Doctorate Dissertation (Censored)

i tam s (ER)

Topology of gap nodes in multi-orbital superconductors

(ZHLEBEERICBT Xy vy 7/ — RO hAFArY—)

A Dissertation Submitted for Degree of Doctor of Philosophy

December 2018

PR 30 4 12 AL (BE%) HIGE
Department of Physics, Graduate School of Science,

The University of Tokyo
FOXRF R SR TE R B R

Takeru Nakayama

il fE






Abstract

The concept of topology was introduced in condensed matter systems to apply to quantum
Hall systems and other gapped fermionic systems. Recently, it has been extended to gap-
less, or nodal superconductors. Inspired by these developments, we investigate topological
perspective of gap nodes in multi-orbital superconductors. In a usual single-band model, elec-
trons form either spin-singlet or spin-triplet Cooper pairs. In multi-orbital superconductors,
their Cooper pairs have more complicated structure beyond spin-triplet bound states due
to extra degrees of freedom such as orbital, sublattice, layer and valley. Thus, multi-orbital
superconductors may have a new gap topology.

First, we address the issue of how nodeless fully gapped superconducting states are real-
ized in multi-orbital systems even when gap nodes are expected from symmetry. Monolayer
FeSe on SrTiOgs substrate is a candidate of nodeless d-wave superconductor, and its pair-
ing originates from a small but finite spin-orbit coupling. We investigate the evolution with
decreasing spin-orbit coupling from a nodal state to the nodeless state from a viewpoint of
topology. We show that this evolution depends strongly on the orbital degrees of freedom
in Cooper pairs. In particular, there are two types of d-wave pairs, which we call orbitally
trivial and orbitally nontrivial. In both cases, the gap nodes are characterized by a Z invari-
ant and carry £2 topological charges related to a chiral symmetry. However, their charge
distribution in the momentum space is different between the two cases, and this results in
different evolutions when these nodes annihilate to form a nodeless state. They exhibit dif-
ferent Andreev flat bands spectra at sample edges. Furthermore, we show that it is possible
to probe other types of nodal states by applying in-plane magnetic field. This field leads to
the emergence of topologically protected nodal points and nodal line of energy dispersion,
which are characterized by a Zs invariant.

Second, we address the issue of how we obtain a new type of gap nodes in multi-orbital su-
perconductors and its application. Multi-orbital superconductors with even-parity inversion
and broken time-reversal symmetry may have a Fermi surface of Bogoliubov quasiparticles,
which is called Bogoliubov Fermi surface, and this is topologically protected. We apply this
idea of Bogoliubov Fermi surface to the heavy-fermion superconductor UPts. With symmetry
consideration, we propose the pairing that belongs to two-dimensional irreducible represen-
tation F4 in point group Dgp,. This is a mixing of spin-singlet d-wave, spin-triplet in-plane
p- and out-of-plane f-wave pairing. We show that a finite in-plane p-wave pairing amplitude
gives rise to Bogoliubov Fermi surfaces and a finite density of states at zero energy. We
further investigate thermal conductivity by using the Boltzmann theory and show that the
Bogoliubov Fermi surfaces explain a finite residual density of states and also an anisotropy
of thermal conductivity at T' = 0.
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Chapter 1

Introduction

Background and motivation

The concept of topology is established as one of the keys in condensed matter systems. Start-
ing from the discovery of integer quantum Hall effect [1], its relevant topological invariant
associated with Thouless-Kohmoto-Nightingale-den Nijis (TKNN) formula [2] has brought a
novel perspective to condensed matter systems. While Landau theory is successful in charac-
terizing many phases by a local order parameter, such integer quantum Hall systems are not
classified by Landau theory but have a nonlocal order parameter and topological phases [3].
The nonlocal order parameter manifests “bulk-edge correspondence” and predicts the pres-
ence of gapless modes at surfaces [4]. These gapless modes are robust against perturbations
that preserve the symmetry of the systems. In integer quantum Hall systems, the Hall con-
ductance is quantized and topological classification yields a Z invariant quantity called Chern
number [5]. Topological insulators were found first in HgTe/CdTe quantum wells [6] and are
characterized by a nontrivial Z, invariant of band topology. They have gapless surface states
while their bulk states are fully gapped. Schnyder et al. [7] developed the tenfold-way classi-
fications, which is also called Altland-Zirmbauer classification [8], for gapped insulators and
superconductors in arbitrary dimensions without interactions and that characterization uses
time-reversal, particle-hole, and chiral symmetries.

Topology in superconductors is of great interest in recent years [9-12]. Gapped topological
superconductors [13,14] have attracted much attention because of Majorana surface states.
They are fermionic quasiparticles that are their own anti-particles, and emerge due to a non-
trivial topology of wave functions of quasiparticles in bulk. These surface states may have
important applications for quantum computation technology. It has been also known that
nodal superconductors have surface-bound states called Andreev bound states [15], which
appear due to the sign change of gap function. Recently, it has been found that the Andreev
bound states are a consequence of nontrivial topology of the nodal structure of superconduc-
tors [16].

Many theories of superconductivity have mainly studied single band systems and it is
believed that the physics is qualitatively unchanged in superconductors with extra inter-
nal degrees of freedom such as orbital, sublattice, layer and valley or higher spin. Density
functional theory [17,18] and angle-resolved photoemission spectroscopy (ARPES) experi-
ments [19-21] indicate that iron pnictide superconductors have multiple Fermi surfaces. A
consensus [22] is that multiple orbitals play an essential role in pairing mechanism, differing
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from other superconductors including high-T;, cuprates. Indeed, a recent theoretical study
showed that the presence of significant amount of zero energy states due to inter-orbital pair-
ing in iron pnictide superconductors [23]. It is also expected that inter-orbital pairing plays
an important role in the other materials Cu,BiaSes [24,25] and YPtBi [26,27]. Moreover,
ARPES experiments of monolayer FeSe grown on SrTiOg substrate [28-31] showed that its
superconducting state has a fully gapped energy dispersion of quasiparticles, but the dis-
persion has a nontrivial anisotropy [31]. The group of Agterberg recently predicted that its
superconducting state has d-wave symmetry without nodes [32]. This is due to finite but too
large spin-orbit coupling and nontrivial inter-orbital pairing, whereas typical d-wave states
have topologically protected nodes in single-band systems [33]. In their theory, the spin-orbit
coupling plays an essential role. It is necessary to stabilize the nodeless state, but gap nodes
appear if the coupling is too large. A question is the mechanism that leads to a nodeless, fully
gapped d-wave superconducting state, i.e., how such nodeless states emerge when nodes are
expected from symmetry? In this thesis, we study this issue through an examination of the
nodal d-wave state based on the established classification in gapless fermionic systems [34-36].

Another feature of multi-orbital superconductors is the possibility of an unusual gap
structure. In usual single-band models, superconducting gaps are either nodeless or otherwise,
have point or line nodes. However, multi-orbital superconductors may have a different type of
gap structures. Bogoliubov Fermi surface [37] is proposed for multi-orbital superconductors
with even-parity and broken time-reversal symmetries. As will be explained in Section 2.3,
Bogoliubov Fermi surfaces are inflated from point or line nodes and they are characterized
by a Zy invariant [38] related to particle-hole conjugate and parity symmetries [39]. However,
their experimental signatures have not yet been explored. In this thesis, we show that the
Bogoliubov Fermi surfaces may explain thermal conductivity at low temperatures in the heavy
fermion superconductors UPt3 where polar Kerr effect experiment [40] reported broken time-
reversal symmetry.

Outline of the thesis

This thesis is organized as follows. Chapter 2 is a review of pairing symmetry in unconven-
tional superconductors and topology of their gap nodes. Chapters 3 and 4 are the main parts
of this thesis. Chapter 5 is a summary and conclusion.

In Chapter 2, we review the basis of unconventional superconductivity with an emphasis
on superconducting gap nodes. The study of gap nodes is important not only to investigate
the pairing mechanism but also to identify topologically nontrivial surface states. In Sec-
tion 2.2, we briefly review the topological classification in gapped fermionic systems based on
Altland-Zirmbauer (AZ) classification [7,8]. Such a topological classification has been gener-
alized to gapless fermionic systems including nodal superconductors. Their gap nodes have
topological charges characterized by Z or Zs invariant. These will be used in Chapter 3. We
also review multi-orbital physics in superconductors. In Section 2.3, we explain a new type of
superconducting gap structure, Bogoliubov Fermi surfaces introduced by Agterberg et al. [37].

Chapter 3 is the first main part of this thesis, and we study monolayer superconductor
FeSe grown on SrTiO3 substrate. Section 3.1 is a review of recent experiments. In Section 3.2,
we follow Ref. [32] and introduce a symmetry-based effective model to describe the electronic
structure near the M-point of Brillouin zone. The model uses one representation of the point
group Dyp. This representation is four-dimensional and forms two bands each of which is
doubly degenerate. In this model, nodal points emerge due to interband spin-orbit coupling.



Chapter 1. Introduction 9

In Section 3.3, we show that the topological charges of these nodal points are a 2Z invariant
based on the established classification for gapless fermionic systems [36]. There are two
topologically different phases, and they have different types of dispersionless Andreev surface
states. In Section 3.4, we consider the case that the time-reversal symmetry is broken by
applying the Zeeman field. We show the presence of topologically protected nodal points and
nodal lines and they are characterized by Zy invariants.

Chapter 4 is the second main part, and we study the multi-component superconductor
UPt3. Section 4.1 reviews relevant experiments to identify the gap symmetry. One plausible
candidate of gap symmetry is Fs, representation in the point group Dg,. However, this does
not explain that thermal conductivity shows that the presence of a finite residual density of
states or neither a finite ratio of the in-plane to c-axis thermal conductivity unless impurity
effects are taken into account. Therefore, in order to explain such low-temperature behav-
iors, we start in Section 4.2 from the model introduced in Refs. [41-43] for describing the
normal-state electronic structure in UPt3 and consider a two-dimensional representation F1,
symmetry in Section 4.3. For this even-parity pairing, we apply the idea of Bogoliubov Fermi
surfaces. This Fq, representation includes the p-, d- and f- wave pairing amplitudes. In Sec-
tion 4.4, we show that the in-plane p-wave pairing amplitude needs have a finite amplitude
to realize the Bogoliubov Fermi surfaces. We calculate the thermal conductivity and show
that this explains experiments in UPt3 as far as the p-wave amplitude is not too small.

Chapter 5 is the summary in this thesis and we also make some remarks for future works.
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Chapter 2

Nodal topology in unconventional
superconductors

In this chapter, we review some of the basis of unconventional superconductivity. In many
unconventional superconductors, the superconducting gap vanishes at points or along lines
on the Fermi surfaces in the state. They are called gap nodes and imply the presence of
low-energy excitations. After a review of the topological classification in gapped fermionic
systems, we follow the works of Volovik [44] and introduce a phenomenological model of
superconductors with point nodes to demonstrate that the point nodes have topological
charges. We also review orbital degrees of freedom in superconductors. Following the works
of Agterberg et al [37,45], we explain a new type of superconducting gap structure i.e.,
Bogoliubov Fermi surfaces, in a multi-orbital superconductor with even-parity and broken
time-reversal symmetries.

2.1 Gap function and its symmetry

2.1.1 Single-band model

Unconventional superconductivity is characterized gap function and its symmetry [33]. For its
definition, we first consider single-band superconductors with the following effective Hamil-
tonian

1
H = Z €105 (K) C;rwlck@ + 5 Z Vo1,02,03.04 (kv k/) CJr_kgchgQCk’U3c—k’o4v (2.1)

k,01,02 k,k',01,02,03,04

where cg, (c;rw) is the annihilation (creation) operator of the electron with momentum k
and spin 0. €4,4, is the electron energy including Zeeman and spin-orbit couplings. Due to
the Pauli principle, the pairing interaction Vy, 5,.04.04 (k, k') has the following symmetries:
Voro2,03.04 (B, k') = —Vou 010300 (k. K') = Vo 000105 (k, —K') = VU*4,0‘3,0’2,O'1 (K'.k). The
many-body Hamiltonian in Eq. (2.1) can be treated by the mean-field approach. In supercon-
ducting states, Cooper pairs have a non-vanishing anomalous expectation value (¢ks,¢_ko,),
which is related to a gap function,

AU17U2 (k) = - Z V02701703,<74 (ka k/) <Ck’crsc—k’04>' (2'2)

k,o3,04

11
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Then, the mean-field Hamiltonian is given by

1
H= Z Eo109 (K) c;wlck(,2 + 3 Z [Am@ (k) cjwlcT_ng + h.c.} : (2.3)

k,o1,02 k,o1,02

It can be written with 4 x 4 matrix,

Cht
) é(k)  A(k) e
1 o : 2.4
H=3 Zk: [Cmv ki Ok C‘kd [ ARt )" | | iy | .

where & (k) and A (k) are 2 x 2 matrices in the spin space.
The gap function has the symmetry in k space and can be classified by the total spin of
Cooper pair. For singlet pairing, the gap function has to be an even function in k. Then,

A (1) — L 0 (k) k) —
AW =vwio,=| _ S U8 ] v -vm. 25)

If 5,0, (k) = € (E) 05y ,0,, the quasiparticle energy for spin-singlet is
E (k)= /= (0 + [0 () 2.
On the other hand, for triplet pairing, the gap function has to be an odd function in k and

A _ .| —de (k) +idy (k) d, (k) N

A= (@) -o)in, = | Wb ® L] aem ——am). @
with d = (ds,dy,d.) vector which transforms as a vector under spin rotation [46]. If

€100 (K) = € (K) 05y ,04, the quasiparticle energy for spin-triplet is

Ex (k) = \/6 (K)* + |d (K)|* £ |d (k) x d (k). (2.8)
If the case |d x d*| # 0, the superconducting state is called non-unitary, because A (k) At (k)
is not proportional to the identity matrix.

2.1.2 Structure of gap nodes

In the BCS theory, the pairing interaction originates from electron-phonon coupling and is
isotropic in k space, and therefore the gap function is also isotropic (See Fig. 2.1 (a)). On
the other hand, in unconventional superconductors where pairing interaction originates from
electron correlations, the pairing interaction has strong anisotropy. Consequently, the super-
conducting gap also has strong anisotropy in many cases, and it can vanish at points or lines
on the Fermi surfaces. They are called gap nodes, or simply nodes. One of the examples
is high-T,. cuprates, and it is believed that the gap function has d-wave anisotropy due to
strong electron correlation. Figure 2.1(b) shows d-wave pairing (more precisely d,2_,2-wave).
The zero points of the gap function are located in the direction of +45° and £135° and they
form line nodes. Gap nodes imply the presence of low-energy excitations. Specific heat and
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S

k) > kg — Dk,

Figure 2.1: Schematic figures of gap function in (a) s-wave 1) (k) = Ag and (b) d-wave pairing
Y (k) = Ao (k2 - kg) The thick solid line and solid line represent the Fermi surfaces and the
gap function on the Fermi surfaces, respectively.

Table 2.1: Density of states p (w) at low-energy region for different structure of gap nodes.

Type Dispersion Example gap A (k) p(w)
0

Gapful — const.

Point linear \/ K2+ k2 w?
Point  quadratic k24 k2 |w]
Line linear k. |w|
Line quadratic k2 \/m

thermal conductivity, penetration depth, and NMR relaxation rate are strongly affected by
gap nodes. They show power-law temperature dependences at low-temperatures, differ from
conventional fully gapped superconductors. Therefore, the structure of gap nodes plays an
important role to discuss properties such as specific heat, thermal conductivity, penetration
depth, NMR relaxation rate, tunneling spectroscopy, and photoemission spectroscopy. Ta-
ble 2.1 summarizes the density of states p (w) = V1Y, 6(w— Eg) in a low-energy region for
the different types of gap nodes, where V is the volume of the system and Ej is the energy
of quasiparticle with momentum k.

The Hamiltonian in Eq. (2.1) has some symmetries that represented by a group G. The
group G consists of the global gauge symmetry group U(1), time-reversal symmetry group,
the spin rotation symmetry group SU(2), and also space group. Sigrist and Ueda classified
the possible superconducting states in a system with the group G, including also spin-orbit
coupling with generalized Ginzburg Landau theory [33]. We show that basis functions of the
irreducible representations f (k) of tetragonal point group (Dyp) and the hexagonal point
group (Dgp) in Table 2.2 and 2.3, respectively. (Their character tables are shown in Ap-
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Table 2.2: Basis functions of the irreducible representations f (k) of the tetragonal point
group (Dyp,).

f (k) f (k)
Ay ¢ k‘g + k‘g, k:g Ay kgoy +kyoy, k.o,
Aoy kyky (k?c — k;) Agy, kyoy — kzoy
By k2 — k§ B, kpoy — kyoy
ng kxkﬁy Bgu k‘yO'x + kxay
E, {kak., kyk.} | Ey {kyo2, kyo.}

Table 2.3: Basis functions of the irreducible representations f (k) of the hexagonal point
group (Dgp).

