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Abstract

To calculate strongly correlated systems accurately, one needs to treat strong and weak

correlations simultaneously. Popular methods, such as Hartree-Fock theory or density

functional theory, can treat the weak correlation but cannot treat the strong correlation.

On the other hand, the full-configuration-interaction (full-CI) method can treat the strong

correlation well but it needs high calculation cost. In this context, I focus on the wave

function theory for the electron pair. In condensed matter physics, the electron pair is

an important concept for superconductivity. Also in the field of chemistry, the concept

of electron pair has been used to represent a chemical bond since a long time ago. The

electron pair is called geminal in chemistry and many calculation methods using geminal

were developed. The method of expressing different chemical bonds using different gem-

inals is called antisymmetrized-product-of-geminals (APG) theory. Although the idea of

APG was proposed long ago, there are few APG studies because of its high calculation

cost and complexity in the calculation.

In this thesis, I overcome the computational difficulty of APG using a tensor decompo-

sition method developed in mathematics and make the variational determination of APG

tractable numerically. This makes it possible to analyze the APG wave function with-

out introducing additional approximations to the geminals and thus to understand the

inherent advantage and disadvantage in describing strongly correlated few-body systems.

This understanding helps me to develop a method to incorporate the electron correlation

beyond the original APG. This novel method is based on a polynomial extension of APG;

note that the original APG has a monomial form. With the polynomial extension, I suc-

ceed in relating geminals to the valence bond even in the strong correlation regime. I

recognize the polynomial extension as an introduction of the “resonance” effect into the

APG-based valence bond theory and thus is a natural improvement.

I also develop variations of the APG calculation. I develop a simplified geminal method,

which is different from the ones developed previously in the literatures. I also develop

a geminal method specialized for a strongly correlated impurity system embedded in a

weakly correlated medium.

The present study analyzes geminal theories comparatively from (a) the simplest one,
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called antisymmetrized geminal powers (AGP), which is a mean-field theory of geminals,

(b) APG and (c) its extension, bridging thereby the HF to full-CI via electron-pair the-

ories of different levels. I believe that the present work has made clearer the property of

geminal theory and would stimulate further sophistication of the geminal-based valence

bond theory.
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Chapter 1

Introduction

Determination of the ground state of many-body systems is one of the most basic and

important problems in many fields of science such as condensed matter physics, quantum

chemistry and nuclear physics. Density functional theory (DFT) [1] is established as a de

facto standard theory for solids, liquids, molecules, atoms and nuclear matters although

the application has so far been limited to moderately correlated systems. This limitation

is due to the fact that popular DFT methods such as the Kohn-Sham (KS) method [2] are

based on the single Slater determinant that is used for a non-interacting reference system

under the influence of an effective KS potential. The reference system, however, cannot

be properly connected to the target system when the correlation becomes significant, at

least, within the current level of the theory. In this context, hybrid methods like DFT+U

[3] and DFT+DMFT [4] were developed to augment the description of strong correlation

effect when the correlation occurs locally within an atom of a solid, although legitimate

approaches such as the quantumMonte Carlo method [5] or the field theoretical approaches

[6] are more favorable ultimately. It is noteworthy that similar hybrid methods such as

the density-matrix-embedding theory (DMET) [7, 8] were developed for chemical systems,

where an accurate wave function like the one described using the configuration interaction

(CI) is embedded in a wave function of a non-interacting system. Considering the success

of DMET in describing some of the chemical systems and its potential applicability to

more general materials where local correlation is important, it is important to advance

the hybrid method for strongly correlated few-body systems embedded in a moderately

interacting medium. As a step towards this long-range goal, I develop in this thesis a

method for strongly correlated few-body systems and then try to embed it into a mean-

field theory.
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CHAPTER 1. INTRODUCTION

1.1 Wave-function theories

Among the wave-function theories, configuration interaction (CI) is the most versatile and

accurate one, but the application has been severely restricted even for few-body systems

owing to the number of configurations that grows explosively with the number of elec-

trons. Historically, there has been much effort to reduce the number of configurations

from a perturbative consideration. For example, the configurations were limited by taking

only few-particle excitations from a single Slater determinant or from multi-determinants

in the early stage, and later, the configurations were extended to include the linked clusters

of the excitations in the coupled-cluster (CC) theory [9, 10]. Those methods are, however,

successful only for moderately correlated system where the single Slater determinant is a

good starting point. To approach the strongly correlated systems in the full-CI level, the

density-matrix renormalization-group (DMRG) [11] was adapted to few-body molecular

systems [12, 13]. Although the quantum chemical DMRG was shown to work for a number

of molecules, it is successful only when localized molecular orbitals (MO) can be arranged

one-dimensionally, reflecting the general property of DMRG. In this context, I pay at-

tention to a different wave-function theory called a geminal theory, which can compactly

represent the wave function.

1.2 Valence bond theory

As a step for the explanation of the geminal theory, let me briefly follow the history

of the theory of chemical bond. Already in 1910’s, Lewis introduced the concept of the

chemical bond, which is formed when two electrons overlap. This concept was subsequently

formulated in the valence bond theory in terms of the molecular orbitals (MOs), or the

hybridized atomic orbitals such as the sp2 and sp3 hybridization, which accommodate up

to two electrons. With the MOs, the electronic structure is characterized by a network of

the valence bonds, or more correctly, as the resonance of possible networks. For example,

the electronic structure of a benzene molecule is captured as the resonance of two Kekulé

structures consisting of single and double bonds. The molecular structures and stability, in

addition, can be explained by the repulsive interaction of the valence bonds in the valence

shell electron pair repulsion (VSPER) theory [14]. Although the valence bond theory has

so far been successfully developed for moderately correlating systems such as aromatic

molecules, extension of the theory toward more strongly correlating systems has been

rarely studied as far as I know. Considering the potential of the valence bond theory in

explaining few-body systems, I will focus on the possibility of the extension of the valence

bond theory for the strongly correlated systems.
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1.3. GEMINAL THEORY

1.3 Geminal theory

Two electrons constituting a valence bond may be most generally described by the geminal

defined as

g (r1, r2) =
∑

ij

ϵijϕi (r1)ϕj (r2) , (1.1)

where ϕ’s are the molecular orbitals (MOs) that are not necessarily orthogonal to each

other. The geminal is antisymmetric with respect to the exchange of space-spin coordinate

of an electron, r1 ↔ r2, because of the antisymmetric matrix ϵ. Equation (1.1) may be

alternatively written using the creation operator â†i as

ĝ ≡
∑

ij

ϵij â
†
i â

†
j . (1.2)

The geminal thus defined plays a central role in this thesis.

This definition was first used by Coleman in his geminal wave function theory [15],

where the many-body wave function is represented as an antisymmetric product of the

geminals:

ψAGP (r1, r2, · · · ) = Â [g (r1, r2) g (r3, r4) · · · ] , (1.3)

or

|ψAGP⟩ = ĝn/2|0⟩, (1.4)

where Â is an operator to fully antisymmetrize the geminals and n is the number of

electrons. The wave function thus constructed is called as antisymmetrized geminal powers

(AGP), which I will detail in Chapter 2. In short, the AGP wave function is an extension

of the Hartree-Fock (HF) wave function in that AGP is a mean-field theory of an electron

pair while HF is a mean-field theory of an individual electron. The intra-pair correlation is

automatically considered in AGP, while it is not the case in HF. The AGP wave function is

related to the BCS wave function [16] in that the former is obtained by fixing the number

of electrons in the latter, indicating a formal similarity between AGP and BCS in spite of

their conceptual difference.

When different geminal types are used for different electrons as

ψAPG (r1, r2, · · · ) = Â [g1 (r1, r2) g2 (r3, r4) · · · ] , (1.5)

or as

|ψAPG⟩ =
n/2∏

m=1

ĝ[m]|0⟩, (1.6)

3



CHAPTER 1. INTRODUCTION

where the different geminals are labeled by index m. The wave function is called antisym-

metrized product of geminals (APG) [17]. APG is an extension of AGP in that the former

can describe, to some extent, the correlation between geminals missing in the latter. Im-

portantly, geminals in APG can be related to the chemical bond. Suppose, for example,

that the first geminal is a spin-singlet combination of an sp3 hybridized MO; then the

geminal can be assigned as an sp3 bond. The geminals localized in a bond center may

represent a covalent bond, and those localized in a back bond region may represent a lone

pair. Although the existing APG theory is not comparable to full-CI both in accuracy and

versatility, the theory has a potential not only to properly redefine the chemical bond in

the moderate correlation regime but also to extend the chemical bond in the strong cor-

relation scheme. Considering the present level of APG, however, it is currently important

to level up the APG and bridge the gap existing between APG and the full-CI.

1.4 Previous APG theory

Although the APG theory was proposed long time ago, the study of APG has not yet been

proceeded very well. This is because of the known complexity in the variational calculation

and the large computational cost that increases exponentially with the number of electrons

[18]. In this context, rather than advancing the APG-based theory toward higher accuracy,

much effort has been made for simplifying the APG calculation. For example, the APG

wave function has been simplified by (a) restricting geminals to be strongly orthogonal to

each other in the antisymmetrized product of strongly orthogonal geminal (APSG) scheme

[19, 20, 21] and by (b) using the same pairing scheme for all geminals, or using the same

set of MOs throughout, in the antisymmetrized product of interacting geminals (APIG)

[22]. In this context, I begin by advancing the APG theory so that the restrictions can be

removed. For this purpose, I will introduce in this thesis a transformation called Waring

decomposition to convert an APG wave function to a linear combination of the AGP ones,

for which an analytical form for the total energy is available. Indeed, the method for the

linear combination of AGP, which I call as the AGP-CI, has been developed and tested as

detailed in the next paragraph. Therefore, by introducing the Waring decomposition, it is

possible to variationally obtain the wave function and the total energy. This indicates that

the potential-energy curve and the atomic force, which are crucially important quantities

in chemistry, can also be calculated although I do not go into this direction in this thesis.

The Waring decomposition is thus the most important step in this thesis.
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1.5. APG VERSUS AGP

1.5 APG versus AGP

The formula for the AGP-CI was derived by Onishi and Yoshida [23] and was applied to

small molecules and a four-site Hubbard model by Uemura et al. [24], as will be detailed

in Chapter 2. The research of Uemura et al. is based on the fact that the many-body

wave function can be more efficiently expanded by AGPs than by Slater determinants. In

other words, the CI-coefficient tensor Ai1,i2,··· ,in of an n electron system defined in

Ψ (r1, r2, · · · ) =
∑

i1,i2,···
Ai1,i2,··· ,inϕi1 (r1)ϕi2 (r2) · · · (1.7)

can be conveniently expanded as products of an anti-symmetric matrix F as

Ai1,i2,··· ,in =
R∑

r=1

∑

σ∈Sn/2

sgn(σ)F r
σ(i1)σ(i2)

F r
σ(i3)σ(i4)

· · · (1.8)

with

∑

i1,i2

F r
i1i2ϕ

r
i1 (r1)ϕ

r
i2 (r2) (1.9)

forming a geminal gr (r1, r2). The many-body wave function can thus be expanded by R

pieces of different AGPs as

R∑

r=1

AGPr (r1, r2, · · · ) (1.10)

with

AGPr (r1, r2, · · · ) ≡
∑

σ∈Sn/2

sgn(σ)F r
σ(i1)σ(i2)

F r
σ(i3)σ(i4)

· · · . (1.11)

In the above, Sm is the symmetric group of degree m, sgn is the signature of the permuta-

tion, R is the anti-symmetric rank of the tensor Ai1,i2,··· ,in , and the expansion Eq. (1.8) is

the one called as the anti-symmetric tensor decomposition. By optimizing the molecular

orbitals, ϕr
i , one can expect to reduce the rank R, although a method of finding the lower

limit of R has not been developed. Uemura et al. showed that the value R is less than ten

for the small systems that they investigated. The AGP-CI calculation scales as O
(
n5R2

)

and the lower limit of R would possibly scale exponentially with n when estimating with

the general theory of tensor decomposition [25].

By improving the algorithms, AGP-CI may be sophisticated further and would provide

a more efficient way for the variational calculation. However, I will develop a method for

APG in this thesis instead of improving the AGP-CI. This is because, as discussed above,

the APG theory has provided an intuitive chemical picture on the molecular systems
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CHAPTER 1. INTRODUCTION

and is expected to be the better method for strongly correlated few-body systems. The

difference between the AGP-based and APG-based approaches will be more striking with

increasing degrees of freedom (DoF) where interpretation of the results may be difficult

because of the number of DoF. With the importance of the APG-based method in mind,

I will develop an algorithm for the APG together with APG-CI, although I will call the

latter the polynomial APG as will be explained below.

1.6 APG calculation

I will use, as a benchmark system, a one-dimensional Hubbard model with the on-site

Coulomb interaction U being up to 10 times larger than the transfer interaction t. Below,

I will rescale the energy so that t = 1 for simplicity. This system will correspond to a one-

dimensionally linked hydrogen atoms; the system will also correspond to a hypothetical

carbon ring with one of the two π orbitals passivated by a hydrogen atom, leaving thereby

a system consisting of pz orbitals only. Note that, in the latter case, the system will

correspond to a benzene molecule when the number of sites is taken to be six.

I will show, by performing variational calculation of the Hubbard model, that APG

yields the value of the total energy significantly close to that of full-CI compared with AGP

and HF, but the APG wave function incorrectly breaks the spin symmetry exhibiting a

spin wave. The broken symmetry is apparent both in the density profile and in the pair

correlation function, but is more apparent in the wave function. When the geminals con-

stituting the APG wave function are transformed into canonical orbitals, as is commonly

done in the analysis of the BCS wave function, the amplitude of the canonical orbitals

are found to be unnaturally biased to a few sites and do not behave like a chemical bond

as expected to do in a benzene molecule. This biased behavior of the geminals, derived

by using only one APG in the variational calculation, seems to arise from the neglect of

the resonance. Indeed, by using multiple APGs, one can recover a plausible behavior as

the bond. Although the result that the resonance is essentially important may sound too

trivial, I will arrive at this conclusion via a näıve trial-and-error investigation of possible

extensions of the APG theory. I will show that the variationally superior wave function

behaves more favorably as a resonating valence bond.

1.7 Technical aspect of APG calculation

The APG calculation scales as O
(
n5 × (2nn!)2

)
since R ∼ 2nn! without the resonance. In

addition, the gradient-based variational calculation such as the conjugate-gradient (CG)

method often slows down by the existence of a saddle point as will be detailed more in 3.8.

That is, the variational calculation is made difficult by the non-convex character, which

6



1.8. AGP EMBEDDING SCHEME

is presumably due to the antisymmetric character of the CI-coefficient tensor. Because of

this, I start from typically 100 initial conditions in performing the variational calculation

instead of taking a Hessian-based algorithm, which is an alternative and steady approach.

Along this strategy for the calculation, I did the calculation up to a 12-electron system

although improvement in the algorithm will allow me to handle larger systems. In this

context, I will try, in sections 3.5 and 4.6, to speed up the calculation by restricting the

degrees of freedom (DoF) for the geminal. The strategy of the restriction is based on

the observation that the variationally determined geminals have a peculiar structure; they

consist of a major components having the dominant eigenvalue, several minor components

with much less dominant eigenvalues, and others with negligible eigenvalues. Here, the

dominance has been judged from the absolute value of the eigenvalue. Making use of the

aforementioned structure of the geminals, I use only the major component for the variation

in a simplified calculation, in other words, I prepare antisymmetric matrices of rank-n for

the variational calculation. I will call the method a low-rank approximation. I will show

that the total energy does not so sensitively increase by using the low-rank restriction,

suggesting that the restriction is a reasonable choice for the simplification. I will further

test the restriction using the polynomial APG.

1.8 AGP embedding scheme

Finally, I will formulate an embedding method called four-body correlation embedding

method. Therein, I assume a system consisting of a single site of strong on-site Coulomb

interaction (U/t = 10) surrounded by a few tens of sites with negligible Coulomb inter-

action. I will do a variational calculation using an AGP-type trial wave function of the

form:

exp

[
∑

pqrs

Gpqrsâ
†
pâ

†
qâ

†
râ

†
S

]
|ψAGP⟩, (1.12)

where â†p is the creation operator of the p th MO. The summation over the sites is restricted

so that only important components of the antisymmetric tensor G can be used for the

variation: Here, the two of the four indices of G are restricted to be at the strongly

correlated site (while other indices are unrestricted) to consider correlation of geminals

around that site. The number of electrons is fixed using a technique described below. By

performing the variational calculation with the help of the Waring decomposition, I will

show that the resulting wave function is quite close to the exact solution, showing the

promise of such an embedding method.

7



CHAPTER 1. INTRODUCTION

1.9 Summary of Introduction

I will detail my thesis work in the following chapters along with the line briefly introduced

in this chapter. The motivation of this work is to develop a wave function theory for

strongly correlated few-body systems that are either isolated or embedded in a weakly

interacting environment. The defects in semiconductor or catalysts on a hydrocarbon

material will be the future target. Considering that existing DFT methods or wave func-

tion methods are not very suitable for the purpose, I develop a rather unconventional

wave function method based on the antisymmetrized product of geminals (APG). One

may hope to relate the geminals constituting APG to the valence bond and the linear

combination of APG to the resonance, so that I expect the APG-based method to yield

a means to understand the electronic structure in terms of the bond even in the strongly

correlated regime. I step forward in this direction by enabling the variational calculation

of the APG wave function; the Waring decomposition plays a crucial role in the computa-

tional method although other improvements are also done to enable the calculation. The

single APG calculation is superior to AGP and HF in the variational sense, but symmetry

breaking occurs incorrectly possibly because of the inherent structure of the trial APG

wave function. By taking into account the linear combination of APG, one can overcome

the problem; in my experience, the determinant polynomial form for the linear combina-

tion exhibits superior property as the variational wave function and a plausible behavior

as the chemical bond. Since the APG calculation has been quite time-consuming, I in-

troduce a low-rank approximation to the geminals without significant degradation of the

calculated result. I suggest such an approximate scheme is promising and that, with the

future improvements of the algorithm, APG-based calculation would provide reasonably

accurate and intuitively recognizable results that may advance our understanding on the

strongly correlated few-body systems.

