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Abstract
This thesis describes observational studies of dark matter (DM) as compact objects in the

Universe. While the presence of DM has been verified by observations, the nature of dark

matter is still a mystery. Gravitational lensing is a very powerful tool to test the presence

of DM, and especially the time-variable magnification phenomenon, known as gravitational

microlensing e↵ect, is very powerful to test compact DM objects. In this thesis, we search

for microlensing events caused by primordial black holes (PBHs) that are one of viable DM

candidates. We show the two observational results, where all DM in the Galactic halo region

is made of either PBHs at particular mass scale (I) in the range [10�11, 10�6]M�, or (II) of

Earth-mass (10�6M�) scales.

In Part (I) of this thesis, we investigate microlensing events for stars in the Andromeda

Galaxy (M31). In particular we focus on an unexplored mass window of PBHs, MPBH =

[10�14, 10�9]M�, which could occupy the halo region of our Milky Way galaxy. However,

frequent photometry of many stars has been challenging, which prevent us from probing

microlensing event with time scale shorter than 30 minutes. Here we propose microlensing

search by taking advantage of a large number of stars in M31, as well as the large field-of-

view of the Subaru Hyper Suprime-Cam. We developed the image di↵erence technique to

detect time-variable objects, and succeeded to detect more than 10,000 transient candidates.

From microlensing analysis of these data, we set the stringent upper limit on the abundance

of PBHs in MPBH = [10�11, 10�6]M�. Our results give the upper limit on PBH abundance

over the previously-unexplored mass window of MPBH = [10�11, 10�9]M�, and give tighter

upper bounds for a PBH scenario with an extended mass spectrum when combined with

other constraints.

In Part (II) of this thesis, we study microlensing events with longer timescale than we did

in Part (I). Here, to constrain the PBH scenario, we use 2622 microlensing events obtained

from the 5-years Optical Gravitational Experiment (OGLE) data that is the long-term mon-

itoring observation of 5 ⇥ 107 stars in the Galactic bulge region. A majority of the OGLE

microlensing events, peaked at the microlensing timescale of 10 days, can be fairly well

explained by microlensing due to brown dwarfs, main-sequence stars, and stellar remnants

(white dwarfs, neutron stars, and black holes). The OGLE data also indicates another popu-
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lation of microlensing events in the short timescales of ⇠ 0.1 days, whose origin is advocated

to be due to wide-orbit planets or free-floating planets of Earth-like masses. First we de-

rive the upper bound on the PBH abundance in the mass range MPBH = [10�7, 10�1]M�

assuming the null PBH hypothesis in the OGLE data: there is no PBH microlensing event

in the OGLE data. Secondly, we discuss that the 6 OGLE events of short timescales can be

well explained by PBHs of Earth mass-scale, which is consistent with both the HSC results

and the long timescale OGLE events. This might be a hint of PBH existence, and a further

study will be worth to explore.
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Chapter 1

Introduction

The current standard model of cosmology, in which the universe is dominated by cold dark

matter (CDM) – the so-called ⇤CDM model, has been remarkably successful in reproducing

various observations of the large-scale distribution of galaxies in space. This model assumes

a flat spatial geometry, and is based on the cosmological principle that the Universe is

homogeneous and isotropic. One important suggestion of this model is that the mass-energy

density of the Universe is composed by three distinct components: normal matter (baryons),

dark matter and dark energy. The normal matter we now know accounts for only about 4%

of the total density of the universe, and the rest of around 96% of the Universe is “dark”.

Dark energy is unknown energy component which drives the acceleration of expansion

of the Universe. The expansion of the Universe was first reported by Hubble in 1929. In

the article “A relation between distance and radial velocity among extra-galactic nebulae”,

Hubble showed that galaxies recede from us in all directions and more distant ones recede

more rapidly in proportion to their distance. This discovery does not support the picture

of the static Universe model, and the Einstein’s cosmological constant becomes unnecessary.

However, the existence of cosmological constant has been preferred in order to explain the

structure formation scenario and/or to solve the age problem of the universe. Then in the

end of 1990’s, the existence of cosmological constant was firmly confirmed by the analysis of

distance type-Ia supernova. Currently, combination of recent observations shows that cosmic

expansion has been speeding up over the last 5 billion years. This acceleration suggests that

the other 70% of the universe is composed of a “dark” energy whose properties we only dimly

grasp but that must have a negative pressure to make cosmic expansion speed up over time.

However, the property of dark energy is still big mystery, and requires further evidence both

from observational and theoretical studies.

The nature of dark matter also remains one of the largest unsolved astrophysical mys-
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Chapter 1. Introduction

teries. The evidence of dark matter was first discovered by Fritz Zwicky in the 1930’s. He

investigated the peculiar motions of galaxies in a cluster of galaxies and found that visible

matter cannot provide enough gravity to hold these galaxies in the cluster. Since then, the

existence of dark matter has nearly been established by observations of the rotational speeds

of galaxies and gravitational lensing. Currently, the property we know or require is that dark

matter interact with ordinary matter only via its gravitational interaction. Recent analy-

sis of cosmological observation and numerical simulations suggest that dark matter plays a

dominant role in the structure formation theory, and supports the picture that the Universe

is hierarchically formed. The ⇤CDM model suggests that approximately 84% of the matter

in the Universe is constituted by this “dark” matter.

Many candidates of non-baryonic matter have been discussed, and those beyond the

standard model are generally categorized as the hot dark matter (HDM) or the cold dark

matter (CDM). The hot dark matter, such as a massive neutrino, is a particle with significant

thermal speeds, and hence behaves as relativistic collisionless gas . Cosmological simulations

suggest that fluctuations smaller than the horizon scale will disappear in the Universe with

hot dark matter, and thus can hardly form clumpy structures as we observe today. Therefore

the hot dark matter scenario is ruled out in the modern cosmology.

On the other hand, cold dark matter (CDM) is a type of dark matter which is free

from collisionless damping. In the picture of ⇤CDM model, small structures are created

first from gravitational instability of initial perturbations. As the cold dark matter does

not reduce perturbation during structure formation compared to the hot dark matter, small

structures gather gravitationally, and merged many times to form larger structures. This kind

of structure formation mechanism is called “bottom-up” structure formation. The ⇤CDM

model, assuming the existence of cold dark matter and dark energy, is quite successful to

describe the observed structures in the universe, and thus becomes the cosmological standard

model.

Although a viable candidate of dark matter is unknown, hypothetical elementary particle,

the so-called weakly interacting massive particle (WIMP), might exist beyond the standard

model of particle physics. However, it has not yet been found by any terrestrial experiments

such as those going on at the Large Hadron Collider (LHC). Alternative models of dark

matter have been also proposed; Massive Astrophysical Compact Halo Objects (MACHOs),

axions, sterile neutrinos, and plenty of particle models ranging from simple scalar fields to

complex particle models with an entire “dark” sector of interactions. Therefore, revealing the

nature and properties of dark matter with astronomical dataset is one of the most important

problems in modern cosmology and particle physics.
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Chapter 1. Introduction

In this chapter we will introduce the cosmological properties of dark matter. We will

first review the role of dark matter in the cosmological structure formation and evolution

(Section 1.1). Then we will provide an overview of the current astrophysical properties of

dark matter (Section 1.2). In particular, we will focus on the feasible candidate of dark

matter from compact object origins (Section 1.3), and describe the objective of this thesis

(Section 1.4).

1.1 The origins of cosmological structure

In this section we explore the cosmological components in the Universe, and look into the

basic procedures of cosmic structure formation. We refer to Dodelson (2003) for more detail.

1.1.1 The standard cosmological model

In the view of modern cosmology, the matter distribution in the universe is homogeneous

and isotropic. This assumption is called as cosmological principle. Within the framework of

cosmological principle, the evolution of the Universe is governed by the Friedmann and the

Einstein equations.

(1) Friedmann equation

We start with the spacial properties of the universe assuming the cosmological princi-

ple. In four space-time dimensions, the dynamics of the universe is described by the

Friedmann-Lemâitre-Robertson-Walker (FLRW) metric (Friedmann 1922, 1924;

Lemâitre 1931; Robertson 1935; Walker 1936):

ds2 = �c2dt2 + a2(t)

⇢

dr2

1 � Kr2
+ r2(d✓2 + sin2✓d�2)

�

, (1.1)

where K is spatial curvature, and a(t) is scale factor. Scale factor is an indicator of

cosmological distance, and closely related to another conventional description of the

distance; the redshift. The redshift is a distance estimator described by the observed

wavelength �0 and the original wavelength �
s

as z = (�0 � �
s

)/�
s

. The connection

between the redshift and scale factor is given by a = 1/(1+ z), where the current scale

factor is defined as a0 = 1 (for z = 0).

In the FLRW metric, if photons emitted from a source at redshift z are observed by

an observer at the coordinate origin, they propagate along the geodesic specified by

3



Chapter 1. Introduction

ds2 = 0 with d✓ = d� = 0. Then we can introduce the distance to �(z) as comoving

distance:
Z

�(z)

0

drp
1 � Kr2

=

Z

t0

t(z)

cdt

a(t)
, (1.2)

where t(z) denotes the time when the light is emitted, and t0 is the present time. With

this definition of comoving distance, the radial distance r is given as follows:

r(�) =

8

>

>

>

<

>

>

>

:

sinh(
p

K�)/
p

K K > 0,

� K = 0,

sinh(
p

�K�)/
p

�K K < 0.

(1.3)

This suggests that the spatial curvature represents the shape of the universe; K > 0 is

open, K = 0 is flat, and K < 0 is closed universe, respectively.

Another set of equations that are essential for the dynamics description is the Einstein

equation. Under the FLRW metric, the Einstein equation describes how the universe

expands as a function of time, and how the expansion rate is related to the matter-

energy contents;

G
µ⌫

= R
µ⌫

�
✓

1

2
R � ⇤

◆

g
µ⌫

=
8⇡G

c4
T
µ⌫

, (1.4)

where ⇤ is cosmological constant. Here we assume the prefect fluid approximation

under with the FLRW metric. Then the energy-momentum tensor in the right hand

side of Eq. (1.4) is given by:

T
µ⌫

= (⇢+ p)u
µ

u
⌫

+ pg
µ⌫

, (1.5)

where uµ stands for the velocity components, ⇢ for the density, and p for the pressure

of the universe, respectively. With Eq. (1.1) and Eq. (1.5), we can derive the time-time

component and the space-space component as:

✓

ȧ

a

◆2

+
c2K

a2
=

8⇡G

3c2
⇢+

c2⇤

3
, (1.6)

ä

a
= �4⇡G

3c2
(⇢+ 3p) +

c2⇤

3
, (1.7)

where the dot notation denotes the time derivative, and ⇢ and p denote the total energy
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density and pressure, respectively. We also introduce the equation of state

p = w⇢, (1.8)

where the w parameter takes specific values for di↵erent components; w = 1/3 for

relativistic component, whereas w = 0 for non-relativistic particles such as dark matter.

Then the combination of Eq. (1.6), Eq. (1.7), and Eq. (1.8) give the time evolution of

energy density components;

⇢ / exp

✓

�3

Z

da0

a0 (1 + w(a0))

◆

. (1.9)

This equation gives ⇢m / a�3 and ⇢
�

/ a�4, for matter and radiation components,

respectively. If we assume that the fluid corresponds to cosmological constant, the

energy density of the fluid is obtained by inserting wDE = p⇤/⇢⇤ = �1 as ⇢⇤ =

c4⇤/8⇡G. Hence the energy density ⇢⇤ does not evolve with time, which is the same

property as the dark energy.

More generally, the density evolution of the universe is often characterized by cosmo-

logical parameters as in the following:

H ⌘ ȧ/a : Hubble parameter, (1.10)

⌦ ⌘ ⇢/⇢cr ⌘ 8⇡G⇢/3H2 : density parameter, (1.11)

⌦
K

⌘ c2K/a2H2 : curvature parameter, (1.12)

⌦⇤ ⌘ c2⇤/3H2 : dimensionless cosmological constant, (1.13)

where ⇢cr is the critical density of the Universe. With these quantities the evolution of

scale factor in Eq. (1.6) is determined as:

H2(a) = H2
0



⌦m0

a3
+

⌦
�0

a4
� ⌦K0

a2
+ ⌦⇤0exp

⇢

�3

Z

da0

a0 (1 + wDE(a0))

��

, (1.14)

where the parameters with index 0 in the right hand side represent current density

contents. The H(a) in the Eq. (1.14) is called the Hubble rate, which represents how

rapidly the scale factor changes.

(2) The observational review of cosmological component

As described in Eq. (1.14), the density evolution in the FLRW metric universe can

be quantitatively characterized by the density components of the universe. In modern
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Figure 1.1: Planck 2018 temperature power spectrum, where D
l

= l(l+1)C
l

/2⇡. The base-⇤CDM
theoretical spectrum best fit to the Planck TT, TE, EE + lowE + lensing likelihoods is plotted
in light blue in the upper panel. Residuals with respect to this model are shown in the lower
panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated
as Gaussian) and not including uncertainties in the foreground model at l � 30. This figure is
reproduced from Fig. 1 of Planck Collabolation et al. (2018).

cosmology, observations to constraint the density components have played important

roles to probe the evolution of the universe. In the following we briefly summarize

some key observational properties that support the ⇤CDM model.

a) Baryonic component

Baryonic component has began to be formed a few minutes after Big Bang. At

the beginning, particles were in very hot plasma and stayed in equilibrium. When

the timescale of expansion became shorter than the nuclear interaction timescale,

the particles started to experience “freeze out” phase, and chemical elements have

been begun to settle. Thus we can study the baryonic component by comparing

the primordial abundance of the light elements from simulation and observation.

In particular, the measurement of primordial deuterium abundance pins down

the baryon fraction ⌦b extremely accurately. For example, Cooke et al. (2018)

provides D/H= 2.527 ± 0.030 ⇥ 10�5, corresponding to ⌦bh2 = 0.0222 ± 0.0005.

b) Flatness

One of the most fundamental parameters in the Friedmann equation is the cur-
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vature of the universe. This is a key parameter to explain whether the universe is

finite or infinite. One possible solution to this flatness problem is to study the ac-

celerating phase in the early universe. The cosmic microwave background (CMB)

radiation is a useful tracer for this because it o↵ers the universe when photons

last scattered o↵ electrons at z ⇠ 1100. Observations with microwave experiments

have indicated that the temperature spectrum of CMB is isotropic, corresponding

to blackbody spectrum around T = 2.7255 ± 0.0006K (Fixsen 2009). Also, the

temperature fluctuation pattern of CMB is characterized by the angular power

spectrum C
l

defined as:
�T

T
=
X

lm

a
lm

Y m

l

, (1.15)

C
l

⌘ h|a2
lm

|i, (1.16)

where Y m

l

is spherical harmonics, and C
l

is the ensemble average of the coe�cient

of the multipole expansion of the temperature fluctuations. Since the angular

diameter distance to the last scattering surface of CMB strongly depends on the

curvature of the universe, the angular scale of peaks in angular power spectrums

of CMB is an excellent indicator of the curvature of the universe. As shown

in Fig. 1.1, the first peak of CMB power spectrum locates at l ⇠ 200, which

corresponds to 1� scale, indicating that the universe is almost flat, ⌦M + ⌦⇤ ⇠ 1.

c) Matter component

As discussed above, the peak position of the first peak in the CMB power spec-

trum strongly constrains the curvature property of the Universe. On the other

hand, the peak height of first peak gives another constraint on the cosmic energy

components; the increase in matter component results as a larger gravitational

potential, which suppress all the peaks. Similarly, an increase in baryon density

means that the internal mass of the system becomes larger, which suppresses

the second peak with respect to the first and third peaks. The measurement of

peaks by Planck satellite indicates small density boost around the peak of order

10�5, which provides the ratio of baryonic component to the matter component

as ⌦
b

/⌦m = 0.158 ± 0.004. Therefore, the matter component of the universe is

⌦M ⇠ 0.3, suggesting that most of the matter component in the Universe should

be non-baryonic (Spergel et al. 2003).

d) Acceleration

The cosmic expansion history has been investigated by distance indicators. One

of the most popular indicators is Type-Ia supernova, which has constant peak
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Figure 1.2: The large-scale redshift-space correlation function of the SDSS LRG sample. The inset
shows an expanded view with a linear vertical axis. The models are ⌦Mh2 = 0.12 (top, green),
0.13 (red), and 0.14 (bottom with peak, blue), all with ⌦

b

h2 = 0.024 and n = 0.98 and with a mild
non-linear prescription folded in. The magenta line shows a pure CDM model (⌦Mh2 = 0.105),
which lacks the acoustic peak. The bump at 100h�1 Mpc scale is statistically significant. This
figure is reproduced from the left panel Fig. 2 of Eisenstein et al. (2005).

luminosity in absolute magnitude. Hence we can derive a relation between the

luminosity and the distance, which is useful to test whether the universe is decel-

erating or accelerating. The first clear evidence of acceleration was reported by

the measurement of distant supernovae reported in 1990’s, which strongly sup-

ports the existence of cosmological constant (Riess et al. 1998; Perlmutter et al.

1999).

Another popular distance indicator is baryon acoustic oscillation (BAO). BAO

is the characteristic structure from photons emitted at the last scattering sur-

face. Originally the Universe was hot plasma, and the radiation pressure from

the CMB prevents the baryons from clustering. Since dark matter only interacts

gravitationally, the radiation pressure behaves as relativistic sound waves, which

propagate until the Universe becomes neutral around z ⇠ 1000. The imprint of

these sound waves can be detected by the analysis of CMB anisotropy data in

the harmonic space (Hinshaw et al. 2003). Another imprint is also obtained by

measuring the clustering of galaxies. The feature was first detected by Sloan Dig-

ital Sky Survey (SDSS), suggesting a small excess in number of pairs of galaxies
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Figure 1.3: 68.3%, 95.4%, and 99.7% confidence regions of the (⌦M, ⌦⇤) plane for the ⇤CDM
model. Measurements derived from Type-Ia SNe by Union2.1 (Suzuki et al. 2012), combined with
the constraints from BAO by SDSS DR7 and 2dFGRS data (Percival et al. 2010), and CMB by
7-year WMAP data (Komatsu et al. 2011). The SN Ia confidence region only including statistical
errors. This figure is reproduced from the left panel Fig. 5 of (Suzuki et al. 2012).

separated by around 100h�1Mpc, as shown in Fig. 1.2 (Eisenstein et al. 2005).

Since the characteristic scale of acoustic oscillation is determined by the sound

horizon at last scattering surface, combination of BAO measurements among dif-

ferent redshifts can behave as a distance indicator. Current measurements of BAO

strongly favor a flat universe, indicating the presence of the cosmological constant

(Hinshaw et al. 2013; Anderson et al. 2014).

The combination of these multiple indicators have strongly constrained the density com-

ponents in the Universe. In particular, the combined results of Type-Ia supernovae, CMB

and BAO measurements have placed strongly limits on the abundance of cosmic density com-

ponents. Fig. 1.3 shows the recent constraints on the density parameters, indicating that

the universe is better described with ⌦M ⇠ 0.3 and ⌦⇤ ⇠ 0.7. Note that we can also derive

the densities of radiation components composed of photons and neutrinos from the CMB

temperature. For example, the CMB temperature from FIRAS experiment corresponds to
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⌦
�

h2 = 2.47 ⇥ 10�5 (O’Meara et al. 2001). Under the assumption of the three massless

species of neutrinos, current radiation densities can be calculated from the standard thermal

history as ⌦
⌫

h2 = 6⇥ g(⌫)
g(�)

⇣

T (⌫)
T (�)

⌘4

⌦
�

h2 ⇠ 1.7⇥10�5, where we put the neutrino temperature

T (⌫) = 1.95K.

1.1.2 Structure formation

The universe with FLRW metric describes the properties of isotropic and homogeneous ex-

pansion. On the other hand, current universe contains various structures such as galaxies,

clusters of galaxies, super clusters, filaments and voids, whose formation need other scenario

of structure evolution. These structures are now believed to arise from gravitational amplifi-

cation of tiny seed density fluctuations as observed in the CMB anisotropies. In this section

we describe the fluctuation evolution in the ⇤CDM universe.

(1) Density evolution in Linear perturbation theory

Here we consider the mass fluctuations at scale larger than a few Mpc, where the

amplitude � can be approximated as � ⌧ 1. This approximation is called as “linear”

fluctuations, where the Newtonian approximation plays a role. Then the matter density

of fluid ⇢ satisfies the following fluid equations and the Poisson equation:

@⇢

@t
+ ~r · (⇢~u) = 0 : Continuity equation, (1.17)

�� = 4⇡G⇢ : Poisson equation, (1.18)
@⇢

@t
+ (~u · ~r)~u = �1

⇢
~rp � ~r� : Euler equation (1.19)

where � is the gravitational potential. We can rewrite these quantities using the FLRW

metric: ~x = ~r/a(t), ~v = a(t)̇~x, � = �(~x, t) + 1
2a(t)ä(t)x2. Also we can characterize

fluctuation � by taking ⇢ as homogeneous part

�(~x, t) =
⇢(~x, t) � ⇢

⇢
, (1.20)

then Eqs. (1.17)(1.18) and (1.19) can be converted to:

@�

@t
+

1

a
~r · ~v = 0 , (1.21)

�� = 4⇡G⇢�a2 , (1.22)

@~v

@t
+

ȧ

a
~v = �c2s

a
~r� � 1

a
~r� , (1.23)
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where c2s is the sound velocity defined as c2s =
p

@p/@⇢. Now we apply linear approxi-

mation and neglect terms larger than second order to get;

�̈ + 2
ȧ

a
�̇ �

✓

c2
s

k2

a2
�� + 4⇡G⇢�

◆

= 0. (1.24)

This equation can be solve by applying the Fourier decomposition of �;

�̈
k

+ 2
ȧ

a
�̇
k

+

✓

c2
s

k2

a2
� 4⇡G⇢

◆

�
k

= 0. (1.25)

This equation indicates that �
k

can have the growing solution if the wavelength � is

longer than some critical value �
J

:

� =
2⇡a

k
> �

J

⌘ c
s

r

⇡

G⇢̄
, (1.26)

where �
J

is called as the Jeans length. Therefore the pressure gradient balances the

gravitational infall, and the fluctuations oscillate when their wavelength is smaller than

the Jeans length.

Next we focus on the matter-dominated universe with p = 0. Then the evolution of

the density fluctuation can be described as:

�̈ + 2
ȧ

a
�̇ � 4⇡G⇢� = 0. (1.27)

The solution is composed by growing mode D1(t) and decaying mode D2(t) as follows:

�(t) = C1D1(t) + C2D2(t). (1.28)

Now we look into the properties of density evolution for the ⇤CDM universe. For

simplicity we neglect the radiation density ⌦
�0, curvature K, and assume wDE = �1.

Then the Hubble parameter H is given by:

H(a) = H0

p

⌦m0a�3 + ⌦⇤0. (1.29)

Since H(a) is a specific solution of Eq. (1.27), the linear growth of matter density is
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obtained by assuming D(a) = H(a)f(a):

D1(a) = H(a)

Z

a

0

da0

(a0H(a0))3
, (1.30)

D2(a) = H(a). (1.31)

(2) Density evolution for cosmic structures : non-linear regime

In the following we focus on the density evolution for � � 1 case, where the e↵ect of

the non-linear terms overcomes the Hubble expansion in the evolution of over density.

Even though the evolution of non-linear growth is di�cult to describe analytically, the

simplified model, the spherical collapse model, allows us to analytically solve the

evolution of nonlinear density perturbations.

Here we summarize the characteristic dynamics for the spherical collapse model. For

simplicity, we consider a positively curved matter-dominated universe, where the Fried-

mann equations have the parametric form

r = A(1 � cos ✓), (1.32)

t = B(✓ � sin ✓), (1.33)

where the parameters A and B are for the matter dominated universe: A = ⌦m0/[2(⌦m0 � 1)],

B = ⌦m0/[2H0(⌦m0 � 1)3/2]. This solution gives the same evolutional picture for the

shell at radius r with the inner mass M , with the equation of motion : d2r/dt2 =

�GM/r2. These models characterize the shell behavior: the shell first expands from

✓ = 0 to ✓ = ⇡, then contracts from ✓ = ⇡ to form singularity at ✓ = 2⇡. These two

phases correspond to turn around phase and virialization in structure formation.

⇧ turn around

The solution of Eq. (1.32) and Eq. (1.33) shows that the spherical region reaches

the maximum radius at ✓ = ⇡, where the radius rmax = 2A, and tmax = ⇡B. Then

the density of spherical region at the turn around phase is characterized as:

⇢

⇢0
=

⌦m0⇢c0/r3max

⇢
c0/a3

=
9⇡2

16
⇠ 5.55, (1.34)

� =
3(6⇡)2/3

20
⇠ 1.06, (1.35)

where a = (32H0t)2/3. Therefore the characteristic overdensity does not depend

on the shell mass M .

12



Chapter 1. Introduction

⇧ virialization

Eq. (1.32) and Eq. (1.33) indicate that the mass density collapse to singularity at

✓ = 2⇡. In reality, however, the mass distribution reach virtualized first and the

singularity is never formed. The potential energy satisfies E
k

= �E
p

(rmax/2)/2,

where E
p

(rmax) = �3GM2/5rmax at rmax and E
p

(rmax/2) = �6GM2/5rmax at

r = rmax/2. Thus the contraction of each shell forms objects with a finite size of

rvir = rmax/2, and tvir can be characterized as tvir = 2rmax (or the case of ✓ = 3⇡/2

as tvir = (32 + 1
⇡

)tmax ⇠ 1.81tmax). Hence the typical overdensity follows;

⇢

⇢0
= rvir =

9⇡2

16
⇥ 8 ⇥

✓

tvir
tmax

◆2

⇠ 178, (1.36)

� =
3

20

✓

6⇡
tvir
tmax

◆2/3

⇠ 1.69. (1.37)

(3) Dark matter halos

In the hierarchical structure formation, small-scale structure so-called halos constitutes

a large fraction of dark matter. Cosmic structure formation theory suggests that

matter was accreted along filaments, and halos underwent tidal disruption and mergers.

There exists some properties of halo structures beyond predictions from the spherical

collapse model: concentrated mass distribution in the central region and the slope of

mass density profile. One prediction is that dark matter halos tend to approach an

equilibrium halo shape known as the Navarro-Frenk-White (1997; hereafter NFW)

profile. This universal halo structure has a spherically-averaged radial density that

goes as

⇢NFW(r) =
⇢
c

(r/r
s

)(1 + r/r
s

)2
, (1.38)

where r
s

is the scale radius and ⇢
c

is the central density parameter. The parameter ⇢
c

is specified by imposing that the mass enclosed within a sphere of a given overdensity

� is equal to the halo mass M�,

⇢
c

=
�⇢cr(z)c3�

3mNFW(c�)
=

M�

4⇡r3
s

mNFW(c�)
, (1.39)

where mNFW(c�) ⌘
R

c�

0 dx x/(1 + x)2 = ln(1 + c�) � c�/(1 + c�), c� ⌘ r�/r
s

, a

concentration parameter, and �(z) is a nonlinear overdensity introduced to define

the interior mass for each halo. The NFW profile predicts a monotonically steepened

profile with increasing radius, with logarithmic slopes shallower than an isothermal

sphere interior to the characteristic “scale” radius r < r
s

, but steeper at larger radius,
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approaching to r�3 at the virial radius, r ! rvir.

Note that one sometimes adopts corrections in addition to this simple inner density

profile of halos. For example, one need to take into account the surrounding mass

distribution, especially at larger radius around R ' 10Mpc/h where the mass distri-

bution can be su↵ered from that of neighboring galaxies. One can include this e↵ect

as two-halo term, by taking advantage of the two-point correlation function between

the clusters and the surrounding mass distribution (Miyatake et al. 2015). For more

precise modeling, one can also consider the e↵ect from stellar mass contribution and

miss-centering e↵ect (Takada & Jain 2002; Oguri & Hamana 2011).

Observations of halo kinematics have further complicated the view of halo profiles, with

rotation curves providing evidence that many halos have far flatter central densities

than those seen in simulations. This problem is known as the core-cusp problem, and

remains as one of the unsolved problem in the small-scale cosmology (de Blok et al.

2001; Gentile et al. 2004; Oh et al. 2011).

1.2 Relics of cold dark matter

Since the first discovery of dark matter by Fritz Zwicky, the existence of dark matter have

been tested by many astrophysical observations. In this section we first review the observa-

tional properties of cold dark matter (Section 1.2.1), and then look into the possible relics

when dark matter behaves as particle (Section 1.2.2) or compact objects (Section 1.2.3).

1.2.1 Observational evidences of cold dark matter

In the following we would briefly explain astrophysical properties of dark matter which have

been revealed by observations.

• Non-baryonic

As discussed in Section 1.1.1, the current matter density of the Universe is observa-

tionally constrained to ⌦M ⇠ 0.3, while the baryonic component in the universe is

constrained to ⌦
b

⇠ 0.02. This evidence suggests that we cannot explain the whole

matter component just by known matter, which strongly supports the existence of

non-baryonic matter.

The abundance of dark matter density have been tested by multiple indicators. For ex-

ample, CMB power spectrum o↵ers a strong constraint on matter density, as discussed
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Table 1.1: Matter density ⌦M

Observations Matter density References
Planck PR2++ 2015 0.3098 ± 0.0062 Planck Collabolation et al. (2015)
SNIa 2014 0.295 ± 0.034 Betoule et al. (2014)
BOSS weak lensing 2014 0.310 ± 0.020 More et al. (2015)
Planck SZ+BAO+BBN 2013 0.29 ± 0.02 Addision et al. (2013)
WMAP9++ 2013 0.2865 ± 0.0096 Hinshaw et al. (2013)

in Section 1.1.1. Another good test is performed by measurements of baryon acoustic

oscillation. Besides the constraint on ⌦⇤ obtained from the angular location of BAO

peak in the galaxy clustering, the amplitude of BAO peak places tight constraint on

the matter content of the Universe, providing ⌦M = 0.273 ± 0.025 (Eisenstein et al.

2005). Current constraints from notable observations are summarized in the Table 1.1.

• Massive

The puzzling property of dark matter is that it interacts with ordinary matter only

via its gravity. This makes it di�cult to reveal the nature of dark matter, since we

cannot probe them through electromagnetic signals. One unique tool to probe the

nature of dark matter is the gravitational lensing e↵ect. General relativity predicts

that light rays are bent around massive bodies, which causes the source bodies to be

distorted, brightened, or sometimes creates multiple images in the sky. The strength of

the lensing e↵ect is that it does not related to the nature of the particles in the region,

but only related to its total mass. Hence we can construct a mass map by studying

the distortion patterns of sources provided by the lens distribution.

• Collisonless

The famous detection of collisionless property of dark matter is reported by the ob-

servations of the Bullet Cluster (Clowe et al. 2006). The Bullet Cluster is the result

of merging of two clusters, in which the gas has collided, stripped, and slowed. The

properties of these two gas clumps have been investigated by X-ray observation with

Chandra, which shows significant deviations from the cluster mass contours probed by

the gravitational lensing e↵ect, as shown in Fig. 1.4. This deviation suggests that the

two clumps made of gas components got slowed down after the collision due to their

friction, while the dark matter components within these clusters have passed through

without frictions. Hence we expect that the matter component within these clusters

is collisionless, which results in the di↵erence of mass maps between the luminous gas

component and dark matter.
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Figure 1.4: 500 ks Chandra image of the Bullet Cluster (1E0657-558), with the white bar indicating
200kpc at the distance of the cluster. The green contours are the weak lensing  reconstruction,
and the white contours show the errors on the positions of the  peaks, corresponding to 68.3%,
95.5%, and 99.7% confidence levels. This figure is reproduced from the left panel Fig. 1 of Clowe
et al. (2006).

• Cold

Many candidates of non-baryonic matter have been discussed, and those beyond the

standard model are generally categorized as the hot dark matter (HDM) or the cold

dark matter (CDM). The hot dark matter, such as massive neutrino, is a particle

which has significant thermal speeds, and thus behaves as relativistic collisionless gas.

This means that particles do not fall into the initial overdensities, and suppress the

formation of small-scale structures as we observe today. Since this scenario does not

support the observational properties of large scale structures, the hot dark matter

scenario is ruled out in the modern cosmology.

On the other hand, the velocity of cold dark matter is proposed as non-relativistic at the

time of decoupling, and can form galactic structures. In the picture of ⇤CDM model,

small structures are created first from gravitational instability of initial perturbations.

As the cold dark matter does not reduce perturbation during structure formation

compared to the hot dark matter, small structures gather gravitationally, and merged

many times to form larger structures. This kind of structure formation mechanism is

called bottom-up structure formation, and now becomes the standard view of modern
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Figure 1.5: The current constraints on the annihilation cross-section versus WIMP mass from the
highlighted observations. The constraints are for the annihilation to b-quark pairs. Whereas indi-
rect methods exploring gamma-ray photons and cosmic rays from satellite measurements compete
well up to hundreds of GeVs, at higher energies Air Cherenkov Telescopes appear to be driving
the present limits. The thermal relic cross-section is indicted by the light grey band. Note that
di↵erent assumptions for the DM distributions a↵ect these limits quantitatively, but do not change
the situation qualitatively. This figure is reproduced from Fig. 3 of Conrad & Reimer (2017).

cosmology.

1.2.2 WIMPs as dark matter

Dark matter could be a particle with a finite decay lifetime. In this case we require a rela-

tively stable particle with a lifetime longer than the age of the Universe. The most plausible

candidate for dark matter particles are weakly interacting massive particles (WIMPs). After

inflation, all the particles were in close contact with the rest of the cosmic plasma at high

temperatures. However, as the temperature dropped below their mass scale, the particles

experienced a phase so-called freeze-out, where they became unable to annihilate and main-

tain the abundance in equilibrium. Here we summarize the relic density of dark matter as

particles such as WIMPs.

In the generic WIMP scenario, two heavy particles W can annihilate producing two light

(essentially massless) particles (here note as l). The light particles are assumed to be very

tightly coupled to the cosmic plasma, so they are in complete equilibrium with n
l

= neq
l

.
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Then we use the Boltzmann equation to solve the abundance of dark matter particle n
W

;

a�3d(n
W

a3)

dt
= h�vi{(neq

W

)2 � n2
W

}, (1.40)

where �v is the annihilation cross section times the relative velocity averaged with the

velocity distribution function. This equation indicates the balance between the annihilation

and creation of particles under the expansion of the Universe. Here we rewrite this equation

with Y ⌘ n
W

/T 3 and Yeq ⌘ n
W

/T 3;

dY

dt
= T 3h�vi{(Y 2

eq)
2 � Y 2}, (1.41)

where T is the temperature of thermal equilibrium. We also introduce the following the

mass of the dark matter particle m and introduce x ⌘ m/T . In this case, Y ' Yeq at x ⌧ 1,

and Yeq is exponentially suppressed at large x, Then we can obtain the following equation

during radiation dominated universe;

dY

dx
= � �

x2
{(Y 2

eq)
2 � Y 2}, (1.42)

where � = m3h�vi/H(m). Here we can make use of our understanding of the freeze-out

process to get an analytic expression for the final freeze-out abundance Y1 ⌘ Y (x = 1).

Since Y will be much larger than Yeq well after freeze-out, dark matter particles will not be

able to annihilate fast enough to maintain equilibrium at late time x ! 1 Then the analytic

approximation of Y1 at the late times to get

Y1 = �x
f

�
, (1.43)

where x
f

is the epoch of freeze-out, and x
f

⇠ 10 for dark matter particles.

