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Abstract

Thanks to the improvement of techniques to produce the unstable nuclei far from
the valley of stability, the erosion of the well-established magic numbers and emergence
of new ones in the atomic nuclei have been observed. In the neutron-rich nuclei below
48Ca on the nuclear chart, the neutron shell gap at N = 28 has been found to be
reduced and especially on 44S and 43S, the shape coexistence and coexistence/mixing
of the different neutron configurations in the wave function has been discussed both
theoretically and experimentally. Unless a number of efforts about the macroscopic
nuclear system, however, the microscopic information about the neutron configuration
of these nuclei has been unknown, which keeps the mechanism of the disappearance
of the N = 28 magic number and the emergence of the deformed state in this region
unclear.

To solve this problem, an in-beam γ-ray spectroscopy utilizing the one-neutron
knockout reaction from 44S to 43S was performed in this thesis work. This reaction
channel can selectively populate the neutron single-hole state and the excitation en-
ergies and cross sections of final states populated in this reaction reflect the evolution
of the neutron single-particle orbits. One of the specific problem about these nuclei is
that there is a low-lying isomeric state in 43S which makes it difficult to distinguish if
observed prompt γ-rays decay directly to the ground state or to this isomeric state.

In the experiment of this thesis work, the secondary beam of 44S, produced by
the accelerator complex of K500 and K1200 and the fragment separator A1900, bom-
barded a 9Be secondary target. The prompt γ-rays emitted from the reaction residue
was detected by the GRETINA array surrounding the target. The reaction residue
passed through the S800 spectrograph where the particle identification and the mea-
surement of the momentum was performed. At the very end of the S800, 32 CsI(Na)
detector array, IsoTagger, was placed and the de-excitation from the isomeric state
was observed.

The full level scheme of 43S was constructed for the first time. By the analysis of
parallel momentum distributions with the eikonal reaction theory, the assignment of
the spin-parity of each final state was performed. The concentration of the strength
of neutron knockout from l = 1 orbit was observed around 1.2 MeV, which is the
direct observation of the quenching of the N = 28 shell gap microscopically. Through
the comparison with the shell model calculations, the discussion about the neutron
configuration in the three possible different bands in 43S was attempted. Also it
was suggested that the stronger cross-shell tensor force can explain the large neutron
occupation beyond N = 28 shell gap like observed in the present work
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Chapter 1

Introduction

1.1 Nuclear structure

The material around us is made of atoms. The idea that an atom consists of negatively-
charged electrons and a nucleus which was proposed by Rutherford [1] based on the
experiments of Geiger and Marsden [2]. Though more than a century has passed since
the discovery of the nucleus, it still remains an interesting subject due to its complex
nature.

The nucleus is made up of protons with positive charge and neutrons without
electric charge, totally called nucleons. They are bound by the strong nuclear force
which is attractive at short distances compensating the electric force which acts in
long range and repulsively between protons. The average binding energy per nucleon
amounts to about 5-10 MeV in almost all nuclei. Although the nucleus carries more
than 99.9% of the mass of the atom, the nucleons are confined to an about 104 smaller
region, a few fermi, compared to atoms which are on the order of Å in size. The nucleus
is therefore a quantum system. Besides a nucleus is a many-body system, nucleons
carry spin 1/2 and obey the Fermi-Dirac statistics, which results in the complex
correlation that two nucleons are not simultaneously in the same state. Additionally,
the nuclear force, a residual effect of the strong interaction between quarks, cannot
be treated in a simple analytic form.

Despite the complexity mentioned above, there are some simple properties of the
structure of the nucleus. Figure 1.1 is the nuclear chart whose X and Y axis correspond
to the neutron number N and proton number Z for each nucleus. In this chart, black
squares correspond to the stable elements. The collection of these elements is called
the valley of stability. In the light mass region, this valley is located along N = Z
line but then goes to more neutron-rich region in the heavier mass region. This can
be understood as the interplay between the short-range nuclear force which favors the
strong proton-neutron combination and the repulsive Coulomb force which decreases
the binding energy of a nucleus with increasing Z. An early attempt to model a nucleus
is the Bethe-Weizsäcker formula for the binding energy based on the liquid drop model
of the nucleus [4]. This model treats the nucleus as a drop of an incompressible fluid of
protons and neutrons, in analogy to a drop of water of H2O molecules. This formula
consists of five terms. The volume term reflects the attractive force in the bulk, which
is proportional to the volume or the number of nucleons A. Besides the Coulomb term
for the repulsive force between protons, the surface term models the tension of the
nuclear surface, which should be proportional to the surface area of the nucleus, A2/3.
Also, it is expected that nuclei with an equal number of protons Z and neutrons N
have a lower energy than that with asymmetric Z and N for a given A = Z + N ,
called as the symmetry energy. Because a staggering of the binding energies between
even and odd Z or N is observed, a pairing term is added and attractive for even Z



2 Chapter 1. Introduction

Figure 1.1: The nuclear chart (element or proton number Z versus
neutron number N). Stable elements (valley of stability)
are shown as black squares. The blue and red areas show
the isotopes that have been experimentally and those that
are predicted but not observed, respectively. Taken from
[3].

and N and repulsive for odd Z and N ,

δ(N,Z) =


aPA

−1/2 odd Z and odd N,

−aPA−1/2 even Z and even N,

0 odd A.

(1.1)

The resulting semi-empirical mass formula is

BE = aVA− aSA
2/3 − aC

Z2

A1/3
− aA

(N − Z)2

A
+ δ. (1.2)

The five parameters in this formula are deduced by fitting to experimental data.
One of the features worth noting is that the binding energies of almost all nuclei

are well reproduced within 10 MeV by this formula and that the binding energy per
nucleon is about 8 MeV almost everywhere on the nuclear chart. In the Figure 1.2,
however, it is clearly visible that nuclei with N = 28, 50, 82, and 126 have larger
binding energies than predicted by Equation (1.2). Note that the same structure is
present at nuclei with N = 2, 8, and 20 but it is difficult to see in this figure. If the
same systematics of binding energies against the proton number is investigated, the
same pattern is apparent. Additionally, nuclei with these special numbers of neutrons
or protons have higher neutron or proton separation energies than the N +1 or Z +1
nucleus, and the first excited state is also located at very high excitation energy.
These particular numbers have been called "magic numbers" and the emergence of
these numbers has been one of the major subjects of nuclear physics research [6].

In the 1930’s constructing the microscopic picture to predict magic numbers was
attempted in the framework of the shell model. The simplest model is the independent
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Figure 1.2: The difference of the binding energy between experiment
and the semi-empirical mass formula as a function of the
neutron number of the nucleus. Taken from [5].

particle model. In this model, the strong nuclear force is treated as a mean field
potential generated by all nucleons and each nucleon is assumed to move independently
in this potential. In the simplest case, the shape of the potential is assumed to
be a harmonic oscillator. It is also known that the nuclear force is of short range,
which leads to the reasonable assumption that the mean field potential can be similar
shape as the density of nucleus. Alternative to the harmonic oscillator is thus the
parameterizations as a Woods-Saxon potential,

V (r) = −V0fWS(r), (1.3)

fWS =
1

1 + e(r−R0)/a0
. (1.4)

Typically, the potential depth is V0 = 50 MeV, the nuclear radius is R0 = 1.25A1/3,
and the diffuseness is a0 = 0.7 fm [7]. By solving the Schrödinger equation for this
potential, each nucleon is filling a single-particle eigenstate, or orbital, characterized
by its discrete energy and quantum numbers n, l, and j, where n is the number of
nodes in the radial part of the wave function of the single nucleon, and l and j denote
the orbital and total angular momentum of the state. The results of calculations with
the harmonic oscillator or the Woods-Saxon potential are shown in the left and the
central panel of Figure 1.3. Note that this simple model can reproduce the magic
numbers up to 20, but it fails for the larger ones.

It was first proposed independently in 1949 by Mayer [8, 9], and Haxel, Jensen,
and Suess [10] that the addition of a strong, attractive, one-body spin-orbit potential
could explain the correct order of orbitals and thus the magic numbers,

VLS = (l · s)VLS
d

dr
fWS(r). (1.5)
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Figure 1.3: Example of the calculation of single-particle orbits. These
calculations are for neutron single-particle states in 208Pb
with three different potentials. Taken from [5].
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This spin-orbit force can be cancelled out from the other nucleons from all directions
completely inside the nucleus, but such kind of cancelation can not exist at the surface
of the nucleus. This is why the potential in Equation (1.5) is surface-peaked. Typically
VLS is chosen about 20 MeV. The result of a calculation of single-particle orbits with
this spin-orbit term is shown in the rightmost of the Figure 1.3, reproducing all magic
numbers, even beyond 28.

Though the spin-orbit term in the mean field can solve the problem of magic
numbers, it is worth noting that the reason for the large spin-orbit coupling remains
an open question. Relativistic mean field theories can predict a strong spin-orbit
splitting but these theories are phenomenological and the magnitude of the parameters
of the potential is deduced by the fitting to the experimental data [11]. In the non-
relativistic framework, spin-orbit term can emerge from various sources and there
may be the cancellation of these sources, leading to the difficult situation to predict
the exact amount of the spin-orbit coupling [12]. This means that investigating the
evolution of the spin-orbit splitting in the different situation, like nuclei with different
mass or N/Z ratio, can shed light to the source of this part of potential.

1.2 The erosion of the N = 28 magic number

Owing to the capability to produce exotic nuclei using accelerator facilities, the dis-
appearance of conventional magic numbers and the emergence of new magic num-
bers have been reported [13]. In addition to the study of the nuclear structure, the
microscopic origin of such kind of structural changes has been in the focus of the
modern nuclear physics research on both the theoretical and experimental sides. In
this section, the disappearance of the N = 28 magic number, the first magic number
originating from the strong spin-orbit interaction, is described as the main subject of
this thesis’ work [14].

Often the first excited state in even-even nuclei is a 2+ state while the ground
state is always 0+ state. As mentioned in the previous section, the excitation energy
of the first excited state of the magic nucleus is higher than that of the mid-shell
nucleus. Complementarily, the reduced E2 transition probability from the 2+ state to
the ground state, B(E2; 2+ → 0+), is a good indicator if the nucleus has a collective
nature or not. This is because a collective state can be considered as a state in which
many particles are excited coherently from the closed core. The B(E2) value of such
kind of state can be 10 or 100 times larger than that of a single-particle excitation. For
a good shell closure, on the other hand, the first excited state is not a the collective
state and the decay to the ground state thus exhibits a small B(E2) value. Figure 1.4
shows the systematics of the E(2+) and B(E2; 0+ → 2+) values for Z = 12 to 20. In
the Ca isotopic chain (Z = 20), it is clearly seen that E(2+) at N = 20 and 28 are very
high compared to those between. The opposite trend can be seen in the B(E2) for
this isotopic chain. Here, 42Ca and 44Ca have a high B(E2) value, which, in contrast,
is quite small at 40Ca and 48Ca. These experimental results show the magicity at
N = 20 and 28 in the Ca isotopes. When the systematic trend of these values along
the isotonic chain is studied, the situation changes drastically. When E(2+) values of
N = 28 isotones are compared with each other, it drops quite drastically in the 46Ar,
two protons less than the doubly-magic 48Ca nucleus. The B(E2) values along the
N = 28 line show a gradual increase up to 44S (note that the value for 42Si has not
been measured yet). All of these results suggest a break down of the N = 28 magic
number.
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Figure 1.4: Experimental E(2+) (left) and B(E2; 0+ → 2+) (right)
in the Z = 12 to 20 isotopic chains against the neutron
number N . Taken from [14].

The microscopic mechanism of such kind of shell quenching has been an intensive
subject of both experimental and theoretical research. In the shell model framework,
the tensor component in the nuclear force which is thought to have a crucial role in
nuclei with asymmetric N/Z ratio, is considered as the source of the reduction of the
gap between f7/2 and p3/2 orbits [15]. More details of the tensor force will be described
in §2.1. Besides the shell quenching of neutron orbits, there can also be a reduction of
the gap between the proton d5/2 and s1/2 orbits, which may be explained by the same
theory of the tensor force. In addition to or triggered by this shell quenching, strong
quadrupole correlations arise, which are induced by nucleons in orbits with an orbital
angular momentum difference of two, ∆l = 2 [15, 16]. This condition is fulfilled for
both the proton and neutron orbits for nuclei around 44S leading to the rich variety
of the features relating to deformation, or shape coexistence for example [17, 18]. For
instance, a rapid shape change of the ground state in the N = 28 isotones is predicted.
Below 48Ca, 44S, 42Si, and 40Mg are thought to have the prolate, oblate, and again
prolate ground state shapes [14]. From the point of view of both the nuclear structure
itself and the mechanism of these structures, 44S and nuclei around it need to be
investigated.

Finally, experimental and theoretical results available in the literature on 44S and
43S, which are the main subjects of this thesis work, are compiled. The erosion of
the N = 28 shell gap was first pointed out by a β-decay experiment [20]. Following
Coulomb excitation [21] and mass measurement [22] experiments also support the
collective nature of this nucleus [14]. In-beam γ-ray spectroscopic studies of 44S [19,
23, 24] revealed the level structure beyond the 2+1 state of this nucleus. One of
the experimental results of this nucleus [19] is shown in Figure 1.5. An interesting
feature is the 4+1 state at 2459 keV [19, 25]. This state can be interpreted as the
K = 4+ isomer studied by the recent life time measurement [25] which can be in
the lightest nucleus among those manifesting high-K isomerism [26]. Besides these
works, the 0+2 state of this nucleus was found at 1365 keV with a 2.6 µs half-life [27,
28] and the monopole strength of the transition between the 0+2 and the ground state
was measured [28] revealing the weak configuration mixing and the possible shape-
coexistence. Compiling these studies, the coexistence of the three different neutron
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Figure 1.5: Level scheme of 44S constructed by [19]. Through the com-
parison with the shell model calculation, the ground state
band (the 0+1 and 2+1 states) is considered to be the 2p2h
neutron intruder configuration with the prolate deforma-
tion, though the 0+2 state is the 0p0h normal configuration
with the spherical shape. The 4+1 state is thought to be
the K = 4+ isomeric state of 1p1h configuration.

configurations, from 0 to 2 particle-hole excitation across the N = 28 shell gap, are
experimentally suggested.

For 43S, less experimental results are available so far. One of the reasons is the
complex level structure of this nucleus due to the isomeric state at 320 keV with about
415 ns half-life[22, 29–31]. From a g-factor measurement of this isomeric state, the
spin-parity of this state was determined as 7/2− and that of the ground state was
inferred to be 3/2− considering the multipolarity of the electro-magnetic transition
indirectly [29]. Through the measurement of the spectroscopic quadrupole moment
of this isomer, this state was found to have rather large moment compared to the
expected neutron single-hole configuration [31]. Also a Coulomb excitation [32] and
a one-neutron knockout reaction [33] experiment were performed. Both of them sug-
gested a collective nature of the deformed ground state but only a few excited states
could be characterized due to the presence of the low-lying isomer. Recently, a life
time measurement of low-lying excited states has been reported and possible three
different band structure with different shapes is suggested [34].

Considering the proton configurations of these nuclei, experiments studying the
one-proton knockout reaction from [35, 36] and to [37] 44S have been performed. In
these works, though the Z = 14 sub-shell closure was confirmed, the degeneracy of
proton d3/2 and s1/2 orbits was suggested.

From the theoretical side, several works attempted to explain the structure of
44S with different shapes or neutron configurations. One of the most intensive works
are the calculations of mean field approach [38–42]. For instance, in a calculation
considering the beyond-mean-field effect, configuration mixing rather than shape co-
existence is thought to occur in 44S [38, 39]. The collective wave function of each
state calculated by [38] is shown in Figure 1.6. The ground state band (the 0+1 and
the 2+1 states) of 44S is predicted as a deformed but γ-soft state, which implies the
mixing of different deformed states, and the second band (the 0+2 and the 2+2 states)
is predicted as prolate deformed. This calculation successfully reproduces the level
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Figure 1.6: 44S wave function of the symmetry conserving configura-
tion mixing calculation plotted in the (β, γ) plane. Taken
from [38]. See text for detail.

scheme of 44S and the monopole strength of the transition between the 0+ states.
Though there are some limitations of the calculation methods and differences of the
calculated results with each other, the deformation of each band structure and the
influence of the configuration mixing are discussed in these works [40–42].

In the shell model framework, calculations with the SDPF-U and SDPF-MU ef-
fective interactions, which will be explained in §2.2.4, suggest a shell quenching at
N = 28 due to the tensor force resulting in the large variety of deformed structures in
44S and 43S. Especially the ground state of 44S is predicted as prolate deformed but
its minimum in the potential energy surface is rather broad implying triaxial defor-
mation [15]. Also the K = 4+ band is reproduced in the calculation with SDPF-MU
interaction [26]. In the calculations with SDPF-U interaction, the proton configura-
tion is predicted to be a 2p2h excitation beyond the Z = 14 sub-shell and a near
degeneracy of the d3/2 and s1/2 orbits is suggested in 44S. For the neutron side, the
2p2h configuration is thought to dominate the wave function of the ground state, re-
sulting in the possible triaxially deformed state [43]. For 43S, this calculation predicts
three band structures [43]. On the ground state which is considered as the axially pro-
late deformed state, a K = 1/2− rotational band is predicted. The isomeric state is
not predicted spherical in shape, which is naively expected if this state is a single-hole
state with a (f7/2)

−1 configuration, but instead a triaxially deformed state. As the
third band, excited states with a neutron 2p2h configuration are predicted constituting
a K = 5/2− rotational band with prolate deformation.

Also, calculations of 43S with the antisymmetrized molecular dynamics (AMD)
framework exist [16]. In this result, the ground state is a prolate deformed state in
the K = 1/2− rotational band and the isomeric state is predicted as a triaxial state
of K = 7/2− band. These features resemble the results of shell model calculations,
but the AMD calculation suggests the third band (K = 3/2−) with oblate shape,
resulting in the coexistence of the three different shapes.

As discussed in the AMD work above and other mean field calculations, nucleon
single particle orbits in the deformed nucleus are discussed. Especially a few works
of the Nilsson models are present to discuss the shape of 43S and the level scheme of
this nucleus as shown in Figure 1.8 [44, 45]. As mentioned in the caption, Figure 1.8
is the calculation for 45S but it can be reasonably assumed that the deformation and
the evolution of neutron single particle orbits of these nuclei resemble with each other.
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Figure 1.7: 43S level scheme of the shell model calculation with the
SDPF-U interaction. Taken from [43]. Filled (empty) ar-
rows are the E2 (M1) transition probabilities in e2fm4

(µ2
N ). Two-dimensional graphics filled with gray boxes

are the wave function components, where neutron (pro-
ton) 0p0h is the left (bottom) of X (Y) axis.

Note that the g-factor measurement work estimate the momentum of inertia of the de-
formed band of 43S and the decoupling parameter by combining its experimental result
and calculations of mean field approach, shell model, and particle rotor model [29].

Besides the nuclear structure of these sulfur isotopes, there are some attempts to
explain the mechanism of the deformation of them microscopically. As mentioned
above, the tensor force has a crucial role [15, 26] but it is pointed out by another
work that central term also has the important contribution to the shell evolution of
N = 28 gap [46]. Other than the shell model approach, the Hartree-Fock calculation
assuming the axial deformation reveals that the tensor force is the possible source
of the deformation in neutron-rich N = 28 isotopes [47]. Some other works of both
relativistic and non-relativistic Hartree-Fock calculations, however, suggest that the
tensor force has only a minor influence on Z or N = 28 gap [48–50].

1.3 Thesis objective and outline

As compiled in the previous section, a rich variety of structural studies related to the
deformation of 44S and 43S has been reported both experimentally and theoretically.
In contrast, the mechanism of such kind of structure in these nuclei remains unclear.
Especially quantities related to the deformation have only been observed for few low-
lying states of 43S.

To tackle this problem, an in-beam γ-ray spectroscopy experiment utilizing the
one-neutron knockout reaction from 44S to 43S was performed in this thesis work. As
mentioned above, the evolution of the proton orbits has already been measured by
proton knockout experiments [36]. The information about the neutron single-particle
orbits or neutron configuration of the wave function, on the other hand, have not
yet been obtained. By using the one-neutron knockout reaction, neutron single-hole
states can be selectively populated. Energies and production cross sections of these
states are related to the evolution of the neutron single-particle orbits and the neutron
configuration of the ground state of 44S, respectively. Note that the usefulness of this
reaction channel to achieve the information on the neutron part of the wave function
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Figure 1.8: Nilsson orbits of the neutrons in 45S. The energy of each
neutron single particle orbit is plotted against the defor-
mation parameter β. Taken from [45].

will be described in the next chapter in detail. Thus, the quenching of the N = 28
shell gap can be directly observed in the neutron-rich sulfur isotopes. Additionally,
derivation of the neutron configuration can trigger the discussion about the importance
of the neutron configurations for the deformation or shape coexistence in these nuclei.
Through the comparison with theoretical predictions, further discussion about the
development of the deformation in this region and the reduction of N = 28 shell gap
will be made. Prior to obtain the excitation energy and production cross section of
each state in this reaction channel, however, the full level scheme of 43S needs to be
constructed. This task is the main subject of this thesis work leading to a discussion
on the band structure and deformation of excited or ground states. As mentioned in
the previous section, an experiment with exactly the same reaction has already been
performed, but the level scheme of 43S remained unknown, especially in the higher
excitation energy as shown in Figure 1.9, because of the presence of the isomeric state.
Thus it was impossible to assign γ-rays to decays to the ground or the isomeric state.
This problem was solve in this work, and the full level scheme of 43S was constructed
in this work.

In the following chapters, first the theories of nuclear structure and reaction re-
lated to this work will be shown. The general theory of Hartree-Fock and shell model
calculations will be described in §2. The former was utilized as input to the reaction
calculation and later was performed for the discussion of the structure of 43S. In the
following section, the general feature and formalism of one-nucleon knockout reaction
theory will be described. How useful this reaction is to probe the microscopic infor-
mation of the wave function will be first introduced and the reaction model used in
this work will be detailed accompany with the calculation procedure.

In §3, the experimental setup of the present experiment will be described. First,
it is shown how to produce, collect, and separate the exotic nuclei of interest. The
structure of the reaction residue was deduced by measuring the energies and yields
of the de-excitation γ-rays. So the setup of the γ-ray detectors follows. In the setup
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Figure 1.9: 43S level scheme deduced by the previous one-neutron
knockout experiment. As shown here, most of the prompt
γ-rays were not placed. Especially, the level scheme on the
isomeric state at 320 keV have been completely unknown
so far. Taken from [33].

of the present experiment, the assignment of the spin-parity of the final state can be
achieved by the analysis of the parallel momentum distribution of the reaction residue.
How to derive this quantity will be also described in chapter 3.

