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Abstract

In the modern cosmology, there are several problems and interesting predictions involving strong

gravity such as the initial cosmological singularity problem, problem of initial conditions for

cosmic inflation, consistency of the generalized second law of thermodynamics, black hole in-

formation loss paradox, and metastability of the Higgs vacuum. It is one of the priorities of

modern cosmology to provide plausible cosmological scenarios which can be resolutions to these

problems or are consistent with some theoretical or experimental predictions. In this disserta-

tion, we approach these problems and provide some plausible scenarios regarding the beginning

and fate of the Universe by taking into account quantum effects in strong gravity.

Cosmic inflation is a standard scenario describing the early universe, which solves several fine-

tuning problems, and is consistent with the observational data of Cosmic Microwave Background

radiation. However, it has been expected that in order for inflation to start, homogeneity of

the Universe is necessary to some extent. The problem of initial conditions for inflation is to

assert how inflation began at the early stage of the Universe without assuming homogeneity of

space from the outset. Our scenario implies that the quantum tunneling effect of the initial

inhomogeneous space could lead to the birth of baby universes that accommodate inflating

domains. This can be one of the possible scenarios to solve the problem of initial conditions for

inflation. We also investigate the thermodynamical aspect of inflation, especially, the consistency

of the generalized second law of thermodynamics during inflation.

After the end of inflation, the Universe is thermalized since the energy of inflation is converted

to thermal radiation and the large scale structure eventually forms. In the present Universe,

black holes, originating from gravitational collapses of matter, are ubiquitous. The evaporation

process of black holes is still controversial due to the black hole information loss paradox. In

particular, the firewall argument in the paradox perhaps requires a drastic modification of the

picture of the multiverse and eternal inflation. We then provide a reasonable reason for rejecting

the firewall argument by focusing on the gravitational decoherence inside a black hole.

Regarding the future of the Universe, a number of interesting scenarios have been proposed

so far. For example, the metastability of the Higgs vacuum may lead to a catastrophic scenario

of the Universe. This is because the metastability implies that the Higgs vacuum we live in until

now might be metastable and the Universe could be filled by vacuum bubbles including large

and negative vacuum energy because of the first order phase transition of the Higgs vacuum.

Furthermore, it has been proposed that “impurities” in the Universe such as black holes would

be catalysts for the vacuum decays of the Higgs field. We then investigate horizonless compact
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objects as the catalysts for the vacuum decays.

We also discuss another interesting scenario regarding the fate of the Universe, and this

may give us a deeper insight into the beginning of the Universe as well. The original initial

singularity problem is an implication from the general relativity, which states that as long

as a plausible energy condition (strong energy condition) is satisfied, the initial singularity is

unavoidable at the finite past of the Universe. However, our scenario tells us that the initial

singularity or the real beginning of the Universe are no longer necessary and the Universe can be

eternal to past. Evaporating black holes in the far future of the Universe emit high-temperature

Hawking radiation. In our scenario, the energy of Hawking radiation around the mini black

hole is converted to vacuum energy due to the symmetry restoration of a related quantum field,

and then the symmetry restored region eventually start to inflate after the quantum tunneling

process. This implies that our Universe may have been created from a black hole in the previous

generation of the Universe, and in this sense, the Universe can be eternal to past.
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Chapter 1

Introduction

Cosmology is a science to understand the whole history of the Universe and the origin of matter

existing in the Universe. However, the cosmology was more philosophical before 1915 since a

tool to discuss the dynamics of spacetime, the general relativity (GR), had not been discovered

yet. The GR is still the standard gravitation theory after more than a century has passed since

its discovery. It gives us the dynamical picture of spacetime, that is, the Universe may expand

or contract depending on the details of matter filling the Universe. Of course, not only the

theoretical contribution from the GR but the observational contributions were also necessary

to make cosmology an exact science. In 1920s Lemâıtre and Hubble discovered the isotropic

redshift of galaxies, which implies that the Universe is almost uniformly expanding, and in

1965 Penzias and Wilson discovered the Cosmic Microwave Background radiation (CMB) with

temperature ∼ 3 K. Combining both discoveries, it seems natural to conclude that the Universe

was small and extremely high temperature stuff at its early stage, and then it expanded and

gradually became cold and isotropic. Furthermore, the development of particle physics and the

study of big bang nucleosynthesis also contributed to the understanding of the origin of matter

in the Universe.

Despite these radical developments of cosmology, there were fine-tuning problems in cosmol-

ogy: why our universe is flat, why monopoles or other exotic relics have never been observed,

and why the universe has its uniform temperature over the observable region although the Uni-

verse seemingly would not have any causality in the past. To solve these fine-tuning problems, in

1981 Sato [1] and Guth [2] proposed the “inflationary scenario”, which is regarded as a successful

paradigm in the modern cosmology since the idea does not only solve the fine-tuning problems,

but its theoretical prediction also fits the CMB observational data [3, 4] in a good accuracy.

Soon after the proposal of cosmic inflation, Vilenkin proposed [5] that the inflationary uni-

verse could be born from “nothing”. The quantum cosmology, a study of the creation of the
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Universe in quantum mechanical manner, has started at this time. However, it is found that

inflating space is not past-complete [6–9] and the Universe would suffer from the “initial singu-

larity”, at which the GR is broken, which is called the initial singularity problem.

It has been numerically and analytically investigated what kind of initial conditions are

necessary to start inflation and it is found that the initial condition of inflation should have

some power of homogeneous mode [10–22]. If we assume some homogeneity from the outset, the

horizon problem and nearly isotropic CMB might be no longer needed to be explained by the

inflationary paradigm. Therefore, this leads to another cosmological issue, that is, how natural

it might be to have proper conditions that satisfy conditions for inflation. This is called the

problem of initial conditions for inflation.

After the end of inflation, the vacuum energy is converted to the energy of thermal par-

ticles and those are diluted by cosmic expansion. Therefore, gravitational field in the present

Universe is weaker than that during inflation, but still there exist (locally) strong gravity re-

gions originating from gravitational collapses of matter which are called black holes. Black holes

are very mysterious objects not only in the context of cosmology or astrophysics, but also in

the context of thermodynamics [23–26], quantum field theory [27, 28], and (quantum) informa-

tion theory [29–31]. Bekenstein pointed out [23] that a black hole possesses its “gravitational

entropy” that is proportional to the area of black hole horizon. Hawking predicted thermal radi-

ation emitted from a black hole by quantum mechanical processes [27], which is called Hawking

radiation and its temperature is proportional to the inverse of black hole mass. Therefore, it has

been believed that all black holes in the Universe eventually evaporate and the final stage of the

Universe might be filled by thermal radiation∗). On the other hand, the recent prediction of the

Higgs metastability also gives another catastrophic scenario of the Universe, where an anti-de

Sitter (AdS) vacuum bubble is nucleated by the first order phase transition of the Higgs field

and expands to fill the whole Universe eventually.

In this dissertation, cosmological consequences of quantum effects under strong gravity (e.g.,

expanding universe, black holes, negative vacuum energy regions due to the Higgs metastability)

are discussed throughout the history of the Universe (see Fig. 1.1). This dissertation is organized

as follows. Chapter 2 is dedicated to the brief review of relevant topics; the initial singularity

problem, problem of initial conditions for inflation, Hawking-Moss instanton, the generalized

second law of thermodynamics, black hole information loss paradox, and Higgs metastability.

In Chapter 3, we discuss how inflation could began out of a highly inhomogeneous space.

∗)Interestingly, this scenario was already discussed in the context of classical thermodynamics by Kelvin in

1852. The scenario called “thermal death” states that the universe would eventually evolve to a state whose

entropy is maximized (the second law of thermodynamics) and there is no thermodynamic free energy.
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The problem of initial conditions for inflation has been discussed by performing numerical simu-

lations to follow the dynamics of an inhomogeneous space [10–16,18,20–22], but we here discuss

the possibility that an inflationary universe was born out of such an inhomogeneous space by

quantum tunneling process. We show that the quantum tunneling process of inhomogeneous

space forms a wormhole-like configuration. As the space beyond the wormhole throat expands

exponentially, being filled with false vacuum energy, this is interpreted as creation of an infla-

tionary universe. This mechanism leads to the multiple-creation of inflationary universes beyond

the wormhole throats, and therefore, this gives the picture of the multiverse.

Chapter 4 is dedicated to discussions regarding the consistency of the generalized second law

of thermodynamics (GSL). In the first half of the chapter, we show that the stochastic inflation

approach is consistent with the GSL. In the second half of the Chapter it is shown that the GSL

would be broken in the Hawking-Moss instanton solution [32]. The former and latter parts are

based on the author’s paper [33] and [34], respectively.

In Chapter 5 a reasonable reason for rejecting the firewall argument is presented. The

firewall [31] is an extremely energetic boundary at a black hole horizon argued by Almheiri,

Marolf, Polchinski, Sully (AMPS) in 2012. AMPS pointed out that the unitarity, the low

energy effective field theory (GR plus quantum field theory), and the equivalence principle of

GR are mutually inconsistent, provided that the retrieval of information from an old black

hole is assumed. To solve the inconsistency pointed out by them, they argue the existence of

firewall at the horizon by which an infalling observer burns up there. AMPS also point out the

possibility that firewalls exist even at cosmological horizons, such as those in de Sitter universe,

as a natural extension of the argument. If their argument is correct and the firewall exists even

at the cosmological horizon of the Universe, there would be neither the interior regions of black

holes and nor exterior of the cosmological horizons, and the picture of the multiverse [35,36] and

eternal inflation [7, 37] would be rejected. In this sense, the firewall argument is really critical

even in cosmology. In our proposal, the decoherence plays an essential role, and it is concluded

that the firewall is not necessary and quantum field theory and GR are consistent, provided that

the black hole mass is much larger than the Planck mass of roughly 2.17×10−8 kg. This section

is based on [38].

Chapter 6 and 7 are dedicated to the discussions of the future of the Universe. For example,

the Higgs metastability has been discussed in the context of cosmology since it could lead

to a catastrophic scenario of the Universe where the whole Universe could be filled by AdS

vacuum bubbles. In Chapter 6, we investigate a possibility that horizonless compact objects

(e.g., monopoles [39], Q-balls [40–49], boson stars [50–64], and so on) promote the first order

phase transition of the Higgs vacuum. We found that if its compactness is small enough and
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satisfy a certain condition, an AdS vacuum bubble could be nucleated within the cosmological

time. This section is based on [65]. Chapter 7 is dedicated to another possible scenario of the

birth of other universes out of evaporating black holes. Hawking temperature is proportional to

the inverse of a black hole mass, and therefore, there exists highly energetic radiation around

the evaporating mini black holes. We will discuss a possibility that the next inflation, whose

energy originates from the thermal energy of Hawking radiation, starts around an evaporating

black hole in the future of our Universe. This section is based on [66].

Finally, we conclude the thesis with a summary of the results in Chapter 8.

We take the natural unit, c = ℏ = kB = 1, and G =M−2
Pl = ℓ2Pl = t2Pl throughout the thesis.

inhomogeneous 

Universe

Inflation

Present Universe

Future of the Universe

Beginning of inflationary universes (Chap. 3)

The second law of thermodynamics during inflation (Chap. 4)

Firewall argument and decoherence (Chap. 5)

Catalyzing effect for the Higgs metastability (Chap. 6)

Birth of an inflationary universe from a mini BH (Chap. 7)

Next inflation

・
・
・

Figure 1.1: Flow chart showing the organization of thesis.
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Chapter 2

A series of problems in cosmology

2.1 Problems in the inflationary scenario

The inflationary scenario is the current paradigm in modern cosmology. The exponential expan-

sion of space at the early period of the Universe solves a number of fine-tuning problems. The

observation of CMB shows [3, 4] that the Universe is unnaturally isotropic and flat. Without

inflation, therefore, finely tuned initial conditions and acausal initial condition correlations are

required. However, the inflationary scenario still has problems, i.e., the initial singularity prob-

lem [6–8,67] and the problem of initial conditions for inflation∗), and the purpose of this section

is reviewing those problems.

2.1.1 Brief review of inflation

Exponential expansion of the Universe is described by a de Sitter spacetime and its metric has

the form

ds2 = −dt2 + e2
√

Λ/3tdx2, (2.1)

where Λ is a cosmological constant included in the Einstein-Hilbert action:

SG =
1

16πG

∫ √
−gd4x (R− 2Λ) . (2.2)

However, inflation should end with a grateful exit after a sufficient number of e-folds (longer than

60 e-folds) to be consistent with the observed Universe. Therefore, the cosmological constant,

Λ, should be dynamical rather than constant, and a dynamical cosmological constant can be

modeled by a scalar field (inflaton), ϕ, with a non-trivial potential energy term V (ϕ):

S = SG + SM =

∫ √
−gd4x

(
R

16πG
− 1

2
∂µϕ∂

µϕ− V (ϕ)

)
. (2.3)

∗)See, e.g. [68] for a review of problem of initial conditions for inflation.
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Once properly setting the shape of the potential and choosing the initial distribution of the scalar

field, the Universe exponentially expands. Inflation must eventually ends, and the universe must

be thermalized by the decay of inflaton to other particles.

The first idea of inflation model is the “old inflation” [1,2], which requires two local minima of

the effective potential at ϕ = ϕF (false vacuum) and ϕ = ϕT (true vacuum) with V (ϕF ) > V (ϕT ).

The old inflation is the inflationary model where an inflaton initially stays in a false vacuum

state for a long time and a local part of inflating space experiences the first order phase transition

(quantum tunneling) from the false vacuum state to the true vacuum one. This gives a “bubble”

configuration that is the spherical region filled by the true vacuum and surrounded by the false

vacuum. The boundary of vacuum bubble (bubble wall) consists of the kinetic term of scalar

field and the energy of potential barrier. In this model, however, it is difficult to thermalized

the Universe after the nucleations of vacuum bubbles. Then another inflation model, the “slow-

roll inflation”, was proposed [69, 70]. It gives a density and curvature perturbations in good

agreement with present observational data of CMB. In the slow-roll inflation, a plateau in the

effective potential is required and the Universe experiences inflation during the inflaton slowly

rolls on the plateau. After falling into a minimum of the potential, the inflaton decays into other

particles and the Universe is thermalized.

This cosmological model gives us the picture of “multiverse”, meaning that the Universe

we have been observing is not a unique universe, but other uncountable universes also exist

outside our observable patch. For instance, Sato’s group [35,71] proposed the multi-production

of inflationary universes soon after his proposal of inflation. According to this picture, a spatial

foliation of the entire spacetime may consist of both thermalized region and inflating region,

and it is natural to ask if inflation eternally last somewhere or not. Aryal and Vilenkin have

shown [72] that inflation is eternal to future by using the analysis of the “fractal dimension”.

However, it has been proved that inflation is not eternal to past in the simplest model where

the inflating space is described by an exact de Sitter spacetime [6]. The essential reason why

inflation with de Sitter spacetime is not past-eternal is that the de Sitter solution involves

a contracting phase before the expanding phase. During the exponential contraction of the

Universe, thermalized regions can fill the entire universe, which prevents the universe experience

inflation. A more rigorous proof of the past-incompleteness of inflation is discussed in [7, 9].

2.1.2 Problem of initial conditions for cosmological inflation

In order for inflation to begin, homogeneity of the initial space is necessary to some extent.

Otherwise, highly inhomogeneous initial conditions could lead to gravitational collapse rather

than inflation. However, if we assume homogeneity from the outset, the horizon problem and
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the nearly isotropic CMB are no longer needed to be explained by the inflationary paradigm.

Therefore, inflation should arise without finely tuned initial conditions.

In [73], the authors argue that homogeneity on super-Hubble scales must be necessary as

an initial condition by assuming the Einstein equations, the null energy condition, and the

trivial topology of the Universe. Moreover, it is argued [74] that a probability for having such a

homogeneous background to start inflation is extremely small †). However, it has been pointed

out [68] that the argument of [74] just gives a lower bound on the probability of inflation since

the homogeneity over the Hubble scale is just a sufficient condition, not a necessary one, to

start inflation. On the other hand, others argue [10–16, 18] that even if inhomogeneous modes

dominate the initial energy density, the Universe likely to eventually enter the period of inflation

as long as there is some power in the quasi-homogeneous mode (super-Hubble scale) in the case of

large field inflation which has a local attractor. This is because such a quasi-homogeneous mode

slowly rolls, inhomogeneities are redshifted and it will eventually dominate the Universe to begin

inflation. This argument is also confirmed by numerical calculations in three dimensions [20–22],

but when there is less power in quasi-homogeneous mode, it was found that the Universe does

not inflate.

From the above discussions, one finds that the homogeneity over the Hubble scale is just a

sufficient condition for inflation, and in order for inflation to start somewhere, only some power

of quasi-homogeneous mode is necessary. An important problem is how natural it might be to

have a sufficient power of quasi-homogeneous mode from the outset. In this sense, the problem of

initial conditions for inflation is still an open question. In Chapter 3 we will provide a plausible

resolution to this by taking into account a quantum effect on a highly inhomogeneous initial

condition, where there is no homogeneous mode.

2.1.3 Initial singularity problem

Even if the initial conditions problem for inflation was not problematic and inflationary phase

may be realized without fine-tuning on the initial conditions, there is a critical problem, called

“initial singularity problem”, in the inflationary paradigm. Before discussing the initial singu-

larity problem, a brief review of the singularity theorem should be presented. The singularity

theorem proven by Hawking and Penrose implies that there is a defect in the Big Bang uni-

verse, providing that the strong energy condition holds [75]. For instance, going back in time

in a uniform and isotropic universe holding the strong energy condition, one inevitably hits the

singularity where the scale factor becomes zero and its energy density and curvature diverge.

†)The authors’ approach is based on defining a prior probability distribution for the inhomogeneity of an initial

condition ,where they assume specific, yet quite general and well-grounded, conditions on the distribution.
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This is very easy to see by starting with the Friedman equation:

ä

a
= −4πG

3
(ρ+ 3p) , (2.4)

where a(t) is the scale factor, and ρ and p are energy density and pressure of medium in the

Universe, respectively. Assuming the strong energy condition, ρ+p ≥ 0 and ρ+3p ≥ 0, the scale

factor should be zero at the finite past. The singularity theorem shows that the assumption of

the strong energy condition leads to the past-incompleteness of the Universe in general. Let us

start with the Raychaudhri equation

θ̇ = −1

3
θ2 − σµνσ

µν −Rµνu
µuν , (2.5)

where θ is the change rate of the area of geodesics family denoted as δA, that is, θ ≡ (dδA/dτ)/δA.

σµν is a spatial tensor and σµνσ
µν is a non-negative quantity. Using the Einstein equation, (2.5)

can be rewritten as

θ̇ +
1

3
θ2 = −σµνσµν − 8πG

(
Tµν −

1

2
gµνT

)
uµuν . (2.6)

The strong energy condition is given by(
Tµν −

1

2
gµνT

)
uµuν ≥ 0. (2.7)

From (2.6) and (2.7), one can read

θ̇ +
1

3
θ2 ≤ 0, (2.8)

which gives a relation

1/θ(t) ≤ 1/θ0 + t/3, (2.9)

where θ0 ≡ θ(t = 0). In the case of an expanding universe, the sign of θ is positive, and therefore,

there is a point where θ → −∞ (focus of geodesic) in the range of t ≤ 3/|θ0|. This is the initial

singularity problem that states that an expanding universe has the initial singularity at the finite

past unavoidably, providing that the strong energy condition holds.

Since the strong energy condition is violated for inflation, Vilenkin questioned if the infla-

tionary phase is eternal to past and if one can avoid the initial singularity problem in such a way.

However, it was shown that the rapid expansion of the Universe cannot be the initial condition

of the Universe and the initial singularity is unavoidable even in the inflationary model. Let us

look into the case of a homogeneous and isotropic universe and we can easily prove that null

geodesic is past-incomplete in such a case.

The metric takes the form of

ds2 = −dt2 + a2(t)dx2, (2.10)
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where we assume H(t) ≡ (da/dt)/a has the lower bound H(t) ≥ Hmin > 0. Introducing an

affine parameter, λ, on the null geodesic, a wave-vector, kµ, is given by kµ ∝ dxµ/dλ. Since

the frequency, ω ≡ k0, is proportional to the inverse of the scale factor, ω ∝ a−1(t), one finds

a−1(t) ∝ ω ∝ dx0/dλ, which reduces to

dλ ∝ eHtdt. (2.11)

We can normalize the affine parameter as dλ = [a(t)/a(tf )]dt so that dλ/dt = 1 when t = tf ,

where tf is a reference time. Let us introduce an averaged Hubble parameter, Hav ≡ (λ(tf ) −
λ(ti))

−1
∫ λ(tf )
λ(ti)

H(λ)dλ, where ti(< tf ) is a chosen initial time. Using (2.11), one finds that the

averaged Hubble parameter, Hav, has an upper bound,

Hav =
1

λ(tf )− λ(ti)

∫ a(tf )

a(ti)

da

a(tf )
<

1

λ(tf )− λ(ti)
(2.12)

since a(tf ) > a(ti). The inequality of (2.12) and the imposed assumption H(t) ≥ Hmin, it is

found that the null geodesic cannot be extended to the past infinity:

λ(tf )− λ(ti) < 1/Hav(ti) < 1/Hmin (2.13)

Therefore, even in the inflationary model that breaks the strong energy condition, the initial

singularity is still unavoidable. This suggests that physics other than inflation is necessary to

describe the past boundary of the inflating region of spacetime. In Chapter 7, we propose

a possible scenario where inflation can begin by a quantum tunneling process without initial

singularity.

2.2 Consistency of the second law of thermodynamics in strong

gravity

2.2.1 GSL and black holes

The thermodynamics in strong gravity system is very mysterious. In particular, when the system

involves gravitational horizons, “gravitational entropy” attributed to those horizons has been

expected to exist. This idea is pioneered by Bekenstein [23–25] and his gedanken experiment [23]

to introduce the gravitational entropy, called Bekenstein entropy, is as follows: Let an observer

drop a package which has entropy into a black hole. In this case, the entropy of the world

outside the black hole decreases whereas the black hole has only “three hairs” (mass, angular

momentum, and charge) after the hole has settled down to equilibrium. The observer cannot

exclude the possibility that the interior entropy decreases in the process. In this sense, the

second law of thermodynamics is no longer a plausible conjecture under strong gravity.
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Bekenstein points out that the second law of thermodynamics should be modified and he

proposed this conjecture called “the generalized second law of thermodynamics” (GSL): Common

entropy (exterior entropy) plus black-hole entropy never decrease‡). Here black-hole entropy, SB,

has the form

SB ≡ ηℓ−2
Pl A, (2.14)

where A is the horizon area of the black hole and η is a constant number of order unity. The

introduction of a black-hole entropy may play an important role in the aforementioned gedanken

experiment. The choice of the horizon area of a black hole as a measure of its entropy is motivated

by the result of Hawking that the horizon area of black hole never decreases [77].

Let us illustrate a physical example he raised in his original paper [23] to see the validity of

the GSL. Suppose a narrow beam of thermal radiation of temperature T falls into a black hole

of mass M . Since this picture is based on geometrical optics, the characteristic wavelengths of

the beam should be much shorter than the size of the black hole ∼ GM :

T−1 ≪ GM. (2.15)

Introducing the energy of the beam, E, the entropy of the beam is given by

SR ∼ E/T, (2.16)

and therefore, once the beam falls into the hole, the exterior entropy decreases by SR.

On the other hand, the area of the black hole increases by ∆A (> 0) since its mass increases

by the energy of the beam E. ∆A is therefore has the form

∆A = ∆(16πG2M2) ≃ 32πG2M∆M = 32πG2ME. (2.17)

One can read the difference of a black-hole entropy as

∆SB ≃ 32ηπGME. (2.18)

From (2.15), (2.16), and (2.18), we find the GSL is satisfied in this case:

|SR| ≪ ∆SB. (2.19)

2.2.2 Stochastic inflation

It is known that the quantum fluctuation of inflaton ϕ in an expanding space with its positive

vacuum energy density, governed by the effective potential V (ϕ), behaves like a stochastic fluctu-

ation. This picture implies that the dynamics of a de Sitter universe is stochastic, and therefore,

‡)It was initially formulated for black holes by Bekenstein [25] and was extent to de Sitter universes by Davies

[76].
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its Bekenstein entropy is also stochastically fluctuates. Since this behavior of the entropy is

important in the GSL, we will here review the stochastic approach based on [78].

