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Abstract

A rotation-powered pulsar releases its rotation energy as a relativistic pair plasma outflow, called
pulsar wind. This relativistic flow interacts with the surrounding interstellar medium and supernova
remnant and forms a shock structure. The shocked wind spreads around the pulsar is called the
pulsar wind nebula (PWN). In the PWN, there are very high energy electrons and positrons. Such
particles emit photons of various energies via synchrotron radiation and inverse Compton scattering,
so the PWN is observed in the very wide frequency band from radio to γ-ray.

The X-ray emission of the PWN is emitted by particles with the highest energy in the nebula.
In the standard 1–D model constructed by Kennel & Coroniti (hereafter the KC model), the X-ray
emitting particles lose their energy quickly by radiative cooling, so the X-ray emission region is
smaller than the lower frequency one. As this is consistent with the observational fact that the
X-ray image of the Crab Nebula is smaller than the optical or radio ones, so the KC model has
been accepted widely.

However, PWNe 3C 58 and G21.5-0.9 show the feature that the extent of the X-ray emission
is similar to the extent of the radio emission. This implies that the KC model has a defect as a
PWN model, but there are no studies that test whether the KC model reproduces both the volume-
integrated spectrum and the radial profile of the surface brightness, simultaneously. In this thesis,
we aim to construct a consistent model of the radial profile and emission in PWNe.

First of all, we revisit the KC model and apply it to the Crab nebula, 3C 58 and G21.5-0.9. We
conduct a detailed investigation of the parameter dependence of the KC model. As a result, we
find that the parameters constrained by the entire spectrum lead to a smaller X-ray nebula than
observed one. We also test the case that reproduces only the observations in X and γ-rays, ignoring
the radio and optical components. In this case, there are parameter sets that reproduce both the
spectrum and emission profile, but the advection time to the edge of the nebula becomes much
smaller than the age. Our discussion clarifies that the KC model has severe difficulty to reproduce
both the volume-integrated spectrum and the surface brightness simultaneously.

The main assumptions in the KC model are steady state, spherical symmetry and toroidal
magnetic field configuration. In order to investigate the validity of the steady-state approximation of
the nebula, we solve the time-dependent and spherical symmetric magnetohydrodynamics equations
taking into account the effect of the spin-down evolution of the central pulsar and the surrounding
supernova remnant. Although the steady KC model ignores the time-dependent effect, it showed a
very good agreement on both the fluid structure and the emission calculated in the time-dependent
1-D model.

Next, we consider an effect of a turbulent magnetic field in PWNe. We construct a model that
includes the disturbed field as a diffusion process, which is not considered in the KC model in the
particle transport process. The previous diffusion models adopted a large diffusion coefficient that
makes diffusion more efficient than advection in order to reproduce the large extent of the X-ray. In
such a case, the energy and momentum flux due to the diffusion process can no longer be neglected,
so a self-consistent model to satisfy the momentum and energy conservation laws is needed. We
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present a self-consistent steady 1-D model including the advection, the diffusion, radiative and
adiabatic cooling, and the back reaction of the diffusion. We find that the back reaction of the
particle diffusion modifies the flow profile. The photon spectrum and the surface brightness profile
are different from the model calculations without the back reaction of the particle diffusion. By
fitting the spectra of PWNe 3C 58 and G21.5-0.9, we determine the parameter sets and calculate the
radial profiles of X-ray surface brightness. For both the objects, obtained profiles of X-ray surface
brightness and photon index are well consistent with observations.

The extent of the X-ray emission region is as large as that of the radio in 3C 58 and G21.5-0.9,
which can not be explained by KC model. Therefore the spatial diffusion seems indispensable to
reproduce the X-ray extent. The time-dependent effect is not important for solving the problem of
X-ray extent, but is important for the middle and old aged PWNe due to the interaction between
the PWN and the SNR reverse shock. Furthermore, our diffusion model suggests that particles
escaped from the nebula significantly contribute to the γ-ray flux. A γ-ray halo, which is similar
to observed in the Geminga PWN, larger than the radio nebula has been predicted in our model.
The spatially resolved observations are important to constrain the transport of particles and the
hydrodynamics of PWNe.
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Chapter 1

Introduction

The supernova explosion observed by humankind on July 4, 1054 was the moment of the birth of
the neutron star called the Crab pulsar (see Hester, 2008, for review). The Crab pulsar emits the
pulsed signal with a period of 33 ms in wide frequency band from the radio band to the γ-ray (Abdo
et al., 2010a). Figure 1.1 shows pulse profiles of the Crab pulsar in various band. The Crab pulsar
is slowing down its rotation with a rate of 36 ns per year (Lyne et al., 2015). If the Crab pulsar is a
typical neutron star, namely which has a mass of 1.4 M⊙ and a radius of 10 km, this rotation energy
loss rate is estimated as 5× 1038 erg s−1, which is about 105 times larger than a luminosity of the
sun. This energy loss rate is called a spin-down luminosity. The luminosity of the pulsed emission
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Figure 1.1: Pulse profiles of the Crab pulsar at various frequencies. The horizontal axis is the pulse
phase, and light curves for two cycles are shown. The figure from Abdo et al. (2010a). c⃝AAS.
Reproduced with permission.
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X-rays(NASA,CXC)

Figure 1.2: The picture of the Crab nebula at various frequencies. The picture denoted ”Compos-
ite” consists the superposition of three frequency band. The X-ray image is shown in blue, the optical
image is shown is in red and yellow and the infrared image is shown in purple. In the X-ray image,
a bipolar long slender structure called a ”jet” and a structure that surrounds the jet called ”torus”
are visible. (Credits; Radio:NRAO/AUI and M. Bietenholz; Infrared: NASA/JPL-Caltech/Univ.
Minn.; Optical: NASA/ESA/ASU/J.Hester & A.Loll; UV:NASA/Swift/E. Hoversten, PSU; X-ray
and composite:NASA/CXC/SAO;)

is only about 1% of the spin-down luminosity, and most of the energy is released in a different way.

Around the Crab pulsar, there is the Crab nebula which extends to about 2 pc and shows a
broadband spectrum from radio to γ-ray. Figure 1.2 shows a picture of the Crab nebula at various
frequencies. The Crab Nebula has been observed so many times because it is enough bright at all
observable wavelength bands. In Figure 1.3, spectra of the Crab Nebula and pulsar are shown as
blue and black points, respectively. As seen in the figure, since the luminosity of the Crab nebula is
much brighter than the pulsed emission, the spin-down luminosity of the Crab pulsar is thought to
be mainly used for forming the Crab nebula (Gold, 1969). In addition, the Crab nebula is expanding
at a speed of 2000 km s−1 pushing the interstellar matter and supernova ejecta away. Assuming
that the surrounding material has a temperature of about 1 keV and a density of about 1 cc−1, the
power of expansion is estimated as several 1038 erg s−1, which is comparable with the spin-down
luminosity. Hence, it is considered that the Crab pulsar converts its rotational energy to the kinetic
energy of plasma flow to form the Crab nebula.

The nebula around a pulsar like the Crab nebula is called the pulsar wind nebula. It is known
that pulsar wind nebulae contain the very high energy electrons and positrons, which emit the
non-thermal emission while propagating in the nebula. In this thesis, we aimed to understand the
spatial structure of the nebula and the propagation process of particles by constructing a model
that explains not only the emission spectrum of the pulsar wind nebula but also the radial profile
of the surface brightness.
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Figure 1.3: The photon spectrum of the Crab nebula (blue) and the Crab pulsar (black). The
figure from Bühler & Blandford (2014). The emission of the Crab nebula is thought to be due to
inverse Compton scattering for γ-ray and synchrotron radiation from radio to X-rays. The emission
of the Crab pulsar is thought to be due to synchrotron radiation from optical to X-rays, and inverse
Compton scattering and curvature radiation for γ-rays. Since the spectrum of the radio emission
of the Crab pulsar is a clearly separate component, it is thought to be due to the another process
(coherent emission). Reproduced with permission by IOP Publishing. All rights reserved.

1.1 Pulsar

Pulsars, which are highly magnetized rotating neutron stars produced after supernova explosions,
were first discovered in 1967 as a radio source with extremely precise periodicity (Hewish et al.,
1968). The neutron star is extremely dense stars whose density is close to the nuclear density,
∼ 1014g cc−1. This periodic signal, which is corresponding to the rotation period, is typically
P ∼ 1 s. Furthermore, since the magnetic flux is compacted by the supernova explosion, neutron
stars are expected to have a strong magnetic field (Pacini, 1967). The typical strength of magnetic
field on the neutron star surface is estimated as BNS ∼ 1012G.

Pulsars are classified by the energy source of its emission as follows:

Rotation powered A pulsar converting the rotation energy of the star into the emission. It
performs a non-thermal emission in a very wide frequency band.

Accretion powered A pulsar in a binary system. The energy source is the gravitational energy
of an accreting matter from a companion star. It mainly emits thermal radiation in X-rays.

Magnetic powered A pulsar that emits X-rays with luminosity that far exceeds the spin-down
luminosity of the star. It also called as the ”magnetar”. It is thought that X-rays are emitted
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Figure 1.4: The P -Ṗ diagram from Lorimer & Kramer (2004), which is plotted for each pulsar
with the period of the pulsar P on the horizontal axis and the rate of change of the period Ṗ on
the vertical axis. The dashed and dash–dotted lines denote the characteristic age and the surface
magnetic field, respectively. The spin-down luminosity, estimated from P and Ṗ , is also shown.

by releasing the energy of the magnetic field via some sort of a dissipative process (e.g.,
magnetic reconnection).

Thermal powered A pulsar performing an X-ray emission by the thermal energy of the star itself.

For example, the Crab pulsar is classified in the rotation powered pulsar. In this thesis, we discuss
only the rotation powered pulsar.

In rotation powered pulsars, not only the rotation period P but also the temporal change of the
period (spin-down rate) Ṗ is measured very accurately. Figure 1.4 is the P -Ṗ diagram, which is
plotted for each pulsar with P as the horizontal axis and Ṗ as the vertical axis (Lorimer & Kramer,
2004). The fact that the spin-down occurs means that the pulsar releases rotational energy through
some kind of processes. A pulsar produces an induced electric field by its own magnetic field and
rotation, and generates electron–positron plasma in the magnetosphere (pulsar magnetosphere).
Part of this induced electric field is used to accelerate particles, which eventually cause pulsed
emission. As mentioned above, in the Crab nebula, the conversion efficiency to radiation is about
1 %, and the majority of the spin-down luminosity is converted to the bulk kinetic energy of the
magnetospheric plasma.

The difficulty of the study of pulsars is partially because that the various processes occur in
very small region, ∼ 1010 cm. There are two methods for studying such a phenomena. One is
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Radio (NRAO)

Figure 1.5: Pictures of the pulsar wind nebula 3C 58 seen at various frequencies. The emission
region of the X-ray (c) is as large as the emission region of the radio band (a). Picture (b) is
an image taken by infrared. In infrared band, the pulsar wind nebula is faint compared to the
background starlight. Picture (d) is an enlarged view of the center of Picture (c). Simlar to the
Crab nebula, the jet and torus (see Figure 1.2) are also observed in 3C 58. (Radio (VLA) : Reynolds
& Aller (1988); Infrared (Spitzer) : Slane et al. (2008); X-ray (Chandra) : Slane et al. (2004);The
figure from Gaensler & Slane (2006).)

to investigate pulse shape, spectrum, polarization etc of pulsed emission to uncover the pulsar
magnetosphere. For example, the two-peak pulse shape shown in Figure 1.1 has information about
the viewing angle and the latitude of the emitting area in the magnetosphere (Bai & Spitkovsky,
2010). The other method is to investigate the pulsar wind nebulae, from which we can obtain bulk
properties of the outflowing plasma.

1.2 Pulsar Wind nebula

The nebula formed around the pulsar is ubiquitous. Such a nebula is called a pulsar wind nebula
(PWN), and 87 such systems are found at present 1. Figure 1.5 shows images of one of the PWNe,
3C 58 in radio (Reynolds & Aller, 1988), infrared (Slane et al., 2008), and X-rays (Slane et al., 2004).
At the center of this, there is a pulsar called PSR J0205+6449, whose spin-down luminosity is 2.7×
1037 erg s−1 (Murray et al., 2002). PWNe are characterized by a center-filled morphology caused
by confinement in a supernova remnant (SNR), which is outflowing ejecta from the progenitor star.
PWNe have typically harder radio spectra than the shell-type supernova remnants, which do not
accompany pulsars (Weiler & Panagia, 1978). Most PWNe have benn detected as spatially extended

1http://www.physics.umanitoba.ca/snr/SNRcat/
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Figure 1.6: The spectrum of the Crab nebula and fitting result (Aleksić et al., 2015). The emission
model is given by a mdoel of Meyer et al. (2010) (constant B-field model). Assuming the nebula
as a uniform sphere, they fitted the spectrum of the nebula with synchrotron radiation and inverse
Compton scattering. The fitting parameters are summarized in the table on the right. Electrons
are considered as two species of ”radio electrons” emitting the low energy radiation and ”wind
electrons” emitting the high energy radiation. The total number of the particles is dominated in
the particles with the Lorentz factor of γmin

r in radio electrons. The total energy of the particles
is dominated in the particles with the Lorentz factor of γmin

w in wind electrons. Reprinted from
Aleksić et al. (2015). Copyright 2019, with permission from Elsevier.

sources in radio and X-rays. While the radio spectral index is almost spatially homogeneous (e.g.,
Bietenholz et al., 1997; Bietenholz & Bartel, 2008), the X-ray spectral index increases with the
distance from the pulsar (e.g., Bocchino & Bykov, 2001; Slane et al., 2004; Schöck et al., 2010).
Recently, PWNe are found to be very bright sources in also TeV γ-rays (Kargaltsev et al., 2013).
PWNe are the most detected galactic sources in the energy band of TeV γ-rays. Almost all of PWNe
which are not detected by Chandra X-ray Observatory were found in H.E.S.S. Galactic plane survey.

Since the photon spectrum of PWNe is non-thermal, it is implies to exist of high energy particles.
The emission of the PWN is explained by the synchrotron radiation (Rees & Gunn, 1974) and inverse
Compton scattering (de Jager & Harding, 1992) from such high-energy electrons and positrons.
Figure 1.6 shows the broadband emission spectrum of the Crab nebula with a model calculated
with the parameters in the table on the right of the Figure 1.6, assuming the inside of the nebula
is uniform (Aleksić et al., 2015). In the case of the Crab nebula, the resultant magnetic field in the
nebula is 143 µG, the typical electron energy is 200 GeV and the maximum energy is 4 PeV. If the
nebula is a sphere with a radius of 2 pc, the total energy of the magnetic field is about 10% of the
energy of the particles.

In order to take into account the effect of expansion of the nebula, the time-dependent 1-zone
model, which treats the nebula as a uniform radiation area with expansion, has been discussed.
In such a study, to explain the observed emission spectrum of the Crab nebula, the energy of the
magnetic field must be about 0.5 % of the energy of the particle (e.g., Tanaka & Takahara, 2010).
Even if the model of the nebula is extended to a one-dimensional (1D) model, where radial structure
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Figure 1.7: (Left) The cosmic-ray energy spectrum of electrons and positrons. ( CALET : Adriani
et al. (2018a); DAMPE : DAMPE Collaboration et al. (2017); fermi : Abdollahi et al. (2017); Hess
: Aharonian et al. (2009); PAMELA : Adriani et al. (2018b)) (Right) The energy dependence of the
ratio of the number of positrons to the sum of the number of electrons and positrons. Reprinted
figures with permission from Aguilar, M., Alberti, G., Alpat, B., et al., Physical Review Letters,
110, 141102, 2013 (Left) and Adriani, O., Akaike, Y., Asano, K., et al., Physical Review Letters,
120, 261102, 2018a (Right). Copyright 2019 by the American Physical Society.

is considered, a similar magnetic field is derived.

On the other hand, in the pulsar magnetosphere, the magnetic energy largely dominates. It is
very difficult to dissipate the magnetic energy to a value the nebula models suggested. This problem
is called the sigma problem and is a long standing problem for pulsars and pulsar wind nebulae
(see Section 2.4.2). Namely, why can the energy of the magnetic field be converted so efficiently to
the kinetic energy of the plasma? This kind of question also appears in context of the acceleration
mechanism of relativistic jets in blazar jets, so that this problem is common in various high-energy
objects.

PWNe are also very important in considering the origin of leptonic (electrons and positrons)
cosmic-rays detected on the earth. Since leptonic cosmic-rays rapidly lose their energy by radiative
cooling while propagating in the interstellar space, high-energy electrons should be originated from
nearby sources. If the source of cosmic-rays is in nearby the earth, a spectral break or an anisotropy
in the arrival direction are detected　 (e.g., Ioka, 2010). The left panel of Figure 1.7 shows the
spectrum of the observed leptonic cosmic-rays. There seems to be a break in the vicinity of 1 TeV
in the observed spectrum, and it is actively discussed what it originates from. Adopting the fiducial
diffusion coefficient, such TeV electrons/positrons travel a few hundreds pc before they lose their
energy via radiative cooling.

Another important observational hint is the energy dependence of the number ratio of positrons
to the total leptonic cosmic-rays (Aguilar et al., 2013; Adriani et al., 2018b). Positron cosmic-rays
are secondary particles, which generated while a cosmic-ray protons propagating in the interstellar
space. In this scenario, the relative amount of positrons to electrons is predicted to decrease with
energy (e.g., Moskalenko & Strong, 1998). However, as shown in the right panel of Figure 1.7, the
fraction of positrons turns to increase at an energy of above ∼ 10 GeV. This suggests that there is
another type of sources releasing positrons as primary particles. Promising sources of such positrons
are nearby PWNe. Since PWNe are also in the vicinity of 300 pc from the earth, it can contribute
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Figure 1.8: (Left) The X-ray image of the pulsar wind nebula G21.5-0.9 taken by Chandra (Math-
eson & Safi-Harb, 2005). The pulsar wind nebula is a bright part of the center diameter of about
1 arcmin. The halo that spreads faint around the nebula is a shell type supernova remnant (i.e.
originated from supernova ejecta). As seen in this picture, a pulsar wind nebula is wrapped in a su-
pernova remnant. Reproduced with permission by IOP Publishing. All rights reserved. (Right) The
schematic view of the pulsar wind nebula and supernova remnant. The supernova ejecta propagates
as a blast wave in the ISM. On the inside of the blast wave, the reverse shock propagates towards
the center, and ejecta is divided into hot and cold before and after the shock. The pulsar wind
nebula spreads out while pushing the cold ejecta. As a back-reaction to that, the reverse shock,
which is written as a circle with radius Rw in the figure, traveling toward the pulsar wind nebula.
The reverse shock balances with the ram pressure of the pulsar wind and becomes a standing shock.
Figures taken from Gaensler & Slane (2006).

sufficiently to the flux of leptonic cosmic-rays measured on the earth. Furthermore, since PWNe
contain as many positrons as electrons, if nearby PWNe contribute to the leptonic spectrum, the
fraction of positrons can be also explained. If it can be shown that such leptonic cosmic-rays flew
directly from nearby PWNe, this will give a solution for the first time to the long-standing question:
”where is the source of the cosmic-ray?”.

However, since PWNe do not release electrons and positrons directly to the interstellar space,
such a scenario can not be naively established. Figure 1.8 represents a schematic diagram of a
PWN. Since there is a supernova remnant around a PWN, the plasma from the pulsar is confined.
Furthermore, since the magnetic field inside the PWN is stronger, electrons and positrons lose their
energy due to radiative cooling, and high energy particles can not even reach supernova remnants.
Therefore, it is not trivial whether high energy electrons and positrons are released from PWNe.

The hypothesis that electrons and positrons can not reach the edge of the nebula is based on
the fact that the X-ray emission region of the Crab nebula is much smaller than the radio and
optical emission region (see Figure 1.2). This means that high-energy X-ray emitting particles lose
their energy before reaching at the edge. However, as shown in Figure 1.5, in 3C 58, the emission
region of the radio and the emission region of X-rays seem to be similar size. Figure 1.9 shows the
radial distribution of the surface brightness of 3C 58 at radio and X-rays. The X-ray emission is a
synchrotron radiation from the highest energy particles inside the nebula, while radio emission is
radiation from a low energy population. As shown in Figure 1.9, the fact that the radio emission
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Figure 1.9: The surface brightness of the 3C 58 at the radio band (top) and the X-rays (bottom).
The figure from Slane et al. (2004). c⃝AAS. Reproduced with permission.

region spread to the similar extent as the X-ray emission region suggests that high energy particles
are transported without radiative cooling. However, under the magnetic field strength suggested
from the spectrum of the nebula, this seems difficult.

1.3 Structure of this thesis

A pulsar wind nebula contains particles with very high energy and radiates in various frequency
bands. Since a pulsar wind nebula can be observed spatially resolved in many frequency bands,
we can discuss the propagation of such high energy particles with using the spatial information of
emission. As we have discussed above, there remain several unsolved problems in the radial profile
of PWNe. In this thesis, we try to resolve this problem. We model pulsar wind nebulae in space
1-D to reveal the property of the particle propagation in the nebula.

The most accepted 1-D model of the pulsar wind nebula is the Kennel & Coroniti model (Kennel
& Coroniti, 1984a,b, ;hereafter KC model). The X-ray emission of the pulsar wind nebula is emitted
by particles with the highest energy in the nebula. If the KC model is valid, the X-ray emitting
particles lose energy quickly by the synchrotron cooling, so that the X-ray emission region is smaller
than the lower frequency one. This is consistent with the small X-ray emission region of the Crab
nebula. The nebula 3C 58 shows the feature that the extent of the X-ray emission is the same as the
extent of the radio emission. However, there is no previous study that discuss the photon spectrum
and the surface brightness simultaneously. We need to revisit the applicability of the KC model.

The structure of this thesis is as follows. In Chapter 2, we review the standard understanding
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for pulsar, pulsar magnetosphere and pulsar wind. In Chapter 3, following my published paper
Ishizaki et al. (2017), we test whether the KC model can explain the spatial structure of PWNe or
not. There, we find that the KC model can not reproduce the entire spectrum of the nebula and
the X-ray surface brightness simultaneously, so that we need to revise the KC model. In Chapter
4, we examine the validity of the steady-state assumption of the KC model using a 1-D time-
dependent model. We develop a numerical code to follow the temporal evolution of a relativistic
outflow interacting with a supernova ejecta. Our results show that the steady KC model is a good
approximation given a boundary condition. Our numerical code is a powerful tool to investigate
a long term evolution of PWNe and its emission. However, the effect of temporal evolution does
not resolve the extended X-ray emission problem. In Chapter 5, according to our published paper
Ishizaki et al. (2018), we take into account the particle diffusion effect with its back-reaction on the
flow. We find that the problem of the X-ray extent can be solved, when the diffusion is efficient.
We also show that the emission spectrum can be affected by the back-reaction to the flow, if the
diffusion is significant. In Chapter 6, we summarize our results and describes future prospects.

In this thesis we use the Gaussian-cgs units, and the signature of the metric (−,+,+,+).



Chapter 2

Theoretical background

2.1 Spin-down of Pulsars

Let us discuss the evolution of pulsar rotation with a simple model. First of all, by using P and Ṗ ,
a rotational energy loss per unit time (the ”spin-down luminosity” Lsd) can be estimated as follow:

Lsd = 4π2I
Ṗ

P 3
∼ 3.9× 1031 erg s−1

(
P

1 s

)−3
(

Ṗ

10−15 s s−1

)
, (2.1)

where I is the moment of inertia of the pulsar, and if the pulser is a uniform sphere with a mass
of 1.4 M⊙ and a radius of 10 km, it can be found that I = 1045 g cm2. For the rotation frequency
ν = P−1 and its change rate ν̇, the following relationship is assumed:

ν̇ = −Kνn (2.2)

where n is a constant, which is called braking index, determined by reflecting the physics of energy
loss. For example, in the case where the energy loss is caused by magnetic dipole radiation or a
pulsar wind from the aligined rotator (as will be described later), n = 3. The braking index can be
obtained from observable quantities as n = νν̈/ν̇2, and values such as n = 1.4 − 2.9 are obtained
(e.g., Livingstone et al., 2007; Lyne et al., 1996; Roy et al., 2012a), but few pulsars are measured.

By integrating the equation (2.2), the temporal evolution of the pulser rotation can be obtained.
Substituting P = 1/ν, the equation (2.2) is as follows:

Ṗ = KP 2−n. (2.3)

Integrating from the birth to the current age tage, we obtain the following result as

tage =
P

Ṗ (n− 1)

(
1−

(
P0

P

)n−1
)
, (2.4)

where P0 is the rotation period when the pulsar is born. If the period P0 at birth is sufficiently
shorter than the current period P , the age of the pulsar can be estimated by the following expression:

tc =
P

Ṗ (n− 1)
= 1.6× 107 yr

(
P

1 s

)(
Ṗ

10−15 s s−1

)−1

. (2.5)

11
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tc with n = 3 is called the ”characteristic age” of the pulser and is often used for rough estimate of
the age of the pulsar. Furthermore, the time evolution of the period is written as

P (t) = P0

(
1 +

t

t0

) 1
n−1

, (2.6)

where t0 is the characteristic age at the time of birth of the pulsar, namely,

t0 =
P0

Ṗ0 (n− 1)
. (2.7)

The time evolution of spin-down luminosity Lsd is written as

Lsd = L0

(
1 +

t

t0

) 1+n
1−n

, (2.8)

where L0 is the spin-down luminosity at the time of birth of the pulsar. As can be seen from above
equation, time dependence of the spin-down luminosity is weak for the young pulsar that satisfies
tage ≲ t0.

2.2 Pulsar Magnetosphere

2.2.1 Unipolar Induction

One may consider that the space outside a pulsar is vacuum. However, surroundings of the neutron
star are dominated by electromagnetic force rather than gravity so that, a plasma filled magneto-
sphere is formed around the pulsar. First of all, in this section, we show that the surroundings of
neutron star is not vacuum, by following Goldreich & Julian (1969).

We adopt following assumptions:

• The neutron star is a perfect conductive sphere.

• The magnetic field structure outside the neutron star is dipole.

• The magnetic field structure inside the star is uniform.

• The rotation of axis and the magnetic pole coincide.

• Steady state.

• The surroundings of the neutron star is vacuum. (This is a null hypothesis.)

Here we use the polar coordinate system (r, θ, ϕ), if necessary, the cylindrical coordinate system
(ϖ, θ, z) are also used with the direction of the rotation axis as the z axis. The magnetic field is
written as:

Bin = B0ez, (2.9)

for inside the star, and

Bout = B0R
3

(
cos θ

r3
er +

sin θ

2r3
eθ

)
(2.10)

for outside the star, where B0 is on the surface of the star, R is the radius of the star, r =
√
ϖ2 + z2

is the distance to the center of the star, and ei is an unit vector parallel to the i-th direction.
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Let us find the electrostatic potential inside the star. Since the interior of the neutron star is
a perfect conductor, namely ideal MHD condition is satisfied, the following relation between the
electric and magnetic field holds:

Ein +
Ω× r

c
×Bin = 0. (2.11)

With angular velocity Ω = Ωer and Bin = B0ez, we obtain

Ein = −B0Ωϖ

c
eϖ. (2.12)

The electrostatic potential Φin is obtained by solving following differential equation,

∇Φin = −Ein =⇒ ∂Φin

∂ϖ
eϖ +

1

ϖ

∂Φin

∂θ
eθ +

∂Φin

∂z
ez = −

(
−B0Ωϖ

c
eϖ

)
. (2.13)

Therefore, we obtain

Φin =
B0Ωϖ

2

2c
+ const. (2.14)

Next, we calculate the electrostatic potential outside the star. Since the outside of the star is a
vacuum, the potential Φout can be obtained by solving the Laplace equation,

∆Φout = 0. (2.15)

A general solution to the Laplace equation of an axisymmetric system is written as follows:

Φout =

∞∑
l=0

(
αlr

l + βlr
−(l+1)

)
Pl (cos θ) , (2.16)

where Pl is the Legendre polynomial of order l 1. For this solution to be bounded when r →∞, we
have to be αl = 0 for all l. Thus the external solution is written as:

Φout =

∞∑
l=0

βl
rl+1

Pl (cos θ) . (2.17)

Let us find the coefficient βl so that the potential is continuous on the surface of the star r = R.
In polar coordinates, equation (2.14) is written as:

Φin = −B0Ω

3c
r2P2 (cos θ) +

B0Ω

6c
r2 + const. (2.18)

By adjusting the integral constant, we obtain the following simple form

Φin (R, θ) = −B0Ω

3c
R2P2 (cos θ) , (2.19)

at the surface of the star. Imposing the Φin = Φout at r = R, we finally obtain

Φout (r, θ) = −
B0ΩR

5

3cr3
P2 (cos θ) . (2.20)

1Legendre polynomials are generated by Rodrigues’ formula, Pn(x) =
1

2nn!

dn

dxn

[(
x2 − 1

)n]
. For example, P0(x) =

1, P1(x) = x, P2(x) = (3x2 − 1)/2 · · · .
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By using the obtained electrostatic potential, we evaluate the magnitude of the electric field
parallel to the magnetic field line on the neutron star surface. Since the external electric field is

Eout =
B0ΩR

5

2cr4
(
3 cos2 θ − 1

)
er −

B0ΩR
5

2cr4
sin 2θeθ, (2.21)

E ·B is calculated as

Eout ·Bout = −
RΩ

c

(
R

r

)7

B2
0 cos

3 θ. (2.22)

Thus, the electric field along the magnetic field line on the surface of the star is

Eout (R, θ) · Bout (R, θ)

B0
= −RΩ

c
B0 cos

3 θ. (2.23)

A phenomenon in which a potential difference is generated when a conductor sphere rotates in a
magnetic field is called a unipolar induction.

Let us compare gravity and electric force acting on an electron at r = R and θ = 0. The ratio
of the electric field to the gravity is estimated as,

(electric force)

(gravity)
∼ 6× 1011

(
B0

1012 G

)(
R

10 km

)3( P

1 s

)−1( MNS

1.4 M⊙

)−1

, (2.24)

where MNS is the mass of the neutron star. Consequently, electrons on the surface of neutron stars
are drawn from the stars and distributed around the stars. In other words, the surroundings of the
neutron star can not keep being vacuum.

2.2.2 Particle Generation

In the vacuum magnetosphere discussed in the previous section, charged particles around the neu-
tron stars are immediately accelerated by the electric field due to the unipolar induction and emit
γ-rays. Under a strong magnetic field, electron and positron are generated by the process of
γ + B → e+ + e− + B. In this section, following (Beskin, 1999), we briefly review the particle
generation process around the neutron star.

Electrons drawn from neutron stars immediately lose momentum perpendicular to the magnetic
field by radiative cooling by synchrotron radiation under a strong magnetic field due to the neutron
star. An electron moves along the field line while being accelerated by an electric field by unipolar
induction. Since the field lines near the magnetic pole of the neutron star have curvature, electrons
emits the photon via the curvature radiation. A typical frequency of the curvature radiation is
written as,

ωcur = 0.44
c

Rc
γ3, (2.25)

where Rc is the curvature radius of the magnetic field and γ is the Lorentz factor of the electron.
The emitted energy per unit time per particle is written as (e.g., Rybicki & Lightman, 1979):

Pcur =
2ce2

3R2
c

γ4. (2.26)

The maximum energy of the particle is estimated as the energy where the acceleration due to
the electric field is equal to the loss due to the radiation (Pcur ∼ eE∥c), the following is obtained.

