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Abstract

In the present thesis, we consider the long-time steady state of closed many-body quantum
systems with integrability. Integrable systems have many conserved quantities. One of our
aims is to clarify the role of those conserved quantities in relaxation.

This thesis consists of two parts. In the first part, we consider the steady state of static
integrable systems. We formulate a generalization of the eigenstate thermalization hypoth-
esis (ETH), which is a sufficient condition for equilibration to the Gibbs state under unitary
evolution. We analytically prove the validity of the generalized ETH for translationally
invariant noninteracting integrable systems. This leads to the validity of the generalized
Gibbs ensemble (GGE), which was proposed to describe the steady state of integrable
systems. We expect the generalized ETH to be the general mechanism of relaxation of
integrable systems to a steady state described by the GGE.

In the second part, we consider the steady state of closed systems whose Hamiltonian
changes periodically in time, namely time-periodic systems. Time-periodic systems can be
analyzed by the Floquet theory, in which an effective Hamiltonian for the unitary evolution
over one period plays the central role. We consider time-periodic systems whose effective
Hamiltonian is integrable. We numerically study in detail the heating behavior of integrable
time-periodic systems. We find that heating to high temperatures can occur in integrable
time-periodic systems, which is a nontrivial result in the context of preceding discussions.
We find a scaling behavior as to the heating in the low-frequency regime. We also study the
steady state from the viewpoint of a generalized Gibbs ensemble for time-periodic systems.
We also discuss the origin of heating in the present systems.
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Chapter 1

Introduction

1.1 Thermalization
Thermalization [1–3] is one of the fundamental principles of thermodynamics. Its statement
can be made in twofolds: first, a macroscopic isolated system without external operations
imposed relaxes to a steady state whose macroscopic properties do not change thereafter.
This is called equilibration or relaxation. Second, thermalization implies that the steady
state can be described by only a small number of quantities, e.g., the energy, the density,
the magnetization, and so on.

The surprisingly wide universality of thermodynamics has been confirmed by numerous
experiments, which were conducted from the very early years for gases [4]. One may also
perceive that thermalization is observed in many occasions in everyday life too. However,
the explanation of thermalization from microscopic mechanics has not been achieved yet.
When we consider this issue, we notice that this phenomenon is quite nontrivial from
a microscopic point of view. Let us here introduce two points frequently pointed out
in explaining in what sense it is nontrivial. Firstly, equilibration is already a nontrivial
phenomenon, because while it is an irreversible phenomenon, the microscopic mechanics
is reversible, whether in the classical or quantum case. It is well known that Boltzmann
could not completely resolve this issue. The second point is on the validity of the simple
description of the thermal equilibrium state by a small number of quantities. Macroscopic
systems have an enormous number of degrees of freedom, e.g., a spin system with N pieces
of two-components spins has a state space of the dimensionality 2N . It is nontrivial how
all properties of the thermal equilibrium state can be described by only a small number of
quantities, despite the large dimensionality of the state space.

In statistical mechanics, it is presupposed that the thermal state is given by statistical
ensembles characterized by only a few extensive variables, for example, the microcanonical
ensemble, the canonical ensemble, and the grandcanonical ensemble, which are all equiv-
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alent in the thermodynamic limit. Given the established success of statistical mechanics,
the issue of explaining thermalization by microscopic mechanics can be recasted as the
question of validating the equilibration to the above statistical ensembles. However, the
clarification of the generality and the microscopic mechanism of the validity of such statis-
tical ensembles as a successful description of the thermal equilibrium state is still a problem
which remains to be solved.

The study on the validation of the microcanonical ensemble in an isolated system has
a long history. In the case of classical mechanics, the microcanonical ensemble is defined
as the uniformly mixed state within a constant-energy surface. As for its validation, the
ergodicity [5], as well as chaos [6] as a related subject, were considered. The ergodicity
is stated as a property of the time evolution of a system: a state travels around all the
region of the constant-energy surface with uniform probability in the long time-scale. If
this property was satisfied, the long-time average of physical quantities equals that of
the microcanonical ensemble. The ergodicity is mathematically proved for a few specific
systems, such as the Sinai billiards [7] and the Bunimovich stadium [8]. Chaos is roughly
speaking a characteristic complicated behavior of dynamics seen in a wide class of classical
systems. Although there is no definite definition of chaos [2], usually the high sensitivity
of the time evolution in the phase space to the initial state is considered as the main
characteristic of systems regarded as chaotic. This sensitivity can be quantified by the
Lyapnov exponent. Among other peculiar characteristics is the nonlinearity of the system.

However, as for ergodicity, it has been argued that since the time it takes for a large
system to evolve in a sufficiently wide region of the phase space is extremely long, the
ergodicity is not an adequate explanation of thermalization, which is observed in experi-
mental timescales [9,10]. In fact, the former timescale is estimated to be much longer than
the age of the universe in systems with particle numbers of order 1023 [9, 10].

Also, of course it is now established that the microscopic mechanics of nature is quantum
mechanics. However, the way of constructing possible quantum counterparts of ergodic-
ity and chaos is not straightforward [2], although the terms “quantum ergodicity” and
“quantum chaos” are frequently used. An apparent incompatibility of chaos with quantum
mechanics was clear from its early days [2]; there is no nonlinearity in the Schrödinger
equation.

Meanwhile, the explanation of thermalization in terms of quantum mechanics has also
been considered from its early days. Schrödinger already considered this issue [11]. Von
Neumann carried out a pioneering work on this issue [12]. For a while since then, study on
the foundation of thermalization seems to have been of relatively low interest. However,
it has gained great attention again in recent years. (Indeed, von Neumann’s work also
gained renewed attention recently.) This is mainly due to the circumstances explained in
the following.
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Figure 1.1: Experimental observation of thermalization by Trozky and coworkers [13].
At initial time, every even site of a one-dimensional optical lattice is occupied by one
87Rb atom. The time evolution thereafter is governed by a nonintegrable Bose-Hubbard
Hamiltonian. The number density at odd sites nodd is shown to thermalize after enough
time. Adapted from Fig. 1 of Ref. [13]. Copyright (2012) Springer Nature.

In recent years, owing to the remarkable progress in experimental techniques, the direct
capturing of the unitary dynamics of isolated many-body systems has become available [13–
16]. Systems that can be accounted to be isolated within the experimental timescale can
be realized by using ultracold atoms and optical lattices now. It has been confirmed that
thermalization indeed takes place in unitary evolution. Trotzky and coworkers [13] observed
thermalization in a system of ultracold 87Rb atoms in a one-dimensional optical lattice.
They prepared the initial state as such that every even site is occupied by one 87Rb atom,
and quenched the system to a nonintegrable Bose-Hubbard Hamiltonian. They observed
the time evolution of the number density at odd sites and showed that it thermalizes (see
Fig. 1.1). Numerical simulation of isolated many-body systems with relatively large sizes
has also become possible recently thanks to the improvement of numerical powers [17–19].
Studies of the relaxation and the steady state of isolated systems are actively done in recent
years owing to these circumstances.

Recently, a concept called the typicality [9, 10, 20–27] is actively discussed, mainly
in the quantum regime, as a presumably adequate way of understanding thermalization.
The typicality is a statement on the states in the state space where the dynamics takes
place. Roughly, it states that almost all microscopic states within the state space cannot
be distinguished macroscopically from each other, and moreover, from the thermal state.
According to this concept, thermalization of a state initially out of equilibrium can be
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explained as a process in which a macroscopically atypical initial microstate evolves in time
and gradually enters the region of the state space where the microstates are macroscopically
typical. This explanation is successful in avoiding the aforementioned criticism on the
discussion of ergodicity.

A rough explanation of some specific formulations of the typicality, rigorously proved
in [10, 21, 26, 27] is as follows. In quantum mechanics, the microcanonical ensemble is de-
fined as a mixed state with equal weight put on all eigenstates within an energy shell. For
several systems, it was proved that almost all microstates given as a superposition of the
eigenstates in the energy shell are macroscopically indistinguishable from the microcanoni-
cal ensemble. The crucial point is to restrict observables under consideration to “physical”
ones. Frequently used definitions of “physical” observables are few-body observables or
spatially local observables, e.g., few-body or spatially local correlations and reduced den-
sity matrices for a finite region of the system. This allows one to regard two microscopically
different states as being indistinguishable.

However, although the concept of typicality greatly helps in understanding thermaliza-
tion as well as the recently proposed eigenstate thermalization hypothesis (ETH), which
we will explain below, the connection between the atypical or typical states and the states
which appear in the initial preparation or time evolution in realistic dynamics has not
been resolved. A paradigm of dynamics that has been studied extensively and considered
as one of such realistic dynamics is the quench. Quench is a dynamics where the initial
state is usually the ground state |ψ0⟩ or a low-temperature Gibbs state of an ordinary
Hamiltonian H0, and at a time t = 0, the Hamiltonian is switched to another Hamiltonian
H, which governs the following dynamics. It may seem adequate to assume that in the
case of quench for a ground state |ψ0⟩, states at late times are given by typical states in
the energy shell around E = ⟨ψ0|H|ψ0⟩. Likewise we may be able to assume that the
states at late times after a realistic dynamics are given by typical states in a relevant state
space. However, this is only an intuitive discussion; typicality does not suffice to prove
thermalization rigorously.

Recently, a hypothesis called the eigenstate thermalization hypothesis (ETH) has been
proposed [18, 28, 29]. Roughly speaking, it states that all individual eigenstates have the
thermal property. We note that ETH can be considered in a way as a manifestation of
a quantum analogue of chaos [2]. The ETH is a sufficient condition for thermalization as
will be explained in detail in Chap. 3. The ETH constitutes a central topic in Part I of
this thesis, together with the integrability, which we explain in Sec. 1.3.
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1.2 Equilibration in closed time-periodic systems
While the validation of thermalization in static systems is a question which still remains to
be solved as explained in the previous section, it is also an intriguing problem to explore
the long-time behavior of systems whose Hamiltonian changes in time. Systems with time-
periodic modulation is perhaps the simplest case of such systems.

The study on the properties of time-periodic systems has a long history too [30]. In
time-periodic systems, interesting phenomena, such as dynamical phase transition [31–35],
may take place even in the classical one-body regime [36, 37]. Vigorous exploring of the
quantum many-body regime started recently [1, 30,38–40].

While we consider the steady state of closed systems reached after unitary time evolu-
tion due to a static Hamiltonian in Part I of this thesis, we consider in Part II the steady
state of closed but time-periodic systems in the quantum many-body regime. The dynam-
ics of the system is given by the time-dependent Schrödinger equation. The properties of
the long-time steady state of such systems are generally nontrivial because they are beyond
the framework of usual equilibrium statistical mechanics.

A notable property of time-periodic systems is that the usual energy conservation does
not hold, and thus a rise in energy, in other words the heating, may occur [41–43]. This
can be understood that the system absorbs energy from the external driving. Heating can
be understood as the relaxation towards the maximum entropy state in the whole Hilbert
space [37,44–47], and therefore it is also an issue of thermalization.

As we will see in sec. 6.2, time-periodic systems can be analyzed by the Floquet the-
ory [30]; time-periodic systems can be mapped to the problem of a static system whose
effective Hamiltonian is defined from the unitary operator over one driving period. How-
ever, we should keep in mind that such an effective Hamiltonian might differ greatly from
Hamiltonians of usual thermodynamic systems; for example, the locality and the few-
body properties of the interaction may be violated. On the other hand, this leads to
the possibility of paving ways to interesting phenomena that cannot be achieved at least
easily by usual static Hamiltonians [45, 46, 48–53] . Since time periodic systems are also
relatively easy to be realized in experiments, it is studied actively in recent years both
theoretically [31–35, 54–75] and experimentally [76–80] for the purpose of utilizing pos-
sible nontrivial phenomena. For example, the realization of a topological insulator by
inducing a simple time-periodic external field on a topologically trivial matter was pro-
posed [49, 59–64, 68, 71, 72, 75–78, 81]. This is called the Floquet topological insulator and
its study is now beginning to flourish as a distinct field of research. To name other few,
the control of phase transition from the superfluid to a Mott-insulator was predicted [82]
and later observed in an experiment [83]; the detection of Higgs mode in superconductors
was achieved [79]. However, the heating may break interesting physical phases, so that it
is a serious problem that one wants to avoid. Therefore, the clarification of the general
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condition and extent of heating is desired also in the field of applications.

