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Abstract

Periodically driven systems have a long history of study in many subfields of physics and peri-
odic drives have long served as flexible experimental tools for controlling and even engineering
non-equilibrium systems. Owing to the rapid development in laser and ultrafast spectroscopy
techniques, this form of engineering of quantum systems, which is usually termed as Floquet
engineering, has become an emergent field of research over the last decade. Exotic states of
matter, that are not accessible in equilibrium systems, have been realized by means of Floquet
engineering. In this thesis, we consider two applications of Floquet engineering to topological
quantum phenomena and nonlinear classical systems.

In the first part of the study, we consider topological band structures in periodically driven
systems. A Weyl fermion, which is a prototypical example of topological semimetals, has re-
cently attracted considerable interest owing to its exotic magnetic response, namely the chiral
magnetic effect. However, this response vanishes in a static lattice system such as a solid because
Weyl fermions should appear in pairs within a single band because of the Nielsen-Ninomiya
theorem. Here, we present a concrete model on a periodically driven three-dimensional lat-
tice that features a single Weyl fermion within a single band, thereby surpassing the above
limitation. The key idea is to utilize the nontrivial topology in the Floquet unitary operator,
namely the periodicity of quasienergies. Its nontrivial topology ensures the presence and the
stability of a single Weyl fermion in its quasienergy spectrum. Because of the emergent single
Weyl fermion in the Floquet unitary operator, a spin-polarized gas moves parallel to its spin
polarization under the external drive, which is a consequence of the spin-momentum locking of
a Weyl fermion. Moreover, when we apply a magnetic field, a current flows antiparallel to the
magnetic field and this current takes a quantized value for suitable band filling and temper-
ature, which is a Floquet realization of the chiral magnetic effect. By generalizing the above
idea to include symmetries, we give a topological classification of Floquet unitary operators in
the Altland-Zirnbauer symmetry classes for all dimensionalities and construct concrete models
with nontrivial topological numbers for each class and dimensionality. From these results, we
show that all gapless surface states of topological insulators and superconductors can emerge
in bulk quasienergy spectra in Floquet systems.

In the second part of the study, we consider periodically driven nonlinear systems governed
by nonlinear stochastic equations. In periodically driven quantum systems, it is known that
their dynamics is, on average, described by a static effective Hamiltonian according to the
Floquet theorem and that the effective Hamiltonian is systematically determined from the high-
frequency expansion. However, we cannot directly apply this theorem and the high-frequency
expansion to nonlinear classical systems because they can be applied only to linear equations
like the Schrodinger equation. Here, we overcome this difficulty by employing a master-equation
approach and thereby develop the high-frequency expansion of their equations of motion. Our
formalism is applicable not only to classical systems but also to quantum ones in symmetry-
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broken phases and covers both isolated and open systems. By analytically evaluating the higher-
order terms of the high-frequency expansion, we find that an effective equation of motion derived
from the high-frequency expansion well describes the exact time evolution for a high-frequency
drive. In particular, for driven dissipative systems, it well reproduces the exact dynamics until
they reach their non-equilibrium steady states. This result is in stark contrast to driven isolated
systems, where the high-frequency expansion works only in the intermediate regime before they
heat up to infinite-temperature states. These analytical findings are numerically confirmed for a
single-body system and a many-body system by examples of the Kapitza pendulum with friction
and a laser-driven magnet coupled with a thermal bath, respectively. Finally, we present an
application to spintronics, where we demonstrate an optical control of a spin chirality by a
laser.
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Chapter 1

Introduction

1.1 Rise of Floquet engineering

Periodically driven systems, which are usually termed as Floquet systems in physics, have
attracted incessant interest for quite a long time in many subfields of physics, where a number
of interesting phenomena have been found including dynamical localization [9,10], stochastic
resonance [11,12], and dynamical stabilization [13-16]. Owing to the rapid developments in
laser and ultrafast spectroscopy techniques, it has recently been shown that periodic drives can
be used as flexible experimental tools to control quantum systems for realizing exotic states
of matter including Floquet topological insulators [17-22] and Floquet time crystals [23-26].
This form of engineering of quantum systems, which is known as Floquet engineering, has
become an emergent field of research over the last decade [27-29]. Its key ingredient is the
Floquet theorem [30,31], which is a temporal analog of the Bloch theorem and dictates that the
time evolution of a periodically driven quantum system be described by a time-independent
effective Hamiltonian on average. Thus, it reduces the problem in a non-equilibrium system
to an analysis of a static effective Hamiltonian and therefore greatly simplifies the problem.
The effective Hamiltonian is systematically determined from the driving protocol by means of
the high-frequency expansion, which is a perturbative expansion in the inverse of the driving
frequency. Thus, by choosing a suitable driving protocol, one can tailor a static effective
Hamiltonian with desired properties, namely engineering of a Hamiltonian.

Floquet engineering is commonly used in ultracold atomic gases owing to their excellent
controllability by a laser field [20,32-38]. A prime example is the realization of the Haldane
model [20,39]. In this experiment, the complex next-nearest-neighbor hoppings, which are
hard to implement in a static system, can be induced by shaking an optical lattice. Another
remarkable achievement is the realization of the Thouless pump [40,41], where the quantized
transport protected by topology is demonstrated using the state-of-the-art laser technology.
Floquet engineering by a laser is also intensively studied in solid-state systems because it has
potential applications to ultrafast electronics and spintronics [22, 29, 42-49]. For example,
photo-induced superconductors [50-52] and laser-induced demagnetization [53-55] have been
realized experimentally. Additionally, there are a number of theoretical proposals using Floquet
engineering to induce new states of matter in semiconductors [17,56-60], strongly correlated
electron systems [61-70], and magnets [71-82].
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1.2 Present study

In this thesis, we apply Floquet engineering to two fields of research, namely topological quan-
tum phenomena and nonlinear systems.

Recent years have witnessed rapid progress in topological phases of matter both experimen-
tally and theoretically [83,84]. In a periodically driven lattice system, an effective Hamiltonian,
which is an analog of a Hamiltonian in a static system, can possess a topologically nontrivial
band structure and exotic edge states like a static Hamiltonian, namely Floquet topological
insulator [17,56]. Moreover, periodically driven lattice systems can exhibit topological band
structures that are prohibited in static systems by utilizing nontrivial topology of its time-
evolution operator [85-87|. Interestingly, the Thouless pump [88], which is a canonical example
of topological pumps, features such a lattice-prohibited band structure, namely a single chiral
fermion. Although several examples with such lattice-prohibited band structures are known in
one dimension [85,89], concrete models in higher dimensionalities are still lacking. Moreover,
a topological classification of general lattice-prohibited band structures has remained elusive.

In the first part of our work, we present yet another model that exhibits a band structure
that is prohibited in a static lattice system, i.e, a single Weyl fermion. It is well-known that a
single Weyl fermion is impossible to realize within a single band of a static three-dimensional
lattice because of the Nielsen-Ninomiya theorem [90,91]. This leads to the absence of the chiral
current originating from the chiral magnetic effect [92,93], which is a current flowing antiparallel
to an applied magnetic field. However, we here show that one can surpass the above limitation
in static systems by presenting a concrete example of a periodically driven lattice system that
has a single Weyl fermion within a single band. The presence and stability of a single Weyl
fermion is ensured by the nontrivial topology of the Floquet unitary operator, which is the
time-evolution operator per one period. In our driving protocol, a spin-polarized thermal gas
moves parallel to its spin polarization, which is a manifestation of the spin-momentum locking
of a Weyl fermion. When a magnetic field is applied, a quantized current flows antiparallel
to the magnetic field, which is a Floquet realization of the chiral magnetic effect. Finally,
generalizing the above discussion to include symmetries, we give a topological classification of
Floquet unitary operators in the Altland-Zirnbauer symmetry classes for all dimensionalities
and construct concrete models in each symmetry class and dimensionality. From these results,
we show that all gapless surface states of topological insulators and superconductors can be
realized in bulk quasienergy spectra in Floquet systems.