We take the conformal metric of a de Sitter spacetime as

ds2 = −dt2 + e2Htdx2 =
1

(Hη)2
(
−dη2 + dx2

)
, (2.20)

where dη ≡ dt/eHt. Let us consider a quantum scalar field ϕ in a de Sitter spacetime

ϕ(x, t) =

∫
d3k

(2π)3/2

(
âkϕk(t)e

−ik·x + â†kϕ
∗
k(t)e

ik·x
)
, (2.21)

where âk (â†k) is an annihilation (creation) operator of a wavenumber k and ϕk(t) is a mode

function which follows the field equation with some interaction potential V (ϕ)

ϕ̈k + 3Hϕ̇k +
k2

a2(t)
ϕk + V ′(ϕ) = 0, (2.22)

where a dot denotes the derivative with respect to t. The field equation is a linear second

derivative equation and therefore two boundary conditions are necessary to obtain its solution.

Imposing boundary conditions corresponds to choosing a vacuum state of the quantum field ϕ

and the choice of

lim
η→−∞

(−Hη)−1ϕk =
e−ikη√

2k
(2.23)

is equivalent to taking the Bunch-Davies (BD) vacuum. In the case of the BD vacuum, the

mode function ϕk(t) with k
2/a2(t) ≫ V ′(ϕ) has the form

ϕk(t) ≃ −
√
π

4
H3/2(−η)H(1)

3/2(−kη) = − H√
2k

(
η − i

k

)
e−ikη, (2.24)

where H
(1)
3/2(x) is the Hankel function of the first class. This asymptotically approaches the

Minkowski vacuum in the limit η → −∞.

In the stochastic approach, long-wavelength modes, k < ϵa(t)H, are spatially coarse-grained

over a constant physical 3D volume of 1/(ϵH)3, and is replaced by the coarse-grained field

ϕ̄(k, t):

ϕ = ϕ̄(x, t) +

∫
d3k

(2π)3/2
θ(k − ϵa(t)H)

(
âkϕk(t)e

−ik·x + â†kϕ
∗
k(t)e

ik·x
)
, (2.25)

where ϵ ≪ 1 is a constant and θ(x) is the Heaviside step function. From the equation of

motion of the scalar field for ϕ̄ with the assumption of ¨̄ϕ ≪ 3H ˙̄ϕ (slow-roll condition) and of

V ′(ϕ̄) ≫ k2/a2(t)ϕ̄ (homogeneity condition), we obtain the Langevin equation:

˙̄ϕ(x, t) = − 1

3H
V ′(ϕ̄) + f(x, t), (2.26)
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where f(x, t) is given by

f(x, t) ≡ ϵa(t)H2

∫
d3k

(2π)3/2
δ(k − ϵa(t)H)

(
âkϕk(t)e

−ik·x + â†kϕ
∗
k(t)e

ik·x
)
. (2.27)

The Langevin equation (2.26) implies that the coarse-grained field ϕ̄ is a stochastic quantity and

f(x, t) is a stochastic noise whose correlation function has the form

⟨f(x1, t1)f(x2, t2)⟩ =
H3

4π2
δ(t1 − t2)j0(ϵa(t)H|x1 − x2|), (2.28)

with j0(x) ≡
sinx

x
. (2.29)

This correlation properties implies that the stochastic noise is a white noise and there is less

correlation between two distant de Sitter patches.

Therefore, in the stochastic approach, we obtain a picture that a macroscopic mode is kicked

by small quantum fluctuations and the behavior of the energy density of a de Sitter patch is also

stochastic. Since the Bekenstein entropy of the de Sitter patch is proportional to its horizon area

that is determined by the energy density, the Bekenstein entropy could stochastically decrease.

In Chapter 4, we will discuss the detail of this problem.

2.2.3 Hawking-Moss instanton

The stochastic inflation approach provides the thermodynamical aspect of quantum field on de

Sitter spacetime. Hawking and Moss discussed a thermal tunneling from a de Sitter universe

with its lower energy density to another one with larger energy density [32]. This transition is

known as the Hawking-Moss bounce solution [32, 79, 80], which also leads to the decrement of

Bekenstein entropy. We here review the derivation of the Hawking-Moss bounce solution. in

Section 4.2, the decrease of the Bekenstein entropy by the Hawking-Moss transition is discussed.

Assuming that the bounce solution has O(4) symmetry, the Euclidean metric can be char-

acterized by one parameter ξ and its function ρ(ξ),

ds2 = dξ2 + ρ(ξ)2dΩ2
III, (2.30)

where dΩIII represents the line element of the unit three-sphere. The Euclidean action of the

Einstein gravity and a canonical scalar field ϕ with a potential V (ϕ) is then written as follows.

IE=2π2
∫
dξ

[
ρ3
(
1

2
ϕ̇2+V (ϕ)

)
+

3

8πG

(
ρ2ρ̈+ρρ̇2−ρ

)]
(2.31)

where an over-dot represents differentiation with respect to ξ. From (2.31), the field equations

12



read,

ϕ̈+
3ρ̇

ρ
ϕ̇ =

dV

dϕ
, (2.32)

ρ̇2 = 1 +
8πG

3
ρ2
(
1

2
ϕ̇2 − V

)
. (2.33)

The Hawking-Moss solution corresponds to a static scalar field configuration with ϕ̇ = ϕ̈ = 0

which is realized at potential extrema with dV/dϕ = 0. Hence (2.33) reads

ρ̇2 = 1− 8πG

3
ρ2V (2.34)

and its solution is given as

ρ(ξ) = H−1
s sin (Hsξ), (2.35)

H2
s ≡ 8πG

3
V (ϕs), (2.36)

where ϕs is a field value at a potential extremum. Substituting the solution (2.35) into the action

(2.31), we find

IE(ϕs) = − 3

8G2V (ϕs)
. (2.37)

Hawking and Moss [32] originally considered the transition from a false vacuum state ϕs = ϕfv

to the local potential maximum ϕs = ϕtop and identified the transition rate as

Γfv→top = Ae−BHM = A exp [−IE(ϕtop) + IE(ϕfv)]

= A exp

[
3

8G2

(
1

V (ϕtop)
− 1

V (ϕfv)

)]
, (2.38)

where the prefactor A may be estimated as A ∼ H4(ϕfv) on dimensional grounds.

In [79], Weinberg proposed a thermal interpretation assuming

∆V

V (ϕfv)
≡ V (ϕtop)− V (ϕfv)

V (ϕfv)
≪ 1, (2.39)

when BHM is given by

BHM ≃ ∆E

TH
(2.40)

with ∆E =
4π

3
H−3(ϕfv)∆V and TH =

H(ϕfv)

2π
.

Here ∆E is the potential energy increment in the horizon H−1(ϕfv)(≃ H−1(ϕtop)), and TH is

the Hawking temperature of de Sitter space. He argues that the gravitational effect is negligible

because the geometry does not change practically before and after the transition thanks to the
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assumption ∆V/V ≪ 1. As a result the formula based on (2.40) is identical to the case a

horizon-sized domain receives thermal fluctuation at the Hawking temperature. However, this

argument is failed since the Hamiltonian constraint leads to zero bulk-energy of the de Sitter

patch§) [34]. In Section 4.2 it is shown that the exponential suppression of the Hawking-Moss

transition is due to the decrease of Bekenstein entropy. The consistency between the GSL and

the Hawking-Moss transition is also discussed there.

2.3 Hawking radiation and the black hole information loss para-

dox

2.3.1 Hawking radiation

Here we review the particle creation around a black hole proposed by Hawking [27]. For sim-

plicity, in this section we work on a massless scalar field ϕ.

Particle interpretation and particle production

Let us suppose that we have a curved spacetime with a “stationary” metric gµν , that is, gµν has a

time-like Killing vector ξµ leaving invariant the metric δξλgµν = 0, where δξλ is the infinitesimal

transformation generated by ξλ. The action of the massless scalar field ϕ on the curved spacetime

has the form

I =

∫ √
−gd4x

[
−1

2
gµν∇µϕ∇νϕ

]
(2.41)

and the field equation is given by the Klein-Gordon (KG) equation:

2ϕ ≡ gµν∇µ∇νϕ = 0. (2.42)

Let us define the creation and annihilation operators, a†k and ak, respectively. Then the quan-

tization of ϕ is performed as

ϕ(t,x) =

∫
d3k

[
akuk(t,x) + a†ku

∗
k(t,x)

]
, (2.43)

where uk(t,x) and u∗k(t,x) are positive and negative frequency solutions of KG equation with

respect to the Killing time t. Using the normalized positive and negative frequency modes

uk(t,k) =
1

(2π)3/2
√
2ω
e−iωt+ik·x, (2.44)

§)Of course the vacuum energy density takes non-zero positive value, but the energy of gravity is negative

so that it offsets the vacuum energy density. Therefore, the “total” bulk energy of the de Sitter patch is zero

providing that the system is stationary.
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where ω ≡ |k|, the canonical quantization requires the following equal time commutation rela-

tions

[ϕ(t,x), π(t,x′)] = iδ3(x− x′), [ϕ(t,x), ϕ(t,x′)] = [π(t,x), π(t,x′)] = 0, (2.45)

where π(t,x) is the conjugate momentum of ϕ. These relations reduce to

[ak, a
†
k′ ] = (uk, uk′) = δ3(k− k′), (2.46)

[ak, ak′ ] = [a†k, a
†
k′ ] = 0, (2.47)

where the KG product (u1, u2) is defined as

(u1, u2) ≡ −i
∫
Σ
dΣnµ(u1∂µu

∗
2 − f∗2∂µu1). (2.48)

Here Σ is a Cauchy surface with dΣ being the volume element and nµ is a future directed normal

vector on Σ. From the Gauss’s theorem, one can show that the KG product does not depend

on the choice of Cauchy surface.

If the spacetime is globally stationary and we define a space of positive frequency modes with

respect to the Killing time as we did, there is no gravitational particle production. However, in

a realistic situation, spacetime is not stationary due to gravitational collapse or the change of

expansion rate of the Universe and so on. Although in the absence of global time-like Killing

vector there is no unique notion of vacuum state (a particle interpretation is ill-defined), we can

find a well-defined one for those spacetimes which possess asymptotic stationary regions in the

past and future. In such a case, a gravitational particle production takes place.

In the following, we call the asymptotic stationary regions in the past and in the future the

“in” and “out” regions, respectively. One can construct a space of positive frequency modes, uink ,

in the in-region and define the vacuum state |in⟩. In addition, one can also construct another

space of positive frequency modes, uoutk , with respect to the Killing time in the out-region.

The difference between uink and uoutk makes the initial vacuum state |in⟩ a excited state in the

out-region.

Bogolubov transformations

We here explain how to calculate the number of produced particles of momentum k

⟨in|Nout
k |in⟩ ≡ ⟨in| aoutk a†k

out |in⟩ , (2.49)

where a†k
out and aoutk are the creation and annihilation operators associated with the out-modes.

To calculate (2.49), we have to investigate the relation between the creation and annihilation

operators in the in-region and those in the out-region.
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Let us expand ϕ interns of the in-modes uink

ϕ =

∫
d3k

[
aink u

in
k + aink

†uink
∗
]
. (2.50)

On the other hand, we can perform the alternative expansion by choosing instead the out-modes

uoutk

ϕ =

∫
d3k

[
aoutk uoutk + aoutk

†uoutk
∗
]
. (2.51)

The both in-modes and out-modes satisfy the following orthonormal relations

(uk, uk′) = δ3(k− k′), (u∗k, u
∗
k′) = −δ3(k− k′), (uk, u

∗
k′) = 0, (2.52)

where uk = uink or uoutk . Both sets of modes are complete, and therefore, out-modes can be

expanded by the set of in-modes as

uoutk =

∫
d3k′(αkk′uink′ + βkk′uink′

∗). (2.53)

These relations are called the Bogolubov transformations and αkk′ , βkk′ are called the Bogolubov

coefficients. Using (2.52), one can obtain the Bogolubov coefficients

αkk′ = (uoutk , uink′), βkk′ = −(uoutk , uink′
∗), (2.54)

and one can obtain the following relations∫
d3k̃(αkk̃α

∗
k′k̃

− βkk̃β
∗
k′k̃

) = δ3(k− k′), (2.55)∫
d3k̃(αkk̃β

∗
k′k̃

− βkk̃α
∗
k′k̃

) = 0. (2.56)

From the relations (2.53), one can obtain the inverted relations

uink =

∫
d3k′(α∗

k′ku
out
k′ − βk′ku

out
k′

∗), (2.57)

and substituting this into the relations aink = (ϕ, uink ) and aoutk = (ϕ, uoutk ), one obtains the

desired relations between the operators of in-region and those of out-region:

aink =

∫
d3k′(αk′ka

out
k′ + β∗k′ka

out
k′

†), (2.58)

aoutk =

∫
d3k′(α∗

kk′aink′ − β∗kk′aink′
†). (2.59)

Substituting (2.58) and (2.59) into (2.49), finally we obtain

⟨in|Nout
k |in⟩ =

∫
d3k′|βkk′ |2. (2.60)

In the following, we calculate the in and out mode functions on a black hole spacetime.
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Vaidya metric

Although the Schwarzschild metric is a well known metric to describe the spacetime around a

black hole, this is not suitable for a black hole originating from a gravitational collapse since

a realistic black hole does not possesses its past horizon beyond which there exists a white

hole. Therefore, here we consider the Hawking effect on the Vaidya metric that describes the

spacetime around the realistic black hole and it has the form

ds2 = −
(
1− 2GM(v)

r

)
dv2 + 2dvdr + r2dΩ2, (2.61)

where v is the null coordinate (fig. 2.1). It is known that when the mass depends only on v,

M =M(v), this is an exact Einstein’s solution with a stress-energy tensor of

Tvv =
L(v)

4πr2
(2.62)

with
dM(v)

dv
≡ L(v). (2.63)

Tvv > 0 gives a pure ingoing flux and if one assumes that the influx of radiation is turned on at

some finite time vi and turned off at a later time vf , the Vaidya spacetime is decided by three

regions: A Minkowski vacuum region (v < vi), an intermediate region (vi < v < vf ), and the

Schwarzschild black hole region (v > vf ). In the following discussions, for simplicity, we will set

vi = vf = v0 that leads to

M(v) =Mθ(v − v0), (2.64)

L(v) =Mδ(v − v0), (2.65)

and the resulting metric is given by patching portions of Minkowski and Schwarzschild spacetimes

along v = v0 (see Fig. 2.1). The initial Minkowski spacetime has the metric of

ds2 = −duindv + r2indΩ
2 (2.66)

while the final Schwarzschild metric is

ds2 = −
(
1− 2GM

rout

)
duoutdv + r2outdΩ

2, (2.67)

where uin ≡ tin − rin, vin ≡ tin + rin, uout ≡ tout − r∗out, and vout ≡ tout + r∗out. The definition of

the tortoise coordinate r∗out is

r∗out ≡ rout + 2GM log
( rout
2GM

− 1
)
. (2.68)
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Figure 2.1: The Penrose diagram of a Vaidya metric. A thick solid line represents the trajectory

of a collapsing shell.

Mode functions

We calculate mode functions of a massless scalar field on the simplified Vaidya metric. The

mode functions follow the Klein-Gordon (KG) equation

2f = 0. (2.69)

Since we here assume a spherically symmetric background, we can expand the mode function f

as

f(xµ) =
∑
l,m

fl(t, r)

r
Ylm(θ, φ), (2.70)

where Yl,m is the spherical harmonics. In the Minkowski region on the Vaidya spacetime, the

KG equation is (
− ∂2

∂t2
+

∂2

∂r2
− l(l + 1)

r2

)
fl(t, r) = 0, (2.71)

while in the Schwarzschild region, it has the form(
− ∂2

∂t2
+

∂2

∂r∗2
−
(
1− 2GM

r

)(
l(l + 1)

r2
+

2GM

r3

))
fl(t, r) = 0. (2.72)

In the following we will look into the physics near horizon, r∗ → −∞, where the angular potential

disappears, and therefore, we shall neglect the potential. This approximation is better justified
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for l = 0 and so that we will focus on the mode function of l = 0. We simply denotes fl=0 as f

in the following. The KG equations in (2.71) and (2.72) reduces to(
− ∂2

∂t2
+

∂2

∂r2

)
f(t, r) = 0 (2.73)

and

(
− ∂2

∂t2
+

∂2

∂r∗2

)
f(t, r) = 0, (2.74)

respectively. Furthermore, since we are interested in positive frequency modes, we assume

f(t, r) = e−iωtf(r). (2.75)

The above equations are simplified as(
∂2

∂r2
+ ω2

)
f(t, r) = 0, (2.76)

and

(
∂2

∂r∗2
+ ω2

)
f(t, r) = 0, (2.77)

respectively. The solutions of the wave equation in the initial Minkowski spacetime is given only

by the outgoing modes, e−iωuin , while in the final Schwarzschild region, the solution is given by

the superposition of the ingoing modes, e−iωv, and the outgoing modes, e+iωuout . Therefore, the

renormalized positive frequency modes at I−, uinω , are

uinω =
1

4π
√
ω

e−iωv

r
, (2.78)

and on the other hand, the set of positive frequency modes at I+, uoutω , are¶)

uoutω =
1

4π
√
ω

e−iωuout

r
. (2.79)

Taking into account the matching condition of the metrics along v = v0, we can obtain the

relation between uout and uin. The condition is given by

r(v0, uin) = r(v0, uout), (2.80)

where

r(v0, uin) =
v0 − uin

2
(2.81)

¶)Taking these positive frequency modes is equivalent to choosing I+ as an alternative Cauchy surface. However,

this is not correct since I+ is not a Cauchy surface but H+ ∪
I+ is. Therefore, to construct the complete set of

the mode functions, we have to add those modes that cross the future horizon H+, uint
ω . However, to calculate

the particle production rate at I+, the detail of uint
ω is insensitive to it. Therefore, we can neglect uint

ω in the

following discussions.
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and

r(v0, uout) + 2GM log

(
r(v0, uout)

2GM
− 1

)
=
v0 − uout

2
. (2.82)

This gives the following relation

uout(uin) = uin − 4GM log

(
|v0 − 4GM − uin|

4GM

)
. (2.83)

Furthermore, we require the regularity of the mode functions at r = 0, which leads to the

following form of uoutω

uoutω =
1

4π
√
ω

(
e−iωuout(uin)

r
− e−iωuout(v)

r
θ(vH − v)

)
, (2.84)

where vH ≡ v0 − 4GM .

Let us investigate the behavior of uoutω in the limits of v → −∞(uout → −∞) and v →
vH − 0(uout → +∞). Since we have uout(v) ≃ v in the former limit, and therefore, the mode

function uoutω at I− can be approximated as

uoutω ≃ − 1

4π
√
ω

e−iωv

r
+

1

4π
√
w

e−iωuout(uin)

r
, (2.85)

which is still a positive frequency mode with respect to the inertial time at I−. The dependence

of the mode function on uin, i.e. the second term in (2.85), is actually irreverent to derive the

particle creation around a black hole and its detail is shown later. On the other hand, in the

latter limit, v → vH − 0, we have the following relation

uout(v) ≃ vH − 4GM log

(
vH − v

4GM

)
, (2.86)

which gives the following form of the mode

uoutω ≃ − 1

4π
√
ω

e
−iω(vH−4GM log

(
vH−v

4GM

)
)

r
θ(vH − v). (2.87)

This mode function is a superposition of positive and negative frequency mode and leads to the

particle creation around a black hole. Note that the critical time to take place the Hawking

effect vH is determined by the detail of the black hole formation, which significantly affects the

form of mode functions.

Now we can calculate the Bogolubov coefficients βωω′ by using (2.78) and (2.87). However,

we should slightly modify the form of (2.87) since we are interested in the mean particle number

produced at late time uout → ∞. To properly evaluate the late time particle production, the

out-modes, which are plane waves and are delocalized, should be replaced by the wave packets
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localized at uout → ∞. Introducing a parameter to specify the width of wave packets ϵ, a

modified complete orthonormal set of out-modes at I+ is given by

ũoutωjn
=

1√
ϵ

∫ (j+1)ϵ

jϵ
dω′e2πiω

′n/ϵuoutω′ , (2.88)

where j and n are positive integers. This wave packet type mode functions are localized at

uout = 2πn/ϵ with width 2π/ϵ. Since we are interested in the wave packets localized at uout → ∞,

we have to calculate the Bogolubov coefficients with n→ ∞. From (2.54), the coefficients are

βωjn,ω = −(ũoutωjn
, uinω

∗) = i

∫
I−

dvr2dΩ(ũoutωjn
∂vu

in
ω − uinω ∂vũ

out
ωjn

) (2.89)

Performing a partial integration, this reduces to

βωjn,ω = 2i

∫
I−

dvr2dΩũoutωjn
∂vu

in
ω , (2.90)

where we neglected the boundary term since the wave packets propagated backwards are local-

ized around v = vH at I− and the modes ũoutωjn
vanish at v = ±∞. It is easy to find the similar

expressions for αωjn,ω, and using (2.78) and (2.88), one finds the following relation at late time

n→ ∞ (see Appendix A for the details of the derivation)

|αωjn,ω| = e4πGMωjn |βωjn,ω|. (2.91)

Since the modification of out-modes changes the relation (2.55) as∫ ∞

0
dω′(αωjn,ω′α∗

ωj′n′ ,ω′ − βωjn,ω′β∗ωj′n′ ,ω′) = δjj′δnn′ , (2.92)

we have ∫ ∞

0
dω′(|αωjn,ω′ |2 − |βωjn,ω′ |2) = 1. (2.93)

From (2.91) and (2.93), we obtain the mean particle number produced at late time

⟨
in
∣∣Nωjn

∣∣ in⟩ = ∫ ∞

0
dω′|βωjn,ω′ |2 = 1

e8πGMωjn − 1
=

1

eωjn/TH − 1
, (2.94)

where TH ≡ (8πGM)−1 is the Hawking temperature of the black hole.

2.3.2 Black hole information loss paradox

The Hawking effect by which a black hole radiates thermal radiation leads to an apparent

breakdown of the unitarity of quantum mechanics. Here we will briefly review this problem so

called the black hole information loss paradox pointed out by Hawking [29].
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Evaporation of a black hole

In the previous subsection, we derived the Hawking effect by fixing the background spacetime.

However, from the consideration of the law of energy conservation, a radiating black hole must

lose its mass in time, and in this sense, the validity of fixing the background should be discussed.

In the case of a non-rotating black hole, all physical scale is determined only by its mass M and

the Gravitational constant G ∥). Therefore, a Hawking particle, whose energy expectation value

is roughly its Hawking temperature TH ≡ (8πGM)−1, would be emitted at the rate of t ∼ GM .

Therefore, we can estimate the luminosity of the black hole as

dM

dt
∼ −TH
GM

∼ −(G2M2)−1, (2.95)

and this gives its life time, tlife, as

tlife ∼ G2M3. (2.96)

To be consistent with the result of a more rigorous derivation (see e.g. [81]), we need a factor of

about 105 in (2.96)

tlife ≃ 105G2M3 ≃ 4× 1075
(
M

M⊙

)3

[sec], (2.97)

which means that a solar-mass black hole takes much time longer than the age of the Universe

to evaporate∗∗). The argument of evaporation of a black hole is true, at least, until reaching the

Planck mass. The possibility of leaving a “remnant” after the evaporation is also pointed out

(see e.g. [82–85]), but it has been believed that the most natural possibility is that only Hawking

radiation would be left after the evaporation.

Breakdown of the unitarity of quantum mechanics

In the quantum mechanics, the evolution of a physical system is described by a unitary operator,

Û , that maps a quantum state |in⟩ on a Cauchy surface Σi into a final quantum state |f⟩ on a

final Cauchy surface Σf . This implies that we can obtain the initial state out of the final state

as

|in⟩ = Û † |f⟩ . (2.98)

This argument is true, for example, in the full Minkowski spacetime. However, in the existence

of an evaporating black hole, this becomes quite controversial as discussed below.

∥)Remember that we take the natural unit ℏ = c = 1.
∗∗)Since the age of the Universe is about ∼ 1017 sec, the lower mass bound of a mini black hole that survives

until now is M ∼ 1011 kg. It is known that such a mini black hole cannot form by a gravitational collapse, but it

might be created at the early stage of the Universe.
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Assuming the black hole evaporation leaves nothing else but Hawking radiation, the Penrose

diagram describing the evaporation process is given by Fig. 2.2. Let us consider three quantum

states: an initial quantum state |in⟩ on Σi, an intermediate quantum state |mid⟩ on Σm, and a

final quantum state |f⟩ on Σf , where Σi, Σm, and Σf are the Cauchy surfaces. Since Σm crosses

the future horizon H+, it can split into the interior and exterior regions as Σm ≡ Σint ∪ Σext

(see Fig. 2.2).

Roughly speaking, the reason why the information loss seemingly takes place by a black hole

evaporation is that the final state |f⟩ may be determined only by information on the exterior

part of the intermediate Cauchy surface Σext rather than that on the full Cauchy surface Σm.

