
　

Doctorate Dissertation

博士論文

Quantum Many-Body Physics in Open Systems:

Measurement and Strong Correlations

（開放系における量子多体物理：
測定と強相関効果）

A Dissertation Submitted for Degree of Doctor of Science

December 2018

平成 30年 12月 博士（理学）申請

Department of Physics, Graduate School of Science,

The University of Tokyo

東京大学大学院 理学系研究科 物理学専攻

Yuto Ashida

蘆田 祐人



 



Abstract

This Thesis studies the fundamental aspects of many-body physics in quantum systems open to an
external world. The ability to observe and manipulate quantum matter at the single-quantum level
has revolutionized our approach to many-body physics. At such an ultimate resolution, a quantum
system exhibits an unavoidable change due to the measurement backaction from an external observer.
Moreover, various types of controlled couplings between quantum systems and external environments
have been experimentally realized. These remarkable developments thus point to a new research arena
of open many-body systems, where an interaction with an external observer and environment plays
a major role. The first part of this Thesis is devoted to elucidating the influence of measurement
backaction from an external observer on quantum critical phenomena and out-of-equilibrium many-
body dynamics. The second part of this Thesis is devoted to revealing in- and out-of-equilibrium
physics of an open quantum system strongly correlated with an external environment, where the
entanglement between the system and the environment plays an essential role. The results obtained
in this Thesis should serve as pivotal roles in understanding many-body physics of quantum systems
open to an external world, and they are applicable to experimental systems in atomic, molecular and
optical physics, quantum information science and condensed matter physics.
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Notations and Abbreviations

Notations

h Planck’s constant h = 6.626 × 10−34 J·s
ℏ reduced Planck’s constant ℏ = h/(2π) = 1.055 × 10−34 J·s
kB Boltzmann constant kB = 1.381 × 10−23 J/K
c speed of light c = 299792458 m/s
e electric charge e = 1.602 × 10−19 C
i imaginary unit i =

√
−1

π ratio of circumference of a circle to its diameter π = 3.14159 . . .
R real number field
C complex number field
N natural number field
H Hilbert space
|ψ⟩ ∈ H state vector inH
⟨ψ | dual vector of |ψ⟩
⟨ϕ|ψ⟩ ∈ C inner product of |ψ⟩ and |ϕ⟩
L(H ) set of linear operators onH
Ô ∈ L(H ) (hatted symbols) linear operator
Î ∈ L(H ) identity operator
ρ̂ ∈ L(H ) density operator satisfying ρ̂ ≥ 0 and Tr[ ρ̂] = 1
[Â, B̂] commutator ÂB̂ − B̂ Â of linear operators
{ Â, B̂} anticommutator ÂB̂ + B̂ Â of linear operators
dN marked point stochastic process
dW Wiener stochastic process
E[·] ensemble average over a stochastic process
K Tomonaga-Luttinger-liquid parameter
δ(x) Dirac’s delta function
σ̂ vector of the Pauli matrices
Id d × d identity matrix
P̂ parity operator satisfying P̂2 = 1
Pf[A] Pfaffian of a real antisymmetric matrix A
A[M] matrix antisymmetrization (M − MT)/2
S[M] matrix symmetrization (M + MT)/2



Abbreviations

Ads Anderson
AFM Antiferromagnetic
AMO Atomic, Molecular and Optical
BA Bethe Ansatz
BEC Bose-Einstein Condensate
BKT Berezinskii-Kosterlitz-Thouless
CDP Cluster Decomposition Property
CFT Conformal Field Theory
CMC Center-of-Mass Coordinate
corr correlation
CPTP Complete Positive and Trace Preserving
DFS Decoherence Free Subspace
DMFT Dynamical Mean-Field Theory
DMRG Density-Matrix Renormalization Group
eff effective
EP Exceptional Point
eq equilibrium
ETH Eigenstate Thermalization Hypothesis
FM Ferromagnetic
FRG Functional Renormalization Group
FS Fermi Sea
G (capital letter) Gaussian
GS Ground State
H.c. Hermitian conjugate
imp impurity
int interaction
iTEBD infinite Time-Evolving Block Decimation
K (capital letter) Kondo
L (capital letter) Left
LLP Lee-Low-Pines
LR Lieb-Robinson
mag magnetization
MI Mott Insulator
MPO Matrix-Product Operator
MPS Matrix-Product States
MVPE Matrix-Vector Product Ensemble
NGS Non-Gaussian State
NRG Numerical Renormalization Group
POVM Positive Operator-Valued Measure
PT Parity-Time
R (capital letter) Right
RG Renormalization Group
SIM Spin-Impurity Model
SSCP Spectral Singular Critical Point
tDMRG time-dependent Density-Matrix Renormalization Group
TD-NRG Time-Dependent-Numerical Renormalization Group
TEBD Time-Evolving Block Decimation
TLL Tomonaga-Luttinger Liquid
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1

Chapter 1

Motivation and Outline

Ultimately, — in the great future — we can arrange the atoms the way we want; the very atoms, all
the way down! What would happen if we could arrange the atoms one by one the way we want them?

Richard Feynman asked this visionary question in 1959 [1]. Once considered to be of purely academic
interest, such microscopic manipulations and observations of genuine quantum systems are now
routinely performed in the laboratory. In both theory and experiment, understanding of physics in
controlled quantum systems has become one of the central problems in science.

The last two decades have witnessed remarkable developments in studies of in- and out-of-
equilibrium many-body physics of an isolated, closed quantum system, as primarily promoted by
rapid advances in atomic, molecular and optical (AMO) physics. Meanwhile, recent experimental
advances have allowed one to measure and manipulate many-body systems at the single-quantum
level, thus revolutionizing our approach to many-body physics. With such an ultimate resolution,
the measurement backaction, which is the fundamental effect acted by an external observer, becomes
significant. Moreover, microscopic manipulation capabilities of many-body systems have realized
quantum systems strongly correlated with an external environment. These remarkable advances thus
point to a new arena of many-body physics that is open to an external world, in which interactions
with an external observer or an environment play a major role. The research of this Thesis is devoted
to addressing the question of how the ability to measure and manipulate single quanta can create a
new frontier of many-body physics beyond its conventional paradigm.

The first part of this Thesis elucidates how the influences of measurement backaction from an
external observer trigger new types of many-body phenomena that have no analogues in closed
systems (Fig. 6.1(a)). The time evolution of an isolated quantum system is described by a single
Hermitian operator, i.e., the Hamiltonian. In contrast, under continuous observation, the dynamics
becomes intrinsically nonunitary due to the measurement backaction and is characterized not only by
the Hamiltonian but also by a measurement process. After reviewing a general theory of the nonunitary
dynamics under continuous measurement in Chapter 2, we apply it to study effects of measurements
on quantum many-body phenomena in Chapters 3 and 4.

Our studies are mainly motivated by recent revolutionary developments in AMO physics. Already a
number of groundbreaking experiments have been achieved over the past decade [2–31]. In particular,
realizations of the technique known as quantum gas microscopy [2–13] have enabled one to detect
a large number of atoms trapped in an optical lattice at the single-atom precision. Other examples
include direct observations of quasi-long-range order predicted by the Tomonaga-Luttinger liquid
(TLL) theory [14] and the Berezinskii-Kosterlitz-Thouless (BKT) transition [15, 16], microscopic
observations of the superfluid-to-Mott insulator transition [17], quantum walk of single [18] and two
atoms [19], light-cone propagation of correlations limited by the Lieb-Robinson (LR) velocity vLR
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Fig. 1.1 Two distinct classes of open quantum many-body systems studied in this Thesis. (a)
Quantum many-body systems under continuous observation discussed in the first part of Thesis. An
external observer plays a role as an environment and extracts information about a quantum many-
body system by performing continuous measurements. This causes an inevitable change of the
measured system, i.e., the measurement backaction. (b) Quantum systems strongly correlated with
environment discussed in the second part of Thesis. Strong correlations between a quantum system
and a many-body environment invalidate the Born-Markov approximation; one has to explicitly
take into account the system-environment entanglement.

[20–22], the propagation of spin impurities [23] and magnons [24], and measurements of entanglement
entropy [25] and antiferromagnetic fermionic correlations [26–29]. Similar microscopic observations
have also been made in trapped ions [30,31]. Further developments of in-situ imaging techniques will
allow one to perform a nondestructive, real-time monitoring of the many-body dynamics [11,32–39].
The aim of the first part of this Thesis is to show how one can utilize these revolutionary techniques
to reveal previously unexplored effects of measurements on quantum many-body physics.

To achieve this aim, we focus on two fundamental aspects of many-body physics, namely, quan-
tum critical phenomena and out-of-equilibrium dynamics. In Chapter 3, we analyze an effective
non-Hermitian Hamiltonian that governs the nonunitary evolution under continuous observation and
elucidate the influence of measurement backaction on quantum criticality. In particular, we identify
two possible types of relevant non-Hermitian perturbations to one-dimensional quantum critical sys-
tems and show how they significantly alter the underlying critical phenomena and phase transitions
beyond the conventional paradigms of the TLL theory and the BKT transition. We also analyze
the influence of measurement backaction on quantum phase transitions in higher dimensions by fo-
cusing on the superfluid-to-Mott insulator transition in the Bose-Hubbard model. In Chapter 4, we
discuss out-of-equilibrium dynamics influenced by the measurement backaction. We present three
general theoretical frameworks and apply them to specific models to elucidate the underlying physics.
Firstly, we introduce the notion of the full-counting dynamics that is open many-particle dynamics
conditioned on certain measurement outcomes. Based on this formalism, we address propagation of
correlations and that of information through many-body systems under measurement backaction. We
consider an exactly solvable model and show that, by harnessing backaction due to observation of
individual quanta, correlations can propagate beyond the LR bound at the cost of the probabilistic
nature of quantum measurement. Secondly, we develop the framework of quantum thermalization in
open many-body systems, where we consider couplings of quantum systems to generic Markovian
environments permitted by quantum measurements and engineered dissipations. This gives yet an-
other insight into why thermodynamics emerges so universally in our world. Finally, we formulate
diffusive multiparticle dynamics subject to minimally destructive spatial observation. We derive a
diffusive stochastic time-evolution equation to describe motions of indistinguishable particles under
measurement by taking the limit of weak-spatial resolution and strong atom-light coupling. We
demonstrate that the measurement backaction qualitatively alters the underlying dynamics depending
on the distinguishability of particles. For all the theoretical considerations presented in this part, we
propose possible experimental realizations with quantum gases.
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The second part of this Thesis is devoted to studying many-body physics in quantum systems that
are strongly correlated with an external environment, where the entanglement between the system
and the environment plays a central role (Fig. 6.1(b)). In such situations, the strong system-bath
correlations invalidate the Born-Markov approximation. We thus need to explicitly take into account
the degrees of freedom of the environment rather than eliminating them as done in the master-equation
approach. We focus on quantum impurity as the most fundamental paradigm of such a strongly
correlated open quantum system. Historically, the physics of quantum impurity has originally been
studied in the context of solid-state materials. The two most fundamental concepts developed there
are the Kondo-singlet state [40], which is the many-body bound state formed by a localized spin
impurity and the fermionic environment, and the polaron [41], which is a quasiparticle excitation
formed by a mobile impurity dressed by surrounding phonon excitations. To this date, a broad class
of problems that correspond to quantum impurity correlated with an external environment have been
at the forefront of many subfields in physics. For instance, they have proven crucial to understanding
thermodynamic properties of strongly correlated solid-state materials [42–46], decoherence [47–49]
and transport phenomena [50–61] of nanodevices such as quantum dots and Nitrogen-vacancy center
that are promising candidates for future quantum information technology, and lie at the heart of
powerful numerical methods such as the dynamical mean-field theory [62]. The physics of a quantum
impurity has recently attracted renewed interests owing to experimental developments of manipulation
techniques in ultracold gases [63–69], molecular electronics [53], carbon nanotubes [54, 70, 71], and
nanodevices [59,72]. While equilibrium properties of a quantum impurity are well established, these
new techniques motivate a surge of studies in an out-of-equilibrium regime which is still an area of
active research with many open questions. The aim of the second part of this Thesis is to elucidate the
role of strong correlations in the prototypical open quantum systems for both in- and out-of-equilibrium
regimes.

In Chapter 5, we develop a versatile and efficient theoretical approach to solving generic quantum
spin-impurity problems in and out of equilibrium and then apply it to reveal previously unexplored
nonequilibrium dynamics. A quantum impurity in nonequilibrium regimes has been previously ana-
lyzed by a number of theoretical approaches [73–113]. In spite of the rich theoretical toolbox, analysis
of the long-time dynamics remains very challenging. Previous approaches become increasingly costly
at long times due to, for instance, artifacts of the logarithmic discretization in Wilson’s numerical
renormalization group [114] or large entanglement in the time-evolved state [115]. Another difficulty
is to extend the previous approaches to generic spin-impurity models beyond the simplest Kondo
models. These major challenges motivate a study to develop a new theoretical approach to quantum
impurity systems. To overcome the challenges, we introduce a new canonical transformation that
can completely decouple the impurity and the environmental degrees of freedom. We achieve this
by employing the parity symmetry hidden in the total Hamiltonian of spin-impurity models. We
combine the transformation with the fermionic Gaussian states and introduce a family of efficient
variational many-body wavefunctions that can encode strong impurity-environment correlations. We
benchmark our approach by demonstrating its successful application to the anisotropic [47] and two-
lead [79] Kondo models and also by comparing it to results obtained by other methods such as the
matrix-product state ansatz [116] and the Bethe ansatz [117–119]. We apply our method to reveal
new types of nonequilibrium dynamics that are difficult to explore in the previous approaches. We
propose a possible experiment in ultracold gases to test the predicted spatiotemporal dynamics by
using quantum gas microscopy. We also extend our approach to a bosonic environment and apply
it to study the strongly correlated system of spinful Rydberg molecules, which has been realized
in state-of-the-art experiments [120–122]. In Chapter 6, we analyze out-of-equilibrium physics of
yet another fundamental class of quantum impurities, that is, a mobile spinless impurity known as
polaron [41]. As a concrete physical system, we study an impurity atom strongly interacting with a
two-component Bose-Einstein condensate mimicking a synthetic magnetic environment. We show
how the Ramsey interference technique acting on the environment can be used to directly measure
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novel out-of-equilibrium dynamics of magnetic polarons beyond the conventional paradigm of solid-
state physics. We also discuss its concrete experimental realization in ultracold gases.

Outline
Let me summarize this introduction by providing an overview of the following Chapters. Each Chapter
includes a detailed introduction to the presented results and their relations to previous works.

Chapter 2 reviews a general theory of continuous observation of quantum systems. We formulate
a stochastic time-evolution equation of quantum systems subject to measurement backaction. Each
stochastic realization of the dynamics is known as the quantum trajectory. We introduce several impor-
tant classes of continuously monitored dynamics defined by a subensemble of quantum trajectories,
which will play crucial roles in the subsequent discussions of the first part of this Thesis.

Chapter 3 addresses the influences of measurement backaction from continuous observation on quan-
tum critical phenomena. We do this by introducing and analyzing an effective non-Hermitian Hamil-
tonian describing the underlying dynamics with continuous monitoring. We identify relevant non-
Hermitian perturbations to the Tomonaga-Luttinger liquid and discuss anomalous one-dimensional
critical phenomena triggered by the measurement backaction. We also discuss the influence of contin-
uous observation on quantum phase transitions in higher dimensions by studying the Bose-Hubbard
model as a concrete example. Possible experimental realizations with engineered dissipations and
quantum gas microscopy are discussed. This Chapter is based on the publications [123,124]:

• Parity-time-symmetric quantum critical phenomena, Yuto Ashida, Shunsuke Furukawa and
Masahito Ueda, Nature Communications 8, 15791 (2017).

• Quantum critical behavior influenced by measurement backaction in ultracold gases,
Yuto Ashida, Shunsuke Furukawa and Masahito Ueda, Physical Review A 94, 053615 (2016).

Chapter 4 analyzes out-of-equilibrium dynamics of many-particle systems under measurement back-
action. We develop three general theoretical frameworks and apply them to specific models to elucidate
the underlying physics. First, we introduce the notion of open many-particle dynamics conditioned
on the number of quantum jump events, which we term the full-counting dynamics. We show the
emergence of unique phenomena such as nonlocal and chiral propagation of correlations beyond the
Lieb-Robinson bound. Second, we extend the framework of quantum thermalization to open generic
many-body systems perturbed by measurements or engineered dissipations. Third, we formulate
diffusive multiparticle dynamics under a minimally destructive spatial observation and demonstrate
that the measurement indistinguishablity of particles can qualitatively alter the underlying transport
dynamics. Possible experimental realizations in ultracold gases are discussed. This Chapter is based
on the publications [125–127]:

• Thermalization and Heating Dynamics in Open Generic Many-Body Systems, Yuto Ashida,
Keiji Saito and Masahito Ueda, Physical Review Letters 121, 170402 (2018).

• Full-Counting Many-Particle Dynamics: Nonlocal and Chiral Propagation of Correlations,
Yuto Ashida and Masahito Ueda, Physical Review Letters 120, 185301 (2018).

• Multiparticle quantum dynamics under real-time observation, Yuto Ashida and Masahito Ueda,
Physical Review A 95, 022124 (2017).

Chapter 5 addresses in- and out-of-equilibrium physics of quantum spin impurities strongly correlated
with an external many-body environment. Introducing new canonical transformations, we develop a
versatile and efficient variational approach to solving generic quantum impurity problems. We apply
our approach to the Kondo-type models and benchmark it by comparing to the results obtained from
other numerical and analytical methods. We also reveal new types of out-of-equilibrium phenomena
that are difficult to obtain in the previous approaches. We discuss possible experimental realizations

https://www.nature.com/articles/ncomms15791
https://www.nature.com/articles/ncomms15791
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.053615
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.053615
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.170402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.170402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.185301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.185301
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.022124
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.022124
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using ultracold atoms to test the presented theoretical predictions. This Chapter is based on the
publications [128–131]:

• Solving Quantum Impurity Problems in and out of Equilibrium with the Variational Approach,
Yuto Ashida, Tao Shi, Mari C. Bañuls, J. Ignacio Cirac and Eugene Demler, Physical Re-
view Letters 121, 026805 (2018).

• Variational principle for quantum impurity systems in and out of equilibrium: application to
Kondo problems, Yuto Ashida, Tao Shi, Mari C. Bañuls, J. Ignacio Cirac and Eugene Demler,
Physical Review B 98, 024103 (2018).

• Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms,
Marton Kanász-Nagy, Yuto Ashida, Tao Shi, Catalin P. Moca, Tatsuhiko N. Ikeda, Si-
mon Fölling, J. Ignacio Cirac, Gergely Zaránd and Eugene Demler, Physical Review B 97,
155156 (2018).

• Efficient Variational Approach to Bosonic Quantum Impurity Systems and its Application to
Rydberg Kondo Problems, Yuto Ashida, Tao Shi, Richard Schmidt, J. Ignacio Cirac and
Eugene Demler, in preparation.

Chapter 6 studies out-of-equilibrium dynamics of a mobile particle strongly interacting with a
magnetic environment. Analyzing the impurity atom coupled to a synthetic magnetic environemnt
created by the two-component Bose-Einstein condensate, we demonstrate the emergence of unique
dynamics in the strongly coupling regime that is not attainable in the conventional solid-state systems.
We identify its origin as the nontrivial interplay between few- and many-body bound states. We
discuss a concrete experimental realization of our consideration. This Chapter is based on the
publication [132]:

• Many-body interferometry of magnetic polaron dynamics, Yuto Ashida, Richard Schmidt,
Leticia Tarruell and Eugene Demler, Physical Review B 97, 060302(R) (2018).

Chapter 7 concludes this Thesis with a future outlook.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.026805
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.026805
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.026805
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.024103
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.024103
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.024103
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.155156
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.155156
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.155156
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.155156
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.060302
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.060302
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Chapter 2

Continuous Observation of Quantum Systems

We review a general theory to describe the nonunitary evolution of quantum systems under measure-
ment, which is the main subject of the first part of this Thesis. Quantum measurement theory provides
us with a theoretical framework to discuss how a quantum system exhibits an unavoidable change
due to a measurement process. In particular, theory of continuous measurements gives a unified
description to study the nonunitary dynamics of quantum systems subject to weak and frequent re-
peated measurements. In Sec. 2.1, we formulate a quantum measurement process based on an indirect
measurement model and review its mathematical property. In Sec. 2.2, we apply it to formulate a
theory of continuous observations, in which measurements are performed continuously in time.

2.1 General theory of the nonunitary evolution
2.1.1 Indirect measurement model
We consider a general quantum measurement process described by a physical interaction between
a system S with Hilbert space HS and an environment E with Hilbert space HE [133–135]. The
composite system S + E is assumed to be isolated. We start from a separable initial quantum state of
the whole system described by

ρ̂S(0) ⊗ ρ̂E (0), (2.1)

where ρ̂S(0) is the initial state of the system S, and ρ̂E (0) is the initial state of the environment E (see
Fig. 2.1). After the time evolution with a unitary operator Û, the system and the environment interact
and get entangled:

Û (ρ̂S(0) ⊗ ρ̂E (0)) Û†. (2.2)

Then, we perform a measurement on the environment, which is described by the projection operator
P̂m on the subspace of the Hilbert space of the environment E with m being a measurement outcome.
A set of projection operators satisfies the completeness condition∑

m

P̂m = ÎE, (2.3)

where ÎE is the identity operator acting on HE . The probability pm of obtaining the outcome m is
then given by

pm = TrS+E
[(

ÎS ⊗ P̂m

)
Û (ρ̂S(0) ⊗ ρ̂E (0)) Û†

(
ÎS ⊗ P̂m

)]
. (2.4)



8 Chapter 2 Continuous Observation of Quantum Systems

System

Environment Measurement 
Outcome

Probability

Post-Measurement State

Fig. 2.1 Schematic figure illustrating the model of the indirect measurement. The total system
is initially prepared in a separable state of a system S and an environment E . They get entangled
after a unitary evolution Û. A projection measurement P̂m is performed on the environment,
generating a measurement outcome m with a probability pm. Due to the measurement backaction,
the system alters its state to the post-measurement state ρ̂m. This process is characterized by a set
of measurement operators M̂m,k , where k labels the bases in the spectral decompositions of ρ̂E (0)
and P̂m (see Eq. (2.10)).

The post-measurement state ρ̂m of the system S after obtaining the outcome m becomes

ρ̂m =
1

pm
TrE

[(
ÎS ⊗ P̂m

)
Û (ρ̂S(0) ⊗ ρ̂E (0)) Û†

(
ÎS ⊗ P̂m

)]
. (2.5)

We introduce the spectral decompositions of ρ̂E (0) and P̂m as

ρ̂E (0) =
∑
i

pi |ψi⟩EE ⟨ψi |, (2.6)

P̂m =
∑
j

|ϕm, j⟩EE ⟨ϕm, j |. (2.7)

Then, Eq. (2.5) can be written as

ρ̂m =

∑
k M̂m,k ρ̂S M̂†

m,k

pm
(2.8)

with the probability

pm =
∑
k

TrS
[
ρ̂S M̂†

m,k
M̂m,k

]
. (2.9)

Here, the operators M̂m,k are called measurement operators, or the Kraus operators [136, 137], and
are defined by

M̂m,k ≡ M̂m,(i, j) ≡
√

pi E ⟨ϕm, j |Û |ψi⟩E, (2.10)

where k ≡ (i, j) labels the bases in the spectral decompositions of ρ̂E (0) and P̂m. We can show that
the measurement operators satisfy the normalization condition:∑

m,k

M̂†
m,k

M̂m,k = ÎS, (2.11)

where ÎS is the identity operator acting on the system. If we are interested only in the probability
distribution {pm} of the measurement outcomes and not in the post-measurement states { ρ̂m}, we can
consider a positive operator-valued measure (POVM) {Êm} which is defined by

Êm ≡
∑
k

M̂†
m,k

M̂m,k . (2.12)
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The probability of obtaining the outcome m is then given by

pm = TrS
[
ρ̂S Êm

]
. (2.13)

We can show the normalization condition
∑

m pm = 1 from the completeness relation
∑

m Êm = ÎS .

2.1.2 Mathematical characterization of measurement processes
In the previous subsection, we formulate measurement processes in terms of an indirect measure-
ment model. There, the measurement process associated with the measurement outcome m was
characterized as a linear map Em acting on the density matrix ρ̂S (c.f. Eq. (2.8)):

Em(ρ̂S) =
∑
k

M̂m,k ρ̂S M̂†
m,k

, (2.14)

where operators M̂m,k satisfy the normalization condition
∑

m,k M̂†
m,k

M̂m,k = ÎS . The probability pm
of an outcome m being obtained and the corresponding post-measurement state ρ̂m are

pm = TrS [Em(ρ̂S)] , (2.15)

ρ̂m =
Em(ρ̂S)

pm
. (2.16)

In fact, we can characterize a linear map E = ∑
m Em of measurement processes from several physical

requirements in a mathematically rigorous manner.

Definition 1.1. (positivity)
Let H and H ′ be the Hilbert space and E be a linear mapping from L(H) to L(H ′). E is called
positive if Ô ≥ 0 implies E(Ô) ≥ 0 for all Ô ∈ L(H). Note that Ô ≥ 0 means that ⟨ψ |Ô |ψ⟩ ≥ 0 for
all |ψ⟩ ∈ H .

Definition 1.2. (n-positivity)
Let H and H ′ be the Hilbert spaces and E be a linear mapping from L(H) to L(H ′). Let Hn be
an n-dimensional Hilbert space. E is called n-positive if E ⊗ In : L(H ⊗ Hn) → L(H ′ ⊗ Hn) is
positive. Here In represents the identity operator on L(Hn).

The positivity of a mapping E ensures that it always maps a physical quantum state to another physical
state whose density matrix must be positive. From these definitions, we introduce the notion of
complete positivity as follows.

Definition 1.3. (complete positivity)
Let H and H ′ be the Hilbert space and E be a linear mapping from L(H) to L(H ′). E is called
completely positive if and only if E is n-positive for all n ∈ N.

We can now state the important theorem that mathematically characterizaes a general measurement
process.
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Theorem 1.4. (mathematical characterization of measurement processes) [136–139]
Let {Em}m∈M be a set of linear mappings acting on L(HS). Let us consider the following two
conditions:
(i) E ≡ ∑

m Em is trace preserving, i.e., TrS[E(Ô)] = TrS[Ô] for all Ô ∈ L(HS).
(ii) Em is completely positive for all m ∈ M .
If and only if {Em}m∈M satisfies the conditions (i) and (ii), {Em}m∈M can be represented by

Em(ρ̂S) = TrE
[(

ÎS ⊗ P̂m

)
Û (ρ̂S ⊗ ρ̂E ) Û†

(
ÎS ⊗ P̂m

)]
(2.17)

for some set of {HE, ρ̂E,Û, {P̂m}m∈M }, whereHE is a Hilbert space, ρ̂E is a density operator ofHE ,
and Û is a unitary operator acting onHS ⊗ HE , and {P̂m}m∈M is a set of projection operators acting
on the subspace ofHE corresponding to each measurement outcome m.

For a given completely positive and trace preserving (CPTP) mapping, Theorem 1.4. guarantees the
existence of an environment and a unitary operator which can reproduce the CPTP mapping. However,
the constructed environment and the unitary operator are often artificial and rather mathematical
objects that cannot necessarily give us a physical insight. Therefore, to deal with a real physical
system, it is highly desirable to provide a concrete formulation of a quantum measurement process
from a microscopic model governing the physical interaction between the measured system and the
environment [140–142]. In the next subsection, we perform such an analysis for continuously observed
quantum systems, in which repeated indirect measurements are frequently performed on the system. In
particular, we will derive the simple stochastic time-evolution equations governing the noisy quantum
dynamics under continuous observations. These will provide the basics of our study on many-body
systems under continuous observation, which is the main subject of the first part of this Thesis.

2.2 Continuous observation of quantum systems
Continuous measurement theory, which is also often called as the quantum trajectory approach to
open quantum systems, has originally been developed in the field of quantum optics in parallel by
several groups having rather different motivations such as quantum measurement [143–146] and laser
cooling of atoms [147]. It provides a clear physical picture of the nonunitary and noisy dynamics
of systems under continuous observation. The quantum trajectory approach is also important as an
efficient numerical method for open quantum systems since it allows one to solve the master equation
by taking the ensemble average over stochastic time evolutions of pure quantum states, thus avoiding
the complexity of tracking the evolutions of the full density matrix. In this section, we briefly review
the quantum trajectory approach from a perspective of quantum measurement.

2.2.1 Repeated indirect measurements
We assume that the system repeatedly interacts with the measuring apparatus (meter) with the Hilbert
space HM during a short interaction time τ, and after each interaction, we perform a projection
measurement on the meter and obtain a sequence of measurement outcomes (see Fig. 2.2). The meter
is reset to a state |ψ0⟩M after each interaction such that it retains no memory about the system, ensuring
that the dynamics is Markovian.

We choose an initial state as the product state between the system and the meter:

ρ̂(0) = ρ̂S(0) ⊗ P̂0, P̂0 = |ψ0⟩MM ⟨ψ0 |, (2.18)

and consider the Hamiltonian

Ĥ = ĤS + V̂, V̂ = γ
M∑
m=1

Âm ⊗ B̂m + H.c., (2.19)
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Fig. 2.2 Schematic figure illustrating the model of repeated indirect measurements. The initial
state is prepared in the product state between a system and a measuring apparatus (meter). The total
system evolves with a unitary operator Û(τ) during a time interval τ. A projection measurement is
performed on the meter, after which the meter is reset to the initial state P̂0 = |ψ0⟩MM ⟨ψ0 |. The
whole process is repeated and a sequence of measurement outcomes {m1,m2 . . .} is obtained.

where ĤS is a Hamiltonian governing the unitary dynamics of the system, γ ∈ R characterizes the
strength of the coupling between the system and the meter, Âm is a linear operator acting on HS .
We assume that B̂m acts on HM and changes a state of the meter into the subspace of HM with a
measurement outcome m:

P̂m′ B̂m = δm′mB̂m (m′ = 0,1, . . . ,M; m = 1,2, . . . ,M), (2.20)

where P̂m′ is a projection measurement on the subspace of HM providing a measurement outcome
m′. A set of P̂m′ satisfies the completeness condition

∑M
m′=0 P̂m′ = Î.

For each indirect measurement process, there are two possibilities. The first one is to observe a
change of the state of the meter, which corresponds to obtaining an outcome m = 1,2, . . . ,M . The
second one is to observe no change in the meter, i.e., it remains in the reset state |ψ0⟩M and thus
gives the outcome 0. We first address the first case. The nonunitary mapping Em of the system ρ̂S
corresponding to obtaining measurement outcome m = 1,2, . . . ,M is given by

Em(ρ̂S) = TrM
[
P̂mÛ(τ)

(
ρ̂S ⊗ P̂0

)
Û†(τ)P̂m

]
, (2.21)

where we define Û(t) = e−iĤt and TrM denotes the trace over the meter. To simplify this, it is
convenient to transform to the interaction picture:

ÛI (t) = Û†
S
(t)Û(t) (2.22)

with ÛS(t) = e−iĤS t . The unitary operator ÛI satisfies the time-evolution equation

∂ÛI (t)
∂t

= −iV̂I (t)ÛI (t), (2.23)

where we denote V̂I (t) = Û†
S
(t)V̂ÛS(t). We assume that the interaction time τ is short such that the

measurement backaction is weak γτ ≪ 1. The unitary operator ÛI (τ) can then be expanded as

ÛI (τ) ≃ Î − iτV̂I (τ) −
τ2

2
V̂2
I (τ). (2.24)

The mapping Em in Eq. (2.21) is approximated by

Em(ρ̂S) ≃ τ2ÛS(τ)TrM
[
P̂mVI (τ)

(
ρ̂S ⊗ P̂0

)
V̂†I (τ)P̂m

]
Û†
S
(τ)

≃ τL̂m ρ̂S(τ)L̂†m, (2.25)
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where ρ̂S(τ) = ÛS(τ)ρ̂SÛ†
S
(τ) and we introduce operators L̂m by

L̂m =

√
γ2τ⟨B̂†mB̂m⟩0 Âm. (2.26)

We here denote ⟨· · · ⟩0 as an expectation value with respect to |ψ0⟩M . The probability pm of obtaining
an outcome m = 1,2, . . . ,M is given by

pm = TrS[Em(ρ̂S)] = τTrS[L̂m ρ̂S(τ)L̂†m]. (2.27)

We next consider the second case in which one observes no change of the state of the meter and
thus obtains the outcome 0. The nonunitary mapping E0 in this case is

E0(ρ̂S) = TrM
[
P̂0Û(τ)

(
ρ̂S ⊗ P̂0

)
Û†(τ)P̂0

]
≃ ÛS(τ)

{
ρ̂S −

τ2

2
TrM [P̂0(V̂2

I (τ)ρ̂S + ρ̂SV̂†2I (τ))P̂0]
}

Û†
S
(τ)

= ρ̂S(τ) −
τ

2

{
M∑
m=1

L̂†m L̂m, ρ̂S(τ)
}
, (2.28)

where {Ô, Ô′} ≡ ÔÔ′ + Ô′Ô. The probability p0 of no change being observed is

p0 = TrS[E0(ρ̂S)] = 1 − τ
M∑
m=1

TrS[L̂m ρ̂S(τ)L̂†m]. (2.29)

We note that the probabilities satisfy the normalization condition
∑M

m′=0 pm′ = 1.

2.2.2 Quantum jump process
Based on the formalism introduced in the previous subsection, we can derive the simple stochastic
time-evolution equation describing the dynamics of quantum systems under continuous observation.
To achieve this, we study the evolution during a small time interval dt = Nτ which contains many
repetitions of interactions with the meter, i.e., N ≫ 1. Considering a sufficiently weak system-meter
coupling γτ ≪ 1, the probability pm ∼ O(γ2τ2) (m = 1,2, . . . ,M) of observing a change of the meter
during the time interval dt can be assumed to be small. We call such a change as a “jump” process.
More specifically, we assume that dt is small enough so that (i) a jump process occurs at most once in
the time interval dt, i.e., the probability of more than one jump process being observed is negligible,
and (ii) the time interval dt is short compared to the time scale of the dynamics of the system, resulting
in the approximation

ÛS(dt) ≃ Î − iĤSdt . (2.30)

Then, the nonunitary mapping Φm of the system during dt is

Φm(ρ̂S) =
N∑
i=1

(
EN−i

0 ◦ Em ◦ Ei−1
0

)
(ρ̂S)

= L̂m ρ̂S L̂†mdt +O(dt2) (2.31)

for a jump process with m = 1,2, . . . ,M and

Φ0(ρ̂S) = EN
0 (ρ̂S)

=
(
ÎS − iĤeffdt

)
ρ̂S

(
ÎS + iĤ†effdt

)
+O(dt2) (2.32)
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for the no-jump process. Here, we introduce an effective non-Hermitian Hamiltonian defined by

Ĥeff = ĤS −
i
2

M∑
m=1

L̂†m L̂m. (2.33)

During the time interval dt, a jump process Φm and the no-count process Φ0 occur with probabilities
TrS[L̂m ρ̂S L̂†m]dt and 1 −∑M

m=1 TrS[L̂m ρ̂S L̂†m]dt, respectively.
To describe this stochastic time evolution in the form of a stochastic differential equation, it is useful

to introduce measurement operators:

M̂0 = 1 − iĤeffdt, (2.34)
M̂m = L̂m

√
dt (m = 1,2, . . . ,M), (2.35)

where M̂0 acts on a quantum state if no jumps are observed during the time interval [t, t + dt] and
M̂m acts on it if a jump process m is observed. Note that the measurement operators satisfy the
normalization condition (aside from a negligible contribution of the order of O(dt2)):

M∑
m′=0

M̂†m′ M̂m′ = 1. (2.36)

For the sake of simplicity, let us assume that the initial state is pure and thus the state |ψ⟩S remains
so in the course of time evolution. As outlined above, the detection of a jump process is a stochastic
process, reflecting the probabilistic nature of quantum measurement. Its probability is characterized
by the expectation value of the square of the measurement operator M̂m with respect to a quantum
state |ψ⟩S (c.f. Eq. (2.9)). In the language of stochastic processes, this is formulated as a discrete
random variable dNm known as a marked point process [148] whose mean value is given by∗

E[dNm] = ⟨M̂†mM̂m⟩S = ⟨L̂†m L̂m⟩Sdt, (2.37)

where E[·] represents the ensemble average over the stochastic process and ⟨· · · ⟩S denotes an expec-
tation value with respect to a quantum state |ψ⟩S of the system. These random variables satisfy the
following stochastic calculus:

dNmdNn = δmndNm. (2.38)

Using these notations, the stochastic change of a quantum state |ψ⟩ in the time interval [t, t + dt] can
be obtained as

|ψ⟩S → |ψ⟩S + d |ψ⟩S =
(
1 −

M∑
m=1

E[dNm]
)

M̂0 |ψ⟩S√
⟨M̂†0 M̂0⟩S

+

M∑
m=1

dNm
M̂m |ψ⟩S√
⟨M̂†mM̂m⟩S

. (2.39)

Physically, the first term on the right-hand side describes the no-count process occurring with the
probability 1 − ∑M

m=1 E[dNm] and the second term describes the detection of a jump process m
occurring with a probability E[dNm]. We note that the denominator in each term is introduced to
ensure the normalization of the state vector. From Eqs. (2.34) and (2.35), we can rewrite Eq. (2.39)
as

d |ψ⟩S =
(
1 − iĤeff +

1
2

M∑
m=1
⟨L̂†m L̂m⟩S

)
dt |ψ⟩S +

M∑
m=1

©­­«
L̂m |ψ⟩S√
⟨L̂†m L̂m⟩S

− |ψ⟩S
ª®®¬ dNm. (2.40)

The first term on the right-hand side describes the non-Hermitian time evolution, in which the factor∑M
m=1⟨L̂

†
m L̂m⟩S/2 keeps the normalization of the state vector. In the second term, when the jump event

∗ We remark that dNm is not a simple Poisson process as its intensity depends on a stochastic vector |ψ⟩S .
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m is detected, an operator L̂m acts on the quantum state and causes its discontinuous change (“jump”).
A specific realization of this stochastic time evolution is referred to as the quantum trajectory.

Taking the ensemble average over all possible trajectories, one reproduces the Lindblad master
equation [149, 150]. To see this explicitly, let us rewrite Eq. (2.40) using the density matrix ρ̂S =
|ψ⟩SS ⟨ψ |:

d ρ̂S = −i
(
Ĥeff ρ̂S − ρ̂S Ĥ†eff

)
dt +

M∑
m=1
⟨L̂†m L̂m⟩S ρ̂Sdt +

M∑
m=1

(
L̂m ρ̂S L̂†m
⟨L̂†m L̂m⟩S

− ρ̂S

)
dNm, (2.41)

where we take the leading order of O(dt) and use the stochastic calculus (2.38). We note that this
equation remains valid for a generic density matrix ρ̂S that is not necessarily pure. Introducing the
ensemble-averaged density matrix E[ρ̂S] and taking the average of Eq. (2.41), one can show that the
density matrix obeys the Lindblad master equation [149,150]:

d E[ρ̂S]
dt

= −i
(
Ĥeff E[ρ̂S] − E[ρ̂S]Ĥ†eff

)
+

M∑
m=1

L̂mE[ρ̂S]L̂†m. (2.42)

Distinct subclasses of the quantum trajectory dynamics
Based on the quantum trajectory dynamics formulated above, we introduce several distinct classes of
continuously monitored dynamics, which will play crucial roles in the following Chapters.

Single trajectory dynamics realized with the complete information.
First, if an observer who can measure the meter has an ability to access the complete information
about measurement outcomes, i.e., all the time records and types of quantum jumps, the dynamics is
described by a single realization of the quantum trajectory dynamics:

ρ̂S(t; {t1, t2, . . . , tn}, {m1,m2, . . . ,mn}) ∝ |ψtraj⟩SS ⟨ψtraj |,

|ψtraj⟩S =
n∏

k=1

[
Ûeff(∆tk)L̂mk

]
Ûeff(t1)|ψ0⟩S, (2.43)

where 0 < t1 < t2 < · · · < tn < t are occurrence times of jumps whose types are {m1,m2, . . . ,mn}.
We denote a time difference as ∆tk = tk+1− tk with tn+1 ≡ t, an effective non-Hermitian time evolution
as Ûeff(t) = e−iĤeff t , and |ψ0⟩S as an initial state of the system. In Chapter 4, we will address
thermalization and heating dynamics in such single-trajectory many-body dynamics [126].

Full-counting dynamics realized with partial information.
Second, even if an observer cannot have access to the complete information, she/he may still have an
ability to access incomplete information about measurement outcomes. One possible example is a
capability to measure the total number of quantum jumps occurred during a certain time interval, but
not their types and occurrence times. We can then introduce the density matrix conditioned on the
number n of quantum jumps that have occurred during the time interval [0, t] as

ρ̂(n)(t) ∝
∑
α∈Dn

|ψα⟩SS ⟨ψα |

=
∑
{mk }nk=1

∫ t

0
dtn · · ·

∫ t2

0
dt1

n∏
k=1

[
Ûeff(∆tk)L̂mk

]
Ûeff(t1)ρ̂S(0)Û†eff(t1)

n∏
k=1

[
L̂†mk
Û†eff(∆tk)

]
,

(2.44)

where the ensemble average is taken over the subspaceDn spanned by all the possible trajectories hav-
ing n quantum jumps during [0, t]. In other words, this can be interpreted as coarse-grained dynamics
of pure quantum trajectories (2.43), where the number of jumps is known while the information about
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times and types of jumps have been lost. We term this class of the dynamics as the full-counting
dynamics [125]. In Chapter 4, we will investigate the emergence of distinct out-of-equilibrium many-
particle phenomena in the full-counting dynamics.

Non-Hermitian evolution realized with no jump events.
The no-jump process ρ̂(0)(t) (which is n = 0 case in Eq. (2.44)) is the simplest example of the
full-counting dynamics. Its time evolution is described by an effective non-Hermitian Hamiltonian:

ρ̂(0)(t) ∝ Ûeff(t)ρ̂S(0)Û†eff(t). (2.45)

While occurrence of quantum jumps will be increasingly likely at long times in general, the non-
Hermitian evolution (2.45) still provides physical insights into quasi-equilibrium properties in a
short-time regime, where contributions from quantum jumps are not significant or can be eliminated
by employing postselections. In Chapter 3, we will discuss unconventional quantum critical behavior
in such a non-Hermitian many-body system influenced by measurement backaction from continuous
observation [123,124].

Remark on cases that reduce to classical non-Hermitian dynamics
We remark on two cases in which the continuously monitored non-Hermitian dynamics (2.45) and the
dissipative dynamics described by the master equation (2.42) become equivalent. The first case is when
a system is subject to a one-body loss (i.e., a jump operator is proportional to the annihilation operator
of a particle) and its quantum state is described by a coherent state (i.e., an eigenstate of the annihilation
operator). In this case, the jump term, which is the last term in Eq. (2.41), does not alter the quantum
state and thus can be neglected upon the normalization of the state. Physically, this case is relevant
to a (mean-field) Bose-Einstein condensate subject to a one-body loss process [151–153], and also
can be considered as a microscopic justification of the phenomenological non-Hermitian description
employed in classical optics [154, 155]. The second case is when a system is subject to a one-body
loss and it contains just a single particle. In this case, the jump term becomes trivial since it reduces
to the particle-vacuum state and thus can be neglected. As neither quantum entanglement nor particle
correlations play roles in these two cases, physical phenomena in such systems can, in principle,
be also found in classical systems. In this sense, we denote these systems as “classical” systems
throughout this Thesis. Thanks to recent experimental developments especially in classical optics,
our understanding of such (one-body) classical non-Hermitian phenomena have been significantly
advanced in this decade [154,155].

Our aim is different from this direction. We will address genuine quantum systems, in which
continuously monitored dynamics (2.40) and dissipative dynamics (2.42) are intrinsically distinct. In
particular, we will study new aspects of quantum many-body phenomena, where genuine quantum
effects such as measurement backaction, many-body correlations and entanglement play important
roles. This is the main theme of the first part of this Thesis.

2.2.3 Diffusive limit
In the previous subsection, we consider a measurement process in which an operator L̂m induces a
discontinuous change of a quantum state. Here, we discuss yet another type of continuous measurement
associated with a diffusive stochastic process. To do so, we assume that measurement backaction
induced by an operator L̂m is weak in the sense that it satisfies

L̂m =
√
Γ(ÎS − lâm), (2.46)

where Γ characterizes the detection rate of jump events and l ≪ 1 is a small dimensionless parameter.
We also assume that detections of jump events are frequent so that an expectation value δNm of the
number of jump m observed during a time interval δt is sufficiently large. From the central-limit
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theorem, it can then be approximated as

δNm ≃ ⟨L̂†m L̂m⟩Sδt +
√
⟨L̂†m L̂m⟩SδWm

≃ Γ(ÎS − l⟨âm + â†m⟩S)δt +
√
Γ

(
ÎS −

l
2
⟨âm + â†m⟩S

)
δWm. (2.47)

Here, δWm ∈ N(0, δt) is a random variable obeying the normal distribution with the zero mean and
the variance δt. We then take the limit of weak l → 0 and frequent Γ → ∞ measurement, while Γl2

is kept constant. This limit is also known as the diffusive measurement limit [133,135]. The resulting
change of a quantum state ρ̂S → ρ̂S + δρ̂S during the interval δt can be obtained, at the leading order,
by (c.f. Eq. (2.41))

δρ̂S =

[
−i[ĤS, ρ̂S] −

Γl2

2

M∑
m=1

({
â†mâm, ρ̂S

}
− 2âm ρ̂S â†m

)]
δt

+
√
Γl2

M∑
m=1

[
(âm − ⟨âm⟩S) ρ̂S + ρ̂S

(
â†m − ⟨â†m⟩S

)]
δWm. (2.48)

Finally, taking the limit δt → 0, we obtain the following diffusive stochastic differential equation:

d ρ̂S =

[
−i[ĤS, ρ̂S] −

1
2

M∑
m=1

({
l̂†m l̂m, ρ̂S

}
− 2l̂m ρ̂S l̂†m

)]
dt

+

M∑
m=1

[(
l̂m − ⟨l̂m⟩S

)
ρ̂S + ρ̂S

(
l̂†m − ⟨l̂†m⟩S

)]
dWm, (2.49)

where we introduce operators l̂m =
√
Γl2âm and the Wiener stochastic processes satisfying

E[dWm] = 0, dWmdWn = δmndt . (2.50)

As for a pure state, the diffusive stochastic time-evolution equation (2.49) can be also written in terms
of the wavefunction |ψ⟩S as follows:

d |ψ⟩S =
[
ÎS − iĤS −

1
2

M∑
m=1

(
l̂†m l̂m − l̂m⟨l̂m + l̂†m⟩S +

1
4
⟨l̂m + l̂†m⟩2S

)]
dt |ψ⟩S

+

M∑
m=1

(
l̂m −

1
2
⟨l̂m + l̂†m⟩S

)
dWm |ψ⟩S . (2.51)

In Chapter 4, we will derive the diffusive stochastic Schrödinger equations appropriate for describing
many-particle systems under a minimally destructive spatial observation [127].

2.2.4 Physical example: site-resolved measurement of atoms
We discuss a specific physical example for a site-resolved position measurement of atoms via dispersive
light scattering [36]. The microscopic light-atom interaction Hamiltonian is given by

V̂mic = V̂ (−)mic + V̂ (+)mic,

V̂ (−)mic = −
∫

dr d · Ê(−)(r)Ψ̂†g(r)Ψ̂e(r), V̂ (+)mic = V̂ (−)†mic , (2.52)

where Ψ̂g,e(r) are the atomic field operators of the excited and ground states, the dipole moment is
defined by d ≡ ⟨e|d̂|g⟩ with d̂ being the dipole moment operator of the transition. The electric field
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is given by

Ê(r) =
∑
k′,σ

√
ℏωk′

2ϵ0V
ek′,σ

(
â†k′,σe−ik

′ ·r + H.c.
)

≡ Ê(−)(r) + Ê(+)(r), (2.53)

where â†k,σ (âk,σ) is the creation (annihilation) operator of a photon with wave vector k and polarization
σ, and we introduce the positive and negative frequency components of the electric field.

We consider dispersive light scattering of atoms by using an off-resonant coherent probe light whose
frequency and amplitude are ωL and EP . We introduce the rotating coordinate field ˆ̃

Ψe = eiωL t ˆ̃
Ψe,

resulting in the following Heisenberg equation of motion for the excited-atomic field
Û̃̂
Ψe = i∆ ˆ̃

Ψe +
i
ℏ

d∗ · EPΨ̂g, (2.54)

where ∆ = ωL − ω0 is the detuning of the probe light from the atomic transition frequency ω0. Since
we assume an off-resonant condition (|∆| ≫ |d∗ ·EP/ℏ|), we can perform the adiabatic elimination of
the excited state Û̃̂Ψe ≃ 0:

ˆ̃
Ψe ≃ −

d∗ · EP

ℏ∆
Ψ̂g . (2.55)

This procedure is equivalent to taking into account only the leading term of d∗ · EP/(ℏ∆) (see
Appendix A for details). We can rewrite the microscopic Hamiltonian (2.52) as

V̂ (−)mic ≃
d∗ · EP

ℏ∆

∫
dr d · Ê(−)(r)Ψ̂†g(r)Ψ̂g(r). (2.56)

For the sake of simplicity, we consider atoms tightly trapped in a one-dimensional lattice as
realized in the setup of quantum gas microscopy. Specifically, we adopt the following tight-binding
approximation:

Ψ̂g(r) = Φ(y, z)
∑
m

w(x − md)b̂m, (2.57)

where Φ(y, z) = wy(y)wz(z) is the wave function confined in the transverse direction, w(x) is the
Wannier function of the lowest Bloch band centered at x = 0, and b̂m is the annihilation operator of
the atom at site m. The resulting effective microscopic Hamiltonian is

V̂mic ≃ γ
∑
m

(
Ê (−)m + Ê (+)m

)
n̂m, (2.58)

where n̂m = b̂†mb̂m is an occupation-number operator of atoms at site m and we assume that the probe
light is polarized into the direction of the dipole moment, leading to γ = |d |2EP/(ℏ∆). The operators
Ê (−)m and Ê (+)m correspond to the annihilation and creation operators of photon modes localized around
site m. This Hamiltonian (2.58) can be considered as the system-meter interaction Hamiltonian (2.19)
in the indirect measurement model.

We now imagine that photodetectors are prepared at each site. A photodetection at each site
corresponds to a destructive measurement of photons scattered by an atom at that site and is described
by an operation acting on the photon field

|vac⟩⟨1m | ≡ |vac⟩⟨vac|Ê (+)m , (2.59)

where |vac⟩ denotes the photon vacuum and m is a detected lattice site. In the language of the indirect
measurement model, this process can be interpreted as the combination of a projection measurement
and the subsequent reset to the initial state of the meter (i.e., the photon vacuum). Finally, a jump
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operator acting on the Hilbert space of atoms is given by

L̂m ∝
√
⟨Ê (+)m Ê (−)m ⟩vacn̂m, (2.60)

which should be compared with Eq. (2.26). While, in a more realistic treatment directly relevant to
quantum gas microscopy, we have to take into account effects of diffraction of scattered fields (c.f.
Ref. [36]), the conclusions are essentially the same as presented here.
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Chapter 3

Quantum Critical Phenomena

Quantum critical phenomena originate from collective behavior of strongly correlated particles and
lie at the heart of universal low-energy properties in many-body systems. The strong correlation
between quantum particles is particularly prominent in a low-dimensional system. In the first part
of this Chapter, we identify what types of measurements are relevant to one-dimensional low-energy
properties and address how they qualitatively alter the underlying quantum critical behavior. In the
second part, we study how the measurement backaction influences on quantum phase transitions in
higher dimensions by focusing on the Bose-Hubbard model. For all the theoretical considerations, we
discuss possible experimental implementations in ultracold atomic gases.

3.1 Introduction
3.1.1 Motivation: measurement backaction on strongly correlated systems
Quantum systems under continuous observations inevitably undergo nonunitary evolutions due to
measurement backaction, as we have reviewed in Chapter 2. In this Chapter, we explore effects
of measurements on quantum critical phenomena (see Fig. 3.1). This is mainly motivated by recent
experimental realizations of quantum gas microscopy [2–10], which enable one to measure many-body
systems at the single-atom level. With the technique at such an ultimate resolution, the measurement
backaction is expected to be significant. A natural question arising here is how the underlying quantum
critical behavior will be modified under measurement and whether or not the concept of the universality
need be extended. The frontier of ultracold atomic experiments motivates us to reveal influences of
measurement backaction on strongly correlated many-body systems beyond the standard framework
of quantum many-body theory.

We address this question by studying the simplest quantum trajectory under continuous measure-
ment. With continuous monitoring, there are two possibilities at each moment depending on whether
or not one observes a quantum jump (see discussions in the previous Chapter). The occurrences of
quantum jumps typically lead to detrimental effects on quantum critical behavior since they induce
heating or loss of particles. In the other possibility of no jumps being observed, the underlying
low-energy behavior can sustain quantum criticality while there still exist nontrivial effects from con-
tinuous monitoring, as they manifest themselves as the non-Hermiticity of the effective Hamiltonian
governing the nonunitary evolution [146,147,156]. We study the influences of measurement backac-
tion on quantum criticality by analyzing this effective non-Hermitian Hamiltonian. While occurrences
of quantum jumps will be increasingly likely at long times, the analysis can give physical insights
into how a weak continuous observation affects the underlying quantum critical behavior especially
in a short-time regime. There, destructive effects from quantum jumps are not significant or can be
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(b)(a)

Fig. 3.1 Schematic illustrations of strongly correlated systems under continuous observations.
(a) While the universal behavior of isolated one-dimensional quantum many-body systems can
be described by the Tomonaga-Luttinger liquid, we show that measurement backaction acted by
an external observer can qualitatively alter their low-energy critical behavior and phase diagrams.
(b) Ultracold atoms trapped in an optical lattice are described by the Bose-Hubbard model and
exhibit a quantum phase transition known as the superfluid-to-Mott insulator transition. We show
that measurement backaction can shift the transition point so that the Mott phase is expanded.
Reproduced from Fig. 1 of Ref. [124]. Copyright © 2016 by the American Physical Society.

eliminated by employing postselections [22, 25, 157, 158].
Before going into the detailed analyses, let us outline the main idea here. We consider a quantum

many-body system whose Hamiltonian Ĥ exhibits quantum critical behavior, and assume that the
system is under continuous observation characterized by a set of jump operators {L̂i}. We then
analyze the following effective non-Hermitian Hamiltonian:

Ĥeff = Ĥ − iΓ̂
2
, (3.1)

Γ̂ = γ
∑
i

L̂†i L̂i, (3.2)

where Γ̂ denotes the backaction from continuous observation and γ characterizes its strength. The
effective Hamiltonian (3.1) in general has complex eigenvalues. We interpret that their real parts de-
scribe effective values of energies while their imaginary parts provide rates at which the corresponding
eigenstates decay out of the Hilbert space under consideration. If the original Hamiltonian commutes
with all the jump operators, i.e., [Ĥ, L̂i] = 0 for ∀i, the imaginary term in Ĥeff merely shifts the imagi-
nary part of the eigenvalues; the real parts of the eigenspectrum and the corresponding eigenstates do
not change. Thus, no qualitative changes in the critical behavior will happen. In contrast, if Ĥ does not
commute with some of the jump operators, i.e., ∃i such that [Ĥ, L̂i] , 0, there will emerge nontrivial
effects from measurements, as the measurement now alters the eigenstates and the eigenenergies of
Ĥeff . Throughout this Chapter, we focus on an effective ground state defined by the state having the
lowest real part of the spectrum. We find that the effective ground state is particularly important in
the continuously monitored dynamics since it also has the minimal (or almost minimal) decay rate
and thus survives longest under the non-Hermitian evolution. We stress that the dynamics of interest
here is different from dissipative, unconditional dynamics obeying a master equation, in which the
dissipative process tends to monotonically destroy quantum criticality, often ending up in trivial states
such as an infinite-temperature or the vacuum state. In particular, it has recently been pointed out that
such steady states have physical properties analogous to high-temperature states [159,160] or classical
thermal systems [161–163]. In contrast, by analyzing the dynamics conditioned on measurement
outcomes, we here show that measurement backaction can give rise to qualitatively new quantum
critical phenomena beyond the conventional paradigm of many-body physics [123, 124].