The hierarchy of geminal theories is shown in FIG. 1.1. The APG without restricted

degrees of freedom is the most elaborate method among the APG families like the APSG

and APIG.

8



1.9. SUMMARY OF INTRODUCTION

Figure 1.1: The hierarchy of geminal theories.
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Chapter 2

Review

First, let me review the geminal theory found in the literatures. The theory has been

developed almost independently in different communities. Therefore, I will introduce

them separately. The contents explained in this chapter have overlap with those shown in

Chapters 1 and 3 but I do so for the benefit of readers unfamiliar to the geminal theories.

2.1 AGP theory in chemical physics community

Coleman did a pioneering work on AGP in 1960s [15], and after long intervention, AGP

was paid attention by the condensed-matter community in 1980s as an extension of the

BCS theory. Goscinski [26] derived a total energy expression for an N -particle system by

neglecting those terms scaling to N as O (N−α), with α ≥ 2, and the resulting mathemat-

ical structure was discussed. Importantly, the author recognized that the eigenvalue of the

geminals, say gi, exhibits a rapidly decreasing series when sorted by the magnitude, and

this fact was used to simplify the calculation. This approach is similar to the low-rank

approximation of the geminal as discussed below in this thesis.

Weiner and Goscinski [27] provided a total-energy expression also for the generalized

AGP (GAGP), where AGP wave functions are “embedded” in a Slater determinant that

is assumed to be strongly orthogonal to the geminals

|ψ⟩ = ĝn/2|ψHF⟩, (2.1)

where “strongly orthogonal” condition means
∫

drg
(
r, r′

)
ϕi(r) = 0 (2.2)

for all MOs ϕi(r) constituting the Slater determinant. Intuitively, the strong orthogonal

condition is satisfied when, for example, the geminal is localized in a region where the

MOs have small amplitude.

11
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In 2000s, Mazziotti developed the geminal functional theory (GFT) as an extension of

DFT by using the geminals in AGP as the fundamental parameter that replaces the density

used in DFT [28]. This is based on the KEC theorem stating that any first order density

matrix with evenly degenerate eigenvalues can be derived from an N -particle AGP wave

function [29]. Here, KEC was named after the researchers Kumar, Erdahl, and Coleman,

who contributed to deriving the early version of the theorem [15]. Mazziotti derived an

approximate GFT functional and calculated the total energy of small molecules and atoms;

the obtained correlation energy was found to be superior to HF and AGP calculations.

Compared with the full-CI calculation, the error in the correlation energy was typically

±10%; note that GFT is not variational and the total energy can be above or below that

of full-CI.

In 2011, Scuseria et al. applied AGP to small molecules and compared the result with

the one obtained using HF. The AGP trial wave function was prepared from the BCS one

by the particle number projection method, known in nuclear physics community [Note

that one of the most general formulations for the projection method was given by Hara

and Iwasaki [30]]. The AGP wave function with a given number of electrons N is thus

|ψAGP⟩ =
∫ 2π

0

dθ

2π
exp(iθ(N̂ −N))|ψBCS⟩, (2.3)

where

|ψBCS⟩ = exp

(
1

2

∑

ab

Fabâ
†
aâ

†
b

)
|0⟩ (2.4)

and

N̂ =
∑

i

â†i âi (2.5)

is the number operator. Projecting the AGP wave function into an eigenstate of spin, point

group symmetry, and time reversal symmetry, the parameters for the geminal Fab were

varied with the help of the Onishi-Yoshida formula [23]. There was sizable improvement

over HF, but still there is appreciable deviation from the full-CI result.

2.2 APG theory in physical chemistry community

In 1959, Shull [31] called “geminal” the two-electron wave function describing an electron

pair and characterized it as an important building block of the full many-body wave

function. Afterwards, the property of the geminal was studied in 1950s and 1960s. Hurley

et al. [19] developed a molecular-orbital (MO) theory of geminal, and further, explained

the molecular structure in terms of the repulsive field between the geminals. Parr et al.

12
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[32] extended the theory of Hurley et al. and proposed to describe the many-body wave

function by a linear combination of the antisymmetrized product of the geminals. This is

probably the earliest formulation of the interacting APG, which I will study in this thesis.

Because of the complicated calculus associated with APG, Arai [33] introduced a dras-

tic simplification called “strong orthogonality” as follows. Although geminals are com-

prised of two fermions, they do not behave as boson because, for geminals defined by

F̂ [i] =
∑

Fab[i]â
†
aâ

†
b, the commutation relation is not equal to δik but is given by

[
F̂ †[i], F̂ [k]

]

−
= −2

∑

a,b

Fab[i]Fab[k] + 4
∑

a,b,c

Fab[i]Fcb[k]â
†
câa ≡ Q̂ik. (2.6)

However, they showed that the bosonic property appears when one applies the following

restriction for different geminals indexed by i and k

∑

c

Fca[i]Fcb[k] = 0 (2.7)

for all a and b. This condition is called “strong orthogonality”. The APG wave function

constructed from the strongly orthogonal geminals is called “antisymmetrized product of

strongly orthogonal geminals (APSG)” wave function and is denoted as

|ψAPSG⟩ =
∏

m

F̂ [m]|0⟩ ≡ |F [1]F [2] · · · ⟩. (2.8)

When the geminals are strongly orthogonal, one can significantly simplify the matrix

element of an operator, say â†pâq. That is, those geminals that do not have amplitude at

the sites indexed by p and q factor out and the matrix element is simplified as

〈
F [1]F [2] · · ·

∣∣∣̂a†pâq
∣∣∣F [1]F [2] · · ·

〉
=
〈
F [s1]F [s2] · · ·

∣∣∣̂a†pâq
∣∣∣F [s1]F [s2] · · ·

〉
, (2.9)

where the indices s1, s2, . . . , which are subset of 1, 2, · · · , specify all the geminals having

nonzero amplitude at p or q. This fact greatly simplifies the expression of the matrix

element of operators when geminals are localized spatially since only a few of them appear

in the expression.

For a certain system consisting of four electrons, the strong orthogonality restriction

was found moderate although being severe in general [34]. Kutzelnigg [17] reformulated

the APSG wave function using the natural spin orbitals (NSOs) and then derived inte-

grodifferential equations to determine NSOs. The author also noticed similarity with the

BCS trial wave function and, in addition, proposed another version of APG where each

geminal is restricted to form a singlet pair by sharing the same spatial orbital for the up

and down spins.

This approximate APG is called the antisymmetrized product of interacting geminals

(APIG). APIG is more complex than APSG but numerically more tractable [22]. Nicely
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and Harrison [35] applied APIG to diatomic molecules and, for BH, APIG recovers 98%

of the correlation energy while APSG does only 80%. In this calculation, the APIG

wave function was expanded into Slater determinants to calculate the matrix elements

of the total energy, which is feasible only when the number of the Slater determinants

is moderate. With this in mind, Carrington and Doggest [36] proposed to restrict the

geminals to be spatially localized to within a few sites from the central site. By this,

the geminals in APIG are strongly orthogonal when they do not overlap, with an effect

of reducing the computational complexity. The resulting geminals, in addition, have a

property that can be regarded as a valence bond, as illustrated using LiH. More recent

activities can be found in the review paper by Johnson et al. [37].

Very recently, a growing number of literatures demonstrate that APSG can capture

the static correlation reasonably well while cannot the dynamic one. Here, the static cor-

relation indicates such correlation that essentially requires mixing of qualitatively different

Slater determinants, while the dynamical one is such that can be treated by perturbation

theory, such as the many-body perturbation theory of a finite order and the random phase

approximation. Recent progress in the APSG-based perturbation theory was reviewed by

Jeszenszki et al. [38].

2.3 JAPG theory in condensed matter physics community

One can introduce the correlation of the electron pairs by applying the Jastrow factor

to the AGP wave function. Note that this is an extension of the conventional variational

Monte Carlo simulation where the single Slater determinant is used instead of AGP. Casula

and Sorella [39] used the Jastrow function consisting of a pair-wise function of the distance

J (r1, · · · , rN ) =
∏

i.j

exp [f (|ri − rj |)] (2.10)

to form the Jastrow AGP (JAGP) trial wave function as

J (r1, · · · , rN )ψAGP (r1, · · · , rN ) . (2.11)

The geminals constituting AGP and the parameters for f were then variationally deter-

mined. They expanded the JAGP into a linear combination of Slater determinants to

evaluate the total energy. Because of the very large number of the determinants thereby

generated, they sampled them using a Monte Carlo simulation technique. They demon-

strated the accuracy using isolated atoms.

Tahara and Imada [40] applied the particle number projection method and the sym-

metry projection method to the JAGP method. The method was subsequently applied to

strongly correlated-condensed matter problem such as superconductivity [See, for example

[41]].
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2.4 Fermion pair theory in nuclear physics community

Onishi and Yoshida [23] provided detailed formulation for the generator coordinate method,

a model for the deformed nucleus proposed in 1950s, using the BCS trial wave function.

They provided a formula for the matrix element of the overlap and the Hamiltonian, which

is called the Onishi formula or the Onishi-Yoshida formula. It is noteworthy that they

also used the particle number and symmetry projection methods. This method also af-

fected many of the subsequent formulations done in condensed-matter physics, quantum

chemistry, and nuclear physics.

After determining the BCS wave function, which is called the Hartree-Fock-Bogoliubov

(HFB) wave function in nuclear physics, it is used as the HFB vacuum to obtain various

excited configurations. These configurations are used to do a CI calculation to obtain

the absorption spectrum. The associated Hamiltonian matrix element needs apparently

complicated formula but a compact expression was very recently given, for example, by

Mizusaki and Oi [42].

2.5 AGP-CI

Here I review AGP-CI by Uemura et al. [24] to clarify the difference in property between

APG and AGP-CI. When the Slater determinant is used, the convergence of the CI series

(Eq. (1.7)) is very slow even if one optimizes the MOs. However, when using AGPs

(Eq. (1.10)), one can greatly speed up the convergence. They applied AGP-CI to the

water molecule and the Hubbard model. In the case of water molecule, they got very

accurate results (almost the same as full-CI) by using only 10 terms. Namely, by using the

anti-symmetric tensor decomposition like Eq. (1.8), the wave function can be represented

compactly.

The AGP-CI was shown unstable numerically, and in addition, the variational calcu-

lation requires many iterations. Considering that the AGP-CI series grows exponentially

with the system size and hence that the number of variational parameters also grows ex-

ponentially, the instability and the slow convergence problem will affect the calculation

more severely. In this context, it is important to reduce the variational parameter. I will

show below that the polynomial APG is advantageous in this respect.

2.6 HFB and GCM

In the mid-1950s, the BCS theory was proposed and this BCS wave function or its gen-

eralization, the Hartree-Fock-Bogoliubov (HFB) wave function have been used not only

in the studies of superconductivity but also in the studies of other many-body quantum
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systems. In those studies, one needs to determine antisymmetric matrices constituting the

BCS wave functions [43, 44].

As shown in section 2.1, the BCS wave function can be written as

|ψBCS⟩ = exp

(
1

2

∑

ab

Faba
†
aa

†
b

)
|0⟩. (2.12)

This BCS wave function has a form very similar to that of the AGP wave function. When

one transforms the creation operator a† as

a†m =
∑

m′

U∗
mm′a

†
m′ , (2.13)

one can rewrite the BCS wave function as

|ψBCS⟩ =
∏

m>0

(
1 + smcma†m̃a†m

)
|0⟩. (2.14)

where U is a unitary matrix, while s and c have the following relationship:
(
UTFU

)
mn

= s∗ncnδmñ. (2.15)

Here m̃ is the partner canonical to m. Dobaczewski showed how to convert the different

antisymmetric matrix, F [µ] and F [ν], to the canonical form simultaneously [45].

In the field of nuclear physics, to calculate many-body quantum systems, the generator

coordinate method (GCM) was developed. In nuclear many-body problems, it is important

which type of the trial wave function to choose in GCM. After the advent of BCS theory,

the HFB wave function has been used for the trial wave function of GCM in the calculation

of the closed shell model.

In this thesis, I follow the version of the GCM theories, where the Onishi-Yoshida

formula [23] and the Mizusaki-Oi formula [42], are used to calculate the overlap between

the HFB wave function, or AGP wave function as well as the Hamiltonian matrix.

In the Onishi-Yoshida formula, the overlap of the AGP wave function becomes

⟨F [λ]|F [µ]⟩ = exp

(
1

2
tr
[
ln(1 + F [µ]F [λ]T t)

])∣∣∣∣
t
n
2

. (2.16)

Here, T means the transpose of a matrix and |tn/2 means to extract the (n/2) th-order coef-

ficient of the polynomial (with respect to the auxiliary variable t). The matrix elements of

the Hamiltonian was also given by the Onishi-Yoshida formula (see 3.3 for details). These

formulae made it possible to obtain the AGP wave function via variational calculation. It

is also possible to obtain formula for the derivatives although it is more convenient to use

the Mizusaki-Oi formula to calculate the high-order derivatives (see 3.3 for details).

A similar formula for the APG wave function is not known, so that I propose a method

to transform the APG wave function to a linear combination of the AGP wave functions

as detailed in the subsequent chapter.
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2.7 Embedding theory

Here I explain the embedding theory developed so far to treat strongly correlated impurity

sites surrounded by a weakly correlated environment. The basic idea is as follows.

When one defines the impurity state as α and the bath state as β, one can decompose

the entire wave function as

|Ψ⟩ =
M∑

i=1

λi |αi⟩ |βi⟩ . (2.17)

This is the Schmidt decomposition. The proof of the Schmidt decomposition is as follows.

Let |a⟩ and |b⟩ be orthonormal bases of A and B respectively. The basis of the quantum

system AB then becomes

|ΨAB⟩ =
∑

j=1

∑

k=1

ψjk|aj⟩|bk⟩, (2.18)

where ψjk is a matrix representing the probability amplitude. One can rewrite ψjk using

the singular value decomposition as

ψjk =
∑

i

ujiλivik, (2.19)

where u and v are unitary matrices and λ is the singular value. Substituting Eq. (2.19)

into Eq. (2.18), it becomes

|ΨAB⟩ =
∑

j=1

∑

k=1

(
∑

i

ujiλivik

)
|aj⟩|bk⟩

=
∑

i

λi

⎛

⎝
∑

j=1

uji|aj⟩

⎞

⎠
(
∑

k=1

vik|bk⟩
)
. (2.20)

By redefining the state vectors as

|αi⟩ =
∑

j=1

uji|aj⟩ (2.21)

|βi⟩ =
∑

k=1

vik|bk⟩ (2.22)

then one arrives at the Schmidt decomposition (Eq. (2.17)).

The number of the bath state is larger than that of the impurity state in this Schmidt

decomposition, but one only needs to take the sum of the number of impurity state M .

Because of this fact, one can reduce the calculation cost very much.

The density matrix embedding method (DMET) [7, 8] uses the Schmidt decomposition

and obtains the impurity state by requiring its density matrix to match that of the bath.
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DMET is not a variational method. DMET is similar to the dynamical mean-field theory

(DMFT), where Green’s function is embedded instead of the wave function, but is simpler

than DMFT in that the time-dependence is lacking in DMET. The computational cost of

DMET is relatively low, while the accuracy is reasonably good for a number of systems.

DMET has a known problem when HF is chosen for the bath and full-CI is used for the

impurity. This is because the HF density matrix can describe only a subset of all possible

forms for the density matrices.

To avoid the problem originated from the inherent structure of HF, Tsuchimochi et al.

developed a new method of embedding the full-CI in AGP [46], which does not have such

a structural problem. They applied this full-CI in AGP method to the Hubbard model

or a Hydrogen ring and got accurate results. They noted, however, the application to

multi-impurity systems is not easy. They used the projection method to fix the number of

electrons, where a virtual phase is introduced into the HFB wave function and integration is

done with respect to the phase. However, when this operation is performed, information is

numerically lost leading to an inaccurate result for the multi-impurity systems. Therefore,

I consider that one needs to avoid the projection method. In this thesis, instead of the

projection method, I explicitly collect terms having n creation operators by introducing

an auxiliary variable. The details are shown in section 3.7.1.

2.8 Hubbard model

I demonstrate the performance of geminal wave functions using the Hubbard model in

this study. The details are shown in section 3.9. Here I review the Hubbard model.

The Hubbard model was developed by John Hubbard in 1963 [47] to describe correlated

electrons in solids. The Hamiltonian of the Hubbard model has the nearest-neighbor hop-

ping term and the Coulomb interaction term. It assumes that the Coulomb interaction

works only between electrons on the same site. Despite such a simple form, the Hubbard

model has explained many behaviors of strongly correlated electrons. Also in the com-

putational physics, the Hubbard model has been used as a benchmark to demonstrate or

compare the performance of various methods. In particular, many DMRG studies used the

Hubbard model as a benchmark. Therefore, I also used the Hubbard model to compare

several geminal methods. Note that, there is a more general form Hamiltonian of the Hub-

bard model, which includes long-range Coulomb interaction, called the Pariser-Parr-Pople

(PPP) Hamiltonian [48, 49]. The PPP Hamiltonian has been applied to describe electrons

in molecular orbitals in chemistry.
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Chapter 3

Formulation

3.1 Expression of geminal theories

Here I summarize the expression of the geminal wave function used in this thesis.

The geminal F̂ can be defined as

F̂ [k] ≡
∑

a,b

F [k]abc
†
ac

†
b (3.1)

where F is an antisymmetric matrix, c† is the creation operator and k shows the types of

geminal. The AGP wave function is then written as

|ΨAGP⟩ = F̂
n
2 |0⟩ ≡ |F ⟩ , (3.2)

where n is the number of electrons. One can rewrite the AGP wave function as

|F ⟩ ∝ exp[F̂ t]
∣∣∣
t
n
2
, (3.3)

where |tN means to extract the coefficient of tN . In this thesis, I also represent the AGP

wave function as |tF ⟩ to emphasize the auxiliary variable t. Note that the AGP wave

function is the Hartree-Fock-Bogoliubov (HFB) wave function with a fixed number of

electrons.