7 k) 7 (k)
Ay c, k2 + kg, k2 A1y kyoy + kyoy, k.o,
Aog  kgky (k% - 3]{:;) (kzg — 31@25) Aay, kyoy — kzoy
By, hoko (2 342) Buw ko (K2~ 3k2) 0u, Ko [(2 — K2) 0y — 2o,
By, oy (k2 — 342) Bow y (k2 — 368 0, ke [(2 — ) 0 — ko
Eq {kzkz, kyk.} By {kz0, kyo.}, {k.0p, k.oy}
Eyy {kg — /@5, Qkx/{y} By, {kyoy — kyoy, kyoy + kyoy}

pendix C.)

2.2 Topology in superconductors

2.2.1 Topological classification in gapped fermionic systems

Before we discuss topology in nodal superconductors, we briefly review topological classi-
fications of gapped fermionic systems. A pioneering work of discovering integer quantum
Hall effect [1] and the presence of invariant quantity associated with Thouless-Kohmoto-
Nightingale-den Nijis (TKNN) formula [2] has brought a novel perspective to various con-
densed matter systems. Landau theory is successful in characterizing many phases by a local
order parameter but such integer quantum Hall systems are not classified by Landau theory.
They have a nonlocal order parameter and topological phases [3]. The nonlocal order pa-
rameter implies “bulk-edge correspondence [4]” and predicts the presence of gapless modes
at surfaces or in vortices [13,14]. These gapless modes are robust against perturbations
that preserve the symmetry of the systems. Since then, topology in gapped fermionic sys-
tems has attracted much attention. In integer quantum Hall systems, the Hall conductance
is quantized and topological classifications yield Z invariant quantity called Chern number.
Topological insulators found first in HgTe/CdTe quantum wells [6] are characterized nontriv-
ial Zo invariant of band topology. They have gapless surface states while their bulk states are
fully gapped. A. P. Schnyder et al. [7] developed the tenfold-way classification which is also
called Altland-Zirmbauer (AZ) classification [8], for gapped insulators and superconductors in
arbitrary dimensions D without interactions characterized by time-reversal (T'), particle-hole
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(C), and chiral (S) symmetries.

2.2.2 Nodal superconductors

So far, we have reviewed topological classification in gapped fermionic systems and nontrivial
surface states appear as a consequence of “bulk-edge correspondence”. In this section, we
see that topological classification can be applied to gapless fermionic systems including nodal
superconductors [11,34,47]. As mentioned in Section 2.1.2, gap nodes imply the presence of
low-energy excitations. Here, we introduce a phenomenological model of nodal superconduc-
tor with point nodes as an example and show that the point nodes have topological charges.
This argument is based on Refs. [11,44].

We consider spinless superfluid fermions with chiral p, 4 ipy-wave pairing. Their Hamil-
tonian is given by the following Bogoliubov-de Gennes (BdG) form:

2
ky
Y

2m

1) = (o) et 22 (1L =g (0) T, = (29)

2m kgp

where Pauli matrices I'; describe the particle-hole degrees of freedom and kg is the Fermi
wave number. The eigenvalues of this Hamiltonian are +Fj, with

Ey = \/G;i — M>2 + (2‘3)2 (k2 +k2), (2.10)

and there are two point nodes at the north and south poles of the original Fermi sphere
K. = (0, 0, £kp). Consequently, the low-energy physics around the nodes K4 can be
described by the Weyl Hamiltonian

Hy (p) = ?JS (pel'z + pyI'y) £ vpp.T2, (2.11)
where p = k — K4 and vp = kr/m is the Fermi velocity. Figures 2.2 (a) and (b) show that
two-point nodes at the north and south poles of the Fermi sphere and Weyl dispersion around
the nodes, respectively. Remarkably, the point nodes or Weyl nodes are not gapped out and
are stable against arbitrary perturbations since the perturbations just shift the position of
the point nodes. These point nodes have topological charges defined by

1 . 9g (k)  0g (k)
NC_M/Cdkg(kz)-< < on, > (2.12)

where g (k) = g(k)/|g (k)| is the unit vector field and the region C is a surface which
encloses a point node. This topological charge is the winding number of g (k). Figure 2.2
(c) shows that the hedgehog structure of the unit vector fields g (k) around a point node.
Indeed, the topological charge for the point node of the north (south) pole is +1 (—1).

Andreev bound states

Since the 1990s, it has been known that unconventional superconductors have surface bound
states called Andreev bound states, which appear due to sign change of the gap function [15].
Zero-energy Andreev bound states are dispersionless in momentum parallel to a surface.
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Figure 2.2: (a) Gap anisotropy and two point nodes at the north and south poles of the Fermi
sphere K1. (b) Weyl dispersion around the point node (c) The hedgehog structure of the
unit vector g (k) around the point node.

They were observed in the high-7. cuprates with d-wave pairing, and they contribute to
the zero-bias conductance peak in tunneling spectroscopy. Recently, it has been found that
the Andreev bound states are a result of a nontrivial topology of the nodal structure of
superconductors [16].

2.2.3 Gapless centrosymmetric systems

In the previous section, we have shown the stability of the gap nodes for spinless superfluid
with chiral p, + ip,-wave pairing and shown that nodes are characterized by a topological
charge. In this sense, though the global topological invariants cannot be defined in gapless
fermionic systems, the gap nodes can also be characterized by local topological invariants
and classified by AZ (tenfold-way) classification [48-51], similar to fully gapped fermionic
systems. AZ classification uses three symmetries: time-reversal (T"), particle-hole (C'), and
chiral (S) symmetries. These operators transform the single-particle Hamiltonian H (k) as

TH ()T '=H(-k), T?=+1,
CH(k)C™'=-H(-k), C*=+1, (2.13)
SH (k)S™'=-H (k), S?=1,

where the chiral operator is defined as S = —i¢T'C. If the time-reversal or the particle-hole
conjugate invariant, squares of time-reversal or particle-hole conjugate operators are either
plus or minus the identity operators. Therefore, there are 3 x3 = 9 classes for the Hamiltonian
by using the time-reversal and the particle-hole conjugate operators. However, these are not
yet all ten classes since it is also necessary to consider the transformation of the Hamiltonian
by the chiral operator. In the cases of both the time-reversal and the particle-hole conjugate
symmetries are absent, the chiral symmetry either present or absent. Thus, one can obtain
3x3—142 =10 possible classes of the Hamiltonian. We note that the time-reversal and the
particle-hole conjugate operators are antiunitary, and the chiral operator is unitary and the
time-reversal and particle-hole conjugate operators relate Hamiltonians at different k points.
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Table 2.4: AZ+7Z classification of gapless centrosymmetric systems [36]. +1 in 7 and C
column indicates the sign of 72 and C?. x denotes the absence of the symmetry. The
homotopy groups 7, that determine the charges of a node. D —dpz —1 <p < D — 1 where
D is spatial dimension and dgy is the dimension of Brillouin zone.

7 C S Homotopy groups

class o M D)
A X x x 0 0 Z
Al +1 X X 0 Zo Zo
All | -1 x x 0 O 0
AIIT | x x 1 0 Z 0
BDI | +1 +1 1 Zy Zs 0
cim -1 -1 1 0 O 0

D X +1 x Zy 0 2Z
C x -1 x 0 0 Z
bDIr| -1 +1 1 0 2z 0
cr |+1 -1 1 0 Z Z

This classification is firstly applied to gapped fermionic systems. It expands to various
condensed matter systems with additional symmetries [52-55]. In this section, we take the
additional symmetry as inversion symmetry and we briefly review the topological classification
in gapless centrosymmetric systems [36], dubbed the AZ+Z classification, which will be used
later in Chapters 3 and 4.

In the centrosymmetric systems, the inversion symmetry is preserved. The inversion
operator P transforms Hamiltonian as

PH(k)P'=H(-k), P?>=1. (2.14)
Combining T and C' with the inversion operator P,

TH(K)T '=H(), T? =41, T=TP,

CH(k)C'=-H(k), C?=41, C=CP. (2.15)

T and C do not link with the momentum k to —k. They impose local constraints in k
space and become relevant for the topological classification of the nodes. Note that 7 and C
are also antiunitary, and the set operators {7, C, S} is mathematically equivalent to the set
{T,C, S}. Therefore, we define tenfold symmetry classes by 7, C and S. Table 2.4 shows the
topological classification of gapless centrosymmetric systems [36]. The homotopy groups m,
that determine the charges of a node are those with dc;, —1 < p < D —1 where dc1, = D —dpy
is the node codimension for dgyz-dimensional Brillouin zone.

2.3 Multi-orbital physics in superconductors

2.3.1 Bogoliubov Fermi surfaces

Finally, we move on multi-orbital physics in superconductors. Here, orbital stands for the
extra degrees of freedom such as orbital, sublattice, layer and valley. Irrespective of the
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many types of the additional degree of freedom, superconducting states in the multi-orbital
materials are believed to be qualitatively the same as the single-orbital ones. The properties
that we have mentioned above also hold for multi-orbital superconductors.

In this section, we introduce a new type of superconducting gap that we call Bogoliubov
Fermi surfaces [37]. Usual superconducting gaps are either nodeless or otherwise, have point
or line nodes. However, multi-orbital superconductors with even-parity and broken time-
reversal symmetry may have a different category of gap structure. We show that this new
type of nodes is inflated point or line nodes and that they are characterized by a Zs invariant.
The following arguments are based on Refs. [37,45].

We start with a general single-electron Hamiltonian with two orbitals by

Hy (k)= > cjk)noo, (2.16)

4,J=0,2,y,2

where 7; (0;) matrices are Pauli matrices in the orbital (spin) space. Here, we consider the
case that the two orbital have real wave functions.

We assume the parity symmetry and the time-reversal symmetry for this Hamiltonian.
Since we consider only even-parity states, we restrict to a subspace where the eigenvalues of
inversion operator P are +1. This is accomplished by ¢; ;(—k) = ¢; j(k) and P = 1o®0¢ = 14.
P and time-reversal operator 1" act as

PHy (k) P! = Hy (—k), (2.17)
THy (k)T =Hy (—k), (2.18)

where T' = 79 ® i0y K where K is the complex-conjugation operator. Combining P and T,
we obtain local constraint relation in k space,

(PT)Hy (k) (PT)"' = Hy (k). (2.19)

Due to this constraint, we should emphasize that it is easily shown that only six Kronecker
products 1o ®0q, T, ®00, T, ® 00, Ty R0, TyR0y, and 7,0, can appear in Hamiltonian (2.16)
and the other Kronecker products do not.

In order to gain a deeper understanding of this model, we consider its special case corre-
sponding to the generalized Luttinger-Kohn model [56],

Jody + Jyds Jydy + J2J, Jodp + Jpd,
H k = cols+ Cyp Y Y + Cyz Y L +Copp—F——
~ (k) 0da y 73 y 7 7
2J§—J§—Jy2 JxQ—Jg
+C322,T2f + CZZ,y2T, (220)
where J’s are the angular momenta of J = 3/2 given by
0 vV3 0 0 0 -3 0 1
sl Vv3 o0 il V3 0 -2
T2 0 2 2 0
0 O 0 0 3
V3 - (2.21)
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These matrices are related to the five products 7; ® o; as

J2 —J2?
T ®@0g = UTZE YU, 2.22
o= UE (2:22)
202 22
T, ® 09 = UTf , (2.23)
Sy, + J.J,
T, ®0'a;:UT vee z yU7 2.24
Y \/g ( )
Jody + Jpd,
Jody + Jydy
T, @0, =UT Y Y2y 2.26
Y \/g ( )
with the unitary matrix
1 0 00
00 0 1
U= 001 0 (2.27)
01 00

Now we consider superconducting states that have even-parity and we suppose zero total
momentum Cooper pairs. We write the gap function as

A (k) = Y iy k)Ti@o; | Ur. (2.28)

Z‘?j:07x7y7z

where the unitary part of the time-reversal oeprator

0 0 0 1

. 0 0 -1 0
Ur=1® 10y = o 1 0 ol (2.29)

-1 0 0 O

and v; j (—k) = 1; j (k) since we focus on even-parity pairings. Pauli principle requires either
orbital-triplet and spin-singlet or orbitally-singlet and spin-triplet pairing. Therefore, only
six Kronecker products 7o ® og, 7, ® 00, 7. ® 00, Ty 04, Ty K0y, and 7, ® o, can appear in the
gap function (2.28). Hence, we obtain the six possible gaps matrices 7, in the orbital-spin
representation, which are given by

ns = Ur, (2.30)
Nay = WUT, (2.31)
Myz = WUT, (2.32)

_ Jedot Jadeyy (2.33)

7721‘ - \/g
22— J2— J2

Myz2 2 = ———5——Ur, (2.34)
J2 — J2
Ne2_y2 = ——=2Ur. (2.35)

V3
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The gap matrix 7y represents an orbitally trivial spin-singlet (J = 0) and pure intraband
pairing. However, the other five gap matrices represent orbitally nontrivial spin-quintet
(J = 2) and include both intra- and interband pairings. A general superconducting state
is a mixed state with a linear combination of the product of these gaps and k-dependent
coefficients.

The inflated nodes called Bogoliubov Fermi surfaces to appear in the even-parity super-
conducting state with broken time-reversal symmetry. As an example, we consider spherically
a symmetric normal Hamiltonian

Hy = (ak? —p) 14+ B (k- J)?, (2.36)

where «, spin-orbit coupling 3, and chemical potential u are all constant. This corresponds to
the Luttinger-Kohn model with ¢y = (o + 58/4) k*—p, czy = \/gﬁerk:y, cy: = V3Bkyks, Cow =
V3Bkzky, c32_y2 = B [k2 — (k2 + k2) /2] and c,2_ 2 = V33 (k2 — k2) /2. Its eigenvalues are

€er =co £ \/c;fy +2 + 2 s, ot (2.37)

y2
For simplicity, we consider the case that only one of the two band crosses the chemical
potential so that there is only one normal state Fermi surface.

Let us consider an anomalous part of Hamiltonian with broken time-reversal symmetry.
The BAG Hamiltonian is given by

_ | Hv (k)  A(K)
UCE R i (2.33)
We consider a chiral superconducting state with a mixture of spin-singlet and chiral quintet
pairings. This is

A (k) = Ay (k) ns + Ao (nzx + inyz) (239)

where A; and Ay are real constant and the former (latter) pairing is spin-singlet (-quintet)
pairing. We take v (k) = k. (k; + iky) that is chiral and breaks time-reversal symmetry and
the latter pairing also does.

In order to see the effect of mixing of spin-singlet and spin-quintet pairing, we first consider
the case of only spin-singlet pairing. For this case, the gap has two point nodes in the north
and south poles and the line node in the basal plane (k, = 0). Mixing on spin-quintet
pairing, the original point and the line nodes are inflated and form two-dimensional surfaces
as shown in Fig. 2.3, which we call the Bogoliubov Fermi surfaces. Since it is difficult to
analytically obtain the eigenvalues of the BAG Hamiltonian (2.38), we solved numerically.
These Bogoliubov Fermi surfaces are located a bit far from originally expected nodes.

2.3.2 Z, invariant of Bogoliubov Fermi surfaces

In the previous section, we have seen that point and line nodes are inflated and become
a new type of gaps nodes, i.e., the Bogoliubov Fermi surfaces in even-parity multi-orbital
superconducting states with broken time-reversal symmetry. In this section, we show that
this Bogoliubov Fermi surfaces are topologically stable and are characterized by Zo invariant
quantity [37,39].
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Figure 2.3: Bogoliubov Fermi surfaces (opaque orange) in a chiral superconducting state
and normal state Fermi surface (semi-transparent). The point and line nodes that are
predicted by single-band theory are red dots and line, respectively. We set parameters
(o, B, u, Ao, A1) = (1, —4/9, 8/9, 1/5, 1/20). This is the case that the normal state has
only one Fermi surface around I' point.

The Hamiltonian H (k) in Eq. (2.38) has not only parity symmetry but also particle-hole
symmetry. The inversion operator and the particle-hole conjugation operators act as

PH (k) P~' = H (—k),

CH(k)C~' = —H (—k), (2.40)

where P =Ty ® 14 and C =TI', ® 14K with the Pauli matrices I'; in the particle-hole space.
Combining with C and P, we obtain local constraint relation in k space,

(CP)H (k) (CP)™' = —H (k), (2.41)

Because (CP)?> = +1g, one can find unitary operator Q that transform H (k) as anti-
symmetric matrix. We define Ucp = UcP =1, ® 14 where Us =I';, ® 14. Then,

UcpH (k)" UL, = —H (k). (2.42)
Because Ugp is symmetric, it can be diagonalized as

Ucp = QAQT, (2.43)
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where @ is a unitary matrix and A is a diagonal matrix. Inserting this into Eq. (2.42),
QAQTH (k)T Q*ATQt = —H (k). (2.44)

Since A is a diagonal matrix, its root, VA = diag (\/)\1, Vg, ) can be defined, even though
-1
A; are complex and \/KT = <\/K) . Then it is easily shown the following relation,

(VA'QiH (k) Q\/K>T — VA'QUH (k) QVA. (2.45)

Hence, an anti-symmetric complex matrix can be introduced by H (k) = QT H (k) Q where
the unitary operator & = Qv/A. One can define Z, invariant quantity with the sign of
Pfaffian [37]

P (k) = sgn [Pf i (k)} . (2.46)

We note that this Pfaffian is real since it is a polynomial of even degree of the components
of the matrix H, which is purely imaginary. Recent studies have shown that a Fermi surface
in C'P invariant Hamiltonian has nontrivial Zs charge and it is stable against C'P invariant
perturbations [38,39]. We now express the topological charge in terms of the Pfaffian P (k).