The analysis performed in the present work will be detailed in the following two
chapters. In §4, the analysis related to the calibration of detectors will be described.
In §5, further treatment and derivation of the physics observables will be shown. The
discussion about the results of this experiment deduced from these analysis will be
performed in §6 and compared with the level scheme and spectroscopic factors deduced
by the shell model calculation. Finally, the summary of this thesis work and the future
outlook will be given in §7.
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Chapter 2

Theoretical background

In this chapter, the theoretical description of nuclear structure and reactions will be
briefly introduced. Not only the description of the nuclear force, which may explain
the change of the magic numbers in the exotic nuclei, but also the theoretical approach
used in the analysis and interpretation of the result of the present work will be given.

2.1 Nuclear forces

Protons and neutrons consist of up and down quarks. The strong force between
quarks and gluons is described by quantum chromodynamics (QCD). Thus the force
between nucleons should also be deduced in the QCD framework as the remnant
of the interaction among the bound triplet of quarks. In quantum electrodynamics
(QED), the other theory in the standard model, the coupling of the interaction α ≈
1/137 is small and only weakly depends on the momentum making a perturbative
expansion possible [51–53]. The strong coupling αs, on the other hand, increases if
the momentum decreases and becomes greater than 1 near the QCD momentum scale
ΛQCD ≈ 250 MeV/c [53]. Considering the energy region of nuclear physics is small
enough, for example the Fermi energy in a nucleus is around 30 MeV, QCD cannot
be treated in perturbation theory. In this situation, effective theories of the nuclear
force should be used for the quantitative prediction.

Though quarks have color charges and interact with other quarks by exchanging
gluons, a nucleon is color-neutral and the interaction between nucleons is rather long
distance. This situation resembles the interaction of neutral atoms. A long distances,
more than 2 fm, the nuclear force is attractive but only small amount dying expo-
nentially. In this region, the nuclear force can be modeled as the exchange of a pion.
At medium range, like from 0.5 to 2 fm, other heavier mesons as the ρ and ω can
contribute as the potential propotional to e−mr/r resulting in the strongly attractive
nature. Like the van der Waals force for atoms, the interaction in this region is thought
to come from the fluctuations in color-charge density. In the short range region less
than 0.5 fm, there is a strong repulsion due to the Pauli exclusion principle. Besides
these two-body nucleon-nucleon interaction, three-body or higher-body parts of the
potential can also have a significant effect on the nuclear structure.

The nuclear force in the long range mentioned above can be the main part because
the average nucleon-nucleon distance in a nucleus is more than 2 fm. The nuclear force
between two nucleons in this distance can be modeled as the exchange of a pion, which
is the psuedoscaler (Jπ = 0−) isovector (T = 1) meson [54]:

Vπ(r) =
f2π

4πmπ
(τ1 · τ2)(σ1 · ∇1)(σ2 · ∇2)

e−mπr

r
. (2.1)
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Here, 1 and 2 are the labels of two nucleons, r = |r⃗1 − r⃗2|, σ and τ are the spin and
isospin Pauli matrices, ∇ is the spatial derivative, mπ ≈ 140 MeV is the pion mass,
and the fπ is the coupling parameter of pion. This potential can be decomposed into
scaler and tensor parts:

Vπ =
f2π
12π

(τ1·τ2)
[
(σ1 · σ2)

(
e−mπr

r
− 4π

3
δ3(r)

)
+ S12

(
1

r
+

3

mπr
+

3

(mπr)2

)
e−mπr

r

]
.

(2.2)
Here, the tensor operator S12 is defined as

S12 ≡ (σ⃗1 · r̂)(σ⃗2 · r̂)−
1

3
σ⃗1 · σ⃗2 (2.3)

=

√
8π

15
[σ1, σ2]

(2) · Y (2), (2.4)

where σ1 and σ2 are coupled to form a rank-2 tensor, Y (2) is the rank-2 spherical
harmonic for the relative coordinate of two nucleons, and the dot means scaler product.
As shown above, the one-pion exchange potential has a central term that depends
on the distance r between two nucleons and a tensor term that depends both on a
combinations of the relative positions and the orientation of the spins.

One of the interesting points is the effect of the tensor force on the nuclear struc-
ture [55]. For simplicity, only the monopole component (i.e. angle-averaged) of the
tensor force will be discussed here. Suppose two nucleons in orbits a and b with quan-
tum numbers (na, la, ja) and (nb, lb, jb), respectively, this component can be written
as

V̄ T
ab =

∑
J(2J + 1) ⟨jajb |V | jajb⟩J,T∑

J(2J + 1)
. (2.5)

By averaging over all J couplings of the total angular momentum of the two nucleons,
this expresses the average effect between nucleons in the orbits a and b. The total
angular momentum of an orbit with given l are j< = l − 1

2 or j> = l + 1
2 . One of the

important feature of the tensor monopole term is that V̄j<,j′>
and V̄j>,j′<

are attractive,
while V̄j<,j′<

and V̄j>,j′>
are repulsive.

This feature of the tensor force has been thought to play an important role for
the nuclear structure of the exotic nuclei away from the stability line. In region of
interest for this work, the splitting between the proton (π) d5/2 and d3/2 from N = 20
to N = 28 can be an example of shell evolution (see Figure 2.1). In this situation, the
naive neutron (ν) configuration has 20 neutrons fill orbits up to the neutron d3/2 orbit
and the remaining ones occupy the f7/2 orbit. As mentioned above, the monopole part
of the tensor component is attractive for πd5/2−νf7/2 (j>j>), while it is repulsive for
πd3/2 − νf7/2 (j<j>). Moving from N = 20 to 28, neutrons are filling the νf7/2 orbit
and the gap between the proton orbitals πd5/2 and πd3/2 shrinks. Going down from
48Ca, a doubly magic nucleus with Z = 20 and N = 28, along the N = 28 isotone line,
removing protons from the d3/2 orbit raises the νf7/2 orbit by reducing the attractive
interaction. The same situation can occurs for the πd3/2 − νp3/2 orbits, above the
N = 28 shell gap. Because the 1p3/2 orbit has a node in the radial wave function,
reducing the radial overlap of the πd3/2 and νp3/2 orbits, the increase in energy of the
νp3/2 orbit can be smaller than that of the νf7/2 orbit. This is a possible explanation
for the breakdown of N = 28 shell gap.

One of the features of the tensor monopole component worth noting is the sum
rule of

(2j< + 1)V̄ T
j<,j′ + (2j> + 1)V̄ T

j>,j′ = 0, (2.6)
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Figure 2.1: Schematic picture of the monopole interaction of the ten-
sor force. (a) shows the interaction between a proton in
j>,< = l ± 1

2 and a neutron in j′> = l′ + 1
2 . It shows the

situation where the energy of j> orbit increases and that
of j< decreases because of the occupation of neutrons in
j′> orbit. (b) shows the exchange process contributing to
the monopole interaction. Taken from [55].

where the total isospin of the interacting nucleon pair can be either T = 0 or T = 1 and
j′ = j′< or j′ = j′> are possible. This is derived analytically by angular momentum
algebra. In a nucleus, this equation implies that the effect of the tensor monopole
force is cancelled out if both j< and j> orbits are fully occupied. On the other hand,
this means that the shell evolution originating from the tensor force is maximized if
the j> orbit is fully occupied and the j< orbit is completely empty. As a result, the
tensor force plays an important role for the shell structure of 44S, the main nucleus of
interest in this work, or 42Si, compared to 48Ca, because naively the νf7/2 and πd5/2
orbits are fully occupied but the νf5/2 and πd3/2 orbits are approximately empty.

2.2 Treatment of nuclear many-body system

Here, a few methods to solve the quantum many-body system are just briefly intro-
duced. This section discusses how to calculate the eigenvalues of the Hamiltonian and
expectation values of operators based on the effective interaction introduced in the
last section.

2.2.1 Description of many-body states

Suppose the one-body wave function ϕi(r⃗i) obeys the Fermi-Dirac statistics, an A-
body fermionic wave function Φ(r⃗1, r⃗2, . . . , r⃗A) can be constructed by products of
ϕi(r⃗i). Requiring that this A-body wave function is anti-symmetrized against the
exchange of any two particles, the Slater determinant of A particles is written as

Φ(r⃗1, r⃗2, . . . , r⃗A) =
1√
A!

det


ϕ1(r⃗1) ϕ2(r⃗1) . . . ϕA(r⃗1)
ϕ1(r⃗2) ϕ2(r⃗2) . . . ϕA(r⃗2)

...
...

. . .
...

ϕ1(r⃗A) ϕ2(r⃗A) . . . ϕA(r⃗A)

 . (2.7)
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In the framework of the second quantization, the same state can be represented
as a Fock state by applying the creation operators a†i to the vacuum:∣∣ΦA

⟩
=

1√
A!
a†A . . . a

†
2a

†
1 |0⟩ . (2.8)

In this formalism, the antisymmetrization is treated through the anticommunication
of the creation and annihilation operators:{

ai, a
†
j

}
= δij , {ai, aj} = 0 =

{
a†i , a

†
j

}
. (2.9)

The actual eigenstate of the Hamiltonian can be constructed by a linear combination
of A-body Slater determinants.

2.2.2 Hartree-Fock calculation

The lowest-energy single Slater determinant can be found by the variational method,
the Hartree-Fock or self-consistent mean-field method [56]. In this framework, each
nucleon is treated as moving independently in a mean field potential generated by all
the other nucleons. This means the conflicting situation that the wave function, which
is the answer of this many-body problem, should be known in order to calculate the
potential, resulting in the iterative method as below. For the start of the calculation
procedure, the ground state is constructed by a reasonable set of the single-particle
orbits occupied by nucleons obeying the Pauli principle. The mean field potential is
generated from these orbits and the one-body Schrödinger equation is solved for each
nucleon. From these new orbitals, a new mean field potential is calculated leading to
an iterative procedure to find self-consistent wave functions of single-particle orbits.

Phenomenological interactions are often used for the Hartree-Fock calculation. In
the present work, the Skyrme interaction is used. This interaction consists of the
two-body interaction terms and the density dependent terms. Because the Skyrme
interaction is phenomenological, its interaction terms are fit to the experimental data
and there are many kinds of parameter sets. In this work, the SkX interaction is
used [57]. Skyrme-Hartree-Fock calculations can well reproduce nuclear properties
like binding energies and root-mean-square radii for closed-shell nuclei in which there
is a large gap above the Fermi surface. Note that these kinds of calculations neglect
the many-body correlations beyond the mean field and cannot reproduce the detailed
nuclear structure well. In addition, because this framework is a variational method
for searching the lowest energy state, Hartree-Fock calculations are not suited or
justified to calculate excited states of nuclei. In the present work, Skyrme-Hartree-
Fock calculations are performed for the calculation of the optical potentials and form
factors for the knockout reaction.

2.2.3 Shell model calculation (configuration interaction)

Another approach to solve the ground or excited states of a nuclear system is to express
the interaction is the form of a matrix in some chosen basis (usually constructed from
Slater determinants)

Hij =
⟨
Φi

∣∣∣ K̂ + V̂
∣∣∣Φj

⟩
(2.10)

and diagonalize it to obtain the eigenvalues. Here, K̂ and V̂ denote the kinetic energy
and the interaction between the nucleons, respectively. The resulting eigenstates are
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then constructed by linear combinations of Slater determinants,

|Ψi⟩ =
∑
j

cij |Φj⟩ . (2.11)

Ideally, an infinite dimensional basis and a realistic interaction should be used. In gen-
eral, however, the interaction is limited to two-body terms and the basis is truncated
to make the calculation feasible.

For the basis of the calculation, the eigenstates of the three-dimensional harmonic
oscillator potential are a common typical choice. In this basis, the eigenstates are
labeled by the radial quantum number n, the orbital angular momentum l, the total
angular momentum j = l ± 1

2 , and its projection mj . Their energy eigenvalues are
written as

(
N + 3

2

)
ℏω, where N = 2n + l and ω is the oscillator frequency of the

harmonic potential [58]. Then the difference of the nuclear interaction V̂N from the
harmonic oscillator potential V̂HO is treated by perturbation theory,

Ĥ = ĤHO + V̂N − V̂HO ≡ ĤHO + V̂ . (2.12)

The eigenstates of the harmonic oscillator Hamiltonian constitute the oscillator
basis and the corresponding eigenvalues can be described as ⟨j|ĤHO|i⟩ = Niℏωδij
by the diagonalized form. Here, the constant 3

2ℏω is neglected. If the potential
is written using only the two-body matrix elements (TBME), omitting the three-
body or higher parts of the interaction, the perturbation potential is described as
⟨ab|V̂ |cd⟩JT . Here, the total angular momentum J and isospin T of the two nucleons
in orbits a and b are converted to those of c and d by the nuclear potential. In the
ground state solved by the method described in the previous section, neutrons and
protons occupy the energetically low orbits resulting in the lowest energy state as the
ground state. In this configuration interacting (or mixing) shell model, on the other
hand, the residual interaction, V̂ , mixes the wave function of multi-particle-multi-
hole components describing the particle occupation in higher orbits as a result of the
diagonalization.

To make the calculation feasible, orbits in higher energy (with high N) are trun-
cated. Additional reduction of the active Hilbert space, or model space, is performed
by the truncation of low N orbits. This means that a frozen, fully occupied, core
is assumed and any particle excitation from this core is not considered. A doubly
magic nucleus, like 16O, is generally a good candidate for the core because the large
shell gap in both proton and neutron orbits can be considered to highly suppress the
particle excitation beyond the shell gap. The remaining orbits where the calculation
is performed are called valence space. In this valence space, the zero-body term is
calculated as the sum of the one-body and two-body matrix elements over the orbits
in the core;

E0 =
∑

a∈core
⟨a|ĤHO|a⟩+

1

2

∑
a,b∈core

⟨ab|V̂ |ab⟩ . (2.13)

Like the constant term in the energy of the harmonic oscillator basis, this zero-body
term can be omitted in the calculation because it is irrelevant for the calculation of
the excitation spectra. Also an additional one-body term,

δϵa =
∑

b∈core
⟨ab|V̂ |ab⟩ , (2.14)

is used for the calculation of the single-particle energy (SPE) of state a as ϵa =
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Naℏω + δϵa. Again, omitting higher-body terms, the interaction can be described by
the TBME and the single-particle energies.

2.2.4 Effective interactions for shell model

Following the treatment described in the previous section, the remaining task is the
description of the interaction. Ideally, the interaction should be derived from the
interaction between free nucleons. Such an interaction can be taken from nucleon-
nucleon scattering data, for instance. The result using this interaction, however, can
only be accurate if the contribution from the out of the truncated model space is
small.

In general, such kind of contribution cannot be neglected and additional procedures
to make the calculation feasible are necessary. One of the possible methods is to aban-
don the direct connection between the potential and the underlying nucleon-nucleon
interaction and to treat the TBME as free parameters of the effective interaction. In
this approach, the TBMEs are constrained to reproduce the experimental data of the
nuclei of interest. Also the SPEs are estimated from the experimental data, from the
difference of the binding energies of the neighboring nuclei for example.

For the shell model calculations shown in this thesis work, this phenomenological
method was used. Two kinds of the effective interaction, SDPF-U [59] and SDPF-
MU [15] interactions were used. For the calculations with these calculations, an 16O
core is assumed and entire sd-pf shells are included in the interaction. The model
space for the protons is restricted to the sd shell and that for the neutrons is in
pf shell. Thus, these interactions consist of three parts: π(sd)-π(sd), ν(pf)-ν(pf),
and π(sd)-ν(pf) components. The difference between the two interactions is that in
the derivation of the SDPF-U interaction matrix elements are parametrized and fit
to the experimental data, while the SDPF-MU interaction assumes the interaction
consists of the central potential plus tensor component and all the matrix elements
are calculated [60].

2.3 Theory of one-neutron knockout reaction

In the following part, the theoretical framework of the one-nucleon knockout reaction
is described. Prior to the further discussion, it is useful to describe why the one-
neutron knockout reaction was chosen in this experiment and how this reaction is
suitable for the detailed investigation of the nuclear structure.

As mentioned in the previous chapter, the nuclear structure itself and the mecha-
nism of the change of the structure is the main subject of this thesis work, like many
other research activities on exotic nuclei [13]. For this purpose, not only the feature of
the nucleus of interest, its level structure or the deformation of states, for instance, but
also the microscopic information should be derived. Especially the proton and neutron
configuration or the evolution of single-particle orbits around N = 28, Z = 16 is of
interest of the present experiment. One of the advantages of the one-nucleon knock-
out reaction is its high selectivity to populate single-hole states, which are described
as the core nucleus plus a hole of the knocked out nucleon in an orbit around it [7].
Though the wave function of a state can be a mixture of many terms, the component
populated in the one-nucleon knockout reaction is the simple single-hole state. Thus,
this reaction channel can probes the composition of the wave function of the nucleus
of interest and determine the occupation numbers of the single-particle orbits.

Other aspects, not related to the theoretical advantage mentioned above, are the
applicability of the method to radioactive beams [61, 62]. Now the structure of the
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unstable nucleus, which decays to another nucleus, is of interest. Since it is impossible
to prepare the exotic nuclei as a target, the reaction has to be performed in inverse
kinematics. Here the probe is the target nucleus and the nucleus of interest is the
beam. In the present work, the beam of exotic nuclei was produced by fragmentation
reactions at intermediate beam energy. This beam energy is suitable for one-nucleon
knockout reactions and additional deceleration or acceleration of the beam is not
necessary. Also, a thick target can be used at this beam energy maximizing the
luminosity of the setup and making it feasible to observe the reaction even with the
beam of extremely weak intensity.

2.3.1 Factorization of the cross section

If the transition operator of the nucleon knockout reaction is written as Oko
α , the

reaction amplitude for removing a nucleon with quantum numbers α = (n, l, s, j,m, tz)

from an initial state
∣∣ΨA

i

⟩
to a final state

∣∣∣ΨA−1
i

⟩
can be described as

Afi
α =

⟨
ΨA−1

f

∣∣∣Oko
α

∣∣∣ΨA
i

⟩
. (2.15)

Note that this operator also depends on the target nucleus and the beam energy. The
definitions of the quantum numbers denoted as α are the principal quantum number,
the orbital angular momentum, the spin, the total angular momentum, the projection
of the total angular momentum, and the isospin of the nucleon or its orbit. The
reaction cross section can be written as

σfiα =
∣∣∣Afi

α

∣∣∣2 . (2.16)

If the time scale of the knockout reaction is fast enough, compared to the internal
motion of the nucleus, the sudden approximation can be applied and the knockout
operator can be assumed to be proportional to the annihilation operator aα because
the knocked out nucleon can be considered as frozen and the A − 1 core can be also
treated as the spectator during the reaction:

Afi
α ⇒ Cfi

α

⟨
ΨA−1

f

∣∣∣ aα ∣∣∣ΨA
i

⟩
. (2.17)

Here, Cfi
α is a complex number. Though this is a very naive interpretation, one may

consider the possibility to extract the occupation number n(α) of the single-particle
or -hole state as

n(α) =
⟨
ΨA
∣∣∣ a†αaα ∣∣∣ΨA

⟩
, (2.18)

from this quantity. As mentioned above, the projection of the total spin m is one of
the quantum number of the knocked out nucleon but in most experiments, like the
present experiment, the polarizations of both the incoming and outgoing particles are
not measured. This means that the cross section is the average of the projection of
the incoming particle Mi and the sum of all the possible projections of the reaction
residue Mf . The cross section of the one-nucleon knockout reaction can be described
as [62]

σfik =
1

2Ji + 1

∑
MiMf

∣∣∣Cfi
k

∣∣∣2 ∣∣∣⟨ΨA−1
f

∣∣∣ ak,m ∣∣∣ΨA
i

⟩∣∣∣2 , (2.19)

where k represents all quantum number except for m. Note that m is constrained to
m =Mi −Mf by angular momentum conservation. Also the approximation that the
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average of Cfi
k over Mi and Mf is made. This is an assumption valid for a spherical

projectile but exact if either of Ji or Jf are zero, which was achieved in the present
experiment as Ji = 0. By the Wigner-Eckart theorem, the remaining sum results in

σfik =
∣∣∣Cfi

k

∣∣∣2 1

2Ji + 1

∣∣∣⟨ΨA−1
f

∥∥∥ ak ∥∥∥ΨA
i

⟩∣∣∣2
= σspk S

fi
k

(
where

∣∣ΨA
i

⟩
= a†k

∣∣∣ΨA−1
f

⟩)
.

(2.20)

The term σspk is called the single-particle cross section and only depends on the reaction
theory. The other term, Sfi

k , is the spectroscopic factor which can be calculated only
from the structure of the initial and final states. This value is written as C2Sfi

k (T ), or
for simplicity C2S. Since structural calculations in the present work are mainly based
on the shell model calculations, these results are affected by the unphysical center-
of-mass motion of the shell model calculations and small center-of-mass correction
should be applied for the spectroscopic factor calculated by the harmonic oscillator
basis as [63]

C2S →
(

A

A− 1

)N

C2S, (2.21)

where N = 2n+ l is the previously mentioned quantum number of the oscillator shell.
From Equations (2.17), (2.19), and (2.20), the spectroscopic factor is related to

the occupation number of a certain orbit, more strictly speaking, the overlap of the
wave function of the initial state of the mass A nucleus and that of the final state
described as a nucleon in a certain orbit coupled to the core of the mass A−1 nucleus.
This means that a large spectroscopic factor characterizes the state as a single-hole
state in this reaction. In general, the wave function can be a complex mixture of many
components, resulting in a weak spectroscopic strength for the one-nucleon knockout
reaction. From the value of the spectroscopic factor and the excitation energy of each
state, the location of the single-particle strength can be quantitatively described by
the weighted average of excitation energy. This value can be discussed as the effective
energy of the single-particle orbit.

Through the calculation of the single-particle cross section, the comparison be-
tween experimentally measured one-neutron knockout cross section and the theoret-
ically calculated one can be achieved. Experimentally, the spectroscopic factor for a
one-nucleon knockout reaction is obtained from the measured cross section divided by
the single-particle one. This analysis obviously depends strongly on the framework
of the calculation of the single-particle cross section, which means the spectroscopic
factor is not a direct observable of the experiment [64]. However, at least, the spec-
troscopic factor can be compared in a chosen analysis scheme. In the following part of
this section, the framework of the reaction theory taken in this work will be described
in detail.