1.3 Integrability
It is known that integrability plays a crucial role in equilibration; this will be explained
in the next subsection. Besides the role in equilibration, integrable systems possess a par-
ticular importance in theoretical studies because rigorous analysis to a substantial extent
is usually possible in integrable systems. Integrable systems frequently appear in theories,
e.g., as approximated models of realistic systems.

Let us here explain the definition of integrability [84]. In classical mechanics, there is
a clear definition of integrability: a system with N degrees of freedom is said to be inte-
grable when there are N independent constants of motion. However, there is no generally
established definition of integrability in quantum systems. A tentative definition can be
proposed: a system is said to be integrable when there are N independent operators that
commute with the Hamiltonian H. However this definition has a serious problem as follows.
Consider the spectral decomposition of an arbitrary Hamiltonian as H = ∑D

i=1 λi|ψi⟩⟨ψi|,
where D is the dimensionality of the Hilbert space while λi and |ψi⟩ are the eigenvalues
and eigenvectors, respectively. Each of the projections |ψi⟩⟨ψi| is an operator that com-
mutes with H, and there are D of them. Thus, an arbitrary Hamiltonian satisfies the
above tentative definition, unless one somehow specifies the class of commuting operators
to be considered. Nevertheless, there seems to be a vague consensus as to which system
is integrable and which is not, and the above sort of tentative definition is common in the
literature.

In the present thesis, specific analysis is made for systems which are written in the
quadratic form of fermions. Such systems form a class of integrable systems, and is said to
be noninteracting in the sense that they can be mapped to free fermions. The extension of
our analysis to interacting integrable systems (which are solved by the Bethe ansatz [85]) is
left as future works. Let us note beforehand that while noninteracting integrable systems
are simple compared to interacting ones, they are not necessarily less important as a subject
to be studied. We expect that our results have opened ways to understanding also the case
of general integrable systems, and may also (especially for the result of Part I) provide
insights for the case of nonintegrable systems; more specific comments on this point will
be made in the Conclusions.

15



1.3.1 Equilibration in the presence of integrability
Static systems

Thanks to the great advances in experimental techniques on optical lattices and cold atoms
already mentioned in Sec. 1.1, it is now possible to experimentally realize systems described
by integrable models, and its dynamical properties as well as the properties of the steady
state have been observed [86]. The study of the relaxation and the steady state of inte-
grable systems constitutes a large field in the recently active theoretical and experimental
researches on isolated systems.

It is known that in integrable systems the steady state generally does not coincide with
the usual Gibbs state [87–90]. This can be understood as a consequence of the presence
of the conserved quantities, because they restrict the dynamics in the Hilbert space. It
was recently proposed [87] that the steady states of integrable systems are given instead
by a statistical ensemble called the generalized Gibbs ensemble (GGE). The GGE can be
considered as a generalization of the usual Gibbs ensemble, and is constructed with many
conserved quantities of the system. We give detailed explanation of the GGE in Chapter 4.

Time-periodic systems

Time-periodic systems can be classified into nonintegrable or integrable systems too de-
pending on the integrability of its effective Hamiltonian. In the case of integrable time-
periodic systems, the conserved quantities of the effective Hamiltonian restrict the dynam-
ics. As for integrable time-periodic systems, understanding of the steady state, in par-
ticular the extent of heating, has been limited (See Sec. 7.2.) compared to nonintegrable
time-periodic systems (See Sec. 6.3.). Its general understanding is an important problem
because integrable time-periodic models are adopted in analyses of time-periodic systems,
and are also expected to be realizable experimentally by means of current techniques of
time-periodic modulation of optical lattices and ultracold atoms [80].

As we will see in Sec. 7.3, it has been proposed [53] that the steady state of integrable
time-periodic systems is given by a form of GGE, namely the Floquet GGE. However, we
note that we should be cautious not to apply discussions on static systems carelessly to
time-periodic systems, because the effective Hamiltonian of time-periodic systems generally
does not satisfy properties which usual static Hamiltonian has, such as the locality of
interactions, as mentioned in Sec. 1.2. The validity of the description of the steady state
of integrable time-periodic systems in terms of the GGE is unclear compared to the case
of static integrable systems.
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1.4 The organization of this thesis
The organization of this thesis is as follows.

In Part I, we first review prior understanding on equilibration and thermalization, and
then on the steady state of integrable systems. In the sections thereafter we construct a
microscopic mechanism for the description of steady states of integrable systems in terms
of the GGE and analytically prove its validity for noninteracting integrable systems. The
precise organization of Part I is as follows. In Chapter 2 we review a recently presented
theoretical explanation of equilibration under unitary evolution. In Chapter 3 we review
the eigenstate thermalization hypothesis (ETH), which was proposed as a mechanism of
the steady state reached after a long time being described by the Gibbs ensemble. In
particular, we stress that while a variant of the ETH, namely the weak ETH, has been
proposed, only the ETH guarantees thermalization, whereas the weak ETH does not. In
Chapter 4 we review the generalized Gibbs ensemble (GGE), which was proposed and also
proved under certain limited conditions as the description of the steady state of integrable
systems. In Chapter 5 we formulate and prove a mechanism of the relaxation to GGE in
translationally invariant noninteracting integrable systems.

The organization of Part II is as follows. We give a review of time-periodic systems
in Chapter 6. We give further explanation in the case of integrable time-periodic systems
in Chapter 7. In Chapter 8 we consider a specific integrable time-periodic system and
numerically study its heating behavior in detail. We clarify that heating to the high
temperature may take place in integrable time periodic systems too. We also reveal for
our models that in the limit of the system size and driving period tending to infinity,
the energy of the steady state coincides with that of the infinite-temperature state. We
also discuss the condition under which heating to the high temperature takes place in the
present integrable models.

In Chapter 9 we make a summary and present future perspectives.
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Part I

Description of the steady state and
its mechanism in static integrable

systems
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Chapter 2

Relaxation of static systems under
unitary evolution

We here review a theoretical explanation [91] of the equilibration of isolated many-body
quantum systems under unitary evolution of a static Hamiltonian, following [92]. We set
ℏ = 1 throughout this thesis. Denoting |α⟩ for α = 1, . . . , D as the eigenstate of the
Hamiltonian Ĥ, where D is the dimensionality of the Hilbert space, the expectation value
of the observable ô for the state at time t, denoted as

|ψ(t)⟩ =
∑

α

Cαe
−iEαt|α⟩, (2.1)

is given by

⟨ψ(t)|ô|ψ(t)⟩ =
∑
α,α′

C∗
α′Cαe

−i(Eα−Eα′ )t⟨α′|ô|α⟩, (2.2)

where Eα denotes the energy eigenvalue of |α⟩ and the initial state is |ψ0⟩ = ∑
α Cα|α⟩. We

hereafter assume that there is no energy degeneracy for simplicity. In the case where energy
degeneracy exists, we can always choose an energy eigenbasis depending on the initial state,
in which only one eigenstate for each distinct energy has nonzero overlap with the initial
state; the eigenstate |E⟩ for energy E is given by |E⟩ = ∑

α s. t. Eα=E Cα|α⟩/
√∑

α′ s. t. Eα′ =E |Cα′|2.
Then, the initial state can be written as |ψ0⟩ = ∑

α vE|E⟩, where vE ≡ ⟨E|ψ0⟩, and parallel
arguments apply in the following. We note that we do not require this assumption in our
analysis in Chap. 5.

The long-time average of ⟨ô⟩ ≡ ⟨ψ(t)|ô|ψ(t)⟩ is given by

⟨ô⟩ =
∑
α,α′

C∗
α′Cα⟨α′|ô|α⟩e−i(Eα−Eα′ )t (2.3)

=
∑

α

|Cα|2⟨α|ô|α⟩ (2.4)

= Tr[ρDE ô], (2.5)
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where the overline denotes the long-time average f(t) = limT →∞
1
T

∫ T
0 f(t)dt, and ρDE ≡∑

α |Cα|2|α⟩⟨α| is called the diagonal ensemble. In the following we prove under an as-
sumption that the fluctuation of ⟨ô⟩ vanishes in the limit D → ∞.

The assumption is the nondegeneracy in energy gaps:

Ek − El = Em − En ⇒


(Ek = El and Em = En)

or
(Ek = Em and El = En).

(2.6)

Under this assumption, we shall prove

(⟨ô⟩ − ⟨ô⟩)2 ≤ ||ô||2

Deff
, (2.7)

where || · || is the operator norm and

Deff ≡ 1∑
α |cα|4

. (2.8)

The value Deff is called the effective dimension. Note that 1 ≤ Deff and that Deff = d

when the initial state has equal weight over d different energies. We can expect that
Deff = eO(V ) [93]. Denoting oβα ≡ ⟨β|ô|α⟩, we can rewrite Eq. (2.2) as

⟨ψ(t)|ô|ψ(t)⟩ =
∑
αβ

C∗
βCαe

−i(Eα−Eβ)toβα. (2.9)

The difference of ⟨ô⟩ and ⟨ô⟩ is

⟨ô⟩ − ⟨ô⟩ =
∑
αβ

α ̸=β

C∗
βCαe

−i(Eα−Eβ)toβα. (2.10)
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We can calculate the fluctuation as

(⟨ô⟩ − ⟨ô⟩)2 = |⟨ô⟩ − ⟨ô⟩|2 (2.11)

=
∑
αβ

α ̸=β

∑
γδ

γ ̸=δ

C∗
βCαCδC∗

γe
−i(Eα−Eβ−(Eγ−Eδ))toβαo∗

δγ (2.12)

=
∑
αβ

α ̸=β

∑
γδ

γ ̸=δ

C∗
βCαCδC

∗
γoβαo

∗
δγ (2.13)

=
∑
αβ

α ̸=β

|Cα|2|Cβ|2|oβα|2 (2.14)

≤
∑
αβ

|Cα|2|Cβ|2|oβα|2 (2.15)

= Tr[ρDE ôρDE ô
†] (2.16)

≤ ||ρDE ô|| · ||ρDE ô
†|| (2.17)

=
√

Tr[ô†ρDEρDE ô] · Tr[ôρDEρDE ô†] (2.18)

=
√

Tr[ôô†ρ2
DE] · Tr[ô†ôρ2

DE] (2.19)
≤ ||ô||2Tr[ρ2

DE] (2.20)

= ||ô||2

Deff
, (2.21)

where we used the assumption (2.6) in (2.13), the Cauchy-Schwartz inequality for operators
in (2.17), the cyclic symmetry of the trace in (2.19), and the relation for positive operators
P and Q, Tr[PQ] ≤ ||P ||Tr[Q] in (2.20).

By applying Chebyshev’s inequality to Eq. (2.7), we immediately know for observables
ô with a physical range of spectrum that for arbitrary small ε, the fraction of the time
during which ⟨ô⟩ differs more than ε from ⟨ô⟩ decreases exponentially with respect to the
system size V , provided that Deff is rationally of order eO(V ) [93]. The above illustrates the
equilibration of closed macroscopic systems in terms of expectation values of observables.
Therefore, we hereafter refer to the state ρd as the long-time steady state, or the state at
equilibrium.

A few remarks are in order:

• Since a quantum state is written as Eq. (2.1), we can regard it as an assemble of
Dc pieces of classical oscillators with frequencies Eα, where Dc is the number of
eigenstates with nonzero Cα. Therefore, arbitrary dynamics in quantum mechanics
takes an initial state arbitrarily close to itself after a finite time. In other words, it is
(quasi)periodic [94]. This is called quantum recurrence. However, the recurrence time
τrec is estimated as τrec = eO(Deff) [3], and since we can as already mentioned, expect
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that Deff grows exponentially with respect to the system size [93], it is generally
extremely long. This implies that recurrence is irrelevant in observation of large
enough systems.

• Although Eq. (2.7) assures that ⟨ô⟩ approximates Eq. (2.5) at most times, we cannot
interpret it as fast relaxation towards the value Eq. (2.5) within the observation
timescale. Indeed, the relaxation time is not discussed in the derivation so far.
For instance, the inequality Eq. (2.7) does not exclude the known phenomenon of
prethermalization [3], in which the system stays at a quasistationary state for a long
time before reaching the true steady state. We stress that nevertheless we consider
the long-time behavior and refer to the state ρd as the steady state.

• Although the assumption Eq. (2.6) is obviously not satisfied in noninteracting in-
tegrable systems, relaxation to a steady state is still seen in numerical simula-
tions [87, 89] of such systems. It implies that while the theorem provides rigorous
explanation for equilibration, the condition Eq. (2.6) does not need to be strictly
satisfied for equilibration to occur.
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Chapter 3

Strong/weak eigenstate
thermalization hypothesis

In the previous section, the equilibration was explained in terms of expectation values of
observables. One can see that thermalization can be explained if there is any mechanism
of equalizing the value Eq. (2.5) with the value at thermal statistical ensembles. The
ensemble can be any of the microcanonical ensemble, the Gibbs ensemble, and general
grandcanonical ensembles owing to the equivalence between them. We will adopt the
Gibbs ensemble in the following.