From a broader perspective, a theoretical approach utilizing the non-Hermitian effective Hamiltonian
has proved instrumental in a number of fields such as classical and quantum atomic, molecular
and optical (AMO) physics [164–179], nuclear physics [180, 181], open quantum systems [133,
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146, 147, 178, 179, 182, 183], condensed matter physics [184–188], mesoscopic systems [189–191],
biological network theory [192–194] and quantum chemistry [195]. Studies of phase transitions in
non-Hermitian systems can be traced to the pioneering work by Michael Fisher [196] in 1978 on
an exotic critical point in the non-Hermitian Ising model, which is now known as the Yang-Lee
edge singularity. Also, in a wide class of non-Hermitian Hamiltonians satisfying the parity-time
(PT) symmetry, the real-to-complex spectral phase transition has been found [154, 155, 197]. The
transition is typically accompanied by an exceptional point [198] in the discrete spectrum or the spectral
singularity [199] in the continuum spectrum. While these properties also hold for a certain class of
antilinear symmetries [200], one advantage of the PT symmetry is that it enables one to implement
this symmetry by spatially engineering gain-loss structures, leading to a rich interplay between theory
and experiment in classical optics [177, 201–204], superconductors [205], atomic physics [206], and
optomechanics [207]. However, the previous works mainly concern the classical (one-body) aspects
and the role of strong correlations has yet to be clarified. In this context, our studies fill this gap and
create a bridge between the fields of non-Hermitian physics and many-body physics.

In this Chapter, we proceed as follows. In the next two subsections, we review the universal properties
of one-dimensional many-body systems and identify what types of non-Hermitian perturbations are
relevant to the low-energy behavior. It turns out that there are two possible relevant non-Hermitian
terms: the quadratic term and the periodic potential term. In Sec. 3.2, we analyze the former and
show that the measurement backaction bifurcates critical exponents into two, making a sharp contrast
to the conventional Tomonaga-Luttinger liquid in which only a single parameter governs the critical
behavior. We discuss a possible realization in a one-dimensional Bose gas with a two-body loss. In
Sec. 3.3, we study the latter relevant non-Hermitian perturbation and show that it induces new types
of phase transitions, renormalization group (RG) fixed points and RG flows. We propose a possible
experimental realization with a spatially modulated one-body loss. In Sec. 3.4, we investigate effects
of measurements on quantum phase transitions in higher dimensions. In particular, we show that
the measurement backaction can shift a transition point of the superfluid-to-Mott insulator transition.
Our analyses presented in this Chapter can readily be generalized to other many-body systems with
different types of measurements. In Sec. 3.5, we propose several concrete experimental systems and
discuss experimental parameters to test our theoretical predictions. In Sec. 3.6, we conclude this
Chapter with an outlook.

3.1.2 Universal low-energy behavior in one-dimensional quantum systems
Interacting fermions in dimensions higher than one can typically be described by Landau’s Fermi
liquid theory [208]. There, in the vicinity of the Fermi surface, interactions do not have drastic effects;
they are taken into account by simply modifying an effective mass of quasiparticle excitations. In
one-dimensional (1D) systems, the situation is completely different. Since particles cannot transport
without affecting the motions of all the other ones, interactions inevitably make excitations collective.
In 1D systems, interactions thus dramatically enhance the strong correlations between particles,
invalidating the Fermi liquid picture. This peculiarity of 1D interacting many-body systems calls for
an alternative description beyond the Fermi liquid theory.

The Tomonaga-Luttinger liquid (TLL) theory provides a universal description to study the low-
energy behavior of 1D interacting fermions and bosons [209]. The basic idea is to represent underlying
collective excitations by bosonic quantum fields and then reformulate the theory in terms of those
bosonic degrees of freedom. If there are no relevant contributions in the low-energy limit, the resulting
effective field theory is quadratic in terms of the bosonic operators and thus exactly solvable. This
state of matter is known as the TLL. In the presence of relevant perturbations, the most fundamental
field theory is the sine-Gordon model [210, 211] that exhibits the quantum phase transition known as
the Berezinskii-Kosterlitz-Thouless (BKT) transition [212–214]. In this subsection, we review some
basic physical properties of the TLL and the sine-Gordon model.
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Brief summary of the Tomonaga-Luttinger liquid
The low-energy universal behavior of 1D many-body systems can be described by the effective field
theory known as the TLL [209]:

Ĥ0 =
ℏv

2π

∫
dx

[
K

(
∂x θ̂

)2
+

1
K

(
∂x ϕ̂

)2
]
, (3.3)

where v is the sound velocity, K is the so-called TLL parameter that characterizes the interaction
strength in a microscopic model, and ϕ̂ and θ̂ are scalar fields satisfying the following commutation
relation:

[ϕ̂(x), ∂x θ̂(x ′)] = −iπδ(x − x ′). (3.4)

Physically, these fields represent the degrees of freedom of collective excitations in the underlying
microscopic model. For instance, in the case of spinful fermions, the low-energy behavior is described
by the two independent scalar fields ϕ̂c and ϕ̂s , which represent collective excitations of charge
(i.e., density fluctuations) and spin, respectively. This is the celebrated spin-charge separation in 1D
systems.

The Hamiltonian Ĥ0 is quadratic and thus exactly solvable. Its energy dispersion is gapless and
linear. More specifically, (aside a constant offset) its spectrum is given by

Ĥ0 = ℏv
∑
|k |<Λ

|k |b̂†
k
b̂k, (3.5)

where b̂k (b̂†
k
) is an annihilation (creation) operator of a bosonic excitation labeled by a wavevector

k = 2πn/L with n = . . . − 2,−1,1,2 . . .. We introduce L as the system size and Λ as a momentum
cutoff. The operators b̂k and b̂†

k
can be related to the field operators ϕ̂ and θ̂ via the mode expansions:

ϕ̂(x) = −
∑
|k |<Λ

i · sgn(k)
√

πK
2L |k | e

−a |k |/2−ikx(b̂†
k
+ b̂−k), (3.6)

θ̂(x) =
∑
|k |<Λ

i
√

π

2KL |k | e
−a |k |/2−ikx(b̂†

k
− b̂−k), (3.7)

where

a =
1
Λ

(3.8)

is a short-distance cutoff. The gapless nature of the spectrum indicates the criticality of the ground state.
We can analytically show the critical decays of the correlation functions as follows (the derivations
will be given later):

Cθ
p(x) = ⟨eipθ̂(x)e−ipθ̂(0)⟩ =

(
a
|x |

)p2/(2K)
, (3.9)

Cϕ
p (x) = ⟨eipϕ̂(x)e−ipϕ̂(0)⟩ =

(
a
|x |

)p2K/2
, (3.10)

where ⟨· · · ⟩ denotes an expectation value with respect to the ground state of Ĥ0 and p is a real number.
Both functions exhibit critical decays but with different critical exponents p2/(2K) and p2K/2, which
are characterized by a single parameter known as the TLL parameter K .

To gain physical insights, let us consider a specific example of 1D spinless bosons. The bosonic
field Ψ̂(x) in the microscopic theory can be represented by the phase field θ̂(x) and the density operator
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ρ̂(x) as follows:

Ψ̂(x) ≃
√
ρ̂(x)eiθ̂(x). (3.11)

The low-energy collective excitations of the density ρ̂(x) can be related to a scalar field ϕ̂(x). Let us
derive its representation based on a phenomenological argument [209]. We start from the expression
of the classical density

ρ(x) =
∑
n

δ(x − xn), (3.12)

where xn is the position of the n-th particle. Let ρ0 be the mean density of particles and d = 1/ρ0
be the average distance. We introduce a monotonically increasing continuous function χ(x) of the
position, which takes the value χ(xn) = 2πn. We then rewrite the density as

ρ(x) =
∑
n

δ(x − xn) =
∑
n

∂x χ(x)δ(χ(x) − 2πn) = ∂x χ(x)
2π

∞∑
p=−∞

eipχ(x), (3.13)

where we use the Poisson summation formula to derive the last expression. Since we are interested
in the low-energy collective-mode fluctuations, it is useful to introduce a relative field ϕ(x) from the
crystalline equilibrium particle configuration χ0(x) = 2πx/d as

χ(x) = χ0(x) + 2ϕ(x) = 2πρ0x + 2ϕ(x). (3.14)

If we formally interpret the density ρ(x) and the function ϕ(x) as quantum fields, we arrive at the
correct bosonized expression of ρ̂(x) in terms of a scalar field ϕ̂(x) as∗

ρ̂(x) ≃
[
ρ0 +

∂x ϕ̂(x)
π

] ∞∑
p=−∞

e2ip(πρ0x+ϕ̂(x)). (3.15)

Using Eqs. (3.11) and (3.15), we can express the original microscopic Hamiltonian (c.f. γ = 0 case
in Eq. (3.67) below) of a 1D Bose gas in terms of the scalar fields ϕ̂ and θ̂. The resulting effective
field theory is the TLL in Eq. (3.3), where the parameters in the microscopic model are renormalized
into the single TLL parameter K . The correlation function Cθ

p=1(x) can be related to a one-particle
correlation function of a 1D Bose gas by

⟨Ψ̂†(x)Ψ̂(0)⟩ ∝
(

1
|x |

)1/(2K)
. (3.16)

Similarly, Cϕ
p=2(x) characterizes its density-density correlation function as

⟨ρ̂(x)ρ̂(0)⟩ − ρ2
0 = −

K
2πx2 + const. × cos(2πρ0x)

|x |2K
. (3.17)

We will study how these critical behavior are modified due to measurement backaction in Sec. 3.2.

Brief summary of the sine-Gordon model
Underlying microscopic interactions in 1D systems can generate additional perturbations on top of the
TLL. This is the case, for example, in spinful fermions or a 1D Bose gas subject to a spatially periodic
potential.† To discuss effects of the perturbations to the TLL, let us start consider a Hamiltonian

Ĥ = Ĥ0 +

∫
dxV(ϕ̂), (3.18)

∗ A more formal derivation can be found, for example, in Ref. [215].
† We will discuss later the latter example in detail to propose a possible experimental test of our theoretical results.
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where V(ϕ̂) is a potential term of the field ϕ̂ satisfying the condition‡

V(ϕ̂) = V(ϕ̂ + 2π). (3.19)

It can be expanded as

V(ϕ̂) = 1
π

∞∑
n=1

[
αc
n cos(nϕ̂) + αs

n sin(nϕ̂)
]
, (3.20)

where αc,s
n are real parameters. We can study how the perturbations affect the low-energy behavior

on the basis of the renormalization group (RG) analysis.
The basic idea of the RG analysis is as follows. We start from an effective field theory with couplings

α(Λ) and the TLL parameter K(Λ) at a momentum cutoff Λ. The goal of the RG analysis is to find
a theory having an equivalent low-energy (i.e., long-distance) behavior but at a lower momentum
cutoff Λ̃ < Λ (i.e., a larger distance cutoff ã > a) with the renormalized coupling α(Λ̃) and the
TLL parameter K(Λ̃). To achieve this, we integrate out high-momentum degrees of freedom which
are irrelevant to the low-energy behavior and examine how couplings α(Λ) and K(Λ) alter as we
renormalize a cutoff scale Λ. A set of differential equations that govern these changes of couplings
are known as the RG equations. They define the flows of couplings as functions of a cutoff scale Λ,
which are known as the RG flows. Physically, Λ-dependent couplings α(Λ) and the TLL parameter
K(Λ) characterize their renormalized values at an energy scale Λ, or equivalently, at a distance scale
a = 1/Λ. We remark that the aim of RG analysis is not to solve the entire problem of the model, but
to determine its low-energy properties by mapping the original model to a (possibly) simpler problem
while keeping the low-energy physics unaltered.

Let us consider how the potential (3.20) renormalizes along the RG flows. Analyzing the scaling
dimensions of the couplings, we can obtain their RG equations at the leading order by

dgc,sn

dl
=

(
2 − n2K

4

)
gc,sn , (3.21)

where l = − ln(Λ/Λ0) is the logarithmic RG scale with Λ0 being an initial cutoff and we rescale the
couplings αc,s

n by introducing the dimensionless parameters gc,sn as

gc,sn =
αc,s
n

ℏvΛ2 . (3.22)

Equation (3.21) clearly shows that a perturbation is more irrelevant for a higher-order n. It suffices
to consider the most relevant contribution that is the lowest-order m for which the coefficients are
nonzero, i.e., gc,sm , 0 and gc,sn = 0 for n < m. We then rescale the field operators and the TLL
parameter as (c.f. Eqs. (3.6) and (3.7))

ϕ̂→ (m/2)ϕ̂, θ̂ → (2/m)θ̂, K → (m2/4)K . (3.23)

The resulting effective field theory is

Ĥ0 +
1
π

∫
dx

[
αc cos(2ϕ̂) + αs sin(2ϕ̂)

]
. (3.24)

Finally, employing the translational invariance ϕ̂→ ϕ̂ − π/8, we arrive at the sine-Gordon model:

ĤsG =

∫
dx

{
ℏv

2π

[
K

(
∂x θ̂

)2
+

1
K

(
∂x ϕ̂

)2
]
+
α

π
cos(2ϕ̂)

}
. (3.25)

It is well known that the RG equations of K and g = α/(ℏvΛ2) in the sine-Gordon model are given by

‡ Note that the original bosonic or fermionic field operator Ψ̂(x) ∝
√
ρ̂(x) is invariant under ϕ̂(x) → ϕ̂(x)+2π as inferred

from Eq. (3.15). The resulting effective field theory should also satisfy this symmetry.
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Fig. 3.2 Renormalization group flows of the sine-Gordon model. When the Tomonaga-Luttinger
liquid (TLL) parameter K satisfies K < 2, the potential perturbation (whose strength is denoted
by g) is relevant and the system flows into the gapped phase (blue region). In contrast, for K > 2,
the perturbation is irrelevant and the low-energy behavior is described by the critical phase known
as the Tomonaga-Luttinger liquid (red region). In between these two phases, there exists the
Berezinskii-Kosterlitz-Thouless (BKT) transition. As for a one-dimensional bosonic system to be
discussed later, the gapped phase is the Mott insulator (MI) phase.

(up to the third order in g) [216]
dK
dl
= −g2K2,

dg
dl
= (2 − K)g + 5g3. (3.26)

Figure 3.2 shows the RG phase diagram of the sine-Gordon model. In the regime K < 2, the
potential perturbation is relevant and its strength g flows into the strong-coupling limit, suppressing
the fluctuations of the field ϕ̂ by the cosine potential cos(2ϕ̂). In this limit, the phase ϕ̂ is locked and
the system exhibits the gapped phase (blue regon). For example, in a 1D Bose gas subject to a periodic
potential, the locking indicates the suppression of density fluctuations and thus the gapped phase
corresponds to the Mott insulator (MI) phase as we will discuss later. From the equivalence between
a 1D quantum system and a 2D classical system, we can also view this locking as the condensation of
bounded pairs of the vortex and antivortex that are topological excitations in the phase field ϕ. In the
other regime K ≥ 2, the perturbation is irrelevant or marginal and its strength g flows into zero (red
region). The effect of the perturbation appears as a renormalization of the value of the TLL parameter;
an addition of g effectively decreases K , ending up a renormalized value K∗. The long-distance
critical behavior is thus described by the TLL with this renormalized TLL parameter K∗. Physically,
a decrease of K along the RG flows indicates the degradation of superfluid correlations at a large
distance (c.f. Eq. (3.16)). In between the two phases, the system exhibits the BKT transition. In the
classical picture, this transition can be viewed as the proliferation of the vortex-antivortex pairs.

Relevant non-Hermitian perturbations
We are interested in a non-Hermitian perturbation to the TLL Hamiltonian, where the non-Hermiticity
originates from measurement backaction due to continuous monitoring (see the introduction in this
Chapter). Our aim is to understand how such non-Hermiticity alters the quantum critical behavior of
1D many-body systems. To achieve this aim, we first have to identify what types of non-Hermitian
perturbations are relevant in the RG analysis, which can be done by checking the scaling dimensions
of the perturbations in the same manner as in the Hermitian case.

There are two types of the possible relevant perturbations. The first one is the quadratic term:

Γ̂0 ∝ −i
∫

dx
(
∂x ϕ̂

)2
, (3.27)
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which has the same scaling dimension as in the quadratic terms of the ordinary TLL. This term will
effectively make the TLL parameter K complex and thus modify the critical exponents as we detail in
the next section. Physically, Γ̂0 can arise as the backaction from a density measurement or a two-body
loss process of particles.

The second possible perturbation is the potential term

Γ̂V ∝ −i
∫

dx cos
(
2ϕ̂(x) + δ

)
, (3.28)

where δ is a real parameter and quantifies the phase difference of the imaginary potential compared
with a real relevant potential cos(2ϕ̂) in the sine-Gordon model (3.25). Such a perturbation physically
originates from, for example, a dissipative potential inducing a one-body loss of particles. For
δ , ±π/2, the imaginary potential term Γ̂V can make K complex along the RG flows. This leads to
similar effects as in the quadratic perturbation Γ̂0. To identify effects unique to the non-Hermitian
potential term Γ̂V , we focus on the case of δ = ±π/2 at which K remains to be real along RG flows.
From Eqs. (3.25) and (3.28), this condition leads to the following generalized sine-Gordon model:

Ĥ = ĤsG + Γ̂V =

∫
dx

{
ℏv

2π

[
K

(
∂x θ̂

)2
+

1
K

(
∂x ϕ̂

)2
]
+
αr

π
cos(2ϕ̂) − iαi

π
sin(2ϕ̂)

}
, (3.29)

where αr (αi) is the strength of a real (imaginary) potential perturbation and we choose the sign
δ = −π/2 without loss of generality. We note that this model satisfies the combination of the parity
symmetry (P̂) and the time-reversal symmetry (T̂):

P̂T̂ Ĥ
(
P̂T̂

)−1
= Ĥ. (3.30)

This follows from the fact that P̂ reverses the sign of ϕ̂ and that T̂ is an antiunitary operator∗

P̂ϕ̂P̂−1 = −ϕ̂, T̂ ϕ̂T̂−1 = ϕ̂, (3.31)
T̂iT̂−1 = −i. (3.32)

The parity-time (PT) symmetric non-Hermitian systems can exhibit an exotic real-to-complex spectrum
transition that accompanies the exceptional point at which the Hamiltonian is not diagonalizable. Such
a transition has no counterpart in Hermitian systems. While it has been recognized that the exceptional
point and the spectrum transition can induce interesting one-body phenomena especially in the context
of classical optics [154, 155], we will show that the non-Hermiticity can lead to novel types of many-
body phenomena such as the emergence of new RG fixed points and the exotic RG flows violating the
c-theorem as detailed in Sec. 3.3.

3.2 Backaction on quantum criticality I: the quadratic term
3.2.1 Model
In this section, we analyze the effect of the non-Hermitian quadratic perturbation

Γ̂0 = −iγ
∫

dx
(
∂x ϕ̂

)2 (3.33)

to the 1D critical behavior. Physically, such a contribution can appear in systems accompanying a
two-body loss of particles or those subject to a density measurement as we will discuss in Sec. 3.2.3.

∗ The odd parity of ϕ̂ can be inferred from the fact that ∂x ϕ̂ has the same parity as in the density operator ρ̂(x) which is
a scalar (see Eq. (3.15)).
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It is useful to rewrite the TLL Hamiltonian as

Ĥ0 =
ℏ

2π

∫
dx

[
vJ

(
∂x θ̂

)2
+ vN

(
∂x ϕ̂

)2
]
, (3.34)

where the phase stiffness vJ and the density stiffness vN are defined as

vJ = vK, (3.35)

vN =
v

K
. (3.36)

The role of the quadratic perturbation Γ̂0 is to renormalize the density stiffness vN to a complex value
ṽN e−iδγ :

Ĥeff = Ĥ0 + Γ̂0 =
ℏ

2π

∫
dx

[
vJ

(
∂x θ̂

)2
+ ṽN e−iδγ

(
∂x ϕ̂

)2
]
, (3.37)

where ṽN (γ) > 0 and 0 ≤ δγ < π/2 are the real parameters depending on γ. Since the effective
Hamiltonian (3.37) is quadratic, it is still solvable and we can obtain its exact complex spectrum. To
achieve this, we do the mode expansions, reduce the problem to that of a set of complex harmonic
potentials [217,218], and obtain the exact effective ground state |Ψg,γ⟩ having the lowest energy, i.e.,
the lowest real part of an eigenvalue. We will show that the effective ground state also has the longest
lifetime among all the eigenstates, indicating that it survives longest in the non-Hermitian evolution.
If we take the limit of vanishing measurement strength γ → 0, the effective ground state |Ψg,γ⟩
reproduces the known ground state of the original TLL Hamiltonian. Calculating the correlation
functions with respect to the effective ground state |Ψg,γ⟩, we show that it exhibits unusual critical
behavior influenced by measurement.

Let us start from the mode expansions of the fields:

ϕ̂(x) = −
∑
k,0

i · sgn(k)

√
πK̃γ

2L |k | e
−a |k |/2−ikx(b̂†

k
+ b̂−k), (3.38)

θ̂(x) =
∑
k,0

i

√
π

2K̃γL |k |
e−a |k |/2−ikx(b̂†

k
− b̂−k), (3.39)

where we introduce L as the size of a system and K̃γ as the following modified TLL parameter

K̃γ ≡
√

vJ

ṽN
, (3.40)

b̂k (b̂†
k
) is an annihilation (creation) operator associated with a mode having momentum k = 2πm/L

(m = ±1,±2, . . .), and a → +0 is a short-distance cutoff. The effective Hamiltonian (3.37) is then
(aside an irrelevant constant) rewritten as

Ĥeff = ℏṽ
∑
k>0

k

[
e−iδγ + 1

2
(b̂†

k
b̂k + b̂†−k b̂−k) +

e−iδγ − 1
2

(b̂k b̂−k + b̂†
k
b̂†−k)

]
, (3.41)

where we introduce ṽ ≡
√
vJ ṽN . Introducing the position and momentum operators x̂k and p̂k as

b̂k =
x̂k + i p̂k√

2
, b̂†

k
=

x̂k − i p̂k√
2

, (3.42)

we can express Eq. (3.41) as

Ĥeff = ℏṽ
∑
k>0

k

[
e−iδγ + 1

4
(x̂2

k + p̂2
k + x̂2

−k + p̂2
−k) +

e−iδγ − 1
2

(x̂k x̂−k − p̂k p̂−k)
]
. (3.43)



28 Chapter 3 Quantum Critical Phenomena

Furthermore, we use the center-of-mass x̂k ,+ (p̂k ,+) and relative x̂k ,− (p̂k ,−) coordinates (momenta)
with modes ±k:

x̂k =
x̂k ,+ + x̂k ,−√

2
, x̂−k =

x̂k ,+ − x̂k ,−√
2

, (3.44)

p̂k =
p̂k ,+ + p̂k ,−√

2
, p̂−k =

p̂k ,+ − p̂k ,−√
2

, (3.45)

where we choose k to be a positive discrete momentum, i.e., k = 2πm/L with m = 1,2, . . .. Using
Eqs. (3.44) and (3.45) to rewrite Eq. (3.43), we obtain

Ĥeff = ℏṽ
∑
k>0

k
(

e−iδγ

2
x̂2
k ,+ +

1
2

p̂2
k ,+ +

1
2

x̂2
k ,− +

e−iδγ

2
p̂2
k ,−

)
. (3.46)

This Hamiltonian is nothing but a set of non-Hermitian harmonic oscillators [217,218]. To diagonalize
it, we choose the coherent-state basis |{xk ,+, pk ,−}⟩, where x̂k ,+ and p̂k ,− are diagonalized such that ϕ̂(x)
becomes a c-number (c.f. Eq. (3.51) below). We can obtain the effective ground-state wavefunction
|Ψg,γ⟩ as

⟨{xk ,+, pk ,−}|Ψg,γ⟩ ∝ exp

[
− e−iδγ/2

2

∑
k>0
(x2

k ,+ + p2
k ,−)

]
. (3.47)

This state is an extension of the original ground-state wavefunction [219] to the non-Hermitian TLL.
The full complex spectrum is given by

ℏṽe−iδγ/2
∑
k>0

k(nk ,+ + nk ,− + 1), (3.48)

where nk ,± are nonnegative integers representing quantum numbers in the modes (k,±). From the
condition 0 ≤ δγ < π/2, the energies are bounded from below and the ground-state wavefunction can
be normalized.∗ We remark that the effective ground state (nk ,± = 0) with the lowest energy also has
the minimal imaginary part, i.e., it survives the longest in the non-Hermitian evolution.

Effective parity-time symmetry in the non-Hermitian TLL
We note that there exists a “hidden” parity-time symmetry in the Hamiltonian (3.37). To show this,
we rewrite the Hamiltonian as

Ĥeff = e−iδγ/2Ĥ ′eff, Ĥ ′eff =
ℏ

2π

∫
dx

[
vJeiδγ/2

(
∂x θ̂

)2
+ ṽN e−iδγ/2

(
∂x ϕ̂

)2
]
, (3.49)

where Ĥ ′eff is invariant under the combination of the time-reversal operation and the following parity
transformation†:

θ̂ →
√

ṽN

vJ
ϕ̂, ϕ̂→

√
vJ

ṽN
θ̂ . (3.50)

Thus, the original Hamiltonian (3.37) satisfies the parity-time symmetry aside a constant complex
factor e−iδγ/2. In fact, the spectrum of the parity-time-symmetric part Ĥ ′eff is entirely real (i.e., the
parity-time symmetry is unbroken) for any δγ (c.f. Eq. (3.48)).

∗ Although the wavefunction (3.47) remains normalizable for π/2 ≤ δγ < π, the full spectrum including the zero-mode
contributions is no longer bounded from below in this regime. We also remark that if δγ ≥ π, the spectrum is not bounded
from below and there are no eigenstates having discrete eigenvalues since the wavefunction cannot be normalized.

† Here by a parity transformation, we mean that its square reduces to the identity operator P̂2 = Î . A spatial parity
transformation against a certain plane is just its special example.
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3.2.2 Correlation functions: bifurcating critical exponents
We next analyze the critical behavior of the effective ground state that is influenced by the measurement
backaction.

Calculation of the correlation function Cϕ(x)
Let us calculate the correlation function Cϕ

p=2(x − y) = ⟨e2iϕ̂(x)e−2iϕ̂(y)⟩, which can be related to the
density-density fluctuations for the case of a 1D Bose gas (see Eq. (3.17)). Here, we denote ⟨· · · ⟩ as
the expectation value with respect to the effective ground state |Ψg,γ⟩. In terms of the variables x̂k ,+
and p̂k ,−, we can rewrite ϕ̂(x) as

ϕ̂(x) = i
∑
k>0

√
πK̃γ
2Lk

[
(x̂k ,+ + i p̂k ,−)eikx − (x̂k ,+ − i p̂k ,−)e−ikx

]
. (3.51)

Let |{ϕk}⟩ be an eigenstate of ϕ̂(x) (0 ≤ x < L):
ϕ̂(x)|{ϕk}⟩ = ϕ(x)|{ϕk}⟩, (3.52)

ϕ(x) =
√
π

L

∑
k>0

(
ϕkeikx + ϕ∗ke−ikx

)
, (3.53)

where ϕk satisfies

i(xk ,+ + ipk ,−) =
√

2k
K̃γ

ϕk . (3.54)

The wavefunction of the ground state (3.47) can be rewritten as

⟨{ϕk}|Ψg,γ⟩ =
1
√
N

exp

(
− e−iδγ/2

K̃γ

∑
k>0

k |ϕk |2
)
, (3.55)

where N is a normalization constant. We can now express the correlation function Cϕ
p=2(x − y) by

⟨e2iϕ̂(x)e−2iϕ̂(y)⟩ = 1
N

∫
DϕDϕ∗

×exp

{∑
k>0

[
−

2k cos(δγ/2)
K̃γ

|ϕk |2+2i
√
π

L
ϕk(eikx−eiky)+2i

√
π

L
ϕ∗k(e

−ikx−e−iky)
]}

= exp

[
−

K̃γ
cos(δγ/2)

∑
k>0

k1

k
(2 − eikr − e−ikr )

]
, (3.56)

where we do the Gaussian integrations to obtain the last expression, and define k1 ≡ 2π/L and
r ≡ x − y. The sum over k > 0 can be taken with a regularization trick:∑

k>0

k1e−ak

k
(2 − eikr − e−ikr ) → −2 ln

(
ak1

2 sin(k1r/2)

)
, (3.57)

where we use ak1 ≪ 1. The resulting critical behavior is

⟨e2iϕ̂(x)e−2iϕ̂(y)⟩ =
(

a
(L/π) sin (πr/L)

) 2K̃γ
cos(δγ /2)

→
( a

r

)2Kϕ

, (3.58)
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where we use L ≫ r and introduce the critical exponent Kϕ by

Kϕ(γ) =
K̃γ

cos
(
δγ
2

) . (3.59)

Calculation of the correlation function Cθ (x)
We next calculate the correlation function Cθ

p=1(x − y) = ⟨eiθ̂(x)e−iθ̂(y)⟩, which can be related to the
one-particle correlation for the case of a 1D Bose gas (see Eq. (3.16)). We expand the operator θ̂ as

θ̂(x) = −i
∑
k>0

√
π

2K̃γLk

[
i p̂k ,+(eikx + e−ikx) + x̂k ,−(eikx − e−ikx)

]
. (3.60)

This acts as a shift operator on an eigenstate of x̂k ,+ and p̂k ,−:

eiθ̂(x) |{xk ,+, pk ,−}⟩=
�����
{

xk ,+ − i

√
π

2K̃γLk
(eikx+e−ikx), pk ,−+

√
π

2K̃γLk
(eikx−e−ikx)

}⟩
. (3.61)

From Eq. (3.54), we obtain

eiθ̂(x) |{ϕk}⟩ =
����{ϕk − i

k

√
π

L
e−ikx

}⟩
. (3.62)

The correlation function can now be calculated as

⟨eiθ̂(x)e−iθ̂(y)⟩= 1
N

∫
DϕDϕ∗ exp

[
− 1

K̃γ

∑
k>0

k

(
eiδγ

���ϕk − i
k

√
π

L
e−ikx

���2 + e−iδγ
���ϕk − i

k

√
π

L
e−iky

���2)]
= exp

[
− π

2K̃γL cos(δγ/2)

∑
k>0

1
k
(2 − eikr − e−ikr )

]
=

(
a

(L/π) sin (πr/L)

) 1
2K̃γ cos(δγ /2)

→
( a

r

)1/(2Kθ )
, (3.63)

where we use L ≫ r and define the critical exponent Kθ as

Kθ (γ) = K̃γ cos
(
δγ

2

)
. (3.64)

Physical consequences: shifts and bifurcation of critical exponents
We now discuss physical consequences of the measurement backaction for the case of a 1D Bose
gas. As shown above, the backaction leads to the two TLL parameters Kθ,ϕ in Eqs. (3.64) and (3.59),
which describe the critical behavior of the one-particle correlation and the density-density correlation,
respectively:

⟨Ψ̂†(r)Ψ̂(0)⟩ ∝
(
1
r

)1/(2Kθ )
, (3.65)

⟨ρ̂(r)ρ̂(0)⟩ − ρ2
0 = −

Kϕ
2π2r2 + const. × cos(2πρ0r)

r2Kϕ
. (3.66)

The emergence of the two characteristic parameters Kθ and Kϕ signifies the critical behavior beyond
the conventional TLL class, in which the single parameter K characterizes the critical behavior (see
Eqs. (3.16) and (3.17)). Thus, the non-Hermiticity bifurcates the single critical exponent into the
two characterized by Kθ and Kϕ . In 1D ultracold bosons, the critical exponent Kθ can be found by
utilizing interferometric techniques [14, 220], while Kϕ can be measured by in-situ observations of
density fluctuations [221].
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3.2.3 Realization in a 1D ultracold Bose gas with a two-body loss
As a concrete microscopic physical realization of the non-Hermitian TLL, we here discuss a 1D
interacting Bose gas subject to a two-body loss process. The effective non-Hermitian Hamiltonian is
the following generalized Lieb-Liniger Hamiltonian:

Ĥ =
∫

dx

[
− ℏ

2

2m
Ψ̂
†(x) ∂

2

∂x2 Ψ̂(x) +
g − iγ

2
Ψ̂
†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

]
, (3.67)

where m is the atomic mass and Ψ̂(x) is the bosonic field operator. The strength g > 0 of a repulsive
contact interaction is given by g = 2ℏωar, where ω is the trap frequency in the transverse direction,
and ar is the elastic scattering length between atoms. The backaction from a two-body loss process
modifies the interaction parameter as g → g − iγ in the Lieb-Liniger Hamiltonian with γ = 2ℏωai
being the measurement strength determined from the inelastic two-body scattering length ai [222,223].
The low-energy critical behavior of Eq. (3.67) can be described by the effective non-Hermitian TLL
Hamiltonian in Eq. (3.37). Physically, the field θ̂ in the TLL Hamiltonian is related to the phase of the
bosonic field operator as in Eq. (3.11), while ∂x ϕ̂ is related to the density fluctuations as in Eq. (3.15).

In the original TLL, correlation functions decay algebraically with exponents determined by the
single TLL parameter K =

√
vJ/vN . We can relate the parameters vJ and vN in the effective field

theory to the microscopic parameters in the original Lieb-Liniger Hamiltonian. Firstly, the Galilean
invariance ensures that vJ can be obtained as [224]

vJ =
ℏπρ0

m
. (3.68)

Secondly, vN takes the following asymptotic forms in the weakly and strongly interacting regimes
[225,226]:

vN =


vJu
π2

(
1 −

√
u

2π

)
for u ≪ 1;

vJ

(
1 − 8

u +O
(

1
u2

))
for u ≫ 1,

(3.69)

where we introduce the normalized (dimensionless) strength of the interaction

u =
mg

ℏ2ρ0
. (3.70)

In contrast, in the presence of the two-body loss process, the backaction leads to the change g → g−iγ
and, accordingly, we analytically continue Eq. (3.69) by replacing u with a complex value u(1−ig/γ) =
u(1 − iar/ai). This changes vN to ṽN (γ)e−iδγ , where ṽN and δγ are the real parameters determined
from γ. These relations fix the correspondence between the microscopic parameters m, ρ0, g and γ
in the non-Hermitian Lieb-Liniger Hamiltonian (3.67) and the effective parameters vJ and ṽN e−iδγ in
the non-Hermitian TLL in Eq. (3.37). Figure 3.3 plots Kϕ,θ against the dimensionless measurement
strength γ/g = ai/ar. The decrease in Kϕ,θ can be interpreted as a manifestation of the continuous
quantum Zeno effect [227,228], which effectively enhances the repulsive interactions [223]. The split
between the two characteristic parameters Kϕ,θ is caused by the additional degree of freedom δγ in
the parameter space of the effective Hamiltonian (3.37). We remark that these features should also
appear in other 1D critical systems than the 1D Bose gas discussed here in view of the universality of
the effective field theory.
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Fig. 3.3 Shifts and bifurcation of the effective TLL parameters Kϕ (red solid curve) and Kθ (blue
dashed curve). We set the interaction strength to be (a) u = 0.01 and (b) u = 10.0. Reproduced
from Fig. 4 of Ref. [124]. Copyright © 2016 by the American Physical Society.

3.3 Backaction on quantum criticality II: the potential term
3.3.1 Model and its symmetry
We next consider the other relevant non-Hermitian perturbation, which is the following imaginary
potential term

Γ̂V = −
iαi

π

∫
dx sin(2ϕ̂). (3.71)

Physically, this contribution appears, for example, when the system is subject to a spatially modulated
dissipative potential inducing a one-body loss as we will detai in Sec. 3.3.5. The resulting Hamiltonian
considered in this section is

Ĥ =
∫

dx
{
ℏv

2π

[
K(∂x θ̂)2 +

1
K
(∂x ϕ̂)2

]
+
αr

π
cos(2ϕ̂) − iαi

π
sin(2ϕ̂)

}
. (3.72)

Without the imaginary potential, this Hamiltonian reduces to the sine-Gordon model (3.25), which
exhibits the celebrated BKT transition between the TLL and a gapped phase (see the RG phase diagram
in Fig. 3.2). For example, as for a 1D Bose gas, this transition corresponds to a superfluid-to-Mott-
insulator transition [229]. We aim to extend this paradigm by studying the generalized sine-Gordon
Hamiltonian (3.72) that includes both the real and imaginary potentials. When the real potential is
relevant, it suppresses the fluctuations of ϕ̂, stabilizing a non-critical, gapped phase. In contrast, we
find that the imaginary potential has an opposite effect; when it becomes relevant, it facilitates the
fluctuations of ϕ̂ and enhances correlations in the conjugate field θ̂. It is this competition between
the real and imaginary potentials that makes the present effective field theory particularly rich and
nontrivial.∗

The field theory (3.72) satisfies the parity-time (PT) symmetry (c.f. Eq. (3.30)). The PT symmetry
is said to be unbroken if every eigenstate of the Hamiltonian satisfies the PT symmetry; then, the
entire spectrum is real even though the Hamiltonian is not Hermitian. The PT symmetry is said to be
spontaneously broken if some eigenstates of the Hamiltonian are not the eigenstates of the PT operator;
then, some pairs of eigenvalues become complex conjugate to each other. This real-to-complex spectral

∗ It is worthwhile to recall that the phase difference between the real and imaginary potentials in Eq. (3.72) is chosen so
that the TLL parameter K remains to be real along the RG flows (see discussions below Eq. (3.28)), as we have already
clarified the physical consequences of the complexification of K in the previous subsection.



3.3 Backaction on quantum criticality II: the potential term 33

transition is often called the PT transition. The transition is typically accompanied by the coalescence
of eigenstates and that of the corresponding eigenvalues at an exceptional point [198] in the discrete
spectrum or the spectral singularity [199] in the continuum spectrum.

In our many-body Hamiltonian (3.72), if the depth of the real potential exceeds that of the imaginary
potential (αr > αi), Ĥ has an entirely real spectrum, i.e, the PT symmetry is unbroken. This can be
proved by the theorem [230] which states that the spectrum is real if and only if there exists an operator
Ô satisfying

Ô−1ĤÔ = Ĥ ′, (3.73)

where Ĥ ′ is a Hermitian operator. We can explicitly construct such an operator for αr > αi as

Ô = e−ηθ̂0/2, η = arctanh(αi/αr), (3.74)

where θ̂0 is a constant part of the field θ̂, which shifts its conjugate field as ϕ̂ → ϕ̂ − iη. Then, the
potential term in Ĥ is transformed to

Ô−1
[
αr

π
cos(2ϕ̂) − iαi

π
sin(2ϕ̂)

]
Ô =

√
α2

r − α2
i

π

∫
dx cos(2ϕ̂) (3.75)

and thus the field theory reduces to the ordinary sine-Gordon Hamiltonian. The divergence of η at
αr = αi signals the spontaneous breaking of the PT symmetry [231]. When αi > αr, some of excited
eigenstates of the Hamiltonian are no longer eigenstates of the PT operator, generating complex
conjugate pairs of eigenvalues.

The main findings we present in this section are the following. First, at the threshold of the PT
transition, we find that the spectral singularity and quantum criticality conspire to yield an unconven-
tional RG fixed point, which has no counterpart in Hermitian systems. Second, when an imaginary
potential becomes relevant, we find that a local gain-loss structure triggers an enhancement of super-
fluid correlation that is facilitated by anomalous RG flows violating the c-theorem [232]. This makes
a sharp contrast to the suppression of superfluid correlation due to the real potential as expected in
the conventional BKT transition. In the following subsections, we show these results based on the
RG analyses and numerical calculations using the exact diagonalization and the infinite time-evolving
block decimation (iTEBD) algorithm.

3.3.2 Perturbative renormalization group analysis
To reveal the universal behavior of the effective Hamiltonian Ĥ, we first perform a perturbative RG
analysis to obtain the following set of flow equations which are valid up to the third order in the
couplings:

dK
dl
= −

(
g2

r − g2
i

)
K2, (3.76)

dgr

dl
= (2 − K)gr + 5g3

r − 5g2
i gr, (3.77)

dgi

dl
= (2 − K)gi − 5g3

i + 5g2
r gi, (3.78)

where gr,i are the dimensionless couplings defined as

gr,i =
αr,i

ℏvΛ2 . (3.79)

The velocity v stays constant to all orders in gr,i because of the Lorentz invariance of the theory. The RG
equations can be obtained by deriving the RG equations for the Hermitian potential (αr/π) cos(2ϕ̂) +
(αi/π) sin(2ϕ̂) and then analytically continuing them by replacing αi → −iαi. The first step can
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Fig. 3.4 Renormalization group (RG) phase diagram and flows in the generalized sine-Gordon
model. (a) The three-dimensional phase diagram in (K,gr,gi), where K is the TLL parameter
and gr (gi) describes the depth of the real (imaginary) potential. The Tomonaga-Luttinger liquid
(TLL) and the Mott insulator (MI) phases are separated by the curved surface of the Berezinskii-
Kosterlitz-Thouless (BKT) transition in K > 2 and the plain surface of the PT transition (red open
circle) in K < 2. An exotic renormalization group (RG) fixed point lies on the critical line with
K = 2 and gr = gi, which we term as a spectral singular critical point (SSCP). (b) RG flows in a
PT-unbroken region (gi < gr) (compare it with Fig. 3.2). (c) RG flows on the two phase boundaries.
(d) Unconventional semicircular RG flows in a PT-broken region (gi > gr), which violate the
c-theorem [232]. The increase of K along the RG flows indicates the anomalous enhancement of
the superfluid correlation and significant changes in critical exponents in a large-distance region.
Reproduced from Fig. 1 of Ref. [123]. Copyright © 2017 by Nature Publishing Group.

be done by following the standard procedure [216] of the perturbative RG analysis for the ordinary
sine-Gordon model (c.f. Eq. (3.26)). The vanishing of the terms proportional to gi, g3

i and gig
2
r in the

RG equation (3.77) of gr can be understood from the different parity of cos(2ϕ̂) and sin(2ϕ̂) potentials
(the similar arguments also hold in the RG equation (3.78) of gi).

The RG equations can be solved analytically for small gr,i and δ ≡ K − 2 by noting the following
two quantities

C1 =
gi

gr
, (3.80)

C2 = δ
2 − 4(g2

r − g2
i ) − 10δ(g2

r − g2
i ) + δ3, (3.81)

which are conserved up to the third order of gr,i and δ. The resulting three-dimensional RG phase
diagram is shown in Fig. 3.4a. Its bottom plain at gi = 0 gives the two-dimensional phase diagram of
the conventional sine-Gordon model (see Fig. 3.2). Let us explain each regime in the phase diagram.

(i) C1 < 1
When PT symmetry is unbroken, i.e., gi < gr (or equivalently, C1 < 1), the spectrum is equivalent
to that of the original sine-Gordon model with a modified parameter (c.f. Eq. (3.75)). Thus, the
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conventional RG flow diagram is reproduced (compare Fig. 3.4b with Fig. 3.2). The BKT boundary
corresponds to the curved surface defined by C2 = 0 with δ > 0. We note that the critical behavior in
the PT unbroken regime is also the same as in the original sine-Gordon model because the operator
Ô only changes the zero modes of ϕ̂, which do not contribute to the ground-state critical properties.
As the non-Hermiticity signifies the measurement backaction, the transition across the surface C2 = 0
with δ > 0 induced by increasing gi may be regarded as measurement-induced.

(ii) C1 = 1
A new type of transition emerges on the PT transition plane, which is defined by gi = gr in the
strongly correlated regime K < 2 (or equivalently, on the plane C1 = 1 with δ < 0). The BKT and
PT phase boundaries merge on the line defined by K = 2 and gi = gr (i.e., the line C2 = 0 and
C1 = 1), which is constituted from a set of RG fixed points (black thick line in Fig. 3.4c). On the
PT threshold plane (C1 = 1), the spectral singularity [199] arises where two eigenvalues as well as
their eigenstates coalesce in the continuum spectrum. Our finding thus indicates that in many-body
systems the coexistence of the spectral singularity and the quantum criticality can result in exotic RG
fixed points unique to non-Hermitian systems. We remark that the quantum field theory on this scale
invariant line K = 2 and gi = gr is known as (a special type of) quantum Liouville theory [233],
which has recently attracted much attention in high-energy physics. In this context, it is remarkable
that Ref. [234] has demonstrated that the scale-invariant theory at K = 2 and gi = gr is indeed a new
universality class unique to non-Hermitian systems by explicitly calculating its three-point correlation
functions.

(iii) C1 > 1
Unconventional RG flows emerge when the PT symmetry is broken (gi > gr or equivalently C1 > 1).
They start from the K < 2 regime and initially lead to increases of gr,i and K . After entering the K > 2
regime, the flow winds and converges to the fixed line with gr,i = 0 (see Fig. 3.4d), which corresponds
to the TLL phase with K > 2. Physically, this significant increase in the TLL parameter K along
the RG flows indicates that the superfluid correlation decays more slowly at a larger distance (see
Eq. (3.16)). This enhancement of superfluid correlation should be considered as anomalous because,
in the conventional BKT paradigm, a real potential has a completely opposite effect of destroying the
criticality and stabilizing the gapped MI phase for K < 2 (see Fig. 3.2). It is particularly notable that
the semicircular RG flows permit a substantial increase of the TLL parameter K even if the potential
strength gi is initially very small. This indicates that even a very weak measurement backaction can
significantly alter the underlying critical behavior in a large-distance regime.

We remark that these RG flows violate the c-theorem, which states that in (Hermitian) conformal
field theories the central charge c must monotonically decrease along RG flows when a relevant
perturbation is added [232]. In the anomalous RG flows found here, the system remains in the TLL
phase and thus the central charge remains c = 1 even though the relevant perturbation is added. It
is worthwhile to mention that, while the c-theorem has recently been generalized to non-Hermitian
systems [235], the unbroken PT symmetry is required in order to ensure the presence of a monotonically
decreasing positive-definite function along the RG flows. Our finding of the violation of the c-theorem
only in the PT broken regime is consistent with this result. We note that similar anomalous RG flows
have recently been reported also in the non-Hermitian Kondo models [236, 237], where the authors
found the violation of the g-theorem [238] (i.e., the monotonic decrease of a ground-state degeneracy
g along the RG flows).
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Fig. 3.5 (a) Phase diagram and (b) typical finite-size spectrum of the non-Hermitian spin-chain
model whose low-energy effective field theory coincides with the generalized sine-Gordon model.
In panel (a), the Tomonaga-Luttinger liquid (TLL) and Mott insulator (MI) phases are separated by
the PT-symmetry breaking (red line with filled triangles) and the Berezinskii-Kosterlitz-Thouless
(BKT) transition (blue curve with filled circles). The merging point (open circle) of the two phase
boundaries corresponds to the spectral singular critical point. In panel (b), a typical low-energy
excitation spectrum of the non-Hermitian spin-chain model is plotted. We show the three lowest
levels in the Sz = 0 sector (red, green, and yellow curves from the lowest), and the lowest excitation
energy in the Sz = ±4 sector (blue curve), where we denote Sz =

∑N
m=1 Ŝzm as a total magnetization.

The energy difference δE between the two coalescing levels (e.g., red and green) obeys the square-
root scaling (inset) and closes at the PT-symmetry breaking point. We determine the BKT transition
point from a crossing point of appropriate energy levels (red and blue). We use the staggered field
hs = 0.1 for both panels (a) and (b). In panel (a), we determine the phase boundaries by performing
the finite-size scaling analysis (see panels (d) and (e) in Fig. 3.6), while the data shown in panel (b)
are the values for N = 16 and −∆ = 0.735. Note that we use the unit of J = 1. Reproduced from
Fig. 2 of Ref. [123]. Copyright © 2017 by Nature Publishing Group.

3.3.3 Numerical demonstration in a non-Hermitian spin-chain model
To numerically test the RG predictions discussed above, we introduce a lattice Hamiltonian

ĤL =

N∑
m=1

[
− (J + (−1)miγ)

(
Ŝx
mŜx

m+1 + Ŝy
mŜy

m+1

)
+ ∆Ŝz

mŜz
m+1 + (−1)mhsŜz

m

]
, (3.82)

whose low-energy behavior is described by the generalized sine-Gordon model Ĥ in Eq. (3.72).
Here Ŝx,y,z

m are the spin-1/2 operators at site m and the parameters (−∆, hs, γ) correspond to the ones
(K,gr,gi) in the effective field theory (3.72). We have used this model to numerically test the RG phase
diagram in Fig. 3.4a and the anomalous RG flows in Fig. 3.4d. The obtained results are consistent
with the RG predictions as shown in the determined phase diagram in Fig. 3.5a and in the observed
enhancement of the TLL parameter in a large-distance regime in Fig. 3.7b. Our numerical results thus
demonstrate that the RG analysis is indeed instrumental to study critical properties of a non-Hermitian
many-body system. Below we discuss how we obtain these results in detail.

(i) Identifying the BKT transition point
To determine the BKT transition point, we calculate the exact finite-size spectrum and find a crossing
of low-energy levels having appropriate quantum numbers. This can be done by employing the so-
called level spectroscopy method [239, 240]. The key idea of this method is to relate the low-energy
spectrum to the running coupling constants that appear in the RG equations. Under the periodic
boundary condition, the lattice Hamiltonian is invariant with respect to spin rotation about the z axis,
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Fig. 3.6 Exact finite-size spectra for different system sizes. The spectra are plotted with the
parameters −∆ = 0.73 and hs = 0.1 for different system sizes: (a) N = 12, (b) N = 14, and (c)
N = 16. Here the three lowest excited levels in the (Sz = 0,q = 0,P = T = 1) sector (red, green,
and yellow curves from the lowest), and the lowest excitation energy in the (Sz = ±4,q = 0,P = 1)
sector (blue curve) are plotted. The BKT transition point corresponds to the crossing point of the
two energy levels in (Sz = 0,q = 0,P = T = 1) (red) and (Sz = ±4,q = 0,P = 1) (blue). The PT
transition point corresponds to the first coalescence point of two low-energy levels (e.g., red and
green), which is confirmed to be an exceptional point of the spectrum by testing the square-root
scaling of the energy difference δE between the two coalescing levels (inset). (d) The PT threshold
(γPT ) and (e) the BKT transition point (γBKT) are determined by extrapolating finite-size data to
the thermodynamic limit. Reproduced from Supplementary Fig. 4 of Ref. [123]. Copyright ©
2017 by Nature Publishing Group.

translation by two sites, space inversion, and spin reversal. The corresponding conserved quantum
numbers are the total magnetization Sz ≡ ∑N

i=1 Sz
i , the wavenumber q = 2πk/L (k ∈ Z, L ≡ N/2), the

parity P = ±1, and the spin reversal T = ±1. The ground state with energy Eg(L) resides in the sector
(Sz = 0,q = 0,P = T = 1). Following Ref. [240], we denote the second lowest eigenenergy in this
sector by E0 and the lowest eigenenergy in the sector (Sz = ±4,q = 0,P = 1) by E3. Near the BKT
transition line, these excitation energies satisfy [239]

E0(L) − Eg(L) =
2πv

L

(
2 +

1
3
δ(l) − 8

3
g′(l)

)
, (3.83)

E3(L) − Eg(L) =
2πv

L
(2 − δ(l)), (3.84)

where δ ≡ K − 2, g′ ≡
√
g2

r − g2
i , and the logarithmic RG scale l is related to the system size L via

el = L/π. At the lowest order of the RG flow equation (3.26), the boundary of the BKT transition
corresponds to δ = 2g′. Since E0 = E3 is equivalent to this condition, the BKT transition point is
determined from the crossing point of these two energy levels. In our model, this corresponds to the
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crossing of the levels shown as the red dashed line and the blue solid line in Fig. 3.5b. In numerical
calculations, we obtain the excitation energy of the level (Sz = ±4,q = 0,P = 1) by multiplying that
of the level (Sz = ±1,q = 0,P = 1) by a factor of 16 to minimize possible finite-size effects due to an
increase in the total magnetization Sz . We note that, even though we consider a non-Hermitian model
here, the level spectroscopy method is still applicable because the BKT phase boundary entirely
lies within the PT-unbroken region in which the low-energy spectrum is equivalent to that of the
sine-Gordon model as we have proved by Eq. (3.75). We calculate the transition point for different
system sizes (see Fig. 3.6(a)-(c)), and extrapolate it to the thermodynamic limit to determine the BKT
transition point (see Fig. 3.6(d)). Since −∆ = cos(π/2K) for hs = γ = 0 and the BKT transition
occurs near K = 2, our analysis focuses on a region around −∆ = cos(π/4) = 1/

√
2.

(ii) Identifying the PT transition point
We identify the PT transition point as the first coalescence point in the low-energy spectrum with
increasing the non-Hermitian term γ. To confirm that the identified point indeed represents an
exceptional point of the spectrum, we plot the square of the energy difference (δE)2 and test the
square-root scaling of δE which is a signature of the coalescence of two eigenstates [198, 241] (see
the inset figures in Fig. 3.5b and Fig. 3.6(a)-(c)). We then perform a linear fit to the (δE)2-γ plot
and determine the PT threshold γPT for different system sizes. Finally, we extrapolate it to the
thermodynamic limit and determine the PT symmetry breaking point (see Fig. 3.6(d)).

(iii) Testing the anomalous RG flows
To numerically test the anomalous semicircular RG flows predicted in the PT-broken regime, we have
calculated a large-distance behavior of a correlation function by employing the infinite time-evolving
block decimation (iTEBD) algorithm [242]. The iTEBD is still applicable to investigate the properties
of the effective ground state of interest here. The reason is that it allows us to obtain the imaginary-
time evolution exp(−Ĥτ)|Ψ0⟩/∥ exp(−Ĥτ)|Ψ0⟩∥ for an infinite system size; using a sufficiently long
imaginary time τ, we can reach the effective ground state, i.e., the state having the lowest real part
of eigenvalues in the entire spectrum. We remark that the imaginary part of the eigenvalue does
not contribute to the calculation as it merely modifies the phase of the wavefunction. The TLL
parameter K can then be extracted from the calculated correlation function via ⟨Ŝ+r Ŝ−0 ⟩ ∝ (1/r)1/(2K)
(c.f. Eq. (3.16)).