To be more specific, we consider a pure quantum state as the initial state

|in⟩ =
∑
i

cini |ψi⟩ . (2.99)

Although the intermediate state is also a pure state due to the unitary evolution of |in⟩,

|mid⟩ =
∑
i,j

ci,j |ψi⟩int ⊗ |ψj⟩ext , (2.100)

we can show that the evolution from Σm to Σf is non-unitary if all states on Σf is determined

by Σext. The density matrix of the intermediate state restricted to Σext, ρ̂ext is obtained by

tracing over all the internal states:

ρ̂ext =
∑
k

⟨ψk|int |mid⟩ ⟨mid|ψk⟩int =
∑
k,j,j′

ck,jc
∗
k,j′ |ψj⟩ext ⟨ψj′ |ext . (2.101)

The resulting density matrix on Σext, (2.101), is obviously independent of the interior orthogonal

basis
{
|ψj⟩int

}
due to the tracing operation. Note that the above considerations still do not

lead to the breakdown of the unitarity at a fundamental level since the total quantum state

|m⟩ is pure. The problematic situation indeed comes from that all information on Σf would

be determined by that of Σext, which is independent of the interior information as is seen in

(2.101). The loss of the interior information generically leads to its non-unitary evolution and

the quantum state becomes a mixed state after the black hole evaporation.

2.3.3 Black hole complementarity

Although the possibility of the loss of information by the black hole evaporation has been pointed

out by Hawking, a number of scenarios to explain the retrieval of information from a black hole

has been proposed. Here we will briefly review the “black hole complementarity” which is one

of the most plausible proposal regarding the retrieval of black hole information by Susskind,

Thorlacius, and Uglum [30].
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Figure 2.2: The Penrose diagram describing an evaporating black hole.

As is seen in (2.87), due to the infinite redshift at a black hole horizon, the Hawking radiation

involves modes of transplanckian frequency whose energy can be arbitrarily large in the vicinity

of the horizon. This picture is for a distant observer, and considering an infalling observer,

he/she would not observe nothing special during infalling because of the equivalence principle.

Therefore, it might be natural to expect that for the distant observer, there exists an “stretched

horizon”, which can absorb, thermalize, and reemit information, on the back hole horizon. Then,

they argue that such a picture regarding the retrieval of black hole information by the stretched

horizon is consistent with the following three plausible postulates:

Postulate 1 (unitarity)— For a distant observer, the formation of a black hole and the evapora-

tion process can be described within the framework of standard quantum theory. In particular,

there exists a unitary S-matrix to describe a process from infalling matter to outgoing Hawking-

like radiation.

Postulate 2 (semi-classical Einstein equation)— Outside the stretched horizon of a massive black

hole, around which gravitational curvature is weak and the quantum gravity regime is not neces-

sary, physics can be described by a set of semi-classical field equations in a good approximation.

Postulate 3 (thermodynamical picture)— For a distant observer, the number of microscopic

states of a black hole of mass M is the exponential of its Bekenstein entropy S(M).
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This scenario seemingly contradicts with the expectation that a freely falling observer sees

nothing special when crossing a large black hole horizon. Although the contradiction may arise

only when attempting to correlate the results of experiment performed on both sides of horizon,

the gedanken experiments by Susskind and Thorlacius implies that such an attempt is impossible

because of a back reaction of the transplanckian modes on the stretched horizon [86]. In this

sense, the argument of the black hole complementarity may be plausible.

2.3.4 Monogamy of entanglement

Before introducing the firewall argument, we briefly review a fundamental theorem in quantum

information theory, the monogamy of entanglement. Let us consider three independent quantum

systems, A, B, and C. The strong subadditivity relation of entropy is given by

SAB + SBC ≥ SB + SABC . (2.102)

If A and B is fully entangled, we have

SAB = 0 and SABC = SC . (2.103)

Then the strong subadditivity relation reduces to

IBC = SB + SC − SBC ≤ 0. (2.104)

Since IBC is the mutual information of B and C and it is a non-zero quantity, (2.104) reduces

to

IBC = SB + SC − SBC = 0, (2.105)

which means that there is no correlation between B and C. Therefore, the quantum system B

cannot fully entangle with both A and C simultaneously. This is the monogamy of entanglement

that plays an essential role in the firewall argument.

2.3.5 Firewall argument

Let us summarize the three postulates in the black hole complementarity: (postulate 1) Hawking

radiation is in a pure state, provided that an initial state is pure, (postulate 2) outside the region

near the horizon of a massive black hole, physics can be described by an effective field theory of

GR plus quantum field theory, and (postulate 3) a black hole is regarded as a quantum system

with discrete energy levels whose number is the exponential of the Bekenstein entropy of the

black hole.
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In 2012, Almheiri, Marolf, Polchinski and Sully (AMPS) pointed out in Ref. [31] that pos-

tulate 1, postulate 2, and the equivalence principle of GR are mutually inconsistent for an old

black hole [87–89] and AMPS’s idea that we briefly review here is as follows. Let us consider an

old black hole with early Hawking radiation A, late Hawking radiation B and infalling quanta

behind the horizon C. A and B have to be fully entangled so that the final state of the black

hole is a pure state (postulate 1). On the other hand, according to quantum field theory in

curved spacetime, B and C, pair-created particles, are also fully entangled (postulate 2). That

is, according to postulate 1 and 2, B should be fully entangled simultaneously with both A and

C. This contradicts with the monogamy of entanglement, reviewed in the previous subsection,

that forbids any quantum system being entangled with two independent systems fully and simul-

taneously. AMPS then proposed “firewalls”, high-energy quanta at horizons energetic enough

to break the entanglement of Hawking pairs, which would get rid of the inconsistency between

postulate 1 and 2. However, the existence of firewalls implies that the free falling observer going

across the horizon has a dramatic experience: the observer burns up at the horizon. That is,

firewalls amounts to abandoning the equivalence principle.

AMPS also point out the possibility that firewalls exist even at cosmological horizons, such

as those in de Sitter universe, as a natural extension of the argument. If the firewall argument

is correct and the firewall exists even at the cosmological horizon of the Universe, there would

be neither the interior regions of black holes and nor exterior of the cosmological horizons and

the picture of the multiverse [35,36] and eternal inflation [7, 37] would be rejected.

In Chapter 5, we discuss how we can resolve the inconsistency between postulate 1 and 2

without introducing the firewalls that violates the equivalence principle.

2.4 Higgs metastability and the fate of the Universe

2.4.1 Metastability of the Higgs vacuum

Phase transitions are involved in many physical models, and for example, boiling water is one

of the most common experiences involving phase transitions in our daily life. This phenomenon

is also important in cosmology since the vacuum bubble nucleations [90–92], quantum tunneling

from a false vacuum state to a true vacuum state, can be regarded as the first order phase

transition. Although such vacuum decay processes are important to discuss the early universe,

a possibility of phase transitions in the future of the Universe has also been gathering a lot of

attentions due to the metastability of the Higgs vacuum [93–116]. It has been considered that

the Higgs metastability may lead to vacuum decay from our vacuum to another vacuum that

exists at a large Higgs field value whose energy density is negative. Soon after the vacuum
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decay, a nucleated bubble expands at nearly light-speed and the Universe would be filled by the

negative vacuum. Therefore this metastability is regarded as a catastrophe at the final stage of

the Universe.

The Higgs effective potential has been precisely determined by the two-loop calculation in

the standard model (SM) [114–117] (see also [113] for an updated calculation up to three-

loop). Since we are concerned with large Higgs field values, we can neglect the Higgs mass term

and approximate the effective potential of the real neutral component h in the Higgs doublet

H = (0, v + h/
√
2) as

VH = λ(|H|2 − v2)2 ≃ λ

4
h4, (2.106)

where v = 174 GeV and the Higgs mass is given by mh = 2v/
√
λ at tree level. Including

two renormalization group (RG) equations for the SM couplings and all the known one or two-

loop corrections, the Higgs potential is improved and its coupling, λ, becomes negative around

109(1010) GeV for mh = 124(126) GeV and for the best-fit values of top mass and of strong

couplings. The negativity of the coupling in the Higgs potential implies that the Higgs vacuum

we live in is metastable and the vacuum decay induced by the metastability leads to a catastrophe

of the Universe.

Recently, Bednyakov et al. [113] took into account renormalization group evolution up to

three loops and strong-interaction corrections up to four loops, they concluded that the best

theoretical fit to measured parameters still points to a metastable state. However, their result

also shows that values of parameters are closer to an absolutely stable region than suggested by

previous studies [114–117].

The metastability of the Universe has been hotly discussed in the context of cosmology

to put tighter constrains on the parameters in the standard model or to discuss the fate of

the Universe. For instance, Gregory et al. pointed out [118–121] that black holes would be

catalysts for vacuum decays because of its strong gravity. If there were a super mini black hole

(a primordial black hole) in the observable patch of the Universe, it could promote a vacuum

decay of the Higgs vacuum around it, and the Universe would be entirely filled by the negative

energy density. Therefore, in the far future of the Universe, all black holes become microscopic

due to their Hawking radiation and may lead to the vacuum decays around them to fill the

Universe with negative energy vacuum bubbles.

However, they did not take into account the thermal effect of black holes (i.e. Hawking

radiation) and Yamada et al. [122] and Kohri et al. [123] pointed out that such a thermal effect

would stabilize the Higgs potential and mini black holes might promote the vacuum decays less

efficiently than expected. However, this argument highly depends on the details of the beyond

SM or quantum gravity, and therefore, whether the thermal contributions from black holes are
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significant for the Higgs metastability is still an open question.

2.4.2 Black holes as the catalysts for vacuum decays

In this subsection, a brief review of the vacuum decay around a black hole proposed by Hiscock

[124] and by Gregory, Moss, Withers, and Burda [118–121] will be presented. If the Higgs

potential develops a second minimum which has a negative energy density, the metastability of

the Higgs potential would lead to vacuum decays. On the other hand, Hiscock pointed out [124]

that black holes can be catalysts for vacuum decays because of their strong gravity. Burda et

al. [119–121] then investigated the stability of Higgs (metastable) vacuum around black holes.

They concluded that mini black holes could have promoted the vacuum decay of the Higgs

sector within the cosmological time if mini black holes had existed in the Universe, provided

that thermal effects of Hawking radiation is negligible.

Let us assume that bubbles nucleated due to the metastability of the Higgs potential can be

modeled as thin wall bubbles and the interior and exterior metric has the form

ds2± = −f±(r±)dt2± + f−1
± (r±)dr

2
± + r2±dΩ

2
2, (2.107)

where indices of + and − represent the exterior and interior quantities, respectively, and a

functionf±(r) is given by

f+ ≡ 1− 2GMseed

r
, f− ≡ 1− 2GM−

r
+H2r2. (2.108)

Here Mseed is the mass of a seed black hole, M− is the mass of the interior black hole, and

H ≡
√

(8πG/3)|ρ| is a Hubble parameter of the energy density of the second minimum ρ (< 0).

Since a thin wall bubble is assumed, one can use the Israel junction condition [125] instead of

solving the Einstein equations:

ϵ−
√
f− + (dR/dτ)2 − ϵ+

√
f+ + (dR/dτ)2 = 4πGσR with ϵ± ≡ sign[f±dt±/dτ ], (2.109)

where σ is the energy density of the bubble wall, R is the radius of the wall, and τ is the proper

time on the wall. This reduces to the following equation which has a similar form of the energy

conservation law for a one-dimensional system:(
dR

dτ

)2

+ V (R) = 0, (2.110)

with V (R) ≡ 1− 2GM−
R

+H2R2 −
(
2G∆M/R+ (Σ2 +H2)R2

2ΣR

)2

, (2.111)

where Σ ≡ 4πGσ and ∆M ≡ Mseed −M−. Since a vacuum bubble has zero velocity at the

moment of nucleation, it is nucleated at position of V = 0. In general, the potential V (R) gives
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Figure 2.3: A plot of V (R) with H = 10−5MPl and Σ = 10−4MPl. We choose Mseed = M− =

1000 (solid line), 300 (dotted line), and 0 (dashed line).

two nucleation positions and one is a growing mode and the other is a decaying mode as seen in

Fig. 2.3. If a black hole is not involved in a bubble nucleation (Mseed =M− = 0), the nucleation

is described by the Coleman De-Luccia (CDL) instanton, which has its growing mode and there

is no decaying mode (a dashed line in Fig. 2.3).

In general, the nucleation rate, Γ, is calculated by the path-integral method, and in the

semi-classical approximation, it is given by the exponent of on-shell Euclidean action (a brief

review of the Euclidean path integral method is presented in Appendix C):

Γ ≃ Ae−(IfE−I
i
E). (2.112)

The “on-shell Euclidean action” is a quantity one can obtain by substituting an Euclidean

solution into its Euclidean action and IfE (IiE) is the on-shell Euclidean action after (before) the

tunneling. To obtain the Euclidean solution of the system after the bubble nucleation around a

black hole of Mseed, one should perform the Wick rotation, τ = −iτ̃ , and the dynamics of the

nucleated bubble becomes periodic ††) since the energy conservation law of the bubble (2.110)

reduces to (
dR

dτ̃

)2

− V (R) = 0. (2.113)

††)The periodic Euclidean solution links between a decaying mode and growing mode, and if one performs the

analytic continuation at the point associated with the growing (decaying) mode, the solution describing the bubble

nucleation of the growing (decaying) mode is obtained.
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Let us calculate the initial on-shell Euclidean action IiE on the Euclidean space M which includes

Killing horizons, i.e. black hole horizons and de Sitter horizons, by dividing M into M−B and

B, where B is a small region around the Killing horizon areas:

B ≡ {xµ : |r − rh| < O(ϵ)} (2.114)

with small ϵ. We can divide IiE into two parts

IiE = IM−B + IB, (2.115)

where IB is the Euclidean action on the horizons and IM−B is that of the other space. We

can smooth out the singularities at the Killing horizons (conical singularities) by performing

integral, then taking the limit of ϵ → 0. The system here we consider consists of gravitational

field gµν and the Higgs field h, and therefore, the bulk part of the Euclidean action is

IM−B = − 1

16πG

∫
M−B

R−
∫
M−B

Lm(g, h) +
1

8πG

∫
∂B
K. (2.116)

Now we have a periodic Euclidean solution of period βi and the evaluation of this on-shell reduces

to

IM−B =
1

16πG

∫ βi

0
dτ̃

[∫
Στ̃

(
(3)∂τ̃gijπ

ij + ∂τ̃hπ −NH−N iHi

)
−
∫
∂Bτ̃

NK

]
, (2.117)

where Στ̃ is a foliation of M−B with a family of spatial hypersurfaces of Euclidean time

with 0 < τ̃ < βi, H and Hi are the hamiltonian and momentum constraints, and K is the

extrinsic curvature of ∂Bτ̃ ≡ ∂B ∩Στ̃ . Since M−B has a Killing vector ∂τ̃ , ∂τ̃h = (3)∂τ̃gij = 0.

Furthermore, since we evaluate the on-shell action, one has H = Hi = 0. Therefore, we have

IM−B = − 1

16πG

∫
∂Bτ̃

NK ∼ O(
√
ϵ), (2.118)

where we used N ∼ O(
√
ϵ) near the conical singularities. Finally, we find IM−B = 0 in the limit

of ϵ→ 0. Therefore, the contribution from the conical singularities is

IiE = IB = − 1

16πG

∫
B
R+

1

8πG

∫
∂B
K = − A

4G
, (2.119)

which is known as the action of a gravitational instanton by Gibbons and Hawking [26, 126].

Gregory, Moss, and Withers [118] derived this in the existence of conical singularities. Now we

have the action of the initial Euclidean space

IiE = − A
4G

= −4πGM2
seed. (2.120)

After the tunneling, we have the bubble wall in the Euclidean space, which has its period

βf , and therefore, we can not use the symmetry associated with the Killing vector ∂τ̃ . The
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contribution from the boundary term of the dynamical bubble wall should be taken into account,

and the action after the tunneling reduces to (for the details of the derivation, see Appendix C)

IfE = −4πGM2
− − 1

2

∫
W
σ − 1

16πG

∫
W
(f ′+ ˙̃τ+ − f ′− ˙̃τ−). (2.121)

From the action of the initial and final Euclidean space, (2.120) and (2.121), (2.112) reduces to

Γ ≃ A exp

[
4πG(M2

− −M2
seed)−

1

4G

∫
dτ̃
[
(2R− 6GMseed)

˙̃t+ − (2R− 6GM−)
˙̃t−

]]
, (2.122)

where t± ≡ −it̃±. As is shown in [118] or in Section 6 of the thesis, this transition rate is higher

than the transition rate calculated by the CDL instanton [92] that corresponds to a vacuum

decay without any impurities such as black holes.
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Chapter 3

Beginning of inflationary universes

Although the inflation is a successful paradigm which solves a number of puzzling problems and

fits with observations of WMAP and Planck with high accuracies, in order for inflation to be

counted as a real success, it should happen without any fine-tuned initial conditions. In this

section, we present a simple model where inflation can start from a highly inhomogeneous field

configuration by virtue of quantum effects.

3.1 Inhomogeneous initial conditions for inflation

3.1.1 Instantaneous percolation of vacuum bubbles and thermalized bubbles

Here as a minimalistic approach based on the classical Big Bang cosmology, we assume that the

Universe started from the Big Bang singularity in a thermal state with a ultra high temperature

well above the scale of the Grand Unified Theory (GUT), and that symmetry is restored at this

moment. To model this situation, in the following, we introduce a scalar field χ and ϕ with a

potential

V (χ, ϕ, T = 0) ≡ 1

2
g21ϕ

2χ2 − 1

4
κχ4 +

1

2M2
Pl

λχ6 + V0, (3.1)

where g1, κ and λ are coupling constants and V0 ≡ (κ3/(108λ2))M4
Pl. The field χ gives inho-

mogeneous configurations of the Universe and ϕ behaves as massless particles at χ = 0 and is

massive at the global minimum χ = χ0 ≡
√
κ/(3λ). Taking into account the thermal correction

for the potential, it can be approximated by∗)

V (χ, T ) ≃ 1

2
g2T 2χ2 − 1

4
κχ4 +

1

2M2
Pl

λχ6 + V0, (3.2)

∗)The one-loop correction of the quartic term is included in the thermal mass of the first term. Thermal

corrections for the third term are ignored since those are subdominant when T/MPl ≲
√

κ/λ and T/MPl ≲ g/
√
λ

and we are interested in the symmetry breaking phase.
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where g ≡ (g21/3− κ/2)/4. One finds that the symmetry is restored when T > Tc ≡ κ/(4g
√
λ).

For T ≪ Tc, the potential has the global minimum at χ = χ0 and a local minimum at χ = 0

with the vacuum energy density V = V0 (Fig. 3.1).
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Figure 3.1: Plots of the effective potential with g = 0.13, κ = 0.14, and λ = 5.2×103. (a) shows

the global minimum at χ = χ0 and (b) shows the local minimum at χ = 0.

Since the radiation dominated Universe expands and its temperature eventually falls to the

critical temperature, the symmetry is broken and the Universe becomes inhomogeneous. The

size of inhomogeneity is determined by the percolation of vacuum bubbles. Each nucleated

true-vacuum bubble grows at light speed until their walls collide each other. Those bubbles

eventually coalesce one by one (percolation) and false vacuum domains will be trapped by the

true vacuum regions. If the bubble nucleation is significantly enhanced by the thermal effect

of primordial radiation, the percolation instantaneously occurs and small trapped false vacuum

regions including the primordial radiation may be left. The trapped false vacuum regions may be

stabilized by the thermal pressure of the interior radiation (hereinafter referred to as thermalized

bubbles) as we discuss it below.

The epoch when true-vacuum bubbles start to percolate to form an infinite network (see

Fig. 3.2) is referred to as the percolation time tp, which can be estimated by the value of the

volume fraction of false vacuum phase. Introducing the thermal nucleation rate of true-vacuum

bubbles P (t) and the scale factor a(t), the volume fraction of the false vacuum phase u(t) can

be expressed as

u(t) ≡ exp

[
−4π

3

∫ t

ti

dt′P (t′)a3(t)

(∫ t

t′

dt′′

a(t′′)

)3
]
, (3.3)

where ti is the time when the temperature reaches the critical temperature. From the percolation

theory for same-size bubbles, the percolation time is determined by u(tp) ≃ 0.3 [35].

Let us calculate the time evolution of u(t) by fixing the parameters of the theory g = 0.13,
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Figure 3.2: Schematic picture showing the percolation of vacuum bubbles.
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Figure 3.3: Plot of the function u(t). The percolation of bubbles occurs at t ≃ 2.8/H.

κ = 0.14, and λ = 5.2 × 103. In the symmetry breaking phase, the potential near χ = 0 is

determined only by the quadratic and quartic terms in (3.2), and the thermal tunneling rate P

can be analytically calculated as [127]

P ≃ T 4

(
S3
2πT

)3/2

exp

(
−S3
T

)
, (3.4)

S3 = 6π
g

κ
T. (3.5)

The exponent of the tunneling rate, S3/T , for this potential is independent of the temperature.

The temperature decreases in time as T (t) ∝ a−1(t) during the radiation dominated era. Since

the primordial Universe we here assume consists of the thermal radiation and vacuum energy,
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the scale factor has the form

a(t) = sinh1/2 (2Ht) ≃ (2Ht)1/2 for t≪ H−1, (3.6)

where H2 ≡ (8πG/3)V0. We can calculate u(t) by substituting (3.5) and (3.6) into (3.3), and

then it is found that the percolation starts when (see Fig. 3.3)

T (tp) ∼ 2× 10−3MPl. (3.7)

The number density of bubbles nB at t = tp is given by

nB(tp) = a−3(tp)

∫ tp

ti

dt′a3(t′)P (t′)u(t′), (3.8)

and the mean separation distance of bubbles d can be roughly estimated by

d ∼ n
−1/3
B ∼ 1.4× 104ℓPl. (3.9)

From (3.7) and (3.9), the interior entropy can be roughly estimated as

S ≃
(
8π3

135

)
T 3d3 ∼ 105. (3.10)

This mean distance d may be comparable to the mean size of trapped false vacuum regions.

On the other hand, the thickness of a bubble wall, w, can be estimated by

w ∼ 1/
√
V ′′|χ=χ0 =

(
2κ2

3λ

)−1/2

≃ 6× 102ℓPl. (3.11)

We found that w ≪ d is satisfied in our setup, and therefore we use the thin wall approximation

in the following discussions. The tension of the thin wall σ can be estimated by

σ ≃
∫ χ0

0
dχ

√
V ∼

√
V0 × χ0 ≃ 10−8M3

Pl. (3.12)

3.1.2 Lifetime of the thermalized bubble

Since the thermal radiation has a high-energy tail in its spectrum, the thermalized bubble is

not an eternal object and has a finite lifetime, τf . In terms of the number of the ϕ-particle, N ,

trapped in the bubble with volume V , the lifetime can be estimated as

τf = N

(
dN

dt

)−1

∼ N

(
δN

δt

)−1

∼ N

(
(V/2π2)

∫∞
mϕ

ν2dν/(eν/T − 1)

V 1/3

)−1

≃ 2ζ(3)
T 2

m2
ϕ

emϕ/TV 1/3,

(3.13)

where the bubble crossing time δt is estimated by V 1/3 and N/V = ζ(3)T 3/π2. To derive the

final expression in (3.13), we assumed that the mass of ϕ-particle at χ = χ0, mϕ ≡ g1χ0, is much
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larger than T . The entropy is conserved as long as the thermal radiation is trapped almost

completely, and this picture is valid when the exterior mass of ϕ-particle is much larger than

the interior thermal energy ∼ T . When this condition is not satisfied, the thermalized bubble

gravitationally collapses to form a black hole.

3.1.3 Conditions for the thermalized bubbles

Note that our proposal would not be affected by the details of the assumed model as long as

the following conditions†) are satisfied:

1. The resulting configuration well after the spontaneous symmetry breaking (T ≪ Tc) in-

volves a bubble configuration whose interior is filled by a positive vacuum energy density

ρ− and thermal radiation of temperature T , and is also surrounded by a lower vacuum

energy density ρ+(< ρ−).

2. The thin wall approximation is valid and it is almost spherical due to its surface tension.

3. This configuration is stabilized by the balance between a wall tension and the radiation

pressure of interior radiation.

4. The interior thermal radiation is almost completely trapped by the wall, so that the total

interior entropy can be regarded as a conserved quantity.

In our setup, ϕ-particle is massless in the bubble interior (χ = 0) although the exterior mass

of ϕ-particle is mϕ ≡ g1χ0. Remember that we here set the value of the lower energy density,

surrounding the bubble, to zero (ρ+ = 0) since the true-vacuum bubbles surrounding a false

vacuum region are supposed to have no bulk energy density.