Hereafter we explain the eigenstate thermalization hypothesis (ETH) [18, 28, 29], and
also a variant of the ETH, which is called the weak ETH [88]. The ETH is occasionally called
the strong ETH, explicitly being distinguished from the weak ETH. The strong/(weak)
ETH states that all/(almost all) eigenstates have thermal properties when we look at local
properties. The strong ETH is a sufficient condition for thermalization, while the weak
ETH is not [88].

The (strong) ETH is roughly a statement that the eigenstates inside an energy shell
cannot be distinguished from the thermal state given by the Gibbs ensemble by looking at
expectation values of spatially local observables. (Although few-body observables including
nonlocal ones, instead of only local observables, are occasionally included in the statement,
we restrict ourselves to spatially local observables throughout this thesis.) More concretely,
the ETH is expressed as the following: when one considers an energy shell with half width
∆ around an energy E, namely S = S(E,∆) = (E−∆, E+∆), every eigenstate |α⟩ within
the energy shell Eα ∈ S satisfies

⟨α|ô|α⟩ ≈ Tr[ôρG], (3.1)

for an arbitrary local observable ô, where ρG is the Gibbs ensemble ρG = e−βĤ/Tr[e−βĤ ]
with the inverse temperature β determined by the relation Tr[ĤρG] = E. We take the half
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width ∆ to be subextensive, i.e., macroscopically small and microscopically large enough.
By macroscopically small we mean that ∆ = o(V ), with V the system size, e.g., ∆ ∝ L1/2.
By microscopically large enough we mean that the number of eigenstates NS in the shell is
exponentially large in V , as in NS = eO(V ). Assuming that the initial state is in an energy
shell, which should be satisfied in realistic initial states, we see that if ETH is valid, then
as to the value in Eq. (2.4),∑

α

|Cα|2⟨α|ô|α⟩ ≈
∑

α

|Cα|2Tr[ôρG] (3.2)

= Tr[ôρG], (3.3)

and thus the steady state cannot be distinguished from ρG by looking at the expectation
value of local ô. Until now, there is no proof of ETH for any specific systems. The validity
of ETH has been numerically checked for various nonintegrable models [47,95], although a
way of constructing counterexamples was found [96,97]. (In [96, 97], it was discussed that
the system may thermalize after a quench, despite the violation of ETH. )

Here, the important point is that Eq. (3.1) should be satisfied for all the eigenstates
in the energy shell. It is called the weak ETH [88] when the fraction of eigenstates that
do not satisfy Eq. (3.1) is negligibly small. Even in this case, the steady state may differ
greatly from the thermal state ρG because the initial state may have an important weight
on nonthermal energy eigenstates [88]. Indeed, the weak ETH can be proved for generic
translationally invariant systems including integrable systems [88, 98, 99], although it is
known that integrable systems generally do not thermalize [87–90]. The weak ETH is thus
not enough to explain thermalization.

We note that the failure of description of the steady state in terms of usual statistical
ensembles of the systems satisfying the weak ETH implies the following: realistic initial
states such as those prepared by quench cannot, at least typically in the case of integrable
systems, be considered to be a state that is taken from the energy shell with uniformly
random measure. This is because it was discussed and proved under certain conditions in
the context of typicality (see Sec. 1.1) that such randomly taken states are equivalent with
the thermal state ρG with probability of unity in the thermodynamic limit [10,21,26,27].

25



Chapter 4

Generalized Gibbs ensemble

As explained previously, it is at least typical for integrable systems that it does not relax
to the usual Gibbs state [87–90]. It is suggested for integrable systems that its steady state
is instead described by the so-called generalized Gibbs ensemble (GGE) [87]. The GGE is
constructed by using many conserved quantities {Qi} of the system as in

ρGGE = e−
∑

i
ΛiQi

Tr e−
∑

i
ΛiQi

, (4.1)

where {Λi} are the effective inverse-temperatures of {Qi}, which are fixed by the initial
state |ψ0⟩ according to the equations

⟨ψ0|Qi|ψ0⟩ = Tr [QiρGGE] . (4.2)

Several numerical studies of various integrable systems have reported that the description
of the steady state by the GGE seems to be consistent [2, 87, 89, 90]. By explicitly con-
sidering the time evolution of local observables, the validity of GGE has been proved for
noninteracting integrable models with translation invariance under the assumption of the
cluster-decomposition property of the initial state [100, 101]. However, the clarification of
its generality is still in progress [90].

We note that there is an apparent ambiguity in the set of the conserved quantities
that is to be included in {Qi} of Eq. (4.1). It has not been established in general how to
prepare a sufficient, or preferably the minimum, set of conserved quantities appropriate
for Eq. (4.1) to describe the steady state correctly, especially for interacting integrable
systems. Nevertheless, as for noninteracting systems, the set of all the mode occupations
(shown below for a simple case) is considered as a sufficient set [87, 100,101].
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4.1 Local conserved quantities
The form of GGE is not unique, because the set of conserved quantities can be linearly
transformed to a different set [90]. Let us explain this for the simple case of a fermionic
tight-binding model given by

H = −J
∑

x

c†
xcx+1 + c†

x+1cx − h
∑

x

c†
xcx, (4.3)

where {cx, c
†
y} = δx,y. The Fourier transformation f †

p = (1/
√
L)∑L

x=1 c
†
xe

−ipx diagonalizes
the Hamiltonian as

H =
∑

p

[−2J cos (p) − h] f †
pfp. (4.4)

Each of the mode occupation operators {f †
pfp} commutes with the Hamiltonian. Thus we

can construct the GGE as

ρ
(1)
GGE = e−

∑
p

λpf†
pfp

Tr
[
e−
∑

p
λpf†

pfp

] . (4.5)

Now the conserved quantities {f †
pfp} taken into account are not spatially local, nor macro-

scopic.
We can construct another set of conserved quantities by a linear combination of {f †

pfp}
as 

Q(+)
n = 2J

∑
p

cos (np)f †
pfp = J

∑
x

c†
xcx+n + c†

x+ncx,

Q(−)
n = 2J

∑
p

sin (np)f †
pfp = iJ

∑
x

c†
xcx+n − c†

x+ncx.
(4.6)

These conserved quantities Q(±)
n are spatially local. The GGE for this set of conserved

quantities is given by

ρ
(2)
GGE =

exp
[
−∑

n

(
Λ(+)

n Q(+)
n + Λ(−)

n Q(−)
n

)]
Tr
(
exp

[
−∑

n

(
Λ(+)

n Q(+)
n + Λ(−)

n Q(−)
n

)]) . (4.7)

The two sets of conserved quantities are linearly related. Therefore, the two forms of
GGEs (4.5) and (4.7) constructed for a common initial state |ψ0⟩ as in (4.2) must be equal
to each other.
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4.2 Importance of locality of the conserved quantities
Constructing a set of conserved quantities in terms of local ones is critical because it has
been recognized that of all such conserved quantities, it is the local ones that play important
roles in the local properties of the steady state of integrable systems [90,102]. In [102], this
was made evident by considering a truncation of the local conserved quantities. Here we
explain this for the transverse Ising model, following Ref. [102], although we omit specific
calculations. The Hamiltonian is given by

H = −J
∑

j

(
σx

j σ
x
j+1 + hσz

j

)
, (4.8)

for which we demand the periodic boundary condition σα
L+1 = σα

1 . Using the Jordan-
Wigner transformation [103] followed by the Bogoliubov transformation (see Sec. 5.1.2),
the Hamiltonian is diagonalized in terms of the mode occupation operators of a new set of
fermions ηp as

H =
∑

p

ε̃pη
†
pηp + const, (4.9)

where ε̃p = 2J
√

1 + h2 − 2h cos (p) is the single-particle energy. The local conserved quan-
tities for this system are given by (see Sec. 5.1.2)

Q(+)
n =

∑
p

cos(np)ε̃pη
†
pηp,

Q(−)
n = −2J

∑
p

sin(np)η†
pηp.

(4.10)

The GGE is again given by the form

ρGGE =
exp

[
−∑

n

(
Λ(+)

n Q(+)
n + Λ(−)

n Q(−)
n

)]
Tr
(
exp

[
−∑

n

(
Λ(+)

n Q(+)
n + Λ(−)

n Q(−)
n

)]) (4.11)

with Q(±)
n defined by Eq. (4.10). The truncated GGE introduced in Ref. [102] is defined as

ρ
(y)
tGGE = 1

Z(y) exp
[
−

y∑
n

(
Λ(+,y)

n Q(+)
n + Λ(−,y)

n Q(−)
n

)]
, (4.12)

where Z(y) is the normalization factor.
Reference [102] considered the trace distance

D(ρ, ρ′) =

√
Tr(ρ2 + ρ′2 − 2ρρ′)√

Tr(ρ2) + Tr(ρ′2)
(4.13)
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between the reduced matrices of the subsystems of the GGE ρGGE and the truncated GGEs
ρ

(y)
tGGE. The reduced matrix of a subsystem with l spins at site j = 1, . . . , l can be expressed

as
ρ{1,...,l} = 1

2l

∑
{α}l

Tr[ρσα1
1 . . . σαl

l ]σα1
1 . . . σαl

l , (4.14)

where αj = 0, x, y, z. The trace distance D(ρGGE{1,...,l}, ρ
(y)
tGGE{1,...,l}) was numerically cal-

culated for a quench from h = 1.2 to h = 3 for the infinite transverse Ising chain. They
found [102] that D(ρGGE{1,...,l}, ρ

(y)
tGGE{1,...,l}) decreases monotonically for y, and that the

decreasing becomes rapid for y > l, namely exponentially. This shows that the local con-
served quantities are critical for local properties of the steady state. The authors of [102]
expected that this is a general feature in integrable systems.

4.3 GGE for interacting integrable systems
For interacting integrable systems, searching the form of an adequate GGE appears to be
a much more subtle problem than in the case of noninteracting integrable systems. Up
to now, the interacting integrable system most understood in this context is the spin-1/2
XXZ model, whose Hamiltonian is

H = J

4

L∑
j=1

[
σx

j σ
x
j+1 + σy

jσ
y
j+1 + ∆(σz

jσ
z
j+1 − 1)

]
, (4.15)

where J > 0 and we consider ∆ ≥ 1. This system is solved by the Bethe Ansatz [85].
In [104, 105], a GGE was constructed by a set of local conserved quantities {H(n)}, where
H(1) is the Hamiltonian and [H(n), H(m)] = 0. However, in [106, 107], it was revealed
that thus constructed GGE fails to correctly give identical predictions of the properties
of the steady state, to which are calculated by the Quench Action method [108, 109].
Although we do not go into the details, the Quench Action is a method that enables
one to calculate the expectation value of observables in the steady state realized after a
quench, in a way similar to the thermodynamic Bethe Ansatz [110]. It is formulated within
the thermodynamic limit, under the assumption that a kind of course-graining procedure
which is necessary in defining an effective action, called the “Quench Action,” is valid.
In Ref. [111], this problem was resolved by considering the so-called quasilocal conserved
quantities, which were discovered for the isotropic (∆ = 1) XXZ model in Ref. [112]
and later generalized for ∆ ≥ 1 in Ref. [111]. Quasilocal conserved quantities are not
local in the sense that they cannot be written as a sum of operators that are supported
by a finite region of a system. Instead they are defined as operators Q satisfying the
following two conditions [112]: (i) their Hilbert-Schmidt norms scale linearly with system
size V as in ||Q||HS := (Q,Q) ∝ V , where (A,A) ≡ Tr(A†A) and (ii) for any locally
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supported operators b, their overlap (b,Q) is asymptotically independent of V in the limit
V → ∞. Reference [111] defined a two-parameter family of quasilocal conserved quantities
{H(s/2)

n }∞
s,n=1, where [H(s/2)

n , H(s′/2)
m ] = 0 and {H(1/2)

n }∞
n=1 are the local conserved quantites

considered in Ref. [104,105]. Reference [111] used it to construct a GGE in the form

ρGGE = 1
Z

exp

−
∞∑

n,s=1
Λn,sH

(s/2)
n

 , (4.16)

where again Z is the normalization constant and Λn,s are determined by the initial state.
It was shown analytically [111] that the GGE in Eq. (4.16) gives an identical prediction of
the properties of the steady state to that calculated by the Quench Action method. The
authors of Ref. [111] also questioned whether the prediction of the steady state still persists
after the truncation of conserved quantities (see Sec. 4.2). They numerically compared the
expectation value of the spin correlation ⟨σz

1σ
z
3⟩, on one side calculated by the Quench

Action method, and on the other side by the GGE’s where the higher families of the
quasilocal conserved quantities are truncated, as in

ρ(sc) = 1
Z(sc) exp

[
−

sc∑
s=1

∞∑
n=1

Λn,sH
(s/2)
n

]
. (4.17)

They calculated for sc = 1/2, 1, 3/2, 2 and for several values of anisotropy in the range
1 < ∆ < 1.05 and found that for all the values of ∆ under study, the correlation rapidly
converges to the exact value obtained by the Quench Action methods as they included
higher families of the quasilocal conserved quantities. (See Fig. 1 in Ref. [111] for details.)