Figure 3.7 shows the critical decay with a varying critical exponent; remarkably, the corresponding
TLL parameter significantly increases and eventually surpasses K = 2 in a long-distance regime. We
can interpret a physical origin of this enhancement of the superfluid correlation in the following way.
In analogy with the dynamical system [243], we may imagine that a local gain-loss structure introduced
by the imaginary term causes locally equilibrated flows of particles in the ground state. This indicates
the enhancement of fluctuations in the density, or equivalently, the suppression of fluctuations in the
conjugate phase, leading to the increase of the superfluid correlation.

3.3.4 Nonperturbative renormalization group analysis
We have so far analyzed the perturbative regime in which both gr,i and δ = K − 2 are small. The
performed perturbative RG analysis should remain valid only in this restricted region. Yet, the
anomalous RG flows found in the PT broken regime (see Fig.3.4d) indicate that the strength of gi
can be significantly large in the intermediate region of the flows if we start from a large value of
−δ = 2 − K > 0. In such a nonperturbative regime, the perturbative analysis is expected to be no
longer valid. It is natural to ask the fate of the anomalous RG flows in a large coupling regime.

To address this question, we employ the nonperturbative analysis based on the functional renormal-
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1/(2K). We use −∆ = 0.61, hs = 0.1, and γ = 0.08,
and χ denotes the bond dimension of the matrix-product state used in the iTEBD calculations.
Reproduced from Fig. 3 of Ref. [123]. Copyright © 2017 by Nature Publishing Group.

ization group (FRG). In general, a FRG equation is defined by [244,245]

Λ∂ΛΓΛ[ϕ] =
1
2

Tr

[
Λ∂ΛRΛ
Γ
(2)
Λ
[ϕ] + RΛ

]
, (3.85)

where ΓΛ is the effective action for the field ϕ at a momentum scale Λ, Γ(2)
Λ

is the second functional
derivative of the effective action with respect to ϕ, Tr stands for the integration over all momenta, and
RΛ is the regulator function which we choose to be

RΛ(p) = p2r(y), y = p2/Λ2, (3.86)

where we use the power-law regulator function r(y) = 1/y. Using the truncated derivative expansion
with the action being expanded in powers of the derivative of the field, we get

ΓΛ[ϕ] =
∫

d2x
[
1
2

zΛ(ϕ)(∂µϕ)2 + VΛ(ϕ) + · · ·
]
, (3.87)

where zΛ(ϕ) is the wavefunction renormalization factor and VΛ(ϕ) is the momentum-dependent po-
tential term. The sine-Gordon model can be analyzed by solving the FRG equation over the functional
subspace spanned by the following ansatz:

ΓΛ[ϕ] =
∫

d2x
[
1
2

zΛ(∂µϕ)2 + gr,Λ cos(2ϕ)
]
, (3.88)

where gr,Λ is the momentum-dependent depth of the real potential, zΛ is the momentum-dependent
(but field-independent) wavefunction renormalization that can be related to the TLL parameter K by

z =
1

4πK
. (3.89)

For the power-law regulator (3.86), the momentum integrals can be analytically performed. The
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Fig. 3.8 RG flows of the generalized sine-Gordon model in the nonperturbative regime of the
plane gr = 0 (PT broken phase). In the vicinity of K ≃ 2, the RG flows reproduce the semicircular
flows found in the perturbative analysis (c.f. Fig. 3.4d). Below K < K∗, the flows no longer go
back to the TLL fixed line and gi flows into the strong-coupling limit.

resulting RG equations are [246,247]:

dgr

dl
= − 1

2πzgr

[
1 −

√
1 − g2

r

]
+ 2gr, (3.90)

dz
dl
=

1
24π

g2
r(

1 − g2
r
)3/2 , (3.91)

where l = − lnΛ is the logarithmic RG scale. These equations reproduce the well-known RG phase
diagram of the sine-Gordon model [247] (c.f. Fig. 3.2). We note that for small coupling gr the
equations are consistent with the perturbative results in Eq. (3.26).∗

gr = 0 and gi , 0 case: isine-Gordon model
We now move onto the analysis of the generalized sine-Gordon model. For the sake of simplicity, we
first focus on the model with only an imaginary potential, namely, the isine-Gordon model:

ΓΛ =

∫
d2x

[
1
2

zΛ(∂µϕ)2 − igi,Λ cos(ϕ)
]
, (3.92)

where gi is the depth of the imaginary potential. Analytically continuing Eqs. (3.90) and (3.91) by
replacing gr → −igi, we obtain the following RG equations:

dgi

dl
=

1
2πzgi

[
1 −

√
1 + g2

i

]
+ 2gi, (3.93)

dz
dl
= − 1

24π
g2

i(
1 + g2

i
)3/2 . (3.94)

The corresponding RG phase diagram is shown in Fig. 3.8. In the vicinity of the perturbative regime
around K = 2, we reproduce the semicircular RG flows directing into the TLL fixed line in K > 2,
which are consistent with the perturbative analysis (see Fig. 3.4d). These anomalous flows end up
with a large TLL parameter K > 2 and persist even in the nonperturbative regime as long as the initial
TLL parameter K is larger than a certain value K∗ ≃ 1.589. As we approach K∗ from above, the
TLL parameter diverges. At the threshold value K = K∗, we find a new type of phase transition;

∗ Note that the definitions of gr in the perturbative RG analysis and the FRG analysis coincide aside from a constant factor.
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the separatrix starting from this point (red open circle in Fig. 3.8) defines the phase boundary. We
note that the curve separating the two phases is asymptotically given by gi ≃ K for large gi and K .
Below the threshold K < K∗, the depth gi of the imaginary potential grows up to the strong-coupling
limit. It remains an important open question to address in detail the nature of this phase; in analogy to
the continuous quantum Zeno effect, it is expected that the diverging gi (i.e., the strong measurement
strength) will make the field ϕ localized and thus this phase can be a gapped, noncritical phase.

General case in the generalized sine-Gordon model
For the sake of completeness, we here provide the RG equations for a general case of the PT-symmetric
sine-Gordon model in Eq. (3.72). To do so, let us begin with the Hermitian model:

ΓΛ =

∫
d2x

[
1
2

zΛ(∂µϕ)2 + gr,Λ cos(ϕ) + gi,Λ sin(ϕ)
]

=

∫
d2x

[
1
2

zΛ(∂µϕ)2 +
√
g2

r,Λ + g
2
i,Λ cos(ϕ − θ0)

]
, (3.95)

where θ0 = arctan[gi/gr]. Because of the translational invariance ϕ→ ϕ+ θ0, this model is equivalent
to the sine-Gordon model in Eq. (3.88). We thus obtain the RG equation by replacing gr with

√
g2
r + g

2
s

in Eqs. (3.90) and (3.91):

gr
dgr

dl
+ gi

dgi

dl
= − 1

2πz

[
1 −

√
1 − (g2

r + g
2
i )

]
+ 2(g2

r + g
2
i ), (3.96)

dz
dl
=

1
24π

g2
r + g

2
i(

1 − (g2
r + g

2
i )

)3/2 . (3.97)

Since the constant term θ0 should be invariant under the RG transformation, we obtain:
gi

gr
= const. ⇐⇒ d

dl

(
gi

gr

)
= 0 ⇐⇒ dgi/dl

dgr/dl
=

gi

gr
. (3.98)

From Eqs. (3.96), (3.97), and (3.98), we obtain the RG equations for gr, gi, and z as follows:

dgr

dl
= − gr

2πz(g2
r + g

2
i )

[
1 −

√
1 − (g2

r + g
2
i )

]
+ 2gr, (3.99)

dgi

dl
= − gi

2πz(g2
r + g

2
i )

[
1 −

√
1 − (g2

r + g
2
i )

]
+ 2gi, (3.100)

dz
dl
=

1
24π

g2
r + g

2
i(

1 − (g2
r + g

2
i )

)3/2 . (3.101)

We now consider the PT-symmetric non-Hermitian sine-Gordon model:

ΓΛ =

∫
d2x

[
1
2

zΛ(∂µϕ)2 + gr,Λ cos(ϕ) − igi,Λ sin(ϕ)
]
. (3.102)
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Fig. 3.9 Possible experimental realization of the generalized sine-Gordon model in a one-
dimensional dissipative ultracold gases. (a) One-dimensional ultracold bosonic atoms are subject
to a complex potential whose real (blue curve) and imaginary (red curve) parts are generated by
far-detuned and weak near-resonant waves. The latter induces a dissipative effect corresponding to
a one-body loss. (b) A non-Hermitian spin-chain model whose low-energy universal behavior re-
produces that of the generalized sine-Gordon model. An additional deep optical lattice, which does
not affect the universal behavior, is introduced to tightly localize atoms. The real and the imaginary
parts of the complex potential lead to the staggered potentials ±hs and imaginary hoppings ±iγ in
the lattice model. We represent a lattice site occupied (not occupied) by a hard-core boson as the
up (down) spin. Reproduced from Fig. 4 of Ref. [123]. Copyright © 2017 by Nature Publishing
Group.

To obtain the RG equations of this model, we analytically continue Eqs. (3.99), (3.100), and (3.101)
by replacing gi → −igi:

dgr

dl
= − gr

2πz(g2
r − g2

i )

[
1 −

√
1 − (g2

r − g2
i )

]
+ 2gr, (3.103)

dgi

dl
= − gi

2πz(g2
r − g2

i )

[
1 −

√
1 − (g2

r − g2
i )

]
+ 2gi, (3.104)

dz
dl
=

1
24π

g2
r − g2

i(
1 − (g2

r − g2
i )

)3/2 . (3.105)

Several remarks are in order. Firstly, on the PT transition boundary (gi = gr) with K < 2, the
unconventional RG flows directing into the strong-coupling limit (c.f. Fig. 3.4c) still exist in the
nonperturbative regime. Secondly, the fixed points on the line K = 2 and gr = gs found in the
perturbative analysis remain to be fixed points even in the nonperturbative regime. Finally, as we
found in the previous subsection for the gr = 0 case, a new type of phase transition between the
TLL phase and a possible noncritical phase with the strong imaginary potential will appear. We note
that this transition has not been found in the perturbative analysis. The 2D phase boundary for this
transition can be asymptotically given by the surface g2

i − g2
r ≃ K2 for large gi.

3.3.5 Realization in ultracold gases with a one-body loss
We here discuss a possible physical realization of the generalized sine-Gordon model (3.72) using
ultracold atoms (see Fig. 3.9a). We start from a 1D Bose gas subject to an off-resonant optical lattice.
This system is described by the Lieb-Liniger model [248] with the periodic potential:

Ĥ =
∫

dx
{
Ψ̂
†(x)

[
−ℏ

2∇2

2m
+ Vr cos

(
2πx

d

)]
Ψ̂(x) + g

2
Ψ̂
†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

}
, (3.106)

where Ψ̂(x) denotes the bosonic field operator, m is the mass of an atom, Vr is a lattice depth, d is a
lattice constant, and g is an interaction strength between atoms. We then introduce a dissipative optical
lattice potential causing a one-body loss of atoms, which can be created by a weak near-resonant light.
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We can interpret an atomic loss as a one-body loss if the total decay rate Γ of the excited state |e⟩
is faster than the spontaneous emission rate from |e⟩ to the ground state |g⟩ and the Rabi frequency
Ω [172,249,250] (see Fig. 3.10). This scheme can be possible by, e.g., employing appropriate energy
levels [251] or recoil energies due to light-induced transitions [2]. From the second-order perturbation
theory [198] with respect to the Rabi coupling, we can adiabatically eliminate the excited state,
resulting in the following effective time-evolution equation of the ground-state atoms (see Appendix A
for the detailed derivation):

dρ̂
dt
= − i
ℏ

(
Ĥeff ρ̂ − ρ̂Ĥ†eff

)
+

∫
dx
|Ω(x)|2
Γ
Ψ̂(x)ρ̂Ψ̂†(x), (3.107)

Ĥeff ≡ Ĥ − iℏ
∫

dx
|Ω(x)|2

2Γ
Ψ̂
†(x)Ψ̂(x). (3.108)

In general, the dissipative (unconditional) dynamics described by a master equation tend to destroy
subtle correlations underlying quantum critical phenomena. In contrast, we are here interested in
the conditional non-Hermitian evolution, where the dynamics is free from the destructive jump
processes while nontrivial effects due to measurement backaction still appear via non-Hermiticity of the
effective Hamiltonian (3.108). Such conditional dynamics can be studied by employing postselections
[146,156]; the achieved experimental fidelity has already been high enough to allow experimenters to
implement various types of postselections [22, 25, 158] (see also Sec. 3.5).

In the effective Hamiltonian (3.108), the spatially modulated Rabi frequency Ω(x) is proportional
to the electric field creating a dissipative optical lattice. To realize the model (3.72), we choose
|Ω(x)|2 = Ω2(1 + sin(2πx/d))/2 such that the effective non-Hermitian Hamiltonian becomes

Ĥeff =

∫
dx

{
Ψ̂
†(x)

[
−ℏ

2∇2

2m
+ V(x)

]
Ψ̂(x) + g

2
Ψ̂
†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

}
, (3.109)

where we introduce the complex potential

V(x) = Vr cos
(
2πx

d

)
− iVi sin

(
2πx

d

)
, (3.110)

Vi =
ℏΩ2

4Γ
. (3.111)

Here, we ignore the constant term −iViN proportional to the total number N of atoms. This constant
term is irrelevant in the non-Hermitian dynamics because it is cancelled upon the normalization of
the quantum state. Note that the effective Hamiltonian (3.109) satisfies the PT symmetry because the
potential satisfies the condition V(x) = V∗(−x).

The low-energy effective field theory of Ĥeff in Eq. (3.109) can be obtained by following the standard
procedure [215]. Firstly, as we have discussed in the previous sections, an interacting 1D Bose gas
without the potential V(x) is described at low energies by the TLL Hamiltonian (3.3), where the fields
ϕ̂ and θ̂ are related to the bosonic field Ψ̂(x) via Eqs. (3.11) and (3.15). Secondly, we then discuss the
perturbative role of the potential term

ĤV =

∫
dx V(x)Ψ̂†(x)Ψ̂(x) =

∫
dx V(x)ρ̂(x). (3.112)

Since we are interested in the commensurate phase transition, we assume the unit filling ρ0d = 1, i.e.,
one atom per site. By substituting Eqs. (3.110) and (3.15) into Eq. (3.112) and ignoring fast oscillating
terms, we obtain [224]

ĤV = ρ0Vr

∫
dx cos

[
2ϕ̂(x)

]
− iρ0Vi

∫
dx sin

[
2ϕ̂(x)

]
. (3.113)

Defining αr,i ≡ πρ0Vr,i, we arrive at the PT-symmetric potential term in the generalized sine-Godron
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Fig. 3.10 Energy-level diagram of an atom. The excited state |e⟩ has the frequency ω0 relative
to the ground state |g⟩ and fast decay modes with the total decay rate Γ. A weak near-resonant
light with the Rabi frequency Ω and detuning δ creates an effective imaginary potential for the
ground-state atom, provided that Γ is much larger than the spontaneous decay rate from |e⟩ to |g⟩.
Reproduced from Supplementary Fig. 1 of Ref. [123]. Copyright © 2017 by Nature Publishing
Group.

model (3.72). It is worthwhile to mention that the lattice Hamiltonian (3.82) can also be realized
by introducing a deep lattice, which has a period d/2 and does not affect the universal behavior, in
addition to the complex potential (see Fig. 3.7b).

Remark on the dynamics in the PT-broken regime
We make a remark on the ground state of the PT-symmetric spin-chain model (3.82) in the PT-
broken regime. When the PT symmetry is broken, some excited eigenstates turn out to have complex
pairs of eigenvalues while the ground state remains to have a real eigenvalue (see Fig. 3.11(a)-(d)
for typical spectra). In particular, there exist high-lying unstable modes having positive imaginary
parts of eigenvalues. As a result, if the system is significantly perturbed and highly excited, the
amplitudes of these modes can grow in time and eventually govern the physical properties of the
system. This is reminiscent of the phenomenon known as parametric instability or self-pulsing [252]
in excition-polariton systems, which can destroy the off-diagonal quasi-long-range order in 1D Bose
systems [253–255].

In contrast, our main focus here is on the effective ground state that sustains the quantum critical
behavior. We stress that this state can indeed be relevant in our setup, where the system is initially
prepared in the zero-temperature state of the Hermitian Hamiltonian and then the imaginary part of
the potential is adiabatically ramped up. We numerically demonstrate in Fig. 3.12 that the system
remains in the ground state with almost unit fidelity for a long-time interval. Here we consider the
spin-chain model in Eq. (3.82) and adiabatically ramp up the imaginary term with the time dependence
γ(t) = γ×

(
1 − 2/

(
e(t/τ)

2
+ 1

))
, where τ characterizes the timescale of the operation. The initial state

|Ψ(0)⟩ is chosen to be the ground state of the Hamiltonian with γ(0) = 0, and the time evolution |Ψ(t)⟩
is calculated by diagonalizing the Hamiltonian at each time step. Figure 3.12 shows the ground-state
fidelity |⟨ΨGS,γ(t) |Ψ(t)⟩| of the instantaneous Hamiltonian with γ(t), indicating that the system remains
in the ground state for a time much longer than the ramping time τ. Using a typical experimental
time scale ℏ/J = 3.6/(2π) ms [256], the lifetime of the ground state can reach ∼ 150 ms, which is
sufficiently long compared with a typical operation time of ultracold atom experiments [256].∗

3.3.6 Short summary
It is useful to make a short summary of this subsection.

∗ While the system size is rather small here, we note that the first signature of the enhancement of superfluid correlation
can appear from a relatively small size of, say, ∼ 10 sites (see Fig. 3.7b).
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Fig. 3.11 Spectra of the lattice spin-chain model (3.82) plotted with the parameters−∆ = 0.5, hs =
0.0,N = 12 for different strengths of the imaginary hopping (a) γ = 0, (b) γ = 0.025, (c) γ = 0.05,
and (d) γ = 0.075. When the PT symmetry is broken, some of the excited states have pairs of
complex eigenvalues which are conjugate to each other, while the ground state remains to have a
real eigenvalue. The plotted energy levels reside in the sector (Sz = 0,q = 0,P = T = 1). The
ground state (GS) is indicated by the black arrow. Reproduced from Supplementary Fig. 2 of
Ref. [123]. Copyright © 2017 by Nature Publishing Group.

• Generalizing the sine-Gordon model to the PT-symmetric non-Hermitian case, we find that the
two types of phase transitions emerge depending on the TLL parameter K . One belongs to the
celebrated BKT transition that appears in the weakly interacting regime (K > 2). The other is
the PT transition found in the strongly interacting regime (K < 2). The latter accompanies the
spectral singularity, i.e., the nondiagonalizability of the Hamiltonian, and thus is unique to a
non-Hermitian system.

• Using the perturbative and functional RG analyses, we determine the phase diagram of the
generalized sine-Gordon model and find that the BKT and PT phase transition surfaces are
continuously connected. The connecting line consists of nontrivial RG fixed points. On
this fixed line, the theory is scale invariant and constitutes the universality class that has no
counterpart in Hermitian systems.

• The RG analyses predict that, in the PT-broken phase, there appear the unconventional semicir-
cular RG flows that violate the c-theorem. In this regime, the TLL parameter K can increase to
K > 2 even if the flow starts from the region K < 2. Physically, this indicates that the compe-
tition between the local gain-loss structure in the PT-symmetric system and strong correlations
can result in the significant enhancement of the superfluidity.

• Using the exact diagonalizations and the iTEBD algorithm, we numerically confirm the above
RG predictions. The analyses clearly demonstrate that the RG analysis is indeed useful to study
critical properties of a non-Hermitian many-body system.
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Fig. 3.12 Ground-state fidelity in the PT-broken regime. The time evolution of the ground-
state fidelity of the system in the PT-broken regime is plotted for several different values of τ.
The imaginary hopping term γ is ramped up with different timescales τ = 0,20,50,100. The
ground state |ΨGS,γ(t)⟩ is calculated from the exact diagonalization of the Hamiltonian at each
time step. The parameters are set to −∆ = 0.5, hs = 0, γ = 0.05, and N = 12. Reproduced from
Supplementary Fig. 3 of Ref. [123]. Copyright © 2017 by Nature Publishing Group.

• In the nonperturbative regime of the PT-broken phase, the RG flows starting from the strongly
interacting regime (K < K∗ ≃ 1.589) flow into the strong coupling limit of the imaginary
potential. While we speculate that this phase is noncritical, its nature merits further study.

• Our findings can be experimentally tested by a 1D Bose gas subject to a spatially modulated
one-body loss (see Sec. 3.5 for experimental situations).

3.4 Backaction on quantum phase transitions
We have so far studied the influence of measurement backaction relevant to 1D quantum critical
phenomena. In this section, we discuss its influence on quantum phase transitions in higher dimensions
by taking the Bose-Hubbard model as a concrete physical example. This model exhibits the superfluid-
to-Mott insulator transition [229] and has been realized in ultracold atoms trapped in an optical
lattice [257, 258]. We are interested in how the backaction from an external observer affects the
quantum critical point.

3.4.1 Model
The Bose-Hubbard Hamiltonian [229] is defined by

ĤBH = Ĥ0 + V̂, (3.114)

Ĥ0 =
U
2

∑
i

n̂i(n̂i − 1) − µ
∑
i

n̂i, (3.115)

V̂ = −J
∑
⟨i, j ⟩
(b̂†i b̂j + H.c.). (3.116)

Here, b̂†i (b̂i) is a creation (annihilation) operator of bosons at site i, n̂i ≡ b̂†i b̂i , U represents the strength
of the on-site interaction, J characterizes the hopping amplitude, and µ is the chemical potential. If
the interaction energy is dominant (i.e., J ≪ U), the ground state is the gapped Mott insulator phase.
With an increase in the kinetic energy J/U, the phase transition to the superfluid phase occurs [259]
at the critical point (J/U)c , where the energy gap closes. In the µ − J phase diagram, a tip of each
Mott lobe corresponds to a critical value (J/U)c at an integer filling ρ (as illustrated in Fig. 3.14(d)
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Fig. 3.13 Relative amount of the shift ∆c,γ of the quantum critical point due to the measurement
backaction plotted against the measurement strength γ/U. To be concrete, we choose L̂i = b̂2, in
which a quantum jump process leads to a two-body loss of atoms. We compare the perturbative
mean-field result given by Eq. (3.121) (blue solid curve) with the numerical results (red dots)
calculated by the exact diagonalization (see the text for details). Reproduced from Fig. 2 of
Ref. [124]. Copyright © 2016 by the American Physical Society.

below). Under continuous monitoring, we consider an effective non-Hermitian Hamiltonian Ĥeff

Ĥeff = ĤBH −
iγ
2

∑
i

L̂†i L̂i, (3.117)

where a jump operator L̂i characterizes a measurement process performed and γ is the measurement
strength. Unless the second term commutes with ĤBH, the measurement backaction shifts the energies
of the effective Hamiltonian. Such a measurement-induced shift can manifest itself as a shift in
the quantum critical point. A specific form of a jump operator L̂i is determined by an underlying
measurement process; for example, if the process accompanies a two-body loss [222], we take L̂i = b̂2

i .
Another example is a site-resolved measurement of atoms [2] corresponding to L̂i = n̂i .

3.4.2 Measurement-induced shift of the quantum critical point
Mean-field analysis
We first study the shift of the quantum phase transition point by a mean-field analysis [229]. To be
concrete, we consider the unit filling ρ = 1 in this subsection. We denote the annihilation operator as
b̂i = β + δb̂i with a mean field β, substitute it in the kinetic energy V̂ , and neglect the second-order
terms of δb̂i . The resulting mean-field Hamiltonian is given by

ĤMF
eff = V̂MF + Ĥ0 −

iγ
2

∑
i

L̂†i L̂i, (3.118)

V̂MF = −Jz
∑
i

(β∗b̂i + βb̂†i − |β|
2), (3.119)

where z is the number of neighboring sites. The lowest real part of the eigenvalues of ĤMF
eff provides

the effective ground-state energy Eβ,γ of the system. In the vicinity of the transition point, we can
expand it as Eβ,γ = a0 + a2(γ)|β |2 + a4(γ)|β|4 + · · · . We determine the coefficient a2(γ) from
the second-order perturbation with respect to V̂MF. Then, the condition a2(γ) = 0 determines the
phase boundary (J/U)γ. The tip of the Mott lobe (i.e., ∂(J/U)γ/∂µ = 0 under ∂2(J/U)γ/∂µ2 < 0)
corresponds to the critical point (J/U)c,γ. We define the relative shift of the transition point by

∆c,γ ≡
(J/U)c,γ − (J/U)c,0

(J/U)c,0
, (3.120)
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Fig. 3.14 Second-order processes in the strong-coupling-expansion analysis. Panels (a) and (b)
show the processes contributing to the diagonal and off-diagonal matrix elements, respectively. The
occupied lattice sites are represented by the filled circles, while holes are indicated by the dashed
circles. (c) Coefficients αUp,Low

d,ρ,γ
for the upper (blue) and lower (red) boundaries of the Mott lobe

(see the main text for the definitions of αUp,Low
d,ρ,γ

). We consider L̂i = b̂2
i with d = 3 and ρ = 1.

(d) Schematic illustration of the modified µ-J diagram of the non-Hermitian Bose-Hubbard model.
The measurement backaction triggers the expansion of the Mott lobe, resulting in the shift of the
quantum critical point. Reproduced from Fig. 3 of Ref. [124]. Copyright © 2016 by the American
Physical Society.

which can be obtained in the mean-field analysis as
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We define the coefficient by cρ ≡ (⟨ρ+1| L̂† L̂ |ρ+1⟩ − ⟨ρ| L̂† L̂ |ρ⟩)/2, in which we omit the site label i.
For instance, it takes cρ = ρ for the two-body loss process L̂ = b̂2. From Eq. (3.121), we can conclude
that a general measurement process shifts the quantum critical point in favor of the Mott phase. In
the case of two-body loss or site-resolved measurement, this shift is a reminiscent of the suppression
of hopping due to the continuous quantum Zeno effect [222, 227, 228, 260–262]. We note that the
strong-coupling-expansion analysis presented below indicates that the effective ground state has the
lowest imaginary part of the eigenvalue (as well as its real part) and thus survives longest in the non-
Hermitian dynamics. We also obtain the transition point by exactly diagonalizing the non-Hermitian
Hamiltonian. To be consistent with the mean-field analysis, we choose an infinite-range hopping
with the amplitude J/N . Figure 3.13 shows that the perturbative formula (3.121) is indeed valid for
small γ/U. In numerics, we determine the transition point by locating the point corresponding to the
minimal gap.

Strong-coupling-expansion analysis
In the µ − J diagram shown in Fig. 3.14d, atom-number fluctuations at each site are enhanced in the
regimes close to integer values of µ/U (see Fig. 3.14d). In such regimes, we thus have to take into
account a statistical mixture of Mott states with different fillings. This can be done by performing
the strong-coupling-expansion analysis [263, 264], which provides asymptotically exact results in the
limit of J/U → 0. We perform a degenerate perturbation theory with respect to the hopping term V̂ ,
and calculate the gap ∆ of the eigenenergies between the ground state and the first excited state. We
determine the phase boundary as the point at which the energy gap closes ∆ = 0. As a consequence,
we can obtain an analytical expression for the shifted phase boundary at near integer values of µ/U,
showing the characteristic expansion of the Mott lobe due to measurement backaction.

Let us now describe details about the analysis. As mentioned above, we consider the Mott lobes
with integer filling ρ = 1,2, . . . on a d-dimensional hypercubic lattice. The unperturbed Hamiltonian
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is

Ĥ0 =
U
2

∑
i

n̂i(n̂i − 1) − µ
∑
i

n̂i −
iγ
2

∑
i

L̂†i L̂i . (3.122)

Its ground state is still in the Mott-insulator state. The first excited states in the regime close to the
upper phase boundary are degenerate states with only a single site being occupied by (ρ + 1) bosons
while the other sites being occupied by ρ bosons. In contrast, close to the lower boundary, the first
excited states are degenerate with only a single site being occupied by (ρ − 1) bosons while the other
sites being occupied by ρ bosons. Using a degenerate perturbation theory [264] with respect to the
hopping term V̂ = −J

∑
⟨i, j ⟩

(
â†i âj + H.c.

)
up to the second order, we obtain complex eigenvalues of

the ground and first excited states (see Figs. 3.14(a) and (b) for the relevant hopping processes). We
define the energy gaps by the differences of the real parts of the eigenvalues between the ground and
first excited states. They are obtained as

∆
Up
d,ρ
=−2d(ρ + 1)J+ρU−µ − 2dρ(ρ + 1)(2d − 3)J2

U + (γ2/U)(cM ,ρ−1 − cM ,ρ)2
− dρ(ρ + 2)J2

U + (γ2/4U)(cM ,ρ−1 − cM ,ρ+1)2
,

(3.123)

∆
Low
d,ρ =−2dρJ−(ρ − 1)U+µ − 2dρ(ρ + 1)(2d − 3)J2

U + (γ2/U)(cM ,ρ−1 − cM ,ρ)2
− d(ρ − 1)(ρ + 1)J2

U + (γ2/4U)(cM ,ρ−1 − cM ,ρ+1)2
,

(3.124)

where ∆Up and ∆Low represent the gaps in the vicinity of the upper and lower boundaries of the Mott
lobe. The phase boundary can be obtained from the gap closing points:( µ

U

)Up

c,γ
= ρ − 2d(ρ + 1) J

U
− αUp

d,ρ,γ

(
J
U

)2
, (3.125)( µ

U

)Low

c,γ
= ρ − 1 + 2dρ

J
U
+ αLow

d,ρ,γ

(
J
U

)2
, (3.126)

where the coefficients αUp,Low
d,ρ,γ

are given by

α
Up
d,ρ,γ

=
2dρ(ρ + 1)(2d − 3)

1 + (γ/U)2(cρ−1 − cρ)2
+

dρ(ρ + 2)
1 + (γ/2U)2(cρ−1 − cρ+1)2

, (3.127)

αLow
d,ρ,γ =

2dρ(ρ + 1)(2d − 3)
1 + (γ/U)2(cρ−1 − cρ)2

+
d(ρ − 1)(ρ + 1)

1 + (γ/2U)2(cρ−1 − cρ+1)2
. (3.128)

The measurement backaction γ > 0 decreases these coefficients α as shown in Fig. 3.14(c), resulting in
effective expansions of the Mott lobes as we can infer from Eqs. (3.125) and (3.126) (see Fig. 3.14(d)
for an illustration). We remark that the results (3.125) and (3.126) reproduce the known results for the
(Hermitian) Bose-Hubbard model [263] in the limit γ → 0.

We remark that the effective ground state discussed here has the minimal decay rate (i.e., the longest
lifetime) in the non-Hermitian evolution. To be specific, we consider the case of ρ = 1 and d = 3.
The decay rates Γe and Γg of the first excited state and the ground state are given by the imaginary
parts of the corresponding eigenvalues. The strong-coupling-expansion analysis provides

Γ
Up
e − ΓUp

g =
36γJ2

U2 + γ2(cρ−1 − cρ)2
+

9γJ2

U2 + (γ2/4)(cρ−1 − cρ+1)2
> 0, (3.129)

Γ
Low
e − ΓLow

g =
36γJ2

U2 + γ2(cρ−1 − cρ)2
> 0, (3.130)

where ΓUp and ΓLow represent the decay rates of states close to the upper and lower boundaries of
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?

 inelastic scattering
(two-body loss)

Fig. 3.15 Possible experiments of many-body systems under continuous observation. We propose
to use (a) an inelastic two-body loss and (b) an off-resonant light scattering. Reproduced from
Fig. 5 of Ref. [124]. Copyright © 2016 by the American Physical Society.

the Mott lobe. These relations indicate that the excited state decays faster than the ground state. It is
straightforward to extend the analyses to the higher energy states and to show that the decay rate of
the ground state is minimal (i.e., it has the longest lifetime).

3.4.3 Realization with ultracold gases in an optical lattice
We here propose two possible experimental realizations to test the theoretical results presented in this
subsection. Firstly, we propose to use an inelastic scattering process to implement atomic systems
accompanying a two-body loss of atoms. This process can occur, for example, in the metastable state
or by using the light-assisted inelastic collisions as we will detail in the next section. The system
evolves in time under effects of an inelastic scattering process by which a pair of atoms is lost from
a trap potential (see Fig. 3.15(a)). This two-body loss process can be characterized by L̂i = b̂2

i .
The total number of particles after a short-time duration can be measured at the single-atom level by
quantum gas microscopy [35]. Comparing it with the total number of particles in the initial state,
one can postselect the realizations in which the two numbers agree (see Fig. 3.15(a)). In this way,
one can ideally simulate the non-Hermitian dynamics governed by the effective Hamiltonian (3.117).
In fact, our simple analysis based on the effective non-Hermitian Hamiltonian correctly captures the
experimentally observed shift of the critical point [265], which is measured without any postselections.
It merits further study to elucidate to what extent the non-Hermitian description can be applied to
strongly correlated dissipative systems accompanying a nonzero number of quantum jumps.

Secondly, we consider a measurement process using an off-resonant probe light (see Fig. 3.15(b)),
where the dominant process becomes an elastic photon scattering process [36]. In this case, the jump
operator becomes L̂i = n̂i (see e.g., Ref. [266] for a microscopic derivation). One can continuously
monitor the scattered light by quantum gas microscopy and may postselect the realizations in which
no photons are detected. Yet, only a portion of the scattered photons can be collected in practice and
the predicted shift of the critical point can be measured if a possible heating due to undetected photons
is not significant, as we detail in the next section.

3.5 Experimental realizations in ultracold gases
We discuss practical experimental situations of the theoretical proposals discussed in Secs. 3.2.3, 3.3.5
and 3.4.3.
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Possible realization of the generalized sine-Gordon model
We discuss a possible experimental realization of the PT-symmetric system proposed in Sec. 3.3.5.
To create an imaginary optical potential, we need to realize atomic levels illustrated in Fig. 3.10. The
fast decay modes can be realized by (i) choosing appropriate spontaneous emission processes or (ii)
employing light-induced transitions.

In scheme (i), one can use the F = 3 to F ′ = 3 transition (5S1/2 to 5P3/2) of 85Rb atoms to create
an imaginary potential [250], where the excited F ′ = 3 state has a decay channel to the F = 2 state.
Implementations of complex potentials have also been demonstrated by using other metastable atomic
states [172, 249, 251]. The postselection can be implemented by, e.g., applying the state-selective
imaging technique [22, 23]. Measuring only the number of atoms residing in the ground state, one
can select the realizations in which this number is unchanged between the initial and final states. We
note that the experimental fidelity of measuring the atom number with such site-resolved imaging
has reached almost unit fidelity (99.5% according to Ref. [3]). Various types of postselections have
already been implemented owing to the high experimental fidelity [22, 25, 158].

In scheme (ii), one can use a fluorescent transition between the excited state and a state other than
the original ground state. In this setup, when the ground-state atom is excited, it is quickly lost from
an optical potential due to heating [267]. If the resulting loss rate Γ is much larger than both the
spontaneous emission rate and the Rabi frequency Ω, one can adiabatically eliminate the excited state
and implement an effective imaginary potential [249]. Other candidate systems are 1D trapped ions
or Rydberg atoms with spontaneous decay [178, 268], and the atom-cavity system [269] in which the
photon leakage permits continuous observation.

While substantial atomic losses usually lead to experimental difficulties, we remark that our theo-
retical predictions are accessible by using a very weak imaginary potential with which the atomic loss
rate can, in principle, be made arbitrarily small. This is because the key parameter driving the phase
transitions is the ratio between gi and gr, which is equivalent to the ratio between the amplitudes of the
imaginary and real potentials (see Eq. (3.113)). Thus, the imaginary potential required to induce the
transition can be made very weak if the depth of the real part of the optical potential is chosen to be
sufficiently small. Indeed, such a weak imaginary potential should be created in our proposal since the
atomic loss rate is suppressed by a factor of Ω/Γ in the limit of large Γ (see Eq. (3.108)). Because the
depth of the real potential can be made small, and the condition on the Rabi frequency ∆off > Ω can
easily be met owing to the smallness of the optical depth, the only requirement for the detuning ∆off
of the off-resonant light is ∆off > Γ. This point validates our assumption that the real and imaginary
potentials have the same periodicity. For example, for the spontaneous emission process in 85Rb or
the light-induced transition in the D2 transition of 87Rb, Γ is of the order of tens of MHz [250, 267].
Thus, if we set the detuning at ∆off = 100 GHz, the off-resonant condition is well satisfied, while such
a detuning causes a less than 0.1% shift in the optical wavelength.

We finally discuss experimental signatures in our theoretical proposal. First, the measurement-
induced BKT transition corresponds to a 1D superfluid-to-Mott-insulator transition for ultracold atoms.
This is associated with a power-law divergence in the momentum distribution at zero momentum [224],
which can be detected by applying standard techniques such as time-of-flight imaging [258]. Second,
the PT symmetry breaking can be probed by detecting the single-mode lasing dynamics of the system.
In the PT-broken region, the system has an excited state whose eigenvalue possesses a positive
imaginary contribution; such an excited state can acquire an exponentially growing amplitude in the
time evolution. Thus, after exciting the system through, e.g., shaking of an optical lattice [270], the
system eventually approaches the state having the largest imaginary part of the eigenvalue. Such a
single-mode lasing dynamics entails a significant decrease in the entropy of the system, which can be
probed from shot-to-shot fluctuations in in-situ imaging of atomic gases [22,25,158,270]. Third, the
anomalous variation of the critical exponent (see Fig. 3.7) can be investigated through the analysis
of the shot-to-shot noise correlations in density fluctuations of a 1D Bose gas, as demonstrated in
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Ref. [14].

Possible realization of ultracold atoms with a two-body loss or light scattering
We discuss practical experimental situations of our proposals in Secs. 3.2.3 and 3.4.3, where a two-
body loss of atoms and off-resonant light scattering are considered as possible measurement processes.
Let us first discuss the former. A system accompanying a controlled two-body loss can be realized with
implementing inelastic collisions between atoms [222]. The strength of measurement, i.e., the loss
rate, can be controlled by changing the intensity of an external light that induces inelastic collisions.
One may also use the metastable state of atoms to implement a two-body loss [222,271]; for example,
the 3P2 state of 174Yb atoms has the inelastic scattering length ai = 2.8 nm in addition to the elastic
one ar = 5.8 nm [271]. Another promising candidate is ultracold molecules [261], which also have
inelastic scattering channels leading to two-body losses.

We next consider experimental situations in the proposal using light scattering to test the shift
of the transition point. There, recoil energies due to (scattered but) uncollected photons inevitably
lead to heating of the system. We can estimate the expected heating energy per atom as δE =
(1 − η)γτ × ℏ2k2/(2m), where η is the collection efficiency of photons, k = 2π/λ represents the
wavenumber, γ is the scattering rate, τ represents the duration of the time evolution, and m is the
atomic mass. To be concrete, let us consider 87Rb atoms and the wavelength λ = 1064 nm and
set γ/U = 0.2 corresponding to ∼10% shift of the transition point (see Fig. 3.13). If one takes
τ ∼ 1/γ, the temperature that induces the same amount of the shift can be estimated as Tth/J ≃ 3 at
U/J ≃ 25 [272], where we set kB = 1 and J/ℏ = 3ms. From the condition δE < Tth/J, which means
that the predicted shift is not masked by the finite-temperature effect, one can obtain a constraint
η > 0.08. This detection fidelity can be met by, for example, quantum gas microscopy in which an
impressively high fidelity (η = 0.1 ∼ 0.2) has been achieved [2, 3, 5–9, 35].

Finally, we consider a possible heating effect in the proposal to test the predicted shifts of the critical
exponents in a 1D Bose gas under light scattering. A finite-temperature effect is characterized by
a finite thermal correlation length ξT ≡ ℏ2ρ0π/(mT), where ρ0 is the number density of atoms. If
the heating is not so significant that a length scale of interest r in the correlation functions satisfies
r < ξT , then the critical decay of the correlations can still be measured and the predicted changes of the
critical exponents can be tested. We also have to take into account the validity of the TLL low-energy
description. In a weakly (strongly) interacting 1D Bose gas, the TLL description is applicable when
2π/(ρ0ξTu2) ≲ 102 (10−2) [273], where we recall that u is the dimensionless interaction parameter
defined in Sec. 3.2. If one considers the density ρ0 = 55 µm−1 and a length scale r = 10 µm, then
one can obtain a constraint η > 0.13 in the weakly interacting regime from the condition on the TLL
description, which can be realized in, e.g., quantum gas microscopy. The constraint is much less
stringent for the strongly interacting regime because the TLL description is more robust due to a large
value of u.

3.6 Conclusions and Outlook
We have investigated how the measurement backaction from continuous monitoring influences the
quantum critical phenomena and quantum phase transitions. Identifying the relevant non-Hermitian
perturbations to the Tomonaga-Luttinger liquid, we have revealed unconventional 1D quantum critical
phenomena beyond the realm of the standard universality class. We found that the quadratic non-
Hermitian perturbation leads to the bifurcating critical exponents that depend on the strength of the
measurement. In the presence of the non-Hermitian potential perturbation, a combination of spectral
singularity and quantum critical point results in a nontrivial renormalization group fixed point that
has no counterpart in Hermitian systems. Moreover, we found anomalous renormalization group
flows violating the c-theorem, which lead to enhancements of superfluid correlations in stark contrast
to the Berezinskii-Kosterlitz-Thouless paradigm. Our field-theoretic arguments provide a universal
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model-independent perspective to one-dimensional quantum critical phenomena under measurement.
Analyzing the Bose-Hubbard model as a concrete model, we have also studied the influence of the
measurement backaction on quantum phase transitions in higher dimensions. We found that the
superfluid-to-Mott-insulator transition point is shifted in favor of the Mott lobes. We have proposed
experiments using quantum gas microscope with an estimation of possible parameters.

There are several important future directions. Firstly, while we have focused on the simplest quantum
trajectory, which is the non-Hermitian dynamics without quantum jumps, it would be desirable to
develop a theoretical framework to address all the possible quantum trajectories with a nonzero
number of jump events. In the next Chapter, we will introduce the notion of full-counting dynamics to
achieve this aim. There, we demonstrate that essential features found in the non-Hermitian dynamics
without quantum jumps can persist even in the presence of quantum jumps. From this perspective, we
expect that the signature of unique features found in this Chapter can sustain as long as detrimental
effects from jump events are not significant; yet, quantitative understanding of effects from quantum
jumps remains an important open question. This can be done by applying the formulation developed
in the next Chapter to interacting many-body systems.

Secondly, it merits further study to analyze the generalized sine-Gordon model in more detail. For
instance, it is interesting to elucidate the relation between the universality found in this work and the
non-unitary conformal field theories (CFT), which appear in high-energy physics [233] and statistical
mechanics [274]. In this respect, it is worthwhile to note that a certain integrable spin model with
PT-symmetric non-Hermitian boundary fields is believed to be described by the non-unitary CFT at the
critical exceptional point [275]. It remains as an open question how the spectral singularity alters the
behavior of the entanglement entropy, which can experimentally be measured in ultracold atoms [25].
Also, it is a promising direction to further explore unconventional quantum critical phenomena in
other nonconservative many-body systems beyond the generalized sine-Gordon model.

Finally, it is intriguing to explore further interesting physical phenomena unique to non-Hermitian
systems. Historically, the non-Hermitian approach has proven useful to describe nuclear resonances
[165, 166], chaotic scattering [167–169], microwave cavities [170, 171], single atoms [172, 173] and
molecules [174, 175]. Recently, this description has also found applications to a wide variety of
fields including classical optics [154, 155], condensed matter physics [184–188], biological network
[192–194], and chemistry [195]. In view of these developments, it is particularly interesting to
extend the conventional notion of topological phenomena in the presence of the non-Hermiticity
[276–278]. There, how the unique aspects in non-Hermitian systems such as topological structures
around exceptional points [164] and spectral singularity can lead to a truly novel phenomenon has yet
to be clarified.
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Chapter 4

Out-of-Equilibrium Quantum Dynamics

In the previous Chapter, we have studied how the equilibrium many-body properties, in particular,
quantum critical phenomena are modified under the influences of measurement backaction from
continuous observation. We have focused on the simplest continuously monitored evolution without
quantum jumps, which is governed by the effective non-Hermitian Hamiltonian. This consideration
can be justified in a short-time regime during which occurrences of quantum jumps are not very
significant or can be eliminated by postselections. Yet, when we move onto the question on the full
out-of-equilibrium dynamics of quantum systems under continuous observation, the backaction from
quantum jump events will be increasingly important in a longer time regime. This motivates us to
develop a theoretical framework to take into account all the possible quantum trajectories.

The aim of this Chapter is to develop common frameworks for studying out-of-equilibrium dynamics
of quantum many-particle systems under continuous observation. We formulate the frameworks in
general ways and apply them to particular models to elucidate the underlying physics unique to
many-particle dynamics under measurements.

We present three general frameworks to describe the dynamics of quantum many-particle systems
under continuous observation. In Sec. 4.1, we formulate the dynamics conditioned on the number of
quantum jump events, which we term as the full-counting dynamics. We apply it to an exactly solvable
model of noninteracting fermions and analyze its out-of-equilibrium dynamics after the quench. We
find nonlocal and chiral propagation of correlations beyond the Lieb-Robinson bound. The unique
features originate from the non-Hermiticity of the continuously monitored dynamics and do not appear
in the corresponding closed systems or the ensemble-averaged dissipative dynamics. In Sec. 4.2, we
formulate the thermalization and heating dynamics in generic many-body systems under measure-
ments. Employing the eigenstate thermalization hypothesis, we show that a generic (nonintegrable)
many-body system will thermalize at a single-trajectory level under continuous observation. We pro-
vide numerical evidence of our findings by studying specific nonintegrable models that are relevant
to state-of-the-art experimental setups in ultracold gases. In Sec. 4.3, we formulate the diffusive
dynamics under a minimally destructive spatial observation. We derive the many-body stochastic
Schrödinger equation for indistinguishable particles under continuous position measurement. We
show that the measurement indistinguishability of particles results in complete suppression of relative
positional decoherence, leading to persistent correlations in transport dynamics under measurement.
We apply the theory of minimally destructive spatial observation to a setup of ultracold atoms in an
optical lattice. In Sec. 4.4, we discuss possible experimental realizations of our theoretical studies
presented in this Chapter. Finally, we conclude this Chapter with an outlook in Sec. 4.5.
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4.1 Propagation of correlations and entanglement under
measurement

4.1.1 Introduction
Quantum gas microscopy [2–11] has enabled one to measure many-body systems at the single-atom
level. Meanwhile, many types of controlled dissipations, which are typically accompanied by an
engineered loss of atoms, have been experimentally realized in quantum gases [34,152,279–283]. As
we have demonstrated in the previous Chapter, a quantum many-body system subject to continuous
observation from an external observer or an environment dramatically alters its physical property
due to the measurement backaction. While we have so far mainly focused on the changes in the
underlying equilibrium properties such as critical phenomena, an important challenge is to understand
the interplay between the full out-of-equilibrium many-body dynamics and the backaction from the
single-quantum resolved measurement.

In this section, by generalizing the notion of full-counting statistics to open many-particle systems,
we develop a theoretical formalism to analyze out-of-equilibrium dynamics under continuous observa-
tion with an arbitrary number of quantum jumps. The full-counting statistics [189,284–286] (i.e., the
probability distribution of the number of detected signals) has been originally introduced to character-
ize the underlying nonequilibrium dynamics of mesoscopic devices. Examples include quantum dots,
where the electron exchanged with the external environment can be detected at the single-electron
resolution [287–290], and photoemissions from atoms, which can be measured individually over a
wide range of frequencies [291]. Related ideas have been also applied to one-dimensional Bose
gases [14,220,292] and measurements of entanglement between electron leads [293]. However, most
of the previous developments in this direction have been achieved for quantum systems having small
degrees of freedom. Here, we consider an open many-particle system and develop a notion of the
full-counting dynamics that gives the time evolution of the density matrix conditioned on the number
of quantum jumps being observed. We apply our formalism to an exactly solvable model and study
its nonequilibrium dynamics under continuous observation. We reveal the emergent unique features
such as nonlocal and chiral propagation of correlations, which accompany an entanglement growth
with oscillations. In particular, we show that correlations can propagate beyond the Lieb-Robinson
bound [294], which is the conventional maximal speed limit on propagation of correlations, at the
cost of probabilistic nature of quantum measurement. We identify the origin of these phenomena as
the non-Hermiticity of the continuously monitored dynamics, which becomes most prominent at an
exceptional point of an effective Hamiltonian. In our solvable model, this singular point coincides
with a spectrum transition point in the parity-time (PT) symmetric non-Hermitian Hamiltonian [197].

4.1.2 General idea: the full-counting many-particle dynamics
We first formulate our idea in a general manner. Consider an open quantum many-particle system
whose dissipative dynamics is described by the following master equation

d ρ̂(t)
dt
= −i

(
Ĥeff ρ̂ − ρ̂Ĥ†eff

)
+ J[ρ̂], (4.1)

where ρ̂(t) is the density matrix, Ĥeff = Ĥ−(i/2)∑a L̂†a L̂a is an effective non-Hermitian Hamiltonian,
L̂a is a jump operator, and J[ρ̂] = ∑

a L̂a ρ̂L̂†a describes quantum jump processes [145–147,156]. We
set ℏ = 1. We consider continuously monitored dynamics during the time interval [0, t] and count the
number of quantum jumps that have occurred during that interval. Let n be the number n of observed
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quantum jumps. We then introduce the full-counting many-particle dynamics as follows:

ρ̂(n)(t) = P̂n ρ̂(t)P̂n
Pn(t)

, (4.2)

where P̂n is a projection operator onto the subspace with n jumps and Pn(t) = Tr[P̂n ρ̂(t)P̂n] provides
the probability of finding n jumps during the interval [0, t] (see also discussions below Eq. (2.42)
in Chapter 2). To be concrete, we assume that the jump process L̂a causes a one-body loss. Then,
one can in practice access the information about ρ̂(n)(t) by preparing N particles at the initial time,
letting the system evolve until time t, and measuring the total number of particles after the evolution
by, e.g., quantum gas microscopy. If the measurement outcome is N − n particles, one can know
that n jumps have occurred during the time interval. Collecting data for realizations with n jumps,
one can reconstruct the full-counting density matrix ρ̂(n)(t). In experiments, we remark that similar
postselective operations have been already realized in ultracold atoms [22, 25, 158, 295].

We can obtain a formal expression of the full-counting dynamics by taking the average over all
possible occurrences of n jump events. Classifying the trajectory dynamics according to the number
of quantum jumps ρ̂ =

∑N
n=0 ϱ̂

(n), an unnormalized conditional density matrix ϱ̂(n) = P̂n ρ̂P̂n can be
solved as (c.f. Eq. (2.44))

ϱ̂(n)(t) =
∑
{ak }nk=1

∫ t

0
dtn · · ·

∫ t2

0
dt1

n∏
k=1

[
Ûeff(∆tk)L̂ak

]
Ûeff(t1)ρ̂(0)Û†eff(t1)

n∏
k=1

[
L̂†ak
Û†eff(∆tk)

]
,

(4.3)

where ∆tk = tk+1 − tk with tn+1 ≡ t, and Ûeff(t) = e−iĤeff t . For the unconditional dissipative dynamics
ρ̂(t) = ∑

n ϱ̂
(n)(t), the speed at which correlations build up between distant particles is known to be

bounded by the generalized Lieb-Robinson (LR) velocity [296, 297] if the Liouvillian of Eq. (4.1)
is the sum of local operators (see Appendix B for a brief review of the LR bound). This is similar
to closed systems [298–306], where the (original) LR bound [294] sets the maximal speed limit on
propagation of correlations, leading to an effective light-cone causal structure in locally interacting
many-body systems. For the full-counting dynamics ρ̂(n)(t) that is conditioned on the measurement
outcome, one can no longer expect that the propagation speed obeys the LR velocity due to the
nonlocal nature of the measurement acting on an entire many-particle system. The aim of this section
is to elucidate the nature of such previously unexplored nonequilibrium dynamics. To analyze the
emergent nonequilibrium phenomena in the full-counting dynamics, we hereafter focus on a simple
exactly solvable model.

4.1.3 System: atoms subject to a spatially modulated loss
As a concrete example, we consider a noninteracting version of the lattice model (3.82) introduced
in the previous Chapter analyzing the unconventional critical behavior. We here study its out-of-
equilibrium dynamics after the quench by taking into account all the possible quantum jumps.

For the sake of completeness, we briefly review the derivation of the time-evolution equation of the
model (see also Sec. 3.3.5). We start from the continuum model of one-dimensional spin-polarized
noninteracting fermions subject to two weak standing waves with wavelength λ. One standing wave
is far detuned from the atomic resonance and thus creates a shallow real potential h0 cos(2πx/d),
where h0 is the potential depth and d = λ/2 is the lattice spacing. The other is near resonant to
the atomic resonance and creates a weak dissipative potential that leads to a one-body loss∗. These
beams are superimposed and displaced from each other by d/4 (see Fig. 4.1). Then, after adiabatically

∗ While the wavelengths for the two potentials are slightly different due to the detuning, the difference can be estimated to
be negligibly small (∼ 0.1%). See discussions in Sec. 3.5 for details.
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far detuned
near resonant

deep optical lattice 

d

d/2

Fig. 4.1 Schematic figures illustrating the model considered. (Left panel) The continuum model
of one-dimensional ultracold atoms subject to two shallow optical lattices, one being far detuned
(blue) and the other being near-resonant (red) to an atomic resonance. (Right panel) Superimposing
a deep optical potential (black) having the half periodicity d/2 and employing the tight-binding
approximation, we obtain the lattice model analyzed in this section. Reproduced from Fig. S2 of
Ref. [125]. Copyright © 2018 by the American Physical Society.

eliminating the dynamics of excited states as detailed in Appendix A, the time evolution of ground-state
atoms can be described by the following Lindblad master equation:

d ρ̂
dt
= −i

(
Ĥeff ρ̂ − ρ̂Ĥ†eff

)
+ 2γ0

∫
dx

[
1 + sin

(
2πx

d

)]
Ψ̂(x)ρ̂ Ψ̂†(x), (4.4)

where

Ĥeff ≡
∫

dx Ψ̂†(x)
(
− ∇

2

2m
+ Veff(x) − iγ0

)
Ψ̂(x) (4.5)

is an effective non-Hermitian Hamiltonian, Ψ̂(x) denotes the fermonic field operator, γ0 characterizes
the strength of the dissipation that is determined by the intensity of the near-resonant light. We also
introduce

Veff(x) = h0 cos
(
2πx

d

)
− iγ0 sin

(
2πx

d

)
(4.6)

as a complex effective potential [250]. We then superimpose a deep lattice potential with half
periodicity d/2 (see Fig. 4.1). Employing the standard procedure of the tight-binding approximation
for the atomic field [295], we obtain the following master equation:

d ρ̂(t)
dt
= −i

(
Ĥeff ρ̂ − ρ̂Ĥ†eff

)
+ J[ρ̂], (4.7)

where

Ĥeff = −
L−1∑
l=0

[(
J + (−1)liγ

)(
ĉ†
l+1ĉl + ĉ†

l
ĉl+1

)
+ (−1)lhĉ†

l
ĉl
]
− 2iγwN̂ ≡ ĤPT − 2iγwN̂ (4.8)

is a tight-binding version of the effective Hamiltonian (which is equivalent to the noninteracting limit
∆→ 0 of the Hamiltonian (3.82) in the previous Chapter), and

J[ρ̂] = 2γ
L−1∑
l=0
[2wĉl ρ̂ĉ†

l
+ (−1)l(ĉl ρ̂ĉ†

l+1 + ĉl+1 ρ̂ĉ†
l
)] (4.9)

is a quantum jump process. Here, ĉl (ĉ†
l
) is the annhilation (creation) operator of the atom at site l,

J (γ) is the real (imaginary) hopping parameter, h is the staggered on-site potential (see Fig. 4.2(a)),
w is a factor determined by the depth of the deep lattice, and N̂ =

∑
l ĉ†

l
ĉl is the total atom-number

operator. To ensure that the dynamical map (4.7) is completely positive trace-preserving (CPTP) (i.e.,
the dynamics is Markovian), we must impose the condition w ≥ 1. For the sake of concreteness, we
assume w = 1 below though the specific choice of its value is irrelevant to our main results. We remark
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Fig. 4.2 (a) Schematic illustration of an exactly solvable model for the full-counting dynamics.
(b) Energy bands ϵ±(k) for Eq. (4.10) with γ/h = 1/2 (solid curves) and γ = 0, h = J (dashed
curves). (c) Spatiotemporal dynamics of equal-time correlations for the unconditional evolution
(left-most panel) and the full-counting evolutions (other panels) conditioned on the number n of
quantum jumps. We use γ = h/2 = 0.5J and N = L/2 = 61. Reproduced from Fig. 1 of Ref. [125].
Copyright © 2018 by the American Physical Society.

that both of the effective Hamiltonian Ĥeff and the jump process J[ρ̂] consist of local operators and
thus the generalized Lieb-Robinson bound [296,297] should hold in the unconditional dynamics.