2.3.2 The eikonal reaction theory

By applying the sudden approximation mentioned in §2.3.1 and assuming the core as
a spectator, where the excitation and the internal reconfiguration of the core during
the reaction are neglected, the single-particle cross section σspk is calculated by the
Glauber (eikonal) reaction theory [65]. The wave function of the incoming nucleus is
separated into the center-of-mass and relative parts as

ΨA
i (r⃗1, r⃗2, ..., r⃗A) = ψCM (R⃗CM )⊗ ψrel(r⃗1, r⃗2, ..., r⃗A). (2.22)
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The center-of-mass part can be modeled by a plane wave with the wave vector k⃗ in
the free space,

ψCM (r⃗) = eik⃗·r⃗. (2.23)

This plane wave is distorted by the optical potential U(r) in approaching the target.
In this framework, the optical potential is assumed to be local and not to change in
time, which means that the target recoil and breakup are omitted in the calculation.
If the beam energy of the incoming particle is large enough, the change of the reduced
Compton wavelength (λ̄ = k−1) against the radial coordinate can be assumed small,∣∣dλ̄
dr

∣∣≪ 1, the WKB approximation [66] can be applied. Here, the wave number k can
be treated as a slowly-varying function of the position

k(r) =
√

(E − U(r))2 −m2

≈ k∞ − k∞U(r)

2Ek
(where U(r) ≪ Ek ≪ m).

(2.24)

In this equation, E is the total energy at infinity, r → ∞, Ek = E −m is the kinetic
energy of the incoming particle, and k∞ =

√
E2 −m2. The approximation of the

second line is valid since for the present experimental conditions U(r) ≲ 50 MeV,
Ek ∼ 100 MeV/u, and the mass of the nucleus m ∼ 1 GeV/u. If the shape of the
optical potential is approximated as the Woods-Saxon potential with parameters of
the depth U0 and the diffuseness a0, the following conditions can be estimated:

dU

dr
≤ U0

4a0
dλ̄

dr
≲ λ̄∞

(
1− U

2Ek

)−2 1

2Ek

U0

4a0
.

(2.25)

The typical values are U0 = 50 MeV and a0 = 0.7 fm, resulting in k∞ ∼ 400 MeV for
the beam energy of the present experiment, which supports the application condition
of the WKB approximation mentioned above. Assuming the potential as azimuthally
symmetric and using the approximation of Equation (2.24), the center-of-mass wave
function can be described as [65]

ψCM (R) = eik∞zeiχ(b,z), (2.26)

where the eikonal phase χ(b, z) is defined as

χ(b, z) = − k∞
2Ek

∫ z

−∞
U(b, z)dz. (2.27)

From this, the elastic S-matrix in the eikonal limit can be deduced as

S(b) = eiχ(b,+∞). (2.28)

If the potential is real, |S(b)|2 = 1 and the far-field angular distribution for the elastic
scattering can be achieved by integrating over all impact parameters. For a complex
potential, |S(b)|2 can be smaller than 1 because of the loss of the flux to other reaction
channels.

2.3.3 Optical potential

Here, the heuristic derivation of the optical potential, which reproduces a first-order
approximation of a more rigorous consideration, will be described [67]. Suppose a
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projectile nucleon incident on a target nucleus whose density of nucleons, treated as
the scattering centers, is described as ρt, then the probability of the scattering P (z)
can be derived. If the nucleon-nucleon scattering cross section is written as σNN and
the impact parameter of the incident nucleon as b⃗ = (b, ϕ), the probability dP (z) of
scattering within an infinitesimal path length between z and z + dz is

dP (⃗b, z) =
(
1− P (⃗b, z)

)
σNNρt(⃗b, z)dz. (2.29)

1−P (⃗b, z) denotes the probability of the nucleon surviving up to z. The condition of
P (z = −∞) = 0 provides the boundary condition resulting in

1− P (⃗b, z) = exp

[
−σNN

∫ z

−∞
ρt(⃗b, z)dz

]
. (2.30)

The quantity 1 − P (⃗b, z) mentioned above may be identified as the elastic S-matrix∣∣∣S (⃗b, z)∣∣∣2. Considering Equation(2.28), the imaginary part of the eikonal phase is

Im{χ(⃗b)} =
1

2
σNN

∫ ∞

−∞
ρt(⃗b, z)dz. (2.31)

Then, comparing the equation above and (2.27), the imaginary part of the nucleon-
nucleus optical potential can be written as

Im{U (⃗b, z)} =
−EkσNN

k∞
ρt(⃗b, z). (2.32)

The derivation above is restricted to the situation where the projectile is a nucleon, but
this can be reasonably extended to nucleus-nucleus scattering through the integration
of the nucleon density in the projectile nucleus, ρp, resulting in the folded potential
as

Im{U (⃗b, z)} =
−EkσNN

k∞

∫
d3rρt(r⃗)ρp(r⃗ − R⃗(⃗b, z)). (2.33)

Here, R⃗(⃗b, z) is the vector between the target and projectile centers. This derivation
is often referred to as the tρρ approximation and identical to the first-order optical
potential of multiple-scattering theory [68].

In the condition of the present experiment, it has been found that the real part of
the optical potential has a relatively small effect on the resulting cross section. From
this fact, the potential is parametrized as

UNN = (i− α)Im{UNN}, (2.34)

where αpn = 1.0 and αpp = αnn = 1.87 at 100 MeV [69]. These parameters are
deduced by the fitting to the nucleon-nucleus reaction cross section data down to
100 MeV. To apply this analysis to slower beam, the additional parameter sets are
used for the beam energy down to 30 MeV/u [70]. Additionally, the finite range of
the nucleon-nucleon interaction is approximated by a Gaussian and the full optical
potential can be described as

UNN (b, z) = (i− α)
−ik∞σNN

2E∞

∫
d3rtd

3rpρt(r⃗t)ρp(r⃗p) exp

[
−(r⃗t − r⃗p − R⃗(b, z))2

γ2

]
,

(2.35)
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where γnp = γnn = γpp = 0.5 fm are taken from [71]. It can be reasonably assumed
that these parameters corresponds to the form factor of each nucleon and are not
influenced by the nuclear structure. Actually, these parameter sets can reproduce the
reaction cross sections of 12C-12C and 27Al-12C systems at 83 MeV/u and proton-9Be
system at 60 MeV/u [72–74]. Also calculated one-nucleon knockout cross sections for
nuclei around 12C have good agreement with experimental values in wide energy range
from around 250 to 2000 MeV/u [75]. Besides these validations, the deduced absolute
spectroscopic factor of the isomeric state of 43S in this work is quite consistent with
the estimated one from the g-factor measurement. This discussion will be made in
§6.2 justifying the whole treatment of the reaction calculation in the present work.

2.3.4 Densities and form factors

For the derivation of the nucleus-nucleus optical potential described in the previous
section, the calculation of the target and core densities is necessary as can be seen in
Equation (2.35). The core density is derived by the Skyrme-Hartree-Fock calculation
described in 2.2.2. The target density is modeled as a Gaussian. Compared to the
target density calculated by the Hartree-Fock or a quantum Monte Carlo calculation,
the difference of the overall single-particle cross section results in the order of 1-2%.

The other remaining parameter is the core-valence two-body wave function, or
form factor ϕ(r). In early work [76] it was found that the calculated cross section
can be strongly affected by the root-mean-squared (rms) radius of the two-body wave
function. In almost all the experiment with the exotic nuclei, however, the two-
body wave function of the nucleus of interest is completely unknown. Thus taking
consistent method to calculate the form factor of the unstable nuclei is important. In
the present work, the so-called well-depth prescription proposed in [76] is chosen. The
two-body wave function is deduced by solving the Schrödinger equation for a nucleon
in a Woods-Saxon potential:

V (r) = −V0fWS(r) + (l · s)VLS
d

dr
fWS(r) (2.36)

fWS =
1

1 + e(r−r0)/a0
. (2.37)

The parameters V0, VLS , r0, and a0 need to be fixed. The diffuseness a0 and the spin-
orbit depth VLS are found to have only small influence on the calculated cross section,
so a0 and VLS are chosen to be 0.7 fm and 6 MeV [76]. The remaining parameters, the
potential depth V0 and the radius r0, are adjusted to reproduce the binding energy
and the rms radius of the single-particle orbit calculated by the Skyrme-Hartree-Fock
calculation. The asymptotic form of the radial wave function must be an exponential
decaying with a constant determined by the binding energy. In this step, r0 is fixed
by using the Skyrme-Hartree-Fock result, rHF , as

r0 =

√
A

A− 1
rHF (2.38)

For the calculation of the one-neucleon (here we concentrate on one-neutron case)
knockout from the ground state of the incoming particle, the binding energy is written
as Ef − Ei = Sn + Ex, where Sn is the neutron separation energy of the projectile
and Ex is the excitation energy of the final state.

One of the remarks worth noting is that the optical potential of the fully occupied
orbits, ν0d3/2 or ν1s1/2 for instance, are similar shape with the Woods-Saxon potential
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Figure 2.2: Schematics of the typical two mechanisms of the knockout
reaction. In the stripping process, the knocked out nucle-
ons are interacting with the target nucleus resulting the
excitation of the target. In the diffraction process, the nu-
cleons are elastically removed from the projectile. Taken
from [80].

described as Equation (2.37). For the partially occupied ν0f7/2 or weakly-occupied
ν1p3/2 orbits which is above the Fermi surface of the Hartree-Fock result, however,
show the significantly greater depth of the potential. This can be attributed to the
correlations beyond the mean field which can be thought to play an important role of
binding the orbits near the Fermi surface. To reproduce the binding energy measured
experimentally or calculated in the Hartree-Fock approach, an unrealistic mean field
parameter V0 is necessary. The treatment of the form factor for such kind of orbits
has not been satisfactory solved [77–79].

Related to this problem, the single-particle cross sections for orbits above the Fermi
surface can have a substantial uncertainty against the small change of the parameters
like V0 or r0, or the resulting rms radius of the form factor. This is also a reason
to choose a consistent analysis method for the calculation of the single particle cross
section. Again, it is worth noting that the well-depth prescription is chosen for the
present analysis to enable us to compare the present work with the other experimental
results consistently.

2.3.5 Reaction mechanisms and cross sections

The cross section of the one-nucleon knockout is divided into two reaction mecha-
nisms, stripping and diffraction [61], as can be seen in Figure 2.2. In the stripping
mechanism, the valence nucleon is scattered by the target due to the imaginary part
of the optical potential, written as 1 − |Sv|2, while the core of the incoming particle
survives, described as |Sc|2. This process results in the inelastic nucleon removal with
the excitation of the target nucleus. The cross section of this reaction mechanism is
then described as [81]

σstr =
1

2J + 1

∑
m

∫
d2b ⟨ϕm0 | |Sc|2

(
1− |Sv|2

)
|ϕm0 ⟩ . (2.39)
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Here, J is the angular momentum of the incoming particle, b is the impact param-
eter between the projectile core and the target, ϕm0 is the core-valence form factor,
described in the previous section.

The second part, the elastic nucleon removal, is made by two components. One is
the diffraction process due to the imaginary part of the potential and the other is the
refraction process due to the real part. These two process are added coherently and
described as [81]

σdiff =
1

2J + 1

∑
mm′

∫
d2b

∫
d3k

∣∣∣⟨ϕm′

k⃗

∣∣∣ScSv

∣∣∣ϕm0 ⟩∣∣∣2 . (2.40)

In the following discussion, the sum of these two process will be called the diffraction
mechanism for simplisity. The equation above describes the excitation of the core and
the valence nucleon into a continuum state with relative momentum k⃗. Inserting the
closure relation below∑

m′

∫
d3k

∣∣∣ϕm′

k⃗

⟩⟨
ϕm

′

k⃗

∣∣∣ = 1−
∑
m′i

∣∣∣ϕm′
i

⟩⟨
ϕm

′
i

∣∣∣ (2.41)

in Equation (2.40),

σdiff =
1

2J + 1

∑
mm′

∫
d2b

(⟨
ϕm0
∥∥ScSv

∣∣ 2 ∣∣ϕm0 ⟩−∑
i

∣∣∣⟨ϕm′
i

∣∣∣ScSv

∣∣∣ϕm0 ⟩∣∣∣2
)

(2.42)

is derived. Note that i denotes the label of the bound states. The first term of
Equation (2.42) corresponds the situation that both the core and the target survive
and the second term is that both of them result in the bound final states. A further
approximation can be made with the assumption that the ground state is the only
bound state,

⟨
ϕm

′
i

∣∣∣ScSv

∣∣∣ϕm0 ⟩ ≈ 0 for i ̸= 0. This results in neglecting the sum of
the second term and only the ground state is considered in Equation (2.40), which is
often a good assumption [81].

The two reaction mechanism above can be distinguished by the resulting state
of the target nucleus: in the stripping process the target nucleus is excited, though
in the diffraction process it remains in the ground state. In the present experiment,
9Be is used as the reaction target as described in §3.3. Because this nucleus does not
have any other bound state than the ground state, these two process can possibly be
separated by measuring the recoil in coincidence, which was not pursued in the present
setup. However, this condition means that the total cross section of the single-nucleon
knockout reaction can be described as the incoherent sum of two process without any
interference [61],

σko = σstr + σdiff . (2.43)

Typically, the cross section of the stripping process dominates the total cross section.
Note that there is also a contribution from the Coulomb breakup process but here it
is neglected because a light target nucleus is chosen.

2.3.6 Momentum distributions

By the sudden approximation, the momentum of the struck out nucleon k⃗v can be
written in terms of those of the incoming and outgoing particle, k⃗A and k⃗A−1, as

k⃗v =
A− 1

A
k⃗A − k⃗A−1. (2.44)
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This means that by measuring the momentum of the reaction residue k⃗A−1, the mo-
mentum of the valence nucleon can be extracted through the recoil of the knockout
reaction. The probability for a particular momentum of the reaction residue k⃗ is
given by the Fourier transformation of the position-space core-valence wave function
to the momentum-space one. In the present setting, however, the hadronic nucleus is
used as the target, which means the reaction probability is surface-peaked and is not
equal anywhere in the nucleus. Thus the reaction probability in the nucleus should be
weighted depends on the position in the nucleus. Generally, the transverse momen-
tum, perpendicular to the beam axis, suffers from Coulomb effects and the parallel
momentum can be treated easier experimentally. The parallel momentum distribution
of the stripping process is described as

dσstr
dkcz

=
1

2J + 1

∑
m

∫
d2bv

(
1− |Sv|2

) ∫
d2ρ|Sc|2

∣∣∣∣∫ dz
eik

c
zz

2π
ϕ(ρ, z)

∣∣∣∣2 , (2.45)

where b⃗v is the impact parameter of the valence nucleon and (ρ⃗, z) is the relative
position vector between the core and the valence nucleon.

In the calculation the momentum distribution of the diffraction process is assumed
to be identical to that of the stripping mechanism. The calculated momentum dis-
tributions are then compared with the experimentally observed ones and the orbital
angular momentum l of the struck out nucleon is deduced. Figure 2.3 shows the the-
oretical parallel momentum distributions for neutron knockout from l = 1 to 3 orbits
in 44S calculated in the rest frame of 44S. The shape, especially the width, of the dis-
tribution can be used to distinguish the orbital angular momentum value of knocked
out neutron, which is the same manner to the comparison of the angular distributions
in the transfer reaction.

2.3.7 Reduction factor

Though the one-nucleon knockout reaction has been established as a powerful tool
of the spectroscopic study, there are some open questions related to the treatment
or description of the reaction itself. One of those topics, which is of interest for the
present study, is the so-called reduction factor RS [76, 82]. This value is defined as
the ratio of the observed cross section of the one-nucleon knockout to all the bound
state below the particle threshold, and the theoretical one:

RS =
σexp
σth

. (2.46)

It should be noted that the calculation of σth involves typically the reaction model
(such as the eikonal model) and the structure model (the shell model in this case)
which are based on the different Hamiltonians. Thus, an unified theory to calculate the
nuclear reaction and the shell structure using the same Hamiltonian would be desired
as the future work. For the direct comparison with the experimental cross section, the
theoretical cross section to populate a specific state by one-nutron knockout reaction
is described as

σ(Jπ) =

(
A

A− 1

)N

C2S(Jπ)σsp(J, Sn + Ex(J
π)). (2.47)

Note that the first term in the right side of Equation 2.47 is the center-of-mass correc-
tion mentioned in Equation 2.21, the second term is the spectroscopic factor obtained
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Figure 2.3: Parallel momentum distributions calculated in the rest
frame of the 44S. Equation 2.45 was used for the calcu-
lation. Red, blue and green lines show the momentum
distribution of the neutron knockout from l = 1, 2, and 3
orbitals. The single-particle cross section is scaled to that
of neutron knockout from l = 1 orbit.

by the structure calculation, the shell model in this work, and the third term is the
single-particle cross section for the state with the excitation energy of Ex.

Historically, the reduction factor was studied through the one-nucleon transfer and
quasi-free electron induced knockout reactions. It was found that the experimentally
observed spectroscopic strength was smaller than the theoretical prediction, using the
shell model calculation for instance, even for reactions from or to doubly-magic nu-
clei, where the single-particle or -hole structure was strongly expected [83]. For the
proton transfer reaction, this discrepancy between the experimental and theoretical
spectroscopic strength was confirmed by using a different reaction, the quasi-free pro-
ton knockout induced by electrons (e, e′p). Over a large region of the nuclear chart,
the reduction factor was found to be RS ≈ 0.6− 0.7 [84]. Thanks to the improvement
of the accelerator facilities, many experimental data of both stable and unstable nuclei
are now available for both proton and neutron knockout with various binding energies.
It has then been found that RS has a characteristic trend shown in Figure 2.4 against
the separation energy difference below [75, 76, 82]:

∆S =

{
Sn − Sp neutron knockout,

Sp − Sn proton knockout.
(2.48)

For the stable nuclei, ∆S ∼ 0, the deduced RS is consistent with that of (e, e′p)
reactions and transfer reactions [85]. In the unstable region, this trend means that
RS goes up around 1 for knockout of loosely bound nucleon, such as neutron knockout
from neutron-rich nucleus for example.

Though these reactions have been firmly established both experimentally and the-
oretically as a spectroscopic tool, the source of the reduction factor in these reactions
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Figure 2.4: Compilation of the RS against the difference of the pro-
ton and neutron separation energies. The red, blue, and
black points correspond to the one-neutron, one-proton
knockout reaction, and electron-induced proton knockout
reaction data, respectively. Taken from [82].

are still treated as an open question. Note that the reduction of the spectroscopic
strength has been found in completely different types of reactions, which implies RS

is not related to the treatment of a single reaction type. There are many works to
approach this problem and the emergence of the reduction factor is now attributed
as missing correlations in the nuclear structure theory, short-range correlations, for
example. In the present study, the experimental setup was not designed to investi-
gate the relationship between the observed cross section and the microscopic nuclear
correlation, and the structure of a certain nucleus is the main subject. Thus the re-
duction factor RS is treated as an empirical parameter as shown in Figure 2.4 like
the many other studies on the nuclear structure using one-nucleon knockout reac-
tions. For the consistency with previous studies, the reduction factor is taken to be
RS = 0.83(4) [33], where Sp = 2.12(6) × 104 keV and Sn = 5080(7) keV for 44S [86].
As mentioned in §2.3.3, the validation of the whole treatment to deduce the absolute
spectroscopic factor will be confirmed in §6.2.
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Experimental setup

In this chapter, the experimental setup of this thesis’ work is described. The present
experiment was performed at the Coupled Cyclotron Facility [87] at the National Su-
perconducting Cyclotron Laboratory at Michigan State University. A secondary beam
of 44S was produced by the fragmentation reaction of a 48Ca primary beam by utilizing
the cyclotron complex of K500 and K1200 [88] and separated by the A1900 fragment
separator. The reaction of interest was taken place at the 9Be reaction target at the
pivot position of the S800 spectrometer [89]. The rigidity of the S800 was centered
on the one-neutron knockout residue. In some runs, unreacted beam particles were
centered for the calibration of some quantities. De-excitation γ-rays were observed
by a combination of the GRETINA array [90] of high-purity germanium detectors,
surrounding the reaction target, and the IsoTagger array of CsI(Na) detectors [91],
placed at the very end of the S800. The entire detector setup, including the signal
processing and the data taking system, will be detailed in the following sections.

Prior to the further information, the definition of some parameters is useful. The
coordinates of particles x and y denote the dispersive and non-dispersive position, and
a and b correspond the angle of the particle trajectory in dispersive and non-dispersive
direction, respectively. The position along the beam line is defined as z.

3.1 Production of radioactive beam
44S is unstable, it decays via β decay with a half life of 123(10) ms [20], which means
it is necessary to produce this nuclei from other stable nuclei. Figure 3.1 shows the
schematic of the accelerators and the following fragment separator to produce the
radioactive isotope beam. The production of the radioactive beam of 44S as the main

Figure 3.1: A schematic of the Coupled Cyclotron Facility and the
A1900 fragment separator. Taken from [92].
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component was achieved by the in-flight fragmentation reaction of a stable 48Ca beam.
First, metallic 48Ca was heated in an oven to produce a vapor. The neutral atoms were
then ionized by an electron cyclotron resonance (ECR). Here electrons were confined
by the magnetic field and driven by the radio-frequency (RF) electric field. They
collide with the neutral 48Ca atoms and ionize them. Singly or doubly ionized were
then injected in the first superconducting cyclotron, K500 [88].

A cyclotron confines a charged particle with a static and uniform magnetic field
and accelerates it with an RF electric field whose frequency is adjusted to the cyclotron
frequency, ωc, of the charged particle:

ωc =
qB

γm
, ρ =

P

qB
, (3.1)

where q,m, and P denote the charge, mass, and momentum of the charged particle,
γ is the relativistic factor γ = 1/

√
1− β2, where β is the ratio of the velocity of the

particle, v, to the light speed, β = v/c, B is the applied magnetic field, and ρ is the
radius of the trajectory of the particle. From this equation, the radius of the particle
trajectory becomes larger as the particle momentum is increased by the acceleration
through the RF field. Finally, the particle reaches the outer edge of the K500 cyclotron
with β ∼ 0.15 and extracted by the electrostatic deflectors.