In the second part of our work, we consider classical stochastic systems governed by nonlin-
ear stochastic equations. Unfortunately, we can apply neither Floquet theorem nor the high-
frequency expansion directly to these systems because of the nonlinearity and the stochasticity
of their equations of motion because the Floquet theorem is applicable only to linear equations
like the Schrodinger equation. Yet, it is clearly important to extend these Floquet method-
ologies established in quantum systems to nonlinear stochastic equations of motion. Such a
generalization has a wide range of applications from purely classical systems (e.g., the Langevin
systems) to quantum ones in symmetry-broken phases (e.g., Bose-Einstein condensates) and to
both isolated systems and open ones coupled with thermal reservoirs.

To resolve the above problems, we develop the high-frequency expansion for a classical Flo-
quet system described by a nonlinear stochastic equation. The key idea is using the master
equation corresponding to its equation of motion. Since the master equations is linear with
respect to the probability distribution function and periodic in time, one can safely apply the
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Floquet theorem and perform the high-frequency expansion. The effective equation of motion
is obtained from the high-frequency expansion of the master equation through the correspon-
dence between the equation of motion and the master equation. By analytically studying the
convergent properties of the high-frequency expansion, we show that the description based on
the effective equations of motion obtained from the high-frequency expansion is valid for a
non-chaotic few-body system and a generic many-body system under a high-frequency drive.
To illustrate the procedure to obtain an effective equation of motion and numerically support
the above analytical findings, we consider the following two examples of open classical systems:
(i) the Kapitza pendulum [13] with friction and (ii) laser-irradiated magnets. In both cases, we
numerically confirm that the exact time evolution is well reproduced from the effective equa-
tions of motion wuntil the non-equilibrium steady states. This agreement is in stark contrast to
the results in closed quantum systems where the truncated high-frequency expansion fails to
capture the eventual heating to infinite-temperature states [27,94-98]. Finally, we present an
application to spintronics, where we analyze a multiferroic spin chain irradiated by a circularly
polarized laser. We show that a synthetic Dzyaloshinskii-Moriya interaction [99,100] emerges,
leading to a spiral magnetic order in the non-equilibrium steady states.

1.3 Construction of the thesis

This thesis is constituted of reviews and two original works on Floquet engineering. The rest
of this thesis is outlined as follows:

Chapter 2 reviews several selected topics in topological quantum phenomena. In Sec. 2.1,
we first overview basic notions on topological insulators and topological superconductors in-
cluding a bulk topological invariant, edge states, and their relation, namely the bulk-edge
correspondence [83,84]. Then, we discuss symmetry-protected topological phases, which are
topological phases of matter protected by symmetries, and their classification by means of the
K theory [101,102]. The K theory provides a powerful method of classifying various types
of topological phases in static and Floquet systems [102-105]. In Sec. 2.2, we review a Weyl
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fermion [106], which is a prime example of topological semimetals. After presenting its defini-
tion, we discuss an exotic magnetic response of a Weyl fermion known as the chiral magnetic
effect [92,93]. Then, we introduce a Weyl semimetal [107], which is a solid-state analog of a
Weyl fermion, and discuss the Nielsen-Ninomiya theorem [90,91]. In Sec. 2.3, we discuss adia-
batic pumps, which are topological quantum phenomena in dynamical systems and show some
quantized transport. We start from their well-known example, the Thouless pump [88,108],
and then discuss their classification in terms of the K theory [103], showing its close relationship
with the classification of topological insulators and superconductors in Sec. 2.1.

Chapter 3 briefly reviews Floquet engineering and its applications. In Sec. 3.1, we overview
the Floquet theorem [30,31], which is a fundamental theorem on Floquet engineering, and the
high-frequency expansion of the effective Hamiltonian [109, 110]. Two variants of the high-
frequency expansion, the van Vleck high-frequency expansion [109,111-113] and the Floquet-
Magnus high-frequency expansion [114], are introduced. The convergence property of the high-
frequency expansion in an isolated system and its relation to the Floquet prethermalization
are discussed. In Secs. 3.2 and 3.3, we discuss applications of Floquet engineering to topologi-
cal quantum phenomena and symmetry-broken quantum systems, respectively. The Thouless
pump reviewed in Sec. 2.3 is again analyzed from a Floquet viewpoint. Its quasienergy band
structure possesses a single chiral fermion [85] though it is prohibited in a static lattice system.
Floquet engineering is applied to control superfluids and magnets, which have potential applica-
tions to quantum simulations and future spintronics. In Sec. 3.4, we discuss some applications
of Floquet engineering to classical systems. We first consider the Kapitza pendulum [13], which
is a well-known example of dynamical stabilization, and next discuss the recent numerical and
analytical studies on the Floquet prethermalization in driven classical spins [115-117].

Chapter 4 reviews stochastic classical systems described by stochastic differential equa-
tions. We first discuss a prototypical example, the Langevin equation [118,119] in Sec. 4.1 and
then consider a general classical stochastic system in Sec. 4.2. The correspondence between
a stochastic differential equation and a general master equation is discussed. In Sec. 4.3, we
consider the Landau-Lifshitz-Gilbert equation [120,121] and its stochastic generalization [122]
for the use in Chapter 6. They describe a magnetic dynamics subject to a damping and thermal
fluctuations, and are widely used in spintronics.

In Chapters 5 and 6, we present our original works.

Chapter 5 applies the idea of Floquet engineering to realize an exotic topological band
structure that is not accessible in a static lattice system. In Sec. 5.1, we define our model on a
periodically driven three-dimensional lattice and show that its Floquet unitary operator is char-
acterized by nontrivial topology. In Secs. 5.2 and 5.3, we analyze the quasienergy spectra and
the dynamics under a periodic drive without and with a magnetic field, respectively. Without
the magnetic field, a single Weyl fermion appears within a single band of the quasienergy spec-
trum and a current flows parallel to its spin polarization owing to the spin-momentum locking of
the Weyl fermion. In the presence of an external magnetic field, a spin-polarized chiral fermion
emerges between the Landau gaps in the quasienergy spectrum. This chiral fermion gives rise to
chiral transport antiparallel to the magnetic field under the drive, which is a Floquet realization
of the chiral magnetic effect. In Sec. 5.4, we discuss experimental implementations in terms of
ultracold atomic gases in optical lattices. In Sec. 5.5, we give a classification of topologically
nontrivial gapless spectra of Floquet unitary operators. We clarify its close connection to the
classification of topological insulators and superconductors in Sec. 2.1 and its difference from
that of adiabatic pumps in Sec. 2.3. Some mathematical background, derivations of equations,
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and concrete models for a given symmetry and dimensionality are given in Appendix A. The
main content of this chapter is based on the following publication:

[1] “Floquet chiral magnetic effect”, Sho Higashikawa, Masaya Nakagawa, and Masahito Ueda,
arXiv:1806.06868

Although the classification of topologically nontrivial gapless spectra is mainly done by the
collaborator, Masaya Nakagawa, we include it for the sake of the self-containedness of the
presentation.

Chapter 6 develops the high-frequency expansion for nonlinear stochastic systems. In
Sec. 6.1, we derive the high-frequency expansion for a general nonlinear stochastic equation
based on the master equation reviewed in Sec. 4.2. We show that our method includes as spe-
cific examples the previous results reviewed in Sec. 3.4. In Sec. 6.2, we analytically examine the
higher-order terms of the Floquet-Magnus high-frequency expansion and its convergent prop-
erty, where we show that the effective equation based on the high-frequency expansion is valid
for a non-chaotic few-body system and a generic many-body system under a high-frequency
drive. In Secs. 6.3 and 6.4, we apply the high-frequency expansion to two examples, the Kapitza
pendulum with friction and interacting classical spins driven by a laser, respectively. In both
examples, the analytical findings in Sec. 6.2 are numerically confirmed. In Sec. 6.5, we present
an application of our formalism to spintronics, where we demonstrate a controlled generation
of a spin vector chirality in a spin chain in its non-equilibrium steady state. A distinction from
the previous study reviewed in Sec. 3.3 is clarified. A rigorous analysis on a Markov process and
detailed calculations of the high-frequency expansion in Chapter 6 are given in Appendix B.
The main content of this chapter is based on the following publication:

[2] “Floquet engineering of classical systems”, Sho Higashikawa, Hiroyuki Fujita, and Masahiro
Sato, arXiv:1810.01103

Chapter 7 concludes the thesis with a summary and some future prospects. In Sec. 7.1, we
give a summary for each chapter. In Sec. 7.2, we discuss some future prospects.

