residual noise decreased by a regularization method and we call
it a diminished noise.

The convergence rate of the inverse problem applying a regularization
method is specified two such a convergence rate like Eq.(4.27). Here, we
will introduce the properties of the convergence, especially for the inverse
operator is non-closed at first. Next, we will show the explicit representation
of Eq.(4.28) and we explore the same of Eq.(4.29) and then we indicate the
general convergence rate of a regularization method. To prepare to archive
these targets, we will define some useful formula.

Definition 4.3.4. A modulus of continuity
Let X be a subspace of a Hilbert space. For M ⊂ X , δ > 0, let

Ω(δ,M) ≡ sup
∥Tx∥≤δ

{∥x∥|x ∈ M} (4.30)

be a modulus of continuity.

In general, Ω(δ,M) has a infinite values, but when M is compact and
M∩N (T ) = 0, then the modulus of continuity has a finite value.

Then one more important definition of the a-priori parameter choice rule,
which is a “worst case error” of the convergence rate under an a-priori pa-
rameter choice rule and assumption x† ∈ M, is introduced as a following.

Definition 4.3.5. A worst case error
Let X ,Y be a subspace of a Hilbert space. For M ⊂ X , δ > 0, let

∆(δ,M, R) ≡ sup
∥Tx−yδ∥≤δ

{
∥Ryδ − x∥|x ∈ M, yδ ∈ Y

}
(4.31)

be a worst case error.

The two definitions have to do with each other describing below Lemma:
the worst case error is bounded by the modulus of continuity.

Lemma 4.3.6. Let M ⊂ X , δ > 0 and R : Y → X be an arbitrary map with
R(0) = 0. Then

∆(δ,M, R) ≥ Ω(δ,M) (4.32)

is hold.
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Proof. From Eq.(4.30) and Eq.(4.31) with the case yδ = 0, these two equa-
tions are equal with each other because of R(0) = 0. When yδ = 0, Eq.(4.31)
takes a lowest value then we have the desired result.

Investigating of the convergence property of Eq.(4.27) is very important
for a regularization method. If R(T ) is closed, it is guaranteed that Eq.(4.27)
converges uniformly[52]. However, If R(T ) is non-closed, there can be no
uniform convergence rate for a regularization method.

Theorem 4.3.7. Let R(T ) be non-closed, {Rα} be a regularization operator
for T † with Rα(0) = 0, α = α(δ, yδ) be a parameter choice rule. Then there
can be NO function f : R+ → R+ with limδ→0 f(δ) = 0 such that

∥Rα(δ,yδ)y
δ − T †y∥ ≤ f(δ) (4.33)

holds for all y ∈ D(T †) with ∥y∥ ≤ 1 and all δ > 0.

Proof. Assume that a function with limδ→0 f = 0 exists such that Eq.(4.33)
holds. Let B1 ≡ {y ∈ Y|∥y∥ ≤ 1} be a unit ball in R. we consider that
Eq.(4.33) holds for any y ∈ D(T †) with ∥y∥ ≤ 1. Under an a-priori assump-
tion x† ∈ M , we can choose M = R(T †) ∩ T−1B1 = N (T )⊥ ∩ T−1B1 (see
Definition.4.2.2). Therefore, from Eq.(4.31) and Eq.(4.30), we have

∆(δ,N (T )⊥ ∩ T−1B1, R
δ
α(δ,yδ)) ≤ f(δ) (4.34)

and
Ω(δ,N (T )⊥ ∩ T−1B1) ≤ f(δ). (4.35)

Let {yk} be any sequence in R(T )∩B1 converging to a y ∈ R(T )∩B1 From
Eq.(4.30), if k ∈ N is such that ∥yk − y∥ < δ, then

∥T δyk − T †y∥ ≤ Ω(δ,N (T )⊥ ∩ T−1B1). (4.36)

The left hand side of Eq.(4.36) converges 0 as δ → 0. Then the right hand side
of Eq.(4.36) also converges to 0. Hence T † is bounded since T † is continuous
on bounded region, which contradicts the non-closedness of R(T ).

Theorem.4.3.7 implies that the convergence with non-closed operator is
an arbitrarily slow, which means that there is NO uniform convergence rate
– there is a solution with worse convergence rate in general, but there may
exist some solutions for which the approximations have a good convergence
rate. These properties emerges in the estimation of the convergence rate. It
will be shown in the next passage.

To express Eq.(4.30) and Eq.(4.31) to a singular system, we formulate
the exact solution x ∈ X as another representation:
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Definition 4.3.8. A source set and source representation
Let B be a bounded linear operator from a Hilbert space into X and be

given by
B = (T ∗T )µ. (4.37)

We define the exact solution x ∈ X by the use of a bounded linear operator
such that

Xµ,ρ ≡ {x ∈ X |x = (T ∗T )µw, ∥w∥ ≤ ρ} (4.38)

and also define
Xµ ≡ ∪ρ>0Xµ,ρ = R((T ∗T )µ). (4.39)

The sets of the exact solution are called source sets and x ∈ Xµ,ρ is said to
have a source representation.

In the case that the operator T into Eq.(4.37) is compact, the source set
can be represented by a singular system (the details of a singular system is
given by Sec.C.2):

Lemma 4.3.9. Let K be a compact with singular system (σn, un, vn), for
µ > 0 we have

K†y ∈ R((K∗K)µ) ⇐⇒
∞∑
n=1

|⟨y, un⟩|2

σ2+4µ
n

< ∞ (4.40)

Proof. From Eq.(C.36), Eq.(C.35) and Eq.(C.44), we get

∞∑
n=1

⟨y, un⟩
σn

vn = K†y = (K∗K)µw =
∞∑
n=1

σ2µ
n ⟨w, vn⟩ vn (4.41)

and also get
⟨y, un⟩
σn

= σ2µ
n ⟨w, vn⟩ . (4.42)

By repeating the discussion of Lemma.C.2.11, we have the desired result.

Theorem 4.3.10. For any µ, ρ > 0, let Xµ,ρ be defined by Eq.(4.38). Then
the worst case error defined by Eq.(4.30) on the concrete set M = Xµ,ρ such
that

Ω(δ,Xµ,ρ) ≤ δ
2µ

2µ+1ρ
1

2µ+1 . (4.43)

holds for any δ > 0.
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Proof. From Eq.(4.38), let x = (T ∗T )w, where ∥w∥ ≤ ρ and let {Eλ} be
the spectral family for T ∗T (see Appendix.C.3 about a spectral family). The
Hölder’s inequality[53] argues that

∥(T ∗T )rx∥ ≤ ∥(T ∗T )qx∥
r
q ∥x∥1−

r
q . (4.44)

Then, with r = µ and q = µ+ 1/2,

∥x∥ = ∥T ∗T )µw∥,
≤ ∥(T ∗T )µ+

1
2w∥

2µ
2µ+1∥w∥

1
2µ+1 ,

= ∥(T ∗T )
1
2x∥

2µ
2µ+1∥w∥

1
2µ+1 ,

= ∥Tx∥
2µ

2µ+1∥w∥
1

2µ+1 (4.45)

(4.46)

From the definition of Ω(δ,M), we take the supreme of ∥x∥ under the con-
dition ∥Tx∥ ≤ δ. Then we have

Ω(δ,Xµ,ρ) ≤ δ
2µ

2µ+1ρ
1

2µ+1 . (4.47)

Theorem.4.3.10 is a general case which doesn’t distinguish whether the
adjoint operator is closed or not. It indicates that the worst case error con-

verges to 0 “at least” as fast as O(δ
2µ

2µ+1 ). Then it may converge more faster
than the limit we obtain. However, we have different result in the case the
operator is non-closed.

Theorem 4.3.11. Let K be a compact with non-closed range. Then, for any
µ, ρ > 0, there is a sequence {δk} converging to 0 such that

Ω(δk,Xµ,ρ) = δ
2µ

2µ+1

k ρ
1

2µ+1 (4.48)

Proof. Let {σk} be the singular values of K (see Appendix.C.2 for a singular
value) and suppose that the singular value converge to 0. Here we define

δk ≡ ρσ2µ+1
k . Then (δk/ρ)

2
2µ+1 = σ2

k is an eigenvalue of K∗K with eigenvector
vk. Let xk ≡ ρ(K∗K)µvk, so that xk ∈ X since Eq.(4.38). From these
relations of the equation, we have

xk = ρσ2µ
k vk = δ

2µ
2µ+1

k ρ
1

2µ+1vk, (4.49)

∥xk∥ = δ
2µ

2µ+1

k ρ
1

2µ+1 . (4.50)
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Therefore, we have

K∗Kxk = δ
2µ

2µ+1

k ρ
1

2µ+1σ2
kvk = δ

2µ+2
2µ+1

k ρ−
1

2µ+1vk, (4.51)

so that
∥Kxk∥2 = δ2k. (4.52)

From the definition of Eq.(4.30), we have

Ω(δk,Xµ,ρ) = sup
∥Kxk∥=δk

{∥xk∥|xk ∈ Xµ,ρ},

≥ δ
2µ

2µ+1

k ρ
1

2µ+1 . (4.53)

Together with Eq.(4.43), we have the desired result.

From Theorem.4.3.10 and Theorem.4.3.9, we conclude an important role
for a regularization method: a regularization algorithm cannot converge not

faster than O(δ
2µ

2µ+1ρ
1

2µ+1 ) if the operator is non-closed. In other words, the

optimal convergence rate we can choose is O(δ
2µ

2µ+1ρ
1

2µ+1 ). Therefore, we can
define the optimal condition for condition for a regularization method in
virtue of Eq.(4.32).

Definition 4.3.12. Let R(T ) be non-closed, {Rα} be a regularization oper-
ator for T †. For µ, ρ > 0 and y ∈ TXµ,ρ, let α be a parameter choice rule.
We call (Rα, α) optimal in Xµ,ρ if

∆(δ,Xµ,ρ, Rα) = δ
2µ

2µ+1ρ
1

2µ+1 (4.54)

holds for all δ > 0. We call (Rα, α) of optimal order in Xµ,ρ if there exist a
constant c ≤ 1 such that

∆(δ,Xµ,ρ, Rα) ≤ cδ
2µ

2µ+1ρ
1

2µ+1 (4.55)

holds for all δ > 0.

4.4 An a-priori parameter choice rule

Definition.4.3.12 implies that we should choose the parameter choice rule α
so as to fulfill the Eq.(4.54) or Eq.(4.55) when we need to optimize a regular-
ization method. In this section, we discuss the construction of the optimal
convergence rate for a-priori parameter choice rule in order to construct the
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optimal convergence rate for a-posteriori parameter choice rule, which is used
to optimize the accuracy for estimating the GW parameters.

Now, we reconsider that what problem occur for solving the inverse prob-
lem. Here, let {Eλ} be a spectral family for T ∗T . If T ∗T is continuously
invertible, then (T ∗T )−1 =

∫
λ−1dEλ since Eq.(C.79) holds. To estimate the

best-approximation solution x† = T †y, we use Eq.(4.19) and we obtain

x† =

∫
1

λ
dEλT

∗y. (4.56)

However, if R(T ) is non-closed and y /∈ D(T †), which is called ill-posed
problem, the solution Eq.(4.56) doesn’t exits since 1/λ has a pole in 0. To
avoid the ill-posed problem, the idea is to replace a gα(λ) which depends on
parameter-choice rule α from 1/λ such that

xα ≡
∫

gα(λ)dEλT
∗y. (4.57)

For noisy data yδ with ∥y − yδ∥ ≤ δ, Eq.(4.57) is expanded as

xδ
α ≡

∫
gα(λ)dEλT

∗yδ. (4.58)

By using these conditions, a bias noise Eq.(4.28) is represented by

x† − xα = x† − gα(T
∗T )T ∗y = (I − gα(T

∗T )T ∗T )x†, (4.59)

=

∫
(1− λgα(λ))dEλx

†. (4.60)

Now, we define
γ(λ) ≡ (1− λgα(λ)) (4.61)

for all α and λ and hence
γα(0) = 1 (4.62)

then we have
x† − xα = γα(T

∗T )x†. (4.63)

In these cases, the regularization operator for T † can be defined as

Rα ≡
∫

gα(λ)dEλT
∗ (4.64)

and the gα(λ) converges to 1/λ as α → 0.
By using these symbols, the approximation solution of Ty = x can be

discussed as a following:
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Theorem 4.4.1. For α > 0, let gα : [0, ∥T∥2] → R fulfill the following
assumptions: gα is piecewise continuous and there is a C ∈ R+ such that

|λgα(λ)| ≤ C, (4.65)

lim
α→0

gα(λ) =
1

λ
(4.66)

for all λ ∈ (0, ∥T∥2]. Then, for all y ∈ D(T †),

lim
α→0

gα(T
∗T )T ∗y = x† (4.67)

holds with x† = T †y. If y /∈ D(T †), then

lim
α→0

gα(T
∗T )T ∗y = +∞. (4.68)

Proof. Since Eq.(4.63), Eq.(4.57) and λ ∈ (0, ∥T∥2] by assumption, we have

∥x† − xα∥2 =
∫ ∥T∥2+

0

γ2
α(λ)d∥Eλx

†∥2 < (C + 1)2. (4.69)

Hence, by the Lebesgue dominated convergence theorem[54],

lim
α→0

∫ ∥T∥2+

0

γ2
α(λ)d∥Eλx

†∥2 =
∫ ∥T∥2+

0

lim
α→0

γ2
α(λ)d∥Eλx

†∥2 (4.70)

holds. From the definition and assumption of the Eq.(4.61), there exists a
value of limα→0 γα(λ) when λ = 0 such that

lim
λ→0+

∥Eλx
†∥ − ∥E0x

†∥ = ∥Px†∥, (4.71)

where P is a orthogonal projector onto N (T ). Since x† ∈ N (T )⊥ (see
Sec.4.2), Px† = 0. Therefore we have the convergence of

lim
α→0

∥x† − xα∥ = 0 (4.72)

and Eq.(4.67) holds. Here ∥xα∥ → +∞ as α → 0 if y /∈ D(T †) then Eq.(4.68)
holds.