As the geminal describes the electron correlation within the pair, the AGP wave func-

tion is a mean-field theory of an electron pair. The AGP wave function is comprised of

only one type of geminal. One can alternatively construct the wave function using different

geminals for different pairs as

|ΨAPG⟩ = F̂ [1]F̂ [2] · · · F̂ [n/2] |0⟩ . (3.4)

The resulting wave function is called the APG wave function.
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One can classify the geminal theories from the viewpoint of tensor decomposition. The

full-CI wave function is written as

|Ψ⟩ =
∑

i1,··· ,in

Ai1···inc
†
i1
· · · c†in |0⟩ , (3.5)

where Ai1···in is an antisymmetric tensor of degree n. Using the antisymmetric tensor

decomposition, one can represent the tensor using the canonical format as

Ai1···in =
R∑

r=1

(
∑

σ∈Sn

sgn(σ)F [1](r)σ(i1)σ(i2)
F [2](r)σ(i3)σ(i4)

· · ·F [n/2](r)σ(in−1)σ(in)

)
, (3.6)

where Sn/2 is the permutation group of degree n/2. The minimum number of R is called

the rank of the tensor, and the minimum number to approximate the tensor is called

the approximate rank. When truncating the series at R = 1, it becomes the APG wave

function and when one further assumes all the geminals to be identical to each other as

F [1] = F [2] = · · · = F [n/2], it becomes the AGP wave function.

One can alternatively decompose the tensor using the Tucker format [50] as

A =
∑

r1,··· ,rn/2

Cr1···rn/2
F [1](r1)F [2](r2) · · ·F [n/2](rn/2), (3.7)

where C is called the core tensor. In the canonical format, the core tensor is diagonal, so

one can recognize the canonical format is a special case of the Tucker format. I will use

this geminal wave function in 3.2.3 and 3.2.4.

When all geminals in Eq. (3.6) are the same (F [1] = F [2] = · · · = F [n/2]) and R ≥ 1,

it becomes the AGP-CI wave function [24, 51], which is a linear combination of AGPs as

|ΨAGP−CI⟩ =
R∑

k=1

F̂ [k]
n
2 |0⟩ . (3.8)

I will represent the AGP-CI of R terms as AGP-CI(R) hereafter.

Instead of taking a linear combination, one can let electron pairs correlate by multi-

plying AGP with the correlation, as detailed in 3.7.

3.2 Polynomial decomposition

The APG wave function has so far been thought too complex to be determined varia-

tionally. I overcome this problem by using the polynomial decomposition [52], which is a

tensor decomposition method developed in mathematics.

In mathematics, much effort has been made to find the minimum number of term

required for the decomposition. The polynomial decomposition means to describe an M
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th-order polynomial
∑∑

ni=M
n1···nN

an1···nNx
n1
1 · · ·xnN

N as a sum of multiples of a linear form

as
∑∑

ni=M
n1···nN

an1···nNx
n1
1 · · ·xnN

N =
∑R

j=1 λj(
∑

k Cjkxk)M . The decomposition is called the

Waring decomposition [53, 54, 55]. The Waring decomposition is also called sum-power

decomposition, the canonical decomposition and the rank-1 decomposition.

The simplest Waring decomposition is for monomial. Fischer’s formula [56] can be

applied to a monomial of the geminal, F̂ [1] · · · F̂ [N ], to yield

F̂ [1]F̂ [2] · · · F̂ [N ]

=
1

2N−1N !

1∑

i2=0

· · ·
1∑

iN=0

(−1)i2+···+iN
(
F̂ [1] + (−1)i2F̂ [2] + · · ·+ (−1)iN F̂ [N ]

)N
.(3.9)

This indicates that APG can be transformed to a liner combination of AGPs, so that one

can apply the Onishi-Yoshida formula to do a variational calculation. Likewise, one can do

a variational calculation if the trial wave function has a polynomial form of the geminals.

Below, I briefly show the polynomials used in this thesis, although more detailed

expression is shown in Appendix A.

3.2.1 Elementary symmetric polynomial

The APG wave function is a monomial of degree N . The most natural extension of APG

is probably to use M (M ≥ N) different geminals to form a symmetric polynomial as

∑

1≤i1<i2<···<iN≤M

F̂ [i1]F̂ [i2] · · · F̂ [iN ] ≡ eN (F̂ [1], F̂ [2], · · · , F̂ [M ]). (3.10)

This polynomial is known as the elementary symmetric polynomial. Note that all terms

are superlinear; multiple product of a geminal does not appear. The elementary symmetric

polynomial is a special example of the tensor decomposition (Eq. (3.6)).

The Waring decomposition of an elementary symmetric polynomial is as follows [57]:

for even N ,

eN (F̂ [1], F̂ [2], · · · , F̂ [M ])

=
1

2N (M −N)N !

1∑

i1=0

· · ·
1∑

iM=0

(−1)i1+···+iM

(
M −N/2− (i1 + · · ·+ iM )− 1

N/2− (i1 + · · ·+ iM )

)

×(M − 2(i1 + · · ·+ iM ))
(
(−1)i1F̂ [1] + (−1)i2F̂ [2] + · · ·+ (−1)iM F̂ [M ]

)N
,

(3.11)
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where i1 + · · ·+ iM ≤ N/2 is assumed. For odd N ,

eN (F̂ [1], F̂ [2], · · · , F̂ [M ])

=
1

2N−1N !

1∑

i1=0

· · ·
1∑

iM=0

(−1)i1+···+iM

(
M − (N − 1)/2− (i1 + · · ·+ iM )− 1

(N − 1)/2− (i1 + · · ·+ iM )

)

×
(
(−1)i1F̂ [1] + (−1)i2F̂ [2] + · · ·+ (−1)iM F̂ [M ]

)N
, (3.12)

where i1 + · · ·+ iM ≤ (N − 1)/2 is assumed.

3.2.2 Complete homogeneous symmetric polynomial

By allowing multiproduct of a geminal in an elementary symmetric polynomial, one can

make the complete homogeneous symmetric polynomial,

∑

1≤i1≤i2≤···≤iN≤M

F̂ [i1]F̂ [i2] · · · F̂ [iN ] ≡ hN (F̂ [1], F̂ [2], · · · , F̂ [M ]). (3.13)

In a complete homogeneous symmetric polynomial, there is no known formula for the

optimal Waring decomposition, so that I apply the Fischer formula to decompose each

term.

3.2.3 Permanent polynomial

Here I make polynomials from Eq. (3.7). When all the coefficients, C, are equal to 1, Eq.

(3.7) becomes a permanent polynomial,

∑

σ∈SN

F̂ [1](σ(1))F̂ [2](σ(2)) · · · F̂ [N ](σ(N)) ≡
∑

σ∈SN

F̂ [1,σ(1)]F̂ [2,σ(2)] · · · F̂ [N,σ(N)]

≡ permN (F̂ [1, 1], · · · , F̂ [N,N ]). (3.14)

To decompose a permanent polynomial [58], first I rewrite it as

permN (F̂ [1, 1], · · · , F̂ [N,N ]) =
1

2N−1

∑

ϵ={−1,1},ϵ1=1

∏

1≤i≤N

∑

1≤j≤N

ϵiϵjF̂ [i, j]. (3.15)

Afterward, I apply the Fischer formula term by term.

3.2.4 Determinant polynomial

By introducing the sign to the coefficient of the permanent polynomial Eq. (3.14), one can

make a determinant polynomial,

∑

σ∈SN

sgn(σ)F̂ [1](σ(1))F̂ [2](σ(2)) · · · F̂ [N ](σ(N)) ≡
∑

σ∈SN

sgn(σ)F̂ [1,σ(1)]F̂ [2,σ(2)] · · · F̂ [N,σ(N)]

≡ detN (F̂ [1, 1], · · · , F̂ [N,N ]) |0⟩ . (3.16)
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The determinant polynomial is the most studied polynomial in mathematics. However, a

general form for the Waring decomposition is not known. In the case of N = 3, one can

conveniently apply the formula by Derksen [59]:

det3(F̂ [1, 1], · · · , F̂ [3, 3]) =
1

2

[
(F [1, 3] + F [1, 2])(F [2, 1]− F [2, 2])(F [3, 1] + F [3, 2])

+(F [1, 1] + F [1, 2])(F [2, 2]− F [2, 3])(F [3, 2] + F [3, 3])

+2F [1, 2](F [2, 3]− F [2, 1])(F [3, 3] + F [3, 1])

+(F [1, 3]− F [1, 2])(F [2, 2] + F [2, 1])(F [3, 2]− F [3, 1])

+(F [1, 1]− F [1, 2])(F [2, 3] + F [2, 2])(F [3, 3]− F [3, 2])
]
,

(3.17)

before using the Fischer formula term by term. By this, one can reduce the number of

terms from 6 to 5; compare the left-hand side and the right-hand side of Eq. (3.17). Then

I use the Fischer formula term by term.

3.3 Total energy formula

Here I show the details of deriving matrix elements of Hamiltonian and their derivatives.

When using the Onishi-Yoshida commutation relation formula [23],

[
cα, exp

(
F̂
)]

=
∑

δ

Fαδc
†
δ exp

(
F̂
)
, (3.18)

one can derive

cα |tF ⟩ =
∑

γ

tFαγc
†
γ |tF ⟩ . (3.19)

This makes it possible to transform the annihilation operator into a linear combination of

the creation operators. Using this relationship, one can obtain an analytic formula for the

matrix element of the one-body term of the Hamiltonian as

⟨tF [λ]| c†αcβ |tF [µ]⟩ = ⟨tF [λ]| c†α
∑

γ

tF [µ]βγc
†
γ |tF [µ]⟩

=
∑

γ

F [µ]βγ
∂

∂F [µ]αγ
⟨tF [λ]|tF [µ]⟩ , (3.20)

which yields

⟨tF [λ]| c†acb |tF [µ]⟩
∣∣∣
tN

=

(
F [µ]F [λ]†t2

1 + F [µ]F [λ]†t2

)

ba

exp

(
1

2
tr
[
ln(1 + F [µ]F [λ]†t2)

])∣∣∣∣
tN

.

(3.21)
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Similarly one can obtain the formula for the two-body term as

⟨tF [λ]| c†pc†qcscr |tF [µ]⟩
∣∣∣
tN

=

([
F [µ]F [λ]†t2

1 + F [µ]F [λ]†t2

]

rp

[
F [µ]F [λ]†t2

1 + F [µ]F [λ]†t2

]

sq

−
[

F [µ]F [λ]†t2

1 + F [µ]F [λ]†t2

]

rq

[
F [µ]F [λ]†t2

1 + F [µ]F [λ]†t2

]

sp

+

[
t

1 + F [µ]F [λ]†t2
F [µ]

]

rs

[
F [λ]†

t

1 + F [µ]F [λ]†t2

]

qp

)

× exp

(
1

2
tr
[
ln(1 + F [µ]F [λ]†t2)

])∣∣∣∣
tN

. (3.22)

It is very hard to directly differentiate the overlap matrix and the matrix elements of

Hamiltonian with respect to F . It is simpler to replace the derivatives as

1

t

∂

∂F [µ]cd
⟨tF [λ]|tF [µ]⟩ = ⟨tF [λ]| c†cc

†
d |tF [µ]⟩ . (3.23)

So far, I have shown what is needed to do the variational calculation. Although they

are convenient in getting the total energy, it is not the case when there are many creation

and annihilation operators, because one needs to differentiate the Onishi-Yoshida formula

many times using Eq. (3.20).

Hence, I use another formula which was developed in the field of nuclear physics.

Mizusaki and Oi [42] showed a formula

⟨F [λ]| ca1ca2 · · · ca2n−1ca2nc
†
b1
c†b2 · · · c

†
b2m−1

c†b2m |F [µ]⟩

=
∑

σ∈S2m+2n

sgn(σ)X−1
σ(b2m)σ(b2m−1)

· · ·X−1
σ(b2)σ(b1)

X−1
σ(a2n+M)σ(a2n−1+M) · · ·X

−1
σ(a2+M)σ(a1+M)

×⟨F [λ]|F [µ]⟩ , (3.24)

where X is the 2M × 2M matrix of the form

X =

(
tF [µ] 1

−1 tF [λ]†

)
(3.25)

X−1 =

(
F [λ]†t 1

1+F [µ]F [λ]†t2
1

1+F [λ]†F [µ]t2

− 1
1+F [µ]F [λ]†t2

1
1+F [µ]F [λ]†t2

F [µ]t

)
≡
(

Z1 Z3

Z4 Z2

)
. (3.26)

The creation operators in Eq. (3.24) give rise to the former half elements (1 to M) of X−1

while the annihilation operators give rise to the latter half (M + 1 to 2M).

With this Mizusaki Oi formula, one can get the derivatives easier than with the Onishi

Yoshida formula.
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Here I detail the formula further. With the notations, Z1 ∼ Z4, given in Eq. (3.26),

one can derive the following equations,

⟨F [λ]| c†ic
†
j |F [µ]⟩ = Z1

ji ⟨F [λ]|F [µ]⟩ (3.27)

⟨F [λ]| cicj |F [µ]⟩ = Z2
ji ⟨F [λ]|F [µ]⟩ (3.28)

⟨F [λ]| cic†j |F [µ]⟩ = Z3
ji ⟨F [λ]|F [µ]⟩ (3.29)

⟨F [λ]| cacbc†cc
†
d |F [µ]⟩ = (Z1

dcZ
2
ba − Z3

dbZ
3
ca + Z3

daZ
3
cb) ⟨F [λ]|F [µ]⟩ (3.30)

⟨F [λ]| cacbc†cc
†
dc

†
ec

†
f |F [µ]⟩ =

[
Z1
fe(Z

1
dcZ

2
ba − Z3

dbZ
3
ca + Z3

daZ
3
cb) (3.31)

−Z1
fd(Z

1
ecZ

2
ba − Z3

ebZ
3
ca + Z3

eaZ
3
cb)

+Z1
fc(Z

1
edZ

2
ba − Z3

ebZ
3
da + Z3

eaZ
3
db)

−Z3
fb(Z

1
edZ

3
ca − Z1

ecZ
3
da + Z3

eaZ
1
dc)

+Z3
fa(Z

1
edZ

3
cb − Z1

ecZ
3
db + Z3

ebZ
1
dc)
]
⟨F [λ]|F [µ]⟩ .

Then, one can rewrite Z1 ∼ Z4 as a Taylor series as

Z1 =
∑

n=0

F [λ]†(−1)n
(
F [µ]F [λ]†

)n
t2n+1 (3.32)

Z2 =
∑

n=0

(−1)n
(
F [µ]F [λ]†

)n
F [µ]t2n+1 (3.33)

Z3 =
∑

n=0

(−1)n
(
F [λ]†F [µ]

)n
t2n (3.34)

Z4 = −
∑

n=0

(−1)n
(
F [µ]F [λ]†

)n
t2n. (3.35)

Therefore the formulae are simplified, for example, as

⟨F [λ]| cic†j |F [µ]⟩
∣∣∣
t2

= Z3
ji ⟨F [λ]|F [µ]⟩

∣∣
t2

= Z3
ji

∣∣
t2
+ ⟨F [λ]|F [µ]⟩|t2

=
(
F [λ]†F [µ]

)

ji
+

1

2
tr[F [λ]†F [µ]]. (3.36)

This is the working equation for the total energy used in my work.
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3.4 Fredholm Pfaffian

The Fredholm Pfaffian is defined as

pf(1 +At) = exp

(
1

2
tr[ln(1 +At)]

)
. (3.37)

Following the fact that det(1+At) = exp(tr[ln(1+At)]) is called the Fredholm determinant,

I call Eq. (3.37) the Fredholm Pfaffian. The relationship between determinant and Pfaffian

is shown in Appendix B.

Note that the Fredholm Pfaffian is identical to the overlap of the AGP wave function

in the Onishi-Yoshida formula. In this section, I will see the details on the calculation of

the Fredholm Pfaffian.

To calculate the Fredholm Pfaffian, one use the Taylor series,

ex =
∑

n=0

xn

n!
(3.38)

and

ln(1 + x) =
∑

n=1

(−1)n+1

n
xn. (3.39)

Using Eqs. (3.38) and (3.39), Eq. (3.37) is rewritten as

exp

(
1

2
tr[ln(1 +At)]

)
=
∑

n=0

1

n!

1

2n

(
tr

[
∑

m=1

(−1)m+1

m
Amtm

])n

. (3.40)

When I calculate the overlap of the AGP wave function, I use the n th-order coefficient of

the right-hand side of Eq. (3.40). For example, the coefficient of t4 is

1

384
tr[A]4 − 1

32
tr[A]2tr[A2] +

1

32
tr[A2]2 +

1

12
tr[A]tr[A3]− 1

8
tr[A4]. (3.41)

There is a more sophisticated method derived using the Cauchy integral although I

could not achieve sufficient numerical precision by this method. Nevertheless it is instruc-

tive to briefly introduce the method as follows.

Suppose that there is a polynomial f(z),

f(z) =
∞∑

k=0

akz
k; (3.42)

the coefficient an can be written as

an =
f (n)(0)

n!

=
1

2πi

∫

|z|=r

f(z)

zn+1
dz

=
1

2πrn

∫ 2π

0
e−inθf(reiθ)dθ. (3.43)
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3.4. FREDHOLM PFAFFIAN

The last equation of Eq. (3.43) is the Cauchy integral. One can apply this method to get

the coefficient of Eq. (3.40). For that purpose, one needs to provide accurate derivatives.