The relations between chapters are illustrated in Fig. 1.1.

Throughout this thesis, we adopt a system of units in which the Planck constant and the
Boltzmann constant taken as unity: h = kg = 1.



Chapter 2

Review on topological quantum
phenomena

Topological phases of matter [83,84,105,107] have attracted growing interest over the last
decade in many subfields of physics including condensed-matter physics, ultracold atomic gases,
photonics, and mechanics. Topological phase transitions lie outside the Ginzburg-Landau-
Wilson paradigm of spontaneous symmetry breaking and can occur even in noninteracting
systems. In this chapter, we first introduce their basic notions by way of a prototypical example,
a Chern insulator, and then review symmetry-protected topological (SPT) phases, which are
topological phases under certain symmetry. Finally, we overview the classification of topological
insulators (TIs) and topological superconductors (TSCs) by means of the K theory.

2.1 Topological insulators and superconductors

2.1.1 Basic concepts on topological insulators and superconductors

We start from one of the simplest models of topological insulators (TIs), i.e., a Chern insulator.
Consider the translationally invariant system on a square lattice with the following Bloch
Hamiltonian

h(k) = Asinkyo, + Asinkyo, + (to cos k, + tocosky, + m)o, =: d(k) - o, (2.1)

where k := (k,,k,) and o := (0,,0,,0,) are the two-dimensional momentum and the Pauli
matrices, respectively [123] (the lattice constant is set to be unity). Here, A, ¢, and m denote
the strength of a spin-orbit coupling, the hopping amplitude, and an effective mass, respectively.
Physically, this model describes the quantum anomalous Hall effect realized with both the strong
spin-orbit coupling (o, and o, terms) and ferromagnetic polarization (o, term), which can be
physically realized in quantum wells with an appropriate amount of magnetic doping [124].

Let |, k) and E(«, k) be the Bloch state and the energy of the Bloch band «, respectively:
h(k) o, k) = E(a, k) |, k). We denote the U(1) Berry connection associated with the occupied
band and the corresponding Berry curvature as Ay, and Fj,, (), respectively:

A, = =i Y (o, k[,

«:occ

a k), (2.2)

6



2.1. TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS 7

Figure 2.1: (a) Illustration of a square lattice with cylindrical geometry and the chiral edge states
on the boundary (red and white arrows). (b) One-dimensional energy spectrum of the model (2.1)
with m = —1.5 and ¢t = 1. The red solid and black dashed lines stand for the left- and right-moving
chiral edge states, respectively, while all other blue lines are bulk energy levels. Reproduced from Fig.
2 of Ref. [128]. © 2008 by the American Physical Society.

szky( ) .Aky( ) 8ky,4kz (k:) (2.3)

The topology of the Bloch Hamiltonian (2.1) is characterized by the first Chern number, which
is expressed by the so-called Thouless-Kohmoto-Nightingale-den Nijs (TKNN) formula [88,125]:

dk:

To be concrete, the first Chern number of the model (2.1) is given by the winding number of
the map k — d(k) = d(k)/|d(k)|:

dk: 1 0<m<2;
Chl = / e <8k d X ak ) =< -1 —2<m< 0; (25)
0 otherwise.

Remarkably, this purely mathematical object has a profound physical implication: the quanti-
zation of the Hall conductance oy, which is called the quantum anomalous Hall effect [39]:

2

e
Ogy = %Chla (26)

where e is the elementary charge. This quantization is explained from the viewpoint of an edge
state. When we solve the tight binding model with an open (periodic) boundary condition along
the x (y) direction (see Fig. 2.1 (a)), the energy spectrum exhibits gapless chiral edge states as
shown in Fig. 2.1 (b). These are unidirectional edge states localized on the boundaries. When
the bulk Chern number is Chy, |Chy| pieces of edge bands with chirality sgn (Chy) appear.
This is an example of the bulk-edge correspondence [126]: if a bulk insulating phase shows
some nontrivial topology, there should be gapless states localized on the real-space boundaries.
Remarkably, the existence of the edge state and the quantization of the Hall conductance (2.6)
are robust against disorder and perturbations on the Hamiltonian as experimentally verified
with high precision [127].
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Figure 2.2: Energy bands for a one-dimensional “zigzag” strip in the (a) QSH phase A, = 0.1t and
(b) the trivial phase A, = 0.4¢. The red and green lines stand for the helical edge states localized at
different boundaries. In both cases, Ago = 0.06t and Ar = 0.05¢. The inset shows the phase diagram
as a function of A\, and Ag when 0 < Ago < t. Reproduced from Fig. 2 of Ref. [130]. © 2005 by the
American Physical Society.

2.1.2 Symmetry-protected topological phases

One of the breakthroughs in the field of TIs and T'SCs is the discovery of a quantum spin Hall
(QSH) insulator [129,130], which is a prime example of the SPT phases. In SPT phases, a bulk
topological invariant and edge states are stable against the disturbance that respects a certain
symmetry. Unlike a quantum Hall state, they are fragile against a perturbation that breaks the
symmetry.

Quantum spin Hall insulator

The QSH insulator is first introduced as a model of graphene with a spin-orbit coupling [129,
130]. Its Bloch Hamiltonian reads

5 5
(k) = da(k)Ya + Y dap(k)a, (2.7)
a=1 a,b=1
where Y2345 = (0, ® 00,0, ® 09,0y ® 04,0, ® 0,0, ® 0,) are the gamma matrices and

Yab = (YaVo + 7Ya)/2. Here, the coefficients d, (k) and du,(k) are defined by

(to(1 + 2 cos z cos y) a=1;

>\’U a = 23
do(k) = ¢ Ar(1 — cosx cosy) a=3;
V3Agsinzsiny a = 4;

0 a =5,

\
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(2, cos z cosy (a,b) = (1,2);
Aso(2sin 2z — 4sinz cos y) (a,b) = (1,5);
dap(k) = ¢ —Agcoszsiny (a,b) = (2,3); (2.8)
—V/3Agsinx cosy (a,b) = (2,4);
L0 otherwise,

where z := k,a/2 and y = v/3k,a/2 are the normalized momenta (a is the lattice constant of
the graphene). The parameters t, and A, represents the nearest-neighbor hopping amplitude
and the staggered potential between the sublattices, respectively. The other two, Ag and Agp,
represent the strengths of the spin-orbit coupling.

This Bloch Hamiltonian is invariant under the time-reversal symmetry (TRS) © = i(op ®
sy)KC:

On(k)O™! = h(—k), (2.9)

where K denotes the complex conjugation. Here, © satisfies ©% = —1, which immediately leads
to the presence of the Kramers pairs. Its bulk topological number, the so-called Zy index (—1),
is defined as follows: For a Bloch state |«, k), we define the sewing matriz w(k) with its matrix
element given by wag(k) := (o, —k|© |5, k). Then, it satisfies

w(k) = —w(—k)", (2.10)

where * denotes the transpose of a matrix. This indicates that w(k) is an asymmetric matrix
for time-reversal invariant momenta, where we denote its Pfaffian as Pf [w(k)].* The Z, index
(—1)¥ is defined as follows [129, 130]:

, P w(k)]
o= s (2.12)

where k runs over all the time-reversal invariant momenta.! This bulk topological invariant
cannot change as far as the band gap does not close and the TRS is preserved. Reflecting the
nontrivial bulk invariant, this model hosts gapless helical edge states on the boundaries as shown
in the left panel of Fig. 2.2 (red and green lines). The gapless point of the helical edge states is
protected by the TRS because the hybridization between the edge states is prohibited by the
Kramers theorem, namely the symmetry protection of edge states. Because of the nontrivial

*The Pfaffian Pf (w) of an asymmetric matrix w = {wagla, 8 =1,2,---2N} with size 2N is defined by

N
1
Pf (w) := ] Z sgn (U)Hwa(mq)a(zi), (2.11)
’ i=1

oceESN

where Sy is the permutation group with order N. In general, we can show that Pf (w)2 = Det (w) and hence
Pfw(k)] /+/Det [w(k)] = £1.