In the following sections, we only consider noninteracting integrable systems. The
generalization to interacting integrable systems of the discussions to appear in the following
is an issue of future perspective.
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Chapter 5

Generalization of the strong ETH

A particular set of questions on GGE naturally arises in accordance with the ETH explained
in Chapter 3. That is, can one construct any generalized version of the ETH as a mechanism
that explains the equilibration to the GGE, just as thermalization in nonintegrable systems
is explained by the ETH? If so, can we remove the assumption of the cluster-decomposition
property [100, 101] for the initial state in deriving the equilibration to the GGE? The
removal of this assumption is important in considering a spin system that can be mapped
to a quadratic fermion Hamiltonian (e.g., the transverse-field Ising model) because it is not
obvious whether a physically realistic initial state, which satisfies the cluster-decomposition
property with respect to the spin operators, satisfies it with respect to the fermion operators
too [113].

In Ref. [89], a generalization of the ETH has been proposed. Their generalized ETH
has been numerically verified [89] and also proved for various local operators in the trans-
lationally invariant transverse-field Ising model [114], but only in the weak sense. It has
not been clarified yet whether it is valid in the strong sense. Although the concept of
the generalized ETH helps us to understand the validity of the GGE [89, 114], the weak
generalized ETH does not ensure in itself the relaxation to a GGE in an integrable system.
It is therefore desirable to formulate the generalized ETH that is valid in the strong sense.

In this chapter, by constructing a generalized shell that is specified by a set of macro-
scopic conserved quantities, we reformulate the generalized ETH and analytically prove
that our generalized ETH proposed is valid in the strong sense in integrable models of
the quadratic form with translation invariance. We show that our strong generalized ETH
ensures the relaxation to a GGE for initial states that have subextensive fluctuations
of macroscopic local conserved quantities. The condition of subextensive fluctuations of
macroscopic local conserved quantities is much weaker than the condition of the cluster-
decomposition property; the latter implies the former, but the former does not imply the
latter (we will come back to this point in Sec. 5.4). We manage to remove the assumption
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Hilbert subspace steady state validity
strong ETH

[18,47,88,95–97,115] energy shell Gibbs ensemble nonintegrable: valid but with counterexamples.
integrable: invalid.

strong generalized
ETH (present study)

shell defined by many
macroscopic conserved quantities

generalized
Gibbs ensemble

translationally invariant
noninteracting integrable: valid.

Table 5.1: A comparison between the strong ETH [18, 47, 88, 95–97, 115] and our strong
generalized ETH. While the usual strong ETH is discussed for states in the energy shell,
in the formulation of our strong generalized ETH, we consider a generalized shell, which is
defined as a Hilbert subspace specified by a set of macroscopic conserved quantities. The
strong ETH and our strong generalized ETH are sufficient conditions for relaxation to the
steady state described by the Gibbs ensemble and the generalized Gibbs ensemble, respec-
tively. In the column indicated “validity,” we explain the current understanding on the
validity of the two concepts. As for the strong ETH, in nonintegrable systems, its validity
has been numerically confirmed [47,95], although there exist some counterexamples [96,97].
In integrable systems, numerical demonstrations and analytical calculations show that the
strong ETH does not hold [18, 88, 95, 115]. As for our strong generalized ETH, we analyt-
ically prove in this thesis its validity in translationally invariant noninteracting integrable
systems.

of the cluster-decomposition property here, in which sense our result is beyond the previous
rigorous results [100, 101]. In Table 5.1 we show for help of understanding a comparison
between the strong ETH and our strong generalized ETH.

This chapter is organized as follows. In section 5.1, we explain the model considered and
introduce the generalization of the strong ETH to integrable systems. In 5.2.2, we discuss
the relation to the generalized ETH suggested in a previous work [89]. In section 5.3 we
provide a proof of the strong generalized ETH.

5.1 Model and setup
We consider a quadratic fermion system described by the translationally invariant Hamil-
tonian

H =
L∑

x,y=1

(
c†

xAx−ycy + c†
xBx−yc

†
y + cxB

∗
y−xcy

)
, (5.1)

under the periodic boundary condition 1. (The coefficients Al and Bl are complex values
with one variable l. The fact that they depend only on the difference x − y of sites x

1 In the case of the anti-periodic boundary condition, where the quadratic terms acquire an extra
minus-sign when the two annihilation or creation operators are involved across the boundary (e.g., terms
including A1 is c†

2A1c1 + c†
3A1c2 + · · · + c†

LA1cL−1 − c†
1A1cL), the specific wave numbers which constitutes

the quantum labels change, but this does not essentially affect our analysis.
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and y implies the translation invariance of the Hamiltonian.) The coefficients Al satisfies
Al = A∗

−l because H = H†. We assume the locality of the Hamiltonian, i.e., Al = Bl = 0
for |l|P > rH with a finite range rH > 0, where |l|P := min{|l|, L−|l|} denotes the distance
l under the periodic boundary condition. This form of Hamiltonian includes, for example,
a fermionic system with on-site potential and nearest-neighbor hopping terms. The XY
model, a hard-core boson system, and the transverse-field Ising model can also be mapped
to this form using the Jordan-Wigner transformation.

5.1.1 Models with Bx−y = 0
We first consider the case of Bl = 0, for which the total particle number is conserved. This
system can be diagonalized by the Fourier transform as

H =
∑

p

εpf
†
pfp, (5.2)

where f †
p = (1/

√
L)∑L

x=1 c
†
xe

−ipx and εp = ∑L
x=1 Axe

ipx. The summation over p = 2πm/L
is taken over integers m with −(L− 1)/2 ≤ m ≤ (L− 1)/2, where we consider the case of
odd L throughout the paper, although this restriction is not essential.

The occupation-number operator of each of the L eigenmodes {f †
pfp} is a conserved

quantity. Although the operators {f †
pfp} are not spatially local, we can construct macro-

scopic local conserved quantities out of them as
Q(+)

n =
∑

p

cos (np)f †
pfp, n = 0, 1, . . . , L− 1

2
,

Q(−)
n =

∑
p

sin (np)f †
pfp, n = 1, . . . , L− 1

2
;

(5.3)

see Ref. [90]. We then define Q(+)
−n = Q(+)

n , Q(−)
−n = −Q(−)

n , and Q(−)
0 = 0. Note that Q(+)

0
coincides with the total particle number:

Q(+)
0 =

∑
p

f †
pfp = N̂ . (5.4)

We denote an eigenvalue of Q(±)
n for the Fock eigenstates by Q(±)

n .

5.1.2 Models with Bx−y ̸= 0
When Bl ̸= 0, the Bogoliubov transformation following the Fourier transformation diago-
nalizes the Hamiltonian as

H =
∑

p

ε̃pη
†
pηp + const., (5.5)
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where ε̃p and η†
p are given by ap := ∑L

x=1 Axe
ipx and bp := 2i∑L

x=1 Bx sin(px) as

ε̃p =
ap − a−p +

√
(ap + a−p)2 + 4|bp|2

2
, (5.6)

η†
p = s(p)f †

p + t(p)f−p, (5.7)

with the functions s(p) and t(p) defined as

s(p) = |bp|√
|bp|2 + (ε̃p − ap)2

, (5.8)

t(p) = |bp|
bp

ε̃p − ap√
|bp|2 + (ε̃p − ap)2

. (5.9)

Macroscopic local conserved quantities in this case are given by
Q(+)

n = 1
2
∑

p

cos(np)(ε̃p + ε̃−p)η†
pηp,

Q(−)
n =

∑
p

sin(np)η†
pηp,

(5.10)

where we use the same notations as in Eq. (5.3), but there will be no confusion.
The locality of Q(+)

n in Eq. (5.10) is proved as follows. First, we divide it into two parts
as follows:

Q(+)
n =

∑
p

ε̃p cos(np)η†
pηp +

∑
p

ε̃p − ε̃−p

2
cos(np)η†

pηp. (5.11)

It is known and explicitly confirmed that the first term of Eq. (5.11) is local [102]. As for the
second term, we notice that ε̃p − ε̃−p = ap −a−p is written as a finite sum ∑rH

x=−rH
Ax(eipx −

e−ipx) because of the fact that Ĥ is a local operator with the maximum range rH . Therefore,
the second term of Eq. (5.11) is written as a linear combination of {Q(−)

m } with m ≤ n+rH ,
which is a local operator. Thus, for any fixed n, both the first and the second terms of
Eq. (5.10) are local in the thermodynamic limit.

In terms of these local conserved quantities, the GGE is given as the density matrix

ρGGE = e
−
∑(L−1)/2

n=0

(
Λ(+)

n Q(+)
n +Λ(−)

n Q(−)
n

)
ZGGE

, (5.12)

where ZGGE is the normalization constant. The parameters Λ(±)
p are determined from the

initial state |ψ(0)⟩ by the condition that ⟨ψ(0)|Q(±)
n |ψ(0)⟩ = Tr[Q(±)

n ρGGE].
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5.2 Formulation of the generalized ETH

5.2.1 Formulation
In order to formulate our generalized ETH, we first define a Hilbert subspace called an nc-
shell with the notation Snc . Let us denote the set of the simultaneous eigenstates of {Q(±)

n }
by E . An nc-shell is then defined as a Hilbert subspace spanned by all the eigenstates in E
with the eigenvalues located around the center {Q̄(±)

n }nc
n=1:

Snc :=Span
{

|α⟩ ∈ E : for all 0 ≤ n ≤ nc,

Q(±)
n ∈ [Q̄(±)

n − ∆(±)
n , Q̄(±)

n + ∆(±)
n ]

}
. (5.13)

Here, the half width of the shell ∆(±)
n is arbitrary as long as it is subextensive, i.e., macro-

scopically small but microscopically large. By macroscopically small, we mean that ∆(±)
n =

o(L). By microscopically large, we mean that the number of eigenstates NSnc
in Snc , as well

as the number of eigenstates N (±)
n in each of the region Q(±)

n ∈ [Q̄(±)
n −∆(±)

n , Q̄(±)
n +∆(±)

n ], for
each n with n ≤ nc, are all exponentially large in L, as in NSnc

= eO(L) and N (±)
n = eO(L).

For example, we can choose ∆(±)
n ∝ L1/2. Note that n runs up to nc ≤ (L − 1)/2. The

nc-shell can be regarded as a generalization of the usual energy shell in the microcanonical
ensemble.

The nc-shell implies that conserved quantities with n up to nc are taken into account.
For example, the 3-shell is a generalized shell where Q(+)

0 , Q(±)
1 , Q(±)

2 , and Q
(±)
3 are taken

into account. We note beforehand that in the case of Bx−y = 0, we shall show in Sec. 5.3.1
that a truncated GGE with only Q

(+)
0 , Q(±)

1 , Q(±)
2 , and Q

(±)
3 taken into account correctly

gives expectation values of observables with maximum range 3, of the steady state.
Now we formulate the strong generalized ETH. It states that all the energy eigenstates

in Snc are locally indistinguishable from each other in the limit of nc → ∞ taken after
the thermodynamic limit L → ∞. For convenience, we also say that a local observable ô
satisfies the nc-ETH when ⟨α|ô|α⟩ = ⟨α′|ô|α′⟩ for any pair of eigenstates |α⟩, |α′⟩ ∈ Snc in
the thermodynamic limit.

5.2.2 Relation with a different generalization of ETH in a previ-
ous work

Besides our formulation of the generalized strong ETH explained above, another general-
ization of ETH has been proposed in the previous work [89], stating that energy eigenstates
with similar distributions of the mode occupation number look similar with respect to local
observables. They considered the case of noninteracting integrable models where the total
particle number is conserved. Below we explain the relation between our generalized ETH
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based on the nc-shell and the generalized ETH based on the mode occupation number
distributions, which is a simplified version of the one originally proposed in Ref. [89].