We assume that the initial state is half-filled N = L/2, where the length L of the lattice is assumed
to be even, impose the periodic boundary conditions, and denote the first part of Ĥeff in Eq. (4.8) as
ĤPT since it satisfies the parity-time (PT) symmetry [197]. Since the effective Hamiltonian ĤPT is
quadratic, it can be diagonalized as

ĤPT = −
L−1∑
l=0

[(
J+(−1)liγ

)(
ĉ†
l+1ĉl+ ĉ†

l
ĉl+1

)
+(−1)lhĉ†

l
ĉl
]

=
∑

0≤k<2π

∑
λ=±

ϵλ(k)ĝ†λk f̂λk, (4.10)

where ϵ±(k) = ±
√

h2 − 4γ2 + 2J ′2(1 + cos(k)) are eigenvalues with J ′ =
√

J2 + γ2 and
k = 2πn/(L/2) (n = 0,1, . . . , L/2 − 1). The operators ĝ† and f̂ create the right and left
eigenvectors, i.e., ĤPTĝ

†
λk
|0⟩ = ϵλ(k)ĝ†λk |0⟩ and ⟨0| f̂λk ĤPT = ⟨0| f̂λkϵλ(k), and they obey an

anticommutation relation

{ f̂λk, ĝ
†
λ′k′} = δk ,k′δλ,λ′ . (4.11)

An important consequence of the non-Hermiticity in the effective Hamiltonian is the nonorthogonality
of the eigenstates. It manifests itself as an unusual commutation relation satisfied by ĝ and ĝ†:

{ĝλk, ĝ†λ′k′} = δk ,k′∆λλ′(k), (4.12)

where ∆λλ′(k) are the 2 × 2 matrices. Their nonzero off-diagonal elements represent the nonorthog-
onality between the right eigenvectors of different bands at mode k (see Appendix C for details). In
the PT-unbroken regime γ < h/2, the band spectrum is real and gapped. The gap closes at k = π
for γ = h/2 (see Fig. 4.2(b)). This point corresponds to an exceptional point [198], i.e., two k = π
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eigenstates of the upper and lower bands coalesce into a single one. In the PT-broken regime γ > h/2,
eigenstates around k = π turn out to have complex pairs of pure imaginary eigenvalues.

4.1.4 Nonequilibrium dynamics of correlations and entanglement
Nonlocal propagation of correlations
We next discuss emergent nonequilibrium phenomena unique to the full-counting dynamics. Substi-
tuting the diagonalized effective Hamiltonian (4.10) into a general solution (4.3), we can obtain an
exact solution of the full-counting dynamics ρ̂(n)(t) (see Appendix C for details). To be concrete, we
consider the following quench operation. Initially, we set h and γ to be zero and prepare the ground
state of Ĥ. At time t = 0, h and γ are suddenly switched on, and the system evolves in time after
which the site-resolved measurement is performed to determine the number n of quantum jumps, i.e.,
the number of atoms lost. Classifying the realizations according to n, one can study the full-counting
dynamics ρ̂(n)(t). We set γ = h/2 such that the postquench Hamiltonian ĤPT is at the verge of the
spectrum transition point, leading to the linear dispersion around k = π (see Fig. 4.2(b)).

Let us first consider the unconditional case ρ̂(t) = ∑N
n=0 Pn(t)ρ̂(n)(t). The left-most panel in

Fig. 4.2(c) shows its spatiotemporal dynamics of an equal-time correlation

C(l, t) = Tr[ρ̂(t)ĉ†
l
ĉ0]. (4.13)

Since the Liouvillian of the master equation consists of local operators, it is expected that correlations
can propagate no faster than twice the LR velocity 2vLR [296,297,307], where vLR is determined from
the maximum group velocity∗ |∂ϵ±(k)/∂(k/2)|k=π = 2J ′. We remark that a similar blurred light cone
has also been recently found in numerical simulations of the dissipative Bose-Hubbard model [308].

A qualitatively different propagation can be found in the full-counting dynamics ρ̂(n)(t). Fig-
ure 4.2(c) plots an equal-time correlation

C(n)(l, t) = Tr[ρ̂(n)(t)ĉ†
l
ĉ0] (4.14)

for the full-counting dynamics conditioned on different values of n. There, nonlocal propagations
faster than the LR velocity of the corresponding unconditional dynamics can be found. We also
find that such supersonic modes propagate at the velocities that are integer multiples of 2vLR. We
identify the origin of these nonlocal propagations as the non-Hermiticity in the underlying continuously
monitored dynamics. To elucidate this, we focus on the simplest trajectory dynamics with no jumps
being observed [183,309, 310]

ρ̂(0)(t) = e−iĤPTt ρ̂(0)eiĤ†PTt

Tr[e−iĤPTt ρ̂(0)eiĤ†PTt ]
. (4.15)

Because an initially pure state remains pure [310] in Eq. (4.15), an unnormalized time-dependent state
can be written as |Ψt⟩ = e−iĤPTt |Ψ0⟩, where we denote the initial state as ρ̂(0) = |Ψ0⟩⟨Ψ0 |. Letψλk’s be
expansion coefficients of the initial state with right eigenstates: |Ψ0⟩ =

∏
k[

∑
λ ψλk ĝ

†
λk
]|0⟩. Introduc-

ing the unequal-time correlation C̃(0)(l, t) = ⟨Ψ0 |ĉ†l (t)ĉ0(0)|Ψ0⟩/⟨Ψt |Ψt⟩ with ĉ†
l
(t) = eiĤ

†
PTt ĉ†

l
e−iĤPTt

and substituting the diagonalized ĤPT into it, we obtain

C̃(0)(l, t)= 2
L

∑
k

∑
λ=±

{
αλk
βλk

}
ψ∗
λk

eiϵλ(k)t−ik ⌈l/2⌉

Nk(t)
. (4.16)

Here αλk and βλk are coefficients chosen according to the parity of l, ⌈·⌉ is the ceiling function, and

∗ A factor of two in the group velocity results from our choice of wavevectors in the Fourier transforms of the sublattices
(see e.g., the phase factor in Eq. (4.16)).
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Fig. 4.3 The panels (a) and (b) show the unequal- and equal-time correlations in the non-Hermitian
quench dynamics, respectively. We use γ = h/2 = 0.5J and N = L/2 = 61. The Lieb-Robinson
bound is indicated by the white dashed lines. (c) The time needed to establish the correlations is
determined by pairs of quasiparticles propagating at velocities vLR and 3vLR. (d) Time evolutions
of effective band populations at J ′t = 0+ (postquench state), 4, and 8. Reproduced from Fig. 2 of
Ref. [125]. Copyright © 2018 by the American Physical Society.

we introduce the norm factor by

Nk(t) =
∑
λλ′=±

ψ∗λk(t)∆λλ′(k)ψλ′k(t), (4.17)

where ψλk(t) = ψλke−iϵλ(k)t (see Eq. (C.24) in Appendix C). The total norm of an unnormalized
quantum state |Ψt⟩ is given by the product of these factors ⟨Ψt |Ψt⟩ =

∏
k Nk(t).

The crucial point here is that due to the nonorthogonality of eigenvectors (∆+− = ∆∗−+ , 0) the norm
Nk(t) oscillates at the frequency 2ϵ+(k). Thus, C̃(0)(l, t) in Eq. (4.16) involves terms that oscillate
at frequencies ϵλ(k),3ϵλ(k),5ϵλ(k), . . ., leading to the propagations of quasiparticles at velocities
vLR,3vLR,5vLR, . . . (see Fig. 4.3(a)). As a result, the equal-time correlation C(0)(l, t) involves the
propagations at velocities 2vLR,4vLR,6vLR, . . . (see Fig. 4.3(b)) since it originates from quasiparticle
pairs propagating in opposite directions [298] (see Fig. 4.3(c)). We stress that the emergence of these
supersonic modes is a consequence of the unique interplay between the many-particle nature of the
system and the non-Hermiticity in the continuously monitored dynamics. Supersonic modes result
from the nonlinearity due to the oscillating norm factorsNk(t) in the denominator in Eq. (4.16). This
is a direct consequence of the total norm of a many-particle state, which is given by the product of
Nk(t) (c.f. the derivation given in Appendix C). For the (one-body) classical non-Hermitian systems,
such oscillating factors do not appear inside the summation over k in Eq. (4.16) since the total norm is
given by the sum ofNk(t) rather than their product [201]. Thus, our finding is a genuine quantum effect
in the sense that the supersonic modes do not appear in the single-particle sector or the mean-field
non-Hermitian dynamics observed in optics [202,311] or dissipative matter waves [152,176,206,312].

In parallel with discussions in closed systems [298–306], the quantities ñλk(t) = |ψλk |2/Nk(t) can
be understood as an effective band population in the full-counting dynamics. The conventional band
population does not change during the time evolution after the quench in noninteracting closed systems
[298, 304–306]. Meanwhile, the effective population ñλk(t) can oscillate in time (see Fig. 4.3(d)).
This is a nontrivial consequence of the nonorthogonality between two eigenstates at mode k.

Finally, we make a remark on the manifestation of the Lieb-Robinson bound in the unconditional
dynamics. In the full-counting dynamics ρ̂(n)(t) (see e.g., Figs. 4.3(a) and (b)), there exist the robust
supersonic modes propagating with velocities 3vLR,5vLR, . . . for unequal-time correlations and with
velocities 4vLR,6vLR, . . . for equal-time correlations. These modes clearly violate the LR bound
since the supersonic modes will eventually protrude into the tail beyond the light cone allowed by
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Fig. 4.4 (a) Absolute value of the equal-time correlation |C(n)(l, t0)| = |Tr[ρ̂(n)(t)ĉ†
l

ĉ0]| for the
null quantum jump n = 0 at time t0 = 5/J ′ plotted against lattice site l. All the parameters and
the quench protocol are the same as those in Fig. 4.2(c). (b) Equal-time correlation C(n)(l0, t0)
associated with the supersonic modes propagating with the velocity 4vLR plotted against the number
of quantum jumps. The lattice site is chosen to be l0 = 35 at which the supersonic contribution is
maximal (see also the panel (a)). Reproduced from Fig. S1 of Ref. [125]. Copyright © 2018 by
the American Physical Society.

the bounds (c.f. Eqs. (B.1) and (B.2) in Appendix B). Yet, the propagation of correlations in the
unconditional dynamics ρ̂(t) = ∑

n Pn(t)ρ̂(n)(t) is still limited by the LR velocity (see the left-most
panel in Fig. 4.2(c)). Here, the LR bound manifests itself as an exponential suppression of the
supersonic modes due to the exponentially decaying probability factor Pn(t) which multiplies the full-
counting dynamics ρ̂(n)(t). To see this, in Fig. 4.4 we plot (a) a typical profile of the correlation function
in the full-counting dynamics and (b) the values of the supersonic contribution for different numbers of
quantum jumps n. The latter shows that the supersonic contribution dwindles very rapidly (faster than
exponential decrease) as n increases. Thus, the major contributions of the supersonic modes come
from the trajectories with a relatively small number n of jumps (i.e., atomic loss). Meanwhile, the
occurrence probability of such trajectories will eventually be suppressed exponentially as a function
of time t. It is this exponential suppression that recovers the LR bound in the overall unconditional
density matrix ρ̂(t) = ∑

n Pn(t)ρ̂(n)(t).

Chirality in propagation of correlations
The observed propagation also exhibits the chirality, i.e., it violates the left-right symmetry. The gain-
loss structure of ĤPT allows one to intuitively understand the observed enhancement of propagation of
correlations in the right direction (see Fig. 4.5). The bond with positive (negative) imaginary hopping
corresponds to the “gain” (“loss”) bond at which particles are injected (removed). Due to the staggered
potential, a majority of the injected particles flow into the deeper potential in the right direction and
they are removed at the loss bond. As a result, the flow in the right direction overweighs the reverse
one.

This chirality becomes most prominent at the transition point γ = h/2. Figure 4.5(a) plots
time-averaged values of the current iJ

∑L−1
l=0 (ĉ

†
l
ĉl+1 − ĉ†

l+1ĉl) for various h and γ in a steady-state
regime. At the threshold γ = h/2, the current takes the maximum value, which originates from the
strong nonorthogonality due to the exceptional point at k = π (see Fig. 4.2(b)) [313]. Around this
point, two eigenvectors of different bands coalescence into the one having positive group velocities
∂ϵ/∂(k/2) > 0 (see Fig. 4.6). This confluent band structure causes the imbalanced band populations
ñλk(t) in Fig. 4.3(d) (especially in a regime k < π), leading to a pronounced propagation in the right
direction. We stress that the chirality here is particularly prominent due to the formation of the Fermi
sea, making contrast to the single-particle sector [203, 314–318] that reduces to classical dynamics
(c.f. the discussions in Sec. 2.2.2),.

To further elucidate the origin of the chiral structure, we can make simple analytical arguments based
on the eigenvectors in the vicinity of the exceptional point. Let us start from the initial (Hermitian)
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Fig. 4.5 (a) The particle current is plotted against dissipation strength γ with different staggered
potentials h. We calculate the current by taking the average over a nearly steady-state regime (from
time t = 15/J ′ to 20/J ′). The inset schematic figure indicates a gain-loss structure leading to a
net particle current in the right direction. (b) Dynamics of entanglement entropy. We choose the
initial state to be a product state that is the ground state of Ĥ with h = ∞ and consider a subregion
of a length of 20 sites. We plot the results for different postquench parameters γ from 0.0 to 0.5
(top to bottom) with step 0.1 and γ = h/2 held fixed. The oscillatory behavior shown in the inset
originates from the time-dependence of ñλk . Reproduced from Fig. 3 of Ref. [125]. Copyright ©
2018 by the American Physical Society.

Hamiltonian, i.e., the one with γ = h = 0. Without loss of generality, we set J = 1 throughout this
subsection. There are two band dispersions: one has a positive group velocity (ϵ>(k) = 2 sin(k/2))
and the other has a negative group velocity (ϵ<(k) = −2 sin(k/2)). The corresponding eigenvectors
are given by diagonalizing the 2×2 Hermitian matrices with γ = h = 0 and J = 1 (c.f. Eq. (C.3) in
Appendix C). In the vicinity of the gapless point at k = π, we obtain the results

c>(δk) = 1
√

2

(
−i − δk

2
1

)
+O

(
(δk)2

)
, (4.18)

c<(δk) = 1
√

2

(
i + δk

2
1

)
+O

(
(δk)2

)
, (4.19)

where δk = k − π is the displacement satisfying |δk | ≪ 1 and c>(<) is the eigenvector of the band
dispersion having a positive (negative) group velocity in the basis of the two sublattices. Since the
lower band (ϵ(k) < 0) is filled in the initial ground state, the eigenvector c>(δk) (c<(δk)) is populated
for δk < 0 (δk > 0) at the initial time (see the shaded region in Fig. 4.6).

We next consider the postquench Hamiltonian, i.e., the non-Hermitian Hamiltonian with nonzero γ
satisfying h = 2γ. In this case, two eigenvectors of different bands coalesce at the exceptional point
at k = π. In the vicinity of the exceptional point, we obtain simple analytical expressions of right
eigenvectors as follows:

cR
>(δk) = 1

√
2

(
−i
1

)
+

1
4
√

2γ

(
−i(1 − 2iγ −

√
1 + γ2)√

1 + γ2 − 1

)
δk +O

(
(δk)2

)
, (4.20)

cR
<(δk) = 1

√
2

(
−i
1

)
+

1
4
√

2γ

(
−i(1 − 2iγ +

√
1 + γ2)

−
√

1 + γ2 − 1

)
δk +O

(
(δk)2

)
, (4.21)

which are valid for |δk | ≪ min(γ,1). Here cR
>(<) is the right eigenvector of the band dispersion having

the positive (negative) group velocity. Note that in the limit of δk → 0 these two eigenvectors coalesce
into the one having a positive group velocity given in Eq. (4.18) (see the left panel in Fig. 4.6). This
coalescence of eigenvectors near the exceptional point leads to the imbalanced effective populations of
quasiparticles having positive group velocities in k < π (see Fig. 4.3(d)), resulting in the pronounced
propagation of correlations in the positive direction as we demonstrated above. We remark that if
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Fig. 4.6 Coalescence of eigenvectors near the exceptional point. (Left panel) When the postquench
Hamiltonian is near the spectral transition point, the gapless point at k = π forms an exceptional
point (EP). In the vicinity of EP, the two eigenvectors in different bands coalesce into the one
having positive group velocities (blue solid curve). Since the lower band is initially populated
(shaded region), this coalescence leads to an imbalanced effective population in the band having
positive group velocities in k < π, resulting in the pronounced propagation of correlations in
the positive direction as demonstrated above. (Right panel) In contrast, if the gain-loss structure
is reversed (if we set h = −2γ), the band having negative group velocities (blue solid curve)
is dominantly populated in k > π. This results in the pronounced propagation in the negative
direction. Reproduced from Fig. S3 of Ref. [125]. Copyright © 2018 by the American Physical
Society.

the gain-loss structure is reversed, i.e., if we set h = −2γ, the two right eigenvectors can be shown
to coalesce into the one having a negative group velocity given in Eq. (4.19) (see the right panel in
Fig. 4.6), leading to the pronounced propagation in the negative direction.

Finally, we mention the origin of the discontinuity and the divergence of the effective band popula-
tions appearing at k = π (see Fig. 4.3(d)). They are caused by singularities in left eigenvectors at the
exceptional point:

cL
>(δk) = 2γ√

2(1 + γ2)

(
i
1

)
1
δk
+

1
2
√

2(1 + γ2)

(
−i(1 + 2iγ +

√
1 + γ2)√

1 + γ2 + 1

)
+O (δk) , (4.22)

cL
<(δk) = − 2γ√

2(1 + γ2)

(
i
1

)
1
δk
+

1
2
√

2(1 + γ2)

(
−i(−1 − 2iγ +

√
1 + γ2)√

1 + γ2 − 1

)
+O(δk) , (4.23)

where cL
>(<) are left eigenvectors of the band dispersions having the positive (negative) group velocity.

The divergence of the left eigenvectors in the limit δk → 0 originates from the vanishing inner
product between the right and left eigenvectors at the exceptional point [202, 313]. To understand
how this divergence leads to the discontinuity of the effective band populations ñλk , we recall that
ñλk is proportional to the square of the expansion coefficient ψλk of the initial ground state in
terms of the right eigenvectors for the postquench non-Hermitian matrices, i.e., nλk ∝ |ψλk |2 with
|Ψ0⟩ =

∏
k[

∑
λ ψλk ĝ

†
λk
]|0⟩. We then obtain the following relations:

For δk < 0 :


ñ+,k ∝
���c†L< (δk) · c>(δk)

���2 ∼ 0;

ñ−,k ∝
���c†L> (δk) · c>(δk)

���2 ∼ 1.
(4.24)

For δk > 0 :


ñ+,k ∝
���c†L> (δk) · c<(δk)

���2 ≃ γ2

1+γ2
1
δk2 ;

ñ−,k ∝
���c†L< (δk) · c<(δk)

���2 ≃ γ2

1+γ2
1
δk2 .

(4.25)
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Here we note that the expansion coefficientsψλk in terms of right eigenvectors can be obtained by taking
the inner product between the corresponding left eigenvectors and the initial ground state since the
left and right eigenvectors satisfy the orthonormal condition { f̂λk, ĝ

†
λ′,k′} = δk ,k′δλ,λ′ . Equation (4.24)

shows that the populations ñ±,k remain finite if we approach the exceptional point k = π from below.
This is because the diverging contribution (i,1)T in the left eigenvectors in Eqs. (4.22) and (4.23) is
orthogonal to the leading contribution (−i,1)T of c>(δk) in Eq. (4.18). In contrast, if we approach the
exceptional point from above, the populations ñ±k diverge in δk → 0 as shown in Eq. (4.25) since the
diverging contribution (i,1)T in Eqs. (4.22) and (4.23) is parallel to the leading contribution of c<(δk)
in Eq. (4.19).

Entanglement dynamics
The chirality found in the continuously monitored dynamics also alters the evolution of the entangle-
ment growth. Figure 4.5(b) shows the entanglement entropy SA[ρ̂(0)(t)] [319] after the quench with
varying measurement strength γ. We choose a subregion A to be an interval of 20 sites. Increas-
ing γ, the entanglement entropy decreases due to the enhanced chirality. We can understand this
as follows. After the quench, pairs of entangled quasiparticles are generated and they propagate in
opposite directions [298]. The number of correlated pairs with one quasiparticle being inside and the
other being outside of A determines the entanglement entropy. The chirality thus leads to a decrease
of the entanglement entropy because such correlated pairs propagating in opposite directions cannot
be generated via the chiral (i.e., unidirectional) modes. The time-dependent band populations ñλk(t)
cause an oscillation on the linear increase of the entanglement entropy (inset in Fig. 4.5(b)). In light of
the simple dispersion in the Hamiltonian, this oscillatory behavior also gives an intriguing feature in
open systems; such a oscillation can appear only if the band spectrum possess multiple local maxima
in closed integrable systems [304].

4.2 Thermalization and heating dynamics under measurement
4.2.1 Introduction
In the previous section, we have studied the peculiar out-of-equilibrium dynamics in many-particle
systems under measurement. Meanwhile, after such transient dynamics, it is natural to expect that an
interacting many-body system will ultimately equilibrate, especially in light of recent developments in
our understanding of equilibration and thermalization in quantum many-body systems [300,320–341].
In this section, we ask the question of whether or not statistical mechanics [342–349] remains valid as
a description of such open many-body systems under quantum measurement.

In general, statistical mechanics provides a universal description to characterize thermodynamic
properties of an equilibrated physical system. To address the problem of thermalization in quantum
systems, we can classify them as follows: (i) systems coupled to thermal environments, (ii) isolated
systems, and (iii) systems in contact with nonthermal environments. In class (i), it has been known that
thermalization to the Gibbs ensemble can be formulated by the phenomenological Lindblad master
equation [133,350–354]. There, the detailed balance condition for the Lindblad operators ensures that
the master equation always possesses the Gibbs ensemble at the temperature of the thermal bath as
a solution of the master equation. The last decade has been devoted to advancing our understanding
of thermalization in class (ii) [300, 320–341]. This is mainly motivated by recent experimental
developments in ultracold atoms [256,355–358] that allow one to prepare quantum many-body systems
in nearly isolated situations. As a generic and possible mechanism of thermalization under unitary
dynamics, the eigenstate thermalization hypothesis (ETH) [331–341, 347, 348] has been proposed.
Numerical calculations for several nonintegrable many-body Hamiltonians [331–341] have verified
the ETH, while it does not hold for integrable [359–365] or many-body localized systems [366,367].

An important remaining issue is to address a possible thermalization mechanism in systems falling
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into class (iii). In this class, the dynamics is intrinsically nonunitary while the detailed balanced
condition is violated since a coupling to nonthermal environment permits general nonunitary processes
such as continuous measurements [37,38,123,127,178,183,266,368–379] and engineered dissipation
[34, 125, 152, 153, 176, 227, 277, 279–282, 380–384]. In such a nonthermal enviornment, the bath
temperature does not exist a priori and it is not obvious whether or not the system still thermalizes
and how a (possibly) thermalized state can be related to the Gibbs ensemble. While related numerical
studies have been done for specific examples [38,156,160,261,266], a unified (i.e., model-independent)
understanding of thermalization in open generic many-body systems is still lacking. In this section,
we aim to extend the framework of thermalization to quantum many-body systems coupled to generic
environments permitted by controlled dissipations and quantum measurements [126]. In experiments,
our study is related to recent realizations of a variety of open many-body systems [34, 152, 153, 176,
281, 282]. The results presented in this section are applicable not only to many-body systems under
continuous observation, but also to dissipative Lindblad dynamics of many-body systems coupled to
environments (that are not necessarily thermal) [34, 125, 152, 153, 176, 261, 277, 279–282, 380–384]
or under noisy unitary operations [385–394]. The results presented in this section thus provide yet
another insight into why thermodynamics emerges so universally.

4.2.2 Statistical ensemble under minimally destructive observation
Suppose that a generic (typically, nonnintegrable) quantum many-body system is subject to continuous
observation. The initial state is assumed to be a thermal equilibrium state ρ̂eq whose mean energy
is E0 and the corresponding temperature is T0 = 1/β0. We set kB = 1 and ℏ= 1 in this section. We
consider the quantum trajectory dynamics under continuous observation as formulated in Chapter 2.
The dynamics is characterized by a sequence of measurement outcomes, i.e., typesM = (m1, . . .mn)
and occurrence times T = (t1, . . . tn) of quantum jumps, and is represented as (c.f., Eq. (2.43))

ϱ̂M(t;T) = Π̂Mt;T ρ̂eqΠ̂
†M
t;T , (4.26)

where we introduce the nonunitary operator Π̂M
t;T as

Π̂
M
t;T =

n∏
i=1
[Û(∆ti)

√
γ L̂mi ]Û(t1). (4.27)

We recall that Û(τ)=e−iĤeffτ with Ĥeff = Ĥ − iΓ̂/2 and Γ̂ = γ
∑

m L̂†m L̂m describes the non-Hermitian
evolution during no-jump events, γ characterizes a measurement strength, L̂m is a jump operator
associated with a measurement outcome m, and we denote ∆ti= ti+1 − ti and tn+1= t. A jump operator
L̂m is assumed to be either a local operator or the sum of local operators and conserves the total
number of particles.

To extract generic features of the many-body trajectory dynamics, we assume the ETH and the
limit of minimally destructive observation. The former states that the expectation values of arbitrary
few-body observables with respect to a high-energy eigenstate |Ea⟩ of Ĥ coincide with those of the
corresponding Gibbs ensemble [339], as numerically supported in a number of nonintegrable many-
body Hamiltonians [331–341]. The latter indicates a situation in which a waiting time of quantum
jumps is much longer than the equilibration time of the many-body dynamics during a no-jump process.
More specifically, we consider the limit γ→0 with keeping γt = µ finite. Physically, this limit means
that one typically observes a finite number of quantum jumps during [0, t] while the system still does
not reach an ultimate steady state, which can typically be a trivial state such as an infinite-temperature
state. When a waiting time exceeds the equilibration time in the many-body dynamics, it is expected
that the memory of the occurrence times T will eventually be lost due to the fast decay of the rapidly
oscillating, time-dependent terms in the density matrix [323]. Thus, long-time values of expectation
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values can be studied in terms of the time-averaged density matrix [323]:

ϱ̂M(t) =
∫ t

0
dtn · · ·

∫ t2

0
dt1 ϱ̂M(t;T). (4.28)

Assuming the minimally destructive limit and the ETH, we can achieve several simplifications in
Eq. (4.28). To begin with, we rewrite it by expanding a non-Hermitian effective Hamiltonian Ĥeff
as Ĥeff =

∑
a Λa |ΛR

a⟩⟨ΛL
a |, where Λa is a complex eigenvalue, and the right (left) eigenstates |ΛR

a⟩
(|ΛL

a⟩) satisfy the orthonormal condition ⟨ΛR
a |ΛL

b
⟩ = δab . Inserting the relation Û(τ) = e−iĤeffτ =∑

a e−iΛaτ |ΛR
a⟩⟨ΛL

a | into Eq. (4.28), we obtain

ϱ̂M(t) =
∑

{ai }{bi }
F (t; {ai}, {bi})

n∏
i=1
[√γ(Vmi )ai+1ai ](Peq)a1b1

n∏
i=1
[√γ(V†mi

)bibi+1 ]|ΛR
an+1⟩⟨Λ

L
bn+1
|,

(4.29)

where we introduce the matrices Vm and Peq as

(Vm)ab = ⟨ΛL
a | L̂m |ΛR

b⟩, (Peq)ab = ⟨ΛL
a | ρ̂eq |ΛL

b⟩, (4.30)

and F involves the time integration of the exponential factor

F (t; {ai}, {bi}) = e−i(Λan+1−Λ
∗
bn+1

)t
∫ t

0
dtn · · ·

∫ t2

0
dt1e−i

∑n
i=1 ∆i ti (4.31)

with

∆i = Λai − Λ∗bi
− (Λai+1 − Λ∗bi+1

). (4.32)

In the minimally destructive limit (leading to t → ∞), we have only to take into account the leading
(nonoscillating) contributions in the integral F , i.e., the terms with ai = bi with i = 1,2, . . . ,n + 1.
Also, the eigenstates |ΛR,L

a ⟩ can be replaced by those |Ea⟩ of the system Hamiltonian Ĥ, as the
minimally destructive limit ensures the vanishingly small non-Hermiticity γ → 0 in the effective
Hamiltonian. Accordingly, to express an imaginary part Γa of an eigenvalue Λa, we can use the
perturbative result Γa = γ⟨Ea |

∑
m L̂†m L̂m |Ea⟩. These simplifications lead to

ϱ̂M(t) ≃
∑
{ai }

e−µΓ̃an+1

∫ µ

0
dµn · · ·

∫ µ2

0
dµ1e−

∑n
i=1 δΓ̃ai µi (Vmn )an+1an · · · (Vm1 )a2a1 (peq)a1 |Ea1⟩⟨Ea1 |,

(4.33)

whereVm and peq are matrices whose elements are defined by

(Vm)ab = |⟨Ea | L̂m |Eb⟩|2, (peq)a = ⟨Ea | ρ̂eq |Ea⟩, (4.34)

and we introduce variables

µi ≡ γti, (4.35)
Γ̃a ≡ Γa/γ = ⟨Ea |

∑
m

L̂†m L̂m |Ea⟩, (4.36)

δΓ̃ai ≡ Γ̃ai − Γ̃ai+1 . (4.37)

To attain a further simplification, we note the fact that the off-diagonal elements (Vm)ab vanish expo-
nentially fast with the energy difference ω = |Ea − Eb | [329, 330]. Thus, the dominant contributions
to Eq. (4.33) are made from matrix-vector products for the elements ai and ai+1 that are close in
energy, i.e., the elements satisfying |Eai − Eai+1 |/|Eai + Eai+1 | ≪ 1. For such elements, the ETH
guarantees that the fluctuation of the decay rate is strongly suppressed |Γai − Γai+1 |/|Γai + Γai+1 | ≪ 1,
as we consider physical jump operators L̂m consisting of few-body operators. We thus neglect δΓ̃a’s
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in Eq. (4.33), leading to

ϱ̂M(t) ≃
µn

n!

∑
a

e−µΓ̃a [Vmn · · · Vm1 peq]a |Ea⟩⟨Ea |. (4.38)

Finally, while successive multiplications of matricesVm on the initial distribution peq can eventually
change the mean energy E by an extensive amount, they still keep the energy fluctuation subextensive.
This follows from the cluster decomposition property [362, 395, 396] of thermal eigenstates for local
operators Ôx,y (see Appendix D for details):

lim
|x−y |→∞

Tr[ÔxÔy P̂a] − Tr[Ôx P̂a]Tr[Ôy P̂a] = 0, (4.39)

where P̂a = |Ea⟩⟨Ea |. In other words, the energy distribution is strongly peaked around the mean
value during each time interval between jump events. The ETH then guarantees that the distribution
of the detection rate Γ̂ is also strongly peaked and its fluctuation around the mean value is vanishingly
small in the thermodynamic limit (see e.g., the top panel in Fig. 4.8c below). We thus replace Γ̃a
in Eq. (4.38) by its mean value Γ̃ in the final distribution (∏n

i=1Vmi )peq, and arrive at the following
simple expression of the density matrix:

ϱ̂M(t) ≃
µn

n!
e−µΓ̃

∑
a

[Vmn · · · Vm1 peq]a |Ea⟩⟨Ea |. (4.40)

After taking the normalization, we can rewrite ϱ̂M as

ρ̂M =
ΛM[ρ̂eq]

Z(M) =
1

Z(M)
∑
a

[
Vmn · · · Vm1 peq

]
a

P̂a, (4.41)

where we defineΛM =
∏n

i=1
(
Λ ◦ Lmi ◦ Λ

)
withLm[Ô]= L̂mÔL̂†m andΛ[Ô]=∑

a P̂aÔP̂a, and Z(M)
is a normalization constant. Physically, the dephasing channelΛ originates from the ergodic, relaxation
dynamics during the no-count process. We remark that, in finite-size systems, the distribution in the
energy basis is often rather broad. Hence, in practice it can also be useful to use the expression (4.38)
especially when the diagonal elements of the detection rate Γa vary significantly as a function of
energy.

Because of the subextensiveness of the standard deviation of energy in ρ̂M (see Appendix D), the
energy distribution of ρ̂M has a sharp peak around the mean EM as mentioned above. An effective
temperature βMeff of the system can thus be introduced from the relation EM = Tr[Ĥ ρ̂βMeff

], where

ρ̂β = e−βĤ/Zβ is the Gibbs ensemble. It is then guaranteed by the ETH that ρ̂M is indistinguishable
from the Gibbs ensemble if we focus on an expectation value of a few-body observable Ô:

Tr[Ô ρ̂M] ≃ Tr[Ô ρ̂βMeff
]. (4.42)

From now on, ≃ is understood to be the equality in the thermodynamic limit. In this sense, a generic
quantum many-body system under continuous observation thermalizes at the single-trajectory level.

Several remarks are in order. Firstly, we emphasize that it is highly nontrivial to precisely determine
the temperature of an open many-body system. We usually need to rely on ad hoc techniques for
each problem. Our approach based on the matrix-vector product ensemble (MVPE) (see Eq. (4.40))
offers a general approach to extract its effective temperature. In principle, any physical quantities
can then be obtained from the Gibbs ensemble at an extracted temperature provided that the ETH
holds true. Secondly, as the system Hamiltonian Ĥ is assumed to be nonintegrable, it should obey
[Ĥ, L̂m] , 0. This noncommutativity indicates that the multiplication of the matrix Vm alters the
temperature of the system. Finally, we remark on similarities and differences between Eq. (4.40) and
the density matrix of isolated systems reached after a sudden quench [331, 397–399] or slow unitary
operations [339]. Both density matrices are diagonal in the energy basis and coefficients are expressed
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Fig. 4.7 Typical quantum trajectory dynamics under the local measurement with L̂l = n̂l . (a)
Spatiotemporal dynamics of the particle-number density. Every time an atom is detected, a high-
density region appears which subsequently diffuses away toward an equilibrium value. (b) Time
evolution of the kinetic energy K̂ and that of the occupation n̂k=0 at zero momentum. Superimposed
are the values corresponding to the Gibbs ensemble ρ̂βMeff

(green dashed) and the MVPE ρ̂M (red
dashed). (c) Top two panels plot diagonal elements of the observables in the energy basis. The
other panels plot the energy distributions after each jump. We use th=U= t ′h=U ′=1 and γ = 0.02
except for the integrable case in (c) for which th=U=1 and t ′h=U ′=0. Reproduced from Fig. S1
of Ref. [126]. Copyright © 2018 by the American Physical Society.

by the product of matrices and the vector. In the slow unitary operations, the matrix can be interpreted
as the transition matrix and it obeys the doubly stochastic condition

∑
a(V)ab =

∑
b(V)ab = 1

that inevitably leads to heating of the system [329, 330, 400]. Yet, in the MVPE obtained for the
open-system dynamics, one cannot interpret the matrix V as the transition matrix and, in particular,
it violates the doubly stochastic condition. One can thus perform the cooling of the system if artificial
(typically non-Hermitian) measurement operators L̂m are implemented [380,381].

4.2.3 Numerical simulations in nonintegrable open many-body systems
Nonintegrable systems under local and global measurements
We demonstrate our general approach formulated above by studying a Hamiltonian Ĥ = K̂ + Û with
nearest- and next-nearest-neighbor hopping and on-site interaction:

K̂ = −
∑
l

(thb̂†
l
b̂l+1+t ′hb̂†

l
b̂l+2+H.c.), (4.43)

Û =
∑
l

(Un̂l n̂l+1+U ′n̂l n̂l+2), (4.44)
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Fig. 4.8 Typical quantum trajectory dynamics under the global measurement with L̂=
∑
l(−1)l n̂l .

Dynamics of (a) the distribution of L̂ and (b) n̂k=0. (c) Top panel shows diagonal elements of the
detection rate Γ̂ in the energy basis. The other panels show the energy distributions after each jump.
We use the parameters as in Fig. 4.7. Reproduced from Fig. 1 of Ref. [126]. Copyright © 2018 by
the American Physical Society.

where b̂l (b̂†
l
) annihilates (creates) a hard-core boson on site l and n̂l= b̂†

l
b̂l . We assume that hard-core

bosons are trapped in an open chain. It has been well established that this Hamiltonian obeys the
ETH [332, 336, 339, 341]. The system size and the total number of bosons are set to be Ls = 18 and
N =6. We study two types of measurements: (i) the site-resolved density measurement L̂l= n̂l , where
a jump operator acts on a local region and a jump is labeled by site l, and (ii) a global measurement
L̂=

∑
l(−1)l n̂l , in which a type of jump is unique. To be concrete, we choose the initial state to be an

eigenstate∗ |E0⟩ with temperature T0=3th. We set the initial time t=0 to be the first detection time of
a quantum jump.

Figure 4.7 shows a typical trajectory dynamics under the local measurement with L̂l = n̂l . After
each detection of a quantum jump, measurement backaction localizes an atom on the detected lattice
site, which subsequently spreads over and quickly relaxes toward an equilibrium density (see Fig. 4.7a).
Figure 4.7b shows the corresponding dynamics of the kinetic energy ⟨K̂⟩ (top) and the occupation
⟨n̂k=0⟩ at zero momentum (bottom), and compares them with the predictions from the MVPE ρ̂M (red
chain) and the Gibbs ensemble ρ̂βMeff

(green dashed). For each time interval, the dynamical values agree
with the MVPE predictions within time-dependent fluctuations. To gain further insights, Fig. 4.7c
plots the diagonal matrix elements of each observable in the energy basis (top two panels) and energy
distributions after every quantum jump (the other panels). Small eigenstate-to-eigenstate fluctuations
in the observables and the remarkable agreements in the energy distributions explain the success of the
MVPE description in Fig. 4.7b. It is notable that only a few jumps are sufficient to smear out the initial
memory of a single eigenstate after which the distribution is almost indistinguishable from that of the
corresponding Gibbs ensemble, thus validating the relation (4.42). Small fluctuations after the first
jump (see Fig. 4.7b) indicate that even a single quantum jump generates a sufficiently large effective
dimension to make the system equilibrate, which can be understood from the substantial delocalization
of an energy eigenstate in the Fock basis [401]. A discrepancy of the Gibbs ensemble from ⟨n̂k=0⟩(t)

∗ We remark that results for a general initial equilibrium distribution peq can be merely given as a linear sum of the results
for single eigenstates.



70 Chapter 4 Out-of-Equilibrium Quantum Dynamics

Fig. 4.9 Finite-size scaling analyses of the relative deviations of the predictions of the MVPE and
the corresponding Gibbs ensemble from the time-averaged value. The top (bottom) panels show
the relative deviations of the observables for each ensemble from their time-averaged values in the
trajectory dynamics after the n-th quantum jump with the local (global) measurement. The relative
deviations of the MVPE values from the time-averaged values are plotted as the blue (red) filled
circles for the kinetic energy K̂ (the occupation number at zero momentum n̂k=0). In the same
way, the deviations of the corresponding Gibbs ensemble are plotted as open circles. We remark
that the deviations of the MVPE predictions after the first jump n = 1 are negligibly small and not
shown in the plots. We set the parameters as in Fig. 4.7. Reproduced from Fig. S3 of Ref. [126].
Copyright © 2018 by the American Physical Society.

in Fig. 4.7b can be attributed to the small system size as detailed below. In this respect, it may be
advantageous to use ρ̂M rather than ρ̂βMeft

for small systems that can be prepared in experiments.
Figure 4.8 shows trajectory dynamics under the global measurement. Figure 4.8a shows dynamics

of the distribution of the jump operator L̂=
∑

l(−1)l n̂l . After each jump, the measurement backaction
localizes the distribution, leading to a cat-like post-measurement state with relatively large weights
on L̂ = ±4. The peaks rapidly collapse and the distribution relaxes to a thermal one due to the
noncommutativity between Ĥ and L̂. Figure 4.8b plots the corresponding time evolution of ⟨n̂k=0⟩ in
comparison with the values obtained from the Gibbs ensemble ρ̂βMeff

and the MVPE ρ̂M . The top panel
in Fig. 4.8c plots the diagonal values Γa of Γ̂ while the other panels show energy distributions after
each jump. We again observe an excellent agreement between the MVPE and the exact dynamical
values.

Finite-size scaling analyses
Figure 4.9 shows the results of the finite-size scaling analysis to test the precision of the predictions
from the MVPE ρ̂M and the corresponding Gibbs ensemble ρ̂βMeff

with an effective temperature. We
calculate the relative deviations from the time-averaged value:

rρ̂ =

���Ô(t) − ⟨Ô⟩ρ̂������Ô(t) + ⟨Ô⟩ρ̂��� , (4.45)

where Ô(t) denotes the time-averaged value of an observable Ô over the trajectory dynamics during
the time interval involving t between quantum jumps, ⟨·⟩ρ̂ = Tr[·ρ̂] with ρ̂ being chosen to be either
the MVPE or the Gibbs ensemble. As an observable Ô, we use the kinetic energy K̂ or the occupation
number n̂k=0 at zero momentum. We set the filling N/L = 1/3 with N and L being the total number
of atoms and the system size, and vary N from 3 to 6. The results are presented in Fig. 4.9. The top
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Fig. 4.10 Numerical results on the trajectory dynamics for which the system Hamiltonian is
integrable and the measurement is local. (a) Spatiotemporal dynamics of the atom-number distri-
bution at each lattice site and (b) the corresponding dynamics of the kinetic energy K̂ (top panel)
and the occupation number at zero momentum n̂k=0 (bottom panel). (c) Top two panels show the
diagonal values of each observable in the energy basis for the integrable case (red triangle) and the
nonintegrable case (blue circle). Other panels show the changes of energy distributions after each
jump. We set the parameters as in Fig. 4.7. Reproduced from Fig. S4 of Ref. [126]. Copyright ©
2018 by the American Physical Society.

(bottom) panels show the relative deviations rρ̂ for each time interval after the n-th jump event in the
trajectory dynamics with the local (global) measurement processes. These finite-size scaling analyses
indicate that the relative errors of the MVPE predictions (filled circles) converge almost exponentially
to zero in the thermodynamic limit. We find that the convergence of the corresponding Gibbs ensemble
predictions (open circles) is slower than that of the MVPE. This fact can be attributed to a combination
of broad energy distributions of finite-size systems and large fluctuations in diagonal elements of
observables (see e.g., Fig. 4.7c). It is worthwhile to mention that a similar slow convergence of
the observable n̂k=0 to the equilibrium value due to finite-size effects has also been found in the
time-dependent density-matrix renormalization-group calculations of the Bose-Hubbard model with
spontaneous emissions [160].

Numerical results on integrable systems
An isolated integrable many-body system often fails to thermalize because the Gibbs ensemble is not
sufficient to fix distributions of an extensive number of local conserved quantities. Here we present
numerical results of trajectory dynamics with an integrable system Hamiltonian. To be specific,
we consider a local measurement process L̂l = n̂l and choose the parameters as th = U = 1 and
t ′h = U ′ = 0. For the sake of comparison, in Fig. 4.10 we present the results for the trajectory
dynamics with the same occurrence times and types of quantum jumps as realized in the nonintegrable
results presented in Fig. 4.7. The initial state is again chosen to be the energy eigenstate |E0⟩ of the
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Fig. 4.11 Comparisons between the matrix-vector product ensemble (MVPE) predictions (red
solid line) and the Lindblad dynamics (black dashed curve) for (a) the kinetic energy K̂ and (b) the
occupation number at zero momentum n̂k=0. The global continuous measurement is performed
with a jump operator L̂ =

∑
l(−1)l n̂l . We set the parameters as in Fig. 4.7. The panel (b) is

reproduced from Fig. 2(c) of Ref. [126]. Copyright © 2018 by the American Physical Society.

integrable many-body Hamiltonian having an energy corresponding to the temperature T0 = 3th.
Figure 4.10(a) shows the spatiotemporal dynamics of the atom number at each lattice site. Measure-

ment backaction localizes an atom at the site of detection and the density waves propagate ballistically
through the system. The induced density fluctuations are significantly larger than those found in
the corresponding nonintegrable results, and the relaxation to the equilibrium profile seems to be not
reached during each time interval between quantum jumps in the integrable case. Also, the ballistically
propagating density waves are reflected back at the boundaries and can disturb the density; the finite-
size effects can be more significant in the integrable case than the corresponding nonintegrable one.
It merits further study to identify an equilibration time scale in an integrable many-body system under
continuous measurement. Figure 4.10(b) shows the corresponding dynamics of the kinetic energy K̂
and the occupation number n̂k=0 at zero momentum. Relatively small (large) time-dependent fluctu-
ations in the kinetic energy (the zero-momentum occupation) can be attributed to the small (large)
fluctuations of its diagonal values in the energy basis (see the top two panels in Fig. 4.10(c)). Other
panels in Fig. 4.10(c) show the corresponding changes of energy distributions after each quantum
jump. In a similar manner as in the nonintegrable results presented in Fig. 4.7, a few jumps are enough
to smear out the initial memory as a single energy eigenstate. This fact implies that the biased weight
on a possible nonthermal eigenstate admitted by the weak variant of the ETH [333,402] will disappear
after observing a few number of quantum jumps. The jump operator L̂l acts as a weak-integrability
breaking (nonunitary) perturbation and should eventually make the system thermalize.

The thermalization behavior can be also inferred from the eventual agreement between the time-
dependent values of the observables and the predictions from the Gibbs ensemble after several jumps
(see Fig. 4.10(b)). Nevertheless, it is still evident that a largely biased weight on an initial (possibly
nonthermal) state can survive when the number of jumps is small (see e.g., the panels (i) and (ii) in
Fig. 4.10(c)), and thus the generalized Gibbs ensemble can be a suitable description in such a case.
To make concrete statements, we need a larger system size and more detailed analyses with physically
plausible initial conditions. We leave it as an interesting open question to examine to what extent the
initial memory of a possible nonthermal state can be kept under the integrability-breaking continuous
measurement process.

4.2.4 Application to many-body Lindblad dynamics
Finally, we discuss an application of the MVPE to the Lindblad dynamics. Aside from the description
of continuously monitored systems, the quantum trajectory dynamics also provides a method to
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numerically solve the Lindblad master equation [133,156]:
d ρ̂
dt
= L[ρ̂] = −i(Ĥeff ρ̂ − ρ̂Ĥ†eff) + γ

∑
m

L̂m ρ̂L̂†m, (4.46)

where ρ̂(t)=∑
M ϱ̂M(t) is the ensemble-averaged density matrix. The Lindblad equation (4.46) can

be used to study the dynamics of an open system weakly coupled to an environment [133] or a system
subject to noisy unitary operations [385–388, 394]. However, taking the ensemble average is often
very demanding especially for a many-body system due to a large number of possible trajectories.

When we focus on a (physically plausible) case of a translationally invariant Ĥ and L̂m, the MVPE
offers a simple approach to overcome this difficulty. The translational invariance and the locality of L̂m

lead to the matrixVm that is independent of a spatial label m. Therefore, the MVPE is characterized
only by the number n of jumps rather than their sequence∗: ρ̂n∝

∑
a

[
Vnpeq

]
a

P̂a. Since the detection
rate Γ̂ is assumed to consist of few-body observables, the ETH guarantees that the distribution of the
number n of quantum jumps has a sharp peak around the mean n. We thus obtain

Tr[ÔeLt ρ̂eq] ≃ Tr[Ô ρ̂nt
] ≃ Tr[Ô ρ̂

β
nt
eff
], (4.47)

where βnt

eff is the corresponding effective temperature and nt is the mean number of n during [0, t], which
can be calculated from the implicit relation t≃∑nt

n=0 1/Γn with Γn=Tr[Γ̂ ρ̂n]. Equation 4.47 indicates
that expectation values of few-body observables in the Lindblad many-body dynamics agree with
those obtained from the typical MVPE or the Gibbs ensemble at an appropriate effective temperature.
Given the fact that the analysis of Eq. (4.46) requires the diagonalization of a D2×D2 Liouvillean
(where D is the dimension of the Hilbert space), our approach (4.47) can significantly simplify the
analysis.

As an example, we have applied our approach to the nonintegrable lattice model discussed in the
previous subsections. To be specific, we consider the global measurement L̂ =

∑
l(−1)l n̂l . Since

the MVPE ρ̂n is characterized solely by the number n of quantum jumps, it suffices to determine its
typical number nt as a function of time t to apply the MVPE to the Lindblad dynamics. This can
be achieved by using the relation nt =

∑∞
m=0 Θ(t −

∑m
n=0 1/Γn), where Θ(x) is the Heaviside step

function. Figure 4.11 compares the MVPE predictions (red solid line) with the Lindblad dynamics
(black dashed curve) corresponding to the heating dynamics of (a) the kinetic energy and (b) the
occupation number at zero momentum under the global measurement. The stepwise behavior in the
MVPE prediction originates from the discreteness of nt , which will diminish in the thermodynamic
limit. The agreement found in Fig. 4.11 thus demonstrates the relation (4.47) aside from the stepwise
finite-size contributions.

4.3 Diffusive quantum dynamics under measurement
4.3.1 Introduction
As we have reviewed in Chapter 2, there are two types of continuous measurements depending on
different underlying stochastic processes. The first one is a quantum jump process that associates
with a discontinuous change of a quantum state described by the Poisson-like stochastic process. This
type of measurement is what we have so far considered as continuous observation. Here, we study
the other type of measurement associated with the diffusive stochastic process known as the Wiener
process (c.f. Sec. 2.2.3). To study diffusive dynamics of many-particle systems under continuous
position measurement, we consider the limit of a weak spatial resolution of in-site measurements of
quantum gases [11, 32–39]. This limit is of practical importance as it will offer a nondestructive way

∗ In fact, ρ̂n is nothing but the MVPE approximation of the full-counting dynamics introduced in the previous section.
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of real-time observation of many-particle systems, which may allow us to apply measurement-based
feedback control [403, 404] to quantum many-body systems. In contrast, the conventional techniques
of quantum gas microscopy [2–7] have been so far limited to a destructive single-shot imaging [267].

In this section, we develop a theoretical framework to describe quantum dynamics of multiple
particles under a minimally destructive spatial observation. While the stochastic Schrödinger equation
of distinguishable particles under the spatial measurement has been obtained as a straightforward
generalization of the result for the single-particle case [405–409], to our knowledge the derivation for
indistinguishable particles has long been unknown [410]. We here achieve the latter by taking the
appropriate limit of strong atom-light coupling and weak spatial resolution. The resulting equation
indicates that measurement indistinguishability of particles completely suppresses the decoherence in
the relative positions, resulting in the unique quantum transport dynamics. In previous works on the
site-resolved position measurement [159, 266, 279, 280, 411] and continuous position measurement
of a single quantum particle [405–409], we remark that the indistinguishability does not play such
a nontrivial role. We numerically demonstrate our findings for the minimal model consisting of
noninteracting two particles.

4.3.2 System: atoms under spatial observation
We consider the setup of our previous work [36] that discusses the collapse of many-particle wave-
function of atoms in an optical lattice due to the spatial measurement. While we have neglected the
internal quantum dynamics (i.e., hopping of atoms) in Ref. [36] (which can be justified for a deep
optical lattice), we are here interested in a situation in which both the internal dynamics and the
measurement backaction play nontrivial roles.

We consider N atoms trapped in an optical lattice, which are described by the Bose-Hubbard
Hamiltonian Ĥ = −J

∑
m(b̂†mb̂m+1 + H.c.) + (U/2)∑m n̂m(n̂m − 1). Here, J is the hopping rate and

U denotes the on-site interaction, b̂†m (b̂m) creates (annihilates) an atom at site m, and n̂m = b̂†mb̂m.
Here and henceforth, we set U = 0 for the sake of simplicity. We discuss the spatial measurement
of atoms by an off-resonant probe light (see Fig. 4.12). The detection of scattered photons causes
the collapse of the many-body wavefunction. The jump operator corresponding to this continuous
position measurement can be obtained as follows (see the Supplementary Material of Ref. [36] for

Fig. 4.12 Schematic figure of spatially resolved measurement of atoms on a lattice whose spacing
is d. Trapped atoms off-resonantly scatter probe light. A lens aperture diffracts the scattered
photons. The detection of photons on the screen induces the reduction of the wavefunction
according to the outcome X and a spatial resolution σ. Reproduced from Fig. 2 of Ref. [127].
Copyright © 2017 by the American Physical Society.
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microscopic derivations):

M̂(X) = √γ
∑
m

f (X − md)b̂†mb̂m, (4.48)

where X is a measurement outcome, γ denotes the measurement strength. We represent an amplitude
of a general point spread function by f , which satisfies the normalization condition

∫
f 2(X)dX = 1

and the parity symmetry f (X) = f (−X). As we show later, the resulting time-evolution equation
derived in the weak-resolution limit depends on f only through its effective spatial resolutionσ defined
as ∫

dX f (X − md) f (X − ld) ≃ 1 − (m − l)2d2

4σ2 . (4.49)

For instance, it is just the standard deviation if f is chosen to be a Gaussian point spread function
f (X) = e−X

2/(2σ2)/(σ2π)1/4.
We start from formulating the dynamics under the above spatial measurement following a general

theory reviewed in Chapter 2∗. The measurement process corresponds to a photodetection on the
screen and the quantum jump process is described by the discrete stochastic process dN(X; t) that
depends on X . The time evolution is described by the following stochastic many-body Schrödinger
equation:

d |ψ⟩ = − i
ℏ

Ĥ |ψ⟩dt − 1
2

∫
dX

(
M̂†(X)M̂(X) − ⟨M̂†(X)M̂(X)⟩

)
|ψ⟩dt

+

∫
dX

(
M̂(X)|ψ⟩√
⟨M̂†(X)M̂(X)⟩

− |ψ⟩
)

dN(X; t), (4.50)

where ⟨· · · ⟩ is an expectation value with respect to |ψ⟩. In general, the time evolution is described by
the non-Hermitian Hamiltonian in the no-jump process. In fact, for a single-particle case, this dynamics
reduces to the unitary evolution since the term −1/2

∫
dX M̂†(X)M̂(X) is simply proportional to the

identity operator. In the case of multiple particles, the no-count evolution is in general intrinsically
distinct from the unitary evolution as the interference among particles leads to a change in the detection
rate. The second line in Eq. (4.50) corresponds to a jump process caused by a detection of scattered
photons on the screen. Mathematically, the stochastic process dN(X; t) is known as a marked point
process [148]

dN(X; t)dN(Y ; t) = δ(X − Y )dN(X; t), E[dN(X; t)] = ⟨M̂†(X)M̂(X)⟩dt, (4.51)

where E[· · · ] denotes taking an ensemble average over measurement outcomes. Physically,
E[dN(X; t)]/dt provides the intensity of photons detected on position X at time t.