"This formula reduces to the famous Fu-Kane parity formula [131] when the system has an inversion sym-
metry.
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helical edge states, the spin Hall conductance is quantized as follows:

62

= —. 2.13

OSH o ( )

The existence of the edge state and the quantization of conductance are robust against disorder

that preserves the TRS, though they are fragile against disorder that breaks the TRS, such

as magnetic impurities. The QSH insulator and the quantized spin Hall conductance have

experimentally been realized in a HgTe quantum well [132] following the theoretical proposal
[133].

Other symmetry-protected topological phases

Another example of SPT phases appears in the Su-Schrieffer—Heeger (SSH) model [134], which
is a one-dimensional model with alternating hopping amplitude. Its Hamiltonian is given by

-2 (to s ) (j+1cj +cch+1) = Xk: (CZ,AycL,B) h(k) ( A ) L (2.14)

= Ck,B
h(k) = (v+we ™) oy + (v+wet™)o_, (2.15)

where ¢x 4 (¢ p) is the annihilation operator of a particle with momentum k at the sublattice A
(B) constituted from the even (odd) sites; L is the number of the lattice sites. Here, v :=tg+9
(w :=tg — 9) is the hopping amplitude within (between) the unit cell. The Bloch Hamiltonian
h(k) has chiral symmetry (CS) I' = o3, which is expressed as Th(k)['T = —h(k). When |k) is
a Bloch state of h(k) with energy E(k), so is I |k) with energy —E(k) because of the CS. The
energy eigenvalue of Eq. (2.15) is given by E(k) = +|v + we™*|. Tts bulk topological number
is given by the winding number around the gap-closing point defined by v + we~* = 0:

2 dk i
v= —Oparg [v+ we ] € Z. (2.16)
0 27

When the bulk topological number is nontrivial v # 0, |v| pieces of zero-energy modes appear
at each edge, which are immune to disorder as far as the CS is preserved.

Another example of SPT phases is the Kitaev chain [135], which is a prototypical example
of TSCs. It is a one-dimensional fermionic system interacting with p-wave symmetry and its
Bogoliubov-de-Gennes Hamiltonian is given by

h(k) := Asinkr, + (tcosk — u)7s, (2.17)

where t, A, and p are the kinetic energy, the paring amplitude, and the chemical potential,
respectively. Here, the two bands for momentum k are spanned by the Nambu spinor (¢, c_g),
with ¢, being the annihilation operator of the fermion with momentum £, and the Pauli matrices
T := (T4, Ty, T») are taken in this basis. The first term represents the p-wave paring gap while
the second one represents the Hamiltonian of the normal state. This model has the particle-hole
symmetry (PHS) C = 7,K: Ch(k)C~' = —h(—k). From the PHS, h(k) satisfies h(0), h(7) € R
at the pariticle-hole-invariant momenta k = 0, 7, from which we can define the Z, index (—1)”
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as follows:
(—1)” :=sgn [h(0)h(m)]. (2.18)

Remarkably, because of the nontrivial Z, number, the Kitaev chain host the Majorana zero
modes at their edges, which can be used as a building block of topological quantum compu-
tation [136]. While the Majorana zero modes in a p-wave superconductor are hard to realize
in a natural solid-state setup, it was predicted that they also appear at the interface between
a semiconductor with a strong spin-orbit coupling and an s-wave superconductor [137-139].
Following these proposals, the zero-bias conductance peak and the fractional Josephson ef-
fect originating the Majorana zero modes are observed in a superconductor on the top of a
semiconductor [140, 141].

2.1.3 Classification of topological insulators and superconductors
Altland-Zirnbauer symmetry classes

As we have explained in the previous subsection, symmetries play an essential role in the
existence of SPT phases and the protection of their edge states. Symmetries are, in general,
divided into two classes: global and crystalline symmetries. Examples of the former include the
TRS, the PHS, and the global spin SU(2) symmetry. Global symmetry divides an entire Hilbert
space into the direct sum of irreducible representations of the symmetry group. Assuming
that the global unitary symmetries like the spin SU(2) symmetry are already diagonalized, we
consider the remaining symmetries in irreducible blocks. The remaining symmetries are an
antiunitary symmetry such as the TRS and PHS and a unitary symmetry that anti-commutes
with the Hamiltonian such as the CS. Those symmetries constitute the Altland-Zirnbauer (AZ)
symmetry classes [142].

As fundamental symmetries of a fermion, we consider three symmetries, the TRS ©, the
PHS C, and the CS I', which act on a Bloch Hamiltonian h(k) as follows:

Oh(k)O! = h(—k), Ch(k)C™' = —h(—k), Th(k)I' = —h(k). (2.19)

While I is unitary: IiI'~! = ¢, © and C are antiunitary: ©i©~! = —i and CiC~! = —i, because
they include the complex conjugation K. These are all two-fold symmetry: their squares are
always either +1 or —1 depending on the representation of the symmetries. For example, the
TRS O = i0,K with ©* = —1 appears in a spin-half system, while © = I with ©2 = 1 appears
in a spin-integer system. For the case of the PHS, C' = 7,K with C? = 1 is used for a usual
SC (7 is the spin operator in the Nambu basis), while © = 7,K with C? = —1 is chosen if the
system has a global SU(2) symmetry. The CS emerges as the combined symmetry I' = ©C
when the system has both the TRS and PHS. The sign of its square is the product of those of
© and C, i.e., I'> = ©2C?, when they commute.

Depending on the presence and absence of the symmetries, together with the value of their
square +1, Bloch Hamiltonians are divided into the ten classes known as the AZ symmetry
classes (see Table 2.1). Usually, these ten classes are broken down into the two wider classes:
the complex class and real class, and assigned an integer s called a symmetry class. In the
complex class, two classes, which are called class A and class AIll, are labeled by the value
s = 0 and s = 1, respectively. In the real class, the integers s = 0,1,2,--- ,7 are assigned to
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Table 2.1: Tenfold-way topological classification of TIs and TSCs for spatial dimensionality d =
0,1,---,7[101,102,143] The values £1,0 in the third, fourth, and fifth columns represent the square
of ©, C, and I, respectively, where 0 shows the absence of the symmetry. The topological invariant of
the symmetry class (IF, s) and the dimensionality d is given by the K group KF(s,d). The topological
number 27 means that the same types of edge states always appear in pairs. The K groups in a higher
dimensionality d > 8 are determined from the Bott periodicity (2.23).

s cass[[ © C T|d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7
0 Ao o0 0] z 0 Z 0 Z 0 Z 0
1 AL 0 0 1| 0 Z 0 Z 0 Z 0 Z
0 AL [[1 0 0] Z 0 0 0 27 0 Zy I
1 BDI|| 1 1 1| Z Z 0 0 0 27 0 Zo
2 D |0 1 0| Zo Iy Z 0 0 0 27 0
3 DOI|j -1 1 1] 0 Ly Ly Z 0 0 0 27
4 Al | -1 0 0| 2z 0 Zy Lo Z 0 0 0
5 CII|-1 -1 1] 0 27 0 Ly Ly Z 0 0
6 C |0 -1 0] 0 0 27 0 Zy Ly Z 0
7 Cl 1 -1 1] 0 0 0 27 0 Zy Iy Z

the eight classes AI, BDI, D, DIII, AII, CII, C, and CI, respectively.

Topological periodic table

A Bloch Hamiltonian h(k) on a d-dimensional space is formally a map from the BZ T¢ to the
space of Hamiltonians. The complete classification of TIs and TSCs is obtained by classifying
these maps under the constraint of certain symmetries. As in Ref. [102], we will simplify
the topological classification by replacing the BZ T? with the d-dimensional sphere S¢. This
replacement allows us to focus on d-dimensional strong topological invariants which do not
appear in lower dimensionalities, and to ignore weak topological invariants [131].