For simplicity, we consider the case in which the total particle number is conserved with
Bl = 0. Then, each energy eigenstate |α⟩ consists of N occupied levels {pα

1 , p
α
2 , . . . , p

α
N},

where pα
i = 2πnα

i /L with integers {nα
i }N

i=1 satisfying −π ≤ pα
1 < pα

2 < · · · < pα
N < π. In

short, ⟨α|f †
pfp|α⟩ = 1 if and only if p ∈ {pα

1 , p
α
2 , . . . , p

α
N}. Let us say that two eigenstates

|α⟩ and |α′⟩ have ‘similar’ distributions of the mode occupation number if and only if

δ(α, α′) =
[

1
N

N∑
i=1

(
pα

i − pα′

i

)2
]1/2

(5.14)

is smaller than a threshold ϵ, which can be set to zero in the thermodynamic limit. The
generalized ETH formulated in Ref. [89] essentially states that two eigenstates with similar
distributions of the mode occupation number are locally indistinguishable. Now we begin
the explanation of its relation with our generalized ETH. Let us consider the difference
between macroscopic conserved quantities in the states |α⟩ and |α′⟩:

δq(±)
n := 1

L

∣∣∣⟨α|Q(±)
n |α⟩ − ⟨α′|Q(±)

n |α′⟩
∣∣∣ . (5.15)

If |δq(±)
n | ≤ 2∆(±)

n /L for all n ≤ nc, the two eigenstates |α⟩ and |α′⟩ belong to the same
nc-shell under a suitable choice of the center of the shell {Q̄(±)

n }nc
n=1. By using pα

i , we can
rewrite δq(+)

n as

δq(+)
n = 1

L

∣∣∣∣∣
N∑

i=1
[cos(npα

i ) − cos(npα′

i )]
∣∣∣∣∣

≤ 1
L

N∑
i=1

∣∣∣cos(npα
i ) − cos(npα′

i )
∣∣∣ . (5.16)

By using | cos θ − cosϕ| ≤ |θ − ϕ|, we obtain

δq(+)
n ≤ n

L

N∑
i=1

|pα
i − pα′

i |

≤ nρδ(α, α′), (5.17)

where ρ = N/L and we have used δ(α, α′) ≥ (1/N)∑N
i=1 |pα

i − pα′
i |. Similarly, δq(−)

n ≤
nρδ(α, α′) holds.

From these inequalities, we can immediately conclude that two eigenstates |α⟩ and |α′⟩
belong to the same nc-shell under a suitable choice of {Q̄(±)

n }nc
n=1 as long as δ(α, α′) ≤

2∆(±)
n /(ncN). Since ∆(±)

n is chosen so that ∆(±)
n /N → 0 in the thermodynamic limit,

this result implies that two eigenstates |α⟩ and |α′⟩ with similar distributions of the mode
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occupation number belong to the same nc-shell. This implies that if the generalized ETH
based on the nc-shell holds in the strong sense, then the generalized ETH based on the
similarity of the distributions of the mode occupation number also holds in the strong sense.
(It should be noted that the converse is not true in general.) Thus the proof of the strong
generalized ETH based on the nc-shell complements the numerical result in Ref. [89], in
which the generalized ETH based on the mode occupation number distribution has been
confirmed only in the weak sense.

5.3 Proof of the strong generalized ETH
We consider local observables ô which consist of fermionic operators {c†, c} with the max-
imum range r. For example,

ô = 1
L

L∑
j=1

(
c†

j+2cj+2c
†
jcj + c†

j+1cj + c†
jcj+1

)
(5.18)

is the case of r = 2. As a shorthand notation, we write ⟨ô⟩ := ⟨α|ô|α⟩ for a fixed eigenstate
|α⟩.

5.3.1 Models with Bx−y = 0
We first consider the case Bl = 0, in which the total particle number is conserved. In
this case, the diagonalized Hamiltonian is given by Eq. (5.2) and macroscopic conserved
quantities are given by Eq. (5.3). We shall prove that the eigenstate expectation value of
a local observable can be written as a smooth function of the eigenvalues {Q(±)

m /L} of the
constructed conserved quantities with m ≤ r. In other words, any local observable with
the maximum range r satisfies the r-ETH.

By virtue of Wick’s theorem, the eigenstate expectation value ⟨ô⟩ of any local observable
ô with the maximum range r can be decomposed into products of two-point functions of
the form ⟨c†

xcy⟩ with |x − y|P ≤ r. Note that although Wick’s theorem is usually applied
to the vacuum state, it can be applied to individual eigenstates too in the present systems
because the eigenstates can be expressed as a vacuum state by redefining the particles
and holes for each mode (See Ref. [116]). More precisely, if we denote by Xi a linear
superposition of {cx, c

†
x},

⟨X1X2 . . . X2n⟩
=
∑

(−1)P ⟨Xi1Xj1⟩⟨Xi2Xj2⟩ . . . ⟨XinXjn⟩, (5.19)

where the sum is over all partitions of 1, 2, . . . 2n into pairs {(i1, j1), (i2, j2), . . . , (in, jn)}
with i1 < j1, i2 < j2, . . . in < jn, and P is the parity of the permutation (1, 2, . . . , 2n) →
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(i1, j1, i2, j2, . . . , in, jn) [116]. It should be noted that Eq. (5.19) also holds even when
Bl ̸= 0 because the Bogoliubov fermion operators ηp and η†

p can be written as a linear
superposition of {cx, c

†
x}.

We can express the two-point function in terms of the conserved quantities in Eq. (5.3)
as in

⟨c†
xcy⟩ = 1

L

∑
p

eip(x−y)⟨f †
pfp⟩

= 1
L

(Q(+)
x−y + iQ

(−)
x−y). (5.20)

Therefore, ⟨ô⟩ is generally a smooth function of {Q(±)
m /L} with m ≤ r.

This immediately leads to the validity of the strong generalized ETH. Moreover, any
local operator with the maximum range r ≤ nc satisfies the nc-ETH. Therefore, as far as
we consider local operators with a fixed maximum range r, the steady state is described
by the microcanonical ensemble within the nc-shell, which is in the thermodynamic limit
equivalent to the truncated GGE,

ρ
(nc)
GGE :=

exp
[
−∑nc

n=0

(
Λ(+)

n Q(+)
n + Λ(−)

n Q(−)
n

)]
Z

(nc)
GGE

, (5.21)

for an arbitrary nc ≥ r, where Z(nc)
GGE is the normalization factor. In the limit of nc → ∞

after the thermodynamic limit, the GGE reproduces expectation values of arbitrary local
operators in the steady state.

5.3.2 Models with Bx−y ̸= 0
Next, we consider free fermion models in which the total particle number is not conserved
(Bl ̸= 0). The eigenstate expectation value of a local operator is again decomposed into
the products of two-point functions. Relevant two-point functions are ⟨c†

xcy⟩ and ⟨c†
xc

†
y⟩

with |x − y|P ≤ r, the latter of which appears because Bx−y ̸= 0. By expressing these
two-point functions using the mode occupation numbers η†

pηp, we have

⟨c†
xcy⟩ = 1

L

∑
p

cos[p(x− y)]
(
s(p)2 − |t(p)|2

)
⟨η†

pηp⟩

+ i

L

∑
p

sin[p(x− y)]⟨η†
pηp⟩ + const., (5.22)

and

⟨c†
xc

†
y⟩ = 2i

L

∑
p

sin[p(x− y)]s(p)t(p)⟨η†
pηp⟩ + const. (5.23)
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By performing the Fourier series expansion, we can express ⟨c†
xcy⟩ and ⟨c†

xc
†
y⟩ as

⟨c†
xcy⟩ = v0

L
Q

(+)
x−y + 1

L

(L−1)/2∑
n=1

vn

(
Q

(+)
x−y+n +Q

(+)
x−y−n

)
+ i

L
Q

(−)
x−y + const., (5.24)

and

⟨c†
xc

†
y⟩ = − i

L

(L−1)/2∑
n=1

wn

(
Q

(+)
x−y+n −Q

(+)
x−y−n

)
+ const. (5.25)

Here, vn in Eq. (5.24) and wn in Eq. (5.25) are the Fourier coefficients of

2
ε̃(p) + ε̃(−p)

(
s(p)2 − |t(p)|2

)
(5.26)

and
4i

ε̃(p) + ε̃(−p)
s(p)t(p), (5.27)

respectively, where the Fourier coefficient of ϕ(p) is defined by ϕn = (1/L)∑p ϕ(p)e−ipn. It
is noted that the relations vn = v−n and wn = −w−n, which follow from the parity of the
functions (5.26) and (5.27), are used in deriving Eqs. (5.24) and (5.25). According to the
Riemann-Lebesgue lemma, vn and wn tend to zero in the limit of |n| → ∞ taken after the
thermodynamic limit 2. Therefore, we can approximately truncate the summations over n
in Eqs. (5.24) and (5.25) at a sufficiently large n∗, e.g.,

⟨c†
xcy⟩ ≈ v0

L
Q

(+)
x−y + 1

L

n∗∑
n=1

vn

(
Q

(+)
x−y+n +Q

(+)
x−y−n

)
+ i

L
Q

(−)
x−y + const. (5.28)

This approximation becomes exact in the limit of n∗ → ∞ taken after the thermodynamic
limit.

In this way, the eigenstate expectation value of a local operator with a maximum range
r is approximately written as a linear combination of Q(±)

n /L with n ≤ r + n∗, and this
approximation becomes exact in the limit of n∗ → ∞. It implies that any local operator
satisfies nc-ETH in the limit of nc → ∞ after the thermodynamic limit. Thus, the strong
generalized ETH has been proved.

2The value ε̃(p) + ε̃(−p) is non-negative for all p. In the case in which ε̃(p) + ε̃(−p) touches the p-axis,
the functions (5.26) and (5.27) may not be L1-integrable. In this case, the following arguments remain
valid by replacing ε̃(p) + ε̃(−p) by a constant δc > 0 when ε̃(p) + ε̃(−p) becomes smaller than δc, and
taking the limit δc → 0 after L → ∞ and nc → ∞.
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5.4 Remarks
The strong generalized ETH proved in this work ensures that if the initial state is in a
generalized shell constructed by local conserved quantities, the system relaxes to a steady
state that is described by the GGE, either truncated or not. Since a physically relevant
initial state, e.g., a state prepared by a quench, has subextensive fluctuations of macro-
scopic quantities, such an initial state is necessarily in a generalized shell. Therefore, a
steady state after relaxation is described by a GGE in a translationally invariant nonin-
teracting integrable system. Our results can be generalized to d-dimensional systems and
noninteracting bosons.

In the previous studies, the validity of the GGE has been proved for noninteracting
integrable models with translation invariance by requiring the cluster decomposition prop-
erty for the initial state [100, 101]. In contrast, our result applies to dynamics with the
initial state which can be any state in a single generalized shell. The cluster decomposition
property does not hold for all of such states. Let us explain this point for the case of the
usual thermalization and the energy shell. Consider an initially nonequilibrium state of a
macroscopic uniform system, in which state the half of the system A is at a high tempera-
ture and the other half B is at a low temperature: ρ(A)

high ⊗ ρ
(B)
low . When there is interaction

between the two subsystems A and B, the total system should eventually reach a state
with a finite temperature Tc. We can consider another initially nonequilibrium state, in
which this time the subsystem A is at low temperature and the subsystem B is at high
temperature: ρ(A)

low ⊗ ρ
(B)
high. This state too should eventually reach the state with the finite

temperature Tc. Now the mixed state ρ(AB)
mix = 1

2(ρ(A)
high ⊗ ρ

(B)
low + ρ

(A)
low ⊗ ρ

(B)
high) should also

eventually reach a state at temperature Tc. However, ρ(AB)
mix should violate the cluster de-

composition property because it is a mixed state of macroscopically different states. Still,
ρ

(AB)
mix should be in the energy shell around the energy corresponding to the temperature
Tc. Therefore, the cluster decomposition property does not hold for all states in an energy
shell. Similarly, the cluster decomposition property does not hold for all states in a single
generalized shell. Therefore, our result shows that the GGE is valid for a wider class of
initial states than expected previously.

It should be noted that the removal of the assumption of the cluster decomposition prop-
erty is particularly important when we consider a spin model that is mapped to quadratic
fermions, e.g., the transverse-field Ising chain and the XY chain. In these models, a phys-
ically realistic initial state should obey the cluster decomposition property with respect to
the spin operators, but it is not obvious whether the same initial state obeys the cluster
decomposition property with respect to the fermion operators [113].