- 2 -
Since [Pf H (kz)} = det H (k) = det H (k), the zeros of P (k) locate at the nodes in super-

conducting state. Thus, if the opposite sign of P (k) separates a region in momentum space
by a two-dimensional surface, this Fermi surface is guaranteed by the following topological
quantity

(—1)! = P (k_) P (ky) (2.47)

where k4 (k_) is momenta inside (outside) of the Fermi surface. In the normal-state, this Zy
invariant is trivial since P (k) = e;e_ is always non-negative. Furthermore, in the case of
time-reversal-symmetric superconductors also, there is no nontrivial Z, charge since P (k) can
be chosen non-negative for all momentum space [37-39]. However, in the case of supercon-
ductors with broken time-reversal symmetry pairing, since there is a region with P (k) < 0
in general, a topologically protected region in momentum space, called Bogoliubov Fermi
surface, with the nontrivial Z, charge may arise.

2.3.3 Perturbation approach to Bogoliubov Fermi surfaces

We have seen that the topologically stable Bogoliubov Fermi surfaces may appear in even-
parity superconducting state with broken time-reversal symmetry and are characterized by
Z, invariant quantity (—1)". Let us consider the origin of the Bogoliubov Fermi surfaces. In
this section, we use a perturbation approach and show that the Bogoliubov Fermi surfaces
emerge driven by internally anisotropic pairing [45].

We start from a two-orbital normal Hamiltonian given by

Hy (k) = (ek,0 — 1) 14 + €k -, (2.48)

where v = ('yl, ,75) is the vector of the five Euclidean Dirac matrices and e, and
€x = (€k,1, -+, €k ) are real even functions of k. One can obtain this Hamiltonian from
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the Hamiltonian (2.20) by a unitary transformation. We assume that the normal state has
both inversion symmetry (P) and time-reversal symmetry (7') where T'= KUr and we chose
Ur = y'4? without loss of generality. The normal Hamiltonian (2.48) has two different
eigenvalues Ey + — p each of which is doubly degenerate

Epy — 1= exo =+ €] — p. (2.49)

The inversion and time-reversal symmetries allow us to label the two eigenstates by a pseu-
dospin index o = +1.

Next, we consider pairing potential that has even parity. The general form of the even
parity pairing potential is given by

A(k) = (mo+nk-7)Ur, (2.50)
0 001
0 010
Ur ="19100| (2:51)
10 00
where the pairing amplitudes ng o and ng = (g1, -+ ,Mk,;5) are even functions of k. The

first and second terms in Eq. (2.50) represent internally isotropic and anisotropic pairing,
respectively.

To show internally isotropic anisotropic pairing explicitly, we move on the pseudospin
basis. The matrix of the BdG Hamiltonian in the pseudospin basis is

(Ek,+ — 1) 00 0 A (k)
0 (Eg,— — i) 0o
- ’ , (2.52)
At (k) (—=Ek,+ + 1) 00 0
0 (—Ek7_ + 1) o
and the pairing potential is now as
~ Vg 110 (V.1 + idg - 0) io
A (k) = Y ’ ; v, 2.53
(k) (Y1 — idy, - o) ioy Y, 10y ( )
where the intraband pairing potential 1y, 4 is
€k " Nk
Ype = o £ EE (2.54)
k|
and the interband pairing potential has the following relation:
2
[n 1| + |di|* = e |* — |Ek| 7|72k - (2.55)
€k

The form of the interband pairing potentials spin-singlet v, r and spin-triplet dj, depends on
the choice of the pseudospin basis but we note that the off-diagonal blocks in Eq. (2.53) are the
interband pairing potential and they originate from the internally anisotropic pairing 7. This
interband pairing potential provides an important contribution to realize Bogoliubov Fermi
surfaces. To see that, we use a perturbation approach and obtain an effective Hamiltonian
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for the lower-energy band. A schematic picture of the perturbation approach is shown in
Fig. 2.4 (a). We denote the BAG Hamiltonian with the pseudospin basis as

~ Hyp ., Hgp
Hy = [ HIL,I He |’ (2.56)
where the diagonal blocks Hy, 4+ represent intraband BdG Hamiltonian given by
(Ek,+ — 1) 00 Vg, +i0 ]
Hp = - = , 2.57
o [ VY, +ioy — (Eg,+ — 1) 00 (257)
and the diagonal block Hy ; represents interband pairing and is
_ 0 (V.1 + idy - @) oy,
Hie.r = [ (Yp 1 +idy, - o) o, 0 ' (2.58)

Let us assume that only lower-energy band crosses the Fermi level and that the energy
gap of two bands is much larger than the pairing potential, |Ey + — Eg | > max (1,0, Mk)-
The Green’s function for the lower-energy band states is given by

Gl (kw) = w—Hp_ — Hzlz (w— Hey )™ He
~ w—Hy+ (Boy — Ep—) " HY T.Hy. (2.59)
Here, we use the approximation Hy  ~ (Eg 4 —p)I',, where I';, is the Pauli matrix in

the particle-hole space and consider the frequency w ~ Ej _ — pu. Therefore, the effective
Hamiltonian for the lower-energy band is

HiY = Hy,_ + 6Hy, (2.60)
where

SH, . — —(5/1,]4,77 + (5hk,7, e 0

’ 0 5/1]37_ - 5hk7_ .ol (2'61)

Here, the effective chemical potential shift 0y — and pseudo-magnetic field dhy, _ are calcu-
lated for the pairing potential (2.53) and the results are

Ve’ + |di|
S = — eIl TGk 2.62
pk 2e (262
idy, x i — 21 d
Shy = TR X% m (V1) (2.63)
2 |ex|

We note that pseudo-magnetic field dhg — only present when the gap breaks time-reversal
symmetry. Indeed, dhg _ can be written with projection operators Py _ which project onto
the lower energy bands at momentum k in

Tr [AT (k) PkV_O'PkrA (k)]
4 e '

Shy_ = (2.64)
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Figure 2.4: Schematic pictures for (a) a perturbation approach and (b) given the effective
model for the lower-energy band. Thick solid lines represent doubly degenerate spectra and
the red dots are the nodes.

4
o

This is understood as pseudospin polarization of the non-unitary superconducting state in
lower energy bands. Consequently, the eigenvalues of the effective model (2.60) are given by

0| £ (B, — (o Opan )] + e, (2.65)

When the pseudo-magnetic field dhy _ is nonzero at nodes of the intraband pairing potential
Y, —, the lower energy bands is split and shifted to finite energies, it gives rise to Bogoliubov
Fermi surfaces. Figure 2.4 (b) illustrates the emergence of the Bogoliubov Fermi surfaces.
The effective pseudo-magnetic field splits the lower energy band to form the Bogoliubov Fermi
surfaces, this effective field originates from internally anisotropic pairing 7.
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Chapter 3

Nodal topology of superconducting
monolayer FeSe on SrTiO;3

Recently, Agterberg et al. proposed in Ref. [37] that monolayer FeSe on SrTiOg substrate
is a nodeless d-wave superconductor, and that the pairing originates from a small spin-orbit
coupling. The nodeless d-wave state has already been discussed for cuprates [57] but spin-orbit
coupling has not been taken into account. In this chapter, based on the recent theory [37],
we examine the evolution with increasing spin-orbit coupling from the nodeless state to the
nodal state from a viewpoint of topology. We show that this evolution depends strongly on
the orbital degrees of freedom in Cooper pairs. In particular, there are two types of d-wave
pairs, which we call orbitally trivial and orbitally nontrivial. In both cases, the gap nodes are
characterized by a Z invariant and carry +2 topological charges related to a chiral symmetry.
However, their charge distribution in the momentum space is different between the two cases,
and this results in a different evolution in which these nodes annihilate to form a nodeless
state. We show that the two types exhibit different Andreev flat band spectra at sample
edges. In Section 3.4, we show a possibility of probing this nodeless state by applying an
in-plane magnetic field. This field leads to the emergence of topologically protected nodal
points and line, which are characterized by a Zs invariant.

3.1 Introduction

Monolayer FeSe grown on SrTiOj3 substrate has generated much attention due to its high
superconducting transition temperature 7., which is higher than all the other Fe-based su-
perconductors [58]. Quasiparticle interference experiments [59] and scanning tunneling mi-
croscopy (STM) [58,60] suggest a plain s-wave pairing state. Angle-resolved photoemission
spectroscopy (ARPES) experiments [28-31] also support this by observing a fully gapped
quasiparticle energy dispersion, though with a nontrivial anisotropy [31]. (See Figs. 3.1(c)
and (d).) The s-wave pairing state in this material is a puzzle since superconductivity is ex-
pected to be driven by repulsive electron-electron interactions [22]. Furthermore, monolayer
FeSe lacks the hole pockets around the I'-point in the Brillouin Zone (BZ), which exist in
other iron pnictide compounds (see Fig. 3.1(b)). In the other iron pnictides, the si-wave
pairing is likely [17,18] and this is driven by spin fluctuations associated with electron scat-
terings between the electron and the hole pocket [22]. These fluctuations are absent in the
monolayer FeSe and therefore the si-wave pairing is unlikely. This has led to a debate about

27
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Figure 3.1: (a) Crystal structure of the monolayer FeSe on SrTiOgs substrate. (b) Fermi
surfaces of monolayer FeSe on SrTiOs substrate from ARPES experiment [67]. (c) and
(d) Anisotropic superconducting gap on the ellipse-like Fermi surface from ARPES experi-
ment [31].

the pairing symmetry. Some proposals are reviewed in Ref. [61] and they include conven-
tional s-wave [59,62], incipient s-wave [63], extended s-wave [64], fully gapped spin-triplet
pairing [65], and nodeless d-wave pairing [32,66].

Recently, the group of Agterberg has reexamined the pairing symmetry based on the
nature of the magnetic correlations in monolayer FeSe [32,68]. Inelastic neutron scattering
experiment in single crystal FeSe [69] observed stripe magnetic fluctuations and also fluctu-
ations associated with checkerboard antiferromagnetic (CB-AFM) order (See Fig. 3.2). The
onset of nematic order suppresses CB-AFM [69]. First-principles spin-spiral calculations [68]
also predicted enhanced CB-AFM fluctuations in monolayer FeSe, claimed that this system
sits near a quantum spin-fluctuation mediated spin paramagnetic ground state. Motivated
by the presence of CB-AFM fluctuations, a symmetry based k - p theory was developed to
describe fermions around M point in the BZ coupled to these fluctuations [32,70]. This the-
ory predicts a fully gapped d-wave state [32]. Though symmetry arguments usually predict
a nodal d-wave state [33], this theory reveals that nodal points emerge only if the relevant
interband spin-orbit coupling exceeds the superconducting gap. This theory thereby natu-
rally accounts for the finite gap minima observed along the expected nodal directions of the
d-wave state [31].



Chapter 3. Nodal topology of superconducting monolayer FeSe on SrTiO3 29

A2 =2y MRTRICEHTBREED
BonGhofcfcHIENE

Figure 3.2: Momentum dependence of the Néel and stripe spin fluctuations at 4 and
110 K [69]. (a) Schematic momentum dependence of the Néel and stripe spin fluctuations in
the (H, K) plane of Brillouin zone. (b)-(s) Constant-energy images acquired at 4 or 110 K
at indicated energies. With increasing higher energies, the Néel and stripe spin fluctuation
overlap and cover a broad area.

A natural question is what is the mechanism that leads to a fully gapped d-wave su-
perconducting state. Indeed, one can ask how such nodeless states are realized when gap
nodes are expected from symmetry. In this chapter, we address this question through an
examination of the evolution of the nodal d-wave state. This question is naturally related to
the growing research on topological insulator and superconductors [10,14, 71]. It originally
started with a study on gapped systems [71] such as quantum Hall systems and topological
insulators, and their surface states are characterized by “bulk-edge correspondence [4].” More
recently this has been extended to gapless systems such as Weyl and Dirac semimetals [72]
and unconventional superconductors [11]. In nodal unconventional superconductors, the sign
change of the pairing potential on the Fermi surface leads to dispersionless Andreev bound
states at a surface of the system [15]. These states are characterized by topological argu-
ments [16, 73]. Therefore, studies of nodes in unconventional superconductors are important
not only to identify the pairing mechanism but also to clarify topological surface states.

Although d-wave states usually have topologically protected nodes in single-band systems,
these nodal points can be annihilated in multi-band superconductors [74,75]. It has been
pointed out that the nodal points merge near the I'-point with those with winding num-
bers of opposite sign in iron-based superconductors [76]. A nodeless d-wave pairing has also
been discussed for cuprates [57]. These previous works did not take account of spin-orbit
coupling, which is essential in our theory. We will show the annihilation of nodes due to
decreasing spin-orbit coupling and that the nodal charge is protected by a chiral symmetry
that is the product of time-reversal and particle-hole symmetries. We also find that the node
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Figure 3.3: Fermi surfaces in normal states (a) without spin-orbit coupling and (b) with
spin-orbit coupling vs, = 12 meV A. The units of horizontal and vertical axes are A1, The
other parameters are given in the main text.

annihilation depends upon the orbital structure of the gap function and find two types of
By, pairing: (a) orbitally trivial usual d,,-wave and (b) orbitally nontrivial pairing with no
momentum dependence. For the latter nontrivial case, node annihilation arises in a natural
and straightforward manner. For the orbitally trivial case, the annihilation is not straight-
forward, and proceeds initially through the creation of additional nodes before annihilating
as the interband spin-orbit coupling decreases.

3.2 Effective model

A pioneering theoretical model for iron based superconductors was introduced by Kuroki
et al [17]. They use ten orbital and two spin degrees of freedom and often they obscures
the underlying physics. In this section, we briefly review symmetry-based k - p-like theory
for monolayer FeSe. This describes the electronic states of monolayer FeSe near the Fermi
level [32]. Density functional theory calculations show that the Fermi surface around M-point
is mainly made of two orbitals, and they are linear combinations of {zz,yz} and 2% — 3>
orbitals of Fe ions. They are described by four electronic states (with two orbital and two spin
degrees of freedom) through an effective k-p theory. The simplicity of this model allows insight
into the underlying physics. It also captures the relevant physics of the superconducting state
that appears in monolayer FeSe [65]. Similar effective models are introduced by Chubukov
et al [77] and Raghu et al [78]. Their models do not contain the spin-orbit coupling, which
plays an essential role for our model.
In this theory, the two-dimensional normal-state Hamiltonian is

Hy(k) = ey (k) 0070 + Yoy (K) 0072 + [z (k) 0y + vy () 04] T2, (3.1)

where k = (kg, ky) is the momentum shift from M-point in BZ and the two types of Pauli
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Table 3.1: Function in Hamiltonian (3.1) and set of the parameters that reasonably describe
the Fermi surface.

co(k) (kI+k;)/2m —p i 55 meV

Vay () akyky 1/(2m) 1375 meV A2
vz (K) Vso Ky a 600 meV A2
Yy (E) Usoky Vso <15 meV A

Table 3.2: Symmetry of functions f(k) and the Pauli matrices 7; and o; used in the k- p
model [32]. They are characterized by irreducible representations I" at the I'-point of BZ.

r f(k) 7 i r fk) 7
Ay e(k) T — Ay — Ty
AQg - - Oz Aoy - -
By kI-kZ — - Biy — —
Bsyy, kyky T — By, — T
Ey - — Ao, Uy} By Ak, ky} -

matrices 7; and o; describe the orbitals and spin degrees of freedom, respectively. The 7,
term is the spin-orbit coupling, which plays an essential role in the d-wave superconducting
state. Its magnitude is related to the on-site spin-orbit coupling but also depends on other
factors. Therefore, it may be small even if the on-site spin-orbit coupling is substantial.
As observed by angle-resolved photoemission spectroscopy (ARPES), the Fermi surface is
reasonably described with the parameters (See Table 3.1).

Figures 3.3 shows the Fermi surfaces in (a) without spin-orbit coupling and (b) with
spin-orbit coupling v, = 12 meV A. The normal state dispersion is given by &+ = ¢y +

Y2+ ’yg + ’y;%y and that have positive-helicity and negative-helicity, respectively. Table 3.2

shows that symmetry of various functions of k and the Pauli matrices 7; and o;.