After the freeze-out, the number density of dark matter particles simply falls o↵ as

a�3. So its energy density today is equal to m(a1/a0)3 times its number density, where a1

corresponds to a time su�ciently late that Y has reached is asymptotic value Y1. As the

number density at that time is Y1T 3
1 ,

⇢
W

= mY1T 3
0

✓

a1T1

a0T0

◆

⌘ mY1T 3
0

30
. (1.44)
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Then the fraction of critical density today contributed by dark matter particle W would be

⌦
W

=
x
f

�

mT 3
0

30⇢cr
=

H(m)x
f

T 3
0

30m2h�vi⇢cr
, (1.45)

where ⇢ ⌘ g⇤
⇡

2

30T
4 is the energy density in the radiational era, and g⇤ is the e↵ective numbers

of relativistic degrees of freedom. By normalizing g⇤(m) and x
f

with their nominal values at

the temperatures of interest for dark matter production,

⌦
W

=



4⇡3Gg⇤(m)

45

�

x
f

T 3
0

30h�vi⇢cr
(1.46)

= 0.3h�2
⇣x

f

10

⌘

✓

g⇤(m)

100

◆1/2 10�37cm2

h�vi . (1.47)

This indicates that roughly cross sections of order 10�40 are needed to get the dark matter

abundance observed today. Such small cross sections emerge naturally in extensions of

the Standard Model of particle physics, such as supersymmetry models. Even with these

small cross sections, the interaction with WIMPs may have implications on astrophysical

scales, and imprint upon the properties of luminous matter. For example, self-annihilation

of WIMPs can result in the emission of standard model particles such as gamma rays,

neutrinos, or electrons/positrons. Several indirect dark matter searches are performed based

on this strategy, and current constraints are given in the Fig. 1.5. Also, direct search by

accelerator experiments have been intensively going on, and may also be tested in the near

future.

1.2.3 Dark matter as astrophysical compact objects

As discussed in the previous section, particle dark matter such as WIMPs are one of the

feasible candidates of dark matter. However, none of particle candidates have been detected

today either by the direct or indirect experiments. On the other hand, there exists another

form of dark matter candidate as compact object in the Galactic halo. Here we briefly review

feasible candidates of dark matter as compact objects.

• Massive compact halo objects (MACHOs)

One of the well-known type of compact dark matter is called as massive compact halo

object (MACHO). MACHOs are generally composed by stellar remnants such as brown

dwarfs, white dwarfs, neutron stars, and stellar black holes. Previous microlensing

surveys towards Large Magellanic Cloud conclude that MACHOs can contribute up to
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20% of the mass of Galactic halo (Alcock et al. 2000).

• Primordial black holes (PBHs)

One alternative candidate for non-baryonic dark matter is MACHO consisted of pri-

mordial black hole (PBH). PBHs have been proposed to be formed by primordial

perturbation at inflation epoch (Hawking 1974). Since they were created before the

Big Bang Nucleosynthesis (BBN), they are not counted for the baryon budget after-

wards. Hence there is no limit on the amount of PBHs created before BBN, and it is

possible for them to constitute the whole dark matter in the Universe.

• Ultracompact minihalos (UCMHs)

Ultracompact minihalos (UCMHs) have been proposed as a form of high density dark

matter structure. UCMHs are proposed to be produced by large-amplitude overden-

sities (� ⇠ 10�3) in the early universe, and collapsed shortly after matter-radiation

equality. Because of the formation in this early epoch, UCMHs form by almost pure

radial infall; this formation scenario then lead to a steeper density profile (⇢ / r�9/4)

compared to that of the NFW halo profile (⇢ / r�1) (Bringmann & Weniger 2012).

These extremely dense cores are expected to exhibit large amounts of dark matter anni-

hilation, even when a small fraction of dark matter is contained within UCMHs. They

can release significant amount of energy via annihilation, which potentially a↵ects the

history of structure formation in the Universe .

1.3 Primordial black hole as dark matter

In this section we focus on primordial black hole as dark matter candidate, and look into the

basic properties and possibility of detection. We first briefly review the theoretical properties

of primordial black holes, and give a brief history to put constraints on the abundance of

primordial black holes. We refer to Carr et al. (2016) and Sasaki et al. (2018) for more detail.

1.3.1 Formation mechanism

Until now, several di↵erent mechanisms have been proposed to form PBHs, for example from

cosmic string loops (Hawking 1989; Polnarev & Zembowicz 1991; Garriga & Vilenkin 1993),

vacuums bubble collisions (Garriga et al. 2016; Deng & Vilenkin 2017), and domain walls

(Garriga et al. 2016; Deng et al. 2017). The most frequently studied PBH formation scenario

is a gravitational collapse of the overdense region in the early Universe.
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In the context of PBH formation, we generally consider a density perturbation that is

initially super-horizon. The perturbation is small in the super-horizon limit, and thus can

be treated as a linear perturbation. As the universe evolves and the horizon grows, the

perturbation grows and quickly becomes non-linear. Once the perturbation reenters the

horizon, it will typically either quickly collapse or dissipate. In this situation, if the density

contrast is very close to critical, a highly overdense region would gravitationally collapse to

form a black hole, directly.

In the following we briefly review the formation condition of the PBHs from the collapse

of large density perturbations. Here we consider a locally perturbed region that would even-

tually collapse to a black hole. As discussed in the Section 1.1.1, the background spacetime

can be well-described by the spatially-flat FLRW metric. Since an overdensed region to

become black hole will be very rare in the space, it can be approximated as a spherically

symmetric regions of positive curvature. Hence we can assume the following metric;

ds2 = �c2dt2 + a2(t)

⇢

dr2

1 � Kr2
+ r2(d✓2 + sin2✓d�2)

�

, (1.48)

where the time-time component of the Einstein equation can be described as:

H2 +
c2K(r)

a2
=

8⇡G

3c2
⇢. (1.49)

This equation is equivalent to the Friedmann equation with a small inhomogeneity induced

by the curvature term. One could regard this as the Hamiltonian constraint on the comoving

hypersurface on which the expansion rate is spatially homogeneous and isotropic. Then we

can define the density contrast on the comoving hypersurface by

� =
⇢� ⇢̄

⇢̄
=

3c4K

8⇡G⇢̄a2
=

c2K

H2a2
. (1.50)

Here we assume � = 1 corresponds to the time of black hole formation t
c

, because the

universe stops expanding under the condition. Since a perturbation cannot collapse when it

is smaller than the Jeans length, we can put a condition by c2
s

k2/a2 = H2 or c2k2/a2 = 3H2

where c2
s

= c2/3 holds at the radiation-dominated era;

1 = �(t
c

) =
⇢� ⇢̄

⇢̄
=

3c4K

8⇡G⇢̄a2
=

c2K

H2a2
, (1.51)

) c2K = c2
s

k2. (1.52)
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Hence the condition for the black hole formation can be describe as;

�(t
k

) =
c2K

H2(t
k

)a2(t
k

)
=

c2
s

k2

H2(t
k

)a2(t
k

)
� �

c

=
1

3
, (1.53)

where t
k

is the time at which ck/a = H. This tells that the PBH formation occurs when the

density perturbation becomes comparable to 1/3.

1.3.2 Theoretical properties

In the following we look into main properties of primordial black holes predicted by their

formation theory.

• Mass

As discussed in the previous subsection, PBHs could have been produced in the early

universe due to various mechanisms. For all of these, the increased cosmological energy

density at early times plays a major role (Hawking 1971; Carr & Hawking 1974). This

then yield a rough connection between the PBH mass and the horizon mass at formation

time:

MPBH ⇠ c3t

G
⇠ 1015

✓

t

10�23sec

◆

g. (1.54)

Hence PBHs could span an enormous mass range: those formed at the Planck time

(10�43sec) would have the Planck mass (10�5g), whereas those formed at 1sec would

be as large as 105M�, comparable to the mass of the black holes thought to reside in

galactic nuclei. Note that the situation is quite di↵erent for the black holes forming

at the present epoch; for example, black holes formed in the final stages of stellar

evolution can never be smaller than around 1M�.

• Evaporation

Primordial back holes give out thermal radiation known as Hawking radiation, and will

eventually evaporate. Hawking (1971) predicts that lighter black holes emit more radi-

ation, and thus evaporate faster. The mass threshold of PBHs which have evaporated

by the cosmic age t0 is given by

M
c

'
✓

3~c4↵0

G2
t0

◆

1
3

⇠ 1015g

✓

↵0

4 ⇥ 10�4

◆

1
3
✓

t0
13.8Gyr

◆

1
3

, (1.55)

where ↵0 is the numerical coe�cient that depends on which particle species can be

emitted at a significant rate (Page 1976). This indicates that PBHs lighter than '
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1015 g do not exist in the present universe, and more massive PBHs will persist until

today. Nevertheless, their abundance can be constrained by looking for the e↵ects

of radiation from their evaporation. For instance, PBHs in the mass range 109-1013g

change abundance of light elements produced by the Big Bang nucleosynthesis due to

high energy particles emitted by the evaporating PBHs (Miyama & Sato 1978). Also,

comparison between the observed light elements and the theoretical prediction tightly

constrains the abundance of such PBHs (Carr et al. 2010).

• Abundance

In order to investigate the abundance of formed PBHs, it is useful look into the mass

fraction of PBHs at the formation time. Assuming PBHs which form at a redshift z

or time t, the mass fraction of PBHs at formation time � can be described as;

� =
⇢PBH

⇢tot
=

✓

H0

Hform

◆2✓aform

a0

◆�3

⌦CDMfPBH, (1.56)

where fPBH is a fraction of PBHs against the total dark matter component, and ⌦CDM

is a density parameter of the matter component at present, here noted “0”. If the

PBHs have a monochromatic mass function, we can determine this relationship more

precisely for the standard ⇤CDM model by Carr et al. (2010) and Carr (1975);

� =
MNPBH(t

i

)

⇢tot(ti)
⇠ 3.7 ⇥ 10�9��1/2

⇣g⇤,form
10.75

⌘1/4
✓

MPBH

M�

◆1/2

fPBH, (1.57)

where � is a numerical factor which depends on the details of gravitational collapse,

and g⇤,form is the number of relativistic degrees of freedom at PBH formation. We also

applied the relation MPBH = �Mhorizon ' �(1/2G)H�1
form, as given in Carr et al. (2010).

Thus, for each mass of PBHs, the observational constraint on PBH fraction fPBH can

be interpreted as that on mass fraction at formation time �.

1.3.3 Possible observational imprints

As discussed in the previous subsection, observational constraints on the abundance of PBHs

can be crucial when testing any early universe models which predict the PBH formation. In

the following we review the possible observational imprints on the abundance of primordial

black holes.

• Gravitational lensing

Gravitational lensing is a powerful tool to probe primordial black holes. One strong
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point of the lensing signals is that they are based only on the gravitational physics;

thus lensing is free from uncertainties which exist in the other e↵ects resulting from

electromagnetic interactions. Many studies to search lensing signals by PBHs has

been based on gravitational microlensing technique. If PBHs exits in the current

Universe, we can probe them through magnification e↵ect on the background objects

such as stars. Following the first proposal by Paczynski (1986), many constraints on

PBH abundance have been obtained by targeting at dense stellar fields such as in the

Galactic center and the Large Magellanic Cloud. Various possibilities of microlensing

events have also been investigated, ranging from distant quasars, radio sources to intra-

cluster stars.

• Dynamical e↵ects

To a certain degree, PBHs can a↵ect any astrophysical system by their gravitational

interactions. By appropriately evaluating the impact of PBHs on the astrophysical

systems, it is possible to put upper limit on the PBH fraction.

One example comes from disruption of astrophysical objects by PBHs. Once the PBH

lies inside the object such as white dwarfs, it quickly accretes the nuclear matter and

destroys the object. Thus, such object must not be exposed to frequent encounters

with the PBHs, from which we can constrain the PBH abundance by studying the

observational abundance of the astrophysical objects today. The possible constraints

on PBHs have been investigated for various astrophysical objects such as white dwarfs,

neutron stars, halo binaries, globular clusters.

Dynamical e↵ects of PBHs can also have imprints on the properties of the Galactic

structure. If the Galactic halo is entirely or partially composed of massive PBHs, some

of them must be in the region near the Galactic center. Such PBHs receive strong

dynamical friction from the stars and the dark matter in the form of lighter PBHs or

elementary particles, lose their kinetic energy and spiral in to the center. Hence an

upper limit on the mass in the Galactic center can be translated into the fraction of

PBHs in the Galactic halo. We can also constrain the PBH abundance by studying

the observed velocity of the Galactic disk, which can be increased by the passing of

PBHs.

• Radiation from accreting matter

Accretion of gas onto the PBHs can have some impact on the constraint of the PBH

abundance. Although we require some assumptions or observational empirical rules for

the calculation, we can derive the PBH constraint based on the two di↵erent processes;
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the accretion e↵ects that arise in the very early Universe, and the electromagnetic waves

from the accreted matter onto the PBHs.

The former e↵ect induces the CMB spectral distortions since photons produced by the

accreting PBHs are not completely thermalized. Photons generated in the redshift

5 ⇥ 104 < z < 2 ⇥ 106 yields the µ-distortion, where photons became in the kinetic

equilibrium state and thus produced the non-vanishing chemical potential. We can put

upper limit in the corresponding redshift where the photon-number changing process

became e�cient to make the distribution Planckian, while lower limit is obtained from

the period where the kinetic equilibrium is no longer maintained. Another distortion is

caused by photons generated in the redshift 200 < z < 5⇥ 104, where the baryonic gas

decouples from the CMB and induce the Compton-y distortion at the corresponding

temperature. Note that both the µ and y-distortions from these accretions onto the

PBHs have too small amplitudes to be relevant to present and future observations

(Ali-Häımoud & Kamionkowski 2017).

On the other hand, the accreted matter to the PBHs after CMB decoupling could have

a profound e↵ect on the thermal history of the Universe (Ricotti et al. 2008). The

Bondi-type accretion of surrounding gas onto PBHs and its associated emission of ra-

diation are proposed to modify the standard ionization history. Two main mechanisms

of ionization discussed here are achieved by either the collisional ionization or the pho-

toionization. The increase of the ionization fraction associated with these mechanisms

can enhance the CMB optical depth, which results in the damping of the small scale

CMB fluctuations, and the enhancement of the polarization power on large angular

scales. The accretion can also shift the redshift of the last scattering, which changes

the phase of the acoustic oscillations in the CMB spectrum.

• Growth of large scale structure

Su�ciently large PBHs could have important consequences for large-scale structure

formation. Assuming that PBHs were randomly distributed in space in the early Uni-

verse, they generate primordial density perturbations by their Poisson fluctuations

on scales larger than the mean distance of PBHs. Since the Poisson fluctuations in

the number of PBHs can enhance the dark matter perturbations on small scales, sta-

tistical properties of optical depth in the baryons are also expected to encode those

inhomogeneity. The possible impact on the Ly↵ forest observations was investigated

in Afshordi et al. (2003), which allows us to probe matter perturbations on small scales

down to ⇠Mpc, where the minimum scale is determined by the thermal broading of

the spectra of the Ly↵ forest.
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• Gravitational wave

The thing which recently kicked o↵ the recent interest in the primordial black hole

study is the detection of gravitational wave by LIGO experiment. LIGO has detected

gravitational waves from mergers of ⇠ 10M� black holes, and so far reported five merger

events for them. Thus it is important to reveal their properties to see if those mergers

are caused by black holes with primordial origin. Gravitational-wave observations

provide a novel tool to probe PBHs independently of the electromagnetic observations,

irrespective of whether the observed mergers of BH binaries are attributed to PBHs or

not. The formation theory of PBH binary indicates that 30M�-30M� PBH binaries,

which are formed in the radiation dominated era, merge with frequency consistent with

the one estimated by the LIGO observations if fPBH ⇠ 10�3 (Nakamura et al. 1997).

The dynamical e↵ects of PBH collisions on astronomical objects have also been a

subject of long-standing interest for gravitational-wave observatories in space. For

example, eLISA has potential to detect the dynamical e↵ects of PBHs in the mass

range 1014-1020g directly, by measuring the gravitational impulse induced by them

when passing nearby (Adams & Bloom 2004; Seto & Cooray 2004).

1.3.4 Brief history of observational constraints

Since the proposal of primordial black holes by Hawking (1971), there has been many at-

tempts to prove the abundance of primordial black holes, both theoretically and experimen-

tally. Although some constraints, especially those from star formation scenario and globular

cluster abundance, include some ambiguity because of their multiple assumptions on mod-

els, we can almost close the entire mass window, except for a unexplored mass window of

MPBH = [10�14, 10�9] M�. In this section we overview the major e↵orts that contribute to

the current constraints on the abundance of primordial black holes.

• Hawking radiation

As proposed in Hawking (1974), PBHs emit radiation at a rate inversely proportional

to their mass. This Hawking radiation causes PBHs to evaporate, and light candidates

in mass range of mBH < 5⇥1014g cannot exit as a candidate of dark matter today (Page

& Hawking 1976). Also, PBHs slightly heavier than this mass limit are expected to

emit �-ray around 100MeV. Thus the observation of extra galactic �-ray background

can constrain the cosmic density of PBH. Current constraint is achieved from the

Energetic Gamma Ray Experiment Telescope (EGRET) as ⌦PBH  10�9 for mBH =

1015g (Sreekumar et al. 1998; Carr et al. 2010). In summary, PBH of mBH  1016g
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cannot constitute dark matter more than 1%, and that of mBH � 7 ⇥ 1016g disappears

due to Hawking radiation.

• CMB (WMAP3, FIRAS)

The early energy injection by PBHs may produce observable distortions of the CMB

spectrum (Battistelli et al. 2000) and may also a↵ect CMB anisotropies (Ricotti et

al. 2008). For example, cosmological parameter estimates from CMB observations are

a↵ected because models with PBHs allow for larger values of the Thomson scattering

optical depth, whose correlation with other parameters may not be correctly taken into

account when PBHs are ignored. This may modify the cosmic recombination history,

and hence lead to µ and y-distortions. The constraint displayed in Fig. 1.6 is given by

WMAP3 and FIRAS experiments (Ali-Häımoud & Kamionkowski 2017; Ricotti et al.

2008)

• Caustic crossing

Given the drastic change of lensing properties near the critical curve, it has been

argued that caustic crossing events in giant arcs of clusters may serve as a powerful

probe of a range of dark matter scenarios such as PBHs and scalar field dark matter.

Recently discovery of a fast transient event MACS J1149 Lensed Star 1 (LS1) provoked

a constraint on PBH abundance by taking advantage of this method (Oguri et al. 2018).

This event is interpreted as a highly magnified image of an single star in the vicinity of

critical curves of massive galaxy clusters In this caustic crossing event, stars that are

closer to the critical curve can have higher magnifications. The magnification saturates

when the distance to the caustic becomes comparable to the size of the source in the

source plane. However, the high fraction of compact dark matter leads to significant

saturation at the position of MACS J1149 LS1, which e↵ectively reduces the macro

model magnification at that position. The LS1 caustic crossing event team discuss

the constraint on the compact dark matter, by assuming that the MACS J1149 LS1

is produced by an intra-cluster light star. By analyzing peak magnitude and source

radius of the event, they put constraint as in Fig. 1.6.

• Microlensing (MACHO, EROS, Kepler)

Two representative microlensing projects which have put constraint on the mass frac-

tion of PBHs are the EROS + MACHO collaboration and the Kepler mission (Alcock

et al. 1998; Tisserand et al. 2007; Griest et al. 2014). They put constraint on the abun-

dance of PBHs from the null detection of microlensing events of PBHs, in the same way

as our observation adopts. The strongest constraint comes from the MACHO project,
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where they search for microlensing events with timescale longer than a few days in the

Large Magellanic Cloud. The mission of Kepler satellite, on the other hand, targets

at events with a-few-hour timescale in the Cygnus-Lyra region which have sensitivity

to PBH DM in the mass range of 10�9M� to 10�7M�. The Kepler mission has large

advantages on precise photometry and longer time-allocation, and current constraint

is obtained by 2 year observation.

• Femtolensing

Femtolensing is a type of gravitational lensing e↵ect caused by PBHs, named after the

very small separation of lens images. As Schwarzschild radius of PBHs are as large as

the wavelength of photons, one needs to consider radiative electromagnetic properties

in femtolensing regime, where interference patterns are expected to show up in the

energy power spectrum of the lensed object. Therefore the abundance of PBHs can be

constrained by the event rate of femtolensing e↵ect, in the same way as we adopt for

microlensing study. The current constraint described in Fig. 1.6 is derived from the

search of femtolensing by compact objects, sensitive to PBH of mBH � 1019 � 1020g by

combing the Fermi satellite GRB data and redshift data (Barnacka et al. 2012).

Following shows constraints under discussion which require some uncertain assumptions;

• Star formation

During their star-formation epoch, dark matter is trapped by stars due to the adiabatic

contraction. If PBHs exist as kind of dark matter, they should be also trapped by

compact stars such as white dwarf or neutron stars. As the matter accretion rate to

PBH is expected to be very fast, compact stars including PBHs are in fate be destroyed

(Kouvaris & Tinyakov 2011a; Kouvaris 2012; Kouvaris & Tinyakov 2011b). Therefore

the capture process of PBH needs to be very small for the star remnant compacts,

stars after the phase of white dwarf, to be observed up to data. The constraint of

PBH abundance here is derived from the observation of globular clusters, where the

density of dark matter is relatively high and have small velocity. By considering the

scenario of destruction, the amount of PBH with typical mass is constrained by the

dark matter distribution during the formation epoch of globular cluster; represented

by the current number of compact stars. This constraint is sensitive to PBHs in mass

range of 1016g mBH  3 ⇥ 1022g (Capela et al. 2013b).

• Neutron stars in globular cluster

One can also apply the star formation scenario for the current abundance of dark matter
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Figure 1.6: The 95% C.L. upper bound on the PBH mass fraction to DM from previous
observational constraints (gray shaded regions): extragalactic �-rays from PBH evaporation
(Carr et al. 2010), femtolensing of �-ray burst (“Femto”) (Barnacka et al. 2012), microlens-
ing search of stars from the satellite 2-years Kepler data (“Kepler”) (Griest et al. 2014),
MACHO/EROS/OGLE microlensing of stars (“EROS/MACHO”) (Tisserand et al. 2007),
microlensing by caustic crossing event (“Caustic”) (Oguri et al. 2018), and the accretion
e↵ects on the CMB observables (“CMB”) (Ali-Häımoud & Kamionkowski 2017), updated
from the earlier estimate (Ricotti et al. 2008).

in globular clusters. The current amount of PBHs in compact objects is expected to be

small enough to avoid the capture process. Strong constraint can be achieved from the

dense core of globular clusters by comparing the direct capture mechanism of neutron

stars with the corresponding numerical simulation. Fig. 1.6 shows constraint from

Capela et al. (2013a), sensitive to PBH mass range of 3 ⇥ 1018g mBH  1024g. The

dark matter density derived from the model indicates that the abundance of PBH in

this mass range is less than 5%.
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1.4 Objective of this thesis

This thesis presents microlensing study to search for dark matter candidate called primordial

black hole (PBH). Primordial black holes (PBHs) have long been suggested as a viable can-

didate for the elusive dark matter (DM). The abundance of such PBHs has been constrained

using a number of astrophysical observations, except for a hitherto unexplored mass window

of MPBH = [10�14, 10�9]M�.

We especially focus on two possible observational cases, where all the dark matter in the

Galactic halo are composed by either (I) in the range [10�11, 10�6]M� or (II) Earth-mass

(10�6M�) scale black holes. In the part (I) of my thesis, we investigated microlensing events

in the disk region of Andromeda Galaxy (M31). There exists unexplored mass window

for PBHs with MPBH = [10�16, 10�9]M�, which can occupy the entire dark matter halo of

our Galaxy. In order to explore this mass window by microlensing observation, we require

frequent photometry of many stars with cadence shorter than 10 minutes. Here we propose

microlensing search by taking advantage of many stars in M31. We performed one-night

observations in 2014 and 2017, and took images every two minutes with the Subaru Hyper

Suprime-Cam (HSC). We developed an image di↵erence technique to detect time-variable

objects, and performed microlensing analysis of these data to set the stringent upper limit

on the abundance of PBHs, targeting at the sub-lunar mass scale.

In the part (II) of this thesis we consider microlensing events with longer duration than

Part (I). We constrained the abundance of primordial black holes (PBH) using 2622 mi-

crolensing events obtained from 5-years observations of stars in the Galactic bulge by the Op-

tical Gravitational Lensing Experiment (OGLE). The majority of microlensing events display

a single or at least continuous population that has a peak around the light curve timescale

tE ' 20 days and a wide distribution over the range tE ' [1, 300] days, while the data also

indicates a second population of 6 ultrashort-timescale events in tE ' [0.1, 0.3] days, which

are advocated to be due to free-floating planets. We confirmed that the main population

of OGLE events can be well modeled by microlensing due to brown dwarfs, main sequence

stars and stellar remnants (white dwarfs and neutron stars) in the standard Galactic bulge

and disk models for their spatial and velocity distributions. Using the dark matter (DM)

model for the Milky Way (MW) halo relative to the Galactic bulge/disk models, we obtained

the tightest upper bound on the PBH abundance in the mass range MPBH ' [10�6, 10�3]M�

(Earth-Jupiter mass range), if we employ “null hypothesis” that the OGLE data does not

contain any PBH microlensing event. More interestingly, we also showed that Earth-mass

PBHs can well reproduce the 6 ultrashort-timescale events, without the need of free-floating
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planets, if the mass fraction of PBH to DM is at a per cent level.

The rest of this thesis is organized as follows: In Chapter 2 we briefly review the property

of gravitational lensing. Chapter 3 and Chapter 4 describes the part (I) of this thesis.

In Chapter 3 we describe the details of our microlensing study of M31 with HSC, based

on one night data taken in 2014. In Chapter 4, we discuss the time-variability of one

remaining microlensing candidate detected in Chapter 3, and also update the PBH constraint

by analyzing the new microlensing observation of M31 performed in 2017 with HSC. In

Chapter 5 we describe the implications regarding the part (II) study, and give the summary

in Chapter 6.
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Gravitational lensing

In the picture of modern observational cosmology, the evolution of overdensities in the initial

cosmic density field leads to the formation of cosmic structures such as galaxy clusters. Re-

cent development of observational techniques have enabled us to unveil the unique character-

istics around theses massive structures; among them noted are distortion and magnification

e↵ects of objects lying behind them. These features are caused by distorted light path in

the foreground gravitational field, originally predicted by general relativity, and called as

gravitational lensing e↵ect. In the following we describe the basic properties of gravitational

lensing, and give brief summary of observational characteristics.

2.1 Theory

General relativity describes the distortion of light path in the gravitational field. In the

following we describe the behavior of light path.

2.1.1 Light path in the unperturbed metric

In this section we describe the deflection angle in the spherically symmetric gravitational

field, following the method of Futamase (1995). Since the general relativity predicts the

light path as Schwarzschild metric, we consider the following geodesic equation without

perturbation:

ds2 = 0 () 2K ⌘
✓

1 � 2m

r

◆

ṫ2 �
✓

1 � 2m

r

◆�1

ṙ2 � r2✓̇2 � r2sin2✓�̇2 = 0, (2.1)
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Figure 2.1: A simple schematic representation of gravitational lensing e↵ect describing the deflec-
tion of light path around massive object.

where · is the di↵erential derivative with a�ne parameter s. We adopt the variational

calculus using the Euler-Lagrange equation:

@K

@x↵

� d

ds

✓

@K

@ẋ↵

◆

= 0, (2.2)

where the four variable x0 = t(x), x1 = r(s), x2 = ✓(s), x3 = �(s). Combining ↵ = 0, 2, 3

cases with Eq. (2.1):

↵ = 0 :
d

ds

✓✓

1 � 2m

r

◆

ṫ

◆

= 0, (2.3)

↵ = 2 :
d

ds
(r2✓̇) � r2sin✓cos✓�̇2 = 0, (2.4)

↵ = 3 :
d

ds
(r2sin2✓�̇) = 0. (2.5)

Here we consider the motion in the ✓ = ⇡/2 plane. If ✓̇ = 0 holds in this plane, the

motion is within this plane because ✓̈ = 0, and higher-order derivative also becomes zero

from Eq. (2.4). Integrating Eq. (2.5) makes preservation of angular momentum equation,

r2�̇ = h, (2.6)

where h is constant. Similarly integrating Eq. (2.3) makes:

✓

1 � 2m

r

◆

ṫ = k, (2.7)
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where k is constant. Putting this equation into Eq. (2.1) becomes:

✓

1 � 2m

r

◆�1

k2 �
✓

1 � 2m

r

◆�1

ṙ2 � r2�̇2 = 0. (2.8)

Also r in Eq. (2.6) can be transform by u = 1/r as:

ṙ =
d

ds

✓

1

u

◆

= � 1

u2
u̇ = � 1

u2

du

d�
�̇ = �h

du

d�
. (2.9)

Putting Eq. (2.6) and Eq. (2.8) into Eq. (2.9) becomes

✓

du

d�

◆2

+ u2 =
k2

h2
+ 2mu3. (2.10)

Then di↵erentiating this equation with � describes a light path projected to a t = const.

plane,

d2u

d�2
+ u = 3mu2. (2.11)

Since m = 0 holds in the limit of the special relativity theory, the general solution can be

described as:

u =
1

l
sin(�� �0). (2.12)

This solution has the same form with Newtonian prediction, which expresses the straight

line from �0 to �0 + ⇡ where l = const. Thus the light path in the Schwarzschild metric can

be considered as the perturbed form of the special case. Then the solution of Eq. (2.11) can

be written as

u = u0 + 3mu1, (2.13)

where u0 is Eq. (2.12) in the limit that mu is small enough, and �0 = 0. Putting Eq. (2.13)

into Eq. (2.11) and neglecting terms with order higher than O(mu) becomes

d2u1

d�2
+ u1 = u2

0 =
sin2�

l2
. (2.14)
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Figure 2.2: Gravitational lensing scheme. The bold line describes the light path from the source
object (left) to the observer (right), bent around the gravitational field of the lens (middle).

Therefore, general solution of Eq. (2.11) is:

u =
sin�

l
+

m(1 + Ccos�+ cos2�)

l2
, (2.15)

where we assume m/l is small.

Next we look into deflection angle � in spherically symmetric gravitational field. Consid-

ering the case of r ! inf, where u ! 0 and the right side of Eq. (2.15) becomes zero. Then

we denote the values of asymptote angle � as �✏1 and ⇡ + ✏2, as shown in the Fig. 2.1. In

the limit of ✏1, ✏2 ! 0, Eq. (2.15) gets to;

�✏1
l

+
m(2 + C)

l2
= 0,

�✏2
l

+
m(2 + C)

l2
= 0,

) � = ✏1 + ✏2 =
4m

l
. (2.16)

If we explicitly write the gravitational constant G and light velocity c, the deflection angle

can be written as:

� =
4Gm

c2l
. (2.17)

2.1.2 Light path in the perturbed metric

(1) Lens equation

Here we consider a case where gravitational potential � is small. In this case, the
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metric of inhomogeneously expanding universe can be described as:

ds2 = �
✓

1 +
2�

c2

◆

c2dt2 + a2(t)

✓

1 � 2�

c2

◆

⇥

d�2 + r2(�)d✓2
⇤

, (2.18)

where d� = dr2/1 � Kr2, and d✓2 ' (d✓2)2 +(d✓2)2 for distant galaxies. Considering a

light path at xi = (✓1, ✓2,�), then the derivative of a�ne parameter can be described

as:
d

d�
=

d�

dx0

dx0

d�

d

d�
= �P 0

a

d

d�
, (2.19)

where P 0 = dx0/d�. Thus perturbed part of geodetic equation dkµ/d�+ �µ

↵�

k↵k� = 0

for kµ = kµ

(b) + �kµ can be reduced to the first order of ✓1, ✓2 and �/c2 in Taylor

expansion (e.g. Schneider et al. (1992)):

d2(r✓i)

d�2
+ Kr✓i = � 2

c2
@�

@(r✓i)
. (2.20)

Therefore the solution is described as:

✓i
S

= ✓i � ↵̂i, (2.21)

↵̂i =
2

c2

Z

�

0

d�0@
i

�(�0)
r(�� �0)

r(�)
, (2.22)

where ✓i
S

represents the position of the source image without lensing e↵ect as in Fig. 2.2,

and � is the position of the source. This is a general expression of the lens equation,

and ↵̂ is the deflection angle. In the following we adopt some approximation to describe

the basic properties.

⇧ Thin lens approximation

Here we adopt so-called thin-lens approximation; the case where the light deflects

within a su�cient small region compared to the distance between the source and

the observer. In this approximation the deflection angle ↵̂ can be described as:

↵̂i ' 2

c2
r(�� �0)

r(�)

Z

�

0

d�0@
i

�(�0)

' �2G

c2
r(�� �0)

r(�)

Z 1

�1
dz@

i

Z

d⇠0dz0
⇢(~x)

q

|~⇠ � ~⇠0|2 + |z � z0|2

' 4G

c2
r(�� �0)

r(�)

Z

d2⇠0
~⇠ � ~⇠0

|~⇠ � ~⇠0|2
⌃(~⇠0), (2.23)
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where we rewrite the gravitational potential as:

�(~x) = �G⇢

Z

d3x0 ~x � ~x0

|~x � ~x0|2
�(~x), (2.24)

and the surface mass density as ⌃(~⇠) =
R1
�1 dz⇢(~x). In this description we assume

⇢(~x) � ⇢, and � and �0 are the position of the source and lens respectively. Then

according to Fig. 2.2, we can substitute the angular diameter distance DA for r(�)

and ~⇠ = DOL
~✓. Hence,~̂↵ can be described as:

~̂↵ =
4G

c2
DOLDLS

DOS

Z

d2✓0
~✓ � ~✓0

|~✓ � ~✓0|2
⌃(DOL

~✓)

=
1

⇡

Z

d2✓0
~✓ � ~✓0

|~✓ � ~✓0|2
̂(DOL

~✓)⌃(DOL
~✓). (2.25)

In the second equality we conventionally adopt the following description of the

critical surface mass density ⌃cr and the dimensionless surface mass density ̂(DOL
~✓):

⌃
cr

=
c2

4⇡G

DOS

DOLDLS
, (2.26)

̂(DOL
~✓) =

⌃(DOL
~✓)

⌃cr
. (2.27)

Furthermore we transfer the lens equation into dimensionless form. The lens

equation can be described with quantities featured in Fig. 2.2:

DOL

DOS
~⌘ = ~⇠ � DOL

~̂↵(~⇠/DOL). (2.28)

Also we define the characteristic length ⇠0, ⌘0 = ⇠0DOS/DOL in the source plane.

In this case the dimensionless lens equation can be converted with the dimension-

less vector ~x = ~⇠/~⇠0, ~y = ~⌘/~⌘0 as:

~y = ~x � ~↵(~x), (2.29)

~↵(~x) =
1

⇡

Z

d2x0(~x0)
~x � ~x0

|~x � ~x0|2
, (2.30)

(~x) ⌘ ̂(~⇠) =
⌃(⇠0~x)

⌃cr
=

1

⌃cr

Z 1

�1
⇢(~r)dz. (2.31)

⇧ Axially symmetric lens
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Here we focus on the case where lens are axially symmetric, and derive the expres-

sions of basic lensing formulae. As for the axially symmetric mass distribution,

we can rewrite (~x) = (x), where |~x| = x. In this situation, the lens potential of

the general form is described as:

�(~x) ⌘ 1

⇡

Z

d2x0(~x0)ln|~x � ~x0|, (2.32)

where the scaled deflection angle ↵(x) is calculated using Eq. (1.20) as:

~↵(~x) = ~r�(x) = 2
~x

x

Z

x

0

dx0x0(x0) ⌘ ↵(x)
~x

x
. (2.33)

Then the integral form of Eq. (2.32) is described using (4.22) and (4.14) of Grad-

shteyn & Ryzhik (1994):

�(~x) =
1

⇡

Z

dx0
Z

d�x0(x0)ln
q

x2 + x02 � 2xx0cos�

= 2lnx

Z

x

0

dx0x0(x0) + 2

Z inf

x

dx0x0(x0)lnx0

= 2

Z

x

0

dx0x0(x0)ln
⇣ x

x0

⌘

+ const. (2.34)

Therefore the lens equation is reduced to a scalar equation under the condition

of ~↵ / ~x:

y = x � ↵(x) = x � d

dx
�(x), (2.35)

and also the Laplacian of  in Eq. (2.32) can be reduced as:

��(~x) = 2(~x). (2.36)

(2) Magnification, convergence and shear

In the following we discuss the basic properties of gravitational lensing: magnification

and distortion. Using Eq. (2.36), the distortion of source image can be represented by

the following Jacobian matrix:

A
ij

=
@✓i

S

@✓j
⌘
 

1 � � �1 ��2
��2 1 � + �1

!