We expect that our results can be generalized to interacting integrable systems by
appropriately considering the quasilocal conserved quantities [111, 112] in such systems.
We also hope that our proof of the generalized ETH may provide some insights for the
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challenge towards proving the usual ETH for nonintegrable systems.
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Part II

Heating in integrable time-periodic
systems

43



Chapter 6

Time-periodic systems

6.1 Importance of time-periodic systems
Closed quantum many-body systems driven by a time-periodic field have been studied
actively in recent years [1, 30, 38–40]. The analysis of the steady states after a long time
is one of the important questions in characterizing nontrivial quantum phenomena [45,46,
48–53]. Periodically driven quantum systems gather attention both experimentally [76–80]
and theoretically [31–35, 54–75] because of its potential of realizing novel physical phases,
such as topological phases [49,59–64,68,71,72,75–78,81], by using simple time-dependent
Hamiltonians. (See also Sec. 1.2.) This is called the Floquet engineering.

6.2 Floquet theory
There is a mathematical framework of the analysis of time-periodic systems, namely the
Floquet theory [30]. When the Hamiltonian is periodic in time with the period T as
H(t+ T ) = H(t), the unitary time-evolution operator over a single period

UF = T exp
(

−i
∫ T

0
H(t)dt

)
=: e−iHFT (6.1)

defines an effective Hamiltonian HF, which we call the Floquet Hamiltonian. Here, we
denote the time-ordering operator by T . At stroboscopic times t = nT with n an integer,
the time evolution is described by the static Hamiltonian HF. Note that the Floquet
Hamiltonian is dependent on the period: HF = HF(T ). We distinguish time-periodic
systems as nonintegrable or integrable ones depending on whether HF is nonintegrable or
integrable, respectively. On the definition of integrability, see the review in Sec. 1.3.
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6.3 Heating in time-periodic systems
In time-periodic systems, there is no conventional energy conservation because the Hamil-
tonian is time dependent 1 . Therefore, the energy of the system may rise, in other words,
a heating may take place. It can be understood that the system absorbs energy from
the external drive. In accordance with the Floquet engineering, the heating may break
down the interesting quantum phases, and thus it is an important question whether the
heating takes place and to what extent the system absorbs energy from the external driv-
ing [41–43]. Heating can be understood as the energy relaxation towards the maximum
entropy state [37, 44–47] in the whole Hilbert space. From this perspective, it is also a
fundamental issue of statistical physics, namely the thermalization [1–3].

We note that heating in closed systems is a phenomenon where a state approaches a
high-temperature Gibbs state in terms of expectation values of physical observables. This
point is in parallel with the recent discussion of thermalization in closed static systems;
see also Sec. 1.1, Chap. 2, and Chap. 3.

Non-integrability is considered to play an essential role in heating of time-periodic
systems. In this chapter, we review the prior understandings of the heating in nonintegrable
time-periodic systems. On the other hand, the analysis on heating in integrable systems
has been limited in preceding studies. We will review the prior discussions on heating in
integrable time-periodic systems in Sec. 7.2.

6.3.1 Understanding of heating in nonintegrable time-periodic
systems

Numerical studies [37,45,46,117–119] of relatively small nonintegrable systems have claimed
that when the driving period T is small enough, a system does not heat up but stays at a
finite temperature even after a long time, while when T is large enough the system heats up
to (nearly) infinite temperature 2. In the latter cases, the unlimited heating is believed to
be related to the divergence of the high-frequency expansion [30,45] of the Floquet effective
Hamiltonian, or the Floquet-Magnus (FM) expansion [120,121]:

HF(T ) =
∞∑

n=0
T nΩn(T ). (6.2)

1Of course, the Floquet Hamiltonian HF is a conserved quantity, but its effects on physical properties,
i.e., properties that are obtained from the values of observables that can be measured in a usual setup,
are generally nontrivial because HF does not necessarily share properties with usual Hamiltonians obeying
thermodynamics, as mentioned in Sec. 1.2.

2 We note that in reality, a heating to the infinite temperature may be prevented by interactions with
the surrounding environment.
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The first few order terms are given by

Ω0(T ) = 1
T

∫ T

0
H(t1)dt1, (6.3)

Ω1(T ) = 1
2iT 2

∫ T

0
dt1

∫ t1

0
dt2[H(t1), H(t2)], (6.4)

Ω2(T ) = − 1
6T 2

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3
(
[H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]

)
,

(6.5)

and the general form is given by [122–124]

Ωn = 1
(n+ 1)2

∑
σ

(−1)n−Θ(σ) Θ(σ)!(n− Θ(σ))!
n!

× 1
inT n+1

×
∫ T

0
dtn+1 . . .

∫ t3

0
dt2

∫ t2

0
dt1

[
H(tσ(n+1)),

[
H(tσ(n)), . . . ,

[
H(tσ(2)), H(tσ(1))

]
. . .
]]
,

(6.6)

where σ denotes the permutation of indices and Θ(σ) := ∑n
i=1 θ(σ(i+1)−σ(i)), where θ(·)

is the step function.
The nth-order term Ωn(T ) includes nested commutators of the time-dependent Hamil-

tonian with order n. In particular, the first term is equal to the time average over one
period of the time-dependent Hamiltonian, which we refer to as Have:

Ω0(T ) = Have := 1
T

∫ T

0
H(t)dt. (6.7)

Throughout this thesis, we refer to the expectation value of the operator Have as the
energy of the periodically driven system; this is a convention often adopted in the studies
of time-periodic systems. If the period T is sufficiently small, the Floquet Hamiltonian
may be approximated by the average Hamiltonian HF ≈ Have, and therefore the system
should remain in a low-energy state if we start from the ground state of Have. However,
the convergence of the FM expansion (6.2) is generally not assured for large periods. A
general sufficient condition for the convergence is given by∫ T

0
||H(t)||dt ≤ ξ, (6.8)

where ξ is a universal constant [121, 125–128]. It implies that the convergence is ensured
only for T ≲ 1/∥H(t)∥ with ∥ · · · ∥ the operator norm.

When the FM expansion diverges, the Floquet Hamiltonian is no longer close to Have

and higher-order terms become dominant. In the periodically driven nonintegrable systems,
the spectral structure is known to resemble that of a random matrix [45,47]. This implies
that the steady state is given by a random state in the total Hilbert space, namely the
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infinite-temperature state [21]. This leads to the belief that the two regimes of different
extents of heating seen in the numerical studies of finite nonintegrable systems, explained
above, may be bordered by the divergence point of the FM expansion.

Since the norm ||H(T )|| for nonintegrable systems diverges in the thermodynamic limit,
the maximum driving period in the region where the convergence of the FM expansion is
ensured by Eq. (6.8) converges to zero in the thermodynamic limit. Although there is
no general analytical method of obtaining an actual divergence point, it is believed that
generally there exists an actual divergence point which indeed converges to zero in the
thermodynamic limit. The divergence of the expansion is observed in numerical calcu-
lations [124, 129]. From these arguments, it is expected that macroscopic nonintegrable
systems heat up to infinite temperature at any nonzero driving periods in the long-time
limit, although the time-scale may be extremely long [124,129–133].

We note that according to the adiabatic theorem, the heating rate within the unit
time should get smaller as the driving period gets larger. Nevertheless, this is compatible
with the seemingly opposite conclusion of heating to infinite temperature, because now
the infinite-time limit is taken. We also note that in numerical calculations, the infinite-
time limit of the expectation value of an observable can be calculated by dropping the
off-diagonal elements of the observable in the eigenbasis of the Floquet Hamiltonian.
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Chapter 7

Integrable time-periodic systems

7.1 Classes of integrable time-periodic systems
As explained in sec. 1.3.1, integrable time-periodic systems are defined as time periodic
systems whose effective Hamiltonian HF is integrable; see sec. 1.3 for the definition of
integrability. The simplest case of such systems is where the time-dependent Hamiltonian
H(t) is quadratic at each time t. The Hamiltonian in the case is written as

H(t) =
L∑

i,j=1

(
a†

iMij(t)aj + a†
iNij(t)a†

j + H.c.
)
, (7.1)

where a† and a are the creation and annihilation operators, respectively, that satisfy either
the fermionic or bosonic commutation relations. In this case, the Floquet Hamiltonian HF

is also quadratic and can be mapped to the free-fermion or free-boson systems. Thus it
is obviously of a class of integrable time-periodic systems. Recently, several other classes
of integrable time-periodic systems are presented [134], including those that are related to
interacting integrable quantum spin chains.

7.2 Prior discussions for heating in integrable time-
periodic systems

In integrable time-periodic systems, there are apparent conserved quantities as many as
the degree of freedom of the system. The quantum dynamics is restricted in the state
space characterized by them. This has led to an expectation on heating in integrable time-
periodic systems: the unlimited heating as is discussed for nonintegrable time-periodic sys-
tems does not take place, and the system converges to a nontrivial steady state [53,134–138].
Indeed, there has been no report on heating to infinite temperature for integrable time-
periodic systems, without additional conditions such as a random noise [139]. Nonetheless,
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the connection between the heating and the integrability has been only intuitive; It was
not known whether heating to the infinite temperature may take place, and if so, whether
there exists some transition or a crossover.

Another point that has been subtle in integrable time-periodic systems was the relation
between the property of the steady state and the divergence of the Floquet-Magnus expan-
sion. The Floquet-Magnus expansion may diverge not only in nonintegrable time-periodic
systems but in integrable time-periodic systems too, although the nature of the convergence
radius is distinctly different from that of the nonintegrable time-peiodic systems, as will be
explained in the next section. It is a natural question to ask whether the divergence of the
Floquet-Magnus expansion affects in any way the property of the steady state, especially
the extent of heating, like in nonintegrable time-periodic systems.

The above questions are summarized in a recent review [135] of time-periodic systems.
These questions are exactly what we give an answer to in Chap. 8.

7.3 Generalized Gibbs ensemble for integrable time-
periodic systems

It has been proposed for integrable time-periodic systems that its steady state is given by
a form of the generalized Gibbs ensemble [53], which was originally discussed in the static
systems, as is explained in Sec. 1.3.1. It is occasionally referred to as “periodic Gibbs
ensemble” or the “Floquet GGE.” The validity of the GGE for time-periodic systems is
not so well established as that of the GGE in static systems. This is because the general
property of the Hamiltonian that determines the dynamics is distinctly different in general
between static and time-periodic systems, as mentioned in Sec. 1.3.1. Nonetheless, a rela-
tively elaborate analysis has been done in the case where the time dependent Hamiltonian
H(t) is quadratic [53].

We here explain the analysis of quadratic fermionic time-periodic system of the case
in which the total particle number is conserved. The system of the numerical study we
present in Chapter. 8 is included in this case. We consider the following Hamiltonian:

H(t) =
L∑

i,j=1

(
a†

iMij(t)aj + H.c.
)
, (7.2)

where a† and a are the creation and annihilation operators, respectively, which satisfy
the fermionic commutation relations and L denotes the system size. In this case, the
Floquet Hamiltonian HF is also quadratic and can be mapped to free-fermion systems (see
Appendix A). This systems has L pieces of apparent conserved quantities denoted as

Îp = f †
pfp (7.3)
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for p = 1, 2, . . . , L, where f †
p and fp are eigenmodes of HF, namely HF = ∑L

p=1 ϵpf
†
pfp with

{ϵp}L
p=1 the quasi-energies of HF. The dynamics is constrained in the Hilbert space which

conserves all of {Îp}L
p=1. We have ∑L

p=1 f
†
pfp|ψ(t)⟩ = N |ψ(t)⟩ for all t, where N is the

number of modes occupied in the initial state, which we refer to as the particle number.
We define the infinite-temperature state as the uniform mixing of all the states with a fixed
particle number N . That is, the infinite-temperature state, which we denote by 1(N,L), is
proportional to the projection operator PN,L to the Hilbert space with the particle number
N .

Let us here explain the divergence of the Floquet-Magnus expansion (see Sec. 6.3.1)
for the present integrable time-periodic systems. The convergence of the FM expansion is
ensured for a wider region of T in the integrable cases than in nonintegrable systems. In the
present integrable time-periodic systems, the convegence of the FM expansion is ensured
for T ≲ 1/∥M(t)∥, where M(t) is the L × L matrix which expresses the single-particle
Hamiltonian with its norm ∥M(t)∥ remaining finite even in the thermodynamic limit; see
Appendix A. In the integrable cases, the Floquet Hamiltonian HF always commutes with
the conserved quantities and is far from the random matrix in the total Hilbert space.