Charged particles were transported through the coupling line and injected into
the second superconducting cyclotron K1200 [88] for further acceleration. According
to Equation (3.1), to further accelerate particles, one needs to increase the size of
the accelerator for larger radius of the particle trajectory, increase the strength of the
magnetic field, and/or increase the charge of the particle. For this purpose, a carbon
stripper foil was placed near the center of the K1200 and all the electrons of 48Ca
particles were fully stripped here. Then the primary 48Ca20+ beam was accelerated
up to approximately β ∼ 0.5. In the present experiment, the primary beam intensity
was about 12 pnA during the beam time.

3.2 The A1900 fragment separator

The primary beam with an energy of 140 MeV/u impinged onto a 9Be production
target with a thickness of 705 mg/cm2. By the fragmentation reaction here, a cocktail
of secondary beam particles with smaller masses and different N/Z ratios compared to
the primary beam were produced. To collect the produced particles and separate out
the isotope of interest from other reaction residues, the A1900 fragment separator [92,
93] is placed downstream of the production target, as shown in Figure 3.1.

The A1900 consists of 24 superconducting quadrupole magnets and four 45◦ su-
perconducting dipoles with maximum magnetic rigidity, Bρ, of 6 Tm. This separator
has the large momentum and angular acceptance of ∆P/P = 5% and ∆Ω = 8 msr.
The collection efficiency is almost 100% for the fragments A ∼ 50 with 150 MeV/A.
The A1900 has three intermediate image planes between the dipoles. Slits and a de-
grader for the separation of the isotopes were placed at these image points. The focal
plane of the A1900 separator, downstream of the fourth dipole, is the injection point
of the beam transport lines to the various experimental areas. As will be described
in §3.3.2, here was the extended focal plane (XFP) where a plastic scintillator was
located.

The particle separation was performed by the Bρ − ∆E − Bρ method. By the
selection of magnetic rigidity in the first half of the A1900 up to the second inter-
mediate image, which was achieved by the adjustment of the magnetic filed of the



3.3. The S800 spectrograph 31

Figure 3.2: A schematic of the S800 spectrograph. Taken from [89].

first and second dipoles and the fixed radius of curvature of the beam line, P/q val-
ues of particles in the secondary beam was chosen from Equation (3.1). Because of
the high beam energy, the velocity, or the energy and momentum per nucleon, are
approximately conserved before and after the fragmentation reaction. Also assuming
the fragmentation products are fully-stripped is valid in the case of for medium-mass
nuclei with the high beam energy. Considering those above, selection on P/q equals
to one on A/Z. This selection is achieved with slits on the intermediate images, dis-
persed in momentum by dipoles, restricting the range of radii of curvature ρ for the
beam to pass.

This Bρ filter allows all particles with the same A/Z to pass. For the further
separation, the secondary beam passed through an Al wedge degrader placed on the
second intermediate image. By the collision with the atomic electrons in this degrader,
beam particles lose part of their energy (∆E) according to the Bethe-Bloch formula
[94]:

− dE

dx
=

4πe4neZ
2

meβ2

[
log

(
2meγ

2β2

I

)
− β2

]
, (3.2)

where e is the electron charge, ne is the electron density of the material, Z is the
atomic number of the charged particle passing through, me is the electron mass, and
I is the ionization potential of the material. Note that this degrader was wedge
shaped [93] to conserve the momentum dispersive condition downstream. Assuming
again the constant velocity β, the energy loss in the degrader depends only on Z of
the beam particle and thus its remaining momentum depends on Z. By another Bρ
selection with slits, the desired range of Z can be selected, and in total restricted range
of A and Z can be chosen. For this separation method, the thickness of the wedge
degrader and the acceptance of momentum ∆P/P should be properly chosen. In the
present experiment, an Al degrader with the thickness of 450 mg/cm2 was used and
the momentum window was restricted to 1%, which was also related to the resolution
of the momentum measurement after the secondary target.

3.3 The S800 spectrograph

From the focal plane of the A1900, the cocktail secondary beam was delivered to the
secondary 9Be target with a thickness of 375 mg/cm2 located at the pivot point of
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Al stopper
IsoTagger

Figure 3.3: A schematic of the focal plane box of the S800. The Iso-
Tagger array was placed downstream of the E1 scintillator.
Taken and modified from [95].

the S800 spectrograph [89], as is shown in Figure 3.2. This was where the reaction
of interest took place. The S800 is a large acceptance and high resolution spectrom-
eter relying on superconducting magnets. The spectrometer spans vertically and the
particle identification (PID) of both incoming and outgoing isotopes was performed
here. The S800 consists of three parts: the analysis line, the spectrograph itself, and
the focal plane box.

The analysis line, leading to the secondary target position, is used for the beam
diagnostics and tuning the optics mode of whole spectrometer. It is made of two pairs
of two 22.5◦ dipoles and five quadrupole triplets with a maximum magnetic rigidity of
4.9 Tm. The very beginning of the analysis line is the object focal plane (OBJ) and
the focal plane between two dipole pairs is the intermediate image (II). The assemble
of the magnets and thus the optics of the analysis line is symmetric for OBJ-II and
II-secondary target. The detectors placed on OBJ and II will be described in the
following sections.

The spectrometer part consists of a superconducting quadrupole doublets and two
superconducting dipoles spanning from the secondary target to the focal plane. Its
angular acceptance is ±5◦ in non-dispersive and ±3.5◦ in dispersive direction, resulting
in the total solid angle of 20 msr. Its maximum rigidity is 4 Tm and momentum
acceptance is 5%. In the present experiment, the optics of the S800 spectrometer was
operated in focused mode. In this mode, the secondary beam was focused in OBJ
and secondary target position and the focal plane was momentum dispersive, with a
momentum dispersion of 9.5 cm/%.

Located at the very end of the S800 is the focal plane and several detectors for
particle identification (PID) and measurement of particle trajectory were equipped
in the focal plane box [95]. Figure 3.3 shows a sketch of the focal plane box and
detectors. Note that the IsoTagger array, which will be described in §3.4.2 was placed
downstream of the E1 scintillator in this figure. The details will be described in the
following subsections.
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Figure 3.4: A schematic of the CRDC. Taken from [96].

3.3.1 Particle trajectories

The focal plane box is equipped with two cathode readout drift chambers (CRDCs).
The upstream CRDC is located at the nominal focal plane of the S800 spectrograph
and the other one is placed 1073 mm downstream. Both detectors have the active
area of 26 cm × 56 cm, in non-dispersive and dispersive direction, respectively, and
the active depth of 1.5 cm [95]. These chambers are filled with the mixture of 80%
CF4 and 20% C4H10 gas and the operational pressure is typically about 50 torr.

The projectile-like particle passes through the CRDCs and ionizes the gasous ma-
terial described above. Produced electrons and ions are separated by a static electric
field, E in Figure 3.4. This electric field is applied between the top edge of the frame
and the Frisch grid, where typical high voltages of −950 and −10 V are applied, re-
spectively. The electrons drift toward the Frisch grid without any avalanche effect.
An anode wire is just behind the Frisch grid with a high voltage of 750 V, inducing
avalanche effect and thus multiplying the number of drifting electrons. The anode
wire is surrounded by 224 cathode pads with 2.54 mm pitch. The induced charges
from the collection of electrons on the anode wire are read from cathode pads and
the charge distribution corresponds to the position of the particle trajectory in x-
direction. The position in y-direction is determined by the drift time of electrons to
the anode wire with respect to the trigger signal produced by the E1 scintillator. The
maximum drift time is up to 20 µs with regard to the particle trajectory. Resulting
position resolution is better than 0.5 cm.

The resulting coordinates on the focal plane, xfp and yfp at the upstream CRDC,
and angles, afp and bfp, respectively, are used to deduce the non-dispersive position,
yta, angles, ata and bta, and the energy parameter, dta at the secondary target position
by an inverse map. The inverse map describes the trajectory of a charged particle
passing through the magnetic field of the S800 spectrograph and calculated by the
code COSY Infinity [97]. Note that dta = ∆E/E is defined as the difference in energy
of the particle and of a particle on the central trajectory of the S800 spectrograph.
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Combining with the magnetic rigidity Bρ setting of the S800, the energy-momentum
4-vector of the reaction residue can be deduced.

As described above, dta is one of the parameters calculated from the particle
trajectory at focal plane and the dispersive position at the target position, xta cannot
be reconstructed using the inverse map. This procedure results in the resolution
of dta convoluted by the finite beam spot size along the dispersive direction at the
target position. To improve the resolution of dta, two tracking parallel plate avalanche
counters (PPACs) are placed at the intermediate plane of the analysis line of the
S800. Each PPAC has the active area of 10 cm × 10 cm and is filled with isobutane
gas with a typical pressure of 5 torr. A PPAC consists of an anode plate between
two cathode foils having 64 aluminum strips each with the pad pitch of 1.27 mm.
One of the cathode foil is oriented in the non-dispersive direction and the other is
in the dispersive direction. The secondary beam passing through the PPACs ionizes
the gas and produces electrons and positive ions. The drift of electrons to the anode
plate induces the image charge to the strips on the cathode plates and this charge
distribution corresponds to the two dimensional position of the beam particle.

3.3.2 Time-of-flight

In order to identify both incoming and outgoing particles, three plastic scintillators
were installed in the beam line and the time-of-flight (ToF) between them was mea-
sured. Two scintillators were placed at XFP of A1900 and at OBJ of S800, whose
signals were used as the start signal of ToF. The other scintillator was placed at the
very end of the S800 spectrograph, called E1, and used as the stop signal of ToF
measurement and the trigger signal of the data acquisition of S800 detectors. These
ToF measurements were for the separation of mass, m, of both incoming and outgo-
ing particles. As described in §3.4, the momentum spread of the secondary beam was
restricted to ±0.5%. Assuming a constant momentum of the secondary beam and
the constant flight length along the beam line, the relationship of ToF ∝ 1/β ∝ m
can be used for the PID. The detectors are made of polyvinyltoluene (>97%) and
organic fluors (<3%) with a density of 1.032 mg/cm2 and a refractive index of 1.58.
The detector thickness of the scintillators at OBJ and E1 are 127 µm and 1 mm,
respectively. Two photomultipliers EMI 98807B are connected to both ends of the
E1 scintillators and the average timing of the signals from both photomultipliers was
used.

3.3.3 Ionization chamber

An ionization chamber is used for the identification of the proton number of the
outgoing particle. This detector is placed between the downstream CRDC and the
E1 plastic scintillator. The approximate active area is 30 cm × 60 cm, non-dispersive
and dispersive direction, respectively, and the active depth is about 40.6 cm. This
chamber is filled with a mixture of 90% Ar and 10% methane at a typical pressure
of 300 torr. The whole detector consists of 16 stacked parallel plate ion chambers
which are placed along the beam axis with narrow anode-cathode gaps. Charged
particles passing through the chamber ionize the gas along their trajectories and the
electrons produced drift to the closest anode-cathode pair. Owing to the anode-
cathode configuration, the drift length of electrons and ions is quite short, about
1.5 cm, compared to the whole detector size, reducing pile-up events and position
dependence of signals. The number of electrons corresponds to the energy deposited
in the gas, which is described by the Bethe-Bloch formula (3.2).
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Figure 3.5: A schematic of the crystal of the GRETINA array. Taken
from [90].

3.4 Gamma-ray detectors

In the present experiment, two kinds of gamma-ray detectors were installed to measure
the de-excitation γ-rays emitted from the reaction residues. The excitation energies
and the cross sections to populate excited or ground states of the reaction residues
were determined by the energies and the detection yields of detected γ-rays. The level
scheme was constructed by analyzing the γ-γ coincidences between prompt as well as
delayed γ-rays.

3.4.1 The GRETINA array

The prompt de-excitation γ-rays were measured by the Gamma Ray Energy Track-
ing In-beam Nuclear Array (GRETINA) [90, 98] surrounding the secondary target.
GRETINA consists of eight clusters of four segmented coaxial high purity Germa-
nium (HPGe) detectors. The detectors are made of n-type HPGe with less than
1.8 × 1010 cm−3 net impurity concentration. Each crystal is tapered in two types
of hexagonal shapes at the front face (A-type and B-type crystals as Figure 3.5), to
be closely packed in a spherical shell. Original crystal size before tapering is about
90 mm in length and 80 mm in diameter. Each crystal has a central contact extending
15 mm from the front face of the crystal with a diameter of 10 mm. The outer contact
is divided in 36 pads with six longitudinal and six transverse segmentation with less
than 0.5 mm gaps. Transverse segmentation makes rings of outer contacts with width
of 8, 14, 16, 18, 20, and 14 mm from the front end of the crystal, from α to φ. Fig-
ure 3.5 shows the geometry of the crystal and the segmentation of the outer contacts.
Two A-type detectors and two B-type detectors are packed into a quad module with a
common cryostat. Eight quads were used for the present experiment providing more
than 1π solid angle coverage. Four quads were placed at 58◦ and the others were at
90◦ with respect to the beam axis at a distance of about 18 cm from the secondary
target to the front face of the detectors.

One of the most important assets of the GRETINA array is its ability to recon-
struct the positions of γ-ray interactions in detectors with a sub-segment position
resolution. From the segment where the γ-ray interaction occurred the net charge is
measured, while in neighboring segments an induced image charge is recorded. The
rise time of the signals from the hit segment and the central contact is sensitive to the
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Figure 3.6: Picture of the GRETINA mount. In this picture, orange
numbers represent the hole number, yellow numbers are
the quad number, and the white numbers are the crystal
number of each quad. Note that this picture was taken in
the previous GRETINA campaign (2012). In the present
experiment, 8th quad was additionally mounted in the hole
14. Taken from [67], picture courtesy of S. Noji.
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Figure 3.7: Picture of the IsoTagger array. The focal plane box was
opened. Taken from [91].

drift time of the charge carriers, which reflects the distance of interaction point from
the readout electrodes. The shape and the amplitude of the signal of image charges
detected in neighboring segments contain the information of the depth and the polar
angle of the interaction point as the other two cylindrical coordinates. The GRETINA
readout electronics record signal pulses from the segments and the central contacts by
digitizing them. Also, the GRETINA system has a dedicated the computer farm for
signal decomposition. Typically a single γ-ray interacts multiple times with a single
detector or even with a single segment until fully absorbed. This means that measured
signals are the superposition of the signals of the single interaction point. Here, the
measured signals are fit against a linear combination of simulated basis signals and
γ-ray energy deposition and positions are reconstructed. These basis signals represent
detector response to a unit charge deposited at a given point in the detector and are
simulated with an average spacing of 1 mm.

3.4.2 The IsoTagger array

In some cases, the reaction residue has an excited state with the lifetime long enough
to pass the acceptance of the γ-ray detectors surrounding the secondary target. It
then becomes difficult to construct the level scheme of this nucleus and thus to deduce
the production cross section of each final state. In this case the end point of γ-ray
cascades could either be the ground state or an isomeric state. In order to solve this
problem, the γ-ray detector array, IsoTagger [91], was placed at the very end of the
S800 spectrograph. It is specifically designed to measure the γ decay of isomeric states
in the nucleus of interest.
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The IsoTagger consists of 32 CsI(Na) crystals shown in Figure 3.7. These crystals
are closely packed as 4 × 8 in non-dispersive and dispersive direction, respectively.
The size of each crystal is 82.5 × 82.5 × 51 mm3. This array is usually used for
measuring the total kinetic energy of reaction residue. For γ-ray detection, the Al
stopper plate is placed behind the E1 scintillator and the IsoTagger array is placed
10.5 cm downstream of the stopper to maximize the geometric efficiency. The thickness
of the Al stopper is chosen to be 6.35 mm, which is thick enough to fully stop both
the nuclei and lighter tertiary reaction product produced in the implantation process.
Not only the energy and yield of the de-excitation γ-ray from the isomeric state are
measured, but also the complete level scheme above and below the isomeric state is
constructed by taking the delayed coincidence with prompt γ-rays measured by the
GRETINA array at the target position. Additionally, from the detection timing of
the delayed γ-ray the lifetime of the isomeric state can be deduced.

3.5 Readout and data acquisition system

The electric circuits for the signal processing of detectors are shown in figures from
3.8 to 3.12.

Both CRDCs are equipped with seven front-end electronic boards (FEE) as shown
in 3.8. Each FEE consists of 32 channels of preamplifiers followed by a switch capacitor
array (SCA) and an ADC. A SCA samples the wave form of the signal from CRDCs,
typically 20 MHz and 8 to 12 samples, and send it to an analog-to-digital converter
(ADC). The signal processing of this sampling needs about 16 µs which is the largest
dead time in the typical setting of the experiment. The signal from PPAC detectors
are also treated as the same manner as CRDCs shown in Figure 3.9. For the signal
processing of PPACs, a SCA samples in more frequent rate, typically 200 ns.

The signals from the ionization chamber are first sent to a shaper amplifier and
then sent to an ADC as shown in Figure 3.10. The gain of each shaper amplifier are
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adjusted remotely.
The photomultiplier output (Hamamatsu R1307) of each scintillator of the IsoTag-

ger array is divided for the energy and timing measurement as shown in Figure 3.11.
The signal goes to a shaper amplifier followed by an ADC for the energy measurement.
The other one is sent to a constant fraction discriminator (CFD) and then input to
the stop signal for a time-to-amplitude converter (TAC).

The signal processing of the photomultipliers attached to the plastic scintillators
for the timing measurement is shown in Figure 3.12. The signal goes to a fast amplifier
and then is treated as the stop signal of a time-to-digital converter (TDC). The start
of a TDC module is the signal from E1 scintillator. Also for counting the number of
particles passing through the scintillators, the CFD output is sent to a scaler.

The signal processing described above, related to detectors equipped in the S800
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Figure 3.10: Schematic diagram for the electric circuit of the ionization
chamber. Taken from [99].
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spectrograph, are under the data taking system (DAQ) of the S800. Besides the DAQ
for S800, the GRETINA array has its own DAQ and they ran in parallel in the present
experiment. The time of the data taking in both DAQ system was recorded by the
common timestamp. This timestamp information was used for the event building in
the following analysis [100].

The S800 DAQ system were fired by two trigger conditions. One was the trigger
made by the signal from the E1 scintillator. This trigger condition means that the
projectile-like particle reached the very end of S800. The other one is the coinci-
dence trigger of the E1 signal and the GRETINA. In all the knockout setting runs of
44S→43S, there was no down scale of the trigger made by the E1 scintillator, which
means that the S800 DAQ was always fired by charged particles. In some runs in
which the S800 magnet was set to unreacted 44S particles, measurement of the isomer
ratio of this nucleus for example, down scale for the E1 trigger was applied. In such
condition, the coincidence trigger could fire the S800 DAQ system. Note that during
some calibration measurements of the γ-ray detectors, GRETINA or IsoTagger fired
the whole DAQ system.
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Chapter 4

Analysis

This chapter describes the calibrations and treatment of the recorded data prior to
deducing the physics observables. In §4.1, calibration of the beam line detectors will
be described, followed by the particle identification. In §4.2 and §4.3, γ-ray analysis
will be discussed for both the GRETINA and the IsoTagger arrays. The analysis
regarding the parallel momentum distributions will then be presented in §4.4.

4.1 S800

This section describes the treatment of the data measured by the detectors in the
focal plane box of the S800 and scintillators placed upstream of the secondary target.
These detectors provide the particle identification and the momentum distribution of
reaction residues.

4.1.1 Cathode readout drift chambers

The charge deposition in each of the two CRDCs was measured by 224 cathode pads
individually and the centroid of this charge distribution was calculated to determine
the x position of particles passing through. To properly deduce the charge distribution,
the gain of each pad was matched and the response of the pads was unified across
all 224 pads. Figure 4.1(a) and (b) show the charge value measured in each pad
before and after the gain matching procedure, respectively. This is part of the whole
beam experiment with the one-neutron knockout setting. The 111th channels in
both CRDCs were arbitrarily chosen to be the matching channel. Rough particle
identification cuts for outgoing particles were applied to ensure the selection of isotopes
for a constant energy loss. In the present experiment, gates for outgoing particles of
Z = 12, 13, and 14 were applied and a linear function was used to match the measured
charge values to the matching channel after subtracting the pedestal value in each
pad. Note that charge values shown in these figures are defined as the maximum
charge value among all pads fired in an event. Due to this definition, this calibration
procedure is iterative because changes in calibration parameters could result in the
maximum charge value in the different channel. Because of the beam blocker placed
in front of the upstream CRDC in order to stop the unreacted projectile, there is no
recorded charge in pads from 0 to around 50, but this part of the detector was not
used in the experiment.

After the gain matching calibration, the central pad number of the charge distri-
bution is used to calculate the x position as below,

x = Cx1 ×
∑

i i×Qi∑
iQi

+ Cx2, (4.1)
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Figure 4.1: Result of the gain matching analysis for 224 channels of the
downstream CRDC. (a) and (b) show the recorded charge
values in each pad before and after the gain matching, re-
spectively. Gates on incoming 44S and outgoing S isotopes
have been applied.
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Figure 4.2: Result of the mask calibratoin of the downstream CRDC.
The centroid of the charge distribution and the drift time
of electrons were converted to the real position coordinates
to reproduce the known positions of the holes or slits in
the mask.
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Figure 4.3: Correction for y position measured by the upstream CRDC
against the experiment time. Drift of the measured po-
sition can be caused by the variation in temperature of
pressure in the detector.

where Qi is the charge value in arbitrary unit measured in i-th pad and Cx1 and Cx2

are calibration parameters to convert the pad number to the real coordinate. Cx1 was
chosen to be 2.54 mm which corresponds to the pad width in mm and the offset value
Cx2 was determined by analyzing separate mask runs. In mask runs a tungsten plate
with holes and slits at known coordinates was inserted just in front of a CRDC. This
mask is thick enough for charged particles to stop in the plate. Figure 4.2 shows the
result of mask calibration for the downstream CRDC. Cx2 was calculated to reproduce
the coordinates of holes and slits in mask runs. To deduce y position, the drift time of
electrons measured by the anode wire was used and converted to mm using the same
mask runs.

To account for the change of the gas pressure and temperature during the beam
time causing a shift of the measured charge distribution and drift time, mask runs were
performed periodically over the whole experiment. Drifts in between the calibration
runs were corrected for interpolating between the mask runs, as shown in Figure 4.3.
The measured y position was aligned to the mean y position just after the mask runs.
This correction was done separately for the different magnetic rigidity settings of the
S800 spectrograph. Such kind of drift correction was also applied to the charge value
measured by the ionization chamber and the ToF measured by using scintillators at
OBJ and XFP (see below).