=

 

1 �  0

0 1 � 

!

+

 

��1 ��2
��2 +�1

!

, (2.37)
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where  is convergence and � is shear; �1 = 1
2(�,11 � �

,22), and �2 = �
,12. The former

component in the right hand side of Eq. (2.37) contributes to magnification e↵ect of

the size of a source image, and the latter one is for anisotropic-stretching e↵ect of the

image. The distortion can also be reduced with Eq. (2.23) as following:

A
ij

= �
ij

� �
ij

, (2.38)

� =
2

c2

Z

�

0

d�0g(�,�0)@
i

@
j

�(�0), (2.39)

where g(�,�0) = r(� � �0)r(�0)/r(�), and we consider up to the second order. Note

that the magnification of the image brightness can be described as:

µ = |µ(~x)| =

�

�

�

�

1

det A(~x)

�

�

�

�

. (2.40)

As Eq. (2.38) indicates that 2 = �
,11 + �

,22 holds,  can be described as the integral

of matter density perturbation along the line of sight, combined with Eqs. (2.37) and

(2.38) as:

 =
1

c2

Z

�

0

d�0g(�,�0)[� � @2
�

]� (2.41)

=
3

2

✓

H0

c

◆2

⌦m0

Z

�

0

d�0g(�,�0)
�

a
� 1

c2

Z

�

0

d�0g(�,�0)@2
�

�

' 3

2

✓

H0

c

◆2

⌦m0

Z

�

0

d�0g(�,�0)
�

a
, (2.42)

where we neglect the second derivative of gravitational potential, and combined the

following Poisson equation: �� = 3
2H

2
0⌦m0�/a.

On the other hand, convergence and shear in Fourier space are given by:

�̃(~k) = �̃1(~k) + i�̃2(~k) (2.43)

̃(~k) = �̃1(~k) cos 2�
~

k

+ �̃2(~k) sin 2�
~

k

(2.44)

) �̃(~k) =
k2
1 + k2

2 + ik1k2

k2
̃(~k), (2.45)

where ~k = (k1, k2) = k(cos�
~

k

, sin�
~

k

). Therefore the inverse transform of Eq. (2.43) is

given as (Seitz & Schneider 1996):

(~k) = � 1

⇡

Z

d2✓0Re[D⇤(~✓ � ~✓0)�(~k)], (2.46)
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where D(z) = (z21 � z22 + 2iz1z2)/z4.

Also Eq. (2.38) in polar coordinate provides the following relations:

 =
1

2

✓

�
✓✓

+
1

✓
�

✓

+
1

✓2
�

��

◆

, (2.47)

�+ = �̃1(~k) cos 2�
~

k

+ �̃2(~k) sin 2�
~

k

, (2.48)

�⇥ =
k2
1 + k2

2 + ik1k2

k2
̃(~k), (2.49)

where (✓1, ✓2) = (✓ cos�, ✓ sin�), taking origin at the center of gravitational source.

Furthermore �+ and �⇥ are tangential shear and cross component of shear defined as:

�+ = ��1 cos 2�� �2 sin 2�, (2.50)

�⇥ = �1 sin 2�� �2 cos 2�. (2.51)

The averaged description of these quantities in the range of [✓,✓ + d✓] is:

hi(✓) =
1

2

✓

h�
✓✓

i +
1

✓
h�

✓

i
◆

, (2.52)

h�+i(✓) = �1

2

✓

h�
✓✓

i � 1

✓
h�

✓

i
◆

, (2.53)

h�⇥i(✓) = 0. (2.54)

The property of Eq. (2.54), h�⇥i is often adopted as the indicator of systematic un-

certainty in the observation. Therefore the averaged tangential component is given

by:

h�+i(✓) = �hi(✓) + (✓), (2.55)

where (✓) is the circle average of convergence given by:

(✓) =
1

⇡✓2

Z

✓

0

2⇡d✓0✓0hi(✓) =
1

✓2

Z

✓

0

2⇡d✓0@
✓

0(✓0�
✓

0) =
1

✓
h�

✓

i. (2.56)

(3) Lensing distortion e↵ect

In the following we describe the relation between the shear quantity and observables.

As discussed in previous section, the distortion of source image is given by Eq. (2.37).

However,  cannot be measured directly without the knowledge about the original size

of the image. What we can only measure is the reduced shear, which is given by taking
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a factor of (1 � ) out front of Eq. (2.37):

g(~✓) =
�(~✓)

1 � (~✓)
. (2.57)

The ellipticity of galaxies a↵ected by gravitational lensing e↵ect has major axis a =

1/(1 �  � |�|), and minor axis b = 1/(1 �  + |�|). Thus by utilizing ellipticity of

galaxies we can reconstruct the shear information.

In order to characterize the system in detail, here we define ellipticity as:

✏ =
a � b

a + b
. (2.58)

The definition of ellipticity can be related to the shear quantity by considering the sec-

ond order surface brightness moments of a galaxies image (see Bartelmann & Schneider

2001). Suppose that the observed surface brightness of galaxies I(✓), the center of the

image ✓ is given for all angular separations as:

✓ ⌘
R

d2✓w[I(✓)]~✓
R

d2✓w[I(✓)]
, (2.59)

where w[I(✓)] is weight function. Then the tensor component of the second moment

of surface brightness can be described as:

Q
ij

=

R

d2✓w[I(✓)](✓
i

� ✓
i

)(✓
j

� ✓
j

)
R

d2✓w[I(✓)]
, (2.60)

where Q11 = Q22 and Q12 = Q21 = 0 for a circular image. Also by the definition of

Q
ij

, we can describe the original ellipticity of galaxy as (Schneider 1996):

✏ = ✏1 + i✏2 =
Q11 � Q22 + 2iQ12

Q11 + Q22 + 2(1(Q11)Q22 � Q2
12)

1/2
, (2.61)

where ✏1 = ✏2 = 0 for a circular image. Under these conditions we can calculate the

original ellipticity of galaxy as:

✏int =

8

>

<

>

:

✏� g

1 � g⇤✏
(for |g|  1),

1 � g✏⇤

✏⇤ � g⇤ (for |g| > 1),
(2.62)

where ✏ ⇠ ✏int + g. Note that the signal from shear is usually overwhelmed by large
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Figure 2.3: Right figure describes ellipticity of a galaxy with gravitational lensing e↵ect. The
innermost circle is the original ellipticity of galaxy, the elongated one is a↵ected by right shear and
convergence, and the dashed circle represents the case only with convergence signal. Left figures
describes the elongated patterns for di↵erent shear properties.

uncertainty from the measurement of elipticity of galaxy. Therefore the statistical

analysis of ellipticity plays a key role. As there is no reason for preferred orientation

of galactic shear, the average intrinsic ellipticity would be canceled if we stack the

elipticities from multiple galaxies. Hence hgi + 0 = h✏i, and we can construct the

estimator for the shear as:

� ⇠ g ⇠ hgi = h✏i. (2.63)

This stacking method is valid for the small sky survey where the gravitational field can

be taken as uniform.

2.2 Observational characteristics

The main characteristics of gravitational lensing is distortion and magnification. These

properties provide useful information to probe various cosmic properties. Here we briefly

summarize the characteristic schemes in lensing observations following a conventional clas-

sification.

• Strong lensing

When the foreground object is as massive as clusters of galaxies, multiple images of a

background object show up in the sky. This phenomenon is first observed for quasar

system (Walsh et al. 1979). Since the distortion patterns and the number of images

di↵er in every system, it has played a great role to probe the mass distribution around

multiple lensing systems. One unique point of strong lensing is that di↵erent images
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have di↵erent timing of maximum magnification. Hence the analysis of single lensing

system is strong enough to provide precise measurements of Hubble constant.

• Weak lensing

In the system of strong gravitational field around the clusters of galaxies, the image of

background galaxies are distorted in the coherent patterns. By statistical analysis of

multiple lensing signals, one can extract an averaged shear property even for weakly

lensed field. If enough statistics can be achieved, we can reconstruct the mass distribu-

tion in Mpc scales. Nowadays, multiple surveys have been performed to reveal various

properties of large scale structures, including tests of cosmological parameters.

• Microlensing

One important feature of gravitational lensing is magnification of the surface bright-

ness of background objects. In the case where two lensed images are too close to be

separated, one can detect only this magnification e↵ect. This lensing scheme is called

microlensing, and various searches have been proposed to probe dark object such as

exoplanets.

2.3 Microlensing basics

In this section we describe the general properties of microlensing system. We first look into

the basic observational scheme where the lens radius is smaller than the background source

objects, and then give two exceptional cases where the lens size is comparable to source size,

or where the Schwarzschild radius is smaller than the observational wavelength.

2.3.1 Point source approximation

In the following we look into the lensing system in the point source approximation, as

illustrated in Fig. 2.4. We denote, by �, the angle between the lens and the source object on

the sky, and ↵ as the angular separation between the source and the image. We also define

the following distances; r0 as the distance between the lens and the image in the lens plane,

r between the lens and the image, D
S

as the distance between the observer and the source,

and x as the distance to the lens normalized by D
S

. Then � and ↵ can be described as:

� = r0/xD
S

, and ↵ = r/xD
S

. As discussed in Section 2.1.1, the bending angle for a point

mass lens is given as

� =
4Gm

c2l
. (2.64)
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Figure 2.4: An illustration of gravitational lensing system. The light ray emitted from a source is
bent by the gravitational field of a lens, and the source can be observed by multiple images due to
the lensing. For a system where a star in M31 is a source object and a PBH of 10�7M� in either
halo region of MW or M31 is a lensing object, the two images due to lensing are not resolved even
by the Subaru data, because the angular separation between the two images is about 107 arcseconds
compared to O(0.1”), a typical angular resolution of the HSC/Subaru data.

Here we call the object which makes foreground gravitational field as “lens”, and “source”

for the background object (eg. m in Eqs. (2.64) denotes the lens mass as in Eq. (2.17), and

l is the minimum distance between the light pass and the lens). Then the lens equation in

this system can be described as:

D
S

� + D
S

(1 � x)� = D
S

↵. (2.65)

Putting ↵, �, � in this equation:

r2 � r0r � R2
E

= 0 (2.66)

where R
E

is Einstein radius defined as:

R2
E

=
4GMD

c2
, D ⌘ D

S

x(1 � x). (2.67)

Note that Einstein radius is the size of so-called Einstein ring, which appears only when the

observer, lens, and source are perfectly aliened in the line of sight and the lens has a axially

symmetric mass distribution. Thus the following solutions of the lens equation represent

positions of the two images:

r1,2 =
r0 ±

p

r20 + 4R2
E

2
. (2.68)
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Since lensing does not change the surface brightness of a source object, the lensing magni-

fication is given by the change of the apparent angular extent of the source object due to

lensing:

A1,2 =

�

�

�

�

r1,2
r0

dr1,2
dr0

�

�

�

�

=

�

�

�

�

r41,2
r41,2 � R4

E

�

�

�

�

. (2.69)

Hence the total magnification of the lensed image is given by

A = A1 + A2 =
u2 + 2

u
p

u2 + 4
, u ⌘ r0

R
E

. (2.70)

Next we describe time variation of the flux during a microlensing event. The magnification

of source image varies with time as the lens object moves in front of the source object. Here

we define v as the relative velocity component of the lens object perpendicular to the line

of sight, and d as the closest distance of lens to the line of sight. The closest distance to

the lens image can also be characterized by the impact parameter, defined as umin = d/RE.

Here we define a typical time scale of the magnification time variation as

t0 =
R

E

v
. (2.71)

With this parameter, the time variation of lens flux can be characterized as:

(v(t � tmax))
2 + d2 = r20, (2.72)

where tmax is the time when the lens and the source are in the closest separation on the sky.

By combining Eqs. (2.70) and (2.72), we obtain

u2 =
r20
R2

E

=
(t � tmax)2

t20
+ u2

min. (2.73)

Hence the flux magnification of microlensing event is given by a function of time as:

A(t) =
y2 + u2

min + 2
p

y2 + u2
min

p

y2 + u2
min + 4

, y =
t � tmax

t0
, (2.74)

which implies that magnification gets larger when impact parameter umin is smaller. Note

that lensing magnification is independent from the original luminosity of the source and the

observational wavelength.
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Figure 2.5: Simulated light curves for microlensing events, taken from Fig. 2 of Paczyński (1986).
Each light curve stands for di↵erent impact parameter umin at 0.1, 0.2, ..., 1.1, 1.2, and light curve
with larger magnification amplitude corresponds to smaller umin parameter.

The standard timescale of microlensing event as in Eq. (2.71) is given by:

t0 ' 1.8hours

✓

M

10�7M�

◆

1
2
✓

xD
S

100kpc

◆

1
2
✓

200km/sec

v

◆

, (2.75)

where we assumed PBH with 10�7M� is located at D
L

= 100kpc, and the perpendicular

velocity of the lens is around Vhalo = 200km/sec.

2.3.2 Finite source size e↵ect

The point source approximation case discussed in Section 2.3.1 is only valid when the source

size is smaller than the Einstein radius of the lens. In the following, we briefly review the

magnification of an extended source caused by a point mass lens. We refer to Witt & Mao

(1994) and Cieplak & Griest (2013) for more detail.

If the source is extended one can obtain the lensed flux and the total amplification by

integrating A(u) as in Eq. (2.74) over the source area, weighted by the surface-brightness

profile of the source. Then the amplification for the extended source can be derived by the
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Figure 2.6: E↵ect of finite source size e↵ect on microlensing light curves. We assume observation of
microlensing events toward Andromeda galaxy (DS = 770 kpc) with lens position at DL = 100 kpc
and the impact parameter is � = 0.2. We assume light curves have timescale tFWHM = 360 sec for
cases with point source approximation.

convolution of the point source, which averages the magnification of the point source

Afinite(t) =
1

⇡U2

Z

~y2source
d2yApoint(y), (2.76)

where U is the finite source parameter

U =
RS/dS

RE/dL
= 5.8

✓

M

10�10M�

◆�1✓dL

dS

◆1/2✓

1 � dL

dS

◆�1/2

. (2.77)

Fig. 2.6 shows the example of light curves considering finite source size e↵ect. There

is larger deviation around the peak magnification for lens with smaller mass. The above

discussion indicates that the amplification gets smaller when U is larger. The finite source

size parameter U depends both on the distance of the source and the mass of the lens object;

U gets larger when the lens locates closer to the source object, or when the mass of the lens

is smaller.
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2.3.3 Wave e↵ect

Review of Basic Formalism

For special cases of microlsning observations, where the Schwarzschild radius of the lens

is comparable to the observational wave length, we need to take into account the e↵ect of

wave optics. In the following we review the basic formalism of wave optics under thin lens

approximation. We refer to Nakamura (1998) and Matsunaga & Yamamoto (2006) for more

detail.

Here we start from a case in Fig. 2.2. Here the background space-time can be described

with the following metric:

ds2 = g
µ⌫

dxµdx⌫ = � (1 + 2U(~r)) dt2 + (1 � 2U(~r)) d~r2, (2.78)

where U(~r) is the Newtonian gravitational potential with the condition U(~r) ⌧ 1. On the

Newtonian background space-time, we consider the wave propagation of the scalar field �,

as described in Eq. (2.18). The propagation of electro-magnetic wave can be well described

by the scaler wave equation, which is given by

@
µ

(
p

�ggµ⌫@
⌫

�) = 0. (2.79)

This equation is written as

(�2 + !2)� = 4!2U(~r)� (2.80)

on the space-time with the line element in Eq. (2.78), where we assume the monochromatic

wave with the angular frequency !. By assuming spherically symmetric potential under the

thin lens approximation, the amplification factor F = �/�0, where �0 is the wave amplitude

in the absence of gravitational potential U = 0, is given by

F (!, ~⌘) =
dS

dLdLS

!

2⇡i

Z 1

1
d2⇠ exp[iw�̂(~⇠, ~⌘)], (2.81)

where �̂(~⇠, ~⌘) is the time delay function given by

�̂(~⇠, ~⌘) =
dLdS

2dLS

 

~⇠

dL
� ~⌘
~dS

,

!2

�  ̂(~⇠) (2.82)

where dL is the distance between the lens and the source, dS is the distance between the

source and the observer, and dLS is the distance between the lens and the source, respectively.
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Note that we omit a term �̂
m

(~⌘) in the right hand side because the inclusion of this term does

not alter our argument. The two dimensional gravitational deflection potential is defined by

 ̂(~⇠) = 2

Z 1

1
dzU(~⌘, z). (2.83)

Note that |F | = 1 in the absence of the lens potential U = 0.

It is useful to rewrite the amplification factor F in terms of dimensionless quantities: ~x =
~⇠/⇠0, ~y = ~⌘dL/⇠0dS, w = !dS⇠20/dLdLS, and  =  ̂dLdLS/⇠20dS, where ⇠0 is the normalization

constant of the length in the lens plane, for which we adopt ⇠0 = ✓
E

dL. ✓E is the Einstein

angle derived as the solution of the lens equation with ✓S = 0 in Eq. (2.23). We also introduce

the dimensionless time delay function by

T (~x, ~y) =
dLdLS

dS⇠20
�̂(~⇠, ~⌘) =

1

2
|~x � ~y|2 �  (~x). (2.84)

Then, the amplification factor is written as

F (w, ~y) =
w

2⇡i

Z 1

1
d2x exp[iwT (~x, ~y)]. (2.85)

Hence, the e↵ect of the wave optics is characterized by the dimensionless parameter w. In

the case of the spherically symmetric lens model, the gravitational deflection potential  (~x)

depends only on x = |~x|. Then, the amplification factor is reduced to the relatively simple

formula

F (w, y) = �iwe
i
2
wy

2

Z 1

0

dx x J0(wxy) exp



iw

✓

1

2
x2 �  (x)

◆�

, (2.86)

where J0(z) is the Bessel function of the zeroth order and y = |~y|.

Geometrical optics approximation

Next we consider the limit of the short wave length in the wave optics (w � 1), which

reproduces the conventional geometrical optics in the gravitational lensing. In the limit of

the geometrical optics, the di↵raction integral Eq. (2.85) is evaluated around the stationary

points of the time delay function T (~x, ~y). The stationary points are determined by the

solution of the lens equation as in Eq. (2.23). Then the time delay function T (~x, ~y) is

expressed around the j-th image position ~x
j

as

T (~x, ~y) = T (~x
j

, ~y) +
1

2

X

a,b=1,2

@
a

@
b

T (~x
j

, ~y)X
a

X
b

+ O(X3), (2.87)
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where ~X = ~x � ~x
j

. Inserting Eq. (2.87) into Eq. (2.85), we obtain the amplification factor

in geometrical optics limit

Fgeo(w, ~y) =
X

j

|µ(~x
j

)|1/2 exp
h

iwT (~x
j

, ~y) � i
n
j

2
⇡
i

, (2.88)

where the magnification of the j-th image is µ(~x
j

) = 1/det(@~y/@~x) and n
j

= 0, 1, 2 when ~x
j

is a minimum, saddle, maximum point of T (~x, ~y), respectively.

Point mass lens

Now we consider a simple case of the point mass lens model, in which we write ⇢(~x, z) =

M�(2)(~⇠)�(1)(z), where M is the mass of the lens object. Then, the surface mass density

is ⌃(~x) = M�(2)(~⇠) = M�(2)(xi0x). Using mathematical formula, the expression of the

amplification factor Eq. (2.86) yields

F = e
i
2
w(y2+log(w/2))e

⇡
4
w�

✓

1 � i

2
w

◆

1F1

✓

1 � i

2
w, 1; � i

2
wy2

◆

, (2.89)

where 1F1(a, c, z) is the confluent hypergeometric function. In this model we have the di-

mensionless parameter w, which characterizes the wave optics,

w = 2⇡
2r

s

�
= 8⇡GMf = 6.2

✓

M

10�10M�

◆

. (2.90)

Note that w has the meaning of the ratio of the Schwarzschild radius to the wavelength of

the propagating wave. Then we define the magnification by µ(w, y) ⌘ |F (w, y)|2 as

µ(w, y) =
⇡w

1 � e�⇡w

�

�

�

�

1F1

✓

1 � i

2
w, 1; � i

2
wy2

◆

�

�

�

�

2

, (2.91)

where we give the expression from Eq. (2.86). The maximum magnification is achieved when

y = 0, which provides the configuration of the Einstein ring,

µmax =
⇡w

1 � e�⇡w

. (2.92)

We next consider the approximation based on the geometrical optics. The point mass

lens model has the two images in the geometrical optics. Namely, the lens equation as

in Eq. (2.23) has the two solution (the minimum and the saddle points of the time delay
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Figure 2.7: E↵ect of wave optics on microlensing e↵ect. This figure is reproduced from Fig. 3 of
Matsunaga & Yamamoto (2006).

function). Then, Eq. (2.88) yields

Fgeo(w, ~y) = |µ+|1/2 exp



iw

✓

1

2
(p+ � y)2 � log |p+|

◆�

�i|µ�|1/2 exp



iw

✓

1

2
(p� � y)2 � log |p�|

◆�

, (2.93)

where the magnification of each image is µ± = 1/2±(y2+2)/(2y
p

y2 + 4) and p = (1/2)(y±
p

y2 + 4). Then, the corresponding magnification is

µgeo(w, y) =
y2 + 2

y
p

y2 + 4

+
2

y
p

y2 + 4
sin

"

w

 

1

2
y
p

y2 + 4 + log

�

�

�

�

�

p

y2 + 4 + y
p

y2 + 4 � y

�

�

�

�

�

!#

. (2.94)

Fig. 2.7 shows the magnification from Eq. (2.89) and Eq. (2.93), as a function of the

parameter w with the source position fixed y = 0.5. For w � 1, the oscillation feature

appears due to the interference in the wave e↵ect between the double images. Both the

curves agree, and the geometrical optics is a very good approximation. For w  1, however,

the two curves are not in good agreement because the geometrical optics approximation is

not suitable.

Note that the case for the extended source can be described as in the following:

µ̄(w, aS, rS) =

R1
1 W (~y)µ(w, y)d2y
R1
1 W (~y)d2y

, (2.95)
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where we assume the distribution of the source intensity. For example, in the case of the

Gaussian distribution we can assume

W (~y) = exp

 

� |~y � ~Y |2

2a2
S

!

, (2.96)

where ~Y (|~Y | = rS) specifies the dimensionless source position, and aS is the dimensionless

source size.
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Microlensing constraints on

primordial black holes with the

Subaru/HSC Andromeda observation

The nature of dark matter (DM) remains one of the most important problems in physics.

Previous studies have suggested that DM is non-baryonic, non-relativistic, and interacts

with ordinary matter only via gravity (Davis et al. 1985; Clowe et al. 2006; Dodelson &

Liguori 2003). Currently, unknown stable particle(s) beyond the Standard Model of Particle

Physics, such as Weakly Interacting Massive Particles (WIMPs), are considered to be viable

candidates (Jungman et al. 1996). However such particles have so far evaded detection in

either elastic scattering experiments, indirect experiments or collider experiments (Klasen et

al. 2015). Primordial black holes (PBH), which can be formed during the early universe, are

also viable candidates for the elusive DM (Zel’dovich & Novikov 1967; Hawking 1971; Carr

& Hawking 1974). In this chapter we describe our e↵orts on search of PBHs via microlensing

events with Subaru Hyper Suprime-Cam.

3.1 Introduction

The abundance of PBHs of di↵erent mass scales is already constrained by various obser-

vations except for a mass window of MPBH ' [1019, 1024]g or equivalently [10�14, 10�9]M�

(Carr et al. 2016). The existing constraints based on the capture of neutron stars and white

dwarfs (Capela et al. 2013b) in this mass regime are based on uncertain assumptions about

the presence of DM in a globular cluster (Lane et al. 2009). Thus it is of critical importance

to further explore observational constraints on the PBH abundance for this mass window.
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Gravitational microlensing is a powerful method to probe DM in the Milky Way (MW)

(Paczynski 1986; Griest et al. 1991). Microlensing causes a time-varying magnification of a

background star when a lensing object crosses the line-of-sight to the star at close proxim-

ity. The microlensing experiments, MACHO (Alcock et al. 2000) and EROS (Tisserand et

al. 2007), have previously monitored large number of stars in the Large Magellanic Cloud

(LMC) with roughly a 24 hour cadence. They have ruled out massive compact halo objects

(MACHOs) such as brown dwarfs with mass scales [10�7, 10]M� as DM candidates. We also

note that, if PBHs at ⇠ 10M� mass scale, which are the possible source of LIGO gravita-

tional wave detections, make a significant fraction of DM, by more than ⇠ 1%, the merger

rates of the resulting binaries could be larger than the LIGO event rate (Sasaki et al. 2016;

Ali-Häımoud et al. 2017). Microlensing searches on time scales of 15 or 30 minutes have also

been carried out using the public 2-year Kepler data to constrain the abundance of 10�8M�

PBHs (Griest et al. 2014).

With the aim of constraining the abundance of PBH on even smaller mass scales, we

carried out a dense cadence observation of the Andromeda galaxy (M31), with the Subaru

Hyper Suprime-Cam (HSC). We search for microlensing event(s) of M31 stars by intervening

PBHs in both the halo regions of MW and M31. M31 is the MW’s largest neighboring spiral

galaxy, at a distance of 770 kpc (the distance modulus µ ' 24.4 mag). Even a single night

of HSC/Subaru yields an ideal dataset to search for the PBH microlensing events because

of the following reasons. First, the 1.5 degree diameter field-of-view of HSC (Miyazaki et al.

2018) allows us to cover the entire region of M31 (the bulge, disk and halo regions) with a

single pointing. Secondly, the 8.2m large aperture of Subaru Telescope and its superb image

quality (typically 0.600) (Aihara et al. 2017) allow us to detect fluxes from M31 stars down to

m
r

' 26 even with a short exposure of 90 sec. These two facts allow us to simultaneously

monitor a su�ciently large number of stars in M31. Thirdly, the 90 sec exposure and a short

camera readout of ⇠35 sec enable us to take data at an unprecedented cadence of 2 min.

Thus, we can search for microlensing events with PBH mass scales smaller than those probed

by Griest et al. (2014). Finally, the huge volume between M31 and the Earth, leads to a large

optical depth of PBH microlensing to each star in M31, which allows us to put meaningful

constraints on the PBH DM scenario.

The analysis of M31 time domain data presents a formidable challenge, as it is a dense

stellar field. We are in the pixel lensing regime, where we need to detect the microlensing of a

single unresolved star among many stars that contribute photons to each CCD pixel (Crotts

1992; Baillon et al. 1993; Gould 1996). All of the previous work on M31 microlensing (e.g.,

see Calchi Novati (2010)) has been carried out using smaller aperture telescopes, which can
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only be sensitive to microlensing of relatively bright stars such as red giants with event rates

of a few tens (Aurière et al. 2001). In addition the image quality of HSC corresponds to a

significant step ahead with typical seeing size ⇠ 0.600. In order to search for pixel lensing,

we used the image subtraction technique described in Alard & Lupton (Alard & Lupton

1998). This technique has been integrated into the standard HSC data reduction pipeline,

hscPipe (Bosch et al. 2017). The pipeline subtracts a reference image (constructed from the

10 epochs with the best seeing data) from a target image for M31 taken at a di↵erent epoch,

and catalogs variable star candidates that are identified in the di↵erence image.

The structure of this chapter is as follows. In Section 3.2, after a brief review of the

microlensing phenomena, we first derive an event rate for microlensing due to the intervening

PBHs for a single star in M31, by employing a halo model for the MW and M31. In Section 3.3

we describe the details of our data analysis including the image subtraction technique, and

define the master catalog of variable star candidates. In Section 3.4 we describe the selection

criteria for microlensing events from the catalog of variable star candidates. In Section 3.5,

we use the result to derive an experimental upper bound on the abundance of PBHs as a

function of PBH mass. We then discuss how di↵erent assumptions in our analysis a↵ect the

upper bound in Section 3.6.

3.2 Event rate of PBH microlensing for M31 stars

In this section we estimate event rates of PBH microlensing for a star in M31. We extend

the formulation in previous studies (Griest et al. 1991; Alcock et al. 1996; Kerins et al. 2001;

Ri↵eser et al. 2006) to microlensing cases due to PBHs in the halo regions of MW and M31

for a source star in M31.

3.2.1 Microlensing basics for M31 observation

If a star in M311 and a foreground PBH are almost perfectly aligned along the line-of-sight

to an observer, the star is multiply imaged due to strong gravitational lensing. In case

these multiple images are unresolved, the flux from the star appears magnified. When the

source star and the lensing PBH are separated by an angle � on the sky, the total lensing

magnification, i.e. the sum of the magnification of the two images, is

A = A1 + A2 =
u2 + 2

u
p

u2 + 4
, (3.1)

1Throughout this paper we assume that a source star is in M31, not in the MW halo region, because of
the higher number density on the sky.
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where u ⌘ (d ⇥ �)/R
E

, and d is the distance to a lensing PBH. The Einstein radius R
E

is

defined as

R2
E

=
4GMPBHD

c2
, (3.2)

where MPBH is the PBH mass. D is the lensing weighted distance, D ⌘ d(1 � d/ds), where

ds is the distance to a source star in M31, and d is the distance to the PBH. By plugging

typical values of the parameters, we can find the typical Einstein radius:

✓
E

⌘ R
E

d
' 3 ⇥ 10�8 arcsec

✓

MPBH

10�8M�

◆1/2✓ d

100 kpc

◆�1/2

(3.3)

where we assumed ds = 770 kpc for distance to a star in M31 and we assumed D ⇠ d for

simplicity, and employed MPBH = 10�8M� as a working example for the sake of comparison

with Griest et al. (2014). In the following analysis we will consider a wide range of PBH

mass scales. The PBH lensing phenomena we search for are in the microlensing regime; we

cannot resolve two lensed images with angular resolution of an optical telescope, and we can

measure only the total magnification. A size of a star in M31 is viewed as

✓
s

' R
s

ds
' 5.8 ⇥ 10�9 arcsec , (3.4)

if the source star has a similar size to the solar radius (R� ' 6.96 ⇥ 1010 cm). Comparing

with Eq. (3.3) we find that the Einstein radius becomes smaller than the source size if PBH

mass MPBH
<⇠ 10�10M� corresponding to MPBH

<⇠ 1023 g. We will later discuss such lighter

PBHs, where we will take into account the e↵ect of finite source size on the microlensing

(Witt & Mao 1994; Cieplak & Griest 2013; Griest et al. 2014).

Since the PBH and the source star move relative to each other on the sky, the lensing

magnification varies with time, allowing us to identify the star as a variable source in a di↵er-

ence image from the cadence observation. The microlensing light curve has a characteristic

timescale that is needed for a lensing PBH to move across the Einstein radius:

t
E

⌘ R
E

v
, (3.5)

where v is the relative velocity. Assuming fiducial values for these parameters, we can

estimate the typical timescale as

t
E

' 34 min

✓

MPBH

10�8M�

◆1/2✓ d

100 kpc

◆1/2✓ v

200 km/s

◆�1

, (3.6)
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where we assumed v = 200 km/s for the typical relative velocity. Thus the microlensing

light curve is expected to vary over several tens of minutes, and should be well sampled by

our HSC observation. It should also be noted that a PBH closer to the Earth gives a longer

timescale light curve for a fixed velocity. Since we can safely assume that the relative velocity

stays constant during the Einstein radius crossing, the light curve should have a symmetric

shape around the peak, which we will use to eliminate fake candidates.

3.2.2 Microlensing event rate

Here we estimate expected microlensing event rates from PBHs assuming that they consist

of a significant fraction of DM in the MW and M31 halo regions.

We first need to assume a model for the spatial distribution of DM (therefore PBHs)

between M31 and us (the Earth). Here we simply assume that the DM distribution in each

halo region of MW or M31 follows the NFW profile (Navarro et al. 1997):

⇢NFW(r) =
⇢
c

(r/r
s

)(1 + r/r
s

)2
, (3.7)

where r is the radius from the MW center or the M31 center, r
s

is the scale radius and ⇢
c

is the central density parameter. In this paper we adopt the halo model in Klypin et al.

(2002): Mvir = 1012M�, ⇢
c

= 4.88 ⇥ 106 M�/kpc3, and r
s

= 21.5 kpc for MW, taken from

Table 2 in the paper, while Mvir = 1.6 ⇥ 1012M�, ⇢
c

= 4.96 ⇥ 106 M�/kpc3, and r
s

= 25 kpc

for M31, taken from Table 3. Thus we assume a slightly larger DM content for the M31 halo

than the MW halo. Dark matter profiles with these parameters have been shown to fairly

well reproduce the observed rotation curves for MW and M31, respectively. There might be

an extra DM contribution in the intervening space between MW and M31, e.g. due to a

filamentary structure bridging MW and M31. However, we do not consider such an unknown

contribution.

Consider a PBH at a distance d (kpc) from the Earth and in the angular direction to

M31, (l, b) = (121.2�, �21.6�) in the Galactic coordinate system. Assuming that the Earth

is placed at distance R� = 8.5 kpc from the MW center, we can express the separation to

the PBH from the MW center, rMW�PBH, in terms of the distance from the Earth, d, as

rMW�PBH(d) =
q

R2
� � 2R�d cos(l) cos(b) + d2. (3.8)

If we ignore the angular extent of M31 on the sky (which is restricted to 1.5 degree in diameter

for our study), the distance to the PBH from the M31 center, rM31�PBH, is approximately
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Figure 3.1: Left: The optical depth of PBH microlensing e↵ect on a single star in M31 as a
function of the distance to PBH, d, which can be obtained by integrating the integrand in
Eq. (3.10) over [0, d], rather than [0, ds]. The optical depth is independent of PBH mass, and
we assumed NFW parameters to model the DM distribution in each of the MW and M31
halo regions, where we determined the NFW parameters so as to reproduce their rotation
curves (see text for details). Right: Similar plot, but the fractional contribution of PBHs at
the distance, d, to the optical depth. Note that d in the x-axis is in linear scale. The area
under this curve up to d gives the optical depth to d in the left plot.

given by,

rM31�PBH(d) ' ds � d, (3.9)

where we approximated the distance to a source star in M31 to be the same as the distance

to the center of M31, DM31 ' ds, which we assume to be equal to ds = 770 kpc throughout

this paper.

By using Eqs. (3.7)-(3.9), we can compute the DM density, contributed from both the

MW and M31 halos, as a function of the distance to PBH, d.

Assuming that PBHs make us the DM content by a fraction, ⌦PBH/⌦DM, we can compute

the optical depth ⌧ for the microlensing of PBHs with mass MPBH for a single star in M31.

The optical depth is defined as the probability for a source star to be inside the Einstein

radius of a foreground PBH on the sky or equivalently the probability for the magnification

of source flux to be greater than that at the Einstein radius, A � 1.34 (Paczynski 1986):

⌧ =
⌦PBH

⌦DM

Z

ds

0

dd
⇢DM(d)

MPBH
⇡R2

E

(d, MPBH). (3.10)

Here the mass density field of DM is given by the sum of NFW profiles for the MW and M31

halos: ⇢DM(d) = ⇢NFW,MW(d) + ⇢NFW,M31(d). Note that, because of R2
E

/ MPBH, the optical

depth is independent of PBH mass.