γmax ∼ 2.8× 107 ξ
1
2

(
R

10 km

) 3
4
(

P

1 s

)− 1
4
(

B0

1012 G

) 1
4

, (2.27)
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where ξ = Rc/R is the ratio of the curvature radius Rc to the star radius R. The corresponding
typical energy ϵph of the photon which is emitted by the particle with such energy is,

ϵph ∼ 200 GeV ξ
1
2

(
R

10 km

) 5
4
(

P

1 s

)− 3
4
(

B0

1012 G

) 3
4

. (2.28)

Such a high energy γ-ray creates secondary electron-positron pair via the magnetic pair creation.
The probability per unit propagation distance, in which a γ-ray with an energy ϵph ≫ mec

2 prop-
agating at angle θ to the magnetic field are converted into pairs, can be written as (Berestetskii
et al., 1982):

αBγ =
3
√
3

16
√
2
α2
EM

(
B sin θ

Bℏ

)
1

re
exp

[
−8

3

Bℏ
B sin θ

mec
2

ϵph

]
(2.29)
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Figure 2.1: A schematic view of the particle generation at the polar region of the pulsar.
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where Bℏ is the critical field, which is the strength of the magnetic field where the nonlinearity of
the quantum electrodynamics becomes important (Schwinger limit), and is written as

Bℏ =
mec

3

eℏ
, (2.30)

αEM = e2/ℏc is the fine structure constant and re = e2/mec
2 is the classical electron radius. The

electrons and positrons generated in this process are accelerated again as long as there is an electric
field along the magnetic field, and emit γ-rays, which also makes pairs (Sturrock, 1971). This
process continues in a chain until the electric field along the magnetic field is screened (see Figure
2.1). Through these processes, a pulsar magnetosphere filled with pair plasma is formed around the
pulsar.

2.2.3 Structure of the Pulsar Magnetosphere; Intuitive Understanding

As discussed in the previous section, around the pulsar, it is thought that the charged particles are
distributed so as to screen the electric field along the magnetic field. In such a case, since equation
(2.11) holds both inside and outside the star, the electric field outside the pulser can be written as
follows:

E = −Ω× r

c
×B. (2.31)
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The charge density is obtained as follows using Gauss’ law (see Section 2.2.4 for details):

ρe = −
Ω ·B
2πc

1

1− (Ωr/c)2 sin2 θ
. (2.32)

Assuming that this charge distribution is given by a completely charge separated plasma, the particle
number density of the magnetosphere can be estimated as follows:

nGJ =
Ω ·B
2πce

∼ 7× 1010 cc−1

(
B

1012 G

)(
P

1 s

)−1

. (2.33)

This is called the Goldreich-Julian density and represents the minimum number density necessary
to screen the electric field along the magnetic field lines.

Next, we discuss the motion of the plasma in the pulsar magnetosphere (c.f. Ruderman & Suther-
land, 1975). Figure 2.2 shows the structure of the pulsar magnetosphere proposed by Goldreich &
Julian (1969). Since the particles in the magnetosphere are secondary products to the electromag-
netic field, the energy density of the magnetic field would be larger than the energy density of the
particles. Under such circumstances, the force-free approximation is justified. As a consequence,
charged particles in the magnetosphere are known to co-rotate with the pulsar and its field lines
(see Section 2.2.4 for details). However, particles can not co-rotate beyond the speed of light. The
light cylinder ϖlc is the radius at which the co-rotational speed is equal to the speed of light and
can be written as follows:

ϖLC =
c

Ω
∼ 4.7× 109 cm

(
P

1s

)
. (2.34)

A magnetic field line that closes inside the light cylinder is called a closed field line, that extends
beyond the light cylinder is called an open field line, and that is boundary between them is called a
last open field line (Figure 2.2). Magnetic lines of force that originate from the polar side of θ0 on
the surface of the star can not form a closed co-rotating magnetosphere, and will produce a pulsar
wind flowing out from the light cylinder.

Let us estimate the angle at which the last open field line appears at the surface of the star,
assuming the magnetic field within the light cylinder as a dipole field. In the dipole magnetic field,
since sin2 θ/r = const holds, the angle of the last open field line respect to the magnetic pole at the
surface of the star is estimated as:

θ0 ∼
(
RΩ

c

)1/2

. (2.35)

The area where the base of the open magnetic field lines defines on the star surface is called polar
cap. The radius rp of polar cap can be written as follows:

rp =

√
ΩR3

c
∼ 1.4× 104 cm

(
R

10km

)3/2(P

1s

)−1/2

. (2.36)

Charged particles on the open field lines can flow out along the field line, so that a relativistic
plasma wind would be emitted from the light cylinder and called the pulsar wind. This brings out
the rotational energy of the pulser as kinetic energy to the outside. Let us estimate the energy loss
rate due to the pulsar wind. The potential difference ∆V , which is caused by unipolar induction,
between the edge of the polar cap and the magnetic pole is written as:

∆V ∼ Φin (R, θ0)−Φin (R, θ = 0) =
B0R

3Ω2

2c2
∼ 6.6× 1012 V

(
B0

1012G

)(
R

10km

)3(P

1s

)−2

. (2.37)
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Here, we used equation (2.14). Note that the equation (2.37) also means the maximum of the
potential difference that can be used to accelerate the particle among the potential differences
generated by the pulser in the unipolar induction. If the current is estimated assuming that charged
particles of Goldreich-Julian density flow out at the speed of light from the polar cap region, the
energy that pulsar wind brings per unit time can be calculated as follows:

Lpw ∼ ∆V ×
(
2× πr2p × c× enGJ

)
=

B2
0Ω

4R6

4c3
∼ 2.8× 1031 erg/s

(
B0

1012G

)2( R

10km

)6(P

1s

)−4

.

(2.38)
Here, since the polar cap region exists at two magnetic poles, the energy loss rate is doubled. If
this is equal to the spin-down luminosity, Ω̇ ∝ Ω3 is obtained. This corresponds to breaking index
n = 3.

2.2.4 Axisymmetric Magnetosphere

In this section, we explain the theory of the structure of the pulsar magnetosphere in more detail
following Beskin (2009). Unless otherwise noted, steady state and axisymmetry, and coincidence of
the axis of the magnetic field and the axis of rotation are assumed.

Force-free Approximation

The conservation law of energy and momentum on matter (Tµν
M ) and electromagnetic field (Tµν

EM) is
given by

∂ν
(
Tµν
M + Tµν

EM

)
= 0. (2.39)

Assuming that the energy density of matter is much smaller than that of an electromagnetic field,
we have

∂νT
µν
EM = 0, (2.40)

which is called the force-free approximation. The energy–momentum tensor of the electromagnetic
field is explicitly written as follows:

Tµν
EM =

(
E2+B2

8π
1
4π (E ×B)

1
4π (E ×B) − 1

4π (E ⊗E +B ⊗B) + E2+B2

8π

←→
I

)
. (2.41)

Assuming a steady state and using the Maxwell equation, we obtain

j ·E = 0 (2.42)

from the time component, and

ρeE +
j

c
×B = 0 (2.43)

from the spatial component.

Magnetic Flux Function

Let us introduce the magnetic flux function, which is important in description of axisymmetric
MHD. We take the cylindrical coordinate system (ϖ,ϕ, z) and assume the axisymmetry ∂ϕ = 0 and
the steady state ∂t = 0. Hereafter, the components in the meridian of the physical quantity are
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represented by the subscript subscript p (poloidal) and the azimuth component by the subscript
subscript t (toroidal). For example, the magnetic field is written as:

B = Bp +Bt. (2.44)

The plasma velocity is
v = vp + vt. (2.45)

Since the magnetic field can be written as B = ∇×A by introducing the vector potential A,
we have

B = ∇×A =

[
− 1

ϖ

∂ (ϖAϕ)

∂z
eϖ +

1

ϖ

∂ (ϖAϕ)

∂ϖ
ez

]
+

(
∂Az

∂ϖ
− ∂Aϖ

∂z

)
eϕ. (2.46)

As can be seem from this result, the poloidal field can be written with one variable Aϕ. Therefore,
we define the function Ψ(ϖ,ϕ) as follows:

Ψ = 2πϖAϕ =

∫ ϖ

0
2πϖBzdϖ. (2.47)

With using Ψ, poloidal component of equation (2.46) is written as

Bp =
1

2πϖ
∇Ψ× eϕ. (2.48)

Since Ψ is the magnetic flux within the radius of ϖ from the polar axis, it is called the magnetic
flux function. Furthermore, using the function I(ϖ,ϕ), we write the troidal magnetic field as

Bt = −
2I

cϖ
, (2.49)

where I corresponds to the total current flowing out within the radius ϖ from the polar axis.
Therefore, the magnetic field B is written as

B =
1

2πϖ
∇Ψ× eϕ −

2I

cϖ
eϕ. (2.50)

Note that ∇ ·B = 0 is automatically satisfied under such expression. This is consistent with the
fact that B is represented by two variables, I and Ψ.

Multiplying eϕ as an outer product on both sides of equation (2.48), we have

∇Ψ = 2πϖeϕ ×Bp. (2.51)

Hence, we obtain
B · ∇Ψ = Bp · ∇Ψ = 0 (2.52)

This means that Ψ is constant along the field line. In other words, since Ψ relates to the magnetic
field line in a one-to-one correspondence, it can be used as coordinates for specifying magnetic field
line.

From ∇×B = 4πj/c, we have

jp = − 1

2πϖ
∇I × eϕ. (2.53)

In the same way as equation (2.52), we obtain

j · ∇I = jp · ∇I = 0. (2.54)

Note that the equation of charge continuity ∇ · j = 0 is automatically satisfied.
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Co-rotating Magnetosphere

Here we start from the ideal MHD condition, which means that the electric field is vanished in the
fluid rest frame, and it can be written as

E +
v

c
×B = 0. (2.55)

Note that this implies E ·B = 0.
In steady state, ∇×E = 0 from Faraday’s law. Therefore, by introducing electrostatic potential

Φe, E can be written as
E = −∇Φe. (2.56)

Since ∂ϕ = 0, we have

Et = E · eϕ = − 1

ϖ

∂Φe

∂ϕ
= 0. (2.57)

That is, in the steady and axisymmetric MHD, the troidal electric field can not exist. Since the
electric field has only the poloidal component, we obtain

E ·B = Ep ·Bp = 0. (2.58)

This indicates that the electric field and the magnetic field are orthogonal in the meridional plane.
Furthermore, multiplying Bp on both sides of Ep = −∇Φe as an inner product, we obtain

Bp · ∇Φe = 0. (2.59)

This implies that the electric potential is constant along the field line. In other words, as long as
a particle moves along a field line, it is not accelerated by the electric field. Since the electrostatic
potential Φe corresponds one-to-one to the field line, Φe can be written as a function of only Ψ (i.e.
Φe = Φe (Ψ)). Therefore, using the magnetic flux function, the electric field E is written as

E = −∇Φe = −
ϖΩ(Ψ)

c
eϕ ×Bp = − Ω

2πc
∇Ψ, (2.60)

where Ω is a scalar function of only Ψ and written as

Ω = 2πc
dΦe

dΨ
. (2.61)

The toroidal component of the equation (2.55) is

vp ×Bp = 0. (2.62)

Therefore, using a scalar function κ, the poloidal velocity can be written as

vp = κBp. (2.63)

The poloidal component of the equation (2.55) is

Ep +
1

c
(vt ×Bp + vp ×Bt) = 0. (2.64)

Substituting equation (2.63) and taking the cross product with Bp, we obtain:

Ep ×Bp +
B2

p

c
(κBt − vt) = 0. (2.65)
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Since Ep ⊥ Bp (see equation (2.58)), we can solve eqation (2.65) for vt and obtain the following
result:

vt = κBt +
c [Ep ×Bp]t

B2
p

. (2.66)

Substituting this to equation (2.65), we have

Ep ×Bp =
ϖΩ

c
B2

peϕ. (2.67)

Combining above results, we obtain

v = κB +ϖΩeϕ. (2.68)

As can be seen in this equation, Ω means the angular velocity, if the magnetic field has no toroidal
component. Since the Ω is constant along the filed line, the second term of equation (2.68) implies
that the plasma co-rotates with the star (as known as the Ferarro’s isorotation law (Ferraro, 1937)).
In particular, where there is no toroidal field, the plasma co-rotates completely with the central
star. The co-rotaion of the plasma is interpreted as the E ×B drift motion.

Goldreich–Julian Density

Let us calculate the charge density from the electric field E. By substituting equation (2.60) to the
Gauss’ law ∇ ·E = 4πρe, we get:

ρe =
1

4π
∇ ·E = − 1

4πc
∇ · [ϖΩ (Bzeϖ −Bϖez)] . (2.69)

If Ω is a constant, this equation can be written as

ρe = −
Ω

4πc

(
2Bz −

4πϖ

c
jϕ

)
. (2.70)

Furthermore, if we assume that the current is only due to co-rotating motion of charged particles
(i.e. j = ρeϖΩeϕ), we obtain:

ρe = −
ΩBz

2πc

1

1−
(

ϖ
ϖLC

)2 . (2.71)

This is the Goldreich–Julian density seen in Section 2.2.3. Equation (2.71) fails at ϖ → ϖLC is
due to the assumption that the current is only co-rotational current. In the actual magnetosphere,
there are poloidal current flows along the open-field line. A toroidal magnetic field is generated by
that currents, so that the flow deviates from the complete co-rotation.

Trans-field Equation

Let us derive an equation describing the shape of the field lines in the magnetosphere from equation
(2.43). Since Et = 0, the troidal component of equation (2.43) is

jp ×Bp = 0. (2.72)

Substituting equation (2.50) and (2.53), we obtain

∇I ×∇Ψ = 0. (2.73)
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Using equation (2.51), we obtain
B · ∇I = 0. (2.74)

Therefore, I is constant along the field line, so that we can write I as the function of Ψ, namely
I = I(Ψ).

The poloidal component of equation (2.43) can be written as

ρeEp +
1

c
(jt ×Bp + jp ×Bt) = 0. (2.75)

The cross product of j and B can be calculated as follows:

jt ×Bp =
jt

2πϖ
∇Ψ (2.76)

and

jp ×Bt = −
I∇I
πϖ2

= − 1

πϖ2
I
dI

dΨ
∇Ψ. (2.77)

Therefore, equation (2.75) can be written as(
−∇ ·E

4π

Ω

2πc
− 1

πϖ2
I
dI

dΨ
+

jt
2πϖ

)
∇Ψ = 0. (2.78)

jt is obtained from ∇ ·B = 4πj/c as follows:

jt = −
c

8π2ϖ

[
∇2Ψ− 2

ϖ

∂Ψ

∂ϖ

]
. (2.79)

By substituting equation (2.60) and (2.79) into equation (2.78), we have:(
1− Ω2ϖ2

c2

)
∇2Ψ− 2

ϖ

∂Ψ

∂ϖ
+

16π2

c2
I
dI

dΨ
= 0. (2.80)

This equation is called Grad–Shafranov equation (Shafranov, 1958; Grad, 1960). As can be seen
in equation (2.75), this equation means the balance of forces in the direction perpendicular to the
field lines applied to the test particles on the field line.

Force-free Magnetosphere and Further Models

There are many studies to solve the structure of the magnetosphere by solving Force-free Grad-
Shafranov equation (see Venter, 2016, and references therein). It is technically very difficult to solve
(even numerically) the Grad-Shafranov equation because it is a nonlinear equation and because the
type of the equation changes from elliptical to hyperbolic in the light cylinder. Contopoulos et al.
(1999) succeeded for the first time in obtaining the structure of the magnetosphere by simultaneously
solving the Grad-Shafranov equation (i.e. equation (2.80)) inside and outside the light cylinder.
Figure 2.3 shows their calculation results. They found that the inside of the light cylinder is almost
dipole field, and the outside is almost radial shape.

Motivated by the formation of the Y–point near the light cylinder of the equatorial plane, the
calculation to solve the dissipative force-free equation is being conducted by many authors (e.g.,
Li et al., 2012). Calculations taking into account of the effects of general relativity (e.g., Pétri,
2016), and calculations taking into account of the multipole magnetic field on the star are also
performed (e.g., Akgün et al., 2018). In addition, there are studies that investigate oblique rotator
by time-dependent 3–D calculation (e.g., Spitkovsky, 2006).
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Figure 2.3: Calculation result of the force-free magnetosphere by Contopoulos et al. (1999). The
thin solid line shows magnetic field lines in interval of 0.1 Ψpc, where Ψpc is the flux function at the
radius of the classical polar cap as determined by equation (2.35). The thick solid line represents
the last open field line, which is Ψ = 1.36Ψpc. The dashed line represents a field line that is the
boundary where the direction of the bulk current changes, and it is Ψ = 1.08Ψpc. The dotted
line indicates a null line (i.e., ρGJ = 0). The figure is from Contopoulos et al. (1999). c⃝AAS.
Reproduced with permission.

As an advanced calculation than the force-free equations, a simulation with MHD equations con-
sidering plasma inertia is also performed. Interestingly, Komissarov (2006) found that the solution
of the time-dependent MHD equation shows a structure very similar to the solution of Contopoulos
et al. (1999) at steady state. Furthermore, as a calculation close to the first principle calcula-
tion, there are studies to calculate using particle-in-cell (PIC) simulation. Recently, Philippov &
Spitkovsky (2018) performed a global PIC simulation of the oblique rotator, including the general
relativistic effect, pair production, ion extraction from the surface, and radiation (Figure 2.4).
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Figure 2.4: The calculation result for the 60 deg inclined pulsar magnetosphere by Philippov &
Spitkovsky (2018). The figure shows the number density normalized by the GJ density on the plane
that contains the magnetic pole and the rotation axis. (a): electrons, (b): positrons, (c): photons,
(d): ions extracted from the star surface. A solid black line represents the field line. c⃝AAS.
Reproduced with permission.

2.2.5 Gap Region and Particle Acceleration

In the pulsar magnetosphere where particles are sufficiently generated, there is no electric field
parallel to the field lines, so that the particle acceleration process does not occur. However, actual
pulsars emit at various wavelengths from radio to γ-rays. In the actual pulsar magnetosphere, there
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is a region called a ”gap” where the electric field pararell to the field line is not screened, because
of the displacement from the Goldreich–Julian charge density, and the particle acceleration should
be realized in such regions.

A promising candidate for the place where the gap exists is the magnetic poles of the pulsar.
Since particles are flowing out along open field lines, particles can be deficient at the surface of the
star. It is expected that the electric field exists above the polar cap with a thickness of about the
mean free path of the magnetic pair creation. A model in which particles are accelerated by such
an electric field formed near the magnetic pole is called a polar cap model. The mean free path
of the typical γ-ray to the magnetic pair creation provides the thickness of the gap (Ruderman &
Sutherland, 1975) as:

hRS ∼ 5× 103 cm ξ
2
7

(
R

10 km

) 2
7
(

P

1 s

) 3
7
(

B0

1012 G

)− 4
7

. (2.81)

Another promising candidate is the area where the last open field line intersects the null line
(i.e., ρGJ = 0). As shown in Figure 2.5, when electrons flow out to the leftward along the open
field line, the vicinity of the left side of the null line is charged to positive. Then, the positron
on the right side of the null line receives the electrostatic force and moves to the rightward. As a
result, the vicinity of the right side of the null line is charged to negative and an electric field along
the magnetic field is formed. The model to consider acceleration of particles in this area is called
the outer gap model and was proposed by Cheng et al. (1986). Unlikely the polar cap region, the
magnetic field is weak around the outer gap region, so that the magnetic pair creation is inefficient.
Photons are converted into pairs with a collision with the soft photons such as X-rays from the NS
surface and X-rays from the outer gap region on the opposite side.

B
j

Null line (�e=0)

Co-rota�ng 

Magnetosphere

E>0
E=0

Figure 2.5: Schematic diagram of outer gap region. The shaded area below is the co-rotation
region. The area where the electric field exists is indicated by dotted-dash line. The null line (i.e.,
ρGJ = 0) is indicated by dashed line. As the electrons flow out from the null line along the magnetic
field, the outer gap region grows (see text for details).
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With increasing the energy of the photon, the cross section of the magnetic pair creation rapidly
increases. In the polar cap model, this appears as super exponential cutoff in the pulsar radiation
spectrum (Daugherty & Harding, 1996). On the other hand, in the outer gap model, the cross section
of the pair creation is approximately the Thomson cross section and hardly depends on energy. As
a result, the emission spectrum shows exponential or hard cutoff. Since the radiation spectrum of
γ-ray pulsars detected by Fermi supports exponential cutoff (e.g., Abdo et al., 2010b,c; Leung et al.,
2014), γ-ray is considered to be emitted from outer gap. The radio emission is considered to be
from the polar cap because of the narrow pulse width and the fact that the phase of the pulse is
different from γ-ray for most of the γ-ray pulsar.

The number κ of secondary particles that one (primary) particle can generate with pair creation
is called multiplicity. The particle generation with the polar cap model is about κ ∼ 105 with very
optimistic parameters (Timokhin & Harding, 2015), but this is still smaller than the value required
for the radiation model of pulsar wind nebulae (e.g., Bucciantini et al., 2011; Tanaka & Takahara,
2013a). In outer gap model, it is thought that it is about κ ∼ 104 (e.g., Hirotani, 2006), and it
can not be explained with this model. This is an unresolved issue, and is still discussed in both
the model of the magnetosphere and the model of the nebula (e.g., Olmi et al., 2014; Timokhin &
Harding, 2018).

2.2.6 Emission Mechanism of the Pulsar

Since the gap region can not be observed directly, the emission mechanism of the pulsar has been
investigated indirectly by using the pulse shape, the polarization degree / spectrum for each pulse
phase. In order to calculate the pulse shape, it is necessary not only to calculate the particle
acceleration in the gap region and the structure of the magnetosphere, but also a geometrical
consideration taking into account the direction of the observer.

The radiation mechanisms of X-ray and γ-ray are the curvature radiation from the primary
particles directly accelerated at the gap and the synchrotron radiation and the inverse Compton
scattering from secondary particles. For example, using the outer gap model, Takata & Chang (2007)
calculated the spectrum, polarization degree and pulse shape. They reproduced the properties of
the pulsed emission from Crab pulsar and PSR B0540-69, considering the curvature radiation from
primary particles and the synchrotron radiation and inverse Compton scattering from secondary
particles. The Philippov & Spitkovsky (2018), which introduced in Section 2.2.4, calculated not
only the magnetosphere structure but also the photon emission from particles and its propagation
and absorption. The theoretical understanding of the radio emission of the pulsar has not advanced
much (e.g., Melrose & Rafat, 2017). Radio emission from the pulsar has a very high brightness
temperature T ∼ 1024, suggesting a coherent radiation process (Pietka et al., 2015). Application of
a model of radiation from the bunched plasma, which has been studied in the context of the solar
burst, has been discussed, however consensus has not yet been obtained (see Eilek & Hankins, 2016,
for review)

Although the pulsar emission model is still under discussion, observationally, it turns out that
the conversion efficiency from the spin-down luminosity to the pulse emission is ∼ 10% or less (Szary
et al., 2014). Most of the spin-down luminosity is emitted as the kinetic luminosity of the pulsar
wind described in next section.

2.3 Pulsar Wind

As mentioned in Section 2.2.3, the wind blows along the open field line in the pulsar magnetosphere.
In order to correctly describe the motion of the pulsar wind, it is necessary to consider the inertia
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of the flow, so that the force-free approximation equation is not appropriate. In this section, we
derive an equation taking into account the inertia of the flow and explain the condition for pulsar
wind to be accelerated. The following discussion is in line with Toma & Takahara (2013).

2.3.1 Conservation Laws along the Field Line

In steady and axisymmetric MHD equations, there are several constants of motion along the field
lines. The conservation law of particle number in the steady state is

∇ · (nγvp) = 0, (2.82)

where n is a number density measured in the rest frame of the fluid. Since ∇·Bp = 0 and vp = κBp,
we obtain

Bp · ∇ (nγκ) = 0. (2.83)

The mass flux per unit magnetic flux η is constant along the field line and written as:

η (Ψ) ≡ 4πmenγκ. (2.84)

The energy–momentum conservation law is already given as equation (2.39). From the time
component, we obtain

∇ ·
[
(ϵ+ p) γ2vp +

c

4π
[E ×B]p

]
= 0 (2.85)

Using equation (2.63), (2.60) and [E ×B]p = Ep ×Bt, we have

Bp · ∇
[
(ϵ+ p) γ2κ− ϖΩ

4π
Bt

]
= 0. (2.86)

The energy flux per unit rest energy flux E is constant along the field line and written as:

E (Ψ) ≡
(

µ

mec2

)
γ − ϖΩBt

ηc2
, (2.87)

where µ = (ϵ+ p) /n is the enthalpy per particle. The ratio of the Poynting flux to the kinetic
energy flux σ is written as:

σ = −meϖΩBt

ηµγ
=
E − γ

γ
. (2.88)

The toroidal component of equation (2.39) is written as

Bp · ∇
[
(ϵ+ p)ϖγ2vtκ−

ϖΩ

4π
ϖBt

]
= 0. (2.89)

The angular momentum flux per unit mass flux L is constant along the field line and written as:

L (Ψ) ≡
(

µ

mec2

)
ϖγvt −

ϖBt

η
. (2.90)

Furthermore, Ω in equation (2.66) is also the constant of motion along the field line, namely

Ω (Ψ) =
vt − κBt

ϖ
. (2.91)
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2.3.2 Bernoulli Equation

Here, we consider a situation where the functional form of Bp is given. By using equation(2.63),
(2.60) and the equation of state, the unknown variables of the physical quantity of flow are four,
namely n, vt, κ, and Bt. As we introduced in Section 2.3.1, there are four constants of motion
equations (2.84), (2.87), (2.90) and (2.91), so that four unknown quantities can be expressed by
these constants of motion. After some algebra, we obtain

vt =
1

ϖ

c2
(
M2L −ϖ2ΩE

)
+ϖ2Ω2L

c2 (M2 − 1) E +ΩL
, (2.92)

Bt = −
η

ϖ

ϖ2ΩE − L
(M2 − 1) +ϖ2Ω2/c2

, (2.93)

κ =
vp
Bp

=
M2

η

c2
(
M2 − 1

)
+ r2Ω2

c2 (M2 − 1) E + LΩ
, (2.94)

and (
µ

mec2

)
γ =

c2
(
M2 − 1

)
E + LΩ

c2 (M2 − 1) +ϖ2Ω2
, (2.95)

where M is the Alfvén Mach number

M =
γvp
vA

=

√
ηκγ

(
µ

mec2

)
=

√
γvpη

Bp

µ

mec2
, (2.96)

and vA is the Alfvén velocity

vA ≡
Bpc√
4πµn

. (2.97)

The radius at which the denominator of equations (2.92)-(2.95) becomes 0 is called the Alfvén point
and can be written as follows:

ϖA =

√
L
EΩ

. (2.98)

In order for equations (2.92)-(2.95) to be regular at Alfvén point, the Mach number MA in ϖ = ϖA

is

M2
A = 1−

ϖ2
A

ϖ2
LC

. (2.99)

Since M2
A > 0, it is generally found that ϖA < ϖLC. In other words, the flow which reaches far

enough always passes through the Alfvén point. Using x = ϖ/ϖLC and γ2
(
v2p + v2t

)
= c2, after

some algebra, we obtain

1 + (γvp)
2 =

(
Emc2

µ

)2 x2
(
1− x2A −M2

)2 − (x2 (1− x2A
)
− x2AM

2
)2

x2 (1− x2 −M2)2
, (2.100)

where xA = ϖA/ϖLC =
√

ΩL/Ec2 is the radius of the Alfven point normalized by ϖLC. Addition-
ally, from equation (2.84) and (2.97), we have

µ

nmc2
=

4πmM2

η2
. (2.101)

If µ can be written as µ = µ(n) using the equation of state, equation (2.101) gives an relation
between n and M . Since M2 = ηµ (γvp) /Bpmec

2, equation (2.100) is an equation with only γvp.



2.4. PULSAR WIND NEBULA 29

2.3.3 Magnetic Nozzle

Let us derive the differential equations of vp in ϖ ≫ ϖLC, assuming that the flow is cold (µ ∼ mc2).
Since ϖΩ≫ c ≥ vt, from equation (2.91), we obtain

− Bt

Bp
=

ϖΩ− vt
vp

∼ ϖΩ

vp
. (2.102)

Substituting this to equation (2.87) and eliminating Bt, we have

E ∼ γ +
Ω2

ηc2
S
vp

, (2.103)

where S = ϖ2Bp. Differentiating the logarithm of equation (2.103), we have

−dγ
E − γ

=
dS
S
− dvp

vp
. (2.104)

Assuming v ∼ vp ∼ c, we can write the dvp as dvp ∼ cγ−3dγ. Therefore, we have(
1

E − γ
− 1

γ3

)
dγ = −dS

S
. (2.105)

The meaning of this equation can be interpreted in analogy with de Laval nozzle by considering
1/S as an effective cross section (Begelman & Li, 1994). For the wind that satisfies γ > (E − γ)1/3,
γ is increasing with decreasing S. This is similar to the fact that the supersonic flow through de
Laval nozzle accelerates as the nozzle cross section increases. This is explained in the context of
electrodynamics as follows. As can be seen from equation (2.49), the region where S = Bpϖ

2 ∼ Btϖ
decreases is a region where the poloidal current flowing out within the radius ϖ from the polar axis
decreases. This means that the current traverses poloidal field lines, so that it is said that the wind
is accelerating by the j ×B force.

2.3.4 Self-collimation and Wind Acceleration

The condition for accelerating the pulsar wind is that S decreases. This corresponds to a structure
in which the field lines spread faster than a split monopole configuration (i.e. radial configuration).
The model of pulsar wind nebulae requires that a pulsar wind is accelerating to γ ∼ 106 just
before the termination shock (to be described later). Takahashi & Shibata (1998) showed that such
acceleration can be realized if S ∝ ϖ−0.4. However, it is unknown whether a magnetic field that
spreads faster than split monopole will form around the pulsar. For the non-relativistic wind, if
the magnetic field of the central star is the split monopole structure, the field lines are collimated
in the axial direction at the large distance, and so that the efficient acceleration of the wind at the
equatorial plane is realized (Sakurai, 1985). In contrast, for the relativistic case, the mechanism
of the self-collimation is very weak (Bogovalov, 2001). Figure 2.6 shows the resultant magnetic
field structure for each cases. For the relativistic case, since the electrostatic force (is O(v2/c2) so
negligible for the non-relativistic case) can be balanced to the Lorentz force, the wind is not always
accelerated. Some studies argue that acceleration of wind can occur in more general magnetic field
configuration (e.g., Vlahakis, 2004; Okamoto & Sigalo, 2006), and this problem is still an unsolved.
This is the sigma problem (to be described later) seen from the aspect of the model of the pulsar
wind.
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Figure 2.6: The structure of the poloidal field at large distance. The left panel shows for the
non-relativistic case calculated by Sakurai (1985). A unit of the distance is the Alfvén radius. The
right panel shows for the relativistic case calculated by Bogovalov (2001). In the right plot, a unit
of the distance is the light cylinder rather than the Alfvén point. Credit (Left): Sakurai, A&A, 152,
121, 1985, reproduced with permission c⃝ESO. Credit (Right): Bogovalov, A&A, 371, 1155, 2001,
reproduced with permission c⃝ESO.