3.2 Model of inhomogeneous space

In the following we model a part of the inhomogeneous space by a trapped false vacuum region

in which thermal radiation is trapped. That is, χ = 0 inside the bubble and the interior is filled

by thermal radiation of ϕ whose temperature is T < Tc. In the exterior, χ = χ0 and there is

no vacuum energy there. We will also concentrate on the cases where the bubble has its thin

wall (w ≪ R) for simplicity. Hence we need to solve the Israel junction condition [125] to follow

the dynamics of the bubble. Assuming that the interior radiation fills the bubble uniformly, the

†)When the third or fourth conditions are not satisfied, the bubble gravitationally collapses and a black hole

forms. We discussed the creation of an inflationary universe from an evaporating black hole in [66], where the

thermal energy due to Hawking radiation plays an important role.
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interior geometry is described by the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

(the static form of the FLRWmetric is presented in the Appendix B). For simplicity we consider a

situation that the exterior radiation is diluted by the cosmic expansion and that the metric there

can be approximated by the Schwarzschild solution, corresponding to the case the inhomogeneity

over the horizon scale is the largest. We show that inflation is possible even from such a highly

inhomogeneous initial condition.

The thin wall of false vacuum bubble can be characterized by its tension, σ. The Israel

junction condition has the form

K+
ab −K−

ab = −8πG

(
Sab −

1

2
habTr[Sab]

)
, (3.14)

where the K+
ab (K

−
ab) is the exterior (interior) extrinsic curvature on the wall, hab is the induced

metric there, Sab is the energy momentum tensor (EMT) of the wall. (θ, θ)-component of the

interior and exterior extrinsic curvature has the form [128]

K±
θθ =

ϵ±
R

√
Ṙ2 + f±(R), (3.15)

f− ≡ 1− (8πG/3)ρR2, f+ ≡ 1− 2GM/R, (3.16)

with ρ ≡ ρ− +
π2

30
T 4, (3.17)

where a dot denotes the derivative with respective to the proper time on the wall and ϵ± =

sign[f±ṫ±] is the sign of the extrinsic curvature, which is very important to determine the

spacetime configuration as is discussed later. Here we assume that the lifetime of the thermalized

bubble is longer than the related time scale. In this case, the entropy of the interior radiation,

S, is constant and the following condition is satisfied [129]:

T 3R3 =
135S

8π3
≡ C3

0 . (3.18)

From (3.17) and (3.18), we have

ρ =
3

8πG

(
H2 +

1354/3S4/3

180π

G

R2

)
, (3.19)

where H2 ≡ 8πGρ−/3. On the other hand, the EMT, Sab, is

Sab = diag (σ, p, p) , (3.20)

where σ and p is the energy density and pressure of the wall and p = −σ is assumed in the

following. Then, the (θ, θ)-component of the junction condition reduces to

ϵ−β− − ϵ+β+ = 4πGσR, (3.21)

with β± ≡
√
Ṙ2 + f±. (3.22)
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Figure 3.4: Plot of the effective potential governing the position of the wall. Choosing the static

state as an initial condition, there is a possible quantum tunneling path (blue arrow).

After some calculations, (6.10) reduces to(
dR

dτ

)2

+ V (R) = −1, (3.23)

V (R) ≡ −2GM

R
−

(
2GM −

(
8πGρ/3 + Σ2

)
R3

2ΣR2

)2

, (3.24)

where Σ ≡ 4πGσ. One finds that an effective potential, V (R), governs the position of the bubble

wall. We plot the effective potentials by fixing parameters as Σ = 10−8MPl, H = 2.8×10−6MPl,

S = 1.3× 106 and M = 2.26× 103MPl in Fig. 3.4. The corresponding temperature is found to

be T ≃ 1.7×10−3MPl from the relation (3.18). Those values are consistent with the estimations

in Subsection 3.1.1 up to the order of 10 or less. This potential has a stable region located

at R = 5.13 × 104ℓPl (a red point in Fig. 3.4) because of the balance between the pressure of

thermal radiation and the wall tension, and on the other hand, a larger (smaller) bubble expands

(collapses) and inflation begins (a black hole forms) eventually (green arrows in Fig. 3.4). We

choose parameters so that the four conditions are satisfied and find that the potential barrier

separates the static state and the expansion phase. Here we can check if the third condition is

satisfied at the static point. The equilibrium condition between the wall tension and interior
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thermal radiation is given by

dE/dR = 0, E ≃ 4π

3
ρ−R

3 + 4πR2σ +
4π

3
R3π

2

30
T 4. (3.25)

Using this condition and (3.18), the equilibrium point is R = 5.18 × 104ℓPl, which is almost

consistent‡) with the result of the Israel junction condition.

3.3 Quantum effect on the initial inhomogeneous space

Here we consider quantum tunneling from the stable bubble to a larger bubble (a blue arrow

in Fig. 3.4), whose spacetime configuration actually accommodates an inflationary domain as

shown in the following. To determine the spacetime configuration of bubble-like regions, ϵ+

(ϵ−) plays an important role [130,131] since it is equivalent to the sign of spatial components of

extrinsic curvature on the outer (inner) surface of the wall and the sign determines the orientation

of the wall. From (6.10) we can obtain the form of ϵ± as a function of R:

ϵ±(R) = sign

(
2GM

R
−
(
8πGρ/3± Σ2

)
R2

)
. (3.26)

In Fig. 3.4, the sign of ϵ± is shown, and the Regions-A, B, and C denote those with (ϵ+, ϵ−) =

(−,−), (+,+), and (−,−), respectively. One finds that a stable bubble is smaller than the de

Sitter horizon, and therefore it never experiences inflation in a classical manner. However, once

the bubble quantum mechanically tunnels to a larger one, both ϵ+ and ϵ− change from +1 to

−1 and the bubble expands so that the false vacuum region experiences inflation eventually.

‡)The small deviation up to 1% comes from higher-order effects in GR.
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ṫ+ < 0

ṫ
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Figure 3.5: The trajectory of the bubble wall (a black thick lines) on (a) the Penrose diagram of

the Schwarzschild spacetime (exterior) and on (b) the Penrose diagram of the de Sitter spacetime

(interior). The tunneling occurs on a hypersurface Σ0 (a bubble wall tunnels toW1 fromW0) and

Σ0 evolves to Σ1 and to Σ2. Red, green, and blue points represent horizons on the hypersurface

Σ0, Σ1, and Σ2, respectively. One observes a black hole horizon, HΣ0
sc1, and a de Sitter horizon,

HΣ0
D , on Σ0 soon after the tunneling (red points). The hypersurface Σ1 accommodates two

black hole horizons, HΣ1
sc1, and two de Sitter horizons, HΣ1

D , (green points). The hypersurface Σ2

accommodates two black hole horizons, HΣ2
sc1, and a de Sitter horizon HΣ2

D (blue points).

To be consistent with the change of ϵ± [130, 131], the spacetime configuration drastically

changes after the tunneling. The sign of both ṫ+ and ṫ− are definitely positive (negative) in

the Region-I (IV) of the Penrose diagrams describing the exterior (Fig. 3.5-(a)) and interior

(Fig. 3.5-(b)) spacetime. Once the stable bubble tunnels to a larger bubble from Region-B to

Region-C, the bubble wall tunnels to the Region-IV (ṫ± < 0) from I (ṫ± > 0) in the Penrose

diagrams (Fig. 3.5), which leads to the appearance of an Einstein-Rosen (ER) bridge, beyond

which a false vacuum region starts to inflate (Fig. 3.6).
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Figure 3.6: A schematic picture showing the time-evolution of the false vacuum bubble before

and after the tunneling. Red, green, and blue lines correspond to the horizons shown in Fig.

3.5 with red, green, and blue points, respectively. The domain beyond the ER bridge starts to

inflate (red arrows) and the bubble wall (a black thick line) expands after the tunneling.

Let us calculate the tunneling rate by calculating the on-shell Euclidean action§) IE [118]:

IE ≡ B −∆S, (3.27)

B ≡ 1

2G

∮
dτ̃

[
(R− 3GM)

dt̃+
dτ̃

−
(
R− 2J

G

R

)
dt̃−
dτ̃

]
, (3.28)

∆S ≡ ∆A

4G
, (3.29)

where we introduced the Euclidean time, τ ≡ −iτ̃ and t± ≡ −it̃±, and ∆A represents the change

of horizon areas associated with the quantum tunneling. The change of Bekenstein entropy in

the Euclidean on-shell action, ∆S, originates from the conical singularities on the Euclidean

manifold before and after the tunneling¶). A factor B > 0 depends on the dynamics of the

wall∥) in the Euclidean picture, which suppresses the tunneling rate:

Γ ∼ He−IE = He−B+∆S . (3.30)

The quantum tunneling of the wall leads to the appearance of a black hole horizon and a de

§)For a brief review of the quantum tunneling in the framework of the Euclidean path integral method, see

Appendix C.
¶)Although the space-like foliation Σ0 after the quantum tunneling covers the space beyond the ER bridge, the

black hole interior (r < 2GM) is not included in the foliation. Therefore, the Bekenstein entropy of black hole,

which is associated with the interior information of black hole, is well defined.
∥)Since we are interested only in the tunneling process of wall and the energy of interior thermal radiation is

subdominant for the larger bubble, in the calculation of factor B the Euclidean dynamics of thermal radiation

is ignored. Furthermore, in our setup, the period of the Euclidean dynamics is shorter than the lifetime of

bubble calculated in (3.13) although the exterior mass of ϕ-particle mϕ is comparable to the interior radiation

temperature T . In this sense, the fourth condition in Subsection 3.1.3 is satisfied during the tunneling time scale.
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Figure 3.7: A schematic picture showing how a great number of microscopic degrees of freedom

in the final state enhances the tunneling rate. Each path represents a quantum tunneling process

from the initial state to one of the final states. Open and filled circles in the final state represent

the failure and success of quantum tunneling. Since the expectation number of the filled circles

is larger than unity (∆S > B), the quantum tunneling is exponentially enhanced.

Sitter horizon, whose area are denoted by Abh and Ads, respectively. This gives the increment

of the Bekenstein entropy, ∆S = (Abh+Ads)/4G > 0 and enhances the transition rate in (3.30).

In the parameters we chose in Fig. 3.4, the factor B and the Bekenstein entropies are

B ≃ 3.0× 107,
Ads

4G
≃ 4.0× 1011,

Abh

4G
≃ 6.4× 107, (3.31)

which yields ∆S ≫ B, that is, the quantum tunneling rate is exponentially enhanced by the

increment of Bekenstein entropy. One might wonder if the former case breaks the semi-classical

approximation based on the Euclidean path integral method. We answer this question by taking

into account the microscopic degrees of freedom on gravitational horizons [24]. Although the

initial state has no microscopic degrees of freedom originating from horizons, the final state has

a black hole horizon and a de Sitter horizon with areas, Abh and Ads, respectively, after the

tunneling. Then, the initial and final number of microscopic degrees of freedom, denoted by

Wi and Wf, respectively, can be estimated as Wi = e0/4G = 1 and Wf = e(Abh+Ads)/4G. From

e∆S =Wf/Wi, we can interpret the quantum tunneling we have discussed so far as a transition

from one initial state to one of a great number of final states, whose number is given by Wf, and
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the transition rate from one initial state to another microscopic final state is given by

Γmicro ∼ He−B (3.32)

up to the ambiguity of the pre-factor. Since the final states whose number is Wf are not

distinguishable among them, the original transition rate is derived as

Γ ∼Wf × Γmicro = He−B+∆S . (3.33)

Therefore, the reason why the tunneling rate is exponentially enhanced is that there are a great

number of final states in the microscopic sense, and each tunneling rate, Γmicro, is exponentially

suppressed, which means that our calculation is consistent with the semi-classical approximation

(Fig. 3.7).

Intriguingly, the enhancement of a tunneling rate due to the Bekenstein entropy has been

reported in a different problem: it has been proposed [132] that a collapsing shell might tunnel

to a fuzzball configurations and the amplitude for the tunneling would be enhanced by the large

Bekenstein entropy of the fuzzball states. This is another case in which the large Bekenstein

entropy of a final state enhances the quantum tunneling rate.

3.4 Summary

We have presented a counter example against the claim that inflation requires a region which

is sufficiently homogeneous beyond the Hubble scale as the initial condition so that the horizon

problem cannot be solved in a strict sense. Our model starts with a bubble-like false vacuum

region surrounded by thermally nucleated true-vacuum bubbles, whose size is well below the

Hubble scale, and the region outside the bubble is taken to be a vacuum. Thus the initial

configuration is highly inhomogeneous over the horizon scale. We can, however, realize inflation

by virtue of quantum tunneling. It is also interesting to note that the Bekenstein entropy may

play an important role in the beginning of inflationary universes since it may be involved in the

creation rate of inflationary universes.
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Chapter 4

The second law of thermodynamics

during inflation

The analogy between a thermodynamical system and an inflationary universe has been pointed

out in various contexts [26,32,78,79,133,134]. In the previous section, for example, it was shown

that the Bekenstein entropy of inflating space plays an essential role in the quantum tunneling

from an inhomogeneous space to an inflationary universe. In this chapter we investigate to what

extent inflation is consistent with the thermodynamics or (non-equilibrium) statistical mechanics

from the point of view of the second law of thermodynamics.

4.1 GSL and the stochastic inflation

4.1.1 Decrease in the Bekenstein entropy of a cosmological horizon

The second law of thermodynamics states that “the entropy of an isolated system does not de-

crease” and the Universe is an isolated system including all of the entropy in it. The picture

of the Universe has been drastically changed and the landscape [135] is one of the most innova-

tive pictures where the spacetime accommodates a great number of universes with the various

vacuum energies and our Universe is just one of them. Although our Universe has already

experienced inflation, other universes still inflate and some of them may change their vacuum

energies by thermally fluctuating on a gently curved effective potential V (ϕ) [37, 136] (or by

quantum tunneling a potential barrier [90–92]), where ϕ is the inflaton field (Fig. 4.1). Such a

thermally fluctuating universe can be described by the stochastic inflation scheme [78,137] and

this universe seemingly violates the GSL [23–25] as is explained below. Let us consider a uni-

verse governed by the inflaton field ϕ which stochastically fluctuates on a gently curved region

of effective potential in which |V ′′| ≪ H2 ≡ (8πG/3)V is satisfied. Its total entropy, S, is given
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Figure 4.1: The schematic picture of the landscape in which some universes may be thermally

excited (δH > 0) (red), tunnel to a more stable state (δH < 0) or stay in a lower energy vacuum

(δH = 0) (gray). Our universe might be the latest case.

by the sum of the Bekenstein entropy, SB ≡ A/4G, and that of the inflaton field, SM, where

A ≡ 4π/H2 is an area of the cosmological horizon [26]. The former and latter originate from

the gravitational and matter sectors of the total system respectively. The entropy production

of the inflaton should be zero δSM = 0 as long as it evolves in a unitary fashion, which means

that the total entropy production δS is equivalent to the difference in the Bekenstein entropy

δS = δSB = δ
( π

GH2

)
= −2πδH

GH3
. (4.1)

According to the stochastic inflation, the universe could be thermally excited from a lower energy

density, V1 ≡ V (ϕ1) ≡ 3H2
1/(8πG), to a higher energy density, V2 ≡ V (ϕ2) ≡ 3H2

2/(8πG) (Fig.

4.1). In the case of δH ≡ H2−H1 > 0, using (4.1), it is found that the total entropy production

decreases and the decrement can be much larger than the unity. Taking the parameters as,

for example, H1 ≃ H2 = 1013GeV and δH/H1 = 10−3, the entropy production is δS ∼ −109.

This very large decrement of entropy implies the (seeming) violation of the GSL on a universe.

Although Davies has proved that in the “classical” level, a cosmological horizon area never

decreases (δSB ≥ 0) if a cosmological fluid is subject to condition ρ + p ≥ 0 and the scale

factor a(t) diverges for t → ∞ [138], we here take into account the stochastic fluctuation of

inflaton that is “quantum-mechanically” driven [78, 137]. Then the question is whether there

exist inflationary universes in which the GSL is violated by their quantum fluctuations.

4.1.2 Cosmological decoherence

The stochastic inflation scheme starts with splitting the quantum fluctuations into two com-

ponents, the short-wavelength modes ϕ> (sub-horizon modes) and long-wavelength modes ϕ<

(super-horizon modes). The former is regarded as mere white noises interacting with the latter

46



(see (2.28)). Here the inflaton field ϕ can be described as

ϕ(x) = ϕ>(x) + ϕ<(x) (4.2)

with

ϕ>(x) =

∫
k>Λcut

d3k

(2π)3
ϕ(k, η)eik·x, (4.3)

ϕ<(x) =

∫
k<Λcut

d3k

(2π)3
ϕ(k, η)eik·x, (4.4)

where Λ is a certain cutoff and η is the conformal time. In the FLRW metric

ds2 = a2(η)
[
−dη2 + dx2

]
, (4.5)

we can set the cutoff Λcut = ϵHa(η), where a(η) is a scale factor and ϵ is a small constant

parameter [78]. Coarse-graining the sub-horizon modes which are inaccessible environment

interacting with the super-horizon modes leads to the decoherence and entropy production [139–

144], SM > 0, which could offset the decrement of the Bekenstein entropy, SB + SM > 0, as is

shown in the latter part of this section.

Let us consider a scalar field (inflaton) ϕ and an external scalar field (environment) φ which

interacts with ϕ in a curved spacetime. The action, S = Sϕ+ Sφ+ Sint, is modeled as [142,145]

Sϕ ≡
∫
d4x

√
−g
[
−1

2
gµν∂µϕ∂νϕ− 1

2
m2ϕ2

]
,

Sφ ≡
∫
d4x

√
−g
[
−1

2
gµν∂µφ∂νφ− 1

2
ξRφ2

]
,

Sint ≡ −λ
∫
d4x

√
−gϕφ2,

(4.6)

where m is the mass of ϕ, λ is a coupling constant, ξ is the non-minimal coupling constant, and

R is the Ricci scalar. Redefining the fields as χ ≡ aϕ and ψ ≡ aφ, Sϕ, Sφ and Sint reduce to

Sϕ ≡ Sχ =

∫
d4x

[
−1

2
ηµν∂µχ∂νχ− 1

2
M2
χa

2χ2

]
,

Sφ ≡ Sψ =

∫
d4x

[
−1

2
ηµν∂µψ∂νψ − 1

2
M2
ψa

2ψ2

]
,

Sint =

∫
d4x

λ

Hη
χψ2,

(4.7)

where M2
χ ≡ m2 − a′′/a3 and M2

ψ ≡ ξR− a′′/a3. Here we are interested in the case of de Sitter

spacetime, and therefore the mass terms M2
χ and M2

ψ in (4.7) reduce to M2
χ = m2 − 2H2 and

M2
ψ = (12ξ − 2)H2 respectively. We take ψ to be a conformally coupled field by taking ξ = 1/6

(Mψ = 0). The conformally coupled field does not feel the cosmic expansion, and therefore the
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field ψ is not squeezed while the field χ is getting squeezed after horizon exit. Therefore, we can

regard the fields χ and ψ as a super-horizon and sub-horizon modes, respectively. In this sense,

this model attempts to model an IR-UV split of a self-interacting single field.

Coarse-graining the environment field ψ, which leads to decoherence, corresponds to taking

trace over ψ as ∫
Dψ+Dψ−ρ(χ+, χ−, ψ+, ψ−; η)δ(ψ+ − ψ−)

≡ ρR(χ
+, χ−; η),

(4.8)

where ρ(χ+, χ−, ψ+, ψ−; η) is the total density matrix and ρR(χ
+, χ−; η) is the reduced density

matrix. Assuming the weak interaction between ϕ and ψ, the reduced density matrix can be

factorized as

ρR(χ
+, χ−; η) =

∏
k

⊗ρR(χ+
k , χ

−
k ; η) +O(λ3), (4.9)

and in the limit of |kη| ≪ 1, its master equation is given by [142]

d

dη
ρR(χ

+
k , χ

−
k ; η) ≃ −iL(u)

k [χk, ∂χk
] ρR(χ

+
k , χ

−
k ; η)

− λ2

8πH2η2
|χ+

k − χ−
k |

2ρR(χ
+
k , χ

−
k ; η),

(4.10)

where L(u)
k is the unitary time-evolution operator for the field χ. The second term in (4.10)

suppresses the non-diagonal terms and leads to decoherence. In the following, we will omit the

suffix k. Solving (4.10), one obtains

ρR(χ
+, χ−; η) ≃ ρ0(χ

+, χ−; η)e−
D(η)

2
|χ+−χ−|2 ,

D(η) ≡ − λ2

12πH2η
.

(4.11)

where ρ0 is the unitary density matrix and the effect of interaction is encoded in the exponential

factor in (4.11), which suppresses the non-diagonal components of the reduced density matrix

and leads to the decoherence.

4.1.3 Entropy production

For the calculation of an entropy production δSM , a Wigner function that is a probability

distribution function on phase space is useful. The definition of Wigner function is

w(χ, πχ; η) ≡
1

π2

∫
dxRdxI

e2iπχRxR+2iπχIxIρ(χ+ x/2, χ− x/2),

(4.12)
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Figure 4.2: Plots of Wigner functions (left and middle) and the time evolutions of entropy (right)

with λ = 0, m = 0, k = H (top) and λ = 3H, m = 0, k = H (bottom).

where πχ is the conjugate momentum of χ and the suffixes R and I indicate a real and imaginary

part, respectively. Taking the Bunch-Davies vacuum state, in which the mode function, fχ(k, η),

is given by

fχ(k, η) = e−i3π/4+iνπ/2
√
−πη
2

H(1)(ν;−kη)

with ν ≡
√

9

4
− m2

H2
,

(4.13)

the unitary density matrix ρ0 has the form [139,142]

ρ0(χ
+, χ−; η) =

√
2ΩR
π

× exp

(
−ΩR

2
(χ+ − χ−)2 − iΩI(χ

+ − χ−)(χ+ + χ−)− ΩR
2

(χ+ + χ−)2
)
,

(4.14)

where ΩR and ΩI are the real and imaginary part of the function Ω(k, η) ≡ −i
(
f∗χ

′/f∗χ − aH
)
.

From (4.11), (4.12) and (4.14), the Wigner function for the reduced density matrix ρR is obtained

as

wR(χ, πχ; η) =
4

π2
ΩR

ΩR +D

× exp

(
−2

|πχ − 2ΩIχ|2

ΩR +D
− 2ΩR|χ|2

)
.

(4.15)
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As is shown in Fig. 4.2, one finds that the Wigner distribution is squeezed due to the cosmic

expansion. In the case of λ = 0, the system is obviously in a pure state and the area of Wigner

ellipse A(η) remains constant, that is, the entropy production is zero δSM = 0. On the other

hand, when λ > 0 and m≪ H, smearing out the degrees of freedom of the environment ψ may

affect the state of ϕ so that its number of states (entropy) monotonically grows. The number

of states W is proportional to the area of Wigner ellipse, A ≡ παβ. From (4.15), A is given

by [142]

A =
π

2

(
1 +

D

ΩR

)1/2

. (4.16)

Defining W ≡ (2/π)A so that the matter entropy is zero when the interaction is turned off

(λ = 0), the entropy is given by

SM ≡ lnW =
1

2
ln

(
1 +

D

ΩR

)
=

1

2
ln

(
1 +

λ̃2

12π(−Hη)ωR

)
, (4.17)

where λ̃ ≡ λ/H and ωR ≡ ΩR/H. In the limit of |kη| ≪ 1, we found the asymptotic behavior

of ωR as

ωR ∝ (−Hη)−1+2ν for m <
3

2
H. (4.18)

We now can estimate the entropy production rate due to decoherence, ṠM ≡ dSM/dt, from

(4.17) and (4.18). For the case of m≪ H, the entropy production rate ṠM is

ṠM ≃ νH =
3

2
H +O(m2/H2). (4.19)

The previous works [139–141, 143, 144] in which other models are used to estimate the entropy

production rate, δSM , also predict that the rate is of the order of Hubble parameter δṠM ∼ H.

This implies that the entropy is constantly produced with the cosmological time scale, t ∼ 1/H,

which is caused by the squeezing [139, 143, 144]. Squeezing can equivalently be rephrased as

“particle creation” [139] with average particle number n ∼ e2r = e(2ν−1)Ht ∝ ω−1
R [143, 144].

Although the created particles are in a pure state in the case of λ = 0, once the interaction is

turned on (λ > 0), particle correlation is leaked into the environment degrees of freedom which

are inaccessible and the particles apparently lose their correlation, see, e.g., [140]. In this sense,

we can say that the endless creation of less correlated thermal particles may constantly produce

its entropy with time scale ∼ 1/H.