Next theorem allows us to realize the properties of diminished noise
Eq.(4.29) by using symbols defined this section.
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Theorem 4.4.2. Let gα and C be in as Theorem.4.4.1, for α > 0, let

Gα ≡ sup{|gα(λ)| | λ ∈ [0 ∈ ∥T∥2]}. (4.73)

Then,

∥Txα − Txδ
α∥ ≤ Cδ (4.74)

∥xα − xδ
α∥ ≤ δ

√
CGα (4.75)

hold.

Proof. From Eq.(C.84), we have

gα(T
∗T )T ∗ = T ∗gα(T

∗T ). (4.76)

Then we also have

∥Txα − Txδ
α∥ ≤ ∥TT ∗gα(T

∗T )∥∥y − yδ∥, (4.77)

≤ δ∥TT ∗gα(T
∗T )∥. (4.78)

Let {Fλ} be the spectral family of TT ∗. Then, for all y ∈ Y with ∥y∥ = 1,

∥TT ∗gα(T
∗T )y∥2 =

∫ ∥T∥2+

0

(λgα(λ))
2d∥Fλy∥2

≤
∫ ∥T∥2+

0

C2d∥Fλy∥2 = C2∥y∥2 (4.79)

holds and then
∥TT ∗gα(T

∗T )y∥2 ≤ C2 (4.80)

holds. Eq.(4.77) and Eq.(4.80) imply Eq.(4.74).
Next, we have

∥xα − xδ
α∥2 = ⟨xα − xδ

α, T
∗g(TT ∗)(y − yδ)⟩,

= ⟨Txα − Txδ
α, g(TT

∗)(y − yδ)⟩,
≤ ∥Txα − Txδ

α∥∥g(TT ∗)∥δ. (4.81)

By assumption of Gα by Eq.(4.73), we have

∥gα(TT ∗)∥ ≤ Gα (4.82)

so we prove Eq.(4.75).
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Next, we discuss the expression of a bias noise defined as Eq.(4.28) by
using our symbols.

Theorem 4.4.3. Let gα be as in Theorem.4.4.1 and γα(λ) be defined by
Eq.(4.61). For µ, ρ and for all α ∈ (0, α0) and λ ∈ [0, ∥T∥2], let ωµ :
(0, α0) → R be the function fulfilled

λµ|γα(λ)| ≤ ωµ(α). (4.83)

Then, for x† ∈ Xµ,ρ,

∥xα − x†∥ ≤ ωµ(α)ρ, (4.84)

∥Txα − Tx†∥ ≤ ωµ+ 1
2
(α) (4.85)

hold.

Proof. From the definition of the exact solution Eq.(4.38), let w ∈ X be such
that x† = (T ∗T )µw, ∥w∥ ≤ ρ. Then we have

x† − xα = γα(T
∗T )(T ∗T )µw, (4.86)

Tx† − Txα = Tγα(T
∗T )(T ∗T )µw. (4.87)

The norm of Eq.(4.84) indicates Eq.(4.84). Suppose that z = x† − xα, we
have

∥Tz∥ = ⟨Tz, Tz⟩ = ⟨T ∗Tz, z⟩ = ⟨(T ∗T )
1
2 z, (T ∗T )

1
2 z⟩ = ∥(T ∗T )

1
2 z∥. (4.88)

Therefore, we have Eq.(4.85).

Theorem.4.4.2 and Theorem.4.4.3 allow us to express and investigate the
convergence rate for a-priori parameter choice rule. It is given by next Corol-
lary:

Corollary 4.4.4. Let the assumptions of Theorem.4.4.3 hold with

ωµ(α) = cαµ (4.89)

for c > 0. and assume that Gα as defined in Eq.(4.73) fulfills

Gα = O

(
1

α

)
as α → 0. (4.90)

Then, with the parameter choice rule

α ∼
(
δ

ρ

) 2
2µ+1

, (4.91)

the regularization method (Rα, α) is optimal order in Xµ,ρ.
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Proof. From Eq.(4.75), Eq.(4.84) and the assumptions, we have

∥xδ
α − x†∥ ≤ cαµρ+ δ

√
C

α
. (4.92)

Now we suppose that the parameter choice rule α is expressed by Eq.(4.91).
Then we have

∥xδ
α − x†∥ ∝ δ

2µ
2µ+1ρ

1
2µ+1 . (4.93)

Therefore, we have the desired result.

Note that the assumption of Eq.(4.90) comes from the fact that gα(λ)
converges to 1/λ as α → 0. Eq.(4.92) implies the properties of convergence
via α. While the first term of the right hand side of Eq.(4.92) (or the bias
noise) converges 0 as α → 0, the second term (or the diminished noise) di-
verges for fixed δ > 0. It can be interpreted as follows: The bias term is the
noise which is generated by applying a regularization method. α → 0 indi-
cates that the regularization methods doesn’t apply for the inverse problem,
then the bias term is no longer exist. On the contrary, the diminished noise
doesn’t converge when α → 0 since it is a ill-posed inverse problem which has
no solution. We realize that the convergence rate constitutes the two parts
and the value can be determined by the relationship of these terms and the
strength of the α.

4.5 An a-posteriori parameter choice rule

Now we discuss the another parameter choice strategy for a regularization
method called “a-posteriori parameter choice rule”. On the a-priori param-
eter choice rule discussed previous section, we cannot give the method to
determine the value of the parameter choice rule α. The a-posteriori param-
eter choice rule provides the method to determine the α directly by estimating
the minimum value of the convergence rate constituted by the bias noise that
is a decreasing function via α and the diminished noise which is a increasing
function via α.

In virtue of Eq.(4.75) and an inequality of arithmetic and geometric
means, the convergence rate is given by

∥xδ
α − x†∥2 = ∥xα − x†∥2 + ∥xδ

α − xα∥2 + 2⟨(xα − x†), (xδ
α − xα)⟩,

≤ 2∥xα − x†∥2 + 2∥xδ
α − xα∥2,

≤ 2(∥γα(T ∗T )x†∥2 + CGαδ
2), (4.94)
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where symbols emerged in Eq.(4.94) are defined in Sec.4.4. The tragedy of
the parameter choice rule is as a following: Minimizing the right hand side
of Eq.(4.94) over α should certainly yield a good parameter choice for α. A
necessary condition for such a minimum is given by

∂

∂α

(
∥γα(T ∗T )x†∥2 + CGαδ

2
)
= 0. (4.95)

Lemma 4.5.1. In addition to the assumption made about gα in Theorem.4.4.1,
we assume that gα and Gα are continuously differentiable with respect to α
and that ∂Gα

∂α
̸= 0. Moreover, let

f(α,w) ≡ 2

(
∂Gα

∂α

)−1⟨
∂gα
∂α

(T ∗T )γα(T
∗T )Qw,Qw

⟩
(4.96)

be a auxiliary function for α > 0 and for all w ∈ Y. Then, for w ∈ D(T †),

∂

∂α
∥γα(T ∗T )T †w∥2 = −∂Gα

∂α
f(α, ω). (4.97)

Proof. By definitions of γα and gα,

∂γα
∂α

= −λ
∂gα
∂α

(4.98)

holds. Then we have

∂

∂α
∥γα(T ∗T )T †w∥2 = 2

⟨
γα(T

∗T )T †w,
∂γα(T

∗T )

∂α
T †w

⟩
,

= 2
⟨
γα(T

∗T )T †w,−(T ∗T )gα(T
∗T )T †w

⟩
,

= −2
⟨
γα(T

∗T )TT †w, gα(T
∗T )TT †w

⟩
,

= −∂Gα

∂α
f(a, w). (4.99)

From Eq.(4.95) and Eq.(4.97), we have the simple equation such that

f(α, y) = Cδ2. (4.100)

If we could find a solution α = α(δ, y), this would yield a good parameter
choice strategy because we can determine α directly with the convergence
rate minimum. However, Eq.(4.100) cannot be solve in principle because
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there exist unknown exact data y in the Eq.(4.100). We never know the
value of y since it’s a value that is buried in noise and should be estimated.
The idea of the a-posteriori parameter choice rule is to replace y by yδ in
Eq.(4.100). To analyze the strategy for a regularization method, we suppose
one assumption for gα.

Assumption 4.5.2. Let gα fulfill the assumption made in Theorem.4.4.1
and assume that α 7→ gα and α 7→ Gα is continuously differentiable. Then
there exists a constant K > 0 such that∣∣∣∣∣∂gα∂α

(λ)

(
∂Gα

∂α

)−1
∣∣∣∣∣ ≤ K (4.101)

holds for α > 0 and λ ≤ 0. Moreover, the function

α 7→ ∂gα
∂α

(λ)

(
∂Gα

∂α

)−1

γα(λ) (4.102)

is strictly increasing for λ > 0

Lemma 4.5.3. Under Assumption.4.5.2, the function f defined by Eq.(4.96)
is continuous and strictly increasing in α for Qw ̸= 0. Furthermore, we define

h(w) ≡ 2

∫
lim

α→+∞

[
∂gα
∂α

(λ)

(
∂Gα

∂α

)−1

γα(λ)

]
d∥FλQw∥2, (4.103)

where {Fλ} is the spectral family generated by TT ∗. Then we have

lim
α→0

f(α,w) = 0, (4.104)

lim
α→∞

f(α,w) = h(w). (4.105)

Proof. By Eq.(4.96) and assumptions, we have

f(α,w) = 2

∫ [
∂gα
∂α

(λ)

(
∂Gα

∂α

)−1

γα(λ)

]
d∥FλQw∥2. (4.106)

By assumption, f is a continuous and strictly increasing. From Eq.(4.69) and
Eq.(4.101), Eq.(4.106) is bounded by K(C+1). Then, by the Lebesgue dom-
inated convergence theorem[54], we have Eq.(4.105). γα has the properties of
the convergence such that limα→0 γα(λ) = 0 for λ ̸= 0 and limα→0 γα(0) = 1,
Eq.(4.106) is in proportion to ∥PN (TT ∗)Qw∥ as α → 0, where PN (TT ∗) is
a orthogonal projector onto N (TT ∗). Since Qw ∈ N(TT ∗)⊥, we have the
desired result for Eq.(4.104).

53



By using these preparations, we discuss the expression of the function f
with noisy data yδ.

Theorem 4.5.4. Under Assumption.4.5.2, for any δ > 0 and yδ ∈ Y with
Qyδ ̸= 0, there is a unique α = α(δ, yδ) > 0 such that

f(α, yδ) = τδ2 (4.107)

holds, where
τ ∈ (0, h(yδ)δ−2) (4.108)

and h is defined by Eq.(4.103).

Proof. From Lemma.4.5.3 and the intermediate value theorem[55], we have
the desired result.

Theorem.4.5.4 shows that the parameter choice strategy for yδ exists
uniquely. Next, we see that such a replacement doesn’t change the asymp-
totic behavior.

Theorem 4.5.5. With the assumption and notation of Theorem.4.5.4, let

L ≡ 2 sup

{∣∣∣∣∣∂gα∂α
(λ)

[
∂Gα

∂α

]−1

γα(λ)

∣∣∣∣∣ | α > 0, λ ≥ 0

}
, (4.109)

and let τ > L, Qy ̸= 0, For any δ > 0, let yδ ∈ Y be such that ∥y − yδ∥ ≤ δ.
Furthermore, let

τ1 ≡ (
√
τ −

√
L)2, (4.110)

τ2 ≡ (
√
τ +

√
L)2 (4.111)

hold. If Qyδ ̸= 0 and Theorem.4.5.4 hold, then there exists a τ = τ(δ, yδ) ∈
[τ1, τ2] such that

f(α(δ, yδ), y) = τ(δ, yδ)δ2 (4.112)

holds.