2.4 Pulsar Wind Nebula

2.4.1 General description

The Pulsar wind that blows into the interstellar space (or surrounding SNR) with super sonic
velocity forms a shock structure with the surrounding medium. The shocked pulsar wind obtains
the entropy and spreads through interstellar space while synchrotron radiation (Rees & Gunn, 1974).
Such a shocked wind spread around the pulsar is called the pulsar wind nebula. The theoretical
model of the pulsar wind nebula will be explained in more detail in Section 3, so we will focus on
a brief overview.

Figure 2.7 is the schematic view of the structure of the pulsar wind nebula. Since a formation
of a pulsar is accompanied by a supernova, the pulsar is surrounded by an SNR (at least in enough
young stage). Thus, the wind interacts with the SNR to form the shock structure, namely the
termination shock, the contact discontinuity and the forward shock. At the termination shock,
particles are isotropized in momentum space, and the bulk flow is decelerated to the sub-sonic
velocity. At this time, it is thought that non-thermal particle distribution is formed by the particle
acceleration process in the termination shock (see Appendix C). The particle energy distribution is
usually expressed by a power-law as high as ∼ 1015 eV. The average energy of the particle ∼ 1011 eV
is a significantly relativistic value so that the relaticistic equation of state p = ϵ/3 holds.

The shocked wind expands while maintaining the pressure equilibrium with the surrounding SNR
in the contact discontinuity. In the contact discontinuity, the Rayleigh-Taylor instability grows due
to the mass density difference between the SNR material and the wind material, and sometimes
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appears as a columnar structure called a filament. If the velocity of the shocked wind is faster than
the speed of matter of the SNR, the forward shock develops.

The emission spectrum of pulsar wind nebulae is well explained by the synchrotron radiation
and inverse Compton scattering from the electron and positron (see Figure 1.6). The spectrum from
radio to X-rays is synchrotron radiation component, and γ-ray is mainly inverse Compton scattering
component (de Jager & Harding, 1992; Atoyan & Aharonian, 1996). Synchrotron radiation is due
to the interaction with the magnetic field associated with the pulsar wind itself. In a steady outflow
the poloidal component of the magnetic field can be neglected at a large distance from the light
cylinder, so that only the toroidal component is considered in many PWN models. This magnetic
field is compressed as the shocked wind decelerates, and is strengthened until equipartition between
the magnetic pressure and the plasma pressure is achieved (Rees & Gunn, 1974). The seed photons
of the inverse Compton scattering are mainly photons from the interstellar dust and CMB, and
synchrotron photons in the nebula itself (Tanaka & Takahara, 2011). The optical photons from star
light is also important, but the inverse Compton scattering with such a photon is suppressed by the
Klein–Nishina effect in many cases. The bremsstrahlung hardly contribute to the spectrum because
the number density of pairs in the nebula is considered to be small (Atoyan & Aharonian, 1996).
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Figure 2.7: Schematic of the pulsar wind nebula. Region I is the pulsar magnetosphere. Region
II is the place where the pulsar wind is blowing at a ultra-relativistic velocity. Region III is the
place where the pulsar wind is isotropized and decelerated through the termination shock. The
part emitting as the pulsar wind nebula is this region III. The pulsar wind reaches the contact
discontinuity, and the outside of this is a material from a supernova explosion. Region IV is a
place where the supernova remnants is compressesed and heated by the pulsar wind. Region V is
a supernova remnant that expands with kinetic energy of supernova explosion. It propagates as a
blast wave towards the external interstellar medium.
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2.4.2 The Sigma Problem

The longstanding problem of pulsar wind nebulae is the σ problem. This was presented in the
model of the Crab nebula by Kennel & Coroniti (1984a). The pulsar wind blows almost at the
speed of light just before the termination shock. On the other hand, the expansion velocity of the
Crab nebula is approximately 2000 kms−1, which is much slower than the light speed. Kennel &
Coroniti (1984a) constructed a 1-D MHD model and investigated conditions for decelerating. In
order to decelerate the flow, σ must be much smaller than 1. They quantitatively discussed this
and obtained the value σ ∼ 0.003, which is also roughly consistent with the magnetic field obtained
from the spectral model fitting (e.g., Tanaka & Takahara, 2010). In addition, Kennel & Coroniti
(1984b) constructed the emission model, and found that γ ∼ 106 just before the termination shock.
These results means that the magnetic energy of the pulsar wind is very efficiently converted into
the wind kinetic energy. However, as mentioned in Section 2.3.4, such an efficient acceleration is
difficult from the model of pulsar wind. This discrepancy is called the σ problem and is not solved
yet.

Porth et al. (2014) showed that there is a solution in which the flow is sufficiently decelerated
even if σ ∼ 1 by 3-D MHD simulation. In their calculations, due to the kink instability, the nebula
is filled with a turbulent magnetic field. As a result, the magnetic pressure is effectively weakened so
that the flow can be decelerated. Recently, Tanaka et al. (2018) constructed a 1D model that takes
into account the conversion from an ordered field to a turbulent field phenomenologically. They
also showed that flow can be sufficiently slowed even if σ is large. However, they did not discuss
the broadband emission model. When the magnetic field is strong, the efficiency of synchrotron
radiation would change significantly. Thus, such a solution to the σ problem needs to consider
simultaneously the emission model, and is still incomplete.



Chapter 3

Revisiting the Kennel & Coroniti
Model

3.1 Introduction

Kennel & Coroniti (1984a,b, hereafter KC84s) constructed a steady-state and 1-D magnetohydro-
dynamic model (KC model) of the Crab Nebula. Their study is motivated that the speed of the
nebula expansion is much slower than the un-shocked wind (v ∼ c). As mentioned in Section 2.4,
this can be explained well if it is σ ≪ 1 upstream of the termination shock. Also, assuming the
particle acceleration at the termination shock, they calculated the evolution of non-thermal pairs

Figure 3.1: The entire spectrum of the Crab nebula and the model curve obtained Atoyan &
Aharonian (1996). The solid line represents the synchrotron emission from non-thermal pairs. The
dashed line represents the inverse Compton scattering. Credit: Atoyan & Aharonian, A&AS, 120,
453, 1996, reproduced with permission c⃝ESO.

33
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Figure 3.2: The radial profile of the X-ray photon index for 3C 58. The black solid line is the
predicted profile based on the KC model. The figure from Slane et al. (2004). c⃝AAS. Reproduced
with permission.

along the flow and the synchrotron emission from advected particles. Adopting the KC model,
Atoyan & Aharonian (1996) succeeded in reproducing the entire photon spectrum including the
inverse Compton component. Figure 3.1 shows their result for the Crab Nebula. Thus, the KC
model has been thought to be the standard model as it explains both the radiation spectrum of the
nebula and the expansion speed well.

X-ray space telescopes including the Chandra X-ray Observatory in the 2000’s, have achieved
abundant observational results on the pulsar wind nebula other than the Crab Nebula. The KC
model was subjected to more stringent verification, and as a result the problem of the model was
found out. Reynolds (2003) suggested that it is unclear whether KC84s can apply to general PWNe
other than the Crab Nebula. Moreover, Slane et al. (2004) showed that the KC84s model disagrees
with the observed radial profile of the X-ray spectral index in 3C 58. They suggested that the radial
profile of the X-ray spectral index in the model should change more rapidly (see Figure 3.2), and
the X-ray nebula size becomes more compact than the observation. Note that the entire photon
spectrum was not taken into account as a model constraint in Slane et al. (2004).

As a emission model of the pulsar wind nebula, calculations to reproduce the broadband spectra
of entire nebulae by 1-zone models have been successful (e.g., Bednarek & Bartosik, 2003; Chevalier,
2005; Tanaka & Takahara, 2010; Bucciantini et al., 2011; Vorster et al., 2013b). However, as shown
in Figure 3.3, the 1-zone models can not describe the spatial distribution of the emission (e.g.,
Amato et al., 2000), thus it is indispensable to invest a model which includes the spatial structure
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Figure 3.3: Comparison with the radio surface brightness of the KC model (solid line) and the 1-
zone model (dotted line), where a sphere with a uniform emissivity is assumed. The radio data points
are obtained by the technique called ”data spherization”, which is averaged radial profile, developed
by Amato et al. (2000). The error bars contains the uncertainties caused by this procedure. Credit:
Amato et al., A&A, 359, 1107, 2000, reproduced with permission c⃝ESO.

of nebulae.

Observed facts showing the deviation from the KC model ignited the revision of KC84s. Tang
& Chevalier (2012) introduced the effect of the spatial diffusion of the particles, and reproduced
the X-ray radial profile. Porth et al. (2016) supported this idea via 3D magnetohydrodynamic and
test-particle simulations. In each of the studies, simultaneous verification of the entire spectrum and
the spatial profile of the emission is not discussed, thus there is no consensus on the spatial structure
in PWN models so far. In order to advance the study, it is essential to clarify controversial points
in the simple steady 1-D model before introducing nontrivial effects such as the particle diffusion.

We choose two objects, 3C 58 and G21.5-0.9, to examine the 1-D steady model. Both of the
PWNe show the feature that the extent of the X-ray emission is the same as the radio one (see Figure
1.5 and 3.4), in contrast to the Crab Nebula, in which the observed size shrinks with increasing
frequency. Moreover, the 1-D steady model has been never applied to those two PWNe. Our
purpose is to make the validity of the 1-D steady model clear for general PWNe, so that those two
PWNe are suitable targets for testing.

In this chapter, we revisit the 1-D steady model and calculate the photon spectrum and its radial
profile numerically. In Section 3.2, we review the 1-D steady model of PWNe based on KC84s. The
parameter dependence of this model is investigated in Section 3.3. The application to the two
observed sources (3C 58 and G21.5-0.9) is presented in Section 3.4. Section 3.5 summarizes our
results and discusses about the 1-D steady modeling.
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Figure 3.4: The image of G21.5-0.9 in 4.75 GHz radio band obtained by Bietenholz & Bartel (2008)
(red) and 0.2-10 keV X-rays obtained by Matheson & Safi-Harb (2010) (blue). The extent in the
X-ray is comparable with the one in the radio band. c⃝AAS. Reproduced with permission.

3.2 Model

3.2.1 Magnetohydrodynamics of PWNe

Here, we assume that the PWN is a steady and spherical system with a radius rN. The relativistic
magnetized wind emitted from the central pulsar forms a strong termination shock at a radius rs.
We also assume that the gas pressure of the pre-shock wind is negligible, so that the wind property is
regulated by three quantities, the comoving number density n, bulk Lorentz factor γ, and magnetic
field in the lab frame B at the shock front. Almost all of the pulsar spin-down luminosity Lsd is
converted to the wind luminosity as

Lsd = 4πr2snuuuγumec
3 (1 + σ) , (3.1)

where u ≡
√

γ2 − 1, the subscript u denotes values at just upstream of the shock, and σ is the ratio
of the magnetic energy flux to the particle energy flux at the upstream of the shock,

σ ≡ B2
u/4π

nuuuγumec2
. (3.2)

Since the scale of the termination shock is much larger than the scale of the light-cylinder, the
magnetic field at the shock is almost purely toroidal field (e.g., Goldreich & Julian, 1969). The
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upstream plasma is highly relativistic (uu/γu ≃ 1), which means the downstream temperature
is relativistic (adiabatic index 4/3). The physical quantities in the downstream is given by the
Rankine-Hugoniot conditions (KC84s, see Appendix A.2 for details) as

nd =
nuuu
ud

, (3.3)

u2d =
8σ2 + 10σ + 1 +

√
64σ2 (σ + 1)2 + 20σ (σ + 1) + 1

16 (σ + 1)
, (3.4)

Pd =
numc2u2u
4γdud

[
1 + σ

(
1− γd

ud

)]
, (3.5)

Bd = Bu
γd
ud

, (3.6)

where the subscript d denotes the values at just downstream of the shock, and P is the gas pressure.

Adopting Equations (3.3)–(3.6) as boundary conditions at the radius r = rs, we can solve the
steady state and spherical symmetric MHD equations. Under the toroidal field approximation and
the adiabatic assumption, the MHD equations are integrable. After some algebra with introducing
δ ≡ ud/(σuu), we obtain (KC84s, see Appendix A.3 for details)

√
1 + u2(r)

(
δ +

(
u2d/σ

)
− 1

2

u2d +
1
4

(
u(r)r2

udr2s

)− 1
3

+
ud
u(r)

)
= γd

(
δ +

(
u2d/σ

)
− 1

2

u2d +
1
4

+ 1

)
, (3.7)

from which we obtain the radial profile of the four velocity u(r). In the case of the strong shock,
ud is a function of only σ as shown in Equation (3.4). If δ ≪ 1 is hold, the parameter of the flow
equation (3.7) becomes only σ and does not depend on nu and uu. We calculate u(r) numerically as
a function of the radius, whereas KC84s neglected δ and adopted γd ≃ 1 in the downstream. Then,
the MHD conservation laws provide the other quantities as follows:

ntot(r) = nd
udr

2
s

u(r)r2
, (3.8)

B(r) = Bd
γ(r)

γd

udrs
u(r)r

, (3.9)

P (r) = Pd

(
udr

2
s

u(r)r2

)4/3

, (3.10)

where ntot(r) is the number density in the wind measured in the co-moving frame.

In Figure 3.5, the radial dependence of u(r) and B(r) in our test calculations are shown for
σ = 10−6, 10−5, 10−4, 10−3 and 10−2. Since δ ≪ 1 for all the cases, the results are similar to
KC84s. For σ ≪ 1, at a small radius, the pressure ratio βpl ≡ B2/8πP (≪ 1 at r = rs) gradually
increases with radius as βpl ∝ r2. In that regime, the flow decelerate as u ∝ r−2 (equivalently
ntot ∝ r0), B ∝ r and P ∝ r0. At the radius

r ≃ req ≡ rs/
√
3σ, (3.11)

βpl becomes O(1), namely the magnetic pressure starts to dominate. Outside req, u(r) is almost
constant, B ∝ r−1 and P ∝ r−8/3. Thus, the magnetic field has a maximum value at r ≃ req as
shown in Figure 3.5.
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Figure 3.5: Test calculations of u (left) and B (right) with uu = 106, Lsd = 1038erg s−1, and
rs = 0.1 pc for various σ. The squares mark values of the four velocity at the edge of the nebula
for rN/rs = 5, 10, 20, 40 and 80.

3.2.2 Broadband emission model of PWNe

The energy spectrum n(E, r) of electron–positron pairs is calculated consistently with the MHD
model,

ntot(r) =

∫
n(E, r)dE. (3.12)

At the termination shock r = rs, n(E, rs) is assumed to have a broken power-law shape at injection
as following:

n(E, rs) =


n0

Eb

(
E

Eb

)−p1

(Emin < E < Eb)

n0

Eb

(
E

Eb

)−p2

(Eb < E < Emax)

, (3.13)

where the parameters are the break energy Eb, minimum energy Emin, maximum energy Emax, and
two power-law indices p1 and p2 for low and high energy parts, respectively. The normalization
constant n0 = C1nd is determined by Equation (3.12) as

C1 ≡

[
1

p1 − 1

{(
Emin

Eb

)1−p1

− 1

}
+

1

p2 − 1

{
1−

(
Emax

Eb

)1−p2
}]−1

. (3.14)

While the origin of the radio spectral component may be different from that for the X-ray and optical
components as discussed in KC84s, in this calculation, we use a broken power-law distribution that
has been adopted by the 1-zone studies (e.g., Tanaka & Takahara, 2010).

The index p1 is almost uniquely given by the observed radio spectral index, which is generally
lower than 2 (e.g., Salter et al., 1989). In this case, the particles with energies ∼ Emin dominate the
particle number. For simplicity, we fix the minimum energy as Emin = 10mec

2 and leave the pair
multiplicity problem (c.f. Tanaka & Takahara, 2013b). The particles above Eb may be produced
via the shock acceleration (Spitkovsky, 2008) (see Appendix C). The maximum energy Emax is
determined by the ”size-limited” method (same as KC84s); the energy at which a gyro radius is
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equal to the termination shock radius provides

Emax = eBurs =

√
e2

c

Lsdσ

1 + σ
. (3.15)

The pressure calculated by integrate n(E, rs),

Pd =
1

3

∫
En(E, rs)dE, (3.16)

should satisfy Equation (3.5). Thus, we get

nd =
3Lsd

16πr2s cudγdEb (1 + σ)

C2

C1

[
1 + σ

(
1− γd

ud

)]
, (3.17)

where

C2 =

[
1

2− p1

{
1−

(
Emin

Eb

)2−p1
}

+
1

p2 − 2

{
1−

(
Emax

Eb

)2−p2
}]−1

. (3.18)

Notify that γd or ud is already given as a function of only σ (see Equation (3.4)), so that the
quantities in the upstream are written with the six parameters Lsd, σ, rs, Eb, p1, and p2 as

γu =
4

3

Eb

mc2
γd

C1

C2

[
1 + σ

(
1− γd

ud

)]−1

, (3.19)

Bu =

[
Lsd

cr2s

σ

1 + σ

]1/2
, (3.20)

and

nu =
9Lsd

64πr2s cγ
2
dmec2 (1 + σ)

(
C2

C1

mec
2

Eb

)2 [
1 + σ

(
1− γd

ud

)]2
. (3.21)

From these relations, the initial spectrum described by equation (3.13) is also written by these six
parameters.

In this 1-D model, there is a unique parameter rs, which is not in the 1-zone models, and rs
significantly affects the results as will be shown in Section 3.3. The advection time is provided by
the solution to the Bernoulli equation (3.7),

tadv =

∫ rN

rs

dr

cu(r)
. (3.22)

In the 1-zone time-dependent models, the age of the PWN is an important parameter (e.g., Tanaka
& Takahara, 2010). As the counterpart of this in our steady model, the parameter rs adjusts the
advection time, which may be close to the age of the PWN.

The radial evolution of n(E, r) and photon emission are calculated with the numerical code used
in Sasaki et al. (2015), which are based on the time-dependent code in Asano & Mészáros (2011) (see
also Asano & Mészáros, 2012). We take into the calculation code account the Klein-Nishina effect
on the inverse Compton (IC) cooling, and follow the temporal evolution of the energy distribution
along the stream. Using the Lagrangian method (transforming the elapsed time into advected
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radius as dr = cu(r)dt), we solve the steady transport equation (e.g. Parker (1965); Ginzburg &
Syrovatskii (1964))

u(r)
∂n(E, r)

∂r
=

∂

∂E

[(
Ėsyn + ĖIC

)
n(E, r)

]
+

∂

∂E

[
cEn(E, r)

3r2
d

dr

(
r2u(r)

)]
− c

r2
n(E, r)

d

dr

(
r2u(r)

)
,

(3.23)
where Ėsyn and ĖIC are the energy loss rates due to synchrotron radiation and IC scattering,
respectively. The three terms of the right hand side of Equation () represent the effects of the
radiative cooling, adiabatic cooling and dilution, respectively.

Here we used the solution of u(r) in adiabatic approximation. In other words, it is assumed
that radiative cooling does not affect flow dynamics. This approximation is valid when the particle
cooling time of E ∼ Eb is longer than the advection time (KC84s). Most of the results shown in
this chapter safely satisfy this condition.

The spectral emissivity per unit volume jν(r) is calculated consistently with pair energy spec-
trum n(E, r), magnetic field distribution B(r), and interstitial radiation field (ISRF) with the Klein–
Nishina effect (see Appendix B). The model of ISRF is taken from GALPROP v54.1 (Vladimirov
et al., 2011, and the references therein), and the result of Porter & Strong (2005) is adopted as shown
in Figure 3.6. We assume that the ISRF is uniform and isotropic in nebula, and ignore synchrotron
self-Compton (SSC). The SSC contributes only in limited case like the Crab Nebula (Torres et al.,
2013; Tanaka & Takahara, 2011). Furthermore, since the density of pairs is sufficiently low, the
contribution of bremsstrahlung is also ignored (Atoyan & Aharonian, 1996).
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Figure 3.6: The spectra of the interstellar radiation field taken from GALPROP v54.1. The black
solid line is one adopted for G21.5-0.9, which is located at R = 4 kpc and z = 0 kpc. The red
dashed line is for 3C 58, which is located at R = 9.4 kpc and z = 0.5 kpc.

Neglecting the emission from the up-stream wind, we obtain the photon spectrum of the entire
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nebula Fν ,

Fν =
1

D2

∫ rN

rs

jν (r) r
2dr, (3.24)

where D is the distance to the PWN from us. The radial profile of the surface brightness Bν is
given by

Bν (s) = 2

∫ rN

max(rs,s)

jν (r) rdr√
r2 − s2

, (3.25)

where s is the distance perpendicular to the line of sight from the central pulsar.

3.3 Parameter Dependence in the model

In this section, we discuss how the entire spectrum Lν ≡ 4πD2Fν and the surface brightness Bν

depend on the parameters in this 1-D steady model. There are some previous studies that discussed
the parameter dependence of the 1-D model. KC84s have already discussed how the parameters
uu and σ change the total synchrotron luminosity

∫
Lνdν (not the spectral distribution). While

Schöck et al. (2010) have studied the X-ray spatial profile for different rs assuming that the flow
velocity decreases as a power-law of r independently of σ, we investigate the parameter dependence
consistently with the MHD flow solution. We focus on the dependence on the parameters rs and σ,
which largely affect the spatial structure of the emission. In this section, the nebula size rN = 2.0 pc
is fixed. The external photon field is taken from the model for G21.5-0.9 in Figure 3.6. For four
parameters out of the six parameters in our model, we adopt a parameter set as Lsd = 1038 erg s−1,
Eb = 105mec

2, p1 = 1.1, and p2 = 2.5, and change rs or σ below.

3.3.1 Characteristic frequencies and energies

First, we introduce some typical particle energies and their corresponding photon frequencies, and
discuss their dependence on model parameters. In this subsection, discussions are limited to the
”imcompressive” cases, namely rN < req (i.e., rN/rs < (3σ)−1/2). In this case, the magnetic field
has a maximum value 3BurN/rs at the edge of the nebula. The cooling effect for pairs with energies
E = Eb is also found to be negligible. We find the first typical frequency, which corresponds to the
intrinsic break frequency,

νb =
3eB(rN)

4πmec

(
Eb

mec2

)2

≃ 4.7× 1012 Hz

(
Lsd

1038erg s−1

) 1
2 ( σ

10−4

) 1
2

(
Eb

105mec2

)2( rs
0.1 pc

)−2( rN
2 pc

)
. (3.26)

In the case of B ∝ r or equivalently u ∝ r−2, the energy of pairs injected with E = Emax

decreases with r via the synchrotron cooling as

Ecut(r) =
Emax

1 + 1
5
Emax
Ebof

(
( r
rs
)5 − 1

) , (3.27)

where the burn-off energy

Ebof ≡
9m4

ec
8ud

4e4B2
drs
≃ m4

ec
9rs

8
√
2e4Lsdσ

≃ 4.3× 1017eV

(
Lsd

1038erg s−1

)−1 ( σ

10−4

)−1
(

rs
0.1 pc

)
, (3.28)
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(KC84s). At r = rN, the maximum energy is given by Ecut(rN) ≃ 5Ebof(rs/rN)
5. Then, the cooling

frequency at the outer boundary is given by

νc =
3eB(rN)

4πmec

(
Ecut(rN)

mec2

)2

≃ 8.2× 1014 Hz

(
Lsd

1038erg s−1

)− 3
2 ( σ

10−4

)− 3
2

(
rs

0.1 pc

)10( rN
2 pc

)−9

. (3.29)

Above νc, the entire spectrum should show the softening behavior.
The maximum particle energy decreases following Equation (3.27), while the magnetic field

increases as B(r) = 3Bu(r/rs). The typical synchrotron frequency ∝ B(r)Ecut(r)
2 peaks at

r ≃ rpk ≡
(

5Ebof

9Emax

)1/5

rs

≃ 0.14pc

(
Lsd

1038erg s−1

)−3/10 ( σ

10−4

)−3/10
(

rs
0.1 pc

)6/5

, (3.30)

where we have assumed Emax ≪ 5Ebof . With rpk, the cut-off frequency in the synchrotron spectrum
is calculated as

νcut =
3eB(rpk)

4πmec

(
Ecut(rpk)

mec2

)2

≃ 729e

400πmec

√
Lsdσ

cr2s

(
5Ebof

9Emax

)1/5(Emax

mec2

)2

≃ 9.3× 1018 Hz

(
Lsd

1038erg s−1

)11/10 ( σ

10−4

)11/10( rs
0.1 pc

)−4/5

, (3.31)

above which the flux decreases exponentially.

3.3.2 Parameter Dependence: termination shock radius

The termination shock radius is not included as a parameter of the one-zone model. In the 1-D
model, the value rs is a characteristic parameter. In most of PWNe, the termination shock radii
are not observationally measured well. As an example of the limited PWNe in which this has been
constrained, for the Crab Nebula (Schweizer et al., 2013), Vela (Helfand et al., 2001), and MSH 15-52
(Yatsu et al., 2009), a possible shock structure (inner ring) is detected with X-ray observations. In
Figure 3.7, we show the rs-dependences of the entire spectrum Lν and the X-ray surface brightness
with σ = 10−4. Emission below 1020 Hz (∼ 400 keV) is synchrotron radiation, and γ-ray is IC
component. Note that in the case for rs = 0.05 pc, Ecut(r) < Eb beyond r ≳ 1.5 pc , i.e., the
adiabatic approximation is invalid. In Table 3.1, for various rs, we summarize the advection time,
the volume-averaged magnetic field Bav as,

B2
av

8π
=

∫ rN

rs

B(r)2

8π
4πr2dr

/∫ rN

rs

4πr2dr, (3.32)

and the maximum magnetic field Bmax = B(rN) because we have req > rN from Equation (3.11)
with σ = 10−4.

First, let us explain the case of rs = 0.1 pc (red solid line in Figure 3.7) as a benchmark case.
In this case, req = 5.7 pc. There are two breaks in the synchrotron spectrum: the intrinsic break
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Radius of termination shock (pc) 0.05 0.1 0.2 0.4

Total number of pairs (1050) 9.5 3.4 0.97 0.25
Advection time (yr) 6800 2400 690 180
Total pressure at r = rN (10−10dyn cm−2) 36 16 5.4 1.5
Maximum magnetic field (µG) 250 100 32 8.7
Averaged magnetic field (µG) 240 88 26 6.8
req/rN 1.4 2.9 5.8 12

Table 3.1: Obtained parameters for the test calculation with σ = 10−4 shown in Fig. 3.7. See
Fig. 3.7 for the other parameters. In these parameter sets, the magnetic field always reaches its
maximum at r = rN

at νb ∼ 2.2× 1012 Hz corresponding to Eb and the cooling break at νc ∼ 3.6× 1014 Hz. Estimating
with the advection time and the average magnetic field, the cooling break energy of pairs is

E(av)
c ≃ 6πm2

ec
3

σTB2
avtadv

≃ 670 GeV

(
Bav

88µG

)−2( tadv
2400yr

)−1

. (3.33)

The corresponding cooling break frequency is

ν(av)c =
3eBav

4πmec

(
E

(av)
c

mec2

)2

≃ 6.4× 1014 Hz

(
Bav

88µG

)−3( tadv
2400yr

)−2

. (3.34)

The above values obtained in the one-zone model like treatment are roughly in agreement with our
results.
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Figure 3.7: Test calculations to see the shock radius dependence. The parameters are Lsd =
1038 erg s−1, Eb = 105mec

2, σ = 10−4, p1 = 1.1, and p2 = 2.5. (Left) The entire spectrum
calculated for various values of rs (see Table 3.1). (Right) The radial profile of the X-ray surface
brightness for 0.5-10 keV range. The nebula radius rN is 2 pc.
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The analytical expressions of the spectral indices α (Fν ∝ ν−α) are (p1 − 1)/2 below νb, and
(p2 − 1)/2 for νb < ν < νc. The calculated spectrum agrees with those values. In 1-zone models,
the index above νc steepened by 1/2, which is well known as the ”cooling break”. However, in the
1-D models following B ∝ r and u ∝ r−2, the spectral change ∆ = (p + 7)/18 is slightly different
from 1/2 (Kennel & Coroniti, 1984b; Reynolds, 2009), which also agrees with our result.

Let us focus the flux of entire spectrum at ν = νcut. When the synchrotron cooling is efficient
for particles of E = Emax, almost all of those energies are released by photon emission until r = rpk.
Since the energy density of non-thermal electrons and positrons, which have an energy E = Emax

at r = rs, is estimated as Lsd(Emax/Eb)
2−p2 , the synchrotron luminosity at ν ∼ νcut is calculated

as νcutLνcut ∼ 1.7× 10−2Lsd for σ = 10−4 and p2 = 2.5, which seems to roughly agree with the flux
in Figure 3.7. The above estimate does not depend on rs, which agrees with the results for rs ≤ 0.2
pc, where νc < νcut.

A particle of energy E emits synchrotron photons of frequency ν ∝ E2B, and power psyn ∝
E2B2, then the spectral emissivity jν is proportional to n(E)E2B2(dE/ν). When we can assume
σ ≪ 1 and ntot ∝ r0, jν ∝ n0E

p−1
b ν−(p−1)/2B(r)(p+1)/2 (p is index of the pair energy spectrum) at

the energy range where the cooling effect is not significant. The ”imcompressive” regime implies

that the magnetic field behaves as B ∼ Bdr/rs ∝ L
1/2
sd r−2

s σ1/2r. Since C2 can be regarded as a
constant for p1 < 2 < p2 and Emin ≪ Eb ≪ Emax, we obtain n0 ∝ Lsdr

−2
s E−1

b . Finally, we obtain
the entire specific luminosity (Lν ∼ 4π

∫ rN
rs

drr2jν) as

νLν ∝ L
(p+5)/4
sd Ep−2

b σ(p+1)/4r−(p+3)
s r

(p+7)/2
N ν−(p−3)/2, (3.35)

where p is p1 for ν < νb, and p2 for νb < ν < νc. At ν = νb ∝ L
1/2
sd σ1/2E2

br
−2
s rN (Equation (3.26)),

νbLνb

Lsd
≃ 7× 10−3

(
Lsd

1038erg s−1

)( σ

10−4

)( Eb

105mec2

)(
rs

0.1 pc

)−6( rN
2 pc

)5

. (3.36)

where the absolute value, which is difficult to evaluate analytically, is adopted from our numerical

results. Above ν = νc ∝ L
−3/2
sd σ−3/2r10s r−9

N (Equation (3.29)), using the above formula, the spectrum
behaves as νLν ∼ νcLνc(ν/νc)

−5(p2−2)/9 so that

νLν ∝ L
(p2+4)/6
sd Ep2−2

b σ(p2−2)/6r−4(p2−2)/9
s ν−5(p2−2)/9, (3.37)

for νc < ν < νcut. These expressions are in good agreement with our numerical results.