It has been proposed [53] that the steady state of the system given by Eq. (7.2) is given
by a GGE of the form

ρGGE = Z−1exp

−
L∑

p=1
ΛpÎp

 , (7.4)

with Z the normalization constant. We refer to the coefficients {Λp}L
p=1 as “the effective

temperatures” for the conserved quantities {Îp}L
p=1. The effective temperature Λp is calcu-

lated by equating the expectation values of the conserved quantity Îp = f †
pfp for the initial

pure state and the GGE given by Eq. (7.4) as in

⟨ψ0|f †
pfp|ψ0⟩ = 1

eΛp + 1
, p = 1, 2, . . . , L, (7.5)

where ⟨ψ(t)|f †
pfp|ψ(t)⟩ = ⟨ψ0|f †

pfp|ψ0⟩ holds, with |ψ0⟩ and |ψ(t)⟩ denoting the initial
state and the state at time t, respectively. Thus, for a fixed initial state |ψ0⟩, {Λp}L

p=1 is
dependent on {Îp}L

p=1, which varies for different Floquet Hamiltonians HF.
We stress that the steady state of the present system is expected to be given by the GGE

as in Eq. (7.4) for all driving periods regardless of the convergence of the FM expansion
(although {Λp}L

p=1 depend on the driving period T because Îp = f †
pfp on the left-hand

side of (7.5) is an eigenmode of the Floquet Hamiltonian, which depends on T ). Still, the
quantum expectation values of physical quantities including the energy Have after a long
time may look like those at the infinite temperature when the FM expansion diverges. This
is what we mainly examine in Chap. 8.
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Chapter 8

Numerical study of heating in
concrete integrable time-periodic
systems

In this chapter, we present our results of the numerical study of the steady state of several
specific integrable time-periodic models. After beginning with the introduction of the
models, we calculate the rise in energy of the steady state compared to the initial state
taken as the lowest energy state. We then conduct a scaling analysis of the rise in energy,
with respect to the system size L and driving period T . As an approach to the steady state
from a different point of view, we also calculate the effective temperatures of the GGE. We
finally present a discussion and a conclusion.

8.1 Model and setup
We consider a spin-1/2 chain with L sites under the open boundary conditions. (We
presume that the boundary condition is not critical to the conclusion of our calculation,
because we focus on the bulk properties.) We periodically switch the system Hamiltonian
back and forth between two Hamiltonians H1 and H2. The time evolution operator over
one period is

UF(T ) = e−iH2T/2e−iH1T/2. (8.1)
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Here, we choose H1 as the XX model Hamiltonian and H2 as the Hamiltonian of the
external field along z-axis:

H1 =
L−1∑
i=1

(
σx

i σ
x
i+1 + σy

i σ
y
i+1

)
, (8.2)

H2 =
L∑

i=1
hiσ

z
i , (8.3)

where we consider three types of {hi}L
i=1: a quasi-periodic field hi = sin

(
2
√

2π · i
)
, a

random field with {hi}L
p=1 given by a random Gaussian with the unit standard deviation,

and the staggered field hi = (−1)i. The average Hamiltonian in Eq. (6.7) is now given by

Have = (H1 +H2)/2. (8.4)

After the Jordan-Wigner transformation, both the two Hamiltonians H1 and H2 can be
written in quadratic forms of fermionic operators as

L∑
i,j=1

a†
iMijaj. (8.5)

Therefore, the unitary operator (8.1) defines an integrable Floquet Hamiltonian; see Ap-
pendix A.

In order to observe the heating behavior clearly, we choose the ground state of Have as
the initial state |ψ0⟩. We have numerically confirmed that the particle number N of the
initial state is about L/2 in the present models. We denote the infinite-time average of
operators by ⟨· · ·⟩. In the following, we consider the infinite-time average of the energy
density ⟨Have⟩/L and the effective temperatures {Λp}L

p=1 for conserved quantities {Îp}L
p=1

in (7.3).

8.2 Energy of the steady state
First we calculate the expectation value of the energy density Have/L for the steady state
after infinite time. The energy at time t = mT, m ∈ N (i.e., time after m periods) is

⟨Have⟩ = ⟨ψ0|(U †
F)mHave(UF)m|ψ0⟩. (8.6)

Note that UF is dependent on the driving period as UF(T ) = e−iHF(T )T ; see Sec. 6.2. The
infinite-time average of the energy density ⟨Have⟩/L is given by dropping the off-diagonal
terms of Have represented in the basis of the eigenstates of HF [91]. We compare ⟨Have⟩/L
with the expectation value in the infinite-temperature state 1(N,L).
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We note that we consider heating to the infinite temperature as a phenomenon where
the steady state is equivalent to 1(N,L) in terms of expectation values of physical observables
(see also Sec. 6.3). We analyze Have as a specific physical observable, but also expect similar
behaviors for other local observables too.

We show in Fig. 8.1 the energy density difference

∆u(T ) := ⟨Have⟩/L− Tr[1(N,L)Have]/L (8.7)

against the driving period T for the system sizes L = 30, 60, 100. The vertical line indicates
the period where we numerically detected the divergence of the FM expansion for HF(T );
see Appendix B.1 Fig. B.1 for details. In each panel of Fig. 8.1, we can see a sharp rise of
∆u(T ) around T ≈ 1, which is close to the divergence point. However, the size dependence
suggests that the energy absorption remains finite above the divergence point T ≳ 1 in the
thermodynamic limit L → ∞.

As the driving period increases, a qualitative difference appears between Figs. 8.1(a,b)
and Fig. 8.1(c). In the cases of the quasi-periodic and random fields, Figs. 8.1(a) and (b)
indicate that the deviation |∆u| decays as T and L increase. On the other hand, in the
case of the staggered field (Fig. 8.1(c)), we clearly see that the infinite-time average of the
energy deviates from the infinite-temperature value for all data points.

8.3 Scaling analysis
For the former cases, we calculated ∆u(T ) for larger sizes than in Figs. 8.1 (a,b). We found
good scaling as in Fig. 8.2 (see also Appendix B.2 Fig. B.2, which shows the data plotted
with pre-scaled axes. We obtained Fig. 8.2 by collapsing the data in the region T ≥ 20 of
Fig. B.2. The scaling breaks in the region with smaller values of T .); the data points lie
on a single curve for all L for the shown region of periods when we plot |∆u| × L against
T/

√
L. (We take the absolute value |∆u| instead of ∆u to plot in the logarithmic scale.)

This scaling plot means that the quantity Q := |∆u| is given by a scaling function Q̃

in the form
Q(T, L) = L−1Q̃(TL−1/2). (8.8)

The curve implies that for a finite system the heating saturates before reaching the infinite-
temperature value even in the limit T → ∞; the part of the curve which is nearly parallel
to the horizontal axis corresponds to the region where the saturation takes place. By the
standard dynamical scaling analysis (see for example Ch.2 of Ref. [140]), we conclude that
the finite-size data should converge to the infinite-size limit Q = 0 for T = ∞ as Q ∝ 1/L.
For finite but large T , we have Q(T, L) = T−2[(TL−1/2)2Q̃(TL−1/2)], and hence conclude
that Q ∝ T−2 holds in the infinite-size limit L → ∞. (The exponent −2 corresponds to
the gradient of the part of the curve which is not parallel to the horizontal axis. See also
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(a) (b)

(c)

Figure 8.1: Deviation of the energy density from the value at the infinite temperature. We
set {hi} in Eq. (8.3) as (a) the quasi-periodic field, (b) the random Gaussian field with four
random samples, and (c) the staggered field; see the description below Eq. (8.3). Each line
(and color) shows the result for the corresponding system size. The amount of the energy
absorption drastically changes near T ≈ 1. The vertical line indicates the period where we
detected the divergence of the FM expansion.
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Appendix B.2 Fig. B.2.) Therefore the system heats up to infinite temperature in the limit
L → ∞ and T → ∞.

8.4 Effective temperatures in the GGE
Next we examine different quantities to confirm that the steady state resembles the infinite-
temperature state for observables other than the energy. For the purpose, we consider
the effective temperatures for the L pieces of conserved quantities Îp = f †

pfp, namely
Λp for p = 1, . . . , L given in Eq. (7.4). For the infinite-temperature state 1(N,L), all the
expectations Tr(1(N,L)Îp) for p = 1, 2, . . . , L have the same value. Hence, if all of {Λp}L

p=1
in the GGE have the same value, the state (7.4) reduces to the infinite-temperature state
for a fixed particle number N . We therefore analyze the variance among {Λp}L

p=1 from the
expectation, which we denote as Var({Λp}) := 1

L

∑L
p=1(Λp − Λ)2 with Λ := 1

L

∑L
p=1 Λp. The

decrease of Var({Λp}) means the approach of the steady state to the infinite temperature.
After fixing L and T , we can obtain the values of {Λp}L

p=1 by numerically computing
the left-hand side of Eq. (7.5). The value ⟨ψ0|f †

pfp|ψ0⟩ can be computed by expanding f †
p

and fp in terms of the eigenmodes of Have.
We conduct the scaling analysis again in order to analyze how Var({Λp}) approaches

zero as L and T increase. As in Fig. 8.2, we find that Var({Λp}) follows the same scaling
as |∆u|. (In the Appendix B.2 Fig. B.3, we show the T -dependence of Var({Λp}) for
various system sizes L.) This reveals that the GGE in Eq. (7.4) converges to the infinite-
temperature state in the limits of L → ∞ and T → ∞. This gives another piece of evidence
for the heating to the infinite-temperature state.

8.5 Discussion
Here we discuss why a qualitative difference appeared between the cases in which {hi} in
H2 was (a) quasi-periodic or (b) random fields, and (c) a staggered field. The extent of
heating may be explained by the degree of mixing in the one-body state space under the
basis of the wave number. The first Hamiltonian H1, namely the XX model, conserves
the wave number of the state. In order to bring the initial state close to the infinite
temperature, it requires for the second Hamiltonian H2 to mix various wave numbers into
the state |ψ(t)⟩. In the cases (a) and (b), H2 causes mixing of modes with many different
wave numbers, while in the case of (c), H2 only moves the occupation of a mode to another
mode with a wave number difference π. We infer that this is the reason why in the case of
(c), no extensive heating took place as anticipated conventionally, while in the cases of (a)
and (b), extensive heating, especially heating to the infinite temperature in the asymptotic
sense, took place in spite of the system being integrable. We expect that extensive heating
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(a)

(b)

Figure 8.2: Scaling plots of |∆u(T )| and Var({Λp}). We set {hi} in Eq. (8.3) as (a) the
quasi-periodic fields and (b) the random Gaussian field with four random samples. The
driving periods are T = 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500.
The system sizes are L = 500, 1500, 5000 for the quasi-periodic field and L =
500, 1500, 5000, 15000 for the random field. (Different colors indicate different system
sizes.) The broken line indicates the behavior T−2.
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takes place for other driving fields too if the field mixes various enough wave numbers into
the state |ψ(t)⟩.

Let us comment on the driving-period dependence of the extent of heating in the cases
(a) and (b). When the driving period T is small enough, Have approximates the Floquet
Hamiltonian, and thus its degree of mixing of modes with different wave numbers is small,
resulting in a small amount of heating. On the other hand, for the large driving periods
where the FM expansion diverges, it should be a challenging problem to evaluate the extent
of heating analytically since the Floquet Hamiltonian is determined through the nontrivial
contributions of H1 and H2. We note that it is a nontrivial behavior that the heating
to the infinite temperature does not take place for finite driving periods, even when the
driving period is larger than the divergence point of the Floquet Magnus expansion. We
also stress that it is a novel finding in time-periodic systems that any scaling behavior
in quantum states far from equilibrium exists, having the driving period T as one of its
scaling variables.

Let us here mention the relevance to experiments of the present models. The time-
periodic modulation of fermions with nearest-neighbor hopping and quasi-random potential
has been achieved in an experiment [80]. An alternative way of realizing the present system
is to use hard-core bosons, whose Hamiltonian can be mapped to the Hamiltonian of free
fermions [53]. Hard-core bosons are also achieved in an experiment of ultracold atoms in
optical lattices [141]. We thus expect that the scaling of heating expressed by Eq. (8.8)
should be verified experimentally in these systems.
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Chapter 9

Conclusions

In this thesis, we considered the long-time steady state of closed integrable systems. In
Part I, we considered static integrable systems. We questioned the foundation of the
statistical ensemble called the generalized Gibbs ensemble (GGE), which was recently
proposed as a description of the steady state of integrable systems. In Part II, on the other
hand, we considered time-periodic integrable systems. We explored the heating property
in the long-time limit of specific integrable systems. While a form of GGE, namely the
Floquet GGE, has been proposed in preceding studies as a description of the long-time
steady state of time-periodic systems, we did not go into the foundation of the Floquet
GGE in this thesis. In the following, we summarize and make concluding remarks for each
Parts, followed by future perspectives.