4.1.2 Time-of-flight

As mentioned in section §3.3.2, two time-of-flight measurements, XFP-E1 and OBJ-
E1, were used for the particle identification. The time-of-flight between the XFP
and the OBJ scintillators is proportional to the mass of the incoming particle, so
the particle identification of incoming particles was performed by investigating two
dimensional plot of XFP-E1 and OBJ-E1 time-of-flight measurements. Outgoing par-
ticles were identified by the combination of the energy loss measured in the ionization
chamber which is described in §4.1.3 and the OBJ-E1 time-of-flight, which is sensitive
to the mass of outgoing particle. The flight path through the S800 spectrograph de-
pends on the angle and momentum of the particle, so the OBJ-E1 time-of-flight was
corrected by assuming linear dependences of these parameters as

OBJC = OBJ + C1 × xfp + C2 × afp. (4.2)
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Figure 4.4: Correction to the ToF between OBJ and E1. (a) and (b)
show the histograms before and after the correction using
the dispersive position (x) at the focal plane. (c) is before
the correction using the dispersive angle (a), and (d) is
after the iterative correction with both x and a.

Two correction parameters C1 and C2 are deduced to obtain the best resolution of
the OBJ-E1 time-of-flight. The result of this correction is shown in Figure 4.4. First,
only C1 is varied and fixed to the value for the best ToF resolution. Practically,
this procedure is performed by checking the two dimensional correlation between the
ToF and the xfp, as shown in the panel (a) of Figure 4.4. By eliminating the xfp
dependence on the ToF, which means the correlation between the ToF and the xfp is
vertical against the ToF axis, X axis in the panel (a) of Figure 4.4, and the narrowest
peak width of the one dimensional ToF histogram, the correction parameter C1 is
tentatively deduced, as shown in the panel (b) of Figure 4.4. Then C1 is fixed and C2

is searched for the better ToF resolution. These parameters can affect with each other,
so this procedure is performed iteratively. Final result of this correction is shown in
panel (d) of Figure 4.4.

4.1.3 Ionization chamber

Prior to the calculation of the energy deposition in the whole ionization chamber, the
gains of 16 segments were matched. The second segment was arbitrarily chosen to be
the matching channel. By applying rough particle identification gates for outgoing
particles with Z = 14, 15, and 16, the calibration parameters of the linear function for
the remaining 15 channels were obtained by matching to the charge values measured
in the second channel. Figure 4.5 shows the recorded charge in each segment before
and after this gain matching procedure.

The energy deposition by projectile-like particles were deduced by the mean of
charges measured by all the fired segments in an event. The energy loss through the
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Figure 4.5: Result of the gain matching analysis for 16 channels of the
ionization chamber. (a) and (b) show the recorded charge
values in each channel before and after the gain match-
ing, respectively. Gates on incoming 44S and outgoing S
isotopes were applied.

whole chamber, E, depends on the pass length in the chamber. The energy loss was
corrected accounting for the x position in the focal plane of the S800 spectrograph as

Ecor = E · exp(p · (x− x0)) for x < x0, (4.3)

where p and x0 are the fitting parameters to the two dimensional plot of x and E, as
shown in Figure 4.6. Figure 4.6(a) is the spectrum before the correction and the red
dashed line in this panel corresponds to Equation (4.3). The result of this correction
is Figure 4.6(b).
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Figure 4.6: Result of the position correction analysis for the ionization
chamber. (a) and (b) show the recorded charge values
before and after the position correction, respectively. The
red dashed line corresponds to the function used for the
position correction described in Equation (4.3). Gates on
incoming 44S and outgoing 43S were applied.

4.2 Analysis for GRETINA

In this section, the analysis for the GRETINA detector array to measure the prompt
γ-rays are described. First, the energy recalibration of the GRETINA crystals are
described. To enhance the peak count of the γ-ray energy histogram and make γ-γ
coincidences within the GRETINA or between the GRETINA and the IsoTagger, an



48 Chapter 4. Analysis

0 1000 2000 3000
Energy before recalibration [keV]

0

1000

2000

3000

L
ite

ra
tu

re
 v

al
ue

s 
[k

eV
]

0 1000 2000 3000

Literature values [keV]

1−

0

1

D
ev

ia
tio

n 
[k

eV
]

(a) (b)

Figure 4.7: Result of energy recalibration of a single crystal of
GRETINA. The energy outputs of GRETINA detector
measured by using standard radiation sources before re-
calibration and corresponding peak energies are plotted in
Figure (a). The red line shows the linear function used
for recalibration. Figure (b) shows the deviation of recali-
brated energies and literature values. Note that error bars
of the energy recalibration are negligibly small.

addback procedure were used. The γ-ray yields emitted from excited states of 43S are
deduced by the fitting of the simulated response function to the experimental γ-ray
energy histogram. To properly deduce the γ-ray yields, the treatment of the simulated
data and a comparison of the efficiency measured with the standard radiation sources
is described in §4.3.2. Prompt γ-rays measured by the GRETINIA were emitted from
the particles moving with a velocity of about β ∼ 0.4. The procedure performed to
reconstruct the emitted γ-ray energy in the ejectile rest frame is described in §4.3.3.
Non-negligible amount of γ-rays from the surrounding materials or the GRETINA
detector itself were also observed, as shown in §4.2.5.

4.2.1 Energy recalibration

As described in §3.4.1, γ-ray energies are deduced by the signal decomposition algo-
rithm online. This means that an energy calibration of the crystals is necessary prior
to the measurement, and also that the output values written to the recorded data file
are already in units of energy. An energy calibration for each segment and crystal had
been performed at the beginning of the experiment. So, in principle, there is no need
to perform an energy calibration offline for the recorded data. However, gain drifts
can occur over the period of the experiment. In the present experiment, calibration
data was taken both before and after the measurement with the radioactive beam. It
was found that no significant gain drift did occurred, but the energy outputs of some
crystals had already been shifted during the measurement. So energy recalibration
was performed prior to the further analysis.

The calibration measurement was done with the standard radiation sources of
56Co, 60Co, 88Y, 133Ba, and 152Eu. Peaks with more than 7% of the total intensity
per decay, shown in Table 4.1, were chosen for the recalibration. The γ-ray energies
were deduced by fitting gaussian functions with linear background functions to the
experimental spectra. Figure 4.7 shows the result of the energy recalibration for a
single crystal. A linear function was used for the recalibration and general linearity
was confirmed in the whole array as is shown in Figure 4.7(a). Figure 4.7(b) shows
energy differences between deduced γ-ray energies and the corresponding literature
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Figure 4.8: Result of energy recalibration of whole GRETINA array.
Root-mean-square of the deviation of recalibrated energies
and literature values calculated in each crystal is plotted in
Figure (a). Figure (b) is the same kind of plot as Figure 4.7
but calculated for the whole array. Note that error bars of
the energy recalibration are negligibly small.

Table 4.1: Standard radiation sources used for the calibration of the
GRETINA. Values are taken from [101].

Nuclide Half life Activity Energy [keV] Intensity per decay [%]
56Co 77.27d 846.7938(29) 99.933(7)

1037.8333(24) 14.13(5)
1238.2736(22) 66.07(19)
1771.327(3) 15.49(5)
2034.752(5) 7.771(27)
2598.437(4) 16.96(6)

60Co 5.2714y 1173.228(3) 99.857(22)
1332.490(6) 99.983(6)

88Y 106.65d 898.036(4) 94.0(3)
1836.052(13) 99.36(3)

133Ba 10.52y 80.9971(12) 34.11(28)
276.3997(13) 7.147(30)
302.8510(6) 18.30(6)
356.0134(6) 61.94(14)
383.8480(12) 8.905(29)

152Eu 13.542y 46.0 kBq 121.7817(3) 28.37(13)
244.6975(8) 7.53(4)
344.2785(13) 26.57(11)
778.9045(24) 12.97(6)

964.1 14.63(6)
1085.836(9) 10.13(5)

1112.9488(11) 13.54(6)
1408.011(4) 20.85(9)
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values. The energies of the observed γ-rays were well reproduced by the recalibration
procedure with a energy deviation of less than 1 keV in the energy range of 80 to
2600 keV. Figure 4.8(a) shows the root-mean-square values of the deviations between
calibrated energies and the corresponding literature values calculated for individual
crystals summed in all the peaks. The recalibration procedure is able to reproduce
the energies with less than 1 keV difference for all the crystals. Finally, Figure 4.8(b)
displays the same kind of analysis as Figure 4.7(b) but for the whole GRETINA
array. From this result, less than 0.5 keV can be used as the the uncertainty of energy
recalibration.

4.2.2 Treatment of γ-ray event and addback analysis

In the present experimental situation, a single γ-ray can interact with the Ge of the
GRETINA detector multiple times. For the high energy γ-rays especially, γ-ray can
undergo multiple Compton scattering:

E′
γ =

Eγ

1 + Eγ/me(1− cos θ)
, (4.4)

where E′
γ is the energy of the scattered γ-ray and θ is the γ-ray scattering angle. If a

single γ-ray interacts by multiple Compton scattering events, the deposited energy at
each interaction point no longer reflects the γ-ray energy emitted from the reaction
residue, but the sum of energy deposits equals to the γ transition. To solve this
situation, it was simply assumed that all interaction points within a single segment
originated from the same γ-ray. This is a reasonable procedure in case of low γ-ray
multiplicities in the present experiment for one-neutron knockout reactions. In this
analysis, the first γ-ray interaction point was taken from the interaction point with the
maximum energy deposition in the segment. For the Doppler correction, described in
§4.3.3, this is also an reasonable assumption because the error of the γ-ray emission
angle is small due to the small γ-ray scattering angle by Equation 4.4 if the first
interaction point is not the one with the maximum energy deposition.

For an improved peak-to-total ratio of the γ-ray energy histogram compared to
the singles spectrum described above, an addback procedure was performed in the
present work. In this analysis, possible combination of all the interaction points was
examined and if the γ-ray emission angles with respect to the secondary target be-
tween two γ-rays were smaller than a specific angle α, these γ-rays were clustered and
their energies were summed. The clustering angle was chosen to be α = 25◦ in this
work. For the Doppler correction, the γ-ray interaction was taken from the point with
the largest energy in the cluster. Figure 4.9 is the example of the indication of the
sub-segment position resolution of the GRETINA. These position information were
used for both addback analysis and Doppler correction. Figure 4.10 shows part of
the prompt Doppler corrected γ-ray energy histogram measured for the one-neutron
knockout channel from 44S to 43S. The improvement of the peak-to-total ratio is
apparent, especially in the higher energy region. In the present work, addback proce-
dure was used for peak identification, γ-γ coincidence analysis within GRETINA or
between GRETINA and the IsoTagger array, and analysis final state exclusive mo-
mentum distributions that need the clearer spectra. The singles spectrum, on the
other hand, was used to deduce the absolute yields of γ-rays due to the more accurate
efficiency determination and the lower possibility for accidental summing of unrelated
γ-ray hits.
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Figure 4.9: Example of the indication of the sub-segment position res-
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rays with addback procedure of GRETINA. Red and
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togram of one-neutron knockout channel measured by the
GRETINA array before and after the addback procedure
adopted in the present work.
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Figure 4.11: Resolution and threshold functions of a single crystal of
GRETINA used as the input to the simulation. Peak
width of each peak measured with standard radiation
sources is plotted in Figure (a) as a function of peak
energy. The red line shows the fitting function for the
experimental values. Figure (b) shows the low energy
region of the γ-ray energy histogram measured with the
60Co source. Fitting function of the threshold is shown
as the red line.

4.2.3 Simulation of response function and deduction of efficiency

The prompt γ-ray yields were deduced by fitting simulated response functions to
the experimental spectra of 43S. To model the detector response, the resolution of
each detector was measured from the calibration runs and used as an input to the
simulation. In the Figure 4.11(a) the resolution (peak width, σ) of each peak is
plotted as black points against the peak energies of various calibration sources for
a single crystal. These experimental points were fitted by a function of energy E
individually:

σ = E0

√
(1 + E1 × E). (4.5)

Both E0 and E1 were deduced for each crystal by fitting to the experimental data.
The lowest known transition in 43S is 185 keV. It will be Dopplershifted down to

around 145 keV for angles θLAB
γ ∼120. Furthermore, low energy deposits of Compton

scattered γ-rays of higher energy extend down to 0 keV. Therefore the shape of the
energy threshold of each crystal is needed as an input to the simulation. Figure 4.11(b)
shows the energy spectrum of a single crystal in the low energy region measured with
the 60Co source. Threshold of each crystal was modeled by the function below:

Ethresh =
1

2

{
1 + tanh

(
E − E2

E3

)}
. (4.6)

Both E2 and E3 were deduced by fitting to the experimental spectrum of each crystal.
The nuclear reaction of interest was simulated simultaneously with the emission

and interaction of γ-rays resulting in the identical data set of S800 and GRETINA
with the experimental data. The output of the simulation contains the γ-ray interac-
tion points, their coordinates and energy deposits, in addition to the ejectile informa-
tion ata, bta, dta needed for the Doppler correction. The simulation was performed
using the GEANT4 simulation package [102, 103]. HPGe detectors, cryostats, two
mounting hemispheres, aluminum beam pipe, and the secondary target or calibration
source with its holder were included in the simulation. As the interaction of photons
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Figure 4.12: Efficiency of GRETINA without addback. Blue filled tri-
angle and square correspond to the measured efficiencies
with 152Eu and 56Co sources. Red and green open circles
are simulated efficiencies with and without the empirical
modulation of efficiencies.

with materials, Compton scattering, Rayleigh scattering, pair production, and pho-
toabsorption were taken into account. Some parameters deduced from experimental
measurements were used as the input of the simulation. For the simulation of cali-
bration runs the γ-decay scheme of each source was implemented. For the simulation
of the in-beam setting, the incoming beam parameters, its kinetic energy, momentum
spread, and spatial distribution on the target were used. In order to model the re-
action process, the angular and momentum distribution of the ejectile were matched
to the experimentally measured ones. Besides them, stopped γ-rays from HPGe itself
or surrounding materials were also simulated to treat the background properly, which
will be shown in §4.2.5. The output format of the simulation code is identical to the
GRETINA data format of the experimental data. Therefore identical analysis and
postprocessing codes as well as settings are used fo avoid mistakes and biases.

One of the specific challenges in the simulation of the GRETINA array is the
proper description of the uncertainty of the signal decomposition. Especially multiple
interactions in a single segment are very difficult to decompose. It is challenging to
distinguish wheather two or more interactions occur in the same segment close to each
other or a single interaction occurs at an average point between them. To treat this
in the simulation, all interactions in the same segment within the specific distance,
called packing radius, were assumed to arise from a single interaction. The energy
was set to the sum of individual energies and the interaction point was defined as the
energy-weighted average position. In the simulation of the present work, 6 mm was
chosen to be the packing radius.

The obtain the γ-ray yield of individual transition, the response function of the
GRETINA array was treated as the fixed shape and the only fitting variable is its
overall scaling parameter. This parameter of each γ-ray transition was obtained by fit-
ting general response functions together with properly chosen background functions to
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Figure 4.13: Efficiency of GRETINA with addback. The colors and
styles of plots are the same as Figure 4.12.

the experimental spectrum after Doppler correction. In this procedure, χ2 fitting was
performed with the MINUIT fitting package [104] implemented in the ROOT analysis
framework [105]. The intensities of the γ-rays were then obtained by multiplying the
fitting parameters with the total emitted γ-ray in the simulation.

Because the absolute numbers of γ-rays emitted from the nuclei of interest are
deduced from the fitting with the simulated response function, the accuracy of the
simulation is directly related to the uncertainty for the γ-ray emission yield. To
evaluate the accuracy of the simulation, the absolute efficiency of the GRETINA array
was measured and compared to the simulated value. For this purpose, two calibration
sources of 152Eu and 56Co were used to cover the energy range of expected γ-rays. The
activity of the 152Eu source was known as 46.0(7) kBq at the time of the experiment
but that of the 56Co source was not well known. To solve this situation, observed
intensities of γ-rays from the 56Co source were scaled to match those from 152Eu in
the range from 1.0 to 1.5 MeV. Figure 4.12 and 4.13 show the absolute efficiencies
without and with addback procedure. Note that in these figures the efficiency of
GRETINA is defined as the ratio of the number of counts in the full energy peak
deduced by the gaussian fitting to the spectrum and that of the total emission of the
specific transition during the measurement or in the simulation.

In Figure 4.12, it can be seen that the simulation overestimates the efficiency,
especially below 500 keV. By the previous works [67], it was found that this discrepancy
could not be due to inaccuracies in the treatment of the γ-ray absorption at low energy
in the simulation. Another potential source of this discrepancy is an inefficiency of the
decomposition procedure in this energy region. Low-energy γ-rays produce only weak
signals in the segments of GRETINA, which may not be over the segment thresholds.
This causes an event without any segment information but central contact, which will
fail in the decomposition procedure. Even if the segment was triggered, the weak
pulse will be relatively noisy and difficult for the decomposition algorithm to handle,
leading to the poor energy and position information by fitting. In both cases, and
possibly others, these events may not make it through the data stream to be recorded.
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Figure 4.14: Ratio of simulated and measured efficiencies of
GRETINA. Figure (a) and (b) are the plots without and
with addback.

This additional inefficiency was accounted for by adding a modulating function into
the simulation. The ratio of the efficiency measured with the standard sources and
that of the simulation was modeled as below:

εexp
εsim

=
1

1 + exp(A+B × Eγ)
. (4.7)

A fraction of low energy events were then removed according to this function to
reproduce the experimental efficiency. The result of this procedure is also present in
Figure 4.12 and 4.13 and the simulation shows good agreement with the experimentally
measured efficiency. Figure 4.14 shows the ratio of the simulated efficiency with
this empirical modulation and the experimentally measured efficiency. From this,
uncertainties of 2.5% and 5% for the efficiencies without and with addback analysis,
respectively, are used as an estimate of the uncertainty of the γ-ray emission yield.

4.2.4 Doppler correction

In a typical in-beam experiment, prompt γ-rays were emitted in flight from excited
states of reaction residues moving at the velocity around β ∼ 0.4. In this situation,
γ-ray energies measured by detectors in the laboratory frame are shifted from those
in the rest frame of the reaction residues by the Doppler effect:

Eγ =
1− β cos θLAB

γ√
1− β2

ELAB
γ . (4.8)

To compensate this effect, Doppler correction was performed through measuring
ELAB

γ , β, and θLAB
γ event-by-event. The velocity of the reaction residue at the mo-

ment of the γ-ray emission was deduced by using the dta value and Equation (4.12).
In Equation (4.12), γ0 was defined as the relativistic value for the particle on the
central trajectory of the S800 spectrograph. For the Doppler correction, however, γ0,
and the corresponding β0 were chosen to align a chosen peak at forward and backward
emission angles and minimize its width. In deducing β0, the 2600 keV γ-ray from 43S
in the one-neutron knockout setting was used, because the partial life time, τ , of this
transition should be the shortest compared to other γ transitions due to the relation
of τ ∝ 1/(Eγ)

2l+1 for a transition multipolarity of l. The resulting β0 was 0.418. In
the one-neutron knockout setting, the magnetic rigidity of the S800 spectrograph was
set to 3.645 Tm. By taking into account the energy loss in the half thickness of the
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9Be secondary target, the mean velocity of 43S can be estimated as 0.415, which is a
good agreement with β0 deduced above.

The γ-ray emission angle with respect to the particle trajectory, θLAB
γ , can be

deduced if the origin of γ-ray emission and the first interaction point in the detector
were known. The γ-ray emission was assumed to be at the target center, especially the
z position of the target was just on the designed value of the optical transfer matrix.
As described in §3.4.1, γ-ray interaction points were obtained with the subsegment
position resolution. Because this position resolution was the same amount as the
offset of detector mounting, the whole GRETINA array was rotated around the target
position in dispersive and non-dispersive direction. The rotation angles where the
width of the 2600 keV transition was minimized were deduced in the same manner
as β0 and resulting values of ∆a = 15.9 and ∆b = 7.3 mrad were used in the further
analysis.

Finally the error of Eγ was estimated by corresponding uncertainties on ELAB
γ , β,

and θLAB
γ . As was shown in Figure 4.8, the uncertainty of the energy recalibration

was estimated smaller than 0.5 keV. The central β for Doppler correction was also
estimated above. This β0 can be attributed as the mean of the velocity at the moment
of the reaction, reasonably assumed at the target center. By taking into account the
energy loss in the target, the value of β at the time of emission can range from 0.430 to
0.403, at the upstream and downstream edge of the target, respectively. The reaction
can occur at any position along the target, so the distribution of β can be assumed
as the uniform distribution. Thus, the uncertainty of the β can be calculated as
(0.430 − 0.403)/

√
12 = 0.0076 as 1σ. This results in an uncertainty of 3 keV for

2600 keV transition after Doppler correction.
The largest component of the uncertainty of θLAB

γ can be attributed as the offset
of the target position with respect to the center of GRETINA. In the present analysis,
the secondary target was assumed to be just on the designed position of the optics,
but the real position can be estimated by the same manner deducing β0. By changing
the z position of the secondary target for the Doppler correction, the peak width of
the 2600 keV peak was evaluated and it was minimized when the target was moved
2.5 mm upstream. If this target position and previously deduced β0 were used for the
Doppler correction, the peak center of the 2600 keV shifted to 2606 keV. This energy
difference was taken as the uncertainty due to the z position offset.

As the result, the uncertainty of the γ-ray energy deduction for 2600 keV transition
was estimated as 2600(7) keV. These procedures were applied to all the prompt γ-rays.
The γ-ray energy uncertainty shown in the final result will be the quadratic sum of
these systematic uncertainty and errors due to fitting procedure.

4.2.5 Treatment of background

The HPGe detector is sensitive not only to γ-rays from reaction residues but also to
those from the detector itself or surrounding materials. Figure 4.15 shows the two
dimensional histogram of the γ-ray energy in the laboratory frame and γ-ray timing
for the one-neutron knockout setting. γ-ray timing was defined as the timing differ-
ence from the signal of the E1 scintillator. In Figure 4.15, the structure around -50
corresponds to the arrival of the secondary beam, i. e. prompt γ-rays. A significant
delayed component around 700 keV is visible, but other stopped γ-rays with narrow
widths are also present in the prompt region. Therefore a prompt timing gate is not
sufficient to reject this background. In order to account for the background in the
analysis, monoenergetic γ-rays in the laboratory frame were simulated and Doppler
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Figure 4.15: Two dimensional plot of γ-ray energies and measured tim-
ings in GRETINA for the one-neutron knockout setting.
γ-ray energies are plotted in 2 keV bin.

correction was applied to these stopped γ-rays with randomly simulated particle tra-
jectory in the S800 spectrograph. Figure 4.16 shows the γ-ray energy histogram in
the laboratory frame for the one-neutron knockout setting, which is the same as the
projection of Figure 4.15 onto the X axis. Visible peaks are attributed to reactions in-
duced by neutrons in the Ge detector material or the Al beam pipe listed in Table 4.2.
Simulated γ-ray counts were scaled by the peak counts in Figure 4.16. Some peaks
have high-energy tail which comes from the recoil energy of the excited germanium
nucleus. In the present analysis, this tail was not simulated, but rather treated as part
of the monoenergetic peak and the simulated peak counts were scaled by the total
counts including the high-energy tail (shown by the hatched in Figure 4.16). Other
peaks were scaled assuming the gaussian shape. All the scaled peaks after Doppler
correction were just treated as the fixed background and there was no additional fitting
parameter related to this analysis.