The cooling frequency depends very strongly on rs. The frequencies νb and νc have similar
values for rs = 0.05 pc, while νc and νcut merge for rs = 0.2 pc. For rs = 0.4 pc, νc becomes higher
than νcut. That is, in this case both the radiative cooling effect and the adiabatic cooling effect are
negligible. This results the flux at ν = νcut for rs = 0.4 pc is lower than the fluxes for smaller rs.

The value of Ecut(rN) increases with rs, because the synchrotron cooling becomes less effective.
Reflecting this, the IC spectra show a soft-to-hard evolution with rs. The high-energy cut-off of the
IC component is determined by the maximum energy of pairs. Electron-positron pairs spend only
a fraction of their energy on the emission of the IC. In the example of Figure 3.7, since Lsd and Eb

are the same value, the IC flux at low energy range (1020 − 1022Hz) is essentially proportional to
the total number of corresponding low energy particles in the nebula. As shown in the left panel
in Figure 3.5, a flow with a small ratio of rN/rs reaches the edge of the nebula before significant
deceleration. Consequently, the advection time becomes shorter for a smaller rN/rs as shown in
Table 3.1. If we can neglect the cooling effect, the total particle number ∝ tadvLsdE

p1−2
b decreases

with rs. This effect is seen as the flux growth with increasing tadv below ∼ 1022 Hz. For rs = 0.05
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Figure 3.8: Test calculations to see σ dependence. The parameters are the same as those in Fig.
3.7 except for σ and rs = 0.1 pc. (Left) The entire spectrum calculated for various values of σ (see
Table 3.2). (Right) The radial profile of the X-ray surface brightness for 0.5-10 keV range.

pc, the synchrotron cooling is significant (Ecut(0.7rN) ≲ Eb), which practically reduces the particle
number above Eb in the nebula. Therefore, the IC flux in this case does not follow the above trend.

The X-ray surface brightness (see the right panel of Figure 3.7) is regulated by the synchrotron
cooling. In the smaller rs, the stronger magnetic field leads to a compact X-ray profile. The

rs-dependence of the X-ray extent is r
10/9
s for rs ≤ 0.2 pc as explained as follows. When the

cooling effect is significant, Ecut ∝ Ebof(rs/r)
5 ∝ σ−1r6s r

−5, while the magnetic field behaves as
B ∝ σ1/2r−2

s r. For a given frequency ν ∝ BE2, the maximum radius to emit photons with frequency

ν is proportional to σ−1/6r
10/9
s . This is consistent with the rs-dependence of the X-ray extent r

10/9
s

for the case that the cooling effect is significant. For rs = 0.4 pc, the synchrotron cooling hardly
affects the X-ray profile. In order to reconcile the fact that the X-ray extent is comparable to the
radio nebula, a large rs is preferable, though the synchrotron component becomes very hard and
dim in this case.

As shown in Table 3.1, the total pressure Ptot ≡ 4Pu2 + P + B2/8π at the outer boundary,
which may balance with the pressure outside the nebula, decreases with rs by roughly an order of
magnitude. Since the uncertainty of the current observation of the outside pressure is larger than
this variance, it may be difficult to constrain the value of rs directly.

3.3.3 Parameter Dependence: magnetization

Figure 3.8 shows the σ dependences of the entire spectrum and the X-ray surface brightness. The
radius of the termination shock is fixed at rs = 0.1 pc and the other parameters are the same as in
the previous subsection, but the value of σ changes from 10−6 to 10−2. As is shown in the figure,
a complicated behavior appears in the spectral shape as σ increasing. The change of σ modifies
the profiles of the emission through two processes: the strength of magnetic field (see Equation
(3.20)) and the deceleration profile as shown in Fig. 3.5. The magnetic field strength affects the
typical synchrotron frequency and the cooling efficiency. The flow velocity profile adjusts the radius
req, where the magnetic field becomes maximum, and the advection time, which controls the total
energy in the nebula and the cooling efficiency (the ratio of the cooling time to the advection time).

For σ ≤ 10−4, the radius req is outside rN (see Table 3.2, note that rN/rs corresponds to 20 in



46 CHAPTER 3. REVISITING THE KENNEL & CORONITI MODEL

Magnetization Parameter 10−2 10−3 10−4 10−5 10−6

Total number of pairs (1050) 0.37 1.6 3.4 4.0 4.2
Advection time (yr) 280 1200 2400 2900 2900
Total pressure at r = rN (10−10erg cm−3) 2.3 8.9 16 21 23
Maximum magnetic field (µG) 130 130 100 43 14
Magnetic field at r = rN (µG) 69 120 100 43 14
Averaged magnetic field (µG) 86 120 87 34 11
req/rN 0.29 0.91 2.89 9.13 28.9

Table 3.2: Obtained parameters for the test calculation with rs = 0.1 pc shown in Fig. 3.8. See
Fig. 3.7 for the other parameters.

Figure 3.5), so that the behaviors of the characteristic frequencies are well explained by Equations
(3.26), (3.29), and (3.31) as νb ∝ σ1/2, νc ∝ σ−3/2, and νcut ∝ σ11/10. In the case of σ = 10−6,
since the average magnetic field in the nebula is weak, the frequency νc is much higher than νcut,
so that the power-law portion for νc < ν < νcut is absent. Below νcut, the spectral behavior for
σ ≤ 10−4 is well represented by the formulae of Equations (3.35) and (3.36) In the frequency range
of νc < ν < νcut, the spectrum practically follows Equation (3.37) for the cases of σ = 10−5 and
10−4. As σ increases, the stronger magnetic field results in greater efficiency of emission during
advection time. The peak of the synchrotron flux at ν = νc grows with σp2−2 (see Equations (3.29)
and (3.35)) for σ ≤ 10−4, accompanying the shift of νc to a lower frequency.

For σ ≥ 10−3, the behavior of the entire spectrum is different from the above trend . This is
because the radial evolution of the magnetic field can be no longer approximated by B ∝ r. As
shown in Table 3.2, the radius req is inside the nebula radius rN in this parameter region unlike the
discussion in Section 3.3.1. In this case, the magnetic field prevents the flow deceleration at r > req,
and the adiabatic cooling become efficient. Furthermore, the decline of the advection time (see
Table 3.2) leads to the reduction of the total energy in the nebula. As a result, above σ = 10−4,
the synchrotron peak flux turns into decreasing and the cooling frequency turns into increasing.
Therefore, unlike the 1-zone model, we can not make νc extremely low in the 1-D steady model.

In the case of req < rN, the entire spectrum is mainly contributed by radiation from non-
thermal pairs at r < req. At r > req, electrons/positrons lose their energies via adiabatic cooling
as E ∝ (r/req)

−2/3 and the magnetic field decays as ∝ r−1. Thus, the energy loss rate rapidly
decreases as r−10/3. Since this is a more rapid decrease than the increase in volume r2, the emission
beyond r = req is almost negligible. From Equation (3.27), assuming Emax ≫ Ebof , we obtain
Ecut(req) ≃ 5Ebof(rs/req)

5 ≃ 5Ebof(3σ)
5/2. In this case, the cooling frequency for enough large σ

that req is smaller than rN may be estimated with Ecut at r = req as

ν(eq)c =
3eB(req)

4πmec

(
Ecut(req)

mec2

)2

≃ 5.9× 1016 Hz

(
Lsd

1038erg s−1

)− 3
2 ( σ

10−2

)3( rs
0.1 pc

)
. (3.38)

Since the case for σ = 10−2, 10−3 are in a marginal situation (req ∼ rN), the estimated dependence
on σ (equation (3.38)) is a little bit strong. However, at least, it is certain that the cooling frequency
for σ > 10−4 (req < rN) becomes large with increasing σ.

The intrinsic break frequency for the case of req < rN is estimated as the typical synchrotron
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frequency of the pairs with energy Eb at the radius r = req. We obtain,

ν
(eq)
b =

3

4π

eB (req)

mc

(
Eb

mc2

)2

≃ 1.4× 1013 Hz

(
Lsd

1038erg s−1

) 1
2
(

Eb

105mec2

)2( rs
0.1 pc

)−1

. (3.39)

Note that the intrinsic break hardly depends on σ in the case of req < rN. This is because the

radiation near the frequency ν
(eq)
b is due to the radiation from the pairs at the radius where the

equipartition of the magnetic pressure and the gas pressure is held.

In the frequency range of ν
(eq)
c < ν < νcut for a larger σ, the spectrum is harder than the

analytical estimate α = (5p2 − 1)/9 for req < rN. On the other hand, since rpk ∼ rs, the frequency
νcut well agrees with the analytical estimate of Equation (3.31) even for a larger σ. For σ ≥ 10−4,
as we have mentioned in the previous subsection, the luminosity around νcut is almost independent
of σ, while the peak luminosity at ν = νc decreases with increasing σ following the reduction of the
total energy in the nebula. Those complicated effects lead to the spectral hardening between νc and
νcut.

With increasing σ, the peak flux of the IC component declines monotonically. Below the spec-
tral break frequency 1023 Hz, which corresponds to the photon energy emitted by particles of Eb

interacting with dust photons, all the model curves for σ ≤ 10−4 almost overlap each other. In this
range of σ, the flow profiles are almost the same, so that the IC emission, which does not directly
depend on the strength of the magnetic field, is almost the same value for each result with σ. On
the other hand, above 1023 Hz, the softening of the photon spectrum with increasing σ is seen.
Although Emax is higher for a larger σ, the cut-off energy Ecut(rN) at the edge of the nebula is
reduced by the severe synchrotron cooling. Above σ = 10−4, the short advection time leads to the
reduction of the IC flux. The spectral hardening of the IC component is caused by the drop of
the cooling efficiency due to the short advection time. While the flux decrease of the synchrotron
component due to the reduction of the advection time is mitigated by the magnetic field growth,
the IC component more rapidly falls with σ than the synchrotron one.

In the right panel of Figure 3.8 represents the surface brightness profile in X-rays. With increas-
ing σ, the extent of the X-ray nebula becomes small. The analytical expression of the dependence
σ−1/6 obtained in the previous subsection is consistent with this results.

3.4 Application to the Observed Source

3.4.1 The Crab Nebula

In order to check our model, we calculate the entire spectrum and the X-ray profile of the Crab
Nebula and compare the result with Atoyan & Aharonian (1996) (hereafter AA96). Assuming
that synchrotron photons exist homogeneously in the nebula, we calculate the SSC approximately.
In other words, the soft photons used to calculate the IC are CMB photons and SSC photons as
described above. Other differences in our model from AA96 are as follows. In our model, low
energy particles that corresponds to the radio emission are supplied from the pulsar wind, while
AA96 considered them as another components. In AA96, the maximum energy of the pair Emax was
treated as a parameter of the model (for our model, see the Equation (3.15)). Finally, in AA96, the
correction factor κ was introduced. This is a parameter for adjusting the ratio of synchrotron flux
to SSC flux. The parameter κ (cf. AA96 adopted κ ∼ 0.5) may represent the effects of deviation
from the spherical symmetry or inhomogeneity inside the PWN.
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Figure 3.9: An entire photon spectrum (left panel) and a radial profile of surface brightness in
3.0-5.0 keV range (right panel) for the Crab Nebula. The data points of the spectral energy density
are taken from Baars et al. (1977) (radio), Maćıas-Pérez et al. (2010) (radio, optical), Grasdalen
(1979); Temim et al. (2006); Ney & Stein (1968) (IR), Kuiper et al. (2001) (X-ray, γ-ray), and
Aharonian et al. (2004, 2006); Abdo et al. (2010a) (very high energy γ-ray). The data points of the
X-ray surface brightness are taken from Madsen et al. (2015).

In Figure 3.9, the entire photon spectrum and the X-ray radial profile for the Crab Nebula
are shown. All the parameters to calculate the spectrum for the Crab Nebula are same as AA96
without “Obtained parameter”, and are summarized in Table 3.3. The flux of the inverse Compton
is slightly smaller than the value observed and calculated with AA96. The difference in the SSC
flux is due to the additional parameters κ and Emax in AA96. Even if we take smaller σ to increase
the SSC flux, the maximum energy of synchrotron emission becomes much lower than the cut-off
energy of observed spectrum (see Equation (3.31)). Within our conservative model assumption for
the maximum energy of the particle, it is not possible to fit the spectrum near the cutoff of the
spectrum.

The right panel of Figure 3.9 shows the radial profile of surface brightness in 3.0-5.0 keV range.
The extent of X-ray nebulae calculated by our model roughly agree with observation. As we will see
later, comparing with the cases of 3C 58 and G21.5-0.9, there is not much motivation to improve
the 1-D steady model in the case of the Crab nebula.

3.4.2 3C 58 and G21.5-0.9

Here we apply our model to observed sources 3C 58 and G21.5-0.9, where enough data sets are
available to constrain the model parameters. Furthermore, in both of the two PWNe, the X-ray
nebula size is comparable to the radio band. We discuss both the entire spectrum and the spatial
profile of those objects.

3C 58 is a object located D = 2kpc away (Kothes, 2013). The images of 3C 58 were obtained
in the radio wavelengths (e.g., Reynolds & Aller, 1988) and X-ray band (e.g Slane et al., 2004).
The radial profile of photon index in the X-ray band was also obtained. Since the extent of radio
and X-rays emission is ∼ 5′ × 9′, rN is set to 2pc. The spin period and its time derivative for the
central pulsar of 3C 58 (PSR J0205+6449) are 65.7 ms (Murray et al., 2002; Camilo et al., 2002) and
1.94 × 10−13 s s−1 (Livingstone et al., 2009), respectively. The spin-down luminosity is estimated
as 2.7× 1037 erg s−1, assuming 1045 g cm2 for the moment inertia of the pulsar.
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Given parameters a Symbol Crab

Spin-down luminosity (erg s−1) Lsd 5× 1038

Distance (kpc) D 2.0
Radius of the nebula (pc) rN 1.8

Fitting parameters a

Break energy (eV) Eb 2.5× 1011

Low energy power-law index p1 1.6
High energy power-law index p2 2.4
Radius of the termination shock (pc) rs 0.1
Magnetization parameter σ 5.0× 10−3

Obtained parameters

Initial bulk Lorentz factor γu 3.2× 103

Pre-shock density (cm−3) nu 1.7× 10−9

Pre-shock magnetic field (µG) Bu 30
Maximum Energy (eV) Emax 2.7× 1015

Advection time (yr) tadv 380
Averaged magnetic field (µG) Bav 234
Total pressure at r = rN (erg cm−3) Ptot 2.0× 10−9

req/rN 0.45
a The parameters denoted with “Given parameter” and “Fitting parameter” are adopted the same value as AA96.

Table 3.3: Parameters in the calculations for the Crab Nebula.

G21.5-0.9 is a PWN that locates 4.8kpc away (Tian & Leahy, 2008). G21.5-0.9 shows spherical
structures in the radio (Bietenholz & Bartel, 2008) and X-ray (Matheson & Safi-Harb, 2005, 2010;
Camilo et al., 2006) images. The radio and X-ray sizes of the PWN (∼ 40′′ in radius) are almost the
same again. Since its angular diameter is approximately 40′′, rN is set to 0.9pc. PSR J1833-1034,
the central object of G21.5-0.9, has a spin period 61.9 ms (Gupta et al., 2005) and its derivative
2.02 × 10−13 s s−1 (Roy et al., 2012b), from which we obtain the spin-down luminosity Lsd =
3.5× 1037 erg s−1.

The parameters for fitting the spectra of the two PWNe are summarized in Table 5.1. See Figure
3.6 for the ISRFs taken from GALPROP v54.1 for the two cases. First, we discuss the parameter
sets denoted with “broadband” in the Table 5.1 (hereafter we call them broadband model). Figure
3.10 shows the resultant radial profiles of u(r) and B(r). In both the two PWNe, req is outside the
nebula radius rN in our parameter sets. The particle spectra in Figure 3.11 show the evolution of
Ecut as discussed in Section 3.3.1.

The volume-integrated photon spectra for the two PWNe are shown in Figure 3.12. Our models
roughly reproduce the entire structures of the spectra. In 3C 58, the data points obtained with
Fermi (Abdo et al., 2013) may contain large systematic errors due to the emission from the central
pulsar so that we treat those data as upper limits. The model spectrum of the X-ray band is clearly
softer than the observed X-ray data in 3C 58 due to the cooling effect. As discussed in Section 3.3.3,
νc can be higher than the X-ray energy range by adopting a larger σ or conversely lower σ. In such
cases, the model spectrum of the X-ray may be as hard as observed. However, when we adopt a
lower σ to make νc above the X-ray frequency, the synchrotron component does not extend to the
X-ray energy as Equation (3.31) indicates. We also do not find a consistent high-νc model with a
very large σ or a slightly large rs, for which the radio and X-ray fluxes are hard to be reproduced
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3C 58 G21.5-0.9
Given parameters Symbol broadband alternative broadband alternative

Spin-down luminosity (erg s−1) Lsd 3.0× 1037 3.5× 1037

Distance (kpc) D 2.0a 4.8b

Radius of the nebula (pc) rN 2.0 0.9

Fitting parameters

Break energy (eV) Eb 4.1× 1010 1.1× 1011 2.6× 1010 3.1× 1012

Low energy power-law index p1 1.26 1.1
High energy power-law index p2 3.0 3.2 2.3 3.0
Radius of the termination shock (pc) rs 0.13 0.26 0.05 0.1
Magnetization parameter σ 1.0× 10−4 1.0× 10−3 2.0× 10−4 3.0× 10−2

Obtained parameters

Initial bulk Lorentz factor γu 7.3× 103 5.5× 105 2.1× 104 1.8× 107

Pre-shock density (cm−3) nu 1.1× 10−11 5.1× 10−16 1.1× 10−11 3.5× 10−18

Pre-shock magnetic field (µG) Bu 0.79 1.2 3.1 19
Maximum Energy (eV) Emax 9.5× 1013 3.0× 1014 1.4× 1014 1.7× 1015

Advection time (yr) tadv 1500 330 800 38
Averaged magnetic field (µG) Bav 31 21 120 61
Total pressure at r = rN (erg cm−3) Ptot 3.7× 10−10 8.3× 10−11 2.1× 10−9 1.2× 10−10

req/rN 3.8 2.4 2.3 0.37

a Kothes (2013); b Tian & Leahy (2008).

Table 3.4: Parameters in our calculations.
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Figure 3.10: Radial profiles of the four-speed u(r) (left axis) and the magnetic field B(r) (right
axis) in the broadband model (see Table 3.4) for 3C 58 (left panel) and G21.5-0.9 (right panel).

simultaneously. One may suppose that a smaller p2 can agree with the observed X-ray spectral
index, even if νc is below the X-ray frequency. The extrapolation from the X-ray data requires
νc < 1014 Hz to make νb above the radio data points. As shown in 3.3.3 and Figure 3.8, due to the
νc-turnover, such a low νc is hard to be realized in our model. Therefore, our model spectra cannot
be reconciled with the X-ray spectral index.

A similar problem as in 3C 58 also occurs in the X-ray spectrum of G21.5-0.9. When we adopt
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Figure 3.11: Evolutions of the particle spectra for 3C 58 (left panel) and G21.5-0.9 (right panel) in
the broadband (red solid) and alternative (blue dashed) models. The different lines correspond to
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Figure 3.12: Entire photon spectra for 3C 58 (left panel) and G21.5-0.9 (right panel). The data
points are taken from Weiland et al. (2011) (radio), Green (1994), Slane et al. (2008) (IR), Torii
et al. (2000) (X), Abdo et al. (2013) (GeV), and Aleksić et al. (2014) (TeV) for 3C 58, and Salter
et al. (1989) (Radio), Gallant & Tuffs (1998) (IR), Tsujimoto et al. (2011), Nynka et al. (2014), de
Rosa et al. (2009) (X), Ackermann et al. (2011) (GeV), and Djannati-Atäı et al. (2008) (TeV) for
G21.5-0.9. While the red solid lines represent the broadband models, the blue dashed lines represent
the alternative models (see text), in which the radio/IR data are disregarded.

the model with p2 = 2 to reproduce a flat spectrum (νLν ∝ ν0) above νc, a much lower σ is required
to adjust the X-ray flux. For such a low σ, νcut becomes lower than the X-ray band.

For these two objects, νc is forced under the X-ray band. As a result, the X-ray spectra show
softer shapes than the observed ones. The X-ray extents are more compact than the radio images
(Figure 3.13). The radial profiles of photon indices in 0.5-10.0 keV range (Figure 3.14) is also
different from the observation data. However, the contradiction of 3C 58 is less noticeable than
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and G21.5-0.9 (right panel). The X-ray data points are taken from Slane et al. (2004) and Matheson
& Safi-Harb (2005) for 3C 58 and G21.5-0.9, respectively. The thick lines are the X-ray surface
brightnesses for the broadband (red solid) and alternative (blue dashed) models.

 1.5

 2

 2.5

 3

 3.5

 4

 0  50  100  150  200

P
h

o
to

n
 i
n

d
e

x

Radius[arcsec]

3C 58

Broadband 
Alternative 

Slane et al.(2004) 
Slane(model) 

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0  5  10  15  20  25  30  35  40

P
h

o
to

n
 i
n

d
e

x

Radius[arcsec]

G21.5-0.9

Broadband  
Alternative  

Matheson and Safi-Harb(2004)  

Figure 3.14: Radial profiles of photon indices in 0.5-10.0 keV range for 3C 58 (left panel) and G21.5-
0.9 (right panel) in the broadband (red solid) and alternative (blue dashed) models. The model
and data points in Slane et al. (2004) are also plotted for 3C 58. The data points for G21.5-0.9 are
taken from Matheson & Safi-Harb (2005).

the model curve by Slane et al. (2004) based on Reynolds (2003). Note that the radial profiles of
photon indices in optical (3944-4952Å) and radio (4.75 GHz) band for two objects do not depend
on angular distance from the pulsar. Since νc is higher than the frequencies of these bands in the
parameters of the broadband model, the pairs can emit radio and optical photons anywhere in the
nebula without radiative cooling effect. Thus the spectral indices at such bands are hardly depends
on the radius.

The advection time of G21.5-0.9 well agrees with the age 870 yr (Bietenholz & Bartel, 2008).
However, Wang et al. (2006) argued that this object associates with BC48 guest star and its age is
thus about 2000 yr. In this case, tadv in the broadband model becomes less than half of the age.
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In 3C 58, if this object associates with SN 1181 (Stephenson, 1971), tadv is about 2 times larger
than the age. The characteristic ages of these objects are 5370 yr for 3C 58 and 4850 yr for G21.5-
0.9, respectively. Notify that the characteristic age tends to be longer than the actual pulsar age,
especially for young pulsars. Meanwhile, the previous 1-zone time dependent models have obtained
the ages. For G21.5-0.9, tage was estimated to be 1000yr (Tanaka & Takahara, 2011) or 870 yr
(Vorster et al., 2013b; Torres et al., 2014) in 1-zone models. Those are close to our calculated tadv.
This results encourages our 1-D model. On the other hand, for 3C 58, Bucciantini et al. (2011),
Torres et al. (2013) and Tanaka & Takahara (2013a) obtained tage ∼ 2000 yr, which is comparable
with tadv in our broadband model. However, Bucciantini et al. (2011) and Torres et al. (2014)
adopted the different value of the distance to the object, and these three studies did not include the
data of Aleksić et al. (2014). In this case, a direct comparison of the age with our advection times
does not seem meaningful so much.

3.4.3 Alternative Model

Next, we explain the case where the radio/IR/optical emission can be considered as an additional
component. In the broken power-law spectrum for the pair injection, the low-energy portion dom-
inates the number. In the case of the Crab Nebula, the required particle number to reconcile the
radio flux is much larger than the theoretically expected value (See Section 2.2.5, Tanaka & Taka-
hara, 2010, 2011). is much larger than the theoretically expected value (Tanaka & Takahara, 2010,
2011). Atoyan & Aharonian (1996) and Olmi et al. (2015) treated the low-energy component as
a different component from the wind particles in their calculations. Therefore, as an alternative
model, we assume that the low energy particle component responsible for radio/IR radiation has a
different origin than the high energy component. The alternative model ignores such a low-energy
pairs and incorporates only high energy particles above Eb.

Blue dashed lines in Figure 3.12-3.14 are for the alternative models, whose model parameters
are summarized in Table 3.4. We adopt a slightly large rs and large σ, which lead to X-ray extents
consistent with observation as shown in Figure 3.13. The difference of the X-ray profiles in the
two PWNe is attributed to the effect of the adiabatic cooling in G21.5-0.9 as shown in Figure 3.11.
A signature of adiabatic cooling appears, because we have adopted a larger σ enough to establish
req < rN for G21.5-0.9. These models seem to reproduce the observed X-ray surface brightness and
X-γ flux, however the obtained advection time is extremely short (see Table 3.4).

3.5 Discussion

As shown in Section 3.4, we have fitted the entire spectra of 3C 58 and G21.5-0.9. The resultant
rs by fitting the entire spectrum of nebula in the broadband models is similar to the value of the
Crab Nebula, but the resultant σ about 10 times smaller than the conceivable value in the Crab
Nebula. Our 1-D model has difficulty to reproduce both of the hard spectra and the extent of
X-ray nebula. As discussed in Section 3.4, to avoid the spectral softening due to the cooling effect
in X-ray range is hard to be avoid. As a result, the X-ray nebula size becomes more compact
than the observed extents. The 1-D model should be improved by introduction of possible physical
processes, such as the spatial diffusion of high energy particles, re-acceleration by turbulences, and
amplification/dissipation of the magnetic field.

The 1-D model tends to lead a lower σ than the values derived from 1-zone models. Time-
dependent one-zone models resulted in σ ∼ 0.03–0.5 (Bucciantini et al., 2011; Torres et al., 2013;
Tanaka & Takahara, 2013a) and 0.01–0.2 (Tanaka & Takahara, 2011; Vorster et al., 2013b; Torres
et al., 2014) for 3C 58 and G21.5-0.9, respectively, while the value in our calculation is σ ∼ 10−4.
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On the other hand, since the magnetic field increases with radius in the 1-D model, the resultant
average magnetic field Bav is consistent with the previous 1-zone models (see also Equations (3.33)
and (3.34)). In contrast to the cooling break νc, νcut is determined by the magnetic field near the
shock rather than Bav. Thus, the one-zone model tends to overestimate the maximum synchrotron
frequency about Bav/Bd times higher than the 1-D model.

The fitted shock radius rs of 3C 58 is twice as large as that of G21.5-0.9. The total pressures at
r = rN in our models are Ptot,3C 58 ∼ 3.7 × 10−10 erg cm−3 and Ptot,G21.5 ∼ 2.1 × 10−9 erg cm−3.
From the pressure balance, the large ptot implies the large plasma pressure of the surrounding
supernova ejecta. For 3C 58, Slane et al. (2004) obtained kTe ∼ 0.23 keV and nSNR ∼ 0.38 cc−1 and
then its pressure ∼ 1.4 × 10−10 erg cm−3. For G21.5-0.9, Matheson & Safi-Harb (2010) obtained
kTe ∼ 0.3 keV and nSNR ∼ 0.63 cm−3 and then its pressure ∼ 3.0 × 10−10 erg cm−3. While the
pressure values may be not so robust, this indicates that the surrounding SNR of G21.5-0.9 has
higher pressure than 3C 58. In addition, the fact that the bright shell-like SNR is clearly seen in
G21.5-0.9 also supports that the pressure for G21.5-0.9 would be higher than that for 3C 58.

In the broadband model, the flux level of the entire spectrum is well reproduced, but the X-ray
spectral index does not fit the observed value. We also discuss alternative models, in which the
emission in radio and optical is assumed to be different from the direct emission from the pulsar
wind (Atoyan & Aharonian, 1996; Olmi et al., 2014, 2015). As shown in Table 3.4, the σ obtained
by the alternative model tends to be larger than the value of the broadband model. This trend is
similar to several one-zone models (Torres et al., 2013; Vorster et al., 2013b). The time-dependent
model of Torres et al. (2013) introduced an order of magnitude larger energy density of the ISRF
(i.e., a larger magnetic field strength) than ours　 in order to reproduce the X-ray spectral index
of 3C 58. In the model of Vorster et al. (2013b), the X-ray spectrum of G21.5-0.9　 was also
reproduced by a strong magnetic field (230µG),and hard spectral index (p2 = 2.0). Note that their
predicted GeV flux seems to be above the Fermi　 upper-limit (Ackermann et al., 2011). In those
models, the cooling break was set far below the keV range. However, as discussed in Section 3.3.3,
it is hard to set such a low νc in 1-D steady model. The temporal evolution of the magnetic field
in one-zone models causes the gradual hardening of the particle spectrum　 (see also Tanaka &
Takahara, 2010), which is favorable to fit the X-ray data differently from our steady model.

In the alternative models, since a larger σ is required, the resultant short advection time prevents
high-energy particles from radiative cooling before reaching the edge of the nebula. However, such
a short advection time may contradict the age of the PWNe. In order to validate tage ≫ tadv, it
should be required that the particles escape from the nebula efficiently. For 3C 58 and G21.5-0.9,
the large amount of the escaped high-energy particles should emit photons outside the PWNe, such
a signature outside PWNe has not been claimed. For example, the model of Holler et al. (2012), in
which the radial profile of flow velocity is artificially tuned, also implies ∼ 100 yr for the advection
time in G0.9+0.1, though the characteristic age is more than kyr. We should carefully note the
advection time in modeling the outflow property (see Equation (3.22)). If outer supernova ejecta
effectively confine PWN, the fast plasma flow implied by the high σ model should be decelerated
near the edge of the PWN and should induce the turbulence in the PWN. As a result, the wind
material may be efficiently mixed inside the PWN (e.g., Porth et al., 2014). In this case, the 1-zone
approximation may be rather adequate.

3.6 Conclusion

We have revisited the 1-D steady model, and applied to the pulsar wind nebulae, in order to find a
parameter set consistent with both the entire photon spectrum and surface brightness profile. It is
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still controversial whether the simple 1-D model reproduces observed properties of the PWNe other
than the Crab Nebula or not. As we have shown in Section 3.3, both the entire photon spectrum and
surface brightness profile largely depend on the parameters, the uncertain shock radius rs and the
magnetization parameter σ. The flux of inverse Compton component becomes dim with increasing
σ. In contrast, the synchrotron component is not a monotonic function of σ. For the dependence on
rs, while the synchrotron component becomes dim with increasing with rs, the IC component shows
complicated behaviors. The X-ray size of a PWN becomes large with increasing rs and decreasing
σ.