4.3.3 Minimally destructive spatial observation
To perform continuous spatial observation of a quantum gas in a nondestructive manner, one has to
implement a weak and frequent measurement. The reason is that substantial heating and loss of atoms
are caused by the conventional single-shot observations [267, 412–415]. From this perspective, we
consider the limit of weak spatial resolution (σ ≫ d) and strong atom-light coupling (γ ≫ J/ℏ)
while keeping γ/σ2 finite.Taking such a limit is essential to describe nontrivial dynamics under
measurement which is continuous in time [135,405–409]; otherwise, the quantum Zeno effect would
completely suppress the quantum dynamics [34] (see also the discussions in Sec. 2.2.3).

To achieve the limiting procedure, we first consider the scaling of the quantity Ñ(t) =
∫

N(t; X)dX ,
which is the number of photons detected during a time interval [0, t]. The mean of its rate of change

∗ It is straightforward to generalize our discussion on the lattice system presented here to the continuum space.
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is (at the leading order)⟨
dÑ(t)

dt

⟩
=

∫
dX ⟨M̂†(X)M̂(X)⟩ ≃ γ

∑
m,l

(
1 − (m − l)2d2

4σ2

)
⟨n̂mn̂l⟩ ≃ γN2, (4.52)

where the first approximate equality follows from Eq. (4.49). Since the number of detections goes to
infinity in the frequent measurement limit γ → ∞, one can approximate the fluctuation of stochastic
intensity as

dÑ(t) −
∫

dX ⟨M̂†(X)M̂(X)⟩dt

N
√
γ

≃ dW(t), (4.53)

where we use the central limit theorem and employ the fact that the standard deviation of ⟨dÑ(t)/dt⟩
can be approximated by the square root of Eq. (4.52). We introduce dW(t) as the Wiener stochastic
process, which is characterized by

E[dW(t)] = 0, (dW(t))2 = dt . (4.54)

In a similar way, we can approximate the term including dN(X; t) as

dN(X; t) − ⟨M̂†(X)M̂(X)⟩dt√
⟨M̂†(X)M̂(X)⟩

≃ dW(X; t), (4.55)

where dW(X; t) is the spatially dependent Wiener process that is characterized by

E[dW(X; t)] = 0, dW(X; t)dW(Y ; t) = δ(X − Y )dt . (4.56)

4.3.4 Many-body stochastic Schrödinger equations
In this subsection, we discuss the fundamental time-evolution equations of quantum many-particle
systems under the minimally destructive spatial observation. While the equation for distinguishable
particles can be straightforwardly obtained from that for a single-particle case, to our knowledge the
equation for indistinguishable particles had not been known before our derivation.

Indistinguishable particles
We first study the case for indistinguishable particles. We rewrite Eq. (4.50) in terms of the density
matrix of a pure state ρ̂ = |ψ⟩⟨ψ |. Then, we take the limit of weak spatial resolution and strong
atom-light coupling by using Eqs. (4.53) and (4.55) (see Appendix E for technical details). The
resulting equation is the following diffusive stochastic many-body Schrödinger equation:

d ρ̂ = − i
ℏ

[
Ĥ, ρ̂

]
dt − N2γd2

4σ2

[
X̂c.m.,

[
X̂c.m., ρ̂

] ]
dt +

√
N2γd2

2σ2

{
X̂c.m. − ⟨X̂c.m.⟩, ρ̂

}
dW(t),

(4.57)

where we denote the center-of-mass operator as

X̂c.m. =

∑
m mn̂m

N
. (4.58)

A salient feature of this evolution equation is the absence of the relative positional decoherence term,
which does exist for distinguishable particles [406, 416] (see the second line in Eq. (4.64) below).
This absence qualitatively alters quantum transport dynamics as demonstrated in the next subsec-
tion. We remark that, for practically indistinguishable particles in measurement (but fundamentally
distinguishable), the same suppression should occur ∗. In experiments, such measurement distin-

∗ A coherent light scattering from isotopes is a typical example.
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guishability would be relevant when one performs the state-selective imaging [18, 22–24, 35, 417]
or the polarization measurement [418]. We may interpret the suppression of the relative positional
decoherence as an emergent decoherence-free subspace (DFS) [227,228] resulting from the symmetry
in the measurement operator under the exchange of indistinguishable particles. To our best knowledge,
Eq. (4.57) presents the first derivation of a model of continuous position measurement for quantum
many-body systems. We remark that the degrees of freedom of relative positions are not frozen in our
consideration unlike in a rigid system [416,419,420].

Distinguishable particles
We next mention the case for distinguishable particles. As for N noninteracting distinguishable
particles, we introduce the associated measurement operators M̂i(X) as

M̂i(X) =
√
γi

∑
x

f (X − xd)|x⟩i i ⟨x |, (4.59)

where i labels a particle, γi is a detection rate associated with particle i, f represents a general point
spread function, and x denotes a lattice site. Then, the time-evolution equation for distinguishable
particles is written as

d |ψ⟩ = − i
ℏ

Ĥ |ψ⟩dt − 1
2

N∑
i=1

∫
dXi

(
M̂†i (Xi)M̂i(Xi) − ⟨M̂†i (Xi)M̂i(Xi)⟩

)
|ψ⟩dt

+

N∑
i=1

∫
dXi

©­­«
M̂i(Xi)|ψ⟩√
⟨M̂†i (Xi)M̂i(Xi)⟩

−|ψ⟩
ª®®¬dNi(Xi; t), (4.60)

where dNi(X; t) are the marked point processes corresponding to particle i that satisfy

dNi(X; t)dNj(X; t) = δi jδ(X − Y )dNi(X; t). (4.61)

Taking the limit of weak spatial resolution in Eq. (4.60), the following diffusive stochastic time-
evolution equation of distinguishable particles can be obtained (see Appendix F for details)

d ρ̂ = − i
ℏ

[
Ĥ, ρ̂

]
dt −

N∑
i=1

γid2

4σ2 [x̂i, [x̂i, ρ̂]] dt +
N∑
i=1

√
γid2

2σ2 { x̂i − ⟨x̂i⟩, ρ̂} dWi(t), (4.62)

where x̂i =
∑

m m|m⟩i i ⟨m| is the position operator of particle i, and dWi(t)’s are independent Wiener
processes that obey

E[dWi(t)] = 0, dWi(t)dWj(t) = δi, jdt . (4.63)

For the sake of simplicity, let the scattering rate γi = γ be independent of i. We can then simplify
Eq. (4.62) as

d ρ̂ = − i
ℏ

[
Ĥ, ρ̂

]
dt − Nγd2

4σ2

[
X̂c.m.,

[
X̂c.m., ρ̂

] ]
dt +

√
Nγd2

2σ2

{
X̂c.m. − ⟨X̂c.m.⟩, ρ̂

}
dW(t)

− γd2

4σ2

N∑
i=1
[r̂i, [r̂i, ρ̂]] dt +

√
γd2

2σ2

N∑
i=1
{r̂i − ⟨r̂i⟩, ρ̂} dWi(t), (4.64)

where we introduce the center-of-mass operator X̂c.m. =
∑N

i=1 x̂i/N , the relative coordinate r̂i =
x̂i − X̂c.m., and the linear superposition of Wiener processes dW(t) ≡

√
1/N ∑

i dWi(t) (which is also a
Wiener process). We remark that Eqs. (4.62) and (4.64) are consistent with the known result [406,416]
that can be obtained by applying a single-particle model [405–409].
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Fig. 4.13 Numerical simulations of dynamics of two noninteracting particles under minimally
destructive spatial observation. (a) Unitary dynamics (Γ = 0). The evolution of the density
distribution is almost not affected by quantum statistics. (b-d) Quantum dynamics under the spatial
observation for (b) distinguishable particles, (c) bosons, and (d) fermions, calculated for a relatively
weak measurement strength with Γ = 2.0. The absence of the relative positional decoherence results
in the (c) bunched and (d) anti-correlated ballistic motions, while distinguishable particles show
(b) uncorrelated diffusive behavior. Reproduced from Fig. 3 of Ref. [127]. Copyright © 2017 by
the American Physical Society.

Implications to quantum transport dynamics
The distinct role of the measurement distinguishability discussed above can lead to a unique quantum
transport dynamics. In particular, this can be understood from the peculiar feature of the decoherence
rate of the off-diagonal term ⟨{nm}|E[ρ̂]|{n′m}⟩ of the density matrix for indistinguishable particles:

Γ{nm }, {n′m } =
N2γd2

4σ2
(
Xc.m. − X ′c.m.

)2
. (4.65)

This expression results from the second term of the right-hand side of Eq. (4.57). Here, we represent
the center-of-mass coordinate (CMC) of the Fock state {nm} ({n′m}) as Xc.m. (X ′c.m.). From the
expression (4.65), we can infer the three distinct time regimes. In the first regime, the coherence
between states with different CMCs is rapidly lost. As a result, the many-particle wavefunction
collapses into a state with a well-localized CMC. The time required for the collapse can be estimated
as 4σ2/(N2γd2L2) with L being a typical distance between the CMCs of the superposed Fock states.
In the second regime, although the CMC is localized, the coherence within the subspace of the
Fock states taking similar CMCs can be preserved. This results from the suppression of the relative
positional decoherence in Eq. (4.57). We term this regime as the inertial regime, as indistinguishable
particles exhibit ballistic transports. Finally, in the long-time regime t ≫ 4σ2/(γd2), the coherence
between the nearest Fock states with the minimal CMC difference δXc.m. = 1/N is eventually lost,
resulting in a diffusive behavior. The diffusion constant depends on quantum statistics (see Fig. 4.14(a)
below).

4.3.5 Numerical demonstrations
We numerically demonstrate the general properties discussed above by focusing on the minimal
case of two noninteracting particles. We calculate the single-trajectory dynamics by Eq. (4.57) for
indistinguishable particles and by Eq. (4.64) for distinguishable particles.
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Fig. 4.14 Diffusive dynamics under the spatial observation with a relatively strong measurement
strength. (a) The diffusion constant for distinguishable particles (solid black curve), bosons (blue
dashed curve) and fermions (red dash-dotted curve). Typical diffusive trajectory dynamics is plotted
for (b) bosons and (c) fermions. We use Γ = 16.0 and the results in (a) are obtained by taking the
average over 103 realizations. Reproduced from Fig. 4 of Ref. [127]. Copyright © 2017 by the
American Physical Society.

Inertial regime
A particularly interesting time regime is the second regime mentioned above, in which the coherence
between relative positions can be preserved, resulting in ballistic quantum walks of two particles. To be
specific, we choose the initial state to be two particles that are localized at adjacent sites. For the unitary
dynamics, the evolution of the density distribution is almost not affected by quantum statistics (see
Fig. 4.13a) [421], where the peaks of the density ballistically propagate with ⟨x2⟩ = 2J2t2/ℏ2 [422].
In contrast, under the spatial observation, the quantum dynamics strongly depends on quantum
statistics. Although distinguishable particles show uncorrelated diffusive transport (see Fig. 4.13b),
indistinguishable particles show ballistic and correlated transport (see Fig. 4.13c, d). The correlation
can be understood as the standard multi-particle interference between identical particles, which are
also known as bunching (antibunching) of bosons (fermions).

In Fig. 4.13c, two bosons transport in the same direction due to constructive interference. Because
of rapid collapse of the CMC, two bosons form a localized wave packet. The rapid collapse is
characterized by a time scale tcol ≃ (3

√
2ℏ2/(ΓJ2))1/3. In contrast, in Fig. 4.13d, two fermions move

in the opposite directions and the CMC is localized around zero. In this sense, the weakly resolved
spatial observation does not appreciably alter the quantum dynamics of fermions in comparison with
the unitary dynamics (see Fig. 4.13a). This sharply contrasts with the site-resolved measurement [411],
in which atoms inevitably transport diffusively due to the strong measurement backaction.

Diffusive regime
Figure 4.14 shows our numerical results for the diffusive regime of the quantum dynamics under
the spatial measurement, where we set the measurement strength Γ to be a larger value than the
one used above. Figure 4.14 (a) plots the square σ2

r of relative distance between two particles.
For distinguishable particles, it is characterized by the diffusion constant (see Appendix G for its
derivation)

Dc =
16J2σ2

γℏ2d2 . (4.66)
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Quantum statistics acts as an effective attractive (repulsive) interaction for bosons (fermions), leading
to a diffusion constant smaller (larger) than Dc . Typical diffusive trajectory dynamics for bosons and
fermions are shown in Figs 4.14 (b) and (c).

While we have so far focused on the simplest two-particle case, our general arguments below
Eq. (4.65) hold true for many-particle cases as long as atom interactions are negligibly weak. We
leave it as an interesting open question to study the dynamics of interacting many-body systems under
the weak spatial observation formulated here. At this point, it is worthwhile to remark that, taking the
high-resolution limit σ ≪ d and the ensemble average of Eq. (4.50), we can reproduce the following
Lindblad equation:

d E[ρ̂]
dt

= − i
ℏ
[Ĥ, ρ̂] − γ

2

∑
m

[n̂m, [n̂m,E[ρ̂]]], (4.67)

which has been used to study the dissipative dynamics under the site-resolved measurement [159,266,
279, 280] ∗. In this dissipative dynamics, if the interaction is absent, it has been known that the rapid
decoherence occurs with the time ∼ 1/γ, resulting in diffusive behavior characteristic of classical
random walk [423–426]. Yet, an exotic transport such as anomalous diffusion can still appear in
the presence of a nonzero interaction [279, 280]. It would be intriguing to explore such anomalous
behavior in a many-body system under the continuous spatial observation discussed in this section.

4.4 Experimental situations in ultracold gases
We have developed three general formalisms to discuss the emergent out-of-equilibrium phenomena
in quantum many-body systems under continuous observation. We have applied them to several
specific examples that can be realized in ultracold atoms. We here briefly discuss experimental
situations to implement those models. Firstly, as a possible experimental implementation of the
full-counting dynamics studied in Sec. 4.1, we propose to realizing our exactly solvable model in
quantum gas microscopy [2–11] to count the number of quantum jumps. We remark that one can
simultaneously measure the total number of particles and the site-resolved density-density correlation.
In noninteracting models, the density-density correlation can be expressed as the product of the equal-
time correlations and thus both correlations share the same information. One can realize the one-body
loss via a weak resonant beam [206, 249, 250, 281–283] (see Appendix A for detailed derivations).
The parameters γ, J, h in the solvable model can be experimentally controlled by tuning the intensities
of external beams. In practice, we propose to use 6Li atoms with a beam resonant to the 2S1/2→2P3/2
transition [283].

Secondly, as for our study of thermalization presented in Sec. 4.2, we remark that both local and
global measurement processes assumed for numerical simulations are experimentally realizable with
state-of-the-art techniques of ultracold atoms. The former associates with the jump operator L̂l = n̂l
and corresponds to a site-resolved position measurement of ultracold atoms via light scattering, as
realized in quantum gas microscopy (see Fig. 4.15(a)) [2, 3, 36, 266]. The latter associates with the
jump operator L̂ =

∑
l(−1)l n̂l acting on an entire region of the system, which can be realized by

continuously monitoring photons leaking out of a cavity coupled to a certain collective atomic mode
(see Fig. 4.15(b)) [38]. Details about the microscopic derivations of the jump operators based on
atom-photon interactions can be found in Refs. [36, 38, 266].

Finally, we make several remarks on experimental situations in our study on the minimally destruc-
tive spatial observation in Sec. 4.3. In the discussions above, while a unit collection efficiency of
photons has been implicitly assumed, we note that it is straightforward to generalize our theory to take
into account contributions from uncollected signals (see e.g., [135,427]). Heating effects can often be

∗ Note that the jump operator L̂m = n̂m coincides with the one used for the local measurement discussed in our study on
the thermalization in Sec. 4.2.
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Fig. 4.15 Quantum many-body systems under (a) local and (b) global continuous measurements.
(a) Hard-core bosons on a lattice are subject to site-resolved position measurement via light
scattering. (b) The cavity photon field is coupled to a collective mode of atoms and photons
emanating from the cavity are continuously monitored.

suppressed in the deep Lamb-Dicke regime [428] or by Raman sideband cooling [5, 6, 33, 34]. When
heating becomes substantial, one has to take into account higher bands [266] of an optical lattice. The
resolution σ and the collection efficiency can be controlled via a numerical aperture of lens [429]. To
perform a minimally destructive imaging, recently proposed subwavelength lattices [412–415] may
be useful.

4.5 Conclusions and Outlook
In this Chapter, we have developed three general formalisms to study the out-of-equilibrium dynamics
of many-body systems under continuous observation and applied them to analyze the dynamics of
specific models that can be realized with ultracold atoms.

In Sec. 4.1, we have introduced the class of open many-body dynamics conditioned on measurement
outcomes, which we termed as the full-counting dynamics. We have shown that the ability to measure
individual quanta can reveal previously unexplored types of many-particle dynamics. In particular, we
have demonstrated that, at the cost of the probabilistic nature of quantum measurement, correlations
can propagate faster than the LR bound. We have identified the origin of the nonlocal propagation as the
nonorthogonality of eigenstates due to the non-Hermiticity of the continuously monitored dynamics.
Given that the nonorthogonality is a ubiquitous feature in non-Hermitian systems, we expect that
the findings presented here can also emerge in other types of open many-particle systems. The
observed features become most significant when the nonorthogonality is maximally strong due to an
exceptional point (e.g., in PT-symmetric systems as we demonstrated in the solvable model). It remains
an interesting open question to elucidate roles of interactions [300,301] or nonintegrablility [302,303]
in the full-counting dynamics. It would be interesting to develop a possible field-theoretic argument
on the quench dynamics of quasiparticles [298, 299]. In fact, the low-energy field theory of the
effective Hamiltonian ĤPT in Eq. (4.10) is a special case of the generalized sine-Gordon model (3.72)
introduced in the previous Chapter. It is also worthwhile to mention that this class of field theory
includes quantum Liouville theory [233], which has been studied especially in high-energy physics.

In Sec. 4.2, combining the eigenstate thermalization hypothesis and quantum measurement theory,
we have shown that a generic quantum many-body system under continuous observation thermalizes at
a single trajectory level. The effective temperature and the dynamics of open many-body systems can be
quantitatively described by the matrix-vector product ensemble (4.40). Also, it can be widely applied
to systems described by a many-body Lindblad master equation such as dissipative [34,125,152,153,
176, 277, 279–282, 380–384] or noisy systems [385–388, 394]. Our general results are supported by
numerical analyses of nonintegrable systems subject to local and global observations, which can be
experimentally realized by quantum gas microscopy and in atom-cavity systems. There exist several
interesting future directions. Firstly, when the Hamiltonian is integrable [359–365], quantum jumps
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act as weak integrability-breaking perturbations. It would be interesting to study thermalization at the
trajectory level in such a situation, where one can expect the appearance of prethermalization [328,359]
if the effects from quantum jumps are insignificant. When quantum jumps sufficiently mix the
distribution, (possibly) biased probability weights on nonthermal rare states admitted in the weak
variant of ETH [328,333,402,430] will vanish and ultimate thermalization should happen. While our
first attempt to elucidate this picture has been provided in Sec. 4.2.3, we leave detailed analyses as
interesting future problems. It also merits further study to analyze effects of measurement on a many-
body localized system [366, 367], where even the weak ETH can be violated [431]. Secondly, there
may exist connections between the random unitary circuit dynamics [388–393] and the nonintegrable
open trajectory dynamics studied here. Both dynamics share important common features; they have
no energy conservation, obey the Lindblad master equation upon the ensemble average [388] and
satisfy the locality. In particular, it merits further study to explore the Kardar-Parisi-Zhang universal
behavior [390] or the predicted scrambling dynamics [391,392] in the present setup.

In Sec. 4.3, we derived the diffusive type of the stochastic Schrödinger equation (4.57) that governs
quantum many-particle dynamics under the weak spatial observation. Taking the weak and frequent
measurement limit, an overall fluctuation in the measurement outcomes has been taken into account as
a simple Wiener stochastic process in the resulting equation. As a consequence, the indistinguishability
of particles leads to a complete suppression of relative positional decoherence. Analyzing the minimal
example with two particles, we have demonstrated that this suppression results in unique transport
dynamics. In particular, there emerges the time regime in which the coherence between two particles
persists even under measurement. In the long-time regime, our results indicate that particles finally
exhibit diffusive behavior, in which particle species can alter the diffusion constants. Our study
suggests several interesting future directions. Since relevant decoherence operators in Eq. (4.57)
now reduce to the center-of-mass coordinate alone, it would be possible to apply theory of quantum
feedback control [403, 404] to quantum many-body systems under the spatial observation. In this
sense, a nondestructive observation discussed here can be a starting point for realizing real-time
feedback control of quantum many-body systems. It remains an interesting open question to elucidate
a role of interactions in many-particle systems under the weak spatial observation. For example, we
can use Eq. (4.57) to investigate effects of interactions by switching on the on-site interaction term U
in the system Hamiltonian Ĥ. Also, our results may be applicable to preserving coherence in quantum
control. Besides such a practical importance, a minimally destructive observation of many-body
systems will also offer interesting possibilities from a fundamental point of views. For instance, it may
provide a tool to study effects of measurements on strongly correlated phenomena such as quantum
critical phenomena [123,124,269, 432, 433], as we have discussed in the previous Chapter.
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Chapter 5

Quantum Spin in an Environment

We have so far studied the emergence of unique many-body phenomena induced by the backaction from
an external observer or environment. The studies presented in the first part rely on the theory of open
quantum systems reviewed in Chapter 2, which can be applied if the system-environment correlation
is negligibly small and thus the Born-Markov approximation is valid. Yet, a quantum system that
strongly correlates with an external world is ubiquitous in nature. In such a physical situation, one
has to deal with the strong entanglement between the system and the environment. Ideally, this can be
achieved by explicitly taking into account all the degrees of freedom of the environment rather than
eliminating them as done in Chapter 2. In the following two Chapters, we move on to studies of in-
and out-of-equilibrium physics in such a strongly correlated open quantum system by focusing on its
most fundamental paradigm, that is, a quantum impurity.

In this Chapter, we develop a versatile and efficient theoretical approach to study ground-state and
out-of-equilibrium properties of generic quantum spin-impurity systems. In particular, we introduce a
new canonical transformation that can completely disentangle the localized spin and the environmental
degrees of freedom. After introducing our general variational formalism for a fermionic environment,
we apply it to several paradigmatic examples such as the anisotropic and two-lead Kondo models. We
benchmark our approach by comparing it with other numerical and analytical results in both in- and
out-of-equilibrium regimes. We also reveal new types of nonequilibrium dynamics such as long-time
crossover dynamics mimicking nonmonotonic renormalization group flows. Such long-time many-
body dynamics have been difficult to study in other methods. We propose a possible experiment to
test the predicted dynamics by using quantum gas microscopy. We also generalize our approach to a
bosonic environment and apply it to study a novel type of strongly correlated systems realized in the
state-of-the-art experiments of Rydberg molecules, which have been otherwise challenging to analyze
in previous theoretical approaches.

5.1 Introduction
Understanding physics of quantum systems open to an external world has now become one of the most
important problems in physics from both fundamental and application-oriented points of views. Open
quantum systems can be studied based on the theory reviewed in Chapter 2 if the correlation between
the system and an external observer or environment is vanishingly small and thus the information flow is
unidirectional (i.e., the Born-Markov approximation is valid), as typically realized in quantum-optical
setups. Yet, in a variety of physical systems ranging from solid-state materials to artificial quantum
simulators, it is ubiquitous that a quantum system can be strongly correlated with an external world.
In such a case, the strong system-environment entanglement invalidates the Markovian description
and poses a theoretical challenge. A quantum impurity is the most fundamental class of such strongly
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correlated open quantum systems.
A variety of problems corresponding to quantum impurities have been at the forefront of condensed

matter physics, atomic, molecular and optical (AMO) physics, and quantum information. For instance,
they have played central roles to understand decoherence in quantum nanodevices [47–49], strongly
correlated physics in heavy fermion materials [42–46], transport phenomena in mesoscopic systems
[50–61], and laid the basis of dynamical mean-field theory [62] (DMFT). To understand physics of
these vastly different systems, it is essential to reveal the role of entanglement between the impurity
and the environment; this is best illustrated by the formation of the Kondo-singlet state [40], which
is a many-body bound state between a localized spin-1/2 impurity and itinerant fermions in the
environment.

The equilibrium properties of quantum impurities, especially for the Kondo problem, are now theo-
retically well understood from the perturbative renormalization group (RG) [434], Wilson’s numerical
renormalization group (NRG) [435–441] and the exact solution via the Bethe ansatz [117–119].
However, its nonequilibrium property is still a challenging and active area of research in both ex-
periments [72, 442–446] and theory [73–113]. Previous theoretical works include the real-time
Monte Carlo calculations [73–77], the perturbative RG analyses [78–82], the Hamiltonian RG ap-
proach [83–85], the coherent-state expansion [86–88], the density-matrix renormalization group
(DMRG) [89–96], the time-dependent NRG (TD-NRG) [97–103], the time evolving decimation
(TEBD) [104, 105], and analytical solutions [106–113]. Despite the rich variety of the methods,
revealing the long-time many-body dynamics remains a major challenge. Due to high computational
cost, the previous theoretical approaches become increasingly challenging at longer times. For in-
stance, numerical methods based on the matrix-product states (MPS) become very challenging in
long-time regimes due to the requirement of an exponentially large bond dimension [115]. Also, in
TD-NRG, the logarithmic discretization has been argued to cause artifacts in long-time regimes [114].
Another challenge is to reveal many-body spatiotemporal dynamics of the environmental degrees of
freedom, as they are often replaced by a simplified effective bath or integrated out so that their mi-
croscopic details are lost. Furthermore, the previous methods are restricted to only a particular class
of quantum impurity problems, where a type of interactions between the impurity and surrounding
particles is specified and bath particles are often assumed to move ballistically. It is not obvious
how one could extend the previous techniques to more generic situations including strong disorder
and nonlocal couplings to the impurity, which are relevant to state-of-the-art experimental systems
realized in AMO physics, condensed matter physics and quantum information. These challenges call
for a new theoretical approach to solving quantum impurity problems.

A variational approach is one of the most powerful and successful methods to solve quantum many-
body problems. Its central guiding principle is to design quantum states that can capture essential
physics behind the problems in an efficient way with avoiding the exponential complexity of the exact
wavefunction. For example, a Bose-Einstein condensate (BEC) in both in- and out-of-equilibrium
regimes can be well described by a coherent state [447], and low-temperature equilibrium physics
of one-dimensional local Hamiltonians can be efficiently described by the MPS [116]. The essential
physical feature in the former (latter) is the presence of the off-diagonal long-range order (the small
amount of entanglement), which allows one to develop an efficient description avoiding the exponential
complexity.

Over the last several decades, a variational approach has also proven useful to understand quantum
impurity systems. Studies in this direction date back to Tomonaga’s meson-nucleon theory in 1947
[448]. Lee, Low and Pines (LLP) then applied it to analyzing a polaron, which is a mobile spinless
impurity dressed by phonon excitations [449]. The essential feature in quantum impurity problems is
the presence of the entanglement between the impurity and the environment. The key idea by LLP is
to take into account this entanglement by introducing the unitary transformation (now known as the
LLP transformation)

ÛLLP = e−ix̂·P̂bath, (5.1)
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(a)

(b)

Fig. 5.1 Disentangling canonical transformation in quantum impurity problems. (a) The impurity
spin interacts with environmental particles in an arbitrary way, leading to a strong impurity-
environment entanglement. (b) The disentangling canonical transformation allows one to move on
to the “corotating” frame of the impurity, where the impurity dynamics is frozen at the expense of
generating an effective interaction among bath particles. Reproduced from Fig. 1 of Ref. [129].
Copyright © 2018 by the American Physical Society.

where x̂ is the position operator of the impurity and P̂bath is the total momentum operator of phonons.
In the laboratory frame, the total momentum P̂tot = p̂ + P̂bath of the impurity and the environment is
conserved. Yet, via the LLP transformation, the conserved quantity turns out to be the momentum
operator p̂ of the impurity:

Û†LLPP̂totÛLLP = p̂. (5.2)

This indicates that, after the transformation, one can take p̂ as a classical variable, i.e, the impurity
dynamics is completely frozen. The LLP transformation then leads to the following variational states

|Ψtot(ξ)⟩ = ÛLLP |p⟩|Ψbath(ξ)⟩, (5.3)

where |p⟩ is a momentum eigenstate of the impurity, and |Ψbath(ξ)⟩ is a bath wavefunction with
variational parameters ξ. For instance, one can choose a bath state |Ψbath⟩ to be the product of
coherent states as in the original papers [448, 449]. While such an efficiently parametrizable en-
vironment wavefunction |Ψbath(ξ)⟩ is factorizable and thus does not incorporate the entanglement,
the variational states (5.3) can efficiently represent the impurity-environment entanglement via the
transformation (5.1). This class of variational states has proven very successful to reveal ground-state
properties and nonequilibrium dynamics of mobile impurities and laid the foundation for successive
studies in polaron physics∗ [132, 450–468].

The aim of this Chapter is to generalize this variational approach to a localized spin-impurity
model (SIM), which is a fundamental paradigm of strongly correlated open quantum systems (see
Fig. 5.1(a)). Introducing a new disentangling transformation, we present a versatile and efficient
variational approach to studying in- and out-of-equilibrium properties of generic SIM. In Sec 5.2, we
present the disentangling transformation that completely decouples the impurity and the environment
(see Fig. 5.1(b) for an illustration). Different from the LLP transformation (5.1), constructing the
canonical transformation for SIM is not obvious due to the noncommutativity of the spin operators.
We explain a general strategy to obtain the disentangling transformations and apply it to single-
impurity systems, two-impurity systems and the Anderson model. In Sec. 5.3, combining the canonical
transformation with fermionic Gaussian states, we introduce a family of variational states that can

∗ In the next Chapter, we will apply this approach to discuss new types of nonequilibrium dynamics of magnetic polarons.
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efficiently capture nontrivial impurity-environment entanglement. We present a set of nonlinear
equations of motions to reveal ground-state properties and nonequilibrium dynamics of generic SIM.
In Sec. 5.4, applying the present theoretical approach to the anisotropic Kondo model, we benchmark
it with the MPS, the Bethe-ansatz solution and the known nonperturbative scalings. Besides the ability
to efficiently represent nontrivial impurity-environment correlations, our approach reveals new types
of long-time nonequilibrium dynamics that have been difficult to obtain in the previous approaches. In
Sec. 5.5, applying our approach to the two-lead Kondo model, we analyze its transport properties and
nonequilibrium spatiotemporal dynamics and demonstrate that the obtained results are consistent with
the previous studies [91, 102, 113, 469]. In Sec. 5.6, we propose a possible experiment to realize the
anisotropic Kondo model in ultracold gases. In particular, we argue that the long-time spatiotemporal
dynamics predicted in our theory can readily be tested by the current techniques of quantum gas
microscopy. In Sec. 5.7, we generalize our theoretical approach to a bosonic environment. This can
be done by combining the canonical transformation introduced in Sec 5.2 with the bosonic Gaussian
states. We apply the variational approach to a novel type of quantum impurity problems, namely,
the Rydberg central spin problem [120–122], in which the impurity spin interacts with surrounding
bosons via long-range couplings. We present numerical results on the absorption spectrum and the
magnetization dynamics, which can be directly tested by the state-of-the-art experiments in ultracold
gases. Finally, we conclude this Chapter with an outlook in Sec. 5.8.

5.2 Disentangling canonical transformation
We here introduce a disentangling canonical transformation of SIM. Let us first outline the general idea
here. The central point is that a spin-1/2 operator can completely be decoupled from the environmental
degrees of freedom if a generic Hamiltonian Ĥ has some parity symmetry P̂, i.e., [Ĥ, P̂] = 0 with
P̂2 = 1. The reason is that, as both the spin-1/2 operator and the parity operator have the same set of
eigenvalues {1,−1}, we can always construct a unitary transformation Û that transforms the conserved
parity P̂ to a spin-1/2 operator via (compare Eq. (5.4) with the LLP transformation (5.2))

Û†P̂Û = n · σ̂, (5.4)

where σ̂ = (σ̂x, σ̂y, σ̂z)T is a vector of the Pauli matrices and n is a three-dimensional real unit vector.
As a result, the transformed Hamiltonian commutes with the spin-1/2 operator [Û†ĤÛ,n · σ̂] = 0,
meaning that the spin dynamics is frozen, or said differently, the transformed Hamiltonian conditioned
on a classical number n · σ̂ = ±1 only contains the environmental degrees of freedom. While a
construction of such a unitary transformation Û is not obvious due to the noncommutativity of the
spin operators, we find its explicit and simple form (see Eq. (5.13) below). We can then combine
this disentangling transformation with an efficiently parametrizable bath wavefunction and introduce
a family of variational states to efficiently encode the nontrivial entanglement between the localized
spin-1/2 impurity and the environment.

5.2.1 Disentangling a single spin-1/2 impurity and an environment
We first apply the disentangling transformation to a localized spin-1/2 impurity coupled to a fermionic
environment:

Ĥ = Ĥbath + Ĥimp + Ĥint, (5.5)

where

Ĥbath =
∑
lmα

Ψ̂
†
lα

hlmΨ̂mα (5.6)
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is a noninteracting fermionic bath Hamiltonian, Ψ̂†
lα

(Ψ̂lα) creates (annihilates) a fermion with an
energy level l = 1,2, . . . ,Nf and a spin-z component α =↑,↓, and hlm is the (l,m) component of an
arbitrary Nf ×Nf Hermitian matrix corresponding to a single-particle bath Hamiltonian. The impurity
Hamiltonian

Ĥimp = −hz ŝzimp (5.7)

describes a magnetic field hz acting on the spin-1/2 impurity operator ŝγimp = σ̂
γ
imp/2 with γ = x, y, z

and

Ĥint = ŝimp · Σ̂ (5.8)

represents a generic impurity-bath interaction, where Σ̂ is the bath-spin density operator including the
interaction couplings

Σ̂
γ =

1
2

∑
lmαβ

g
γ
lm
Ψ̂
†
lα
σ
γ
αβΨ̂mβ, (5.9)

where the impurity-bath couplings g
γ
lm

labeled by γ = x, y, z are determined by arbitrary Nf × Nf

Hermitian matrices; they can be long-range and anisotropic. Paradigmatic models with the interaction
Hamiltonian that can be written as Eq. (5.8) include, e.g., the central spin model [470] and the
Kondo-type Hamiltonians [40].

The canonical transformation can be constructed on the basis of the parity symmetry hidden in the
total Hamiltonian (5.5):

P̂ = σ̂z
impP̂bath, (5.10)

where P̂bath is a bath parity defined by

P̂bath = e(iπ/2)(
∑

l σ̂
z
l
+N̂ ) = eiπ N̂↑ . (5.11)

Here, σ̂γ
l
=

∑
αβ Ψ̂

†
lα
σ
γ
αβΨ̂lβ with γ = x, y, z is a spin density for a bath mode l, N̂ is the total bath

particle number, and N̂↑ is the number of spin-up fermions. It is easy to check P̂2
bath = P̂

2 = 1.
The parity symmetry [Ĥ, P̂] = 0 follows from the fact that Ĥ is invariant with respect to the rotation
around the z axis by π, transforming impurity and bath spins as P̂−1σ̂x,yP̂ = −σ̂x,y while keeping
P̂−1σ̂z P̂ = σ̂z . We use this conserved parity to introduce the disentangling transformation Û obeying

Û†P̂Û = Û†
(
σ̂z

impP̂bath

)
Û = σ̂x

imp. (5.12)

Then, in the transformed frame, the impurity spin turns into a conserved quantity.∗ We find an explicit
and simple form of a unitary transformation Û satisfying the condition (5.12) as

Û = exp
[
iπ
4
σ̂
y
impP̂bath

]
=

1
√

2

(
1 + iσ̂y

impP̂bath

)
. (5.13)

Applying this unitary transformation to the Hamiltonian, we obtain the transformed Hamiltonian
ˆ̃H=Û†ĤÛ as

ˆ̃H= Ĥbath − hz ŝximpP̂bath + ŝximpΣ̂
x + P̂bath

(
− iΣ̂y

2
+ ŝximpΣ̂

z

)
. (5.14)

It obeys [ ˆ̃H, σ̂x
imp] = 0 by construction. The impurity can be taken as a conserved classical number

σx
imp = ±1. We remark that the disentangling transformation is also applicable to a bosonic bath (see

Sec. 5.7) and to an interacting bath having an arbitrary bath spin. For the sake of simplicity, we omit

∗ While we here specify n = (1, 0, 0)T in Eq. (5.4), other choices result in the same class of variational states.



5.2 Disentangling canonical transformation 89

the magnetic-field term acting on the bath.
The decoupling of the impurity came at the expense of generating interactions among environmental

particles. This can be inferred from the second and the last terms on the right-hand side of Eq. (5.14).
Physically, the emergent bath interactions indicate effective spin-exchange interactions between bath
fermions mediated by the impurity spin. This situation is analogous to the generation of a nonlocal
phonon coupling after the LLP transformation in the mobile spinless impurity [449]. We stress that
the decoupling of the spin-1/2 operator has a broad applicability, as it is based on the elemental parity
symmetry in the Hamiltonian. For example, we will demonstrate its extension to two-impurity systems
and the single-impurity Anderson model later.

We remark that, at zero field hz = 0 with an even particle number N , there are two degenerate
energy sectors associated with the conserved quantity σx

imp = ±1. This can be shown by noticing the
fact that the two sectors in Eq. (5.14) relate to each other by Ûy

bath = e(iπ/2)
∑

l σ̂
y
l , which transforms the

bath spins via σ̂x,z
l
→ −σ̂x,z

l
. To the best of our knowledge, this exact degeneracy in a generic case

of SIM has not previously been discussed although there have been works on some exactly solvable
cases [117–119,471].

Employing the unitary transformation, we will introduce the following family of variational states
(compare it with Eq. (5.3) for the LLP transformation)

|Ψ⟩ = Û |±x⟩imp |Ψbath⟩
= | ↑ ⟩impP̂± |Ψbath⟩ ± | ↓ ⟩impP̂∓ |Ψbath⟩, (5.15)

where |Ψbath⟩ is a variational bath wavefunction, |±x⟩imp is the eigenstate of the impurity spin with
σ̂x

imp = ±1, and P̂± = (1 ± P̂bath)/2 is the projection onto the subspace with even or odd bath parity.
As we detail later, the variational states can capture the strong impurity-environment entanglement
in a very efficient manner. It is worthwhile to make a remark on the unbiasedness of the variational
states; we use no a priori knowledge about physical properties of the underlying impurity model (e.g.,
the formation of the Kondo-singlet state). The unitary transformation Û contains neither values of
parameters in the Hamiltonian nor variational parameters. Although we will specify |Ψbath⟩ as the
Gaussian states later, a family of variational states (5.15) is still unbiased because the Gaussian states
include all the possible two-particle excitations in an unbiased way.

5.2.2 Disentangling two spin-1/2 impurities and an environment
It is possible to generalize the disentangling canonical transformation to two spin-1/2 impurities if the
system possesses two independent parity symmetries. The main point is that we can then apply the
disentangling transformation twice to change the two conserved parity operators into the two spin-1/2
operators. To be concrete, we consider the following Hamiltonian:

Ĥtwo = Ĥbath + Ĥdirect + Ĥimp−bath, (5.16)

where the bath Hamiltonian Ĥbath and the direct-spin interaction Ĥdirect are given by

Ĥbath =
∑
lmα

Ψ̂
†
lα

hlmΨ̂mα, Ĥdirect =
∑
γ

Kγ ŝγimp,1 ŝγimp,2, (5.17)

where Kγ are couplings between the two impurity spins ŝγimp,i = σ̂
γ
imp,i/2 with i = 1,2 and γ =

x, y, z. The Hamiltonian Ĥimp−bath represents a general interaction between the two impurities and the
environment:

Ĥimp−bath =
∑
i

ŝimp,i · Σ̂i, (5.18)
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where we introduce the bath-spin density operator including the impurity-bath couplings gγ
lm,i

for each
impurity spin i = 1,2 as

Σ̂
γ
i =

1
2

∑
lmαβ

g
γ
lm,i
Ψ̂
†
lα
σ
γ
αβΨ̂mβ . (5.19)

To decouple the first impurity, we use the unitary transformation

Ûtwo
1 =

1
√

2

(
1 + iσ̂y

imp,1σ̂
z
imp,2P̂z

)
, (5.20)

where we denote the parity operator acting on the bath as

P̂γ = e(iπ/2)(
∑

l σ̂
γ
l
+N̂ ) (γ = x, y, z). (5.21)

We observe that the original Hamiltonian is invariant under the π rotation about the z axis, leading to
the parity conservation

[Ĥtwo, P̂1] = 0, P̂1 = σ̂
z
imp,1σ̂

z
imp,2P̂z . (5.22)

The unitary transformation Ûtwo
1 can map this conserved parity (5.22) onto the first impurity operator:

Û†two
1 P̂1Ûtwo

1 = σ̂x
imp,1. (5.23)

Thus, the first impurity is disentangled after the first unitary transformation. We can explicitly obtain
the transformed Hamiltonian ˆ̃H1,two = Û†two

1 ĤtwoÛtwo
1 as

ˆ̃H1,two = Ĥbath + Kx ŝximp,1 ŝximp,2 + P̂z

(
−Ky ŝximp,2 + Kz ŝximp,1

)
+ŝximp,1Σ̂

x
1 + ŝzimp,2P̂z

(
−

iΣ̂y1
2
+ ŝximp,1Σ̂

z
1

)
+ ŝimp,2 · Σ̂2, (5.24)

which commutes with σ̂x
imp,1 as expected from the construction. To decouple the second impurity, we

use the following second unitary transformation:

Ûtwo
2 =

1
√

2

(
1 + iσ̂y

imp,2P̂x

)
. (5.25)

We observe that the Hamiltonian ˆ̃H1,two in Eq. (5.24) is still invariant under the π rotation about the x
axis, and this leads to another parity conservation

[ ˆ̃H1,two, P̂2] = 0, P̂2 = σ̂
x
imp,2P̂x . (5.26)

We can use the second unitary transformation Ûtwo
2 to map the second conserved parity P̂2 onto the

second impurity operator as

Û†two
2 P̂2Ûtwo

2 = −σ̂z
imp,2. (5.27)

We note that Ûtwo
2 commutes with the first impurity operator and thus σ̂x

imp,1 remains to be a conserved

quantity. The final Hamiltonian ˆ̃H2,two = Û†two
2

ˆ̃H1,twoÛtwo
2 after the decoupling of the two impurities

is
ˆ̃H2,two = Ĥbath − Kx P̂x ŝximp,1 ŝzimp,2 + (−i)NKyP̂y ŝzimp,2 + Kz P̂z ŝximp,1

+ŝximp,1Σ̂
x
1 + ŝzimp,2Σ̂

z
2 + ŝzimp,2P̂z

(
−

iΣ̂y1
2
+ ŝximp,1Σ̂

z
1

)
+ P̂x

(
−

iΣ̂y2
2
− ŝzimp,2Σ̂

x
2

)
, (5.28)
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which commutes with the two impurities ŝximp,1 and ŝzimp,2. Here, we use the relation P̂z P̂x = (−i)N P̂y .
To see the entanglement structure encoded by the decoupling transformation, let us specify the sector
σ̂x

imp,1 = +1 and σ̂z
imp,2 = +1 for the sake of concreteness. The variational state is then represented by

|Ψ⟩ = Ûtwo
2 Ûtwo

1 |+x⟩1 | ↑⟩2 |Ψbath⟩

= Ûtwo
2

[
| ↑⟩1 | ↑⟩2

(1 + Pz)
2
|Ψbath⟩ + | ↓⟩1 | ↑⟩2

(1 − Pz)
2
|Ψbath⟩

]
=

1
2
|+x⟩1 | ↑⟩2 |Ψbath⟩+

1
2
|−x⟩1 | ↑⟩2P̂z |Ψbath⟩−

1
2
|+x⟩1 | ↓⟩2P̂x |Ψbath⟩−

(−i)N
2
|−x⟩1 | ↓⟩2P̂y |Ψbath⟩.

(5.29)

We remark that this canonical transformation has already found applications in analyzing the string-
breaking dynamics of quark-antiquark pairs in the prototypical lattice gauge theory [472].

5.2.3 Disentangling the single-impurity Anderson model
We can also generalize the transformation to the single-impurity Anderson model (Ads) such that the
impurity degrees of freedom can be partially disentangled from the environment. We start from the
Hamiltonian

ĤAds =
∑
lm

hlmΨ̂
†
lσ
Ψ̂mσ + V

(
Ψ̂
†
0σΨ̂dσ + H.c.

)
+ ϵd

∑
σ

Ψ̂
†
dσ
Ψ̂dσ +UΨ̂†

d↑Ψ̂
†
d↓Ψ̂d↓Ψ̂d↑, (5.30)

where Ψ̂dσ (Ψ̂†
dσ

) annihilates (creates) a fermion at the impurity orbital with spin σ, V is the
hybridization term, ϵd is an energy of the impurity orbital, and U denotes the on-site Coulomb
interaction. We represent the impurity in the following four-dimensional basis:

{|0⟩d, | ↑⟩d, | ↓⟩d, | ↑↓⟩d}, (5.31)

and use the spin representation of Ψ̂dσ in this basis as

Ψ̂d↑ = eiπ N̂ I2 ⊗ σ+, Ψ̂d↓ = eiπ N̂σ+ ⊗ σz, (5.32)

where we introduce eiπ N̂ with N̂ = ΣlσΨ̂lσΨ̂lσ to maintain the anticommutation relation
{Ψ̂dσ, Ψ̂lσ′} = 0. We observe that the Hamiltonian (5.30) has the parity symmetry

[ĤAds, P̂Ads] = 0, P̂Ads = Ŝz P̂z, (5.33)

where P̂z = e(iπ/2)(
∑

l σ̂
z
l
+N̂ ) = eiπ

∑
l Ψ̂
†
l↑Ψ̂l↑ and we define an operator Ŝz = −I2 ⊗ σz acting on the

impurity. This symmetry corresponds to the invariance of ĤAds under the following transformation:

(Ψ̂0↑, Ψ̂d↑) → (−Ψ̂0↑,−Ψ̂d↑), (Ψ̂0↓, Ψ̂d↓) → (Ψ̂0↓, Ψ̂d↓). (5.34)

In the similar manner as in the transformation (5.13) for the localized single-impurity case, we
introduce the unitary operator

ÛAds =
1
√

2
(1 + iŜyP̂z), (5.35)

where we define Ŝy = −σx ⊗ σy . This transformation can map the conserved parity P̂Ads onto the
impurity operator as follows:

Û†AdsP̂AdsÛAds = iŜz Ŝy = X̂, (5.36)
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where we introduce the impurity operator X̂ = σx ⊗ σx . The explicit form of the transformed
Hamiltonian ˆ̃HAds = Û†AdsĤÛAds can be given by

ˆ̃HAds = Ĥbath +
Veiπ N̂

2

(
Ψ̂
†
0↑I2 ⊗ σx + iΨ̂†0↓σ

y ⊗ σz − P̂zΨ̂†0↑σ
x ⊗ I2 − P̂zΨ̂†0↓I2 ⊗ σx + H.c.

)
+ϵd +

U
4
+

U
4

Ẑ +
1
4
(2ϵd +U)(X̂ − Ŷ )P̂z, (5.37)

where we define Ŷ = σy ⊗ σy and Ẑ = σz ⊗ σz . The conservation of the parity [ĤAds, P̂Ads] = 0
in the transformed frame now turns out to be the partial decoupling of the impurity [ ˆ̃HAds, X̂] = 0.
Since X̂ has two degenerate eigenvalues ±1, the transformed Hamiltonian ˆ̃HAds has two sectors ˆ̃HP

corresponding to the impurity subspace {|Pc⟩, |Ps⟩} spanned by two eigenstates of X̂ having the
eigenvalues P = ±1:

|±c⟩ =
1
√

2
(|0⟩d ± | ↑↓⟩d), |±s⟩ =

1
√

2
(| ↑⟩d ± | ↓⟩d). (5.38)

The states |±c⟩ (|±s⟩) represent the charge (spin) sector of the impurity. Introducing the fermionic
operator

f̂P = eiπ N̂ |Ps⟩⟨Pc |, (5.39)

we can simplify the transformed Hamiltonian as follows:

ˆ̃HP = Ĥbath +
V
2

[
Ψ̂
†
0↑( f̂

†
P + f̂P) − PΨ̂†0↓( f̂P − f̂ †P) − PP̂zΨ̂

†
0↑( f̂

†
P + f̂P) − P̂zΨ̂†0↓( f̂

†
P + f̂P) + H.c.

]
+ϵd +

U
2

f̂ †P f̂P +
(
ϵd +

U
2

)
PP̂z f̂ †P f̂P . (5.40)

The Hamiltonian ˆ̃HP shows that in a large U ≫ V limit the small charge excitation can be adiabatically
eliminated, resulting in the low-energy physics described by the spin fluctuation as realized in the
Kondo model.

5.3 Efficient variational approach to generic spin-impurity
systems

Here and henceforth, we focus on a class of single spin-impurity models (SIM) introduced in Sec. 5.2.1.
To solve generic SIM efficiently, we need versatile variational states capturing essential physics behind
impurity problems while they have to be simple enough such that calculations are still tractable. In
this section, we achieve this aim by combining the disentangling transformation Û with the fermionic
Gaussian states [473–475] in which the number of parameters grows only quadratically with the system
size. While the Gaussian states cannot represent nonfactorizable correlations, the transformation Û
can generate the entanglement between the impurity and the environment, making the variational
states sufficiently flexible to capture essential physics of SIM.

5.3.1 Fermionic Gaussian states
The fermionic Gaussian states are defined by density operators represented by exponentials of a
quadratic form of fermionic operators. For the sake of simplicity, we focus on the pure fermionic
Gaussian states and use them to approximate the environmental wavefunction in the transformed
frame, where the impurity dynamics is decoupled from the bath. It is convenient to introduce the
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Majorana operators

ψ̂1,lα = Ψ̂
†
lα
+ Ψ̂lα,

ψ̂2,lα = i(Ψ̂†
lα
− Ψ̂lα), (5.41)

which satisfy the anticommutation relation

{ψ̂ξ,lα, ψ̂η,mβ} = 2δξηδlmδαβ, (ξ, η = 1,2). (5.42)

One can fully characterize a pure fermionic Gaussian state |ΨG⟩ by a 4Nf ×4Nf real-antisymmetric
matrix Γ, which gives the covariance matrix [473–475]:

Γ =
i
2

⟨
[ψ̂, ψ̂T]

⟩
G
, (5.43)

where ⟨· · · ⟩G is an expectation value with respect to |ΨG⟩. A Gaussian state is pure if and only if its
covariance matrix satisfies Γ2 = −I4N f , where Id is the d × d identity matrix. We denote a vector of
the Majorana operators by ψ̂ = (ψ̂1, ψ̂2)T, in which a row vector ψ̂ξ with ξ = 1,2 is ordered as

ψ̂ξ = (ψ̂ξ,1↑, . . . , ψ̂ξ,N f ↑, ψ̂ξ,1↓, . . . , ψ̂ξ,N f ↓). (5.44)

The pure Gaussian state can be expressed as

|ΨG⟩ = e
1
4ψ̂

T
Xψ̂ |0⟩ ≡ ÛG |0⟩, (5.45)

where X is a 4Nf ×4Nf real-antisymmetric matrix that is related to Γ as

Γ = −Ξσ (Ξ)T , (5.46)

in which we denote Ξ = eX and σ = iσy ⊗ I2N f . It will be also useful to define the 2Nf ×2Nf

correlation matrix:

Γf = ⟨Ψ̂
†
Ψ̂⟩G (5.47)

in terms of Dirac fermions

Ψ̂ = (Ψ̂1↑, . . . , Ψ̂N f ↑, Ψ̂1↓, . . . , Ψ̂N f ↓). (5.48)

Since the Gaussian states are factorizable, using Wick’s theorem, all the higher-order correlations of
fermionic operators can be obtained from the covariance matrix Γ.

5.3.2 Variational time evolution of the covariance matrix
Since the impurity dynamics is decoupled from the bath in the transformed frame, only the envi-
ronmental degrees of freedom, which are denoted as |Ψbath⟩ in Eq. (5.15), evolve in time. Its exact
evolution can be approximated by projecting it onto the manifold spanned by the family of variational
states, which are chosen to be the fermionic Gaussian states here. The variational time-evolution
equations can be derived based on the time-dependent variational principle [475–478]. Integrat-
ing the variational imaginary- and real-time evolutions, one can analyze ground-state properties and
nonequilibrium dynamics of a general SIM, respectively.

We first derive a variational equation for the imaginary-time evolution. Its exact form is defined by

|Ψbath(τ)⟩ =
e−

ˆ̃Hτ |Ψbath(0)⟩


e− ˆ̃Hτ |Ψbath(0)⟩



 . (5.49)

If the overlap between the initial state |Ψbath(0)⟩ and the ground state is nonzero, this evolution will
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provide the ground state in τ →∞. A differential form of the equation of motion is given by
d

dτ
|Ψbath(τ)⟩ = −( ˆ̃H − E)|Ψbath(τ)⟩, (5.50)

where we denote E = ⟨Ψbath(τ)| ˆ̃H |Ψbath(τ)⟩. In our consideration, we approximate |Ψbath⟩ by the
Gaussian state |ΨG⟩ whose covariance matrix Γ corresponds to the time-dependent variational pa-
rameter. Its imaginary-time evolution equation is given by minimizing the deviation ϵ from the exact
imaginary-time evolution in the variational manifold:

ϵ =





 d
dτ
|ΨG(τ)⟩ + ( ˆ̃H − Evar)|ΨG(τ)⟩





2
, (5.51)

where Evar = ⟨ΨG(τ)| ˆ̃H |ΨG(τ)⟩. The minimization condition can formally be written as the following
differential equation:

d
dτ
|ΨG(τ)⟩ = −P̂∂Γ( ˆ̃H − Evar)|ΨG(τ)⟩, (5.52)

where P̂∂Γ projects quantum states onto the subspace spanned by tangent vectors of the variational
manifold. The left-hand side of Eq. (5.52) leads to

d
dτ
|ΨG(τ)⟩=ÛG

(
1
4

: ψ̂T
Ξ

T dΞ
dτ
ψ̂ :+

i
4

Tr
[
Ξ

T dΞ
dτ
Γ

] )
|0⟩, (5.53)

where : : denotes the normal order. The right-hand side of Eq. (5.52) is given by

−( ˆ̃H − Evar)|ΨG(τ)⟩ = −ÛG

(
i
4

: ψ̂T
Ξ

THΞψ̂ : +δÔ
)
|0⟩, (5.54)

where δÔ represents the higher-order terms of ψ̂ which are projected out by P̂∂Γ in Eq. (5.52), and

H = 4
δEvar

δΓ
(5.55)

is the functional derivative of the variational energy. From Eqs. (5.46), (5.53) and (5.54), the
variational imaginary time-evolution equation is obtained as

dΓ
dτ
= −H − ΓHΓ. (5.56)

The variational energy Evar monotonically decreases in this imaginary-time evolution and the varia-
tional ground state will be obtained in the limit of τ →∞. In this limit, the deviation ϵ in Eq. (5.51) is
equivalent to the energy variance, which can be used to assess the accuracy of the reached variational
ground state.