In Chapters 2 and 3, we reviewed the analysis of thermalization developed in recent
years. In Chapter 2, we showed that by considering the expectation values of observables
in the long-time limit, a system can be understood to equilibrate under unitary evolution,
under the conditions of nondegenerate energy gaps and the large effective dimension. In
Chapter 3, we reviewed the recently proposed eigenstate thermalization hypothesis (ETH).
The ETH states that all the individual eigenstates in the energy shell represent a thermal
state. While ETH is still a hypothesis in generic systems, its validity ensures that the
equilibrium state is in fact the thermal state described by the Gibbs ensemble. The validity
of ETH is confirmed by many numerical calculations. We stressed that a deformed version
of the ETH, namely the weak ETH, which states that almost all of the eigenstates in the
energy shell represents a thermal state, does not ensure thermalization. Only the original
ETH, occasionally called the strong ETH, ensures thermalization.

In Chapter 4, we reviewed the understanding on the equilibrium state of integrable
systems. In contrast to nonintegrable systems, it is known that integrable systems do not
thermalize. It was proposed recently that its steady state is given by the GGE instead.
The GGE is constructed in terms of the conserved quantities of the system. It has been
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expected that more local conserved quantities are more important in the description of
the steady state. In preceding studies, the validity of GGE was numerically confirmed, as
well as proved for translationally invariant noninteracting systems under the assumption of
the clustering property with respect to the relevant fermion/boson operators of the initial
state.

In Chapter 5, we questioned the foundation of GGE. We defined a Hilbert subspace
which we call the generalized shell, using the local conserved quantities of the system. The
generalized shell can be understood as a generalization of the energy shell. Based on the
generalized shell, we formulated a generalized version of the ETH in the strong sense. The
generalized ETH ensures equilibration to the GGE, which is in parallel to the fact that the
usual (strong) ETH ensures equilibration to the Gibbs state. We analytically proved the
validity of the generalized ETH for translationally invariant noninteracting systems.

Our proof ensures equilibration to the GGE for arbitrary initial states that have subex-
tensive fluctuations of local conserved quantities. Such initial states are of a wider class
than initial states satisfying the clustering property, for which the validity of GGE was
proved in preceding studies. This is especially important in spin systems that can be
mapped to noninteracting systems, because while a physically realistic initial state should
obey the cluster-decomposition property with respect to the spin operators, it is not obvi-
ous whether the same initial state obeys the cluster-decomposition property with respect
to the fermion operators.

We expect that our generalized ETH is a general mechanism for the validity of GGE
in integrable systems, and can be generalized for interacting integrable systems by appro-
priately considering the quasilocal conserved quantities, which have been acknowledged to
play an important role in the steady state of interacting integrable systems. We hope that
our proof of the generalized ETH may provide some insights for the challenge towards the
proof of the usual ETH in generic systems.

We proceed to the summary and concluding remarks for Part II. In Chapter 6, we
reviewed generic time-periodic systems. In the Floquet theory, time-periodic systems can
be mapped to a problem of a static effective Hamiltonian. The study of long-time steady
states of time-periodic systems is a problem of equilibration under the effective Hamilto-
nian. It is also important in applications, because time-periodic systems may realize novel
physical phases by inducing simple time-periodic modulation on materials. Understanding
the heating behavior is particularly important, because the heating may break the inter-
esting physical phases. In nonintegrable time-periodic systems, it is expected that heating
to the infinite temperature is universal in the long-time limit. In Chapter 7, we reviewed
prior understanding of integrable time-periodic systems. Integrable time-periodic systems
are defined as time-periodic systems whose effective Hamiltonian is integrable. A form of
GGE, called the Floquet GGE is proposed as a description of its long-time steady state,

59



although its foundation is still not firm. Integrable time-periodic systems are expected to
be realizable with current techniques on cold atoms and modulation of optical lattices. In
prior discussions, heating to the high temperature was not expected in integrable time-
periodic systems because the conserved quantities restrict the dynamics in the Hilbert
space. However, this was only an intuitive discussion.

In Chapter 8, we numerically studied the heating behavior in specific integrable sys-
tems. We clarified that heating to the high temperature can actually take place in integrable
time-periodic systems too. We found for several models that the amount of heating rises
drastically near a threshold where the Floquet-Magnus expansion diverges. We found for
the amount of heating in the low-frequency regime a scaling behavior as to the driving pe-
riod and the system size. We revealed that the system heats up to the infinite temperature
in the limit of infinite system size and driving period. We also found that the Floquet GGE
approached the infinite-temperature state as the amount of heating rose. We also showed
the results of a case where a model that does not heat up close to the infinite temperature
in all regimes. We discussed the origin of the distinct difference in the heating behaviors
of the two cases and attributed it to the extent of mixing in the state space in the basis of
wave numbers.

Finally, we present future perspectives. There are still many problems to be resolved
towards the full understanding of equilibration and thermalization. As we mentioned ear-
lier, the generalization to interacting integrable systems of the generalized ETH that we
formulated is an important task. It is also a future problem to clarify whether the assump-
tion of the translation invariance and the locality of the Hamiltonian that we assumed
in our proof are necessary. Considering the case of nonlocal Hamiltonian is important in
validating the relaxation to the Floquet GGEin the low-frequency regime of time-periodic
systems, where the effective Hamiltonian generally becomes nonlocal. In generic systems
not restricted to integrable systems, the proof of usual ETH remains an open problem. The
time scale of equilibration, as well as the prethermalization, are also important subjects.

As for the time-periodic systems, analytic derivation of the nontrivial scaling exponents
in Q ∝ L−1 and Q ∝ T−2 remains an open question. Our results indicate that the Floquet
Hamiltonian HF resembles a kind of random matrix in the limit of T → ∞ and L → ∞ for
the quasi-periodic and random fields. The present scalings may be explained by analyzing
the difference between the random matrix and the time evolution operator over one period
UF(T ) for finite T and L if we can find an appropriate quantitative index. Analysis for
other classes of time-periodic systems may be an interesting problem. We expect that
the scalings that we found may form a universality class and appear in other integrable
time-periodic systems. We also note that a similar scaling analysis may be helpful also for
nonintegrable time-periodic systems for further studying its finite-size behavior. Clarifying
the time scale of heating remains to be solved. As mentioned above, the validity and the
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conditions of the Floquet GGE still remain as open problems. Exploring equilibration and
the steady states of other setups out of the class of closed static systems, besides time-
periodic systems, constitutes a large set of issues to be challenged. A paradigmatic class
of such is open systems, including those with a constant current.
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Appendix A

One-period unitary operator of
time-periodic free fermion systems

Here we show that the calculation of the one-period unitary operator UF of a free-fermion
system can be reduced to solving the Floquet problem of an L×L operator. This calculation
is necessary for finding the eigenmodes of the Floquet Hamiltonian.

Consider the time-dependent Hamiltonian

H(t) =
L∑

n,m=1
Mnm(t)a†

nam, (A.1)

where am is the annihilation operator of a fermion. Denoting the column vector of the
annihilation operator as a, we can express this Hamiltonian as

H(t) = a†M(t)a, (A.2)

where M(t) denotes a matrix whose elements are given by (M(t))nm = Mnm(t).
The one-period unitary operator UF is defined by

UF = T e−i
∫ T

0 H(t)dt = e−iHFT , (A.3)

where T denotes the time-ordering operator. The Floquet Hamiltonian is also quadratic
as in

HF = a†MFa. (A.4)

In the following, we show how to obtain MF.
We define

a†(t) ≡ Uta
†U †

t , (A.5)

where Ut = T e−i
∫ t

0 H(s)ds. Defining A(t) as a†(t) =: a†A(t), we have

a†dA(t)
dt

= d

dt
(Uta

†U †
t ) = −i[H(t),a†A(t)] = −ia†M(t)A(t) (A.6)
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with the usage of the equality [H(t),a†] = a†M(t). Therefore, we obtain

dA(t)
dt

= −iM(t)A(t). (A.7)

The solution of Eq. (A.7) under the condition A(0) = 1 is

A(t) = T e−i
∫ t

0 M(s)ds. (A.8)

Therefore,
a†(t) = Uta

†U †
t = a†T e−i

∫ t

0 M(s)ds (A.9)

holds.
Now we show how MF can be calculated from M(t). The basis state of an N -particle

state is given by
a†

i1a
†
i2 . . . a

†
iN

|0⟩, (A.10)

where {i1, i2, . . . iN} is a set of integers which satisfies 1 ≤ i1 < i2 < · · · < iN ≤ L, and |0⟩
is the vacuum. We can determine MF by observing how the above state is transformed by
UF. It is expressed as

UFa
†
i1a

†
i2 . . . a

†
iN

|0⟩ = UFa
†
i1U

†
F · UFa

†
i2U

†
F . . . UFa

†
iN
U †

F · UF|0⟩. (A.11)

From UF|0⟩ = |0⟩ and UFa
†U †

F = a†(T ) = a†T e−i
∫ T

0 M(s)ds, we obtain

UFa
†
i1a

†
i2 . . . a

†
iN

|0⟩ = (a†T e−i
∫ T

0 M(s)ds)i1 · (a†T e−i
∫ T

0 M(s)ds)i2 · · · (a†T e−i
∫ T

0 M(s)ds)iN
|0⟩.

(A.12)
On the other hand, putting UF = e−ia†MFaT , we obtain

e−ia†MFaTa†
i1a

†
i2 . . . a

†
iN

|0⟩ = (a†e−iMFT )i1 · (a†e−iMFT )i2 · · · (a†e−iMFT )iN
|0⟩. (A.13)

Comparing Eq. (A.12) and (A.13), we obtain

e−iMFT = T e−i
∫ T

0 M(t)dt. (A.14)

This equation gives MF from M(t).
When we consider the limit L,N → ∞, we immediately know that although the norm

of the many-body Hamiltonian diverges, the convergence radius of the Floquet Magnus
expansion is finite even in this limit if the norm of the matrix M(t) remains finite.
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Appendix B

Supplementary numerical results

B.1 Breaking of the convergence of the Floquet-Magnus
expansion

In Fig. B.1, we show the magnitude of the effective Hamiltonian obtained by the Floquet-
Magnus expansion truncated at 20th order, which we denote as H(20)

F (T ) = ∑20
n=0 T

nΩn(T ).
We expect this order to be high enough to detect the divergence point of the expansion.
The vertical line corresponds to the vertical line in Fig. 1. The figures imply that the
Floquet-Magnus expansion is divergent when the driving period is larger than the value
indicated by the vertical line.

B.2 Energy density difference and the variance of the
effective temperatures for the conserved quanti-
ties without scaling

In Figs. B.2 and B.3, we show the energy-density difference of the steady state and the
variance of {Λp}L

p=1 against the driving period, respectively. Using these data, we obtained
the scaling plots in Fig. 2.
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(a) (b)

(c)

Figure B.1: Magnitude of H(20)
F (T ). We set {hi} in Eq. (8.3) as (a) the quasi-periodic field,

(b) the random Gaussian field with four random samples, and (c) the staggered field; see
the description below Eq. (8.3). The system size is L = 500. The vertical line denotes the
driving period where we detected the breaking of the convergence of the expansion.
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(a) (b)

Figure B.2: Absolute values of the energy-density difference of the steady state. We
set {hi} in Eq. (8.3) as (a) the quasi-periodic fields and (b) the random Gaussian
field with four random samples. The driving periods for the data points are T =
0.1, 0.5, 1, 1.5, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500.
The system sizes are the same as in Fig. 8.2 of the main text. The larger the system size,
the lower lie the data points for large T . (Different colors also indicate different system
sizes.) The broken line indicates the behavior T−2.

(a) (b)

Figure B.3: Variance of {Λp}L
p=1. We set {hi} in Eq. (8.3) as (a) the quasi-periodic fields

and (b) the random Gaussian field with four random samples. The driving periods and the
system sizes for the data points are the same as those in Fig. B.2. The larger the system
size, the lower lie the data points for large T . (Different colors also indicate different system
sizes.) The broken line indicates the behavior T−2.
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