We have fitted the entire spectrum of two observed sources 3C 58 and G21.5-0.9. Calculating the
radial profile of the surface brightness for those models, we show that the obtained X-ray extents are
significantly smaller than the observed sizes. Moreover, we have performed another parameter set
called “alternative” model, where we treat the radio and optical emissions as extra components. The
alternative models successfully reproduce the observed X-ray surface brightness and the X-ray and
γ-ray fluxes. However, those models imply too short advection time. In summary, the 1-D model
constructed by KC84s has severe difficulty to reproduce both the spectrum and spatial emission
profile of PWNe consistently. The model should be improved by taking some possible physical
processes into consideration, such as spatial diffusion of non-thermal particles, reacceleration by
turbulences.



Chapter 4

Time-dependent Model

4.1 Introduction

As we have seen in Chapter 3, the KC model can not reproduce the entire spectrum and the
X-ray surface brightness simultaneously. The main assumption in the KC model is steady-state,
spherically symmetric and toroidal magnetic field configuration. In this chapter, we examine how
the time dependence affects the emission of the nebula.

The effect of the temporal evolution of the pulsar wind nebula is well studied by using 1-zone
models, which treats the nebula as a uniform region. Figure 4.1 shows the result of applying 1-zone
model by Tanaka & Takahara (2010) to the Crab nebula. In their model, the time evolution of the
spin-sown luminosity as represented by equation (2.8), and radiative cooling and adiabatic cooling
are considered. In Tanaka & Takahara (2010), the expansion speed of the nebula is assumed as a
constant 1800km s−1.

Torres et al. (2014) also calculated the emission spectra of various pulsar wind nebulae, taking
into account the more detailed expansion evolution of the nebula and the escape of particles from
the nebula. Figure 4.2 shows the results of their calculation. The results for the old nebula show
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Figure 4.1: Calculation result of the 1-zone model for the Crab nebula by Tanaka & Takahara
(2010). The left panel represents the energy spectrum of the pairs for various age of the nebula.
The right panel shows the calculated entire spectrum of the Crab nebula at the present day. Figures
from Tanaka & Takahara (2010). c⃝AAS. Reproduced with permission.
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Figure 4.2: Calculation result of the 1-zone model constructed by Torres et al. (2014) for the Crab
nebula. (Left) The energy spectrum of the pairs for various age of the nebula. (Right) The entire
spectrum of the current Crab nebula (solid lines). Other lines such as the dotted line, the dash
line and so on represent the entire spectrum of Crab nebula at various ages. Reprinted from Torres
et al. (2014), Copyright 2019, with permission from Elsevier.

significant differences between Tanaka & Takahara (2010) and Torres et al. (2014). This is due to
the essential problem that in the 1-zone model, namely the evolution of the energy density of the
magnetic field can not be calculated self-consistently. Actually, the phenomenological models of the
evolution of the magnetic field used in each models are different in Tanaka & Takahara (2010) and
Torres et al. (2014). Furthermore, as mentioned in Section 3.1, 1-zone model can not reproduce the
surface brightness of the nebula (e.g., Amato et al., 2000).

van der Swaluw et al. (2001) solved the 1-D non-relativistic and pure hydrodynamic (HD)
equations and discussed the structure of PWNe. They showed that by simultaneously solving the
surrounding SNR and the PWN, the expansion law of the PWN is strongly influenced by the SNR.
However, in their calculations, the emission from the PWN was not discussed because they did
not calculate the magnetic field. Vorster et al. (2013a) calculated the magnetic field by solving the
induction equation by a post-process method on the pure-HD calculation. As we saw in Section
3.4, the magnetic pressure becomes as strong as the gas pressure, so their approximation is invalid.

Bucciantini et al. (2003) solved the 1-D and time-dependent MHD equation for the first time,
considering the surrounding SNR. The left panel of Figure 4.3 shows the pressure profile for σ =
3×10−3 in Bucciantini et al. (2003). In this calculation, the termination shock can not be resolved,
so there is no guarantee that the structure inside the nebula evolution was calculated correctly. In
their next paper, Bucciantini et al. (2004) performed more accurate calculations so as to resolve
the termination shock. The right panel of Figure 4.3 represents the temporal evolution of the
radius of the termination shock and the contact discontinuity. They showed that the radius of the
termination shock decreases with increasing σ, and the radius of the contact discontinuity does not
depend on σ. Furthermore, they showed that it is necessary to be σ ∼ 0.001 in order to reproduce
the observed ratio of the radius of the termination shock to the radius of the termination shock of
the Crab nebula. However, these studies discussed only the dynamical structure of PWNe, and did
not calculate the radiation.

Lu et al. (2017) performed the emission from PWNe based on the calculation results of the
time-dependent 1-D MHD model. They incorporated the time-dependent effect using fitting for-
mulae given in Bucciantini et al. (2004) of the time evolution of the contact discontinuity and the
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Figure 4.3: (Left) The total pressure profile of the PWN–SNR system for σ = 3.0 × 10−3. The
dotted line represents the plasma gas pressure. The dashed line represents the magnetic pressure.
Credit: Bucciantini et al., A&A, 405, 617, 2003, reproduced with permission c⃝ESO. (Right) The
temporal evolution of the radius of the contact discontinuity (solid line) and termination shock for
σ = 0 (dotted line), σ = 0.0016 (dashed line) and σ = 0.003 (dash–dotted line). Credit: Bucciantini
et al., A&A, 422, 609, 2004, reproduced with permission c⃝ESO.

termination shock. They also obtained the internal structure of the nebula by scaling the solution of
the steady KC model with the radius of the termination shock calculated from the fitting formulae.
As the particle transport process, they considered not only the advection like the KC model but
also the Bohm diffusion. In Figure 4.4 shows the magnetic field strengths, which used for their
calculation, and the resultant diffusion coefficients. Since they did not solve the MHD equations,
they used a phenomenological model similar to Torres et al. (2014) to obtain the absolute value of
the energy density of the magnetic field. Figure 4.5 shows the result of applying their model to 3C
58. Although they reproduced both the entire spectrum and the radial profile of the photon index,
they do not clarify which of time-dependence or diffusion is important for leading such a result.

In this chapter, the effect of the time-dependence of the 1-D model is investigated. We solve the
time-dependent 1-D MHD equation taking into account the spin-down evolution of the central pulsar
and the evolution of the supernova remnant outside the nebula. Furthermore, the temporal evolution
of the energy distribution of pairs is calculated taking into consideration the radiative cooling and
adiabatic cooling, and the emission from of the nebula is calculated. Since the uncertainty of the
radius of the termination shock greatly affects the emission spectrum (see section 3.3), we calculate
for the case of the Crab Nebula in which the termination shock is well measured. In Section 4.2, the
MHD equation solved in this chapter and the equation describing the time evolution of the energy
spectrum of the particle are shown. Section 4.3 shows results of the time-dependent model and
describes the result of comparison with the KC model. We discuss the results in Section 4.4, and
summarize the results in Section 4.5.
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Figure 4.4: Temporal evolution of the magnetic field (left) used in the calculation of Lu et al.
(2017) and the resultant diffusion coefficient (right) for a particle with energy 1 TeV. Since the
diffusion process is assumed as Bohm diffusion, the diffusion coefficient is a function of the energy
and magnetic field only. Figures from Lu et al. (2017). Credit: Lu et al., MNRAS, 60, 4135, 2017,
reproduced with permission c⃝OUP.

Figure 4.5: Calculation results of the entire spectrum and the radial profile of X-ray photon index
for 3C 58 by the model of Lu et al. (2017). Figures from Lu et al. (2017). Credit: Lu et al., MNRAS,
60, 4135, 2017, reproduced with permission c⃝OUP.

4.2 Basic Equations

4.2.1 Fluid Equations

As shown in Appendix A.1, MHD equations imposing the spherical symmetry, toroidal magnetic
field, ideal MHD condition and perfect fluid are written as follows: The mass conservation law is

1

c

∂

∂t
(γρ) +

1

r2
∂

∂r

[
r2ργv

]
= 0. (4.1)
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The conservation law of the magnetic flux is

1

c

∂

∂t

[(
h

r

)
γ

]
+

1

r2
∂

∂r

[
r2
(
h

r

)
γv

]
= 0, (4.2)

where h = B0/
√
4π and B0 is the magnetic field measured at the fluid rest frame. The energy

conservation law is
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where w = ϵ+ P is the enthalpy density. The momentum conservation law is
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In order to describe the difference of the thermodynamical properties between the pulsar wind and
the super nova remnant, we solve an additional equation

1

c

∂

∂t
(γρϕ) +

1

r2
∂

∂r

[
r2ργvϕ

]
= 0, (4.5)

where ϕ is the quantity that represents the species of the matter. Note that this equation is also
written as Dϕ/Dt = 0. The equation of state is

P = (Γ(ϕ)− 1)
(
ϵ− ρc2

)
, (4.6)

where Γ(ϕ) is obtained from

1

Γ(ϕ)− 1
=

1

Γ2 − 1

ϕ− ϕ1

ϕ2 − ϕ1
− 1

Γ1 − 1

ϕ− ϕ2

ϕ2 − ϕ1
, (4.7)

where Γ1 = 4/3 and Γ2 = 5/3 are the adiabatic ratio of the relativistic (PWN) matter and the
non-relativistic matter (SNR), respectively. The above equation is solved using HLL method and
the 3rd-order MUSCL reconstruction.

4.2.2 Advection equation

The equation describing the time evolution of the energy spectrum of electrons and positrons is
written as:
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(
r2u(r, t)

)]
. (4.8)

In this chapter, we solve this equation between the termination shock and contact discontinuity in
the following Lagrangian method. Since the number of particles is conserved, the following equation
holds,

n (E, r, t) dEdV = n (E0, r0, t0) dE0dV0, (4.9)

where dV = d(1/ntot) is the volume element and the subscript 0 denotes the physical quantity at
the moment when the particle is injected into the nebula at the termination shock. The relation
between E and E0 is obtained by solving the following equation describing the evolution of energy
per particle:

DE

Dt
=

E

3

Dn

Dt
−Qsyn, (4.10)

where D/Dt = γ (∂t + v∂r) is the Lagrangian derivative.
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4.2.3 Initial and Boundary Conditions

Since the MHD equations are hyperbolic system, both initial conditions and boundary conditions
are required. For the boundary condition at the inner boundary, we set the Dirichlet condition to
be consistent with the time-dependent spin-down luminosity according to equation (2.8). At the
outer boundary, we set the free boundary condition. The initial conditions are as follows. Owing to

the numerically stability, we set the outer boundary of the SNR, r
(0)
SNR = 0.2 pc and inner boundary

of the SNR is r
(0)
PW = 0.1 pc inside which un-shocked pulsar wind flows. Inside the radius r

(0)
PW, we

set the steady solution of a cold (pρ ∼ 10−5 ≪ 1) supersonic flow, in which γ is constant, ρ ∝ r−2,

B ∝ r−1 and the adiabatic index is 4/3. In the region satisfying r
(0)
PW < r < r

(0)
SNR, we set the

ejecta whose adiabatic ratio 5/3 with homologous expansion, where v ∝ r, ρ ∝ r0. We adopt the
ejecta mass Mej = 8.5 M⊙ (e.g., Nomoto et al., 1982; Owen & Barlow, 2015), and a typical value
of supernova explosion EKN = 5.0× 1050 erg as the kinetic energy of ejecta to reproduce the size of
the nebula at present. The absolute values of v and ρ are determined from the following equations:

Mej =

∫ r
(0)
SNR

r
(0)
PW

4πρr2dr, (4.11)

and

EKN =

∫ r
(0)
SNR

r
(0)
PW

ρv2

2
4πr2dr. (4.12)

Outside r
(0)
SNR, we set the uniform interstellar matter profile.

4.3 Result

In this section, the result for the Crab nebula calculated with the parameters in Table 4.1 is shown.
The parameter for the supernova ejecta and magnetization are chosen to reproduce the size of the
Crab nebula at present (950 yr) rN ∼ 2.0 pc and rs ∼ 0.1 pc. Figure 4.6 shows the spatial structure
of the pressure in the nebula at 950 yr. The termination shock is a discontinuity in ∼ 0.1 pc. Around
the discontinuity at 2.1 pc, the contact discontinuity and the forward shock formed between the
PWN and the SNR are located. Due to a numerical instability, an artificial oscillation is seen, but
this does not significantly affect the expansion law of the nebula and most of the internal structure
of the nebula. Between rN and 2.7 pc, supernova ejecta The structure inside 3.1 pc is the SNR in
the free expansion phase. The forward shock formed propagating in the ISM locates at ∼ 3.1 pc.
The reverse shock in the ejecta locates at ∼ 2.7 pc. The temporal evolution of the position of the
discontinuities is shown in the left panel of Figure 4.7. At 1800 yr, the trend of the evolution of
the termination shock and the contact discontinuity changes, which corresponds to the time when
the PWN starts interaction with the reverse shock in the ejecta. The right panel of the Figure 4.7
shows the spatial structure of total pressure at various times. As seen in this figure, at the 1800 yr,
the reverse shock from the SNR is not so developed. In this parameter, the change in the expansion
law of the nebula seen in the left panel of Figure 4.7 is due to the fact that the expansion of the
nebula is rather fast and catches up with the reverse shock.

The radius of the termination shock continues to increase until 1800 yr. Before interaction with
the reverse shock, the nebula continues to expand quickly, so the average pressure within the nebula
decreases with time. As a result, the radius at which the pulsar wind ram pressure and the pressure
inside the nebula are balanced, which corresponds to the termination shock, increases. Conversely,
after 1800 yr, the expansion of the nebula is suppressed by the SNR, so that the decrease of the



62 CHAPTER 4. TIME-DEPENDENT MODEL

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

 0  0.5  1  1.5  2  2.5  3  3.5

P
re

s
s
u
re

 [
e
rg

 c
m

-3
]

Radius [pc]

gas pressure
magnetic pressure

total pressure

Figure 4.6: The pressure profile when the age of the nebula is 950 yr. The red solid line represents
the plasma gas pressure, the blue dotted line represents the magnetic pressure, and the dashed line
is sum of them.
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pressure in the nebula is drastically diminished. By comparing the result of 1701 yr and 2551 yr
in the right panel of the figure 4.7, we find that the pressure inside the nebula is practically not
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decreased. Since t > t0 holds at 1800 yr, the spin-down luminosity of the pulser goes down in time.
As a result, the termination shock propagates inward.

The temporal evolution of the averaged magnetic field in the nebula obtained from equation
(3.32) is shown in Figure 4.8. After t > t0, the magnetic field in the nebula shows time evolution
proportional to t−1.5. This behavior is consistent with the treatment of the magnetic field used in
Tanaka & Takahara (2010). They derived the equation describing the temporal evolution of the
magnetic field with assuming that the total energy of the magnetic field injected inside the nebula is
conserved. After 1800 yr, it deviates from t−1.5, but this does not necessarily represent a deviation
from their model. This is because the expansion law of the nebula changes as shown in Figure 4.7
(cf. Tanaka & Takahara (2010) was considering a constant velocity expansion). In order to discuss
the accuracy of the phenomenological model of the magnetic field, further consideration taking into
account the difference in the expansion law is necessary.

In order to investigate the effect of time-dependence, we also perform the calculation with the
steady KC model using the radius of termination shock rs and the spin-down luminosity at 950 yr.
Figure 4.9 is a comparison of the gas pressure (top), the velocity (bottom left) and the magnetic field
(bottom right). Given the boundary condition, the profile of the pressure and the magnetic field
calculated by the steady KC model are in very good agreement. It can be said that the steady state
approximation well represents the hydrodynamical structure of the nebula. Due to the numerical
oscillation is severe in the velocity field, it shows the time averaged result over 30 years. The velocity
field with the steady KC model is in good agreement with the time-dependent result in the range
of r < 0.5 pc, however for the r > 0.5 pc the deviation is seen. This may be due to the fact that
the steady KC model does not consider the effect of the external medium (i.e. SNR).

Figure 4.10 represents the temporal evolution of the energy distribution of electrons and positrons
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Figure 4.9: The comparison between the steady KC model and our time-dependent model at 950
yr. (Top) The gas pressure. (Bottom Left) The magnetic field. (Bottom Right) The velocity field.

calculated using the time-dependent results of 950 yr. The entire spectrum of the nebula and the
surface brightness of the X-ray calculated in the same way as 3.4.1 are shown in Figure 4.11. Not
only the hydrodynamic structure but also the emission spectrum and the surface brightness are
found to coincide very well with the steady KC model.

In Figure 4.12, the temporal evolution of the entire spectrum and the X-ray surface brightness
profile is shown. The flux of the synchrotron component of the entire spectrum decreases with time
as expected from Figure 4.8. However, after 1800 yr, the decrease of the magnetic field and the
expansion of the nebula are suppressed, so that the diminishment of the flux becomes slow. The
temporal evolution of the X-ray surface brightness is not monotonous. While the nebula is in the
free expansion phase (i.e. before 1800 yr), the emission region of X-rays spreads with the nebula
expansion as age increases. However, when the expansion of the nebula is suppressed (i.e. after
1800 yr), the emission region turns to contraction. This can be understood from the fact that the
expansion of the nebula, which induces the effect of broadening the emission region, is slowed down,
whereas the radiative cooling, which leads to contract the emission region, continues.
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Pulsar parameters a Symbol Crab

Distance (kpc) D 2.0
Age (yr) tage 950
Initial Spin-down luminosity (erg s−1) L0 3.4× 1039

Initial Spin-down time (yr) t0 700
Braking index n 2.51

Pulsar Wind parameters a

Magnetization σ 1.0× 10−3

Initial Radius (pc) r
(0)
PW 0.1

Minimum Energy (eV) Emin 5.1× 107

Break Energy (eV) Eb 3.1× 1011

Maximum Energy (eV) Emax 7.0× 1015

Low-energy index p1 1.3
High-energy index p2 2.35

Supernova Remnant parameters a

Ejecta Mass ( M⊙) Mej 8.5
Kinetic Energy of the Ejecta (erg) EKN 5.0× 1050

Initial Radius (pc) r
(0)
SNR 0.2

Interstellar Medium parameters a

Ambient Mass Density (g cc−1) ρISM 1.0× 10−24

Magnetic Field (µG) BISM 3.0
Temperature (eV) TISM 1.0

Obtained parameters

Current Radius of the termination shock (pc) rN 0.92
Current Radius of the nebula (pc) rs 2.1
Current spin-down luminosity (erg s−1) Lsd 4.6× 1038

Bulk Lorentz factor γu 8.4× 104

Pre-shock density (cm−3) nu 2.7× 10−12

Table 4.1: Parameters in the time-dependent calculations for the Crab Nebula.
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Figure 4.10: The energy spectra of electrons and positrons for various particle age, which is the
elapsed time since injection into the nebula. The color contour represents the particle age.
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4.4 Discussion

As seen in Section 4.3, the steady-state approximation is a very accurate approximation in the
model of PWNe. The main time-dependent effects neglected in the steady KC model are associated
with the expansion of the nebula and the spin-down evolution of the central pulsar. In fact, time
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Figure 4.12: (Left) Entire spectra of the Crab nebula for various ages. (Right) Profiles of X-ray
surface brightness for various ages.

scales of these are much longer than the time that it takes for the sound speed to traverse inside the
nebula (∼ 10 yr). The most notable difference between the time-dependent model and the steady
KC model is the velocity field (see Figure 4.9). The resultant advection time calculated by the
steady KC model (see equation (3.22)) is about 1.5 times longer than the actual age of the nebula
950 yr. The expansion velocity of the nebula is determined by the pressure equilibrium of the
nebula and the surrounding SNR rather than the velocity of the fluid. Since the steady KC model
does not consider the existence of external materials, such inconsistency may be seen. Nevertheless,
the pressure and the magnetic field profile in the steady KC model are still good approximations
because the ram pressure can be ignored against the gas pressure and magnetic pressure.

We also tried to calculate the case where σ is larger. However, due to the fast inward move of the
termination shock, the numerical resolution was insufficient. As pointed out by Bucciantini et al.
(2004), the termination shock rs becomes small with σ increases. On the other hand, the size of
the contact discontinuity rN depends only on the total amount of spin-down energy injected by the
pulser, and hardly depends on σ. Therefore, σ is very constrained by rs and rN. The required value
of σ = 10−3 in this calculation reconfirms the sigma problem in terms of pressure equilibrium (not
expanding speed). In Porth et al. (2014) and Tanaka et al. (2018), by considering the difference
in magnetic configuration, they tried to solve the problem of the pulsar wind deceleration. It
is important to investigate whether their models can reconcile the sigma problem also from the
viewpoint of pressure equilibrium. Although Porth et al. (2014) calculated the time evolution of the
nebula only about 100 yr despite placing rs at a large radius ∼ 0.3 pc as an initial condition, so that
it is unclear whether pressure equilibrium was realized for such a short period. Tanaka et al. (2018)
modeled phenomenologically taking into account the turbulence effects. Their model is a steady
model ignoring the external medium, and only explains the expansion velocity. By improving the
model of Tanaka et al. (2018) in consideration of the external medium and spin-down effect and
calculating with our method, we can investigate whether the effect of the turbulent magnetic field
can really solve the sigma problem or not.
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4.5 Conclusion

In order to investigate the validity of the steady state assumption in the KC model, we solved
the time-dependent and spherical symmetric MHD equations taking into account the effect of the
spin-down evolution of the central pulsar and the surrounding SNR. Furthermore, the evolution of
the energy spectrum of non-thermal particles in the nebula was consistently calculated considering
radiative and adiabatic cooling, and the emission from the nebula was calculated. We found that the
steady state assumption in PWNe is a very good approximation in terms of both the hydrodynamic
structure and the emission model.

As mentioned in Chapter 1, PWNe are the most detected source on TeV γ-rays. Currently under
construction CTA (Cherenkov Telescope Array Acharya et al., 2013, underconstructing ground-
based gamma-ray observatory) is expected to discover more than 10 times sources with sensitivity
increases. It is expected that old PWNe which was not seen due to dim until now can be found.
In the emission model of the old PWNe, it is essential to calculate the interaction with the SNR,
our model can calculate such a situation. Furthermore, the angular resolution is also improved in
CTA. Then, it will be possible to discuss the relations between TeV γ-ray extent, X-ray extent and
the nebula age. In order to interpret such observational information to the physical quantity of
the nebula (e.g., the age of the nebula), a model considering both space and time dependence is
necessary. In other words, our model is useful not only for the purpose of investigating the validity
of the steady-state approximation but also for translating the information on spatially resolved
observations of PWNe to the physical quantities in future. It is necessary to further deepen the
knowledge of this time-dependent 1-D model by conducting calculations in various parameters.



Chapter 5

Model with Diffusion and its
Back-reaction

5.1 Introduction

Although the KC model has been accepted as a standard model of PWNe, some problems in the
KC model have been raised by morphology researches with high angular resolution observations in
X-ray (see Chapter 3). In Chapter 3, we applied the KC model to G21.5-0.9 and 3C 58, and showed
that the KC model has severe difficulty to reproduce both the entire spectrum and the surface
brightness profile simultaneously.

Since the problems in the KC model have been claimed, several authors have discussed improve-

Figure 5.1: (Left) The sampled magnetic field lines of the 3–D MHD simulation performed by
Porth et al. (2014). The color indicates the ratio of the strength of the poloidal field to the strength
of the troidal field. Blue means toroidal, and red means poloidal. (Right) The velocity magnitude
(contour) and direction (arrows). Credit: Porth et al., MNRAS, 431, L48, 2013, reproduced with
permission c⃝OUP.

69
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Figure 5.2: (Left) The calculated X-ray image with assumption that the magnetic field is purely
toroidal. (Right) The calculated X-ray image with assumption of an existence of the disturbed field.
Figures from Shibata et al. (2003). Credit: Shibata et al., MNRAS, 346, 841, 2003, reproduced
with permission c⃝OUP.

ment of the KC model. In the KC model, particles are simply advected with the spherical wind.
However, Porth et al. (2014) performed a three-dimensional full MHD simulation and showed that
PWNe are in very disturbed state (Figure 5.1). Shibata et al. (2003) suggested the existence of
turbulent magnetic field in the nebula by using a semi-analytic method. The left panel of Figure 5.2
represents the X-ray image calculated by Shibata et al. (2003) with assumption that the magnetic
field is purely toroidal. As seen in this result, they pointed out that it can not be reproduced the
torus-like structure of the X-ray image of the Crab nebula shown in Figure 1.2 by the model with
only the ordered field. Moreover, they indicated that if there is a disturbed field with an amplitude
as large as the ordered field, a torus-like X-ray image can be obtained as shown in the right panel
of Figure 5.2.

In such disturbed plasma, the particle diffusion can be an important process. Tang & Chevalier
(2012) preformed the test-particle simulation taking into account particle diffusion in the background
fluid and synchrotron cooling, and showed that the model reproduces the radial profiles of the
photon index in 3C 58 and G21.5-0.9 (Figure 5.3). Porth et al. (2016) also performed the test-
particle simulation to obtain the diffusion coefficient based on the 3–D MHD simulation by Porth
et al. (2014). Their 1–D steady diffusion model with the obtained diffusion coefficient, can explain
the radial profile of the surface brightness and the photon index of 3C 58, G21.5-0.9 and the Vela
(Figure 5.4).

The recent confirmation of the largely extended γ-ray halo around the Geminga pulsar by HAWC
(Abeysekara et al., 2017a) also supports the idea of the particle diffusion (Abeysekara et al., 2017b).
The extended gamma-ray would be emitted by electron–positron pairs diffusively escaped from the
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nebula (Figure 5.5). On the other hand, in Vela, which is one of the neighboring pulsar wind nebula,
if electrons/positrons of pulsar wind is not confined efficiently in the nebula, the expected flux of
the cosmic-ray contradicts the observation (Huang et al., 2018). Thus, the diffusion process in the
pulsar wind nebula is an important theme not only in the model of the nebula but also in the
cosmic-ray physics.

Although the consideration of the diffusion process in pulsar wind nebulae is very important,
its models are still in the developing stage. Tang & Chevalier (2012) and Porth et al. (2016), which
adopt the test-particle approximation, did not discuss the emission spectrum. A model consistent
with both the spectrum and radial profile is desired (Ishizaki et al., 2017).

In most of other astronomical phenomena, the spatial diffusion is considered for energetically
sub-dominant component with respect to the motion of the background fluid. However, even en-
ergetically dominating particles are required to diffuse in order to reconcile the observed X-ray
profile in PWNe. Although we have a consensus that a diffusion coefficient of about 1027 cm2 s−1

is required to reproduce the observed X-ray profile of PWNe (e.g., Tang & Chevalier, 2012; Porth
et al., 2016), this value implies that the energy flux carried by the diffusion is comparable to or
larger than that carried by the advection with fluid. In such cases, the test-particle approximation
is not appropriate.

If we simply apply the particle diffusion fixing the velocity profile of the background fluid, the
energy and momentum conservations along the fluid are not assured. We need to take into account
the back reaction of the particle diffusion on the background fluid. Moreover, the idea of the
particle diffusion in PWNe is ambiguous. The pulsar wind consists of only non-thermal particles,
which themselves are subject for the diffusion process, so that the definition of the background
fluid is not straightforward. Namely, the method to distinguish the diffusive component from the
background fluid is not apparent.

In this chapter, we aim mainly to reproduce both the entire spectrum and X-ray radial profile
of 3C 58 and G21.5-0.9 by improving the KC model with the diffusion effect. In Chapter 4, we
have already shown that the steady-state approximation is significant given the inner and outer
boundaries. In this chapter, we neglect the temporal evolution effect and assume steady state.
In Section 5.2, we explicitly define the background fluid and derive fluid equations satisfying the
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Figure 5.3: The radial profile of the X-ray spectral index with the pure diffusion model of Tang
& Chevalier (2012). The left panel and right panel represent results for 3C 58 and G21.5-0.9,
respectively. c⃝AAS. Reproduced with permission.
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Figure 5.4: The left panel represents the radial profile of the X-ray photon index of G21.5-0.9
calculated with the diffusion–advection model of Porth et al. (2016). The right panel represents
the cumulative flux for each radius. The points labeled KC84 are models using KC model for the
calculation of advection. The points labeled PPK14 is a model using the simulation result of Porth
et al. (2013) for the calculation of advection. KC84:B−1 is a model calculated with the diffusion
coefficient D proportional to the inverse of the magnetic field B (i.e. D ∝ B−1). KC84:B−2 is
the case for D ∝ B−2. The diffusion coefficient in PPK14 is obtained by performing the test
particle simulation on the calculation result of Porth et al. (2014). The resultant averaged diffusion
coefficients for KC84:B−1, KC84:B−2 and PPK14 are 1.2 × 1026 cm2 s−1, 0.3 × 1026 cm2 s−1 and
5.7 × 1026 cm2 s−1, respectively. Credit: Porth et al., MNRAS, 460, 4135, 2016, reproduced with
permission c⃝OUP.

energy and momentum conservations with the diffusion effect. In Section 5.4, we demonstrate our
1–D steady state model and discuss the velocity and magnetic field profiles in the flow, photon
spectrum, and the radial profile of the surface brightness especially for the model dependence on
the diffusion coefficient. In Section 5.5, we apply our model to two observed sources 3C 58 and
G21.5-0.9, which has been also discussed in Chapter 3. In Section 5.6, we summarize and discuss
the results.

5.2 Pulsar Wind Model with particle diffusion

5.2.1 Central Idea

The concept of diffusion in PWNe is ambiguous. It is not possible to clearly distinguish the diffusion
component from the background fluid. This may indicate that the fluid approximation itself is not
suitable for the PWNe. However, the concept of fluid approximation is still useful for understanding
the physics of PWNe. In this section, while maintaining the fluid picture, we formulate the fluid
equation by considering the spatial diffusion of particles self-consistently. These equations are
solved by combining with the advection diffusion equation of the energy distribution function of
non-thermal particles.

We clarify the definitions of the diffusion and background fluid, then we present general for-
mulation for the fluid equations describing the macroscopic motion of the non-thermal particles
in Section 5.2.2, and the transport equation describing the evolution of the energy spectrum of
the particles in Section 5.2.3. In Section 5.2.4, we adopt those general equations to a spherically
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symmetric and steady system, and show our model to apply for PWNe. Note that, hereafter, the
rest frame of the entire nebula is defined as reference frame K.

5.2.2 Fluid equations

In order to treat the diffusion in a one-component fluid, we assume a spatial diffusion coefficient
with energy dependence, whereby the diffusion effect can be neglected for the lowest energy par-
ticles which make up the majority of the particle number. The fluid flow velocity approximately
corresponds to the average velocity of such low energy particles. Note that energetically dominat-
ing particles, whose average energy is much higher than the lowest particle energy, can be affected
by the diffusion significantly. Since the current to maintain the magnetic field in the fluid is also
dominated by low energy particles, in this case the frozen-in condition in the ideal MHD will be
held (See D for details).