Usually, it is done using numerical differentiation, such as

F ′(x0) =
F (x0 + h)− F (x0 − h)

2h
+O(h2). (3.44)

One is faced with the information loss when taking very small h.

One can overcome this problem partially by using a technique [60] as

F ′(x0) =
Im(F (x0 + ih))

h
. (3.45)

This equation is obtained using the Taylor series of F (x0 + ih),

F (x0 + ih) = F (x0) + ihF ′(x0)−
1

2!
h2F (2)(x0)−

1

3!
ih3F (3)(x0) + · · · , (3.46)

which yields

Im(F (x0 + ih))

h
= F ′(x0)−

1

3!
h2F (3)(x0) + · · · . (3.47)

This formula allows one to calculate the derivatives with the error O(h2). Since this

method does not include the difference, one can expect to retain the accuracy even when

taking very small h.

Here I test the accuracy of this complex numerical difference method by applying to
∂
∂F ⟨F |F ⟩. The difference from the derivatives obtained using the analytical derivative is

−2 × 10−16 when using h = 1 × 10−7 for a case where the difference is 1.8 × 10−8 when

using the simple numerical differentiation. I can thus get much more accurate derivatives

from the complex numerical difference method. Note that, I cannot reduce the error in

usual numerical difference by using smaller h.

One can apply this derivatives method to the Fredholm Pfaffian as

exp

[
1

2
tr[ln(1 + F †Ft)]

]∣∣∣∣
tN

≡ f(t)|tN

=
f (N)(0)

N !

=
1

2πi

∫

|z|=r

f(z)

zN+1
dz. (3.48)

The integration in Eq. (3.48) can be done using the trapezoidal sums as

a0 =
1

2πrn

∫ 2π

0
e−inθf(reiθ)dθ

=
1

2πrn

N−1∑

k=0

gk, (3.49)
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where

g(θ) ≡ 1

2πrn

∫ 2π

0
e−inθf(reiθ)dθgk ≡

∫ θk+1

θk

g(θ)dθ. (3.50)

The trapezoidal sums can be done using the approximation

g(θ) ≈ (g(θk) + g(θk+1))∆θ

2
, (3.51)

where θk ≡ 2πk
N and ∆θ ≡ θk+1− θk = 2π

N . Then one gets a formula, for example, for a0 as

a0 ≈ 1

2πrn

N−1∑

k=0

(g(θk) + g(θk+1))

2

2π

N

=
1

Nrn

N−1∑

k=0

e
−in2πk

N f(re
i2πk
N ). (3.52)

This works well for a0, but unexpectedly I cannot achieve enough accuracy when calcu-

lating higher-order derivatives.

3.5 Low-rank geminal matrix

In the variational calculation of the geminal wave function, the matrix elements of the

Hamiltonian and their derivatives are much heavier than those of the overlap of wave

function from the viewpoint of the computational cost. The reason is that, as one can see

in Eqs. (3.21) and (3.22), the matrix elements of the Hamiltonian requires to calculate not

only the Fredholm Pfaffian but also products of the geminal matrices. The calculation

cost of the Fredholm Pfaffian is much lower than that of the product of Fredholm Pfaffian

and the matrix. Therefore, if one can write the matrix elements of the Hamiltonian only

as the Fredholm Pfaffian, the calculation cost can be reduced. In this context, I use low-

rank geminal matrices to reformulate the matrix elements of the Hamiltonian and their

derivatives only using the form of Fredholm Pfaffian.

In this section, I reduce the freedom of the geminal matrix f using sum of rank-1

matrices as

fpq =
∑

1≤k≤n

(
upkuqk̄ − upk̄uqk

)

≡
∑

1≤k≤n

upkuqk̄ϵkk̄ ≡
∑

1≤k≤n

f (k)
pq , (3.53)

where uak is a vector of length M (1 ≤ a ≤ M) and ϵ is the 2× 2 Levi-Civita tensor. Here

M is the number of bases and n is the number of geminal pairs. As u is rank-1 matrix,

the rank of f is n, while the rank of the original one is M/2. One can also write f as

f =
∑

1≤k≤n

|uk⟩ ϵkk̄ ⟨uk̄| . (3.54)
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Note that when using a rank-n matrix, rank-n AGP is equivalent to rank-1 APG:

|Ψ⟩ = 1

n!

⎛

⎝
∑

1≤k≤n

f̂ (k)

⎞

⎠
n

|0⟩ =
∏

1≤k≤n

f̂ (k) |0⟩ (3.55)

To calculate the Fredholm Pfaffian (pf(1+f1f
†
2)), one needs to derive x ≡ f1f

†
2 , where

the superscript † means to take the Hermitian conjugate. It can be written as

x =
∑

1≤k,k′≤n

|uk⟩ ϵkk̄ ⟨uk̄|vk′⟩ ϵk′k̄′ ⟨vk̄′ |

=
∑

1≤k,k′≤n

(
|u1k⟩ ⟨u2k̄|v

1
k′⟩ ⟨v2k̄′ |− |u1k⟩ ⟨u2k̄|v

2
k′⟩ ⟨v1k̄′ |− |u2k⟩ ⟨u1k̄|v

1
k′⟩ ⟨v2k̄′ |+ |u2k⟩ ⟨u1k̄|v

2
k′⟩ ⟨v1k̄′ |

)

=
∑

k,k′,i,j

|uik⟩
(

0 1

−1 0

)

ip

⟨upk|u
q
k′⟩
(

0 1

−1 0

)

qj

⟨vjk′ | . (3.56)

It is found that x is an n×n matrix, and therefore one can calculate the Fredholm Pfaffian

by evaluating an n× n matrix. It can reduce the calculation cost, because originally x is

an M ×M matrix.

Below, I rewrite all the elements needed in the variational calculation (matrix elements

of the Hamiltonian and their derivatives) in terms of the Fredholm Pfaffian.

First, the derivative of f with respect to u becomes

∂fpq
∂uak

= δapuqk̄ − δaqupk̄ ≡ (δak ⋆ f)pq (3.57)

∂fpq
∂uak̄

= −δapuqk + δaqupk ≡ (δak̄ ⋆ f)pq. (3.58)

Then,

∑

pq

∂fpq
∂uak

c†pc
†
q = 2c†a

∑

q

c†quqk̄ (3.59)

∑

pq

∂fpq
∂uak̄

c†pc
†
q = −2c†a

∑

q

c†quqk. (3.60)

Therefore, the derivative of the AGP wave function (|Ψ⟩ =
∏

1≤l≤n f̂
(l) |0⟩) is

∂

∂uak
|Ψ⟩ = δakf̂

(k)
l ̸=k∏

1≤l≤n

f̂ (l) |0⟩ = 1

n!

⎛

⎝δak ⋆ f̂ (k) +
l ̸=k∑

1≤l≤n

f̂ (l)

⎞

⎠
n

|0⟩ (3.61)

∂

∂uak̄
|Ψ⟩ = δak̄f̂

(k)
l ̸=k∏

1≤l≤n

f̂ (l) |0⟩ = 1

n!

⎛

⎝δak̄ ⋆ f̂ (k) +
l ̸=k∑

1≤l≤n

f̂ (l)

⎞

⎠
n

|0⟩ , (3.62)
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and the derivative of the overlap becomes

∂

∂uak
⟨Ψ|Ψ⟩ = 2

∑

f2∈{F}

pf

⎛

⎝1 +

⎛

⎝δak ⋆ f̂ (k) +
l ̸=k∑

1≤l≤n

f̂ (l)

⎞

⎠ f †
2 t

⎞

⎠ |0⟩ (3.63)

∂

∂uak̄
⟨Ψ|Ψ⟩ = 2

∑

f2∈{F}

pf

⎛

⎝1 +

⎛

⎝δak̄ ⋆ f̂ (k) +
l ̸=k∑

1≤l≤n

f̂ (l)

⎞

⎠ f †
2 t

⎞

⎠ |0⟩ . (3.64)

In this way, one can write derivatives only using sum of the Fredholm Pfaffian.

Next, I show how to describe the first-order density matrix E1,

E1 =
∑

ab

⟨Ψ|habc†acb |Ψ⟩
⟨Ψ|Ψ⟩ . (3.65)

In the E1, one can rewrite habc
†
acbf̂ (1) as (here I omit the sum symbol

∑
for simplicity),

(
habc

†
acb
)(

f (1)
p1q1c

†
p1c

†
q1

)
= habf

(1)
p1q1c

†
a

(
δbp1 − c†p1cb

)
c†q1

= habf
(1)
bq1

c†ac
†
q1 − habf

(1)
p1q1c

†
ac

†
p1cbc

†
q1

= hacf
(1)
cb c†ac

†
b − habf

(1)
p1b

c†ac
†
p1 + habf

(1)
p1q1c

†
ac

†
p1c

†
q1cb

= 2hacf
(1)
cb c†ac

†
b +

(
f (1)
p1 q1c

†
p1c

†
q1

)
habc

†
acb

=
(
hf (1) + f (1)h

)

ab
c†ac

†
b + f̂ (1)ĥ. (3.66)

Then the state habc
†
acb |Ψ⟩ becomes

ĥ|Ψ⟩ = ĥf̂ (1) · · · f̂ (n)|0⟩ =
((

hf (1) + f (1)h
)

ab
c†ac

†
b + f̂ (1)ĥ

)
f̂ (2) · · · f̂ (n)|0⟩

=
(
hf (1) + f (1)h

)

ab
c†af̂

(2) · · · f̂ (n)|0⟩

+f̂ (1)
(
hf (2) + f (2)h

)

ab
c†bc

†
bf̂

(3) · · · f̂ (n)|0⟩

+ · · ·+f̂ (1) · · · f̂ (n−1)
(
hf (n) + f (n)h

)

ab
c†ac

†
b|0⟩. (3.67)

Since (x(1))ab ≡ (hf (1) + f (1)h)ab is a rank-2 matrix, one can use decomposition as

x̂(1)f̂ (2) · · · f̂ (n) =
1

2× n!

[(
x̂(1) + f̂ (2) + · · ·+ f̂ (n)

)n
−
(
−x̂(1) + f̂ (2) + · · ·+ f̂ (n)

)n]
.

(3.68)

Here I rewrite x(1) as

x(1) = |hu1⟩ ⟨u1|− |u1⟩ ⟨u1h|+ |u1⟩ ⟨u1h|− |hu1⟩ ⟨u1|

≡ |v01⟩ ⟨v02|− |v02⟩ ⟨v01|+ |v11⟩ ⟨v12|− |v12⟩ ⟨v11|. (3.69)
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In this way, if one uses v, one can use the simplification,

x(1) + f (2) + · · ·+ f (n) =
∑

k≥0

(|vk1⟩ ⟨vk2|− |vk2⟩ ⟨vk1|) ≡ fh. (3.70)

Here fh is a rank-(n + 1) matrix. When using this fh in place of f , one can describe E1

only by the Fredholm Pfaffian.

Next, by looking at the derivative of E1,

⟨Ψ|ĥ
(

∂

∂ua,2k−1
|Ψ⟩
)
+

(
∂

∂ua,2k−1
⟨Ψ|
)
ĥ|Ψ⟩, (3.71)

one can transform Eq. (3.71) to the form of the Fredholm Pfaffian by using Eqs. (3.59) -

(3.62).

Finally, let me investigate the second-order density matrix and their derivatives. Since

the coefficient of the second-order density matrix can be decomposed as Vpqrs =
∑

ν v
ν
pqv

ν
rs,

the Hamiltonian becomes

H =
∑

pq

tpqc
†
pcq +

∑

pqrs

Vpqrsc
†
pc

†
qcscr

= −2
∑

pq

Vpqpq +
∑

pq

(
tpq + 4

∑

r

Vprqr

)
c†pcq +

∑

ν

(vνrscscr)
(
vνpqc

†
pc

†
q

)

≡
∑

pq

hpqc
†
pcq +

∑

ν

v̂(ν)†v̂(ν) + const . (3.72)

Therefore, to calculate the second-order density matrix, one needs to calculate

∑

ν

〈
0
∣∣∣f̂ (n)†

2 . . . f̂ (1)†
2 v̂(ν)†v̂(ν)f̂ (1)

1 . . . f̂ (n)
1

∣∣∣0
〉
, (3.73)

which can be written using the Fredholm Pfaffian. Especially for the Hubbard model, the

second-order density matrix E2 becomes

E2 = U
1

(n+ 1)!2
1

⟨Ψ|Ψ⟩
∑

f1,f2∈{F}

∑

a

〈
0

∣∣∣∣∣

(
f̂ †
2 +

(
c†aσc

†
aσ

)†)n+1 (
f̂1 + c†aσc

†
aσ

)n+1
∣∣∣∣∣0
〉
,

(3.74)

where U is the on-site Coulomb potential. Then all the terms that consist of rank-(n+1)

matrices can be described using the Fredholm Pfaffian.

With this low-rank approximation, one can do the APG calculations easier. This is

also the case for the polynomial APG calculation. Here I focus only on the determinant-
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polynomial wave function. I make the calculation simpler by using

|Ψ⟩ = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̂0[1] f̂−1[2] 0 · · · · · · 0 f̂1[n]

f̂1[1] f̂0[2] f̂−1[3] 0 0 0 0

0 f̂1[2] f̂0[3]
. . . 0

...
...

... 0 f̂1[3]
. . .

. . . 0
...

...
... 0

. . .
. . . f̂−1[n− 1] 0

0 0 0 0
. . . f̂0[n− 1] f̂−1[n]

f̂−1[1] 0 0 0 0 f̂1[n− 1] f̂0[n]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|0⟩ . (3.75)

This determinant-polynomial wave function is expected to describe fluctuation missing in

APG,

f̂0[1]f̂0[2] · · · f̂0[n], (3.76)

to some extent. Since the determinant can be written as a trace of products of matrices

as

det = tr

[(
f̂0[1] −f̂1[1]f̂−1[2]

1 0

)(
f̂0[2] −f̂1[2]f̂−1[3]

1 0

)
· · ·
(

f̂0[n] −f̂1[n]f̂−1[1]

1 0

)]

−
n∏

i=1

f̂1[i]−
n∏

i=1

f̂−1[i]. (3.77)

One can apply the formulation made above for the low-rank AGP.

3.6 Schur decomposition

One can decompose a 2n × 2n real antisymmetric matrix x into the Schur form, x =

USU−1, where U is a unitary matrix and S is a band-diagonal matrix,

S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 λ1 0 0 0

−λ1 0 0 0 0

0 0 0
. . . 0

0 0
. . . 0 λn

0 0 0 −λn 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (3.78)

where λm is the eigenvalues of x. Using this Schur decomposition, one can get the products

as xN = USNU−1. Therefore, using

tr
[
xN
]
= tr

[
SN
]
=

n∑

m=1

λNm, (3.79)
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one can calculate the trace easily and thus simplify the calculation of the Fredholm Pfaffian:

The most time-consuming operation then becomes single matrix diagonalization although

many matrix products are required originally.

Now I extend the formula to APG. To do it, I transform the AGP wave function by

applying the Schur decomposition to every geminal matrix after rewriting the AGP as

|Ψ⟩ = (1 + λ1a
†
1a

†
1̄
t)(1 + λ2a

†
2a

†
2̄
t) · · · (1 + λNa†Na†

N̄
t) |0⟩

∣∣∣
tN

. (3.80)

Then the corresponding APG wave function becomes

|Ψ⟩ = (1 + λ1a[1]
†
1a[1]

†
1̄
t)(1 + λ2a[1]

†
2a[1]

†
2̄
t) · · ·

×(1 + λ1a[2]
†
1a[2]

†
1̄
t) · · ·

· · ·

×(1 + λ1a[N ]†1a[N ]†
1̄
t) · · · (1 + λNa[N ]†Na[N ]†

N̄
t) |0⟩

∣∣∣
tN

. (3.81)

Note that in Eq. (3.80), I use a single type of the creation operator while in Eq. (3.81), I

use different creation operators for different pairs. When one introduces an abbreviation,

λ1a[N ]†1a[N ]†
1̄
= λ̂[N ]1, one can expand Eq. (3.81) as

λ̂[1]1λ̂[1]2λ̂[2]1λ̂[3]1 · · · |0⟩+ λ̂[1]1λ̂[2]1λ̂[4]1 · · · |0⟩+ · · · . (3.82)

If one assumes that there is only one nonzero eigenvalue (λ[m]1 have a finite value and

others are zero), for the sake of reducing the computational cost, which I call the rank-

1 approximation, the wave function is greatly simplified and is written, for example for

N = 3, as

|Ψ⟩ = λ[1]1a
†[1]1a

†[1]1̄λ[2]1a
†[2]1a

†[2]1̄λ[3]1a
†[3]1a

†[3]1̄ |0⟩ . (3.83)

Likewise one can represent the elementary symmetric polynomial wave functions as

|Ψ⟩ = (1 + λ1a[1]
†
1a[1]

†
1̄
t)(1 + λ2a[1]

†
2a[1]

†
2̄
t) · · ·

×(1 + λ1a[2]
†
1a[2]

†
1̄
t) · · ·

· · ·

×(1 + λ1a[M ]†1a[M ]†
1̄
t) · · · (1 + λMa[M ]†Ma[M ]†

M̄
t) |0⟩

∣∣∣
tN

, (3.84)

where M is the number of types of geminals. Then for N = 3 and M = 6, for example,

one gets

|Ψ⟩ = λ[1]1a
†[1]1a

†[1]1̄λ[2]1a
†[2]1a

†[2]1̄λ[3]1a
†[3]1a

†[3]1̄ |0⟩+ · · · . (3.85)

In this example, it has 6C3 = 20 terms.
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3.7 Embedding theory

I introduce an embedding method called the four-body embedding method. The physical

meaning of the four-body correlation is the correlation between two-body and two pairs,

or two geminals. The method is used to describe the correlation between geminals within

an impurity site that is embedded in a medium described by the AGP. The correlation is

described by multiplying a correlation factor consisting of “quadruplet” g4(r1, r2, r3, r4),

or an antisymmetric tensor of degree four. That is, the trial wave function is prepared as

the n th-order coefficient of

exp

⎡

⎣
∑

ijkl

Gijklc
†
ic

†
jc

†
kc

†
l t

2

⎤

⎦ exp

[
∑

pq

Fpqc
†
pc

†
qt

]
. (3.86)

It is noted that the impurity site does not necessarily consist of a single site. One could

extend the method by using antisymmetric tensors of higher degree, but I leave the exten-

sion as a target of future study. Figure 3.1 shows a schematics of the method. As shown

in this figure, one can include the correlation between geminals in the impurity site by

introducing the four-body correlation factor.