4.1.4 GSL on inflationary universes

Now our concern is if the entropy production δSM ∼ Hδt could recover the GSL by offsetting the

decrement of Bekenstein entropy δSB ∼ −δH/(GH3). In the first place, to observe a thermally
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(stochastically) excited universe, the condition

H

2π
≫ V ′(ϕ)

3H2
(4.20)

should be satisfied. This is because, in the stochastic inflation scheme, the coarse-grained field

ϕ follows the Langevin equation [78,137,146]

dϕ

dN
= −V

′(ϕ)

3H2
+
H

2π
ξ(N), (4.21)

where N ≡ Ht and ξ(N) is a white noise whose origin is a quantum fluctuation, from which

one can read the condition (4.20) for a dominant thermal noise (the second term in (4.21)). Let

us consider the situation where the field ϕ goes up a gentle slope of effective potential V (ϕ)

by a step δϕ ∼ H/2π [136] within the cosmological time scale δt ∼ 1/H. Replacing V ′(ϕ)

by δV/δϕ and using the Friedmann equation V = 3H2/(8πG), the condition (4.20) reduces to

δϕ≫ δH/2GH2 and we obtain

1 ≫ δH

GH3
. (4.22)

Remembering δSM ∼ Hδt ∼ 1 and δSB ∼ − δH
GH3 (see (4.1)), the inequality (4.22) reduces to

the GSL:

δSM + δSB > 0. (4.23)

Now we confirm that the decoherence, which is responsible for the entropy production ṠM ∼ H,

allows de Sitter universes whose vacuum energy densities thermally fluctuate to be excited

without the violation of the GSL.

4.1.5 Summary and discussion

In summary, using a system which models an IR-UV split of a self-interacting single field as in

Refs. [142,145], we have shown that the entropy production due to the cosmological decoherence,

δSM , could offset the decrease of the Bekenstein entropy, δSB, during the thermal excitation

of universe. This means taking decoherence into account is necessary to satisfy the GSL on

thermal universes. The constant entropy production ṠM ∼ H originates from the squeezing

due to the cosmic expansion, by which thermal particles are created and lose their quantum

correlations (i.e. quantum entanglement) due to decoherence. That is, uncorrelated thermal

particles would be produced with the cosmic time scale ∼ 1/H, which is responsible for the

entropy production ṠM ∼ H. Moreover, in the context of the warm inflation [147, 148] (see

also [149, 150]) in which the thermal equilibrium of external fields is maintained even during

inflation, the entropy production may be enhanced compared to that we have calculated. In

this sense, we have discussed if the GSL can be satisfied in a conservative setting. Davies has
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shown that the GSL is satisfied in the classical level [76,138]. On the other hand, we here have

shown that the GSL is satisfied even in the case where the stochastic fluctuations of inflaton

are taken into account. However, we have shown that [34] the cosmological horizon area may

instantaneously decrease due to the Hawking-Moss transition [32], that is the quantum jump of

a spatially homogeneous vacuum energy, and the GSL is broken. This is discussed in the next

section.

4.2 GSL and the Hawking-Moss transition

4.2.1 Interpretation of the decrease in entropy

When the Hawking-Moss bounce was first discovered [32], it was interpreted as describing quan-

tum tunneling from a de Sitter universe as a whole to another de Sitter space with a larger

(effective) cosmological constant. Since a transition to a state with larger energy density is

counterintuitive, many people perceived it with surprise. Another counterintuitive aspect is

that it depends only on the potential energy densities before and after the transition inde-

pendent of the “distance” in the field space. On the other hand, the time scale of stochastic

transition of a de Sitter patch discussed in Section 4.1 depends on the distance.

Since the Hawking-Moss transition is an instantaneous quantum tunneling process from the

bottom to the top of the potential, the low entropy production of the cosmological decoherence

cannot overwhelm the instantaneous decrement of Bekenstein entropy. Therefore, once taking

into account such a quantum process, the GSL is broken. However, it is no surprise that there

exists a process in which the GSL is broken since the celebrated Jarzynski equality [151], whose

simplified form is

⟨e∆S⟩ = 1, (4.24)

implies that in the context of non-equilibrium statistical mechanics, the second law of thermo-

dynamics is only “statistically” valid at the microscopic level. Here ∆S is the increment of

entropy in a certain process and ⟨·⟩ denotes an ensemble average over all possible processes. The

equality (4.24) means that a small fraction of them must be accompanied by the decrease in

entropy. In addition, it is found that the probability for a process of ∆S < 0 is suppressed by

e∆S in a situation where the fluctuation theorem [152,153] can be applied. Note, however, that

these theorems, the Jarzynski equality and fluctuation theorem, are valid in classical theory, and

therefore it is not obvious if such a naive extension of these arguments to the Hawking-Moss

instanton is really allowed. Nevertheless, we obtain an interesting result that the transition rate

of the Hawking-Moss tunneling is suppressed by the exponent of the decrement of Bekenstein

entropy eδSB .
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4.2.2 Transition rate of the Hawking-Moss tunneling

In the following, we show that the Hawking-Moss transition is exponentially suppressed and its

exponent is given only by the decrement of the entropy, as the bulk energy of the scalar field

is fully canceled out by the negative gravitational energy due to the Hamiltonian constraint. It

is therefore concluded that only the gravitational entropy affects the Hawking-Moss transition,

and that it does not break the conservation of energy.

In order to prove the above statement, it is essential to describe the (Euclidean) de Sitter

space with a static metric (M, gµν). Here, we start with a more general Arnowitt-Deser-Misner

(ADM) decomposition [154]

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (4.25)

where N is the lapse function, N i is the shift vector, and hij is the spatial metric. The Latin

indices run from 1 to 3. Applying the Wick rotation t = −it̃ to introduce the Euclidean time t̃,

(4.25) reads

ds̃2 = N2dt̃2 + hij(dx
i + Ñ idt̃)(dxj + Ñ jdt̃) (4.26)

with Ñ i ≡ −iN i. Here and hereafter we put a tilde on quantities in the Euclidean space which is

multiplied by some power of i upon Wick rotation. Correspondence to the unrotated Lorentzian

counterpart is also shown below. For example, the extrinsic curvature of the t̃ =const. three-

space Σt̃ is expressed as

K̃ij =
1

2N

(
∂hij

∂t̃
−DiÑj −DjÑi

)
= −iKij , (4.27)

where Di denotes covariant derivative with respect to hij .

The Euclidean Einstein action I
(G)
E is expressed as

I
(G)
E = − 1

16πG

∫
M
d3xdt̃

√
g̃R̃

=

∫
dt̃

[∫
Σt̃

d3x
(
π̃ij∂t̃hij +NH̃(G) − Ñ iH̃(G)

i

)
−
∫
S
d2x

√
σ

(
ni∂iN

8πG
− 2√

h
niÑj π̃

ij

)]
.

(4.28)

Here π̃ij is the Euclidean momentum conjugate to hij , σij is an induced metric on the boundary

surface S with σ ≡ detσij , and ni is the unit normal vector on the boundary surface S where

we assume ∂iÑj vanishes. H̃(G) and H̃(G)
i are the gravitational Hamiltonian and the momentum

for the dynamics of the foliation Σt̃. They are given by

H̃(G) =

√
h

16πG

(
−(3)R− K̃ijK̃

ij + K̃2
)
, H̃(G)

i = −2hijDkπ̃
jk,

π̃ij =

√
h

16πG

(
K̃ij − hijK̃

)
= −iπij ,

(4.29)
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where (3)R denotes the three-curvature on the hypersurface Σt̃ and K̃ represents the trace of

the extrinsic curvature hijK̃ij .

The matter Euclidean action, on the other hand, is expressed as

I
(M)
E =

∫
d3xdt̃

√
g̃

[
1

2
g̃µν∂µϕ∂νϕ+ V (ϕ)

]
=

∫
dt̃

∫
Σt̃

d3x
(
P̃ϕ∂t̃ϕ+NH̃(M) − Ñ iH̃(M)

i

) (4.30)

where

P̃ϕ =
√
h

[
1

N
∂t̃ϕ− Ñ i

N
∂iϕ

]
(4.31)

is the momentum conjugate to ϕ, and

H̃(M) =
√
h

−1

2

(
1

N
∂t̃ϕ− Ñ i

N
∂iϕ

)2

+
1

2
hij∂iϕ∂jϕ+ V

 ,
H̃(M)
i =

√
h

[
1

N
∂t̃ϕ∂iϕ− Ñ j

N
∂jϕ∂iϕ

] (4.32)

are the matter part of the Hamiltonian and momentum, respectively.

Classical Euclidean solutions are found by taking variation of the total Euclidean action

I
(tot)
E = I

(G)
E + I

(M)
E . From variation with respect to N and Ñ i, we find the Hamiltonian and the

momentum constraints,

H̃(tot) ≡ H̃(G) + H̃(M) =0, H̃(tot)
i ≡ H̃(G)

i + H̃(M)
i = 0. (4.33)

Therefore for a static configuration with ∂t̃hij = 0 and ∂t̃ϕ = 0, the total Euclidean action is

simply given by the surface terms as

I
(tot)
E static = −

∫
S
dt̃d2x

√
σ

(
ni∂iN

8πG
− 2√

h
niÑj π̃

ij

)
. (4.34)

For the particular case of de Sitter space, the static metric is given by

ds̃2 = g̃µνdx
µdxν

=
(
1−H2r2

)
dt̃2 +

dr2

1−H2r2
+ r2dΩ2

II, (4.35)

where H is the Hubble parameter, r denotes radial coordinate and dΩ2
II is the metric on the

unit two sphere. In the following, we impose the periodic boundary condition on the Euclidean

time t̃ with a period β.
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Introducing a foliation Σt̃ in the spacetime fixed at constant Euclidean time t̃, which takes

the value in the range 0 ≤ t̃ < β, we can easily decompose the Euclidean de Sitter metric with

N =
√

1−H2r2, Ñ i = 0, (4.36)

hµν =gµν − tµtν

=diag
(
0, (1−H2r2)−1, r2, r2 sin2 θ

)
(4.37)

tµ ≡(
√

1−H2r2, 0, 0, 0), (4.38)

where tµ is the unit normal vector on the hypersurface Σt̃. This manifold generally has a conical

singularity at r = 1/H where N = 0. This implies that the curvature is divergent on the de

Sitter horizon, although the horizon is not a physical singularity.

As we see below, the conical singularity can be avoided by a specific choice of β, namely the

inverse Hawking temperature βH ≡ 2π/H. It should be noted, however, that the manifold still

collapses to a single point on the horizon and, as shown below, this plays an important role in

deriving the entropy term from the Euclidean action.

In the following, therefore, we regularize the collapsing part of the manifold by first restrict-

ing the integration to the region Mϵ ≡
{
xµ : r ≤ 1

H − ϵ
}

and then setting the regularization

parameter ϵ to zero after the calculation of the Euclidean action (Fig. 4.3).

r = 0

r

r = H
−1

r = H
−1

− ǫ

nµ

βHN(r)!"#!$%&'#'(!')*)

tµ

N(r)t̃

Σ
ǫ

t̃

S
ǫ

t̃

Figure 4.3: The manifold M including the horizon at r = 1/H where N = 0. We can regularize

the Euclidean action by introducing a hypothetical boundary at r = H−1− ϵ denoted by S = Sϵ
t̃

with the cut off parameter ϵ set to zero at the end of the calculation.

In this case the action (4.34) has only the first term, where the surface Sϵ
t̃
is located at

r = 1/H − ϵ with its normal vector nµ given by

nµ = (0,−1/
√

1−H2r2, 0, 0). (4.39)
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Note that, since this surface is not a real boundary of the theory, being introduced just for

the sake of regularization, one should not apply the Gibbons-Hawking boundary terms [26,126]

here. The length of circumference of the manifold M is βN and the relation

lim
ϵ→0

ni∂i [βN ] = βH = 2π (4.40)

should be satisfied to ensure the absence of the conical singularity. This is the reason we must

identify β with the inverse Hawking temperature βH .

Hence, the nonvanishing term in (4.34) is calculated as

lim
ϵ→0

[
−βH

∫
Sϵ
t̃

d2x
√
σ
ni∂iN

8πG

]
= − A

4G
, (4.41)

where A is the area of the horizon given as

A ≡
∫
Sϵ
t̃

d2x
√
σ

∣∣∣∣∣
ϵ=0

=
4π

H2
. (4.42)

Thus, for the case ϕ = ϕs giving a static de Sitter space with potential energy density V (ϕs),

the action of the Hawking-Moss instanton

I
(tot)
E (ϕs) = −A(ϕs)

4G
=

π

GH2
=

3

8G2V (ϕs)
(4.43)

is entirely given by the contribution of the de Sitter entropy [126]. This is primarily because in

the static configuration the bulk term of the action vanishes due to the Hamiltonian constraint.

4.2.3 Discussion

From the above result, one can extend the thermal interpretation of the Hawking-Moss solution

more rigorously to argue that e−IE(ϕs) is indeed proportional to the thermodynamical probability

of the state ϕ = ϕs, e
−F/T , where F = E − TS is the free energy. Here, since E = 0, e−F/T

simply reads eS = elnW (ϕs) = W (ϕs). In other words, the probability is just proportional to

the number of internal states W (ϕs) associated with the de Sitter space with the energy density

V (ϕs). Thus the smallness of the transition rate (2.38) to a state with a higher potential energy

density is not due to the largeness of the energy—in fact, the total energy is always zero—, but

because of the smallness of the number of microscopic states there.

Again, it should be noted that the Hawking-Moss tunneling violates the GSL, as it is an

instantaneous transition to a state with smaller entropy unlike the stochastic transition of de

Sitter patch discussed in section 4.1. The difference between them comes from the duration time

of transition: the stochastic transition is a mere microscopic process analogous to the Brownian
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motion, while the Hawking-Moss transition is an instantaneous quantum tunneling process that

is statistically rare. As is discussed in the first part of this section, this work also suggests

that a study of the dynamics of a de Sitter universe may give an important perspective on the

relation between the quantum field theory in curved spacetime and non-equilibrium statistical

mechanics.
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Chapter 5

Firewall argument and decoherence

5.1 Introduction — Firewall argument and cosmology

The firewall argument [31] was emerged in 2012 in the context of the black hole information loss

paradox. Almheiri, Marolf, Polchinski, and Sully (AMPS) pointed out that the following three

postulates cannot be consistent: (postulate 1) Hawking radiation is in a pure state, (postulate 2)

the black hole information carried by the Hawking radiation is emitted near the horizon, with low

energy effective theory (GR plus quantum field theory), and (postulate 3) the infalling observer

experiences nothing special at the horizon due to the equivalence principle of GR. Then the

AMPS argues the existence of a firewall at the horizon by which the infalling observer burns up.

In other words, they give up the postulate 3, the equivalence principle. AMPS also point out the

possibility that firewalls exist even at cosmological horizons, such as those in de Sitter universe.

If the firewall argument is correct and the firewall exists even at the cosmological horizon of

the Universe, there would be neither the interior regions of black holes and nor exterior of the

cosmological horizons and the picture of the multiverse [35,36] and eternal inflation [7,37] would

be rejected. In this sense, the firewall argument is really critical even in cosmology.

In this section a reason for rejecting the AMPS firewall concept is presented. We show that

an infalling mode inside a black hole C is infinitely squeezed due to the gravitational effect of a

black hole, which makes the infalling mode highly sensitive to decoherence∗) and leads to the loss

of its entanglement with the outgoing mode B (Fig. 5.1). This means that there would be no

violation of monogamy of entanglement around a black hole and the black hole complementarity

principle can be consistent with the equivalence principle.

The plan of this chapter is as follows. In Sec. 5.2 we introduce a quantum state around a

∗)This mechanism is closely related to the quantum-to-classical transition of quantum fluctuations in a de Sitter

spacetime that is discussed in Section 4.1.2 and has been well investigated in Refs. [139–141,155–162].
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Figure 5.1: The infalling mode near the horizon, C on the hyper surface Σ, can hold coherence,

whereas the infalling mode in the vicinity of the singularity, C on the hyper surface Σ′, exits the

particle horizon (dashed line) and loses causal contact as a whole, which leads to the decoherence

of the infalling mode. As a result, the entanglement of the Hawking pairs disappears and its

state becomes separable.

black hole formed from gravitational collapse and describe how we calculate time evolution of

the quantum state. The resolution to the firewall paradox is described in Sec. 5.3. We show that

the quantum state of a Hawking pair, which is initially entangled state, would become a sep-

arable state due to environment-induced decoherence (a corresponding mechanism is discussed

in Subsection 4.1.2, and for an excellent review of decoherence, see e.g. [162]). In Sec. 5.4 we

confirm the consistency between our proposal, explaining how the Hawking pair evolves to a

separable state from an initially entangled state, and the previous works that investigated how

the purity of the Hawking radiation would be realized. Sec. 5.5 is dedicated to conclusions.

5.2 Formalism

The Unruh vacuum state [163] is the quantum state on an eternal black hole spacetime which

models the late time properties of the in vacuum of a collapsing star, which is denoted by |in⟩,
that contains no Hawking particle at the past infinity. The Unruh vacuum is associated with

the infalling modes and the outgoing modes that have positive frequency with respect to the

Killing vector ∂t and ∂T respectively, where t is the Schwarzschild time and T is the Kruskal

time. Introducing vacuum states |0⟩c for the infalling modes and |0⟩b for the outgoing modes,
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the Unruh vacuum state can be expressed as |U⟩ = |0⟩c |0⟩b, and the relation between the in

vacuum state |in⟩ and the Unruh vacuum state |U⟩ has the form [164]

|in⟩ ∝ 1√
Zω

( ∞∑
n=0

e−πωn(ω)/κ(b†ω)
n(c†ω)

n/n!

)
|0⟩c |0⟩b , (5.1)

where b†ω and c†ω are creation operators for the state |0⟩b and |0⟩c, respectively, n(ω) is the

number of particles with mode ω, κ ≡ (4GM)−1 is the surface gravity, and Zω ≡ (1−e−πω/κ)−1.

In the following, we will use the Unruh vacuum state as a quantum state around a black hole

although modeling the quantum state around the collapsing star with the (outgoing) Kruskal

mode has not been fully successful and may demand us to take into account the technical issues,

e.g., the backscattering effect in the definition of |0⟩c and |0⟩b†).
The relation (5.1) implies that the infalling modes are fully entangled with the outgoing

modes, which is the problematic entanglement and should be broken for the purity of the Hawk-

ing radiation as is pointed out by AMPS [31]. In the following, we will neglect multi-pair

creations because the states of n-particles are suppressed by the exponential factor e−πωn/κ and

their cumulative contribution to the entanglement entropy (EE) between the infalling and out-

going mode is negligibly small‡). For simplicity and to grasp the essence, we here consider a

generically entangled state

|in⟩ →
√

1− p2 |0⟩c |0⟩b + p |1⟩c |1⟩b , (5.2)

|1⟩c =
∫ ∞

0
dωφc(ω) |1, ω⟩c , (5.3)

|1⟩b =
∫ ∞

0
dωφb(ω) |1, ω⟩b , (5.4)

where |1, ω⟩c ≡ c†ω |0⟩c , |1, ω⟩b ≡ b†ω |0⟩b, p is a real number satisfying 0 < |p| < 1/
√
2, and φc(ω)

(φb(ω)) is a function satisfying
∫
dω|φc(ω)|2 = 1 (

∫
dω|φb(ω)|2 = 1), which ensures that |1⟩c

(|1⟩b) is a one-particle state of an infalling (outgoing) localized wave packet§). In the latter part

of this chapter, we will show that this entanglement is broken by the existence of the singularity,

†)See Ref. [165] for more details. They have discussed the definition of the standard quantum states around

a black hole, including the Unruh vacuum state, focussing on the differences between fermionic and bosonic

quantum field.

‡)The EE is given by −
∞∑

n=0

pn ln pn, where pn is the probability for n-pair creation. Using Eq. (5.1) with

the typical energy of a Hawking particle ω = κ, we can find that the cumulative contribution of the multi-pair

creations to the EE is less than 0.1%.
§)For example, taking the functions φc(ω) and φb(ω) to be (∆E)−1/2 for ω0 < ω < ω0+∆E and zero elsewhere,

we can reproduce the wave packet introduced in Refs. [28,166], where ω0 is the typical energy of a Hawking particle

and ∆E gives the dispersion scale of the wave packet with ∼ 1/∆E.
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which is caused by the decoherence of an infalling mode. An infalling mode inside a black hole

is redshifted as λ = λ0
√

2GM/r − 1, where λ0 is the initial wavelength, and it diverges in the

limit of r → 0. Therefore, the infalling mode exits the particle horizon near the singularity

and loses causal contact as a whole (Fig. 5.1), which is responsible for the squeezing (EPR-like

correlation) of the infalling mode, that has the role to retain its coherent structure [156], and

decoherence as is discussed in Section 5.3.

We consider a massless scalar field ϕ on the Schwarzschild spacetime with a mass M whose

metric is given as ds2 = −f(r)dt2+f−1(r)dr2+r2dΩ2
2 with f(r) ≡ 1−2GM/r, where dΩ2

2 denotes

the line element of a two-sphere dΩ2
2 ≡ dθ2 + sin2 θdφ2. Using the tortoise coordinate r∗ =

r+2GM ln |1− r/(2GM)|, we can rewrite it as ds2 = gµνdx
µdxν ≡ f(r)

[
−dt2 + dr∗2

]
+ r2dΩ2

2.

In order to describe the infinite squeezing of an infalling mode, let us investigate the dynamics

of the vacuum |0⟩c inside the black hole r < 2GM . The action S is given as

S =

∫
d4xL = −1

2

∫
d4x

√
−ggµν∂µϕ∂νϕ

=
1

2

∫
d2x

∑
l,m

[
χ′2
lm − 2χlmχ

′
lmG + G2χ2

lm − χ̇2
lm + f(r)

l(l + 1)

r2
χ2
lm

]
,

(5.5)

where we decompose the field ϕ into partial waves with an angular momentum l as ϕ ≡∑
l,m

χlmYlm/r, a prime and a dot denote differentiation with respect to r∗ and t respectively,

and G ≡ r′/r. From the action (5.5), the Euler-Lagrange equation can be derived as[
∂2

∂r∗2
− ∂2

∂t2
− f(r)

(
2GM

r3
+
l(l + 1)

r2

)]
χlm = 0. (5.6)

We find that the mode functions satisfying (5.6) are almost independent of the angular momen-

tum l in the vicinity of the singularity because l(l+1)/r2 in (5.6) can be ignored for r ≪ 2GM .

We are interested in the behavior of an infalling mode near the singularity, and therefore, we

set l = 0 and omit the suffixes (l,m) in the following. The time-like coordinate inside the black

hole is r∗, therefore, the conjugate momentum π of the field χ is given as [167]

π ≡ ∂L/∂χ′ = χ′ − Gχ (5.7)

and then the Hamiltonian is

H =

∫
dt
1

2

[
π2 + χ̇2 + 2Gχπ

]
. (5.8)

We can decompose the field χ and its conjugate momentum π as

χ ≡
∫ +∞

−∞

dω√
2π
χ̄ω(r

∗)e−iωt + (O.M.)

≡
∫ +∞

−∞

dω√
2π

[
cωχ̃ω(r

∗)e−iωt + c†ωχ̃
∗
ω(r

∗)e+iωt
]
θ(ω) + (O.M.),

(5.9)
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π ≡
∫ +∞

−∞

dω√
2π
π̄ω(r

∗)e−iωt + (O.M.)

≡ −i
∫ +∞

−∞

dω√
2π

[
cωπ̃ω(r

∗)e−iωt − c†ωπ̃
∗
ω(r

∗)e+iωt
]
θ(ω) + (O.M.),

(5.10)

where (O.M.) denotes the outgoing modes and θ(ω) is a step function: θ(ω) = 1 for ω > 0

and θ(ω) = 0 for ω < 0. The canonical commutation relation is [χ̄ω, π̄
†
ω′ ] = iδ(ω − ω′). In the

following, we will omit the suffix ω for simplicity. From (5.7) and the canonical commutation

relation, we obtain the Wronskian condition as (χ̃′∗χ̃− χ̃′χ̃∗) = i.

The third term in (5.8) is responsible for the squeezing of infalling modes [141,155–158], which

becomes stronger as r∗ → 0 as is shown later. To investigate the dynamics of the states |0⟩c and
|1, ω⟩c, we first derive the wave functions for them, Ψ0[χ̄] and Ψ1[χ̄], that satisfy c |0⟩c = 0 and

|1, ω⟩c = c† |0⟩c respectively. From (5.9) and (5.10), we can rewrite the former in the Schrödinger

representation as
[
χ̄+ iγ−1(r∗, ω)π̄

]
|0⟩c = 0, where γ(r∗, ω) ≡ π̃∗/χ̃∗. Replacing the conjugate

momentum π̄ by −i∂/∂χ̄†, we obtain the wave function Ψ0[χ̄] of the state |0⟩c as

Ψ0[χ̄] =

√
2γR
π

exp
[
−γ(r∗, ω)χ̄χ̄†

]
, (5.11)

where γR ≡ Re[γ(r∗, ω)]. On the other hand, |1, ω⟩c satisfies |1, ω⟩c = c† |0⟩c, and hence we

obtain Ψ1[χ̄] ∝
(
χ̄− γ∗−1(r∗)∂/∂χ̄†)Ψ0[χ̄], which leads to

Ψ1[χ̄] =
2γR√
π
χ̄ exp

[
−γ(r∗, ω)χ̄χ̄†

]
. (5.12)

The function γ can be calculated numerically from (5.6).