4.3 Analysis for IsoTagger

In the same manner as for the GRETINA array, the energy calibration was performed
for the IsoTagger array. To deduce the decay curve of the isomeric state of 43S, the
timing calibration of the whole array was also done (§4.3.2). Finally the simulation of
the response function of the array and estimation of the uncertainty on the efficiency
is described in §4.3.3 with the specific treatment for γ decays with relatively long life
time.



58 Chapter 4. Analysis

Energy [keV]
500 1000

C
ou

nt
s/

(1
 k

eV
)

0

500

(a)

Energy [keV]
500 1000

C
ou

nt
s/

(2
 k

eV
)

0

50

100

150
(b)

Figure 4.16: (a) γ-ray energy histogram of GRETINA before Doppler
correction for the one-neutron knockout settings. Note
that this histogram corresponds to the projection of Fig-
ure 4.15 onto the X axis. Some peaks have asymmet-
ric peak shapes but treated as symmetrically shaped and
scaled to the counts in hatched area in estimating back-
ground. See text for details. (b) Simulated background
γ-rays related to the reaction with neutrons after Doppler
correction.

Table 4.2: Observed background γ-rays related to the reaction with
neutrons.

Energy [keV] Origin Half life

567 76Ge(n, n′γ)
600 74Ge(n, n′γ), 73Ge(n, γ)
691 72Ge(n, n′γ) 420 ns
835 72Ge(n, n′γ)
842 27Al(n, n′γ)
1013 27Al(n, n′γ)
1040 70Ge(n, n′γ)

4.3.1 Energy calibration

The energy calibration of the IsoTagger array was performed in a very similar way as
that of the GRETINA array. The standard sources of 22Na, 57Co, 88Y, and 133Ba were
used and the linear function was fitted as the calibration function for each crystal. In
this experiment, however, the precise measurement of the γ-ray energies is a secondary
objective, because the energy of the decay from the isomeric state has been previously
reported [22, 29]. However, a precise analysis of the coincidence between the IsoTagger
and GRETINA and the accuracy of extracting the γ-ray yield from the isomeric state
are of importance. For this purpose, after the energy calibration with sources of each
crystal has been done, the offset value of the linear calibration function was adjusted
to align the γ-ray from the isomeric state of 43S to 320 keV. This is done to account
for shifts in the gain occurring during the measurement time, for example due to the
magnetic fields and temperature changes. The result of this calibration procedure for
each crystal is shown in Figure 4.17.

1β+ branching ratio is 90.326(15)% [106].
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Figure 4.17: Result of energy calibration of IsoTagger in the one-
neutron knockout setting. After calibration using stan-
dard radiation sources, offset of each crystal was adjusted
to align 320 keV isomeric transition in 43S. γ-ray energy
is plotted in 10 keV bin

Table 4.3: Standard radiation sources used for the calibration of the
IsoTagger. Values are taken from [101, 106].

Nuclide Half life Activity Energy [keV] Intensity per decay [%]
22Na 2.6019y 187 kBq 510.999 180.76(4)1

1274.537(7) 99.935(15)
57Co 271.79d 122.06065(12) 85.60(17)
88Y 106.65d 17.3 kBq 898.036(4) 94.0(3)

1836.052(13) 99.36(3)
133Ba 10.52y 356.0134(6) 61.94(14)
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Figure 4.18: Result of timing calibration of IsoTagger. Figure (a)
shows the spectrum of time calibrator measured by TAC.
The linear relation of measured TAC ch and real time of
each peak is shown in (b). The red line is the fitted linear
function and used for the timing calibration. Figure (c)
shows the deviation of measured timing after calibration
and the real timing of the calibrator.

4.3.2 Timing calibration

Besides the energy of the γ-ray from the isomeric state of 43S, its lifetime has also
been reported previously. But the reported values from a few groups are scattered [22,
29, 30]. Therefore an independent measurement of the lifetime from the present
experiment is desired. For this purpose, a timing calibration of the TAC module
output was performed prior to the in-beam measurement. Figure 4.18 (a) shows
the histogram of the time calibrator giving pulses with fixed, known time difference
measured by the TAC module. Each peak was fitted by a Gaussian function to
determine the mean. The relationship of the deduced peak channels and the real
timing was fitted using a linear function as shown in Figure 4.18 (b). From Figure 4.18
(c), the uncertainty of the IsoTagger timing due to the calibration was deduced as 6 ns
as the root-mean-square value of the deviation of the calibrated timing from the real
timing of the calibrator.

4.3.3 Simulation of response function and deduction of efficiency

The energy and yield of the isomer decay was deduced by fitting the simulated response
function of the whole array to the measured γ-ray energy histogram. The simulation of
the response of the IsoTagger was performed by using the GEANT4 software [91, 102].
Not only the 32 CsI(Na) crystals and the Al stopper plate, but also the surrounding
stainless steel vacuum chamber were implemented. The thickness of the Al stopper
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Figure 4.19: Resolution and threshold functions of each crystal of Iso-
Tagger used as the input of the simulation of whole array
like Figure 4.11. Peak width of each peak measured with
standard radiation sources is plotted in Figure (a) as the
resolution of each crystal against the corresponding peak
energy. Red line shows the fitting function of experimen-
tal values. Figure (b) shows the low energy region of
the γ-ray energy histogram of a single crystal measured
with the 22Na source. Fitting function of the threshold is
shown as the red line.

and the distance between the stopper and the CsI crystals were measured during
the experiment and used as the input parameters of the simulation. Combining the
geometry and the placement of each crystals, the efficiency of the whole detector is
simulated properly. To reproduce the response of each crystal precisely, resolution
function against γ-ray energy and threshold of each detector measured with standard
sources were used as the input of the simulation, which are shown in Figure 4.19.

The procedure is very similar to the one for GRETINA as described in §4.3.2, but
there are some differences due to the different detection methods. To reconstruct the
experimental situation, the xy position distribution of 43S on the Al stopper produced
in the one-neutron knockout reaction was extrapolated from the trajectory measured
by the two CRDCs. In the simulation then event-by-event a random position from
the xy distribution is chosen as the γ-ray emission point. The z coordinate of the
isomeric decay, implantation depth of 43S in the Al plate, was estimated by the ATIMA
code [107] build in the LISE++ software [108] using the experimentally measured
average energy of the 43S ions.

There is also a difference in how the γ-ray yield is determined experimentally.
The number of the γ-rays emitted after the implantation to the stopper was deduced
by the fitting of the simulated response function to the γ-ray energy spectrum, the
same manner as the GRETINA, but because the lifetime of the isomeric state is on the
same order as the flight time from the secondary target to the Al stopper, a significant
amount of nuclei produced in an isomeric state by the one-neutron knockout reaction
decayed in-flight. The half life of the isomeric state at 320 keV of 43S was previously
measured as 415(5) ns [29] and also deduced from the present experiment as 377(4) ns,
which will be described in §5.2. Considering the flight length in the S800 was 15.339 m
and the velocity of 43S just after the secondary target was deduced as β = 0.400 from
the magnetic rigidity of the S800, 79.4% of the isomers survived and arrived at the
stopper prior to the decaying. This value should be considered to correct the number
of counts determined from the simulation fit to obtain the primary population of
the isomer. To estimate the systematic error of this ratio, the same value using the
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Figure 4.20: Efficiency deduction for the 320 keV isomeric transition.
Blue points are the γ-ray energy histogram of one-neutron
knockout channel measured by the IsoTagger array with
the gate on the 1532 keV prompt transition measured by
the GRETINA array. The red line is the gaussian fitting
to the experimental spectrum.

previously measured half life of 43S isomer was calculated as 0.812(2). Also the ToF
distribution between the secondary target and the Al stopper can affect on this ratio.
The ToF distribution was estimated by LISE++ [108] considering the momentum
width upstream of the secondary target resulting in a width of 4 ns with the central
ToF of 125 ns. This ToF spread corresponds to about 1% uncertainty on the survival
ratio. By taking quadratic sum of the error of survival ratio due to the difference from
the previous life time measurement and ToF spread in this experiment, the ratio was
estimated as 0.794(23).

To confirm the accuracy of the simulated response function and estimate the un-
certainty on the γ-ray detection efficiency, source runs with 88Y and 22Na sources
were measured. Note that 22Na source emits 1275 and 511 keV γ-rays with intensi-
ties per decay of 99.9 and 180%, respectively. Due to the different setting of DAQ
system for the source measurement and the high activity of the sources, which caused
a large DAQ dead time 2, the absolute efficiency value cannot be determined from
the singles γ-ray energy spectrum. Because of this problem, the efficiency was deter-
mined using the γ-γ coincidence analysis within the IsoTagger array. By subtracting
the self-coincidence, that should not appear in the decays of 88Y and 22Na, using the
intensity ratio of two γ-ray peaks deduced from the singles spectrum, the efficiencies
at four γ-ray energies are deduced as shown in Figure 4.21.

As will be shown in §5.2, a prompt γ-ray at 1532 keV was found to be coincident
with the 320 keV delayed γ-ray for the first time in this work. Once this coincidence
was confirmed, the efficiency for the 320 keV delayed γ-ray can be directly estimated
by using this 1532→320 keV cascade. Figure 4.20 shows the delayed γ-ray energy
histogram with a gate on the 1532 keV prompt γ-ray in the GRETINA. By taking

2this is also evidenced by the large number of self coincidences observed
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Figure 4.21: Efficiency of whole IsoTagger array. Red line shows the
simulated values and black points are measured values.
Points are measured efficiency with 43S reaction residue of
one-neutron knockout, 88Y, and 22Na standard radiation
sources.

the peak count of this coincident 320 keV γ-ray and 1532 keV prompt peak in the
GRETINA by assuming the Gaussian shape for both of them, and the survival ratio
of this isomeric state estimated above, the efficiency of this isomer decay was deduced
as 20.3(24)%, which is also plotted in Figure 4.21.

For the estimation of the uncertainty of the simulated efficiency, the effect of
the implantation depth was evaluated. The mean implantation depth distribution
was estimated by using the measured energy distribution of 43S. By calculating the
stopping range with LISE++ [107, 108] and taking 1σ width of the energy distribution,
the implantation depth amounts to 2.96 mm with a σ of 0.21 mm. This range result
in a 2% uncertainty on the efficiency at 320 keV. By taking the quadratic sum of this
value and the difference of the simulation and the experimentally deduced efficiency
at 320 keV using the cascade decay, the uncertainty was estimated to be 20.3(27)%.

4.4 Analysis on momentum distribution

As was described in §3.3.1, the kinetic energy of the reaction residue was deduced
as the difference from the energy of the central trajectory of the spectrometer, dta =
∆E/E. To deduce the parallel component along the beam axis of the momentum
of the outgoing particle in the lab frame and compare the theoretical parallel mo-
mentum distribution with the experimental one, following calculation procedure was
performed.

Prior to the further calculation, the product of the velocity and the relativistic
parameter of the reaction residue was calculated from the magnetic rigidity of the
S800 spectrometer:

γβ =
P

M
=
BρZe

M
≈ Z

A
· Bρ

3.10715 Tm
, (4.9)



64 Chapter 4. Analysis

where the approximation of M ≈ A× 931.502 MeV is applied. The relativistic factor
of the central trajectory of the S800 spectrometer is then deduced as

γ0 =
√
1 + (γ0β0)2 =

√
1 +

(
Bρ0Ze

M

)2

. (4.10)

As the kinetic energy is denoted as E −M , the definition of dta leads to

dta =
(E −M)− (E0 −M)

E0 −M
=
γ − γ0
γ0 − 1

. (4.11)

Therefore,
γ = γ0 + (γ0 − 1)dta, (4.12)

and
E −M = {γ0 + (γ0 − 1)dta − 1}M (4.13)

can be obtained. Considering the magnitude of the total momentum is P = γβM =√
γ2 − 1M and using the approximation of γ2 ≈ γ20 + 2γ0(γ0 − 1)dta, because γ ≈ 1

and dta ≲ 0.05,
P

P0
=

√
γ2 − 1

γ20 − 1
≈ 1 +

γ0
γ0 + 1

dta (4.14)

is calculated event by event. Finally, the direction of the momentum vector is deduced
by

P̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), (4.15)

where
sin θ =

√
sin2 ata + sin2 bta (4.16)

and
tanϕ =

sin bta
sin ata

. (4.17)

As mentioned in §3.3.1, the coordinates of the reaction residue trajectory and
its energy difference at the secondary target position (dta, yta, ata, bta) are deduced
by the coordinates measured at the focal plane (xfp, yfp, afp, bfp) and the transfer
matrix between them. During the beam time, the currents in the magnets of the S800
were measured. By using these currents values, the magnetic fields and the resulting
transfer matrix of up to the sixth order of the whole spectrograph are simulated [97].

The experimental parallel momentum distribution, P//, deduced as above is then
compared with a theoretically calculated one using the eikonal reaction theory, see
§2.3.6. The distribution was calculated in the rest frame of the projectile. To directly
compare the experimental data and the theoretical calculation, two treatments were
applied to the calculated distribution: transformation from the center of mass frame
to the lab frame and convolution with experimental momentum resolution.

For the convolution with the experimental resolution, the momentum of the un-
reacted 44S was measured by centering the S800 rigidity to the outgoing 44S. The
P// after the correction with PPAC x position at II, described in §3.3.1, was mod-
eled as the gaussian distribution and its width was used for the convolution. The
experimental result will be shown in §4.4.

After the convolution, the calculated distribution was scaled by the γ factor to
account for the broadening due to the Lorentz boost. Note that value of γ was corre-
sponding to the S800 magnetic rigidity setting in this calculation. This treatment is
valid because the change of calculated distribution due to the depth of the reaction



4.4. Analysis on momentum distribution 65

point within the secondary target, or the beam energy at the moment of one-neutron
knockout, is negligibly small. Thus the direct comparison with the momentum mea-
sured in the S800 is possible. This treatment also relies on the fact that the difference
of the energy loss per nucleon in the secondary target with the change of neutron num-
ber is quite small. Then the calculated distribution was shifted using the peak position
of the gaussian of unreacted 44S distribution, which corresponds to the Lorentz boost
between the two reference frames. Note that the momentum shift was not performed
by directly using the momentum center of unreacted 44S, P 44S

// , but by using scaled

A/(A−1)×P 44S
// distribution assuming the momentum per nucleon was approximately

conserved in the one-neutron knockout reaction.
The amplitude of the resulting theoretical distribution was then scaled to the

integral of the experimental counts for each state, leaving no free parameters for
fitting. Because of a tail on the lower momentum side, which is not reproduced in
the calculation, the integral of the experimental counts was restricted to just after the
center of the distribution to cut the lower momentum region.

The theoretical distribution reflects the direct population to the specific state of
43S. From the experimental setup of this thesis work, however, distributions coinci-
dent with prompt or delayed γ-rays or one of inclusive channel without any gate on
γ-rays were only achieved. To extract the distribution of an excited state, the dis-
tribution coincident with γ-rays decaying from this state was subtracted with those
coincident with γ-rays feeding to this state. Note that the efficiencies of γ-ray de-
tectors were taken into account for this procedure. For deducing the distribution of
directly populating the ground state, all the feeding transition were subtracted from
that of inclusive channel.

In the momentum reconstruction analysis described above, the profile of incoming
beam is not used at all. The incoming beam had the finite spot size, however, making
the resolution of dta as the convolution of the finite xta distribution. To improve this
situation, two PPACs were placed upstream of the secondary target.

In the ideal situation, two dimensional positions and angles in both dispersive and
non-dispersive directions can be deduced and correlations with dta were investigated
to achieve the best dta resolution. In the present experiment, the x layer of one PPAC
did not work properly. So only one x position was used for the correction of dta, which
had a dominant effect on the dta resolution, and the other position and angles were
not used for the correction. Figure 4.22 shows the measured maximum charge value of
each strip in the x layer of the PPAC used in the analysis. Note that some pads did not
worked properly or were removed in the analysis due to noise. Because the secondary
beam setting of the present experiment was almost 100% pure 44S, as will be shown
in §5.1, the gain matching calibration using a few isotopes with different Z numbers
like the calibration for CRDC detectors was not possible. This figure confirms that
the gain of each pad has been sufficiently matched even without further calibration
and that the PPAC x position could be deduced from the geometrical center of the
charge distribution, see Equation (4.1).

Figure 4.23 shows the two dimensional of dta and PPAC x position measured with
the spectrograph set to 44S. The correction for dta was performed by the equation
below:

dta
′ = dta − C × xPPAC . (4.18)

The correction parameter C was chosen to achieve the best resolution of dta′. The
deduction of this correction parameter is the same manner as the correction on the
ToF value, described in §4.1.2. Figure 4.23 (a) and (b) show the plots before and
after this correction, respectively, in the unreacted setting. The deduced correction
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Figure 4.22: Measured charge value in PPAC. This spectrum is mea-
sured in the layer stripped in x direction and taken from
a single run in unreacted setting. X axis is the pad num-
ber of PPAC and Y axis is the maximum charge value in
a single event.

parameter was C = 0.0670 and this value was used in the following analysis of the
one-neutron knockout setting. Figure 4.24 shows the result of this correction for the
unreacted setting data, (a) and (b), and the one-neutron knockout setting data, (c)
and (d). Figure (a) and (c) are the corrections of the dta values and (b) and (d) are
the corresponding parallel momentum distributions, P//, deduced from dta or dta′, as
described in this section. In all the figures, red and blue histograms are before and
after the correction, respectively. Note that red and blue curves of Figure 4.24 (a)
correspond to the projection of Figure 4.23 (a) and (b) to the Y axis. By assuming
the gaussian shape for the P// spectrum of the unreacted setting data, the resolution
after the correction was deduced to be 0.052 GeV/c, which was used as the width for
the convolution of the theoretical distributions.
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Figure 4.24: Correction of dta and P// by the PPAC x position for
unreacted and one-neutron knockout settings. Figure (a)
and (b) are data for unreacted, and (c) and (d) are for
one-neutron knockout setting. Figure (a) and (c) are cor-
rection on dta, and (b) and (d) are on P//. In all the
panels, the red and blue histograms correspond to before
and after correction. Note that Figure (a) corresponds to
the projection of Figure 4.23 onto the y axis
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Chapter 5

Results

In this chapter, the main results of this thesis work and the related analysis are
described. Prior to the further analysis, the particle identification for both upstream
and downstream of the secondary target will be shown in §5.1. By using gates on them,
the energy spectra of prompt and delayed γ-rays and their coincidence histograms are
investigated in §5.2. Considering the decay scheme of the excited states of 43S, the
parallel momentum distributions coincident with γ-rays and the one for the ground
state will be analyzed in §5.3. In §5.4, the production cross section of each state
populated in the on one-neutron knockout reaction from 44S to 43S will be shown.

5.1 Particle identification

Figure 5.1 shows (a) incoming and (b) outgoing PID plots for the one-neutron knock-
out setting, respectively. In the panel (b), a gate was applied to select incoming 44S.
Black short-dashed lines in these panels are the gates on incoming 44S and outgoing
43S, respectively. By using these plots, one-neutron knockout channel was unambigu-
ously selected for the further analysis of γ-rays and parallel momentum distributions.

In the present experiment, the number of incoming 44S particles was counted by
the scaler value of the OBJ scintillator multiplied by the purity of 44S in the secondary
beam. To measure the purity of 44S, the data was accumulated with unreacted setting
where the magnetic rigidity was centered on 44S. Figure 5.2 (a) shows the incoming
PID plot for the unreacted setting. Note that an additional gate that the data acqui-
sition was triggered by the E1 scintillator was also required in this figure. The black
short-dashed line is the gate on the incoming 44S used for the unreacted setting data.
The purity of 44S in the secondary beam was deduced as the ratio of the count in
this gate and the total count of the incoming PID plot. For the error estimation of
the purity, two components were considered. The first component was the statistical
uncertainty of 44S, which was only a small contribution because of the large number
of counts for 44S. The other one was the uncertainty due to the placement of the 44S
gate. For this purpose, counts of the adjacent isotopes contributing the PID gate of
44S were evaluated. This second component gave 0.8% as uncertainty for the purity
value. The resulting purity with the error was 98(1)%.

For the deduction of the cross section of the one-neutron knockout channel, it
is necessary to know the transmission rate of the reaction residue downstream of the
secondary target. To estimate the transmission of 43S from OBJ to E1, the ratio of the
incoming 44S and the unreacted 44S reaching the very end of the S800 was measured
in unreacted setting. Figure 5.2 (b) is the PID plot of outgoing particles gated on the
incoming 44S for events triggered by the E1 scintillator. The black short-dashed line
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Figure 5.1: Particle identification plots for (a) incoming and (b) out-
going particles, respectively. Regions surrounded by short-
dashed lines in (a) and (b) correspond to the gates for 44S
and 43S, respectively. Note that incoming 44S was selected
in (b).

is the gate on the outgoing 44S. The transmission was deduce by the equation of

εtrans =
Nr

NbLT
, (5.1)

where Nr is the number of the unreacted 44S in the focal plane when 44S is gated
upstream of the secondary target and data acquisition was triggered by the E1 scin-
tillator, Nb is the number of incident 44S beam particles, and LT is the live time of
the measurement. For the deduction of Nb, the scaler count of the OBJ scintilla-
tor was scaled by the purity of 44S in the secondary beam as described above. The
average DAQ live time during the measurement of the transmission was 71%. The
uncertainty of the transmission was also estimated by the same procedure described
above for the purity. Besides the statistical error of outgoing 44S particles and the
uncertainty of the purity, the systematic uncertainty due to the placement of the PID
gate was estimated. In this procedure, the uncertainty was defined as the count out-
side of the PID gate in Figure 5.2 (b). This is a rough estimation, but the resulting
uncertainty was only 0.4% for the transmission value. Finally, the uncertainty due to
the fluctuation of the secondary beam intensity was evaluated. This contribution was
estimated by deducing the transmission value for each run for about one hour and
taking the root-mean-square value of the deviation from the transmission deduced by
accumulating all the runs. This was the largest contribution to the whole system-
atic uncertainty resulting in 2.8%. As the result, taking the quadratic sum of all the
uncertainty discussed here, the transmission value was estimated as 81(3)%.