The present method has similarity with an existing method. In the Jastrow AGP

(JAGP) method [39, 40], the Jastrow factor is multiplied to the AGP wave function of the

type

exp

⎛

⎝
∑

ij

f(rij)n̂in̂j

⎞

⎠ exp

[
∑

pq

Fpqc
†
pc

†
q

]
. (3.87)

Note that the Jastrow factor f(rij) has been used for strongly correlated systems, such

as superconductivity. To optimize the JAGP wave function, stochastic methods are used.

Neuscamman adapted JAGP to molecules [61]. Also, he developed a method by combining

the coupled cluster (CC) and JAGP (CJAGP) [62] as

|Ψ⟩ = exp(T̂ )|Φ⟩, (3.88)

where |Φ⟩ is the JAGP wave function and T̂ is a CC operator as

T̂ =
∑

σ,τ∈{↑,↓}

∑

i,j,k,l

T kσlτ
iσjτ

c†kσciσc
†
lτ
cjτ . (3.89)

JAGP and CJAGPmethods were shown effective in obtaining the total energy of molecules,

but are not so in obtaining the atomic force because of the statistical fluctuation inherent

to stochastic methods. This is problematic in studying chemistry because the atomic force

and the hessians are crucially important to determine the relaxed structure and to perform

a molecular dynamics simulation. Only recently, there was an effort to reduce the effect
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of fluctuation [63, 64]. The four-body correlation in the AGP method, on the contrary,

determines the wave function variationally, so that the atomic force can be determined

accurately. It is also worth stressing that it is much easier to analyze the wave function

when not using the stochastic method.

Figure 3.1: A schematics of four-body correlation in AGP embedding. There is an impurity

site in the bath. In the bath, I consider the correlation within the electron pair and in the

impurity site, I consider the correlation between two electron pairs too.

3.7.1 Four-body correlation

The four-body correlation factor to be applied to the AGP wave function is

exp

[
∑

pqrs

Gpqrsc
†
pc

†
qc

†
rc

†
st

2

]
, (3.90)

where G is the antisymmetric tensor of degree four. To describe the correlation in the

region A where the electron repulsion is significant, I restrict the summation and rewrite

the wave function as

|Ψ⟩ = exp

⎡

⎣
A∑

ij

all∑

pq

Gijpqc
†
ic

†
jc

†
pc

†
qt

2

⎤

⎦ |tF ⟩

∣∣∣∣∣∣
t
n
2

, (3.91)

where the subscripts i, j are limited in the area A. I call this wave function AGP4. If one

takes only site 1 ↑ and 1 ↓ for A, the wave function becomes

|Ψ⟩ =

(
1 +

all∑

pq

G1↑1↓pqc
†
1↑c

†
1↓c

†
pc

†
qt

2

)
|tF ⟩

∣∣∣∣∣
t
n
2

≡
(
1 +

all∑

pq

g1↑1↓Gpqc
†
1↑c

†
1↓c

†
pc

†
qt

2

)
|tF ⟩

∣∣∣∣∣
t
n
2

, (3.92)
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where G is an antisymmetric matrix and g is

gkl =

⎧
⎪⎨

⎪⎩

0.5 (k, l) = (1 ↑, 1 ↓)
−0.5 (k, l) = (1 ↓, 1 ↑)
0 (otherwise)

. (3.93)

Then the overlap becomes

⟨tF |
(
1 +

∑

pq

g1↑1↓Gpqc
†
1↑c

†
1↓c

†
pc

†
qt

2 +
∑

rs

g†1↑1↓G
†
rscscrc1↓c1↑t

2

+
∑

pqrs

g†1↑1↓G
†
rsg1↑1↓Gpqcscrc1↓c1↑c

†
1↑c

†
1↓c

†
pc

†
qt

4

)
|tF ⟩ . (3.94)

As I did for the AGP formulation, I define

ĝ ≡
∑

kl

gklc
†
kc

†
l , (3.95)

and

Ĝ ≡
∑

pq

Gpqc
†
pc

†
q. (3.96)

Then one obtains the four-body wave function as

|Ψ⟩ = ĝĜF̂N |0⟩ . (3.97)

Since it has a structure similar to the APG wave function, one can apply the Fischer

formula for the Waring decomposition. Contrary to APG, all the geminals are not different,

so that one can simplify the Fischer formula as

ĝĜF̂N =
N∑

k=0

1∑

l=0

1

2N+1(N + 1)(N + 2)

(−1)k+l

(n− k)!k!

(
ĝ + (−1)lĜ+ (N − 2k)F̂

)N+2
.(3.98)

Since

ĝ2Ĝ2F̂N =
N∑

k=0

1∑

l=0

2∑

m=0

1

2N+2(N + 1)(N + 2)(N + 3)(N + 4)

(−1)k+l+m

(n− k)!k!(2−m)!m!

×
(
ĝ + (−1)lĝ + (2− 2m)Ĝ+ (N − 2k)F̂

)N+4
, (3.99)

one can generally obtain

ĝpĜpF̂N =
p−1∑

k=0

p∑

l=0

N∑

m=0

(p− 1)!p!N !

22p+N−1(2p+N)!

(−1)k+l+m

(p− 1− k)!k!(p− l)!l!(N −m)!m!

×
(
(p− 2k)ĝ + (p− 2l)Ĝ+ (N − 2k)F̂

)2p+N
. (3.100)
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In AGP4, if one takes N = 3, the wave function becomes |Ψ⟩ = ĝĜF̂ |0⟩, which has the

same form as that of APG although the matrix element for g is restricted: gab is nonzero

only when one of the indices belongs to the region A. They are different in that g is a

limited matrix. Note that if the restriction is removed, or if g is a full antisymmetric ma-

trix, the AGP4 constitutes a complete homogeneous symmetric polynomial wave function.

Therefore, the four-body correlation factor is a kind of polynomial APG.

In the above, I have assumed only one site in the strongly correlated area, but one can

extend the four-body theory to include more than one orbitals (multi-orbital AGP4). I

will explain it using a two-orbital AGP4 as an example. Suppose that two orbitals exist

in the correlated site 1 as shown in FIG. 3.2.

Figure 3.2: 2 orbitals are existed in correlated site 1.

The four-body wave function becomes

|Ψ⟩ =
(
F̂N + Ĝ[11]F̂N−2 + Ĝ[22]F̂N−2

+Ĝ[12]F̂N−2 + Ĝ[11]Ĝ[22]F̂N−4 + Ĝ[12]Ĝ[22]F̂N−4
)
|0⟩ . (3.101)

where Ĝ[11] is the four-body correlation factor for the interaction within the orbital-1,

Ĝ[22] is that within the orbital-2 and Ĝ[12] is that between the orbital-1 and orbital-2 of

the site 1. When this wave function is rewritten in the same way as before, it becomes

|Ψ⟩ = F̂N |0⟩+
∑

ab

∑

{p,q}

Gabgpqc
†
ac

†
bc

†
pc

†
qF̂

N−2 |0⟩

+
∑

abcd

∑

{p,q,r,s}

GabGcdgpqgrsc
†
ac

†
bc

†
pc

†
qc

†
cc

†
dc

†
rc

†
sF̂

N−4 |0⟩ , (3.102)

where the sum sets {p, q} = {1, 2}, {3, 4}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {p, q, r, s} =

{1, 2, 3, 4}, {1, 3, 2, 4}, {1, 4, 2, 3}. Here the subscript 1 denotes a composite of site 1, or-

bital 1, and up spin. Likewise, the subscript 2 means a composite of site 1, orbital 1, and

down spin; the subscript 3 is a composite of site 1, orbital 2, and up spin. Then one can

use Eq. (3.99) for decomposition.
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3.8 Optimization

In this study, I use variational calculation to optimize the trial wave function and get the

ground state energy. The conjugate gradient (CG) method and the Newton method are

available as methods of finding the minimum value. However, optimization of a function

of high-dimensional variables is often problematic because there are many local minima

and saddle-points.

If there are local minima, it is difficult to achieve global minimum using the CG method

because it is easily trapped at a local minimum. However, if there exist saddle points only,

it is in principle possible to search global minimum even by the modified Newton method

but the Newton method is very time-consuming.

In the study of Dauphin et al. [65], if there are saddle points, they claimed that the

minimizing direction is correct in the CG optimization, but it needs too many steps to

achieve global minimum.

In this context, I choose the CG method. The CG method requires only the first-

derivatives, which is advantageous in simplifying the program. In my experience, I need

about 1000 to 10000 iterations to reduce the magnitude of the gradient. This indicates that

there are many saddle points. Also, the corresponding total energies are often different

depending on the initial conditions, indicating there are local minima.

To avoid the local minima at least partially within a reasonable computational time, I

prepare 100 different random initial conditions and do the CG optimization.

In the rest of this subsection, I will show that the total energy is not a convex function

of the geminal matrix. This can be explained by the fact that the simple Newton step

does not reduce the total energy. Here I detail this problem.

As the AGP wave function can be written as

|Ft⟩ = e
∑

ab Fabc
†
ac

†
bt |0⟩ = eF̂ t |0⟩ , (3.103)

the derivative with respect to Fab is

∂

∂Fab
|Ft⟩ = c†ac

†
bte

F̂ t |0⟩ . (3.104)

When taking a sum after multiplying Fab, I get

∑

ab

Fab
∂

∂Fab
|Ft⟩ = F̂ t |Ft⟩ . (3.105)

Also, the second derivatives become

∂

∂Fcd

∂

∂Fab
|Ft⟩ = c†ac

†
bc

†
cc

†
dt

2eF̂ t |0⟩ . (3.106)
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When taking a sum after multiplying Fab, I get

∑

ab

Fab
∂2

∂Fab∂Fcd
|Ft⟩ = F̂ c†cc

†
dt

2eF̂ t |0⟩ . (3.107)

When I use the Taylor series of eF̂ t as

eF̂ t |0⟩
∣∣∣
tN

=

(
1 + F̂ t+

1

2
F̂ 2t2 + · · ·+ 1

n!
F̂ntn + · · ·

)
|0⟩
∣∣∣∣
tN

, (3.108)

I can derive the following relationship using Eq. (3.107),

∑

ab

Fab
∂2

∂Fab∂Fcd
|Ft⟩ = F̂ c†cc

†
dt

2eF̂ t |0⟩
∣∣∣
tN

= F̂ c†cc
†
d

1

(N − 1)!
F̂N−2 |0⟩

= (N − 1)
1

(N − 1)!
F̂N−1c†cc

†
d |0⟩

= (N − 1)c†cc
†
de

F̂ t
∣∣∣
tN−1

= (N − 1)c†cc
†
dte

F̂ t
∣∣∣
tN

= (N − 1)
∂

∂Fcd
|Ft⟩

∣∣∣∣
tN

. (3.109)

Therefore, I get the equation,

∑

ab

Fab
∂2

∂Fab∂Fcd
|Ft⟩

∣∣∣∣∣
tN

= (N − 1)
∂

∂Fcd
|Ft⟩

∣∣∣∣
tN

. (3.110)

It means that the second derivatives are written by using the first derivatives. So in

geminal wave function theory, the naive Newton method does not work because the second

derivatives have no more information than the first derivatives. This problem may be

overcome as follows.

Usually, the Newton method updates the next step by using the Hessian as

δF = −H†G, (3.111)

where H is the Hessian and G is the gradient. One can modify the Hessian by using the

absolute value of the Hessian matrix as

δF ≃ |H|†G. (3.112)

In my preliminary calculation of a six-electron system, I achieved the minimum without

being trapped at the local minimum. This suggests that the existence of saddle points is

the major reason for the problem.
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3.9 Calculation model

In this section, I introduce a few models that are used in this thesis. Also, I describe the

total-energy expression.

3.9.1 Hubbard model

The Hamiltonian of the one-dimensional Hubbard model becomes

H = t
∑

<i,j>

c†icj + U
∑

(i,j)

c†ic
†
jcjci, (3.113)

where the element < i, j > is the nearest-neighbor pair of the same spin and (i, j) is the

on-site pair.

3.9.2 Anderson model

When I put the on-site Coulomb interaction U to only one site, it becomes the one-

dimensional Anderson model and the Hamiltonian is

H = t
∑

<i,j>

c†icj + Uc†1↑c
†
1↓c1↓c1↑, (3.114)

where the subscript 1 ↑ denotes the site 1 with up spin and 1 ↓ the site 1 with down spin.

In section 4.7, I introduce only one impurity site (site 1) and use the periodic boundary

condition (FIG. 3.3).

Figure 3.3: One-dimensional Anderson model with the periodic boundary condition. Only

on the first site a nonzero value U is assigned as the on-site Coulomb interaction.

When I consider the two-orbital Anderson model like FIG. 3.2, the Hamiltonian be-

comes

H = t
∑

{i,j}

c†icj + U1c
†
1↑c

†
1↓c1↓c1↑ + U2c

†
2↑c

†
2↓c2↓c2↑, (3.115)
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where the set {i, j} = {1, 3}, {1, 5}, {2, 4}, {2, 6}, · · · , {2N +2, 2}, {2N +2, 4}, which each

number includes site and spin information (1 = 1 ↑, 2 = 1 ↓, · · · ).

3.9.3 Total energy

The total energy is

E =
⟨Ψ|H |Ψ⟩
⟨Ψ|Ψ⟩ , (3.116)

and their derivatives are

∂E

∂F
=

∂

∂F

(
⟨Ψ|H |Ψ⟩
⟨Ψ|Ψ⟩

)

=

(
∂
∂F ⟨Ψ|H |Ψ⟩

)
⟨Ψ|Ψ⟩ −

(
∂
∂F ⟨Ψ|Ψ⟩

)
⟨Ψ|H |Ψ⟩

(⟨Ψ|Ψ⟩)2
. (3.117)

The unit of all results I show is (/t) and the calculation is done with the half-filling

condition.
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Result

4.1 Property of APG

I will show the property of APG using the one-demensional Hubbard model (Eq. (3.113),

U = 10), when the number of electrons is taken to be 6 - 12. First, I compare the APG

with the Hartree-Fock (HF) and the AGP. I use HΦ [66] to do the exact diagonalization

and mVMC [67] to do the HF calculation in this thesis. Figure 4.1 shows the residual

error in the total energy referred to the exact value per electron. It shows that the APG

provides a significantly lower energy and also that the residual error increases moderately

with the number of electrons. Next, I compare the APG with the AGP-CI (FIG. 4.2).

For fair comparison, I use the same number of geminals both for the AGP-CI and the

APG. The error is smaller for the APG than for the AGP-CI. In spite of the superiority

of the APG, the error of the APG is 0.0235 even for six-electron system. Note that, the

calculation cost of the AGP is O(N5) and that of the AGP-CI(K) is O(N5K2), while

those of the APG and polynomial APG methods are exponentially. Also, TABLE. 4.1

shows the total energy of the exact diagonalization.

It is worth mentioning if the residual error is small enough or not. Typical energy

scale often used in this context is the chemical accuracy, which corresponds to the thermal

energy at room temperature (kBT = 25 meV). This is important in discussing the chemical

equilibrium. The energy scale of 25 meV corresponds to 0.025 in unit of t and thus to

0.0125 when t is taken to be 2 eV. The residual error of the APG, which amounts to 0.14,

is about ten times larger. This does not immediately mean that the APG is inaccurate

by one order of magnitude however. It was reported in the literature that the error in

the dissociation energy is one order of magnitude smaller than the residual error when the

APGS was applied to a water molecule and an ethylene molecule [68]. This demonstrates

that it is too strict to compare the residual error with the thermal energy. Instead, I

consider it reasonable to relax the standard by several times larger and thus require the
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residual error be less than about 0.03 − 0.05 in the present case. With this criterion in

mind, I conclude that the error of the APG, 0.14, is not satisfactory.

Figure 4.1: (Color online) Residual error of APG, AGP and Hartree-Fock in the total

energy per electron ∆E/n plotted against the number of electrons n.

Number of electrons 6 8 10 12

Total energy -1.664 -2.177 -2.704 -3.232

Table 4.1: Total energy of the exact diagonalization for the 6 to 12-electron systems.

To see the details of APG, here I show the diagonal elements of the first-order density

matrix,

ρ(1)iσiσ =
⟨Ψ| c†iσciσ |Ψ⟩

⟨Ψ|Ψ⟩ , (4.1)

of APG for n = 12 (FIG. 4.3). The exact value is 0.5 at each site while the values of

APG strongly fluctuate around that value. The values of APG are located at around 0.5

when averaged over the spin at the same site, while the amplitudes of the fluctuation are

different at different site breaking the translational symmetry of the model. This is the

most important sign that APG is not appropriate for strongly correlated systems, which

is likely to be overcome using polynomial APGs as will be discussed in section 4.2.

Also, FIG. 4.4 shows the pair correlation function at the same site, fi ≡ ρ(2)i↑i↓/2ρ
(1)
i↑i↑ρ

(1)
i↓i↓,

fi ≡
⟨Ψ| c†i↑ci↑c

†
i↓ci↓ |Ψ⟩

⟨Ψ| c†i↑ci↑ |Ψ⟩ ⟨Ψ| c†i↓ci↓ |Ψ⟩
. (4.2)
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Figure 4.2: (Color online) Residual error of APG and AGP-CI in the total energy per

electron ∆E/n plotted against the number of electrons n.

This pair correlation function (fi) represents the probability of double occupancy in site i.