Proof. By Assumption.4.5.2, the operator

Hα ≡

[
∂gα
∂α

(T ∗T )

(
∂Gα

∂α

)−1

γα(T
∗T )

] 1
2

(4.113)
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is well-defined for any α > 0 since Eq.(4.102) is positive for any α > 0 and
λ > 0 and

∥Hα∥ ≤
√
L (4.114)

holds. From Eq.(4.106), we have√
f(α,w) = ∥HαQw∥. (4.115)

Hence, for any α > 0,√
f(α, yα) = ∥Hαy −Hα(Qy −Qyδ)∥,

≥ ∥Hαy∥ − ∥Hαy −Hα(Qy −Qyδ)∥,
≥

√
f(α, y)−

√
Lδ. (4.116)

Here, assume the case that

δ2 <
h(y)

τ2
. (4.117)

Now, if Eq.(4.117) holds, Eq.(4.116) indicates that√
h(yδ) > (

√
τ2 −

√
L)δ =

√
τδ, (4.118)

which implies Theorem.4.5.4 and then Qyδ ̸= 0.
Now we consider to insert the exact data y to the Eq.(4.106). Then we

have the two result for the inequality relations such that√
f(α, y) = ∥Hαy

δ +Hα(y − yδ)∥
≤ ∥Hαy

δ∥+
√
Lδ

=
√

f(α, yδ) +
√
Lδ =

√
τδ +

√
Lδ =

√
τ2δ (4.119)

and √
f(α, y) = ∥Hαy

δ −Hα(−y + yδ)∥
≥ ∥Hαy

δ∥ −
√
Lδ

=
√

f(α, yδ)−
√
Lδ =

√
τδ −

√
Lδ =

√
τ1δ. (4.120)

Therefore, we have the desired result with τ(δ, yδ) ∈ [τ1, τ2].

Comparing Eq.(4.100) and Eq.(4.112), we can see that two things: the
boundary condition C is replaced by [τ1, τ2] and the parameter choice strategy
α = α(δ, y), which never calculate in principle, is replaced by α = α(δ, yδ),
which is always able to evaluate. Then the regularization method obtained by
the parameter choice strategy α = α(δ, yδ) has the same optimal convergence
properties as that with α = α(δ, y). The details of the explanation can be
shown to the next theorem.
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Theorem 4.5.6. Let Assumption.4.5.2 holds, let y ∈ R(T ) with y ̸= 0,
τ > L where L is defined by Eq.(4.109), and y ∈ Y fulfill ∥yδ − y∥ ≤ δ and
Theorem.4.5.4 for any δ > 0. Then, if α = α(δ, yδ) is determined as the
unique solution of Eq.(4.107), there is a constant η such that

∥xδ
α(δ,yδ) − T †y∥ ≤ η inf{∥xα − x†∥+ δ

√
CGα}. (4.121)

Proof. Due to Theorem.4.5.4 and Theorem.4.5.5, Eq.(4.112) has a unique
solution α = α(δ, yδ). Eq.(4.97) implies that Eq.(4.107) is the first-order
necessary condition for minimizing the functional

α 7→ ∥γα(T ∗T )x†∥2 + τ(δ, yδ)δ2Gα (4.122)

In virtue of the strict monotonicity of f(·, y), Eq.(4.122) has one pole of the
local minima. Thus, with

a ≡ max{1, C/τ(δ, yδ)}, (4.123)

b ≡ max{1, τ(δ, yδ)/C}, (4.124)

we obtain

1

2
∥xδ

α(δ,yδ) − x†∥2 ≤ ∥γα(δ,yδ)(T ∗T )x†∥2 + CGα(δ,yδ)δ
2,

≤ a
[
∥γα(δ,yδ)(T ∗T )x†∥2 + τ(δ, yδ)Gα(δ,yδ)δ

2
]
,

= amin
α>0

{
[
∥γα(T ∗T )x†∥2 + τ(δ, yδ)Gαδ

2
]
},

≤ ab inf
α>0

{
[
∥γα(T ∗T )x†∥2 + CGαδ

2
]
}

≤ 1

2
η2 inf

α>0
{
[
∥γα(T ∗T )x†∥+

√
CGαδ

]
}. (4.125)

Here, we define

η2 ≡ 2max

{
C

τ1
,
τ2
C

}
(4.126)

and then, we have the desired result.

56



Chapter 5

A regularization method for
GW observation

The parameter estimation requires to solve a inverse problem with a maxi-
mum likelihood method. The estimation of a GW amplitude is obtained by
maximizing Eq.(3.26) over parameter space of GWs:

Âµ = Mµν (s|hν) , (5.1)

where Âµ are the estimated parameters of a GW amplitude and Mµν is
the inverse of the operator Mµν . The solution of the inverse problem, how-
ever, often deteriorates the accuracy of a parameter space because of the
degeneracy of the parameters to estimate. The degeneracy is caused by rank
deficiency of the inverse operator, which is corresponding to the ill-posedness
of the inverse operator. In the literature of the estimation of GW parame-
ters, the rank deficiency of the inverse operator happens when the array of
the beam-pattern functions of + mode F+ ≡ [F 1

+, · · · , F n
+] is approximately

in proportion to these of the × mode F× ≡ [F 1
×, · · · , F n

×], where n is the
number of GW telescopes. As a result, similar response functions is detected
over GW telescopes and the GW modes are degenerated each other. In case
that the GWs observe on November 01, 2006 at 15:45:12 UTC by using the
network of the GW telescopes constituted by LIGO Hanford and LIGO Liv-
ingston, whose situation is as same as the simulated data analysis discussed
in Chapter.6, for instance, the sky region where the ratio of the beam-pattern

functions is
(
FHanford
+ /F Livingston

+

)
/
(
FHanford
× /F Livingston

×

)
∈ [1/4 : 4], which

corresponds to F+ ∝ F× approximately, is shown by Figure.5.1.
Since the degeneracy of GW modes amplifies the noise, called amplified

noise, the accuracy of the parameters of GW amplitude deteriorates. As
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Figure 5.1: The ratio of the beam-pattern function on the sky region. The
red circles are the celestial point where corresponds to the zenith of the GW
telescopes based on horizontal coordinate system at the observed time.

mentioned previous Chapter, a regularization method provides the effective
solution to recover the rank deficiency of the inverse operator by applying
a correction term to a likelihood. As mentioned Chapter.1, M. Rakhmanov
has indicated the possibility that the reconstruction of the GWs can be im-
proved by applying Tikhonov regularization method[24]. His work, however,
mainly aim to reduce the residual noise for GW burst, then the accuracy
of the reconstruction of the GW waveform is ignored. Moreover, his work
couldn’t optimize full of the parameters introduced by the regularization
method, named regulator parameters. To optimize all of the regulator pa-
rameters and apply for the parameter estimation for the GWs from CBC, we
develop the new regularization method by using two methods; the method of
Lagrange multiplier with Karush-Kuhn-Tucker (KKT) conditions[56], which
guarantees that the distortion of the waveform by introducing regulariza-
tion method suppresses and the parameter choice method to obtain the full
optimization of the regulator parameters. In this Chapter, we discuss the
method to optimize full of regulator parameters to suppress the amplified
noise caused by a ill-posed problem.
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5.1 Maximizing the likelihood with a regu-

larization method

To suppress the amplified noise, the key idea is to add a correction term to
the log-likelihood ratio:

lnΛ1g = Ai(s|hi)−
1

2
AiMijA

j − ∥AiΩij(ω[k])A
j∥, (5.2)

where the regulator Ωij is a 2 × 2 matrix of regulator parameters ω[k], the
k is the number of regulator parameters. Index g indicates the regularized
log-likelihood ratio. The estimation Âi

g , which are the parameters of a GW
amplitude with regularization method, is evaluated from maximizing Eq.(5.2)
over parameters of a GW amplitude

Âi
g = M ij

g (s|hi), (5.3)

where
Mg,ij ≡ Mij + 2Ωij(ω[k]). (5.4)

Eq.(5.4) clearly shows the inverse operator Mij is corrected by the regu-
lator and prevents the inverse operator from reducing the number of rank.
The numerical expression of matched filtering of output can be decomposed
into a GW signal and the noise of GW telescopes:

(s|hi) = AjMij + (n|hi) (5.5)

The distinct decomposition into a GW signal and a noise couldn’t be cal-
culated because the GW signal in output of GW telescopes is never known.
Note that the noise of the matched filtering (n|hi) is calculated by the vari-
ance of the values of the matched filtering under the bayesian inference. To
make it clear, we write the mismatching as (n|hi) ≡ ∆(s|hi).

The numerical expression of the residual noise of a GW amplitude is
obtained as a following:∥∥∥Âi

g − Ai
∥∥∥2 = 4

∥∥∥M ij
g Ωji′(ω([k]))A

i′
∥∥∥2

+
∑
i,i′

M ij
g M i′j′

g ⟨∆(s|hj)∆(s|hj′)⟩ (5.6)

≡ B(ω[k], Ai) +N(ω[k],∆(s|hi)), (5.7)

where i′, j′ = 0, 1, ⟨⟩ is the ensemble average of the number of iterations
performed in the procedure of the bayesian inference, and ∥ ·i ∥2 ≡

∑
i ⟨(·i)2⟩.
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The first term B(ω[k], Ai) corresponds to the bias noise introduced by the
regulator and the second term N(ω[k],∆(s|hj)) corresponds to the amplified
noise suppressed by the use of a regularization method, called reduced noise.
With an appropriate choice of regulator parameters, the sum of the two noise
is possible to be smaller than the amplified noise even if the bias noise, which
behaves additional noise of a estimation, is introduced.

To find the optimized regulator parameters, we must consider the method
to minimize the residual noise Eq.(5.6). The minimization is archived by
finding the local minimum of the residual noise over the regulator parameter
space. One should be paid attention: in the case that the amount of the
bias noise is larger than the reduced noise as a result of the optimization of
regulator parameters, the amplitude parameters of GWs lies outside of the
credible regions of the probability distribution. It indicates that an appro-
priate restriction for determining the regulator parameters is required. We
propose the requirement as a following:

B(ω[k], Ai)

N(ω[k],∆(s|hj))
≤ C, (5.8)

where C is the real and positive user-defined value that is less than 1.
The minimization of the residual noise under the condition of Eq.(5.8) is

performed by the method of Lagrange multiplier with Karush-Kuhn-Tucker
(KKT) conditions[56]:

∂

∂ω[k]

[∥∥∥Âi
g − Ai

∥∥∥2 + λ
(
B(ω[k], Ai)− CN(ω[k],∆(s|hj))

)]
= 0,(5.9)

B(ω[k], Ai)

N(ω[k],∆(s|hj))
≤ C,

where the real positive number λ is a Lagrange multiplier.

5.2 An a-posteriori parameter choice rule

The evaluation of Eq.(5.9) is essentially impossible in the bayesian inference
because the method to determine optimized regulator parameters includes a
fatal defect; the actual parameters of a GW amplitude Aµ, which needs to
be known for evaluating the bias noise of Eq.(5.6), are never known a-priori.
The key idea to avoid this problem is to replace the actual parameters of
GWs amplitude in the residual noise with the estimated parameters:

Ai → M ij (s|hj) . (5.10)
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This is an a-posteriori parameter choice rule discussed Sec.4.5 applying to
GW observation. By adapting the parameter choice rule, the optimized reg-
ulator parameters can be calculated without using actual parameters of a
GW amplitude. The estimated parameters are obtained in each of the it-
erations of the non-regularized bayesian inference. The ensemble average of
the residual noise calculated by the actual parameters are essentially equiv-
alent to the one calculated by estimated parameters because the difference
between the actual parameters and estimated parameters is canceled out over
the iterative calculation of the bayesian inference. As a result, the optimized
regulator parameters are obtained by solving following equations:

∂

∂ω[k]

[∥∥∥Âi
g −M ij (s|hj)

∥∥∥2 + λ(B(ω[k],M ij (s|hj)) − CN(ω[k],∆(s|hi)))
]

= 0 (5.11)

B(ω[k],M ij (s|hj))

N(ω[k],∆(s|hi))
≤ C.

The flowchart of the calculation of the regulator parameters ω[k] is shown
as Fig. 5.2.

Figure 5.2: The flowchart of the calculation of the regulator parameters
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While Eq.(5.11) has a lot of solutions in regulator parameters, the opti-
mized regulator parameters are able to be determined uniquely by the use of
following criteria: (i) The complex values of the regulator parameters must
be excluded. (ii) the regulator parameters in which Eq.(5.11) indicates 0 or
infinity by substituting must be excluded. (iii) the regulator parameters are
chosen so that the real value of the Lagrange multiplier is the highest one
satisfying the criteria (i) and (ii).

5.3 Regulator matrix

In this section, we will give the concrete form of the regulator matrix. As
mentioned before, the rank deficiency of an inverse operator happens when
one of the proper vectors of the inverse operator is approximately vanished.
To compensates the lack of the proper vector, two kinds of regulator matrices
are considered in this thesis. We call the formar regulator as type 1 and the
latter one as type 2. The symmetricity of the regulator matrix is required
since a mathematical framework of the regularization method is based on a
Hilbert space.

(i) Type 1:

Ω =

(
w 0
0 w

)
, (5.12)

where w is the regulator parameter which has real value. This is a traditional
regulator matrix form being used for a lot of ill-posed problem.