Following the same procedure, the variational equation for the real-time evolution

|Ψbath(t)⟩ = e−i
ˆ̃Ht |Ψbath(0)⟩ (5.57)

can also be obtained. The projection
d
dt
|ΨG(t)⟩ = −iP̂∂Γ ˆ̃H |ΨG(t)⟩ (5.58)

results in the following variational real-time evolution equation:
dΓ
dt
= HΓ − ΓH . (5.59)
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5.3.3 General expression of the functional derivative
To integrate the equations of motions in Eqs. (5.56) and (5.59), it is necessary to derive the analytical
expression of the functional derivative H = 4δEvar/δΓ. The variational energy Evar = ⟨ ˆ̃H⟩G in the
transformed frame can be obtained from Eq. (5.14) as

Evar =
∑
lmα

hlm(Γf )lα,mα −
hz
2
σx

imp⟨P̂bath⟩G +
1
4

∑
lmαβ

gxlmσ
x
impσ

x
αβ(Γf )lα,mβ

+
1
4

∑
lmαβ

(
−igy

lm
σy+ gz

lm
σx

impσ
z
)
αβ
(ΓP

f )lα,mβ, (5.60)

where the impurity spin is conditioned on a classical numberσx
imp = ±1 and we introduce the 2Nf ×2Nf

correlation matrix containing the parity operator as

Γ
P
f = ⟨P̂bathΨ̂

†
Ψ̂⟩G. (5.61)

We can calculate ⟨P̂bath⟩G and ΓP
f as

⟨P̂bath⟩G = (−1)N f Pf
[
ΓF

2

]
, (5.62)

Γ
P
f =

1
4
⟨P̂bath⟩GΣz(I2N f ,−iI2N f )Υ−1

(
Γσ − I4N f

)( I2N f

iI2N f

)
, (5.63)

where Pf denotes the Pfaffian of a real antisymmetric matrix and we introduce the matrices

ΓF =
√

I4N f + ΛΓ
√

I4N f + Λ − (I4N f − Λ)σ, (5.64)

Υ = I4N f +
1
2

(
Γσ − I4N f

) (
I4N f + Λ

)
, (5.65)

which are defined byΛ = I2⊗Σz and Σz = σz ⊗ IN f . We remark that σ is introduced below Eq. (5.46).
We can represent the quadratic part of the Hamiltonian (5.14) in the Majorana basis as iψ̂

TH0ψ̂/4
with

H0 = iσy ⊗ [I2 ⊗ hlm + (σx
imp/4)σx ⊗ gxlm], (5.66)

where hlm and gx
lm

are understood to be Nf ×Nf real matrices. Let us also introduce the matrix

G = −iσy ⊗ g
y
lm
+ σx

impσ
z ⊗ gz

lm
. (5.67)

We can then simplify the expression of the mean energy (5.60) as

Evar =
1
4

Tr
(
HT

0 Γ
)
− hz

2
σx

imp⟨P̂bath⟩G +
1
4

Tr
(
GT
Γ

P
f

)
. (5.68)

Its functional derivativeH = 4δEvar/δΓ is given by

H =H0 +
δ

δΓ

[
−2hzσx

imp⟨P̂bath⟩G + Tr(GT
Γ

P
f )

]
. (5.69)

Doing some calculations to take the derivatives of ⟨P̂bath⟩G and ΓP
f with respect to Γ (c.f. Ref. [479]),

we can rewrite Eq. (5.69) to get the analytical form ofH :

H = H0+

[
hzσx

imp⟨P̂bath⟩G−
1
2

Tr(GT
Γ

P
f )

]
P − i

4
⟨P̂bath⟩G A

[
VGT

ΣzV†
]
, (5.70)
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where A[M]= (M−MT)/2 indicates the matrix antisymmetrization and we denote

P =
√

I4N f + ΛΓ
−1
F

√
I4N f + Λ, (5.71)

V = (ΥT)−1
(

I2N f

iI2N f

)
. (5.72)

Integrating the variational equations (5.56) and (5.59) by using a general expression (5.70) of the
functional derivativeH , one can study ground-state properties and nonequilibrium dynamics of SIM
on demand.

5.4 Application to the anisotropic Kondo model
In this section, the variational approach is applied to the anisotropic Kondo model. We benchmark
our approach with the MPS [116], the Bethe-ansatz solution [117–119,480–482] and the analytically
known nonperturbative scalings.

5.4.1 Kondo problem
Among many spin-impurity systems, the Kondo model is one of the most important and well-
understood problems. It describes physics of a localized spin impurity coupled to a fermionic
environment:

ĤK=−th
L∑

l=−L

(
ĉ†
lα

ĉl+1α+h.c.
)
+

1
4

∑
γ

Jγσ̂
γ
impĉ†0ασ

γ
αβ ĉ0β, (5.73)

where ĉ†
lα

and ĉlα are fermionic creation and annhiliation operators with spin α and position l ∗. The
localized spin-1/2 impurity σ̂

γ
imp interacts with fermions at site l = 0 via the anisotropic couplings

Jx,y = J⊥ and Jz = J∥ . Here and henceforth, we choose the unit th = 1 and tacitly assume that repeated
indices over α, β are to be summed.

The ground-state physics of the anisotropic Kondo problem (5.73) can be understood from the
perturbative renormalization group (RG) analysis, which is valid for small couplings J⊥ and J∥ . The
leading terms of the RG equations for the dimensionless couplings j∥,⊥ = ρF J∥,⊥ normalized by the
density of states at the Fermi energy ρF = 1/(2πth) are [434]

dj∥
dl
= j2
⊥, (5.74)

dj⊥
dl
= j∥ j⊥. (5.75)

The corresponding RG flows are plotted in Fig. 5.2. We note that the RG phase diagram is equivalent
to that of the (conventional) sine-Gordon model with the correspondence j∥ ↔ 2 − K and j⊥ ↔
2gr (see Fig. 3.2 in Chapter 3). The model exhibits a quantum phase transition [47] between the
antiferromagnetic (AFM) phase and the ferromagnetic (FM) phase. In the AFM phase, the ground
state forms the singlet state between the impurity spin and bath fermions (known as the Kondo singlet
state), resulting in zero magnetization ⟨σ̂z

imp⟩ = 0. The FM phase exhibits the triplet formation leading
to a nonzero impurity magnetization. In this phase, the parameter j⊥ flows to zero in the low-energy
limit and thus the impurity dynamics is eventually decoupled from the environment.

Let us apply our general variational approach to the anisotropic Kondo model. We note that, in
Eq. (5.73), the impurity is coupled to only the symmetric bath modes. We can thus choose a basis of

∗ Generalizations to higher dimensions can be straightforwardly done by modifying the hopping matrix.
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Fig. 5.2 Renormalization group flows in the anisotropic Kondo model. The impurity spin forms
the triplet state in the ferromagnetic (FM) regime with j∥ < 0 and | j∥ | > | j⊥ |, where j⊥ scales to
zero and thus the impurity is decoupled in the low-energy limit. In the other regime, the spin forms
the singlet state and develops the antiferromagnetic (AFM) correlation with the couplings flowing to
large values. The structure of RG flows is equivalent to that of the Berezinskii-Kosterlitz-Thouless
transition (compare this figure with Fig. 3.2 in Chapter 3).

the fermionic modes Ψ̂ used in the variational calculation as

Ψ̂0α = ĉ0α, Ψ̂lα =
1
√

2
(ĉlα + ĉ−lα) , l = 1,2, . . . , L. (5.76)

The hopping matrix hlm is then given by the following (L+1)×(L+1) matrix:

h1 = (−th)

©­­­­­­­­«

0
√

2 0 · · · 0
√

2 0 1 0
...

0 1 0 1
...

... 0 1
. . . 1

0 · · · · · · 1 0

ª®®®®®®®®¬
. (5.77)

The couplings gγ
lm

correspond to the local Kondo interaction Jγδl0δm0.
Substituting the above expressions into Eq. (5.70), one can obtain the functional derivative used to

integrate the imaginary-time evolution (5.56) and the real-time evolution (5.59). From the resulting
time-dependent covariance matrix Γ, one can study the ground state and the real-time dynamics of the
anisotropic Kondo model. We remark that physical quantities can be efficiently obtained from Γ. For
instance, the impurity-environment spin correlations can be given as

χx
l =

1
4
⟨σ̂x

impσ̂
x
l ⟩ =

1
4
σx

impσ
x
αβ(Γf )lα,lβ, (5.78)

χ
y
l
=

1
4
⟨σ̂y

impσ̂
y
l
⟩ = 1

4
(−iσy

αβ)(Γ
P
f )lα,lβ, (5.79)

χz
l
=

1
4
⟨σ̂z

impσ̂
z
l
⟩ = 1

4
σx

impσ
z
αβ(Γ

P
f )lα,lβ . (5.80)

We note that ⟨· · · ⟩ represents an expectation value in the original frame. Using Eq. (5.62), the
magnetization is given by

⟨σ̂z
imp⟩ = σ

x
imp⟨P̂bath⟩G = σx

imp(−1)N f Pf
[
ΓF

2

]
. (5.81)
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5.4.2 Entanglement structure of the variational ground state
Before comparing our variational approach with other theoretical methods, it is useful to clarify
the fact that our variational ground state can naturally encode the entanglement structure in the
Kondo-singlet state. To see this, we consider a sector corresponding to zero total spin-z component
σ̂z

tot = σ̂
z
imp + σ̂

z
bath = 0 with σ̂z

bath =
∑L

l=0 σ̂
z
l
.

From Eqs. (5.11) and (5.15) with σx
imp = 1, the many-body state in the original frame contains the

spin-up impurity |↑⟩ coupled to a bath wavefunction with an even number of spin-up fermions N↑ while
the spin-down impurity |↓⟩ is coupled to that with odd N↑. Thus, the projected states |Ψ±⟩ = P̂± |Ψbath⟩
appearing in Eq. (5.15) are eigenstates of σ̂z

bath:

σ̂z
bath |Ψ±⟩ = ∓|Ψ±⟩. (5.82)

In the deep AFM phase, we numerically check that the projected states |Ψ±⟩ satisfy

| | |Ψ±⟩| | = 1/2, ⟨Ψ− | σ̂+bath |Ψ+⟩ = −1/2. (5.83)

These relations together with Eq. (5.15) automatically ensure the fact that the variational ground state
is the singlet state:

|ΨAFM⟩ =
1
√

2

(
|↑⟩imp |Ψ↓⟩ − |↓⟩imp |Ψ↑⟩

)
, (5.84)

where we introduce |Ψ↓⟩ =
√

2|Ψ+⟩ and |Ψ↑⟩ = −
√

2|Ψ−⟩.
We note that, if we specify |Ψbath⟩ in Eq. (5.15) to be a single-particle excitation on top of the Fermi

sea, Eq. (5.84) reproduces the Yosida ansatz [483–485] (see Eq. (5.88) below). Recently, Ref. [486]
has revisited the Yosida ansatz and pointed out that it can contain the most part of the entanglement
in the Kondo singlet state, indicating the ability of our variational states to efficiently capture the
impurity-environment entanglement. That said, it should be emphasized that our variational states
take into account all the possible two-particle excitations and thus go beyond the Yosida ansatz.
This flexibility becomes particularly important when we aim to analyze in- and out-of-equilibrium
properties of SIM in a quantitative manner.

Another criterion to verify the Kondo-singlet formation is to test the sum rule [437] of the spin
correlations χl = ⟨σ̂imp · σ̂l⟩/4:

L∑
l=0

χl =
1
8
⟨σ̂2

tot − σ̂2
imp − σ̂2

bath⟩ = −
3
4
. (5.85)

In the numerical results presented below, the sum rule is satisfied with an error below 0.5% in the
AFM regime with J∥ > 0.

5.4.3 Benchmark tests with the matrix-product states
Matrix-product states (MPS)
We use the MPS to benchmark our variational approach. Let us briefly review the idea of the MPS.
The MPS is the ansatz for quantum many-body states that can be written as

|ΨD⟩=
∑
{ik }

Tr
(
A[0]i0A[1]i1 · · ·A[N − 1]iN−1

)
|i0i1 · · · iN−1⟩ , (5.86)

where {|ik⟩} is a basis of the Hilbert space at site k and A[k]ik represents a D×D matrix labelled by ik ,
where D is the bond dimension. The MPS is applicable to analyzing one-dimensional quantum many-
body states with a small entanglement such as low-temperature equilibrium states or time-evolving
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Fig. 5.3 Spin correlations χz
l
= ⟨σ̂z

impσ̂
z
l
⟩/4 at zero temperature obtained from our non-Gaussian

variational state (NGS, blue circles), the matrix-product state (MPS, red crosses), and the Yosida
ansatz (green triangulars). The insets plot the deviations between the results obtained from two
methods. As shown in the inset of (a), we set ( j∥, j⊥) to be (a) (−0.1,0.4), (b) (0.1,0.4), (c,e)
(-0.4,0.1) and (d,f) (0.4,0.1). We set L = 100 and use the bond dimension D = 260 for MPS.
Reproduced from Fig. 2 of Ref. [129]. Copyright © 2018 by the American Physical Society.

states in short-time regimes [115,116, 487–491].
In practice, to find the best MPS approximation to the ground state of the anisotropic Kondo

model (5.73), we represent the Hamiltonian by a matrix-product operator (MPO) [492] and employ
the variational minimization of the energy

|ΨMPS⟩ = argmin
⟨ΨD | Ĥ |ΨD⟩
⟨ΨD | ΨD⟩

. (5.87)

The minimization can be done by performing the alternating least squares method until the ground-
state energy is converged to a desired precision (see Refs. [115,116] for details). To make comparisons
with our variational results, we use a convergence precision 10−8-10−6 in units of th = 1.

The MPS can also be used for analyzing dynamics by approximating the time-evolution operator by
the Suzuki-Trotter decomposition [493, 494] to express it as a product of MPO [490, 492, 495]. The
calculation is again done by the alternating least squares method and minimizing the distance between
the MPS and the time-evolved state at each time step (see Refs. [115, 116] for details). In general, a
real-time evolution will lead to an increase of the entanglement in the quantum state especially in a
long-time regime. To maintain the numerical accuracy, we check convergence of the results against
an increasing bond dimension at different times.

Yosida ansatz
To illustrate the importance of contributions beyond single-particle excitations, we also make compar-
isons with the Yosida ansatz [483], which is defined as follows:

|ΨYosida⟩ =


1√
2

∑
n>nF dn

(
| ↑⟩impĉ†

n↓ − |↓⟩impĉ†
n↑

)
|FS⟩ (−J∥ ≤ J⊥);∑

n>nF dn | ↑⟩impĉ†
n↑ |FS⟩ (−J∥ > J⊥),

(5.88)

where |FS⟩ is the half-filled Fermi sea, n labels a bath energy mode and n > nF represents a mode
above the Fermi surface. The first (second) line in Eq. (5.88) represents the AFM-singlet (FM-triplet)
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Fig. 5.4 (a) The ground-state energy and (b) the magnetization obtained from our variational state
(NGS, blue circles), the matrix-product state (MPS, red crosses), and the Yosida ansatz (green,
dashed curves). As schematically illustrated in the inset of (b), we use j⊥ = 0.5 and alter j∥ from
−1 to 1. We set L = 200 and use the bond dimension D = 280 for MPS. Reproduced from Fig. 3
of Ref. [129]. Copyright © 2018 by the American Physical Society.

state. We minimize the mean energy ⟨Ĥ⟩Yosida by optimizing the amplitudes {dn}, leading to

ϵndn −
1
4

Jeffψ
∗
0n

∑
m>nF

ψ0mdm = EGSdn, (5.89)

where ψln’s are expansion coefficients of a fermion at site l in the energy basis, i.e., ĉl =
∑

n ψln ĉn, ϵn
is a bath energy, and EGS is the variational ground-state energy. The effective Kondo coupling Jeff is
defined by

Jeff =

{
2J⊥ + J∥ (−J∥ ≤ J⊥),
−J∥ (−J∥ > J⊥).

(5.90)

The variational ground-state energy EGS and the amplitudes {dn} can be obtained from solving the
eigenvalue problem (5.89). It is useful to explicitly see how the Yosida ansatz relates to our variational
states. Using the disentangling transformation Û in Eq. (5.13), the singlet state in the AFM regime
can be expressed as

Û−1 |ΨYosida⟩ = |+x⟩
∑
n>nF

dn√
2

(
ĉ†
n↓ − ĉ†

n↑

)
|FS⟩. (5.91)

The bath state in this transformed frame is just a single-particle excitation on top of the Fermi sea,
which belongs to the fermionic Gaussian states. Thus, the Yosida ansatz is a very special subclass of
our variational states.
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Fig. 5.5 Time evolutions of the magnetization calculated from our variational state (NGS, blue
solid curves) and the matrix-product state (MPS, red dashed curves). We set j∥ = j⊥ = 0.35 for
the ferromagnetic (FM) case and j∥ = j⊥ = 0.35 for the antiferromagnetic case (AFM) in (a). In
(b), we use ( j∥, j⊥) = (0.1,0.4) for the FM case and (−0.4,0.1) for the AFM case. We set L = 100
and vary the bond dimension D ∈ [220, 260] of the MPS for which the results converge within the
time scale in the plots. Reproduced from Fig. 4 of Ref. [129]. Copyright © 2018 by the American
Physical Society.

Benchmark tests in equilibrium regimes
Figure 5.3 shows the benchmarking results for the ground-state impurity-bath spin correlations χz

l
=

⟨σ̂z
impσ̂

z
l
⟩/4. Our variational results quantitatively agree with the MPS results; the observed deviation

is at most a few percent of the maximum value at the impurity site. In the deep FM and AFM regimes,
we find a particularly good agreement (see Figs. 5.3(c) and (d)), in which the deviation is below 1%.

Figures 5.4(a) and (b) plot the ground-state energy Evar and the magnetization ⟨σ̂z
imp⟩. Our results

show quantitative agreement with the MPS results with a deviation below 0.5% in the FM regime,
and even achieve lower energies in j∥ ≲ −0.7 (see the left inset of Fig. 5.4(a)). The largest deviation
in the ground-state energy (see the right inset of Fig. 5.4(a)) and the magnetization (see Fig. 5.4(b))
can be found near the phase boundary. We attribute the observed deviations to a large amount of
entanglement that has to be encoded in the many-body wavefunction in this regime. Due to the
nonmonotonic RG flows, the Kondo couplings can be very small in their midflows, indicating the
formation of a large Kondo cloud. Since the analysis has been done in real space, our variational
states should encode a large amount of the entanglement, which may go above the amount that can be
generated by the canonical transformation Û. In the AFM phase, the ground-state energies calculated
from our variational states and the MPS quantitatively agree with a great accuracy; the deviation is
typically below 0.5% in j∥ > 0. The residual magnetization in the AFM phase is O(10−5) in our
variational method and ⟨σ̂z

imp⟩ ≃ O(10−4) in the MPS.
We remark the great efficiency of our variational approach. In the MPS, the number of variational

parameters is roughly equal to 4LD2 with D and L being the bond dimension and the system size,
respectively. Meanwhile, our variational ansatz uses 4L2 variational parameters. As the bond
dimension D is taken to be about 200-300 and the system size L is typically 100-200, our variational
states have achieved the accuracy comparable to the MPS with two or three orders of magnitude fewer
variational parameters (and shorter CPU time accordingly) than the corresponding MPS ansatz.
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Fig. 5.6 The ground-state magnetization m = ⟨σ̂z
imp⟩/2 obtained from our approach and the

Bethe ansatz (dashed black line). We use TK that is determined from the magnetic susceptibility
χ = 1/(4TK). Reproduced from Fig. 5 of Ref. [129]. Copyright © 2018 by the American Physical
Society.

Benchmark tests in out-of-equilibrium regimes
We next show the comparisons for the dynamics of the magnetization. We choose the initial state to
be

|Ψ(0)⟩ = | ↑⟩imp |FS⟩. (5.92)

We then suddenly switch on the impurity-environment coupling at time t = 0. Figure 5.5(a) shows
the comparison of the magnetization dynamics at the isotropic points j∥ = j⊥ = ±0.35. In the AFM
phase, the Kondo-singlet formation leads to the relaxation of the magnetization to zero. In the FM
phase, the oscillation is caused by a particle excitation from the bottom to the top of the band, in which
the bandwidthD = 4th determines its period 2πℏ/D. The long-time persistence of the oscillation can
be understood from the decoupling of the impurity spin in the low-energy limit. Our variational results
agree with the MPS results with a deviation below O(10−2). Figure 5.5(b) shows the magnetization
dynamics in the anisotropic AFM and FM points. Our variational results agree well with the MPS
results in the short and intermediate time regimes. A small discrepancy can be found in the long-time
regime (t ≳ 10). Its typical order is O(1 × 10−2) (O(6 × 10−2)) in the FM (AFM) phase. Yet, the
results obtained from these two methods still exhibit qualitatively the same features in both phases.

5.4.4 Benchmark test with the Bethe ansatz solution
We next compare our variational approach to the exact solution obtained from the Bethe ansatz (BA)
[117–119, 480–482]. While the BA solution is valid only under the infinite-bandwidth assumption,
our approach should still reproduce the BA results if the relevant energy scale is much less than the
bandwidth D = 4th. The BA solution for the zero-temperature magnetization m = ⟨σ̂z

imp⟩/2 can be
given as [482]:

mBA=


1

4
√
π3

∑∞
k=0

(−1)k
k!

(
π
2
)2k+1

(
k+1/2

2π

)k− 1
2
(
hz
TK

)2k+1
(hz/TK ≤

√
8/(πe));

1
2

{
1− 1

π3/2

∫ ∞
0 dt sin(πt)

t

[
8
πe

(
TK
hz

)2
]

e−t(ln t−1)Γ
(
t + 1

2

)}
(hz/TK >

√
8/(πe)),

(5.93)

where Γ(·) is the Gamma function and the magnetic susceptibility χ ≡ ∂m/∂hz = 1/(4TK) at hz = 0
determines the Kondo temperature TK. In Fig. 5.6, we compare the BA solution mBA (dashed black
line) to our variational results. The deviation is at most a few percent in the regime hz/TK ≲ 1, while
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Fig. 5.7 (a) Screening length ξK at different thresholds f . The dashed lines show the scalings
ξK ∝ e1/j . (inset) We determine ξK as a length in which a fraction 1− f of total correlations exists.
(b) The universal scaling of spin correlations. (c,d) Scalings of relaxation times τ in (c) the spin
correlations and (d) the impurity magnetization. (insets) We determine the relaxation times via
fitting the tales of ΣAF(L)(t) and ⟨σ̂z

imp(t)⟩ with a + be−t/c . The dashed lines show the scalings
ln τ ∝ 1/ j. We set L = 400. Reproduced from Figs. 2 and 3 of Ref. [128]. Copyright © 2018 by
the American Physical Society.

it becomes more significant as we increase hz/TK due to the finite bandwidth of the lattice model. At
a larger Kondo coupling j, the effect of the finite bandwidth begins to take place at a smaller threshold
value of hz/TK because of a larger TK.

5.4.5 Tests of nonperturbative scaling and universal behavior
Equilibrium properties
We here test the universal behavior of the Kondo screening length ξK in the variational ground state. In
practice, we obtain ξK as a size of the Kondo screening cloud [104,496] as follows. First, we calculate
the integrated antiferromagnetic correlations ΣAF(l) =

∑l
|m |=0,2,4... χm with χm = ⟨σ̂imp · σ̂m⟩/4 (see

the inset of Fig. 5.7(a)). Second, we determine ξK from f = 1−ΣAF(ξK( f ))/ΣAF(L) with f > 0 being
a small threshold value. In Fig. 5.7(a), the extracted Kondo length ξK( f ) is plotted against 1/ j, where
its correct nonperturbative scaling ξK ∝ T−1

K ∝ e1/j has been confirmed [43]. Figure 5.7(b) confirms
the universal behavior of χl in units of ξK at different Kondo couplings j, exhibiting the crossover
from l−1 to l−2 decay at l/ξK ∼ 1 [497–499]. In particular, the correlations show the correct l−2

behavior even in a long-distance regime.

Out-of-equilibrium properties
We next study the scalings of the relaxation times τcorr and τmag for the integrated correlations ΣAF(L, t)
and the impurity magnetization ⟨σ̂z

imp(t)⟩. The relaxation times are determined from fitting the time



104 Chapter 5 Quantum Spin in an Environment

Fig. 5.8 Spatiotemporal dynamics of spin correlations χz
l
(t) after the quench in I FM phase,

II AFM phase, III easy-plane FM regime. Panel IV is a closeup of panel III. We use L = 400
and set ( j∥, j⊥) to be (-0.5,0.2) in I, (0.5,0.2) in II, and (-1.85,2) in III. Reproduced from Fig. 1 of
Ref. [128]. Copyright © 2018 by the American Physical Society.

evolutions of the corresponding observables with exponential functions (see the caption of Fig. 5.7
and the insets of Figs. 5.7(c,d)). The extracted relaxation times show the nonperturbative dependence
on the Kondo coupling j for both observables but with different scalings τcorr ∝ e1/j and τmag ∝ e2/j

(see the main panels of Fig. 5.7(c,d)). Our findings seem to be consistent with the TEBD results [104],
which predict the scalings τcorr ∝ e(1.5±0.2)/j and τmag ∝ e(1.9±0.2)/j .∗

5.4.6 Spatiotemporal dynamics after the quench
Finally, we demonstrate that our approach allows one to study previously unexplored nonequilibrium
dynamics. We consider the sudden quench of the impurity-bath interactions starting from the initial
state (5.92). We plot the spatiotemporal dynamics of the impurity-bath correlations χz

l
(t) in three

different regimes of the phase diagram (see the left most panel in Fig. 5.8). The quench generates AFM
(FM) ballistic spin waves in the FM (AFM) phase (see panels I and II) after which the equilibrium FM
(AFM) correlations are formed. Here, the AFM (FM) ballistic spin waves originate from the excess
spin associated with the formation of the triplet (singlet) correlations.

Most interestingly, the correlation shows the long-time crossover dynamics from the triplet to
singlet behavior in the AFM regime III close to the phase boundary (see panel III and its closeup IV in
Fig. 5.8). This peculiar dynamics can be understood from the nonmonotonic RG flows in this regime
(c.f. the left most panel in Fig. 5.8); the high (low) energy physics associated with the FM (AFM)
renormalized coupling J∥ < 0 (J∥ > 0) characterizes the short (long) time dynamics, leading to the
crossover from the triplet-to-singlet behavior. In this respect, here one can interpret the real time as
an effective inverse RG scale [78]. The predicted spatiotemporal dynamics can be tested with, e.g.,
quantum gas microscopy [20, 22, 130, 158, 357] (see also discussions in Sec. 5.6).

We note that, by employing the infinite-bandwidth approximation, the Kondo problem can be
mapped to the spin-boson model [47] that is continuous in space as a result of bosonization. With
this mapping, the impurity relaxation and the spatiotemporal dynamics in a similar setup have been
analyzed by the TD-NRG method [98, 103]. However, a strictly linear dispersion and an artificial
cut-off energy are necessary in that method. In this respect, our approach is advantageous since it
allows one to make a direct quantitative comparison with experimental systems, as it relies neither
on the infinite-bandwidth limit nor on bosonization. This aspect is particularly important especially
in view of rapid experimental developments to simulate nonequilibrium quantum dynamics using

∗ We remark that a relatively large deviation in the scaling of τcorr has been attributed to the difficulty of taking the
adiabatic limit in the Anderson model analyzed in the TEBD study [104].
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artificial quantum systems [72, 303, 442–446,500].

5.5 Application to the two-lead Kondo model
5.5.1 Model
We next apply our general variational approach to study the two-lead Kondo model [79], in which
the spin impurity interacts with fermions at the centers of the left and right leads (see Fig. 5.9). The
Hamiltonian is

Ĥtwo=
∑
lη

[
−th

(
ĉ†
lηα

ĉl+1ηα+h.c.
)
+eVη ĉ†

lηα
ĉlηα

]
+

J
4

∑
ηη′

σ̂imp · ĉ†0ηασαβ ĉ0η′β−
hz
2
σ̂z

imp, (5.94)

where ĉ†
lηα

(ĉlηα) is a creation (annihilation) operator of a fermion with spin α and position l on the
left (η = L) or right (η = R) lead, J is the Kondo coupling strength, the hopping th = 1 sets the energy
unit, and eVη is a chemical potential acting on each lead.

To apply our approach, we note that only the following symmetric bath modes are coupled to the
impurity:

Ψ̂0η,α = ĉ0ηα, Ψ̂lη,α =
1
√

2

(
ĉlαη + ĉ−lηα

)
l = 1,2, . . . , L. (5.95)

The bath Hamiltonian h2 in this basis can be taken as

h2 =

(
h1 + eVLIL+1 0

0 h1 + eVRIL+1

)
, (5.96)

where h1 is the hopping matrix for a single lead (see Eq. (5.77)). The impurity-bath coupling matrix
g
γ
lm

is

g = J
(

1 1
1 1

)
⊗ diagL+1(1,0, ...,0), (5.97)

where diagd(v) denotes a d×d diagonal matrix with elements v, and we consider the isotropic interac-
tion for the sake of simplicity. Substituting Eqs. (5.96) and (5.97) into the functional derivative (5.70),
we integrate the real-time evolution (5.59) to analyze transport properties and out-of-equilibrium
dynamics of the two-lead Kondo model.

Fig. 5.9 A schematic illustration of the two-lead Kondo model. Our variational approach allows
one to calculate the dynamics of the current I(t), the magnetization ⟨σ̂z

imp(t)⟩, and the spatiotemporal
behavior of fermions in two leads. Reproduced from Fig. 6 of Ref. [129]. Copyright © 2018 by
the American Physical Society.
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Fig. 5.10 (a) Time evolutions of the magnetization ⟨σ̂z
imp(t)⟩ (blue dashed curve) and the current

I(t) (black solid curve). (b) Spatiotemporal dynamics of the spin correlations χz
l
(t). (c) Spatiotem-

poral dynamics of density changes relative to the initial values in each lead. We use L = 100 for
each lead, and set VL = −VR = 0.25 and j = 0.4. Reproduced from Fig. 7 of Ref. [129]. Copyright
© 2018 by the American Physical Society.

5.5.2 Spatiotemporal dynamics of the environment after the quench
We consider the quench protocol starting from the initial state

|Ψ(0)⟩ = | ↑⟩imp |FS⟩L |FS⟩R, (5.98)

where |FS⟩L,R are the half-filled Fermi sea of each lead. We suddenly switch on the Kondo coupling
J and bias potentials VL = V/2 and VR = −V/2 at time t = 0. A bias is taken to be V > 0 without loss
of generality. We calculate the dynamics of the current I(t) between two leads∗:

I(t)= i
eJ
4ℏ

[
⟨σ̂imp · ĉ†0Lασαβ ĉ0Rβ⟩ − h.c.

]
= − eJ

2ℏ
Im

[
σx

impσ
x
αβ(Γf )0Lα,0Rβ + (−iσy + σx

impσ
z)αβ(ΓP

f )0Lα,0Rβ

]
. (5.99)

The result is shown in Fig. 5.10(a) as the black solid curve; the current relaxes to a steady-state
value after a short transient regime. This relaxation time is comparable to the decay time of the
magnetization and thus can be interpreted as the time scale for the formation of the Kondo-singlet
state (see the blue dashed curve in Fig. 5.10(a)). The spatial dynamics of the spin correlation χz

l
(t)

and the density change at each lead are shown in Fig. 5.10(b) and (c), respectively. After the ballistic
density waves reflect at the ends of leads, they propagate back to the impurity site. At the moment
they pass through the impurity site, the magnetization shows the recurrence while the current flips its
sign as shown in Fig. 5.10(a). The density will reproduce the initial homogeneous profile when the
density waves again propagate back to the impurity site after the second reflection.

The results presented here clearly demonstrate the ability of our variational approach to accurately
predict spatiotemporal dynamics in a long-time regime, which has been difficult to achieve in the
previous approaches. In a global quench procedure considered here, a substantial energy (which
linearly scales with the system size) will be acquired, leading to a linear increase of the entanglement
entropy in time. This imposes the fundamental difficulty on, e.g., tDMRG method especially in a
long-time regime [94].

∗ We note that ⟨· · · ⟩ represents an expectation value with respect to a quantum state in the original frame and that ℏ is
placed back when the current and conductance are studied.
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Fig. 5.11 Differential conductance G plotted against (a,d) hz/TK, (b) j and (c) V/TK. (inset, a)
Our results (black open circles) are compared with the low-field asymptotic scaling (blue dashed
line). In (a-d), we set L = 200 for each lead and use (a) j = 0.35 and V = 0, (b) hz = 0 and
V = 0.8th, (c) hz = 0 and j = 0.4, and (d) j = 0.35. (e) Dynamics of the magnetization ⟨σ̂z

imp(t)⟩
at finite hz . In (e), we set L = 100 for each lead and use j = 0.35 and V = 0.8. Reproduced from
Fig. 4 of Ref. [128] and Fig. 9 of [129]. Copyright © 2018 by the American Physical Society.

5.5.3 Transport properties
Differential conductance
We next study transport properties by analyzing the differential conductance. For a given bias V0, we
calculate a steady-state value of the current Ī(V0) by taking the time average over the plateau regime.
The differential conductance G is then obtained from [91,92, 94, 102]

G(V0) ≃
Ī(V0 + ∆V) − Ī(V0 − ∆V)

2∆V
, (5.100)

where ∆V is a small modulation of the bias potential. To benchmark our results, we first test
the quadratic behavior G0(1 − cB(hz/TK)2) with cB = π2/16 at a low magnetic field hz and the
logarithmic behavior π2G0/(16 ln2(hz/TK)) at a high magnetic field [60, 501–508]. As shown in
Fig. 5.11(a) and in its inset, our results reproduce the correct quadratic behavior at a low field with
great accuracy. They are also consistent with the logarithmic scaling at a high field. Figure 5.11(b)
plots the differential conductance G against the Kondo coupling j. Its nonmonotonic behavior with
respect to j is a nontrivial feature originating from the finite bandwidth of the lattice model; in the
limit of a large j, the formation of the bound state localized at the impurity site will prevent other
electrons from approaching the junction, leading to a decrease of G in the limit of j →∞. We remark
that the confirmation of this nonmonotonic feature of G is a nontrivial test which the conventional
approach has failed to pass [113,501,509].



108 Chapter 5 Quantum Spin in an Environment

At a finite bias V , the differential conductance exhibits the nonlinear behavior (see Fig. 5.11(c)). We
make two remarks on the numerical results presented here. First, the current fluctuation in a steady-
state regime causes a numerical error which can easily mask small changes of G in a perturbative
regime V ≪ TK. As a result, a precise test of the quadratic behavior of G at small bias [91,92,94,102]
is rather difficult in our real-time calculations. This difficulty should be circumvented by using a
different quench operation. Second, numerical results on the current and conductance will no longer
be faithful in a high-bias regime V ≫ TK at which the bias can be of the order of the Fermi energy and
the finite bandwidth. Such a difficulty has been commonly found in numerical methods performed in
real-space basis [94,102] and can be circumvented by relying on the infinite-bandwidth approximation
by using the momentum basis. We still emphasize that, in the intermediate regime V ∼ TK, the present
implementation of our variational approach already provides faithful results.

At a finite bias and magnetic field, the conductance exhibits a peak around hz = V (see Fig. 5.11(d)),
which is caused by the level matching of the Fermi surfaces in each lead. Due to a partial destroy of
the Kondo singlet (which can be inferred from the nonzero magnetization in Fig. 5.11(e)), the peak
values of G are smaller than the unitarity limit 2e2/h. These characteristic features are consistent
with the analytical results at the Toulouse point [113] and with the previous findings in the Anderson
model [91, 102, 469].

Finally, we make a remark on the asymmetric behavior of the conductance against the bias and
magnetic field, whose origin has not been fully understood here. As we mentioned above, several
features found in our results are consistent with the results at the Toulouse point. These include the
peak of G at hz ∼ V and the asymmetry in the conductance behavior at hz = 0 with changing V and
the one at V = 0 with changing hz . In fact, the latter has been argued to be a nontrivial feature that
is absent in the conventional bosonization approach [113]. Yet, we have found discrepancies between
the asymmetric behavior at the Toulouse point [113] and that found in our results (which are obtained
with the finite bandwidth and not in the Toulouse limit). It merits further study to elucidate the origin
of the discrepancies observed here.

5.6 Experimental implementation in ultracold gases
We here briefly discuss how one can use ultracold alkaline-earth atoms to experimentally study the
predicted nonequilibrium dynamics in the anisotropic Kondo model. We consider fermionic atoms
prepared in the ground state |g⟩ and trap them in an optical lattice. The ground-state atom has two
internal degrees of freedom | ↑⟩ and | ↓⟩ corresponding to two spin states. At the initial time, two
internal states are equally populated and thus the Fermi sea is formed. A weak laser pulse is then
used to excite a single atom into the excited state |e⟩ (see Fig. 5.12(a)). Because |e⟩ has a different
polarizability from |g⟩, we can create a deep optical lattice acting only on an excited atom and freeze
its orbital motion, mimicking the localized impurity. We denote two internal states of the excited atom
by | ⇑⟩ and | ⇓⟩. In contrast, surrounding ground-state atoms can move and play a role as itinerant
fermions. The total system is governed by the following Hamiltonian:

Ĥtot =
∑
kσ

ϵk ĝ
†
kσ

ĝkσ +
V
√

L

∑
kσ

ĝ†0σ ĝkσ +U(n̂g0↑ + n̂g0↓)(n̂e0⇑ + n̂e0⇓) +Uex
∑
σ,σ′

ĝ†0σ′ ê
†
0σ ê0σ′ ĝ0σ

−
δg

2

∑
kσ

σn̂gkσ −
δe
2

∑
σ

σn̂e0σ, (5.101)

where ϵk is the energy dispersion with wavevector k, ĝkσ annihilates a ground-state atom with
wavevector k and spin σ =↑,↓, ĝ0σ (ê0σ) annihilates the ground-state (excited-state) atom at the
impurity site l = 0, n̂gkσ = ĝ†

kσ
ĝkσ and n̂e0σ = ê†0σ ê0σ are the occupation numbers of ground- and

excited-state atoms at each mode, V =
√

zth is the mixing term with z being the nearest-neighbor
coordination number and th being a hopping parameter, U = (U−eg +U+eg)/2 and Uex = (U−eg −U+eg)/2
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(a) (b)

Fig. 5.12 A possible experimental implementation of the anisotropic Kondo model in ultracold
fermionic alkaline-earth atoms. (a) At the initial time, two spin states of atoms in the ground state
|g⟩ (blue) are equally populated, forming the Fermi sea. A laser pulse is then used to excite a single
atom into the excited state |e⟩ (red), which is tightly localized by a deep optical lattice and acts
as a localized impurity. (b) Parameter regimes explored by periodically driving the Zeeman field
δ(τ) = δ0 cos(ωτ). The dimensionless Kondo couplings j∥ = ρF J∥ and | j⊥ | = ρF |J⊥ | with ρF
being the density of states at the Fermi sea are determined for (top panels)ω = 0.8U−eg and (bottom)
ω = 0.95U−eg with increasing δ0. Parameters are chosen to be th = 0.35U−eg and U+eg = 15U−eg
as realized in Ref. [442]. Reproduced from Figs. 1 and 5 of Ref. [130]. Copyright © 2018 by the
American Physical Society.

are the on-site energy and spin-exchange interactions with U−eg (U+eg) being proportional to the triplet
(singlet) scattering length a−eg (a+eg), and δg (δe) is the Zeeman energy in the ground (excited) state.

In experimentally realizable situations (see e.g., Ref. [442]), due to the large scattering lengths a±eg,
the system can satisfy the following condition:

ϵk, δe,g,V ≪ U,Uex. (5.102)

In this limit, following the standard perturbation theory, we can show that the original Hamilto-
nian (5.101) reduces to the effective Hamiltonian

ĤK =
∑
kσ

(ϵk − σδg/2)ĝ†kσ ĝkσ + K
∑
kk′σ

ĝ†
kσ

ĝk′σ +
J⊥
4

∑
γ=x,y

σ̂
γ
e

∑
σσ′

ĝ†0σσ
γ
σσ′ ĝ0σ′

+
J∥
4
σ̂z
e

∑
σσ′

ĝ†0σσ
z
σσ′ ĝ0σ′ −

he
2
σ̂z
e −

hg
2

∑
σσ′

ĝ†0σσ
z
σσ′ ĝ0σ′, (5.103)

where σ̂e is the localized spin-1/2 operator and parameters J⊥, ∥ and K can be obtained from the
microscopic parameters as functions of δ = δe − δg:

J⊥(δ) =
2V2Uex(U2 −U2

ex)
(U2 −U2

ex)2 −Uδ2
, J∥(δ) =

2V2Uex(U2 −U2
ex)

(U2 −U2
ex)2 −U2δ2

,

K(δ) = −V2

2
2U −Uex

U2 −U2
ex
− δ

2

4
UUex

(U2 −U2
ex)2

J⊥(δ), he(δ)=−hg(δ)=δ
(
1
2
− V2U2

ex

(U2 −U2
ex)2 −U2δ2

)
.

(5.104)

The second term in the first line of the right-hand side of Eq. (5.103) can be eliminated using a basis
transformation of the bath modes and has no significant effect on the low-energy Kondo physics. The
terms including J⊥ and J∥ describe the anisotropic Kondo couplings while those including he and hg
represent the magnetic fields acting on the impurity and the bath. In particular, at the SU(2)-symmetric
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point (δ = 0), we can simplify the Kondo coupling as

J = V2
(

1
U+eg
− 1

U−eg

)
. (5.105)

To control the Kondo couplings and the magnetic fields separately, one can use a periodically modulated
Zeeman field δ(τ) = δ0 cos(ωτ) + δ1. Since the driving frequency is much faster than the low-energy
dynamics, we can employ the standard Floquet expansion and obtain the parameters in the effective
Hamiltonian. For instance, if we set the static Zeeman field to be zero δ1 = 0, the magnetic fields
hg and he vanish because they are odd functions of δ and thus cancel out after taking the time
average. Typical parameter regimes that can be explored in the experimental setup of Ref. [442] are
plotted in Fig. 5.12(b). In particular, one can go across the phase transition line via the periodic-drive
control. Thus, the spatiotemporal dynamics (such as the long-time crossover dynamics near the phase
boundary) predicted in the previous section can be experimentally tested by, for example, using the
site-resolved measurements with quantum gas microscopy.

5.7 Generalization to a Bosonic environment
5.7.1 General formalism
We here generalize our variational approach to a bosonic environment. This can be done by combining
the canonical transformation with the bosonic Gaussian states, as the construction of the disentangling
transformation presented in Sec. 5.2 does not rely on particle species. To be concrete, we consider the
following bosonic quantum impurity Hamiltonian

Ĥb =
∑
lmα

b̂†
lα

hlmb̂lα + ŝimp · Σ̂b, (5.106)

where the first term denotes a noninteracting bosonic environment with b̂†
lα

(b̂lα) being a bosonic cre-
ation (annihilation) operator corresponding to a bath mode l = 1,2, . . . ,Nb and the spin-z component
α =↑,↓ and hlm being an arbitrary Nb ×Nb Hermitian matrix describing a single-particle Hamiltonian
of a bath. The second term describes a generic impurity-bath interaction, in which we introduce
the bosonic bath-spin density operator including the Nb × Nb interaction couplings g

γ
lm

labeled by
γ = x, y, z as

Σ̂
γ
b
=

1
2

∑
lmαβ

g
γ
lm

b̂†
lα
σ
γ
αβ b̂mβ . (5.107)

Disentangling transformation
To disentangle the impurity spin, we can use the unitary transformation in Sec. 5.2 by just replacing
the fermionic operators with the bosonic ones:

Ûb = exp
[
iπ
4
σ̂
y
impP̂b

]
=

1
√

2

(
1 + iσ̂y

impP̂b

)
, (5.108)

where we denote the bosonic bath parity operator as

P̂b = exp

[
iπ
2

(∑
l

σ̂z
b,l
+ N̂B

)]
≡ eiπ N̂B ,↑ . (5.109)

We here represent the bath-spin density of mode l and the total particle number of bosons by

σ̂
γ
b,l
≡

∑
αβ

b̂†
lα
σ
γ
αβ b̂lβ, N̂B =

∑
lα

b̂†
lα

b̂lα, (5.110)
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and N̂B,↑ is the number of spin-up bosons. We can then transform the Hamiltonian as

ˆ̃Hb = Û†
b

ĤbÛb =
ˆ̃Hb,0 +

ˆ̃Hb,1, (5.111)

where ˆ̃Hb,0 is the quadratic part of the transformed Hamiltonian

ˆ̃Hb,0 =
∑
lmα

b̂†
lα

hlmb̂mα + sximpΣ̂
x
b, (5.112)

while ˆ̃Hb,1 is its interacting part

ˆ̃Hb,1 = P̂b

(
−

iΣ̂y
b

2
+ ŝximpΣ̂

z
b

)
. (5.113)

Bosonic Gaussian states
In the transformed frame, we approximate the bath wavefunction by the bosonic Gaussian states.
The bosonic Gaussian states are represented by exponentials of a function of bosonic operators up to
quadratic terms. In analogy with the Majorana representation for the fermionic case, it is useful to
introduce the position and momentum representations of the bosonic operators:

ϕ̂ =
(
x̂1↑, · · · , x̂Nb ↑, x̂1↓, · · · , x̂Nb ↓, p̂1↑, · · · , p̂Nb ↑, p̂1↓, · · · , p̂Nb ↓

)T
, (5.114)

x̂lα = b̂lα + b̂†
lα
, p̂lα = i(b̂†

lα
− b̂lα). (5.115)

The bosonic Gaussian state |Ψb,G⟩ is then fully characterized by its mean field ϕ and covariance matrix
Γb:

ϕ = ⟨ϕ̂⟩b,G, Γb =
1
2

⟨{
δϕ̂, δϕ̂

T
}⟩

b,G
, (5.116)

where δϕ̂ = ϕ̂−ϕ, and ⟨· · · ⟩b,G denotes the expectation value with respect to |Ψb,G⟩. We can explicitly
express |Ψb,G⟩ by

|Ψb,G⟩ = eiθ0 e
i
2 ϕ̂

T
σϕe−

i
4 ϕ̂

T
Xbϕ̂ |0⟩, (5.117)

where σ = iσy ⊗ I2Nb
and the matrix Xb is related to the covariance matrix Γb via

Γb = eσXb

(
eσXb

)T
. (5.118)

We here include the phase factor θ0 that will be necessary when we calculate the spectrum function
later.

The variational energy is given by

Eb,var = ⟨ ˆ̃Hb⟩b,G =
1
4

Tr
[
HT

b,0Γb

]
+

1
4
ϕTHb,0ϕ +

1
4

Tr
[
GT
Γ

P
b

]
− 1

4
Tr

[
Hb,0

]
, (5.119)

where G = −iσy ⊗ g
y
lm
+ σx

impσ
z ⊗ gz

lm
is a matrix including the impurity-bath couplings and we

denote the quadratic partHb,0 as

Hb,0 = S [I2 ⊗ h0] , h0 = I2 ⊗ diag(hlm) + (σx
imp/4)σx ⊗ gxlm. (5.120)

We here define the symmetrization S[·] of a matrix by

S[A] ≡ Re
[

A + AT

2

]
. (5.121)
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The matrix ΓP
b

is defined in the similar manner as in the fermionic case:

Γ
P
b = ⟨P̂bb̂†b̂⟩GS, b̂ = (b̂1↑, · · · , b̂NB ↑, b̂1↓, · · · , b̂NB ↓), (5.122)

which can be represented as

Γ
P
b = −Σz ⟨P̂b⟩GS(I2Nb

,−iI2Nb
)
(
Γ
−1
B

)T
[
1
2
(Γb − I4Nb

) + ϕϕT
Γ
−1
B

] (
I2Nb

iI2Nb

)
, (5.123)

where the mean value of the bath parity can be expressed as

⟨P̂b⟩b,G =
1√

det(ΓB/2)
e−

1
2ϕ

TΓ−1
B (1+Λ)ϕ, (5.124)

and we introduce the matrix ΓB as

ΓB = (I4Nb
+ Λ)Γb + I4Nb

− Λ (5.125)

with Λ = I2 ⊗ Σz and Σz = σz ⊗ INb
.

Variational time-evolution equations
Employing the time-dependent variational principle, we can derive the equations of motions for the
mean field ϕ and the covariance matrix Γb in the same manner as performed in Sec. 5.3.2. The results
are

dϕ
dt
= −Γbhϕ,

dΓb
dt
= σhΓσ − ΓbhΓΓb (5.126)

for the imaginary-time evolution and
dϕ
dt
= σhϕ,

dΓb
dt
= σhΓΓb − ΓbhΓσ (5.127)

for the real-time evolution. Here, we introduce the functional derivatives

hϕ = 2
δEb,var

δϕ
, hΓ = 4

δEb,var

δΓb
. (5.128)

From Eqs. (5.119), (5.123) and (5.124), after doing some calculations we can obtain their analytical
expressions as follows:

hϕ = Hb,0ϕ −
1
2

Tr
[
GT
Γ

P
b

]
Γ
−1
B (1 + Λ)ϕ − ⟨P̂b⟩Γ−1

B S
[(

I2Nb

−iI2Nb

)
ΣzG(I2Nb

, iI2Nb
)
]
(Γ−1

B )Tϕ,

(5.129)

hΓ = Hb,0 + S
[
1
2

Tr
[
GT
Γ

P
b

]
Γ
−1
B (1 + Λ)

(
Υb − I4Nb

)
+⟨P̂b⟩GSΓ

−1
B

(
I2Nb

−iI2Nb

)
ΣzG(I2Nb

, iI2Nb
)(Γ−1

B )T
(
2Υb − I4Nb

) ]
, (5.130)

where we introduce

Υb = ϕϕ
T
Γ
−1
B (1 + Λ). (5.131)

Calculation of the phase factor
If one wants to calculate the spectral function or the overlap between the two time-dependent wave-
functions, one has to take into account the phase factor θ0(t) of the time-evolving wavefunction (see
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Eq. (5.117)). To be specific, let us consider the overlap S(t):

S(t) = ⟨Ψ0 |Ψt⟩, |Ψt⟩ = e−iĤb t |Ψ0⟩, (5.132)

which can be directly related to the absorption spectrum as discussed in the next subsection (see
Eq. (5.145)). In the present variational approach, S(t) is expressed as

S(t) = eiθ0(t)e−
1
2 |δβ(t) |2 eδβ

∗(t)Ξb (t)δβ∗(t), (5.133)

where we denote

δβ(t) = β(t) − β(0), β =
1
2

Y†ϕ (5.134)

with

Y =
(

I2Nb
I2Nb

−iI2Nb
iI2Nb

)
. (5.135)

The real-time evolution equations of the variational parameters θ0(t) and Ξb(t) can be obtained as
dθ0

dt
= −⟨ ˆ̃Hb⟩b,G +

1
4
δϕThϕ +

1
4

Tr [hΓΓb] −
1
2

Tr[h1] − Tr
[
h†2Ξb

]
, (5.136)

i
dΞb
dt
=

1
2

h2 + h1Ξb + ΞbhT
1 + 2Ξbh†2Ξb, (5.137)

where we introduce

δϕ = ϕ(t) − ϕ(0),
(

h1 h2
h†2 hT

1

)
=

1
2

Y†hΓY . (5.138)

5.7.2 Application to the Rydberg central spin problem
We here apply the variational approach developed in the previous section to a novel type of a strongly
correlated system, namely, the Rydberg central spin problem (Fig. 5.13). We consider a Rydberg
impurity immersed in a three-dimensional Bose gas [120–122,510], which can be prepared by exciting
a small fraction of atoms in the original BEC to a Rydberg state. Due to the scattering between the
valence electron of the Rydberg impurity and the surrounding bosons, the impurity effectively creates
a long-range oscillating potential for the bosons, which is known as the Fermi pseudo-potential [511].

Choosing a certain Rydberg state, the long-range potential created by the Rydberg impurity can
depend on the internal degrees of freedom of the surrounding bosons [122]. The resulting Hamiltonian
can be written as

Ĥ =
∑
α=⇑,⇓

∫
drb̂†α(r)ĥ0b̂α(r) + Ŝi ·

∫
drg(r)Ŝr, (5.139)

ĥ0 ≡ −
∇2

2m
+ V0(r), Ŝr ≡

∑
α,β=⇑,⇓

b̂†α(r)
(σ

2

)
αβ

b̂β(r), (5.140)

where b̂†α(r) (b̂α(r)) creates (annihilates) a boson with an internal state α =⇑,⇓ at position r and
Ŝi = σ̂i/2 is the electron spin of the Rydberg impurity. We omit the hyperfine coupling and neglect
the p-wave scattering contribution for the sake of simplicity. We denote

V0(r) =
3VT (r) + VS(r)

4
, g(r) = VT (r) − VS(r), (5.141)

as linear superpositions of the triplet and singlet scattering potentials VT and VS that are isotropic. It
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Fig. 5.13 A Rydberg impurity interacts with high-density bosons via triplet and singlet scattering
channels. The Rydberg electron spin plays a role as the central spin that interacts with surrounding
mobile spins via long-range interactions created by molecular potentials. The formation of the
many-body-dressed molecular state manifests itself as the multiple sharp peaks in the absorption
spectrum (top left panel). The Rydberg central spin exhibits a long-lasting precession manipulatable
by an external magnetic field (top right panel).

is convenient to define the following single-particle computational basis:

ĥ0ψl(r) = ϵlψl(r), b̂†
lα
=

∫
drψl(r)b̂†α(r), (5.142)

where l = (n, L,M) denotes a set of quantum numbers including a principal quantum number n, an
angular momentum L, and a magnetic quantum number m. Hereafter, we can focus on the L = M = 0
sector and identify l as n because the initial state resides in this sector and the interaction parameter
g(r) is isotropic. We can then rewrite the Hamiltonian as

Ĥ =
∑
lα

ϵl b̂
†
lα

b̂lα + Ŝi · Σ̂, (5.143)

Σ̂ =
1
2

∑
lmαβ

glmb̂†
lα
(σ)αβ b̂mβ, glm ≡

∫
drg(r)ψ∗l (r)ψm(r). (5.144)

To analyze the out-of-equilibrium dynamics of this system, we use our general variational approach
developed in the previous subsection. It should be challenging (if not impossible) to analyze this system
with the other theoretical approaches due to the long-range nature of the impurity-bath couplings. An
experimentally observable quantity is the absorption spectrum A(ω), which is the Fourier spectrum
of the overlap:

A(ω) = Re
∫ ∞

0
eiωtS(t), S(t) = ⟨Ψ0 |Ψt⟩, |Ψt⟩ = e−iĤt |Ψ0⟩. (5.145)

The overlap S(t) can be calculated from Eq. (5.133). To obtain the time evolutions of the mean field ϕ
and the covariance matrix Γb , we integrate Eq. (5.127) by substituting the parameters ϵl and glm into
general expressions of the functional derivatives in Eqs. (5.129) and (5.130). The phase factor of the
variational state can be calculated by integrating Eqs. (5.136) and (5.137).