The Boltzmann equation represented in the frame K is written as

∂fs
∂t

+ v · ∇fs + qs

[
E +

v

c
×B

]
· ∂fs
∂p

= Ss (5.1)

where fs is the phase space distribution functions of particles, s is species (e=electron, p=positron),
q is a charge of each particle, v is the velocity of each particle, E and B are the electric field and
magnetic field in the frameK, and S is the collision term. In this calculation, we consider the Lorentz
force as the force from the macroscopic ordered electromagnetic fields, and S as the contribution
from the microscopic disturbed field. Since the mass of a electron is equal to the mass of a positron,
the bulk flow velocity normalized by speed of light c is,

β ≡ 1

c

∫
v (fe + fp) d

3p∫
(fe + fp) d3p

, (5.2)

Figure 5.5: (Left) HAWC significance map for the Geminga and PSR B0656+14 at the γ-ray
energy with 1-50 TeV. (Right) The surface brightness of the γ-rays from Geminga. The red line
represents the pure diffusion model with the diffusion coefficient D ∼ 5.0 × 1027 cm2 s−1 for 100
TeV electrons. From Abeysekara et al. (2017b). Reprinted with permission from AAAS.
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and the corresponding Lorentz factor is γ = 1/
√

1− β2. The co-moving frame of the fluid K ′ is
defined as the frame moving at velocity β with respect to the frame K. The collision term Ss, which
expresses a stochastic process in a disturbed field (e.g., Blandford & Eichler, 1987), is defined in
the frame K as

Ss ≡ ∇ · (κ∇fs) , (5.3)

where κ is an energy-dependent diffusion coefficient1.
Integrating equation (5.1) over the momentum space, we obtain two-component fluid equations

for electrons and positrons. For the case of no diffusion, assuming that the wind is almost electrically
neutral (ne ∼ np) and the convection current (which is generated by advection of true charge in
the fluid) is much smaller than the conduction current, we can safely use the one-component fluid
equation as used in KC model (Melatos & Melrose, 1996). Furthermore, even if there is a diffusion
process, the ideal MHD condition,

E + β ×B = 0, (5.4)

still holds (see Appendix D for details). Thus, hereafter, we consider introducing the effect of the
diffusion term on the one-component fluid equation.

The energy (momentum) transfer due to the spatial diffusion is obtained by integrating the
product of the energy E± (the momentum p±) and the diffusion term (5.3) over the momentum
space. Adding those diffusion terms, we obtain the energy conservation law,

1

c

∂

∂t

[
γ2 (ϵ+ P )− P +

E2 +B2

8π

]
+∇ ·

[
γ2 (ϵ+ P )β +

E ×B

4π
−∇

{(
4

3
u2 + 1

)
δ

}
+

(
4

3
u2 + 1

)
θ

]
= −γΛ, (5.5)

and the momentum conservation law,

1

c

∂

∂t

[
γ2 (ϵ+ P )β +

E ×B

4π

]
+∇ ·

[
γ2 (ϵ+ P )ββ + PI +

EE +BB

8π
−∇

(
4

3
γ2βδ

)
+

4

3
γ2βθ

]
= −γβΛ, (5.6)

where ϵ and P are energy density and gas pressure in the frame K ′, respectively. Hereafter, we
assume that non-thermal particles are ultra-relativistic (E′

± ≃ cp′ ≫ mec
2), which implies

P =
1

3
ϵ. (5.7)

The diffusion terms have been calculated with the fact that fs and d3p/E± are Lorentz invariant
and the assumption of the isotropic momentum distribution in the frame K ′. In the usual formula-
tion of the two-fluid equation, it is assumed that fs is isotropic in the center-of-mass system of each
component. However, since we are considering a situation where a one-component fluid equation
holds, we assume that fs is almost isotropic in the center-of-mass system of all particles. Thus, the
values, δ and θ, in the diffusion terms are defined by

δ ≡ 1

c

∫
κE′

± (fe + fp) d
3p′, (5.8)

1The diffusion process is usually defined in the fluid rest frame K′. In a spherically symmetric steady flow, if
we rewrite the collision term with the coordinate of the frame K, the diffusion coefficient for the radial direction is
re-defined as an enlarged value by a factor of γ2. The value κ in equation (5.3) is interpreted as such an effective
value.
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θ ≡ 1

c

∫
(∇κ)E′

± (fe + fp) d
3p′, (5.9)

respectively. The radiative cooling term is written with the cooling rate in the frame K ′ as

Λ ≡ 1

c

∫
Q′

rad (fe + fp) d
3p′, (5.10)

where Q′
rad(E

′
±) is the energy radiative loss rate per particle. As shown in Tanaka & Takahara

(2010), the radiative cooling by inverse Compton is negligibly inefficient compared to the syn-
chrotron cooling so that

Q′
rad =

4

3
σTc

(
E′

±
mec2

)2
B′2

8π
. (5.11)

The induction equation with the ideal MHD condition is

1

c

∂B

∂t
= ∇× (β ×B) . (5.12)

If δ, θ, and Λ are given, the fluid quantities β, ϵ, p, E and B can be calculated by solving equations
(5.5), (5.6), (5.7), (5.12) and (5.4) (hereafter fluid equations). However, those quantities depending
on the functional form of f are not given in advance.

5.2.3 Diffusion-Advection equation

In order to obtain δ, θ, and Λ, we also solve the advection–diffusion equation (hereafter AD equation,
e.g., Ginzburg & Syrovatskii, 1964) written as

∂n(x, E′
±)

∂t
+∇ ·

[
cun(x, E′

±)− κ∇n(x, E′
±)
]
− ∂

∂E′
±

[
Q′n(x, E′

±)
]
= 0, (5.13)

where n(x, E′
±) = 4πp′2 (fe + fp) /c is the energy spectrum of particles in the frame K ′, u = γβ

is the flow 4-velocity, and Q′ is the energy loss rate due to the radiative and adiabatic cooling per
particle. This equation can be solved if u and B′ are given in advance, so that the fluid equations
and the AD equation are complementary each other. We can solve the AD equation and the fluid
equations alternately until the energy densities estimated from both the methods agree with each
other.

5.2.4 Spherical steady nebulae

We impose the spherical symmetry and steady state to the fluid equations and the AD equation.
Furthermore, we assume that the configuration of magnetic field is purely toroidal as the KC model
assumed. Thus, the magnetic field in the frame K ′ is B′ = B/γ, and the induction equation (5.12)
leads to

rβB = const. (5.14)

For simplicity, we assume that the diffusion coefficient is expressed by a separable form as

κ(r, E′
±) = ϕ(r)κ̃(E′

±). (5.15)

Then, the terms with δ and θ in the fluid equations can be put together. Equations (5.5) and (5.6)
are written as

1

r2
∂

∂r

[
r2
(
γ2 (ϵ+ P )β +

B2

4π
β − ϕ(r)

∂

∂r

{(
4

3
γ2β2 + 1

)
δ̃(r)

})]
= −γΛ(r), (5.16)
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and

1

r2
∂

∂r

[
r2
(
γ2 (ϵ+ P )β2 + P +

B2

8π

(
1 + β2

)
− ϕ(r)

∂

∂r

{
4

3
γ2βδ̃(r)

})]
=

2P

r
− γβΛ(r), (5.17)

respectively, where δ̃ is defined as

δ̃(r) ≡ 1

c

∫
κ̃E′

±n(r,E
′
±)dE

′
±. (5.18)

The AD equation (5.13) in a spherical steady system becomes

1

r2
∂

∂r

[
r2
(
cu(r)n(r, E′

±)− κ
∂n(r, E′

±)

∂r

)]
− ∂

∂E′
±

[
Q′n(r,E′

±)
]
= 0, (5.19)

where Q′ expresses the radiative and adiabatic cooling effects as

Q′ = Q′
rad +

E′
±
3

c

r2
∂

∂r

[
r2u(r)

]
. (5.20)

We solve only the downstream of the termination shock at r = rs. Given rs, the energy injection
rate (the spin-down luminosity) Lsd, and the magnetization parameter σ, the Rankine–Hugoniot
jump condition (for details see Kennel & Coroniti, 1984a) provides the boundary condition at r = rs
for the fluid equations.

As the inner boundary condition for the AD equation, we assume a broken power-law energy
distribution as used in Section 3,

n(rs, E
′
±) =


n0

Eb

(
E′

±
Eb

)−p1 (
Emin < E′

± < Eb

)
n0

Eb

(
E′

±
Eb

)−p2 (
Eb < E′

± < Emax

) , (5.21)

where n0 is a normalization factor which is adjusted to be consistent with the boundary condition of
the fluid equations, Eb is the intrinsic break energy, Emin and Emax are the minimum and maximum
energy, respectively, and p1 and p2 are power-law indices for low- and high-energy potion of the
particle spectrum, respectively. Hereafter, we also assume p1 < 2 < p2, which implies that particles
with energy ∼ Emin dominate in the number of particles, and particles with energy ∼ Eb dominate
in the energy density of particles.

The density at the edge of the nebula depends on the flow velocity and diffusion coefficient
outside the nebula, which are not considered in this paper. If the diffusion coefficient outside
the nebula is very smaller than the inner value, particles pile up around the edge of the nebula.
However, the diffusion coefficient in the ISM is larger than the value adopted in this paper, so that
the pile-up case may be unlikely. Here we assume that the contribution of the re-entering particles
from ISM/SNR is not so large. As the simplest case, we take an outer boundary condition,

∂2

∂r2
[
r2n(r,E′

±)
]
r=rN

= 0. (5.22)

This condition makes the density profile smoothly connect to the outside profile of the steady
solution without advection, n(r, E′

±) ∝ r−1.
The diffusion process in PWNe is highly uncertain. For simplicity, we assume that the energy

dependence of κ is Kolmogorov-like as

κ̃(E±) = κ0

(
E±
Eb

)1/3

, (5.23)
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where the parameter κ0 is constant.
The parameters other than the diffusion coefficient are the same as those in Chapter 3. As in

Chapter 3, we assume that the minimum energy is fixed as Emin = 10mec
2, and that the maximum

energy Emax is defined as Equation 3.15. The nebula size rN and the energy release rate, which is the
same as the spin down luminosity Lsd, are obtained from observation. In summary, the parameters
to be adjusted are six: rs, σ, Eb, p1, p2 and κ0.

5.3 Detailed Calculation Method

Since the AD equation is 2-dimensional elliptic equation, it is solved using the finite difference
method and the SOR method (e.g., Press et al., 1992). The fluid equations are integrated using a
4-th order Runge–Kutta method. Until the outputs from the fluid equations and the AD equation
become consistent with each other, we iterate the calculation. All of results shown in this paper
satisfy an accuracy of O(1) % in the energy/momentum conservation.

As for the spatial dependence of κ, the simplest model is the homogeneous diffusion with ϕ(r) =
1. However, in such a case, the diffusion can influence the shock jump condition. The diffusion effect
on the termination shock is beyond the scope of this paper. To avoid a complicated situation with
a modified jump condition by diffusion, we neglect the effect of the diffusion near the termination
shock. We turn on the diffusion effect at a certain radius rdiff > rs. However, a sudden onset of the
diffusion effect induces numerical instability. We assume an artificial function form as

ϕ(r) =
1

2

[
1 + tanh

(
r − rdiff

∆r

)]
, (5.24)

where ∆r is a transition scale of the smoothing. This function smoothly changes from zero (for
rdiff − r ≫ ∆r) to unity (for r − rdiff ≫ ∆r). The equation (5.24) is introduced just to avoid the
technical issue in numerical calculation. As we will see later, the diffusion effect in the inner part
of the nebula is negligible. As long as we take significantly small rdiff and ∆r, the diffusion can
be regarded as almost homogeneous, and the result does not depend on the details of this artificial
functional form. The very weak dependence on rdiff and ∆r in our results has been checked.

5.4 Parameter Dependence: diffusion coefficient

In this section, we show example results with various values of κ0, and fixed values of the other
parameters (Lsd, Eb, p1, p2, rs, rN and σ). Here, to help understand the dependence on the κ0, we
define the length scale rpe where the diffusion process begins to become effective for the energetically
dominating particles, whose energy is Eb, by

rpe ≡
r2s cud
2κ0

∼ 5.0× 1018
(

rs
0.1 pc

)2 ( κ0
1026 cm2 s−1

)−1
cm, (5.25)

where ud is the four speed of the flow at just downstream of the termination shock and approximately
equal to 1/

√
8 for σ ≪ 1. This radius corresponds to the location where the advection and diffusion

timescales are the same. This is obtained from the analytical steady state solution of advection
diffusion equation assuming that the flow is incompressible and radial, the diffusion coefficient is
uniform in space, and the cooling process is negligible. In this case, the advection-diffusion equation
can be written as:

1

r2
d

dr

[
r2
(
Vrn− κ

dn

dr

)]
= 0. (5.26)
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Figure 5.6: Radial profiles of 4-speed (Left) and magnetic field (Right) in the test calculations for
various κ0.

If we impose the boundary condition,

n(r = rs) = n2 , n(r =∞) = 0, (5.27)

we can obtain the solution to the equation (5.26) as:

n(z) = n2
1− exp (−Pe/z)

1− exp (−Pe)
(5.28)

where z = r/rs and Pe = rsV2/κ is Péclet number. From the derivative of Equation (5.28), it is
shown that rpe is the radius where the energy density of the pairs becomes decreasing.

In this section, the model of the inter stellar photon field is the same as for G21.5-0.9 (see
Chapter 3). As an example, the parameter values other than κ0 are set as Lsd = 1038 erg s−1,
Eb = 105mec

2, p1 = 1.1, p2 = 2.5, rs = 0.1 pc, rN = 2.0 pc and σ = 10−4. We test changing κ0 as
1023, 1025, 1026, and 2×1026 cm2 s−1. We also set the parameters in equation (25) as rdiff = 0.14 pc
and ∆r = 0.001 pc.

The case of κ0 = 1023 cm2 s−1 is almost the same as the KC model, in which the diffusion is
negligible (rpe ≫ rN). In Figure 5.6, it is shown that the wind is decelerated at outer region as κ0
increases. Accordingly, the magnetic field is amplified conserving the value of rβB.

As the benchmark case, let us see the case of κ0 = 1026 cm2 s−1 (red thick lines in Figure 5.6).
The deviation from the lines for low κ0 models is seen around r = 3× 1018 cm. The radius of rpe is
consistent with this deceleration radius within a factor 2. As seen in Figure 5.7, at the deceleration
radius the gas pressure also starts deviating from the KC model. Outside rpe the gas pressure
decreases steeper than the pressure profile in the KC model.

In spherically symmetric system, the particles basically diffuse outward, so that the diffusion
flux brings out the fluid momentum outward. Since the fluid receives inward reaction force via
particle diffusion, the fluid starts decelerating at r = rpe.

After the sudden deceleration by the diffusion, the deceleration the flow velocity is rather grad-
ual. From the energy conservation law, we derive an analytically simple expression of the radial
dependence of the velocity field and magnetic field in Figure 5.6. As shown in Figure 5.8, in the
region of r > 3 × 1018 cm, the energy flux due to diffusion and the heat flux of the particles are
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Figure 5.7: Radial profiles of gas pressure in the test calculations for various κ0.

balanced, that is

γ2 (ϵ+ P )β ∼ ∂

∂r

[(
4

3
γ2β2 + 1

)
δ̃

]
. (5.29)

For r outside 3 × 1018 cm, as we can approximate β ≪ 1, γ ∼ 1 and δ ∼ κϵ, thus β ∝ r−1 and
B ∝ r0 are derived. This simple estimate is consistent with the behavior in our calculation result.

The energy spectrum of particles in the benchmark case is indicated by a red thick line in Figure
5.9. As we have expected, in the benchmark case, the spectral shapes show that the low-energy
particles with E′

± ∼ Emin are not affected by the diffusion, which modifies the spectrum above
E′

± ∼ Eb. The black dotted line is the result of the KC model written for comparison. Since, in
the KC model, all particles are moving with the fluid, they exhaust their energy all at once at the
radius where the advection time equal to the cooling time. This results to appear as a cutoff shape
in the spectrum in the KC model. In contrast, in the benchmark case, the energy spectrum does
not show the cutoff shape like the KC model. This is because the time required getting to each
radius from r = rs is various due to the stochastic aspect of the diffusion. As shown in the line
labeled r = rN in Figure 5.9, particles with E ∼ 1013 eV exist in the benchmark case, while such
particles can not exist at r = rN in the KC model. In this calculation, since we impose the condition
that particles stream out freely as a boundary condition at r = rN, particles with higher energy
escape out the nebula more efficiently via the diffusion. As a result, the number of the high energy
particles decrease, and so the energy spectrum of particles becomes soft. This behavior is consistent
with the result of the time-dependent one-zone model constructed by Mart́ın et al. (2012), which
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takes into account the diffusion effect as a particle escape from the nebula.

Figure 5.9 shows the evolution of the particle energy spectrum for the benchmark case comparing
with the KC model. As we have expected, in the benchmark case, the spectral shapes show that
the low-energy particles with E′

± ∼ Emin are not affected by the diffusion, which modifies the
spectrum above E′

± ∼ Eb. In the KC model, the sudden cooling cutoff of the spectrum shifts to
lower energy with the radius. In contrast, in a model with diffusion, the energy spectrum does not
show a clear cutoff shape. The energy dependence of the diffusion time eliminates the sharp cutoff
feature. As shown in the line labeled r = rN in Figure 5.9, particles with E ∼ 1013 eV, which are
main population responsible for emitting X-rays, exist in the benchmark case, while such particles
can not exist at r = rN in the KC model. In our calculation, particles with higher energy escape
through the boundary r = rN more efficiently via the diffusion. As a result, given the radius r, the
spectrum with the diffusion effect becomes softer than the KC model spectrum. This behavior is
similar to the result of the time-dependent 1-zone model by Mart́ın et al. (2012), which takes into
account the diffusive escape from the nebula. The spectral softening due to particle diffusion is the
same mechanism as that seen in the cosmic-ray spectrum in our galactic plane (e.g. see Strong &
Moskalenko, 1998).

The amplification of the magnetic field by the back-reaction of the diffusion also affects the
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particle spectrum through the synchrotron cooling. As seen in Figure 5.6, in the benchmark case, the
magnetic field is stronger than the KC model at any radius. Although the radiative cooling becomes
more severe, the radius at which the particles are able to reach is not reduced. As the diffusion is
more efficient for particles with higher energy, even if it receives the effect of strong radiative cooling,
the particles are able to spread to outer side of the nebula. In addition, high energy particles are
more likely to be distributed to the outer side of the nebula and emit synchrotron emission more
efficiently, so that the spectrum of particles becomes more softer with increasing radius.

Based on the particle spectra shown in Figure 5.9 and the magnetic field shown in Figure 5.6, we
can calculate the emission from the nebula. For the calculation of the emission, we adopt the same
method in Chapter 3. We consider only synchrotron radiation and ICS including the Klein–Nishina
effect. The model of the interstellar radiation field is taken from GALPROP v54.1 (Vladimirov
et al., 2011, and references therein), in which the results of Porter & Strong (2005) are adopted.

Figure 5.10 shows entire spectra of the nebula for each κ0, which calculated by using spectra of
particles shown in Figure 5.9 and profiles of the magnetic field shown in Figure 5.6. In the case of
κ0 = 1023 cm2 s−1, it is almost the same as the KC model. The entire spectrum of the benchmark
case becomes harder than the KC model. As seen in Figure 5.9, the particle energy spectrum
becomes softer with increasing radius. However, due to the strong magnetic field, synchrotron
photons with the high frequency are efficiently emitted and the spectrum becomes hard. More
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Figure 5.10: The entire photon spectrum calculated for various values of κ0.

precisely, since the high energy particles are diffused to outside region, where the magnetic field
is strong, high-energy synchrotron photons are efficiently emitted from the outer region. As a
result, this mechanism hardens the integrated spectrum. On the other hand, the flux of the inverse
Compton scattering monotonically decreases with increasing the diffusion coefficient κ0. This is
because as the diffusion coefficient increases, the particles escape efficiently. Here, we have neglected
the emission outside the nebula so that the ICS flux decreases with κ0.

In Figure 5.11, the X-ray surface brightness profile is shown. As expected, the size of X-ray
emission region becomes larger with increasing κ0. Although the case of κ0 = 1025 cm2 s−1 almost
agrees with the case of κ0 = 1023 cm2 s−1 in Figure 5.6, clear differences are seen in the radial
profile of X-rays. This is because the diffusion is starting to be effective for a part of particles
having energy such as emitting X-rays for κ0 = 1025 cm2 s−1 case. In the benchmark case, the
emission region of X-rays extends to the edge of the nebula, where the magnetic field is strong. In
the case of κ0 = 2 × 1026 cm2 s−1, where diffusion is more effective than the benchmark case, a
peak in the X-ray surface brightness is observed around 100”. The peak radius roughly corresponds
to the radius at which the magnetic field amplification is finished. Outside the peak radius, the
effect of radiative cooling becomes efficient, so that it is considered that a peak-like structure in
brightness profile can be formed. Additionally, the radial profile of the photon index in X-rays is
also shown in Figure 5.12. For all the cases, the photon index shows a softening with increasing
radius. The sudden softening in the radial profile of the X-ray photon index of the KC model,
which is considered a problem with Reynolds (2003) or Slane et al. (2004), is improved by taking
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Figure 5.11: The dependence on the κ0 of the X-ray surface brightness profile for 0.5-10 keV range.
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into account the spatial diffusion. Furthermore, the photon index is kept harder as κ0 is larger.
The sudden softening at a certain radius in the KC model (Reynolds, 2003; Slane et al., 2004) is
not seen in our diffusion models.

Finally, in order to investigate how much the reaction of diffusion affects the emission of the
nebula, we compare the calculations with and without the back reaction of diffusion to the fluid.
The model without the back reaction is obtained solving the AD equation with κ0 = 1026 cm2 s−1

for the given velocity field in the KC model. In this case, the energy and momentum conservations
are not ensured. In Figure 5.13, the entire spectrum and the X-ray surface brightness are compared
with those of the benchmark model and KC model (κ0 = 0). If the back-reaction is not taken into
consideration, since the magnetic field is not amplified, the synchrotron component is estimated
about 2 times darker in the entire spectrum. Moreover, since the flow velocity is decelerated in the
benchmark case, the advection time in the benchmark case is longer than that in the KC model. Due
to the stronger magnetic field and the longer advection time, the spectral peak, which corresponds
to the cooling break, appears at lower frequency than the case without the back reaction. On the
other hand, there is not much difference in the X-ray surface brightness. Considering the back-
reaction, the emission region concentrates only a little at the center, because the magnetic field
amplifies and radiative cooling becomes efficient.
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Table 5.1: Parameters in our calculations.

3C 58 G21.5-0.9
Given Parameters Symbol KCa DF KCa DF

Spin-down Luminosity (erg s−1) Lsd 3.0× 1037 3.5× 1037

Distance (kpc) D 2.0b 4.8c

Radius of the nebula (pc) rN 2.0 0.9

Fitting Parameters

Break Energy (eV) Eb 4.1× 1010 3.0× 1010 2.6× 1010 6.0× 1010

Low-energy power-law index p1 1.26 1.08 1.1 1.2
High-energy power-law index p2 3.0 2.9 2.3 2.5
Radius of the termination shock (pc) rs 0.13 0.14 0.05 0.05
Magnetization parameter σ 1.0× 10−4 2.0× 10−4 2.0× 10−4 6.0× 10−4

Diffusion coefficient at Eb (cm2 s−1) κ0 - 1.0× 1026 - 1.0× 1026

Obtained Parameters

Initial bulk Lorentz factor γu 7.3× 103 2.4× 104 2.1× 104 1.9× 104

Pre-shock density (cm−3) nu 1.1× 10−11 2.7× 10−12 1.1× 10−11 1.3× 10−11

Pre-shock magnetic field (µG) Bu 0.79 1.0 3.1 5.4
Maximum energy (eV) Emax 9.5× 1013 1.3× 1014 1.4× 1014 2.5× 1014

Average magnetic field (µG) Bave 31 34 120 133
Advection time (year) tadv 1500 1300 800 630
Flow velocity at r = rN (km s−1) 490 540 460 720
Ratio of rpe to rN rpe/rN - 3.2 - 0.91

a The parameter of the broadband model shown in Chapter 3; b Kothes (2013); c Tian & Leahy (2008).

5.5 Application to the Observed Source

In this section, we apply our model to the two PWNe 3C58 and G21.5-0.9, for which we have rich
observational data especially in X-rays. Observational properties of these PWNe are summarized in
Table 5.1 (see Chapter 3 for detail). In these objects, for parameter sets that reproduce the entire
spectra, the extent of X-rays in the KC model inconsistently becomes smaller than the observed
extent.

As discussed in Chapter 3, the spectral indices of the observed spectra in X-rays can not be
reproduced by the KC model. If parameters are adjusted to reconcile the X-ray spectral index, the
IR/Opt and radio emission can not be reproduced. Below we discuss whether the diffusion effects
can resolve those problems or not. Hereafter we call the model with diffusion the DF model.

The model parameters and results are summarized in Table 5.1. For comparison, we also show
the result of “broadband model” in Chapter 3 (denoted ”KC” in Table 5.1), in which the diffusion
effect is not incorporated. For each object, despite the fact that the wind is more decelerating in
the DF model, the advection time in the DF model is shorter than that in the KC model. This is
because σ in the DF model is larger than that of the KC model. Furthermore, we also calculate the
ratio of rpe to rN, which is a measure of the effectiveness of diffusion. For 3C 58, since rpe/rN > 1,
the diffusion has not much effect on fluid motion. In contrast, in the case of G21.5-0.9, rpe/rN is
smaller than unity, this indicates that diffusion is efficient with this parameter set. For the DF
models, we adjusted the parameters in equation (5.24) as |rdiff − rs| ≤ 0.03rN and ∆r ≤ 0.008rN.
Those small values may not affect the results largely.

In Figure 5.14, the obtained radial profiles of 4-speed and the magnetic field are shown. As
expected from the value of rpe/rN, u(r) in 3C 58 shows an almost the same profile as the KC model
profile.

In G21.5-0.9, a modification of u(r) due to the diffusion is seen. For r > 1018 cm, since the
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Figure 5.14: Radial profiles of the 4-speed u(r) (left axis) and the magnetic field B(r) (right axis)
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magnetic pressure is large, the deceleration and amplification of the magnetic field are almost
saturated. Despite the high-σ and amplification of the magnetic field, the magnitude of the average
magnetic field is not so different between the DF model and the KC model, because the volume-
averaged magnetic field is largely controlled by the field near the edge of the nebula, which are
almost the same in the two models.

For the DF model, obtained flow velocity at the edge of the nebula is 540 km s−1 and 720 km
s−1 for 3C 58 and G21.5-0.9, respectively. These value are roughly consistent with the observed
expansion speed 400 km s−1 and 870 km s−1 for 3C 58 (Bietenholz, 2006) and G21.5-0.9 (Bietenholz
& Bartel, 2008), respectively.

Figure 5.15 shows energy spectra of pairs for 3C 58 and G21.5-0.9, and Figure 5.16 shows the
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Figure 5.16: Entire photon spectra for 3C 58 (left panel) and G21.5-0.9 (right panel). The red
line represents the DF model, and the black line represents the KC model calculated with the
”broadband model” parameter in Chapter 3. The data points are taken from Weiland et al. (2011)
(radio), Green (1994), Slane et al. (2008) (IR), Torii et al. (2000) (X), Li et al. (2018) (GeV), and
Aleksić et al. (2014) (TeV) for 3C 58, and Salter et al. (1989) (Radio), Gallant & Tuffs (1998) (IR),
Tsujimoto et al. (2011), Nynka et al. (2014), de Rosa et al. (2009), Hitomi Collaboration et al.
(2018) (X), Ackermann et al. (2011) (GeV), and Djannati-Atäı et al. (2008) (TeV) for G21.5-0.9.

entire spectra obtained from these particle spectra. First, for both the cases, the diffusion is not
effective for particles at E′

± ∼ Emin, so the treatment with the fluid picture, as mentioned in Section
5.2, is justified. In 3C 58, although the diffusion is not effective for particles with E′

± ∼ Eb, the
particle spectrum above 1013 eV is significantly modified by diffusion. Thus, the cutoff shape in the
energy spectrum like the KC model does not appear in the DF model, rather it becomes a shape
that softens smoothly with the radius. In the DF model, since high energy particles are exist also
in the strong magnetic field region where such particles can not exist due to radiative cooling in
the KC model, so the DF model produces a harder entire spectrum. As a result, despite the fact
that the injection spectrum of particle changed little, the hard spectrum observed in X-ray is able
to reproduced. Thus, just considering the weak diffusion that does not affect the fluid motion, the
entire spectrum changes greatly from the KC model.

In the DF model of G21.5-0.9, which is the case where diffusion is more effective than the case
of 3C 58, not only the effect of diffusion seen in 3C 58 case but also the effect of changing the profile
of the fluid can be seen. As shown in Figure 5.14, the velocity field decelerates more shallowly
than r−2 outside r ∼ 1018 cm, so the adiabatic cooling becomes efficient. As a result, the energy
spectrum of particles shows an evolution that all particles lose energy simultaneously with increasing
radius. Moreover, the spectrum of the synchrotron radiation shifts to the higher frequency side due
to the amplification of the magnetic field. The highest frequency X-ray of synchrotron radiation
is emitted at the place where the magnetic field is most amplified, while the IR/Optical emission
is most strongly emitted around the edge of the nebula. Although particles near the edge of the
nebula lose energy with adiabatic cooling, whereas particles near the radius where the magnetic
field is most amplified do not lose much energy by adiabatic cooling. Therefore the IR/Optical
emission emitted inefficiently, so that the resulting entire spectrum being hard.

In the DF model, the fluxes of γ-rays in both objects are several times lower than the observation.
However, considering the following two points, this discrepancy can be solved. The first is the
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uncertainty of the interstellar photon field. The γ-rays are emitted mainly via the ICS with the
infrared photon from the interstellar dust. Since the flux of the ICS is roughly proportional to the
energy density of the seed photons, the γ-ray flux in our model is largely affected by the uncertainty
of the inter stellar radiation field (e.g., Torres et al., 2013). In addition, the photon field model
used in our calculations is a value in ordinary interstellar space, but the supernova remnants may
be the site of dust formation (Kozasa et al., 2009), so that the intensity of the dust radiation may
be different from ordinary interstellar space.

The second point is γ-ray emission from particles escaped out of the nebula. Recently, Abey-
sekara et al. (2017a) (HAWC) reported that around the Geminga there is a much larger γ-ray halo
than the X-ray PWN. Even for MSH 15-52, whose age is comparable to that for G21.5-0.9 and 3C
58, diffuse γ-ray emission extending beyond X-rays was detected (Tsirou et al., 2017). Those facts
suggest that electrons and positrons escape out of the PWN to the ISM. For example, an electron
and a positron with energy EVHE = 1.5× 1013 eV product γ-rays of ∼ 1 TeV via the ICS with the
CMB photons (∼ 10−3 eV). For both fitting results, diffusion is more effective for such particles than
advection. If such particles continuously escape out of the nebula by diffusion,2 during the age of the
nebula ∼ tadv, the number of escaped particles is Nesc ∼ 4πr2N(κ(EVHE)/rN)EVHEn(rN, EVHE)tadv.
Roughly adopting E2

VHEn = 10−13 erg cm−3 (10−12 erg cm−3) for 3C 58 (G21.5-0.9), the number is
estimated as Nesc ∼ 1043 for both PWNe. The energy release rate via ICS with the CMB photons is
∼ 10−11 erg s−1 per particle. Then, the γ-ray flux from escaped particles is estimated as comparable
to the flux inside the nebula for both the cases. The observed gamma-ray fluxes in Figure 5.16 may
include both the components inside and outside the nebula. Assuming the same diffusion coefficient
inside and outside the nebula (see section 5.6), the extent of γ-rays is estimated as ∼ rN +

√
κtadv,

which is ∼ 4 pc (400′′) for 3C 58, and ∼ 2 pc (90′′) for G21.5-0.9, respectively.