(ii) Type 2:

Ω =

(
w we
we we2

)
, (5.13)

where w and e are the regulator parameters. The rank of the regulator matrix
is set to 1 ( detΩ = 0). This condition comes from the fact that we should
only compensate the lack of the proper vector of the inverse operator with
ill-posedness whose the number of the lack of the proper vector is 1.
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Chapter 6

Data analysis and result

6.1 Data analysis

This section first presents an overview of our regularized data analysis and
the Bayesian inference algorithm. We also discuss the states of a software-
injected signal of GWs from CBC; then the results of our regularized data
analysis are presented and discussed.

Bayesian inference for a software-injected GW signal is performed using
the nested sampling algorithm, which has been described by Skilling[39] as
a reversal of typical bayesian interface such as Markov chain Monte Carlo
methods[40]. Note that a detailed study into the parameters estimation of
GWs using the nested sampling algorithm has been performed previously[43].
MultiNest implements Bayesian inference based on the nested sampling algo-
rithm discussed Chapter.3 In addition to MultiNest, PyMultiNest software[20],
a Python interface for Multinest, is also used in the data analysis. Note
that MultiNest users must specify a few proper parameters, i.e., the number
of live points and the tolerance, and set the prior and log-likelihood func-
tions. In this study, the number of live points is 1000 for all data analyses
and the tolerance is set to 0.0001 for the data analysis without a regulator
(non-regularized data analysis) and 0.05 for the data analysis with regulator-
optimized analysis (regularized data analysis).

We must evaluate Eq.(5.11) for the regularized data analysis to deter-
mine optimized regulator parameters. However, the evaluation of Eq.(5.11)
requires another algorithm in addition to the nested sampling algorithm. As
discussed previously, the degree of mismatch of the matched filtering evalu-
ated relative to the accuracy of the phase parameters, such as a chirp mass
and a coalescence time when GWs pass though the center of the earth, is re-

63



quires to determine optimized regulator parameters. These mismatch values
are obtained by evaluating the accuracy of the phase parameters obtained by
the non-regularized data analysis. The regularized data analysis is performed
as follows. First, non-regularized data analysis is performed to obtain the
covariance matrix of the phase parameters. Here, we also obtain estimated
amplitude parameter values and corresponding credible regions to confirm
the accuracy improvement gained by the amplitude parameters obtained in
the regularized data analysis. Second, we obtain the distribution of hµ by
substituting the distribution of phase parameters generated by multivariate
random distribution of the covariance matrix of the phase parameters into
the matched filtering. Here, the number of samples in the distribution set of
hµ are 10000 in this thesis. Third, the variance of the hµ is calculated using
the distribution set.

The details the data analysis are as follows: the number of search param-
eters of the GWs is six, inclination ι, luminosity distance r, polarization Φ,
initial phase ϕcoal, chirp mass Mc, and coalescence time tcoal when GWs pass
through the center of the earth. To reduce data analysis time, we ignore the
post-Newtonian parameters of GWs. Note that all of the prior distribution of
the search parameters are flat distributions. In addition, the data analysis re-
sult is expressed in terms of physical parameters: however, the data analysis
is implemented using the terms of amplitude parameters A1−A4. We convert
these amplitude parameters into physical parameters after data analysis is
performed. The range of the amplitude parameters is Ai ∈ [−10−15, 10−15].
The range of the inclination expressed as a cosine is cos ι ∈ [−1, 1], luminos-
ity distance is r ∈ [10 : 1000]Mpc, polarization is Φ ∈ [0, π] and initial phase
is ϕcoal ∈ [0, π]. To reduce data analysis time, the range of a chirp mass is set
to ±1Msolar of the input value, and the coalescence time range is set to ±0.1s
of the input value. These range settings are appropriate because the regu-
larization method helps in reducing the accuracy of amplitude parameters,
and the accuracy of the phase parameters is not affected significantly.

Both regulators (Eq.(5.12) and Eq.(5.13)) are applied to the regularized
data analysis to compare the differences in the reduction of the accuracy of
the amplitude parameters. Here, the user-defined value of C in Eq.(5.8) is set
to 0.1. To reduce the computational cost of the type 2 regulator (Eq.(5.13)),
we exclude the regulator parameter e to evaluate the requirement in Eq.(5.8).
The validity of the exclusion of the calculation can be explained by the fact
that the variable e in the type 2 regulator does not have strong dependency
on the strength of the regulator. The strength of the regulator primarily
affects the amount of Eq.(5.8).
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6.2 Software-injected data

The software-injected GW signal is examined herein. In this study, the data
analysis is implemented using two types of GW signals. The different status
of these signals reflects the amplitude parameters because we are interested in
the difference in the reduction of the amplified noise relative to the amplitude
parameters of GWs. In the following sections, we first describe the common
states of the software-injected GW signal; then, we discuss the difference in
the amplitude parameters.

6.2.1 Common states

We consider that the network of GW telescopes comprises the LIGO Liv-
ingston and the LIGO Hanford[57]. The location of the GW telescopes is the
actual geographic state[58] and the noise power spectrum of the GW tele-
scopes uses the theoretical function of aLIGO[45]. The properties of the noise
of GW telescopes are assumed be both stationary and Gaussian, and the in-
tegrated SNR of the software-injected GW signal is set to 20 ± 0.5. The
common states of the software-injected GW signal are listed in Table.6.1.
The details of these parameters are explained in the caption.

6.2.2 Different states

Two different states are involved in the amplitude parameters of the GW
signal. We are interested in reducing each amplitude parameter because the
accuracy of the amplitude parameters of GWs is reduced by the regular-
ized data analysis. The states of the amplitude parameters of the software-
injected data are given in Table.6.2. The luminosity distance is set to the
value which the integrated SNR indicates 20±. The location of the target
CBC in celestial coordinates is shown in Figure. 6.1, which also illustrates
the determinant value of the beam-pattern functions because the influence
of ill-posed of the inverse operator increases relative to the reduction of the
determinant value.

6.3 Result and discussion

The data analysis results are expressed as the joint-probability distribution
of the posterior as represented by the profile likelihood. The joint-probability
distributions for all data analyses are shown in Figs. 6.2 - Fig. 6.13. In these
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Parameters Values Unit

Observation UTC 2006/11/01 yyyy/mm/dd
15:45:12 hh:mm:ss

chirp mass 7 solar mass
coalescence time 8 second
integrated SNR 20±0.5
time duration 10 sec
sampling frequency 2048 Hz
upper frequency 1024 Hz
cutoff frequency 20 Hz

Table 6.1: Common state of the parameters of the software-injected GW
signal. Observation UTC is the time at which the GWs pass through in
the Earth’s center of gravity. Chirp mass and coalescence time indicate
the phase parameters of the GWs. Integrated SNR is the SNR in the GW
signal detected by the network of GW telescopes (LIGO Hanford and LIGO
Livingston.) simultaneously Time duration is the length of time of the output
data of the GW telescopes. Sampling, upper and cutoff frequencies indicate
the configuration of the calibrated output data.

figures, the area enclosed by the bold line is the 1σ (67%) credible region
and the dashed line is the 2σ (95%) credible region. The shrinkage rate of
the credible region obtained by comparing the posterior distribution of the
non-regularized and regularized data analysis using the type 1 and type 2
regulators is shown in Table.6.3 and 6.4, respectively. Here, state 1 and 2
of the software-injected data were used Table.6.3 and 6.4, respectively. An
average of 100000 posterior samples for the non-regularized data analysis and
200000 posterior samples for regularized data analysis were evaluated. The
implementation time of the algorithm was approximately one CPU hour for
the non-regularized data analysis and approximately 50 CPU hour for the
regularized data analysis.

The results clearly indicate that the accuracy of the amplitude parameters
was improved by the regularized data analysis with the type 2 regulator in the
most of the sky region; however, the accuracy of the amplitude parameters
was primarily unimproved by the regularized data analysis with the type 1
regulator. Here, most actual values of the amplitude parameters were outside
the credible region of the joint-posterior distribution. The average shrinkage
rate of the credible region for the inclination vs luminosity distance all over
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Parameters State 1 State 2 Unit

inclination (cos ι) 0.400 -0.750
initial phase -0.448 -1.023 Radian
polarization -0.480 0.462 Radian

Table 6.2: States of amplitude parameters of software-injected GW signal.
State 1 indicates the values of the first software-injected GW signal, and
state 2 indicates the values of the second signal. The inclination data are
expressed by cosine function.
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Figure 6.1: The sky location of the software-injected data and the deter-
minant values of the antenna-beam pattern function of GW telescopes. The
degree of shade in both figures indicates the amount of determinant of beam-
pattern function all over the sky region at the UTC specified in Table.6.1.
The stars indicates the location of the target CBC of the software-injected
GW signal. The first panel shows the state 1 of software-injected data and
the second panels shows the same of state 2.

the sky was approximately 1.5 times and that of the polarization vs initial
phase was approximately 3.0 times for the regularized data analysis with the
type 2 regulator. The shrinkage rate tends to be greater depending on the
strength of the influence of the ill-posed inverse operator. However, in some
sky region where the determinant value of the inverse matrix was greater
than a certain threshold, the actual value was outside the credible region
estimated by the regularized data analysis with the type 2 regulator. The
root-mean-square(rms) of the accuracy of the GW amplitude (lnA)rms for
every data analysis is shown by Table. 6.5 and Table. 6.6. Note that the
theoretically optimal value of the rms of the accuracy is expressed by

(∆lnA)rms =
1

SNR
=

1

20
= 0.05, (6.1)
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where SNR is the signal-to-noise ratio of the detected GW signal[34].
Here, we discuss the results of the data analysis for states 1 and 2 in

detail. For the state 1, the regularized data analysis with the type 2 reg-
ulator improved the accuracy of the amplitude parameters in most of the
sky region. In contrast, the actual value was outside the estimated credible
region because the influence of the ill-posed inverse operator was significant
in this case. This failure implies that the range of application of the regu-
larized data analysis, where valid estimation can be implemented, is limited
depending on the degree of influence the ill-posed inverse operator, even if
the restriction in Eq.(5.8) is imposed to prevent the credible region from ly-
ing outside of the actual parameter values. Fortunately, the sky region where
the misestimation occurred is small and does not affect data analysis result
significantly. The sky region wherein such a misestimation occurred accounts
for < 1% for all over the sky in the case of state 1. Note that the significant
reduction to the accuracy of luminosity distance, which is an important GW
observation parameter, was realized at the determinant value, i.e., less than
approximately 1× 10−3.

In contrast to state 1, the result of the regularized data analysis for state 2
exhibits specific characteristics. The nature of the reduction of the accuracy
of the amplitude parameters via the regularized data analysis is similar to
the data analysis of state 1. However, the actual amplitude parameter values
are outside the credible region of the inclination vs luminosity distance when
the determinant value of the inverse operator is less than 5 × 10−4, which
threshold to the misestimation is larger than state 1. The main difference
between states 1 and 2 is the absolute value of inclination, i.e., the abso-
lute inclination value of state 2 expressed in cosine is greater than state 1,
which may be related to the difficulty associated with correct estimation of
the inclination-distance when the absolute inclination converted by cosine is
relatively large. The reason of the misestimation is expressed by the another
degeneracy having nothing to do with the ill-posed problem due to the GW
telescopes: the nature of the degeneracy of the plus and cross polarization
of the GWs (h+ and h×) for observing relatively face-on/away CBC event,
which corresponds to | cos ι| ≈ 1[59][60]. While the amplitude parameters of
the GWs is estimated by the absolute value of the amplitude of the GWs
and the difference value between the plus polarization and cross polarization,
the difference of the polarization is small when we observe the face-on/away
CBC. For instance, the relative difference between plus and cross polarization
is less than 1% for inclination value less than 30◦ or greater than 150◦ and 5%
for inclination less than 45◦ or greater than 135◦. It means that we cannot
distinguish the contribution of the plus and cross polarization for | cos ι| ≈ 1
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due to the degeneracy of the plus and cross polarization for estimating these
values. However, in spite of the degeneracy of these polarization, the sky
region wherein such a misestimation occurred accounts for < 1% for all over
the sky in the case of state 2.