Superconducting pairing is considered to be induced by the fluctuations associated with
CB-AFM [32]. Agterberg et al assumed that this spin-fluctuation induces usual spin-singlet
and intra-band Cooper pairs and they obtained two types of dy-like pairing by solving the
linear gap equation. Note that with nonzero spin-orbit coupling, the spin-singlet pairing will
generally mix with an even parity spin-triplet pairing [70]. Importantly, for this chapter,
there are two such pairing states that are described in more detail below. The Hamiltonian
is given by the following in the Bogoliubov-de Gennes form:

H(k> = I, [60 (k) 0070 + Yy (k) 00Tz + Vo (k) UyTx]
+y (k) Doopme + i1y [Ag (K) 70 + A (k) 2] oy (3.2)

where Ag(k) = Askyk, /K2, A.(k) = Ao, the I'; matrices describe the particle-hole degree of
freedom, and we take the typical Fermi wave vector ky = 0.2 A=1. The two gap functions
A4 (k) and A, (k) both belong to By, representation. The term Ay (k) 7o has a trivial part in
orbital and a k-dependence of By, symmetry. The A, (k) 7. has an orbital operator with By,
symmetry and no k-dependence. Both Ay (k) and A, (k) channels have the same symmetry
and hybridize in general.
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In order to gain a deeper understanding of these two types of Ba, pairing, it is convenient
to change to the band basis. The Hamiltonian (3.2) is written in block diagonal form with
two 4 x 4 matrices. One of these matrices is

€0 T Vay Yy — 1Yz 0 Ag+ A,

Yy + 1Yz €0 — Vzy —Ag+ A, 0 (3 3)
0 —Ag+ A, —e+ Yy Yy + 1Yz ’ ’

Ag+ A, 0 Yy — 1Yz —€0 — Vxy

while the other matrix is given by transforming A; — —A; and v, — —7,. Performing a
unitary transformation that diagonalizes the normal part of the Hamiltonian, we obtain in
the band basis, we find

i /a2 2 2 _ A=) AzYay i
€+ Yz Ty T Vay 0 24 ~21 A2 Ad+ 24 ~21 A2
Yoty iy Yoty iy
Ay A (yy—17,
0 R R R YAy v verer Wy
VetV iy VetV tVzy
AL (Yy—iYa) A Yz
T2 By wvwevorylit RV 0
VetV T Vzy VetV T Vzy
Ay Az (vy—ive)
Ad+ 2 Z;y 2 22 y2 gc2 0 _60_ ’7'%—’_75_'_7%3/

This band basis representation shows that the Hamiltonian has both intraband and inter-
band pairings. The interband pairing arises only from the orbitally nontrivial channel A,
in combination with the interband spin-orbit coupling. The intraband pairing contains both
pairing channels, and the orbitally nontrivial A, channel acquires k-dependence with Ba,
symmetry. Figure 3.4 shows the pairing anisotropy in case of only (a) orbitally trivial pairing
and (b) orbitally nontrivial one in the band basis. Note that here only spin-singlet pairings
are considered. In general, spin-singlet and triplet pairings can hybridize due to the interband
spin-orbit coupling.

The interband pairing generates a gapless superconducting d,, state, provided that the
interband spin-orbit coupling is sufficiently small. To examine the condition of the emergence
of nodal points along the nodal direction k; = 0 or ky, = 0, it is useful to consider the
quasiparticle energy of the Hamiltonian (3.2),

Ei(k) = \/63 +2, 22+ A AZE 2\/(60%@ + A0A)? + (12 +12) (& + A2).(3.5)

Along the nodal direction k, = 0, so that 7,y = v, = Ag = 0, we obtain Ei(k) =

‘VE(Q)+A§:E|’71|

k*),

. This shows and therefore following relation at the nodal points (labeled

€ (k") = 7z (k") — AZ (k7). (3.6)

The nodal points along the directions of k, = 0 or k, = 0 may appear once the interband
spin-orbit coupling satisfies |v;| > A,. As |7y,| decreases, a transition occurs from a nodal to
a fully gapped state, which we investigate in the remainder of this chapter. Note that this
theory implies that gap minima in the gapped state locate along the nodal directions in the
nodal phase, which agrees with what is observed in ARPES measurements [31]. Figure 3.5
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Figure 3.4: Pairing anisotropy and topological charges in (a) orbitally trivial pairing and
(b) orbitally nontrivial pairing in band basis with only intraband pairing. The solid lines
represent Fermi surface in normal states. The circles represents +2 topological charge. (See
Section 3.3.)

shows E_(k) on the Fermi surfaces for vy, = 12 meV A(a) and vy, = 80 meV A(b). Along
the directions of k; = 0 or k, = 0, the minima of E_(k) locate between the Fermi surfaces
in the normal state. When the spin-orbit coupling is strong (vs, = 80 meV A), nodes exist
and they locate between the Fermi surfaces.

3.3 Transition of chiral topological charges

3.3.1 Chiral topological charges

Now we examine how the fully gapped d,, state appears as the interband spin-orbit coupling
decreases. The following sections are the main parts of Chapter 3. When the interband spin-
orbit coupling is sufficiently large, the pairing state is nodal. We show that the nodal point
can be characterized by a topological charge that is a 2Z invariant. The key symmetries in
defining this charge are time-reversal T' and particle-hole conjugation C, which act on H (k)
as

TH(k)T' = H(—k), (3.7)
CH(k)C™! = —H(-k), (3.8)
where T' = KT'y1 (i0y), C = KI'y1900, and K is again the complex conjugate operator. Since
T? = —1 and C? = 1, this Hamiltonian belongs to Altland-Zirnbauer (AZ) class DIII [7].
Furthermore, we define a chiral operator S = —iTC = T,790,, and SH(k)S™ = H(k).
Since S anticommutes with H(k), H(k) can be written in a block off-diagonal form using the
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Figure 3.5: Gap anisotropy (solid) on the normal-state Fermi surfaces (dashed) for (a) vso =
12 meV A and (b) vso = 80 meV A. Along the directions k, = 0 and k, = 0, the gap minima
lies between the Fermi surfaces.

basis in which S is diagonal:

t_ 0 q(k)
VH(k)VT = [ qT(kz) 0 ] , (3.9)
where
q(k) = eo(k)Too0+ Yy (k) 1200 + e (k) TeOy + Yy (k) 7204
+i (Aq (k) 10 + A.72) 00, (3.10)

Note that det g(k*) = 0 at the nodal point k* because of E_(k*) = 0.

In the class DIII in two dimensional systems, a topological charge can be defined by the

winding number [34], which is given by

We= o ¢ dhy T o7 (k) Via(k)] (3.11)

™ Jr

where the contour L is a loop around the nodal point. This charge is an integer invariant. The
Hamiltonian has the parity symmetry, and this ensures a two-fold degeneracy of the nodal
point. Consequently, each node has a 2Z topological charge [36]. We find that the trivial
and nontrivial gap functions in the orbital space have different nodal topological charge
distributions in momentum space as shown in Fig. 3.4 and that a topological transition exists
between these two cases.

To understand the different nodal charge distributions, it is useful to consider the limit
in which the interband pairing can be ignored. This is achieved by setting A, = 0 in the
orbitally trivial case and by setting Ay = 0 and |vy;| < |yzy| in the orbitally nontrivial case.
When the interband pairing is negligible, the nodal points in two bands are independent. In
this case, following Refs [16,73], Eq. (3.11) is simplified to

Wee = — Z sgn (8kl£,:ct‘k:k0) sgn <Af0) . (3.12)
koeS,+
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Figure 3.6: Contour £ (solid line), the Fermi surface (dotted line) and set of points Sy =
{k:[)F kg } in Eq. 3.12. The sign of + and — represent sign of d,, superconducting gap,
respectively.

where ¢+ = eg £ /72 + YE+ 72, A,f is the superconducting gap of +-helicity and the sum
is over the set of points S,+ given by the intersection of +-helicity Fermi surface with the
one-dimensional contour £* (See Figure 3.6).

We consider explicitly the topological charges of the adjacent pair of nodal points in
k(> 0) direction, (k%~,0) and (ki*,0) with 0 < k%~ < k**. In the orbitally trivial case, the
superconducting gap Af of both bands is identical Af = —Ay. Therefore, two nodal points
will have the topological charges with the same sign. We call this the same sign pair state.
On the other hand, in the orbitally nontrivial case, A,f ~ FYzyAz, the two nodal points have
the opposite sign of topological charge. We call this the opposite sign pair states. In general,
the orbitally trivial and nontrivial gap functions hybridize, but the nodes are still classified as
either same sign pair or opposite sign pair state. A transition between these two topological
states occurs with varying the spin-orbit coupling. In both cases, as the spin-orbit coupling
decreases, a gapped d, state must arise assuming that A, # 0. The development of this
gapless state is intuitively clear for opposite sign pair states, but for same sign pair states.

To understand this point, we generalize the treatment of topological charge. The topo-
logical charge (3.11) can be written in the following form:

1 2 (0Ag — Ve A
We = j{ dk; - Vi, tan™? s (€0 = d ;’xy z)2 .
T™Jc EO_Vm_’Yy_Fny_Ad—i_AZ

(3.13)

This is the winding number of the vector field (€3 —~2 —%3 —'y:%y — A2+ A2 2(60Ag — YayAz))
around the nodal point. The term which determines whether the same or opposite sign pair
is the numerator epAg — vz A, since the denominator €2 — 2 — 'yf, — 'y%y — Ag + A? behaves
similarly for both cases. Substituting k-dependence, the numerator is given by

B2 (k) — aA()) . (3.14)

0 () A (k) = 72, () . = oy (‘2o
0



36 Chapter 3. Nodal topology of superconducting monolayer FeSe on SrTiO3

opposite sign pair states —» nodeless states < same sign pair states
(a) (b) (@)
ky Dy A ky
‘9 i
te ;

Figure 3.7: Schematic picture of transition to nodeless states from opposite (left) and same
sign pair states (right). The arrows represent that two nodal points merge with each other.
In same sign pair states, each inner nodal point splits into three nodal points (surrounded
by a dotted line) in transition to nodeless states.

If Ay = 0, the sign of the numerator is the same at the two nodal points k*~ and k*T.
This leads to topological charges of opposite sign, i.e., opposite sign pair states. However, if
Ay # 0 and sign of Ag/k3eo (k) — al\y changes its sign between the two nodal points, the
topological charges have the same sign, leading to the same sign pair states. In order to
obtain a condition to distinguish these two cases, we consider k, = 0 direction and define Ky
as the solution of €y (k,) —ak3Ag/Aa = 0. In the case of same sign pair state, kX~ < ky < kiT,
and this is not satisfied for opposite sign pair states. With the nodal condition Eq. (3.6), we
obtain the following inequality,

A
2muv2, — mA < aA—Zkzg < 2mv2 +mA (3.15)
with
u A
A= \/ Evgo — m—g +vd. (3.16)
Let us consider the case of Ag = 11 meV and Ay = —1.5 meV, which was used earlier

to reproduce a gap anisotropy consistent with experiment, and assume a strong interband
spin-orbit coupling vs, = 80 meV A. Then this is classified as opposite sign pair states.

Now we turn to study how the gapless d,, state develops when nodal points merge and
annihilate. This has been studied in Dirac and Weyl semimetals [72] and also in s-and d-wave
superconductors [76], but spin-orbit coupling is not an essential interaction in those cases.
In the case of opposite sign pair states, the nodal points annihilate as the interband spin-
orbit coupling decreases. However, in case of same sign pair states, nodal points cannot
annihilate directly because their topological charges have the same sign, and we find an
involved mechanism illustrated in Fig. 3.7. Indeed, as the interband spin-orbit coupling
decreases, two nodal points are created near the old nodal point (panel (c)). As the spin-
orbit coupling further decreases, one nodal point stays near k*~, while two nodal points move
off the k; or k, axis. With decreasing the spin-orbit coupling, they continue to move and
annihilate in pairs with other nodes moving from another direction. Figure 3.8 shows the
phase diagram of chiral topological charge distribution. There are five regions: nodeless,
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Figure 3.8: Phase diagram of chiral topological charge distribution in (A, vs,) space. There
are five regions: nodeless, opposite (same) sign states and two states which have 8 nodal
points not on the k, and k, axis. We set Ay = —1.5 [meV] and the black dot represents the
parameters which reproduces a gap anisotropy consistent with experiment in a monolayer
FeSe on SrTiOs.

opposite (same) sign states and two states which have 8 nodal points not on the k, and k&,
axis. Indeed, in case of same sign pair states, nodal points cannot annihilate directly and the
transition to nodeless states occurs through the states with 16 nodal points.

3.3.2 Andreev flat band

We find that either same sign pair states or opposite sign pair states appear when the su-
perconducting state with strong spin-orbit coupling has gap nodes. The state which has 8
nodal points not on the k, and k, axis only exists in a narrow range of parameters, and so
we do not consider it further here. It would be of interesting experimentally identify same
sign or opposite sign pair states. As we show below, one can identify through an examination
of edge states. However, we note in advance that the values of the spin-orbit coupling used
below are larger than those in monolayer FeSe grown on SrTiOs. Thus, we do not predict a
flat band for this material but there still exist in-gap edge states that are not topologically
protected. In order to observe them, it is necessary to enhance spin-orbit coupling, by using
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ky

Figure 3.9: Schematic pictures of the relation between Wy (left) and N (k,) (right) in case of
(a) opposite sign pair and (b) same sign pair states. Red and blue points indicate W, = +2
and —2, respectively.

to use a different substrate or doping carriers, for example with Te.

Nodal points with the nontrivial topological charges imply the existence of dispersionless
in momentum parallel to an edge, Andreev bound states with flat band spectra at sample
edges. References [16, 35] showed that the number of Andreev flat band is related to the
one-dimensional winding number N (k) defined by

N (k) :/ dky - Tr [~ (k) Vi, q(R)] (3.17)

where k|| (k) is momentum parallel (perpendicular) to the surface. We now consider the
case that edges running along the y-direction and then kj = (0,k,) and k; = (k;,0). Fig-
ure 3.9 shows that the relation between the one-dimensional winding number N (k,) and the
topological charge W, defined in Eq. 3.11. Figure 3.9 (a) shows in the case of opposite sign
pair states is nonzero |N (k)| for k, between the nodal points if their topological charges
have opposite signs. In the case of same sign pair states |N (k)| is nonzero for all momenta
between the outermost nodal points (Figure 3.9 (b)).

For further investigation, we introduce a lattice model corresponding to the BdG Hamil-
tonian in Eq. (3.2). We replace k; — sink; and (k2 + k2) /(2m) — 2t (2 — cosk, — cos k)
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with ¢t = (2m) ™" in Eq. (3.2) and use A, and Bj, for annihilation operators of two orbitals,
spin ¢ =T and | electron at ¢. We divide H into three parts, sHg, Hsoc and Ha, and they
are given by

Ho = —t > (Al Ajo+ Bl,Bio) = (u—40)Y | AL i + Bl,Bio |

<’i’?j>70' ’I:,O'

a
+Z Z (AIUA'ierero’ + A1:+m+ygAia' - (AIUAi+w7ya- + Al:—"-m—ya'AiU))
1,0

a
~T " Bl Bitaoiyo + BligsyoBio = (Bl Bisayo + BlioyoBio) |+ (3.18)
1,0

U,
Hsoo = —= [(AEBH:@ - ALwTBu) - (ALBHscT - AhwiBﬁ)
[3

+ (BZTAH‘”J' - B;-rerTAu) — (BLAH_QCT — BngwiAiT)}

+2}2i; Z [(A;[TBHyi - AI—&-yTBu) + (ALBHZJT - ALyiBiT)

(]

+ (Bl Ay = BlyAi) + (Bl Aivyy = Bl 40| (3.19)

A " t gt t gt i
Ha =~ > (AR ALy + A5 AL aiyy) — (AR A gy + AL ALy
?
toal t gt t gt F gt
- (AuAi—:c—yT + Ai¢Ai+w+m> * <Au‘4i—:c+y¢ * AuAi+z—m)}
A i gt t gt t gt i gt
a2 > (BBl amys + BiBlywiy) = (BBl sy + BliBliwry)
1

i gl i i i gl i gl
~ (BLBl oy + BLBliwiyr) + (BUBlapys + B Bliw )|

gt ot gt i gt _ gt gl
#0803 | (Al - 4l AL) - (B]8], - B B])|

(2

+ hec. (3.20)

This system has a cylindrical geometry with two edges at ¢, = 1 and N, in the z-direction
and periodic in the y-direction. We numerically diagonalize this Hamiltonian for each k, and
examine edge states. We set N, = 10000 and Figure 3.10 shows the energy spectra for the
four sets of parameters: (a) no nodal points, (b), (c) opposite sign pair states and (d) same
sign pair states. Without nodal points, we do not have Andreev flat band. Once nodal points
appear, flat band states also appear. In cases of opposite sign pair states (b) and (c), flat
bands exist at £ = 0 between the two nodal points that have opposite topological charges,
and the number of the flat band states is two for each edge. On the other hand, in the case
of (d) same sign pair state, flat bands exist in a part including k, = 0. Four flat band states
cross k, = 0 and two of them terminate at each of the two nodal points. Thus, the number of
flat band states is identical with |N(k,)| as shown in Fig. 3.9. Strictly speaking, in Fig. 3.10
(d) the gap at k, = 0 is finite, but this is due to the finite size effect and not intrinsic. We
have confirmed that there is no gap at k, = 0 by using the recursive Green’s function method
explained in Appendix B.
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Figure 3.10: Energy spectra for (a) no nodal points (b) opposite sign pair (c) opposite sign
pair (d) same sign pair states. We set the parameters as (v5,[meVA], Ag[meV], Ag[meV]) =(a)
(50,11, —-1.5), (b) (60,11,—-1.5), (c¢) (70,11,—1.5) and (d) (80,4, —10). The vertical axis is
scaled by t = (2m)~L.