5.3 decoherence inside a black hole

In the following we show that the density matrix ρco of the quantum state (5.2) is reduced to

a separable¶) density matrix ρde due to the decoherence once the infalling mode reaches the

vicinity of the singularity, namely, ρco → ρde for r∗ → 0. To this end, we first show that the

infalling mode becomes highly squeezed as the mode approaches the singularity, and secondly,

that the squeezed state is highly sensitive to decoherence. The density matrix ρco can be written

as

ρco ≡ (1− p2) |0⟩c ⟨0|c ⊗ |0⟩b ⟨0|b + p2 |1⟩c ⟨1|c ⊗ |1⟩b ⟨1|b
+p
√

1− p2 (|1⟩c ⟨0|c ⊗ |1⟩b ⟨0|b + |0⟩c ⟨1|c ⊗ |0⟩b ⟨1|b) , (5.13)

¶)When a density matrix ρ can be rewritten as ρ =
∑
k

pkρ
(c)
k ⊗ ρ

(b)
k with

∑
k

pk = 1, the density matrix ρ is

said to be “separable”, and this means that there is no entanglement.
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and as is shown later, the separable density matrix ρde is

ρde = (1− p2) |0⟩c ⟨0|c ⊗ |0⟩b ⟨0|b + p2 |1⟩c ⟨1|c ⊗ |1⟩b ⟨1|b .

(5.14)

Hence, we will show that the third and fourth terms in (5.13) disappear, that is, ρco → ρde, as

the infalling mode approaches the vicinity of the singularity.

Let us consider the time evolution of the off-diagonal terms of ρco. Using (5.3), |0⟩c ⟨1|c and
|1⟩c ⟨0|c in the off-diagonal terms can be decomposed as

|0⟩c ⟨1|c =
∫
dωφ∗

c(ω) |0⟩c ⟨1, ω|c ,

|1⟩c ⟨0|c =
∫
dωφc(ω) |1, ω⟩c ⟨0|c

(5.15)

respectively, and we will show the decay of |0⟩c ⟨1|c and |1⟩c ⟨0|c by calculating the time evolution

of |0⟩c ⟨1, ω|c and |1, ω⟩c ⟨0|c. |0⟩c ⟨1, ω|c and |1, ω⟩c ⟨0|c component of the Wigner function of

ρco, W
(c)
01 and W

(c)
10 , are given as

W
(c)
01 =W

(c)
10

∗ =

∫ ∫
dxRdxI
(2π)2

e−i(π̄RxR+π̄IxI) ⟨χ̄− x

2
| |0⟩c ⟨1, ω|c |χ̄+

x

2
⟩

=
1

π2

√2γRχ̄− i

√
2γ2I
γR

(χ̄+
π̄

2γI
)

 exp
[
−2γR|χ̄|2

]
exp

[
−
2γ2I
γR

∣∣∣∣χ̄+
π̄

2γI

∣∣∣∣2
]
,

(5.16)

where we used (5.11) and (5.12) and the suffixes R and I represent the real and imaginary

part respectively. We numerically confirmed that they are infinitely squeezed in the limit of

r∗ → 0 with 2GMω = 0.5 (Fig.5.2 (a), (b), and (c)) and the ratio γI/γR ∝ sinh 2s diverges in

the vicinity of the singularity, γI/γR → −∞, where s is the squeezing parameter. This means

that s also diverges, |s| → ∞, as r∗ → 0 (see e.g., [155]).

Secondly, we will show that an infinitely squeezed state with an environment is highly fragile

against decoherence, in which the environment plays an important role. For instance, let us

consider a double-slit experiment with electrons in which they create an interference pattern

(non-diagonal density matrix). If they are exposed to thermal noise (environment), the pattern

will be coarse-grained and will disappear (decoherence). This is the intuitive interpretation for

the role of environment in decoherence. We here take into account the environment as follows.

The field χ can be separated into two parts, the long-wavelength part as the system (an infalling

Hawking particle) and the short-wavelength part as the environment (vacuum fluctuations). We

here regard only the modes with wavelengths much shorter than the gravitational curvature

radius of black hole as the short-wavelength part, as in the stochastic inflation scheme [78,160,

168]. Therefore, the environment can be regarded as a coherent state with a good approximation
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Figure 5.2: (a), (b), and (c) are the imaginary parts of the non-diagonal components W
(c)
01 , and

(a’), (b’), and (c’) are the imaginary parts of the coarse-grained non-diagonal components W(c)
01 ,

where we set |r∗|/2GM = 10 (for (a), (a’)), |r∗|/2GM = 0.1 (for (b), (b’)), |r∗|/2GM = 0.001

(for (c), (c’)), and 2GMω = 0.5. The non-diagonal term W
(c)
01 = W

(c)
10

∗ has the form of Xδ(X)

in the limit of r∗ → 0, and therefore the coarse-grained distribution W(c)
01 = W(c)

10
∗ disappears.

This leads to the transition from the entangled Hawking pair to the separable Hawking pair in

the vicinity of the singularity.

and we can consider the decoherence by tracing out the coherent environment. It is shown that

the tracing out the coherent environment is corresponding to convolving (coarse-graining) the

system’s Wigner function (5.16) with that of a coherent state WE [169],

WE ≡ π−2 exp
(
−|χ̄|2 − |π̄|2

)
. (5.17)

Taking the convolution of (5.16) and (5.17), the non-diagonal term of the coarse-grained Wigner

function W(c)
01 = W(c)

10
∗ is obtained as

W(c)
01 ≡ (W

(c)
01 ∗WE)

=
Q|Q|2

π2
(χ̄− iπ̄) exp

[
−|Q|2

{
(|χ̄|2 + |π̄|2) + 2γR(|χ̄|2 + |π̄/(2γR) + (γI/γR)χ̄|2)

}]
,

(5.18)

where Q ≡
√
2γR/(1 + 2γ). In the limit of r∗ → 0, the real and imaginary parts of the function

γ(r∗, ω) diverge and hence Q asymptotically approaches zero. Therefore, the non-diagonal term
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W(c)
01 is decaying as approaching the singularity (Fig.5.2 (a’), (b’), and (c’)), which means that

the Hawking pair will experience decoherence as the infalling mode approaches the singularity

since the effect of decoherence on a density matrix is essentially the decay of its off-diagonal

terms, see e.g., [162]. Although GR and quantum field theory are, of course, no longer valid near

the singularity at r ≲ rPl = 2GM(MPl/M)2/3∥), the decoherence is almost completed at r ≫ rPl

in the case of interest, namely a massive black hole M ≫ MPl (remember postulate 2). That

is, the above estimates suggest that the squeezing becomes so strong that the decoherence can

take place well before the modes reach r ∼ rPl, and therefore using a (semi)classical spacetime

picture of the mode evolution should still be reliable.

As is shown above, the intense squeezing leads to the decay of the off-diagonal terms. There-

fore, the third and fourth terms in (5.13), containing the off-diagonal components |1, ω⟩c ⟨0|c
and |0⟩c ⟨1, ω|c (see (5.15)), decay due to the decoherence and this leads to the transition of

the state ρco → ρde = (1 − p2) |0⟩c ⟨0|c ⊗ |0⟩b ⟨0|b + p2 |1⟩c ⟨1|c ⊗ |1⟩b ⟨1|b. This implies that the

entanglement of Hawking pairs decays as the infalling mode approaches the singularity.

5.4 Microscopic picture of information recovery

We can apply the loss of the entanglement between a Hawking pair to the black hole information

paradox. According to our proposal, the entanglement between B and C is broken when C

approaches the singularity. Therefore, the time scale on which the entanglement is broken is

of the order of the free fall time scale, tF ∼ 2GM , measured by a freely falling observer. In

other words, we cannot avoid the entanglement between B and C only during the moment of

the free fall ∼ tF . Therefore, we have to discuss how the scenario proposed here is consistent

with the monogamy of entanglement and the previous works [170,171], in which the time scale

of information recovery is carefully discussed in the microscopic level.

In Ref. [170], the radiation around a gravitationally collapsing shell was analytically inves-

tigated and it was shown that the correlations between the Hawking particles (between A and

B) are initially zero but grow on the time scale of tF for an observer far from the black hole.

Reference [171] also pointed out that the microscopic time scale of information recovery may

be of the order of tF by considering the interaction between a collapsing shell and the Hawking

radiation. For these reasons, we can conclude that the entanglement between A and B would be

initially zero and gradually appears on the time scale of tF , and B can be allowed to be entangled

with C only for the short time ∼ tF , which is quite consistent with our scenario. This implies

that B would not be fully entangled with A and C simultaneously (Fig. 5.3), and therefore there

∥)The gravitational curvature is of the order of M2
Pl at r ∼ rPl.
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is no any violation of the monogamy of entanglement.

5.5 Summary

We have shown that a Hawking pair becomes a separable state from an entangled state by

pointing out that the high squeezing and decoherence occur inside a black hole. The analysis

was done with a simplified state (5.2) and the environment interacting with the infalling Hawking

modes whose Wigner function is given by (5.17). The interaction with the environment can be

effectively taken into account by smearing out the Wigner function of the infalling mode with

that of the environment (5.18). As a result, we showed that the off-diagonal terms of the density

matrix for the Hawking pair would decay quickly compared to the black hole evaporation time

scale, which implies that the decoherence would be caused by the interior gravitational effect

and that the entanglement between Hawking pairs will be broken. It should be emphasized that

although GR and quantum field theory would break down near the singularity, our proposal is

valid as long as the mass of black hole is much larger than the Planck mass, M ≫MPl [30,31].

According to our proposal, we would no longer need firewalls. Therefore, cosmological horizons

would be free from the firewall argument and the picture of the multiverse [35, 36] or eternal

inflation [7, 37] do not suffer from it. We believe that our work can be important for the

understanding of how the states of Hawking pairs of particles become separable, and how the

black hole information paradox can be solved.
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Figure 5.3: The schematic picture showing how the microscopic picture of information recovery

[170, 171] is consistent with our proposal. B is initially entangled with C and its entanglement

will decay on the time scale of tF . On the other hand, the entanglement between A and B is

initially zero and may grow on the time scale of tF .
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Chapter 6

Catalyzing effect for the Higgs

metastability

6.1 Introduction

Compact objects are ubiquitous in high-energy physics as well as astrophysics and play significant

roles in cosmological history of the Universe. To name a few, monopoles [39], Q-balls [40–49],

oscillons [172–182], boson stars (including axion stars) [50–64], gravastars [183, 184], neutron

stars, black hole remnants [82–85], and (primordial) black holes [185–195] are examples that

have been studied extensively in the literature for several decades. Pursuing consistency of

these objects in cosmology and astrophysics is important to construct a realistic particle physics

model and is complementary to high-energy colliders to find a new physics beyond the SM.

It has been proposed that black holes may be objects catalyzing vacuum decays around

them [118–120,122,123,131,196–200], which was pioneered by Hiscock [124]. The abundance of

the catalyzing objects should be small enough to avoid the nucleation of AdS vacuum bubble

within our observable Universe until present. Actually, this is particularly important in the

standard model of particle physics [119,121,201], where the Higgs potential could develop an AdS

vacuum at a high energy scale because of the running of quartic coupling [93–116]. According

to their result, even a single black hole within our observable Universe leads to the bubble

nucleation if its mass is small enough.

One may wonder what property of black holes contributes to the promotion of a vacuum

decay around it. Gregory, Moss, and Withers found [118, 120] that the exponential factor of a

vacuum decay rate around a black hole is determined by two factors, Γ ∝ e−B+∆S , where Γ is

the vacuum decay rate, ∆S is the change of Bekenstein entropy of the black hole, and B is an

on-shell Euclidean action depending on the Euclidean dynamics of a bubble wall. Then they
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found that the decrement of B due to gravity of a black hole overwhelms the entropy decrement.

Although they found an extremely large enhancement of bubble nucleation rate around a black

hole, it has been discussed that the main effect comes from the thermal fluctuation due to the

Hawking radiation [122]. This implies that the nucleation rate is overestimated because the

same effect generates a thermal potential that tends to stabilize the Higgs at the symmetric

phase [122, 123, 202] or because the thermal effect of Hawking radiation should be small for a

large bubble. Thus, though the bubble nucleation rate is still enhanced around a Black hole

because of the effect of gravity, it might not be so large as expected before. If gravity of a black

hole mainly contributes to the promotion of a vacuum decay, it is meaningful to consider the

catalyzing effect even around horizonless objects. The absence of horizons is equivalent to the

absence of the suppression factor due to the change of Bekenstein entropy e∆S , and therefore,

horizonless compact objects may be more important candidates of catalyzing objects for vacuum

decays. In this chapter, we discuss such a vacuum decay around a spherical horizonless object

as a catalyzing one.

This Chapter is organized as follows. In Section 6.2.1, we explain the formalism to calculate

the bubble nucleation rate around a generic compact object. We use a Gaussian density function

for the object as an example to calculate the nucleation rate in Sec. 6.2.2. We will see that the

efficient enhancement occurs if the radius of the compact object, its Schwarzschild radius, and

the radius of the nucleated bubble are of the same order with each other. We then discuss a

parameter region for a ’t Hooft-Polyakov monopole that is excluded because of the nucleation

of AdS vacuum in Sec. 6.2.3. In Section 6.3, we discuss differences from the bubble nucleation

around a black hole. We will see that the nucleation rate is more enhanced around a horizonless

compact object than around a black hole with the same total mass. The result is summarized

in Section 6.4.

6.2 Bubble nucleation around a compact object

6.2.1 Formalism

We consider a nucleation of a thin wall vacuum bubble around a spherical object. If we assume

that the system is static, the metric inside and outside of the bubble can be written as

ds2 = −A±(r±)dt
2
± +B±(r±)dr

2
± + r2±dΩ

2
2, (6.1)

where A± and B± are determined by the Einstein equation and will be specified later. The

quantities associated with the outer and inner region are labeled by the suffix “+” and by “−”,

respectively.
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Figure 6.1: A schematic picture showing a vacuum decay catalyzed by a static and spherical

object.

The thin wall vacuum bubble can be characterized by its energy density, σ, and pressure, p.

The ratio of p to σ, w ≡ p/σ (equation-of-state parameter), is assumed to be a constant. We

here choose the scale of radial coordinates r± so that r+ = r− ≡ R on the wall. A schematic

picture showing the vacuum decay process we assume here is depicted in Fig. 6.1.

Introducing the extrinsic curvature on the outer (inner) surface of the wall, K
(+)
AB (K

(−)
AB ),

the EMT of wall, SAB, and the induced metric on the wall, hAB, the dynamics of the thin wall

with ξA = (τ, θ, ϕ) is described by the Israel junction conditions as

K
(+)
AB −K

(−)
AB = −8πG

(
SAB − 1

2
hABS

)
, (6.2)

√
A±B±K

(±)
AB = diag

(
−dβ±
dR

, β±R, β±R sin2 θ

)
, (6.3)

SAB ≡ diag (−σ, p, p) , hAB ≡ diag
(
−1, R2, R2 sin2 θ

)
, (6.4)

where

β± ≡ ϵ±
√
A± +A±B±(dR/dτ)2, (6.5)

and τ is the proper time of the wall and ϵ± is the sign of spatial components of extrinsic curvature.

We here simply neglect the interaction between the horizonless object and the bubble except

for their gravitational interaction. The case with such an interaction being taken into account

will be discussed elsewhere (see also Refs. [203–205] in the context of Q-ball in supersymmetric

models without taking gravity effects into account).

We are interested in the decay of Higgs vacuum, where the metastable vacuum has a negli-

gibly small vacuum energy and the true vacuum has a negative vacuum energy ρv < 0. We also

introduce a compact object at the origin of the spatial coordinate, which modifies the metric

because of the nonzero mass density ρc(r). For simplicity, we here assume the EMT of the object
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which gives the following static solutions of the Einstein equation:

A± = B−1
± = f±(r±) ≡ 1− 2GM(r±)/r± +H2

±r
2
±, (6.6)

with

H+ = 0, H2
− ≡ −8πG

3
ρv, (6.7)

M(r±) ≡
∫ r±

0
dr̄±4πr̄

2
±ρc(r̄±). (6.8)

If we use an arbitrary mass density, ρc(r), the compact object does not satisfy the static Einstein

equation unless an appropriate EMT for the chosen ρc(r) exists. Although in this case the

metric (6.1) cannot be used, we expect that we can use it to capture a qualitative result. To be

more rigorous, in the Appendix D, we calculate the vacuum decay rate around a gravastar-like

object, which is constructed to be (approximately) static. We specify its interior EMT and use

the metrics consistent with the specified EMT. Then one could find that the aforementioned

assumption for the metrics, (6.1), does not qualitatively change our results and main conclusions.

Equation (6.2) now reduces to the following equations

d

dR
(β− − β+) = −8πG (σ/2 + p) , (6.9)

(β− − β+) = 4πGσ(R)R. (6.10)

One obtains σ = m1−2wR−2(1+w) by solving (6.9), where m is the typical energy scale of the

wall, and we can rewrite (6.10) as(
dz

dτ ′

)2

+ V (z) = −1, (6.11)

V (z) ≡ −a
z
− z2

4

[
z2(1+w)m̄2w−1

4πH̄2w+1
− 4πH̄2w+1

z2(1+w)m̄2w−1

]2
≤ 0, (6.12)

where we re-defined the following non-dimensional variables and parameters:

z ≡ H−R, τ
′ ≡ H−τ, a ≡ 2GMH−,

m̄ ≡ m/MPl, H̄ ≡ H−/MPl.
(6.13)

The parameters m̄ and H̄ are the ones in the Planck units. The solution to Eq. (6.11) is the

bounce solution that describes the bubble nucleation process.

The Euclidean action, Bco, can be calculated from the bounce solution with the following

integration [118]:

Bco =
1

4G

∮
dτE(2R− 6GM + 2GM ′R)

(
β+
f+

− β−
f−

)
,

(6.14)
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where τE is the Euclidean proper time of the wall. The transition rate, ΓD, can be estimated as

ΓD ∼ R−1
CDL

√
Bco

2π
exp(−Bco), (6.15)

where we estimate the prefactor by taking a factor of
√
Bco/2π for the zero mode associated with

the time-translation of the instanton and we use the light crossing time of the bubble, RCDL, as

a rough estimate of the determinant of fluctuations, which will be defined more precisely below.

6.2.2 Results for Gaussian mass distribution

As an example, we consider the case where the density distribution of the horizonless object is

given by the Gaussian form:

ρc(r) = ρ0e
−r2/ξ2 , (6.16)

where ρ0 and ξ represent the typical mass density and the size of the compact object, respectively.

Motivated by the Higgs vacuum decay, we take H̄ = 10−6, m̄ = 6×10−4, and w = −1 throughout

this chapter. Here, we implicitly assume that the Higgs potential is supplemented by a non-

renormalizable ϕ6 term as considered in Ref. [120] so that we can use the thin-wall approximation.

We also take ξ = 103M−1
Pl as an example.

Effective potentials governing the wall position (V (z)) for the above parameters are plotted

in Fig. 6.2-(a). The dashed line represents the case of CDL tunneling, where Mtot/MPl = 0

with Mtot ≡
∫∞
0 dr′4πr′2ρc(r

′). In this case, a bubble is nucleated at the point P0 i.e. with

the radius R ≃ αH−1
− ≡ RCDL for α ≡ 8πGm3/H− ≪ 1 [92, 118]. As we increase Mtot/MPl,

the effective potential becomes lower. We plot the cases of Mtot/MPl = 400 (a black solid line),

872.6 (a black dashed-dotted line), and 952.1 (a blue solid line).

A nucleated vacuum bubble with 0 ≤Mtot/MPl ≲ 872.6 initially has its wall radius between

P1 and P0 (black open circles in Fig. 6.2) and would expand soon after its nucleation. A nu-

cleated bubble around the horizonless object with 872.6 ≲Mtot/MPl ≲ 952.1 would be trapped

between P2 and P3, where the gravitational force and bubble tension are balanced, and then, it

may eventually tunnel to a larger bubble, whose wall is in between P4 and P1. If the mass is

larger than or equal to 952.1MPl, one has f+ = 0 (a black filled circle in Fig. 6.2-(b)), that is,

a black hole forms.

One finds that the effective potential can be drastically distorted because of the gravitational

effect of the horizonless object, which makes a bubble wall nucleated around a catalyzing object

smaller compared to a CDL bubble (P0 in Fig. 6.2-(a)). The distortion of the potential largely

enhances the nucleation rate of vacuum bubble and the nucleation of bubbles could occur within

the cosmological time as will be shown in the following.
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Figure 6.2: The effective potential (a) and f+ (b) for the horizonless object with Mtot/MPl = 0

(CDL solution), 400 (a black solid line), 872.6 (a black dashed-dotted line), and 952.1 (a blue

solid line) and for a black hole with Mtot/MPl = 952.1 (a black dotted line) are shown.

In Fig. 6.3, the ratio of the vacuum decay rate, ΓD, to the inverse of the cosmological time,

ΓC ≡ HC ≃ 10−61MPl, is shown in the range of 1 ≤ Mtot/MPl ≤ 15000 and of c ≤ 5, where we

define the compactness parameter as

c ≡ ξ/(2GMtot). (6.17)

In our setup, we find that the existence of even a single horizonless object with Mtot/MPl and

c within the region enclosed by the red line in the figure (i.e., 103 ≲ Mtot/MPl ≲ 104 and with

c ≲ 2) would be excluded since a bubble would be nucleated around it within the cosmological

time.
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Figure 6.3: Plot of the ratio of the decay rate, ΓD, to the inverse of the cosmological time, ΓC,

as a function of the mass and compactness of the horizonless object. The contour of ΓD = ΓC

(red solid line) and contours of ξ/RCDL (white dashed lines) are marked for reference. In the

case of c ≤ ccrit ≃ 0.525 (gray shaded region), the object inevitably collapses to a black hole

since a function f+(r) has zero points there.

We show the contours of ξ/RCDL as white dashed lines in Fig. 6.3. They indicate that

an efficient enhancement occurs only when the radius of the nucleated bubble (which is of the

same order with the CDL radius) is comparable to that of the compact object. An efficient

enhancement also requires a small compactness so that the gravity effect is efficient around the

dense compact object. Therefore, we conclude that the bubble nucleation rate is drastically

enhanced around a compact object if the size of the horizonless object is comparable with the

radius of CDL bubble and its compactness is of the order of unity.

6.2.3 Constraint on the abundance of compact objects

The nucleation of the AdS vacuum bubble, whose origin could be the Higgs instability, within

the cosmological time obviously conflicts with the present Universe not filled by the negative
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vacuum energy. It would expand with the light speed soon after its nucleation, which would

lead to the Universe filled by the negative vacuum energy. Since a compact object could be a

catalyst for the vacuum decay, we can put constraints on the abundance of horizonless objects

in the Universe.

For instance, depending on the energy scale, magnetic monopoles could be ultra compact.

Suppose that there is a (hidden) non-Abelian gauge field that is spontaneously broken by a (hid-

den) Higgs field. If the vacuum manifold has a non-trivial second homotopy group, monopoles

arise at the spontaneously symmetry breaking. Introducing the vacuum expectation value of

the hidden Higgs field, v, the mass and size of a ’t Hooft-Polyakov monopole, denoted by Mmono

and Rmono, respectively, can be estimated as

Mmono ∼ v/
√
αG (6.18)

Rmono ∼ (
√
αGv)

−1, (6.19)

where αG is the running gauge coupling constant for the non-Abelian gauge interaction. Impos-

ing the ultra compact condition, c ≃ Rmono/(2GMmono) ∼ 1, one obtains v ∼MPl and Rmono ∼
ℓPl/

√
αG. Therefore, as long as the Higgs potential accommodates a second lower minimum due

to the Higgs instability, parameter regions which realize v ∼MPl and RCDL ∼ Rmono ∼ ℓPl/
√
αG

should be excluded in order to be consistent with the present Universe not filled by the AdS

vacuum. Since RCDL = 8πGm3/H2
− ≃ 5 × 103, αG should be as small as 3 × 10−8 to nucleate

the Higgs vacuum bubble.