The rms of the accuracy of the GW amplitude can be used for evaluating
whether the accuracy of amplitude estimated by using regularization method
is approaching to the optimal value or not. From Table. 6.5 and Table. 6.6,
we can point out that the rms of the accuracy of the GW amplitude estimated
by regularization method by using type 2 regulator for state 1 and state 2
when the actual amplitude parameters of inclination vs luminosity distance
are inside the credible region is within the several times of the optimal rms
value expressed in Eq.(6.1).
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Inclination vs luminosity distance
sky det type 1 1σ type 1 2σ y/n type 2 1σ type 2 2σ y/n
90% 5× 10−1 0.94 1.00 y 1.46 1.38 y
48% 1× 10−1 1.09 0.95 y 1.78 1.64 y
29% 5× 10−2 0.77 0.82 y 1.43 1.44 y
18% 1× 10−2 1.35 1.25 y 1.43 1.36 y
12% 5× 10−3 1.03 1.26 y 1.81 2.51 y
6% 1× 10−3 1.37 1.90 y 3.10 3.26 y
4% 5× 10−4 1.06 1.12 y 1.36 1.59 y
2% 1× 10−4 4.11 7.73 n 3.18 4.24 y
2% 5× 10−5 3.95 6.57 n 7.07 10.2 y
1% 1× 10−5 0.96 1.29 y 3.55 6.59 n

Polarization vs initial phase
sky det type 1 1σ type 1 2σ y/n type 2 1σ type 2 2σ y/n
90% 5× 10−1 1.02 0.92 y 3.71 3.00 y
48% 1× 10−1 1.29 1.09 y 3.07 2.42 y
29% 5× 10−2 0.88 0.80 y 2.68 2.17 y
18% 1× 10−2 1.43 1.49 y 3.05 2.47 y
12% 5× 10−3 1.28 1.45 y 4.64 4.30 y
6% 1× 10−3 1.66 2.13 y 4.35 3.19 y
4% 5× 10−4 1.04 1.15 y 2.97 3.49 y
2% 1× 10−4 5.90 9.25 n 8.60 9.51 n
2% 5× 10−5 4.72 7.36 n 10.4 12.5 y
1% 1× 10−5 1.17 1.74 n 6.80 11.1 n

Table 6.3: Rate of shrinkage of credible region from the joint-posterior distri-
bution and indication of whether the 2σ credible region contains the actual
point of the amplitude parameters. State 1 is used for the software-injected
GW signal. The left-most column shows the quantile of the sky region de-
pending on decreasing the determinant value of the beam-pattern matrix
corresponding to the software-injected data. The next column is the deter-
minant value of the beam-pattern function corresponding to the quantile of
the sky region. y/n indicates whether the actual points of the amplitude
parameters are inside the 2σ credible region or not.
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Inclination vs luminosity distance
sky det type 1 1σ type 1 2σ y/n type 2 1σ type 2 2σ y/n
90% 5× 10−1 1.06 1.09 y 1.23 1.50 y
48% 1× 10−1 1.00 1.00 y 1.18 1.52 y
29% 5× 10−2 0.95 0.99 y 1.01 1.05 y
18% 1× 10−2 1.66 2.81 n 1.36 1.57 y
12% 5× 10−3 1.52 2.52 n 1.11 1.15 y
6% 1× 10−3 1.12 1.31 y 1.19 1.27 y
4% 5× 10−4 4.54 6.33 n 5.11 5.97 n
2% 1× 10−4 1.20 1.83 y 4.06 6.67 n
2% 5× 10−5 3.96 7.85 n 6.69 10.1 n
1% 1× 10−5 1.92 4.48 n 13.6 26.7 n

Polarization vs initial phase
sky det type 1 1σ type 1 2σ y/n type 2 1σ type 2 2σ y/n
90% 5× 10−1 1.14 1.40 y 4.04 4.48 y
48% 1× 10−1 1.00 0.98 y 3.92 4.30 y
29% 5× 10−2 1.07 1.23 y 2.78 2.41 y
18% 1× 10−2 2.51 3.90 y 3.14 3.48 y
12% 5× 10−3 2.65 4.53 n 2.75 4.54 y
6% 1× 10−3 1.24 1.93 y 1.97 2.10 y
4% 5× 10−4 5.10 7.80 y 8.15 8.69 y
2% 1× 10−4 1.63 2.35 y 11.5 19.5 n
2% 5× 10−5 4.68 7.28 y 9.96 12.3 n
1% 1× 10−5 3.04 6.60 y 24.5 44.9 n

Table 6.4: Rate of shrinkage of credible region from the joint-posterior distri-
bution and indication of whether the 2σ credible region contains the actual
point of the amplitude parameters. State 1 is used for the software-injected
GW signal. State 2 was used for the software-injected GW signal. The
explanation of the table is as same as the table. 6.3.
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sky det w/o regulator type 1 y/n type 2 y/n
90% 5× 10−1 0.169361 0.167728 y 0.074887 y
48% 1× 10−1 0.185151 0.149698 y 0.085490 y
29% 5× 10−2 0.177168 0.161167 y 0.083451 y
18% 1× 10−2 0.193302 0.155744 y 0.091900 y
12% 5× 10−3 0.322854 0.294635 y 0.184962 y
6% 1× 10−3 0.407348 0.335222 y 0.242069 y
4% 5× 10−4 0.650330 0.590825 y 0.391114 y
2% 1× 10−4 1.834264 0.284385 n 0.330782 y
2% 5× 10−5 1.653140 0.254334 n 0.197014 y
1% 1× 10−5 5.887165 3.059262 y 0.789518 n

Table 6.5: The root-mean-square of the accuracy of the amplitude of the
GWs from CBC. State 1 is used for the software-injected GW signal. The left-
most column shows the quantile of the sky region depending on decreasing the
determinant value of the beam-pattern matrix corresponding to the software-
injected data. The next column is the determinant value of the beam-pattern
function corresponding to the quantile of the sky region. The values of the
next column indicate the value of the root-mean-square of the accuracy of the
amplitude of the GWs for each data analysis method. y/n indicates whether
the actual parameter points of the inclination-distance relationship are inside
the 2σ credible region or not.

sky det w/o regulator type 1 y/n type 2 y/n
90% 5× 10−1 0.178684 0.165999 y 0.084327 y
48% 1× 10−1 0.194792 0.179279 y 0.102924 y
29% 5× 10−2 0.193852 0.188414 y 0.096755 y
18% 1× 10−2 0.273980 0.216209 n 0.115307 y
12% 5× 10−3 0.235382 0.187376 n 0.119479 y
6% 1× 10−3 0.389403 0.339281 y 0.211415 y
4% 5× 10−4 0.688487 0.223673 n 0.143216 n
2% 1× 10−4 1.863904 1.336913 y 0.262836 n
2% 5× 10−5 2.084366 0.311180 n 0.405315 n
1% 1× 10−5 5.901212 0.525819 n 0.215656 n

Table 6.6: The root-mean-square of the accuracy of the amplitude of the
GWs from CBC. State 2 is used for the software-injected GW signal. The
explanation of the table is as same as Table. 6.4.
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Figure 6.2: The credible region of the joint-probability distribution repre-
sented by profile likelihood. The state 1 of the software-injected GW signal is
used. The vertical scale indicates the luminosity distance and the horizontal
scale indicates the inclination expressed in cosine. The left panel of all fig-
ure*s shows the result of non-regularized data analysis, the center panel of all
figure*s shows the same of regularized data analysis with the type 1 regulator
and the left panel of all figure*s shows the same of regularized data analysis
with the type 2 regulator. The star indicate the actual parameters of the
software-injected GW signal and the circle indicate the maximum likelihood
parameters evaluated by the data analysis respectively. The determinant val-
ues of beam-pattern function matrix are arranged 5×10−1, 1×10−1, 5×10−2

from top to bottom.
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Figure 6.3: The probability distribution region represented by profile likeli-
hood. The state 1 of the software-injected GW signal is used. The expla-
nation of these figure*s are as same as Fig. 6.2. The determinant values of
beam-pattern function matrix arrange 1× 10−2, 5× 10−3, 1× 10−3 from top
to bottom.
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Figure 6.4: The probability distribution region represented by profile likeli-
hood. The state 1 of the software-injected GW signal is used. The expla-
nation of these figure*s are as same as Fig. 6.2. The determinant values of
beam-pattern function matrix are arranged 5×10−4, 1×10−4, 5×10−5, 1×10−5

from top to bottom.
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Figure 6.5: The probability distribution region represented by profile likeli-
hood. The state 1 of the software-injected GW signal is used. The vertical
scale the indicates initial phase and the horizontal scale indicates the polar-
ization. The left panel of all figure*s shows the result of non-regularized data
analysis, the center panel of all figure*s shows the same of regularized data
analysis with the type 1 regulator and the left panel of all figure*s shows the
same of regularized data analysis with the type 2 regulator. The star indi-
cate the actual parameters of the software-injected GW signal and the circle
indicate the maximum likelihood parameters evaluated by the data analysis
respectively. The determinant values of beam-pattern function matrix are
arranged 5× 10−1, 1× 10−1, 5× 10−2 from top to bottom.
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Figure 6.6: The probability distribution region represented by profile likeli-
hood. The state 1 of the software-injected GW signal is used. The expla-
nation of these figure*s are as same as Fig. 6.5. The determinant values of
beam-pattern function matrix are arranged 1× 10−2, 5× 10−3, 1× 10−3 from
top to bottom.
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Figure 6.7: The probability distribution region represented by profile likeli-
hood. The state 1 of the software-injected GW signal is used. The expla-
nation of these figure*s are as same as Fig. 6.5. The determinant values of
beam-pattern function matrix are arranged 5×10−4, 1×10−4, 5×10−5, 1×10−5

from top to bottom.
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Figure 6.8: The probability distribution region represented by profile likeli-
hood. The state 2 of the software-injected GW signal is used. The expla-
nation of these figure*s are as same as Fig. 6.2. The determinant values of
beam-pattern function matrix are arranged 5× 10−1, 1× 10−1, 5× 10−2 from
top to bottom.
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Figure 6.9: The probability distribution region represented by profile likeli-
hood at the second data analysis. The explanation of these figure*s are as
same as Fig. 6.2. The determinant values of beam-pattern function matrix
are arranged 1× 10−2, 5× 10−3, 1× 10−3 from top to bottom.
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Figure 6.10: The probability distribution region represented by profile like-
lihood. The state 2 of the software-injected GW signal is used. The expla-
nation of these figure*s are as same as Fig. 6.2. The determinant values of
beam-pattern function matrix are arranged 5×10−4, 1×10−4, 5×10−5, 1×10−5

from top to bottom.
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Figure 6.11: The probability distribution region represented by profile like-
lihood. The state 2 of the software-injected GW signal is used. The expla-
nation of these figure*s are as same as Fig. 6.5. The determinant values of
beam-pattern function matrix are arranged 5× 10−1, 1× 10−1, 5× 10−2 from
top to bottom.
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Figure 6.12: The probability distribution region represented by profile like-
lihood. The state 2 of the software-injected GW signal is used. The expla-
nation of these figure*s are as same as Fig. 6.5. The determinant values of
beam-pattern function matrix are arranged 1× 10−2, 5× 10−3, 1× 10−3 from
top to bottom.
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Figure 6.13: The probability distribution region represented by profile like-
lihood. The state 2 of the software-injected GW signal is used. The expla-
nation of these figure*s are as same as Fig. 6.5. The determinant values of
beam-pattern function matrix are arranged 5×10−4, 1×10−4, 5×10−5, 1×10−5

from top to bottom.
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Chapter 7

Conclusion

In this study, we discuss the method to prevent the accuracy of amplitude
parameters of GWs from a CBC from being amplified owing to the ill-posed
nature of the inverse operator comprising the beam-pattern functions of a
network of GW telescopes. The key idea to resolve this problem is conpen-
sation via an appropriate correction term represented as a matrix called a
“regulator” for an inverse operator whose rank is deficient. The Tikhonov
type regulator(Eq.(5.12), type 1) and symmetric trace-free type regulator
regulator(Eq.(5.13), type 2) are used to express the regulator matrix. A reg-
ulator reduce the amplified noise caused by the ill-posed problem, whereas
the value of the regulator affects the parameter accuracy as bias noise. To
resolve the bias problem, the optimization of the regulator is evaluated by
minimizing the sum of these noises. A Lagrange multiplier method with
KKT condition for the norm of the difference between the amplitude param-
eters estimated by the regularized data analysis and amplitude parameters
estimated by the non-regularization method (Eq.(5.9)), i.e., the a-posteriori
parameter choice rule provides optimized regulator values. The data analysis
for two types of software-injected GW signal using the MultiNest software
was implemented to evaluate the reduction accuracy of the amplitude pa-
rameters using proposed method. The data analysis results indicate that the
regularization method with the type 2 regulator reduces the credible region
of the accuracy of the amplitude parameters. For approximately 90% of the
sky region, the credible region of inclination-distance is reduced by approx-
imately 1.5 times and that of the polarization-initial phase is reduced by
approximately 3.0 times. The shrinkage rate of the credible region increases
with a decreasing determinant value of the inverse operator; however the
actual value lies outside the credible region in the regularized data analysis
owing to the significant ill-posed inverse operator. The threshold to maintain
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the validity of the regularization method appears to be related the inclination
values.

We consider that the proposed method, which employ a regularization
method for a targeted GW signal from a CBC and uses an optimized regula-
tor, represents robust and coherent data analysis that enables us to minimize
the amplified noise caused by an ill-posed nature of the inverse operator. In
other words, for most of the sky region, it is possible that the accuracy of the
amplitude parameters estimated by the proposed method is nearly the same
as the limit of the accuracy as calculated by the SNR of the signal. Thus, the
proposed method is suitable for the parameter estimation of a CBC search.
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Appendix A

STF tensor and spherical
harmonics

We refer [61] to describe the relationship between a STF tensor and a spher-
ical harmonics. A STF(symmetric tracefree tensor) is the alternative rep-
resentation of a spherical harmonics. While the decomposition in spherical
harmonics depends on the spherical polar coordinate, the STF tensor relies
on the Cartesian coordinates. So a STF tensor provides the way to express
the spherical harmonics represented by a polar coordinates as a Cartesian
coordinate.