Let us set the Fermi level Eiopy; to be zero: Epmi = 0. Consider continuous deformation
of the original Hamiltonian h(k) into a simpler Hamiltonian whose eigenvalue spectrum is
“flattened” so that the energy eigenvalue may be either +1 or —1. Then, the space of flattened
Hamiltonians forms the Grassmannian

U(N)

Gk = Gl < UN =)’

(2.20)

where k (N — k) denotes the number of occupied (unoccupied) bands. It is also worthwhile to
introduce the notion of stable equivalence. Two families of Hamiltonians are stably equivalent
if they can be deformed to each other after adding or removing an arbitrary number of trivial
bands. Stable equivalence can be implemented into the set of the Grassmannians by considering
an expanded space called the classifying space Cy. The classifying space Cy includes an infinite
number of extra occupied and unoccupied bands:

Co:= | Guo- (2.21)
k=0
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The classification of TIs in class A in d dimensions is given by the homotopy group Kc¢(s =
0,d) := 74(Cy). Symmetries impose constraints on the classifying space. For class AIIl, N = 2k
follows from the CS and the classifying space becomes the subset C; := Uio:O Go 1, of Cy. The
antiunitary symmetries, i.e., TRS and PHS, impose further constraints. At the special points
where k and —k coincide, the allowed Hamiltonians are described by the eight classifying spaces
Rs (s=0,1,---,7) of the real K theory.

For a given symmetry class s, the topological classification of TIs and TSCs is obtained
as a set of stably equivalent classes of maps from S¢ to the classifying space subject to the
symmetry constraints. These classes form the so-called K group, which we denote by Kc(s,d)
for the complex symmetry classes and K (s, d) for the real symmetry classes. The K group for
the AZ symmetry classes is shown in Table 2.1, which exhibits a remarkable stair-like pattern
originating from the fundamental relation in the K group:

Ki(s,d+1) = Kg(s + 1,d), (2.22)

where F = R or C. Thanks to this relation, the calculation of Kp(s,d) reduces to that of
Kg(s+d,0), which is a zero-dimensional problem and hence can efficiently be solved [102]. We
note that the topological numbers in a higher dimensionality, d > 2 for the complex classes and
d > 8 for the real classes, the K groups are determined from the Bott periodicity [144]:

K@(S, d + 2) = Kc(S, d), KR(S, d + 8) = KR(S, d) (223)

This is the reason why the classification table (Tab. 2.1) is called the topological periodic table.

It is worth mentioning that the K theory is a powerful tool for calculating topological
invariants of maps, and hence it has been used for the classification of various topological
phases and phenomena including topological phases with crystalline symmetries [104,105,145],
topological edge states unique to Floquet systems [146], and even dynamical topological phases
in non-Hermitian systems [5].

2.2 Weyl fermion and chiral magnetic effect

Weyl fermions have recently played a key role in cross-fertilizing ideas of high-energy and
condensed-matter physics. Weyl semimetals, which are semimetals that possess Weyl fermions
as their low-energy excitations, are canonical examples of topological semimetals. They attract
growing interest in condensed-matter physics owing to their exotic magnetic response, namely
the chiral magnetic effect (CME), which was first proposed and discussed in high-energy physics
[92,93].

2.2.1 Weyl fermion and Weyl semimetal

In 1929, Hermann Weyl showed the existence of a massless fermion in the Dirac equation [106],
which was later called the Weyl fermion. Its Hamiltonian is given by

hk)=o -k, (2.24)

where k := (k;, ky, k) is the three-dimensional momentum. Its Bloch state |k) satisfies o |k) =
+k|k), implying that the spin direction of |k) is parallel to its momentum, a phenomenon
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known as the spin-momentum locking. Its topological number y is given by the winding number
around the gapless point k = 0 called the Weyl point:

X = /52 dk F(k), (2.25)

where S? and F(k) are a two-dimensional sphere enclosing the gapless point k = 0 and the
Berry curvature on S? at k, respectively. This topological number counts the winding number
of a hedgehog structure of the spin texture of the Bloch state |k) around the Weyl point. In this
sense, a Weyl fermion is called a monopole in the momentum space. A remarkable consequence
of topology is that this monopole charge protects the Weyl point. In other words, we cannot
remove the gapless point by a weak perturbation without the pair annihilation with a Weyl
point with opposite monopole charge because of the conservation of the monopole charge. In
this sense, Weyl fermions are topological objects though they are gapless unlike TIs and TSCs.

In solid-state band structures, Weyl fermions exist as low-energy excitations of a Weyl
semimetal (WSM) [107,147-149], where the dispersion relations are linear around the gapless
points. WSMs have been discovered in condensed-matter systems quite recently. In the early
2015, four WSM materials, TaAs, TaP, NbAs, and NbP, were discovered through numerical
calculations [150, 151], the observation of its surface states known as the surface Fermi arcs
[152-154], and the measurement of anomalous transport [155-157], realizing Weyl fermions for
the first time. It is known that either the inversion symmetry or the TRS must be broken to
realize a WSM [148,158] and that the Weyl points with opposite chirality must appear in pairs
within a single band [90,91]. A model Hamiltonian of a WSM near the gapless points k = £A
is given by

M@:< 0 (k= A)-o+ X

where the Weyl points are located at £ in the BZ and the energy shifts at the Weyl points are
given by +Xg. A nonzero X ()g) corresponds to the breaking of the inversion (time-reversal)
symmetry.

2.2.2 Chiral magnetic effect

A Weyl fermion attracts great interest owing to its peculiar magnetic response known as the
chiral magnetic effect [92,93] originating from the chiral anomaly [159,160]. To clarify this, we
introduce a U(1) gauge field (Ap, A) in Eq. (2.26):

(2.27)

o (k"‘A‘f‘A)'O’—)\O—AQ 0
MhAmA%—( 0 —(k—A+A)-c+A—A4 )

After integrating out the fermion field using Fujikawa’s method [161], we obtain the low-energy
action Seg of the WSM: Seg = Sp+ Sy [162-165]. The first term Sy is the effective action of the
Dirac semimetal, i.e., Eq. (2.27) with A = Ay = 0. The second term Sy known as the 6-term is
written as

2

50 = Tom2

/dwdt@(az)ew,pAFw,FpA, (228)



2.3. ADIABATIC TOPOLOGICAL PUMP 15

where e#VPA | F vy and 0(x) are the totally antisymmetric tensor with rank 4, the electromagnetic
field tensor, and the Heaviside step function with #(x) = 1 inside the WSM, respectively. The
f-term is responsible for the anomalous electromagnetic response of the WSM. The charge
density p and current j originating from the #-term are given by

559 62
) 0Sy e? e?

While Eq. (2.29) and the first term on the right-hand side of Eq. (2.30) give rise to the anomalous
Hall effect, the second term on the right-hand side of Eq. (2.30) gives rise to the CME, that
represents the current parallel to the applied magnetic field B. This is in stark contrast to a
usual magneto-transport where the current flows perpendicular to B because of the Lorentz
force.

The theoretical prediction of the CME in a WSM has aroused considerable interest not
only from condensed-matter physics but also from non-equilibrium statistical physics because
it leads to the existence of a nonzero current in the ground state [166,167]. However, the total
current from the CME is found to vanish in any static lattice system [167] as a consequence
of the Nielsen-Ninomiya theorem [90,91], which dictates the impossibility of realizing a single
Weyl fermion in a static lattice system. Because of the periodicity of the BZ, two Weyl points
are connected at the deep inside the Fermi sea, which gives the correction term to Eq. (2.30)
to cancel out the chiral current. We can prove that the net equilibrium current always vanishes
irrespective of lattices, band dispersions, and temperature [167]. Note that the anomalous Hall
response in Eqgs. (2.29) and (2.30), on the other hand, is not prohibited and indeed numerically
shown to exist even in a lattice system [167].

Nevertheless, chiral-anomaly induced transport is experimentally detected through the neg-
ative magnetoresistance [151,156, 158,168-170]. In WSMs, the chiral anomaly induces a neg-
ative magnetoresistance originating from the chiral zero modes of the Landau levels and the
suppressed backscattering of fermions with opposite chirality. It is worthwhile to mention that
numerous attempts to obtain a finite chiral current have been made [169,171-177], e.g., by
introducing a non-uniform magnetic field and using non-equilibrium fermion distribution.

2.3 Adiabatic topological pump

Consider a time-dependent Hamiltonian H(t) which has a finite energy gap A between the
ground state and the first excited state. In an adiabatic pump, we consider H (t) with period
T which is much slower than A™': H(t) = H(t + T) and TA > 1. After one cycle, while the
parameters of the Hamiltonian return to its initial value, the state may not, which leads to
quantized transport protected by topology.