In Fig. 3.1, we show the optical depth of PBH microlensing for a single star in M31,

calculated using the above equation. Here we have assumed that all the DM in the halo
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Figure 3.2: A schematic illustration of configurations of a lensing PBH and a source star in
M31 in the lens plane, following Fig. 4 of Griest et al. (1991). The orbit of a lensing PBH,
around a source star in M31 (placed at the origin in this figure), is parameterized as in the
figure, which is used to derive the microlensing event rate (see text for details).

regions of MW and M31 is composed of PBHs, i.e., ⌦PBH/⌦DM = 1. The optical depth for

microlensing, ⌧ ⇠ 10�6, is larger compared to that to LMC or a star cluster in MW (⌧ ⇠ 10�7)

by an order of magnitude, due to the enormous volume and large mass content between the

Earth and M31. The PBHs in each of the MW and M31 halos result in a roughly equal

contribution to the optical depth to an M31 star. Although there is an uncertainty in the

DM density in the inner region of MW or M31 (at radii <⇠ 10 kpc) due to poorly-understood

baryonic e↵ects, the contribution is not large.

Next we estimate the rate for microlensing events with a given timescale for its light curve.

First we model the velocity distribution of DM in the halo regions. We simply assume an

isotropic Maxwellian velocity distribution for DM particles (e.g., Jungman et al. (1996)):

f(v; r)d3v =
1

⇡3/2vc(r)3
exp



� |v|2

vc(r)2

�

d3v (3.11)

where v
c

(r) is the velocity dispersion at radius r from the MW or M31 center. For v
c

(r), we

assume that it is given as

vc(r) =

r

GMNFW(< r)

r
, (3.12)

where MNFW(< r) is the interior mass within radius r from the halo center, defined as

MNFW(< r) = 4⇡⇢
s

r3
s

[ln(1 + c) � c/(1 + c)], where c = r/r
s

for each of the MW and M31

halos.

We start from the geometry and variables shown in Fig. 4 of Griest et al. (1991) and

their Eq. (10) (see Fig. 3.2), which gives the rate d� of PBHs entering a volume element
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along the line-of-sight where they can cause microlensing for a single star in M31:

d� =
⌦PBH

⌦DM

⇢DM(d)

MPBH

uTRE

⇡v2
c

exp



�v2
r

v2
c

�

v2
r cos ✓ dvr d✓ dd d↵. (3.13)

Here nPBH(d) = ⇢DM(d)/MPBH is the number density of PBHs at the distance d from the

Earth, vr is the velocity of the PBH in the lens plane, ✓ is the angle at which the PBH

enters the volume element, and ↵ is an angle with respect to an arbitrary direction in

the lens plane, as shown in Fig. 3.2. Microlensing events are identified if they have a given

threshold magnification AT at peak. This threshold magnification defines a threshold impact

parameter with respect to the Einstein radius of a PBH, uT = RT/RE. Compared to Griest

et al. (1991), we have further ignored motions of source stars for simplicity, i.e. vt = 0. The

parameters vary in the range of ✓ 2 [�⇡/2, ⇡/2], ↵ 2 [0, 2⇡], vr = [0, 1).

The time scale for the microlensing event described by the above geometry is given by

t̂ = 2RE cos ✓ uT/vr. Thus the di↵erential rate of microlensing events, occurring per unit

time scale t̂, is given by

d�

dt̂
=

⌦PBH

⌦DM

Z

ds

0

dd

Z 1

0

dvr

Z

⇡/2

�⇡/2

d✓

Z 2⇡

0

d↵
⇢DM(d)

MPBH

⇥uTRE

⇡v2
c

exp



�v2
r

v2
c

�

v2
r cos ✓ �D

✓

t̂ � 2REuT cos ✓

vr

◆

. (3.14)

Using the Dirac-delta function identity,

�D

✓

t̂ � 2REuT cos ✓

vr

◆

= �D

✓

vr � 2REuT cos ✓

t̂

◆

v2
r

2REuT cos ✓
, (3.15)

and integrating over ↵ and vr, we obtain

d�

dt̂
=

⌦PBH

⌦DM

Z

ds

0

dd

Z

⇡/2

�⇡/2

d✓
⇢DM(d)

MPBHv2
c

v4
r exp



�v2
r

v2
c

�

, (3.16)

with vr = 2REuT cos ✓/t̂. One can rewrite this equation by changing variable ✓ to the

minimum impact umin = uT sin ✓, such that, d✓ = dumin/
p

u2
T � u2

min. This results in

d�

dt̂
= 2

⌦PBH

⌦DM

Z

ds

0

dd

Z

uT

0

dumin
p

u2
T � u2

min

⇢DM(d)

MPBHv2
c

v4
r exp



�v2
r

v2
c

�

, (3.17)

where vr = 2R
E

p

u2
T � u2

min/t̂. To compute the event rate due to PBHs in both the halo

regions of MW and M31, we sum the contributions, d� = d�MW + d�M31. As we described
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Figure 3.3: The di↵erential event rate of PBH microlensing for a single M31 star (Eq. (3.17));
the rate per unit observation time (hour), per a single source star in M31, and per unit
timescale of the microlensing light curve (hour) for PBHs of a given mass scale. Here we
assumed that all the DM in the MW and M31 halo regions is made of PBHs; ⌦PBH/⌦DM = 1.
The x-axis is the full-width-half-maximum (FWHM) timescale of microlensing light curve.
The lighter or heavier PBH has a shorter or longer timescale of microlensing light curve.
The right panel shows the relative contribution to the microlensing event rate due to PBHs
in either MW or M31 halo region, for the case of MPBH = 10�8M�.

above, we can express the centric radius of each halo, r, entering into vc(r), in terms of the

distance to the lensing PBH, d; r = r(d). Unless explicitly stated, we will employ uT = 1 as

our default choice.

Fig. 3.3 shows the expected event rate for the PBH microlensing, computed using Eq. (3.17).

Here we show the event rate as a function of the full-width-half-maximum (FWHM) timescale

of the light curve, which matches our search of microlensing events from the real HSC data.

If a PBH is in the mass range M = [10�12, 10�7]M� ' 2 ⇥ [1021, 1026] g, it causes the mi-

crolensing event that has a typical timescale in the range of [10�1, 1] hour. The lighter or

heavier PBHs tend to cause a shorter or longer timescale event. The event rate is quite high

up to 10�4 for a microlensing timescale with [0.1, 1] hours. That is, if we take about 10 hours

observation and observe 108 stars at once for each exposure, we expect many events up to

104 events (because 10�4 ⇥ 10 [hour] ⇥ 0.1 [hour] ⇥ 108 [stars] ' 104), assuming that such

PBHs constitute a majority of DM in the intervening space bridging MW and M31. The

right figure shows that the PBHs in the M31 halo region give a slightly larger contribution

to the event rate, because we assumed a larger halo mass for M31 than that of MW. Thus

the high-cadence HSC observation of M31 is suitable for searching for microlensing events

of PBHs.
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3.2.3 Light Curve characterization in pixel lensing regime

As we described above, the timescale for the PBH and M31 star microlensing system is

typically several tens of minutes for a PBH with 10�8M�. However, there is an observational

challenge. Since the M31 region is such a dense star field, fluxes from multiple stars are

overlapped in each CCD pixel (0.1700 pixel scale for HSC/Subaru). In other words individual

stars are not resolved even with the Subaru angular resolution (about 0.600 for the seeing

size). Hence we cannot identify which individual star in M31 is strongly lensed by a PBH,

even if it occurs. Such a microlensing of unresolved stars falls in the “pixel microlensing”

regime (Gould (1996), also see Calchi Novati (2010) for a review).

To identify microlensing events in the pixel microlensing regime requires elaborate data

reduction techniques. In this chapter, we use the image subtraction or image di↵erence

technique first described in Alard & Lupton (1998). The image di↵erence technique allows

us to search for variable objects including candidate stars that undergo microlensing by

PBHs. In brief, starting with the time sequenced Nexp images of M31, the analysis proceeds

as follows. (i) We generate a reference image by co-adding some of the best-seeing images

in order to gain a higher signal-to-noise. Next we subtract this reference image from each

of the Nexp images after carefully matching their point spread functions (PSFs) as described

in Alard & Lupton (1998). (ii) We search for candidate variable objects that show up in

the di↵erence image. In reality, if the image subtraction is imperfect, the di↵erence image

would contain many fake candidates, as we will discuss further. (iii) Once secure variable

objects are detected, we determine the position (RA and DEC) of each variable object in the

di↵erence image. We perform PSF photometry for each variable candidate using the PSF

center to be at the position of the candidate in the di↵erence image. By repeating the PSF

photometry in each di↵erence image of the Nexp images, we can measure the light curve of

the candidate as a function of the observation time.

The light curve of a microlensing event obtained using the PSF flux in the di↵erence

image at time t, obtained as described above, can be expressed as

�F (t) = F0 [A(t) � A(tref)] , (3.18)

where �F (t) is the di↵erential flux of the star at time t relative to the reference image, F0

is the intrinsic flux, A(t) is the lensing magnification at t and A(tref) is the magnification at

the time of the reference image, tref . In the above equation, �F (t) is a direct observable,

and others (F0, A(t), A(tref)) are parameters that have to be modeled.

As can be seen from Eq. (3.1), the light curve for the microlensing of a point source by
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a point mass can be characterized by two parameters. The first parameter is the maximum

amplification A0 = A(umin) when the lensing PBH is closest to a source star on the sky, where

umin is the impact parameter relative to the Einstein radius R
E

(umin is dimension-less). The

second one is the timescale of the light curve, which depends on the Einstein radius as well

as the transverse velocity of the PBH moving across the sky. For the timescale parameter

we use the FWHM timescale of the microlensing light curve, tFWHM, instead of t
E

, defined

as

A

✓

tFWHM

2

◆

� 1 ⌘ A0 � 1

2
. (3.19)

Thus the light curve of microlensing can be fully modeled by the three parameters, F0, umin

and tFWHM. In the following we will use the three parameters when performing a fitting of

the microlensing model to the observed light curve of microlensing candidate in the image

di↵erence. Note that the use of tFWHM, instead of t
E

, gives slightly less degenerate constraints

on the parameters (Gondolo 1999).

3.3 Data Analysis and Object Selection

3.3.1 Observations

The HSC camera is a wide-field imaging camera attached at the prime focus of Subaru

telescope. This camera consists of 116 CCD chips; 104 for science, 4 for auto-guide, and 8

for auto-focus, and each CCD has 2k x 4k pixels, with a pixel scale of 0.1700 (Miyazaki et

al. (2015), see also Niikura et al. (2016) for more details). The 1.5 degree diameter FoV of

HSC enables us to cover the entire region of M31, from the inner bulge to the outer disk and

halo regions with a single pointing. Moreover, the 8.2m large aperture of Subaru Telescope

and its superb angular resolution (typically 0.600 seeing owing to the low humidity of the

summit of 4200 m Maunakea)(Aihara et al. 2017) allow us to detect fluxes from M31 stars

down to m
r

' 26 depth even with a short exposure of 90 sec. This allows us to monitor

a su�ciently large number of stars in M31 simultaneously. The pointing is centered at

the coordinates of the M31 central region: (RA, dec) = (00h 42m 44.420s,+41d 16m 10.1s).

We do not perform any dithering between di↵erent exposures in order to compare stars in

the same CCD chip, which makes the image di↵erence somewhat easier. However, in reality

the HSC/Subaru system has some subtle inaccuracies in its auto-guidance and/or pointing

system. This results in variations in the pointings of di↵erent exposures, typical variations

range from few to a few tens of pixels.
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patch-H

patch-D2

patch-D1

Figure 3.4: The background image of M31 shows configuration of 104 CCD chips of the
Subaru/HSC camera. The white-color grids are the HSC “patch” regions. The patches
labeled as “patch-D1”, “patch-D2” and “patch-H” are taken from representative regions
of the disk region closer to the central bulge, the outer disk region and the halo region,
respectively, which are often used to show example results of our data processing in the
main text. The dark-blue regions are the patches we exclude from our data analysis due to
too dense star fields, where fluxes from stars are saturated and the data are not properly
analyzed.

Fig. 3.4 shows the configuration of the 104 CCD chips relative to the image of M31 on

the sky. The white-color boxes denote locations of HSC “patches”, which are convenient

tessellations of the HSC FoV. The image subtraction and the search of microlensing events

will be done on a patch-by-patch basis. The patches labeled “patch-D1”, “patch-D2” and

“patch-H” denote the regions that represent inner and outer disk regions (-D1 and -D2) and

a halo (-H) region, respectively. These representative regions will be used to show how the

results vary in the di↵erent regions.

Our observations were conducted on November 23, 2014 which was a dark night, a day
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Figure 3.5: The PSF FWHM (seeing size) of each exposure (90 sec exposure each) as a
function of time t [sec] from the start of our observation. We took the images of M31 region
every 2 min (90 sec exposure plus about 35 sec for readout), and have 188 exposures in total.
The red points show the 10 best-seeing images (⇠ 0.4500) from which the reference image,
used for the image di↵erence, was constructed.

after the new moon. In total, we acquired 194 exposures of M31 with the HSC r-band filter2,

for the period of about 7 hours, until the elevation of M31 fell below about 30 degrees. We

carried out the observations with a cadence of 2 minutes, which allows us to densely sample

the light curve for each variable object. The total exposure time was 90 seconds on source

and about 35 seconds were spent for readout on average. The weather was excellent for

most of our observation as can be seen from Fig. 3.5, which shows how the seeing FWHM

changed with time from the start of our observation. The seeing size was better than 0.700 for

most of the observation period, with a best seeing FWHM of about 0.400 at t ⇠ 10, 000 sec

(2.8 hours). However, the seeing got worse than 100 towards the end of our observation. We

exclude 6 exposures which had seeing FWHM worse than 1.200 and use the remaining 188

exposures for our science analysis.

We also use the g- and r-band data, which were taken during the commissioning run on

June 16 and 17 in 2013, respectively, in order to obtain color information of stars as well as

to test a variability of candidates at di↵erent epochs. The g-band data consist of 5⇥ 120 sec

exposures and 5 ⇥ 30 sec exposures in total, while the r-band data consists of 10 ⇥ 120 sec

exposures.

3.3.2 Data reduction and Sample selection

Standard data processing

We performed basic standard data reduction with the dedicated software package for HSC,

hscPipe (version 3.8.6; also see Bosch et al. (2017)), which is being developed based on

2See http://www.naoj.org/Projects/HSC/forobservers.html for the HSC filter system
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the Large Synoptic Survey Telescope software package (Ivezic et al. 2008; Axelrod et al.

2010; Jurić et al. 2015) 3. This pipeline performs a number of common tasks such as bias

subtraction, flat fielding with dome flats, coadding, astrometric and photometric calibrations,

as well as source detection and measurements.

After these basic data processing steps, we subtract the background contamination from

light di↵usion of atmosphere and/or unknown scattered light. However the background

subtraction is quite challenging for the M31 region, because there is no blank region and

every CCD chip is to some extent contaminated by unresolved, di↵use stellar light. To tackle

this problem, we first divide each CCD chip into di↵erent meshes (the default subdivision is

done into 64 meshes in each CCD chip). We then employ a higher-order polynomial fitting to

estimate a smooth background over di↵erent meshes. We employed a 10-th order polynomial

fitting for the CCD chips around the bulge region, which are particularly dense star regions.

For other CCD chips, we use a 6-th order polynomial fitting scheme. However, we found

residual systematic e↵ects in the background subtraction, so we will further use additional

correction for photometry of the di↵erence image, as we will discuss later.

For our study, accurate PSF measurements and accurate astrometric solutions are cru-

cial, because those allow for an accurate subtraction of di↵erent images. The pipeline first

identifies brightest star objects (S/N >⇠ 50) to characterize the PSF and do an initial astro-

metric and photometric calibration. From this initial bright object catalog, we select star

candidates in the size and magnitude plane for PSF estimation (see Bosch et al. (2017) for

details). The selected stars are fed into the PSFEx package (Bertin 2011) to determine the

PSF as a function of positions in each CCD chip. The functional form of the PSF model is

the native pixel basis and we use a second-order polynomial per CCD chip for interpolation.

For the determination of the astrometry, we used a 30 sec calibration image that we took

at the beginning of our observation, where bright stars are less saturated. We obtain an

astrometry solution after every 11 images, 30 sec calibration frame plus 10 time-consecutive

science exposures, by matching the catalog of stars to the Pan-STARRS1 system Schlafly et

al. (2012); Tonry et al. (2012); Magnier et al. (2013). The HSC pipeline provides us with

a useful feature, the so-called “hscMap”, which defines a conversion of the celestial sphere

to the flat coordinate system, “hscMap coordinate”, based on a tessellation of the sky. In

Fig. 3.4 the white-color regions denote the hscMap “patch” regions. We perform image dif-

ference separately on each patch. Due to too many saturated stars in the bulge region and

M101, we exclude the patches, marked by dark blue color, from the following analysis.

3Also see http://www.astro.princeton.edu/~rhl/photo-lite.pdf for details of the algorithm used
in the pipeline.
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Figure 3.6: An example of the image subtraction technique we use for the analysis in this
chapter. The left-panel image is the reference image which was constructed by co-adding the
10 best-seeing data, with typical seeing of 0.4500. The size of the image is 222 ⇥ 356 pixels
(corresponding to about 0.63 sq. arcmin), which is taken from the disk region in M31. The
middle panel is the target image (coadded image of 3 exposures) whose seeing size is 0.800.
The right panel shows the di↵erence image, showing that the pipeline properly subtracts the
two images even for such a dense star region and a variable star candidate shows up at the
center. In this case, the candidate object appears as a negative flux in the di↵erence image,
because the object has a fainter flux in the target image than in the reference image.

Image subtraction and Object detection

In order to find variable objects, we employ the di↵erence image technique developed in

Alard & Lupton (1998) and Alard (2000), which is integrated into the HSC pipeline. To do

this, we first generated the “reference” image by co-adding 10 best-seeing images among the

188 exposure images, where the 10 images are not time-consecutive (most of the 10 images

are from images around about 3 hours from the beginning of the observation, as shown in

Fig. 3.5). We use the mean of the 10 images as the observation time of the reference image,

tref , which is needed to model the microlensing light curve (Eq. (3.18)).

In order to make a master catalog of variable object candidates, we constructed 63 target

images by co-adding 3 time-consecutive images from the original 188 exposure images. A

typical limiting magnitude is about 26 mag (5� for point sources), and even better for images

where seeing is good (see below). When subtracting the reference image from each target

image, the Alard & Lupton algorithm uses a space-varying convolution kernel to match the

PSFs of two images. The optimal convolution kernel is derived by minimizing the di↵erence

between convolved PSFs of two images. A variable object, which has a flux change between

the two images, shows up in the di↵erence image.

Fig. 3.6 shows the result of the image subtraction performed by the pipeline. Even for

a dense star region in M31, the pipeline properly subtracts the reference from the target

image, by matching the PSFs and astrometry. A point source which undergoes a change

in its flux shows up in the di↵erence image, as seen in the right panel. In this case, the

candidate appears as a black-color point source meaning a negative flux, because it has a
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fainter flux in the target image than in the reference image.

We detect objects in the di↵erence image each of which is defined from a local minimum

or maximum in the di↵erence image, where we used 5� for the PSF magnitude as detection

threshold. The pipeline also measures the center of each object and the size and ellipticity

from the second moments. In this process we discarded objects that have ill-defined center,

a saturated pixel(s) in the di↵erence and/or original image or if the objects are placed at a

position within 50 pixels from the CCD edge.

PSF photometry and master catalog of variable star candidates

For each variable star candidate, we obtain PSF photometry in the di↵erence image to

quantify the change of flux. We allow negative PSF fluxes for candidates that have fainter

flux in the target image than in the reference image. Since the photon counts in each CCD

pixel is generally contaminated by multiple stars in most of the M31 regions, we often find a

residual coherent background (large-scale modulated background) in each di↵erence image,

due to imperfect background subtraction in the original image. To avoid contamination

from such a residual background, we first measure the spatially constant background from

the median of counts in 41 ⇥ 41 pixels around each object in the postage-stamp image, and

then subtract this background from the image. Then we perform the PSF-photometry counts

in ADU units taking the PSF center to be at the candidate center. Hereafter we sometimes

refer to PSF magnitude in the di↵erence image as “PSF counts”. The pipeline also estimates

noise in each pixel assuming the background limit (Poisson noise), and gives an estimation

of the noise for the PSF photometry (see equations 14 and 15 in Mandelbaum et al. (2013)

for the similar definition). However, the noise estimation involves a non-trivial propagation

of Poisson noise in the image di↵erence procedures, so we will use another estimate for the

PSF photometry error in each patch, as described below.

In the following we focus on the PSF photometry counts in ADU units in the di↵erence

image, rather than the magnitude, because it is the direct observable. However, we will

also need to infer the magnitude of each candidate; for example, to estimate the luminosity

function of source stars in each magnitude bin or to plot the light curve of variable star

candidates in units of the magnitude. In this case we estimate the magnitude of an object

in the i-th target image, m
i

, based on

m
i

= �2.5 log

✓

Cdi↵,i + Cref

F0,i

◆

, (3.20)

where Cdi↵ , i is the PSF flux for the object in the di↵erence image of the i-th target image,
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Figure 3.7: Examples of detected objects in the di↵erence image, which pass or do not
pass the selection criteria to define a master catalog of variable star candidates (see text
for details). Each panel shows 4 postage-stamp images: the leftmost image is the reference
image (the coadded image of 10 best-seeing exposures), the 2nd left is the target image
(the coadded image of 3 time-consecutive exposures), the 3rd image is the di↵erence image
between the reference and target images, and the rightmost image is the residual image after
subtracting the best-fit PSF image from the di↵erence image at the object position. The
two objects in top raw are successful candidates that passed all the selection criteria: the
left-panel object has a brighter flux in the target image than in the reference image, while the
right-panel object has a fainter flux (therefore appear as a black-color image with negative
flux). The lower-row objects are removed from the catalog after the selection criteria. The
objects in the middle row are excluded because the object is either smaller or larger than the
PSF size. The left object in the bottom row is excluded because it has a too large ellipticity
than PSF. The right object is excluded because of too large residual image.

Cref is the PSF flux of the reference image at the object position, and F0,i is the zero-point

flux in the i-th image. Note that the counts of the reference image Cref can be contaminated

by fluxes from neighboring stars, so the above magnitude might not be accurate.

From the initial catalog constructed from the 5� candidates from the 63 coadded images,

we prune it down to a master catalog of “secure” variable star candidates by applying the

following criteria:

• PSF magnitude threshold – A candidate should have a PSF magnitude, with a detection

significance of 5� or higher (including a negative flux), in any of the 63 di↵erence

images.

• Minimum size – The size of the candidate should be greater than 0.75 times the PSF

size of each di↵erence image.

• Maximum size – The size of the candidate should be smaller than 1.25 times the PSF

size.
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• Roundness – The candidate should have a round shape. We require our candidates to

have an axis ratio greater than 0.75, as the PSF does not show extreme axis ratios.

• PSF shape – We impose that the shape of an object should be consistent with the

PSF shape. The residual image, obtained by subtracting a scaled PSF model from

the candidate image in the di↵erence image, should be within 3� for the cumulative

deviation over pixels inside the PSF aperture.

Fig. 3.7 shows examples of objects that pass or fail the above criteria. Note that the above

conditions are broad enough in order for us not to miss a real candidate of microlensing if

it exists. We make a master catalog of variable star candidates from objects that pass all

the above conditions as well as are detected in the image di↵erence at least twice in the

63 di↵erence images at the same position within 2 pixels. These criteria result in 15,571

candidates of variable objects, which is our master catalog of variable star candidates.

Light curve measurement

Once each candidate is identified, we measure the PSF counts in each of the 63 di↵erence

images. This allows us to measure the light curve with a 6 min resolution, as a function of

time from the beginning to the end of our 7 hour long observations. In order to restore the

highest time resolution of our data, we then used each of 188 exposures and measured the

PSF counts in each of the 188 di↵erence image that was made by subtracting the reference

image (the coadded image of 10 best-seeing exposures) from every single exposure. Here we

used the same position of candidate as used in the 63 images. In this way we measure the

light curve of the object with 2 min time resolution.

Fig. 3.8 shows the light curves for examples of real variable stars. Note that we con-

verted the PSF counts of each candidate in the di↵erence image to the magnitude based on

Eq. (3.20). However, the magnitude might be contaminated by fluxes from blended stars

surrounding the candidate star. This demonstrates our ability to properly sample the light

curves with high time resolution. Thus the figure shows that the di↵erence image technique

works well and can identify variable star candidates as well as measure their light curves.

Fig. 3.9 shows the distribution of secure variable star candidates detected in our analysis

over the HSC field-of-view, for candidates with magnitudes m
r

 24 and 25 mag in the

left and right panel, respectively. To estimate the magnitude of each candidate, we used

the PSF magnitude of the candidate in the reference image. Based on the shape of the

light curve for each candidate, we visually classified the candidates in di↵erent types of

variable stars; i) stellar flares, ii) eclipsing or contact binary systems, iii) asteroids (moving
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Figure 3.8: Examples of light curves for real variable stars identified in our method. The
green-circle data points show the light curve sampled by our original data of 2 min sampling
rate, while the red-triangle points are the light curve measured from the coadded data of
3 time-consecutive exposures (therefore 6 min cadence) (see text for details). Upper left:
candidate stellar flare. When converting the magnitude from the counts in the di↵erence
image at each observation time, we used Eq. (3.20). Note that the estimated magnitude
might be contaminated by fluxes of neighboring stars in the reference image. Upper right:
candidate contact binary stars. Lower left: the eclipse binary system, which is probably a
system of white dwarf and brown dwarf, because one star (white dwarf) has a total eclipse
over about 10 min duration, and then the eclipse has about 3 hours period. Lower right:
candidate variable star, which has a longer period than our observation duration (7 hours).

object), iv) Cepheid variables if the candidates appear to have a longer period than our

observation duration (7 hours), and v) “fakes”. Here fakes are those candidates which show

time variability only when the seeing conditions are as good as <⇠ 0.600. Since such good-

seeing data is deeper as found from Figs. 3.5 and 3.10, we seem to find RR-Lyrae type

variables whose apparent magnitudes would be around r ⇠ 25 mag. When the seeing gets

worse, these stars cannot be reliably seen in the di↵erence image. Since RR-Lyrae stars

should exist in the M31 region, we think the “fake” stars are good candidates for RR-Lyrae

stars. The figure shows that our analysis successfully enables to find variable stars across

the disk and halo regions. The total number of candidates are 1,334 and 2,740 for m
r

 24

and 25 mag, respectively.
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Figure 3.9: Distribution of secure variable star candidates, detected from our analysis using
the image di↵erence technique. The di↵erent symbols denote di↵erent types of candidates
classified based on the shapes of their light curves. Here we exclude other non-secure candi-
dates that are CCD artifacts and fake events near to the CCD edge or bright stars. The left
panel shows the distribution for the candidates with magnitudes m

r

 24 mag, while the
right panel shows the candidates at m

r

 25 mag. The number of candidates are 1,334 and
2,740, respectively.

3.4 Statistics and Selection Criteria

Given the catalog of variable star candidates each of which has its measured light curve,

we now search for secure candidates of PBH microlensing. In this section we describe our

selection criteria to discriminate the microlensing event from other variables.

3.4.1 Photometric errors of the light curve measurement

Our primary tool to search for variable objects in the dense star regions of M31 is the use of

the image di↵erence technique, as we have shown. To robustly search for secure candidates

of PBH microlensing that have the expected light curve shapes, it is crucial to properly

estimate the photometry error in the light curve measurement. However, accurate photom-

etry for dense star regions in M31 is challenging. To overcome this di�culty, we use the

following approach to obtain a conservative estimate of the error. The pipeline performs

image subtraction on each patch basis (as denoted by white-color square regions in Fig. 3.4).

For a given di↵erence image, we randomly select 1,000 points in each patch region, and then

perform PSF photometry at each random point in the same manner as that for the variable
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Figure 3.10: The photometric error used for the light curve measurement in the di↵erence
image; we randomly select 1,000 points in the di↵erence image of a given patch (here shown
for the patch-D2 in Fig. 3.4), measure the PSF photometry at each random point, and then
estimate the variance of the PSF photometries (see text for details). The square symbols show
the 3- or 5-sigma photometric errors estimated from the variance when using the di↵erence
images constructed from the coadded images of 3 exposures, as a function of observation
time. The circle symbols, connected by the line, are the results for each exposure. Although
we use the photometric error in the ADU counts for a fitting of the microlensing model to
the light curve, we here convert the counts to the magnitude for illustrative convenience.

star candidates. In selecting random points, we avoided regions corresponding to bad CCD

pixels or near the CCD chip edges. We then estimate the variance from those 1,000 PSF

magnitudes, repeat the variance estimation in the di↵erence image for every observation

time, and use the variance as a 1� photometry error in the light curve measurement at the

observation time. The photometric error estimated in this way would include a contami-

nation from various e↵ects such as a large-scale residual background due to an imperfect

background subtraction. We find that the photometric error is larger than the error esti-

mated from the pipeline at the candidate position, which is locally estimated by propagating

the Poisson noise of the counts through the image subtraction processes.

Fig. 3.10 shows the photometric error on the light curve measurement in the di↵erence

image, estimated based on the above method. The shape of the photometric error appears

to correlate with the seeing conditions in Fig. 3.5. The figure shows that most of our data

reaches a depth of 26 mag or so thanks to the 8.2m large aperture of Subaru.

3.4.2 Microlensing model fit to the light curve data

Here we describe our selection procedure for PBH microlensing events from the candi-

dates. The unique part of our study is the high cadence for the light curve of each candidate,
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Table 3.1: Definitions of Statistics

Statistic Definition
�C(t

i

) PSF-photometry counts of a candidate in the i-th di↵erence image at the observation time t
i

;
the time sequence of �C(t

i

) forms the light curve of each candidate (188 data points,
sampled by every 2 min).

�Ccoadd(ti) PSF-photometry counts of a candidate in the i-th di↵erence image of 3 coadded images at t
i

(63 data points, sampled by every 6 min)
�
i

1� error of PSF-photometry in the i-th di↵erence image (see text for details)
�coadd,i 1� error in the i-th di↵erence image of 3 coadded images at t

i

bump sequence of 3 or more time-consecutive data points with �C
i

� 5�
i

in the light curve
bumplen length (number) of time-consecutive data points with �C

i

� 5�
i

mlchi2 dof �2 of the light curve fit to microlensing model divided by the degrees of freedom
mlchi2in dof �2 of the microlensing fit for data points with t

i

satisfying t0 � tobsFWHM  t
i

 t0 + tobsFWHM

asymmetry aasy (1/Nasy)
P

ti
[�C(t0 � �t

i

) � �C(t0 + �t
i

)]
�

[�C � �Cmin] (see text for details)
seeing corr correlation between the light curve shape and the seeing variation (see text for details)

Table 3.2: Selection Criteria

Selection Criterion Purpose No. of remained candidates
�Ccoadd,i � 5�coadd,i initial definition of candidates 15,571
bumplen� 3 select candidates with a significant peak(s) in the light curve 11,703
mlchi2dof< 3.5 select candidates whose light curve is reasonably well fit 227

by the microlensing
aasy < 0.17 remove candidates that have an asymmetric light curve such 146

as star flares
significant peak select candidates that show a clear peak in its light curve 66

(see text for details)
visual inspection visually check each candidate (its light curve and images) 1
seeing corr remove candidates whose light curve is correlated with time 1

variation of seeing

sampled by every 2 min over about 7 hours. However the monitoring of each light curve is

limited by a duration of 7 hours. If a microlensing event has a longer time duration than

7 hours, we can not identify such a candidate. We use the statistics in Table 3.1 to quan-

tify the characteristics of each light curve. Our selection procedure for the candidates are

summarized in Table 3.2. We will describe each of the selection steps in detail.

As we described, we start with the master catalog of variable star candidates, which

contains 15,571 candidates, to search for microlensing events. Our level 1 requirement is that

a candidate event should have a “bump” in its light curve, defined as 3 time-consecutive flux

changes each of which has a signal-to-noise ratio greater than 5� in the di↵erence image;

�C
i

� 5�
i

, where the subscript i denotes the i-th di↵erence image (at the observation time

t
i

). This criteria leaves us with 11, 703 candidates over all the patches.

Next we fit the observed light curves of each candidate with a model describing the

expected microlensing light curve. As we described in Section 3.2.3, the light curve of a
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Figure 3.11: Example of the light curves of candidates that are rejected by our selection
criteria for a microlensing event. The red points in each panel shows the PSF photometry
at each observation time and consist of 188 data points to form the light curve sampled
by every 2 min in the di↵erence images. The errorbar around each data point is the ±1�
photometry error that is estimated from the PSF photometries of 1,000 random points as
shown Fig. 3.10. The blue data points are the light curve for the best-fit microlensing model.
The upper-left panel shows an example of the candidates that is rejected due to a bad �2

min

for the fitting to the microlensing light curve. The upper-right panel shows an example of
the candidates that is rejected by the asymmetric shape of the light curve around the peak.
The lower two panels show examples of the candidates that do not show a prominent peak
feature as expected for a microlensing event.

microlensing in the di↵erence image is given as

�C(t
i

) = C0 [A(t
i

) � A(tref)] , (3.21)

where C0 is the PSF-photometry counts of an unlensed image in the di↵erence image, cor-

responding to F0 in Eq. (3.18), and A(t
i

) and A(tref) are lensing magnifications at the

observation time t
i

and the time of the reference image tref . As described in Section 3.2.3,

the light curve in the di↵erence image is characterized by 3 parameters: (umin, tFWHM, C0),

where umin is the impact parameter of closest approach between PBH and a source star in

units of the Einstein radius, and tFWHM is the FWHM timescale of the light curve.

We identify the time of maximum magnification in the light curve and denote it by t0.

For the model fitting, we employ the following range for the model parameters:
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Figure 3.12: The upper panel shows an example of light curves for fake events that are
caused by a spike-like image around a bright star. The light curve appears to look like a
microlensing event, but it is found to be near a bright star. The lower panel shows the light
curve for an asteroid that also shows a microlensing-like light curve. If the PSF photometry
is made at the fixed position (the center in the lower-right image), the measured light curve
looks like a microlensing event. The red points in the image denotes the asteroid trajectory.
From our analysis of M31 observation, we identified one asteroid.

• 0.01  umin < 1, which determines the maximum magnification, Amax ⌘ A(umin)

(see Eq. (3.1)). Thus we assume the range of maximum magnification to be 1.34 
Amax

<⇠ 100.

• 0.01  tFWHM/[sec] < 25, 000. Here the lower limit is much shorter than the sampling

rate of light curve (2 min), but we include such a short time-scale light curve for safety

(see below). The upper limit corresponds to the longest duration of our observation

(⇠ 7 hours).

• Once the parameters, umin and tFWHM, are specified, the intrinsic flux can be estimated

as C0 = �Cobs
max/[Amax � A(tref)], where �Cobs

max is the counts of the light curve peak

in the di↵erence image. In practice, the flux measurement is a↵ected by measurement

noise as well as the sampling resolution of light curve, so we allow the intrinsic flux to

vary in the range of 0.5 ⇥ �Cobs
max/(Amax � 1)  C0  1.5 ⇥ �Cobs

max/(Amax � 1).

The above ranges of parameters are broad enough in order for us not to miss a real candidate

of microlensing. For each candidate, we perform a standard �2 fit by comparing the model
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microlensing light curve to the observed light curve:

�2 =
188
X

i=1

⇥

�Cobs(t
i

) � �Cmodel(t
i

; C0, tFWHM, umin)
⇤2

�2
i

, (3.22)

where �Cmodel(t
i

) is the model light curve for microlensing, given by Eq. (3.21), and �
i

is the

rms noise of PSF photometry in the i-th di↵erence image, estimated from the 1,000 random

points as described above.

We compute the reduced �2 by dividing the minimum �2 by the degrees of freedom (188-

3=185). We discard candidates that have mlchi2 dof > 3.5. This criterion is reasonably

conservative (the P-value is ⇠ 10�5). We further impose the condition that the best-fit

tFWHM < 14, 400 sec (4 hours), in order to remove candidates whose light curve has a

longer time variation than what we can robustly determine. This selection removes most

of Cepheid-type variables. This selection leaves 227 candidates. The upper-left panel of

Fig. 3.11 shows an example of candidates that are removed by the condition mlchi2 dof < 3.5

(i.e. mlchi2 dof > 3.5 for this candidate). This is likely to be a binary star system.