The initial state is chosen as

|Ψ0⟩ = | ↑⟩imp |BEC⇓⟩, (5.146)
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(a) (b) (c)

(d) (e) (f)

Fig. 5.14 (a,d) Absorption spectra A(ω) at different particle densities ρ of (a) mobile and (d)
immobile (i.e., infinite mass m→∞) environmental atoms. Dashed lines indicate the mean-field
shifts ∆mean (c.f. Eq. (5.150)) of the spectra. (b,e) Central-spin dynamics mz (t) = ⟨σ̂e(t)⟩ after
the quench with (b) mobile and (e) immobile environmental spins. The results for the infinite-
mass case are obtained by taking the ensemble average over 105 different realizations of atomic
configurations (see Appendix I). (c,f) The Fourier spectra m̃z (ω) of the central-spin dynamics mz (t)
(c) at different particle densities ρ with a zero magnetic field and (f) at different magnetic fields hz
with ρ=1.8×1012 cm−3. The black dashed curve and line at the bottom planes indicate the square
root scaling ω ∝√ρ in (c) and the linear relation δω =−hz in (f), respectively. The circles at the
bottom planes indicate the mean frequencies of the spectra around the peak values.

which can be prepared in an experiment of Tilman Pfau’s group [120–122]. Here, only the Rydberg
impurity spin is prepared in the spin-up state while all the surrounding bosons are prepared in the
spin-down state and occupy the lowest-energy single-particle state in free space. This condition results
in the conservation law σ̂z

i +2N̂B,⇑ = 1.∗ For this initial condition, the problem will be exactly solvable
in the limit of an infinite mass m → ∞, in which the system reduces to the central spin model [512]
(see Appendix I).

The corresponding initial conditions for the variational parameters are

ϕ(t = 0) =
√

NBY
( ∫

drψ∗
l
(r)ψ0(r)δα⇓∫

drψl(r)ψ∗0(r)δα⇓

)
, Γb(t = 0) = I4Nb

, (5.147)

where NB is the total number of surrounding bosons in the system and ψ0 denotes the wavefunction of
the lowest-energy single particle state without the Rydberg potential. In practice, we impose a large
distance cutoff R to obtain the initial coefficients as∫

drψ∗l (r)ψ0(r) =
∫ R

0
dr χ∗l (r)

√
2
R

sin
( π

R
r
)
, (5.148)

where χl(r) denotes the radius wavefunction of an eigenstate l. The particle number NB can be related
to the density ρ via

ρ = NB |ψ0(r = 0)|2 ⇐⇒ NB =

(
4
3
πR3

)
ρ

(2π2/3)
. (5.149)

We plot numerical results on the absorption spectra A(ω), the magnetization dynamics mz(t) = ⟨σ̂z(t)⟩

∗ In practical calculations, this spin conservation can be violated due to numerical errors associated with integrating
nonlinear variational equations. To remedy this, we implement the penalty term that can ensure the spin conservation
with an error below 1% (see Appendix H).
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Fig. 5.15 Correlation C(ν) of the absorption spectrum with detuning ν at ρ = 3 × 1012 cm−3

(main panel). The blue solid curve (red dashed curve) shows the result obtained by quenching
the full interacting Hamiltonian Ĥ (the quadratic Hamiltonian Ĥ ′0). The red dashed vertical lines
indicate multiple values of the deepest bound-state energy ωb of the mean Rydberg potential
Vmean= (VT+VS)/2 (c.f. inset), which match with the peak positions of the quadratic result but not
with the interacting one, indicating the many-body dressing of the Rydberg molecular state.

and their spectra m̃z(ω) at different densities of bosons in Fig. 5.14. Here we assume using 87Rb
atoms and exciting an atom into Rb(87s). For the sake of comparisons, we also plot the results for
the solvable case with an infinite mass in the top panels. As the density increases, the spectrum
approaches a Gaussian profile due to stochastic occupations of bound-state energies by a large number
of bosons [510]. The mean frequency can be estimated from

ωmean = NB

⟨
− ∇

2

2m
+

VT + VS

2

⟩
0
, (5.150)

where ⟨· · · ⟩0 denotes an expectation value with respect to the initial wavefunction ψ0(r).
We find two features that are unique to the finite-mass case. Firstly, one can find sharp peaks present

in the spectra, which are positioned with a roughly equal-spacing frequency. The spacing frequency of
peaks in the spectra is roughly equal to the dominant bound-state energy of the potential (VT +VS)/2.
The appearance of the potential (VT + VS)/2 can be understood from the mean-field Hamiltonian
experienced by the spin-⇓ bath bosons obtained by neglecting the spin-exchange coupling:

Ĥ ′0 =
∫

drb̂†⇓(r)ĥ0b̂⇓(r) + Ŝz
i ·

∫
drg(r)Ŝz

r (5.151)

=

∫
drb̂†⇓(r)

[
− ∇

2

2m
+

VT (r) + VS(r)
2

]
b̂⇓(r), (5.152)

where we use the initial condition Ŝz
i = 1/2 and Ŝz

r = −b̂†⇓(r)b̂⇓(r)/2. To elucidate this, we calculate
the spectrum by just quenching the noninteracting Hamiltonian Ĥ ′0. The same feature such as the
equal spacing corresponding to the most dominant bound-state energy for (VT + VS)/2 also emerges
in this simple model. Yet, we still find the nonzero difference between this single-particle bound-state
energy and the equal-spacing frequency found in the interacting model, which can be interpreted as
a many-body shift of the bound-state energy. This many-body feature can be explicitly demonstrated
by plotting the correlation C(ν)=

∫
dωδA(ω)δA(ω+ν) of the spectrum with detuning ν, where δA(ω)

denotes the absorption spectrum subtracted from the fitted-Gaussian profile (see Fig. 5.15).
Secondly, the magnetization mz(t) exhibits long-lasting fast oscillations that are absent in the infinite-

mass case due to an incoherent summation over atomic positions (see Appendix I). The nondecaying
magnetization is one of the key features in the central spin problem with an initially fully polarized
environment; only a small portion of a many-body state with the opposite central spin can be admixed
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due to a large energy cost to flip the central spin immersed in a polarized environment. The Rydberg
spin exhibits a long-lasting precession whose frequency ωmag becomes high as density is increased.
To further investigate the dependence of ωmag on density ρ, in Fig. 5.15c we plot the Fourier spectra
m̃z(ω) of the dynamics mz(t). As inferred from the dashed curve at the bottom of the plot, we find
the square root scaling ωmag ∝

√
ρ that is distinguished from the conventional linear scaling found in

studies of the central spin problem. The nonanalytic behavior implies that a nonperturbative treatment
(as performed here) is essential to understanding of the Rydberg central spin problem. The precession
frequency and amplitude of the central spin can be manipulated by magnetic field hz . Figure 5.15f
shows Fourier spectra m̃z(ω) at different hz . As magnetic field is applied, the precession frequency
shifts linearly with hz from the zero-field value (see black dashed line at the bottom in Fig. 5.15f) while
it eventually exhibits the nonlinear behavior at a large field. The precession amplitude is enhanced
(suppressed) when a magnetic field is applied in such a way that the resonance is approached (departed)
(c.f. Figs. 5.13 and 5.15f). These magnetic-field dependences are consistent with those found in the
conventional central spin problem [513], suggesting a possibility to control the electron spin of dense
Rydberg gases in an analogous way as in solid-state qubits [470, 512, 514–517].

5.8 Conclusions and Outlook
In this Chapter, we have studied in- and out-of-equilibrium physics of a strongly correlated open
quantum system by focusing on its most fundamental paradigm, a quantum impurity. There, the
presence of the strong system-environment entanglement plays a central role in understanding the
physics. Such a nontrivial role of the system-environment entanglement has not been addressed in the
studies of the first part of this Thesis, as they rely on the assumption that an environment (or a meter)
is memoryless and thus the system-environment correlation is (almost) absent.

More specifically, we have developed a versatile and efficient theoretical approach to study the
ground-state properties and nonequilibrium dynamics of generic quantum spin-impurity systems.
This variational approach has been motivated by the original papers by Tomonaga [448] and Lee, Low
and Pines [449]. A key idea is to introduce a canonical transformation that decouples the impurity
and the bath degrees of freedom such that the impurity dynamics can be made completely frozen
in the transformed frame. We have constructed such a decoupling transformation for spin-impurity
models by employing the conserved parity operator in the total Hamiltonian. We have also discussed its
generalization to two-impurity systems and the Anderson model. Combining the constructed canonical
transformation with the fermionic Gaussian states, we have presented a family of variational states
that can efficiently represent nontrivial entanglement between the impurity spin and the environment.
Integrating the imaginary- and real-time evolutions projected on this variational manifold, one can
study ground-state and dynamical properties of spin-impurity models on demand. We have throughly
benchmarked our variational approach with the MPS-based method, the Bethe-ansatz solution, the
known nonperturbative scalings and conductance behavior. A remarkable efficiency has been achieved
in our approach, as we found accuracy comparable to the MPS-based method with several orders of
magnitude fewer variational parameters. The simplicity of our variational approach will allow one to
provide physical insights into challenging problems of strongly correlated open quantum systems.

Our approach has already found applications to exploring new types of nonequilibrium phenomena
that have not been studied in the other methods. Examples include the long-time crossover dynamics
in the FM easy-plane in the anisotropic Kondo model and the spatiotemporal environment dynamics in
the two-lead Kondo model. Such long-time spatiotemporal dynamics are difficult (if not impossible)
to obtain in the previous approaches. We propose to use quantum gas microscopy to experimentally
test the predicted dynamics. We also generalize our approach to a bosonic environment and apply it to
the novel type of the impurity system that can be realized by Rydberg atoms. The predicted absorption
spectrum can be tested with the state-of-the-art experimental techniques of ultracold atoms. In these
respects, one of the remarkable features in our approach is that it enables one to make quantitative
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comparisons between theory and experiments under nonequilibrium conditions even in long-time
regimes. This advantage is particularly important in view of recent developments of simulating
quantum dynamics such as in ultracold atoms [4, 10, 20, 22, 36, 158, 303, 357, 442, 518–525] and
quantum dots [72, 443–446].

The present variational approach can be readily generalized in many ways. For example, our
formulation can be applied to systems associated with disorder [526], an interacting bath (e.g., as in the
Kondo-Hubbard model [527]), multiple channels [59,72,528], and long-range interactions [529,530].
The canonical transformations introduced in Secs. 5.2.2 and 5.2.3 can be used to analyze two-impurity
systems and the Anderson-type Hamiltonian. The present approach can be also generalized to analyze
quantum pumping and driven systems, in which previous studies have mainly focused on noninteracting
systems [531–534]. It merits a further study to analyze the full-counting distribution in charge transport
based on our approach. Most of previous studies in this direction have been restricted to (bosonized)
one-dimensional models [535, 536] and noninteracting systems [284, 537]. Testing the maximally
fast information scrambling [538] in the multi-channel systems [105] will be a particularly interesting
direction. On another front, our approach could be used as a new type of impurity solver for DMFT [62].
Another promising direction is to generalize the present approach to Gaussian density matrices such
that it can be applied to dissipative systems [539,540] and finite-temperature systems [541–543].
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Chapter 6

Quantum Particle in a Magnetic
Environment

In this Chapter, we study yet another fundamental paradigm of a quantum impurity, a mobile spinless
particle interacting with a many-particle environment. The ultimate building block of such a system
is the formation of a polarization cloud of collective excitations around an impurity, which is known
as a polaron cloud. Yet, ever since the original paper by Landau and Pekar [41], it has long remained
a fundamental challenge to measure it in an unambiguous manner due to the elusive nature of the
polaron cloud. We here present a novel platform using ultracold atoms to overcome the obstacle and
allow one to directly probe the polaron-cloud formation in real time. We reveal the emergence of
rich nonequilibrium dynamics of the polaron cloud in the strong-coupling regime that is not readily
attainable in solid-state materials. To our knowledge, our work suggests the first concrete possibility
for a direct real-time measurement of the polaron-cloud formation.

6.1 Introduction: new frontiers in polaron physics
In the previous Chapter, we have studied the strongly correlated physics in open quantum systems
by focusing on a localized spin-impurity system. Here, we study yet another fundamental paradigm
of quantum impurity problems, a mobile spinless quantum particle interacting with a many-particle
environment. There, a “dress” of collective excitations around the impurity, which is known as a
polaron cloud [544], will be formed. A concept of a polaron was originally suggested by Landau
and Pekar [41] and has played a central role in determining thermodynamic properties of various
condensed matter systems [454, 545–548]. Recent experiments in ultracold atoms have allowed one
to study polaron physics in strongly interacting regimes that are not attainable in solid-state materials.
These systems consist of imbalanced mixtures of atomic gases; the density of one type of atoms is
much lower than that of the other. Thus, the minority atoms act as impurities while the majority atoms
form a many-particle environment interacting with the impurities. The impurities are dressed by the
collective excitations in the environment and constitute Fermi or Bose polarons depending on species of
the majority atoms. The major advantages in ultracold atomic physics include a high controllability of
physical parameters and the ability to precisely measure dynamical properties, which are made possible
by rich experimental tool box in atomic, molecular and optical (AMO) physics such as radio-frequency
absorption measurements [63–66,68,69,549,550] and interferometric measurements [551–554]. Until
now, most studies of polaron physics in ultracold atoms have focused on impurities immersed in a
single-component Bose-Einstein condensate (BEC) [68, 69, 458, 462, 464–468, 510, 550, 555–570] or
Fermi gas of atoms [63–67,549,571–578]. These studies have revealed new aspects of polaron physics
beyond the Anderson orthogonality catastrophe and the conventional Fröhlich paradigm [551, 552,
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Fig. 6.1 (a) A schematic figure of a mobile spinless quantum particle in the synthetic magnetic
environment. (b) The dynamical phase diagram. The system has zero, one, and two many-body
bound states depending on the impurity-boson scattering lengths aIB,↑↓. We use aBBn1/3

B = 0.05
and mI/mB = 0.95 as appropriate for the 41K-39K mixture. (c) The dynamics of environment spins
in each regime of the dynamical phase diagram. Reproduced from Fig. 1 of Ref. [132]. Copyright
© 2018 by the American Physical Society.

554, 579, 580]. Nevertheless, revealing real-time dynamics of the polaron cloud has still remained a
great challenge in both ultracold atomic gases and solid-state materials. Here, a subtle density change
in the environment associated with the formation of the polaron cloud poses a severe challenge for its
direct observation.

The aim of this Chapter is to show that the use of the Ramsey interferometry performed on the envi-
ronment can overcome this challenge and allow one to directly measure the polaron-cloud formation in
real time, which would provide an unambiguous signature of the system-environment entanglement.
In previous setups [458,462,464–468,510,550,555–563,565–568], only phonon excitations are cou-
pled to the impurity; this fact has made a direct observation of the polaron cloud extremely difficult
due to the minuscule nature of density modifications. We here consider a magnetic polaron [581] that
is dressed by spin-wave excitations in addition to phonon excitations. The Ramsey interferometry can
then be used to directly measure the polaron cloud via this magnetic dressing. In Sec. 6.2, applying
this idea to impurity atoms immersed in a two-species BEC (see Fig. 6.1(a)), we analyze impurities
interacting with a synthetic magnetic environment and derive an effective Hamiltonian addressed in
this Chapter. In Sec. 6.3, we show how one can use the Ramsey interferometry to directly measure
the polaron-cloud dynamics in real time to reveal its rich out-of-equilibrium physics. In Sec. 6.4, we
employ the time-dependent variational principle and study nonequilibrium dynamics of the polaron
cloud. We show that, in the strong-coupling regime, the polaron cloud forms many-body bound states,
which is a nontrivial feature that is not readily attainable in solid-state systems. The formations of
many-body bound states lead to the dynamical ‘phase diagram’ of the polaron cloud (see Fig. 6.1(b)),
which corresponds to its distinct oscillatory dynamics (see Fig. 6.1(c)). One of the main advantages
in our scheme is that it can effectively enhance observable signals from the impurity. The reason is
that, for each impurity, a multiple number of excitations in the bath are generated and they are sub-
sequently detected via the interferometric measurement acting on the environment. We mention that
this protocol can be applied to other experimental systems [29, 122, 582–586], where interferometric
techniques are already available. In Sec. 6.5, we discuss a concrete experimental setup to realize our
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proposal. Finally, we conclude this Chapter with an outlook in Sec. 6.6.

6.2 System: a mobile particle in a synthetic magnetic
environment

To be concrete, we consider an impurity atom immersed in a weakly interacting two-component
BEC (see Fig. 6.1(a)). The impurity is dressed by spin-wave excitations of a synthetic ferromagnetic
environment and forms a magnetic polaron. The total Hamiltonian is

Ĥ = ĤB + V̂IB + ĤI, (6.1)

where

ĤB=
∑
kσ
ϵkâ†kσâkσ+

gBB

2V

∑
kk′qσσ′

â†k+qσâ†k′−qσ′ âk′σ′ âkσ (6.2)

is the bath Hamiltonian of the background BEC of density nB. The interaction between the impurity
and the environment is given by

V̂IB =
1
V

∑
kqσ

gIB,σ â†k+qσ âkσeiqR̂. (6.3)

An operator âkσ (â†kσ) annihilates (creates) an environmental boson with a wavenumber k and a
spin σ =↑,↓, R̂ is the position operator of the impurity, V is the volume of the system, and we
denote a dispersion relation as ϵk = ℏ2k2/(2mB) with mB being the mass of surrounding bosons. The
impurity Hamiltonian is ĤI = P̂2/(2mI) with P̂ and mI being the momentum operator and the mass
of the impurity. We assume that the interaction term of the environment bosons (the second term in
Eq. (6.2)) is spin-independent and thus characterized by a single parameter gBB as realized for many
atoms [587, 588]∗. In contrast, the impurity-bath interaction is spin-dependent and characterized by
two parameters gIB,σ . They are related to the scattering lengths aIB,σ via the Lippmann-Schwinger
equation:

1
gIB,σ

=
mred

2πaIB,σ
− 1

V

Λ∑
k

2mred

k2 , (6.4)

where mred = mImB/(mI+mB) is the reduced mass. We note that these expressions are fully regularized
and the momentum cutoff Λ introduced in Eq. (6.4) can be taken to infinity.

To realize a synthetic ferromagnetic medium, we start from a superposition state of the pseudospin-
1/2 BEC: |ΨBEC⟩ ∝ (â†0↑ + â†0↓)

NB |0⟩, where NB is the total number of environment particles. Since
the bath Hamiltonian ĤB possesses the SU(2) symmetry, it does not cause decoherence of the spin
dynamics. In contrast, the impurity-bath interaction breaks this symmetry and leads to the dephasing
of environment spins.

We can simplify the environment Hamiltonian following the standard procedure. To take into
account an initial macroscopic population of the environment bosons in the k = 0 mode, we expand
â0σ around ⟨â0σ⟩ =

√
NB/2. Here the factor of 1/2 accounts for the fact that the bosons are prepared in

a superposition of ↑ and ↓ states. We then diagonalize the bath Hamiltonian (6.2) using the Bogoliubov
transformation:

âk,↑ =
1
√

2

(
γ̂sk + ukγ̂

c
k − vkγ̂

†c
−k

)
, âk,↓ =

1
√

2

(
−γ̂sk + ukγ̂

c
k − vkγ̂

†c
−k

)
, (6.5)

∗ This condition can be relaxed. See Sec. 6.5 for discussions on a possible breaking of the SU(2) symmetry in the
environment interactions.
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where the coefficients are given by

uk =

√
ϵk + gBBnB

2ϵck
+

1
2
, vk =

√
ϵk + gBBnB

2ϵck
− 1

2
(6.6)

and the dispersion relation of the charge (i.e., phonon) excitations in the environment is

ϵck =
√
ϵk(ϵk + 2gBBnB). (6.7)

The operators γ̂c,sk and γ̂†c,sk represent the creation and annihilation operators of the charge and spin
excitations and satisfy the commutation relations

[γ̂ξk , γ̂
η
k′] = [γ̂

†ξ
k , γ̂

†η
k′ ] = 0, [γ̂ξk , γ̂

†η
k′ ] = δξ,ηδk,k′ (ξ, η = s, c). (6.8)

The resulting expression for the total Hamiltonian Ĥ is

Ĥ = g+IBnB +
P̂2

2mI
+

∑
k

(
ϵck γ̂

†c
k γ̂ck + ϵ

s
k γ̂
†s
k γ̂sk

)
+

√
nB

V

∑
k

[
g+IBWk

(
γ̂ck+γ̂

†c
−k

)
+g−IB

(
γ̂sk+γ̂

†s
−k

)]
e−ikR̂

+
g+IB
2V

∑
k,k′

(
V (1)kk′ γ̂

†c
k γ̂ck′e

i(k−k′)R̂ + γ̂†sk γ̂sk′e
i(k−k′)R̂ + V (2)kk′ γ̂

†c
k γ̂†ck′ ei(k+k′)R̂ + H.c.

)
+

g−IB
V

∑
k,k′

(
ukγ̂

†s
k′ γ̂

c
k ei(k

′−k)R̂ − vkγ̂
†s
k′ γ̂
†c
k ei(k

′+k)R̂ + H.c.
)
, (6.9)

where ϵ sk = ℏ
2k2/(2mB) is the dispersion relation of the spin-wave excitations in the environment,

g±IB = (gIB,↑ ± gIB,↓)/2 are the average and difference of the impurity-boson interaction parameters,
Wk =

√
ϵk/ϵck and V (1)kk′ ±V (2)kk′ = (WkWk′)±1 are the vertices∗. When g−IB , 0, spin waves are generated

due to the imbalance of the impurity-boson couplings.
To simplify the problem, we go onto the comoving frame of the impurity via

ÛLLP = eiR̂P̂B, (6.10)

which is known as the Lee-Low-Pines (LLP) transformation [449] (see also discussions in Sec. 5.1).
Here, we introduce the total momentum of the environment by P̂B =

∑
k k(γ̂†ck γ̂ck + γ̂

†s
k γ̂sk) (we set

ℏ = 1). This leads to the transformed Hamiltonian Ĥ = Û†LLPĤÛLLP, which commutes with the
impurity momentum P̂. This can be inferred from the fact that the total momentum P̂ + P̂B of the
impurity and the environment is conserved in the original frame while it is mapped to P̂ under the
transformation ÛLLP (c.f. Eq. (5.2) in the previous Chapter):

Û†LLP(P̂ + P̂B)ÛLLP = P̂. (6.11)

Thus, P̂ can be taken as a classical number P in the transformed frame and the impurity is com-
pletely decoupled from the environmental degrees of freedom. The explicit form of the transformed
Hamiltonian Ĥ can be obtained as

Ĥ = g+IBnB +
(P − P̂B)2

2mI
+

∑
k

(
ϵck γ̂

†c
k γ̂ck + ϵ

s
k γ̂
†s
k γ̂sk

)
+

√
nB

V

∑
k

[
g+IBWk

(
γ̂ck+γ̂

†c
−k

)
+g−IB

(
γ̂sk+γ̂

†s
−k

)]
+
g+IB
2V

∑
k,k′

(
V (1)kk′ γ̂

†c
k γ̂ck′ + γ̂

†s
k γ̂sk′ + V (2)kk′ γ̂

†c
k γ̂†ck′ + H.c.

)
+
g−IB
V

∑
k,k′

(
ukγ̂

†s
k′ γ̂

c
k − vkγ̂

†s
k′ γ̂
†c
k + H.c.

)
.

(6.12)

∗ We note that the vertex functions that couple to the spin sector acquire an additional momentum dependence when the
SU(2) symmetry of the bath is broken.
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Hereafter, we consider the sector P = 0 in the transformed frame, i.e., we assume that the total
momentum of the impurity plus the environment in the original frame is zero. We also assume that
the initial state in the original frame is an eigenstate of the momentum operator of the environment
with the zero eigenvalue P̂B = 0. Since P̂B is invariant under ÛLLP, we can take P̂B = 0 at the initial
time also in the transformed frame. Then, in the sector P = 0, one can show that P̂B in the transformed
frame remains to be zero in the course of the time evolution owing to the symmetry of the Hamiltonian
Ĥ under P̂B → −P̂B. Thus, the second term in the first line on the right-hand side in Eq. (6.12) plays
no role in our consideration. The second line in Eq. (6.12) describes the contributions beyond the
Fröhlich paradigm [589], leading to new types of nonequilibrium polaron physics as detailed below.

6.3 Many-body interferometry acting on the environment
To directly probe the dynamics of the polaron cloud in real time, we propose employing the Ramsey
interference acting on the environment atoms. We here outline its specific protocol.

One starts from the environment atoms prepared in the ↑ state and then performs a π/2 pulse,
resulting in a superposition of ↑ and ↓ states as described in the previous secton. After letting the
system evolve in time t, one again applies a π/2 pulse and measures the number N↑ of environment
atoms in the ↑ state, which directly provides the number Ns(t) = ∑

k⟨γ̂†sk γ̂sk⟩ of spin-wave excitations.
Although we treat the system as a single-impurity problem, our results are still valid for a system
with a finite density of impurities if, as realized in typical experimental setups, the impurity density
is so low that one can neglect impurity-impurity interactions. In such a case, the interferometric
signal Ns = N↑ linearly scales with the number of impurities and can be enhanced by increasing
the density of impurities. Moreover, the signal Ns can easily exceed the number of impurities since
a single impurity can generate a multiple number of spin-wave excitations as shown below. The
Ramsey interferometry then allows one to make a precise measurement of the enhanced signals Ns ,
thus enabling a direct observation of the polaron cloud. This has been challenging to achieve in
conventional setups [458,462,464–468,510,550,555–563,565–568] due to the difficulty of detecting
minuscule modifications of densities induced by phonon excitations.

6.4 Out-of-equilibrium dynamics of the magnetic polaron
6.4.1 Time-dependent variational principle
The polaron cloud exhibits distinct dynamics depending on the impurity-bath couplings. To analyze
out-of-equilibrium dynamics of the magnetic polaron, we use the time-dependent variational approach
[476]. We consider the following family of variational states

|Ψ(t)⟩ = e
∑

k(αc
k (t)γ̂

c
k +α

s
k (t)γ̂

s
k−h.c.) |0⟩, (6.13)

where |0⟩ is the vacuum of the charge and spin-wave excitations and αc,s
k (t) represent their amplitudes.

We remark that this variational state becomes exact in the limit of mI →∞.
The variational principle δ[⟨Ψ|iℏ∂t − Ĥ |Ψ⟩] = 0 provides the equations of motion for αc,s

k , which
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are the following coupled integral equations:

i Ûαc
k = Ω

c
kα

c
k −

k · (P − PB[αc,s
k ])

mI
αc

k + g
+
IB

(∑
k′

V (1)kk′α
c
k′ +

∑
k′

V (2)kk′α
∗c
k′

)
+g−IB

(
uk

∑
k′
αs

k′ − vk
∑
k′
α∗sk′

)
+ g+IB

√
nBWk, (6.14)

i Ûαs
k = Ω

s
kα

s
k −

k · (P − PB[αc,s
k ])

mI
αs

k + g
+
IB

∑
k′
αs

k′ + g
−
IB

[∑
k′

(
uk′α

c
k′ − vk′α

∗c
k′

) ]
+ g−IB

√
nB,

(6.15)

where Ωs,c
k = ℏ2k2/(2mI) + ϵ s,ck and PB =

∑
k k(|αc

k |2 + |αs
k |

2). As we mentioned before, for our
choice of the initial condition, we can set P = PB = 0 in the course of time evolution. Thus, the above
equations reduce to linear inhomogeneous equations for αc,s

k , where the last terms on the right-hand
sides of Eqs. (6.14) and (6.15) describe driving forces.

To begin with, we analyze the equilibrium solution αc,s
k which can be derived by setting the left-hand

sides of Eqs. (6.14) and (6.15) to be zero. From the conditions that the real and imaginary parts of the
right-hand sides of Eqs. (6.14) and (6.15) must vanish independently, it follows that the imaginary
parts of αc,s

k are zero. Solving the coupled integral equations for the remaining real parts of αc,s
k , we

obtain the stationary solution:

αc
k = −

√
nBWk

Ωc
k

g+IB(1 + g+IBB) − (g−IB)2B
D

, αs
k = −

√
nB

Ωs
k

g−IB
D
. (6.16)

Here we introduce the coefficients as

D = (1 + g+IB A)(1 + g+IBB) − (g−IB)2 AB, A =
∑

k

W2
k
Ωc

k
, B =

∑
k

1
Ωs

k
. (6.17)

When there exists an imbalance in the impurity-bath couplings, i.e., g−IB , 0, the stationary solution
for the spin part αs

k is nonvanishing and the magnetic polaron is formed.
The energy of the equilibrium magnetic polaron is given by the expectation value Empol =

⟨Ψmpol |Ĥ |Ψmpol⟩ with respect to the stationary state |Ψmpol⟩ = exp
[∑

k
(
αc

kγ̂
c
k + α

s
kγ̂

s
k − h.c.

) ]
|0⟩.

Using the solution (6.16) and expressing the interaction strengths gIB,σ in terms of the scattering
lengths aIB,σ by the Lippmann-Schwinger equation (6.4), we obtain

Empol =
2πnB

mred
(
1/a+IB − 1/l0

) , (6.18)

where we define

a+IB =
aIB,↑ + aIB,↓

2
, l0 =

(
4π

∑
k

1
k2 −

2π
mred

∑
k

W2
k
Ωc

k

)−1

. (6.19)

6.4.2 Quantum dynamics of the environment
We now analyze out-of-equilibrium dynamics of the polaron cloud by integrating the time-evolution
equations (6.14) and (6.15). Figure 6.2 plots the time evolutions of Ns,c(t) at different impurity-bath
couplings aIB,σ , which correspond to the regions I, II, and III in which zero, one, and two bound
states are present, respectively (see Fig. 6.1(b)). As shown in panel I in Fig. 6.2, Nc(t) saturates
while Ns(t) grows as ∝

√
t in the absence of bound states. Thus, the latter can easily surpass one,

indicating that the observable signal Ns = N↑ at a finite impurity density can exceed the number of
impurities. In contrast, the number of impurities strictly sets an upper bound on that of detectable
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Fig. 6.2 Time evolutions of the number of charge (blue dashed curves) and spin-
wave (red solid curves) excitations. We use the parameters (n1/3

B aIB,↑,n
1/3
B aIB,↓) =

(−1,−10) in I, (3.5,−5) in II, and (3.5,5) in III. The Fourier spectra of Ns(t) are plotted in insets
of panels II and III, where the black dotted lines correspond to the bound-state energies obtained
from Eq. (6.26) while their difference is shown as a green dashed line. Reproduced from Fig. 2 of
Ref. [132]. Copyright © 2018 by the American Physical Society.

signals in the conventional approaches [63–66, 68, 69, 549–553] that utilize the impurity also as a
probe. Our proposed approach using environment atoms as interferometric probes thus allow one to
enhance experimental signals of the impurities.

The
√

t growth of Ns(t) can be understood from the quadratic dispersion of the magnon excitation
as follows. For the sake of simplicity, let us neglect interactions between different momentum modes
and consider the simplified Hamiltonian where different sectors of momentum k are decoupled:
Ĥk = ωkγ̂

†
kγ̂k + Vk(γ̂k + γ̂

†
k). Here γ̂k denotes a spin or charge annihilation operator at momentum

k and we assume V−k = Vk. In the nonequilibrium interacting problem such as the one studied here,
the number of excitations nk in the mode k will in general oscillate. However, for times longer than
t > 1/ωk , one can give a simple scaling argument for the behavior of nk. At such times, the occupation
of excitations have a scaling ⟨γ̂k⟩ ∝ Vk/ωk and thus nk ∝ (Vk/ωk)2 as can be seen from an inspection
of the equation of motion. Let us then consider the total number of excitations at time t. We identify
all modes k satisfying ωkt > 1, i.e., the modes |k| > k∗ where k∗ is determined by ωk∗ t = 1, as
contributions to the excitations. Using the estimate nk ∝ (Vk/ωk)2, we then integrate over these modes
to find the scaling of the spin-wave excitations

Ns(t) =
∫

d3k nsk ∝
∫ ∞

k∗
k2dk

1
k4 ∝

√
t . (6.20)

Here we use the fact that for the spin sector Vk = const., and the magnon dispersion relation scales as
ωk ∝ k2, leading to k∗ ∝ 1/

√
t.
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We note that the
√

t behavior remains observable also in the presence of a small imbalance in the
boson-boson scattering length (i.e., a broken SU(2) symmetry). In this case, the magnon dispersion
relation has a linear low-energy contribution and the number of spin excitations will ultimately saturate.
However, since the imbalance in the scattering lengths is typically very small, we expect a large time
window for which the

√
t behavior remains valid before saturation. Specifically, let t = t∗ be the time

scale at which k∗ (determined by ωk∗ t = 1) reaches a small value such that the magnon dispersion
becomes linear for k < k∗. Under this condition, the scaling argument given in Eq. (6.20) remains
valid as long as t < t∗. Importantly, because a quadratic dispersion is relevant to collective excitations
in various setups such as dipolar or Rydberg gases [122,585,586], multi-component BEC [583,584],
and fermionic gases [29,582], our protocol to enhance the impurity signal via the interferometric tools
can also be realized in these systems.

6.4.3 Many-body bound states
As shown in panels II and III in Fig. 6.2, the presence of bound states induce the oscillatory dynamics
in the bath excitations. We can understand the single- and multi-frequency oscillations as the formation
and coupling of many-body bound states, respectively. To give physical insights, let us analyze the
bound states based on the following variational state:

|Ψb(t)⟩ =
∑

k

(
ψc

k (t)γ̂
†c
k + ψ

s
k(t)γ̂

†s
k

)
|Ψmpol⟩, (6.21)

which describes the magnetic polaron bound to a single spin and charge excitations. The equations of
motion for ψc,s

k are derived from the time-dependent variational principle δ[⟨Ψb |i∂t − Ĥ |Ψb⟩] = 0.
They are given by

i Ûψc
k = (Empol +Ω

c
k)ψc

k + g
+
IB

∑
k′

V (1)kk′ψ
c
k′ + g

−
IBuk

∑
k′
ψs

k′, (6.22)

i Ûψs
k = (Empol +Ω

s
k)ψ

s
k + g

+
IB

∑
k′
ψs

k′ + g
−
IB

∑
k′

uk′ψ
c
k′ . (6.23)

In order to find the eigenmodes of these equations, we assume the solutions of the form ψc,s
k ∝ e−iωt

which oscillate in time with frequency ω. Substituting this ansatz into Eqs. (6.22) and (6.23), we
obtain the equation

©­­­­«
1 − g+IB

2 Πw2 − g+IB
2 Π 0 −g−IBΠuw

− g+IB
2 Π 1 − g+IB

2 Πw−2 0 −g−IBΠuw−1

− g+IB
2 Πuw − g+IB

2 Πuw−1 1 −g−IBΠu2

0 0 −g−IBΠs 1 − g+IBΠs

ª®®®®¬
©­­­«
∑

k Wkψ
c
k∑

k W−1
k ψc

k∑
k ukψ

c
k∑

k ψ
s
k

ª®®®¬ =
©­­­«
0
0
0
0

ª®®®¬ , (6.24)

where we define

Πw±2 =
∑

k

W±2
k

ω − Empol −Ωc
k
, Π =

∑
k

1
ω − Empol −Ωc

k
, Πuw±1 =

∑
k

ukW±1
k

ω − Empol −Ωc
k
,

Πu2 =
∑

k

u2
k

ω − Empol −Ωc
k
, Πs =

∑
k

1
ω − Empol −Ωs

k
. (6.25)

Equation (6.24) has nontrivial solutions only if the determinant of the matrix on the left-hand side
vanishes. Expressing the interaction strengths gIB,σ in terms of the scattering lengths aIB,σ via
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Fig. 6.3 Dynamics of environment spins and their Fourier spectra in the presence of two bound
states. One of the scattering lengths is set to be 1/(aIB,↑n

1/3
B ) = 4, while the other 1/(aIB,↓n

1/3
B ) is

varied over the range from 4.5 to 6 in (a)-(d). The black dashed lines in the Fourier spectra indicate
the eigenenergies ωbound of the magnetic bound states calculated from Eq. (6.26), while the green
dashed line shows the difference between these energies. We use the parameters aBBn1/3

B = 0.05
and mI/mB = 0.95. Time and frequency are shown in units of mB/(ℏn2/3

B ). Reproduced from
Fig. S1 of Ref. [132]. Copyright © 2018 by the American Physical Society.

Eq. (6.4) and collecting the leading terms in the limit of Λ→∞, we obtain the equationa+IB −
(
4π

Λ∑
k

1
k2 +

2π
mred
Πs

)−1
a+IB −

(
4π

Λ∑
k

1
k2 +

2π
mred

Πw2 + Πw−2

2

)−1 =
(
a−IB

)2
. (6.26)

Solving this equation for ω gives the bound-state energy ωbound. The number of solutions determine
the dynamical phase diagram in Fig. 6.1(b).

In the two-particle problem with the impurity and a single bath atom, for each positive scattering
length aIB,σ , there exists a bound state whose energy is ϵdim = ℏ

2/(2mreda2
IB,σ). Thus, the correspond-

ing diagram (c.f. Fig. 6.1(b)) has four distinct regions depending on signs of aIB,σ . In contrast, the
many-body phase diagram in Fig. 6.1(b) shows a unified region II as a consequence of the hybridization
of the bound states due to the exchange of spin-wave excitations.

The presence of a single bound state in this region II leads to the oscillatory spin dynamics whose
frequency agrees with the bound-state energy calculated from Eq. (6.26) (see inset of panel II in
Fig. 6.2). In region III, there are two bound states that lead to the multi-frequency oscillations in
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Fig. 6.4 The bound-state energy ωbound (solid curve) obtained from Eq. (6.26) and the
dimer energy ϵdim = ℏ

2/(2mreda2
IB,↑) (dashed curve). The inset shows the spin dynamics at

1/(aIB,↑n
1/3
B ) = 2. We choose the densities as nB = 1014 cm−3 and nI/nB = 0.1. We use the

parameters aBBn1/3
B = 0.05, 1/(aIB,↓n

1/3
B ) = 15 and mI/mB = 0.95 as realized in a 41K-39K

mixture. Reproduced from Fig. 3 of Ref. [132]. Copyright © 2018 by the American Physical
Society.

the spin dynamics. As shown in inset of panel III in Fig. 6.2, the coupling between the bound
states induces shifts in the oscillation frequencies from the bare bound-state energies obtained from
Eq. (6.26) (black dotted lines). The coupling also leads to a large peak lying at the difference between
two energies (green dashed line). Physically, we can understand these shifts as a consequence of the
magnon-mediated polaronic nonlinearity [590].

The coupling of the two bound states in region III weakens as we depart from the strongly interacting
regime. The oscillation frequencies in the spin dynamics then eventually converge to the bare bound-
state energies obtained from Eq. (6.26). To clarify this point further, we show the spin dynamics for
varying scattering lengths in Fig. 6.3. When both states are weakly bound and close in energy (i.e.,
both scattering lengths are large and take on similar values), the coupling between the bound states can
be strong enough to induce shifts in the oscillation frequencies as shown in Fig. 6.3(a). In this regime,
a large peak placed at the difference of the two oscillatory modes indicates a strong coupling of the
two bound states. As the strength of one of the scattering lengths is decreased, while keeping the other
unchanged, the coupling of the bound states becomes weak and the oscillation frequencies eventually
converge to the bare bound-state energies indicated by the dashed black lines (see Fig. 6.3(b)-(d)). As
the energy gap between both states increases, the gradual decoupling of the two bound states can also
be seen as a decrease in the peak height at the difference between the two oscillatory mode energies.

6.5 Experimental implementation in ultracold atomic gases
A variety of imbalanced mixtures of atomic gases allow one to experimentally implement our proposal.
To be concrete, we here consider the 41K-39K mixture. Two miscible states | ↑⟩ = |F = 1,mF = 1⟩ and
| ↓⟩ = |F = 1,mF = 0⟩ of 41K can be identified as the environment bosons and |i⟩ = |F = 1,mF = 1⟩
of 39K plays a role as the impurity.∗ The impurity-bath interaction can be controlled via a Feshbach
resonance at 500 G. The bound-state energy ωbound obtained from Eq. (6.26) is plotted in Fig. 6.4
in the vicinity of a Feshbach resonance. In this regime, aIB,↓ takes a small, positive value while

∗ As the background scattering length for |i⟩ = |F = 1,mF = 1⟩ of 39K is negative [591], this component should be
used as the minority atoms (i.e., impurities) in the mixture.
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aIB,↑ takes a large positive one. The imbalanced scattering lengths lead to a generation of large spin-
wave excitations Ns(t) (see the inset of Fig. 6.4). The shallow bound state induces a relatively slow
oscillation with ∼10 kHz, which can be measured by current techniques [552]. While the oscillation
frequency corresponds to a temperature scale T/kB ≃ 500 nK that has already been achieved in
several experiments [552, 592, 593], the predicted results should be accessible in higher temperatures
by performing local measurements [580] or by localizing the impurities around the center of the
system [552].

We have so far assumed that the scattering length aBB between environment bosons is independent
of the spin components σ =↑,↓. However, in practice, there may exist a small imbalance in the boson-
boson interactions. For example, identifying the hyperfine states |F = 1,mF = 1⟩ and |F = 1,mF = 0⟩
as ↑-and ↓-state, respectively, the imbalance in scattering lengths is ∼ 0.4% for 41K [594] and ∼ 0.5%
for 87Rb atoms [587]. In general, this weak symmetry breaking causes spin decoherence that is
additional to the one induced by the impurity. To estimate the size of such a contribution, we consider
the Hamiltonian of a two-component gas of host bosons in the absence of the impurity

ĤB =
∑
kσ
ϵkâ†kσâkσ +

1
2V

∑
k,k′,q

(
gBB↑↑â

†
k+q,↑â

†
k′−q,↑âk,↑âk′,↑

+2gBB↑↓â
†
k+q,↑â

†
k′−q,↓âk,↑âk′,↓+gBB↓↓â

†
k+q,↓â

†
k′−q,↓âk,↓âk′,↓

)
. (6.27)

Here gBBσσ′ denotes the interaction strength between host bosons of spin component σ and σ′. Let
us introduce imbalance parameters r1,2 by

gBB↑↑ = gBB↑↓(1 + r1), gBB↓↓ = gBB↑↓(1 + r2), gBB↑↓ ≡ gBB. (6.28)

Then, by following a similar procedure as outlined in Sec 6.2, we can diagonalize the Hamiltonian to
obtain

ĤB =
∑

k

(
ϵ̃ sk

ˆ̃γ†sk
ˆ̃γsk + ϵ̃

c
k

ˆ̃γ†ck
ˆ̃γck

)
, (6.29)

where the dispersion relations are given by

ϵ̃ s,ck =

√√√(
k2

2mB

)2
+
gnBk2

2mB

[(
1 +

r1 + r2

2

)
∓

√
1 +

( r1 − r2

2

)2
]
. (6.30)

To ensure that the energies are real, we require that the parameters satisfy the miscible condition:

(1 + r1)(1 + r2) > 1 ⇐⇒ gBB↑↑gBB↓↓ > g2
BB↑↓. (6.31)

The operators ˆ̃γs,ck are related to âk,σ by the Bogoliubov transformation. As an example, we show the
expressions in the case of r1 = r2 = r:

âk↑ =
1√
2

(
ũs

k
ˆ̃γsk − ṽ

s
−k

ˆ̃γ†s−k + ũc
k

ˆ̃γck − ṽc−k
ˆ̃γ†c−k

)
;

âk↓ =
1√
2

(
−ũs

k
ˆ̃γsk + ṽ

s
−k

ˆ̃γ†s−k + ũc
k

ˆ̃γck − ṽc−k
ˆ̃γ†c−k

)
,

(6.32)
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where

ũs
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√√√√√√√ k2

2mB
+

gnB
2 r

2
√(

k2

2mB

)2
+

gnBk2

2mB
r

+
1
2
,
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. (6.33)

For the sake of simplicity, let us focus on this particular case∗. In order to study how the initially
prepared superposition state |ΨBEC⟩ ∝ (â†0↑ + â†0↓)

NB |0⟩ dephases due to the imbalance in the spin-
dependent boson-boson scattering lengths, we consider the initial state in terms of the operators
ˆ̃γs,ck :

|ΨBEC(0)⟩ ∝ exp

[
1
2

∑
k,0

(
ṽs−k
ũs

k

ˆ̃γ†sk
ˆ̃γ†s−k +

ṽc−k
ũc

k

ˆ̃γ†ck
ˆ̃γ†c−k

)]
|0⟩γ, (6.34)

which satisfies âkσ |ΨBEC(0)⟩ = 0 for k , 0, where |0⟩γ denotes the vacuum of the ˆ̃γs,ck operators.
From the Hamiltonian (6.29), the time evolution of the quantum state follows

|ΨBEC(t)⟩ ∝ exp

[
1
2

∑
k,0

(
ṽs−ke−2iϵ̃ sk t

ũs
k

ˆ̃γ†sk
ˆ̃γ†s−k +

ṽc−ke−2iϵ̃ ck t

ũc
k

ˆ̃γ†ck
ˆ̃γ†c−k

)]
|0⟩γ . (6.35)

Then, by denoting ⟨· · · ⟩ as the expectation value with respect to |ΨBEC(t)⟩, the time evolution of the
spin operator becomes

⟨Ŝx⟩
NB
=

⟨
1

2NB

∑
k

(
â†k,↑âk,↓ + â†k,↓âk,↑

)⟩
(6.36)

=
1
2
− 1

nB

∫
d3k
(2π)3

2(ũs
k)

2(ṽsk)
2(1 − cos(2ϵ̃ sk t)), (6.37)

where we used the expressions of the Bogoliubov transformations (6.32). The second term in Eq. (6.37)
represents the decoherence factor induced by the spin-dependent internal interactions between the host
bosons. The integral over (ũs

k)
2 roughly equals the number of excited particles, which is typically

less than 1%, and ṽsk is on the order of r . Thus, the decoherence factor can be estimated by the
multiplication of these two factors.

As an example, we assume an imbalance r = 0.01. Then the total decoherence factor induced by
the internal dynamics (6.37) is about < 10−6 which is negligible compared to the dephasing induced
by the impurity. Figure 6.5 shows the time evolution of the decoherence given by Eq. (6.37) for the
imbalance parameters r = 0.01, and 0.1. Our numerical findings support the above estimation of the
decoherence factor. In particular, the decoherence is still greatly suppressed even for an imbalance
in the boson-boson scattering lengths of about 10%. Thus, our predictions on the magnetic polaron
dynamics should be detectable also using a miscible pair of hyperfine states of 23Na by identifying, for
instance, |F = 1,mF = 1⟩ as the ↑-state and |F = 1,mF = 0⟩ as the ↓-state, leading to an imbalance
∼ 8% [588]. For this choice, 40K [550] will be the most promising candidate for the impurity atoms.

∗ A generalization to the case of r1 , r2 is straightforward and leads to a similar conclusion.
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Fig. 6.5 Decoherence induced by an imbalance in the interactions between the different compo-
nents of the environment bosons. The time evolutions are plotted for (a) r = 0.01 and (b) r = 0.1.
The boson-boson interaction is set to aBBn1/3

B = 0.1 and we plot time in units of mB/(ℏn2/3
B ).

Reproduced from Fig. S2 of Ref. [132]. Copyright © 2018 by the American Physical Society.

6.6 Conclusions and Outlook
We have studied out-of-equilibrium dynamics of yet another paradigmatic open-quantum system,
a mobile spinless particle interacting with a many-particle environment. In particular, we have
shown that the formation of a polaron cloud can be directly measured in real time by using the
Ramsey interferometry acting on the synthetic magnetic environment. We have demonstrated that
the key signature of the magnetic polaron is the generation of spin excitations in the environment
atoms. In the strong-coupling regime that is attainable in ultracold atomic systems (but not in solid-
state materials), we found that the many-body bound states can induce oscillatory spin dynamics
whose frequencies are characterized by the bound-state energies. Finally, we discussed a concrete
experimental implementation by the state-of-the-art techniques in ultracold atoms.

Our work suggests several new directions. Firstly, combining our interferometric approach with
in-situ imaging techniques such as quantum gas microscopy [2,3,11,36,37], one can directly observe
the real-space structure of the polaron cloud. In particular, it will be intriguing to reveal how the
entanglement generated by the impurity-environment coupling propagates in real space and time.
Secondly, a generalization of our approach to large-spin spinor BECs [595] presents an intriguing
direction where the formation of unconventional magnetic polarons is expected. Thirdly, while we
considered the physics close to a broad Feshbach resonance where range corrections are negligible,
it will be interesting to see how they affect the spin and charge dynamics. Finally, it remains an
important open question how the nature of magnetic polarons changes as the density of impurities
is increased to a degree at which a magnon-mediated interaction between polarons [596] becomes
important, potentially leading to a superfluid instability of a fermionic polaron gas.
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Chapter 7

Conclusions and Outlook

In this Thesis, we have studied the fundamental aspects of many-body physics in quantum systems open
to an external world, with particular focus on their quantum criticality, out-of-equilibrium dynamics,
and entanglement structures. The interactions with an external observer or environment fundamentally
alter the underlying physics and can give rise to new types of quantum many-body phenomena beyond
the conventional paradigm.

The first part of this Thesis is devoted to elucidating the influence of measurement backaction
on quantum many-body phenomena. First, by analyzing a universal low-energy behavior of a one-
dimensional many-body system, we have identified that continuous observation leads to two possible
types of relevant perturbations to an effective Hamiltonian. Extending the Tomonaga-Luttinger liq-
uid theory to non-Hermitian cases, we have revealed new types of critical phenomena beyond the
conventional paradigm. Analyzing the Bose-Hubbard model under continuous observation, we found
that the measurement backaction can shift the quantum critical point. Our formalism and analyses
can readily be extended to other types of models with different symmetries or dimensions. It will
be intriguing to further search previously unexplored phenomena that have no analogues in Hermi-
tian many-body systems. Second, we have studied how the measurement backaction qualitatively
alters out-of-equilibrium dynamics of many-particle systems. We have developed the notion of the
full-counting dynamics, in which we found peculiar dynamics fundamentally different from the un-
conditional or unitary dynamics. Most strikingly, we have revealed the propagation of correlations
beyond the conventional maximal speed limit known as the Lieb-Robinson bound at the expense of
probabilistic nature of quantum measurement. While we have focused on the solvable noninteracting
model, it is intriguing to explore similar unconventional phenomena also in interacting many-body
systems. Employing the idea of the eigenstate-thermalization hypothesis, we have also addressed the
thermalization and heating in generic (nonintegrable) many-body systems under continuous observa-
tion. We find that the nonunitary nature of quantum measurement leads to several unique features
in thermalization mechanism that are unseen in closed systems. We leave it as an interesting open
question to elucidate thermalization of an integrable many-body system under measurement. Taking
the diffusive limit of continuous measurement, we have obtained the time-evolution equation for in-
distinguishable particles under a weak spatial observation. We expect that the derived equation should
be useful to analyze the backaction from a variety of minimally destructive in-situ measurements of
quantum systems since specific spatial profiles of measurement processes will disappear after taking
the diffusive limit of measurement.

The second part of this Thesis is devoted to studies of strongly correlated open quantum systems,
where the system-environment entanglement plays an essential role. We have focused on a quantum
impurity as their most fundamental paradigm, and developed a versatile and efficient theoretical
approach to studying its in- and out-of-equilibrium physics. This approach has almost achieved the
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state-of-the-art accuracy realized by the matrix-product-state ansatz with several orders of magnitude
fewer variational parameters. Moreover, it has allowed one to explore new types of nonequilibrium
phenomena that have been difficult to study through previous approaches. Our theoretical approach
and, in particular, the newly constructed canonical transformations can readily be generalized to other
types of many-body problems. We expect that they should play pivotal roles in the future studies of
solving challenging problems in strongly correlated systems. We have also analyzed a mobile spinless
particle strongly coupled to the magnetic environment and found new types of out-of-equilibrium
dynamics in the regime that is not attainable in solid-state materials. Our idea of employing the
Ramsey interferometry for the environment to reveal the impurity dynamics should have a broad
range of applicability other than the model we discuss. Together with quantum gas microscopy, this
possibility will open a way to reveal how the system-environment entanglement develops in real time
and space.

In short, this Thesis has been devoted to advancing our understanding of open and out-of-equilibrium
physics in quantum many-body systems. I hope that the research presented in this Thesis will stimulate
further studies in this new frontier.
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Appendix A

Adiabatic elimination of excited atomic states

We provide the detailed derivation of the master equation (3.107) for the dissipative dynamics of
atoms subject to a one-body loss, which can be obtained after adiabatically eliminating excited atomic
states. We consider a situation in which atoms in the system have an energy level diagram shown in
Fig. 3.10. Here the excited state |e⟩ has the frequency ω0 relative to the ground state |g⟩ and fast
decay channels to other states with the total decay rate Γ much larger than the spontaneous emission
rate from |e⟩ to |g⟩. The system is subject to a weak near-resonant light whose electric filed is given
by E(x, t) = 2E0(x) cos(ωLt). The dynamics of atoms in the levels {|g⟩, |e⟩} is then described by the
many-body Lindblad equation:

dρ̂
dt
= − i
ℏ
[Ĥ, ρ̂] − Γ

2

∫ [
Ψ̂
†
e (x)Ψ̂e(x)ρ̂ + ρ̂Ψ̂†e (x)Ψ̂e(x) − 2Ψ̂e(x)ρ̂Ψ̂†e (x)

]
dx, (A.1)

where Ψ̂e denotes the field operator of an excited atom and the terms involving Γ describe a loss of
atoms in the state |e⟩. Here Ĥ is the Hamiltonian of the interacting two-level atoms:

Ĥ = Ĥg + Ĥe + V̂ . (A.2)

Going onto the rotating frame and making the rotating-wave approximation, the Hamiltonians Ĥg
and Ĥe of ground- and excited-state atoms and the interaction Hamiltonian V̂ describing the Rabi
coupling between the two atomic levels are given by

Ĥg =

∫
dx

[
Ψ̂
†
g(x)

(
−ℏ

2∇2

2m
+Ug(x)

)
Ψ̂g(x) +

g

2
Ψ̂
†
g(x)Ψ̂†g(x)Ψ̂g(x)Ψ̂g(x)

]
, (A.3)

Ĥe =

∫
dx Ψ̂†e (x)

(
−ℏ

2∇2

2m
+Ue(x) + ℏδ

)
Ψ̂e(x), (A.4)

V̂ = −ℏ
2

∫
dx

(
Ω(x)Ψ̂†g(x)Ψ̂e(x) + H.c.