As for the deduction of the transmission, the placement of the PID gate on the
outgoing 43S is directly related to the absolute cross section of the inclusive channel
and its uncertainty. The systematic uncertainty of the count of outgoing 43S in the
knockout setting due to the placement of the PID gate was evaluated as shown in
Figure 5.3. First, the outgoing S isotopes, ranging from 44S to 42S, were selected
with a single broad PID gate as Figure 5.3 (a). Then this histogram was projected
onto the X axis, OBJC, shown in Figure 5.3 (b). In this figure, the yellow histogram
corresponds to the particles inside the 43S gate, and red lines are the fitted gaussian
functions to the experimental data points of 44S and 42S shown as blue points. The
overlapping region of the yellow and red spectra was defined as the contamination
from the adjacent isotopes. As seen in this figure, the 44S region has a tail expanding
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Figure 5.2: Particle identification plots for (a) incoming and (b) out-
going particles, respectively, with the rigidity setting of the
S800 centered on 44S. Regions surrounded by short-dashed
lines in (a) and (b) correspond to the gates for incoming
and outgoing 44S. Note that incoming nucleus was selected
on 44S in (b).

into the 43S region. To evaluate the contamination due to this structure, the linear
function was used to fit the tail structure shown as the green line in Figure 5.3 (b).
The resulting uncertainty was estimated as 3% to the total count of outgoing 43S.

5.2 Gamma-ray energy histograms

By gating in the PID plots discussed in the previous chapter, the reaction channel of
interest can be selected. In this chapter, prompt or delayed γ-ray energy histograms
gated on the one-neutron knockout or the unreacted reaction channel will be discussed.

5.2.1 Prompt gamma-rays

Figure 5.4 shows the prompt γ-ray energy histogram measured by the GRETINA
array gated on the one-neutron knockout reaction. Most of the previously observed
γ-rays [33, 34] were confirmed and their energies are shown in the figure together with
the uncertainty estimated in §4.3.3. A peak at 571(2) keV was newly observed in the
present experiment. Note that a peak around 900 keV was from the 2+1 state of 42S
contaminants.

To deduce the yield of each prompt γ-ray, χ2 fitting of the response function of
the GRETINA to the experimental histogram was performed as mentioned in §4.3.2.
The result is shown in Figure 5.5. In this fitting procedure, background γ-rays of the
reaction of neutrons with Ge detectors or surrounding materials, treated in §4.2.5,
were considered. Besides that, the background γ-rays were modeled as

NBG
γ (Eγ) =

{
p0 + p1 · Eγ Eγ ≤ E0,

p2 exp(−p3 · Eγ) + p4 exp(−p5 · Eγ) Eγ > E0.
(5.2)

Parameters from p0 to p5 and E0 were chosen to best fit the experimental data.
Note that these parameters of background function were constrained by p0 + p1 ·
E0 = p2 exp(−p3 · E0) + p4 exp(−p5 · E0). In Figure 5.5, the green short dashed line
shows the result of this background function summed with the γ-rays of the reaction
with neutrons and a γ-ray from 42S. Deduced prompt γ-ray energies and yields are
summarized in Table 5.1.
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Then γ-γ coincidence analysis between prompt γ-rays measured by GRETINA was
performed. Figure 5.6 shows the resulting coincidence matrix of one-neutron knockout
channel after applying the addback procedure. Each γ-ray peak in Figure 5.4 was
fitted by using a gaussian peak and linear background function. The ±3σ region
defined by this fitted gaussian was used as the peak region to construct the gated
spectra. Higher and lower energy regions next to the peak (each 3σ width) were
defined as the background. By subtracting the adjacent background regions from the
peak region, background subtracted coincidence histograms were deduced as shown
in Figure 5.7. Note that a few peaks are close to each other forming doublet peaks
and the peak region could overlap with the neighboring background region. In this
case, the background region for both peaks were defined to be the 3σ region of the
higher energy side of higher peak. This background histogram was then scaled by the
estimated background counts under the peak using the linear function for the fitting.
In Figure 5.7 background subtracted histograms gated on 1155, 625, 850, and 977 keV
peaks are shown. The coincident peaks with γ-ray energies in each panel are shown
with its γ-ray energies. Also the partial level scheme proposed from this analysis is
shown as Figure 5.8. Because of the treatment that the 185 keV and 1155 keV γ-rays
are the de-excitation from a single excited state or they are from the two different
states, there is the possibility to construct the two kinds of level schemes.

In a previous experiment the lifetime measurement of the excited states of 43S was
performed [34] and the same kind of γ-γ coincidence analysis was performed. From
that experiment, two different states were proposed with almost the same excitation
energies, at 1159 and 1161 keV. These states are supposed to have the different decay
schemes from the higher states, as shown in Figure 5.8 in the case of the present work.
The 1159 keV state was assumed to decay to the ground state directly and the 628 keV
γ-ray was thought to feed this state from above. Other coincidences with the 1161 keV
state, on the other hand, were not prominent and the proposed decay scheme of this
state was a 977 → 184 keV cascade. To examine these decay scheme, especially to
investigate if 625 keV γ-ray is coincident with other γ-rays, the background subtracted
γ-γ coincidence histogram was compared with the simulated spectra.

Figure 5.9 shows the background subtracted coincidence histogram gated on (a)
625 keV or (b) 850 keV γ-rays and (c) is the sum of (a) and (b). In these panels,
red and green histograms are results of simulations assuming different decay schemes.
In the present work, 185 keV γ-ray was coincident with 977 keV γ-ray as shown in
Figure 5.7 (d). By the γ-ray intensity deduced from Figure 5.5, the intensity of
the 185 keV γ-ray was smaller than that of 977 keV as shown in Table 5.1. So the
1162 keV excited state was thought to decay by a 185 → 977 keV cascade. In the
red histogram of Figure 5.9, the 1162 keV state was assumed to be identical to the
1155 keV state decaying to the ground state directly. This means the 1162 keV state
was fed by the 850 → 625 keV cascade and decayed to the ground state by two
path, a 185 → 977 keV cascade or a direct 1155 keV transition. The branching ratio
of the 185 and 1155 keV transitions was deduced from the γ-ray intensity deduced
from Figure 5.5. In the green histogram, on the other hand, the 1162 keV state was
assumed to be different from the 1155 keV state. This means that the 850 → 625 keV
cascade only fed the 1155 keV state and no transition from higher states were placed
above the 185 → 977 keV cascade. By comparing these histograms with experimental
data, there is a large discrepancy around the 185 keV region. The experimental data
show the possible coincidence of 185 keV transition with both 625 and 850 keV but its
intensity was significantly smaller than simulated one (red). On the other hand, the
green histogram significantly underestimates the structure in the low energy region.
Although the experimental points around 185 keV are just between the red and green
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histograms, considering that the red histogram cannot reproduce the experimental
data points and that 185 keV possible coincidence peak is only one σ above background
level, especially in the histogram gated on 625 keV peak, the 850 → 625 keV cascade
is assumed to be feeding only the 1155 keV state and this does not decay via a
185 → 977 keV cascade. The coincidence information of prompt γ-rays including this
discussion is also summarized in Table 5.1.

5.2.2 Delayed gamma-rays

Not only the prompt γ-rays measured by GRETINA, but also the delayed γ-rays
measured by the IsoTagger were analyzed as shown in Figure 5.10. In panel (a), the
experimental histogram with the result of a χ2 fitting of the response function of the
IsoTagger array is shown. The previously observed γ-ray from the isomeric state at
320 keV was observed with significant counts. The fitting procedure was almost the
same as that for prompt γ-rays, besides the definition of the background function.
For the fitting to the delayed γ-ray histogram, the background function was chosen to
be the sum of two exponential functions like the Eγ > E0 case in Equation 5.2 in the
whole energy range. The panel (b) shows the decay curve of this isomer decay. This
spectrum was obtained by gating on the peak region in panel (a). The peak region
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Figure 5.9: Comparison of γ-γ coincidence spectra with the simu-
lation. (a) and (b) are the spectra gated on 625 and
850 keV transitions, respectively and (c) is the sum of
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1155 keV transitions was estimated from the singles spec-
trum. Green lines are also simulated spectra, this time
assuming 100% branching ratio for 1155 keV and no coin-
cidence with 185 keV transition. These red and green his-
tograms correspond to the scheme 1 and 2 in Figure 5.8,
respectively.
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Table 5.1: Observed γ-ray energies, efficiency-corrected intensities,
and coincidence information for 43S. The errors of γ-ray
energies and yields include only the statistical errors.

Energy [keV] Yield/ions [%] Coincident γ-rays Level [keV]

prompt 185(1) 5.8(3) 977 1162(4)
228(1) 0.44(7) 228(1)
571(1) 0.93(11)
625(2) 3.6(2) 850, 1155 1780(5)
720(2) 1.8(2)
850(3) 3.6(2) 625, 1155 2625(8)
977(3) 7.1(4) 185 977(3)
1155(3) 13.2(6) 625, 850 1155(3)
1209(3) 3.6(2) 1209(3)
1466(4) 0.67(13) 2625(8)
1532(4) 2.2(2) 320 1856(6)
1865(6) 0.37(13) 1856(6)
2600(7) 9.7(5) 2600(7)

delayed 320 49(3) 1532 320

was also defined as the same manner of γ-γ coincidence analysis of the GRETINA, the
±3σ region around the centroid of gaussian function with linear background function.
The red line in panel (b) is the fitting result to this histogram with the exponential
function and the half life of this isomeric state was deduced to be 377(4) ns in the
present work. This value was used for the correction of the count of the isomeric
state decaying in-flight, as discussed in §4.3.3, and the delayed γ-ray intensity after
the correction is also shown in Table 5.1.

Then a delayed coincidence analysis between the IsoTagger and GRETINA was
performed. Figure 5.11 shows the prompt γ-ray energy histogram of the GRETINA
coincident with the 320 keV isomeric decay measured by the IsoTagger. In this co-
incidence analysis, the definition of the peak and the background regions were the
same as for γ-γ coincidence analysis of the GRETINA and background spectra were
subtracted in this figure. As clearly shown, the 1532 keV prompt γ-ray transition is
coincident with the 320 keV transition from the isomeric state.

Not only for the measurement of the isomer of 43S, but also for the estimation of
the isomeric ratio of 44S in the beam the IsoTagger was used. 44S has a 0+2 state at
1357 keV with a half-life of 2.619(29) µs [27, 28]. This state decays both to the ground
state by a E0 transition and to the 2+1 state at 1319 keV by a E2 transition. The E0
transition has two process; the emission of the internal conversion electron (IC) and
the internal pair formation (IPF). Because the setup of the present experiment was
not dedicated to the measurement of electrons or positrons, the direct observation
of the E0 transition was difficult. The branching ratio of E0 and E2 transition was
measured as R = λ(E2)/λ(E0) = 0.163(13), where λ denotes the intensity of the
corresponding transition [28]. If the 0+2 state was produced in the fragmentation
reaction and present in the secondary beam, the isomer ratio can be measured by
using the delayed transition from 2+1 to the ground state.

Figure 5.12 is the γ-ray energy histogram coincident with the unreacted 44S with
the S800 setting centered to 44S. As shown in this figure, there is no prominent peak
at 1319 keV, which indicates that the amount of produced 0+2 states was negligibly
small.
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for the one-neutron knockout reaction. In Figure (a), blue
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Figure 5.12: γ-ray energy histogram of 44S → 44S channel measured
by the IsoTagger array for the estimation of the isomer
ratio of the 0+2 state of 44S.

On the other hand, there is a significant peak at 511 keV, which could be due to
the annihilation of positrons produced by IPF. The E0 transition rate is described
as [28]

TE0 = ρ2(E0)(1 +R)(ΩIPF +ΩIC), (5.3)

where ρ2(E0) is the monopole strength of the transition from 0+2 to the ground state,
and two parameters of ΩIPF and ΩIC are the electronic factors of IPF and IC. By
the gaussian fitting to this 511 keV peak and considering the photo peak efficiency
of the IsoTagger at this energy is 15.0%, this peak count corresponds to 4.01 × 105

E0 decay by IPF. Taking previously used values of R, ΩIPF = 1.495× 107 sec−1 and
ΩIC = 1.1125 × 107 sec−1 [28], the total production of 0+2 state can be estimated as
8.13×105. Because the counts of 44S→44S events in this setup was 3.60×107, an upper
limit for the isomer ratio is 2.26%. Note that this value is under the strong assumption
that all of the 511 keV peak was due to the E0 transition. If this assumption is correct,
the counts of observed 1319 keV γ-ray should be 1.00× 104 considering the branching
ratio. This peak content must be clearly visible, for example the count rate of the
peak at 1200 keV in Figure 5.12 amounts to 1.87 × 104. Because there is no visible
peak at 1319 keV with the same order of counts with the peak at 1200 keV, it is
reasonably assumed that the isomeric ratio is much smaller than 2.26%, which is the
maximum value estimated from this setup. In the following discussion about the cross
section, the error due to the isomer ratio is thus neglected.

5.3 Parallel momentum distribution

Now coincidence information and yields of observed γ-rays were properly obtained.
Considering these observables, analysis on P// of each state of 43S was performed.
Figure 5.13 shows the comparison of the experimental P// of each excited state with
the theoretical distribution calculated at the corresponding excitation energy [70, 76].
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Table 5.2: Reduced χ2 values for the theoretical momentum distribu-
tion compared to the experimental data.

Elevel [keV] l = 1 l = 2 l = 3

320 80.9 5.2
1155 1.2 15.6
1162 1.1 7.9
1209 1.2 4.0
2600 2.9 0.69 4.7
2630 8.7 1.3

ground state 1.5 1.2

Only in the panel (a), theoretical distribution of neutron knockout from l = 2 orbit is
also present because this excited state at 2600 keV is just under the neutron threshold
of 43S and there can be a possibility of neutron knockout under N = 20 shell gap. To
examine which distribution is the best to reproduce the experimental one, χ2 value
between the experimental points and each theoretical curve was calculated. Because
of the tail structure in the lower momentum region, which is not reproduced by the
eikonal reaction calculation, this χ2 calculation is restricted to the region ranging
from 17.3 to 17.8 GeV/c. This region is shown as solid lines in Figure 5.13 and the
lower region which is not used for the χ2 calculation is drawn as dashed lines. This
is the same momentum region used for the scaling of the theoretical curve to match
the count of experimental data. By this evaluation, the best theoretical distribution
reproducing the experimental data was deduced as neutron knockout from l = 2 orbit
for the panel (a), that from l = 1 orbit for panels (b)-(d), and that from l = 3 orbit for
panels (e) and (f). The reduced χ2 values for this analysis are described in Table 5.2.

By subtracting all the distributions of all the excited states from that of the
inclusive channel, the distribution directly producing the ground state of 43S via one-
neutron knockout was extracted. Figure 5.14 shows the result of this analysis. The
reduced χ2 values mentioned above between the experimental distribution and the
theoretical calculation of neutron knockout from l = 1 and 3 orbit were 15.1 and 10.3,
respectively (number of degree of freedom = 10). Mainly because of ambiguities in
the level scheme due to the unplaced prompt γ-rays, a clear distinction between the
neutron knockout from l = 1 or 3 orbit was not possible. In the following discussion,
the spin and parity of the ground state of 43S is assumed to be 3/2−, which was
suggested from the transition rate from the 7/2− isomeric state at 320 keV and to the
ground state [29].

One of the points worth checking related to the analysis of P// is investigating if the
acceptance for the reaction residue was cut by the spectrometer setting. Figure 5.15
shows the acceptance plots, dta versus ata, for the one-neutron knockout setting from
44S to 43S. The panel (a) is the inclusive channel and the others are the examples
coincident with γ-rays. The panel (b) is coincident with the 1155 keV prompt γ-
ray and (c) is coincident with the 320 keV delayed γ-ray. As clearly shown here,
significant acceptance cuts are not present in all cases. This means that there is no
need for further acceptance correction, which is also indicated by the good agreement
betweem the experimental distribution and the theoretical one in the Figure 5.13
especially at the high momentum region.
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5.4 Cross section

The inclusive cross section of the one-neutron knockout from 44S to 43S is obtained
by

σko =
Nr

NbntLTεtrans
, (5.4)

where Nr is the number of knockout residue 43S, Nb is the number of incident beam
particle 44S, nt is the areal target number density, LT is the DAQ livetime of the
measurement, and εtrans is the transmission of the reaction residue through the S800.

Nr was obtained by integrating the total counts in the PID gate shown in Fig-
ure 5.1. Note that there was an additional condition in this integration that the
data acquisition was triggered by the E1 scintillator, which guaranteed that 43S had
reached the very end of the S800. The uncertainty of this value consists of the sta-
tistical uncertainty,

√
Nr, and the systematic error of the placement of the PID gate

for the outgoing particle as discussed in §5.1. Nb was deduced by scaling the count of
OBJ scintillator recorded by the scaler module by the purity of 44S in the secondary
beam. Besides the statistical uncertainty, the error of purity, evaluated also in §5.1,
was also considered for the uncertainty of Nb. The transmission was already evalu-
ated as 81(3)% in §5.1 and the average DAQ livetime of the measurement was 0.997.
The thickness of the secondary target and its uncertainty was 376(4) mg/cm2. Other
than the components contributing to the uncertainty of the inclusive cross section,
the systematic uncertainty due to the fluctuation of the incoming beam intensity was
evaluated as shown in Figure 5.16. As the result, the inclusive cross section of one-
neutron knockout reaction was deduced as 91(2) mb. In the previous experiment using
the same reaction [33], the inclusive cross section was deduced as 79(7) mb, consistent
but a larger value in this experiment.

The exclusive cross section populating the specific final state i of 43S was deduced
from the inclusive cross section multiplied by the probability Pi of population of the
state,

σi = σkoPi. (5.5)

The probability was calculated from the γ-ray yield per outgoing 43S, Yi, for all the
γ-rays Di that de-excite the state i and those for all the γ-rays Fi that feed the state
i from above,

Pi =
∑
j∈Di

Yj −
∑
j∈Fi

Yj , (5.6)

and the probability for populating the ground state was calculated by subtracting the
probabilities for all excited states,

PGS = 1−
∑
i

Pi. (5.7)

The uncertainty, ∆, of these values was estimated as

(∆Pi)
2 =

∑
j∈Di+Fi

(Yj)
2 . (5.8)

The summary of the cross sections for all the observed states with the spins and the
parities deduced in §5.3 are summarized in Table 5.3.
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Table 5.3: Inclusive and exclusive cross sections to bound final states.

Elevel [keV] Jπ
level σlevel [mb] Jπ

eik σsp [mb] C2Sexp

0 3/2− 12(4) 3/2− 22.1 0.63(16)
228 (1/2−) 0.4(1) 1/2− 21.1 0.021(4)
320 7/2− 43(3) 7/2− 14.4 3.37(26)
977 1.2(6)
1155 3/2−, 1/2− 8.2(9) 3/2− 18.9 0.49(5)
1162 3/2−, 1/2− 5.3(3) 3/2− 18.9 0.32(3)
1209 3/2−, 1/2− 3.3(2) 3/2− 18.8 0.20(2)
1780 0.0(4)
1856 2.3(3)
2600 5/2+, 3/2+ 8.8(4) 3/2+ 10.7 0.95(6)
2625 7/2−, 5/2− 3.9(3) 7/2− 12.2 0.36(3)

inclusive 91(2)
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Chapter 6

Discussion

In this chapter, the experimental observables are compared with those of shell model
calculations and the physics discussion is performed.

6.1 Level and decay scheme

The level scheme of 43S is shown in Figure 6.1 and compared with the results of shell
model calculations using the SDPF-MU and the SDPF-U effective interactions with
the NushellX code [109]. For each case, the spin-parity and the knockout cross section
for each state are shown. The theoretical knockout cross sections were calculated
from the single-particle cross section using the eikonal approach (see §2.3) and the
shell model spectroscopic factors. Additionally an empirical reduction factor RS was
used to take into account that not the full strength is experimentally observed [76,
81]. RS depends on the binding energy asymmetry ∆S = Sn − Sp and for 44S RS =
0.83(4) was estimated from experimental data [76]. The experimental level scheme was
constructed by considering the coincidence information summarized in Table 5.1 and
the order of transitions in a γ-ray cascade was determined by the observed γ-ray yields.
Note that the 1466 and 1865 keV γ-rays were put in the level scheme just because their
energies equal to the sum of other transition energies, 1466 ∼ 850+625 keV and 1865 ∼
1532 + 320 keV. Also the 1209 keV transition was placed feeding the ground state.
If the 1209 keV transition would be another state, coincidences should be observed
in Figure 5.6 and 5.7 since its intensity is similar to the 850 and 625 keV transitions
that show clear coincidences. Actually, part of the level scheme was suggested by a
lifetime measurement of excited states of 43S [34]. In that work, a γ-ray cascade of
977 → 184 keV was suggested inverted compared to the original proposal by Riley. In
this work, however, the opposite order 185 → 977 keV is proposed due to their γ-ray
yields, see Table 5.1.

In addition to the experimental result, Figure 6.1 shows calculated level schemes
using two different interactions. Excited states with negative parity and spin up to
7/2 are shown up to the neutron threshold of 43S, Sn = 2629(6) keV [86]. Shell model
calculations predict three band structures in the lower excitation energy in 43S: a
rotational band on the ground state, excited states on the isomeric state, and a band
with possible different shape [43]. The ground state is thought to be prolate deformed,
which results in a K = 1/2 rotational band with band members in the specific order of
3/2−, 1/2−, 7/2−, and 5/2− states from lower excitation energy. This order of excited
states is characterized in the prolate deformed state and does not appear in spherical
or oblate deformed nuclei. In the calculations, the 1/2− state at 135 keV (299 keV),
the 7/2− state at 874 keV (1010 keV), and the 5/2− state at 1035 keV (1400 keV)
using the SDPF-MU (SDPF-U) interaction are characterized as the rotational band
members on the ground state due to large B(E2) values of the transitions between
these states. The spin and parity of the ground state of 43S was indirectly measured
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Figure 6.1: Level schemes of 43S deduced from the present experiment
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to be 3/2− [29]. Shell model calculations predict the same situation for the ground
state and a characteristic 1/2− state in lower energy region [26, 43]. In the present
experiment, the 228 keV γ transition is a candidate for the decay of the 1/2− state
to the 3/2− ground state. The 977 keV transition was first observed in the Coulomb
excitation experiment [32] and confirmed in other reaction channels, which implies this
transition can be attributed to the de-excitation from an excited state with collective
nature. Comparing the excitation energies and considering that the production cross
section of 5/2− state predicted in shell model calculations is quite small, the 977 keV
γ-ray is placed as the transition from the 7/2− state to the ground state. In the
shell model calculations, 7/2− rotational member decays to the ground state with
almost 100% branching ratio. Combining all results, 228 and 977 keV γ-rays can be
reasonably attributed as the transitions between the rotational band members. See
Figure 6.2 in the following discussion to distinguish the different band structure of
both experimentally and theoretically predicted ones.