In experiments, boundaries may be misaligned. It is worth mentioning their effects on the
distinct topological phases and the resultant anisotropy of the number of Andeev flat bands.
The relation of the number of flat bands and |N (k”)] is also useful for the case of edge not
parallel to (1,0) and or (0,1) direction. For instance, consider edges along (1, 1) direction
and denote the parallel component of wave vector k. Figure 3.11 (a) and (b) show the 1D
winding number |N (k:”)‘ and the topological charge W, for the case opposite sign pair and
same sign pair state, respectively. For both cases N (k;”) = 0 for any k|, and therefore, no
Andreev flat band appear.

Finally, we note that one should take into account the interaction effects for the bound
states. It has been pointed out that they are susceptible to surface instabilities due to a
large density of states intrinsic to flat bands [35,79]. The most likely candidate is edge fer-
romagnetism, which spits the flat bands [79]. Such a surface instability is seen in tunneling
spectroscopy experiments in the cuprate superconductor YBasCusO7, and the zero-bias con-
ductance peak split below the edge transition temperature, approximately 0.17, [80]. We
leave the study of possible edge instabilities to future work.
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Figure 3.11: Schematic pictures of the relation between W, (left) and N (k) (right) in case
of (a) opposite sign pair and (b) same sign pair states. We consider the edges running along
(1,1) direction. Red and blue points indicate W, = +2 and —2, respectively.

3.4 Effects of in-plane Zeeman field

A recent study shows in-plane Zeeman field induces gapless superconductivity with a partial
Fermi surface in two-dimensional spin-orbit-coupled electron systems [81]. Motivated by this
study and in order to obtain more information about the gap nodes, we examine the effect
of in-plane Zeeman field. The Zeeman field splits the band and breaks the time-reversal
symmetry. Here, we assume the Zeeman field applied to the z-direction, the corresponding
Hamiltonian is H; = —h,I',190,.

In order to understand when gap nodes arise, we examine the energy dispersion along the
nodal direction k, = 0 and k, = 0. The quasiparticle dispersions for positive energy are

Balh) = |Veo (0 + A2\ (B2 40 (o k= (52, 0) (3.21)
where each Ey (k) value is doubly degenerate and
Eiyi(k) = ‘ €3 (k) + A2 £, (k) £ hy| (for k= (0,ky)). (3.22)

Consequently, nodes appear on the k, axis for /72 4+ h2 > A, and on the k, axis for
Yyl + |ha| > Ag. It is worth pointing out that the nodes can appear even when the spin-orbit



42 Chapter 3. Nodal topology of superconducting monolayer FeSe on SrTiO3

coupling is weak. However, since the Hamiltonian does not belong to the symmetry class
DIII, we cannot apply the analysis of Section 3.3 and their nodes are not characterized by
2Z invariant Eq. (3.11). In this section, we give the topological charges for such nodes.

Figure 3.12 shows the line and points nodes when the in-plane field is applied. Pan-
els (a)-(c) are the case of weak spin-orbit coupling, vs, = 12 meV A. In this case, strong
in-plane Zeeman field h, expands nodal lines. Once the expanded nodal lines touch each
other, nodal points appear on the k, axis (Panel (b)). Figure 3.13 shows that the quasiparti-
cle dispersions along the k, and k, axis in the case of Fig 3.12(b). Stronger field annihilates
the nodal points by touching the nodal lines (Panel (c)). Panels (d)-(f) are the case of strong
spin-orbit coupling, vs, = 80 meV A. As we mentioned in the previous section, the strong
spin-orbit coupling makes the nodal points. Once in-plane Zeeman field h, is applied, the
nodal points on the k, axis are inflated and form the nodal lines (Panel (d)). However, the
nodal points in k; axis still remain until the nodal lines touch each other in k, axis (Panel (f)).

Let us discuss these nodal lines and points from viewpoint of symmetry. The Hamiltonian
has another symmetry related to the spatial inversion. We define the inversion operator I as
I =Ty1,00, and then

TH(K)I™' = H(—E). (3.23)

The inversion operator I is unitary and I? = 1. In the presence of the inversion symmetry,
the AZ + T classification [36] can be applied (See also Section 2.2.3). We discuss the line
and point nodes based on this classification.

Z> line charge

We show that the line nodes can be characterized by a Zy invariant [37,39]. Combining with
C and I,

(CIYH(k) (CI)™' = —H (k). (3.24)

and (CI)* = +1. One can find a unitary operator  which transforms H (k) as anti-symmetric
matrix. Define Uor = UcU; = I'y7,009 where Ug = I'y90¢ and Ur = I'g7,00, and then,

UcrH(k)'UL, = —H(k). (3.25)
Becaouse Ugry is real symmetric, it can be diagonalized as
Ucr = QAQT, (3.26)

where (@ is a unitary matrix and A = diag (A1, -+, Ag) with [A;| = 1 for all j’s. Inserting
this into above,

QAQTH(K)TQ*ATQ" = —H (k). (3.27)

Since A is diagonal, its square root can be defined, v'A = diag (v/A1,--- ,v/Ag) and it is easy
to show the following relation,

(\/KTQTH(k)Q\/K>T — VA QTH(K)QVA. (3.28)
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Figure 3.12: Line and points nodes with varying in-plane field h,. The solid lines represent
line nodes. The red points in (b), (d) and (e) represent position of nodal points. Spin-orbit
coupling is (a-c) vs =12 [meV A] and (d-f) 80 [meV A].
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Figure 3.13: Energy dispersion along the k, axis at k, = ki (a) and k2 (b) and along the k,
axis at k, = 0 (c). Note that there are doubly degenerate along the k, axis and |E| ~ 20
for the other four bands. The parameters are vg, = 12 [meV A] and h, = 11 [meV] same as

Fig 3.12(b).
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Figure 3.14: Zy invariant for (a) line and (b) point nodes. (a) The region of P(k) < 0. (b)
Phases (blue and red lines) of the eigenvalues Q (k) in Eq. (3.41) along the contour £ (shown
in (c)) encircling a nodes. Each color line is pair of the eigenvalues. The blue (red) lines
indicate the presence of a nontrivial (trivial) topological charge. The parameters are vg, = 12
[meV A] and h, = 11 [meV] same as Fig 3.12(b).

Hence, an anti-symmetric matrix is given by H(k) = QT H(k)Q where the unitary operator
Q = QV/A. For each line node, we can define a Z, invariant (—1)! with the sign of Pfaffian

P(k) =sgn [P H (),

(—1)! = P(k_)P(ky), (3.20)
where k4 (k_) is momenta inside (outside) of line nodes. Figure 3.14(a) shows the region of
P (k) < 0. Therefore, each line node has Zy invariant (—1) in this case.

Z-> point charge

Next, we show that the point nodes are also characterized by a Zy invariant [36,39]. Even
when in-plane Zeeman field is applied, one can define the pseudo-time-reversal operator as
T = M,TI. Here M, =T,7, (io,) is the mirror operator, and acts as

M, H(k)M' = H(k). (3.30)
Then, the pseudo-time-reversal operator T = I, 7, (ioy) K acts as
TH(k)T™' = H(k). (3.31)

Notice that this pseudo-time-reversal operator~T does not link the momentum k to —k and
impose a local constraint in k space. Since 72 = 41 and (CI )2 = +1, this Hamiltonian
belongs to the symmetry class BDI in AZ + Z classification [36] and a topological charge is
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defined as a Z invariant. While one can define the second chiral operator S = —T'CT and a
related Z invariant winding number as in Eq. (3.11), this Z-invariant winding number is zero
in this case. This is because class BDI in AZ + 7 classification has only Zy invariants (See
Table 2.4.)

We now show that the point nodes in the in-plane Zeeman field have a nontrivial Z;
invariant. Since H (k) anticommutes with S, it is written in the form of Eq. (3.9) with the
off-diagonal block

(k) = e€o(k)1000+ Yoy (K) T200 + V2 (K) Toy + vy (E) T20x — haToos
+i(Ag (k)1 + AL (k) T0) 0. (3.32)

It is instructive to define the corresponding flat band Hamiltonian [7] following Ref. [35]. The
Hamiltonian H (k) is diagonalized as

Loty 0" ][0 |- [ ] 63

where i(= 1,2, 3,4) is the index of eigenvalues such that 0 < A; < Ay < A3 < A\y. Multiplying
Eq. (3.33) by H(k) one more time, we obtain a pair of 4-dimensional eigenvalue equations

(k)G (k)X (k) = N(k)x; (K), :
q'(k)qk)n (k) = N (k)n; (k) (3.35)
Therefore, the eigenfunctions [X;t(k:), ni(k)] is obtained from the eigenvectors of §(k)q' (k)

or ¢'(k)q(k):

q(k)q' (k)ui(k) = N (k)ui(k), (3.36)
§'(k)q(k)vi(k) = X (k)vi(k). (3.37)
The eigenvectors {u;(k)} and {v;(k)} are normalized. One can easily check that {v;(k)} are

obtained from
vi(k) = " (k)ui(k). (3.38)

Hence, the eigenfunctions [X?E

[ 3%1[((3 ] B \1f [ iv,((k):) ] B \1[ [ iqT(u (k() k)/ A ] (3.39)

Next, we define the flat band Hamiltonian as Q(k) = 1 —2P(k) with the projector P(k) onto
the filled Bloch states [7],

_ 0 uwi(k)vl (k) | _
Q(k)z[vi(k)ui(kﬁ 0 ]Z

i i

] are

0 ;i (k)u! (k) LK)

) Ailk) 1 (3.40
L (ki () ]( )

Therefore, it is again represented in the form of Eq. (3.9) and the off-diagonal block of Q(k)
reads

20 =3 A;k)uxk)ui (k)i(k). (3.41)
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and this 4 x 4 matrix is not hermitian.

The topological charge of the point nodes in the class BDI is determined by tracking
the eigenvalues of Q(k) [36]. The eigenvalues of Q(k) are two complex conjugate pairs
+e' and their phases o may have a nontrivial winding along the contour £ encircling a
node. Figure 3.14(b) shows that phases of two pairs of the eigenvalues of Q(k) around a
nodal point in case of vy, = 12 meV A and h, = 11 meV, where one nodal point exists
on positive k, axis (see Fig. 3.12(b)). The phases of one pair point touch —m or = and
this indicates a nontrivial winding around £. In general our eight-band model (including
particle-hole space), this winding number conserves only its parity since the pair of +m
crossings is allowed to annihilate [36]. Therefore, the nodal point has this Zy topological
charge. (Z topological charge) = (—1)N= where N, is the number of 7 touching points.
Notice that the nodal point can be inflated and mutate into a Zs line node by tilting Zeeman
field. The line node inherits a Zs topological charge of the nodal point.

Finally, we remark that the nodal points originating from strong spin-orbit coupling
without Zeeman field have two types of topological charges: Z topological charges defined in
Eq. (3.11) and nontrivial Z, charge defined from the eigenvalues of Q(k).

3.5 Conclusion

We have discussed in this chapter the gap nodes in monolayer FeSe on Sr'TiO3 substrate from
a topological perspective. We have employed the effective two-orbital model which includes
two types of superconducting pairing: orbitally trivial with usual d-wave anisotropy and
orbitally nontrivial isotropic one. With this model, we have examined the evolution with
increasing spin-orbit coupling from the experimentally observed nodeless state to a nodal
state from a viewpoint of topology. We have shown that this evolution depends strongly on
the orbital degrees of freedom in Cooper pairs. Our work highlights the annihilation of gap
nodes due to spin-orbit coupling and demonstrates that the nodal charge is protected by a
chiral symmetry.

If the interband spin-orbit coupling is controlled to be sufficiently strong by using different
substrates or carriers doping for example with Te, nodal points appear with carrying 2Z
topological charges. We have found that the momentum-space distribution of the topological
charges depends strongly on the orbital character of the pairing as shown in Fig. 3.7. When
the orbitally trivial pairing is dominant, the adjacent pair of nodal points each axis have
topological charges with the same sign (same sign pair state). On the other hand, when
the orbitally nontrivial pairing is dominant, their topological charges have opposite signs
(opposite sign pair state). In the latter case, the nodal points can merge and are annihilated
directly with decreasing interband spin-orbit coupling, because they have opposite topological
charges. However, in the case of same sign pair states, nodal points cannot annihilate directly.
We have found that this annihilation occurs through an involved mechanism. As the interband
spin-orbit coupling decreases, two nodal points are created near the old nodal point. As the
spin-orbit coupling further decreases, one nodal point stays while two nodal points move
off the kg- or ky-axis. With decreasing the spin-orbit coupling, they continue to move and
annihilate in pairs with other nodes having moved from another direction. The nodal points
with the nontrivial topological charges imply the existence of Andreev band states that are
dispersionless in the direction parallel to a sample edge. We have shown that Andreev flat
band spectra differ between the cases of same sign and opposite sign pair state.
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We also considered Zeeman coupling to examine the effects of broken time-reversal sym-
metry. In this case, we have found that line and point nodes can appear even when the
spin-orbit coupling is weak. We have discussed these nodes from viewpoint of symmetry and
found that they are topologically protected by a Zo invariant.
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Chapter 4

Bogoliubov Fermi surfaces in UPt3

Multi-orbital superconductors with even-parity and broken time-reversal symmetry may have
a Fermi surface of Bogoliubov quasiparticles at zero energy, which we call Bogoliubov Fermi
surface. Bogoliubov Fermi surface is topologically protected and we apply this idea to heavy-
fermion superconductor UPt3. With symmetry consideration, we propose the paring of mix-
ture of spin-singlet d-wave, spin-triplet in-plane p- and out-of-plane f-waves that belong to
the two-dimensional representation Ej, in the point group Dgj. We show that a finite in-
plane p-wave pairing amplitude gives rise to the Bogoliubov Fermi surfaces and finite density
of states at zero energy. We further calculate the temperature dependence of thermal conduc-
tivity x by using the Boltzmann theory with relaxation time approximation and show that the
Bogoliubov Fermi surfaces explain for the finite /T and anisotropy of thermal conductivity
observed around T = 0.

4.1 Introduction

4.1.1 Multicomponent superconductor UPt;

The uranium superconductor UPt3 has attracted attention over more than two decades due
to its multiple superconducting phases [82]. Experimental data of specific heat [83-85] and
ultrasonic velocity [86] support that the temperature and magnetic field phase diagram has
three superconducting phases, A, B, and C as shown in Figure 4.1(a). It is believed [87]
that a weak antiferromagnetic order below Ty = 5 K [88-90] splits the transition into two,
T+ ~ 550 mK and T, ~ 480 mK. The C phase is stable under high magnetic field at low
temperatures.

The pairing symmetry in UPts is still under hot debate [82]. It is believed that the
symmetry belongs to either one- or two-dimensional irreducible representation of the point
group Dgy, since this is the relevant point group of the space group P63/mmec of the crystal
structure. The multiple superconducting phases indicate that the order parameters belong
to a two-dimensional representation (11,72): E14 or Eay (even-parity) or Ei, or Ey, (odd-
parity). Let us choose the bases such that (n1,72) o« (1,0) in the A phase and x (0,1) in
the C phase [82]. The weak antiferromagnetic order with modulation vector @ = (1/2,0,0)
lowers the crystal symmetry from hexagonal to orthorhombic (Dsy,), and reduces the two-
dimensional representation of the point group Dg, to two one-dimensional representations.
The transition temperature splits into two as a consequence [92,93]. Muon spin rotation-
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Figure 4.1: (a) Schematic phase diagram of UPt3 in the space of temperature and magnetic
field [82]. (b) Measurement of Kerr effect [40]. Kerr angle (red, left axis) and the real part of
the mutual inductance (blue, right axis) are plotted as a function of temperature. The solid

line is a guide to the eye of the polar Kerr angle 0y o \/[1 — (TCJF/TC)Z} [1 — (T{/Tc)z} for

T < T ~ Tke. Ok is proportional to the square of the product of the real and imaginary
components of the order parameter [91].

relaxation [94,95] and polar Kerr effect experiments [40] show that the B phase breaks the
time-reversal symmetry. This indicates a chiral pairing symmetry, (n1,72) o (1,in) with
real 7. Figure 4.1(b) shows the result of polar Kerr effect [40]. The polar Kerr angle 0k is
proportional to the square of the product of the real and imaginary components of the order
parameter [91].

The gap nodes structure of UPt3 has been studied by thermal conductivity [96,97], NMR
1/Ty [98], specific heat [85,99], penetration depth [100,101]. Table 4.1 lists the power-law
temperature dependences of various quantities in the low-temperature regime predicted for
polar and axial type gap functions. These results imply that the gap structure of UPts is
hybrid [102], i.e., the coexistence of line and point nodes. The first proposal of hybrid gap
function is Ey, representation by Putikka and Joynt [103] and later by several authors [92,
93,104]. Its spin part is singlet and its orbital part is d-wave: {k.k,,kyk.}, the gap has a line
node in the basal plane and point nodes at the north and south poles of the Fermi surface in
the normal-state. This is consistent with the observed power-law temperature dependences
for various quantities in the low-temperature regime. However, this Fi, gap function is
incompatible with the result of the nuclear magnetic relaxation (NMR) Knight shift [105],
which implies spin-triplet pairing. Another plausible candidate is Fs, representation [106—
109]. It is spin-triplet pairing and the d vector points along the ¢ axis. This explains the
anisotropy in the temperature dependence of upper critical field H.o [110,111]. Its orbital part
is f-wave: {kz (kg — k;) ,kakykz}, the gap also has a line node in the basal plane and the
point nodes at the north and south poles. This state has the d vector pointing along the c axis
due to strong spin-orbit coupling and can explain the anisotropy of Hee [110,111]. However,
this FEs, representation is also incompatible with the result of Knight shift [105], which
implies that the d vector has two spin directions. Recent field-orientation dependent thermal
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Table 4.1: Temperature dependences of various quantities at low temperatures in UPts, and
prediction for polar and axial type gap functions.