In G21.5-0.9, a spectral break around a few keV is reported by Nynka et al. (2014) (NuSTAR)
and Hitomi Collaboration et al. (2018). Moreover, by using the time-dependent 1-zone model,
Hitomi Collaboration et al. (2018) concluded that the spectral break is not reproduced under the
conventional assumption of the particle injection and the energy loss processes. Also, if we try to
explain this spectral break with a cooling break of a 1–D steady model, we need to take parameters
like the “alternative model” shown in Chapter 3, then it is inconsistent with observation fact of the
entire spectrum in radio and optical band and of the age of the nebula. Our model considers the
diffusion process in addition to the spatial structure, but it was not eventually possible to reproduce
this spectral break. Rather, the cooling break becomes smoother due to the diffusion process, so
that it would be difficult to explain such a sharp break simply by considering the spatial diffusion
process. If we seriously accept this spectral break, the alternative model without the diffusion in
Chapter 3 would be better than the diffusion model.

The radial profile of the X-ray surface brightness is shown in red-thick line in Figure 5.17. All
curves of the surface brightness of the model in the figure are normalized to be 1 at the center. Since
the absolute value of the flux can be fitted in the entire spectrum, the observed value in Figure 5.17
is plotted by multiplying a constant multiple so that the result of integrating the surface brightness
profile in the radial direction matches the observed value with the model line. Furthermore, as
there is a possibility of contribution from the central pulsar, the observed values at the center of
the surface brightness of both objects are excluded from the calculation. In both objects, since the
X-rays extent to the edge of nebulae, it can be said that the observed data could be reproduced
qualitatively. The observed X-ray profile of G21.5-0.9 is well reproduced quantitatively, but for 3C
58, it is not done well. The reason why the surface brightness of 3C 58 does not be quantitatively

2 While higher energy particles can escape from the nebula, almost all (low-energy) particles are still confined
inside the nebula.
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Figure 5.17: Radial profiles of the surface brightness of X-rays (3-5 keV; bold), radio (4.75GHz;
dashed), optical (3944-4952Å; dashed double-dotted), 0.8-2 TeV γ-rays (thin) and 8-10 TeV γ-rays
(dashed dotted). The red lines represent the DF model, and the thin black solid line represent the
X-ray profile of the KC model. All curves are normalized as unity at the center. The data points
are taken from Slane et al. (2004) (X) for 3C 58, and Bock et al. (2001) (radio) and Matheson &
Safi-Harb (2005) (X) for G21.5-0.9.
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Figure 5.18: Radial profiles of the photon indices in 0.5-10.0 keV range in the DF model (red),
and the KC model (black). The data points are taken from Slane et al. (2004) and Matheson &
Safi-Harb (2005) for 3C 58 and G21.5-0.9, respectively.

reproduced is considered to be due to the possibility of contamination of X-rays from SNR and
that spherical symmetric approximation is not appropriate. Note that, we also plot the surface
brightness in radio (4.75 GHz), optical (3944-4952 Å), and γ-rays (0.8–2 TeV and 8–10 TeV). For
radio and optical band, the surface brightness profile is almost spatially uniform and shows a profile
that it becomes dim rapidly at the edge. For γ-rays, the width at half maximum of the size of the
γ-ray emission region becomes the smaller with increasing energy of the observing γ-ray.

In Figure 5.18, the radial profile of photon index is shown. Although sudden softening in KC
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model was solved, the observed values are not well reproduced quantitatively even with DF model.
For 3C 58, the fact that the radial dependence of the photon index is not reproduced may be due to
the same reason as in the case of the surface brightness that the shape is deviated from the spherical
symmetry. On the other hand, for G21.5 - 0.9, the degree of softening in the radial direction is
similar to the observation, but the absolute value is deviated.

5.6 Discussion

The escaped particles from the nebula also emit gamma-rays as detected from Geminga (Abeysekara
et al., 2017a), where the diffusion coefficient outside the nebula is estimated as κ(E = 100 TeV) ∼
2 × 1027 cm2 s−1. This value is close to the values inside the nebulae in our model. Adopting the
same diffusion coefficient outside the nebulae, our model yields the gamma-ray halo of 400′′ for 3C
58, and 90′′ for G21.5-0.9, respectively. The contribution from the halo emission may improve the
dim gamma-ray fluxes in our model. We expect that a better angular resolution of CTA (Bernlöhr
et al., 2013) will confirm an extended component around G21.5-0.9 and 3C 58.

The diffusion coefficients at E± ∼ 1014 eV in our model for G21.5-0.9 and 3C 58 are consistent
with the previous values in Porth et al. (2016) and Tang & Chevalier (2012). In other words, the
effect of the back-reaction of the diffusion does not affect the parameter estimate so much in those
objects (rpe/rN ≳ 1). However, it is not trivial whether the back-reaction affects significantly or
not, in other cases.

Estimating the mean free path λ of a particle using D = λc/3, it is about 0.05 pc in both
objects. In the setting of this paper, since the diffusion of particles is perpendicular to the global
magnetic field, the mean free path is given by λ ∼ rL(δB/B)2 within the framework of the quasi-
linear theory of the resonant scattering (e.g., Blandford & Eichler, 1987), where rL is the gyro radius
of the particle and δB is the turbulence amplitude at the scale of ∼ rL.. Our model parameter set
implies rL ∼ 10−3 pc so that δB/B > 1 is required to achieve the value κ ∼ 1027 cm2 s−1 at 1014

eV, which indicates that the simple picture of the quasi-linear theory is no longer valid (cf. in the
typical interstellar space, δB/B ∼ O(10−2) 3). As discussed in Tang & Chevalier (2012), if the
direction of the magnetic field deforms in the radial direction as seen in the Rayleigh–Taylor finger,
the particles can diffuse efficiently in the radial direction. On the other hand, as proposed in Porth
et al. (2016), the transport of particles due to the global vortex motion is also a candidate of an
effective diffusion process. In this case, the energy dependence of the diffusion coefficient is very
weak, such a model is different from ours. In this model, further assumptions are needed to consider
the escape of particles from the nebula. Therefore, the value of the diffusion coefficient suggested
by our model is not trivial. Besides diffusion, there may be other options for modifying the KC
model.

As shown in Figure 5.18, the radial profile of the photon index in the DF model of G21.5-0.9
has deviated from the observed value in absolute value, but the degree of softening in the radial
direction has been consistent with observation. The deviation of the absolute value suggests that
the index of injection spectrum is different in the first place. It also supports this that the spectral
index of soft X-ray of the entire spectrum is not explained. As we discussed in Section ??, it is
difficult to reproduce the observed spectral break of several keV with only the effects of cooling and
diffusion, which suggests that there is a more complex structure in the injection spectrum. As one
possibility to explain this, there are ideas that particles emitting radio and IR/optical and particles
emitting X-rays have different origins, as proposed by Tanaka & Asano (2017) (and also proposed
in Chapter 3.). An observation focusing on the morphology coincidence in radio and IR/optical will

3This is estimated assuming the parallel diffusion (e.g., Strong et al., 2007).
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be a clue as to which frequencies of the entire spectrum are emitted from the same component.
In this model, for simplicity, we have adopted a uniform diffusion coefficient. If we consider the

spatial dependence of the diffusion coefficient, a more sophisticated model to explain the observed
properties may be possible. In order to establish such a model, study for both the microscopic plasma
waves and hydrodynamic turbulence should be promoted. Furthermore, a detailed investigation of
the escape process from the nebula is also required. Since particles escape through the contact
discontinuity to the SNR, the turbulence near r = rN as the result of the interaction between the
SNR and the PWN is important.

5.7 Conclusion

In this work, in order to consider the spatial diffusion process in the 1–D steady model of PWNe,
we have formulated the transport equation of non-thermal pairs and the fluid equations. In the
model of PWNe, since the random-walking non-thermal particles also constitute the ”background
fluid” that is the reference of the diffusion, we have made the definition of the fluid frame clear
and derived the fluid equations with careful treatment of the diffusion. Furthermore, we have
numerically calculated these equations for 1–D steady PWNe, and investigated the dependence on
the diffusion coefficient of the fluid structure (the velocity field and the magnetic field), the entire
spectrum and the radial profile of the surface brightness in X-ray. With increasing the diffusion
coefficient, the entire spectrum becomes harder, and the X-ray surface brightness extents larger.
For the fluid structure, we have found that the diffusion process causes the deceleration of the flow
by the back reaction of diffusion. The deceleration leads to amplification of the magnetic field, and
influences the energy distribution of particles through radiation cooling nonlinearly.

We have applied this model to 3C 58 and G21.5-0.9, which had been pointed out that the ob-
served entire spectra and X-ray profiles can not be reproduced simultaneously by KC model. For
these objects, entire spectra and X-ray surface brightness have been almost reproduced simultane-
ously. This is the first attempt to reproduce both entire spectra and X-ray surface brightness with
diffusion effect. Roughly speaking, we have succeeded in reproducing them. However the γ-ray
fluxes of entire spectra are the two times darker than the observed ones, and radial profiles of the
photon index are slightly deviated from the observed data.



Chapter 6

Summary and Future Prospects

The rotation powered pulsar releases their rotation energy as a relativistic wind of electrons and
positrons, called the pulsar wind. This relativistic outflow forms a shock structure via the interaction
with the surrounding medium. Such a shocked wind spread around the pulsar is called the pulsar
wind nebula.

The observed radial profiles of the X-ray emission from Pulsar Wind Nebulae (PWNe) have been
claimed to conflict with the standard one-dimensional (1-D) steady model, called the KC model.
However, the KC model has not been tested to reproduce both the volume-integrated spectrum and
the radial profile of the surface brightness, simultaneously. Our aim is to construct a consistent
model of the radial profile and emission in PWNe.

We revisited the 1-D steady model and apply it to the Crab nebula, 3C 58 and G21.5-0.9. We
found that the parameters of the pulsar wind, the radius of the termination shock rs and magneti-
zation σ, greatly affect both the photon spectrum and radial profile of the emission. We had shown
that the parameters constrained by the entire spectrum lead to a smaller X-ray nebula than ob-
served one. We had also tested the case that reproduces only the observations in X and gamma-rays,
ignoring the radio and optical components. In this case, there are parameter sets that reproduce
both the spectrum and emission profile, but the advection time to the edge of the nebula becomes
much smaller than the age. Our detailed discussion clarified that the KC model has severe difficulty
to reproduce both the volume-integrated spectrum and the surface brightness simultaneously. This
implies that the model should be improved by taking into account extra physical processes such as
temporal evolution of the nebula or spatial diffusion of particles. Additionally, we calculated the
surface brightness profile of the radio, optical and TeV gamma-rays. The future observations in
these wavelengths are also important to probe the spatial distributions of the relativistic plasma
and the magnetic field of PWNe.

Since we found that the KC model has difficulty in reproducing the entire spectrum and the
X-ray surface brightness simultaneously, we discuss improvement of the KC model. The main
assumptions in the KC model are steady state, spherical symmetry and toroidal magnetic field
configuration. In Chapter 4, we investigated the validity of the steady-state approximation of the
nebula. We solved the time-dependent and spherical symmetric MHD equations taking into account
the effect of the spin-down evolution of the central pulsar and the surrounding SNR. Although the
steady KC model ignores the time-dependent effect, it showed a very good agreement on both the
fluid structure and the emission calculated in the time-dependent 1-D model.

Therefore, we next considered a model that changed the assumption of toroidal magnetic field
configuration from the KC model. Namely, in addition to the ordered toroidal field, we considered a
turbulent magnetic field to be present, and constructed a model that includes the diffusion process,
which is not considered in the KC model in the particle transport process. The previous studies
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adopted a large diffusion coefficient that makes diffusion more efficient than advection in order to
reproduce the large extent of the X-ray. In such a case, since the pressure profile of the fluid changes
significantly, the hydrodynamic structure in the PWN may change. In Chapter 5, we presented a
PWN model solving both advection and diffusion of non-thermal particles in a self-consistent way to
satisfy the momentum and energy conservation laws. Assuming spherically symmetric (1–D) steady
outflow, we calculated the emission spectrum integrating over the entire nebula and the radial profile
of the surface brightness. We found that the back reaction of the particle diffusion modifies the
flow profile. The photon spectrum and the surface brightness profile are different from the model
calculations without the back reaction of the particle diffusion. Our model had been applied to the
two well-studied PWNe 3C 58 and G21.5-0.9. By fitting the spectra of these PWNe, we determined
the parameter sets and calculate the radial profiles of X-ray surface brightness. For both the objects,
obtained profiles of X-ray surface brightness and photon index are well consistent with observations.
Our model suggests that particles escaped from the nebula significantly contribute to the gamma-ray
flux. A γ-ray halo larger than the radio nebula has been predicted in our model.

The extent of the X-ray emission region is as large as that of the radio in 3C 58 and G21.5-0.9,
which can not be explained by KC model. Therefore the spatial diffusion seems indispensable to
reproduce the X-ray extent. The time-dependent effect is not important for solving the problem of
X-ray extent, but is important for the middle and old aged PWNe due to the interaction between
the PWN and the SNR reverse shock.

Spatially resolved observation with very high energy γ-rays is important for verifying the dif-
fusion model. CTA telescope currently under construction is expected to achieve a better angular
resolution (∼ O(10)′′), which is sufficient to confirm the presence or absence of a predicted γ-ray
halo predicted by the diffusion model. Furthermore, for the case of 3C 58, CTA might be spatially
resolve. The surface brightness in the synchrotron band, the information of the energy density of the
particle and the magnetic field strength are degenerate, whereas the surface brightness of the γ-ray
is not related to the magnetic field. Thus, measuring the surface brightness of γ-ray emission in
detail is very important for unlocking degeneracy. Also, unlike the Cherenkov telescope, HAWC is
good at detecting largely extended sources. For several old pulsar wind nebulae including Geminga,
γ-ray halos have been detected. If this is also found about young objects, pulsars efficiently emit
electrons and positrons into the interstellar space, which also have an impact on the research of
cosmic-rays.

Observation by hard X-ray and soft γ-ray are also important in the sense of observing emission
from the highest energy electrons in the nebula. The observation of SED in such energy band
corresponds to examining the acceleration limit of the particle. Since this is linked to the strength
of the magnetic field at the termination shock, we can constrain the sigma parameter better. If
the SED does not show a cutoff shape with higher energy than the energy determined from fitted
SED suggested by σ, this will also pose a new problem for the PWNe model. It is also important
to observe spatially resolved observations, especially energy-dependent morphologies. For particles
with higher energy, both radiative cooling and the diffusion effect become more efficient, so that we
can verify the propagation process of particles in the PWNe more severely.

The specific physical process indicated by the value of diffusion coefficient obtained by us is
still unclear. The obtained diffusion coefficient is a parameter that can not be treated in the quasi-
linear approximation, so that it is significantly different from the naive understanding in cosmic-
ray diffusion. This large diffusion may be caused by the global eddy motion of the fluid or the
deformation of the magnetic field structure due to the filament extending from the SNR. In order
to take these effects into consideration precisely, 2D or 3D calculations are necessary. However,
computational cost in 2D or 3D makes it difficult to find model parameters. So a 1-D model is still
valuable to survey the model parameters, as Tanaka et al. (2018) have modeled phenomenologically
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the multi dimensional effects into a 1-D model.
By considering a 1-D model that treats the eddy motion as an eddy viscosity, it would be

interesting to discuss the kinematic mixing by eddy motion. There is still much room for discussion
on the diffusion of particles escaping outside the nebula. By incorporating the effect of the spatial
diffusion into the time-dependent 1-D model, if we construct a transport model of particles from
the PWN to the interstellar space, we can quantitatively discuss the amount of leptonic cosmic-rays
from the pulsar. No matter how nebula shows complex structure, the study with simple modeling
of pulsar wind nebulae is still important.



Appendix A

Detail Review of a 1–D steady MHD
flow

A.1 Relativistic MHD Equations

A.1.1 Conservation laws in relativistic MHD

The covariant expression of the particle number flux is

nµ ≡ nuµ = (ncγ, nγv), (A.1)

where n is the number density measured in the fluid rest frame and the uµ is the four speed of
the fluid. The conservation law of the number is written as:

∂µn
µ = 0. (A.2)

The conservation law of energy and momentum combining matter and electromagnetic field is

∂ν
(
Tµν
M + Tµν

EM

)
= 0. (A.3)

The energy momentum tensor of the perfect fluid Tµν is written as

Tµν
M =

ϵ+ P

c2
uµuν + pηµν , (A.4)

where ϵ is the internal density of the fluid including the rest mass energy, P is the gas pressure of
the fluid, u is the four velocity of the fluid and ηµν is the Minkowski metric. The energy momentum
tensor of the electromagnetic field Tµν

EM is

Tµν
EM =

1

4π

(
FµνF ν

λ −
1

4
ηµνF λρFλρ

)
, (A.5)

where Fµν = ∂µA
ν−∂νA

µ is the electromagnetic tensor. The energy momentum tensor of the entire
system Tµν = Tµν

M + Tµν
EM in matrix form is

Tµν =

(
(ϵ+ P ) γ2 − P + E2+B2

8π (ϵ+ P ) γ2β + 1
4π (E ×B)

(ϵ+ P ) γ2β + 1
4π (E ×B) (ϵ+ P ) γ2β ⊗ β − 1

4π (E ⊗E +B ⊗B) + (P + E2+B2

8π )
←→
I

)
,(A.6)
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where E and B is the electric field measured in the reference frame. Therefore, in relativistic
MHD, the energy conservation law is written as

∂

∂t

[
(ϵ+ P ) γ2 − P +

1

8π

(
E2 +B2

)]
+∇ ·

[
(ϵ+ P ) γ2v +

c

4π
(E ×B)

]
= 0, (A.7)

and the momentum conservation law is written as

∂

∂t

[
(ϵ+ P ) γ2v +

c

4π
(E ×B)

]
+∇ ·

[
(ϵ+ P ) γ2v ⊗ v − c2

4π
(E ⊗E +B ⊗B)

]
+ c2∇

[
P +

E2 +B2

8π

]
= 0. (A.8)

A.1.2 MHD Systems

In the relativistic MHD equation, the charge density and the current density are not regarded as
dynamics variables. Since these are linked to an electromagnetic field by the Maxwell equation,
they are considered to be dependent variables determined from the electromagnetic field. This
corresponds to the assumption that the Ohm’s law for electric current is applicable. At the limit of
the ideal MHD where the electrical conductivity is infinite, this results in an ideal MHD condition
1

E +
1

c
v ×B = 0. (A.9)

From this condition and the Maxwell equation, we obtain:

∂B

∂t
= ∇× (v ×B) . (A.10)

This is called the induction equation. The induction equation is exactly same as its form in the
non-relativistic MHD. Consequently, the Alfvén theorem (i.e. the magnetic field lines are frozen
into the fluid) still holds in relativistic MHD equations.

In summary, in the relativistic MHD, the number of the dynamical variables are nine, namely
fluid velocity, energy density, pressure, number density and magnetic field. On the other hand, the
equations of MHD system are: the energy momentum conservation (A.7) and (A.8), particle number
conservation (A.2), induction equation (A.10) and equation of state. These equations become the
basic equation system of relativistic MHD.

A.2 Rankine–Hugoniot Condition in Relativistic MHD

A.2.1 Assumptions

Assumption 0 Ideal MHD

Assumption 1 A magnetic field is purely toroidal.

Assumption 2 A flow is purely radial.

Assumption 3 Ignoring the gas pressure of the unshocked pulsar wind.

1As can be seen from this condition, the electric field is also a dependent variable.
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Assumption 4 The unshocked pulsar wind is ultra-relativistic.

Assumption 5 The termination shock is stable.

Assumption 6 Physical quantities vary only along the radial direction.

Assumption 7 The adiabatic index of the shocked pulsar wind is 4/3. 2

Assumption 8 The flow is adiabatic.

In deriving the Rankine-Hugoniot condition, we choose the reference frame as the system
where the shock wave rests. According to Assumption 2, the shock wave is a perpendicular
shock, and from Assumption 1, the direction of the magnetic field is parallel to the wave front.
In the following description, the subscript 1 represents the upstream value, and the subscript 2
represents the downstream value. Also, we take the direction of flow x axis positively and take the
magnetic field to the positive direction of z. Therefore, the direction of the electric field is positive
in the y direction 3.

A.2.2 Number Conservation

Since the system is steady (Assumption 5) and the change in the physical quantity is only in the x
direction (Assumption 6), equation (A.2) is written as

∂

∂x
[nu] = 0. =⇒ n1u1 = n2u2. (A.11)

A.2.3 Magnetic Flux Conservation

The induction equation (A.10) is
∂B

∂t
= ∇× (v ×B) .

Since v ∥ x̂ (Assumption 2) and B ∥ ẑ (Assumption 1), v × B ∥ ŷ. Using the steady state
assumption (Assumption 5), we obtain

∂By

∂x
= 0. =⇒ ∂

∂x
[vB] = 0 (A.12)

According to the ideal MHD condition (Assumption 0), finally the induction equation (A.10) is
written as:

E =
B × v

c
=⇒ E =

vB

c
ŷ. (A.13)

Using u = γβ, we obtain

E =
u1B1

γ1
=

u2B2

γ2
. (A.14)

Note that this is also the condition that the normal component of the electric field is continuous on
the discontinuous surface.

2Equivalently, the shocked wind has enough relativistic temperature.
3Because the ideal MHD condition (A.9) holds according to Assumption 0.
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A.2.4 Energy and Momentum Conservation

The energy conservation law (A.7) is

∂

∂t

[
(ϵ+ P ) γ2 − P +

1

8π

(
E2 +B2

)]
+∇ ·

[
(ϵ+ P ) γ2v +

c

4π
(E ×B)

]
= 0.

Using Assumption 0 and 1, we obtain

∂

∂x

[
wγ2v +

c

4π
EB

]
= 0 (A.15)

where w = ϵ+ p is the enthalpy density. By introducing the specific enthalpy µ = w/n, we have

∂

∂x

[
nu

(
µγ +

B2

4πnu

)]
= 0 =⇒ µ1γ1 +

B2
1

4πn1u1
= µ2γ2 +

B2
2

4πn1u1
. (A.16)

Here, we used the number conservation law (A.11) and the magnetic flux conservation (A.14).

The momentum conservation (A.8) is

∂

∂t

[
(ϵ+ P ) γ2v

]
+∇ ·

[
(ϵ+ P ) γ2v ⊗ v − c2

4π
(E ⊗E +B ⊗B)

]
+ c2∇

[
P +

E2 +B2

8π

]
= 0

According to Assumption 0 and 1, the x-component of equation (A.8) gives

∇ ·
[
wγ2vvx −

c2

4π
(EEx +BBx)

]
+ c2

∂

∂x

[
p+

E2 +B2

8π

]
= 0 (A.17)

and y and z component give trivial equations. Since B ∥ ẑ and E ∥ ŷ, Ex = Bx = 0. Now using
v ∥ x̂ we obtain

∂

∂x

[
wγ2v2 + c2P +

c2

8π

(
E2 +B2

)]
= 0 (A.18)

Furthermore, using the equation (A.11) and (A.14), we have

µ1u1 +
P1

n1u1
+

B2
1

8πn1u1
= µ2u2 +

P2

n1u1
+

B2
2

8πn1u1
. (A.19)

A.2.5 Equation of State

Since the fluid is the ideal gas (Assumption 7) and is adiabatic (Assumption 8), equation of state is

P = (Γ− 1)
(
ϵ− nmc2

)
, (A.20)

where Γ is the adiabatic index. This is equivalent with the Poisson’s law

P ∝ nΓ. (A.21)

Using w = nµ = ϵ+ P , we obtain

µ = mc2 +
Γ

Γ− 1

(
P

n

)
. (A.22)
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A.2.6 Compression Ratio

Using the number density measured in the reference frame N = nγ, we define the compression ratio
Y as

Y ≡ N2

N1
=

γ2n2

γ1n1
. (A.23)

Using equation (A.11), we have

Y =
γ2u1
γ1u2

. (A.24)

Furthermore, using (A.14), we obtain

Y =
B2

B1
. (A.25)

Note that equation (A.25) is a natural result expected from the flux freezing.

Let us derive an equation of Y . First, solve the energy conservation law (A.16) for µ2. Then,

µ2 =
1

γ2

(
γ1µ1 +

EB1

4πn1u1
(1− Y )

)
. (A.26)

Since the downstream is the relativistic temperature (Assumption 7), Γ2 = 4
3 , so the equation of

state (A.22) is written as
4p2
n2

= µ2 −mc2. (A.27)

Substitute these into equation (A.19), we obtain

µ1u1 +
p1

n1u1
+

B2
1

8πn1u1
= µ2u2 +

p2
n1u1

+
B2

2

8πn1u1
.

Writing the second term on the right hand side with µ2 (A.27) and the third term on the right side
using Y , we have

µ1u1 +
p1

n1u1
+

B2
1

8πn1u1
= µ2u2 +

µ2

4u2
− mc2

4u2
+

B2
1

8πn1u1
Y 2. (A.28)

By using equation (A.27), we obtain

µ1u1 +
p1

n1u1
+

B2
1

8πn1u1
=

1

γ2u2

(
u22 +

1

4

)(
γ1µ1 +

B2
1

8πn1u1
× 2 (1− Y )

u1
γ1

)
− mc2

4u2
+

B2
1

8πn1u1
Y 2. (A.29)

Here we used the equation (A.14). Collecting all the terms on the right side, arranging them in
descending order, and dividing both sides by the coefficient of Y 2, we obtain

Y 2 − Y

[
2

γ2u2

(
u22 +

1

4

)
u1
γ1

]
+

[
2

γ2u2

(
u22 +

1

4

)(
4πn1u1γ1µ1

B2
1

+
u1
γ1

)]
− 2πn1u1mc2

B2
1

u2
u1
−
(
1 +

8πn1u
2
1µ1 + 8πp1
B2

1

)
= 0. (A.30)
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A.2.7 Flow Velocity at the Downstream

Ignoring the pressure p1 of the upstream pulsar wind (Assumption 3), µ1 ∼ mc2 can be said from
equation (A.22). Furthermore, considering the limit of a strong shock, we have u2 ≪ u1. Since
upstream is highly relativistic (Assumption 4), u1 ∼ γ1. Substituting these to equation (A.30), we
obtain

Y 2−Y

[
2

γ2u2

(
u22 +

1

4

)]
+

[
2

γ2u2

(
u22 +

1

4

)(
4πn1u1γ1µ1

B2
1

+ 1

)]
−
(
1 +

8πn1u
2
1µ1

B2
1

)
= 0. (A.31)

Here, introducing the magnetization parameter σ

σ ≡ B2
1

4πn1u1γ1mc2
, (A.32)

and substituting this to the equation of Y , we have

Y 2 − Y

[
2

γ2u2

(
u22 +

1

4

)]
+

[
2

γ2u2

(
u22 +

1

4

)(
1

σ
+ 1

)]
−
(
1 +

2

σ

)
= 0. (A.33)

Substituting equation (eq:Ygam) and multiplying u22 both sides, we have

γ22 − 2

(
u22 +

1

4

)
+

2u2
γ2

(
u22 +

1

4

)(
1 +

1

σ

)
− u22

(
1 +

2

σ

)
= 0. (A.34)

Using γ22 = 1 + u22, we have

u2

(
u22 +

1

4

)
= γ2

(
u22 −

1

4

σ

σ + 1

)
. (A.35)

Squaring both sides, we obtain

u22

(
u22 +

1

4

)2

=
(
1 + u22

)(
u22 −

1

4

σ

σ + 1

)2

. (A.36)

This is a bi-quadratic equation for u2, so it can be easily solved and the solution is as follows:

u22 =
8σ2 + 10σ + 1

16 (σ + 1)
±

√
64σ2 (σ + 1)2 + 20σ (σ + 1) + 1

16 (σ + 1)
(A.37)

Since σ is determined by only upstream physical quantity, equation (A.37) means that the down-
stream speed is represented by the upstream quantities.

A.2.8 Downstream Magnetic Field and Number Density

If we know Y , the downstream magnetic field and the number density can be obtained, because the
compression ratio in reference frame is

Y =
γ2u1
γ1u2

=
B2

B1
=

N2

N1
. (A.38)

Since u1 ∼ γ1 and γ2 = 1+u2, Y ∼
√

1+u2
2

u2
. As seen in equation (A.37), u2 is already written by the

downstream quantities, thus we have finished writing the downstream magnetic field and number
density by upstream quantities.
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A.2.9 Downstream Pressure and Temperature

Let us solve equation (A.16). Using equation (A.14), we write equation (A.16) as

γ1µ1 +
u1B

2
1

4πn1u1γ1
= γ2µ2 +

u1B
2
1

4πn1u1γ1

B2

B1
. (A.39)

According to Assumption 3 (p1 ≪ n1mc2), µ1 ∼ mc2. Using σ, we have

γ1mc2 + σmc2u1 = γ2µ2 + σmc2u1Y. (A.40)

Since p2 ≫ n2mc2, µ2 ∼ 4p2
n2

(Assumption 7), so

γ1mc2 + σmc2u1 = γ2
4p2
n2

+ σmc2u1Y. (A.41)

Using u1 ∼ γ1 (Assumption 4) and Y ∼ γ2
u2
, we obtain

p2
n1mc2u21

=
1

4γ2u2

[
1 + σ

(
1− γ2

u2

)]
. (A.42)

The left hand side of this equation is the pressure normalized by the upstream dynamic pressure.
If the sign of u22 in the equation (A.37) is taken the pressure takes a negative value for a small σ.
Therefore, the physical solution of (A.37) is limited to positive sign. Since T2 =

p2
n2
, the downstream

temperature is
T2

u1mc2
=

p2
n2u1mc2

=
1

4γ2

[
1 + σ

(
1− γ2

u2

)]
. (A.43)

Here we used the number conservation law (A.11)

A.2.10 Dependence on σ

With the above discussion, all physical quantities in the downstream are represented by upstream
physical quantities. In summary, we have

u22 =
8σ2 + 10σ + 1

16 (σ + 1)
+

√
64σ2 (σ + 1)2 + 20σ (σ + 1) + 1

16 (σ + 1)

Y =
γ2
u2

p2
n1mc2u21

=
1

4γ2u2

[
1 + σ

(
1− γ2

u2

)]
T2

u1mc2
=

p2
n2u1mc2

=
1

4γ2

[
1 + σ

(
1− γ2

u2

)]
.

In Figure A.1, the dependence of the 4-speed and the compression ratio on σ. The σ dependence
of the pressure is shown in Figure A.2.