6.3 Comparison with the catalyzing effect of black holes

Now we compare our results with the case of bubble nucleation around a black hole, which has

been extensively discussed in the literature. In Ref. [118], Gregory, Moss, and Withers pointed

out that the Bekenstein entropy of a black hole with mass Mtot may contribute to the vacuum

decay rates as

ΓD ∼ R−1
CDL

√
IE
2π
e−IE = R−1

CDL

√
IE
2π
e−Bbh+∆S , (6.20)

Bbh ≡ 1

4G

∮
dτE(2R− 6GMtot)

(
β+
f+

− β−
f−

)
, (6.21)

where IE is the total Euclidean action and Bbh is the bulk component of the on-shell Euclidean

action depending on the Euclidean dynamics of a vacuum bubble. Contributions from the conical

singularities on the Euclidean manifolds before and after the vacuum decay lead to a factor of

∆S, which is equivalent to the change of the Bekenstein entropy of a catalyzing black hole.
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Note that even horizonless compact objects can emit Hawking radiation (see, e.g., Refs.

[206–208]) because of the vacuum polarization in a strong gravitational field and its thermal effect

on the Higgs potential may have to be taken into account. The details of the Higgs potential

are characterized by the parameters (i.e. H̄, m̄, and w) in the thin-wall approximation, and

therefore, those parameters could be affected by such a thermal effect in our setup. In addition,

we here fix the mass of black hole singularity before and after the phase transition by simply

assuming that matter fields forming the black hole singularity has no interaction with another

matter field which eventually undergoes the phase transition.∗)

When a black hole efficiently catalyzes the vacuum decay, the size of the black hole, 2GMtot,

is comparable with the CDL bubble radius, RCDL, and the prefactor in (6.20) can be rewritten as

(GMtot)
−1
√
IE/2π, which is consistent with the prefactor in Ref. [118]. The Bekenstein entropy

decreases because of the vacuum decay since the decrease of the vacuum energy surrounding

the black hole makes the area of its event horizon smaller. Although the gravitational effect

is strong around a black hole, the vacuum decay rate would be suppressed by the change of

Bekenstein entropy:

∆S = π
[
R2

h,− − (2GMtot)
2
]
< 0, (6.22)

where the horizon radius Rh,− after the bubble nucleation is defined by f−(Rh,−) = 0.

Horizonless compact objects have no Bekenstein entropy, so that they could more efficiently

catalyze vacuum decays than black holes do. We here compare the vacuum decay rate around

the horizonless compact object, whose mass is Mtot and compactness is fixed with c = 1, with

that around a black hole whose mass is Mtot. The result is shown in Fig. 6.4. Both the black

hole and horizonless compact object efficiently catalyze the vacuum decay compared to the CDL

solution shown as red points. If there were no contribution of Bekenstein entropy on the decay

rate around the black hole, the exponential factor for the black hole would be larger than that

for the horizonless object (blue dashed line in Fig. 6.4-(b)). However, the decay rate with the

compact object (black solid line) is larger than that with the black hole (black dotted line)

thanks to the absence of the decrement of Bekenstein entropy (red dashed-dotted line).

A bubble nucleated around a black hole with Mtot =Mcrit ≃ 1045MPl is static (black points

in Fig. 6.4) because of the perfect balance between the gravity of the black hole and bubble’s

tension. On the other hand, there is no well-defined Euclidean solution for a black hole with

Mtot ≥Mcrit [118].

∗)Although it might be possible that the black hole mass changes due to the bubble nucleation [118–121], it was

argued that it could be closely related to the thermal excitation of bubble due to the Hawking radiation [122,202].
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Figure 6.4: The vacuum decay rates around a black hole with mass Mtot (a dotted line) and

that around a horizonless compact object, whose mass is Mtot and compactness is fixed with

ξ/2GMtot = 1, (a solid line) are shown. Red and black points show the decay rate of the CDL

solution and a critical static solution, respectively.

6.4 Summary

We have discussed a role of a horizonless compact object as a catalyst for a vacuum decay. As

long as the interaction between a bubble and a catalyzing object is negligible, our results do not

depend on the details of the object much and its gravity plays an essential role in the catalyzing

process. The universality of our result is also discussed in the Appendix D. This suggests that one

can put some constraints on the abundance of various kinds of horizonless compact objects, such

as monopoles, Q-balls, Boson stars, gravastars, black hole remnants, and so on. In particular,
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the Higgs vacuum may decay into an AdS vacuum if there exists even a single compact object

whose radius is comparable to its Schwarzschild radius and the CDL bubble radius. For instance,

depending on the energy scale, magnetic monopoles could be ultra compact. As long as the Higgs

potential accommodates a second lower minimum causing its Higgs instability, parameter regions

which realize the GUT symmetry breaking with RCDL ∼ Rmono should be excluded in order to

be consistent with the present Universe not filled by the AdS vacuum. More realistic cases may

arise for Boson stars, oscillons, and Q-balls. In addition, in case that a single compact object is

not enough to catalyze the Higgs vacuum to decay into the AdS one, multiple ones could do it,

which leads to new constraints on the abundance of such a compact object.

It is also interesting to note that the catalyzing effect of horizonless objects is more efficient

compared to that of black holes since there is no suppression of vacuum decay rate due to the

decrement of Bekenstein entropy. Therefore, if there had been some ultra compact objects in

the Universe, they could have played a critical role in the cosmological sense.

Finally, we comment on the case where the compact object has an interaction with the

nucleated bubble, namely, the Higgs field. In this case, the mass of the compact object can

change due to the bubble nucleation. Because of the conservation of energy, the nucleated bubble

can use the mass difference of the compact object and the nucleation rate can be drastically

enhanced. This is similar to the case of bubble nucleation in a finite temperature plasma, where

a bubble can use the thermal energy to be excited with a finite energy. This is also similar to the

case for a bubble nucleation around a black hole with the thermal effect of Hawking radiation,

where the mass of black hole changes after the bubble nucleation. However, as the thermal effect

stabilize the Higgs potential to the symmetric phase in these cases, the interaction between the

compact object and the Higgs field may lead to an effective potential that stabilize the Higgs

potential. Still, this results in a more efficient enhancement for the nucleation rate and is an

interesting possibility for many particle physics models.
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Chapter 7

Birth of an inflationary universe

from a mini black hole

7.1 Background

Inflation in the early universe provides answers to a number of fundamental questions in cos-

mology such as why our Universe is big, old, full of structures, and devoid of unwanted relics

predicted by particle physics models [209]. Furthermore, despite the great advancements in

precision observations of CMB, there is no observational result that is in contradiction with

inflationary cosmology so far [3, 4].

Inflationary cosmology has also revolutionized our view of the cosmos, namely, our Universe

may not be the one and the only entity but there may be many universes. Indeed already in the

context of the old inflation model [1,2], Sato and his collaborators found possible production of

child (and grand child...) universes [35,71,210].

Furthermore, if the observed dark energy consists of a cosmological constant Λ, our Universe

will asymptotically approach the de Sitter space which may up-tunnel to another de Sitter

universe with a larger vacuum energy density [32,34,211–213] to induce inflation again to repeat

the entire evolution of another inflationary universe. In such a recycling universe scenario, the

Universe we live in may not be of first generation, and we may not need the real beginning of

the cosmos from the initial singularity [213].

In this context, so far only a phase transition between two pure de Sitter space has been

considered. However, phase transitions which we encounter in daily life or laboratories are

usually induced around some impurities which act as catalysts or boiling stones. In cosmological

phase transitions, black holes may play such roles. In this chapter we discuss a cosmological

phase transition around an evaporating black hole to show that a wormhole-like configuration
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with an inflationary domain beyond the throat may be created after the transition.

The study of a phase transition around a black hole was pioneered by Hiscock [124]. More

recently, Gregory, Moss and Withers revisited the problem [118]. They have observed that the

black hole mass may change in the phase transition and calculated the Euclidean action taking

conical deficits into account [118–120]. Moreover, a symmetry restoration activated by Hawking

radiation [27,28] near a microscopic black hole has been investigated by Moss [214].

7.2 Symmetry restoration around an evaporating black hole

We consider a high energy field theory of a scalar field ϕ whose potential allows a thin-wall

bubble solution of a metastable local minimum at ϕ = 0 with the energy density ϵ4 surrounded

by the true vacuum with a field value ϕ0 where the mass square is given by m2. In such a theory

Moss [214] argues that the symmetry is restored in the vicinity of the black hole horizon inside

a thin wall bubble as the Hawking temperature, TH = M2
Pl/(8πM+), reaches the mass scale of

the theory. Here M+ and MPl are the black hole mass and the Planck mass, respectively. In

the presence of plausible couplings of the relevant fields, he shows that the medium inside the

bubble, where fields coupled to ϕ are massless, is thermalized with a temperature T which is

substantially smaller than m ∼ TH . Then the free energy of the bubble configuration is given

by

F (r, T ) =
4

3
πr3ϵ4 + 4πr2σ − π

18
qm̃2T 2r3 (7.1)

as a function of its radius r and T , where σ is the surface tension of the wall and m̃2 denotes sum

of the mass squared of species which receive a mass from ϕ outside the bubble. For simplicity

we assume m̃ is of the same order of m and omit the tilde hereafter. Here q is related to the

scattering parameter C defined by Moss [214] as q ≡ (192π2C)−2/3, which can take a value of

order of unity or even larger.

The relation between the thermalized temperature T and the bubble radius rw is obtained

by solving the Boltzmann equations for the radiated beam particles and thermalized medium

with the boundary condition that only particles with energy larger than m would escape the

bubble wall, which reads
1

216
q−3/2T 3r3 + 48mTr2e−βm = 1, (7.2)

at r = rw with β ≡ T−1.

The radius of the wall rw is obtained by minimizing the free energy (7.1) under the condition

(7.2). For example, when the inequality

mrw ≫ 104q2/3(βm)2e−βm (7.3)
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is satisfied and the first term dominates the left hand side of (7.2), we find T = 6
√
q/rw, so that

the free energy is minimized at

r = rw =

√
3q

2

m

ϵ2
. (7.4)

For consistency of this solution with (7.3), ϵ and m must satisfy

βm =
1

6
√
2

m2

ϵ2
≳ 10, (7.5)

which we assume hereafter. Then the thin wall condition mrw =

√
q

2

m2

ϵ2
≫ 1 is naturally

satisfied.

Under the condition (7.5) thermal energy inside the bubble is subdominant compared with

ϵ4, so the geometry inside the bubble can be described by the Schwarzschild de Sitter metric.

Furthermore, as the radiation temperature increases in association with the increase of the

Hawking temperature, more high energy particles, which escape from the bubble and do not

contribute to support the wall, are created to lower the effect of the radiation pressure. Thus,

contrary to naive expectation, thermal effects on the created bubble become less important as

the temperature increases, which can be also understood from the inequality drw/dT < 0 derived

from (7.2).

Thus the system can be approximated by a spherically symmetric thin wall with tension σ

separating outside Schwarzschild geometry with mass parameter M+ and inside Schwarzschild

de Sitter geometry with vacuum energy density ϵ4 ≡ 3M2
PlH

2/(8π) whose mass parameter we

denote by M−.

We use the equation of motion of the wall obtained by Israel junction condition to discuss

quantum tunneling of the bubble to show that the final state is a wormhole-like configuration.

Beyond the throat is a false vacuum state which inflates to create another big universe. Then

one may regard that the final fate of an evaporating black hole is actually another universe. We

do not take thermal effects to tunneling into account, as they would only enhance the tunneling

rate.

We label the inner Schwarzschild de Sitter geometry with a suffix − and outer Schwarzschild

geometry with a suffix +. Then the outer and inner metrices are given by

ds2 = −f±(r)dt2 +
dr2

f±(r)
+ r2dΩ2, (7.6)

f+(r) ≡ 1− 2GM+

r
, f−(r) ≡ 1− 2GM−

r
−H2r2.

83



Β
"
#
0
,
Β
$
#
0

Β
"
#
0
,
Β
$
%
0

Β
"
%
0
,
Β
$
%
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

$14

$12

$10

$8

$6

$4

$2

0

z

V
!z
"

!"##$%&#'(

V = Vmax

V = −

γ
2

1− s

)&#*%(+!*!$(&#&!&*%(+!*!$(
z = zc

Figure 7.1: Shape of the potential V (z) as a function of z with s = 0.9. We have taken γ = 1

for illustrative purpose, although we actually expect γ ≪ 1 for ϕ0 ≪ MPl. β+ changes its sign

at z = 1, and β− at z = (1− γ2/2)−1/2 ≡ zc.

We describe the wall trajectory in terms of the local coordinates (t±(τ), r±(τ), θ, φ) on each

side depending on the proper time τ of an observer on the wall. They satisfy

f±(r±)ṫ
2
±(τ)−

ṙ2±(τ)

f±(r±)
= 1, (7.7)

where a dot denotes derivative with respect to τ . We take the radial coordinates so that the

radius of the bubble is given by R = r+ = r− in both outer and inner coordinates. The

evolution of the bubble wall is described by the following equation [118, 130, 215] based on the

Israel junction condition [125]

β− − β+ = 4πGσR ≡ ΣR, (7.8)

where β± ≡ f±ṫ± = ϵ±

√
f± + Ṙ2 with ϵ± ≡ sign[f±ṫ±]. From (7.8) we find the wall radius

satisfies the following equation similar to an energy conservation equation of a particle in a

potential V (z). (
dz

dτ ′

)2

+ V (z) = E, V (z) ≡ − 1

1− s

γ2

z
−
(
1− z3

z2

)2

, (7.9)

E ≡ − γ2

[2GM+χ(1− s)]
2
3

, χ ≡ (H2 +Σ2)
1
2 , γ ≡ 2Σ

χ
. (7.10)

Here dimensionless coordinate variables are defined by

τ ′ ≡ χ2τ

2Σ
, z3 ≡ χ2R3

2GM+(1− s)
, with s ≡ M−

M+
. (7.11)
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Figure 7.2: The trajectories of a bubble wall (blue line) on Penrose diagrams and a schematic

figure of a wormhole-like configuration accommodating an inflationary region induced by a phase

transition. The upper (lower) diagram in Figure (a) shows the spacetime outside (inside) the

wall and a shaded region is to be replaced by the interior (exterior) spacetime. These diagrams

depict the case a bubble wall is produced at the point W0 at t = tw < 0 through thermal effects

of Hawking radiation, and the wall tunnels from W1 to W2 at t = 0 to create a wormhole-like

configuration. Figures (b) depict the initial and final configurations schematically.
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As is seen in Fig. 7.1, the potential V (z) has a concave shape with the maximum V (zm) ≡
Vmax given by

Vmax = −3
z6m − 1

z4m
, (7.12)

with

z3m =

[
2 +

(
1

2
− γ2

4(1− s)

)2
] 1

2

−
(
1

2
− γ2

4(1− s)

)
, (7.13)

for s < 1. From (7.8) we also find

M+ =M− +
4π

3
R3ϵ4 + 4πR2σ

β+ + β−
2

. (7.14)

We may consider the evolution of the system taking the initial condition that the bubble is at

rest at R = rw as the Hawking temperature has increased to above m so that thermal support

on the wall has become less important as discussed above. For a thin wall bubble, (7.14) reads

M+
∼= M− + 4πr3wϵ

4/3, and one can show that an inequality E = V (zw) < −γ2/(1 − s) =

V (z = 1) holds where zw ≡ χ2/3rw[H
2r3w + Σr2w(β+ + β−)]

−1/3 is the value of z corresponding

to R = rw. Therefore β± are both positive initially as is shown in Fig. 7.1.

We can discuss quantum tunneling of the bubble wall from R = rw to a larger R, from

which it expands in real time, by manipulating the Euclidean action. As one can see in Fig.

7.1, physically relevant expanding bubble nucleation is possible only for β+ < 0 and β− < 0. It

has been shown in [130] that in this case the trajectory of the bubble wall after the transition

exists in region IV on the Penrose diagram (Fig. 7.2-(a)), that is, a wormhole-like configuration

is created [131,216] and the false vacuum exists on the other side of the throat (Fig. 7.2-(b)).

Note that although β+ and β− change their signs at different radii, namely z = 1 and zc,

their physical separation

∆Rc1 =

[
2GM+(1− s)

χ2

]1/3 (
z1/3c − 1

)
∼=
γ2

4
rw (7.15)

is actually smaller than the width of the wall 1/m for realistic values of parameters, so that we

can regard that they change sign at the same radius in the thin wall approximation.

7.3 Quantum tunneling of the symmetry-restored region

Let us now calculate the transition rate to the wormhole-like configuration Γ by solving Euclidean

equation of motion starting from the bubble radius R = rw at rest. Following Gregory, Moss,

and Withers [118–120], the transition rate Γ has the form

Γ = me−IM−B−IB = me−Btunnel+∆S , (7.16)
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where the prefactor m has been introduced on dimensional grounds. Here IM−B represents the

action over the regular bulk Euclidean spacetime and IB stands for the contribution of conical

singularities. They are given by

IM−B =

∫
dτE

[
(2R− 6GM+)ṫE+

− (2R− 6GM−)ṫE−
]
≡ Btunnel,

IB =
Af
4G

− Ai
4G

≡ ∆S,

(7.17)

respectively, where the suffix E indicates the Euclidean time and Ai (Af ) denotes the total

horizon area in the initial (final) state. Obviously terms arising from conical singularities are

identical to the difference of horizon (Bekenstein) entropies, ∆S, between initial and final states.

These terms have been derived using another method of calculation, too [217–220].

It is well known that the Bekenstein entropy of horizon may be related to its number of

microscopic states W although so far we do not know what the microscopic degrees of freedom

are. In our case, the initial state before tunneling has a Schwarzschild de Sitter black hole

horizon with its mass parameter M−, whose area is denoted by A−, and the final state has two

gravitational horizons, namely, the black hole horizon with mass M+ and the de Sitter horizon

(Fig. 7.2-(b)), whose horizon areas are denoted by A+ and AD, respectively. Therefore, we have

Ai = A− and Af = A+ + AD and the numbers of the initial and final microscopic degrees of

freedom are given by Wi = eAi/4G and Wf = eAf/4G, respectively [200].

From e∆S = Wf/Wi we can interpret the transition rate we have calculated, (7.16), as a

transition from one microscopic initial state with a statistical weight 1/Wi to a final state with

Wf microscopic degrees of freedom, and the transition rate from one microscopic state of the

initial black hole to another microscopic state of the final wormhole configuration is given by

Γmicro = me−Btunnel , (7.18)

up to the uncertainty of the prefactor.

Let us evaluate the transition rate by calculating Btunnel and ∆S which are functions of q,

the energy scales m and ϵ, and the tension of bubble wall σ. Here we can evaluate the tension as

σ ≃ ξ4/m, where ξ4 is the potential energy density at the top of the potential barrier separating

the false vacuum and true vacuum. We take M+ at a reference value M+ =M2
Pl/(8πm) ≫MPl

corresponding to TH = m. Taking m2 = 120
√
2ϵ2, q = 1, and ξ4/ϵ4 = 25, as an example, one

can satisfy the thin wall condition, mrw = 120 ≫ 1/m. m∆R = mγ2rw/4 ≪ 1 is also satisfied

for ϵ≪ 1016 GeV.
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Figure 7.3: ∆S (dashed line) and Btunnel (solid lines) as functions of ϵ for m2 = 120
√
2ϵ2,

q = 1 and ξ4/ϵ4 = 25. The inner black hole mass, M−, approaches to zero and M+ becomes

comparable to the Planck mass at ϵ ≃ 2× 1016 GeV, where M+ = 4× 102MPl(ϵ/10
14GeV)−1.

Fig. 7.3 depicts ∆S and Btunnel as functions of ϵ. ∆S is proportional to ϵ−4 since the de Sitter

horizon area, which is proportional to H−2 ∝ ϵ−4, becomes dominant compared to the black

hole horizon areas for ϵ ≪ 1016 GeV. As is seen here, we always find ∆S ≫ Btunnel ≫ 1. This

means that even though the tunneling rate from one microscopic state to another is exponentially

suppressed so that the semiclassical approximation is valid, due to the largeness of the number

of microscopic degrees of freedom after the transition, the tunneling as a whole is unsuppressed

and wormhole creation may take place with the relevant time scale t ∼ 1/TH ∼ 1/m, once a

bubble is thermally excited around an evaporating black hole with the proper conditions we

discussed above. Similar enhancement of transition rate due to the large entropy in the final

state has been observed by Mathur in a different problem [132].

7.4 Discussion

Then we can sketch the following scenario of cosmic evolution. Typical astrophysical black

holes with mass ∼ 10M⊙ will evaporate in ∼ 1067 years from now. As its mass falls below a

critical value so that the Hawking temperature become high enough for a false vacuum bubble to

spontaneously nucleate around the black hole according to the process described by Moss [214].

Then the bubble wall will experience quantum tunneling rather efficiently to create a wormhole-

like configuration with a de Sitter horizon, beyond which the false vacuum region is extended to
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infinity. Thus the space on the other side of the throat will inflate which is causally disconnected

from our patch of the universe. If inflation is appropriately terminated followed by reheating,

another big bang universe will result there. For this purpose the old inflation model [1, 2] with

thin wall bubble nucleation does not work, but we may make use of the results of open inflation

models there [221–223] which can also realize an effectively flat universe.

Throughout these processes, the outer geometry remain Schwarzschild space with the mass

parameter M+, so those who live there do not realize a black hole in their universe has created

a child universe. To this end alone, our model is similar to the scenario proposed by Frolov,

Markov, and Mukhanov [224, 225]. However, there are two striking differences between our

model and their scenario. One is that theirs is entirely dependent on the limiting curvature

hypothesis and the assumption that in the regime of large curvature, the gravitational field

equation would take the form in vacuum with a positive cosmological constant. They thereby

find a Schwarzschild solution is continued to a deflating de Sitter space inside the black hole

horizon which bounces to an inflating de Sitter universe. Our model, on the other hand, does

not need such a speculative hypothesis near the singularity but creation of another inflationary

universe is achieved by symmetry restoration due to the high Hawking temperature around

an evaporating black hole which also induces a phase transition to produce a wormhole-like

configuration in quantum field theory. Thus the entire processes can be described by known

physics with appropriate values of the model parameters. Another difference lies in the causal

structures as described in Fig. 7.2 of our paper and Figs. 3 and 6 of [224], that is, in our model

the inflating domain is causally disconnected from the original universe unlike theirs.

In conclusion, our result may also suggest that our Universe may have been created from a

black hole in the previous generation in the cosmos.
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Chapter 8

Conclusions

In this thesis, we have investigated cosmological consequences of quantum effects in strong grav-

ity throughout the history of the Universe. In particular, we focused on the initial singularity

problem, problem of initial conditions for inflation, consistency between inflation and thermo-

dynamics, firewall argument of black holes, and metastability of the Higgs vacuum. We restate

here what we have achieved in this thesis.

In chapter 3, we discuss how the problem of initial conditions for inflation can be solved by

taking into account the quantum tunneling effect. If the Universe at the pre-inflation epoch is

dominated by radiation, its temperature gradually decreases due to cosmic expansion, and after

the temperature falls below the critical temperature of a relevant theory, highly inhomogeneous

space may be realized by the spontaneous symmetry breaking process. In this scenario, we

investigated the quantum tunneling effect on the inhomogeneous space without homogeneous

mode by modeling a part of the inhomogeneity as a false vacuum bubble including thermal

radiation. We have found that the false vacuum bubble quantum tunnels to a larger inflationary

domain. This implies that the initial inhomogeneity can be a seed of inflationary universes.

Therefore, once taking into account the quantum tunneling effect, the problem of initial con-

ditions for inflation that requires sufficiently homogeneous space beyond the Hubble horizon in

the beginning would be no longer problematic. Furthermore, we found that the increment of

Bekkenstein entropy enhances the tunneling process. This implies that the entropic nature of

gravity may play an essential role in the origin of the Universe.

In chapter 4, we investigated the entropic nature of inflating space from the point of view

of the GSL conjecture. In the first half of this chapter, we investigated the entropy production

due to the cosmological decoherence and found that it can offset the decrement of the Beken-

stein entropy during stochastic inflation. This means that the stochastic inflation formalism

is well consistent with the GSL. Furthermore, this shows that the cosmological decoherence is
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important to explain not only why our Universe looks classical but also how plausible the GSL

is. In the second half of this chapter, we investigated the limitation of the GSL by taking into

account the instantaneous quantum jump process of de Sitter universe, called the Hawking-Moss

instanton. This process is very rare and its rate is exponentially suppressed. We have shown

that the exponent of the rate is completely determined by the decrement of Bekenstein entropy.

Since this tunneling process instantaneously occurs, the entropy production due to cosmologi-

cal decoherence cannot offset this and the GSL is broken. Throughout this chapter, we found

that the GSL conjecture is “statistically” valid in the inflating space thanks to cosmological

decoherence.