I found that the values of APG is higher than those of the exact diagonalization, especially

at the sites of 3 and 4. This result shows that the electron repulsion is incorrectly large at

the sites 3 and 4 although the repulsion should be equally small at all the site as indicated

by the exact diagonalization. This is considered as the main reason why APG provides a

higher value for the total energy.

Next, I check how accurate the pair correlation function of APG is as the number

of electron increases. Figures 4.5, 4.6 and 4.7 are the pair correlation function of the

exact diagonalization and APG for the systems with the number of electrons 6, 8 and 10,

respectively. As one increases the number of electrons, the error of the pair correlation

function of APG increases. APG tends to overestimate the pair correlation function while

it sometimes underestimates. Therefore, the APG description deteriorates rather rapidly

with increasing n.

4.2 Property of polynomial APG

In the previous section, it is found that the accuracy of APG is still insufficient from the

viewpoint of the total energy, the first-order density matrix and pair correlation function.

Now, I compare the accuracy of the polynomial APG wave functions. Here, I use the

one-dimensional Hubbard model (Eq. (3.113), U = 10) and n = 6. First I compare the

result of e3 and h3 using the number of geminal types M = 3. Note that, for n = 6 and
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Figure 4.3: (Color online) Diagonal elements of the first-order density matrix of exact

diagonalization and APG for the 12-electron system. The horizontal axis indicates the

site and spin index; the up spin at the second site, for example, is shown at 2 on the axis

while the corresponding down spin is shown at 2.5 on the axis.

Figure 4.4: (Color online) Pair correlation function (fi ≡ ρ(2)i↑i↓/2ρ
(1)
i↑i↑ρ

(1)
i↓i↓) of the exact

diagonalization and APG for the 12-electron system.
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Figure 4.5: (Color online) Pair correlation function (fi ≡ ρ(2)i↑i↓/2ρ
(1)
i↑i↑ρ

(1)
i↓i↓) of the exact

diagonalization and APG for the 6-electron system.

Figure 4.6: (Color online) Pair correlation function (fi ≡ ρ(2)i↑i↓/2ρ
(1)
i↑i↑ρ

(1)
i↓i↓) of the exact

diagonalization and APG for the 8-electron system.
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Figure 4.7: (Color online) Pair correlation function (fi ≡ ρ(2)i↑i↓/2ρ
(1)
i↑i↑ρ

(1)
i↓i↓) of the exact

diagonalization and APG for the 10-electron system.

M = 3, e3 is identical to APG. And then, I compare results obtained by using the h3

augmented with coefficient (denoted as h3 with C) as

∑

1≤i1≤i2≤···≤iN≤M

C{i1,i2,··· ,iN}F̂ [i1]F̂ [i2] · · · F̂ [iN ]. (4.3)

Here I optimize not only F but also the coefficient C. TABLE 4.2 shows the result of

the residual error in the correlation energy, ∆Ec. Here the number of AGPs means the

number of terms appearing after the Waring decomposition. It is found that the error is

smaller for e3 than for h3. Also, the result of h3 with C is only slightly better than e3. It is

worth emphasizing that although one might expect that h3 can describe correlation better

because h3 contains more terms such as the square of a geminal, which are lacking in e3,

the result of h3 is worse on the contrary. Even the result of optimizing h3 with coefficients

is not much different from e3. This suggests unfavorable contribution of the square terms

and the coefficient C just reduces the amplitude of the multiple product terms. This also

suggests that reasonably important terms are included in e3 for the six-electron system. I

will analyze the reason of this in section 4.4. For now, it is noted that the accuracy is not

very good when taking M = 3.

Then I increase the number of geminal types to M = 9 (TABLE 4.3). One can see

that the accuracy is improved. In particular, the determinant polynomial shows the result

much better than others. It is important that the result depends significantly on the type

of polynomial, indicating it is important to use appropriate polynomial.

I also show the average time per iteration in TABLEs 4.2 and 4.3. When comparing
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the same number of electrons, the calculation cost is related to the number of AGPs.

However, in this calculation, the computing time is not strictly correspond to the number

of AGPs. This is because the coding has not been optimized yet.

Polynomial type (M = 3) ∆Ec (%) Number of AGPs Time / iteration (s)

e3 29.67 4 0.132

h3 36.14 7 0.665

h3 with C (Eq. (4.3)) 29.47 19 3.58

Table 4.2: Residual error in ∆Ec, the number of AGPs generated after the Waring de-

composition and the average time one iteration.

Polynomial type (M = 9) ∆Ec (%) Number of AGPs Time / iteration (s)

e3 7.135E-05 10 2.23

h3 9.145E-05 19 4.28

perm3 9.895E-05 16 2.27

det3 2.769E-07 20 2.83

Table 4.3: Residual error in ∆Ec, the number of AGPs generated after the Waring de-

composition and the average time one iteration.

I next investigate the effect of the polynomial type of the wave function on the pair

correlation function. Figure 4.8 shows the pair correlation function of the exact diago-

nalization, APG, perm3 and det3. The values of perm3 and det3 are almost the same

as those of the exact diagonalization while APG provides a much larger value. With the

polynomial-type wave function, one can thus treat the electron repulsion much better than

with APG. To compare the result in more detail, I focus on perm3 and det3 in FIG. 4.9.

Although there is almost no difference, it is found that the results of det3 is closer to the

exact values at more sites. The det3 wave function is thus a better method not only in

terms of the total energy but also in terms of the pair correlation function.

I also show how the results of e3 and h3 change as the number of geminals grows (FIG.

4.10). The error is reduced as one increases the number of geminals for both polynomials

but e3 keeps superiority to h3. From these results I can conclude that, for the six-electron

system, one can achieve enough accuracy when using six types of geminals in both e3 and

h3.

4.3 U dependency

In this section I investigate the performance of APG and AGP-CI wave functions by

changing the on-site Coulomb potential U from 0 to 10 in the Hubbard model (Eq. (3.113)).
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Figure 4.8: (Color online) Pair correlation function (fi ≡ ρ(2)i↑i↓/2ρ
(1)
i↑i↑ρ

(1)
i↓i↓) of the exact

diagonalization, APG, perm3 and det3 for the 6-electron system.

Figure 4.9: (Color online) Pair correlation function (fi ≡ ρ(2)i↑i↓/2ρ
(1)
i↑i↑ρ

(1)
i↓i↓) of the exact

diagonalization, perm3 and det3 for the 6-electron system.
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Figure 4.10: (Color online) Residual error in the correlation energy ∆Ec plotted against

the number of geminals M .

Figure 4.11 shows that the U dependency of APG and AGP-CI(6) for the 12-electron

system. The vertical axis shows the error of Ec (%) and the horizontal axis shows U . As

the value of U decreases from 10, the error tends to decrease both for APG and AGP-CI

keeping the error of APG smaller than that of AGP-CI. The error is about 18% in APG

and 28% in AGP-CI even for U = 1 indicating an inferior aspect of the both methods in

representing electron correlation. Since the errors show a nonlinear dependence on U , I

expect a reasonable description as U is reduced below 1.

As I commented in section 4.1, the required energy error is less than about 0.03−0.05.

The total energy error for the 12-electron system and U = 1 of the APG is 0.03. Therefore,

it is estimated that the required precision is reached when the value of U is less than 1.

4.4 Schur decomposition

I also analyze the properties of the APG wave function and the geminal polynomial wave

function. I show the eigenvalues and eigenvectors of the geminal matrices obtained by

applying the Schur decomposition. The matrices used in this section are those obtained

in section 4.1 ∼ 4.3.

Figures 4.12 and 4.13 show the absolute values of the eigenvalues obtained from the

APG calculation using 6 and 12 electrons, respectively. It is found that only a few eigen-

values have nonzero values and others are almost zero. Also FIG. 4.14 shows the absolute

values of the eigenvalues obtained from h3 using 6 electrons and 3 geminal types (M = 3).
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Figure 4.11: (Color online) Residual error in the∆Ec(%) of APG and AGP-CI (12-electron

system).

Note that, for the 6-electron system, APG is identical to e3. By comparing FIGs. 4.12

and 4.14, it is found that, for both e3 and h3, there are only a few nonzero eigenvalues.

The similarity in the structure of the eigenvalues would probably mean that the multiple

products such as F̂ 3[1] and F̂ 2[1]F̂ [2], which are contained only in h3, do not contribute

to changing the structure of the eigenvalues; the structure may be rather insensitive to

the polynomial type.

From here, I analyze the eigenvector of the largest eigenvalue considering that other

states have appreciably smaller eigenvalues and thus are expected to give minor contri-

bution. Figure 4.15 shows the absolute values of eigenvectors for APG; the number of

electron is 6. It is found that the eigenvector is localized at the third and fourth sites

although all sites are equivalent. Next, I show the eigenvectors of perm3 (FIG. 4.16) and

det3 (FIG. 4.17). Compared with the eigenvectors of APG (FIG. 4.15), those of det3

and perm3 are not localized to specific sites but all sites are covered by more than one

eigenstates. I conjecture that the APG wave function is not flexible enough to describe

the system well so that the unnaturally localized geminals are obtained by variation. This

is not the case for det3 and perm3 possibly because the “multi-APG” is appropriate for

this purpose.

I further analyze the results of APG by changing the value of U . Figure 4.18 is the

eigenvectors of the geminal of APG; the number of electron is 12 and U = 10. It is seen

that the wave functions are very localized as having been seen for n = 6. Then I change U

to 1 (FIG. 4.19). Contrary to the case of U = 10, the eigenvectors are localized within 3 to
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Figure 4.12: (Color online) The absolute eigenvalues of geminal matrices in APG (6-

electron system).

Figure 4.13: (Color online) The absolute eigenvalues of geminal matrices in APG (12-

electron system).
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Figure 4.14: (Color online) The absolute eigenvalues of geminal matrices in h3 (6-electron

system, M = 3).

Figure 4.15: (Color online) The absolute eigenvectors of geminal matrices in APG (n = 6).
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Figure 4.16: (Color online) The absolute eigenvectors of geminal matrices in perm3 (n = 6).

Figure 4.17: (Color online) The absolute eigenvectors of geminal matrices in det3 (n = 6).
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4 sites and all sites are covered by at least one eigenstate. This suggests that the unnatural

localization of the eigenvectors is typical of strong correlation and is not seen for weakly

correlated systems. As a reference, I show the results of HF: Figure 4.20 is for the case of

U = 10 and FIG. 4.21 is for the case of U = 1. Here I use the geminal matrix made from

the Slater determinant. The relationship between the geminal and Slater determinant is

described in Appendix D. From the viewpoint of the distribution of the wave function, HF

wave function thus behaves similarly to the APG wave function.

I consider FIG. 4.17 provides an important implication for describing the strongly

correlated system in terms of the valence bond. Each geminal, F [1] to F [9], has a center

at a different site and is rather localized within a few sites. Looking at the geminals in

more detail, the geminals F [1] to F [3] have the center at the sites 3 to 6, the geminals

F [4] to F [6] are centered at around the sites 1 to 3, and the geminals F [7] to F [9] are

centered around 5, 6, and 1. The wave function is constructed by terms containing one

geminal from F̂ [1] to F̂ [3], one from F̂ [4] to F̂ [6], and one from F̂ [7] to F̂ [9]. This result

may be regarded as a description of the wave function in terms of the resonating valence

bond. This will be an extension of the valence bond theory to strong correlated systems.

Figure 4.18: (Color online) The absolute eigenvectors of geminal matrices in APG (n =

12, U = 10).
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Figure 4.19: (Color online) The absolute eigenvectors of geminal matrices in APG (n =

12, U = 1).

Figure 4.20: (Color online) The absolute eigenvectors of geminal matrix in HF (n =

12, U = 10).
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Figure 4.21: (Color online) The absolute eigenvectors of geminal matrix in HF (n =

12, U = 1).

4.5 AGP-CI

In the AGP4, APG and other geminal polynomial methods, the wave function is expanded

into a linear combination of AGPs, or AGP-CI, by applying the Waring decomposition.

In this section, I show how the accuracy improves as the number of types of geminals

increases in AGP-CI by using the one-dimensional Hubbard model (Eq. (3.113), U = 10).

Figure 4.22 shows the error in the energy per electron of AGP-CI, calculated by com-

paring the energy of the exact diagonalization; here I use a six-electron system and the

number of types of geminals is increased from 1 to 10. AGP-CI(1) equals to AGP. It is

found that the error is reduced as the number of types of the geminals is increased. When

using 8 geminals, the error is 0.000209, which is significantly smaller than the error of the

6-geminal calculation.

Figure 4.23 shows the results of the energy error, obtained by using a larger number

of electrons, 8 to 12. Here the number of types of the geminals is increased from 10 to 30.

As the number of the geminal types increases, the error decreases, but the error does not

necessarily decrease very much. In the 8-electron system using 30 types of geminals, the

error is 6.68× 10−5, which is sufficiently small. However, in 12-electron system, even with

30 types of geminals, the error is 0.0233 per electron, which is not so small compared with

the required accuracy, less than about 0.03−0.05. In addition, the error does not decrease

appreciably in going from 20 types of geminals to 30 types of geminals, suggesting that

it may require much more types of geminals to get accurate results in 12-electron system.

It is thus conjectured that the number of types of geminals require to achieve enough

accuracy increases rapidly as the number of electron increases and that AGP-CI is not so
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efficient in those systems.

Figure 4.22: (Color online) The total energy error of AGP-CI(K) from the result of the

exact diagonalization (K = 1 ∼ 10) for the 6-electron system.

4.6 Low-rank geminal

To simplify the calculation, I try to use the geminals described by the rank-n matrices as

shown in section 3.5. Figure 4.24 shows that the total energy error (per electron) of the

original AGP and rank-n AGP, or rank-1 APG, by applying the one-dimensional Hubbard

model (Eq. (3.113), U = 10). The error is smaller for the original by about 10% although

the degrees of freedom is smaller.

Note that the number of variational variables in the original AGP is M(M − 1)/2 =
1
2M

2 − 1
2M , where M is the number of state, M = 2n (half-filling), and in the rank-n

AGP the number is 1
2M

2. This result indicates that the advantage of using the rank-n

matrices is only in the simplification of the algorithm.

I further examine the low-rank determinant wave function as

|Ψ⟩ = det

⎛

⎜⎜⎜⎜⎝

f̂0[1] f̂−1[2] 0 f̂1[4]

f̂1[1] f̂0[2] f̂−1[3] 0

0 f̂1[2] f̂0[3] f̂−1[4]

f̂−1[1] 0 f̂1[3] f̂0[4]

⎞

⎟⎟⎟⎟⎠
|0⟩ . (4.4)

In TABLE 4.4 I compare the energy errors for the AGP, rank-n AGP (rank-1 APG),

AGP-CI(3), rank-1 determinant and APG. I use the Hubbard model (Eq. (3.113), U = 10)

with eight electrons. It is found that by using the determinant, the error is reduced and
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Figure 4.23: (Color online) The total energy error of AGP-CI(K) from the result of the

exact diagonalization (K = 10 ∼ 30) for the 8 to 12-electron system.

Figure 4.24: (Color online) The total-energy error vs exact diagonalization per electron of

the rank-n AGP and the original AGP.
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becomes similar to that of the full-rank APG. Note that both AGP-CI(3) and the rank-n

determinant consist of three types of geminals. The total energy is lower for the rank-

1 determinant in spite of the fact that the rank-1 matrices are used for the geminals.

Considering that the algorithm is simplified by using the rank-1 matrices and that small

number of geminals is required to get lower total energy when using Eq. (4.4), the low-

rank approximation may be a promising way to go, although admittedly one needs further

study to obtain a conclusive remark. Note that, in the rank-1 determinant, the number

of variational variables is 3× 2×M × n = 3M2.

8-electron ∆E/n Number of geminals

AGP 0.0650 1

rank-n AGP (rank-1 APG) 0.0723 1

AGP-CI(3) 0.0425 3

rank-1 det4 0.0348 3

APG 0.0231 4

Table 4.4: Energy error per electron of AGP, rank-n AGP (rank-1 APG), AGP-CI(3),

rank-1 det4 and APG for the 8-electron system.

4.7 Four-body correlation

I examine the property of AGP4 by comparing with AGP-CI. In AGP-CI, I use 1 to 3

types of geminals (AGP-CI(1) ∼ AGP-CI(3)). The variational variables of AGP4 are G

and F in Eq. 3.97, so that the number of variational variables is the same as that of

AGP-CI(2). Figure 4.25 shows the error of the total energy using the one-dimensional

Anderson model (Eq. (3.114), U = 10); the number of electron is 8 ∼ 20. As I increase

the number of electrons, the errors of AGP-CI increase but the error of AGP4 does not

increase like AGP-CI. The error of AGP-CI(1) is already large for the 8-electron system,

also the errors of AGP-CI(2) and AGP-CI(3) rapidly increase from the 16-electron system,

but AGP4 remains accurate even for the 20-electron system (the value of error is 0.00048).

Figure 4.26 shows the first-order density matrix of the diagonal elements (ρ(1)iσiσ) of

the 18-electron system. The results of the exact diagonalization and AGP4 are almost

the same, but the error of AGP-CI(1) (=AGP) is large especially at the site 1; at this

site, which is assigned with strong repulsion U , the spin symmetry of AGP-CI(1) is bro-

ken. On the contrary, AGP4 does not break the spin symmetry though I do not impose

any spin restriction. In FIG. 4.27 and FIG. 4.28, I also show the pair correlation func-

tion of the 18-electron system, with respect to the site 1 accommodating the up spin

(fiσ ≡ ρ(2)1↑iσ/2ρ
(1)
1↑1↑ρ

(1)
iσiσ), where ρ

(1) and ρ(2) are the first- and second-order density ma-

61



CHAPTER 4. RESULT

trix, respectively. I find again that the results of the exact diagonalization and AGP4 are

almost the same and that f1↓ of AGP-CI(1) deviates. It means that AGP-CI(1) cannot

describe the electron repulsion on site of U = 10 very well allowing a larger probability for

the double occupancy. Moreover, the values of f2↓ and f18↓ in AGP-CI(1) are different,

which indicates that the symmetry is broken. Therefore, by using AGP4, I was able to

successfully express spin symmetry in this periodic system.