2.3.1 Thouless pump

An adiabatic charge pump, namely the Thouless pump [178], is the integrated charge transport
during an adiabatic cycle. The pumped charge is quantized into an integer value and shows
topological robustness against perturbations. A prototypical example of the Thouless pump is
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given by Rice-Mele model [108], which is a one-dimensional model with its hopping amplitudes
and sublattice difference varied with period T'. Its Hamiltonian is given by

H(t) = XL: (%’ + (-1)1?> <c;+lcj + h.c.) + A0 Y (1)l (2.31)

J=1 i
c
= Z (Ck A» Ck B) (k1) ( c:’g ) ) (2.32)
h(k,t) = to cos ko, — 0(t) sin ko, + A(t)o, (2.33)

where ¢ 4 (i p) is the annihilation operator of a particle with momentum k on the sublattice
A (B) constituted from the even (odd) sites; L is the number of the lattice sites. Here, to+ (%)
represent the alternating hopping amplitudes and A(t) is the potential difference between the
sublattices. Here, 0(t) and A(t) are periodic in time with period 7. The first term on the
right-hand side of Eq. (2.31) is the SSH model with time-dependent hopping amplitude while
the second term is the potential difference between the even and odd sites.

Starting from the ground state of h(k,0), we consider the adiabatic change of 6(¢) and A(t)
from t = 0 to t = 7. Under this cycle, the Hamiltonian returns to its initial value h(k,0)
while the state may not. In an adiabatic pump, the fermions are pumped from left to right,
and its pumped fermion number N per cycle is quantized, which is obtained by integrating the
adiabatic current J,4 [178-180]:

T
N = / dt Jua(t) = —2i / diedt Fra(k,t) = —Cha, (2.34)
0 T

where Fy(k,t) is the Berry curvature of the occupied band of H(k,t). Thus, the pumped
charge per cycle is quantized irrespective of the detailed parameters of h(k,t), and solely ex-
pressed by the first Chern number similarly to the Chern insulator. This quantization is stable
against perturbations, weak interactions, and disorder, similarly to the quantized transport in a
Chern insulator [181]. The Rice-Mele model is realized in ultracold atomic gases and quantized
transport is observed [40,41,182,183].

2.3.2 General adiabatic pumps

An adiabatic pump is generalized to including symmetries [103, 184, 185], where the pumped
object is no longer a charge but a fermion parity, charges of a Kramers doublet, and so on.
Consider the time-dependent Hamiltonian h(k,t). The TRS ©, the PHS C, and the CS I' act
on it as follows:

Oh(k,t)0~ ' = h(~k,t), Ch(k,t)C' = —h(—k,t), Th(k,t)l ' = —h(k,t).  (2.35)

Note that the time ¢ does not change its sign under the action.

The K theory employed for classifying TIs and T'SCs also provides the classification of such
topological adiabatic pumps. According to Eq. (2.35), the set of adiabatic pumps are classified
into the ten categories from class A to class CI as shown in Table 2.1. After flattening the
bands and ignoring weak invariants, we can regard an adiabatic pump in the complex (real)
class with symmetry class s as a map from S%*! to the classifying space Cs (R,). Similarly to
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Table 2.2: Tenfold-way topological classification of adiabatic pumps for spatial dimensionality d =
0,1,---,7[103]. The notations are the same as in Table 2.1.

s cass| © C T[d=0 d=1 d=2 d=3 d=4 d=5 d=06 d=7
0 AJo0o 0 0] 0 Z 0 Z 0 Z 0 Z
1 AL 0 0 1| Z 0 Z 0 Z 0 Z 0
0 AL 1 0 0] Z Z 0 0 0 27 0 Zs
1 BDL|| 1 1 1| Zy  Z Z 0 0 0 27 0
2 D |0 1 0] 0 Ly Ly Z 0 0 0 27
3 DHI| -1 1 1| 2Z 0 Ly Ly Z 0 0 0
4 AIL |-1 0 0] 0 27 0 Zy Lo Z 0 0
5 CII|-1 -1 1] 0 0 27 0 Zy Ly Z 0
6 C |0 -1 0] 0 0 0 27 0 Zy Iy Z
7T C |1 -1 1| Z 0 0 0 27 0 Ly Ly

the case of static TIs and TCSs, we denote the K group of adiabatic pumps with AZ symmetry
class (F, s) by K#¥(s,d). The space of maps after taking the quotient by the stable equivalence
formally defines the K group KF(s,d,d), where ¢ is the number of coordinates that does not
change the sign under ©,C, and T'. In the case of adiabatic pumps (2.35), we have 6 = 1, i.e.
K#F(s,d) = Kp(s,d,1). In the case of § = 0, Kg(s,d,0) coincides with the K group Ky(s, d)
for TIs and TSCs with the same symmetry class (F, s). Their classification is performed by
applying the periodicity in the K theory [103]:

Ke(s,d, 6 +1) = Kg(s + 1,d, ). (2.36)

By substituting 6 = 0 in Eq. (2.36), we arrive at the classification of adiabatic pumps as shown
in Table 2.2. Comparing Tables 2.1 and 2.2, we can find that the classification of adiabatic

pumps in a certain symmetry class is the same as that of TIs and TSCs but in the shifted
symmetry class:

KaP(s,d) = Kp(s + 1,d). (2.37)

This is a natural generalization of the correspondence between the Thouless pump and the
Chern insulator. In fact, for F = C,s =0, and d = 1, we have

KAP(0,1) = Ke(0,1,1) = Ke(1,1,0) = K¢(0,2,0) = Z, (2.38)

where we used Eq. (2.22) in the second equality. The K groups K¢(0,1,1) and K¢(0,2,0) give
the topological number of the Thouless pump and that of the Chern insulator, respectively.



Chapter 3

Brief review on Floquet engineering

Floquet engineering, the control of quantum systems using periodic drives, has a long history
of studies in condensed-matter physics, such as the works on the inverse Faraday effect [186,
187]. Recently, this concept has attracted renewed interest owing to the rapid developments
in laser and ultrafast spectroscopy techniques [27-29,46,47]. In this chapter, we first review
two key ingredients of Floquet engineering, namely the Floquet theorem and the high-frequency
expansion (HFE), and then present its applications to topological phenomena, symmetry-broken
quantum systems, and classical systems.

3.1 Floquet theorem and high-frequency expansion

3.1.1 Floquet theorem and effective Hamiltonian

Let us consider the time-dependent Schrodinger equation driven by a time-dependent Hamil-
tonian H (t):

d
i 10) = H(O10). (3.1

where H(t) is periodic in time with period T: H(t) = H(t + T'), and we denote the driving
frequency as w: w := 27 /T. The time evolution operator U(ts,t;) from ¢; to t; is formally given

by

Uty 1) = Ty exp [—z’ /t ’ dtH(t)] , (3.2)

where 7; is the time-ordering operator.

The Floquet-Lyapunov representation theorem, usually called the Floquet theorem for
short, dictates that U(ty,t;) be written in terms of a Hermitian operator K (¢) and the time-
independent Hamiltonian Hp as follows [30,31, 188]:

Ulty,t;) = e 1K (ty) g —iHp (ty—ti) giK (i) (3.3)

Here, Hp, K(t), and et KM are called the effective Hamiltonian, the kick operator, and the
micromotion operator, respectively. The physical implication of the Floquet theorem is that

18
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the time evolution of the time-periodic Schrédinger equation (3.1) is generated by the static
effective Hamiltonian Hp apart from the kick operators at initial (¢ = ¢;) and final (¢ = tj)
times. The kick operator K (t) is time-periodic with period T" and its average over one period
vanishes:

K(t) = K(t+T), /T dt K(t) = 0. (3.4)

The unitary operator U(T,0), which describes the time evolution over one period, is called
the Floquet operator. For the eigenvalue e~*T of the unitary operator U(T,0), the exponent
€, is called the quasienergy in analogy with the energy in a static system with a being the label
of the eigenstates. The quasienergy is the eigenvalue of the effective Hamiltonian Hpg:

Hp = Z €a |ﬂa> <aa| ) (35)

a

where |u,) is the eigenstate. Despite its apparent similarity with energy in a static system, the
quasienergy has one important difference: the quasienergy is periodic with period 2w /T since
it is formally defined in the exponential form e~*”. This additional topology gives rise to
the difference about realizable topological band structures, as we will see in Sec. 3.2. From
the eigenstate [t,), we can construct the Floguet mode |uy(t)) := e 5® |3,) that satisfy the
periodicity: |u.(t +T)) = |ua(t)) and the Floguet state |1p4(t)) = e ! |u,(t)) which is a
stationary state of the time-dependent Schrodinger equation (3.1):

Z‘% 0a(t)) = HE) [¢a(t)), Wt +T)) = 7T |1, (1)) . (3.6)

Equation (3.3) is not a unique decomposition in terms of a time-independent Hamiltonian
and a time-periodic kick operator. In another decomposition that is related with the Magnus
expansion [189], U(ts,t;) is written as

Ulty, t;) = e KMo His =t (3.7)

Here, the kick operator K (t) is a time-periodic Hermitian operator that satisfies K (¢;) = 0 and
the effective Hamiltonian Hf)' depends on the initial time ¢;. The effective Hamiltonian Hp}!
is unitary equivalent to Hp defined above:

HEM = ¢ K0 ek ), (3.8)

While Hp does not depend on the initial and final kick times ¢; and ¢, respectively, Hi}! has a
spurious dependence on the initial time ¢; [109,112,113,190], resulting in artifactual symmetry
breaking [110]. Despite this drawback, the decomposition (3.7) is useful for a general analysis of
the high-frequency expansion like its convergence properties [95,96,114]. Besides, it is used to
analyze the long-time behavior of the system, e.g., heating and an exact steady state, because
HEM_, is directly related with the Floquet operator U(T,0) as U(T,0) = exp (—iTHpY_).
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3.1.2 High-frequency expansion of the effective Hamiltonian and the
kick operator

Practically, it is not realistic to evaluate the effective Hamiltonian and the kick operator based
on the decomposition (3.3) and (3.7), and one has to rely on some approximations. An efficient
tool to compute the effective Hamiltonian in the high-frequency limit is the high-frequency
expansion (HFE), which is a perturbative scheme in powers of w™! [27,28]. Corresponding to
the two decomposition (3.3) and (3.7), there are two types of the HFE. On one hand, the HFE
based on Eq. (3.3) is called the van Vieck high-frequency expansion (vV HFE) or simply the
high-frequency expansion [109,111-113]. On the other hand, the HFE based on Eq. (3.7) is
called the Floquet-Magnus high-frequency expansion (FM HFE) or simply the Floguet-Magnus
expansion [96,114]. The vV HFE is used for the analytical and numerical calculation with low-
order truncation because it does not have the spurious dependence on the initial time which
the FM HFE has. The FM HFE is used for a general analysis of the convergence properties
because its general term is known.

First few terms of the van Vleck high-frequency expansion

Let us express H(t) in their Fourier harmonics

H(t)= Y Hpye ™" (3.9)
1:_ r .
I, = / deH (t)e™", (3.10)
0

and formally expand Hp and K (t) in powers of w™':

Hp =Y HM™. Kt)=Y K" (3.11)
m=0 m=0

Here, H}m) and K}m) (t) are of the order of O(w™"™). To be concrete, the three leading terms of
H'™ are given as follows [109,110]:

HJ(«“O) = H,, (3.12)
H_n, Hyl
H(l) _ [ my +tm .
P (3.13)
m#0
H_n, [Ho, Hyl] [H s [Hm—m, Hin]]
HY = A, [, : ’ . 3.14
F Z { 2(mw)? - Z Imm/w? (3:-14)
m#0 m/#0,m
The three leading terms of K fpm) (t) are also given by
KWt =0, (3.15)
H_ eimwt
KXty =—i) =/ 3.16
Py =i 30 Tom™ (3.16)
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Hy, H_,, imwt Hm H_,, i(mfm’)wt
Kl(f)(t):iZ{[ 0 Hom] €™ > : } (3.17)

= (mw)? i 2m(m — m/)w?

Equations (3.12) and (3.15) indicate that, in the lowest order, the dynamics is generated by the
time-averaged Hamiltonian: U(t,0) ~ exp (—iHyt). This result is consistent with our intuition:
the system cannot follow a fast drive and hence feels the time average Hy. The derivation of
the vV HFE based on van Vleck’s degenerate perturbation theory is given in Ref. [110].

By substituting the truncated series into Eq. (3.11), we can evaluate the time evolution
(3.3). In particular, if we ignore the micromotion and focus on the averaged dynamics, we can
approximate it by the static effective Hamiltonian: U(¢,0) ~ exp (—iHpt), where the analysis of
the non-equilibrium problem is now reduced to a static one. Conversely, by tailoring the time-
dependent Hamiltonian H(t), one can realize the dynamics of a static Hamiltonian Hp with
desired properties. This form of quantum engineering, usually termed Floquet engineering, now
recognized as a versatile tool for controlling quantum systems including the dynamic control
of the superfluid-Mott insulator transition [32-34], the creation of artificial gauge fields [35-38,
191],* the implementation of kinetic frustration and topological phases [17,19,20,56,85,193-196],
and the control of magnetization and spin chirality [71-74, 76-78].

General term of the Floquet-Magnus high-frequency expansion

Let H}nzg be the mth-order term of the FM HFE of Hp}!:

Hily = Z H{Y, (3.18)

where H (“Z is of the order of O(w™"™) and t is the initial time. Unlike the vV HFE, the general
term for the FM HFE of Hp}! is known, which is given as follows [189,197]:

to+T
HY) = / dt H(t), (3.19)
to
—1)m=9:0,1(m — 0,)!
HE = 3 (=)™ 6,!(m — 6,)

im(m 4+ 1)2m!T

O'ES’m

to+T to+ta
x/ dtm+1~~-/ dty [H), 1, [H),, - [Hy, Hi]]] for m>1, (3.20)

to to

where S, is the permutation group of order m, H, := H(t,()), and O, is defined by ©, :=
Yo 8o(i+1) —o(i)] with 6(z) being the Heaviside unit step function. Using this general
term, the convergence property of the HFE is analyzed in both few-body [114] and many-
body [95,96] systems. Note that the convergence property does not change for two HFEs
because of the unitary equivalence (3.8) between Hp and HE%

*Though it is not explicitly mentioned frequently, an artificial gauge field is an example of Floquet engineer-
ing. In fact, the Rabi frequency of an artificial gauge field created by the two Raman beams in a A scheme is
proportional to the inverse frequency of the Raman beams, which can be regarded as the first correction term
Hg) of the vV HFE (3.11). See Refs. [27,192] for further discussions.
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Figure 3.1: Short- and long-time stroboscopic dynamics of (a) and (c) the entropy density and (b)
and (d) energy density of driven hard-core bosons on a one-dimension lattice with two bands, where
Q) and Jy denote the frequency of the drive and the average hopping amplitude to nearest-neighbor
sites, respectively. For a low-frequency drive (£2/.Jy = 1.00), the system quickly heats up to the infinite
temperature state with the maximum energy and entropy densities. On the other hand, for relatively
high-frequency drives (2/Jy = 4.25,7.00), the system relaxes to a Floquet prethermal states with
finite energy and entropy densities, which are well described by the truncated HFE. Reproduced from
Fig. 2 of Ref. [97]. © 2016 by the American Physical Society.

Convergence property of the high-frequency expansion

Mathematically, the FM HFE is guaranteed to converge if H(t) satisfies

/0 dH(®)] < C. (3.21)

where || - || is the operator norm and ( is a universal constant of the order of one [114, 189].
However, one cannot apply this inequality to many-body Floquet systems because the left-hand
side of Eq. (3.21) diverges in the thermodynamic limit. Quantum many-body systems, in gen-
eral, have a large number of excited states and hence can absorb energy from an external drive
without limit, leading to eventual heating to a featureless infinite-temperature state after a
sufficiently long time [94, 96, 198-201]. Based on this fact and the Floquet eigenstate ther-
malization hypothesis [94,198-201], which is a generalization of the eigenstate thermalization
hypothesis (ETH) [202-204] to Floquet systems, it is widely believed that the HFE is a diver-
gent series for a generic quantum many-body system, though several exceptions exist including
an integrable system and a many-body localized system [94,200, 205-208].