First, we introduce the properties of the STF tensor represented by prod-
ucts of the unit vector. One example of such a STF tensor is

n⟨jk⟩ = njnk − 1

3
δjk, (A.1)

where the bracket indicates the STF label that the tensor with the bracket
is STF tensor. You see that the index of Eq.(A.1) is commute and the trace
of Eq.(A.1) is 0. The general formula for such STF tensor is

n⟨L⟩ =

[l/2]∑
p=0

(−1)p
(2l − 2p− 1)!!

(2l − 1)!!

[
δ2PnL−2P + sym(q)

]
, (A.2)

where L represents a collective of l individual indices, [l/2] is the largest
integer not larger than l/2, δP stands for a product of p Kronecker deltas,
nL−2P stands for a product of l − 2p unit vectors and sym(q) denotes all
distinct terms arising from permuting indices.

To investigate the inner product of STF tensor Eq.(A.2) is useful to dis-
cuss a spherical harmonics. For any tensor AL, and any STF tensor B⟨L⟩,
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the product of these tensor indicates

ALB
⟨L⟩ = A⟨L⟩B

⟨L⟩, (A.3)

where A⟨L⟩ is the STF tensor obtained from AL by complete symmetrization
and removal of all trace. Then we have

n′
⟨L⟩n

⟨L⟩ = n′
Ln

⟨L⟩,

= n′
L

[l/2]∑
p=0

(−1)p
(2l − 2p− 1)!!

(2l − 1)!!

[
δ2PnL−2P + sym(q)

]
,

=

[l/2]∑
p=0

(−1)p
(2l − 2p− 1)!!

(2l − 1)!!

[
µL−2P + sym(q)

]
,

=

[l/2]∑
p=0

(−1)p
l!(2l − 2p− 1)!!

(l − 2p)!(2l − 1)!!(2p)!!
µL−2P ,

=
l!

(2l − 1!!)

1

2l

[l/2]∑
p=0

(−1)p
(2l − 2p)!

(l − 2p)!p!(l − p)!
µL−2P ,

=
l!

(2l − 1)!!
Pl(µ), (A.4)

where µ ≡ n′ · n and Pl(µ) is a Legendre function. When n · n = 1 = µ, the
inner product Eq.(A.4) is

n⟨L⟩n
⟨L⟩ =

l!

(2l − 1)!!
. (A.5)

The inner product whose the number of indices is different from each tensors
can also be established. From Eq.(A.5), we have

njn⟨L⟩n
⟨jL⟩ = n⟨jL⟩n

⟨jL⟩ =
(l + 1)!

(2l + 1)!!
. (A.6)

By multiplying n⟨L⟩ by the both side of Eq.(A.6), we have

njn⟨L⟩n
⟨jL⟩n⟨L⟩ =

(l + 1)!

(2l + 1)!!
n⟨L⟩,

njn
⟨jL⟩ l!

(2l − 1)!!
=

(l + 1)!

(2l + 1)!!
n⟨L⟩,

njn
⟨jL⟩ =

l + 1

2l + 1
n⟨L⟩. (A.7)

88



In the same way, by multiplying n⟨j⟩ by the both side of Eq.(A.6), we have

njn⟨L⟩n
⟨jL⟩nj =

(l + 1)!

(2l + 1)!!
nj

n⟨L⟩n
⟨jL⟩ =

(l + 1)!

(2l + 1)!!
nj. (A.8)

Here, we consider the inner product of STF tensors whose coordinate system
is different respectively such that

n′
⟨L⟩n

⟨jL⟩ = an′j + bnj, (A.9)

where a and b are arbitrary numbers. In the same way deriving the Eq.(A.7)
and Eq.(A.8), we have

n′
⟨L⟩n

⟨jL⟩ = an′j + bnj,

n′
⟨L⟩n

⟨L⟩njnj = (an′j + bnj)nj,

(l + 1)!

(2l + 1)!!
Pl(µ) = (an′j + bnj)nj,

Pl(µ) =
(2l + 1)!!

(l + 1)!
(aµ+ b), (A.10)

and

n′
⟨L⟩n

⟨jL⟩ = an′j + bnj,

n′
⟨jL⟩n

⟨jL⟩ = (an′j + bnj)n′
j,

(l + 1)!

(2l + 1)!!
Pl+1(µ) = (an′j + bnj)n′

j,

Pl+1(µ) =
(2l + 1)!!

(l + 1)!
(a+ bµ). (A.11)

Since the derivation of the Legendre function is

dPl(µ)

dµ
=

l

µ2 − 1
[µPl(µ)− Pl−1(µ)] , (A.12)

the arbitrary number a and b are

a =
l!

(2l + 1)!!

1

l + 1

l + 1

µ2 − 1
[µPl(µ)− Pl+1(µ)] ,

= − l!

(2l + 1)!!

dPl(µ)

dµ
, (A.13)
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and

b =
l!

(2l + 1)!!

1

l + 1

l + 1

µ2 − 1
[µPl+1(µ)− Pl(µ)] ,

=
l!

(2l + 1)!!

dPl+1(µ)

dµ
. (A.14)

Finally, we obtain

n′
⟨L⟩n

⟨jL⟩ =
l!

(2l + 1)!!

[
dPl+1(µ)

dµ
nj − dPl(µ)

dµ
n′j
]
. (A.15)

Next, we wee the method to express a spherical harmonics represented by
STF tensor. Here, we consider the arbitrary scalar field denoted by Ψ such
as

Ψ = A⟨L⟩
x⟨L⟩

rl
, (A.16)

where A⟨L⟩ is arbitrary STF tensor and the unit vector is nj = xj/r. The
derivative of the Eq.(A.16) is

∂jΨ = A⟨L⟩∂j
xL

rl
,

= lA⟨jL−1⟩
xL−1

rl
− lA⟨L⟩

xL

rl+1
nj. (A.17)

Then we also have

∆Ψ = ∂j∂
jΨ = l(l − 1)A⟨jjL−2⟩

xL−2

rl
− 2l2A⟨jL−1⟩

xL−1

rl+1
nj

+ l(l + 1)A⟨L⟩
xL−1

rl+2
− 2lA⟨L⟩

xL

rl+2
,

= −l(l + 1)Ψ/r2. (A.18)

Since A⟨L⟩ is arbitrary STF tensor, we obtain the eigenvalue of the STF
tensor such that

r2∆n⟨L⟩ = −l(l + 1)n⟨L⟩. (A.19)

The eigenvalue of the STF tensor satisfies the same one of the spherical
harmonics, we can define the STF tensor by using a spherical harmonics
such that

n⟨L⟩ ≡ Nl

l∑
m=−l

Y⟨L⟩∗
lm Ylm(θ, ϕ), Nl ≡

4πl!

(2l + 1)!!
, (A.20)
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where Y⟨L⟩∗
lm is a constant STF tensor which satisfies Y⟨L⟩

lm = Y⟨L⟩∗
l,−m. The

orthogonal property of the spherical function∫
Y ∗
l′m′(θ, ϕ)Ylm(θ, ϕ)dΩ = δl′lδm′m, (A.21)

allows us to evaluate the constant STF tensor such that

Y⟨L⟩∗
lm =

1

Nl

∫
n⟨L⟩Y ∗

lm(θ, ϕ)dΩ. (A.22)

Furthermore, since a Legendre function can be expressed by using a spherical
harmonics such that

Pl(µ) =
m∑

l=−m

4π

2l + 1
Y ∗
lm(θ

′, ϕ′)Ylm(θ, ϕ), (A.23)

and Eq.(A.4) provides the inner product of the STF tensor, we finally obtain

Y⟨L⟩∗
lm n′

⟨L⟩ =
1

Nl

∫
n⟨L⟩n′

⟨L⟩Y
∗
lm(θ, ϕ)dΩ

=
2l + 1

4π

∫
Pl(µ)Y

∗
lm(θ, ϕ)dΩ

=

∫ m∑
l=−m

4π

2l + 1
Y ∗
lm(θ

′, ϕ′)Ylm(θ, ϕ)Y
∗
lm(θ, ϕ)dΩ

= Y ∗
lm(θ, ϕ). (A.24)
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Appendix B

Gaussian noise

In this appendix, we introduce the method to describe the gaussian noise by
using stationary time-series data x(t). we refer to [29] and [30] to describe
the details of the section.

We suppose that the time-series data x(t) is stationary random process,
which is the statistical properties that the random process don’t change with
time. We define the ensemble average of the time-series such that

⟨x⟩ ≡
∫

xpx(x)dx, (B.1)

where px(x) is the probability distribution function of x. Because the time-
series x(x) which is a random process doesn’t have the correlation between
the data of the another frequency, we can define the power spectral density
of the stationary random process Sx(f) such that

⟨x̃∗(f)x̃(f ′)⟩ ≡ 1

2
Sx(f)δ(f − f ′), (B.2)

where x̃(f) is the Fourier transform of x(t). Because of the reality of x(t),
negative frequency components are related to positive frequency components
such that x̃(−f) = x̃∗(f). The symmetricity of the power spectral density
with respect to the frequency provides Sx(−f) = S∗

x(f). Then, the variance
of the time-series data x(t) can be expressed by using the definition of the
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power spectral density such as

⟨x(t)2⟩ = ⟨x(t = 0)2⟩,

=

∫ ∞

−∞
dfdf ′⟨x̃∗(f)x̃(f ′)⟩,

=
1

2

∫ ∞

−∞
dfSx(f),

=

∫ ∞

0

dfSx(f). (B.3)

Furthermore, the definition of the delta function

δ(f = 0) →

[∫ T/2

−T/2

dtei2πft

] ∣∣∣∣∣
f=0

= T (B.4)

provides the method to describe the expression of the power spectral density
by substituting Eq.(B.4) for Eq.(B.2):

⟨|x̃(f)|⟩ =
1

2
Sx(f)T, (B.5)

Sx(f) = 2∆f⟨|x̃(f)|⟩, (B.6)

where ∆f = 1/T .
Since the random process of time is ergodic, we have

⟨x⟩ = lim
T→∞

1

T

∫ T/2

−T/2

x(t)dt. (B.7)

By substituting Eq.(B.7) for Eq.(B.6), we obtain the power spectral density
with respect to time:

Sx(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ T/2

−T/2

x(t)e−2πiftdt

∣∣∣∣∣
2

. (B.8)

Here, we define the autocorrelation function such as

Rx(τ) ≡ ⟨x(t)x(t+ τ)⟩, (B.9)

and Wiener–Khinchin theorem provides

Sx(f) = 2

∫ ∞

−∞
Rx(τ)e

−2πifτdτ. (B.10)
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Now we consider the discrete time-series data xj ≡ x(j∆t), where ∆t is
the interval of the discrete time and N = T/∆t samples contain the discrete
time-series data, where T is a integral time. Since the probability density
distribution of the discrete-time series px(xj) is gaussian with the variance
σ2, it can be expressed by

px(xj) =

(
1√
2πσ

)N

exp

[
− 1

2σ2

N−1∑
j=0

x2
j

]
. (B.11)

The approximation of the Fourier transformation

lim
∆t→∞

N−1∑
j=0

x2
j =

∫ T

0

x2(t)dt ∼
∫ ∞

−∞
|x̃(f)|2df (B.12)

is valid when the integral time T is sufficiently long. Furthermore, the auto-
correlation function can be described by using Kronecker delta

Rij = ⟨xixj⟩ = σ2δij. (B.13)

By substituting Eq.(B.13) for Eq.(B.10), we obtain

Sx(f) = lim
∆t→0

2σ2∆t. (B.14)

In summarize, the gaussian distribution of the discrete time-series data can
be described as

lim
∆t→0

exp

[
−
∑N−1

j=0 x2
j

2σ2

]
= lim

∆t→0
exp

[
−
∑N−1

j=0 x2
j∆t

2σ2∆t

]
,

= exp

[
− 1

Sx

∫ T

0

x(t)2dt

]
,

∼ exp

[
−1

2
4

∫ ∞

0

|x̃(f)|2

Sx

df

]
. (B.15)

So the proportional relation of the probability density distribution of the
stationary time-series data with random process is approximated by

px[x(t)] ∝ exp

[
−1

2
4

∫ ∞

0

|x̃(f)|2

Sx

df

]
, (B.16)
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which also indicates the probability density distribution of the gaussian.
Here, we define the inner product (a, b) between two arbitrary time-series
data a(t) and b(t) such as.

(a, b) ≡ 4Re

∫ ∞

0

ã∗(f)b̃(f)

S(f)
df, (B.17)

where S(f) is a one-sided power spectral density which contains the total
power of the signal in the frequency interval to half of the Nyquist rate.
Eq.(B.16) provides the probability density distribution of the gaussian such
as

px[x(t)] ∝ e−(x,x)/2. (B.18)
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Appendix C

Spectral theory and Hilbert
space

The construction of the theory of Regularization method is based on a Hilbert
space and its applications. I introduce some definitions and theorems of a
Hilbert space which is important for a regularization method theory briefly
in this appendix. I refer to [62] [63] [55] [26] [64] [65] and [66] to show the
definitions and theorems.

C.1 Definition of a Hilbert space

First, we introduce the simple definition of a Hilbert space and related spaces
of the Hilbert space.