Microlensing predicts a symmetric light curve with respect to the maximum-magnification

time t0 (Amax); the light curve at t
i

= |t0 ± �t| should have a similar flux as the lensing

PBH should have a nearly constant velocity within the Einstein radius. Following Griest et

al. (2014), we define a metric to quantify the asymmetric shape of the light curve,

aasy =
1

Nasy

X

ti2|t0±t

obs
FWHM|

|�C(t0 � �t
i

) � �C(t0 + �t
i

)|
�C � �Cmin

. (3.23)

Here tobsFWHM is the timescale that the observed light curve declines to half of its maximum

value. For this purpose, we take the longer of the timescales from either side of the two

half-flux points from the maximum peak. If the expected half-flux data point is outside

the observation window of light curve, we take the other side of the light curve to estimate

tobsFWHM. The summation runs over the data points satisfying t
i

 |t0 ± tobsFWHM|, 2 times the

FWHM timescale around the light curve peak. Note that, if the summation range is outside

the observation window, we take the range |t0 ± (t0 � tstart)| or |t0 ± (tend � t0)|, where tstart

or tend is the start or end time of the light curve. Nasy is the number of data points in the

above summation, �C is the average of the data points taken in the summation, and �Cmin

is the minimum value of the counts.

By imposing the condition aasy < 0.17, we eliminate candidates that have an asymmetric

light curve, and we have confirmed that this condition eliminates most of the star flare events
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from the data base. This condition also eliminates some of the variable stars that are likely

to be Cepheids. After this cut the number of candidates is reduced to 146. The upper-right

panel of Fig. 3.11 shows an example of the candidates that are removed by the condition

aasy < 0.17.

In addition we discard candidates, if the observed light curve does not have any significant

peak; e.g., we discard candidates if mlchi2in dof > 3.5 (see Table 3.1 for the definition) or if

the time of the light-curve peak is not well determined. The lower panels of Fig. 3.11 show

two examples of such rejected candidates, which do not show a clear bump feature in the

light curve as expected for microlensing. This selection cut still leaves us with 66 candidates.

Finally we perform a visual inspection of each of the remaining candidates. We found

various fake events that are not removed by the above automated criteria. Most of the fake

events are caused by an imperfect image subtraction; in most cases the di↵erence image has

significant residuals near the edges of CCD chips and around bright stars. In particular,

bright stars cause a spiky residual image in the di↵erence image, that results in fake candi-

dates that have microlensing-like light curve if measured at a fixed position. We found 44

fake events caused by such spike-like images around bright stars. There are 20 fake events

around the CCD edges. The upper panel of Fig. 3.12 shows an example of spike-like fakes.

We were also able to identify 1 fake event caused by a moving object, an asteroid. If the

light curve is measured at the fixed position which the asteroid is passing, it results in a light

curve which mimics microlensing, as shown in the lower panel of Fig. 3.12.

Thus our visual inspection leads us to conclude that 65 events among 66 remaining

candidates are fake and we end up with one candidate event which passes all our cuts and

visual checks. The candidate position is (RA, dec) = (00h 45m 33.413s, +41d 07m 53.03s).

Fig. 3.13 shows the images and the light curve for this candidate of microlensing event.

Although the light curve looks noisy, it is consistent with the microlensing prediction. The

magnitude inferred from the reference image implies that the candidate has a magnitude

of r ⇠ 24.5 mag. The obvious question to consider is whether this candidate is real. Un-

fortunately, the candidate is placed outside the survey regions of the Panchromatic Hubble

Andromeda Treasury (PHAT) catalog in Williams et al. (2014) (also see Dalcanton et al.

(2012)) 4, so the HST image is not available. It is unclear if there are any variable stars that

could produce the observed light curve, with a single bump. To test the hypothesis that

the candidate is a variable star, we looked into another r-band data that was taken in the

commissioning run in 2013, totally di↵erent epoch from our observing night. However, the

seeing condition of the r-band is not good (about 1.200), so it is di�cult to conclude whether

4https://archive.stsci.edu/prepds/phat/
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ref. target diff. diff.-PSF

Figure 3.13: One remaining candidate that passed all the selection criteria of microlensing
event. The images in the upper plot show the postage-stamped images around the candidate
as in Fig. 3.7: the reference image, the target image, the di↵erence image and the residual
image after subtracting the best-fit PSF image, respectively. The lower panel shows that the
best-fit microlensing model gives a fairly good fitting to the measured light curve.

the star pops out of the noise in the di↵erence images. Similarly we looked into the g-band

images taken in the HSC commissioning run. However, due to the short duration of the

data itself (⇠ 15 min), it is di�cult to judge whether this candidate has a time variability

between the g images. Hence we cannot draw any convincing conclusion on the nature of

this candidate (we will discuss the additional test of this candidate in Section 4.3). In what

follows, we derive an upper bound on the abundance of PBHs as a constituent of DM for

both cases where we include or exclude this remaining candidate.

3.5 Results: Upper bound on the abundance of PBH

contribution to dark matter

In this section we describe how we use the results of our PBH microlensing search to derive

an upper limit on the abundance of PBHs assuming PBHs consist of some fraction of DM

in the MW and M31 halos. In order to do this, we need three ingredients – (1) the event

rates of microlensing as we estimated in Section 3.2.2, (2) a detection e�ciency for PBH
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Figure 3.14: The detection e�ciency estimated from light curve simulations taking into
account the PSF photometry error in each of 188 target images we used for the analysis (see
text for details). Here we generated Monte Carlo simulations of microlensing events randomly
varying the three parameters: the impact parameter (or maximum lensing magnification),
the FWHM timescale of microlensing light curve (x-axis), and the observation time of the
microlensing magnification peak, for source stars of a fixed magnitude as indicated by legend.
The detection e�ciency for each source magnitude is estimated from 1,000 realizations.

microlensing events, which quantifies the likelihood of whether a microlensing event, even if

it occurs during our observation duration, will pass all our selection cuts, and (3) the number

of source stars in M31. In this section we describe how to estimate the latter two ingredients

and then derive the upper bound result.

3.5.1 E�ciency Calculation: Monte Carlo simulation

The detection e�ciency of PBH microlensing events depends upon the unlensed flux of the

star in M31, F0, and quantifies the fraction of microlensing events with a given impact

parameter (umin) and time scale (tFWHM) that can be detected given our selection cuts.

To estimate the e�ciency we carry out simulations of microlensing light curves. We vary

the model parameters to generate a large number of realizations of the simulated microlensing

light curves. First we randomly select the time of maximum magnification (tmax) from the

observation window, the impact parameter umin 2 [0, 1] and the FWHM timescale tFWHM in

the range of 0.01  tFWHM/[sec]  25, 000 to simulate the input light curve in the di↵erence

image for a given intrinsic flux of a source star, F0 (more precisely, the intrinsic counts

C0 in the di↵erence image). Then, we add random Gaussian noise to the light curve at

each of the observation epochs t
i

, estimated from the i-th di↵erence image in a given patch

(Section 3.4.1). For each intrinsic flux, we generate 10,000 simulated light curves in each

patch region.
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Figure 3.15: A justification of the detection e�ciency estimation, based on the di↵erent
method using the fake image simulations. We injected fake microlensing star images in
individual exposures of the real HSC data (patch-D2 in Fig. 3.4), re-ran the whole data pro-
cessing, and assessed whether the fake images pass all the selection criteria for a microlensing
event. The small circles show the results from light curve simulations (the same as shown in
Fig. 3.14), and the large symbols show the results from the fake image simulations, for the
intrinsic magnitudes of 22 and 24 mag, respectively.

For each simulated light curve, we applied all of our selection cuts (see Section 3.4 and

Tables 3.1 and 3.2) to assess whether the simulated event passes all the criteria. Fig. 3.14

shows the estimated e�ciency for a given intrinsic flux of a star as a function of the timescale

(tFWHM) of the simulated light curve, in the patch-D2 of Fig. 3.4. Our results indicate that our

pipeline can recover about 70–60% of microlensing events for stars with intrinsic magnitude

m
r

= 23–24 mag, if the timescale is in the range tFWHM ' [0.1, 3] hours. For fainter stars

with m
r

= 25 –26 mag, the e�ciency is reduced to about 30–20%. A microlensing event

for a bright star is easier to detect, if it occurs, because even a slight magnification is

enough to identify it in the di↵erence image. On the other hand, a fainter star needs more

significant magnification to be detected. If the microlensing timescale is in the range of

4 min <⇠ tFWHM
<⇠ 3 hours, the event can be detected by our observation (2 min sampling

rate and 7 hours observation). We interpolated the results for di↵erent intrinsic fluxes to

estimate the detection e�ciency for an arbitrary intrinsic flux. We repeated the simulations

using the photometry errors to estimate the e�ciency for each patch.

We also performed an independent estimation of the detection e�ciency. We used fake

image simulations where we injected fake microlensing star events into individual HSC images

using the software GalSim in Ref. Rowe et al. (2015) (also see Huang et al. (2017)), and

then re-ran the whole data reduction procedure including image subtraction to measure the

light curve. We then assessed whether the fake microlensing event can be detected by our

selection criteria. Fig. 3.15 compares the detection e�ciency estimated using the fake image
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Figure 3.16: An example image of the distribution of peaks (cross symbols) identified in a
small region of the reference image (the coadded image of 10 best-seeing exposures), which
has a size of about 3800 ⇥ 3000 area and is taken from the patch-D2 region. We measure the
PSF photometry of each peak, and then use the number of peaks as an estimation of the
number of source stars in each magnitude bin.

simulations with the results of the simulated light curves (Fig. 3.14) in the patch-D2. The

figure clearly shows that the two results fairly well agree with each other. The fake image

simulations are computationally expensive. With the results in Fig. 3.15, we conclude that

our estimation of the detection e�ciency using the simulated light curves are fairly accurate.

3.5.2 Estimation of star counts in M31

The expected number of microlensing events depends on the number of source stars in M31.

However, since individual stars are not resolved in the M31 field, it is not straightforward to

estimate the number of source stars from the HSC data. This is the largest uncertainty in

our results, so we will discuss how the results change for di↵erent estimations of the source

star counts. As a conservative estimate for the number of source stars, we use the number

of “detected peaks” in the reference image of M31 data, which has the best image quality

(coadding the 10 best-seeing exposures) and is used for the image subtraction. Fig. 3.16

shows the distribution of peaks identified from the reference image in an example region

(with a size 226 ⇥ 178 pixels corresponding to about 3800 ⇥ 3000), taken from the patch-

D2 region. The figure clearly shows that only relatively bright stars, or prominent peaks,
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103 104 105

Number of peaks

Figure 3.17: The color scale denotes the total number of detected peaks in each patch region
for the HSC data. Note that the black-color patches are excluded from our analysis due to
too crowded regions. The number of the peaks in a disk region tends to be smaller than that
in a outer, halo region, because stars in a disk region are more crowded and only relatively
brighter stars or more prominent peaks are identified.
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Figure 3.18: The peaks counts of HSC data in di↵erent regions of M31; two disk regions
denoted as patch-D1 and patch-D2 and the halo region denoted as patch-H in Fig. 3.4. The
HSC data can find a more number of fainter peaks in the halo regions because individual
stars are more resolved and less crowded.

are identified, but a number of faint stars or even bright stars in a crowded (or blended)

region will be missed. Thus this estimate of the source star counts is extremely conservative.

Nevertheless this is one of the most secure way to obtain source counts, so we will use these

counts in each patch region.

The color scale in Fig. 3.17 shows the total number of peaks in each patch region. It can

be seen that a relatively larger number of the peaks are identified in the outer halo region of
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M31, because each star can be resolved without confusion. On the other hand, there are less

number of resolved peaks in the patches corresponding to the disk region due to crowding.

The total number of peaks identified over all the patch regions is about 6.4 million. Fig. 3.18

shows the surface density of peaks identified in HSC in the disk and halo regions of M31 for

the three patches marked in Fig. 3.4. To estimate the magnitudes for the surface density,

we performed PSF photometry of each peak using its location as the PSF center. The figure

confirms that more number of peaks are identified in the halo region.

As another justification for the estimation of the source star counts, we compare the

number counts of peaks in the HSC image with the luminosity function of stars in the

HST PHAT catalog in Ref. Williams et al. (2014) (also see Dalcanton et al. (2012)), where

individual stars are more resolved thanks to the high angular resolution of the ACS/HST

data. Since the PHAT HST data was taken with F475W and F814W filters, we need to

make color transformation of the HST photometry to infer the HSC r-band magnitude.

For this purpose, we first select 100 relatively bright stars in the PHAT catalog. Then we

match the HST stars with the HSC peaks by their RA and dec positions, and compare the

magnitudes in the HST and HSC photometries. In order to derive the color transformation,

we estimated a quadratic relation between the HST and HSC magnitudes for the matched

stars in a two-dimensional space of (mHSC
r

� mF475W) and (mF475W � mF814W):

mHSC
r

= mF475W � 0.0815 � 0.385 (mF475W � mF814W)

�0.024 (mF475W � mF814W)2 . (3.24)

We then applied this color transformation to all the PHAT stars. Although the above one-

to-one color transformation is not perfect for di↵erent types of stars, we do not think that

the uncertainty largely a↵ects our main results as we will discuss below.

Fig. 3.19 compares the surface density of stars in the HST PHAT catalog with that of the

HSC peaks, as a function of magnitudes, in the overlapping regions between our M31 data

and HST PHAT. These regions correspond to “bricks07” and “bricks11”. The figure clearly

shows that the HSC peak counts fairly well reproduces the HST results down to r ⇠ 23 mag.

Since the HSC photometry of each peak should be contaminated by fluxes of neighboring

stars, we would expect a systematic error in the PSF photometry, which causes a horizontal

shift in the surface density of peaks (the HSC photometry is expected to over-estimate the

magnitude). Even with this contamination, the agreement looks promising. However, it

is clear that the HSC peak counts clearly misses the fainter stars, which can be potential

source stars for PBH microlensing. The surface density of HST stars in di↵erent regions look

similar.
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Figure 3.19: The green histogram shows the luminosity function of M31 stars in the HST
PHAT catalog, while the blue histogram shows that of the peaks in the HSC image. We
converted the magnitudes of HST stars to the HSC r-band magnitudes using Eq. (3.24).
The comparison is done using the PHAT catalog in the two regions of “bricks07” (or B7)
and “bricks11” (B11) in Fig. 1 of Dalcanton et al. (2012), which are contained in the patch
right next to or one-upper to the patch-D2 in the HSC data (see Fig. 3.4). These regions
are in a disk region of M31. The luminosity function of HSC peaks fairly well reproduces
the HST result down to r ⇠ 23 mag, but clearly misses fainter stars. The PHAT luminosity
functions in the two regions appear to be in a similar shape.

The data overlap between HSC and PHAT covers the disk region only partially. Nev-

ertheless, as an optimistic estimate of our star counts, we infer the underlying luminosity

function of stars in the disk region from the HST PHAT catalog based on the number counts

of HSC peaks at m
r

= 23 mag in each patch of the disk regions, assuming that the luminosity

function of HST stars is universal in the disk regions. For the halo regions, we use the HSC

peak counts. In this optimistic estimate of source stars, we find about 8.7 ⇥ 107 stars down

to m
r

= 26 mag over the entire region of M31, which is a factor of 14 more number of stars

than that of HSC peaks. However, the source stars extrapolated from the HST data are

faint, and will su↵er from lower detection e�ciency. Therefore, the final constraints do not

improve a lot from these improved star counts.

One might worry about a possible contamination of dust extinction to the number counts

of source stars. However our estimation of the source star counts is based on the HSC

photometry that is already a↵ected by dust extinction. Hence, we do not think that dust

extinction largely a↵ects the following results.
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3.5.3 Expected number of PBH microlensing events

Now we use the results of our microlensing search to constrain the abundance of PBHs in

the halo regions of MW and M31. The expected number of PBH microlensing events in our

HSC data is given by

Nexp

✓

MPBH,
⌦PBH

⌦DM

◆

=
⌦PBH

⌦DM

Z

tobs

0

dtFWHM

tFWHM

Z

dm
r

dNevent

dln tFWHM

dN
s

dm
r

✏(tFWHM, m
r

), (3.25)

where dNexp/dtFWHM is the di↵erential event rate for a single star (Fig. 3.3) per logarithmic

timescale, dN/dm
r

is the luminosity function of source stars in the r-band magnitude range

[m
r

, m
r

+ dm
r

], and ✏(mFWHM, m
r

) is the detection e�ciency quantifying a probability that

a microlensing event for a star with magnitude m
r

and the light curve timescale tFWHM

is detected by our selection procedures. The number counts dN/dm
r

and the detection

e�ciency ✏(mFWHM, m
r

) are estimated in each patch of the HSC data, so we sum the expected

number of microlensing events over all the patches to estimate the expected number of total

events. The event rate depends on the mass fraction of PBHs to the total DM mass in

the halo regions, ⌦PBH/⌦DM. Note that we have assumed a parametric model for the total

matter content of the MW and M31 halos constrained by their respective rotation curves

(see the explanation for Fig. 3.3). The PBH DM mass fraction does not depend on the

cosmological matter parameter, ⌦m0, that is relevant for the cosmic expansion.

We use the following procedure to estimate dN
s

/dm
r

and ✏ in Eq. (3.25). Since individual

stars are not resolved in the HSC data, especially in the disk region of M31, it is not

straightforward to estimate the number of source stars from the HSC data alone. This

constitutes a significant uncertainty in our results. To overcome this di�culty, we use the

HST PHAT star catalog (e.g. Fig. 3.19). For the overlapping regions with the HST PHAT

survey, we used the PHAT star counts down to m
r

⇠ 26. For the non-overlapping regions in

the M31 disk, we infer the luminosity function by extrapolating the number counts of HSC

peaks at m
r

= 23 down to m
r

= 26 based on the PHAT luminosity function of stars at a

similar distance from the M31 center. For our default analysis, we used about 8.7⇥107 stars

down to m
r

= 26 mag over the entire region of M31, which is a factor 14 more number of

stars than that of HSC peaks. The large number of source stars in the M31 region can be

compared with those in previous studies, e.g., Griest et al. (2014) used ⇠ 1.5 ⇥ 105 source

stars for the microlensing search in Kepler data.

For an estimation of the detection e�ciency ✏(tFWHM, m
r

) in Eq. (3.25), we carry out

Monte Carlo simulations of microlensing light curves adopting random combinations of the

model parameters (the impact parameter, tFWHM, and the intrinsic flux) and adding the
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statistical noise based on the photometry errors in each HSC-patch region (e.g. Fig 3.14).

These simulations allow us to estimate the fraction of simulated light curves that can be

recovered by our selection procedures. Our results indicate that our pipeline can recover

about 70–60% of microlensing events for stars with intrinsic magnitude m
r

= 23–24 mag, if

the timescale is in the range tFWHM ' [0.1, 3] hours. For fainter stars with m
r

= 25 –26 mag,

the e�ciency is reduced to about 30–20%.

3.5.4 Experimental limits on the abundance of PBHs

Next we combine the estimates of dNevent/d ln tFWHM, dN
s

/dm
r

and ✏(tFWHM, m
r

) in Eq. (3.25)

to constrain the abundance of PBHs. Assuming the number of microlensing events follow a

Poisson distribution, the probability to observe a given number of such events, Nobs, is given

by P (k = Nobs|Nexp) =
h

(Nexp)
k /k!

i

exp[�Nexp]. Hence 95% C.L. interval is estimated as

P (k = 0)+P (k = 1) � 0.05, leading to Nexp  4.74 assuming that the candidate in Fig. 3.13

is real. Fig. 5.7 shows our result in comparison with other observational constraints on the

abundance of PBHs on di↵erent mass scales. In the results, we took into account the ef-

fect of finite source star size (Witt & Mao 1994) as well as the e↵ect of wave optics on

the microlensing cross section (Gould 1992; Nakamura 1998). The finite-source size e↵ect

modifies our constraints on mass scales, MPBH
<⇠ 10�7M� where the Einstein radii of the

PBHs become comparable to or smaller than the size of the source stars. We caution that

we may have underestimated the impact somewhat as we have assumed a solar radius for

all stars in M31, while some of the stars would likely be giants. The wave e↵ect arises from

the fact that the Schwarzschild radii of light PBHs with M <⇠ 10�11M� become comparable

to the wavelength of HSC r-band filter (centered around 600 nm). In this regime, the wave

nature of light becomes important and can further lower the maximum magnification of the

microlensing light curve. This results in a lower event rate for a given detection threshold.

These e↵ects need to be further studied and carefully accounted for. Nevertheless the figure

shows that a single night of HSC data on M31 results in a tight upper bound on the mass

fraction of PBHs to DM, ⌦PBH/⌦DM. The origin of the constraint can be easily understood.

Given that we monitor about 108 stars, we expected to observe about 1,000 microlensing

events if PBHs of a single mass scale MPBH ⇠ 10�9M� make up all DM in the MW and M31

halo regions (see Fig. 3.3), and yet we could identify only a single event. In other words, only

a small mass fraction of PBHs such as ⌦PBH/⌦DM ' 0.001 is allowed in order to reconcile

the PBH DM scenario with our M31 data. Our results constrain PBHs in an open window of

PBH masses, MPBHs ' [10�11, 10�9]M�, as well as give tighter constraints than the previous

works in the range of MPBH ' [10�9, 10�6]M�. In particular, our constraint is tighter than
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Figure 3.20: The red-color shaded region show the 95% C.L. upper bound on the PBH mass
fraction to DM in the halo regions of MW and M31, derived from our microlensing search of
M31 stars based on the “one-night” HSC/Subaru data. To derive this constraint, we took
into account the e↵ect of finite source size, assuming that all source stars in M31 have a
solar radius, as well as the e↵ect of wave optics in the HSC r-band filter on the microlensing
event (see text for details). The e↵ects weaken the upper bounds at M <⇠ 10�7M�, and
give no constraint on PBH at M <⇠ 10�11M�. Our constraint can be compared with other
observational constraints as shown by the gray shaded regions: extragalactic �-rays from
PBH evaporation (Carr et al. 2010), femtolensing of �-ray burst (“Femto”) (Barnacka et al.
2012), microlensing search of stars from the satellite 2-years Kepler data (“Kepler”) (Griest
et al. 2014), MACHO/EROS/OGLE microlensing of stars (“EROS/MACHO”) (Tisserand
et al. 2007), and the accretion e↵ects on the CMB observables (“CMB”) (Ali-Häımoud &
Kamionkowski 2017), updated from the earlier estimate (Ricotti et al. 2008).

the constraint from the 2-year Kepler data that had monitored an open cluster containing

105 stars, with about 15 or 30 min cadence over 2 years (Griest et al. 2014).
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Figure 3.21: The event rate of PBH microlensing for a single star in M31 when taking
into account the e↵ect of finite source size. Given the fact that the HSC data (down to
r ' 26 mag) is su�ciently deep to reach main-sequence stars in M31, rather than red-giant
branch stars, we assume a solar radius for source star size. The finite source size e↵ect
lowers the event rate compared to Fig. 3.3. The lower panel shows the relative contribution
of PBHs in the MW or M31 halo region to the event rate for PBHs with MPBH = 10�8M�.
The upper thin solid curve is the result for a point source, the same as in the right panel
of Fig. 3.3. The microlensing events in M31 are mainly from nearby PBHs to a source star
at distance within a few tens of kpc (see Fig. 3.1), so the finite source size e↵ect is more
significant for such PBHs due to their relatively small Einstein radii.

3.6 Discussion

Although our results for the upper bounds in Fig. 5.7 are promising, we employed several

assumptions. In this section, we discuss the impacts of our assumptions.

One uncertainty in our bounds comes from the number counts of source stars in M31,

which is a result of blending of stars in the HSC data due to overcrowding, especially in

the disk regions of M31. If we use the number of HSC peaks for the counts of source stars,

6.4⇥106 instead of 8.7⇥107, the counts extrapolated from the HST luminosity function, the

upper bounds in Fig. 5.7 are weakened by a factor of 10. Nevertheless the upper bounds are

quite tight, and very meaningful. However, we again stress that the use of HSC peak counts
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Figure 3.22: The solid curve shows the 95% C.L. upper bound when taking into account
the e↵ects of finite source size on the event rate of microlensing, assuming a solar radius for
stars in M31. For comparison, the dashed curve shows the results without considering the
wave e↵ect.

is extremely conservative, so we believe that our fiducial method using the HST-extrapolated

counts of source stars is reasonable.

Another uncertainty in our analysis is the e↵ect of finite source size. As can be found

by comparing Eqs. (3.3) and (3.4), the angular size of the source star can be greater than

the Einstein radius if PBHs are close to M31 or if PBHs are in the small mass range such

of MPBH
<⇠ 10�10M� (assuming solar radius for the star), all of which result in a smaller

Einstein radius. Compared to the distance modulus for M31 is µ ' 24.4 mag, our HSC

depth is deep enough (r ' 26 mag) to reach main sequence stars whose absolute magnitudes

M
r

' 1.5 mag. According to Figs. 23 and 24 in Dalcanton et al. (2012), most such faint

stars at r ⇠ 25–26 mag would be either main sequence stars (probably A or F-type stars) or
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Chapter 3. PBH constraints with HSC-M31

subgiant stars. In either case such stars have radii similar to the Sun within a factor of 2 or

so 5(North et al. 2007). The shallower data such as the work by de Jong et al. (2006) probes

the microlensing events only for much brighter stars such as red giant branch (RGB) stars.

RGB stars have much greater radius than that of main sequence stars, where the finite source

size e↵ect is more significant. Here we employ a solar radius (R� ' 6.96 ⇥ 1010 cm) for all

source stars for simplicity, assuming that the upper bound is mainly from the microlensing

for main sequence stars, rather than for RGB stars (Dalcanton et al. 2012). We followed

Witt & Mao (1994) to re-estimate the event rates of PBHs microlensing taking into account

the finite source size e↵ect. Fig. 3.21 shows that the finite source size e↵ect lowers the event

rate, compared to Fig. 3.3. In particular the e↵ect is greater for PBHs of smaller mass scales

and in the M31 halo region.

The dashed curve in Fig. 3.22 shows the upper bounds when ignoring the finite source

size e↵ect (i.e. assuming a point source for M31 stars), for both cases of the HST PHAT-

extrapolated counts of source stars. As expected, the finite source size e↵ect significantly

weakens the upper bounds for PBHs of smaller mass scales. Nevertheless, our results give

the tightest, observational upper bounds in the mass range, MPBH ' [10�11, 10�6]M�, a

range spanning 5 orders of magnitude. Since the Schwarzschild radii for light PBHs with

M <⇠ 10�10M� become comparable with or smaller than the wavelength of the HSC r-band

filter, the wave e↵ect lowers the maximum magnification of the microlensing light curve

(Nakamura 1998; Takahashi & Nakamura et al. 2003). These finite source size and wave

e↵ects need to be further carefully studied, and this is our future work.

In our study above, we only considered a case where PBHs have a monochromatic mass

spectrum. On the other hand, theory for PBH formation, via the nature of primordial

fluctuations or the nonlinear collapse mechanism, predicts that PBHs generally have a

mass spectrum, rather than the monochromatic spectrum. To compare models with non-

monochromatic spectrum, our observed number of events should be compared to the events

predicted using Eq. (3.25) further integrated over the PBH mass spectrum, i.e.,

Nexp

✓
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⌦DM

◆

=
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⌦DM

Z

dMPBH

Z

tobs

0

dtFWHM
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dm
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dNevent

dln tFWHM

dN
s
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r

✏(tFWHM, m
r

)P (MPBH),

(3.26)

where P (MPBH) is a mass spectrum of PBHs, normalized so as to satisfy
R1
0 dMPBH P (MPBH) =

1. Then one can use our constraints to constrain the overall PBH mass fraction to DM,

⌦PBH/⌦DM, following the method in Carr et al. (2016); Green (2016); Inomata et al. (2017);

Carr et al. (2017)).

5http://cas.sdss.org/dr4/en/proj/advanced/hr/radius1.asp
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Chapter 4

Reobserving Andromeda for

Microlensing: Improved constraints

on PBH abundance

In the previous chapter, we presented the result of microlensing search with the Subaru/HSC

by a one-night observation of M31. We developed image di↵erence technique for the Sub-

aru/HSC data, and succeeded to put the tightest upper limit on PBH abundance at sublunar

mass scale. We also found one remaining candidate for which it is di�cult to rule out the

PBH microlensing hypothesis. If it is a real microlensing event, it is a discovery suggesting

that PBHs constitute some fraction of DM. In this chapter, we analyze the archival data of

M31 taken with the Subaru/HSC, and discuss the possible implication about the remaining

candidate as well as the improved constraint on PBH abundance.

4.1 Introduction

Gravitational microlensing has been used as a powerful method to probe dark matter (DM)

in the Milky Way (MW) (Paczynski 1986; Griest et al. 1991). With the aim of constraining

the abundance of PBHs, we previously carried out microlensing experiment with the Subaru

Hyper Suprime-Cam (HSC) by monitoring large number of stars in the Andromeda galaxy

(M31) with roughly a 2 minute cadence (see Chapter 3 for the detail). We searched for

microlensing event(s) of M31 stars by intervening PBHs in both the halo regions of MW

and M31. The huge volume between M31 and the Earth, leads to a large optical depth of

PBH microlensing to each star in M31, which allows us to put meaningful constraints on the

PBH DM scenario. Even a single night of HSC/Subaru yielded an ideal dataset to search
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Chapter 4. Reobserving Andromeda for Microlensing

for the PBH microlensing events because of the deep and wide field of view of HSC and

the good seeing condition. Among the 15,571 transient candidates we found one remaining

candidate for which it is di�cult to rule out the PBH microlensing hypothesis. If it is a

real microlensing event, it is a discovery suggesting that PBHs constitute to some fraction

of DM. Alternatively the one remaining candidate could be a microlensing by a free-floating

planet in the halo region (e.g. Sumi et al. (2011)), rather than a PBH. This could also be

another important discovery, especially for the halo regions.

Here we carried out another one-night HSC observation of M31 in the r2-band on the

night of September 19, 2017. We took the same observational strategy as we did in previous

2014 observation, and acquired 224 exposures for M31 with a cadence of 2 minutes during

7.5 hours within single night. One main purpose of this study is to reveal the nature of the

one remaining microlensing candidate from previous observation in 2014. The remaining

candidate is very faint about 24.5 magnitude in r-band, and it was di�cult to confirm the

nature of this event from the archival data by other telescopes. Our new observation with

the Subaru/HSC is expected to probe a signature of time variability of this candidate owing

to the deep field of view, if it is a variable star. Another goal of this new observation is to

search for new microlensing events due to PBHs, as well as to improve the constraint on their

abundance. Even though it is hard to probe PBHs with mass lighter than 10�10M� by HSC

due to the wave optics, it is still meaningful to look the tighter abundance of PBHs with

any mass scale, because it should lead to constrain some formation scenario of the universe.

Moreover, the dataset from new observation also enables us to classify various types of

transient objects. These transients could include supernova, nova, RR-Lyrae variable stars,

free-floating planets, some signatures in common-envelope binary system of massive stars,

and so on. By combining the new data with those from the previous observation of M31

with Subaru/HSC including SMOKA archive 1, we are expected to find various kinds of

transient candidates. This dataset will bring a legacy value for future cadence observation

over coming years; if we have repeated observation of one hour every time and a few runs

every month over several months/years, we can constrain various kinds of variable stars over

di↵erent timescales.

The structure of this chapter is as follows. In Section 4.2 we describe the details of our

data analysis, and define the master catalog of variable star candidates for 2017 observation.

In Section 4.3 we describe the selection criteria for microlensing events from the 2017 catalog

of variable star candidates. Based on this analysis, we first discuss the time-variability of

one remaining microlensing candidate detected from 2014 observation in Section 4.4. In

1https://smoka.nao.ac.jp/index.ja.jsp
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Section 4.5, we then use the result to derive an experimental upper bound on the abundance

of PBHs as a function of PBH mass, by combining previous constraint derived from 2014

data. Finally we present our conclusions and summary in Section 4.6.

4.2 Data analysis and Object Selection for 2017 obser-

vation

4.2.1 Observation

Here we describe the detail of our new microlensing observation in 2017. Basically we took

the same observational strategy as previous microlensing observation of M31 in 2014. The

pointing is centered at the coordinates of the M31 central region: (RA, dec) = (00h 42m

44.420s,+41d 16m 10.1s), which enables us to cover the entire disk region of M31 with a

single pointing. We do not perform any dithering between di↵erent exposures in order to

compare stars in the same CCD chip, which makes the image di↵erence somewhat easier.

Our observations were conducted on September 19, 2017 which was a dark night, a day

before the new moon. We carried out the observations with a cadence of 2 minutes which

allows us to densely sample the light curve for each variable object. The total exposure

time was 90 seconds on source and about 35 seconds were spent for readout on average.

In total, we acquired 224 exposures of M31 with the HSC r2-band filter2, for the period of

about 7.5 hours, until the elevation of M31 fell below about 30 degrees. The r2-band filter

have been procured to replace r-band filter, which was improved to have uniformity in the

transmission curve (Kawanomoto et al. 2018). The weather was stable, but the seeing size

change drastically during the observation as can be seen from Fig. 4.1, which shows how

the seeing FWHM changed with time from the start of our observation. The seeing size

ranged from about 0.500 to 1.800, and got worse than 1.200 towards the beginning and end of

our observation.

4.2.2 Data reduction and Sample selection

In the following we describe the summary of data reduction and sample selection for obser-

vation in 2017. We basically follow the same procedure as we applied for 2014 data, and

more details of each procedure are discussed in Section 3.3.2.

2See http://www.naoj.org/Projects/HSC/forobservers.html for the detail of the HSC filter system.
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Figure 4.1: The PSF FWHM (seeing size) of each exposure (90 sec exposure each) as a
function of time t [sec] from the start of our 2017 observation. We took the images of M31
region every 2 min (90 sec exposure plus about 35 sec for readout), and have 224 exposures
in total. The red points show the 10 best-seeing images (⇠ 0.500) from which the reference
image, used for the image di↵erence, was constructed. The blue point corresponds to a 5 sec
exposure image taken only once during 2017 observation.

Standard data processing

We performed basic standard data reduction with the dedicated software package for HSC,

hscPipe (version 4.0.5; also see Bosch et al. (2017)), which is being developed based on the

Large Synoptic Survey Telescope software package (Ivezic et al. 2008; Axelrod et al. 2010;

Jurić et al. 2015) 3. We followed the data processing steps as we performed for 2014 data,

including basic data reduction, careful background subtraction and the determination of the

astrometry. One di↵erence from previous data reduction is that we removed two dead CCDs

for our new analysis. Due to too many saturated stars in the bulge region and M101, we also

exclude the patches marked by dark square regions in Fig. 4.2, from the following analysis.

Image subtraction and Object detection

In order to find variable objects, we employ the di↵erence image technique developed in Alard

& Lupton (1998), which is integrated into the HSC pipeline. Following strategy of previous

data analysis, we first generated the “reference” image by co-adding 10 best-seeing images

among the 224 exposure images, where the 10 images are not time-consecutive, displayed as

red points in Fig. 4.1.

In order to make a master catalog of variable object candidates, we constructed 75 target

images by co-adding 3 time-consecutive images from the original 224 exposure images. Then

we subtract the reference image from each target image, resulting 75 di↵erence images.

3Also see http://www.astro.princeton.edu/~rhl/photo-lite.pdf for details of the algorithm used
in the pipeline.
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PSF photometry and master catalog of variable star candidates

From the initial catalog constructed from the 5� candidates from the 75 coadded-di↵erence

images, we prune it down to a master catalog of “secure” variable star candidates by applying

the following criteria, as we adopted for 2014 data: first we select those with a significance of

5� or higher (including a negative flux) (“PSF magnitude threshold”), and then put threshold

which allows candidates greater than 0.75 times (“Minimum size”), or smaller than 1.25 times

the PSF size (“Maximum size”) in each di↵erence image. Finally we select candidates which

have consistent “PSF shape” within 3� for the cumulative deviation over pixels inside the

PSF aperture.