Polar Axial
UPt .
23 Aok, Ao (kg +iky)
Thermal conductivity & [96,97] (30 mJI; <T) T? T3
T3
NMR 1/T [98] (100 mK < T) T3 5
2
Specific heat C' [85,99] (80 mK < g: < 300 mK) T? T3
Penetration depth 1.7 1.T 1.7
A"2(T) — A=2(0) [100,101] |: T2 [|: T3 |: T2

conductivity experiments [112,113] indicate another possibility, F1, representation [114]. Its
orbital part is another f-wave: { ky (5]{:3 — 1) s ky (5k§ — 1) }, and this predicts a vertical line
node in both A and C phases, and two horizontal lines nodes in both B and C phases.
The spin part of the E7, representation has two candidates for the B phase, planar state
(Jkz + 2ky) (5kZ — 1) and chiral state 2 (k, + iky) (5k2 — 1). It depends on whether the spin-
orbit coupling is strong or not. The planer state is compatible with the result of Knight
shift [105] since the d vector can change its orientation by magnetic field. On the other
hand, in the chiral state, the d vector is pinned to along the ¢ axis due to strong spin-orbit
coupling, and this explains the anisotropy of Hes [110,111]. However, the field-angle variation
of the specific heat experiment [115] did not observe any in-plane angular oscillation in any
phase, while all the candidate gap functions E14, E1y, and Es, breaks the in-plane rotation
symmetry. Table 4.2 summarizes candidate gap functions in the B phase.

Although several experiments have observed line node-like behaviors, Blount’s theo-
rem [116] implies the absence of line nodes in the spin-triplet two-dimensional representations
since the line nodes are unstable against perturbations which preserve the symmetry of the
system. Recently, Yanase adopted a generic order parameter in the F», representation tak-
ing account of nonsymmorphic crystal symmetry of UPt3 and showed that at most 98 point
nodes [41].

4.1.2 Thermal conductivity

Superconductors are perfect conductors of electronic current but poor conductors of heat
current. In fact, the conventional superconductors are fully gapped and their thermal con-
ductivity divided by temperature x/T with approaching zero temperature due to no thermally
excited quasiparticles [117]. However, the situation is different in unconventional supercon-
ductors with nodal gaps. The nonzero quasiparticle density of states is induced by impurities
and this produces a finite residual /T even at T' = 0 [118]. The residual x/T at T' = 0 which
is called wniversal transport is theoretically pointed out first by Patrick Lee [119]

T 2
lim S _ kB Al

4.1
750 T 3 Foulhg’ (4.1)
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Table 4.2: Candidate gap functions in the B phase. All the candidate gap functions have
horizontal line nodes and point nodes.

chiral E1q planar FE1, chiral FEjq, chiral Fy,

ke (ko +iky)  (Gko + 2ky) (5k2 — 1) 2 (ko +iky) (5k2 — 1) 2k (ko + iky)®
Multi-component d vector [105] No Yes No No
Anisotropy of H.o [110,111] No ? Yes Yes
Breaking of time-reversal

Y N Y Y

symmetry [40,94,95] s © s s
Field-orientation .dépendent Yes Yes Yes No
thermal conductivity [112,113]
Field-angle dependence of No No No No

the specific heat [115]

where Nr and v are the density of states and the velocity at the Fermi level, respectively. a
is a coefficient of the order of unity which depends on the topology of the gap node [118]. Ag
is the is the maximum amplitude of the superconducting gap and the parameter y is measured
from the slope of the gap at node, and this is given by p = A%)%Ef) where ¢ is the in-plane
angle of the wave vector on circular Fermi surface. The universal transport is independent of
impurity concentration because quasiparticle density and scattering rate both increase and
cancel each other as impurity concentration increases. Indeed, this universal behavior was
verified in the d-wave superconductor YBagCu3zO7 [120] and p-wave SroRuQOy4 [121].

The thermal conductivity in UPt3 was measured by several groups and its anisotropy was
first studied by Lussier et al. [96,97]. Thermal conductivity has the disadvantage that it is
difficult to separate phonon contributions which are dominant in conventional superconduc-
tors. However, for high-quality crystal UPt3, phonon contribution k), to the total thermal
conductivity k = ke + kpn can be ignored in low temperatures. Indeed, xpy, is estimated from
the Wiedemann-Franz law [118] that states the electron contribution to the thermal conduc-
tivity ke and the electrical resistivity p have Lo = kep/T', where constant Ly is the Lorenz
number. In fact, L(T) = kp/T = 0.99L¢ at T = 0.1 K, this implies x is mostly electronic
below 0.1 K in 3T (above Hg(0)) in the normal state [96].

Figure 4.2 (a) shows the temperature dependence of thermal conductivity along c-axis
ke/T [113]. Data at very low temperatures below 30 mK implies that a finite value of k./T is
expected at T' = 0 and this indicates a finite density of states of quasiparticles at zero energy.
One expects this k./T agrees with the universal transport but it is about 10 times smaller
than the prediction [82]. Since the crystal structure is not cubic but hexagonal, the thermal
conductivity has anisotropy. Figure 4.2 (b) shows anisotropy x./ks. The usual Eq4 state has
point nodes in the north and south poles and a line node in the basal plane. If impurity
effects are ignored, one expects that this ratio x./kp vanishes at T = 0. This is because
ke is dominated by point nodes with linear dispersion corresponding to density of states
~ w?, while xp is dominated by line node with linear dispersion corresponding to density of
states ~ w (See also Table 2.1 in Chapter 2). However, as shown in Figure 4.2 (b), the ratio
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Figure 4.2: (a) Temperature dependence of thermal conductivity along c-axis x./T [113]. (b)
Temperature dependence of the ratio of c-axis to in-plane thermal conductivity k./kp [97].

approaches a finite value at lower temperatures.

Finally, we comment on the other experiments to determine the symmetry of the gap.
The NMR relaxation rate 1/T; varies in proportion to T° at low temperatures [98] (See
Fig. 4.3(a)). This behavior indicates the presence of the line nodes and this is consistent
with thermal conductivity above 100 mK. The experiments have not yet been performed at
very low temperature below 30 mK where the gapless behavior is expected. Specific heat is
another powerful tool to verify the nodal structure of the superconducting gap. There is no
power or an unusual dependence in C(T')/T at low temperatures below 0.1 K [85,99]. (See
Fig. 4.3(b)) Some groups pointed out that it is related to an antiferromagnetic long-range
ordering [99,122].

4.2 Effective model

In this section, we introduce a model that describes the electronic structure in the normal-
state of UPts and define some symmetry operators. Quantum oscillation measurements
combined with band structure calculations [123-125] show that there is a pair of Fermi
surfaces centered at the A-point, three at the I'-point and two at the K-point in UPtg.
However, since small Fermi surfaces enclosing the K-point give a small density of states,
their contribution may be a minor and we ignore them.

The space group of UPt3 is P63/mmc, which is a nonsymmorphic structure (See Fig. 4.4)
and the corresponding point group is Dgp. Since this space group is nonsymmorphic, some
symmetry operations are the combination of point group operations and translations. Some
of the point groups have to be combined with trivial translations to map the crystal onto
itself, with generating point group isomorphic to Dgj,.

We start from the model introduced in Ref. [41-43] for describing the normal-state elec-
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Figure 4.3: (a) Temperature dependence of the NMR relaxation rate 1/77 [98]. (b) Temper-
ature dependence of the specific heat [82]. The original data is from Ref. [85].

tronic structure UPtg,

*

€ €
H (k?) = &k T000 + Ekr+ao + Ekr_ao + gk - OT, (4,2)

where Pauli matrices 7; (0;) describe two sublattice (spin) degrees of freedom, 74 = (7, £ i1),
and the intrasublattice hopping and chemical potential,

3
& = 2tz cos (k:|| . ei) + 2t, cosk, — u, (4.3)
i=1
and the intrasublattice hoping,
b 3
_ / < ik -r;
e, = 2t cos ) Zl eI (4.4)
i

and symmetry allows Kane-Mele type spin-orbit coupling,
3
g, = aZf Z sin (kH . ei) , (4.5)
i=1

where k| = (kz, ky, 0), €; = (cos ¢y, sin ¢, 0) with ¢; = (i — 1) 2m/3, 7; = (cos ¢;/v/3,sin ¢} /V/3,1/2)
with ¢} = (i — 1) 27/3+7/6 and i = 1,2,3. We divide UPt3 into two sublattices, namely even

and odd layers in order to treat that Uranium ions form an AB-stacking of triangular lattices.

The crystal structure of UPts is illustrated in Fig. 4.4. The irreducible representations of
Pauli matrices 7; are summarized in Table 4.3.
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Figure 4.4: (a) Crystal structure of UPt3. Uranium ions form a AB-stacking of triangular
lattices. Vectors e;’s and r;’s, are shown by arrows. (b) the Brillouin zone.

\

Table 4.3: Irreducible representation of sublattice matrices.

sublattice singlet | sublattice triplet

Alg - T0, Tx

Bs, Ty Ty

The Hamiltonian (4.2) is parameterized by the set of five parameters (¢,t,,t, o, u). Now
we take in-plane hopping ¢ as energy unit. As mentioned above, we consider Fermi sur-
faces around the I'- and A-point. (See also Fig. 4.4(b)) When we chose (t,t,,t',a,u) =
(1,4,1,0,16), this model reproduces two degenerate spherical Fermi surfaces around I'-point
as shown in Figure 4.5(a). On the other hand, another set of parameters (¢,t,,t, a,p) =
(1,4,1,2,12) reproduces two Fermi surfaces around the A-point (Figure 4.5(b)).

Let us now discuss the symmetries of the Hamiltonian (4.2). The time-reversal operator
T is given by T'= Ky (i0y) and K is complex conjugate operator, which acts as

TH (k)T ' =H (k). (4.6)
The spatial inversion operator P is defined by P = 7,00 and this acts
PH(k)P™' =H (-k). (4.7)

There is another symmetry related to the particle-hole transformation. Let us define the
particle-hole conjugate operator C' is given by C = KT';190¢, which acts as

CH(k)C™'=—-H(-k), (4.8)

where Pauli matrices I'; describe the particle-hole degree of freedom.
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Figure 4.5: Fermi surfaces of normal states UPts around (a) I-point for (¢,¢,,t',a,pu) =
(1,4,1,0,16) and (b) A-point for (¢,t,,t', o, ) = (1,—4,1,2,12).

4.3 Fy, pairing state

4.3.1 Symmetry consideration

So far, many researchers have considered the pairing with Fs, assuming that the gap function
has odd-parity and it is spin-triplet. Recently, Yanase studied a new type of Fs, states
in nonsymmorphic systems and they include spin-singlet d-wave, spin-triplet p- and f-wave
pairings [41]. It is worthwhile to examine the other two-dimensional representations F1g4, Eag,
and Fy, as candidates for the gap symmetry. As mentioned in Section 2.3, if time-reversal
symmetry is broken in an even-parity superconducting state, one expects the emergence of
the Bogoliubov Fermi surfaces. For this possibility, F1, and Fs, states are excluded since
they have odd-parity. We also exclude an Ej, state because line nodes in the basal plane are
not expected there. Therefore, we consider only F14 pairing state and study this case in the
following sections.
For two-orbital superconductors, the gap function is generally written as

Ak)= Y [hi(k)+d;(k)-o](io,) @, (4.9)

1=0,z,y,2

where o and 7; operate in spin and orbital spaces, respectively. As shown in Table 4.3, the
operators 7;’s have the symmetry of Ayy or By,. The gap function with Fy, pairing state
is constructed by (i) E1y = Eig ® A1g and (ii) Eiy = Eay @ Ba,. We note that the Pauli
principle restricts possible pairing condition. This condition is given by parity of k, whether
spin-singlet or -triplet and whether sublattice-singlet or triplet. Table 4.4 shows sign of parity
of k, spin, and sublattice to determine whether the Pauli principle works or does not. The
Pauli principle requires, the products of k, and spin, and sublattice should be minus.
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Table 4.4: Sign of k, spin and sublattice. The Pauli principle requires the products of k, and
spin, and sublattice should be minus.
sign k spin sublattice
- odd oo (singlet) 7, (singlet)
+ | even | 04,0y,0, (triplet) | 79, 7y, 7. (triplet)

Ey, spin-singlet pairing

We discuss spin-singlet pairing belonging to E14 representation. (i) We consider the simple
case of By = E1y ® A1g. In this case, the pairing state is k even for spin-singlet and we use
the sublattice part, 79 and 7, have A;, symmetry. We find the pairings are the followings:

{dyz (k) 00Tz Aoz (k) UOTx} (4.10)
{dyz (k) 0070, Az (k) 0'07'0} (4.11)

(ii) The second choice is the case of Ery = E, ® By,. The pairing state is k odd for spin-
singlet and the Pauli principle requires to use sublattice matrix 7, only as Ba,. However, 7,
does not have the proper sing for the Pauli principle. As a result, F1, = Fy, ® B, pairing
is the following:

{fz(xQ—gﬂ) (k) 00Ty, fa:yz (k) UOTy} . (4.12)

Ey, spin-triplet pairing

As same as spin-singlet case, we construct spin-triplet pairing belonging to £, representation.
(i) We consider simply the case of E1; = E14 ® A4 corresponding to the pairing state of k
even and spin-triplet. The Pauli principle requires 7, for sublattice degree of freedom but
this belongs to Bs,. Consequently, the choice of Eyy = Eiy ® Ay is not suitable. (i) We
consider the case of E1, = Fy, ® By,. The pairing state is k odd and spin-triplet and the
Pauli principle requires 7, for sublattice degree of freedom and this belongs to Bsg,. In this
case, the pairing with d || Z is

{fz(:cQ—yz) (k) 02Tz, fxyz (k) Usz} s (413)

and for in-plane d vector (d L 2) is
{ps (k) 0272 — py (K) 0yT2, Dz (k) oyTs + Dy (k) 0272} (4.14)

4.3.2 FE;;, model

In the previous section, we examined possible Ey, pairings based on symmetry. In general,
the mixing of p-, d-, and f-wave components result from many-body effect and the weight of
these components should be calculated from microscopic theories. In this section, we consider
the normal-state Hamiltonian in Eq. (4.2) and construct gap function with E14 symmetry by
introducing the short-range Cooper pairs i.e., intra or intersublattice (next) nearest neighbor
(NN) pairings. Taking the intrasublattice next nearest neighbor pairing into consideration
is reasonable because is c¢/a = 0.85, where the lattice constants a = 5.764 A and ¢ =
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4.899 A [82]. Indeed, the spin-singlet d-wave pairing can be made from intersublattice pairing,
spin-triplet p-wave (d L 2) and f-wave pairing (d || Z) can be made from intrasublattice
pairings. Therefore, the spin-singlet d-wave part {d., (k), d. (k)} 7,00ic, has k-dependence
and formed on the r;-bonds (See Fig. 4.4(a)) as

k k k k
d.r (k) = sin— rysin (k-7 = sin — cos —= sin —, 4.15
dy. (k) = sin% Z r?sin(k”.ri)
i=1,2,3
1 ke .k @)k
= — | cos —sin + sin —= | sin —. 4.16
¢§< I RVEY R (4.16)

For the spin-triplet p-wave pairing Eq. (4.13) d || Z, the factors are formed with e;-bonds as

fz(meyQ) (k}) = sin k:z Z ef sin (k” . ei)
1=1,2,3

ky k
= <cos ky — cos 5 cos \/z y) sin k, (4.17)

kg 3k
fayz (k) = sink, Z e’ sin (k:H . ei) = V/3sin ) sin \/; Y sink,. (4.18)
i=1,2,3

while for the case d L 2 (4.14),

px (k) = Z ef sin (k| - e;) = sink, + sin = cos ——, (4.19)
i=1,2,3
ky k
py (k)= Z elsin (k| - e;) = \/gcos? sin \/g v (4.20)

1=1,2,3

With three coefficients, order parameter of the i, state is represented as (fl (k), Ty (k:))
with

Ty (k) = [Addy. (k) 700 + A foz2—y2) (k) 720,
A +Ap (pz (k) 0 — py (k) 0y) 7] d0y, (4.21)
Ly (k) = [Agd.e (k) Te00+ Ay fay- (k) 20

+A, (pz (k) 0y + pe (k) 0y) 2] 0. (4.22)

We note that this Fi, state is similar to the Es, state studied in Refs. [41-43], differing
in the sublattice degrees of freedom. This state has point nodes at the north and south
poles and line node along the equator if A, = 0. In this thesis, we consider the case of
|Ap| < Ag, Ay, which is compatible with the experiments [105] and assume A,, Ag and Ay
are real. Therefore, the BAG Hamiltonian is

Hk)  Ak)

HBdG (k) = AT (k) _HT (—k) ) (4'23)

where
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4.4 Bogoliubov Fermi surfaces in £, state

4.4.1 Bogoliubov Fermi surfaces

In this section, we define the Zy invariant for the model (4.2) following Ref. [37] and Sec-
tion 2.3. We also find the finite p-wave pairing amplitude in Ey, state reproduces the Bogoli-
ubov Fermi surfaces.