Figure 4.25: (Color online) The residual error in the total energy plotted against the

number of electrons. (U = 10)

I also show the result for another system having two correlated spots (Eq. (3.115),

U1 = 10, U2 = 10). Figure 4.29 shows the error in the total energy of AGP4 and AGP

(n = 6 ∼ 16). It is found that the errors in AGP4 remain small even when increasing

the number of electrons, but the error in AGP is not very small for the 6-electron system

and the error rapidly increases when exceeding n = 14. Here again I have found superior

properties of AGP4.

Note that TABLE. 4.5 shows the total energy of the exact diagonalization.

Number of electrons 6 8 10 12 14 16 18 20

Single impurity -9.332 -12.37 -14.54 -17.42 -19.69 -22.49 -24.81

Two impurities -7.130 -8.866 -12.21 -14.23 -17.29 -19.46

Table 4.5: Total energy of the exact diagonalization for the single and two-orbital impurity

systems.

62



4.7. FOUR-BODY CORRELATION

Figure 4.26: (Color online) The first-order density matrix (ρ(1)iσiσ) of AGP, AGP4 and the

exact diagonalization. (n = 18)

Figure 4.27: (Color online) The pair correlation function with up spin (fiσ ≡
ρ(2)1↑i↑/2ρ

(1)
1↑1↑ρ

(1)
i↑i↑) of AGP, AGP4 and the exact diagonalization. (n = 18)
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Figure 4.28: (Color online) The pair correlation function with down spin (fiσ ≡
ρ(2)1↑i↓/2ρ

(1)
1↑1↑ρ

(1)
i↓i↓) of AGP, AGP4 and the exact diagonalization. (n = 18)

Figure 4.29: (Color online) The residual error in the total energy plotted against the

number of electrons. (U1 = 10, U2 = 10)
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4.8 Discussion

For extending the resonating-valence-bond picture to the strongly correlated regime, I

found that the determinant polynomial APG is the most suitable method as far as I inves-

tigated for the six-electron system that may represent a benzene molecule. Note that the

valence bond model commonly assign two resonating Kekuré structures to characterize the

electronic structure of benzene. I found that the eigenstates of the geminal localize within

a few sites around the center and the central positions are distributed without showing a

bias towards specific sites. One can thus recognize the geminals as representing a valence

bond. I used nine geminals for the calculation and categorized the resulting geminals into

three groups each containing three geminals. Each APG term constituting the polyno-

mial APG consists of three geminals with each geminal belonging to a different group.

I can recognize the APG as a component of the resonance and, since the determinant

polynomial consists of six terms, I find that the electronic structure as resonance of six

components. The system under study requires six components although the conventional

valence bond theory requires only two components. The difference may have come from

different strength of correlation. This result suggests that the resonating-valence-bond

picture may also be valid in larger systems although I could not perform correspond-

ing simulation because of the limited computational time available; the computation is

currently quite time consuming.

I have also developed a method of reducing the computational time as well as the

complexity of the algorithm. Because of the structure of the eigenvalues of the geminal,

I found that the low-rank method as a reasonable approximation. Although the accuracy

of the APG calculation was inferior to the original APG, I could improve the accuracy by

combining the low-rank method with the determinant-type polynomial showing a promise

of further reduction of the computational time. In the APG calculations, I have not

explicitly used the fact that the eigenvectors are localized spatially and thus I may reduce

the time further by restricting the degrees of freedom. Reduction of the time is one of the

most important problems to be solved for further development of the theory.

Towards the goal of embedding the interacting geminals in a medium of non-interacting

geminals, I have tested the four-body correlation embedding method. The method works

well for the problem I have investigated. There is much room for extension of the method

and possible application fields would be the defect physics and molecular science.

Throughout the research, I found that the low convergence of the variational calculation

is the most urgent problem. As far as I tested for a small number of systems, the calculation

was not trapped at local minima when using the modified Newton method, suggesting

that one can expect speed-up of the calculation by adopting an algorithm to avoid the

saddle points. Note that considerable attention is paid recently to the development of new

algorithms to avoid the saddle points.
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What I achieved in this thesis is to formulate a variational method for APG and its

extension, which has been thought too demanding because of the complexity of the algo-

rithm. I overcame the difficulty by introducing the Waring decomposition to transform

APG to a linear combination of AGPs although the resulting algorithm requires the com-

putational time that scales combinatorially with increasing particle number. I made clear

the disadvantage of using APG for the development of valence-bond picture and showed

the need for using the polynomial APG although I was able to demonstrate the perfor-

mance only for six-electron system. I believe that the present work will be an important

step to understand the strongly correlated few-body systems.

In this thesis, I used the Hubbard model in which all bonds are uniform, or all t are

identical. However, it may be better to use more than one type of t to study atoms and

molecules quantitatively with including their details. Therefore, it is important to test

such models for the better understanding of the molecular science, and this is one of the

future tasks. As an example, I considered the alternating hopping Hubbard model in

Appendix E.
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Chapter 5

SUMMARY AND CONCLUSION

In this thesis, I developed a geminal wave function theory and investigated the possibility

to characterize strongly correlated few-body systems in terms of the concept of the va-

lence bond. This work is motivated by the need for treating a strongly correlated region

surrounded by a weakly correlated medium, which is typical of point defects in semicon-

ductors and reaction centers in catalysts. To proceed a step forward, I tried to advance a

geminal theory to be able to simulate strongly correlated electrons either embedded in a

weakly interacting medium or isolated from the medium. The contribution of this work is

to provide a formulation to enable application of the geminal theory to strongly correlated

systems. This work also demonstrated the possibility to represent the electronic structure

in terms of the resonating valence bond.

In Chapter 1, I started by giving overview of my thesis work followed by more detailed

explanations of the related theories for interacting Fermions. First, I explained existing

geminal-based theories developed so far with an emphasis put on the valence bond theory.

The most relevant theory is the antisymmetrized product of geminals (APG) theory, which

is closely related to the antisymmetrized geminal powers (AGP) that has been developed

as an extension of the BCS theory. The APG theory has been thought difficult to handle

numerically and thus approximated versions have been developed so far, although the

difficulty is overcome in this thesis by using the Waring decomposition to transform the

APG wave function to the AGP-based wave function, for which the total-energy formula

has been developed. I also explained need for extending APG to describe the resonance

effect, which is realized in this thesis by using polynomial of geminals instead of monomial

of geminals. I also proposed my idea of embedding a region where geminals are interacting

in a medium where they are not interacting.

In Chapter 2, I reviewed the electron-pair theories in more detail to make the position

of my thesis work clearer. Since the geminal theories have been developed rather inde-

pendently to each other in different fields, I provided the explanation separately. First, I
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explained the AGP theory developed in the chemical-physics community. There, AGP was

recognized as an extension of the Hartree-Fock (HF) approximation and was formulated

on the basis of the BCS theory. In the physical-chemistry community, the APG theory

was developed for obtaining deeper understanding of the valence bond. Because of the

difficulty to optimize the geminals, simpler versions of the APG theory were developed

by restricting the degrees of freedom for the variational parameters. In condensed-matter

community, the JAGP theory was developed as an extension of the HF-based variational

Monte Carlo simulation. The theory was applied to superconductivity as well. In the

nuclear-physics community, the GCM theory for deformed nuclei was developed using the

HF-Bogoliubov (HFB) ground state and a few-particle excitations from HFB. The algo-

rithms developed for GCM very importantly affected the development of geminal theories

of different fields.

In Chapter 3, I explained detailed aspect of my formulation. I defined the geminal

operator, on that basis, I represent the AGP and APG wave functions as well as their

extensions called AGP-CI and polynomial APG. I introduced a method of transforming

APG to AGP-CI. By using the Fischer form for the Waring decomposition, I transform

the APG wave function to the AGP-CI, and similarly I transform the polynomial APG

to AGP-CI. As the type of polynomial, I used the elementary symmetric polynomial,

the complete homogeneous symmetric polynomial, the permanent polynomial, and the

determinant polynomial.

Then, I presented formulae to determine the total energy variationally. In the formu-

lation, I utilize the Onishi-Yoshida formula to obtain the overlap and the Hamiltonian

matrix elements as well as their derivative with respect to the variational parameters. I

also proposed a simplified version of the APG calculations where the geminal matrix is

represented using low-rank antisymmetric matrix, instead of the general antisymmetric

matrix used for the original APG. By this, one needs to evaluate the Fredholm Pfaf-

fian only and thus one can reduce the complexity of the formulation very much. I also

provided detailed formulation for the embedding theory, where the interacting region is

described using interacting geminals and the environment is described by AGP. Then, I

explained the conjugate gradient method used for optimizing the variational parameters

as well as the models used for demonstrating the performance of my formulation, that is,

one-dimensional (1D) Hubbard model and 1D Anderson model.

In Chapter 4, I presented the numerical results. I found that the total energy of APG

is close to the exact one compared with AGP and HF, but the APG breaks the symmetry

considerably. The geminals constituting the APG wave function are biased unnaturally to

a few sites, suggesting that the APG theory is inappropriate as a theory for the valence

bond. The polynomial APG, on the contrary, provides variationally superior result and,

among the polynomials, the determinant polynomial was found to show the best result.
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By analyzing the obtained geminals using the Schur decomposition, I found that the

eigenstates are localized within a few sites from the center contrary to those of APG. The

eigenvalues distribute covering all the sites without showing a bias to specific sites. For the

determinant polynomial applied to the six-site model, the behavior of the geminal is such

that I can recognize it as a representation of the resonating valence bond. Note that the

resonating Kekuré structures are commonly assigned to understand the electronic structure

of benzene. Similarly in the strongly interacting regime, the present result suggests that

the electronic structure may be understood by resonance of nine geminals. Admittedly, I

could not provide a clear and systematic image of the resonating valence bond using various

models in the strongly correlated regime, but I suggested the possibility by enabling the

calculation of polynomial APG.

I also tested the low-rank geminal method and demonstrated the possibility to reduce

the computational cost. Finally, I found that the embedding scheme works well for describ-

ing the impurity problem. The total energy as well as the wave function are satisfactorily

close to the result of exact diagonalization. This is found in the case not only for the

model with a single-impurity site but also for the model with two impurity sites, showing

a promise to further advance the method for the impurity problem.

In advancing the polynomial APG method, there are several problems to overcome.

One is to speed up the variation by using a method robust against the saddle-point effect.

Note that this nonconvex optimization problem has attracted considerable attention in

many fields such as machine learning and various new algorithms have been proposed. The

next problem is then to reduce the scaling of the calculation. Currently, the computational

cost scales combinatorially because of the number of the AGP-CI terms generated by the

Waring decomposition. If one can make explicit use of the fact that the eigenstates of

the geminals are localized in space, one may reduce the cost by reusing the calculation

of previous iteration as did in DMRG. One may also advance the mathematics of tensor

decomposition to solve the problem. By improving the computational method as stated

above, I believe one can achieve deeper understanding of the impurity problem, which has

remained as an important problem in several fields of materials science.
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Appendix A

Examples of decomposition

In this section, I show specific examples of polynomials and their decomposition. The

general formula is shown in section 3.2. Here I use the dimension of polynomial N = 3,

which means it is used for six-electron system.

A.1 APG

The APG uses monomial form as

F̂ [1]F̂ [2]F̂ [3] (A.1)

and its decomposition by the Fischer formula is

F̂ [1]F̂ [2]F̂ [3]

=
1

24

[
(F̂ [1] + F̂ [2] + F̂ [3])3 − (F̂ [1] + F̂ [2]− F̂ [3])3

−(F̂ [1]− F̂ [2] + F̂ [3])3 + (F̂ [1]− F̂ [2]− F̂ [3])3
]
. (A.2)

A.2 Elementary symmetric polynomial

Here I consider the case of the number of types of geminalsM = 4. Then the decomposition

of elementary symmetric polynomial becomes

F̂ [1]F̂ [2]F̂ [3] + F̂ [1]F̂ [2]F̂ [4] + F̂ [1]F̂ [3]F̂ [4] + F̂ [2]F̂ [3]F̂ [4]

=
1

24

[
2(F̂ [1] + F̂ [2] + F̂ [3] + F̂ [4])3 − (−F̂ [1] + F̂ [2] + F̂ [3] + F̂ [4])3

−(F̂ [1]− F̂ [2] + F̂ [3] + F̂ [4])3 − (F̂ [1] + F̂ [2]− F̂ [3] + F̂ [4])3

−(F̂ [1] + F̂ [2] + F̂ [3]− F̂ [4])3
]
. (A.3)
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A.3 Complete homogeneous symmetric polynomial

As the same with previous section, I also consider the case M = 4, N = 3, and the

decomposition of complete homogeneous symmetric polynomial becomes

F̂ [1]3 + F̂ [1]2F̂ [2] + F̂ [1]F̂ [2]2 + F̂ [2]3 + F̂ [1]2F̂ [3] + F̂ [1]F̂ [2]F̂ [3] + F̂ [2]2F̂ [3] + F̂ [1]F̂ [3]2

+F̂ [2]F̂ [3]2 + F̂ [3]3 + F̂ [1]2F̂ [4] + F̂ [1]F̂ [2]F̂ [4] + F̂ [2]2F̂ [4] + F̂ [1]F̂ [3]F̂ [4] + F̂ [2]F̂ [3]F̂ [4]

+F̂ [3]2F̂ [4] + F̂ [1]F̂ [4]2 + F̂ [2]F̂ [4]2 + F̂ [3]F̂ [4]2 + F̂ [4]3

=
1

6

[
3F̂ [1]3 + 3F̂ [2]3 + 3F̂ [3]3 + 3F̂ [4]3 + (F̂ [2] + F̂ [3] + F̂ [4])3

+(F̂ [1] + F̂ [3] + F̂ [4])3 + (F̂ [1] + F̂ [2] + F̂ [4])3 + (F̂ [1] + F̂ [2] + F̂ [3])3
]
. (A.4)

As I explained in section 3.2.2, there is no general formula for the complete homoge-

neous symmetric polynomial. I cannot find a general N formula, but I made only N = 3

and N = 4 formula for general M .

In N = 3 and M ≥ 4, the decomposition becomes

1

6

⎡

⎣
M∑

i

F̂ [i]3 + (4−M)

(
M∑

i

F̂ [i]

)3

+
M∑

j

(
M∑

i

F̂ [i]− F̂ [j]

)3
⎤

⎦ . (A.5)

The number of terms after the decomposition is 2M + 1 when M ≥ 5 and 2M when

M = 4.

In N = 4 and M ≥ 5,

1

384

⎡

⎣256
M∑

i

F̂ [i]4 +

(
83− 1

2
(M − 4)(M − 5) + 53(M − 5)

)( M∑

i

F̂ [i]

)4

+64
M∑

j

(
M∑

i

F̂ [i]− F̂ [j]

)4

− (6 +M)
M∑

j

(
M∑

i

F̂ [i]− 2F̂ [j]

)4

+
M∑

jk

(
M∑

i

F̂ [i]− 2F̂ [j]− 2F̂ [k]

)4
⎤

⎦ . (A.6)

The number of terms after the decomposition is 3M + 1 +M C2.

Also, when I consider adding the coefficient to the complete homogeneous symmetric

polynomial (N = 3,M = 3), I decompose by using the Fischer decomposition term by
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term as

∑

1≤i1≤i2≤···≤iN≤M

C{i1,i2,··· ,iN}F̂ [i1]F̂ [i2] · · · F̂ [iN ]

= C1F̂ [1]3 + C2F̂ [1]2F̂ [2] + C3F̂ [1]F̂ [2]2 + C4F̂ [2]3 + C5F̂ [1]2F̂ [3]

+C6F̂ [1]F̂ [2]F̂ [3] + C7F̂ [2]2F̂ [3] + C8F̂ [1]F̂ [3]2 + C9F̂ [2]F̂ [3]2 + C10F̂ [3]3

= C1F̂ [1]3 + C2

[
− 1

12
F̂ [2]3 +

1

24
(−2F̂ [1] + F̂ [2])3 +

1

24
(2F̂ [1] + F̂ [2])3

]

+C3

[
− 1

12
F̂ [1]3 +

1

24
(−2F̂ [2] + F̂ [1])3 +

1

24
(2F̂ [2] + F̂ [1])3

]
+ C4F̂ [2]3

+C5

[
− 1

12
F̂ [3]3 +

1

24
(−2F̂ [1] + F̂ [3])3 +

1

24
(2F̂ [1] + F̂ [3])3

]

+C6

[
1

24
(F̂ [1] + F̂ [2] + F̂ [3])3 − 1

24
(−F̂ [1] + F̂ [2] + F̂ [3])3

− 1

24
(F̂ [1]− F̂ [2] + F̂ [3])3 − 1/24(F̂ [1] + F̂ [2]− F̂ [3])3

]

+C7

[
− 1

12
F̂ [3]3) +

1

24
(−2F̂ [2] + F̂ [3])3 +

1

24
(2F̂ [2] + F̂ [3])3

]

+C8

[
− 1

12
F̂ [1]3 +

1

24
(−2F̂ [3] + F̂ [1])3 +

1

24
(2F̂ [3] + F̂ [1])3

]

+C9

[
− 1

12
F̂ [2]3 +

1

24
(−2F̂ [3] + F̂ [2])3 +

1

24
(2F̂ [3] + F̂ [2])3

]
+ C10F̂ [3]3. (A.7)

A.4 Permanent polynomial

In N = 3, the permanent polynomial uses nine types of geminals as

perm3(F̂ [1, 1], · · · , F̂ [3, 3])

= F̂ [1, 1]F̂ [2, 2]F̂ [3, 3] + F̂ [1, 2]F̂ [2, 3]F̂ [3, 1] + F̂ [1, 3]F̂ [2, 1]F̂ [3, 2]

+ F̂ [1, 3]F̂ [2, 2]F̂ [3, 1] + F̂ [1, 2]F̂ [2, 1]F̂ [3, 3] + F̂ [1, 1]F̂ [2, 3]F̂ [3, 2]. (A.8)

Then one can decompose as

1

4

[
(F̂ [1, 1] + F̂ [1, 2] + F̂ [1, 3])(F̂ [2, 1] + F̂ [2, 2] + F̂ [2, 3])(F̂ [3, 1] + F̂ [3, 2] + F̂ [3, 3])

−(F̂ [1, 1] + F̂ [1, 2]− F̂ [1, 3])(F̂ [2, 1] + F̂ [2, 2]− F̂ [2, 3])(F̂ [3, 1] + F̂ [3, 2]− F̂ [3, 3])

−(F̂ [1, 1]− F̂ [1, 2] + F̂ [1, 3])(F̂ [2, 1]− F̂ [2, 2] + F̂ [2, 3])(F̂ [3, 1]− F̂ [3, 2] + F̂ [3, 3])

+ (F̂ [1, 1]− F̂ [1, 2]− F̂ [1, 3])(F̂ [2, 1]− F̂ [2, 2]− F̂ [2, 3])(F̂ [3, 1]− F̂ [3, 2]− F̂ [3, 3])
]
.