Definition C.1.1. Normed space
A function x 7→ ∥x∥ from a vector space E into R is called a norm if it

satisfies the following conditions:

1. ∥x∥ = 0 implies x = 0;

2. ∥λx∥ = |λ|∥x∥ for every x ∈ E and λ ∈ R or λ ∈ C;

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for every x, y ∈ E;

A vector space with a norm is called a normed space.

Definition C.1.2. Inner product space
Let E be a complex vector space. A mapping ⟨·, ·⟩ : E ×E → C is called

an inner product in E if for any x, y, z ∈ E and α, β ∈ C, the following
conditions are satisfied:
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1. ⟨x, y⟩ = ⟨y, x⟩;

2. ⟨αx+ βy, z⟩ = α ⟨x, z⟩+ β ⟨y, z⟩;

3. ⟨x, x⟩ ≥ 0;

4. ⟨x, x⟩ = 0 implies x = 0;

A vector space with an inner product is called an inner product space.

A normed space and inner product space can be related with the following
definition:

Definition C.1.3. Norm in an inner product space
In an inner product space E and the vector x ∈ E, the norm induced by

the inner product on E, denoted by ∥x∥, is the nonnegative real number as
defined by

∥x∥ =
√

⟨x, x⟩. (C.1)

The validity of the definition can indicate simply. The first and second
conditions of the Definition.C.1.1 is trivial. The third condition means the
Triangle inequality which also holds the inner product space[62]. Then we
can say that every inner product space is a normed space defined by Defini-
tion.C.1.3. More useful definitions of the construction of a Hilbert space is
about the completeness:

Definition C.1.4. Cauchy sequence in norm
A sequence of vectors (xn) in a normed space is called a Cauchy sequence

if for every ϵ > 0, thereexists a number M such that ∥xm − xn∥ < ϵ for all
m,n > M .

Definition C.1.5. Completeness and a Banach space
A normed space E is called complete if every Cauchy sequence in E

converges to an element of E. A complete normed space is called a Banach
space.

By using above discussions, we can define a Hilbert space as a following:

Definition C.1.6. Hilbert space
A complete inner product space denoted by H is called a Hilbert space.

The notable properties of a Hilbert space will be introduced by the below
sections.

97



C.2 Spectral theorem for compact, self-adjoint

operator

A compact self-adjoint operators in H are of special interest since it can
be construct an eigensystem of the operators and allows us to obtain the
fundamental theory for a Spectral theory.

Definition C.2.1. Compact operator
An operator A on a Hilbert space H is called a compact operator if, for

every bounded sequence (xn) in H, the sequence (Axn) contains a convergent
sequence

Lemma C.2.2. Let T be a self-adjoint operator on a Hilbert space H, then

∥T∥ = sup
∥x∥=1

|⟨Tx, x⟩| . (C.2)

Proof. Let
M = sup

∥x∥=1

|⟨Tx, x⟩| . (C.3)

Now suppose ∥x∥ = 1, then

|⟨Tx, x⟩| ≤ ∥T∥∥x∥∥x∥ = ∥T∥. (C.4)

Thus
M ≤ ∥T∥. (C.5)

On the other hand, for all x, y ∈ H, we have

⟨T (x+ z), x+ z⟩ − ⟨T (x− z), x− z⟩ = 4Re ⟨Tx, z⟩ (C.6)

Therefore,

Re ⟨Tx, z⟩ ≤ M

4

(
∥x+ z∥2 + ∥x− z∥2

)
=

M

2

(
∥x∥2 + ∥z∥2

)
. (C.7)

Now suppose ∥x∥ = 1 and Tx ̸= 0. Let z = Tx/∥Tx∥, then

Re ⟨Tx, z⟩ = ∥Tx∥ ≤ M. (C.8)

By Eq.(C.5) and Eq.(C.8), we have the desired result.

The existence of at least one nonzero eigenvalues for compact, self-adjoint
operator on Hilbert space is guaranteed by following lemma.
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Lemma C.2.3. If A is a compact, self-adjoint operator on a Hilbert space,
then at least one of the numbers ∥A∥ or −∥A∥ is an eigenvalue of A

Proof. A = 0 is a trivial case. then assume that A is a non-zero, compact,
self-adjoint operator on a Hilbert spaceH. Because of ∥A∥ = sup∥x∥=1 |⟨Ax, x⟩|,
there exists a sequence {xn ∈ H|∥xn∥ = 1, |⟨Ax, x⟩| → ∥A∥ as n → ∞}.
Here, let λ be a eigenvalue of the operator such as Ax = λx. It can translate
to ⟨Ax, x⟩ = λ ⟨(⟩x, x), then without loss of generality, we can assume that
⟨Axn, xn⟩ → λ. For every n ∈ N, we have

∥Axn − λxn∥2 ≤ ∥A∥2 − 2λ ⟨Axn, xn⟩+ λ2

= 2λ(λ− ⟨Axn, xn⟩) → 0. (C.9)

Thus
Axn − λxn → 0 as n → ∞. (C.10)

Compactness of A implies the sequence (xn) has a subsequence (xpn) such
that the sequence (Axpn) converges. It follows that there exist u ∈ H such
that xpn → u. Then we obtain the linear equation such that Au = λu and
we have the desired result.

Next Corollary gives us a useful way to find the eigenvalue by maximizing
a quadratic expression.

Corollary C.2.4. If A is a compact, self-adjoint operator on a Hilbert space,
H, then there exists a vector w ∈ H such that ∥w∥ = 1 and

|⟨Aw,w⟩| = sup
∥x∥≤1

|⟨Ax, x⟩| . (C.11)

Proof. Let w be an eigenvector corresponding to an eigenvalue λ such that
δ = ∥A∥. By lemma.C.2.2, we obtain

|⟨Aw,w⟩| = |⟨λw,w⟩| = λ = ∥A∥ = sup
∥x∥≤1

|⟨Ax, x⟩| . (C.12)

Theorem C.2.5. Hilbert-Schmidt theorem
For every compact, self-adjoint operator A on an infinite-dimensional

Hilbert space H, there exist an orthonormal system of eigenvectors (un) cor-
responding to nonzero eigenvalues (λn) such that every element x ∈ H has a
unique representation in the form

x =
∞∑
n=1

αnun + v, (C.13)

where αn ∈ C and v ∈ N (A).
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Proof. By Lemma.C.2.3 and Corollary.C.2.4, there exists an eigenvalue λ1 of
A such that

|λ1| = sup
∥x∥≤1

|⟨Ax, x⟩| . (C.14)

Let u1 be a normalized eigenvector corresponding to λ1 and

Q1 = {x ∈ H|x ⊥ u1} . (C.15)

Q1 is a closed linear subspace of H so that if x ∈ Q, then Ax ∈ Q1

because of
⟨Ax, u⟩ = ⟨x,Au⟩ = λ1 ⟨x, u⟩ = 0. (C.16)

Therefore, we can say that the A maps the Hilbert space Q1 into itself.
It implies that the other eigenvalue λ2 of A can be given by

|λ2| =

{
sup
∥x∥≤1

|⟨Ax, x⟩| |x ∈ Q1

}
. (C.17)

Let u2 be a normalized eigenvector corresponding to λ2 and it is clear
that u1 ⊥ u2, then we set

Q2 = {x ∈ Q1|x ⊥ u2} . (C.18)

and repeat the above argument. Having eigenvalues λ1 · · ·λn and correspond-
ing eigenvectors u1 · · ·un, we set

Qn = {x ∈ Qn−1|x ⊥ un} . (C.19)

Suppose that there is a k ∈ N such that ⟨Ax, x⟩ = 0 for every x ∈ Qk. Then
every element x ∈ H has a unique representation given by

x =
k∑

n=1

αnun + v, (C.20)

whrere Av = 0 and

Ax =
k∑

n=1

αnλnun, (C.21)

which is the desired representation as a case of a finite elements.
Suppose that the described procedure yields an infinite sequence of eigen-

values (λn) and eigenvectors un. Let S be the closed space spanned by the
eigenvectors such that

S =

{
∞∑
n=1

αnun|
∞∑
n=1

∥αn∥2 < 0

}
. (C.22)
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Every x ∈ H has a unique decomposition

x =
∞∑
n=1

αnun + v, (C.23)

where v ∈ S⊥.
Let

{
v ∈ S⊥|v ̸= 0

}
and we set w = v/∥v∥. Then we obtain ⟨Av, v⟩ =

∥v∥2 ⟨Aw,w⟩.
Since w ∈ S⊥ ⊂ Qn for every n ∈ N, we have

|⟨Av, v⟩| = ∥v∥2 ∥⟨Aw,w⟩∥ ≤ ∥v∥2
{

sup
∥x∥≤1

|⟨Ax, x⟩| |x ∈ Qn

}
= ∥v∥2 |λn+1| → 0. (C.24)

This implies ⟨Av, v⟩ = 0 for every v ∈ S⊥. The norm of A restricted to S⊥

is 0 by Lemma.C.2.3, then Av = 0 for all v ∈ S⊥.

This theorem leads to a important representation of a eigensystem of a
Hilbert space.

Corollary C.2.6. Spectral theorem for compact self-adjoint operators
Let A be a compact, self-adjoint operator on an infinite-dimensional Hilbert

space H. Then H has a complete orthonormal system {u1, u2, · · · } consisting
of A eigenvector of A. Moreover, for every x ∈ H,

Ax =
∞∑
n=1

λn ⟨x, un⟩un, (C.25)

whrere λn is the eigenvalue corresponding to un

Proof. Eq.(C.13) implies that

⟨x, um⟩ =

⟨
∞∑
n=1

αnun, um

⟩
+ ⟨v, um⟩ = αm, (C.26)

where n ̸= m. Since Eq.(C.13), Eq.(C.26) and Av = 0, we have the desired
result.

Polynomials of the operator can also be represented by using these dis-
cussion.
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Corollary C.2.7. Let A be a compact, self-adjoint operator on an infinite-
dimensional Hilbert space H. For any polynomial p(t) = αnt

n, we have

p(A)x =
∞∑
n=1

p(λn) ⟨x, un⟩un, (C.27)

whrere λn is the eigenvalue corresponding to a complete orthonormal vector
un.

Proof. From Eq.(C.25), A2x is calculated as

A2x = A(Ax) =
∞∑

m=1

λm

⟨
∞∑
n=1

λn ⟨x, un⟩un, um

⟩
um =

∞∑
n=1

λ2
n ⟨x, un⟩un.

(C.28)
Similarly, for any k ∈ N, we have

Akx =
∞∑
n=1

λk
n ⟨x, un⟩un. (C.29)

Therefore we have the desired result.

This method can be generalized as a following definition:

Definition C.2.8. continuous function of an operator
Let f be a continuous function on R such that

f(λ) → 0 as λ → 0, (C.30)

f(0) = 0. (C.31)

For a compact, self-adjoint operator A, we define

f(A)x =
∞∑
n=1

f(λn) ⟨x, un⟩un, (C.32)

where the symbols are as in Corollary.C.2.6.

It is convenient that we construct the eigensystem of the compact, non-
self-adjoint(say, adjoint), linear operator of a Hilbert space.

Definition C.2.9. A singular system
Let X ,Y be subspaces of a Hilbert space H and let K : X → Y is a

compact adjoint linear operator on Hilbert space. If K∗ : Y → X is a adjoint
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of the operator, then the operators K∗K : X → X and KK∗ : Y → Y are
compact, self-adjoint linear operators. Let an orthonormal system (vn) be
an eigenvectors of the operator K∗K corresponding to nonzero eigenvalues
(σ2

n). We define the orthonormal system (un)

un ≡ Kvn
∥Kvn∥

, (C.33)

corresponding to an eigenvector of the operators KK∗. In these statement,
the tuple of (σn, vn, nn) is called a singular system and a following equations
hold:

Kvn = σnun (C.34)

K∗un = σnvn (C.35)

As a analogies of the Corollary.C.2.6, the eigensystem of these adjoint
operators can be expanded as a decomposition.

Theorem C.2.10. Singular value expansion
Let X ,Y be subspaces of a Hilbert space H and x ∈ X , y ∈ Y be a element

of these subspaces. Let K : X → Y be a compact adjoint linear operator on
Hilbert space and K∗ : Y → X be a adjoint of the operator. If the operator
has a singular system (σn, vn, un),

Kx =
∞∑
n=1

σn ⟨x, vn⟩un (C.36)

K∗y =
∞∑
n=1

σn ⟨y, un⟩ vn (C.37)

are hold for every elements x and y.

This is a trivial result by using Definition.C.2.9
The construction of the singular value expansion is also applied to a M-P

inverse operator defined as Sec.4.2. This expression is very important for a
regularization method because to express an arbitrary inverse operator as a
function of a singular system allows us to calculate the amount of the error
easily.