We define the Zy invariant defined by the sign of a Pfaffian. The Hamiltonian has the
symmetry related to the combination of the particle-hole conjugate operator C' and the spatial
inversion operator P, we obtain

(CP) Hpag (k) (CP)™" = —Hgac (k) . (4.25)

Because (CP)2 = 41, one can find unitary operator € that transforms Hpqg (k) as anti-
symmetric matrix. We define Ugp = U P = I'y7,09 where Ug = 'y 7,00 and P = I'g7,00.
Notice C' is antiunitary but Ug is unitary. Then,

UcpHpac (k)T Ulp = —Hpac (k) . (4.26)
Because Ugp is a symmetric matrix, it can be diagonalized as
Ucp = QAQT, (4.27)

where @) is a unitary matrix and A is a diagonal matrix and we note the transposed matrix
QT (not Q). Inserting this into Eq. (4.26),

QAQT Hpac (k)" Q*ATQT = —Hpac (k) . (4.28)

Since A is a diagonal matrix, its square root can be defined, VA = diag (\/)\1, Vg, ) even

though \/\;’s are complex. Defining with a unitary transformation \/KTQTHBdG (k) QVA =
Hpqc (k), it is easy to show the following relation,

Hpac (k)" = —Hpac (k). (4.29)

Therefore, Hpac (k) is an anti-symmetric matrix. We can define a Zy invariant at each k
with the sign of Pfaffian

P (k) = sgn [Pf Frac (k)} , (4.30)
and Zs quantity for each Bogoliubov Fermi surface by
(-D!'=P(k_) P (k). (4.31)

Here, k. (k_) is a momentum inside (outside) of Bogoliubov Fermi surfaces.

Now we discuss the Bogoliubov Fermi surfaces around the T'- and the A-point of BZ.
We consider the case of pairing A (k) = I'y + inl's with real 5 and basis functions (4.21)
and (4.22) , which breaks the time-reversal symmetry. Since the results do not change
qualitatively with the value of 1, we chose n = 1 for simplicity. Note that we use different
sets of the parameter (¢,t,,t, a, ) to reproduce normal-state Fermi surfaces near the I'- and
the A-point of BZ. Furthermore, we consider the electronic states near the I'- and the A-point
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of BZ independently and ignore intercoupling effects and the difference of the weight of p-,
d-, and f-wave pairing amplitudes between the I'- and the A-point of BZ.

For around the I'-point of BZ, in the case of A, = 0, A (k) has a horizontal line node in
the k, = 0 and two-point nodes at the north and south poles (k; = k, = 0). When A, # 0, we
find one Bogoliubov Fermi surface with nontrivial Zs invariant. The line node disappears but
two point nodes at the north and south poles persist. Figure 4.6(a) illustrates the normal-
state Fermi surfaces (transparent) and the region of P (k) < 0 (orange), and the surface,
of which is the Bogoliubov Fermi surface with nontrivial Zy invariant. The parameters are
A, = Ag = Ay = 0.4. This Bogoliubov Fermi surface forms a thin torus located around the
original line nodes and can been understood as the inflation of the original horizontal line
nodes. When A, increases, the Bogoliubov Fermi surface grows as shown in Figure 4.6(b).

For around the A-point of BZ, the pairing with A, = 0 has line nodes that form six
rings in the k, = 7 plane and two-point nodes at k, = k, = 0 on the normal-state Fermi
surfaces. Figure 4.6(c) illustrates the normal-state Fermi surfaces (transparent) and the
regions of P (k) < 0 (orange) and the surfaces, of which are the Bogoliubov Fermi surfaces
with nontrivial Z, invariant. The parameters are A, = Ay = Ay = 0.1. These Bogoliubov
Fermi surfaces are located around the original six rings of line nodes and form hollow sphere-
wises. One may understand that as the original line nodes are inflated. When A, increases,
the regions of P (k) < 0 expanded as shown in Figure 4.6(d). Two point nodes at the north
and south poles persist even when A, # 0. We note that there are no Bogoliubov Fermi
surfaces in superconducting states with time-reversal symmetry.

The gap nodes around the I'- and the A-point has the common properties that the hori-
zontal line nodes inflate when A, # 0 but the point nodes do not. These properties can be
understood by considering the pseudo-chemical potential ou (k) and pseudo-magnetic field
0h (k) introduced in Sec. 2.3.3. Note that du (k) and 0h (k) result from a pairing with broken
time-reversal symmetry. Figure 4.7(a) and (b) schematically show the cases that the Bogoli-
ubov Fermi surfaces emerge and do not emerge, respectively. A nodal superconductor has
point or line node at k = k* (See left sides in Figure 4.7(a) and (b)), which corresponds to
the case of A, = 0 in our Fj, state. Both d- and f-wave pairing amplitudes have line nodes
in the plane of k., = 0 and 7 in addition to point nodes at k, = k, = 0 even if the pairing
breaks time-reversal symmetry. When A, # 0, both du (k) and 6h (k) are generally finite at
k = Ek* but both are zero at k; = k, = 0. Therefore, the line nodes are inflated and split into
k$ and ki but the point nodes are not inflated and remain as the point nodes.

4.4.2 Density of states

When Bogoliubov Fermi surfaces do not exist, the superconducting gap has no nodes, or point
or line nodes. Thus, their density of states is zero at w = 0. However, once the Bogoliubov
Fermi surfaces emerge, the density of states at w = 0 is finite and it may provide a natural
explanation for finite x/T" value toward 7' = 0.

Here, we confirm that in-plane p-wave pairing amplitude in the broken time-reversal E,
state, which gives the Bogoliubov Fermi surfaces near the I'- and the A-point of BZ, also give
a finite density of states at w = 0. The density of states p(w) is given by

p(w) = % S 6w — By). (4.32)
k
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Figure 4.6: The normal-state and Bogoliubov Fermi surfaces around I'- and A-point of BZ. (a)
and (c) the normal-state Fermi surfaces (transparent) and the regions of P (k) < 0 (orange),
and the surfaces, of which are the Bogoliubov Fermi surfaces. (a) around the I'-point and
A, = 0.4 and (c¢) A-point and A, = 0.1. We use sets of the parameter (¢,¢,,t,a,p) =
(1,4,1,0,16) and (1,—4,1,2,12) to reproduces normal-state Fermi surfaces around I'- and
A-point, respectively. (b) and (d) show the cut of the plane k, = 0 and k. = 7, respectively.
The normal-state Fermi surfaces are shown by dashed line and the Bogoliubov Fermi surfaces
are shown by solid lines. The parameters are Ag = Ay = 0.4 in (a) and (b), and Ay = Ay =
0.1 in (c) and (d).
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(a) The Bogoliubov Fermi surfaces emage.
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(b) The Bogoliubov Fermi surfaces do not emage.
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Figure 4.7: Schematic pictures that the Bogoliubov Fermi surfaces emerge (a) and do not
emerge (b). In case they do not emerge, the pseudo-chemical potential oy (k) and the pseudo-
magnetic field dh (k) both vanish at original node position k = k*.

Note that we use different sets of the parameter (¢,t.,t',«,u) to reproduce normal-state
Fermi surfaces near the I'- and the A-points of BZ. Furthermore, we consider the electronic
states near the I'- and the A-points of BZ independently and ignore intercoupling effects and
the difference of the weight of p-, d-, and f-wave pairing amplitudes between the I'- and
the A-points of BZ. Therefore, we may discuss qualitatively but cannot do quantitatively.
Figure 4.8 shows the contribution to the density of states from (a) the I'- and (b) the A-point
of BZ in broken time-reversal E1, pairing state. When A, = 0, the density of states at w = 0
is zero both contributions near the I'- and the A-points of BZ. Certainly, in-plane p-wave
pairing is necessary for Bogoliubov Fermi surfaces.

4.5 Thermal conductivity for F, state

As mentioned in Section 4.1.2, the thermal conductivity at a very low temperature below
30 mK implies a finite value of k./T at T = 0 and this originates from a finite density of
states of quasiparticles at w = 0. The finite value of k./T at T = 0 also indicate a finite
ration of anisotropy k./kp in the limit of T = 0. For usual Ej, state [92,94,103,104], one
expects this ratio to become zero since the k. is dominated by the point nodes that have
linear dispersion with a density of states ~ w? and the ; is dominated by line node which
has linear dispersion with a density of states ~ w.

We propose in the thesis that our proposed E14 state may provide a natural explanation
for finite x/T" and k./kp at T = 0. This is because the line nodes of the E, state are inflated
and to form Bogoliubov Fermi surfaces and they explain the behaviors of k. We would like



Chapter 4. Bogoliubov Fermi surfaces in UPt3 63

a b
( ) 0.07 T Ap‘:07 Ad:‘()l’ Af‘:()li ( )0.14

o6k A,=0.1,A,=0.1, Ay =0.1— |
Ap=04, Ag =04, Ay =04—

012 -

0.1 |

0.08 -

QL
< 0.06
004
002 F A,=0,A;=01 Ay =01—+
Ap,=01,A;=01 Ay =01—
% 002 004 006 008 0.1
w w

Figure 4.8: The contribution to the density of states from (a) the I'- and (b) the A-point
of BZ in broken time-reversal E1, pairing state. We use sets of parameter (t,¢.,t',a,p) =
(1,4,1,0,16) and (1,—4,1,2,12) to reproduces normal-state Fermi surfaces around the T'-
and the A-point, respectively.

to emphasize that the Bogoliubov Fermi surfaces appear as an intrinsic effect. That is, the
in-plane p-wave pairing has a finite amplitude in bulk and this pairing controls the size of the
Bogoliubov Fermi surfaces. In order to explain a value of k./T smaller than the predicted
universal transport, one may take the amplitude of in-plane p-wave pairing is smaller than
the other amplitudes, and then this makes small Bogoliubov Fermi surfaces. Indeed, Knight
shift in the NMR experiment revealed that the in-plane spin-triplet parts are smaller than
the c-axis spin-triplet part [105], and this is consistent with the expectation above.

In this section, we study the thermal conductivity for our proposed E14 state and calculate
values of k./T and k./kp at T = 0 by using the Boltzmann equation with the approximation
of relaxation time [117]. The thermal conductivity tensor in the single band model was
derived in Ref. [126] and was generalized for the multi-orbital model [127] is written in

2 0
Kij = — %z: % (Vk); (Vkt) SZ’ZTM, (4.33)

where k is the momentum and [ labels the extra degrees of freedom such as orbital, sublattice
or layer. Ej,; is the quasiparticle energy, n%l = [1+exp (Fr/ k:BT)]_1 is thermal equilibrium
distribution function, (vg;), = Ok, Ek is quasiparticle velocity and Tk_ll is the relaxation
rate. In order to take into account for the Bogoliubov Fermi surfaces, we treat T,;ll as
the normal-state relaxation rate 7y = constant. Note that in general, 7x; in anisotropic
superconductors have a complex form due to the coherence factors [128] and the normal-
state phase shift [126,129]. We calculate numerically temperature dependence of k; = Ky, and
Ke = K. In this calculation, we assume temperature dependence of gap function [126,130]
is

(4.34)

o\ 1/2
A; (T) = A tanh [2 (TCT T>

This assumption ignores the multiple critical temperatures 7. However, it is valid for 7' — 0
far from T..
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Figure 4.9: Temperature dependence of the contribution to k./T (solid lines) and kp/T
(dashed lines) from the Bogoliubov Fermi surfaces around (a) the I'-point and (b) the A-point
of BZ. Inset figures shows the full range: 0 < T' < T, = 0.05. The vertical and horizontal
axes are normalized by the normal-state thermal conductivity ¥ (7.) and T, respectively.
The solid We use sets of parameter (¢,t,,¢, «,u) = (1,4,1,0,16) and (1, —4,1,2,12) around
the I'- and the A-point, respectively.

Figure 4.9(a) and (b) show temperature dependence of the contribution to x;/T" and k./T
from the Bogoliubov Fermi surfaces near the I'- and the A-point of BZ, respectively. In the
case of A, # 0, there is finite £/T". This is consistent with that the in-plane p-wave pairing
gives the Bogoliubov Fermi surfaces near both the I'- and the A-point of BZ and finite density
of states as we mentioned in Section 4.4.2.

Figure 4.10 shows the temperature dependence of the contribution to k./kp from the
Bogoliubov Fermi surfaces around the I'- and the A-point of BZ. Once the in-plane p-wave
pairing amplitude is finite and the Bogoliubov Fermi surfaces emerge, a value of k./ky is
finite even at T' = 0. Therefore, the Bogoliubov Fermi surfaces due to small in-plane p-wave
pairing amplitude give a good explanation of thermal conductivity.

Finally, we note that one should take into account k and T" dependence of the relaxation
time [128,129] and the size of the normal-state Fermi surfaces for quantitative analysis. Our
calculation is based on the assumption that the relaxation time of quasiparticle is considered
as the normal-state relaxation time and ignores the size of the normal-state Fermi surfaces
(but their topology is considered), it lacks a quantitative analysis and can not be compared
simply with the hitherto scenario of impurity effect. We leave the quantitative analysis to
future work.

4.6 Conclusion

In this chapter, we have addressed the issue of how we realize the new type of gap nodes,
Bogoliubov Fermi surface, in multi-orbital superconductors and applied that idea to the
multi-component superconductor UPts.

Unless impurity effects are taken into account, previous proposed gap symmetries do
not explain the temperature dependence of thermal conductivity, which shows that a finite
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Figure 4.10: Temperature dependence of the contribution to k./k, from the Bogoliubov
Fermi surfaces around the I'-point (solid lines) and the A-point (dashed lines) of BZ. We use
sets of parameter (¢,t,,t,a,u) = (1,4,1,0,16) and (1,—4,1,2,12) around the I'- and the
A-point, respectively. Inset figures shows the full range: 0 < T' < T, = 0.05. The vertical
and horizontal axes are normalized by s (T,)/x) (T.) and T, respectively.

value of k/T and also a finite ratio of the in-plane to c-axis thermal conductivity at very
low temperatures. In order to explain them, we have applied the idea of Bogoliubov Fermi
surface proposed by Agterberg et al..

We have considered the pairing belonging to the two-dimensional Ei4 representation in
the point group Dgp. Nonsymmorphic crystal structure of UPts allows to include spin-
singlet d-wave, spin-triplet p- and f-wave pairings, and we have considered their mixer state.
We have employed the model [41-43] which has the Fermi surfaces near the I'- and the
A-point in Brillouin zone in the normal-state. We have introduced Z, invariant [37] by using
the particle-hole conjugate (C) and inversion (P) symmetries and shown that the in-plane
p-wave pairing amplitude needs to be finite to realize the Bogoliubov Fermi surfaces. Since
the in-plane p-wave pairing has a finite amplitude in the planes k, = 0 and «, the horizontal
line nodes in these planes are inflated to the Bogoliubov Fermi surface. These Bogoliubov
Fermi surfaces have nontrivial Z, invariant defined by C'P symmetry, and therefore we expect
these are robust against the perturbations which preserve C'P symmetry. The point nodes
at k; = ky = 0 are not inflated and remain as point nodes. It is worthwhile to emphasize
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Table 4.5: Correspondence to other experiments

Our proposed FEqg

Multi-component d vector [105] Yes
Anisotropy of H.o [110,111] Yes
Breaking of time-reversal Yes
symmetry [40, 94, 95]

Field-orientation dependent Yes
thermal conductivity [112,113]

NMR relaxation rate 1/77 [98] No
Field-angle dependence of No

the specific heat [115]

that the Bogoliubov Fermi surfaces appear as an intrinsic effect because the in-plane p-wave
pairing has a finite amplitude in bulk and this pairing controls the size of the Bogoliubov
Fermi surfaces.

We have calculated the thermal conductivity by using the Boltzmann theory and shown
that the Bogoliubov Fermi surfaces give an explanation of a residual /7T and anisotropy
ke/Kp. However, we note that since our calculation presumes that the relaxation time of
quasiparticle is considered as constant and ignores the size dependence of the normal-state
Fermi surfaces, it lacks a quantitative analysis and can not be compared directly to experiment
data. Thus, we cannot exclude the possibility that the behaviors of thermal conductivity are
explained by extrinsic effect such as impurities. In order to discuss quantitatively, one should
take into account k and T" dependence of the relaxation time and the size of the normal-state
Fermi surfaces. We leave quantitative analysis to future work. We note that in general, the
mixing of p-, d-, and f-wave pairings result from many-body effect and the weight of these
pairing amplitudes should be calculated from microscopic theories.