Fig. 4.2 shows the distribution of secure variable star candidates with magnitudes m
r

 25

from the 2017 observation. We make a master catalog of variable star candidates from objects

which pass all the above conditions for each image di↵erence, and select only those which

are detected at least twice among the 75 di↵erence images, allowing a variance of position

within 2 pixels for every candidate. These criteria result in 8,461 candidates of variable

objects, which is our master catalog of variable star candidates for 2017 observation. The

number of transient candidates is around half compared to 2014 observation. One reason is

that we have worse seeing condition than 2014 observation, which decrease the number of

faint transient candidates. Another cause considered is the lower reflectivity of the primary

mirror at Subaru telescope, due to the postpone of mirror coating; the reflectivity of the

primary mirror gets around 15% decrease compared to 2014 observation 4.

Light curve measurement

Once each candidate is identified, we measure the PSF counts as a function of time from the

beginning to the end of our 7.5 hour long observations. In order to restore the highest time

resolution of our data, we used each of 224 exposures and measured the PSF counts in each

of the 224 di↵erence image that was made by subtracting the reference image (the coadded

image of 10 best-seeing exposures) from every single exposure. In this way we measure the

light curve of the object with 2 min time resolution.

4see https://www.subarutelescope.org/Observing/Telescope/Parameters/Reflectivity/ for the
detail
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Figure 4.2: Distribution of secure variable star candidates, detected from our analysis using
the image di↵erence technique. The di↵erent symbols denote the PSF magnitude of candi-
date in the reference image. We only show candidates which satisfies 18  m

r

 25 mag.
The total number of transient candidates detected for 2017 data are 8,461.

4.3 Statistics and Selection Criteria for 2017 observa-

tion

In this section we describe our selection criteria for 2017 data to discriminate the microlensing

event from other variables.

4.3.1 Photometric errors of the light curve measurement

Given the catalog of variable star candidates each of which has its measured light curve,

we now search for secure candidates of PBH microlensing. To robustly search for secure

candidates of PBH microlensing that have the expected light curve shapes, it is crucial to

properly estimate the photometry error in the light curve measurement. As we performed

in previous 2014 observation (Section 3.4.1), we use the following approach to obtain a

conservative estimate of the error. For a given di↵erence image, we randomly select 1,000

points in each patch region, and then perform PSF photometry at each random point in the

same manner as that for the variable star candidates. In selecting random points, we avoided
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Figure 4.3: The photometric error used for the light curve measurement in the di↵erence
image; we randomly select 1,000 points in the di↵erence image of a given patch (here shown
for the patch-D2 in Fig. 3.4), measure the PSF photometry at each random point, and then
estimate the variance of the PSF photometries (see text for details). The square symbols show
the 3- or 5-sigma photometric errors estimated from the variance when using the di↵erence
images constructed from the coadded images of 3 exposures, as a function of observation
time. The circle symbols, connected by the line, are the results for each exposure. Although
we use the photometric error in the ADU counts for a fitting of the microlensing model to
the light curve, we here convert the counts to the magnitude for illustrative convenience.

regions corresponding to bad CCD pixels or near the CCD chip edges. We then estimate the

variance from those 1,000 PSF magnitudes, repeat the variance estimation in the di↵erence

image for every observation time, and use the variance as a 1� photometry error in the light

curve measurement at the observation time.

Fig. 4.3 shows the photometric error on the light curve measurement in the di↵erence

images for 2017 data, estimated based on the above method. The shape of the photometric

error appears to correlate with the seeing conditions in Fig. 4.1. Similar to the analysis of

2014 observation, we find that the photometric error is larger than the error estimated from

the pipeline at the candidate position, which is locally estimated by propagating the Poisson

noise of the counts through the image subtraction processes. The figure also shows that most

of our data reaches a depth of 25 mag or so, which is around one magnitude shallower than

2014 observation. This result is consistent with the smaller number of variable candidates

as we discussed in Fig. 4.2.

4.3.2 Microlensing model fit to the light curve data

98



Chapter 4. Reobserving Andromeda for Microlensing

Table 4.1: Selection Criteria for 2017 data

Selection Criterion Purpose No. of remained candidates
�Ccoadd,i � 5�coadd,i initial definition of candidates 8,461
bumplen� 3 select candidates with a significant peak(s) in the light curve 1,465
mlchi2dof< 3.5 select candidates whose light curve is reasonably well fit 161

by the microlensing
aasy < 0.17 remove candidates that have an asymmetric light curve such 133

as star flares
significant peak select candidates that show a clear peak in its light curve 58

(see text for details)
visual inspection visually check each candidate (its light curve and images) 0
seeing corr remove candidates whose light curve is correlated with time 0

variation of seeing

Here we describe our selection procedure for PBH microlensing events from the candidates

for 2017 observation. We basically followed the same the statistics as we adopted for 2014

data analysis to quantify the characteristics of each light curve. Our selection procedure for

the candidates are summarized in Table 4.1. We will briefly describe each of the selection

steps in the following.

We start with the master catalog of variable star candidates, which contains 8,461 can-

didates. Our level 1 requirement to search for microlensing events is that a candidate event

should have a “bump” composed by more than 3 time-consecutive flux changes which satis-

fies �C
i

� 5�
i

, where the subscript i denotes the i-th di↵erence image (at the observation

time t
i

). This criteria strongly reduce the number of secure candidates for 2017 observation

because of the higher noise threshold as in Fig 4.3, and only leaves us with 1, 465 candidates

over all the patches.

Next we fit the observed light curves of each candidate with a model describing the

expected microlensing light curve. As described in Section 3.2.3, the microlensing light

curve in the di↵erence image is characterized by 3 parameters: (umin, tFWHM, C0), where umin

is the impact parameter, and tFWHM is the FWHM timescale of the light curve. For the model

fitting of 2017 data, we employ the following range for the model parameters: 0.01  umin <

1, 0.01  tFWHM/[sec] < 27, 000, and 0.5⇥�Cobs
max/(Amax�1)  C0  1.5⇥�Cobs

max/(Amax�1),

where �C(t
i

) = C0 [A(t
i

) � A(tref)] is the light curve of a microlensing in the di↵erence

image, C0 = �Cobs
max/[Amax � A(tref)] is the intrinsic flux, and �Cobs

max is the counts of the

light curve peak in the di↵erence image. For each candidate, we perform a standard �2 fit

by comparing the model microlensing light curve to the observed light curve:

�2 =
224
X

i=1

⇥

�Cobs(t
i

) � �Cmodel(t
i

; C0, tFWHM, umin)
⇤2

�2
i

, (4.1)
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where �
i

is the rms noise of PSF photometry in the i-th di↵erence image, estimated from

the 1,000 random points as described in Section 4.3.1. We then compute the reduced �2 by

dividing the minimum �2 by the degrees of freedom (224-3=221). We discard candidates that

have mlchi2 dof > 3.5. We further impose the condition that the best-fit tFWHM < 14, 400 sec

(4 hours), in order to remove candidates whose light curve has a longer time variation than

what we can robustly determine. This selection leaves 161 candidates.

We also utilize the shape of bump for the selection. Microlensing predicts a symmetric

light curve with respect to the maximum-magnification time t0 (Amax); the light curve at

t
i

= |t0 ± �t| should have a similar flux as the lensing PBH should have a nearly constant

velocity within the Einstein radius. By imposing the same condition aasy < 0.17 as we applied

for 2014 observation by following Eq. (3.23) in Chapter 3, we eliminate candidates that have

an asymmetric light curve, including Cepheids and flaring stars for our observation. After

this cut the number of candidates is reduced to 133.

In addition we discard candidates, if the observed light curve does not have any significant

peak; e.g., we discard candidates if mlchi2in dof > 3.5 (see Table 3.1 for the definition) or

if the time of the light-curve peak is not well determined. This selection cut still leaves us

with 58 candidates.

Finally we perform a visual inspection of each of the remaining candidates. Most of the

fake events are expect to be caused by an imperfect image subtraction; in most cases the

di↵erence image has significant residuals near the edges of CCD chips or spike-like structure

around bright stars. We found 57 fake events caused by such spike-like images around bright

stars. We have no contamination from fake events around the CCD edges, but identify 1

fake event caused by a moving object, an asteroid.

Thus our visual inspection leads us to conclude that all the remaining candidates are

fake, and we end up with no secure candidate event which passes all our cuts and visual

checks.

4.4 Result 1: Time-variability of one microlensing can-

didate

Although we have no secure microlensing candidate from 2017 observation, we were left with

one microlensing candidate from 2014 observation as shown in the top left panel of Fig. 3.13 in

Chapter 3. The candidate position is (RA, dec) = (00h 45m 33.413s, +41d 07m 53.03s), and

the magnitude inferred from the reference image implies that the candidate has a magnitude

of r ⇠ 24.5 mag in 2014. Unfortunately, the candidate is placed outside the survey regions

100



Chapter 4. Reobserving Andromeda for Microlensing

Table 4.2: Summary of archival data of M31 by HSC-r

Date Filter Exposure time [sec] Field No. of exposures
June 17, 2013 HSC-r 120 M31* 10
November 23, 2014 HSC-r 90 M31 194
November 18, 2015 HSC-r 300 M31N 34
November 18, 2015 HSC-r 300 M31S 31
September 19, 2017 HSC-r2 90 M31 224

of the Panchromatic Hubble Andromeda Treasury (PHAT) catalog in Williams et al. (2014)

(also see Dalcanton et al. (2012)), and hence the HST image is not available to test the

properties of this candidate.

Here we look into the properties of this remaining candidate by using multi-epoch obser-

vations of M31. By combining multiple deep images of M31 by Subaru/HSC, we are expected

to test the nature of the candidate more in detail. We first explain the properties of archival

data of M31 in Section 4.4.1, and describe the properties of light curves (Section 4.4.2) and

its implication about the time-variability (Section 4.4.3).

4.4.1 Archival observation of the M31 with the Subaru/HSC

To test the hypothesis that the candidate is a variable star, we looked into other r-band

data of the M31 that was taken by Subaru/HSC 5. Other than a commissioning run in

2013 as discussed in Section 3.4, we have access to only one observation run in 2015. The

observation was carried out in November 18, 2015. They targeted at two regions named

M31N and M31S, each of which has some overlap with the target field of view of our 2014

observation. The total exposure time was basically 300 seconds on source and about 35

seconds were spent for readout on average. In total, they acquired 34 exposures of M31N

and 31 exposures of M31S with the HSC r-band filter, for the period of about 5.8 hours in

total with four-pointing dithering.

Table 4.2 summarizes the archival observation of M31-disk region with HSC. Since the

observation in 2013 has worse seeing condition (about 1.200) compared to other observations,

we did not include them for the following time-variability test of one remaining microlensing

candidate.
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Figure 4.4: Light curves of one remaining microlensing candidate detected during the ob-
servation in 2014. Green points show the flux measurement at the target coordinate using
reference images constructed by every observational epoch in 2013, 2014, 2015 and 2017 time
sequentially. Red data points show the flux measurements of the candidate using di↵erence
images for every visit.
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Figure 4.5: Upper panel: Light curves of our target showing the microlensing event. Left
panel shows the microlensing event in 2014, and middle and right panels indicate photometry
of the same position from 2015 and 2015 observations, respectively. Red data points show
the flux measurements from di↵erence images for every visit. Two thin blue curves are the
1� noise level in di↵erence images. In order to compare with the other observations, the
light curve in the middle panel are multiplied by 90[sec]/300[sec]. Bottom panel: The PSF
FWHM (seeing size) of each exposure as a function of time t [sec] for each observational
epoch. Here we only plot the points where the seeing is smaller than 1.200.
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4.4.2 Light curves of one remaining candidate from archival data

Fig. 4.4 shows the magnitude of the remaining candidate from the photometry of reference

images at di↵erent observational epoch. The reference images are constructed by co-adding

the 10 best-seeing images among the images taken during the every observational epoch.

The deep photometry on the reference image enables us to probe the year-scale change of

flux of the remaining candidate expect for the observation in 2013, This figure indicates

than the remaining candidate does not show significant change of flux among the di↵erence

observational epoch.

Fig. 4.5 shows the light curve of the one remaining microlensing candidate. Here we

use the same reference image which is constructed by co-adding the 10 best-seeing images

during the observation in 2014; hence all the light curves are measured in the di↵erence

images, which are produced by the combination of reference image of 2014 observation and

the target images in each observational epoch. The noise of light curves are measured

by evaluating the variance of 1,000 random points for each di↵erence image, in the same

way as we estimated in Section 4.3.1. In order to perform a secure test for the very faint

candidate, we only look into the images which have better seeing condition than 1.200. The

light curve in the middle panel are multiplied by 90[sec]/300[sec], in order to compare with

the other observations. Our result indicates that the light curve from 2015 observation has

no significant time-variability, and all the photometry values reside within the 1� noise level.

On the other hand, the light curve from 2017 observation presents relatively larger variance

of photometry compared to the 2015 observation. However, the change of flux in the light

curve is strongly correlated with the change of the seeing. Since the change of flux is less than

5sigma significance, we conclude that the candidate does not show significant time-variability

during 2017 observation.

4.4.3 Test of time-variability

As discussed in Section 4.4.2, we could not detect significant time-variability of flux for the

one remaining microlensing candidate detected from our microlensing observation in 2014.

We expect that we should be able to observe its brightest phase repeatedly if our target is a

variable star. On the other hand, if this was indeed a microlensing event, it should be a one-o↵

occurrence at the observed location. A non-detection from the additional observations should

be able to rule out some of the periods expected for known variable stars, and establish the

nature of this event as microlensing, which can lead to detections of more such microlensing

5All the archival data are downloaded from the SMOKA archive
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Figure 4.6: Fraction of region to be ruled out for a period up to 12 hours. Night 0 is our
previous microlensing event in 2014 observation and nights 1,2 correspond to the observations
in 2015 and 2017, respectively. Variability timescales of up to 5hours are ruled out by our
HSC observation in 2014. If we take into account the observation of our target in 2015
which has no significant time-variability for 5 hours, we can rule out 87.9% of the time-
scales between 5-12hours. Similarly, we can rule out the 98% of the time-scales between
5-12hours by assuming that we have no significant time variability during 2017 observation.

events (expected number ⇠ 104 for given the optical depth of our observation).

Here we performed a test to estimate the excluded range of time-variability from our

follow-up observations. Since variable stars with period longer than 7 hours (e.g. Cepheids)

are expected to be detected from the previous 7-hour observations, we only focus on the

time-variablitiy within 12 hours, where we can expect variable star candidates such as �-

Scuti, RR-Lyrae, and binary-star systems. The methodology of our test is as follows. First

we assume that an event could be defined as peak-to-peak distance or time. By assuming

that the new observations happen between time t1 and t2, we calculate how many events

should occur from dt1 = t1 � t0 and dt2 = t2 � t0, where t0 corresponds to the remaining

microlensing candidate event. If an object has time period T , we will either see a new event

(i.e.� 1 event) between dt2 � dt1 or we won’t (i.e 0 event). If we don’t see any event, we

rule out the time period T . Then we repeat this test for various values of T and di↵erent

combinations of observations with (t1, t2).

Fig. 4.6 shows the excluded region of time-variability of the microlensing candidate from

the combination of observations in 2014, 2015, and 2017. The night 0,1,2 corresponds to the

HSC observations of 2014, 2015, and 2017, respectively. We rule out variability timescales

of up to 5 hours by the single observation in 2014. The other time-space regions can be also
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widely excluded by taking into account the other two-night observations. Our test indicates

that we can rule out 87.9% of the time-scales between 5-12hours by taking advantage of

observations in 2014 and 2015. Similarly, we can rule out the 98% of the time-scales be-

tween 5-12hours by assuming that we detect no significant time variability during three-night

observations in 2015 and 2017.

4.5 Result 2: Tighter Upper bound on the abundance

of PBHs

From the analysis of our microlensing search, we were left with one microlensing candidate. In

this section we estimate the expected number of microlensing e↵ect by the taking advantage

of observations in 2014 and 2017.

4.5.1 E�ciency Calculation: Monte Carlo simulation of observa-

tion in 2017

In the following, we will estimate the detection e�ciency of PBH microlensing events for

our 2017 observation, in the same way as we did for 2014 observation in Section 3.5.1. To

estimate the e�ciency we carry out simulations of microlensing light curves by imitating the

microlensing observation in 2017. First we randomly select the time of maximum magnifica-

tion (tmax) from the observation window, the impact parameter umin 2 [0, 1] and the FWHM

timescale tFWHM in the range of 0.01  tFWHM/[sec]  27, 000 to simulate the input light

curve in the di↵erence image for a given intrinsic flux of a source star, F0. Then, we add

random Gaussian noise which was estimated in Section 4.3.1, to the light curve at each of

the observation epochs t
i

. For each intrinsic flux, we generate 1,000 simulated light curves

in each patch region, and applied all of our selection cuts (see Section 4.3 and Tables 4.1) to

assess whether the simulated event passes all the criteria.

Fig. 4.7 shows the estimated e�ciency for a given intrinsic flux of a star as a function of

the timescale (tFWHM) of the simulated light curve, in the patch-D2 of Fig. 3.4 of Chapter

3. We found the same trend as seen in previous observation (Section 3.5.1), indicating that

a microlensing event for a bright star is easier to detect, because even a slight magnification

is enough to identify it in the di↵erence image. However, the detection e�ciency becomes

around half compared to the case of 2014 observation as in Fig. 3.14. One reason considered

is that we place higher threshold as in Fig. 4.3, which drastically reduces the number of

secure transient candidates for the 2017 observation as discussed in Section 4.3. This high
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Figure 4.7: The detection e�ciency estimated from light curve simulations taking into ac-
count the PSF photometry error in each of 224 target images we used for the analysis (see
Fig. 3.14 for the detail). Here we generated Monte Carlo simulations of microlensing events
randomly for 2017 observation data. The detection e�ciency for each source magnitude is
estimated from 1,000 realizations.

threshold also reduces the e↵ective number of our simulated microlensing events, and thus

leads to lower detection e�ciency as shown in Fig. 4.7.

4.5.2 Expected number of PBH microlensing events

Now we use the results of our microlensing search to constrain the abundance of PBHs from

combined observations in 2014 and 2017. The expected number of PBH microlensing events

in our 2-year HSC data is given by
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where ⌦PBH/⌦DM is the mass fraction of PBHs to the total DM mass in the halo re-

gions, dNexp/dtFWHM is the di↵erential event rate for a single star (Fig. 3.3) per logarithmic

timescale, dN/dm
r

is the luminosity function of source stars in the r-band magnitude range

[m
r

, m
r

+ dm
r

], and ✏(mFWHM, m
r

) is the detection e�ciency quantifying a probability that

a microlensing event for a star with magnitude m
r

and the light curve timescale tFWHM is

detected by our selection procedures. Note that we calculated the expected number of PBH

microlensing events separately for observations in 2014 and 2017, as in Eq. (4.2). The only

di↵erence between the estimation of two observations is the values of detection e�ciency as
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Figure 4.8: The red-color shaded region show the 95% C.L. upper bound on the PBH mass
fraction to DM in the halo regions of MW and M31, derived from our microlensing search
of M31 stars based on the “two-night” HSC/Subaru data. The inner solid line shows the
previous constraint derived from the one-night observation in 2014. The dashed curve shows
the results without considering the wave e↵ect.

in Fig. 3.14 and Fig. 4.7, and we adopt the same event rate models (Fig. 3.3) and the same

estimate of number counts of source stars in M31 (see Section 3.5.2 for the detail).

4.5.3 Experimental limits on the abundance of PBHs from two-

night observations

Here we combine the estimates of dNevent/d ln tFWHM, dN
s

/dm
r

and ✏(tFWHM, m
r

) in Eq. (4.2)

to constrain the abundance of PBHs. Assuming the number of microlensing events follow a

Poisson distribution, the probability to observe a given number of such events, Nobs, is given

by P (k = Nobs|Nexp) =
h

(Nexp)
k /k!

i

exp[�Nexp]. Hence 95% C.L. interval is estimated as
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P (k = 0)+P (k = 1) � 0.05, leading to Nexp  4.74 assuming that the candidate in Fig. 3.13

is real, as we verified in Section 4.4.2. Fig. 4.8 shows our updated result in comparison with

other observational constraints on the abundance of PBHs on di↵erent mass scales. As

a result, our new result provides around 1.5 times stringent constraint compared to the

previous constraint by observation in 2014. We cannot go twice as deep as the previous

constraint because of the lower detection e�ciency from new observation in 2017. Note that

we cannot explore constraints on PBHs with M <⇠ 10�11M� from new Subaru observation,

because the e↵ect of finite source star size (Witt & Mao 1994) as well as the e↵ect of wave

optics on the microlensing cross section (Gould 1992; Nakamura 1998) significantly reduce

the event rate for those PBHs.

4.6 Discussion and future prospects

In Chapter 3 and Chapter 4, we have used the unprecedented dense-cadence data of M31,

taken with the HSC/Subaru, in order to search for microlensing e↵ects of PBHs on M31

stars. The combination of the wide field-of-view and the 8.2m aperture of HSC/Subaru is

ideal for our study. With this unique HSC data set, we expect up to 103 PBH microlensing

events of M31 stars, if PBHs constitute a majority of DM in the MW and M31 halo regions.

To search for the pixel lensing event by PBH, i.e. the microlensing of unresolved stars, we

used the image subtraction technique in Alard & Lupton (1998), and successfully managed

to find many candidate variable stars such as stellar flares, eclipsing binaries, and Cepheid

variables. After careful selection criteria including the microlensing fitting to the measured

light curve, we concluded that most candidates are not microlensing events, but found one

remaining candidate for which it is unlikely to be a periodic variable star (see Fig. 4.5). If this

is a real event, it is a discovery, unveiling some contribution of PBHs to DM. Alternatively

the remaining candidate could also be a result of microlensing by a free-floating planet in the

halo region, rather than a PBH (Sumi et al. 2011) (again recall that the short timescale of

the light curve requires a planetary mass scale, rather than stellar mass scale. Also note that

Earth-mass object at 100 kpc is more likely to cause microlensing rather than occultation,

because the Einstein radius is larger than the size of this object itself, and the size larger than

the angular size of the source). This could also be another important discovery, especially

for the halo regions, and is worth exploring.

We derived the tightest upper bounds on the abundance of PBHs as a candidate for DM

in the MW and M31 halo regions in the range of MPBH ' [10�11, 10�5]M�. Some inflation-

inspired model predicts that PBHs span over a wide range of mass scales possibly extending
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to mass scales of a few 10M�, mass scales of the LIGO binary black holes (Kawasaki et al.

2016,b; Inomata et al. 2017). If binary black holes for gravitational wave sources originate

from PBHs, a wide mass spectrum of PBHs is required, because a scenario with ⌦PBH/⌦DM =

1, for mass scales around 10 M�, is already ruled out by observations such as MACHO

microlensing and CMB constraints. Our results give a strong constraint on such a wide-

mass-spectrum model; a model with ⌦PBH/⌦DM
>⇠ 10�2–10�3 is not allowed for mass scales

of MPBH ' [10�11, 10�9]M�.

Although our results for the upper bounds in Fig. 4.8 are promising, we employed several

assumptions. As discussed in Section 3.6, one uncertainty in our bounds comes from the

number counts of source stars in M31. If we use the number of HSC peaks for the counts of

source stars, the upper bounds in Fig. 4.8 are weakened by a factor of 10. However, the use

of HSC peak counts is extremely conservative, so we believe that our fiducial method using

the HST-extrapolated counts of source stars is reasonable. We also have another uncertainty

from the e↵ect of finite source size in the small mass range such of MPBH
<⇠ 10�10M�. Here

we employ a solar radius for all source stars for simplicity. However, the upper bound also

has contribution from RGB stars, which can lowers the microlensing event rate. We believe

that our assumption is reasonable because main contribution to the total microlensing event

comes from faint stars at r ⇠ 25–26 mag.

There is still some scope to improve our results. First of all, if we have more HSC nights,

we can tighten the bound; e.g., if additional 10 clear nights are provided, we can tighten the

upper bound by a factor of 10. Also, we could extend our constraints to heavier mass scales, if

M31 can be monitored over a longer timescale from months to years. For example, if we have

repeated observations of M31 every few months over 10 years, say 10 minutes observation for

each observation run, we should be able to improve the constraints at heavier mass scales.

Since M31 is the most suitable target in the northern hemisphere for HSC, this is a valuable

opportunity, waiting to be explored.
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Earth-mass black holes? – Constraints

on primordial black holes with 5-years

OGLE microlensing events

In this chapter, we give the upper bound on the PBH abundance and a possible implication

of Earth-mass PBHs using microlensing events obtained from 5-years observations of stars

in the Galactic bulge by the Optical Gravitational Lensing Experiment (OGLE).

5.1 Introduction

Microlensing is the most robust, powerful tool among various methods to probe a compact,

macroscopic dark matter (DM) in the Milky Way (MW) halo region (Paczynski 1986; Griest

et al. 1991), because lensing is a gravitational e↵ect and can directly probe mass (grav-

ity strength) of a lensing object irrespective of whether a lensing object is visible or not.

The Optical Gravitational Lensing Experiment (OGLE 1) collaboration (Udalski et al. 1994,

2015) has been making invaluable long-term e↵orts, more than a decade, to make monitoring

observations of million stars in the Galactic bulge fields. The OGLE team has been finding

more than two thousands of microlensing events and obtained various constraints on exo-

planetary systems, brown dwarfs, low-mass stars as well as presented even an indication of

free-floating planets in inter-stellar space (Mróz et al. 2017) (also see Sumi et al. 2003, 2011,

for the similar constraints from the MOA microlensing experiments).

In this chapter we use the 5-years OGLE data containing 2622 microlensing events in

Mróz et al. (2017) to constrain the PBH abundance. Interestingly the OGLE data indi-

1http://ogle.astrouw.edu.pl
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cates 6 ultrashort-timescale microlensing events that have their light curve timescales of

tE ' [0.1, 0.3] days (also see Mróz et al. 2018, for the new candidates), which is a distinct

population from the majority of OGLE events. The ultrashort-timescale events indicate

Earth-mass “unbounded” (wide-orbit or free-floating) planets (Sumi et al. 2011; Mróz et al.

2017). However, the origin of such free-floating planets is poorly understood because it in-

volves complicated physics of star formation, planetary system formation and interaction of

planetary system with other stars/planets. Hence we pay a particular attention to a possibil-

ity of whether PBHs can give an alternative explanation of the ultrashort-timescale events.

For this purpose, we first study the standard Galactic bulge and disk models to estimate

event rates of microlensing events due to astrophysical objects including brown dwarfs, main

sequence stars and stellar remnants (white dwarfs, neutron stars and astrophysical black

holes) following the pioneer work in Han & Gould (1995) (also see Han & Gould 1996).

After comparing the model predictions of astrophysical objects with the OGLE data includ-

ing the calibration factor that takes into account observational e↵ects, we use the OGLE

data to constrain the PBH abundance using the standard MW halo model for the spatial

and velocity distributions of DM (therefore PBHs). In doing this we employ two working

hypotheses. First, we employ “null hypothesis” that there is no PBH microlensing in the

OGLE data and then derive an upper bound on the PBH abundance. Second, we employ

the assumption that the 6 ultrashort-timescale events are due to PBHs and derive an al-

lowed region of PBHs in the mass and abundance parameter space. To obtain the results,

we properly use the likelihood function of OGLE events assuming the Poisson uncertainty

in the counts of microlensing events.

The structure of this chapter is as follows. In Section 5.2, we give equations relevant for

the event rate calculations. In Section 5.3 we review the standard models for the Galactic disk

and bulge describing the spatial and velocity distributions for brown dwarfs, stars and stellar

remnants as the constitutions, and also describe the MW halo model for the distributions

of DM, i.e. PBH in our study. In Section 5.4, we give the main results of this chapter,

after reviewing the OGLE data; the upper bound on the PBH abundance and a possible

implication of Earth-mass PBHs. We will then give conclusion and discussion in Section 5.5.
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5.2 Microlensing for bulge stars

5.2.1 Microlensing optical depth and event rate for a star in the

Galactic bulge

Definition of microlensing optical depth and event rate

Here we define the optical depth and event rate of microlensing for a single star in the

Galactic bulge region. The optical depth is defined as the probability for a source star to

be inside the Einstein radius of a foreground lensing object on the sky at a certain moment.

This corresponds to the probability for the lensing magnification to be greater than A � 1.34.

The total optical depth due to lensing objects in the bulge and disk regions as well as due

to PBHs in the MW halo region is formally expressed as

⌧ ⌘ ⌧b + ⌧d + ⌧PBH. (5.1)

Hereafter we employ abbreviations: “b” for “bulge” and “d” for “disk”, respectively, and

we ignore a multiple lensing case for a single star (this is a good approximation given the

low optical depth as we show below). For a lensing object in the bulge and disk regions,

we consider brown dwarfs and stellar components, where the latter includes main sequence

stars and stellar remnants (white dwarfs, neutron stars and astrophysical black holes), as we

will explain in detail later.

The di↵erential event rate of microlensing event is defined by the frequency of microlens-

ing event of a given lightcurve timescale (denoted as t̂) for a single source star per unit

observational time (tobs):

d�
↵

dt̂
=

d2⌧
↵

dtobsdt̂
, (5.2)

where the subscript ↵ = bulge, disk or PBH, respectively.

Coordinate system

It would be useful to explicitly define the coordinate system we employ in the following

calculations. For the rectangular coordinate system, denoted as (x, y, z), we choose the

Galactic center as the coordinate origin. Without loss of generality, we can take the x-

direction to be along the direction connecting the Galactic center and the Earth position

(an observer’s position). We assume that the Earth is located at the position, (x, y, z)� =
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(8 kpc, 0, 0), i.e. 8 kpc in distance from the Galactic center. Furthermore, we take the

y-direction to be along the Earth’s rotation direction in the Galactic disk plane, and the

z-direction to be in the direction perpendicular to the disk plane.

In this chapter we consider the microlensing datasets obtained from the 5-years OGLE

survey (Udalski et al. 2015)2. In the Galactic coordinates, the OGLE fields are located in the

range of �15� <⇠ b <⇠ 15� and �20� <⇠ l <⇠ 20�. Throughout this chapter we simply assume

that the OGLE field is in the direction to the field BLG505 with (b, l) = (�2�.389, 1�.0879),

which has the largest number of background stars among the OGLE fields. We believe that

this approximation is valid because our results are based on relative contributions of mi-

crolensing due to stellar components in the bulge and disk regions compared to microlensing

due to PBHs in the MW halo region.

Bulge lens

First we consider a microlensing that both lens and source are in the Galactic bulge region.

The average optical depth of microlensing due to the i-th stellar component for a single

source star is given by

⌧b ⌘ 1
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ddl ⇢b,i(dl)D, (5.3)

where the integration is along the line-of-sight direction (see below), D ⌘ dldls/ds, and the

index i stands for the i-th stellar component as a lensing object for which we will consider

brown dwarfs, main sequence stars, white dwarfs, neutron stars and astrophysical black

holes (see below). Ns is the surface number density of source stars defined by a line-of-sight

integration of the three-dimensional number density distribution of source stars, ns, as

Ns ⌘
Z

ds,max

ds,min

dds ns(ds). (5.4)

The function ⇢b,i(dl) is the mass density profile for the i-th stellar component. ds,min and

ds,max are the maximum and minimum distances to the boundary of the bulge region from an

observer’s position. Throughout this chapter we employ ds,min = 4 kpc and ds,max = 12 kpc;

that is, we assume that the bulge has a size of 4 kpc around the center (ds = 8 kpc) in depth

2The OGLE-IV fields can be found from http://ogle.astrouw.edu.pl/sky/ogle4-BLG/.
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from an observer. The integration over ds or dl in Eq. (5.3) is along the line-of-sight direction

of an observer towards the source star in the direction (y, z). As long as the lens distribution

⇢b,i and the source star distribution are given, the line-of-sight integration is straightforward

to perform as we will show later.

Now we consider the event rate of microlensing. To do this, we start from the geometry

and variables defined in Fig. 4 of Griest et al. (1991) (also see Figure 7 of Niikura et al. 2017),

which defines the di↵erential event rate of a lensing object entering a volume element along

the line-of-sight where the lens causes a microlensing with magnification above a certain

threshold value:

d�b =
X

i

⇢b,i
M

i

REv2
? cos ✓ddld↵fb,i(v?, vk)dv?d✓dvk , (5.5)

where fb,i(v?, vk) is the velocity distribution of the i-th stellar component, defined so as

to satisfy the normalization condition
R

d2v?
R

dvk f(v?, vk) = 1; v? is the perpendicular

components of relative velocity between an observer, lens and source star (see below), defined

as v? = v?(cos ✓, sin ✓); ↵ is the azimuthal angle in the two-dimensional (y, z)-plane, defined

as (y, z) =
p

y2 + z2(cos↵, sin↵); ✓ is the angle between the line connecting the source and

the lens center and the direction of the transverse velocity v?. In this chapter we define the

microlensing “event” if the lensing magnification is greater than a threshold magnification,

A > A(RE) = 1.34, which is satisfied if the separation between lens and source is closer than

the threshold separation, b  RE. The parameters vary in the range of ✓ 2 [�⇡/2, ⇡/2],

↵ 2 [0, 2⇡], and v? 2 [0, 1).

We assume that the velocity distribution can be simplified as

fb(v?, vk) = fb(v?)fb(vk). (5.6)

As we discussed, for a characteristic timescale of microlensing light curve, we employ a

crossing time scale of the Einstein ring, defined as tE = 2RE cos ✓/v?. This simplification is

not critical for the following discussion because we study the PBH microlensing contribution

relative to those due to the stellar components in the disk and bulge regions. In this case,
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the microlensing event rate due to the i-th stellar components is given as
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Using the Dirac delta function identity
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the above equation is simplified as
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where v? = 2RE cos ✓/tE. With this condition, the tangential velocity v? depends on inte-

gration variables, ds, dl, and ✓ via RE = RE(dl, ds).

Disk lens

Next we consider an event rate for microlesning due to stellar components in the disk region

for a single source star in the bulge region. The calculation is very similar to the case for bulge

lens in the preceding section. In this case we employ a single source plane approximation

for simplicity; that is, we assume that all source stars are at distance of 8 kpc, the Galactic

center. Under this assumption, the optical depth is given by

⌧d =
4⇡G

c2

Z

d̄s

0

ddl

X

i

⇢d,i(dl)D, (5.10)

where ⇢d,i(dl) is the mass density distribution of the i-th stellar component, D = dldls/d̄s, d̄s

is the mean distance to source stars, i.e. d̄s = 8 kpc, and dls = d̄s � dl.
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Similarly, the event rate is

d�d

dtE
= ⇡

X

i

Z

d̄s

0

ddl
⇢d,i(dl)

M
i

Z

⇡/2

�⇡/2

d✓ v4
?fd,i(v?, ✓), (5.11)

where v? = 2RE cos ✓/tE, fd,i(v?) = fd,i(v?, ✓) is the velocity distribution for velocity com-

ponents perpendicular to the ling-of-sight direction for the i-th stellar component in the disk

region.

PBH lens

Now we consider a scenario that PBHs constitutes some mass fraction of DM in the MW halo

region. We call “PBHs in the halo region” because PBHs are distributed from the Galactic

center through the outer halo region due to the large velocity dispersion. When a lensing PBH

happens to pass across a source star in the bulge on the sky, it could cause microlensing e↵ect

on the source star. Throughout this chapter we consider a monochromatic mass distribution

for PBHs. Similarly to the disk microlensing, the optical depth of microlensing due to PBHs

is

⌧PBH =
4⇡G

c2

Z

d̄s

0

ddl ⇢DM(dl)D, (5.12)

where ⇢DM(dl) is the dark matter distribution. If PBHs consist only some partial mass

fraction of DM in the MW region, denoted as fPBH ⌘ ⌦PBH/⌦DM, we replace ⇢DM in the

above and following equations with fPBH⇢DM.