)
≡ V̂− + V̂+, (A.5)

where Ug,e(x)’s are optical trapping potentials of the ground- and excited-state atoms created by a far-
detuned light, g is the strength of the contact interaction between the ground-state atoms, δ = ωL −ω0
is the detuning, Ω(x) = 2d ·E0(x)/ℏ is the Rabi frequency with d = ⟨e|d̂|g⟩ being the dipole moment,
and V̂+(−) are the coupling terms that cause excitation (deexcitation) of the atoms. Let us introduce
the non-Hermitian Hamiltonian Ĥe,eff of the excited-state atoms by

Ĥe,eff = Ĥe −
iℏΓ
2

∫
dxΨ̂†e (x)Ψ̂e(x). (A.6)
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Then, the time-evolution equation (A.1) is written as follows:
dρ̂
dt
= − i
ℏ

[(
Ĥg + Ĥe,eff + V̂

)
ρ̂ − ρ̂

(
Ĥg + Ĥ†e,eff + V̂

)]
+ Γ

∫
dxΨ̂e(x)ρ̂Ψ̂†e (x). (A.7)

In the limit of a rapid decay Γ ≫ δ,Ω, we can adiabatically eliminate the rapidly evolving excited states
and obtain the effective dynamics of the ground-state atoms. We achieve this by solving Eq. (A.7)
using the second-order perturbation theory with respect to the weak coupling V̂ [198]. As shown
below, the resulting time-evolution equation for the ground-state atoms is given by Eq. (A.28), and it
reduces to the effective non-Hermitian dynamics (A.33) with the effective Hamiltonian (A.29) when
we consider the simplest continuously monitored dynamics without quantum jumps.

To perform the perturbative analysis, we work in the interaction picture, where the density matrix
is given by

ˆ̃ρI(t) = ei(Ĥg+Ĥe,eff)t/ℏ ρ̂(t)e−i
(
Ĥg+Ĥ†e,eff

)
t/ℏ
, (A.8)

and a general operator Ô is represented by

ÔI(t) = ei(Ĥg+Ĥe,eff)t/ℏÔe−i(Ĥg+Ĥe,eff)t/ℏ. (A.9)

We note that ˆ̃ρI in Eq. (A.8) is not normalized to unity in general. The time-evolution equation (A.7)
is then simplified to

Û̃̂ρI = −
i
ℏ

[
V̂I ˆ̃ρI − ˆ̃ρIV̂†I

]
+ Γ

∫
dxΨ̂I,e(x) ˆ̃ρIΨ̂

†
I,e(x). (A.10)

We assume that all the atoms reside in the ground state at t = 0. Then, we decompose the evolving
state ˆ̃ρI(t) into a perturbation series with respect to the weak coupling V̂I:

ˆ̃ρI(t) = ˆ̃ρ(0)I (t) + ˆ̃ρ(1)I (t) + ˆ̃ρ(2)I (t) + · · · ,
��� ˆ̃ρ(n)I (t)

��� ∝ (
|Ω|
Γ

)n ��� ˆ̃ρ(0)I (t)
��� , (A.11)

where | · · · | denotes the trace norm. The recursive equations of the first three terms in the expansion
(A.11) are given by

Û̃̂ρ(0)I = 0, (A.12)

Û̃̂ρ(1)I = −
i
ℏ

[
V̂I ˆ̃ρ(0)I − ˆ̃ρ(0)I V̂

†
I

]
, (A.13)

Û̃̂ρ(2)I = −
i
ℏ

[
V̂I ˆ̃ρ(1)I − ˆ̃ρ(1)I V̂

†
I

]
+ Γ

∫
dxΨ̂I,e(x) ˆ̃ρ(2)I Ψ̂

†
I,e(x). (A.14)

From Eq. (A.12), we can take ˆ̃ρ(0)I as a time-independent operator. Equation (A.13) can formally be
integrated to give

ˆ̃ρ(1)I (t) = −
i
ℏ

∫ t

0
dt ′

[
V̂I(t ′) ˆ̃ρ(0)I − ˆ̃ρ(0)I V̂

†
I (t
′)
]
. (A.15)

To integrate out the excited states and obtain the effective dynamics of the ground-state atoms, we
decompose ˆ̃ρ(2)I into the subspaces of the ground- and excited-state atoms. To do so, we introduce the
projection P̂g onto the ground-state manifold by P̂g =

∑
N P̂N

g , where P̂N
g denotes the projection onto

the subspace spanned by quantum states containing N ground-state atoms only. We also introduce
the projection Q̂1

e onto quantum states having a single excited-state atom (and an arbitrary number of
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ground-state atoms). Then, Eq. (A.14) can be decomposed as

P̂g
Û̃̂ρ(2)I P̂g = −

i
ℏ
P̂g

[
V̂I ˆ̃ρ(1)I − ˆ̃ρ(1)I V̂

†
I

]
P̂g + ΓP̂g

∫
dxΨ̂I,eQ̂1

e ˆ̃ρ(2)I Q̂
1
e Ψ̂
†
I,eP̂g, (A.16)

Q̂1
e
Û̃̂ρ(2)I Q̂

1
e = −

i
ℏ
Q̂1

e

[
V̂I ˆ̃ρ(1)I − ˆ̃ρ(1)I V̂

†
I

]
Q̂1

e , (A.17)

where Eq. (A.17) follows from the fact that ˆ̃ρ(2)I contains, at most, one excited-state atom. We
adiabatically eliminate the excited states by integrating out Eq. (A.17):

Q̂1
e ˆ̃ρ(2)I (t)Q̂

1
e = −

i
ℏ
Q̂1

e

∫ t

0
dt ′

[
V̂I(t ′) ˆ̃ρ(1)I (t

′) − ˆ̃ρ(1)I (t
′)V̂†I (t

′)
]
Q̂1

e . (A.18)

Substituting Eqs. (A.15) and (A.18) into (A.16), we obtain

P̂g
Û̃̂ρ(2)I P̂g = −

1
ℏ2
P̂g

[
V̂I(t)

∫ t

0
dt ′V̂I(t ′) ˆ̃ρ(0)I + H.c.

]
P̂g

+
Γ

ℏ2
P̂g

∫
dxΨ̂I,eQ̂1

e

∫ t

0
dt ′

∫ t′

0
dt ′′

[
V̂I(t ′) ˆ̃ρ(0)I V̂

†
I (t
′′) + H.c.

]
Q̂1

e Ψ̂
†
I,eP̂g. (A.19)

Here, in the second line in Eq. (A.19), the terms proportional to V̂IV̂I ˆ̃ρ(0)I or ˆ̃ρ(0)I V̂
†
I V̂

†
I vanish

because of the projection Q̂1
e . Then, since we assume that the time scale of the strong dissipation is

fast compared with other time scales appearing in the system, we approximate the leading contributions
by

e−i(Ĥg+Ĥe,eff)t/ℏP̂g ≃ P̂g, e−i(Ĥg+Ĥe,eff)t/ℏQ̂1
e ≃ e−Γt/2Q̂1

e . (A.20)

From these equations, it follows that

P̂gV̂I(t) = P̂gei(Ĥg+Ĥe,eff)t/ℏ(V̂+ + V̂−)e−i(Ĥg+Ĥe,eff)t/ℏ

≃ P̂gV̂−Q̂1
e e−i(Ĥg+Ĥe,eff)t/ℏ

≃ e−Γt/2P̂gV̂−Q̂1
e . (A.21)

Similarly, we obtain

Q̂1
eV̂I(t)P̂g = Q̂1

e ei(Ĥg+Ĥe,eff)t/ℏ(V̂+ + V̂−)e−i(Ĥg+Ĥe,eff)t/ℏP̂g

≃ eΓt/2Q̂1
eV̂+P̂g. (A.22)

We then perform the integration in the first line on the right-hand side of Eq. (A.19) and obtain

− 1
ℏ2
P̂g

[
V̂I(t)

∫ t

0
dt ′V̂I(t ′) ˆ̃ρ(0)I + H.c.

]
P̂g ≃ −

1
ℏ2

[
P̂gV̂−Q̂1

e e−Γt/2
∫ t

0
dt ′eΓt

′/2Q̂1
eV̂+P̂g ˆ̃ρ(0)I + H.c.

]
≃ − 2
ℏ2Γ

(
P̂gV̂−V̂+P̂g ˆ̃ρ(0)I +

ˆ̃ρ(0)I P̂gV̂−V̂+P̂g

)
= −

{∫
dx
|Ω(x)|2

2Γ
Ψ̂
†
g(x)Ψ̂g(x), ˆ̃ρ(0)I

}
, (A.23)

where we use Eqs. (A.21), (A.22), and the relations P̂g ˆ̃ρ(0)I P̂g = ˆ̃ρ(0)I and (Q̂1
e )2 = Q̂1

e in the first line,
and use Eq. (A.5) to derive the last line. To calculate the last line in Eq. (A.19), we approximate

Q̂1
e

∫ t

0
dt ′

∫ t′

0
dt ′′

[
V̂I(t ′) ˆ̃ρ(0)I V̂

†
I (t
′′) + H.c.

]
Q̂1

e ≃ 2
∫ t

0
dt ′

∫ t′

0
dt ′′eΓ(t

′+t′′)/2Q̂1
eV̂+ ˆ̃ρ(0)I V̂−Q̂

1
e

≃ 4eΓt

Γ2 V̂+ ˆ̃ρ(0)I V̂−, (A.24)
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and

P̂gΨ̂I,eQ̂1
e ≃ e−Γt/2P̂gΨ̂eQ̂1

e , Q̂1
e Ψ̂
†
I,eP̂g ≃ e−Γt/2Q̂1

e Ψ̂
†
e P̂g. (A.25)

The last line in Eq. (A.19) can then be calculated as

Γ

ℏ2
P̂g

∫
dxΨ̂I,eQ̂1

e

∫ t

0
dt ′

∫ t′

0
dt ′′

[
V̂I(t ′) ˆ̃ρ(0)I V̂

†
I (t
′′) + H.c.

]
Q̂1

e Ψ̂
†
I,eP̂g

≃ 4
ℏ2Γ

∫
dxP̂gΨ̂e(x)V̂+P̂g ˆ̃ρ(0)I P̂gV̂−Ψ̂†e (x)P̂g

≃ P̂g

∫
dx
|Ω(x)|2
Γ
Ψ̂g(x) ˆ̃ρ(0)I Ψ̂

†
g(x)P̂g, (A.26)

where we use Eqs. (A.24) and (A.25) and P̂g ˆ̃ρ(0)I P̂g = ˆ̃ρ(0)I in the second line. To derive the last line,
we use the following relation

P̂gΨ̂e(x)V̂+P̂g = −
ℏΩ∗(x)

2
P̂gΨ̂g(x)P̂g. (A.27)

From equations (A.19), (A.23), (A.26) and P̂g
Û̃̂ρ(0)I P̂g = P̂g

Û̃̂ρ(1)I P̂g = 0, the effective time-evolution
equation of the ground-state atoms is obtained as

dρ̂g

dt
= − i
ℏ

(
Ĥg,eff ρ̂g − ρ̂gĤ†g,eff

)
+

∫
dx
|Ω(x)|2
Γ
Ψ̂g(x)ρ̂gΨ̂

†
g(x), (A.28)

Ĥg,eff ≡ Ĥg − iℏ
∫

dx
|Ω(x)|2

2Γ
Ψ̂
†
g(x)Ψ̂g(x), (A.29)

where we go back to the Schrödinger picture and introduce the density matrix ρ̂g projected onto the
ground-state manifold by

ρ̂g(t) = P̂g ρ̂(t)P̂g ≃ P̂g

(
ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2)(t)

)
P̂g. (A.30)

The non-Hermitian Hamiltonian (A.29) describes the continuously monitored dynamics of the system
conditioned on the realization with no quantum jumps being observed, i.e., no atoms escape from the
ground state [37,146,156]. To clarify this point, let us assume that N ground-state atoms are initially
prepared, i.e., P̂N

g ρ̂(0)P̂N
g = ρ̂(0). This initial condition implies

P̂N+l
g ρ̂g(0)P̂N+l

g = 0 (l = 1,2, . . .), (A.31)

where we use
[
P̂N

g , P̂g
]
= 0. From Eqs. (A.28) and (A.31), we can in particular show that, during the

course of the time evolution,

P̂N+1
g ρ̂g(t)P̂N+1

g = 0. (A.32)

Let us now consider the dynamics without quantum jumps ˆ̃ρNg (t) ≡ P̂N
g ρ̂(t)P̂N

g = P̂N
g ρ̂g(t)P̂N

g , where
the dynamics is conditioned such that no atoms are lost from the initial state. Using Eqs. (A.28) and
(A.32), we can show that this dynamics ˆ̃ρNg is governed by the non-Hermitian Hamiltonian (A.29):

d ˆ̃ρNg
dt
= − i
ℏ

(
Ĥg,eff ˆ̃ρNg − ˆ̃ρNg Ĥ†g,eff

)
. (A.33)

Some remarks are in order here. First, an imaginary potential −i |Ω(x)|2/(2Γ) in Eq. (A.29) arises
from the second-order process of a virtual excitation and de-excitation of the ground-state atoms (see
Eq. (A.23)). Since no atoms are lost in this process, the non-Hermitian contribution exists even
when we do not observe actual losses of atoms. Physically, such a contribution originates from the
measurement backaction associated with continuous monitoring of the population of atoms in the
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excited state [146]. Second, we note that the expression of the imaginary potential indicates that
the loss rate of atoms from the ground state is suppressed by a factor of Ω/Γ for a large Γ. In
particular, in the limit of Γ → ∞, the dynamics reduces to the Hermitian evolution governed by Ĥg.
This limit can be interpreted as the quantum Zeno dynamics [597], where the strong measurement
confines the dynamics into the decay-free subspace and the time-evolution obeys the effective “Zeno"
Hamiltonian. In our model, such a Hamiltonian is given by Ĥg = P̂gĤP̂g, where the total Hamiltonian
Ĥ is projected onto the decay-free, ground-state manifold. In a general case of a strong but finite Γ,
we need to perform careful perturbative analyses [222, 223, 261, 598] to obtain the correction terms
beyond the quantum Zeno dynamics, as we have conducted above.
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Appendix B

The Lieb-Robinson bound

Here we briefly summarize the statement of the Lieb-Robinson bound and describe its relation to the
full-counting dynamics discussed in Sec. 4.1. Lieb and Robinson (LR) have shown [294] that, for a
unitary time evolution in nonrelativistic quantum spins (or fermonic particles for spin-1/2 case) on a
lattice, there exists a finite group velocity vLR which bounds the velocity of propagation of information
in the system. Specifically, they have shown the bound

[ÔA(t), ÔB(0)]



 ≤ c min(|A|, |B |)


ÔA



 

ÔB



 exp
(
−L − vLRt

ξ

)
, (B.1)

where ÔA and ÔB are local operators acing on two subsystems A and B that are separated by the
distance L, ∥ · ∥ is the operator norm, |A| (|B |) denotes the volume of A (B), vLR is the LR velocity, ξ
characterizes the size of the tail in the effective light cone. The operator Ô(t) denotes the Heisenberg
representation. We note that values of constants c, vLR and ξ cannot be given by the bound in general.
Physically, the bound (B.1) shows that a signal given in region B at t = 0 cannot be transferred to
region A faster than the velocity vLR. Bravyi, Hastings and Verstraete have used the inequality (B.1)
to obtain the bound on the connected equal-time correlation functions after the quench [307]:

⟨Ψt |ÔAÔB |Ψt⟩ < c′(|A| + |B |) exp
(
−L − 2vLRt

χ

)
, (B.2)

where c′ and χ are constants. These relations play crucial roles especially in quantum information
science and have laid the cornerstone in studies of gapped many-body ground states. While the
relations (B.1) and (B.2) have been originally derived for closed quantum systems, later they have been
generalized [296,297] to the open quantum dynamics described by the Lindblad master equation, where
the Liouvillian is assumed be the sum of local operators acting on the density matrix. In particular,
this locality condition is satisfied in the exactly solvable model discussed in Sec. 4.1 as inferred from
the non-Hermitian term −∑

l[(−1)liγ(ĉ†
l+1ĉl + ĉ†

l
ĉl+1) + 2iγĉ†

l
ĉl] in the effective Hamiltonian and

the jump term J[ρ̂] = 2γ
∑

l[2ĉl ρ̂ĉ†
l
+ (−1)l(ĉl ρ̂ĉ†

l+1 + ĉl+1 ρ̂ĉ†
l
)]; both of them consist of only local

operators.
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Appendix C

The exact solution of the lattice model

We provide technical details on the exact solution of the full-counting dynamics for the lattice model
discussed in Sec. 4.1. To begin with, we diagonalize the effective Hamiltonian ĤPT in Eq. (4.10).
We divide the periodic chain of even length L into two sublattices (âl = ĉ2l and b̂l = ĉ2l+1 with
l = 0,1, . . . , L/2 − 1) and introduce their Fourier transforms by

âl =

√
2
L

∑
0≤k<2π

âkeikl, b̂l =

√
2
L

∑
0≤k<2π

b̂keikl, k =
2πn
(L/2)

(
n = 0,1, . . . ,

L
2
− 1

)
. (C.1)

Using these operators, we can rewrite ĤPT as follows:

ĤPT=−
L−1∑
l=0

[(
J+(−1)liγ

)(
ĉ†
l+1ĉl+ĉ†

l
ĉl+1

)
+(−1)lhĉ†

l
ĉl
]

(C.2)

=
∑

0≤k<2π

(
â†
k

b̂†
k

) ( −h −J − iγ + (−J + iγ)e−ik
−J − iγ + (−J + iγ)eik h

) (
âk
b̂k

)
. (C.3)

Diagonalizing the 2 × 2 matrix for each mode k, we obtain

ĤPT =
∑
k

∑
λ=±

ϵλ(k)ĝ†λk f̂λk, ϵ±(k) = ±
√

h2 − 4γ2 + 2J ′2(1 + cos k), ĝ†
λk
= αR

λ (k)â
†
k
+ βR

λ (k)b̂
†
k
,

(C.4)

where ϵλ(k) (λ = ±) are two eigenvalues for each mode k with J ′ =
√

J2 + γ2, ĝ†
λk

creates a
right eigenvector of ĤPT, i.e., ĤPTĝ

†
λk
|0⟩ = ϵλ(k)ĝ†λk |0⟩, and (αR

λ (k), βR
λ (k))T are components of the

corresponding right eigenvector of the 2 × 2 non-Hermitian matrix in Eq. (C.3). The operator f̂λk
creates a left eigenvector of ĤPT, i.e., ⟨0| f̂λk ĤPT = ⟨0| f̂λkϵλ(k), and its form is uniquely determined
when we impose a generalized anticommutation relation { f̂λk, ĝ

†
λ′k′} = δk ,k′δλ,λ′ .

We can similarly diagonalize the jump term J[ρ̂] in Eq. (4.9), obtaining

J[ρ̂] = 4
∑
k

∑
λ=±

γλ(k)d̂λk ρ̂ d̂†
λk
, γ±(k) = γ

(
1 ±

����sin (
k
2

)����) , (C.5)

where we introduce the operators d̂+,k = (−ie
ik
2 âk + b̂k)/

√
2 and d̂−,k = (ie

ik
2 âk + b̂k)/

√
2.

We next derive the solution of the full-counting dynamics. To do so, we introduce the interaction
picture by

ˆ̃ρ(t) = eiĤeff t ρ̂(t)e−iĤ
†
eff t, ˆ̃dλk(t) = eiĤeff t d̂λke−iĤeff t . (C.6)
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Then, the time-evolution equation becomes

d ˆ̃ρ(t)
dt
= 4

∑
k

∑
λ=±

γλ(k) ˆ̃dλk(t) ˆ̃ρ(t) ˆ̃d†
λk
(t). (C.7)

For the sake of concreteness, we assume that N = L/2 particles are present at time t = 0. Introducing
a projector P̂n onto the subspace containing N − n particles, we denote an unnormalized density
matrix accompanying n quantum jumps by ϱ̂(n)(t) = P̂n ρ̂(t)P̂n. Integrating Eq. (C.7) with the initial
condition ϱ̂(n)(0) = 0 for n < N and noting the relation [P̂n, Ĥeff] = 0, we obtain the following
recursion relation:

ˆ̃ϱ(n)(t) = 4
∫ t

0
dτ

∑
k ,λ

γλ(k) ˆ̃dλk(τ) ˆ̃ϱ(n−1)(τ) ˆ̃d†
λk
(τ). (C.8)

Solving the recursion relation (C.8) iteratively, we obtain the formal solution of ˆ̃ϱ(n)(t) as

ˆ̃ϱ(n)(t) = 4n
∫ t

0
dtn · · ·

∫ t2

0
dt1∑

k1λ1 ,...,knλn

γλ1 (k1) · · · γλn (kn) ˆ̃dλnkn (tn) · · · ˆ̃dλ1k1 (t1) ˆ̃ϱ(0)(t1) ˆ̃d†
λ1k1
(t1) · · · ˆ̃d†

λnkn
(tn)

=
4n

n!

∫ t

0
dtn · · ·

∫ t

0
dt1∑

k1λ1 ,...,knλn

γλ1 (k1) · · · γλn (kn)
−→
T

[
ˆ̃dλnkn (tn) · · · ˆ̃dλ1k1 (t1)

]
ρ̂(0)←−T

[
ˆ̃d†
λ1k1
(t1) · · · ˆ̃d†

λnkn
(tn)

]
,

(C.9)

where we use ˆ̃ϱ(0)(t1) = ρ̂(0) in obtaining the second equality, and −→T (←−T ) denotes the time-ordering
(anti-time-ordering) operator. To perform the time integration, let us simplify the following time-
dependent operator ˆ̃dλk(t):

ˆ̃dλk(t) = eiĤeff t d̂λke−iĤeff t = e−2γteiĤPTt d̂λke−iĤPTt . (C.10)

Because ĤPT is quadratic in fermionic operators (see Eq. (C.3)), we can solve Eq. (C.10) by introducing
an eigenoperator Λ̂ηk satisfying the relation [Λ̂ηk, ĤPT] = ϵη(k)Λ̂ηk (η = ±). We thus obtain

ˆ̃dλk(t) = e−2γt
∑
η=±

cηλΛ̂ηke−iϵη (k)t, (C.11)

where cηλ are the expansion coefficients of d̂λk with respect to Λ̂ηk’s. Using a right eigenvector
(αR
λ (k), βR

λ (k))T of ĤPT (see Eq. (C.4)), an explicit expression of the eigenoperators can be given as
Λ̂ηk = α

R
η (−k)âk + βR

η (−k)b̂k . We then consider the following time integration:∫ t

0
dτ · · · ˆ̃dλk(τ) · · · ˆ̃d†

λk
(τ) · · · =

∫ t

0
dτ

∑
ηη′

cηλc∗η′λe−4γτ−iϵη (k)τ+iϵη′ (k)τ · · · Λ̂ηk · · · Λ̂†η′k · · ·

=
∑
ηη′

cηλc∗η′λ
1 − e−4γt−iϵη (k)t+iϵη′ (k)t

4γ + i(ϵη(k) − iϵη′(k))
· · · Λ̂ηk · · · Λ̂†η′k · · · .

(C.12)
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Using Eq. (C.9) and introducing the 2 × 2 matrix γcηη′(k) =
∑
λ γλ(k)cηλc∗η′λ, we obtain

ˆ̃ϱ(n)(t)=
∑

η1η
′
1k1 · · ·ηnη′nkn

1
n!

[
n∏
i=1

γcηiη′i
(ki)

1−e−4γt−iϵηi (ki )t+iϵη′i (ki )t

γ + i(ϵηi (ki) − ϵη′i (ki))/4

]
Λ̂ηnkn · · ·Λ̂η1k1 ρ̂(0)Λ̂

†
η′1k1
· · ·Λ̂†

η′nkn
.

(C.13)

Transforming back to the Schrödinger picture by using

ϱ̂(n)(t) = e−iĤeff t ˆ̃ϱ(n)(t)eiĤ
†
eff t = e−4γ(N−n)te−iĤPTt ϱ̂(n)(t)eiĤ

†
PTt (C.14)

and the relation e−iĤPTtΛ̂ηkeiĤPTt = Λ̂ηkeiϵη (k)t , we obtain the solution of the full-counting dynamics:

ϱ̂(n)(t)=
∑

η1η
′
1k1 · · ·ηnη′nkn

e−4γ(N−n)t

n!

[
n∏
i=1
Dηiη′i (ki; t)

]
Λ̂ηnkn · · ·Λ̂η1k1 e−iĤPTt ρ̂(0)eiĤ

†
PTtΛ̂

†
η′1k1
· · ·Λ̂†

η′nkn
,

(C.15)

where we introduce the 2 × 2 Hermitian matrix Dηη′ by

Dηη′(k; t) = γcηη′(k)
eiϵη (k)t−iϵη′ (k)t − e−4γt

γ + i(ϵη(k) − ϵη′(k))/4
. (C.16)

In practice, to calculate the nonequilibrium properties of the system such as correlation functions,
we proceed as follows. First, we diagonalize the operators Λ̂ηk and Λ̂†

η′k in Eq. (C.15) with respect to
the indices η and η′. To this end, for each time t and wavevector k, we numerically diagonalize the
following 2 × 2 Hermitian matrix:( ∑

ηη′ Dηη′(k; t)αR
η (−k)α∗Rη′ (−k) ∑

ηη′ Dηη′(k; t)βR
η (−k)α∗Rη′ (−k)∑

ηη′ Dηη′(k; t)αR
η (−k)β∗Rη′ (−k) ∑

ηη′ Dηη′(k; t)βR
η (−k)β∗Rη′ (−k)

)
. (C.17)

Using its two real eigenvalues λ±,k(t) and the corresponding orthonormal eigenvectors v̂±,k(t), we can
simplify Eq. (C.15) as follows:

ϱ̂(n)(t)=e−4γ(N−n)t

n!

∑
η1k1 · · ·ηnkn

[
n∏
i=1

ληiki (t)
]
v̂ηnkn (t)· · ·v̂η1k1 (t)e−iĤPTt ρ̂(0)eiĤ

†
PTt v̂†

η1k1
(t)· · ·v̂†

ηnkn
(t).

(C.18)

The time evolution e−iĤPT t ρ̂(0)eiĤ†PT t can be calculated by using Eq. (C.4). Denoting the initial state
as ρ̂(0) = |Ψ0⟩⟨Ψ0 | and expanding it in terms of the right eigenvectors |Ψ0⟩ =

∏
k[

∑
λ ψλk ĝ

†
λk
]|0⟩, the

time evolution is given by

|Ψt⟩ = e−iĤPTt |Ψ0⟩ =
∏
k

[∑
λ

ψλke−iϵλ(k)t ĝ†
λk

]
|0⟩ =

∏
k

[∑
η

ψv
η(k; t)v̂†

ηk
(t)

]
|0⟩. (C.19)

In obtaining the last equality, we have expanded the time-dependent state in the basis of v̂±,k(t) and
introduced the corresponding expansion coefficients ψv

η(k; t). Combining Eqs. (C.18) and (C.19), we
can obtain the following expression for the trace of an unnormalized density matrix:

Tr
[
ϱ̂(n)(t)

]
= e−4γ(N−n)t

[∏
k

Nk(t)
]
σn

(
{ f vk (t)}

)
, (C.20)

where we introduce the time-dependent norm factor Nk(t) =
∑
η |ψv

ηk
(t)|2 of each mode k, and σn
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denotes the n-th symmetric polynomial of f v
k
(t) ≡ ∑

η ληk(t)|ψv
ηk
(t)|2/Nk(t):

σn

(
{ f vk (t)}

)
=
(−1)n
(N − n)!

dN−n

dxN−n

�����
x=0

∏
k

(
x − f vk (t)

)
. (C.21)

We note that { f v
k
(t)} forms a set of N variables with k = 0,2π/N, . . . ,2π(N − 1)/N .

The full-counting equal-time correlation is now given as

C(n)(l, t) =
Tr

[
ĉ†
l
ĉ0 ϱ̂
(N−n)(t)

]
Tr

[
ϱ̂(N−n)(t)

]
=

2
L

∑
k

e−ik ⌈l/2⌉
[∑

λ ψ
∗
λk
(t)O∗Rλ (k) ×

∑
λ ψλk(t)αR

λ (k)
Nk(t)

]
σn

(
{ f v

k′(t)}k′,k
)

σn

(
{ f v

k′(t)}
) , (C.22)

where we choose O = α (β) when l is even (odd) and introduce ψλk(t) = ψλke−iϵλ(k)t and

σn

(
{ f vk′(t)}k′,k

)
=

(−1)n
(N − 1 − n)!

dN−1−n

dxN−1−n

�����
x=0

∏
k′,k

(
x − f vk′(t)

)
. (C.23)

Finally, for the null-jump case n = 0, we can further simplify the expressions of correlation functions.
For example, the unequal-time correlation defined by C̃(0)(l, t) = ⟨Ψ0 |ĉ†l (t)ĉ0(0)|Ψ0⟩/⟨Ψt |Ψt⟩ with
ĉ†
l
(t) ≡ eiĤ

†
PTt ĉ†

l
e−iĤPTt can be expressed as

C̃(0)(l, t) = 2
L

∑
k

∑
λ=±

Oλk

ψ∗
λk

eiϵλ(k)t−ik ⌈l/2⌉

Nk(t)
with Oλk = O∗Rλ (k)

∑
η

ψηkα
R
η (k), (C.24)

which gives Eq. (4.16) in Sec. 4.1.
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Appendix D

Subextensive energy fluctuation in the
matrix-vector product ensemble

We here show the subextensiveness of the energy fluctuation in the matrix-vector product ensemble
introduced in Sec. 4.2:

ρ̂M =
ΛM[ρ̂eq]

Z(M) =
1

Z(M)
∑
a

[Vmn · · · Vm1 peq]a |Ea⟩⟨Ea |. (D.1)

We recall that ΛM =
∏n

i=1
(
Λ ◦ Lmi ◦ Λ

)
with Lm[Ô] = L̂mÔL̂†m, Λ[Ô] = ∑

a P̂aÔP̂a and P̂a =

|Ea⟩⟨Ea |, and Z(M) = ∑
a[Vmn · · · Vm1 peq]a is a normalization constant. We assume that thermal

eigenstates satisfy the cluster decomposition property (CDP) for local operators Ôx,y [362,395,396]:

lim
|x−y |→∞

Tr[ÔxÔy P̂a] − Tr[Ôx P̂a]Tr[Ôy P̂a] = 0, (D.2)

which is a fundamental property that lies at the heart of quantum many-body theory [362,363,395,396]
and should hold true for any physical states (with only a few exceptions such as (long-lived) macroscopic
superposition states [363]). From this assumption together with the ETH, it follows that any diagonal
ensemble with a strongly peaked energy distribution satisfies the CDP in the thermodynamic limit. In
particular, the initial thermal equilibrium state ρ̂eq also satisfies the CDP since its energy fluctuation
(i.e., the standard deviation) is subextensive by definition. Below we show that if an energy fluctuation
in an ensemble ρ̂ diagonal in the energy basis is subextensive and thus ρ̂ satisfies the CDP, then
a post-measurement ensemble ρ̂m ∝ Λm[ρ̂] after a single quantum jump with Λm = Λ ◦ Lm ◦ Λ
also satisfies these conditions. By induction it then follows that an energy fluctuation of the density
matrix (D.1) is also subextensive.

Local measurement
We first show the subextensiveness of the energy fluctuation in the post-measurement ensemble ρ̂m
for a local measurement, in which a measurement operator L̂m acts on a local spatial region. The
variance of energy is given as

(∆E)2 = Tr[Ĥ2 ρ̂m] − (Tr[Ĥ ρ̂m])2 =
1

(Z(m))2

[
Z(m)Tr[Ĥ2Lm[ρ̂]] −

(
Tr[ĤLm[ρ̂]]

)2
]
, (D.3)

where Z(m) = Tr[Λm[ρ̂]] is a normalization constant. We express the Hamiltonian and measurement
operators as sums of local operators:

Ĥ =
∑
x

ĥx, L̂m =
∑

x∈Dm

l̂x, (D.4)
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where Dm denotes a local spatial region on which L̂m acts. To rewrite Eq. (D.3), we calculate the
quantity

∆xy ≡
1

(Z(m))2
[
Z(m)Tr[ĥx ĥyLm[ρ̂]] − Tr[ĥxLm[ρ̂]]Tr[ĥyLm[ρ̂]]

]
(D.5)

=
1

(⟨L̂†m L̂m⟩)2
[
⟨L̂†m L̂m⟩⟨L̂†m ĥx ĥy L̂m⟩ − ⟨L̂†m ĥx L̂m⟩⟨L̂†m ĥy L̂m⟩

]
, (D.6)

where we denote Tr[·ρ̂] = ⟨·⟩. Using the condition [l̂x, ĥy] = 0 for x , y, we obtain in the limit
|x − y | → ∞

⟨L̂†m ĥx ĥy L̂m⟩ = ⟨L̂†m L̂m ĥx ĥy⟩ ≃ ⟨L̂†m L̂m⟩⟨ĥx⟩⟨ĥy⟩, (D.7)
⟨L̂†m ĥx L̂m⟩⟨L̂†m ĥy L̂m⟩ ≃ ⟨L̂†m L̂m⟩2⟨ĥx⟩⟨ĥy⟩. (D.8)

Here, we use the CDP of ρ̂ in deriving the last expressions. We thus obtain lim |x−y |→∞ ∆xy = 0. It
follows that the standard deviation of energy is subextensive:

lim
V→∞

∆E
V
= lim

V→∞

√∑
xy ∆xy∑
xy 1

= 0. (D.9)

In particular, it is physically plausible to assume that ∆xy decays exponentially fast or at least faster
than V−1 in the thermodynamic limit. Under this condition, we obtain the square-root scaling:

∆E ≃
√∑

x

∆xx ∝ O(
√

V). (D.10)

Global measurement
We next consider a global measurement, in which a measurement operator acts on an entire region
of the system. As Dm is independent of a label m, we abbreviate a label and denote a measurement
operator as L̂ =

∑
z l̂z for the sake of simplicity. It turns out that we need to discuss the two different

cases separately depending on whether or not an expectation value limV→∞⟨L̂⟩/V vanishes in the
thermodynamic limit.

We first consider the case in which ⟨L̂⟩ scales as

⟨L̂⟩ = ⟨
∑
z

l̂z⟩ ∝ O(V), (D.11)

so that the expectation value limV→∞⟨L̂⟩/V does not vanish. From the CDP of ρ̂, the leading term in
∆xy defined in Eq. (D.5) can be estimated in the limit |x − y | → ∞ as

∆xy =
1

⟨L̂† L̂⟩2

(
⟨
∑
z,w

l̂†z l̂w⟩⟨
∑
z,w

l̂†z ĥx ĥy l̂w⟩ − ⟨
∑
z,w

l̂†z ĥx l̂w⟩⟨
∑
z,w

l̂†z ĥy l̂w⟩
)

(D.12)

≃ 1
|⟨L̂⟩|4

[
(⟨l̂†x⟩⟨ĥx⟩ − ⟨l̂†x ĥx⟩)(⟨l̂†y ⟩⟨ĥy⟩ − ⟨l̂†y ĥy⟩)⟨L̂⟩2 + c.c.

]
∝ O

(
1

V2

)
. (D.13)

We thus conclude that the standard deviation of energy is subextensive:

∆E =
√∑

x

∆xx +
∑
x,y

∆xy ≃
√∑

x

∆xx ∝ O(
√

V). (D.14)

We next consider the other case in which an expectation value of L̂/V vanishes in the thermodynamic
limit. To be specific, we impose the following condition

⟨L̂⟩ = ⟨
∑
z

l̂z⟩ ∝ o(
√

V). (D.15)
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For instance, in the numerical example presented in Sec. 4.2.3, an expectation value of L̂ =∑
m(−1)mn̂m with respect to arbitrary energy eigenstate is exactly zero, and thus the condition (D.15)

is satisfied. Using this condition, we can rewrite ⟨L̂† L̂⟩ as

⟨L̂† L̂⟩ = ⟨
∑
z,w

l̂†z l̂w⟩ ≃
∑
z,w

(⟨l̂†z l̂w⟩ − ⟨l̂†z ⟩⟨l̂w⟩) ≃
∑
z

(
⟨l̂†z l̂z⟩ − ⟨l̂†z ⟩⟨l̂z⟩

)
∝ O(V). (D.16)

Here, in the first approximate equality we add the o(V) contribution in Eq. (D.15), and in the second
approximate equality we use the CDP of ρ̂ and the scaling (D.15). The leading contribution in ∆xy of
Eq. (D.12) is obtained as

∆xy ≃
⟨l̂†x ĥx⟩⟨ĥy l̂y⟩ + c.c.∑
z

(
⟨l̂†z l̂z⟩ − ⟨l̂†z ⟩⟨l̂z⟩

) ∝ O (
1
V

)
, (D.17)

again leading to the subextensive energy fluctuation:

∆E =
√∑

x

∆xx +
∑
x,y

∆xy ∝ O(
√

V). (D.18)
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Appendix E

Minimally destructive spatial observation of
indistinguishable particles

We here provide details about taking the limit of strong atom-light coupling limit and weak-spatial
resolution of Eq. (4.50), resulting in the stochastic differential equation (4.57) describing the random
time evolution of indistinguishable atoms under minimally destructive spatial observation. From
Eqs. (4.50) and (4.51), we obtain the following master equation:

d ρ̂ =− i
ℏ

[
Ĥ, ρ̂

]
+D[ρ̂]dt+

∫
dX

(
M̂(X)ρ̂M̂†(X)
⟨M̂†(X)M̂(X)⟩

−ρ̂
) (

dN(X; t) − ⟨M̂†(X)M̂(X)⟩
)
, (E.1)

where we define the dissipator by

D[ρ̂] =
∫

dX
(
M̂(X)ρ̂M̂†(X)− 1

2
{

M̂†(X)M̂(X), ρ̂
})
. (E.2)

To be specific, we assume the measurement operator

M̂(X) =
√

γ
√
πσ2

∑
m

exp
[
−(X − md)2

2σ2

]
n̂m, (E.3)

where the point-spread function is chosen to be a Gaussian function. Then, the dissipator D[ρ̂] in
Eq. (E.2) can be approximated as

D[ρ̂] ≃ −γ
2

∑
m,l

(
1 − (m − l)2d2

4σ2 [n̂l, [n̂m, ρ̂]]
)
= −N2γd2

4σ2

[
X̂c.m.,

[
X̂c.m., ρ̂

] ]
, (E.4)

where X̂c.m. =
∑

m n̂m/N is the center-of-mass operator with N being the total number of atoms
and we take the limit of weak-spatial resolution, i.e., we assume that interference peaks of particles
cannot be spatially resolved. In other words, this condition is equivalent to the requirement for matrix
elements of n̂mn̂l ρ̂ + ρ̂n̂l n̂m − 2n̂m ρ̂n̂l to rapidly vanish in |m − l | > σ/d [410]. Also, we employ the
conservation of the particle number

∑
m n̂m = NÎ to derive the last equality. Equation (E.4) gives the

first line in the time-evolution equation (4.57).
We next take the same limit of the last term in Eq. (E.1). To derive Eq. (4.57), we have to show that,

in this limit, the following contribution goes to zero:∫
dX R(X; t) dN(X; t) − ⟨M̂†(X)M̂(X)⟩dt√

⟨M̂†(X)M̂(X)⟩
≃

∫
dX R(X; t)dW(X; t). (E.5)
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Here we employ (4.55) and define

R(X; t) =
√
⟨M̂†(X)M̂(X)⟩

(
M̂(X)ρ̂M̂†(X)
⟨M̂†(X)M̂(X)⟩

− ρ̂− d
√

2σ

{
X̂c.m.−⟨X̂c.m.⟩, ρ̂

})
. (E.6)

The Gaussian point-spread function in M̂(X) can be expanded as∑
m

e−
(X−md)2

2σ2 n̂m ≃ e−
X2

2σ2
∑
m

(
1 +

mXd
σ2

)
n̂m = e−

X2
2σ2 N

(
Î +

Xd
σ2 X̂c.m.

)
. (E.7)

We can justify the use of the approximation (E.7) in Eq. (E.5) as follows. First, in the weak-spatial
resolution limit, particles are assumed to be positioned around the site m = 0 without loss of generality.
Since a cluster size of particles is smaller than σ, matrix elements of n̂m ρ̂n̂l in the Fock basis are
vanishingly small if m > σ/d or l > σ/d. Thus, higher-order terms of m in Eq. (E.7) can be
neglected. Second, we note that higher-order terms of X can be also neglected. The reason is that,
after performing the integration over X , they lead to higher-order terms of d/σ that can be neglected
in the weak-spatial resolution limit d/σ → 0. We then approximate the first two terms in Eq. (E.6) as∫ ∞

−∞
dX

(
M̂(X)ρ̂M̂†(X)√
⟨M̂†(X)M̂(X)⟩

−
√
⟨M̂†(X)M̂(X)⟩ ρ̂

)
dW(X; t)

≃
√

N2γd2
√
πσ5

∫ ∞

−∞
dXdW(X; t)Xe−

X2
2σ2

{
X̂c.m.−⟨X̂c.m.⟩, ρ̂

}
=

√
N2γd2

2σ2

{
X̂c.m. − ⟨X̂c.m.⟩, ρ̂

}
dW(t). (E.8)

Here we note that a linear superposition of Wiener stochastic processes is a Wiener process:∫ ∞

−∞
dXdW(X; t)Xe−

X2
2σ2 =

√
σ3√π

2
dW(t). (E.9)

Since Eq. (E.8) cancels out the last term in Eq. (E.6), we show that Eq. (E.5) goes to zero in the
weak-spatial resolution limit. The resulting time-evolution equation is Eq. (4.57). In the case of a
single particle, Eq. (4.57) reproduces the previous results [405–409]. The derivation presented here
is also applicable to a general point spread function if one replaces σ by the effective resolution
introduced in Eq. (4.49).
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Appendix F

Minimally destructive spatial observation of
distinguishable particles

We provide the derivation of Eq. (4.62) describing the motions of distinguishable particles under the
spatial observation. Starting from Eq. (4.60), we use (4.61) to obtain the master equation:

d ρ̂ =−i
ℏ

[
Ĥ, ρ̂

]
+

N∑
i=1

[
Di[ρ̂]dt+

∫
dXi

(
M̂i(Xi)ρ̂M̂†i (Xi)
⟨M̂†i (Xi)M̂i(Xi)⟩

− ρ̂
) (

dNi(Xi; t) − ⟨M̂†i (Xi)M̂i(Xi)⟩
)]
,

(F.1)

where we introduce the dissipator as

Di[ρ̂] =
∫

dX
(
M̂i(X)ρ̂M̂†i (X)−

1
2

{
M̂†i (X)M̂i(X), ρ̂

})
. (F.2)

In the same manner as in Appendix E, the dissipator Di[ρ̂] in the weak-spatial resolution limit can be
obtained as

Di[ρ̂] ≃ −
γid2

4σ2 [x̂i, [x̂i, ρ̂]] , (F.3)

where x̂i =
∑

m m|m⟩i i ⟨m| is the position operator of each particle. This contribution provides the
first line in Eq. (4.62).

To derive Eq. (4.62), we have to show that, in the weak resolution limit, the following contribution
goes to zero:∫

dX Ri(X; t)
dNi(X; t) − ⟨M̂†i (X)M̂i(X)⟩dt√

⟨M̂†i (X)M̂i(X)⟩
≃

∫
dX Ri(X; t)dWi(X; t), (F.4)

where we introduce

Ri(X; t) =
√
⟨M̂†i (X)M̂i(X)⟩

(
M̂i(X)ρ̂M̂†i (X)
⟨M̂†i (X)M̂i(X)⟩

− ρ̂− d
√

2σ
{ x̂i−⟨x̂i⟩, ρ̂}

)
. (F.5)

We can decompose the total density matrix ρ̂ into the product of ρ̂i for each particle i, as the particles
are assumed to be noninteracting and not entangled in the initial state (see Sec. 4.3.4). The convergence
of Eq. (F.4) thus follows from applying the derivation (E.8) in the previous Appendix to the case of a
single particle.
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Appendix G

Diffusion constant for distinguishable
particles

We provide the derivation of the diffusion constant (4.66) for distinguishable particles. To begin with,
let us first study a single-particle case. Denoting ⟨n| ρ̂|m⟩ = ρn,m with |n⟩ being a particle localized at
site n, the master equation can be written as

Ûρn,m = iJ
(
ρn+1,m + ρn−1,m − ρn,m+1 − ρn,m−1

)
− Γ

4
(n − m)2ρn,m. (G.1)

In the diffusive regime, we can neglect the off-diagonal elements between remote lattice sites. It
thus suffices to take into account the off-diagonal elements with neighboring sites ρn,n±1. Using the
stationary condition Ûρn,n±1 ≃ 0, we obtain

ρn,n±1 ≃
4iJ
Γ

(
ρn±1,n±1 − ρn,n

)
,

ρn±1,n ≃ −
4iJ
Γ

(
ρn±1,n±1 − ρn,n

)
. (G.2)

Using these relations in the master equation for the diagonal elements ρn,n, we get

Ûρn,n = iJ
(
ρn+1,n + ρn−1,n − ρn,n+1 − ρn,n−1

)
≃ 8J2

Γ

(
ρn+1,n+1 − 2ρn,n + ρn−1,n−1

)
. (G.3)

This is nothing but the diffusion equation with the diffusion constant 8J2/Γ [423, 425].
In the case of two distinguishable particles, the variance of the relative distance isσ2

r = ⟨(x̂1− x̂2)2⟩ =
⟨x̂2

1⟩ + ⟨x̂2
2⟩ − 2⟨x̂1⟩⟨x̂2⟩ with x̂1(2) being the position of particle 1 (2). In the numerical simulations

presented in Chapter 4, we assume the localized initial state and thus the expectation values of ⟨x̂1,2⟩
remain to be their initial values: ⟨x̂1⟩0 = 0 and ⟨x̂2⟩0 = 1. In the long-time limit, we then get

σ2
r =

32J2t
Γ
≡ 2Dct, (G.4)

which completes the derivation of the expression (4.66) of the diffusion constant Dc .
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Appendix H

Penalty term to ensure the spin conservation

We provide details on the penalty term used in Sec. 5.7.2 to ensure the spin conservation of the
impurity and the bosonic bath. There, we consider the initial state that is an eigenstate of the quantity
σ̂z

imp + σ̂
z
bath + N̂B ≡ σ̂z

imp + 2N̂B,↑ with eigenvalue 1, where σ̂z
imp and σ̂z

bath are the spin-z components
of the impurity spin and the (pseudo spin-1/2) bosonic particles, respectively, and N̂B is the total
number of bosons. Since both the total spin-z component σ̂z

imp + σ̂
z
bath and the particle number N̂B

are conserved, the above quantity should also be conserved during the variational time evolution.
However, in practical calculations, its value during the real-time evolution is not necessarily kept
exactly at the initial value σ̂z

imp + 2N̂B,↑ = 1 due to accumulated numerical errors caused by a highly
nonlinear nature of the variational equations, especially in a high-density regime of bosons.

As the spin conservation is essential to understand the physics in the Rydberg Kondo problem in
Sec. 5.7.2, we have to make sure that the conservation is satisfied during the variational evolution.
This can be achieved by adding the following penalty term to the Hamiltonian:

V̂ = λ
(
σ̂z

imp + 2N̂B,↑ − 1
)2
, (H.1)

where we choose λ as an appropriate value to ensure the spin conservation. In the transformed frame,
it is written as

ˆ̃V = Û†
b
V̂Ûb = λ

(
σ̂x

impP̂b + 2N̂B,↑ − 1
)2
. (H.2)

Its expectation value with respect to the bosonic Gaussian state is

⟨ ˆ̃V⟩b,G = λ
(
2 − 4⟨NB,↑⟩b,G + 4⟨N̂2

B,↑⟩b,G − 2σx
imp⟨P̂b⟩b,G + 4σx

impTr
[
P↑ΓPb

] )
= λ

(
2 − Tr[P↑(Γb − I4Nb

)] − ϕT P↑ϕ

+
1
4

(
Tr[P↑(Γb − I4Nb

)] + ϕT P↑ϕ
)2
+

1
2

(
Tr

[
P↑ΓbP↑Γb

]
− Tr

[
P↑

] )
+ ϕT P↑ΓbP↑ϕ

− 2σx
imp⟨P̂b⟩b,G + 4σx

impTr
[
P↑ΓPb

] )
, (H.3)

where P↑ = I2 ⊗ ((σz + 1)/2 ⊗ INb
). After some calculations, we can obtain its functional derivative
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with respect to the mean field ϕ as

hVϕ = 2
δ⟨ ˆ̃V⟩b,G
δϕ

= λ

[
2
(
−2 + Tr[P↑(Γb − I4Nb

)] + ϕT P↑ϕ
)

P↑ϕ + 4P↑ΓbP↑ϕ

+
δ

δϕ
(−4σx

imp⟨P̂b⟩b,G + 8σx
impTr

[
P↑ΓPb

]
)
]
, (H.4)

where the last term is given by
δ

δϕ
(−4σx

imp⟨P̂b⟩b,G + 8σx
impTr

[
P↑ΓPb

]
)

= σx
imp

[(
4⟨P̂b⟩b,G − 8Tr

[
P↑ΓPb

] )
Γ
−1
B (I4Nb

+ Λ)ϕ

−16⟨P̂b⟩b,GΓ−1
B S

[(
I2Nb

−iI2Nb

)
ΣzP↑(I2Nb

, iI2Nb
)
]
(Γ−1

B )Tϕ
]
. (H.5)

In the similar manner, the functional derivative with respect to the covariance matrix Γb can be
obtained as

hV
Γ
= 4

δ⟨ ˆ̃V⟩b,G
δΓb

= λ

[
2
(
−2 + Tr[P↑(Γb − I4Nb

)] + ϕT P↑ϕ
)

P↑ + 4P↑(Γb + ϕϕT )P↑

+
δ

δΓb
(−8σx

imp⟨P̂b⟩b,G + 16σx
impTr

[
P↑ΓPb

]
)
]
, (H.6)

where the last term is given by
δ

δΓb
(−8σx

imp⟨P̂b⟩b,G + 16σx
impTr

[
P↑ΓPb

]
)

= σx
impS

[
(−4⟨P̂b⟩b,G + 8Tr

[
P↑ΓPb

]
)Γ−1

B (I4Nb
+ Λ)

(
Υb − I4Nb

)
+16⟨P̂b⟩b,GΓ−1

B

(
I2Nb

−iI2Nb

)
ΣzP↑(I2Nb

, iI2Nb
)(Γ−1

B )T
(
2Υb − I4Nb

) ]
. (H.7)

Figure H.1 shows typical time evolutions of the quantity σ̂z
imp+ N̂B,↑, which is conserved with an error

below ∼ 1%.
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time time time [ms][ms][ms]

Fig. H.1 Typical time evolutions of the conserved quantity σ̂z
imp + N̂B,↑ at different densities of

bosons (see Sec. 5.7.2 for details about the quench protocol).
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Appendix I

Exactly solvable dynamics of the central spin
problem

Here we explain how the numerical results for the infinite-mass case in Fig. 5.14 in Chapter 5 have been
obtained. In the limit of an infinite mass m → ∞ in the Hamiltonian (5.143), the quench dynamics
starting from the initial condition (5.146) is exactly solvable via the Laplace transformation [512]. In
practice, to obtain the absorption spectrum and the magnetization dynamics, we proceed as follows.

First of all, we randomly generate a set of positions of atoms {ri}Ni=1 according to the initial
wavefunction

∏N
i=1 ψ0(ri). We then obtain the corresponding values of the parameters

V0 ≡
N∑
i=1

V0(ri) =
N∑
i=1

3VT (ri) + VS(ri)
4

, gi ≡ g(ri) = VT (ri) − VS(ri) (I.1)

in the (infinite-mass) Hamiltonian

Ĥ {ri }m→∞ = V0 + Ŝimp ·
N∑
i=1

giŜi . (I.2)

Since the total magnetization is conserved, the time-evolution is described by the following wavefunc-
tion:

|Ψ(t)⟩ = ξ0(t)| ↑⟩imp | ↓⟩1 · · · | ↓⟩N +
N∑
i=1

ξi(t)| ↓⟩imp | ↓⟩1 · · · | ↑⟩i · · · | ↓⟩N . (I.3)

Then, the Schrödinger equation becomes

i Ûξ0(t) =
(
V0 −

G
4

)
ξ0 +

1
2

N∑
i=1

giξi, (I.4)

iξi(t) =
(
V0 +

G − 2gi
4

)
ξi +

1
2
giξ0, (I.5)

where G =
∑N

i=1 gi . This equation can be analytically solved by the Laplace transformation

ξ̃(s) =
∫ ∞

0
dtξ(t)e−st, (I.6)

dξ
dt
(t) → sξ̃(s) − ξ(0), (I.7)
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and by using the initial condition:

ξ0(0) = 1, ξi(0) = 0 (i = 1,2, . . . N). (I.8)

The result is

ξ0(t) =
1

2πi

∫
Γ

dωe−iωt−iΩt
[
ω +

G
2
− 1

4

N∑
i=1

g2
i

ω +
gi
2

]−1

, (I.9)

where Ω = V0 +
G
4 and the contour Γ is chosen so that all the poles in the integral lie above it. Using

lHopital’s rule and performing the integration, we obtain

ξ0(t) = e−iΩt
N+1∑
l=1

e−iωl t

1 + 1
4
∑N

i=1
g2
i

(ωl+gi/2)2

≡ e−iΩt
N+1∑
l=1

wle−iωl t, (I.10)

where {ωl}N+1
l=1 is a set of poles in the integration, which can in practice be obtained by diagonalizing∑N

i=1 giŜimp · Ŝi within the sector of interest here. In fact, Eq. (I.10) directly gives the time evolution
of the overlap:

S {ri }(t) = ⟨Ψ0 |e−iĤ
{ri }
m→∞t |Ψ0⟩ = ξ0(t). (I.11)

Thus, the absorption spectrum is

A{ri }(ω) =
N+1∑
l=1

δ(ω −Ω − ωl)wl . (I.12)

We then repeat the same calculation of A{ri }(ω) for different realizations of atomic configurations {ri}
and take the ensemble average to obtain

A(ω) =
∑
{ri }

P({ri})A{ri }(ω), (I.13)

where P({ri}) is the distribution function of {ri} determined from the initial state. The magnetization
can be obtained from (c.f. Eq. (I.3))

mz(t) ≡ ⟨σ̂z
imp(t)⟩ = |ξ0(t)|2 −

N∑
i=1
|ξi(t)|2 = 2|ξ0(t)|2 − 1. (I.14)

There are several important features which we can infer from the above analysis. First, since the
initial state is the equal superposition of the triplet and singlet states, the mean value of A(ω) in a
high-density regime can be estimated from

ωm→∞
mean = N

⟨VT + VS⟩0
2

, ⟨· · · ⟩0 ≡
∫

dr|ψ0(r)|2 · · · . (I.15)

As density increases, A(ω) will approach to a Gaussian distribution with this mean value. Second,
the Fourier spectrum of the magnetization mz(t) essentially shares the same information with the
absorption spectrum (c.f. Eq. (I.14)):

m̃z(ω) = 2
∫

dω′A∗(ω′ − ω)A(ω). (I.16)

If A(ω) is a Gaussian distribution, m̃z(ω) is also a Gaussian distribution but with zero mean, indicating
that its Fourier transform mz(t) will exhibit decoherence to a finite magnetization. This decoherence
can be understood as a consequence of the incoherent summation over different atomic positions.
These features have been confirmed in the numerical results presented in Fig. 5.14.
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