(A.9)
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After this decomposition, 2N−1 terms appeared. One can rename the geminals like APG,

eN and hN as follows:

perm3(F̂ [1, 1], · · · , F̂ [3, 3])

= F̂ [1, 1]F̂ [2, 2]F̂ [3, 3] + F̂ [1, 2]F̂ [2, 3]F̂ [3, 1] + F̂ [1, 3]F̂ [2, 1]F̂ [3, 2]

+F̂ [1, 3]F̂ [2, 2]F̂ [3, 1] + F̂ [1, 2]F̂ [2, 1]F̂ [3, 3] + F̂ [1, 1]F̂ [2, 3]F̂ [3, 2]

= F̂ [1]F̂ [5]F̂ [9] + F̂ [2]F̂ [6]F̂ [7] + F̂ [3]F̂ [4]F̂ [8] + F̂ [3]F̂ [5]F̂ [7] + F̂ [2]F̂ [4]F̂ [9] + F̂ [1]F̂ [6]F̂ [8]

(A.10)

A.5 Determinant polynomial

Apart from the Derksen formula, there is another decomposition formula for the determi-

nant polynomial of N = 3.

det3(F̂ [1, 1], · · · , F̂ [3, 3]) = (F [1, 2] + F [1, 3])F [2, 1]F [3, 2]

−(F [1, 1] + F [1, 3])F [2, 2]F [3, 1]

−F [1, 2](F [2, 1] + F [2, 3])(F [3, 2] + F [3, 3])

+(F [1, 2]− F [1, 1])F [2, 3](F [3, 1] + F [3, 2] + F [3, 3])

+F [1, 1](F [2, 2] + F [2, 3])(F [3, 1] + F [3, 3])

(A.11)

There is a permanent decomposition of the same form as

perm3(F̂ [1, 1], · · · , F̂ [3, 3]) = (F [1, 2] + F [1, 3])F [2, 1]F [3, 2]

+(F [1, 1] + F [1, 3])F [2, 2]F [3, 1]

+F [1, 2](F [2, 1] + F [2, 3])(F [3, 3]− F [3, 2])

+(F [1, 1] + F [1, 2])F [2, 3](F [3, 1] + F [3, 2]− F [3, 3])

+F [1, 1](F [2, 2] + F [2, 3])(F [3, 3]− F [3, 1]). (A.12)
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Pfaffian, determinant and

permanent

The Pfaffian is identical to the overlap of the AGP wave function as shown in section 3.4.

In this section, I show the mathematical property of the Pfaffian.

The determinant can be defined as

detA =
∑

σ

sgn(σ)
n∏

i=1

aiσ(i), (B.1)

where A = aij , (1 ≤ i, j ≤ n) is a n×n square matrix. The determinant has the properties

as follows:

det(A) = det(AT ) (B.2)

det(αA) = (α)ndet(AT ) (B.3)

, where α is a scalar.

Taking the sign from the determinant, it becomes permanent as

permA =
∑

σ

n∏

i=1

aiσ(i). (B.4)

The calculation cost of the determinant is O(n3), but that of the permanent is expo-

nentially.

In relation to the permanent, the hafnian can be written as

hafA =
∑

M

∏

(i,j)∈M

aij . (B.5)

The relationship between the permanent and the hafnian becomes

perm(A) = haf

(
0 A

AT 0

)
. (B.6)

Therefore, the calculation cost of the hafnian is larger than that of permanent.

75



APPENDIX B. PFAFFIAN, DETERMINANT AND PERMANENT

B.1 Pfaffian

The Pfaffian is defined using a 2N × 2N antisymmetric matrix A = aij ,

Pf(A) =
∑

σ∈S2N

sgn(σ)aσ(1)σ(2)aσ(3)σ(4) · · · aσ(2N−1)σ(2N), (B.7)

where sgn(σ) is the sign of N -pair {(i1, j1), · · · , (iN , jN )} replacement,

(
1 2 · · · 2N − 1 2N

i1 j1 · · · iN jN

)
. (B.8)

For example, when A is a 4× 4 matrix, the Pfaffian becomes

Pf(A) = a12a34 − a13a24 + a14a23. (B.9)

The Pfaffian has the following properties:

Pf(A)Pf(B) = exp

(
1

2
tr[ln(ATB)]

)
, (B.10)

Pf(BABT ) = det(B)Pf(A), (B.11)

where B is 2N × 2N matrix.

The relationship between the Pfaffian and the determinant is

detA = (pfA)2. (B.12)

B.2 Graph theory

The perfect matching is the concept in graph theory, which relates the Pfaffian very much

as I will explain later, so I introduce the graph theory [69] in this section.

A graph is made of vertices and edges. Figures B.1 - B.4 show examples of graphs.

Figure B.1 shows a complete graph. Every vertex is connected to all other vertices by

edges. In this example, there are 5 vertices, and here it is called K5. Figure B.2 shows

a bipartite graph. The vertices are divided into two groups and the edges exist only to

connect a vertex from one group to a vertex from the other. Figure B.3 shows a planar

graph. In the planar graph, it can be drown the edges not to cross any other edges. The

plane graph is the graph which is actually drawn not to cross. The left graph of FIG. B.5

is a planar graph and the right one is a plane graph. Figure B.4 shows a tree graph. It

does not have cycles.
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Figure B.1: Complete graph K5

Figure B.2: Bipartite graph

Figure B.3: Planar graph
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Figure B.4: Tree graph

Figure B.5: Planar graph to plane graph.

B.3 Perfect matching

The matching is the set of edges that do not share vertices. The maximum matching

means it has the largest number of matching in a graph. When one can get edges with

all vertices, it is a perfect matching. Not all graph have the perfect matching and also to

determine the number of perfect matching of a graph is a very difficult problem. However,

one can get perfect matching for a planar graph by using the Pfaffian.

Figure B.6 shows an example of matching. The blue lines of the right graph show a

matching of the left graph. This graph does not have a perfect matching.

Figure B.6: The blue lines in the right graph show the matching of the left graph.

First, I consider the way to express a graph in a matrix form. I prepare the vertex set
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V = {v1, vn} and make matrix A as

Aij =

{
1 (if vi and vj are connected by an edge)

0 (otherwise)
. (B.13)

The matrix A becomes a symmetric matrix. For example, the matrix form of graph in

FIG. B.7 is

A =

⎛

⎜⎜⎜⎜⎝

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

⎞

⎟⎟⎟⎟⎠
. (B.14)

Figure B.7: Graph with no direction.

When one imposes direction of edges, the matrix A becomes an antisymmetric matrix

as

Aij =

⎧
⎪⎨

⎪⎩

1 (if vi and vj are connected by forward direction edge)

−1 (if vi and vj are connected by opposite direction edge)

0 (otherwise)

. (B.15)

For example, the matrix form of graph in FIG. B.8 is

A =

⎛

⎜⎜⎜⎜⎝

0 −1 1 0

1 0 −1 1

−1 1 0 1

0 −1 −1 0

⎞

⎟⎟⎟⎟⎠
. (B.16)

The important thing is that the Pfaffian corresponds to the perfect matching. This

is called the Pfaffian orientation. Here I see the Pfaffian orientation by using a bipartite

graph.

The degree of a vertex means the number of edges which the vertex has. The graph in

which all degrees of vertices are the same is called the regular graph. There is an important
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Figure B.8: Graph with direction.

theorem that every regular bipartite graph has a perfect matching. Before proving that

theorem, I prove Hall’s marriage theorem:

When there is a bipartite graph G(V1, V2) in which the vertex set is divided into V1

and V2, the necessary and sufficient condition of (1) existing a matching that covers all

vertices of V1 is that (2) for any subset S of V1, |S| ≤ |N(S)|. Here N(S) is the set of

vertices adjacent to any vertex of S.

The proof of (1) → (2) is easy. I prove the contraposition of this. If |S| > |N(S)|,
there is no such matching as covering S.

Then I prove (2) → (1) using the inductive method.

When |V1| = 1, it is obvious. Suppose that Hall’s marriage theorem holds when

|V1| ≤ k. Consider the graph G which |V1| = k + 1 and satisfies condition (2).

First, in the case of |S|+1 ≤ |N(S)|. When one makes a bipartite graph G′(V ′
1 , V

′
2) by

removing one edge (v1, v2) from G, G′ also satisfies the condition (2), and therefore there

is a matching M covering V ′
1 according to the induction hypothesis. If one considers the

union of M and (v1, v2) as the whole matching, one finds that the condition (1) holds.

Next, consider the case in that there is a subset A which satisfies |A| = |N(A)|. The

bipartite graph composed of A and N(A) satisfies the condition (2) and according to

the induction hypothesis, there is a matching M1 covering vertex A. Also, M1 is the

perfect matching. Therefore, if one shows that there is a matching M2 covering V ′
1 in the

remaining graph G′(V ′
1 , V

′
2), one can prove the theorem. Considering B, which is a subset

of V ′
1 , |A ∪ B| + 1 ≤ |N(A ∪ B)| holds. Therefore, there are at least |B| vertices that do

not belong to N(A) in the destination of A ∪B. Since they are not connected to A, they

are all connected to B. So, |B| ≤ |N(B)|. Therefore. Since G′ also satisfies the condition

(2), there is a matching M2 covering V ′
1 on the assumption of induction. Q.E.D.
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B.3. PERFECT MATCHING

Then I prove the theorem that every regular bipartite graph G(V1, V2) has a perfect

matching.

As G is a regular bipartite graph, k|V1| = k|V2|. Here k is the number of edges which

one vertex has. So |V1| = |V2|. Therefore, if there is a matching that covers all vertices

of V1, it becomes the perfect matching. I define ES to be the union of edges connected

to S. Then Es ⊆ EN(S), or |Es| ≤ |EN(S)|. Also, |Es| = k|S| and |EN(S)| = k|N(S)|.
Therefore, k|S| = |Es| ≤ |EN(S)| = k|N(S)| and one gets |S| ≤ |N(S)|. Therefore using

Hall’s marriage theorem, one can say that there is a matching that covers all vertices of

V1 and find that this matching is a perfect matching. Q.E.D.

The left graph of FIG. B.9 is a regular bipartite graph and it has the perfect matchings

like the middle and the right graphs.

Figure B.9: The examples of perfect matching in the bipartite graph.

Here one can write the matrix A of this graph as

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 −1 0 0

0 0 0 0 −1 0 0 −1

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 −1 1

−1 1 0 0 0 0 0 0

1 0 −1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 −1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.17)

The Pfaffian of A becomes

Pf(A) =
∑

σ∈{5,6,7,8}

sgm(σ)a1σ(5)a2σ(6)a3σ(7)a4σ(8). (B.18)

The middle figure of FIG. B.9 corresponds to one of Eq. (B.18),

a16a25a37a48 = −1. (B.19)
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APPENDIX B. PFAFFIAN, DETERMINANT AND PERMANENT

Also, the right figure of FIG. B.9,

a15a28a36a47 = 1. (B.20)

If the number of intersecting points other than vertex is odd, sgm(σ) becomes −1 and if

even, it becomes 1.
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Appendix C

Diagonalization

Here I show the details of the diagonalization using the Schur decomposision in section

3.6.

Any square matrix A can be decomposed as

A = QUQ−1, (C.1)

where Q is a unitary matrix (Q−1 = Q†) and U is an upper triangular matrix called the

Schur form. The eigenvalues of A is given by the diagonal elements of U . When A is a

normal matrix (A†A = AA†), U becomes a diagonal matrix. Each column vector of Q is

an eigenvector of A.

Also, the real square matrix B can be decomposed as

B = QUQ−1, (C.2)

where Q is a real orthogonal matrix and U is a block upper triangular matrix. The size

of the diagonal block of U is less than 2.
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Appendix D

Geminal and Slater determinant

In this section, I review one of the ways to express the Slater determinant by using the

geminal matrix [67]. Figures 4.20 and 4.21 are derived by using this expression.

The AGP wave function and Slater determinant are defined as

|ΨAGP⟩ =

⎛

⎝
∑

a,b

Fabc
†
ac

†
b

⎞

⎠

n
2

|0⟩ , (D.1)

|ΨSL⟩ =
n∏

i

(
∑

a

Φaic
†
a

)
|0⟩

=
n∏

i

ψ†
i |0⟩ . (D.2)

Here Φ is a normalized orthogonal basis as
∑

a

Φ∗
aiΦaj = δij . (D.3)

Then, the Slater determinant becomes

|ΨSL⟩ =

n/2∏

i

ψ†
2i−1ψ

†
2i |0⟩

=

⎛

⎝
n/2∑

i

ψ†
2i−1ψ

†
2i

⎞

⎠

n
2

|0⟩

=

⎛

⎝
n/2∑

i

(
∑

a

Φa,2i−1c
†
a

)(
∑

b

Φb,2ic
†
b

)⎞

⎠

n
2

|0⟩

=

⎛

⎝
∑

a,b

⎛

⎝
n/2∑

i

Φa,2i−1Φb,2i

⎞

⎠ c†ac
†
b

⎞

⎠

n
2

|0⟩ . (D.4)
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APPENDIX D. GEMINAL AND SLATER DETERMINANT

Therefore, one can represent F as

Fab =

n/2∑

i

(Φa,2i−1Φb,2i − Φb,2i−1Φa,2i) . (D.5)
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Appendix E

Alternating hopping Hubbard

model

In this study, I mainly used the homogenous Hubbard model defined in Eq. (3.113), which

all t’s are the same. However, to model actual atoms or molecules, it may be sometimes

more suitable to use multiple t values. In this appendix, I study the alternating hopping

Hubbard model defined by

H = t1
∑

<i,j,odd>

c†icj + t2
∑

<i,j,even>

c†icj + U
∑

(i,j)

c†ic
†
jcjci, (E.1)

where the elements < i, j, odd > and < i, j, even > are the nearest-neighbor pairs related

to the between sites of the odd-numbered and the even-numbered respectively as shown

in FIG. E.1. This model has been known to describe the Bechgaard salts well [70].

Figure E.1: One-dimensional alternating hopping Hubbard model with the periodic bound-

ary condition.

Here I show results for the alternating hopping Hubbard model with t1 = 1 and

t2 = 0.5, at half-filling. TABLE E.1 shows the residual error in the total energy of AGP,

APG and det3 for the six-electron system. Each error is less than that for the homogeneous

Hubbard model (Figure 4.1 and TABLE 4.3). It is found that the error of the APG is less

than 0.01, which means it has enough accuracy. TABLE E.1 shows the residual error in

the total energy of AGP and APG for the 12-electron system. Here also the error is less

than that for the homogeneous Hubbard model (Figure 4.1).
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APPENDIX E. ALTERNATING HOPPING HUBBARD MODEL

6-electron ∆E Number of types of geminals

AGP 0.349 1

APG 0.00492 3

det3 2.04E-07 9

Table E.1: Residual error in the total energy for the six-electron system.

12-electron ∆E Number of types of geminals

AGP 0.877 1

APG 0.00869 6

Table E.2: Residual error in the total energy for the 12-electron system.

To see the details, I show the first-order density matrix of the APG for the 12-electron

system (FIG. E.2). Comparing with FIG. 4.3, the result improves significantly. The result

does not break the symmetry. Also, FIG. E.3 shows the pair correlation function of the

APG for the 12-electron system. The result of the APG is also very close to the values of

the exact diagonalization.

It is found that in the alternating hopping Hubbard model, the APG is sufficiently

effective. It may be because there is no need for a resonance structure in this model. To

confirm this property, I need more verifications. This is one of the future tasks.

Figure E.2: (Color online) The first-order density matrix (ρ(1)iσiσ) of the APG and the exact

diagonalization for the 12-electron system.
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Figure E.3: (Color online) Pair correlation function (fi ≡ ρ(2)i↑i↓/2ρ
(1)
i↑i↑ρ

(1)
i↓i↓) of the APG

and the exact diagonalization for the 12-electron system.
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Appendix F

Water molecule

I applied AGP, AGP-CI and APG to the water molecule (10-electron system). The geom-

etry condition is O = (0, 0, 0), H = (−1.809, 0, 0), (0.453549, 1.751221, 0) and the basis set

is STO-3G. The potentials are obtained from HORTON (Helpful Open-source Research

TOol for N-fermion systems) program [71]. Figure F.1 shows the error of the total energy.

The error is smaller for APG than for AGP and AGP-CI.

H2O ∆E Number of geminals

AGP 0.0284 1

AGP-CI(2) 0.00604 2

AGP-CI(3) 0.00227 3

AGP-CI(4) 0.000563 4

AGP-CI(5) 0.000130 5

APG 5.09E-05 5

Table F.1: Residual error of AGP, AGP-CI and APG for the water molecule.
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