By investigating the ratio of the neutron and proton configurations in the calcu-
lated wave function, the nature of the corresponding state can be discussed qualita-
tively [43]. The ground state of 44S is calculated to be dominant 2p2h neutron configu-
ration, mostly excitations from the f7/2 to the p3/2 orbital, (f7/2)−2(p3/2)

+2, or higher
orbits in the fp shell. The one-neutron knockout reaction from this neutron configura-
tion is naively thought to result in 1p1h configurations, like (f7/2)

−2(p3/2)
+1, or 2p2h

configuration, (f7/2)−3(p3/2)
+2 in 43S. In the present calculations, the main compo-

nent of the neutron configuration of the ground state band of 43S is (f7/2)
−2(p3/2)

+1

and the deduced deformation parameters are consistent with the picture of prolate
deformation. This result is also supported by a calculation of the antisymmetrized
molecular dynamics (AMD) model [16]. The mechanism of this deformation is ex-
plained by the tensor-force in the shell model framework [15]. In moving from 48Ca
to 44S on the N = 28 isotone line, the neutron f7/2-p3/2 spacing decreases due to the
increasing vacancy of the protons in the d3/2 orbit. The quenching of the N = 28
shell gap by this mechanism triggers a energy gain due to quadrupole correlations
by mixing of protons in the s1/2 and d3/2 orbits, resulting in prolate deformation. It
is worth noting, however, that the potential energy surface of this deformed ground
state does not have a deep minimum and is γ-soft-like in nature.

Thanks to the setup of the present experiment which enabled the observation
of delayed γ-rays, the excited state decaying to the isomeric state at 320 keV was
identified for the first time. In the interpretation within the shell model framework,
this state was originally interpreted as the neutron single-hole state with a (f7/2)

−1

configuration. After the spectroscopic quadrupole moment of this state was measured
and found to be larger than that of a pure single-hole state, the interpretation of this
state changed. In the AMD calculation, this state is predicted as the band head of the
K = 7/2 band with triaxial deformation resulting from the contribution of neutron
orbits originating from the spherical f7/2 and p3/2 orbits [16]. This interpretation
was supported by the re-examined shell model calculation [43] which suggests that
the neutron configuration of this state is 0p0h, (f72)−1, and not spherical but triaxial
with γ ∼ 30◦. From the experimental point of view, since this state has Jπ = 7/2−,
the possible spin-parity of the 1856 keV state above this isomer ranges from 3/2−

to 11/2−, assuming M1 and E2 transitions. Almost all excited states below 3 MeV
predicted in shell model calculations have only small γ-ray branching ratio to this
isomeric state. One of the candidates corresponding to the 1865 keV excited state is
a 7/2− state at 3167 keV in the SDPF-MU result or a 5/2− state at 3079 keV in the
SDPF-U result. These states decay to the isomeric state with about 45% branching
ratio. The theoretical production cross section of the 5/2− state at 3079 keV in the
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SDPF-U result is less than 0.01 mb, but that of the 7/2− state at 3167 keV in the
SDPF-MU result is about 2.63 mb, which is in good agreement with the observed
production cross section of 1865 keV. Additionally, the electric quadrupole moment
of the 5/2− state at 3079 keV in SDPF-U result is predicted as −21.0 efm2, though
that of the isomeric state predicted at 748 keV is calculated as 30.0 efm2, which may
imply that different states in higher excitation energy are in the same band as this
isomeric state.

Other candidates for the 1865 keV state in shell model calculations are the 9/2−

states predicted at 2143 keV and 2366 keV in the SDPF-MU and SDPF-U calculations,
respectively [43]. These states have strong B(E2) values for the transitions to the
7/2− isomeric state and decay to this state with almost 100% branching ratio, which
implies these states are in the same band. The production cross sections of these 9/2−

states, however, are quite small because the direct production of these states should
be involved with the neutron with 9/2 total spin, which is very high energy compared
to the Fermi surface. As mentioned before, 11/2− states can also be in the same
band built on this isomeric state, but the 11/2−1 state in both calculations, predicted
around 3 MeV, has a strong B(E2) value to the predicted 7/2−2 state which can be
attributed as the member of the rotational band and decays to this state.

Other than the rotational band built on the ground state and excited states above
the isomeric state, a possible band structure above 1 MeV is proposed in the present
work. In the lifetime measurement experiment, a γ-γ coincidence analysis was per-
formed and only the 628 keV γ-ray was observed in coincidence with 1159 keV γ-ray.
In the present experiment, both 625 and 850 keV γ-rays are found to be coincident
with the 1155 keV γ-ray. Considering that the 850 keV γ-ray was observed but not
coincident with 1159 keV γ-ray in the lifetime measurement experiment, and the yields
of the 625 and 850 keV γ-rays are almost the same in the present experiment, the cas-
cading transitions 850 → 625 → 1155 keV are proposed leading to a state at 2625 keV.
The parallel momentum distribution for the population of 2625 keV state can be well
explained by the neutron knockout from a l = 3 orbit. Comparing the level schemes
and production cross sections with the shell model calculations, the 7/2−3 states at
2466 keV in the result with the SDPF-MU and one at 2478 keV in the result with
the SDPF-U interaction are candidates for the observed 2625 keV state. The possible
band head of the third band has spin-parity of 3/2− or 1/2− and may correspond to
the 3/2−2 state at 874 keV in the SDPF-MU result and 3/2−2 state at 1405 keV in the
SDPF-U result comparing the production cross sections. The experimental 1780 keV
intermediate state then can be attributed to the calculated 5/2−2 state. In the calcu-
lation with the SDPF-MU interaction, the 7/2−3 state decays to the 5/2−2 state with
about 50% branching ratio and the 5/2−2 state decays to the 3/2−2 state with 55%
branching ratio. Then the 3/2−2 state decays directly to the ground state with more
than 80% branch, which is in good agreement with experimentally proposed decay
scheme. In the SDPF-U scheme, however, the 7/2−3 state decays to a member of
the rotational band, the 5/2−1 state, with a 32% branch, which is the most intense
de-excitation from this state. The decay branch to the 5/2−2 state ammounts to only
about 14%. The strongest decay branch from the 5/2−2 state is the transition to the
ground state with 53% and the branching ratio to the 3/2−2 state amounts to 13%.
Though the 3/2−2 state decays to the ground state with a 87% branch, which agrees
with the calculation with the SDPF-MU interaction, the whole decay pattern differs
from the other calculation.

Though this discussion is from the experimental side, the structure of this band
can be qualified by the comparison with the theoretical calculations. In the SDPF-U
calculation, the third band is predicted as a K = 5/2− band with the 5/2−2 state
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band head [43]. This is established by the investigation of the neutron configuration
of the wave function and band members of this state are found to have dominant
2p2h, (f7/2)−3(p3/2)

+2, neutron configuration. This configuration results in the pro-
late deformation with a small γ value. Because the neutron configuration of the 3/2−2
state is dominated by a 1p1h configuration, this state cannot be attributed as the
band head of this third band. In the SDPF-MU calculation, the corresponding level
is the 5/2−3 state. The main component of this state is a neutron 1p1h configuration,
but 5/2−2 state is found to be dominated by 2p2h components. This situation implies
that the ratio of many neutron configurations in the fp shell can easily affect the
level structure and the production cross section of each state. This can be also the
explanation of the difference of the production cross sections of the 7/2− states in the
present experiment and the shell model calculations, which will be discussed in the
next section.

Additionally, a K = 3/2 band with the oblate deformation is predicted by the
AMD calculation [16]. The neutron configuration of this band is dominated by the
(f7/2)

−1 configuration but the shape of this band is not spherical, resulting in the
shape coexistence with three different shapes. One of the key points to distinguish
the band head and band members of the third band is to obtain further information
about the neutron configuration of these states and to investigate if the 3/2− or 1/2−

state at 1155 keV is a member of this oblate band.
One of the results worth noting is that several 3/2− or 1/2− states are located

around 1200 keV. This situation is not reproduced by the shell model calculations
and 3/2− or 1/2− states are scattered over a wider energy range. The 1155 keV
state is a candidate of the band head of third band, as mentioned above, but the
nature or the shape of other two states with spin-parity of 3/2− or 1/2− at 1162 and
1209 keV still remains unknown. Especially the γ transition from the 1162 keV state
is of interest. By the analysis of parallel momentum distribution, this state was found
to be produced by neutron knockout from the l = 1 orbit and the 185 keV γ-ray was
put on the top of the 977 keV state, one of the rotational band members. By the
comparison with the shell model level scheme, the 977 keV state is thought to be a
7/2− state. If the 1162 keV state is a member of the band built on the ground state,
its spin should equal to or be larger than 5/2. This implies the 1162 keV state belongs
to another band and the 185 keV transition, which had one of the strongest yields of
all observed γ-rays, can be a strong interband transition. This is a major difference
between the experimental results and shell model calculations.

6.2 Spectroscopic factors

In Table 5.3, the C2S value deduced from the production cross section of each final
states are shown. For the deduction of experimental C2S values, the production cross
sections were divided by single-particle knockout cross section σsp calculated in the
eikonal reaction theory, the center-of-mass factor, and the empirical reduction factor
RS . Note that neutron knockout from specific orbit, shown as Jπ

eik, was assumed in
the calculation of σsp. This means that these experimental C2S values are normalized
and naively related to the occupation number of each single-particle orbit.

By the g-factor measurement, the spectroscopic factor of the 7/2− isomeric state
was estimated as C2S ≃ 0.4× 8 = 3.2 [29]. As shown in Table 5.3, the spectroscopic
factor of this state measured by the one-neutron knockout reaction in the present
work is 3.37(26) and has good agreement with the previous result. This ensures the
validity of the analysis procedure of the eikonal reaction theory and deduction of the
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spectroscopic factor including the parameters used in the calculations, described in
§2.3.3.

In the present work, not only the ground state, but also the three excited states
around 1200 keV are found to be produced by the neutron knockout from a l = 1
neutron single-particle orbit. Though the production cross section of the ground state
can only be treated as the upper limit, the sum of the C2S values for these states
amounts to 1.64(26). This result can be interpreted as about 1.6 neutrons occupy the
p3/2 or p1/2 orbits beyond the N = 28 shell gap in the ground state of 44S. This is a
direct observation of the quenching of N = 28 gap in this neutron-rich region.

Both experimental result and shell model calculations show the large production
cross section of the 7/2−1 isomeric state resulting from the knockout of a f7/2 neutron.
This is due to the large C2S value C2Sexp = 3.37(26) compared to 2.57 (2.67) as
calculated with the SDPF-MU (SDPF-U) interaction. In addition to this state, rela-
tively large population of the 7/2− state just below the neutron threshold is present
both in experiment and calculation. Though the shell model calculations with the
SDPF-MU (SDPF-U) interaction predict a C2S value as 1.46 (1.87) for the 7/2−3
state, experimental value is found to be much smaller, resulting in C2Sexp = 0.36(3)
for the 2625 keV state. As discussed in the previous section, this 7/2− state can be at-
tributed as a member of the band constructed on the 5/2− state which is characterized
by the neutron 2p2h configuration predicted in the shell model calculations [43], or
one of those on the 3/2− state with oblate deformation characterized by the (f7/2)

−1

configuration suggested in the AMD calculation [16]. By comparing the wave function
components of each state, it is found that the 1p1h and 2p2h neutron configuration
are competing with each other in a few 7/2− states around the neutron threshold of
43S. This situation could result in a distribution of the spectroscopic strength over a
few states around the neutron threshold of 43S. Though states in the third band of
43S are predicted to be the axialy deformed, the ground state of 44S is predicted to
be prolate deformed but γ-soft state due to configuration mixing rather than shape
coexistence in beyond-mean-field calculation [39], or prolately deformed state with
possible triaxial or γ-soft nature in the shell model calculation [15, 43]. These calcu-
lations imply the competition of a few deformed states or neutron configurations in
the ground state of 44S. The C2S values can be calculated as the overlap of the wave
function of the ground state of 44S and a neutron plus specific state of 43S, naively.
This qualitatively means that the wave functions of the excited states with higher
excitation energies in 43S can have more complex configurations, which can also be
the applied to the ground state of 44S.

As shown in Figure 5.13, the 2600 keV state was found to be best explained by
neutron knockout from l = 2 orbit. In the present work, the model space of the
shell model calculations was restricted to the fp shell and the sd shell below N = 20
shell gap was assumed to be fully occupied. With this truncation, the calculation of
positive parity states is impossible. Although a direct comparison of the experimental
excitation energy or the production cross section of this state with the theoretical
calculations can not be achieved, the appearance of a positive parity state may suggest
the decrease of the neutron occupation under N = 20 shell gap , which was already
pointed out in the neutron rich Si isotopes.

Finally, the shell gap between neutron f7/2 and p3/2 orbits can be estimated from
the excitation energies of the 7/2− and 3/2− states and the C2S values of the one-
neutron knockout reaction:

ε =

∑
iC

2Si × Ei∑
iC

2Si
. (6.1)
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By using the values in Table 5.3, the C2S weighted energy centroids of the f7/2 and
p3/2 orbits are calculated as 543 and 719 keV, respectively. Note that only the angular
momentum value can be extracted for each state by the analysis on momentum distri-
bution, and the spin of each state was not firmly assigned. In this calculation, states
at 320 and 2625 keV are assumed to be 7/2− and those at 0, 1155, 1162, and 1209 keV
are assigned as 3/2−. In looking at neighboring nuclei, the experimental result of
one-neutron knockout reaction from 48Ca and 46Ar were reported. In 47Ca [110],
the ground state is assigned as 7/2− and has almost full strength, C2S ∼ 8, of neu-
tron knockout from f7/2 orbit. Several excited states are observed in this nucleus
but only one state, at 2014 keV, has a firm spin-parity assignment of 3/2−. Though
other possible 7/2− or 3/2− states in 47Ca can affect the calculation of above men-
tioned ε, the energy centroid of the 7/2− and 3/2− orbitals can be estimated as 0 and
2014 keV, which results in a energy difference of the f7/2 and p3/2 orbits as 2014 keV.
In 45Ar [111], only the experimental production cross sections of the 7/2− ground
state and a 3/2− excited state at 532 keV are available so far, which again results
in a 532 keV energy difference of two neutron orbits around the N = 28 gap. Note
that for this nucleus, the observed spectroscopic factor of the 7/2− and 3/2− states
are 4.9(7) and 0.2(2), respectively, and the spectroscopic factor is defined as σexp/σth.
This systematics, shown in Figure 6.3, can qualitatively reveal that a rapid decrease
of the N = 28 gap occurs along the N = 28 isotone line just below 48Ca and this gap
is still narrowing going down to 44S region. Again note that this estimation can be
affected by other unobserved 7/2− or 3/2− states and ideally all the states with full
C2S strength of neutron knockout from f7/2 and p3/2 orbit should be included. The
strict definition of the energy centroid was described as [112]

ϵ =

∑
f (E0 − E

(−)
f )C2S

(−)
f + (2Jf + 1)(E

(+)
f − E0)C

2S
(+)
f∑

f C
2S

(−)
f + (2Jf + 1)C2S

(+)
f

, (6.2)

where E0 is the nucleus of interest with mass A and E(±)
f and C2S

(±)
f are the energy

and the spectroscopic factor of the final state of mass A±1 nucleus. This formalization
includes the strength both below and above the Fermi surface, which means it is more
strict but two reaction should be observed, a neutron adding reaction as 44S→45S in
this work for instance.

For the better understanding of the mechanism of the quenching of N = 28 shell
gap observed in the present work, some additional shell model calculations have
been performed. First, calculations with the SDPF-MU interaction for Ca and Ar
isotopes have been performed. In these calculations, C2S values of 48Ca→47,49Ca,
46Ar→45,47Ar, and 44S→43,45S channels are deduced. By the excitation energies and
the C2S values of 3/2− and 7/2− states, effective single particle energies (ESPE) of
p3/2 and f7/2 orbits can be calculated as the energy centroids of 3/2− and 7/2− states,
written as Equation (6.2). The result is shown as Table 6.1, telling that the SDPF-MU
interaction can predict the quenching of N = 28 shell gap.

Then shell model calculations for 43S with three different interactions made from
the SDPF-MU interactions have been additionally performed. One of the interactions
used is the original SDPF-MU interaction, same as the calculation presented before.
Here this result is called as "tensor". Second one, denoted as "no tensor", is based
on the SDPF-MU interaction but all the tensor terms are removed. In the third
one, mentioned as "no X tensor", not all the tensor terms but those of only cross-
shell tensor terms, interactions between a nucleon in sd-shell and one in fp-shell,
are removed. In looking into the resultant level scheme of 43S by using these three
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Figure 6.4: Influence of the tensor force on the level scheme of 43S.
The spin-parity and the C2S values are shown in each
level up to around 2.7 MeV. Tensor, no tensor, and no X
tensor means the level scheme calculated with the original
SDPF-MU interaction, the interaction without all the ten-
sor terms, and the one without cross shell tensor terms,
respectively.

Table 6.1: Calculated ESPEs of p3/2 and f7/2 orbits in Ca, Ar, and S
isotopes at N = 28.

ESPE [MeV] Ca Ar S

p3/2 -4.88 -3.72 -2.78
f7/2 -9.76 -7.67 -5.44

N = 28 gap 4.88 3.96 2.65
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Table 6.2: Calculated C2S sum of three different interactions.

tensor no tensor no X tensor

1/2− 0.19 0.19 0.09
3/2− 1.32 1.45 0.95
5/2− 0.27 0.24 0.13
7/2− 5.42 5.45 6.27
sum 7.20 7.32 7.44

interactions, shown as Figure 6.4, there is not a drastic difference with each other. On
the other hand, calculated C2S values for the 44S→43S channel are different implying
the change of the neutron occupancy in these results. Table 6.2 shows the sum of
the C2S values of the 10 lowest states for each spin-parity. Roughly speaking, it
corresponds to the sum for the states up to around 4.5 MeV. Though there is only a
subtle difference of the C2S sum of tensor and no tensor results, no X tensor result
has a remarkable difference. Especially, the C2S sum of 7/2− states is larger than
those of the other results by about 0.8 and the sum of 3/2− states is smaller by about
0.4. These results suggest that the stronger cross-shell tensor force reproduces the
large neutron occupation beyond N = 28 shell gap observed expeimentally.
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Chapter 7

Summary and outlook

This work investigated the nuclear structure and the mechanism of the structural
change in the neutron-rich sulfur isotope in order to understand the breakdown of the
N = 28 shell closure. For this purpose, one-neutron knockout reaction was utilized,
which can deduce the shell evolution of the neutron single-particle orbits.

Prior to this work, only part of the level scheme of 43S was known. By this
thesis work, the full level scheme of 43S was constructed for the first time, especially
the coincident prompt γ-ray with the decay of the isomeric state was confirmed.
Owing to this level scheme, the production cross section of each level by the one-
neutron knockout reaction was also determined. Analysis on the parallel momentum
distribution for each final state was also performed, resulting in the assignment of the
spin-parity.

The observed strength of neutron knockout from l = 1 orbit was significantly
larger than theoretically predicted values and 3/2− or 1/2− states were concentrated
around 1.2 MeV in 43S. This can be attributed as the neutron excitation above the
N = 28 shell gap in the ground state of 44S, which was one of the direct observations
of the quenching of this shell gap. Though the shell model calculations without tensor
or cross-shell tensor terms, it was pointed out that the stronger cross-shell tensor
force describes the large neutron occupation beyond N = 28 shell gap like observed
in the present work. Also the strength of the production of 7/2− state just below the
neutron threshold of 43S was found to be rather small compared to the shell model
calculations. This can imply that many configuration of the wave function participate
in both the higher excited states in 43S and the ground state of 44S, resulting in the
scattering of the strength. Additionally, an excited state well explained by the neutron
knockout from the l = 2 orbit was also found. This result implies the change of the
neutron occupation under N = 20 shell gap, which was previously pointed out in the
neutron-rich Si isotopes.

Experimentally, the obvious next steps in this investigation would be the search
of excited states predicted in the theoretical work but not observed in this work.
For example, the 5/2−1 state, the predicted band member of the rotational band on
the ground state, would have small production cross section of this reaction channel.
Related to this, the placement of the 1/2−1 state was unfortunately tentative in this
work. The firm observation of this state can be the direct confirmation of the prolate
deformation of the ground state due to the special order of the spins of the excited
states. For this purpose, not only taking a benefit of high statistics, but also utiliz-
ing the different reaction probes could be powerful methods. For example, the (p, p′)
reaction can excite both the single-particle and the collective states simultaneously.
The proposed level scheme in this work is not perfect but large part of the structure
of 43S was revealed. In this stage, such kind of reaction producing all kinds of states
can be useful to search the missing transition in this work. Other than the ground
state band, a band above the 1155 keV state can be the candidate of the third band
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predicted in shell model and AMD calculations. Because these calculations predict
controversial deformation about this band, experimental measurement of the defor-
mation parameters of this band is one of the fascinating subject. Though such kind of
measurement should be tough and quite high statistics must be necessary, one of the
possible tool could be the sub-barrier Coulomb excitation experiment, which can be
sensitive to the sign of the quadrupole moment of each state. When we can achieve
very neutron-rich phosphor isotopes with N ≥ 29, another interesting experiment
could be the observation of β and β-n decays, which would give us the opportunity
to distinguish the unnatural parity state by comparing the observed decay scheme in
these two channels. This information would shed light to the change of occupation in
the neutron sd shell.

For the theoretical side, one of the obvious step could be the expansion of the
model space containing neutron sd shell. Because many kinds of correlations are
thought to participate in the shell structure change in this region, some attempts
to arbitrarily change the interactions in the nucleus and compare the resulting spec-
troscopic information may derive another possible features of the structure of these
nuclei.
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