Lemma C.2.11. Let (σn, vn, un) be a singular system for the compact linear
operator K and y ∈ Y is in a Hilbert space. Then we have

y ∈ D(K†) ⇐⇒
∞∑
n=1

⟨y, un⟩2

σ2
n

< ∞. (C.38)
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Proof. Let Q be a orthogonal projector onto R(K). Now we have y ∈
D†(K) = R(K)+R(K)⊥, then Qy ∈ R(K). From Eq.(C.37) and Eq.(C.34),
the (un) span R(KK∗) = R(K). Since Qy ∈ R(K), the expression of the Q
as a singular system is given by

Q =
∞∑
n=1

⟨·, un⟩un. (C.39)

From Eq.(C.39) and Eq.(C.36), we have QKx = Kx and also haveKx = Qy.
Then

Kx =
∞∑
n=1

σn ⟨x, vn⟩un =
∞∑
n=1

⟨y, un⟩un. (C.40)

Therefore, for all n ∈ N,

⟨y, un⟩ = σn ⟨x, vn⟩ (C.41)

holds. Since the operator K is compact, the coefficient of the singular
value expansion σn ⟨x, vn⟩ must be finite and ⟨y, un⟩ is also finite. Then∑∞

n=1 ⟨y, un⟩2 /σ2
n < ∞ holds.

Conversely, assume that
∑∞

n=1 ⟨y, un⟩2 /σ2
n < ∞ holds. From the Riesz-

Fischer Theorem[65][63], we have

x ≡
∞∑
n=1

⟨y, un⟩
σn

vn ∈ X . (C.42)

Then we have

Kx =
∞∑
n=1

⟨y, un⟩ vn = Qy, (C.43)

where Qy ∈ R(K) and hence y ∈ D(K†).

Theorem C.2.12. Let (σn, vn, un) be a singular system for the compact lin-
ear operator K and y ∈ Y is in a Hilbert space. Then for all y ∈ D(K†), we
have

K†y =
∞∑
n=1

⟨y, un⟩
σn

vn. (C.44)

Proof. Since the (vn) span R(K∗) = N (K)⊥ as a analogue of (un), then,
from Eq.(4.6), x ∈ N (K)⊥ = R(K∗). From Eq.(4.14) and Eq.(4.15),

{x ∈ X |Kz = Qy} = K†y +N (K). (C.45)

Since x lies in N (K)⊥, we have the desired result.
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C.3 Spectral theory

We have shown that using a self-adjoint operator in a Hilbert space is critical
since it can be represented by a singular system. Next, we discuss that how
does such a self-adjoint operator and a singular system respond when we
apply them to a continuous function.

First, we define the notations of the orthogonal projectors:

Definition C.3.1. A spectral family
A family (Eλ) of orthogonal projectors in X is called a spectral family if

it satisfies the following conditions:

1. EλEµ = Emin{λ,µ}, λ, µ ∈ R;

2. E−∞ = 0, E+∞ = I;

3. Eλ−0 = Eλ, where Eλ−0x = limϵ→0+ Eλ−ϵ.

Projection operators in a Hilbert space have useful properties as a follow-
ing:

Theorem C.3.2. A bounded operator P is a projection iff it is idempotent
and self-adjoint P = P ∗ = P 2.

Proof. Let P be a projection operator on a subspace S in a Hilbert space H,
P⊥ be a projection operator on a subspace S⊥ in a Hilbert space and x, y be
arbitrary vectors. Since Px ∈ S, then we have

P 2x = P (Px) = Px. (C.46)

And since
⟨
Pf, P⊥g

⟩
=
⟨
P⊥f, Pg

⟩
= 0, then

⟨Px, y⟩ =
⟨
Px, (P + P⊥)y

⟩
= ⟨Px, Py⟩ =

⟨
(P + P⊥)x, Py

⟩
= ⟨x, Py⟩ .

(C.47)
which proves

P = P ∗ = P 2. (C.48)

Conversely, suppose Eq.(C.48). Define

S = {x ∈ H|Px = x} . (C.49)

Since for any sequence xn ⊂ S converses to a vector x = limn→∞ xn ∈ S,
then

Px = lim
n→∞

Pxn = lim
n→∞

xn = x ∈ S. (C.50)
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so P is bounded operator. To prove P is the projection onto S, we need to
show that Px ∈ S and x− Px ∈ S⊥. The first statement is obvious since P
is idempotent. The next statement is shown by a following equation:

⟨x− Px, z⟩ = ⟨x, z⟩ − ⟨Px, z⟩ = ⟨x, z⟩ − ⟨x, Pz⟩ = 0, (C.51)

where z ∈ S.

Corollary C.3.3. If P is a projection operator on a Hilbert space H, then
⟨Px, x⟩ = ∥Px∥2 for all x ∈ H.

Proof. From Theorem.C.3.2, we have

⟨Px, x⟩ = ⟨PPx, x⟩ = ⟨Px, Px⟩ = ∥Px∥2. (C.52)

By using these statements can define an integral with respect to a spectral
theory.

Theorem C.3.4. A spectral theorem for bounded, self-adjoint operators
Let f : R → R be a continuous function and A be a bounded, self-adjoint

operator. For every ϵ > 0 there exist δ > 0 such that

∥f(A)−
n∑

i=1

f(ξi)(Eλi
− Eλi−1

)∥ ≤ ϵI, (C.53)

where

λ0 < α1 = λ1 < · · · < λn−1 < λn = α2, (C.54)

λi − λi−1 ≤ δ for 1 ≤ i ≤ n, (C.55)

ξi ∈ (λi−1, λi] for 1 ≤ i ≤ n. (C.56)

In other words, we have a Riemann-Stieltjes type integral of a spectral
family:

f(A) =

∫ α2

α1−0

f(λ)dEλ. (C.57)

Proof. From the statement, for every ϵ > 0, there exists δ > 0 such that

|f(ξ)− f(η)| ≤ ϵ, (C.58)
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where ξ, η ∈ [α1 − θ : α2], θ > 0 and |ξ − η| ≤ δ. We split the interval
[α1 − θ : α2] such that

α1 − θ = λ0 < λ1 < · · · < λn−1 < λn = α2 (C.59)

, choose any subdivision

max{λi − λi−1|1 ≤ i ≤ n} ≤ δ (C.60)

and choose any real number ξ′i ∈ [λi − λi−1]. We obtain

|f(ξ)− f(ξ′i)| ≤ ϵ for ξ ∈ [λi−1, λi] , 1 ≤ i ≤ n, (C.61)

f(ξ′i)
[
fλi

(ξ)− fλi−1
(ξ)
]
=

{
f(ξ′i) for ξ ∈ (λi−1, λi],

0 for ξ /∈ (λi−1, λi],
(C.62)

where f(x)k is a step function defined by

fk(x) =

{
1 for −∞ < x ≤ k,

0 for k < x < ∞.
(C.63)

From Eq.(C.61) to Eq.(C.63), we have∣∣∣∣∣f(ξ)−
n∑

i=1

f(ξ′i)
[
fλi

(ξ)− fλi−1
(ξ)
]∣∣∣∣∣ ≤ ϵ for ξ ∈ (α1 − θ, α2]. (C.64)

The difference of the step function of a bounded operator A such that fk(A)−
fl(A) is a projection operator since it is idempotent and self-adjoint (see
Lemma.C.3.3). Therefore Eq.(C.64) for a bounded operatorA can be denoted
by ∥∥∥∥∥f(A)−

n∑
i=1

f(ξ′i)
(
Eλi

− Eλi−1

)∥∥∥∥∥ ≤ ϵI. (C.65)

The finite range of the integral can be extended to the infinity one as a
following definition:

Definition C.3.5. For any given x ∈ X and any continuous function f on
R, the integral ∫ ∞

−∞
f(λ)dEλx (C.66)

is defined as the limit in X , if it exists, of
∫ α2

α1−0
f(λ)dEλx when α2 → ∞ and

α1 → −∞.
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The condition that there is able to exist Eq.(C.66) can be shown by the
next theorem.

Theorem C.3.6. For x ∈ X and a continuous function f on R, the following
conditions are equivalent: ∫ ∞

−∞
f(λ)dEλx exists, (C.67)∫ ∞

−∞
f 2(λ)d∥Eλx∥2 < +∞. (C.68)

Proof. Eq.(C.67)⇒ Eq.(C.68):
Let y ∈ Y and Y be in a Hilbert space. Since the spectral family Eλ is an

orthogonal projection operator and fulfills Eq.(C.48), the product of y with
Eq.(C.67) is as following form:∫ ∞

−∞
f(λ)d ⟨y, Eλx⟩ =

∫ ∞

−∞
f(λ)d ⟨Eλy, x⟩ . (C.69)

Here, we define

y 7→ F (y) ≡
∫ ∞

−∞
f(λ)d ⟨Eλy, x⟩ , (C.70)

where y ∈ Y is on a Hilbert space. For each y, we have

∥F (y)∥ ≤ ∥
∫ ∞

−∞
f(λ)dEλx∥∥y∥. (C.71)

From the assumption, there exist
∫∞
−∞ f(λ)dEλx finitely. Therefore, we have

the constant value M such that

∥F (y)∥ ≤ M∥y∥. (C.72)

In virtue of the Uniform Boundedness principle[54], F (y) is uniformly bounded
and then this is a continuous linear form[67].

Suppose that y =
∫ β

α
f ∗(λ)dEλx. By definition of the spectral family,

(Eβ − Eα) y =
n∑

i=1

f(ξ′i)(Eλi
− Eλi−1

)−
n∑

i=1

f(ξ′i)(Eα − Eα),

= y. (C.73)
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By substituting Eq.(C.73) into the conjugate, we have

F ∗(y) = lim
α′→−∞

lim
β′→∞

∫ β′

α′
f ∗(λ)d ⟨Eλx, y⟩ ,

= lim
α′→−∞

lim
β′→∞

∫ β′

α′
f ∗(λ)d ⟨Eλx, (Eβ − Eα) y⟩ ,

= lim
α′→−∞

lim
β′→∞

∫ β′

α′
f ∗(λ)d ⟨(Eβ − Eα)Eλx, y⟩ ,

=

∫ β

α

f ∗(λ)d ⟨Eλx, y⟩ = ∥y∥2. (C.74)

Since F (y) is a linear form, we have ∥y∥2 ≤ ∥F∥∥y∥[65] and

∥y∥ ≤ ∥F∥ < +∞. (C.75)

Furthermore,

∥y∥2 =
∣∣∣∣∫ β

α

f ∗(λ)dEλx

∣∣∣∣ = ∫ β

α

|f(λ)| d∥Eλx∥2, (C.76)

then we have ∫ β

α

|f(λ)| d∥Eλx∥2 ≤ ∥F∥2 < +∞. (C.77)

Letting α → −∞ and β → ∞, we have the desired result.
Eq.(C.68)⇒Eq.(C.67): For α′ < α < β < β′, we have∥∥∥∥∥
∫ β′

α′
f ∗(λ)dEλx−

∫ β

α

f ∗(λ)dEλx

∥∥∥∥∥
2

=

∫ α′

α

|f(λ)| d∥Eλx∥2+
∫ β′

β

|f(λ)| d∥Eλx∥2,

(C.78)
then we have the desired result.

From these theorems and definitions, we can define the functional self-
adjoint operator for the spectral theory represented by integral with an infi-
nite range:

Definition C.3.7. Spectral theory represented by integral
Let A be a self-adjoint operator in the subspace of a Hilbert space X

with spectral family {Eλ}and let f be piecewise continuous functions for all
x ∈ X . Then f(A) is the operator defined by

f(A)x =

∫ ∞

−∞
f(λ)dEλx, x ∈ D(f(A)), (C.79)
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where

D(f(A)) =

{
x ∈ X |

∫ ∞

−∞
f 2(λ)d∥Eλx∥2 < +∞

}
. (C.80)

To compare the equation between Eq.(C.32) and Eq.(C.67), we conclude
that

∫ ∞

−∞
f(λ)dEλx =

∞∑
n=1

f(σ2
n)⟨x, vn⟩vn, (C.81)∫ ∞

−∞
f(λ)d⟨Eλx, y⟩ =

∞∑
n=1

f(σ2
n)⟨x, vn⟩⟨y, vn⟩, (C.82)∫ ∞

−∞
f(λ)d∥Eλx∥2 =

∞∑
n=1

f(σ2
n)|⟨x, vn⟩|2 (C.83)

for a compact, self-adjoint operator.
Here, we introduce some useful applications of the spectral theory.

Theorem C.3.8. Let X ,Y be subspaces of a Hilbert space, K : X → Y
be an adjoint linear operator on Hilbert space, K∗ : Y → X be an adjoint
of the operator K, and f be the continuous function for operator defined by
Definition.C.3.7. Then we have

f(K∗K)K∗ = K∗f(KK∗). (C.84)

Proof. We define the polynomial of the self-adjoint operator

p(K∗K) ≡
n∑

k=0

ak(K
∗K)k. (C.85)

Since the operator K is adjoint, then we have

K∗(KK∗)k = (K∗(KK∗)k)∗ = (KK∗)kK. (C.86)

for all k ∈ N. From Eq.(C.86) and Eq.(C.85), we obtain

K∗p(KK∗) =
n∑

k=0

akK
∗(KK∗)k =

n∑
k=0

ak(KK∗)kK = p(KK∗)K. (C.87)

Since a polynomial function is continuous at every point, we have the desired
result.
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