Similarly, the event rate of microlensing due to PBHs for a single source star in the bulge

is

d�PBH

dtE
= ⇡

Z

d̄s

0

ddl
⇢DM(dl)

MPBH

Z

⇡/2

�⇡/2

d✓ v4
?fDM(v?, ✓), (5.13)

where fDM(v?) is the velocity distribution of PBHs.

5.3 Models of Galactic disk and bulge and Milky Way

dark matter

As we described, once we give the density and velocity distributions for stellar components

in the MW bulge and disk regions as well as those for PBHs (equivalently DM) in the halo
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lens mass density profile: ⇢ [M�pc�3] ⌧ [10�6] velocity profile: (µ, �) [km/s]

bulge 1.04 ⇥ 106
⇣

s

0.482 pc

⌘�1.85

, (s < 938pc) 1.07 f
y

:
�

�220(1 � ↵),
p

1 + ↵2100
 

3.53 K0

⇣

s

667 pc

⌘

, (s � 938pc) f
z

:
�

0,
p

1 + ↵2100
 

disk 0.06 ⇥ exp
⇥

�
�

R�8000
3500 + z

325

 ⇤

1.03 f
y

:
n

220↵,
p

(� + 30)2 + (100↵)2
o

f
z

:
n

0,
p

(�� + 30)2 + (100↵)2
o

PBH 4.88 ⇥ 10�3fPBH
1

(r/rs)(1+r/rs)2
0.18fPBH f

y

:
n

�220(1 � ↵),
p

�2
DM + (↵100)2

o

f
z

:
n

0,
p

�2
DM + (↵100)2

o

Table 5.1: Summary of the Galactic models for the mass and velocity distributions for stellar
components and PBHs. ↵ is the ratio of distances between lens and source, ↵ ⌘ dl/ds. We
employ the coordinate system as defined in Section 5.2.1, and take the Galactic center
as the coordinate origin. The optical depth (⌧) is calculated assuming an observation in
the direction of (b, l) = (�2�.389, 1�.0879) which represents the OGLE Galctic bulge fields.
For PBH case, we assume that PBHs constitute DM in the MW region by mass fraction,
fPBH ⌘ ⌦PBH/⌦DM, when computing the microlensing optical depth. We assume a Gaussian
for the velocity profile, and the quantities, µ and �, denote the mean and dispersion for the
Gaussian distribution. For PBH, we employ �DM = 220 km/s for our fiducial model, which
is taken from the rotational velocity of Galactic disk (see text).

region, we can compute the event rates of microlensing for a star in the bulge region. In this

subsection, we briefly review the standard model for the MW bulge and disk following Han

& Gould (1995). Then we describe our model for the density and velocity distributions for

PBHs in the MW region.

5.3.1 The mass density distribution

For the mass density distribution of stellar population in the bulge region, we adopt the

model in Kent (1992) that describes the following bar-structured model:

⇢b(x, y, z)

=

8

<

:

1.04 ⇥ 106
⇣

s

0.482 pc

⌘�1.85

M�pc�3, (s < 938pc),

3.53 K0

⇣

s

667 pc

⌘

M�pc�3, (s � 938pc),
(5.14)

where K0(x) is the modified Bessel function, s is the radius from the Galactic center in

the elliptical coordinates, defined as s4 ⌘ R4 + (z/0.61)4 with R ⌘ (x2 + y2)1/2, and all

the coordinate components (x, y, z, s, R) are in units of pc. As defined in Section 5.2.1,

the coordinate origin is the Galactic center. Note that the above profile is continuous at
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object parameters in dn/dM mass range [M�] initial mass range [M�] N
brown dwarf (BD) Power-law (M�0.8) [0.01, 0.08] 0.01  M  0.08 0.18
main-sequence star (MS) Power-law (M�2) [0.5, 1.0] 0.5  M  1.0 1

Power-law (M�1.3) [0.08 0.5] 0.08  M  0.5
white dwarf (WD) Power-law (initially M�2) [0.34, 2.0] 1.0  M  8.0 0.15
neutron star (NS) Gaussian (M

r

= 1.33, �
r

= 0.12) [0.73, 1.93] 8.00  M  20.0 0.013
black hole (BH) Gaussian (M

r

= 7.8, �
r

= 1.2) [1.8, 13.8] 20.0  M  100.0 0.0068

Table 5.2: Summary of the mass spectrum for each of astrophysical objects: brown dwarfs,
main-sequence stars, and stellar remnants (white dwarfs, neutron stars, and astrophysical
black holes) in the standard Galactic bulge and disk models. We assume the Kroupa initial
mass function as shown in Fig. 5.1, and then assume that each massive star with initial
masses M � 1M�, as denoted in the column “initial mass range”, evolved into each stellar
remnant. For white dwarf, we assume the relation between initial and end masses as given by
MWD = 0.339+0.129Minit. The column “dn/dM” denotes parameters of the mass spectrum
for each object population, while we assume a Gaussian distribution with the mean and
width values for the mass spectrum of neutron stars and black holes. The last column “N”
gives the number of each object population relative to that of main-sequence stars used in
the calculation of microlensing event rate.

s = 938 pc, and we consider the above profile is for the total contribution of visible objects,

i.e main sequence stars, as we will describe below. Using the Galactic celestial coordinate

variables (l, b), a star at the distance d from an observer (the Earth’s position) is at the

distance from the Galactic center, r, given as

r(d) =
q

R2
� � 2R�d cos l cos b + r2, (5.15)

where r =
p

x2 + y2 + z2, x = d cos b cos l, y = d cos b sin l, and z = d sin b. This variable

transformation between d (dl or ds) and x, y, z enters into the above equations such as

Eq. (5.9).

For the mass density distribution in the disk region, we employ the model in Bahcall

(1986):

⇢d(R, z) = 0.06 ⇥ exp



�
⇢

R � 8000

3500
+

z

325

��

M�pc�3. (5.16)

Note that, as we defined, R(=
p

x2 + y2) denotes the radial distance in the cylindrical

coordinates and z is in the direction perpendicular to the Galactic disk (variables are in

units of pc). This model assumes that the disk has an exponential distribution with vertical

and radial scale lengths of 325 pc and 3500 pc, respectively. Although the mass-to-light ratio

of disk stellar population is not well understood, we normalize the above density profile to

⇢d0 = 0.06 M�pc�3 at the solar neighborhood (R = 8000 pc).
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For the spatial distribution of DM (therefore PBHs) between the Galactic center and

an observer (the Earth), we assume the Navarro-Frenk-White (NFW) model (Navarro et al.

1997):

⇢NFW(r) =
⇢
c

(r/r
s

)(1 + r/r
s

)2
, (5.17)

where r
s

is the scale radius and ⇢
c

is the central density parameter. For this model we assume

spherical symmetry for the DM distribution for simplicity. In this chapter we adopt the halo

model in Klypin et al. (2002): Mvir = 1012M�, ⇢
c

= 4.88 ⇥ 106 M�/kpc3, and r
s

= 21.5 kpc,

taken from Table 2 in the paper. The DM profile with these parameters has been shown to

fairly well reproduce the observed rotation curve in the MW. However, there might still be a

residual uncertainty in the total mass (mostly DM) of MW within a factor of 2 (Callingham

et al. 2018).

Table 5.1 summarizes models of the mass density profiles for stellar components in the

bulge and disk regions and for dark matter in the MW halo region. The table also gives the

optical depth for a single source star for lenses in the bulge or disk region and for PBHs,

respectively. Note that the optical depth does not depend on a lens mass as indicated

from Eq. (5.3). The table shows that the optical depth due to PBHs is smaller than that of

astrophysical objects in the disk or bulge region, by a factor of 5, reflecting that astrophysical

objects are more centrally concentrated due to the dissipation processes.

The velocity distribution

A timescale of the microlensing light curve (see Eqs. (5.9), (5.11), and (5.13)) is determined

by a transverse component of the relative velocity for source-lens-observer system on the sky

(Griest et al. 1991; Han & Gould 1995):

v? = vl �
✓

dl

ds
vs +

dls

ds
vo

◆

= vl � [↵vs + (1 � ↵)vo] , (5.18)

where vl, vs and vo are the transverse velocities for lens, source star and an observer,

respectively, and we have introduced the notation ↵ ⌘ dl/ds. As we described in Section 5.2.1,

the x-direction is along the direction from the observer to the Galactic center (i.e. a source

star), which is equivalent to the line-of-sight direction, the y-direction is along the direction

of disk rotation, and the z-direction is perpendicular to the line-of-sight direction. Hence we

need to model the mean and distribution of the transverse velocity components, v? = (v
y

, v
z

).

Hereafter we often omit the subscript “?” in v? for notational simplicity.
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Bulge lens

First we consider the velocity distribution for the bulge microlensing where both lens and

source star are in the bulge region. For the velocity distribution, we assume that the stellar

components are supported by an isotropic velocity dispersion, and do not have any rotational

velocity component. Under these assumptions, the mean of the transverse velocities is

v̄by ⌘ hvly � [↵vsy � (1 � ↵)voy]i = �220(1 � ↵) km/s,

v̄bz = 0 (5.19)

where we have assumed that an observer is in the rest frame of the rigid body rotation of

Galactic disk, has the rotational velocity of 220 km/s with respect to the Galactic center,

and has no mean velocity in the disk height direction.

The velocity dispersion for the y-component of relative velocity can be computed as

�2
by ⌘

⌦

(v
y

)2
↵

� hv
y

i2

=
⌦

v2
ly

↵

+ ↵2
⌦

v2
sy

↵

= (1 + ↵2)(100 km/s)2, (5.20)

Here we assumed that the velocity dispersion per component �
y

= 100 km/s, and assumed

that the source and lens have independent random motions; hvsyvlyi = 0. The velocity

dispersion for the velocity z-component is

�2
bz = (1 + ↵2)(100 km/s)2. (5.21)

Following Han & Gould (1995), we assume that the velocity distribution is given by a

Gaussian and that the velocity distribution for the bulge microlensing is given by

fb(v) = fb(vy)fb(vz), (5.22)

where

fb(vy) =
1p

2⇡�by
exp

"

�(v
y

� v̄by)
2

2�2
by

#

,

fb(vz) =
1p

2⇡�bz
exp



� v2
z

2�2
bz

�

, (5.23)
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Disk lens

Next we consider the velocity distribution for stellar components in the disk region. We

assume that the stellar components have a rigid rotation on average:

v̄dy = 220↵ km/s

v̄dz = 0. (5.24)

For the velocity dispersion, we assume the linear disk velocity dispersion model in Table 1

of Han & Gould (1995):

�2
dy = (� + 30)2 + (100↵)2 (km/s)2

�2
dz = (�� + 20)2 + (100↵)2 (km/s)2 (5.25)

with

 ⌘ 5.625 ⇥ 10�3 km/s/pc,

� ⌘ 3.75 ⇥ 10�3 km/s/pc,

� ⌘ (8000 � x) pc , (5.26)

where  and � are the velocity dispersion gradient coe�cients. Hence the velocity distribution

functions are given by the similar equations to Eq. (5.23).

PBH lens

Now we consider a microlensing due to PBHs, acting as DM, in the MW halo region. PBHs

are tracers of the MW halo that is much more extended than the bulge size (⇠ 200 kpc

vs. a few kpc in radius). The large extent of DM halo reflects the fact that PBHs have a

larger velocity dispersion than that of bulge stars (100 km/s). First we assume that PBHs

have isotropic velocity distribution with respect to the halo center for which we assume the

Galactic center. Hence the mean relative velocity for a PBH lens is

v̄PBHy

= �220(1 � ↵) km/s,

v̄PBHz

= 0. (5.27)

For a PBH causing microlesning e↵ect on a bulge star, it should be located somewhere

between the Galactic center and the Earth, which is a very inner region compared to the
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halo size. Such a PBH (more generally dark matter) tends to have a large velocity when

passing through the central region of DM halo; DM tends to have a larger velocity at the

closest point to the halo center (i.e. the Galactic center), while a bounded DM should stop

at an apocenter point of its orbit, which tends to be around the outer boundary of the

halo. Hence we assume that PBHs causing the microlensing have a large velocity dispersion

whose amplitude is similar to the rotation velocity. To keep generality of our discussion, we

introduce a parameter to model the velocity dispersion of DM per one direction, �DM:

�2
PBHy

= �2
DM + ↵2(100)2 (km/s)2

�2
PBHz

= �2
DM + ↵2(100)2 (km/s)2, (5.28)

where we have again assumed the isotropic velocity dispersion. For our fiducial model, we

assume �DM = 220 km/s. We checked that a change in �DM, say by ±10%, gives only a

small change in the following PBH constraints. Such a large velocity dispersion in the central

region within the halo is supported by N -body simulation studies that simulate MW-scale

halos, for example, Figure 2 of Ref. (Vogelsberger et al. 2009).

Table 5.1 gives a summary of the velocity distributions for stellar components in the

bulge and disk regions and for PBHs (DM) in the halo region, respectively.

5.3.2 Mass spectrum of astrophysical lensing objects

As implied by Eq. (2.75), a timescale of microlensing light curve varies with a lens mass.

To make a quantitative modeling of microlensing events as a function of the light curve

timescale, we need to take into account the mass distribution of stellar lenses in the bulge

and disk regions. Following Mróz et al. (2017) (also see Gould 2000; Sumi et al. 2011), we

consider brown dwarfs (BD), main sequence stars (MS), white dwarfs (WD), neutron stars

(NS), and astrophysical black holes (BH) as the constituents in the bulge and disk regions.

To do this, we first assume the Kroupa-like broken power-law initial mass function (IMF)

for the stellar components (Kroupa 2001):

dns(M)

d ln M

=

8

>

>

>

>

<

>

>

>

>

:

ABD

⇣

M

0.08M�

⌘1�↵BD

(0.01  M/M�  0.08)

AMS

⇣

M

0.5 M�

⌘1�↵MS1

(0.08  M/M�  0.5)

AMS

⇣

M

0.5 M�

⌘1�↵MS2

(M/M� � 0.5)

, (5.29)
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Figure 5.1: Broken power-law curves denote the initial mass function of brown dwarfs (BD)
and main-sequence star assuming the Kroupa-like model (see Eq. (5.29)). Note that y axis is
in an arbitrary scale. We assume that each massive star with M � 1 M� evolved into stellar
remnant until today; white dwarfs (WD) for stars with 1  M/M�  8 following the initial
and end mass relation, MWD = 0.339 + 0.129Minit, neutron stars (NS) for 8  M/M�  20,
and astrophysical black holes (BH) for M � 20 M�, respectively. For NSs and BHs, we
assume a Gaussian for the end-mass function; we assume the Gaussian with mean and
width, Mfinal = 1.33M� and � = 0.12M� for NSs, while the Gaussian with Mfinal = 7.8M�
and � = 1.2M� for BHs, respectively. The dark-shaded curves are the mass functions for
WD, NS and BH, respectively. Because of the number conservation, the area under the curve
for each stellar remnant,

R

d ln M dn/d ln M , is the same as the area of the IMF over the
corresponding range of initial main-sequence star masses (the two regions of similar color
have the same area). For BDs, we determine the normalization of the mass function so that
it matches the OGLE data at short timescales.

for BD, low-mass MS stars (0.08 < M/M� < 0.5), and high-mass MS stars (M � 0.5M�),

respectively; ABD and AMS are normalization parameters for which we will discuss below, and

↵BD,↵MS1 and ↵MS2 are the power-law index parameters for these components, respectively.

Following Mróz et al. (2017) we assume ↵BD = 0.8, ↵MS1 = 1.3 and ↵MS2 = 2, respectively,

where the slope for low-mass stars of <⇠ 1 M� is taken from the study of the Galactic bulge

IMF in Ref. (Zoccali et al. 2000). Throughout this chapter we assume the same population

composition of stellar components in the disk and bulge regions. The formation of BDs is

still poorly understood (see Burrows et al. 2001, for a review). Some fraction of BDs can be

found in the planetary disk around a primary main-sequence star. Other population of BDs

can form at the center of protoplanetary disk as a primary gravitating object of the system.
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Moreover, there might be some population of BDs ejected from the host system due to three-

body scattering, which would be observed as “free-floating planets” in the interstellar space.

A wide-orbit BD or a free-floating BD causes microlensing event characterized by the BD

mass. If a lens system has both primary star and BD in the close orbit, the microlensing

event is characterized by the total mass (mainly the host star). Thus, as discussed in Mróz

et al. (2017) (Sumi et al. 2011), there is still a lot of discussion for the origin of microlensing

events in a short timescale corresponding to BD masses or even shorter (smaller-mass) events.

Hence, the amplitude of BD mass function is uncertain, and needs to be further study. In

the following results, we will treat the BD normalization parameter ABD as a free parameter,

and determine it so that the model prediction matches the OGLE data in the corresponding

short timescales.

Massive stars with masses Minit � 1 M� have a rapid time evolution during the age of

MW, and evolved into stellar remnants. Following Mróz et al. (2017), we assume that all stars

with initial masses 1  M/M�  8 evolved into WDs following the empirical initial-final mass

relation, MWD = 0.339 + 0.129Minit, after the mass loss; stars with 8  M/M�  20 evolved

into NSs for which we assume a Gaussian distribution with peak mass Mfinal = 1.33M� and

width � = 0.12M� for the end masses; stars with M � 20M� evolved into astrophysical

BHs for which we assume a Gaussian distribution with peak mass M = 7.8M� and width

� = 1.2M�. We adopt the number conservation between initial stars and stellar remnants;

each massive star evolved into each stellar remnant. Under this assumption, we found the

ratio of the number of each stellar remnant relative to that of main sequence stars as

MS : WD : NS : BH = 1 : 0.15 : 0.013 : 0.0068 . (5.30)

Throughout this chapter we refer to stars with masses 0.08  M/M�  1 as “main sequence

stars” (MS).

Fig. 5.1 displays the model for the initial or final mass spectrum of BDs, MSs and

stellar remnants, which we use in this paper. For the BD mass function, we will determine

the normalization parameter so that the model prediction matches the OGLE microlensing

events as we show below (we here adopt a normalization that is continuous with the stellar

IMF at M = 0.08M�). The number of each lensing population determines the frequency of

microlensing. Then if we focus on the event rates for a particular light curve timescale, the

events arise mainly from lensing objects of the corresponding mass scales (Eq. (2.75)). Thus,

by studying the event rate as a function of the light curve timescales, one can distinguish

contributions from di↵erent populations of lensing objects. Table 5.2 also gives the summary

of our model for the mass spectrum of BDs, MS stars or stellar remnants.
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Furthermore, we assume the binary fraction fbin = 0.4; the fraction of MS stars or stellar

remnants are in binary systems. For simplicity we consider equal-mass binary systems: we

treat a microlensing of of a binary system by that of a lens with mass Mbinary = 2M . We

do not consider binary systems that contain two objects of di↵erent masses and contain

two objects of di↵erent populations (e.g., MS-WD system) for simplicity. Consequently

we decrease the number of lens systems from the above numbers in Fig. 5.1 by the binary

fraction. Including the binary systems give a slightly improved agreement between the model

predictions and the OGLE data, but it is not an important assumption for our main results.

To perform a calculation of microlensing event rates, we need to specify the normalization

parameter of MS IMF, AMS (Eq. (5.29)). Recalling that the mass of Galactic bulge and disk

regions is dominated by the total mass of low-mass MS stars, we determine AMS by the

condition

⇢⇤ =

Z

M�

0.08M�

d ln M M
dn

d ln M
. (5.31)

Here ⇢⇤ is the normalization coe�cient of mass density profile in the bulge and disk regions

as given in Table 5.1. With this normalization, AMS has a dimension of [pc�3]. We assume

the same composition of stars and stellar remnants everywhere in the disk and bulge regions;

that is, we ignore a possible dependence of the composition on a position in the Galactic

region. Details of our model are di↵erent from the model in Mróz et al. (2017), so we

will introduce a fudge normalization parameter later to model a possible uncertainty in

the normalization: AMS ! fAAMS. However, we find fA ' 1, implying that our model is

su�ciently close to the best-fit model in Mróz et al. (2017) or equivalently that the standard

Galactic bulge/disk models are fairly accurate to reproduce the observed timescale (mass)

distribution of microlensing events as we will show below.

5.4 Results

5.4.1 OGLE data

The results shown in this chapter are all based on the microlensing data taken in the OGLE-

IV sky survey during the 5 years, 2011–2015 (Udalski et al. 2015; Mróz et al. 2017). The

OGLE survey uses the dedicated 1.3m Warsaw Telescope, located at Las Campanas Obser-

vatory, Chile. The OGLE survey carried out a long-term monitoring observation of the nine

fields towards the Galactic bulge region with a cadence of either 20 min or 60 min, covering

12.6 square degrees in total. After the careful cuts in a selection of microlensing events,
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Figure 5.2: The expected di↵erential number of microlensing events per logarithmic interval
of the light curve timescale tE, for a single star in the Galactic bulge region, assuming the
5-years observation as in the OGLE data. The quantity shown is defined in terms of the
event rate described in Section 5.2.1 as dNexp/d ln tE ⌘ 5 years⇥ tE ⇥d�/dtE (see Eqs. (5.9),
(5.11) and (5.13)). Solid curves show the results for PBHs assuming that all DM in the MW
region is made of PBHs of a given mass scale denoted by the legend: fPBH = ⌦PBH/⌦DM = 1.
For comparison, dashed curve shows the result when main-sequence stars with mass in the
range [0.08, 1]M� are lenses, assuming the Galactic model for the star distribution in the
bulge and disk regions.

the team created a catalog of 2622 microlensing events for each of which a timescale of the

microlensing light curve (tE) is measured. Thus the OGLE datasets are quite rich and allow

us to constrain the abundance and mass distribution of each lensing object population. As

carefully studied in Mróz et al. (2017), a majority of the OGLE events can be fairly well ex-

plained by superposition of microlensing events due to BDs, MS stars, and stellar remnants.

Among these contributions, the origin of BDs is not well understood as we discussed (see

Burrows et al. 2001, for a review). Thanks to the unique power of microlensing that can

probe a gravitational mass of a lensing object regardless of whether it is visible, the OGLE

data in timescales less than ⇠ 10 days can be used to identify a microlensing contribution

of BDs. However, the abundance and mass spectrum has not been fully understood yet.

In addition to the BD contribution, those papers discussed a possible contribution of un-

bounded planets (wide-orbit planets or free-floating planets). Mróz et al. (2017) discussed

that unbounded Jupiter-mass planets are about 0.05 – 0.25 planets per main sequence star,

which is smaller than previously advocated in Ref. Sumi et al. (2011). The large OGLE
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Figure 5.4: The detection e�ciency, ✏(tE), quantifying the probability that a mircolening
event of timescale tE is detected by the OGLE data. This represents a typical function that
is taken from Extended Data Figure 2 in Mróz et al. (2017).

dataset indicates even shorter timescale events that correspond to unbounded Earth-mass

planets. Interestingly, the OGLE data also indicates a ”gap” (no microlensing event) at

timescales between the BD or unbounded Jupiter-mass microlensing and the Earth-mass

planets. Since planetary formation theory would predict a continuous mass spectrum, the

gap, if real, seems very challenging to explain. For example, a mechanism preferentially
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Figure 5.5: Comparison of the 5-years OGLE data with the model predictions. The his-
togram with errorbars denotes the OGLE data in each logarithmic bin of tE, where the
errorbar is the 1� Poisson uncertainties on the counts. The bold-blue solid curve shows
the best-fit model assuming the stellar components in the bulge and disk regions. Other
dashed curves show each contribution of brown dwarfs (BD), main sequence (MS) stars,
white dwarfs (WD) and neutron stars (NS) to the total microlensing events, respectively
(see Fig. 5.1). The contribution of astrophysical black holes is outside the plotting range.
As a demonstration, the purple curve shows the prediction if all DM is PBHs with mass
MPBH = 10�3M� (Jupiter mass scales) for fPBH = 1. A sum of the PBH and astrophysical
object contributions is too high compared to the OGLE events, and therefore such a PBH
scenario is ruled out by the OGLE data.

scattering Earth-mass planets from the planetary system is needed. All these results are

very interesting, and worth to further explore. All the datasets we use in this chapter are

taken from Extended Data Table in Mróz et al. (2017).

In this chapter, to derive PBH constraints, we employ the following two working hy-

potheses:

(1) Null hypothesis of PBH microlensing: we assume that all the OGLE microlensing

events are due to astrophysical objects, i.e. BDs, stars and remnants, so do not contain
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any PBH microlensing event. Then we use all the OGLE events to obtain an upper

limit on the abundance of PBHs assuming the monochromatic mass spectrum.

(2) PBH hypothesis of the 6 ultrashort-timescale OGLE events, tE ' [0.1, 0.3] days.

The OGLE data found the 6 ultrashort-timescale mcirolensing events (Fig. 5.5), which

seem a di↵erent population from the majority of events in the longer timescales due

to BDs, stars and remnants. The timescale implies an Earth-mass lens. Although the

origin might be unbounded Earth-mass planets, we here assume that the ultrashort-

timescale events are due to PBHs, but other longer timescale events are due to as-

trophysical objects as in case (1). Under this hypothesis, we derive an allowed re-

gion of PBHs in two parameter space of the abundance and mass scale, assuming the

monochromatic mass spectrum.

5.4.2 Event rate of microlensing

We are now in a position to compute event rates of microlensing by plugging the model

ingredients, which we have discussed up to the preceding subsection, into the equations such

as Eq. (5.9).

Fig. 5.2 shows the expected di↵erential number of microlensing events per logarithmic

interval of the light curve timescale tE, for a single source star in the bulge region, assuming

the 5-years observation as in the OGLE data. For PBH microlensing, we adopt the model

ingredients in Sections 5.3 for the mass density profile and velocity distribution, assuming

the monochromatic mass scale. We assumed that all DM is made of PBHs of each mass scale:

fPBH = 1. If we consider lighter-mass PBHs, the number density of PBHs increases and such

PBHs yield a higher frequency of microlensing events with shorter timescales. In particular,

for microlensing events with timescales shorter than a few days, PBHs with MPBH
<⇠ 10�1M�

could produce a larger number of microlensing events than MS stars of ⇠ 1 M� do, if such

PBHs constitute a significant fraction of DM.

In Fig. 5.3 we study relative contributions of MS stars in the bulge and disk regions to

the total of MS microlensing events. It can be found that stars in the disk region gives a

dominant contribution, while the bulge star contribution is significant for shorter timescale

events.

5.4.3 Comparison with the 5-years OGLE data

We now compare the model predictions of microlensing events with the 5-years OGLE

data. The OGLE data contains 2622 events over the range of light curve timescales,
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tE = [10�1, 300] days (see Extended Data Table 4 in Mróz et al. (2017)). The expected

number of microlensing events per a given timescale interval of [tE � �tE/2, tE + �tE/2] is

computed as

Nexp(tE) = tobsNsfA

Z

tE+�tE/2

tE��tE/2

d ln t0E
d2�

d ln t0E
✏(t0E), (5.32)

where tobs is the total observation time, Ns is the total number of source stars in the OGLE

bulge fields, and ✏(tE) is the “detection e�ciency” quantifying the probability that a mi-

crolensing event of timescale tE is detected by the OGLE data. For the OGLE data,

tobs = 5 years and Ns = 4.88 ⇥ 107 (see Extended Data Table 2 in Mróz et al. 2017).

We employ the detection e�ciency, ✏(tE), that is taken from Extended Data Figure 2 in

Mróz et al. (2017), which is explicitly shown in Fig. 5.4. We do not include variations of the

detection e�ciency in the di↵erent OGLE fields for simplicity. The coe�cient fA is a fudge

normalization factor that takes into account a possible di↵erence in details of our model

calculations and the model of Mróz et al. (2017).

In Fig. 5.5 we compare the model prediction of microlensing event rates with the 5-

years OGLE data. First of all, a majority of the OGLE microlensing events has a single

peak around the timescale, tE ⇠ 20 days, and has a gradual decrease at the shorter and

longer timescales than the peak timescale. Thus the OGLE data suggests only a single

population of the underlying lensing objects, except for the 6 ultrashort-timescale events,

tE = [0.1, 0.3] days, which we will discuss later. Interestingly, the model assuming the

standard Galactic bulge and disk models (see Section 5.3) can fairly well reproduce event

rates for the main population of OGLE microlensing events. Furthermore, by employing the

mass distribution of BD, stars and stellar remnants, the model can reproduce the distribution

of light curve timescales (see Section 5.3.2). Although we introduced a fudge factor in

Eq. (5.32) to model a possible di↵erence between our model and the model in Mróz et al.

(2017), we found f
A

= 0.99 to have a nice agreement of our model prediction with the

OGLE data at timescales greater than the peak timescale. The best-fit fA value is close to

unity, and reflects the fact that the Galactic bulge and disk model, constructed based on

observations and the previous knowledges, is fairly accurate. As we discussed, the origin and

nature of unbounded BDs, which cause shorter timescale events, is poorly understood. We

found that the model matches the microlensing events at timescales shorter than the peak

timescale, if we assume 0.18 BDs per main-sequence star (see Table 5.2). The figure clearly

shows that MS stars with 0.08  M/M�  1 give a dominant contribution to the OGLE

events at timescales, tE >⇠ 10 days, while stellar remnants give secondary contributions. BDs
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Figure 5.6: Posterior distribution of the fPBH parameter (the PBH mass fraction to DM)
assuming “null hypothesis” that there is no PBH microlensing in the OGLE data (see text for
details). Here we show, as examples, three cases for PBH mass scale; MPBH/M� = 10�4, 10�3

or 10�2, respectively, which is computed from Eq. (5.35) by comparing the model prediction
of PBH microlensing event rates with the OGLE data. The vertical dashed line for each curve
denotes 95% CL upper limit on the abundance of PBH for each mass case, which is obtained
by computing the integration of the posterior distribution,

R

fPBH,95%

0 dfPBH P (fPBH) = 0.95.

give a dominant contribution at the shorter timescales. However, the figure shows that,

as long as we assume a smooth model for the density and velocity distributions of BDs,

the model cannot reproduce the ultrashort-timescale events of tE ⇠ 0.1 days. This clearly

indicates a distinct, second population of small-mass lensing objects. On the other hand,

PBHs do not necessarily follow the similar timescale distribution of microlensing events to

that of BD, stars or remnants, because DM has di↵erent spatial and velocity distributions

from the stellar populations. As an example, Fig. 5.5 shows the result for case that PBHs

with mass MPBH = 10�3M� are DM. A sum of the PBH and stellar population contributions

give too many microlensing events compared to the OGLE data. In other words, such a PBH

population is not allowed by the OGLE data. Thus we can use the OGLE data to obtain an

upper bound on the abundance of PBHs with varying PBH mass scales.

5.4.4 Upper bound on the PBH abundance under null hypothesis

As we showed in the preceding subsection, the Galactic bulge and disk models including

the stellar components fairly well reproduce the OGLE data except for the 6 ultrashort-

timescale events. In other words, the OGLE data does not necessarily imply the existence of

PBH microlensing in the data. As the first working hypothesis (see Section 5.4.1), we here
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Figure 5.7: Red shaded region corresponds to the 95% C.L. upper bound on the PBH mass
fraction to DM, derived assuming the null hypothesis that there is no PBH microlensing
event in the 5-year OGLE data (see text for details). Here we assume a monochromatic
mass function of PBHs, and we derive the upper bound at each mass scale denoted in the x-
axis. The dashed curve shows the upper bound if the OGLE data in the 4 shortest timescale
bins for the ultrashort-timescale events is not used for the null hypothesis. This constraint
can be compared with other observational constraints as shown by the gray shaded regions:
the microlensing search of stars in the Andromeda galaxy from the one-night Subaru Hyper
Suprime-Cam data (“HSC”) (Niikura et al. 2017), the mirolensing search from the 2-years
Kelper data (“Kepler”) (Griest et al. 2014), the earlier MACHO/EROS/OGLE microlensing
search (“EROS/MACHO”) (Tisserand et al. 2007), the microlensing of extremely magnified
stars near caustics of a galaxy cluster (“Caustics”) (Oguri et al. 2018) and the accretion
e↵ects on the CMB observables (“CMB”) (Ali-Häımoud & Kamionkowski 2017), which is
the result updated from the earlier estimate (Ricotti et al. 2008).

employ “null hypothesis” to obtain an upper limit on the abundance of PBHs. That is, we

assume that all the observed OGLE microlensing events, including the 6 ultrashort-timescale

events, are due to the stellar components, or equivalently there is no PBH lensing in the
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Figure 5.8: Shaded blue region is the 95% CL allowed region of PBH abundance, obtained
by assuming that 6 ultrashort-timescale microlensing events in the OGLE data are due to
PBHs. Note that we assume a monochromatic mass scale for PBHs as given in the x-axis.
The allowed region is computed from the condition P (fPBH, MPBH)/Pmax > 0.046, which
corresponds to 95% CL if the surface of posterior distribution follows a two-dimensional
Gaussian distribution (Pmax is the posterior distribution for the best-fit model). Dark shaded
region shows the result when combining the allowed region of the ultrashort-timescale events
with the upper bounds from the Subaru constraints and the longer timescale OGLE data.

OGLE data. This would give us a most stringent upper bound on the PBH abundance. If

we allow a possible PBH contribution to the OGLE data in addition to the stellar events,

it would give us a more relaxed upper bound or could even allow for a detection of PBH.

However, this requires a perfect knowledge of the Galactic stellar components, which is not

straightforward.

We assume that the OGLE counts of microlensing events at each timescale bin follows the

Poisson distribution. This is a good assumption because the same lensing object very unlikely

produces multiple lensing events (lensing for multiple source stars) because of smallness of
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Figure 5.9: Bold purple-solid line shows the best-fit PBH model in each of the 4 shortest
timescale bins, which shows a good agreement with the distribution of 6 ultrashort-timescale
OGLE events. The best-fit model is characterized by MPBH = 9.5 ⇥ 10�6M� and fPBH =
0.026. For comparison, the two dashed lines show the predictions for two models that are
close to the boundary of the allowed region of “OGLE+HSC” in Fig. 5.8; (MPBH, fPBH) =
(1.6⇥10�6, 0.062) or (6.9⇥10�5, 0.014), respectively. These models do not give a good match
to the timescale distribution of the ultrashort-timescale events, and also become inconsistent
with the upper bounds of the HSC M31 and/or the longer timescale OGLE data.

the lensing optical depth, ⌧ ⇠ 10�6 (see Table 5.1). Hence we can safely assume that

di↵erent microlensing events are independent and uncorrelated with each other. Under

these assumptions, we assume that the log likelihood of OGLE microlensing events is given

by

ln L(d|m✓) =
nbin
X

i=1

[Nobs(tE,i) ln�(tE,i) � �(tE,i) � ln Nobs(tE,i)!] (5.33)

where Nobs(tE,i) is the observed number of events at the i-th timescale bin (tE,i); d is the

data vector, d ⌘ {Nobs(tE,1), Nobs(tE,2), . . . , Nobs(tE,nbin
)} in our case, nbin is the number of

timescale bins (nbin = 25 as can be found from Fig. 5.5); m✓ is the model vector; �(tE,i) is the

expectation number of events at the bin. When we include PBH microlensing contributions,
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Figure 5.10: The contribution of PBHs at each distance to the total event rate of timescale
tE = 0.2 days. Here we consider the best-fit PBH model (MPBH = 9.5 ⇥ 10�6M�, fPBH =
0.026) to the ultrashort-timescale OGLE events in the previous figure.

we model the expectation number by

�(tE,i) = Nobs(tE,i) + NPBH
exp (tE,i). (5.34)

Here NPBH
exp (tE,i) is the expected number of microlensing events due to PBHs at the i-th

timescale bin, which is computed from Eq. (5.32) once the PBH mass fraction to DM, fPBH,

is specified for an assumed PBH mass scale (MPBH); NPBH
exp (E, i) / fPBH. As a conservative

approach, we use the observed counts, Nobs(tE,i) for the expectation value of microlensing

events due to stellar components. In the following, we assume that the MW DM model

for the spatial and velocity distributions for PBH in Sections 5.3, and we treat the PBH

mass fraction parameter, fPBH, as a free parameter for an assumed PBH mass scale (MPBH).