In the present Universe, back holes are ubiquitous and they suffer from the black hole infor-

mation loss paradox. In this context, the firewall conjecture was proposed to solve the problem

of monogamy of entanglement in the black hole evaporation process. However, the firewall

argument implies the breakdown of the equivalence principle of GR, and once we extend this

argument to the cosmological horizons, drastic modifications to the picture of the multiverse and

eternal inflation scenario would be required. In chapter 5, we proposed an alternative scenario

to solve the tension between the firewall argument and GR. We investigated the disentanglement

process of a Hawking pair created near the horizon, and found that since the infalling Hawking

particle experiences gravitational decoherence, the quantum entanglement of the Hawking pair

would be eventually lost, which may satisfy a necessary condition for the retrieval of information

that has fallen into the back hole. This means that the firewall, leading to the inconsistency

between the GR and quantum field theory, is no longer necessary to destroy the entanglement

of the Hawking pair.

In the latter part of the thesis, we have discussed possible scenarios regarding the fate of

the Universe. One interesting and possible scenario comes from the metastability of the Higgs

vacuum. In the far future of the Universe, AdS vacuum bubble could be nucleated by the first

order phase transition of Higgs vacuum and eventually fills the observable region of the Universe.

In chapter 6, we especially investigated the catalyzing effect of compact objects that promotes

a first order phase transition. We investigated the vacuum decay rate with some parameters

characterizing compact objects, and found that they could more efficiently catalyze the vacuum

decay than back holes would do and there exists a parameter region where the AdS vacuum

bubble is nucleated within the age of the Universe. Since our Universe has not been filled by

the negative vacuum energy, this leads to new constraints on the abundance of such a compact

object.

Another interesting scenario in the future of the Universe is the creation of next-generation

inflationary universes out of evaporating back holes. All black holes would be microscopic
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in the future due to their evaporation process. In chapter 7, we investigated a possibility

that such a microscopic black hole may lead to the birth of another inflationary universe by

quantum tunneling process. Since the Hawking temperature is proportional to the inverse of

black hole mass, a microscopic black hole is surrounded by highly energetic Hawking radiation.

We consider a situation where the thermal radiation causes a symmetry restoration. Modeling

this configuration by a thin wall false vacuum bubble surrounding the evaporating mini black

hole, we found that the configuration quantum tunnels to a baby Universe accommodating an

inflating domain. This implies that even our Universe may have been born out of a black hole

in the previous generation of the Universe, and in this sense, the Universe can be eternal to past

and the initial singularity is not necessary in our scenario.

We believe that quantum effects in strong gravity, such as the quantum tunneling processes,

stochastic fluctuations of background, quantum entanglement, and gravitational decoherence,

play essential roles throughout the history of the Universe, and we hope that our work has made

some contribution towards solving several cosmological problems.
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Appendix A

Calculation of Bogolubov coefficients

in the gravitational collapse process

A.1 Analytic forms of the Bogolubov coefficients

In this Appendix, we provide the details of the derivation of (2.91). Substituting (2.78) and

(2.88) into (2.90), we obtain

βωjn,ω′ =
−1

2π
√
ϵ

∫ vH

−∞
dv

∫ (j+1)ϵ

jϵ
dωe2πiωn/ϵ

√
ω′

ω
exp

[
−iω

(
vH − 4GM log

(
vH − v

4GM

))
− iω′v

]
.

(A.1)

Since w varies in a small interval, we can approximately perform the integration over frequencies

and we obtain

βωjn,ω′ =
−e−i(ωjn+ω

′)vH

π
√
ϵ

√
ω′

ωjn

∫ ∞

0
dxeiω

′x sin ϵLx/2

Lx
eiLωjn , (A.2)

where a new variable x ≡ vH − v is introduced and

Lx ≡ 2πn

ϵ
+ 4GM

x

4GM
. (A.3)

In the similar way, we obtain the coefficients αωjn,ω′

αωjn,ω′ =
−e−i(ωjn−ω′)vH

π
√
ϵ

√
ω′

ωjn

∫ ∞

0
dxe−iω

′x sin ϵLx/2

Lx
eiLωjn . (A.4)

Let us investigate the relation between (A.2) and (A.4). In the following we denote the integra-

tion as

I(ω′) =

∫ +∞

0
dxe−iω

′x sin ϵLx/2

Lx
eiLωjn , (A.5)

where ω′ < 0 for βωjn,ω′ and ω′ > 0 for αωjn,ω′ .
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A.2 Relation between αωjn,ω′ and βωjn,ω′

Performing the Wick rotation for x in (A.5), one can obtain the relation between the coefficients

αωjn,ω′ and βωjn,ω′ . For ω′ > 0 we rotate the contour of integration to the negative imaginary

axis so that the integration is convergent

I(ω′ > 0) = −i
∫ inf

0
dye−ω

′y sin ϵLy/2

Ly
eiLyωjn , (A.6)

where

Ly =
2πn

ϵ
+ 4GM

(
− iπ

2
+ log

y

4GM

)
. (A.7)

Therefore, (A.6) reduces to

I(ω′ > 0) = −ie2GMπωjne2πinωjn/ϵ

∫ +∞

0
dye−ω

′y sin ϵLy/2

Ly
ei4GM log (y/4GM)ωjn . (A.8)

In the case of ω′ < 0, on the other hand, the contour should be rotated to the positive imaginary

axis and we obtain

I(ω′ < 0) = i

∫ ∞

0
dzeω

′z sin ϵLz/2

Lz
eiLzωjn , (A.9)

Lz =
2πn

ϵ
+ 4GM

(
iπ

2
+ log

z

4GM

)
. (A.10)

Then the final expression for I(ω′ < 0) is

I(ω′ < 0) = ie−2GMπωjne2πinωjn/ϵ

∫ +∞

0
dye−ω

′y sin ϵLy/2

Ly
ei4GM log (y/4GM)ωjn . (A.11)

From (A.2), (A.4), (A.8), and (A.11), we finally obtain the relation between αωjn,ω′ and βωjn,ω′

αωjn,ω′ = −e4πGMωjne2iω
′vHβωjn,ω′ . (A.12)

This reduces to the relation (2.91).
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Appendix B

Interior metric of the thermalized

bubble

Here we derive the interior metric of a vacuum bubble including homogeneous radiation. We

first derive the static form of the FLRW metric. The non-static form of the FLRW metric is

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ2

2

)
, (B.1)

where r is the co-moving radial coordinate, t is the cosmic time, a(t) is the scale factor, dΩ2
2 is

the metric of a unit 2-sphere and K = −1, 0,+1. In the following we take K = 0. We define a

new coordinate

r̄ = ra(t) (B.2)

and this transformation puts (B.1) into the form

ds2 = −
(
1−H2r̄2

)
dt2 − 2Hr̄dr̄dt+ dr̄2 + r̄2dΩ2

2, (B.3)

where H(t) ≡ (da(t)/dt)/a(t). Then the transformation

t = t̄+Q(t̄, r̄), (B.4)

Q(t̄, r̄) ≡ 1

2H(t̄)
log
(
1−H(t̄)2r̄2

)
+ q(t̄), (B.5)

yields the following form

ds2 = −(1 + (∂t̄Q)2)
(
1−H2r̄2

)
dt̄2 +

dr̄2

1−H2r̄2
+ r̄2dΩ2

2, (B.6)

where q(t̄) is an arbitrary function of t̄. Of course, this metric is not static since H = H(t̄) is

generically dynamical. However, when thermal radiation is completely trapped by the bubble
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wall and the thermalized bubble is static, the corresponding metric should be a static FLRW

metric. The Hamiltonian constraint in the FLRW background is given by

H2 =
8πG

3
ρ, (B.7)

where ρ is the energy density of a homogeneous medium. In our situation, the FLRW geometry

has its boundary with radius R and the interior is filled by thermal radiation of energy density

ρrad ≡ (π2/30)T 4 and a positive vacuum energy density of ρvac, where T is the temperature

of radiation. Since the radiation is trapped by the wall, the entropy of thermal radiation S is

constant

S =
8π3

135
T 3R3. (B.8)

From (B.6), (B.7), and (B.8), the interior metric of the vacuum bubble reduces to

ds2 = −(1+(∂t̄Q)2)

(
1−H2

0 r̄
2 − (135S)4/3

180π

Gr̄2

R4

)
dt̄2+

dr̄2

1−H2
0 r̄

2 − (135S)4/3

180π
Gr̄2

R4

+r̄2dΩ2
2, (B.9)

where H2
0 ≡ (8πG/3)ρvac. The time-development of R = R(t̄) is determined by the Israel

junction condition.

Let us calculate the (θ, θ)-component of the extrinsic curvature Kθθ for a dynamical spherical

shell that is necessary to derive the equation of the Israel junction condition. Assuming the

following metric

ds2 = −A(t, r)dt2 +B(t, r)dr2 + r2(dθ2 + sin2 θdφ2), (B.10)

the trajectory of the wall uµ is

uµ = (ṫ(τ), Ṙ(τ), 0, 0), (B.11)

and the normal vector on the wall nµ is given by

nµ =
√

|AB|(−Ṙ, ṫ, 0, 0), (B.12)

where τ is the proper time on the wall and R(τ) is the wall radius. The extrinsic curvature Kθθ

is given by

Kθθ = eµθ e
µ
θ∇µnν , (B.13)

where eµA with (A = τ, θ, φ) is an orthonormal triad constructed on the wall with radius r = R(τ):

eµτ = uµ, eµθ = (0, 0, 1/R, 0), and eµφ = (0, 0, 0, 1/(R sin θ)). (B.14)

Therefore, we have

Kθθ = eµθ e
µ
θ∇µnν =

1

R2
(∂θnθ − Γµθθ|r=Rnµ) (B.15)

= − 1

R2
Γrθθ|r=Rnr =

√
|AB|
R

1

B
ṫ =

ϵ

R

√
1

B(R)
+ Ṙ2, (B.16)

98



where ϵ ≡ sign[ṫ/B] and we used Γrθθ = −r/B and Aṫ2 −BṘ2 = 1. One finds that Kθθ depends

only on B and is independent of A. Finally, we obtain Kθθ in the FLRW background used in

(3.15)

Kθθ =
ϵ

R

√(
1−H2

0R
2 − (135S)4/3

180π

G

R2

)
+ Ṙ2. (B.17)
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Appendix C

semi-classical description of a bubble

wall

Here we will review the quantum tunneling of a bubble wall involving gravitational field.

C.1 Dynamics of a bubble wall

C.1.1 Setup

We first consider a situation that a spherical thin bubble wall of energy density σ separates two

different spacetime whose metrics are given by

ds2± = g±µνdx
µdxν = −f±(r±)dt2± + f−1

± (r±)dr
2
± + r2±(dθ

2 + sin2 θdφ2) (C.1)

where the indices + and − represent the exterior and interior coordinates, respectively. Denoting

the manifold of the exterior and interior as M+ and M−, respectively, the total action of the

system involving gravitational field g±µν and a matter field ϕ has the form

I = I+ + I− + IW , (C.2)

where IW is the action of the thin wall

IW = −4πR2

∫
dλσ (C.3)

and I+ and I− are the bulk actions with the Gibbons-Hawking-York boundary terms including

the trace of the extrinsic curvature on the wall K±

I± =
1

16πG

∫
M±

d4x
√
−g±R+

∫
M±

d4x
√
−g±Lm(g, ϕ)±

1

8πG

∫
∂M±

K±. (C.4)
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C.1.2 Israel junction condition

The trajectory of the bubble wall is

ξµ± = (t±(λ), r±(λ), θ, φ), (C.5)

where λ is the proper time on the wall. The induced metric on the dynamical wall is

ds2 = habdx
adxb = −dλ2Tr2±(λ)

[
dθ2 + sin2 θdφ2

]
. (C.6)

In the following we take r+(λ) = r−(λ) ≡ R(λ) by which we can set the boundary separating the

interior and exterior. We next construct normal vectors nµ± on each side of the wall. Requiring

ξ̇µ±n±µ = 0, we have

n±µ = (−ṙ±, ṫ±, 0, 0), (C.7)

where nµ± is normalized so that nµ±n±µ = 1. Using the form of normal vectors, one can calculate

the extrinsic curvatures on each side of the wall:

K±00 ≡ K±λλ = ξµ±,λξ
ν
±,λ∇µn±ν = −dβ±

dR
, (C.8)

K±11 ≡ eµθ e
ν
θ∇µn±ν =

β±
R
, (C.9)

K±22 ≡ eµφe
ν
φ∇µn±ν =

β±
R
, (C.10)

with β± ≡ ϵ±
√
f±(R) + (dR/dτ)2, (C.11)

where eµA is the vierbein on the wall defined as ηAB ≡ eµAe
ν
Bg±µν and ϵ± is the sign of the spatial

component of extrinsic curvature. The Israel junction condition, the jump of the extrinsic

curvature should satisfy to be consistent with the Einstein equation, has the form

K+ab −K−ab = −8πG

(
Sab −

1

2
habTr(Sab)

)
, (C.12)

where Sab is the energy momentum tensor of the bubble wall and here we assume Sab = −σhab.
By solving the Israel junction condition, we can follow the dynamics of the wall.

C.1.3 Effective action of the wall

We will derive the effective action of the wall in this subsection. Let us first perform the ADM

decomposition for the form of I± (C.4) as

I± =
1

16πG

∫
dλ

∫
Σλ

(3R+K2−K2
ab+Lm)±

1

8πG

∫
dλ4πR2n±µu

ν∇νu
µ± 1

8πG

∫
dλ4πR2K±,

(C.13)
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where uµ is the normal vector on Στ with uµuµ = −1 and it has the form

uµ = (f
−1/2
± , 0, 0, 0). (C.14)

Using (C.14), we can calculate n±µu
ν∇νu

µ in (C.13)

n±µu
ν∇νu

µ = n±µu
0∇0u

µ = n±µf
−1/2
± Γµ0νu

ν = n±µf
−1/2
± Γµ00u

0 = n±1f
−1
± Γ1

00

= ṫ±f
−1
±
f±f

′
±

2
= ṫ±

f ′±
2
,

(C.15)

where we used Γµ00 = (0, f±f
′
±/2, 0, 0). The first term in (C.13) vanishes due to the Hamiltonian

constraint. From (C.3), (C.13), (C.15) Then we obtain the total action of the system

I =
1

16πG

∫
W

[
f−1f ′β

]+
− +

1

8πG

∫
W
[K]+− −

∫
W
σ, (C.16)

where
∫
W ≡

∫
dλ4πR2. Using the forms of extrinsic curvatures in (C.8), (C.9), and (C.10), the

effective Lagrangian of the bubble wall is

I =

∫
dλL, (C.17)

L ≡ 1

2G

[
β−1R2R̈+

1

2
R2f−1f ′β−1Ṙ2 + 2ρR

]+
−
− 4πR2σ. (C.18)

Since there is a degree of freedomN which corresponds to relabeling of the coordinate λ along the

trajectory of the bubble wall as dλ = Ndλ′, one can obtain a first order constraint (Hamiltonian

constraint) by taking variation of the action with respect to N . Then we find that the constrain

reduces to

[β]+− = −4πGσR, (C.19)

which is nothing but the spatial component of the Israel junction condition. After some calcu-

lations, this equation can be rewritten as

H ≡ 1

2
Ṙ2 + U(R) = 0, (C.20)

where U(R) is a function of R. In the quantum mechanics, this Hamiltonian constraint H
becomes an operator constraint ĤΨ = 0, where Ψ is a wave function, and this is nothing but

the Schrödinger equation.

C.2 Path integral method and semi-classical approximation

As a first example, let us consider a single particle in the framework of the one-dimensional

quantum mechanics. Once specifying a path of the particle x(t), the amplitude for the path is

proportional to

exp (iS[x(t)]), (C.21)
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where S[x(t)] is the classical action of the particle. In particular, the amplitude that the particle

is located at position x at time t while it initially exists at x′ at time t′ is given by

ψ(x, t;x′, t′) = N

∫ x′(t′)

x(t)
Dx̃(t̃) exp

(
iS[x̃(t̃)]

)
, (C.22)

where N is a normalizing factor and the sum is over all paths which starts at (x(t)) and end at

x′(t′). The integral is oscillatory due to the imaginary factor in the exponent but it can be well

defined by rotating the time to imaginary values (Wick rotation) as t→ −iτ :∫ x′(t′)

x(t)
Dx̃(t̃) exp

(
iS[x̃(t̃)]

)
→
∫ x′(τ ′)

x(τ)
Dx̃(τ̃) exp (−SE[x̃(τ̃)]). (C.23)

This technique is useful when a path of interest is the lowest-energy path. For example, let us

represent a Euclidean transition amplitude from an initial state |q⟩ at time −β/2 to |q′⟩ at β/2
by using the Hamiltonian operator Ĥ:

⟨q| e−βĤ |q′⟩ =
∑
n

⟨q|n⟩ ⟨n|q′⟩ e−βEn , (C.24)

where |n⟩n=1,2,...,N is energy eigenstates. If the transition time scale β is much longer than

a relevant time scale determined by the energy gap between the ground energy and the next

energy level β ≫ 1/(E1 − E0), the amplitude will be dominated by the ground state |0⟩ and

other excited states are exponentially suppressed. In the path integral method, since the most

efficient path x̄(t) satisfies δSE = 0, the Euclidean amplitude can be approximated as

ψ(x, t;x′, t′) ∼ exp (−SE[x̄(τ)]), (C.25)

and this approximation is known as the semi-classical approximation.

C.3 Tunneling rate of the bubble wall

It is found that only an on-shell Euclidean action SE[x̄[t]], where x̄[t] is the Euclidean classical

solution, is necessary to evaluate a tunneling rate baed on the semi-classical approximation from

the previous section. The on-shell Euclidean action of the original action (C.16) is obtained by

plugging [K]+− = 12πGσ into the original one:

IE = − 1

16πG

∫
W

[
f−1f ′β

]+
− − 1

2

∫
W
σ, (C.26)

which is the on-shell Euclidean action used in this dissertation and the transition rate is given

by e−IE . Using the relation β/f = ˙̃τ , (C.26) is found to be equivalent to the second and third

terms in (2.121).
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Appendix D

Vacuum decay around a

gravastar-like object

In Chapter 6 we assume that the compact object is static at least during the nucleation process

and the metric is given by the static solution (6.1). This is (approximately) justified for most

of the realistic situations, like neutron stars, boson stars, oscillons, monopoles, and Q-balls, and

so on. However, the density function ρc(r) as well as the metric functions A± and B± should

be carefully chosen so that it is a static solution to the Einstein equation. In this Appendix, we

consider a gravastar-like object to show that the result in Fig. 6.3 does not change qualitatively

as long as we choose those functions carefully to (approximately) satisfy the static equilibrium.

D.1 Gravastar model

We use the following EMT for the gravastar-like object:

Tµν = diag(−ρ(r), p(r), p(r), p(r)), (D.1)

ρ(r) ≡ ρ0
1− tanh ((r − ξ)/δ)

2
+ ρv = −p(r) (D.2)

with r < R, where Tµν is the bubble interior EMT and δ represents the thickness of the boundary

of the gravastar-like object. When δ ≪ ξ, one can use the thin wall approximation and the bubble

interior energy density, ρ, is written as

ρ(r) ≃

ρ0 + ρv ≡ ρin > 0 ξ > r

ρv < 0 ξ < r < R,
(D.3)
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where the energy density of the gravastar-like object ρ0 is constant. Assuming the form of its

pressure as p = −ρ, the inner metric of the gravastar-like object is given by

g(in)µν = diag(−fin(rin), f−1
in (rin), r

2
in, r

2
in sin

2 θ), (D.4)

fin(r) ≡ 1−H2
inr

2, (D.5)

where H2
in ≡ (8πG/3)ρin and rin is the radial coordinate inside the object and we set its scale

so that rin = r− = ξ on the boundary of gravastar-like object.

Although the bulk of gravastar-like object has its static metric, whether or not its boundary

is also static should be determined by the Israel junction condition that is available only when

the thickness of its boundary is smaller than its radius, δ ≪ ξ. In the thin wall approximation,

the boundary can be characterized only by its energy density, σc, and pressure, pc. Introducing

the equation-of-state parameter, wc ≡ pc/σc, one has the Israel junction conditions:

βin − β− = 4πGσc(ξ)ξ, (D.6)

d

dξ
(βin − β−) = −8πGσc(ξ) (1/2 + wc) , (D.7)

where βin ≡ ϵin
√
fin(ξ) + (dξ/dτc)2 and τc is the proper time on the boundary of the object.

Solving (D.6) and (D.7), one has the form of σc(ξ) ≡ m−1−2wc
c ξ−2(1+wc). Substituting σc(ξ) into

!!
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h = 0.001

static boundary
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Ec = Vc(zmin)

V
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(z

c
)

zc

(zc = zmin)

Figure D.1: A plot of the effective potential, Vc(zc), with wc = 0.6, γc = 0.1, and h = 10−3.
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(D.6), one has (
dzc
dτ ′c

)2

+ Vc(zc) = Ec, (D.8)

Vc(zc) ≡ − 4γ2c
1 + h2

z2c − z4wc
c

(
1− z3c +

γ2c
z1+4wc
c

)2

, (D.9)

where we defined the following non-dimensional variables and parameters:

h ≡ H−/Hin, (D.10)

z3c ≡
(

1 + h2

2GMtotH−

)
H3

−ξ
3, (D.11)

τ ′c ≡
√
1 + h2

2γc
H−τc, (D.12)

γ2c ≡ H
2(1+4wc)/3
−

(4πGm−1−2wc)2

2GMtot

(
1 + h2

2GMtot

)(1+4wc)/3

, (D.13)

Ec ≡ − 4γ2c
(2GMtotH−)2/3(1 + h2)1/3

. (D.14)

Now one obtains stable solutions by appropriately choosing the parameters. An effective

potential, Vc(zc), governing the position of the boundary is plotted in Fig D.1. One finds a

stable and static solution (a black filled circle in Fig. D.1), at which its radius is zc = zmin and

Ec = Vc(zmin). An effective potential governing the dynamics of the boundary before the phase

transition is obtained just by taking h = 0 in (D.9). Therefore, the effective potential, Vc(zc), is

almost not affected by the phase transition as long as h≪ 1 is hold (see (D.9)). In this case, the

gravastar-like object remains almost static even after the bubble nucleation and we can safely

use the static metric (6.1) to calculate the bubble nucleation rate.

Fixing h(≪ 1), γc, and wc, one may obtain a static solution, dVc(zc = zmin)/dzc = 0, and

the total mass and size of the gravastar-like object are given by

Mtot =
8γ3c

2GH−(−Vc(zc = zmin))3/2(1 + h2)1/2
, (D.15)

ξ =
zmin

H−

(
2GMtotH−

1 + h2

)1/3

, (D.16)

where we used (D.11) and (D.14).

D.2 Vacuum decay rate around the gravastar-like object

Here we calculate the on-shell Euclidean action as a function of (Mtot, c ≡ ξ/2GMtot). Note

that we do not take into account a parameter region where h ≥ 0.1 to approximately keep the
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gravastar-like object static before and after the phase transition. The mass function, M(r), in

(6.14) should have the form of

M(r) =

∫ r

0
dr′4πr′2ρc(r

′) ≃

(4π/3)r3ρ0 ξ > r

(4π/3)ξ3ρ0 =Mtot ξ < r,
(D.17)

where δ ≪ ξ is hold. This gives the metric on the inner and outer surface of the wall:

g(±)
µν = diag(−f±(R), f−1

± (R), R2, R2 sin2 θ), (D.18)

with

f+ ≃

1− 2GMtot

R
R > ξ

1−H2
cR

2 R < ξ,
(D.19)

f− ≃

1− 2GMtot

R
+H2

−R
2 R > ξ

1−H2
inR

2 R < ξ.
(D.20)

From (6.14), (6.15), (D.19), and (D.20), one can calculate the vacuum decay rate. Figure D.2

shows the result of ΓD/ΓC. One finds that the result shown in Fig. D.2 is qualitatively consistent

with our conclusion based on the result in Fig. 6.3. However, the range of values of compactness,

c, in which ΓD > ΓC is satisfied, seems to be sensitive to the configuration of the boundary of

a catalyzing object. The result in Fig. D.2 based on the more concrete set up would be a

supporting evidence for the universality of our main proposal, that is, horizonless objects would

catalyze vacuum decays when its size is comparable with the size of a CDL bubble and its

compactness, c ≡ ξ/2GMtot, is of the order of unity, c ∼ O(1).
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Figure D.2: A plot of the ratio ΓD/ΓC as a function of the mass and compactness of the

gravastar-like object with H̄ = 10−6, δ = 0.01ξ, m̄ = 6 × 10−4, and w = −1. We here only

take into account a parameter region corresponding to h ≤ 0.1. The contours of ξ/RCDL (white

dashed lines) are marked for reference.
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