High σ Limit

Expanding equation (A.37) with a power of 1/σ results in the following:

u22 = σ +
1

8
+

1

64

1

σ
− 1

64

1

σ2
+O

(
1

σ3

)
. (A.44)
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Figure A.1: The dependence on σ of the 4 velocity and the compression ratio in reference frame.

Then we obtain

u22 = σ +
1

8
+

1

64

1

σ
+ · · · (A.45a)

γ22 = σ +
9

8
+

1

64

1

σ
+ · · · (A.45b)

Y =
B2

B1
=

N2

N1
= 1 +

1

2

1

σ
+ · · · (A.45c)

T2

u1mc2
=

1

8
√
σ

(
1− 19

64

1

σ

)
+ · · · . (A.45d)

Note that these are solutions assuming that the downstream temperature is sufficiently high. In
order for the temperature expression to be valid, it is necessary to be u1 ≫ 8

√
σ. Furthermore, as

σ increases, the downstream temperature decreases and the compression ratio also approaches 1.
From these results, it is found that when σ is large, that is, when the energy of the magnetic field
is large, the shock wave effectively weakens.

Low σ Limit

Expanding equation (A.37) with a power of σ results in the following:

u22 =
1

8
+

9

8
σ − 9

8
σ2 +O

(
σ3
)

(A.46)
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Figure A.2: The dependence on σ of the gas, magnetic and ram pressure.

Then we obtain

u22 =
1 + 9σ

8
+ · · · (A.47a)

γ22 =
9 + 9σ

8
+ · · · (A.47b)

Y =
B2

B1
=

N2

N1
= 3(1− 4σ) · · · (A.47c)

T2

u1mc2
=

1√
18

(1− 2σ) + · · · . (A.47d)

These expressions are valid for σ ≲ 0.1.
Furthermore, taking the limit σ → 0, we obtain the downstream 3-speed

β2 =
u2
γ2
→ 1

3
, (A.48)

which recovers the result of the non-magnetized hydrodynamics.

A.3 Steady Solution to the Relaticistic 1–D MHD equations

In this section, we find a spherically symmetric steady flow with the physical quantity obtained
according to Rankine-Hugoniot condition as the boundary condition. We continue to use the as-
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sumptions in Section A.2. We set the direction of flow in the radial direction (r̂ direction), the
direction of the magnetic field in the azimuth direction (ϕ̂ direction) and the direction of the elec-
tric field in the zenith direction (θ̂ direction).

A.3.1 Basic equations

Number Conservation

From the number conservation law (A.2),

∂µu
µ = 0,

and the Assumptions 2,5, and 6, we have

∇r · [nu] = 0 =⇒ 1

r2
d

dr

[
nur2

]
= 0. (A.49)

Magnetic Flux Conservation

Let us reduce the induction equation (A.10),

∂B

∂t
= ∇× (v ×B) ,

for spherical symmetrical configuration. Since B ∥ ϕ̂ (Auumption 1), v ∥ r̂ (Assumption 2),
B × v ∥ θ̂, and the fact that the physical quantity has only the radial dependence (Assumption 6)
hold, so non-trivial equation from ∇ × v × B is obtained from only theta component. Thus, we
obtain

[∇× (v ×B)]ϕ = 0 =⇒ d

dr

[
ruB

γ

]
= 0. (A.50)

Energy Equation

Since the fluid motion is adiabatic (Assumption 8), the first law of thermodynamics is written as:

dE = −PdV =⇒ d

dr

(
ur2ne

)
+ P

d

dr

(
ur2
)
= 0. (A.51)

where e = ϵ/n is specific energy. In the 1–D configuration, this equation is equivalent with the
momentum conservation law.

Energy Conservation

The energy conservation law (A.7) is

∂

∂t

[
(ϵ+ P ) γ2 − P +

1

8π

(
E2 +B2

)]
+∇ ·

[
(ϵ+ P ) γ2v +

c

4π
(E ×B)

]
= 0.

Using Assumption 5 and 6, E ∥ θ̂ and B ∥ ϕ̂, we obtain

∇r ·
[
(ϵ+ P ) γ2v +

c

4π
(E ×B)

]
= 0 =⇒ 1

r2
d

dr

[
r2
{
(ϵ+ P ) γ2v +

cuB2

4πγ

}]
= 0. (A.52)

Furthermore, using w = nµ = ϵ+ P and the number conservation law (A.49), we obtain

nur2
d

dr

[
γµ+

B2

4πnγ

]
= 0. (A.53)
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Equation of State

From equation of state (A.22),

µ = mc2 +
Γ

Γ− 1

( p
n

)
,

and Γ = 4
3 (Assumption 7) and µ = (ϵ+ P ) /n = e+ p/n, we obtain

3p+ nmc2 = ne. (A.54)

Substituting this to the energy equation (A.51) and (A.49), we have

4p
d

dr

(
ur2
)
+ 3ur2

d

dr
(p) = 0. (A.55)

Dividing both sides by 3r2u and using equation (A.49), we obtain

d

dr
lnp− 4

3

d

dr
lnn = 0 =⇒ d

dr
ln
( p

n4/3

)
= 0. (A.56)

Momentum Conservation (Not used)

Although not used in the subsequent discussion, we derive the equation of momentum conservation
in steady and spherical systems. The divergence of the tensor T has a term due to the basis
differentiation, so it is necessary to calculate as follows:

(∇ · T )r =
1

r2
∂

∂r

(
r2T rr

)
+

1

r sin θ

[
∂

∂θ

(
sin θT rθ

)
+

∂T rϕ

∂ϕ

]
− 1

r

(
T θθ + T ϕϕ

)
(A.57)

Let T be

T ≡ (ϵ+ p) γ2v ⊗ v − c2

4π
(E ⊗E +B ⊗B) + c2

(
p+

E2 +B2

8π

)
←→
I , (A.58)

then we have:

T rr = (ϵ+ p) γ2vrvr −
c2

4π
(ErEr +BrBr) + c2

(
p+

E2 +B2

8π

)
= (ϵ+ p)u2 + c2

(
p+

E2 +B2

8π

)
,

(A.59)

T rθ = (ϵ+ p) γ2vrvθ −
c2

4π
(ErEθ +BrBθ) = 0, (A.60)

T rϕ = (ϵ+ p) γ2vrvϕ −
c2

4π
(ErEϕ +BrBϕ) = 0, (A.61)

T θθ = (ϵ+ p) γ2vθvθ −
c2

4π
(EθEθ +BθBθ) + c2

(
p+

E2 +B2

8π

)
= −c2

(
E2

θ

4π
+ c2p+ c2

E2 +B2

8π

)
,(A.62)

and

T ϕϕ = (ϵ+ p) γ2vϕvϕ −
c2

4π
(EϕEϕ +BϕBϕ) + c2

(
p+

E2 +B2

8π

)
= −c2

(
B2

ϕ

4π
+ p+

E2 +B2

8π

)
.

(A.63)
Here we used vθ = vϕ = 0, v2 = v2r , E = Eθeθ and B = Bϕeϕ. All components not shown here are
equal to zero. Using this to calculate the divergence of the tensor T , we obtain

1

r2
d

dr

[
r2
(
(ϵ+ p) γ2β2 + p+

E2 +B2

8π

)]
− 2p

r
= 0. (A.64)
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A.3.2 Derivation of 1–D Steady Flow Solution

In the shock wave, since the boundary condition is given as the value of the shock just downstream,
the solution is set to one. Namely, from the number conservation law (A.49), we have

nur2 = n2u2r
2
s = const.

From the magnetic flux conservation (A.50), we have

ruB

γ
=

rsu2B2

γ2
= const.

From equation of state (A.56), we have

p

n4/3
=

p2

n
4/3
2

= const.

Bernoulli Equation of Velocity Field

The equation of state (A.22) is written as:

4p = n
(
µ−mc2

)
. (A.65)

From the energy conservation law (A.53), we obtain

γ

(
µ+

B2

4πnγ2

)
= const.

Using the equation (A.65), we obtain

γ

(
µ+

B2

4πnγ2

)
= γ

(
µ−mc2 +mc2 +

B2

4πnγ2

)
= γ

(
4p

n
+mc2 +

B2

4πnγ2

)
= const. (A.66)

Furthermore, using the boundary condition, we obtain

γ

(
µ+

B2

4πnγ2

)
= γ

(
4p

n
+mc2 +

B2

4πnγ2

)
= γ

(
4p2
n2
×
(

u

u2

r2

r2s

)−1/3

+mc2 +
B2

2

4πn2γ22

(
u

u2

)−1
)

=
B2

2

4πn2γ22
γ

(
16πp2γ

2
2

B2
2

×
(
vz2
)−1/3

+
4πn2γ2mc2

B2
2

+
1

v

)
= const,

where v ≡ u/u2 and z ≡ r/rs. Here, introducing ∆ and δ, which defined as

∆ ≡ 16πp2γ
2
2

B2
2

, δ ≡ 4πn2γ2mc2

B2
2

, (A.67)

then we obtain the Bernoulli equation(
1 + u22v

2
) 1

2

(
δ +∆

(
vz2
)−1/3

+
1

v

)
= γ2 (δ +∆+ 1) . (A.68)
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The quantities δ and ∆ are written to more simplified forms as:

δ =
4πn2γ2mc2

B2
2

=
4πn1u1γ1mc2

B2
1

× B2
1

B2
2

× n2γ
2
2

n1u1γ1

=
γ1
u1
× u2

σu1
∼ u2

σu1
(A.69)

and

∆ ≡ 16πp2γ
2
2

B2
2

=
p2

n1mc2u21
× 4πn1u

2
1mc2

B2
1

× 4γ22B
2
1

B2
2

=
1

4u2γ2

[
1 + σ

(
1− γ2

u2

)]
× 4γ22B

2
1

σB2
2

=

(
1 + σ

σ

)
u2
γ2
− 1. (A.70)

Equation (A.36) is rewritten by using ∆ as

u2

(
u22 +

1

4

)
= u2γ2

(
u2 −

1

4γ2

1

∆ + 1

)
.

Multiplying
∆ + 1

u2
both sides of this equation, we obtain

(∆ + 1)

(
u22 +

1

4

)
= γ2u2 (1 + ∆)− 1

4

=
u22
σ

+ u22 −
1

4
.

Solving this for ∆, we have

∆ =

(
u22/σ

)
− 1

2

u22 +
1
4

. (A.71)

Let us check the dependence of δ and ∆ on σ. For σ ≫ 1, δ ∼ 1/ (u1
√
σ) enough smaller than

unity. Contrary, for σ ≪ 1, depending on the value of u1, δ is not always small. However, we assume
that u1 is enough large so that u1σ is sufficiently large and then consider δ to be small. Since ∆
depends only on σ, its behavior is simple. Considering the large limit of σ from the expression
(A.71), by using u22 ∼ σ we obtain

∆ =

(
u22/σ

)
− 1

2

u22 +
1
4

∼ 1

2σ
. (A.72)

For small σ, since u22 ∼ 1
8 , we obtain

∆ ∼
1
8σ −

1
2

1
8 + 1

4

∼ 1

3σ
. (A.73)
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A.3.3 Asymptotic Value

Let us find the flow velocity at very far. Taking the limit z →∞ of the Bernoulli equation (A.68)
and ignoring δ, we obtain (

1 + u22v
2
∞
) 1

2
1

v∞
= γ2 (∆ + 1) .

Solving for v∞, we have

v∞ =
[
γ22 (1 + ∆)2 − u22

]− 1
2
. (A.74)

Thus, we obtain

u∞ ≡ u2v∞ =

√(1 + σ)2

σ2
− 1

−1

=

(
σ2

1 + 2σ

) 1
2

(A.75)

β∞ ≡
u∞
γ∞

=

√
1

1 + 1+2σ
σ2

=
σ

1 + σ
. (A.76)

As this equation shows, when σ is large, the flow velocity has a finite value even at infinite point.

A.3.4 Other Quantities

By solving the Bernoulli equation (A.68), we can obtain the velocity field u(r) in the nebula. In
section, if u(r) is given, we explicitly write down how other physical quantities are obtained.

Number Density

From the number conservation (A.49), we obtain

nur2 = n2u2r
2
s . (A.77)

Using the boundary condition, we obtain

n = n2

(
vz2
)−1

. (A.78)

Magnetic Field

From the magnetic flux conservation (A.50), we have

ruB

γ
=

rsu2B2

γ2
.

Using the boundary condition, we obtain

B = B1
rsu2γB2

ruγ2B1

= B2
γ

γ2

1

zv
. (A.79)
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Pressure and Temperature

From the equation (A.21) and (A.49), we obtain

p

n4/3
=

p2

n
4/3
2

, nur2 = n2u2r
2
s

Furthermore, using equation (A.42), we have

p2
n1mc2u1

=
1

4γ2u2

[
1 + σ

(
1− γ2

u2

)]
.

Thus, we obtain
p

n1mc2u21
=

1

4γ2u2

[
1 + σ

(
1− γ2

u2

)]
× 1

(z2v)4/3
. (A.80)

The temperature is obtained by same way, namely

T

mc2u1
=

1

4γ2

[
1 + σ

(
1− γ2

u2

)]
× 1

(z2v)1/3
. (A.81)



Appendix B

Leptonic Emission

In this chapter, we briefly review the emission from the relativistic electrons (and positrons).

B.1 Synchrotron radiation

Electromagnetic radiation from a particle which gyrates with a relativistic velocity is called the
synchrotron radiation. The equation of motion of a particle under a uniform magnetic field is

mγ
dv

dt
=

e

v
v ×B. (B.1)

The solution of this equation is the gyro-motion, namely

v∥ = const, |v⊥| = const, (B.2)

the gyro frequency of the uniform circular motion is ωB/γ, where ωB is the cyclotron frequency

ωB =
eB

mc
. (B.3)

The total emitted power from the accelerated particle is given by (see Rybicki & Lightman,
1979, for detail)

P =
2e2

3c3
γ4
(
a2⊥ + γ2a2∥

)
, (B.4)

where a is the acceleration of the particle. Thus, the total emitted power averaged over all pitch
angles is calculate as:

Psyn =
4

3
σTcβ

2γ2UB, (B.5)

where UB = B2/8π is the energy density of the magnetic field.
As can be seen from Figure B.1, the duration of radiation ∆t in the reference frame can be

written as:

∆t ∼ 2

ωB sinα
, (B.6)

where α is a pitch angle of the charged particle. Since the charged particle moves against us, the
”received” duration ∆tA is different from ∆t, namely

∆tA =
2

ωc sinα

(
1− v

c

)
∼ 2

γ2ωB sinα
. (B.7)
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Trajectory

1 2

Center of Curvature
.

ΔΘ

Observer

a

1

γ

Figure B.1: The trajectory of a charged particle looking down from the direction of the magnetic
field. Note that the curvature radius of the trajectory is not γc

ωB
, but a = γc

ωB sinα , because the
trajectory is tilted by the pitch angle α. Due to the relativistic beaming effect, the electromagnetic
wave emitted from a relativistic particle is concentrated into the range of angles on ∼ 1/γ from the
direction of motion. As a result, the emission that the observer receives is limited to that emitted
while the particles move from 1 to 2.

Therefore, the typical frequency of the emission is written as:

ωc =
3

2
γ2ωB sinα. (B.8)

The detailed spectrum is obtained by integrating:

dW

dωdΩ
=

e2ω2

4π2c

[∫
n× (n× β) exp [iω (t0 − n · r0(t0)/c)] dt0

]2
, (B.9)

where n is a unit vector pointing to the observer and r0 is the trajectory of the particle. After some
calculation, the emitted power per frequency Psyn(ω) is obtained as (see Rybicki & Lightman, 1979,
for details):

Psyn (ω) =

√
3e2B sinα

2πmc2
F (x) , (B.10)

where x = ω/ωc,

F (x) = x

∫ ∞

x
K 5

3
(ξ)dξ, (B.11)

and Kν is the modified Bessel function of ν-th order. Note that Psyn(ω) takes its maximum value
at 0.29ωc rather than ωc.

For electrons which follow a power-law distribution, namely

dN

dγ
= N0γ

−p, (B.12)
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the total spectrum of the synchrotron emission is calculated as:

Ptot,syn(ω) =

√
3e3N0B sinα

2πmc2 (p+ 1)
Γ

(
p

4
+

19

12

)
Γ

(
p

4
− 1

12

)( mcω

3eB sinα

)−(p−1)/2
∝ ω−(p−1)/2. (B.13)

B.2 Inverse Compton scattering

The elastic collision of an electron and a photon, which takes into consideration the recoil of an
electron, is called the Compton scattering. Let us consider the situation where a photon of energy ϵ
is incident on a stationary electron as shown in Figure B.2. The conservation law of the 4-momentum
Pµ is written as:

Pm
γ u+ Pµ

e = Pm
γ,1u+ Pµ

e,1. (B.14)

By solving equation (B.14) for the energy of the photon after collision ϵ1, we have

ϵ1 =
ϵ

1 + ϵ
mc2

(1− cos θ)
. (B.15)

Figure B.2: The geometry of the Compton scattering.

The differential cross section is given by the Klein–Nishina formula, namely

dσKN

dΩ
=

r20
2

ϵ21
ϵ2

(
ϵ

ϵ1
+

ϵ1
ϵ
− sin2 θ

)
. (B.16)

The total cross section is

σKN = σT ·
3

4

[
1 + x

x3

{
2x (1 + x)

1 + 2x
− ln (1 + 2x)

}
+

1

2x
ln (1 + 2x)− 1 + 3x

(1 + 2x)2

]
(B.17)

where x = ϵ/mc2. For the non-relativistic limit (x≪ 1), we obtain the Thomson cross section

σKN ∼ σT, (B.18)
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and, for the ultra-relativistic limit (x≫ 1), we have

σKN ∼
3

8
σTx

−1

[
ln 2x+

1

2

]
. (B.19)

Next, we consider the situation where the electron is moving　 (see Figure B.3). From the
Lorentz transform, we have

ϵ′ = ϵγ (1− β cos θ) , (B.20)

and
ϵ1 = ϵ′1γ

(
1− β cos θ′1

)
. (B.21)

Assuming that x≪ 1 at the rest frame of the electron, we have

ϵ′1 ∼ ϵ′
[
1− ϵ′

mc2
(1− cosΘ)

]
, (B.22)

and
cosΘ = cos θ′1 cos θ

′ + sin θ′ sin θ′1 cos
(
ϕ′ − ϕ′

1

)
. (B.23)

K : reference frame K’ : electron rest frame

Figure B.3: Geometries of the inverse Compton scattering. The left represents the geometry in a
frame in which the electron moves rightward. The right is the geometry in the rest frame of the
electron.

For the case γ2 ≫ hν/mc2, we have

ϵ : ϵ′ : ϵ1 ∼ 1 : γ : γ2. (B.24)

For example, when an electron with γ ∼ 106 scatters a photon with ϵ ∼ 10−3 eV, the scattered
photon has energy ϵ1 ∼ ×1 GeV. However, when an electron with γ ∼ 106 scatters a photon
with ϵ ∼ 10 eV, the approximation x ≪ 1 is invalid because the photon energy at K ′ frame is
ϵ′ ∼ 107 eV > mec

2. In such a case, the electron is recoiled, and consequently the energy of the
scattered photon becomes about ϵ1 ∼ γmc2. In contrast to the Compton scattering, since the
photons gain energy by the scattering, this process is called the ”inverse” Compton scattering.

Assuming that the incident photon distribution is isotropic and the recoil of the electron is
negligible (equivalently ϵ′ ∼ ϵ′1), the total emitted (i.e., scattered) power is calculated as:

PIC =
4

3
σT cγ

2β2Uph, (B.25)
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where Uph is the energy density of the incident photons. The ratio of the equation (B.25) to (B.25)
is

Psyn

PIC
=

UB

Uph
. (B.26)

This means that the ratio of the power of the synchrotron radiation and the power of the inverse
Compton scattering emitted by single electron is equal to the ratio of the energy density of the
magnetic field and the energy density of the photon. Note that above relations are only valid for
x≪ 1.

The power per scattered photon energy from the isotropic electrons is obtained from (see Blu-
menthal & Gould (1970) for details):

Ptot,IC (Eγ) = cEγ

∫
dγN(γ)

∫
dϵnph(ϵ)σKN (Eγ , ϵ; γ) , (B.27)

where

σKN (Eγ , ϵ; γ) =
3σT
4ϵγ2

G (q, ηϵ) , (B.28)

G (q, ηϵ) = 2q ln q + (1 + 2q)(1− q) + 2ηϵq(1− q), . (B.29)

q =
Eγ

Γϵ(γmec2 − Eγ)
, Γϵ =

4ϵγ

mec2
, ηϵ =

ϵEγ

(mec2)2
. (B.30)

For the electrons which follow the power-law distribution (equation (B.12)), the spectral index of
the scattered photon Ptot,IC ∝ E−s

γ in the band where x ≪ 1 holds is (see Rybicki & Lightman,
1979, for details)

s =
p− 1

2
, (B.31)

which is the same as the case of the synchrotron radiation (equation (B.13)).



Appendix C

Particle Acceleration

C.1 Diffusive shock acceleration

Shocks in the context of astrophysics are often collisionless shocks. In a collisionless shock, particles
are able to cross the shock plane. Particles are advected together with the fluid from the shock
upstream to the downstream, but particles with some pitch angles may return to the upstream of the
shock waves. Such particles are again trapped in the fluid upstream and return to the downstream
again. Since the macroscopic fluid has much larger momentum than one microscopic particle, so this
process is equivalent to the elastic reflection of the particle. This means that a particle with energy
ϵ gets energy approximately ϵ∆u/c once every round-trip of the shock wave surface of velocity
difference ∆u. The probability of particles returning to the upstream is determined mainly by the
pitch angle of the particles and the velocity of the downstream fluid, not depending on the energy.
Therefore, in this process, particles with higher energy are more likely to obtain energy. As a result,
a non-thermal energy distribution extending to the higher energy than the Maxwellian distribution
is formed. This process is known as the Diffusive Shock Acceleration (DSA) (or First-order Fermi
acceleration).

In order to treat this process more quantitatively, it is appropriate to solve the advection–
diffusion equation of non-thermal particles on the background fluid profile. Let us derive the dis-
tribution function of non-thermal particles formed by DSA following Blandford & Eichler (1987).
The advection diffusion equation of non-thermal particles can be written as

∂f

∂r
+ (u · ∇) f −∇ · [nD (n · ∇) f ] = 1

3
(∇ · u) p∂f

∂p
(C.1)

where n is a unit vector pararell to the local magnetic field of the background fluid. This equation
is derived with an assumption that particles are almost isotropic in the momentum space, upstream
and downstream. To be accurate, it is an equation that considers up to the second order of minute
displacement from fluid approximation. Let us solve this equation under ∂t = ∂y = ∂z = 0, n ∥ ex
and the following fluid velocity u profile

u =

{
u− for x < 0
u+ for x > 0

, (C.2)

where subscript − and + represent physical quantities at the upstream and the downstream of
the shock wave, respectively. As a fluid profile, we consider a non-relativistic fluid. From the
Rankine-Hugoniot condition, the compression ratio is obtained as

1

ra
=

u−
u+

=
Γa − 1

Γa + 1
+

2

(Γa + 1)M2
(C.3)
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where Γa is the adiabatic index, and M is the Mach number of the shock wave. For Gammaa = 5/3
and the strong shock limit (i.e. M ≫ 1), it is approximately ra ∼ 4.

Now, the advection-diffusion equation to be solved is as

∂

∂x

[
uf −D

∂f

∂x

]
=

1

3
(u+ − u−) δ(x)p

∂f

∂p
. (C.4)

As a boundary condition, it is assumed that the phase space distribution becomes constant at
sufficiently downstream, namely f (−∞, p) = f− (p). For x ̸= 0, the solution to the equation is:

f (x, p) =

{
f−(p) + (f+(p)− f−(p)) exp

[∫ x
0

u−dx
D(x,p)

]
x < 0

f+(p) x > 0
(C.5)

The solution of x = 0 is derived from the continuity condition of equation (C.5). By integrating
with −ϵ < x < ϵ and taking the limit of ϵ→ 0, we obtain:

df+
d (ln p)

=
3ra

ra − 1
(f− − f+) . (C.6)

Solve for f+, we get:

f+ = qp−q

∫ p

0
f− (p0) p

q−1
0 dp0, (C.7)

where q = 3ra/(ra − 1). When f− is a distribution where the number of high energy particles
decreases (e.g. the Maxwell distribution), this equation means f+ ∝ p−q for sufficiently large p.
Thus, in DSA, it can be seen that a power-law distribution function can be formed at higher energy
than the thermal distribution. For M ≫ 1 (i.e. ra ∼ 4), q = 4. The energy spectrum of the particle
dN/dE ∝ p2f , that is, the number per unit energy, is dN/dE ∝ E−2.

C.2 DSA in Relativistic shock

When the velocity of the background fluid becomes relativistic, the approximation that the distri-
bution function of the particles is almost isotropic breaks. Therefore, analysis by equation (C.1) is
incorrect. In such a case, analysis by the numerical simulation is carried out. Since it is necessary
to calculate the particle acceleration for the particle deviated from the fluid approximation, it is
appropriate to use the PIC simulation. Sironi et al. (2013) investigated the particle acceleration
in relativistic perpendicular shock by PIC simulation. Figure C.1 shows the temporal evolution
of energy spectrum with σ = 0 (unmagnetized case). In a relativistic shock wave, it is believed
that a power-law spectrum with index about p−2.4 is formed. They also investigated how particle
acceleration process depend on the upstream magnetic field. Figure C.2 shows the σ dependence
of ϵB, which is the ratio to the kinetic energy of the up-stream plasma flow, and the phase space
x − γvx. When the magnetic field is weak, turbulent magnetic field is generated by the Weibel
instability both the upstream and downstream of the shock. This turbulent magnetic field becomes
a scatterer and the DSA mechanism works. Contraly, when the magnetic field is strong, a turbulent
magnetic field is not formed upstream and particles are not much returned. Thus, it is known that
particle acceleration process becomes inefficient in shock with a strong magnetic field. Note that
this is also one example of the sigma problem.
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Figure C.1: (Left) The temporal evolution of energy spectrum with σ = 0 (unmagnetized case).
(Right) Shifted energy spectrum to show that the exponential cutoff scale in t1/2. The figure from
Sironi et al. (2013). c⃝AAS. Reproduced with permission.

Figure C.2: Structure of the shock with varying σ. The left panels show the magnetic energy
fraction of the up-stream kinetic energy. The right panels show the phase space x−γvx. The figure
from Sironi et al. (2013). c⃝AAS. Reproduced with permission.



Appendix D

Notes on the Ideal MHD Condition in
the Diffusion Model

In this Chapter, we explain that the current generated by the diffusion process can be neglected in
generalized Ohm’s law. For simplicity, we discuss a non-relativistic case. The Boltzmann equation
of electrons and positrons is given by:

∂fs
∂t

+ v · ∇fs + qs

[
E +

v

c
×B

]
· ∂fs
∂p

= Ss (D.1)

where fs is the phase space distribution functions of particles, s is species (e=electron, p=positron),
E and B are the electric and magnetic field in the frame K, v is the velocity of each particle, and
S is the collision term.

In order to obtain the generalized Ohm’s law, we first derive the equation of motion. To prepare
for that, we define several moment amounts. The number density is calculated as:

ns ≡
∫

fsd
3p. (D.2)

The flow velocity is

Vs ≡
1

ns

∫
vfsd

3p. (D.3)

The gas pressure is

Ps ≡
∫

(v − Vs) (v − Vs) fsd
3p. (D.4)

Multiplying a momentum of a particle msVs to equation (D.1) and integrating over the momentum
space, we obtain the equation of motion,

∂

∂t
(msnsVs) +∇ · (msnsVsVs) = −∇Ps + qsns

(
E +

Vs

c
×B

)
+

∫
msvSsd

3p, (D.5)

where ms is the mass of a particle. Here we assume that the pressure is isotropic. Multiplying a
qs/ms to equation (D.5) and summing over s = e, p, we obtain,

∂J

∂t
+∇·[e (npVpVp − neVeVe)] =

e

m
∇ (Pe − Pp)+

e2

m
n

(
E +

V

c
×B

)
+e

∫
v (Sp − Se) d

3p, (D.6)

where J is a total current,
J = e (npVp − neVe) , (D.7)
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n is total density,
n = ne + np (D.8)

and V is total bulk flow velocity,

V =
1

n
(npVp + neVe) . (D.9)

Assuming that the charge neutrality np = ne, we obtain the generalized Ohm’s law,

∂J

∂t
+∇ · [JV + V J ] =

e

m
∇ (Pe − Pp) +

e2

m
n

(
E +

V

c
×B

)
+ e

∫
v (Sp − Se) d

3p. (D.10)

Since we consider the radiative loss rate of electron and positron are almost same, Pe ∼ Pp is hold,
so we neglect the first term of the right hand side. Furthermore, since we consider the long time
scale, we can neglect the left hand side 1. Note that the absence of the Joule dissipation term
is caused by neglecting the energy transfer between electrons and positrons. This corresponds to
the assuming that the fluid is a perfect conductor. The absence of the Hall term is caused by the
equality of the mass of electrons and positrons.

The purpose in this Chapter is to confirm that the contribution of the diffusion process in
Ohm’s Law is negligibly small. Let us estimate the diffusion term of equation (D.10). Adopting the
equation (5.3), we can proceed the calculation in the last term of equation (D.10) becomes

e

∫
v (Sp − Se) d

3p =

∫
ev∇ · [κ∇ (fp − fs)] d

3p. (D.11)

Thus, the current Jdiff generated by diffusion process is written by

Jdiff =

∫
eκ∇ [fp − fs] d

3p. (D.12)

By using the typical scale L of the system, we estimate Jdiff as:

Jdiff ∼
eκ

L
∆n±, (D.13)

where ∆n± =
∫
[fp − fs] d

3p is the local deference the number density between electrons and
positrons. On the other hand, the conduction current J can be estimated by using the Maxwell
equation:

J ∼ c

4πL
B ∼ c

4πL

c

V
E. (D.14)

The local difference ∆n± yields charge density, so that from Gauss’ law, we get:

J ∼ ec2∆n±
V

. (D.15)

Calculating the ratio of Jdiff to J , we obtain

Jdiff
J
∼ V

c

κ

Lc
. (D.16)

Even if we estimate the most pessimistic case, namely V ∼ c/3, L ∼ 1017 cm and κ ∼ 1027 cm2 s−1,
this value is 1 or less. In particular, κ ∼ 1027 cm2 s−1 is an exaggerated value, and such a large
value of the diffusion coefficient is only realized for the highest energy particles, which is the group
with the smallest number of particles. For the particles dominated in number, since the value of κ
is about two orders of magnitude lower, we can safely neglect the contribution of Jdiff . Thus, we
finally obtain the ideal MHD condition E + V ×B/c = 0 from equation (D.10).

1 Using the scale length L, we can estimate the value of (∂tJ) /
(
e2nV ×B/mc

)
∼ 1/

(
4πL2ren

)
, where re is the

classical electron radius. Substituting the typical value of PWNe, we can conclude that the right hand side is much
smaller than the Lorentz term. J/T/enV*Tc=(rho/en)*(Tc/T)
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