Namely we consider a single model parameter for an assumed PBH mass scale (we will

discuss later for a possible extension of this assumption). When fPBH = 0, i.e. NPBH
exp = 0,

the maximum likelihood is realized because of NPBH
exp � 0. The last term in the above log

likelihood is irrelevant for parameter inference, because it is a fixed number irrespectively of

model parameter (fPBH).

Given the likelihood function and the PBH model (denoted as M), the posterior distri-

bution of model parameter, fPBH, is computed based on the Bayes’s theorem as

P (fPBH|d, M) =
L(d|fPBH)⇧(fPBH)

P (d|M)
, (5.35)

where ⇧(fPBH) is a prior of fPBH and P (d|M) ⌘ E is the evidence. In this chapter, we
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assume a flat prior, fPBH  1; the total PBH mass in the MW region cannot exceed the DM

mass. By computing the above equation with varying the model parameter fPBH, we can

obtain the posterior distribution for an assumed mass scale of PBH. Fig. 5.6 shows some

examples for the posterior distribution for a given PBH mass scale, obtained from the above

method.

Fig. 5.7 shows 95% CL upper bound on the PBH abundance at di↵erent mass scales.

The OGLE data improves the constraints on the abundance for PBHs in the mass range

MPBH ' [10�3, 10�6]. The dashed curve shows the upper bound if we do not include the 6

ultrashort-timescale events in the 4 shortest timescale bins for the null hypothesis. Thus the

upper bound at small mass scales is sensitive to the assumption of whether we include the

short timescale bins in the analysis. The results can be compared with other constraints such

as those from the Subaru Hyper Suprime-Cam (HSC 3) observation of Andromeda galaxy

(M31) (Niikura et al. 2017) and the earlier MACHO/EROS experiments (Alcock et al. 2000;

Tisserand et al. 2007). The OGLE bound is stronger than that of MACHO/EROS due to the

larger sample of microlensing events. The OGLE constraint is complementary to the Subaru

HSC result that uses even denser (2 min) cadence data of M31 to search for microlensing

for a larger number of source stars, but from only a single night observation. If we want to

extend the constraint to PBHs at larger mass scales, we need to use the microlensing data

extending to longer timescales such as year timescales.

5.4.5 A possible detection of Earth-mass scale PBHs from short-

timescale OGLE data

Now we employ the second working hypothesis in Section 5.4.1. That is we consider a

case that the 6 ultrashort-timescale OGLE events, in tE ' [0.1, 0.3] days, are due to PBH

microlensing. In this case, we assume that the expectation number of microlensing events

at each of the first 4 timescale bins (in the ultrashort-timescale bins) is given as

�(tE,i) = NPBH
exp (tE,i) (5.36)

for the Poisson distribution of micrlensing event counts (Eq. (5.33)). Here we should again

note that we assume the monochromatic mass scale for PBHs. We also assume that the

OGLE events in the longer timescales, i.e. the majority of OGLE events, are not due to

PBHs (i.e no PBH microlensing as in the preceding section).

Fig. 5.8 shows a 95% CL allowed region of PBHs in two parameter space of its mass and

3https://hsc.mtk.nao.ac.jp/ssp/
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abundance. The thin-blue shaded region corresponds to the allowed region obtained from

the OGLE data alone, while the thick shaded region is the allowed region when combining

the OGLE results with the null hypothesis of PBH lensing for the longer timescale OGLE

events (tE >⇠ 0.5 days) and the the HSC constraints for M31. The best-fit model, which has

a maximum likelihood, is a model with MPBH = 9.5⇥10�6M� and fPBH = 0.026. The figure

shows that PBHs of Earth-mass scales (3 ⇥ 10�6M�) can well reproduce the 6 ultrashort-

timescale OGLE events if the abundance is at a per cent level. This allowed region is also

consistent with null PBH results in the HSC data and the longer timescale OGLE data (if

assuming the monochromatic mass spectrum).

Fig. 5.9 compares the best-fit PBH model with the timescale distribution of OGLE events

in the shortest timescales. Interestingly, the width of OGLE timescale distribution is nicely

reproduced by the velocity distribution of PBHs in the MW DM model. For comparison,

the two dashed curves denote the model predictions for two models that are close to the

boundary of 95% C.L. intervals in the allowed region, which are specified by model pa-

rameters (MPBH/M�, fPBH) = (1.6 ⇥ 10�6, 0.062) or (6.9 ⇥ 10�5, 0.014), respectively. These

failed models under- or over-predict the microlensing event rats over the range of lightcurve

timescale bins, and also become inconsistent with the upper bounds of the HSC M31 data

and the longer timescale OGLE data. This result implies that, if PBHs have a wide mass

spectrum extending to larger masses than the best-fit mass, such a model generally fills the

gap around tE ' 0.4 days between the ultrashort-timescale events and the main popula-

tion. Note that PBH models with smaller masses than the best-fit mass generally predict

too many microlensing events at even shorter timescales tE  0.1 days, however, the OGLE

data does not have a sensitivity due to the limitation of the cadence data (20 min cadence),

and therefore the OGLE data has no sensitivity to events at tE  0.1 days, which is taken

into account by the detection e�ciency in Fig. 5.4. The original event rates can have an

increasing function at tE <⇠ 0.1 days. These mass-scale PBHs are well constrained by the

HSC results.

As we have shown, the PBH model assuming the MW DM model can give an alternative

explanation of the ultrashort-timescale OGLE events. Since there is an uncertainty in the

MW DM model, especially the DM distribution around the halo center, one might worry

whether such an uncertainty in the PBH distribution around the halo center is sensitive

to our results. Fig. 5.10 shows which distant PBHs for the best-fit model contribute the

microlensing events at timescale tE = 0.2 days. Due to lensing e�ciency, PBHs over a wide

range of distances between the Earth and the Galactic center equally contribute the lensing

events. The PBHs near the Galactic center, where the DM distribution is most uncertain,
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is not particularly sensitive to the final result. This lens distance dependence is contrary to

DM annihilation that is quite sensitive to details of the DM density in the Galactic center.

5.5 Discussion and Conclusion

In this chapter we have used the largest sample of microlensing events for stars in the Galactic

bulge, obtained from the 5-years OGLE observation, to constrain the abundance of PBH that

is a viable candidate of DM in the MW region. The 2622 microlensing data contains rich

information on event rates and light curve timescales that correspond to the abundance and

mass scale of lensing “compact” objects, because kinematical or velocity structures of lensing

objects, even for DM in the MW halo region, are well constrained by various observations; the

relative velocity of lens-source-observer determines the crossing time of the lensing Einstein

radius, or equivalently the microlensing light curve timescale, once mass of a lensing object

is assumed because the mass determines the Einstein radius. Thus we can use the invaluable

OGLE data, which covers the wide range of timescales tE ' [0.1, 300] days, allows us to

explore the abundance of unknown “compact” objects over the wide range of mass scales.

To do this, we first revisited the Galactic bulge/disk models to estimate event rates of mi-

crolensing due to astrophysical objects such as brown dwarfs, MS stars, and stellar remnants

(white dwarfs, neutron stars, and astrophysical black holes), following Mróz et al. (2017).

Since the mass of Galactic disk/bulge regions is dominated by low-mass main-sequence (MS)

stars around M ⇠ 0.5M�, astronomers have a quite good knowledge of the abundance of

stars from various observations of star number counts. In addition, stellar remnants are

from massive stars, so we can infer their abundances from the initial mass function of low-

mass MS stars that is well constrained by various observations. We showed that, even if

details of our models would be di↵erent from that of Mróz et al. (2017), the standard Galac-

tic bulge/disk models including MS stars and stellar remnants nicely reproduce the OGLE

events at timescales tE >⇠ 20 days, corresponding to objects with M >⇠ 1M�. For the shorter-

timescale events, we need to add contributions from brown dwarfs (BD) that are invisible or

di�cult to directly observe. The origin and nature of BDs (0.01 <⇠ M/M� <⇠ 0.08) are not

well understood. Some of BDs should form around a primary MS star, while some of BDs

would form, as a primary gravitating object, in a protoplanetary disk. The BDs contributing

the short timescale microlensing are “unbounded” BDs, because the timescale becomes too

long if the host primary star contributes microlensing (because of much larger mass com-

pared to that of BD). Nevertheless, the timescale distribution of OGLE data continuously

extends to shorter timescales than the MS peak timescale, and it suggests a population
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of BD-mass objects with a continuous abundance to that of MS stars, except for the 6

ultrashort-timescale events in tE ' [0.1, 0.3] days. We showed that our model can reproduce

the entire timescale distribution for the main population of OGLE events if we adjust the

abundance of BDs as done in Mróz et al. (2017) (about 0.18 BDs per MS star in our model).

Given a justification of the standard Galactic bulge/disk models, we employ the “null

hypothesis”, i.e. no PBH microlensing event in the OGLE data, to obtain the stringent

upper bound on the abundance of PBHs in the mass range MPBH ' [10�6, 10�3]M� (from

Earth to Jupiter mass scales), assuming the monochromatic mass spectrum (Fig. 5.7). The

upper bounds are tighter than the previous bound from the MACHO/EROS experiments

(Tisserand et al. 2007) and the Subaru/HSC microlensing search for M31 (Niikura et al.

2017). This result shows the power of microlensing for exploring the PBH abundance.

Even more interestingly, we showed that the 6 ultrashort-timescale events can be well

explained by PBHs of Earth-mass scales if such PBHs constitute about 1% of DM in the

MW region (Fig. 5.8). Even if we employ the monochromatic mass spectrum for simplicity,

the timescale distribution naturally arises from the velocity distribution of PBHs expected

for the DM kinematical structures in the MW region. There is a mechanism in inflation

model to produce PBHs in such a narrow mass range or with right abundance (e.g. Inomata

et al. 2018). If this is a real PBH microlensing, it would be a big discover. Such a small

mass black hole cannot be made by any astrophysical process, so this would also give an

evidence of the large primordial perturbations at the corresponding Hubble horizon in the

early universe. If we include a possible distribution of PBH masses, the results would be

changed. Nevertheless it is rather straightforward to translate our results into a specific PBH

model with a given mass spectrum, following the methods developed in Carr et al. (2016)

(also see Inomata et al. 2017).

A usual explanation of the ultrashort-timescale OGLE events is due to “unbounded”

Earth-like planets, where “unbounded” is needed to have the right microlensing timescale.

These unbounded, more exactly wide-orbit or free-floating planets, could be formed by the

formation of planetary system or scattering of planetary systems; for example, if a planetary

system encounters a massive planet or star, such an Earth-mass planet might be scattered.

Even if this happens, why there is a gap around tE ' 0.4 days between the ultrashort-

timescale events and the majority of events (i.e. the main population). Of course the gap

might be an apparent statistical fluctuation due to the low number statistics, but it would

be completely a mystery if if this is genuine, because there would be a continuous mass

spectrum expected for unbounded planets from Earth (or even smaller-masses) to Jupiter

masses. These involve complicated, nonlinear astrophysics in planetary or star formation, so
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a further observational study would be a more direct path to resolving the origin and nature

of these short timescale events. For example, a more detailed study of lightcurve for each

ultrashort-timescale event would be very useful (see Mróz et al. 2018, for such an attempt).

This requires a denser cadence data of microlensing search. Such a denser cadence data

would be also useful to distinguish genuine microlensing events from other contaminating

events such as stellar flare.

To confirm or falsify the PBH hypothesis of short-timescale events against free-floating

planets, there is a very promising, robust way. It is a microlensing search for stars in

M31 using the Subaru HSC data (or eventually LSST data towards the Magellanic Clouds).

The angular direction of M31 is in a high latitude in the Galactic coordinates, i.e. far

from the Galactic disk. If the short timescale microlensing events are due to free-floating

planets, we should expect a much smaller number of events towards M31, because there is

a much less number of stars in the high latitude direction compared to the direction to the

Galactic center. On the other hand, if the PBH scenario is true, we should find microlensing

events with a frequency predicted by the standard DM model of the MW halo region that is

supported by the disk rotation measurements. As shown in Niikura et al. (2017), the Subaru

and HSC combination is ideal because its FoV can cover the entire disk region of M31 and

the large aperture allows us to use main-sequence stars in M31 for the microlensing search

even with short exposure (e.g., 90 sec). We are now carrying out a monitoring observation

of M31 with Subaru HSC, and we envision that we can address these important questions

in the near future.
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Summary and Conclusion

This thesis is based on the results of observational studies to search for dark matter candidate

called primordial black hole (PBH). PBHs have long been suggested as a viable candidate of

dark matter (DM), because they can span an enormous mass range larger than 10�5g, and

can also constitute the whole dark matter in the Universe (see Chapter 1 for more detail).

They are also becoming popular targets of gravitational wave experiments, because they can

constitute merging black holes theoretically.

The abundance of PBHs has been constrained using a number of astrophysical observa-

tions, except for a mass window of [10�14, 10�9]M�. Many studies to search signals by PBHs

have been based on gravitational microlensing, which is very powerful to probe compact

DM objects such as PBHs (Chapter 2). One strong point of the lensing signal is that it is

free from uncertainties which exist in the other probes resulting from electromagnetic in-

teractions. In this thesis, we searched magnification phenomena by microlensing e↵ect with

unprecedented dataset, aiming at obtaining new hints about the origin of dark matter.

Chapter 3 gives a result of microlensing search with the Subaru/HSC by a one-night

observation of M31. With the aim of constraining the abundance of PBH on even smaller

mass scales, we carried out a dense cadence observation of the Andromeda galaxy (M31),

with the Subaru Hyper Suprime-Cam (HSC). The combination of the wide field-of-view and

the 8.2m aperture of HSC/Subaru is ideal for microlensing search; we expect up to 103 PBH

microlensing events of M31 stars from one-night observation, if PBHs constitute a majority

of DM in the MW and M31 halo regions.

We developed image di↵erence technique for the Subaru/HSC data, and successfully

managed to find many candidate variable stars such as stellar flares, eclipsing binaries, and
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Cepheid variables. After careful selection criteria including the microlensing fitting to the

measured light curve, we concluded that most candidates are not microlensing events, but

found one remaining candidate for which it is di�cult to rule out the microlensing hypoth-

esis. We derived the stringent upper bounds on the abundance of PBHs as a candidate for

DM in the MW and M31 halo regions in the range of MPBH ' [10�11, 10�6]M�, including

the previously-unexplored mass window of MPBH = [10�11, 10�9]M�.

Chapter 4 uses the archival observations of M31 to update the microlensing study

performed in Chapter 3. If the one remaining candidate detected in Chapter 3 is a real mi-

crolensing event, it is a discovery, unveiling some contribution of PBHs to DM. Alternatively

the remaining candidate could also be a result of microlensing by a free-floating planet in

the halo region, rather than a PBH. This could also be another important discovery. Here

we performed another dense-candence observation of M31 for 7.5 hours with Subaru/HSC,

and study the time-variabiltiy of the remaining candidate.

After careful test with the available dataset, we could not detect significant time-variability

for the remaining candidate within 12-hour periodicity. Hence we concluded that we cannot

rule out the microlensing hypothesis for this candidate, and keep it as a microlensing can-

didate. We also applied the selection criteria including the microlensing fitting to the new

data, and derived tighter upper bounds on the abundance of PBHs as a candidate for DM

in the MW and M31 halo regions, which is about 1.5 times more stringent compared to the

previous constraint in Chapter 3 for the similar mass range.

Chapter 5 presents another constraint on PBH abundance by using the outcome of

OGLE survey. The OGLE-IV project presents a sample of 2,622 high-quality microlensing

events by monitoring the sky towards the Galactic center for 5 years. As presented in Mróz et

al. (2017), the timescale distribution of microlensing events can be modeled only with mass

functions of stellar components either in Galactic disk or bulge. However, we can expect

higher event rate of microlensing events if DM in the Galactic halo are composed by PBHs.

For example, we expect up to about 5 ⇥ 102 additional microlensing events by PBHs by the

Galactic bulge observation, if PBHs with 10�3M� constitute a majority of DM in the MW

halo region.

Motivated by this fact, we first derived an upper bound on the abundance of PBHs, by

assuming “null detection” of microlensing events by PBHs from the OGLE-IV data. By

taking advantage of Poisson statistics, we improve the upper bound on the PBH abundance

in the mass range MPBH = [10�5, 10�3]M� by a factor of 10 over the previous constraint
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by the EROS/MACHO experiments. We also derived another implication from the “de-

tection” of PBHs. In Mróz et al. (2017), they claim a detection of six ultrashort-timescale

events (with timescales of less than 0.5 day), which may indicate the existence of Earth-

and super-Earth-mass free-floating planets, as predicted by planet-formation theories. How-

ever, these six events are not confirmed as planetary objects, and still remains as candidates

of dark matter. Hence we performed a likelihood analysis for those short events to study

the “allowed” parameter space for the fraction of PBHs to the total dark matter which

can realize the observed distribution of these events with tE < 0.5 day. Our calculation

allowed a parameter region for PBHs with mass MPBH ' [2 ⇥ 10�6, 4 ⇥ 10�5] with a fraction

fPBH ' [4 ⇥ 10�3, ⇥10�1] to the total DM in the Galactic halo.

As a future work to improve the constraint on PBH abundance, there are two ways

to explore. The first one is to extend the constraints to smaller mass scales than we

achieved in M31 study, so as to close the open window in the PBH fraction to the total

DM. Our study with Subaru/HSC is hard to probe microlensing events by PBHs with mass

MPBH
<⇠ 10�12M�, due to finite source size e↵ect and wave e↵ect. One strategy to over-

come these e↵ects is to monitor distant objects by high cadence observation with shorter-

wavelength. For example, as presented in Bai & Orlofsky (2018), one can fulfill this require-

ment by monitoring pulsars with X-ray satellite. Although current constraint from by RXTE

(10d) 1 is still too weak to put meaningful constraint on PBH abundance, future experiments

such by Athena/Lynx (100d) (Barcons et al. 2015; Lynx Team Collaboration et al. 2018),

AstroSat (100d) (Singh et al. 2014) and LOFT (300d) (LOFT Collaboration et al. 2012) are

expected to set meaningful constraint about MPBH ⇠ 10�14M� by observation of SMC X-1.

Another way to explore is to extend our constraints to heavier mass scales. If we could

repeat observations of M31 with HSC every few months over 10 years, say 10 minutes ob-

servation for each observation run, we should be able to improve the constraints at heavier

mass scales. These long-term observations would be very powerful to make comparison with

population synthesis of black holes probed by future gravitational wave experiments Raidal

et al. (2018). We can also go more stringent constraint by combining multiple observation of

M31 and the Galactic bulge. Future space-based missions such as WFIRST (Spergel et al.

2015) and Euclid (Penny et al. 2013), can also improve the statistics of microlensing events.

1see https://heasarc.gsfc.nasa.gov/docs/xte/RXTE_tech_append.pdf
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Properties of transient candidates

detected in HSC-M31 observation

In this section we discuss properties of secure candidates which include unique features in

their light curves (flash, contiguous variation, etc.). Our classification of variable stars is

based on our eye-ball checks of the shape of the light curves from r-band observations. In

order to study the stellar properties for those candidates, we take advantage of the color

property to identify their stellar types. In addition to the r-band data summarized in Ta-

ble 4.2, we have access to the g-band data of M31 taken in 2013, 2015, and 2017 with the

Subaru/HSC. For these dataset, we created the coadd images from these g-band images in

every epoch, and measure the photometry for the candidate. We then used the Kurucz

(1993) to model their stellar type with g-r color by taking into account the HSC filter re-

sponses. In the following, we summarize the properties of variable stars detected from our

analysis, and also give some examples of light curves.

A.1 Properties of variable stars

• Eclipsing binary

This type of candidates display a light curve with eclipse dip, during a given duration,

and then such a transient feature repeats with a given period. We classify these kinds

of candidates as an eclipse binary of stars, where two stars are rotating around each

other and either of the two stars causes an eclipse on another star, leading a dip in

the light curve of their total flux. The depth of ellipse, time duration and period are

di↵erent from candidate to candidate. All the candidates seem to be M-type stars

based on their g-r colors. Among the eclipsing binaries we found a unique candidate
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as shown in Fig. A.9, where one dark star totally hide the other bright star so that the

flux of bright star gets totally dark. This kind of binary system is generally composed

by a white dwarf and a brown dwarf.

• Binary stars

For candidates that have pulsating light curves, we classify those as candidates of

binary stars. If the two amplitudes of light curve within one period are similar, the

stars have almost same mass and size stars. Their g-r colors indicate that almost all

binary systems are M-type stars. About 10 systems have a period shorter than our

observation duration (about 7 hours), and the shortest period is about 1.2 hours. These

short period binary systems would be a contact binary system, where the two stars

share the common envelope. Some examples of binary systems are shown in Fig. A.5.

• Cepheid variable stars

We have around 1000 candidates which display a constant rising or declining light curve

over the 7-hour observation. We classify them as Cepheid variable star candidates.

Most of the Cepheid candidates are found along the disk region of M31, and the

distribution seems to be consistent with the distribution of classical � Cep variable

stars found by PAndromeda project (Kodric et al. 2013). Due to the limited time

observation, we can’t measure an entire period of the light curve, so can’t determine

the period of each candidate. Their g-r colors indicate that most candidates are A- or

F-type stars.

• Stellar flare

We find around 30 stars which shows a sudden magnification in brightness, followed

by an almost exponential decay. We classify the candidates as a stellar flare. Their

g-r colors indicate that most of the candidates are M-type stars, which is consistent

with the properties of the normal prominent star flares. Hence, these flare stars are

likely to be in the MW halo region. We did not find secure candidates for G-type

flare stars. This is consistent with the previous work, which shows that M-stars have

more frequent flare events because energetics in the atmosphere is more a↵ected by

their magnetic field compared to G-type stars (Mo↵ett 1974; Lacy et al. 1976; Henry

& Newsom 1996). On the other hand, there is still one candidate which has suddenly

becomes ⇠ 22magnitude in brightness from complete dark, as in Fig. A.1. This flare

event can be a G-type star in M31, because those stars should be bright enough to be

detected by our observation if they exist in MW halo.

• Moving objects: asteroids in the Solar system
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Figure A.1: Light curve of flare candidate in 2017. This target does not show up clearly in the
2014 observation.
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Figure A.2: Light curve of a nova candidate which indicate small magnification in 2014.

There exist a Gaussian-shape curve at the fixed WCS position. Since they display a

clear trail in the postage-stamp image region, we consider these candidates as asteroids

or comets in the Solar system. These moving objects also works as a main confusion

component to our microlensing search. We have so far found two promising candidates

of asteroids.

• RR-Lyrae stars

We find about 1,000 candidates which have a peak magnification around the best-seeing

epochs. Since exposures with the best-seeing epochs have the deepest photometry, we

may be probing some very faint stars around the limiting magnitude. Most candidates

have a similar shape of light curve with peak magnitude of r ⇠ 24.5-25, and also

locate in the halo region of M31. These candidates can be considered as RR-Lyrae

variable stars, which have an absolute magnitude of r ⇠ 1mag, the apparent magnitude

is consistent with the hypothesis that the RR-Lyrae stars are in 750 kpc distance.

However, the color properties of these stars suggests that many of them are M-type

or K-type stars, which is inconstant with empirical law that RR-Lyrae variables tend

to be A-type or F-type stars. Still, there exists more than 100 candidates classified as

A-type or F-type stars among these samples.
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• R Coronae Borealis-type stars

We are finding that some types of stars “disappear” within a year timescale. We

believe that these stars belong to a similar class of variable stars to the R Coronae

Borealis star (hereafter RCB) that is a peculiar low-mass yellow supergiant star in the

constellation of Coronae Borealis, displays non-periodic variability, and fade by several

magnitudes at irregular intervals. The origin and nature of RCB-type star is poorly

understood, but one scenario is that the time-variability is caused by a build-up mass

loss of carbon-rich dust in the stars atmosphere. There is a heterogeneous sample of

about 100 RCB stars in MW that have been constructed by various datasets. The

HSC/Subaru data led us to find about 1500 candidates of RCB-type stars about 300

of which fade from 21 to 26 mag. Comparing the candidates with the PHAT HST star

catalogs, almost all the candidate stars display properties of post-AGB stars in terms

of their color and absolute magnitudes. The search of RCB-type stars is relatively easy,

because we need to look for relatively bright stars that appear or disappear between

the two images. The HSC data from the requested observation will allow us to build a

homogeneous sample of RCB-type stars in M31, and develop a better understanding of

the nature of these stars. These stars could give a new channel to carbon enrichment

in galaxy evolution, as advocated in the literature (e.g., Karakas et al. (2015)). Our

preliminary estimate indicates that RCB-type stars give dust enrichment by a rate of

⇠ 10�4M�/yr, which is not that di↵erent from the rate from AGB stars (e.g. Matsuura

et al. (2009)).

• A star before nova (M31 LRN 2015)

A candidate of red nova was discovered in M31 in January 2015, about three months

after our observation in 2014 (Williams et al. 2015). The candidate is identified as a

rare and enigmatic luminous red nova (LRN), which is characterized by a reddening

color as they fade. However, the mechanism of explosion has not been revealed because

of their limited number of samples observed. Here we look into the photometric data

of this candidate to reveal the status before explosion (See Hirochi et al. (2016) for

more detail). Fig. A.2 shows the light curve and image of the target star from our

2014 observation. The coordinate of candidate is 00h 42m 07.99s +40d 55m 01.1s in

RADEC, which is close to M31 bulge. This object is not detected with our selection

criteria of variable stars, probably due to its small change of flux. Photometry of

the LRN also gives 22.8mag in r-band in 2015, while it totally disappears in 2017

observation.
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A.2 Flare events
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Figure A.3: Example of light curves of flare events, with magnification either in 2014 or 2017.
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Figure A.4: Light curves of flare-star candidates which show magnification both in 2014 and 2017.
Among images in each row, the first and second images from the left comes from the photometry of
the same star, and each represents a light curve from the HSC-M31 observation in 2014 and 2017,
respectively. The same is true for the rightmost and the second image from the right, which also
represents the photometry of a common star. The order of these figures correspond to the serial
number in Table A.1, ordering from left to right, and from top to bottom (here corresponds from
#17 to #21). (Following figures from Fig. A.5 to Fig. A.9 also follows this display rule. )
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Appendix A. Properties of variable stars detected by our HSC-M31 observation

# of events RA DEC m
r

[mag], 2014 m
r2[mag], 2017 timing of flare

1 11.5412243375 41.3971608494 22.171 22.114 2014
2 11.393000757 40.7105289417 23.605 23.615 2014
3 11.3139236649 40.7412265793 21.734 21.805 2014
4 11.3012595387 41.158699046 24.271 24.503 2014
5 10.7370329514 40.8903654558 20.495 20.400 2014
6 10.6258500158 41.8272977176 22.401 22.516 2014
7 10.5291547964 41.7643068792 23.095 23.524 2014
8 10.3761204743 41.4770522067 19.348 18.806 2014
9 11.3291033623 41.6402684426 21.795 21.619 2017
10 11.1868050062 41.4385607476 24.681 24.381 2017
11 11.1859271346 41.4724914305 19.480 18.856 2017
12 11.1114120629 41.6800459557 23.263 23.474 2017
13 11.0962946906 41.926482595 20.569 19.985 2017
14 10.6921263554 41.8637754591 22.647 22.613 2017
15 10.6858782707 41.8673085101 19.890 19.828 2017
16 9.9669723303 40.7986947613 21.759 21.668 2017
17 11.0004733481 40.6595469432 19.285 19.013 2014/2017
18 11.0074713445 40.9352814739 20.027 19.795 2014/2017
19 10.7265116069 40.8950261902 21.135 21.190 2014/2017
20 10.8886686488 41.7745915397 22.293 22.207 2014/2017
21 10.3301651385 41.7931961196 21.418 21.429 2014/2017

Table A.1: Coordinates of flare events, corresponding to Fig. A.3 and Fig. A.4.

150



Appendix A. Properties of variable stars detected by our HSC-M31 observation
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Figure A.5: Light curves of binary-star candidates with < 0.5days period.
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Figure A.6: Light curves of binary-star candidates with < 0.5days period (cont’d).
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Figure A.7: Light curves of binary-star candidates with < 0.5days period (cont’d).
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Appendix A. Properties of variable stars detected by our HSC-M31 observation

# of events RA DEC m
r

[mag], 2014 m
r2[mag], 2017 Figure

1 11.4544580378 41.0724194699 20.250 20.217 A.5
2 11.3613925945 41.4399798626 20.740 20.855 A.5
3 11.3424058582 41.4049005181 21.120 21.120 A.5
4 11.3730373361 41.7324054517 21.111 21.240 A.5
5 10.9972899731 40.8010048889 18.506 18.591 A.5
6 11.0517168744 41.5291107259 18.992 18.965 A.5
7 11.0334352565 41.5484507549 20.980 20.980 A.5
8 11.0811761058 41.6740238454 19.574 19.901 A.5
9 11.0339595747 41.8482462356 20.690 20.140 A.6
10 10.9180098152 40.8900349064 19.689 19.791 A.6
11 10.8204104054 40.9462218981 19.117 17.540 A.6
12 10.8475499417 41.8790422723 17.760 17.830 A.6
13 10.5475596619 41.5421396385 19.129 19.215 A.6
14 10.6102177325 41.9193046729 20.834 20.539 A.6
15 10.4347282405 40.6102561978 20.049 20.298 A.6
16 10.3102330942 41.7518386402 19.745 19.727 A.6
17 10.1015757893 41.0675861952 21.334 18.504 A.7
18 10.0215405021 41.1109749894 18.043 18.121 A.7
19 10.193663404 41.479567314 18.911 18.892 A.7
20 9.95941178853 40.8563016946 18.691 18.946 A.7
21 9.81843250039 41.4840653543 20.550 20.550 A.7
22 9.71134555541 41.3294391638 20.249 20.324 A.7
23 9.70316324049 41.3640774656 21.162 21.123 A.7
24 9.68958110388 41.4426975874 19.918 19.967 A.7

Table A.2: Coordinates of binary-star candidates, corresponding to Fig. A.5, A.6 and A.7.
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Appendix A. Properties of variable stars detected by our HSC-M31 observation

A.4 Eclipsing binary stars
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Figure A.8: Light curves of eclipsing binary candidates with dip structures both in 2014 and 2017.
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Appendix A. Properties of variable stars detected by our HSC-M31 observation
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Figure A.9: Light curves of eclipsing binary candidates with dip structures both in 2014 and 2017
(cont’d).

# of events RA DEC m
r

[mag], 2014 m
r2[mag], 2017 Figure

1 11.5973834218 40.9113943591 19.077 19.085 A.8
2 11.272306997 40.9966128856 20.052 20.021 A.8
3 11.1844915391 40.7418192411 19.813 19.835 A.8
4 11.0032482866 40.9003822393 20.840 20.929 A.8
5 10.7290724677 40.5643149165 19.168 19.158 A.8
6 10.7554814292 41.793357782 22.835 22.521 A.8
7 10.7466086947 41.9359969811 19.440 19.565 A.8
8 10.5196226158 41.7562567376 22.824 23.117 A.8
9 10.2535074052 41.2699913159 20.978 21.013 A.9
10 10.1831727378 40.8530373679 17.762 17.578 A.9
11 10.0014656481 40.9601501214 21.843 23.178 A.9
12 9.82277563673 41.3887700087 21.517 21.358 A.9

Table A.3: Coordinates of eclipse binary candidates, corresponding to Fig. A.8 and Fig. A.9.
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Appendix B

Reduction of imaging data targeting

dense stellar field using hscPipe

A precise photometry requires a correction of various systematic e↵ects such as night glow,

instrument noise, vignetting of the camera, and variations in responses between di↵erent

CCD pixels. In this section we describe our analysis method regarding the reduction of HSC

images targeting at dense stellar fields. We refer to hscPipe1 and Niikura et al. (2016)2 for

more detail of each procedure.

• Bias, dark current subtraction and flat-field determination

Raw CCD data contain various contaminations, and need processing of bias subtrac-

tion, dark current subtraction, and flat-field determination. We also need to subtract

background contamination due to light di↵usion of the atmosphere or other unknown

source. Here we correct these corrections by hscPipe like in the following command:

$ hscProcessCcd.py /mydirectry/ --rerun myrerun --id visit=xxxxxx ccd=0..103 --

calib=/CALIBdirectry/ --clobber-config -C config reduceFrames.py

where we basically use the config file “config reduceFrames.py” as in the following (Note

that we need to adjust the values of processCcd.calibrate.background.binSize, process-

Ccd.calibrate.background.approxOrder, and processCcd.calibrate.measurePsf.starSelector

parameters when we have di�culty in solving the astrometry in each CCD).

1https://hsc.mtk.nao.ac.jp/pipedoc_e/
2http://hep.phys.s.u-tokyo.ac.jp/wordpress/wp-content/uploads/2016/06/mth2016_niikura.

pdf
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Appendix B. Reduction of HSC data using hscPipe

=============

try:

processCcd = root.processCcd

except AttributeError:

processCcd = root

processCcd.isr.doWrite=True #\
processCcd.calibrate.repair.doCosmicRay=False #\
processCcd.calibrate.background.binSize=64 #\
processCcd.calibrate.background.useApprox=True #\
processCcd.calibrate.background.approxOrder=6 #\
processCcd.calibrate.detection.includeThresholdMultiplier=5.0 #\
processCcd.calibrate.measurePsf.starSelector[‘objectSize’].widthMin=1.05

=============

Note that we skipped cosmic ray removal here for simplicity, and will discuss the

residual e↵ect later. For latest HSC data (especially taken later than 2017) we need to

skip analysis on CCD=9 and 33 because we cannot estimate bias or other corrections

for those CCDs.

• WCS determination

The HSC pipeline provide us with a useful feature, the so-called “SkyMap”, which

defines a conversion of the celestial sphere to the flat coordinate system, “SkyMap

coordinate”, based on a tiling or tessellation. The largest region in the coordinate

is called a “Tract”, and it contains a “Patch” (see Fig. 3.4 for a example of patch

and CCD correspondence). These processes performed a warping of each exposure to

determine the common WCS of the SkyMap.

By using the star catalog of Pan-Starrs survey as the input catalog for the M31 region,

we solved astrometry solution of every 11 images, 30 sec exposure plus time-sequential

10 exposures taken from the science ⇠ 200 exposures by mosaic.py.

• Coadd

In the analysis of M31 data taken with HSC, we combine multiple images to create a

single coadd image by the median stack. This process involves corrections of satellite

tails, ghosts, and cosmic rays, and those outliers are needed to be clipped. Then the

example code is as in the following:
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Appendix B. Reduction of HSC data using hscPipe

$ stack.py /mydirectry --output=/outdirectry --id tract=0 filter=HSC-R2 patch=x,x --

selectId visit=xxxxxx -C simpleCoaddConfig.py -c assembleCoadd.doSigmaClip=True

assembleCoadd.clipIter=3 assembleCoadd.sigmaClip=1.5 doOverwriteCoadd=True - -

clobber-config - -batch-type=smp - -cores=4

where we use the config file “simpleCoaddConfig.py” as in the following:

=============

from lsst.pipe.tasks.assembleCoadd import SafeClipAssembleCoaddTask

root.assembleCoadd.retarget(SafeClipAssembleCoaddTask)

root.assembleCoadd.doMatchBackgrounds=False

root.assembleCoadd.badMaskPlanes=[‘BAD’, ‘EDGE’, ‘SAT’, ‘INTRP’, ‘NO DATA’]

=============

Note that this process also involves correction of flux scale of each visit and ccd. We

also need to clip the cosmic rays carefully in the dense stellar field.
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Ali-Häımoud, Y., Kovetz, E. D. & Kamionkowski, M., 2017, ArXiv e-prints: 1709.06576
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