Finally, we discuss implication to other experiments (See also Table 4.5). Our proposed
E14 pairing is compatible with the result of NMR Knight shift [105], which implies multi-
component d vector, and twofold oscillation of the thermal conductivity within the basal
plane in the C phase [112,113] doe to dy.-wave pairing. The spin-orbit coupling along the
c-axis implies that the c-axis critical field is suppressed than the in-plane critical field and
gives rise to the anisotropy of H.y [110,111]. An argument for this is given in Ref. [131].
The broken time-reversal E7, state can be more stable than the time-reversal symmetric
Ei4 state. This is compatible with muon spin rotation-relaxation [94,95] and polar Kerr
effect experiments [40] imply the broken time-reversal symmetry in the B phase. However,
there are two remaining problems. One expects that the NMR relaxation rate 1/7} varies
in proportion to 7" in the presence of Bogoliubov Fermi surface. This is inconsistent with
the result by Kohori et al. [98], which showed 1/T} varies in proportion to 7% in 100 mK
< T <400 mK. It is worth mentioning that at sufficiently high temperatures, the excitation
spectrum will not show a difference between inflated nodes and nodes. However, this is not
a satisfying answer. Another remaining problem is anomalous field-angle dependence of the
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specific heat [115], which did not observe any in-plane angular oscillation.
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Chapter 5

Summary and Conclusions

In this thesis, we have investigated the gap nodes in multi-orbital superconductors from a
topological perspective. In particular, we have focused on (i) how nodeless, fully gapped
superconducting states appears when the lattice symmetry dictates nodes in a nodeless state
in multi-orbital systems and (ii) how to realize the new type of gap nodes, Bogoliubov Fermi
surfaces. In both problems, orbital degrees of freedom play an important role.

In Chapter 3, the question (i) has been addressed and we have studied gap nodes in
monolayer FeSe superconductor grown on Sr'TiO3 substrate. We discussed topological charges
of the nodes and explained the origin of a fully gapped d-wave state. We have investigated
the effective two-orbital model which includes two types of superconducting pairing: orbitally
trivial d-wave pairing and orbitally nontrivial isotropic one.

When the interband spin-orbit coupling is too strong, nodal points appear with 2Z topo-
logical charges. We have found the momentum space distribution of the topological charges
depends strongly on the orbital character of the pairing. When the orbitally trivial pairing is
dominant, points on the same axis in the momentum space have the topological charges with
a same sign (same sign pair state). On the other hand, when the orbitally nontrivial pairing is
dominant, the adjacent nodal points on each axis have the topological charges with opposite
signs (opposite sign pair state). As the spin-orbit coupling decreases, in the case of opposite
sign pair state, the nodal points can merge and are annihilated directly in pairs of neigh-
boring nodes because they have opposite charges. However, nodal points in the same sign
pair states cannot annihilate directly. We have found that this annihilation occurs through
an involved mechanism. As the interband spin-orbit coupling decreases, new nodal points
are first created near the old one. As the spin-orbit coupling further decreases, some nodal
points stay while other nodal points move off the k, or k, axis. With further decreasing the
spin-orbit coupling, they continue to move and annihilate in pairs with other nodes moving
from another direction. The nodal points with the nontrivial topological charges imply the
existence of Andreev band states with flat dispersion in the direction parallel to an edge. We
have shown different Andreev flat band spectra for the case of same sign and opposite sign
pair state.

We also considered Zeeman coupling to examine the effects of broken time-reversal symme-
try. In this case, we have found that the line and point nodes appear even when the spin-orbit
coupling is weak. We have found that these nodal nodes are topologically protected by Zs
invariant.

In Chapter 4, we have addressed the question (ii) and have studied the multi-component
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superconductor UPts. One plausible candidate of its gap symmetry in UPts is Fs, repre-
sentation in the point group Dgp. However, unless impurity effects are taken into account,
this gap symmetry do not explain the behaviors of its thermal conductivity in the B phase,
which shows that a finite value of x/T" and also a finite ratio of the in-plane to c-axis thermal
conductivity at very low temperatures. In order to explain them, we have applied the idea
of Bogoliubov Fermi surface proposed by Agterberg et al..

We have employed on two-dimensional representation Ej, pairing. This representation
includes spin-singlet d-wave, spin-triplet in-plane p- and out-of-plane f-wave mixing pairing.
We have discussed the Fermi surfaces near the I'- and the A-point in Brillouin zone in the
normal state. We have introduced a Z, invariant by using the particle-hole and the inversion
symmetries and shown that the in-plane p-wave pairing amplitude needs to be finite to realize
the Bogoliubov Fermi surfaces with nontrivial Zy invariant. Since this pairing has a finite
amplitude in the planes k, = 0 and m, the horizontal line nodes of d-wave pairing in these
planes are inflated. The point nodes at k, = k, = 0 are not inflated and remain as point
nodes. It is worthwhile to emphasize that the Bogoliubov Fermi surfaces appear as an intrinsic
effect. That is, amplitude of p-wave pairing in bulk controls the size of the Bogoliubov Fermi
surfaces.

We have calculated the thermal conductivity by using the Boltzmann theory and shown
that this theory explains a residual x/T and anisotropy k./kp. However, we note that since
our calculation is based on the relaxation time approximation without necessary details, it
lacks a quantitative analysis be compared with the alternative considering impurity effect. For
more quantitative analysis, one should take into account k and 1" dependence of the relaxation
time and the details of the normal-state Fermi surfaces. Thus, we leave the quantitative
analysis to future work.

Thus, related issues are now raised.

For the issue (i), we have found two types of topological charges, Z and Zs invariants. The
Z invariant has its momentum space distribution depends strongly on the orbital character
of the pairing and this reflects in some physical properties. However, its physical meaning
of the Zs invariant has not yet been investigated. However, we have found that this still
remains invariant even if the time-reversal symmetry is broken.

For the issue (ii), first, we have constructed E, pairing by symmetry analysis and realized
Bogoliubov Fermi surface in the B phase of UPt3. It seems odd that Fermi surfaces exist
in the superconductors. Therefore, more microscopic analysis, e.g., mean-field approach is
needed. The second issue is what is the characteristic physical properties shown by the
Bogoliubov Fermi surface. Although we have used a finite density of states at zero energy
to explain thermal conductivity of UPts, it may originate also from impurity effect, and we
cannot exclude its possibility. We hope that unique properties exclusive to the Bogoliubov
Fermi surface will be discovered in the future.
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Appendix A

Effective two-orbital model of
monolayer FeSe

In this appendix, we briefly review the effective two-orbital model of monolayer FeSe following
Ref. [32]. Monolayer FeSe has a nonsymmorphic structure presented by the space group
Py/nmm [70]. (See Fig. A.1(a)) It has an n-glide plane related to the combination of the
mirror reflection about the FeSe plane and translation by a half unit cell. It leads to an
important restriction on the irreducible representation of the little group at the M-point of
Brillouin Zone (BZ). All the physical irreducible representations two dimensional referred to
as My , My , M3 and My in Ref. [70]. The part near Fermi level of energy bands in monolayer
FeSe is mainly made of the states of M7- and Ms-doublets, around the M-point. The Fermi
surface around M-point is mainly made of two orbitals, and they are linear combinations
of {xz,yz} and x? — 32 orbitals of Fe ions as shown in Fig. A.1(c). Thus, its normal-state
Hamiltonian is given in (Mj, M3) space [32] with

Hyp,—mz = Hev + Hsoc, (A.1)
where
- 7 kpkyT.00 —iv (kxTo + kyT2) 00 | 5
o _ \I/T 61.7-00-0:‘_(11 x~y 200 ! zT0 Y z~ U A2
eV zk: k { i (keTo + kyT2) 00 €3T000 + askgkyT-00 k> (A-2)

and the spin-orbit coupling term

=4 | M7y (kyoy — kyoy) A (—iTz0 —l—7~'a)}~
H = i yLome s eny R N U, A3
S0C § k [ A (iTpoy + Tyoz)  XoTy (kyoy + kgoy) k (A.3)
where k = (kg, ky) is momentum measured from M-point, 7; matrices describe the two

orbital (linear combinations of {zz,yz} and 22 — y? orbitals degrees of freedom) and o;
matrices describes spin degrees of freedom, and Uy, is an eight-component spinor. We label
each band of Hcy as M171, M172, M371 and M372. At the M-point, M171 and M172 (M371 and
Ms 5 ) are degenerate, as well as M3 ;- and M3 o-bands and each band has spin degeneracy
(Figure A.1(b)).

We will reduce this eight-band Hamiltonian to an effective model projected on the Mj ;
and M3 1-bands. We assume that the energy scales of Hgoc are smaller than those of Hcy
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Rl el e
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Figure A.1: (a) Brillouin zone and unit cell of FeSe. One sublattice of the pnictide is puckered
above and the other is puckered below the layer. (b) Schematic band structure of Hcy around
the M-point of BZ. The red lines represent the bands near the Fermi level. We label each
band as My 1, My2, M3; and M3o. At the M-point, M;; and Mo (M3 and Mso) are
degenerate and each band has spin degeneracy. Degenerate orbital basis sets at the M-point
for the two electronic representations (M and M3) [32]. We note that the Fe sites are not
inversion centers, allowing for p, orbitals to mix with the 22 — y? orbitals.

near the Fermi surface. The following effective Hamiltonian in normal states,
Hy =Y 0 [eo (k) + Yay (k) 7= + 72 (3 (k) 00 + 72 (k) 0)] W, (A.4)
k

where 7; matrices describe the two band degree of freedom, ¥y is a four-component spinor
and

€1+e  Fy (k) + E_ (k)

e (k) = 5 T 5 , (A.5)
e ) = G BB B (4.6)

(k) = ko[MAy (k) A (k) + AoBy (k) B- (k)]

+iX[Ay (k) B_ (k) + By (k) A_ (k)] , (A7)
(k) = ky[-MAs (k) A (k) + MBy (k) B (k)]
FiX[A (k) B- (k) — Ba (k) A (k)] (A8)
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with
Be(k) = 03 (k) +02 (ko £ )7, (A.9)
’Yi(k) _ 61—63:|:(a21—a3)]<33;]{7y7 (AlO)
Ai (k) = —isgn(v)sgn (ke + k) \/; (1 + ;i ((';))> (A.11)
By (k) — \/; (1 - ;i((ll?)> (A.12)

The basis functions of ¥y, are given by
_ [ |F1(k))

v (i) ) 13

with
|Fi (k) = A4 (k) [Mig) + By (k) |Ms,1) (A.14)
|Fy (k)) = A_ (k) |Mi2) + B_ (k) |Msps) . (A.15)

Surprisingly, these two bands crossing the Fermi level belong the single representation Mgz
although they originate from the M; and the M3 representation. In other words, this means
the basis (|F (k)),|F» (k))) transform as a Mjs representation [70] and M3 ® Mj is reduced
to A1y ® Bag @ A1y ® Bay of Dy, representation. This means that one can construct one-
dimensional representations from product FZ-TFj and we find that Ay, : FlT P+ FQJf F5 (1),
Byy: FiF| —FJF, (1.), A : FIFy,— FIF, (r,) and Ay, : FiFy + FJFy (12).

We briefly explain above by invoking Ref. [70]. € (k) in Eq. (A.5) and ., (k) in Eq. (A.6)
transform as A4 and Byg representation, respectively. {7, (k),7, (k)}in Eqgs. (A.7) and (A.8)
transforms as FEjg, representation. The symmetry of functions f(k) and the Pauli matrices
7j and o; which we used are shown in Table 3.2. The same analysis shows that the states in
Egs. (A.14) and (A.15) are a basis set of the M3 representation since they are transformed
as E)prs of Table III in Ref. [70].

In this thesis, instead of using the detailed expressions (A.5)-(A.8), we use ¢y (k) =
(k2+k2) 2m—p, ve (k) = vsoka, vy (k) = vsoky, Yy (k) = akyky. We set there the parameters
as a = 600 meV A2 1/(2m) = 1375 meV A2, =55 meV A and kg = 0.2 A~! in order to
reproduce the bands and the Fermi surface observed by ARPES [31]. Note that our k - p-
like Hamiltonian (A.4) is derived from symmetry arguments and there are no other terms in
the form 7;0;.
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Appendix B

Energy spectrum by Green’s
function method

In this appendix, we explain the recursive Green’s function method [132] used in Section 3.3.

Let us set up a problem for electrons on a lattice that is semi-infinite in the z-direction
and has a finite cross section in the other directions. We consider a Hamiltonian in which
interactions are shot ranged and electrons on site with x = n (1 < n < o) interact those at
x =n=+1 only. Electrons at the edge x = 0 interact those at x = 1 only. Neglecting the edge
effects, the Hamiltonian is defined as a block diagonal form

A B 0 0 0 0
Bf A4 B 0 0 0
0 Bt 4 B 0 0
H 0 0 BT A4 B 0 ’ (B.1)

where A and B are square matrices and their dimensions are both 8 (or 4 in a reduced form)
in our problem in Section 3.3. The Green’s function is defined by

G(w) = (wl —H)™, (B.2)

for a complex number w and let us denote its (n,m)-block by Gpm (w). For this form of
Hamiltonian, Lépez Sancho et al. [132] have developed a quickly convergent iterative scheme
to calculate the surface and bulk Green’s functions, i.e., Goo and G o respectively. We
explain this recursive method following Ref. [132].

The definition of Green’s function leads to the following recursion relation

(w[ — A)Goyo (w) = I+B Gl,O (w) R (B.3)
(WI — A)Gro (W) = B'Gn10W)+ B Gniiow) (n>1). (B.4)

Using Egs. (B.4) and (B.3) with n = 1, we obtain the relation between G and Ga, which
is

[wI —A- Bl - A)’lBT] Goo (w) =1+ B (wl — A)"'B Gap (). (B.5)
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In the same way, one yields the general relation between G, o and Gp+2:
wl — A — B(wI — A)7'B" — Bl(wI — A)7'B| G, (w)
= Bl (wl — A)'BY G99 (W) + B (wl —A)'BGhi2(w) (n>2). (B.6)
We note that the nearest neighbors (G and Gy+1,0) disappeared in Egs. (B.5) and (B.6).
We write these relations more compactly,
(Wl —€] (W))Gop (w) = I+ (w)Gap(w), (B.7)
(Wl = €1 (w))Gnyo (w) B1(w) G20 + a1 (W) Gny20 (W) (0 = 2), (B.8)
(Wl —€1 (W)Gnp(w) = I+ (w)Grozn+arl(w)Gpiopn(w) (n>2), (B.9)

where
€w) = A+Bwl—-A) B (B.10)
6w) = A+ Bwl—A)"'Bf + Bf(wl — 4)~! (B.11)
o (w) = Bwl—A)™t (B.12)
B1(w) = Bf(wI-A)'B. (B.13)

When we take even value for n, we obtain

(Wl — € (w))Ganp (W) = P1(w) G2(n71),0 (W) + a1 (w) G2(n+1),0 (w), (B.14)
(Wl =€ (W)Gangn (W) = 1+ P1(w)Gom—i)n (W) + a1 (W) Gagmyr)on (W) (B.15)

Repeating above procedure 7 times, we have an iterative sequence

Ew) = €1 (W)+ a1 (W) (Wl —e-1)Bim1 (w), (B.16)
(W) = €1 (W) +aim (W) (W =61 (W) i (w)
+Bi-1 (W) (Wl — €1 (W) a1 (w), (B.17)
(W) = g (W) (Wl — €1 (W)t (), (B.18)
Biw) = Bis1 (W) (@I —eim1 (W) i1 (w) (B.19)
and the (renormalized) Go o with 2'-th layer:
(Wl — € (w))Gop (W) =T + a; (w) Gaig (W) , (B.20)

and other elements given by

(Wl =€ (W))Gaing (W) = Bi(w)Gain_1)0 (W) + ;i (W) Gaignynyo (w),  (B.21)
(WI = € (w))Gaingin (W) = Bi (W) Gai(n_1)2in + & (W) Gai(ni1)2im (W) . (B.22)
where theenergy matrices €, €;, a;, and 3; are determined recursively starting from €} = ¢y =
A, op = B, and By = B. As the iteration proceeds, the effective interactions a; and §; decay
quickly.
Figure B.1 shows k,-resolved spectral functions obtained by this method,

1
Ny(ky, E) = - Im Tr Gy, n(ky, E +in) (B.23)

at n =0 (edge) and n = oo (bulk). Four parameter set are used Fig. 3.10 (a)-(d) in Sec. 3.3.
The part near k, ~ 0 is magnified in Fig. B.2. We take n/t = 107° and stop the iteration
when both |a;/t| and |3;/t| are smaller than 10~7. Required number of iterations are at most
20.
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Figure B.1: Momentum-resolved spectral function calculated by Green’s function method.
Left (Right) panels show local density of states in bulk (at edge). Dark blue area represents
no-state region. (a) full gap, (b)(c) opposite sign pair of nodal points, (d) same sign pair of
nodal points.
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Figure B.2: Low-energy part of spectral function (edge+bulk) of in Figure B.1 (d).



Appendix C

Character tables for the tetragonal
and hexagonal point groups

Here we the show character tables of the point groups Dy, and Dgp, [133]. Basis functions of
their irreducible representations are also listed.
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