Nevertheless, the HFE provides a suitable approximation when w is sufficiently larger than
a typical single-particle energy scale of the system, at least within a time domain before the
system heats up. For locally interacting systems with a finite single-particle energy, e.g. lo-
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cally interacting spins, fermions, and hard-core bosons, it is rigorously shown that the energy
absorption rate dFE/dt is exponentially small up to a certain time [95, 96,98, 209]:

LdE Moo {—(9 (5)} , (3.22)

where g, N, and Ny are the maximum energy scale per site, the number of sites, and the
number of sites under the drive, respectively. This time domain, usually termed as the Floquet
prethermal regz'me, is exponentially long with respect to w and the truncated FM HFE Hé";{O) =
omo H Ft is almost conserved within the Floquet prethermal regime:

|UT (¢, 0) HmOU (£,0) — H|| < 16¢%k27™ Nyt (3.23)

where k and mg &~ w/gk are the number of sites associated with the interaction and the optimal
order of the truncation, respectively. The bound (3.22) physically implies that, even though a
many-body system can absorb a large amount of energy, this process must be accompanied by
a large number of single- particle excitations and hence is exponentially suppressed. Because of
the quasi-conserved quantity HT derived from Eq. (3.23), a generic (non-integrable) many-

body system approaches the Floquet-Gibbs state exp(—ﬂHggo)) after the initial relaxation.
This transient state is called the Floquet prethermal state in analogy with the prethermal
state in integrable systems under a sudden quench [210-213]. The existence of the Floquet
prethermal state in the Floquet prethermal regime is numerically verified in quantum systems
with interacting spins and hard-core bosons [95-97]. For example, in Ref. [97], driven hard-core
bosons on a one-dimension lattice with two bands is studied. As shown in Fig. 3.1, for relatively
high-frequency drives (red and yellow curves), the system thermalizes to a Floquet prethermal
state with finite energy and entropy densities, which is well described by the truncated FM
HFE. Furthermore, the existence of the Floquet prethermal state is demonstrated in various
experiments using ultracold bosonic and fermionic gases [27,28]. In ultracold atomic gases,
Floquet engineering using a Floquet prethermal state is commonly used for realizing exotic
topological band structures [20,37,214,215], kinetic frustration [193-195], and artificial gauge
fields [36,38,216,217]. We finally note that, while the presence of Floquet prethermal states
is rigorously proven, little is known on the exact steady state that appears after the Floquet
prethermal regime. While the system should heat up to an infinite temperature state if the
Floquet ETH holds, there might be another possibility [198] and the precise condition of the
Floquet ETH is not known so far. It is also an open problem to understand the heating dynamics
from a Floquet prethermal state to an infinite temperature state, for example whether it is a
crossover or a non-equilibrium phase transition.

3.2 Floquet engineering of topological quantum phenom-
ena

When a Floquet system is defined on a translationally invariant lattice, its Floquet operator
is decomposed according to the momentum k: U(T,0) = >, U(k), where U(k) is called
the Floquet-Bloch operator or the Floquet unitary. There are two ways to assign nontrivial
topology in Floquet systems: (i) using the entire time evolution {U(¢,0)|0 < ¢ < T'}, (ii) using
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Figure 3.2: Quasienergy spectra of Hp for a single spin state near one of the Dirac points in the
torus geometry for driving strength 4 = 0 (a) and A = 0.3 (b). A finite gap A opens at the Dirac
point in Fig. (b) through the external drive. (c) Schematic illustration of gapless chiral edge states
in the Floquet TI in a laser-irradiated graphene. (d) The spectrum of Hp for a single spin state near
one of the Dirac points in the strip geometry. The parameters are chosen as w = 7.5J and A = 0.3.
The blue and green curves correspond to the edge states in the upper and lower edges in Fig. (c).
Reproduced from Fig. 3 of Ref. [86]. © 2011 by the American Physical Society.

the Floquet unitary U(T,0). The former gives anomalous topological insulators while the latter
gives Floquet topological insulators and topological pumps including the Thouless pump.

3.2.1 Floquet topological insulators

Consider a graphene irradiated by a circularly polarized light with an electric field E(t) :=
O,A(t), where A(t) := A (sin(wt),cos(wt),0)” is the vector potential. Through the gauge
field, the hopping amplitude of electrons acquires the Peierls phase, where the tight-binding
Hamiltonian is given as follows [86]:

H(t) - ¢ Z eieA(t)'(T_rl)CLscr’,s- (324)
(

rr')s

Here, t and ¢, s are the bare hopping amplitude and the annihilation operator of an electron at
site » with spin s =1, ], respectively. For a large driving frequency w (> t), we can perform
the vV HFE to obtain the effective Hamiltonian near the Dirac point:

H_ { H 2
Hp = Hy+ % 2 ; |:Ug(0'yl€w — 0,kyT.) + @aﬂz , (3.25)

where vg = 3t/2 and A := eAa are the velocity of the Dirac electron and the dimensionless
parameter of the light intensity, respectively with a being the lattice constant of the graphene.
Here, k, and k, are the momenta measured from the Dirac point and o; (7;) is the Pauli matrices
representing the sublattice (valley) degrees of freedom.

By a periodic drive, the gap A := 2v%.A%/w opens at the Dirac point (see Figs. 3.2 (a)
and (b)). Moreover, the resulting effective Hamiltonian Hp describes a Chern insulator with
Chern number C'hy = +1. This is an example of the Floquet topological insulators, topological
insulators induced by periodic drives [17,18,56,86,218|. Because of the nonzero Chern number,
the quasienergy band features the chiral dispersions as shown in Fig. 3.2 (d) representing chiral
edge states (see Fig. 3.2 (c)).

Experimentally, the topological band structures of Floquet topological insulators were ob-
served in ultracold atomic gases by sophisticated band spectroscopy [20,37,214,215,219, 220]
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Figure 3.3: (a) (Left) Schematic illustration of quasienergy bands of an anomalous topological
insulator (C is the Chern number). Chiral edge bands shown as the red curves appear around € = 7/T,
where k| is the momentum along the edge in the right figure. (Right) anomalous edge states in a
two-dimensional system with time-dependent Hamiltonian H(t). (b) Five-step protocol of the model
defined in Egs. (3.26) and (3.27). (c) Motion of a particle in one cycle for the parameters JT/5 = 7/2
and 04p = 0. When a particle starts from a bulk site, it returns to its initial site (blue loop),
while particles starting from edge sites propagates along the boundary (red and green arrows) (d)
Quasienergy spectra of the bulk (blue) and the edge (red and green) states for parameters J1'/5 = 7/2
and 045 = 0. Reproduced from Figs. 1 and 2 of Ref. [225]. © 2013 by the American Physical Society.

and in solid-state systems by angle-resolved photoemission spectroscopy [19,21]. In ultracold
atomic gases, skipping motions of the chiral edge states of quantum Hall states induced by
artificial gauge fields have been observed [219,220] using the technique of synthetic dimen-
sions [221]. Very recently, following the original proposals [17,86], the anomalous Hall effect
has been observed in a laser-irradiated monolayer graphene, where the Hall conductance ap-
proaches the quantized value €?/27 when the Fermi level lies within the band gap [22]. We
note that while a Floquet topological insulator can be realized as an almost isolated system in
ultracold atomic gases, a coupling with an environment is not negligible in a solid-state system.
Furthermore, one must introduce dissipation to prevent heating and stabilize Floquet topolog-
ical insulators. Floquet topological insulators under dissipative environments, usually termed
as dissipative topological insulators, have been studied in Refs. [59,60,222-224]. Finally, it is
worthwhile to mention that the realizable band structures derived through the HFE are the
same as those in static systems because Hp is continuously deformed into a static Hamiltonian
Hj by taking the high-frequency limit w=! — 0.

3.2.2 Anomalous topological insulators and their classification

Anomalous topological insulators are topological phases of matter unique to Floquet systems
that have no counterparts in static systems [86,87,225]. In particular, in driven two-dimensional
systems, robust chiral edge states can appear even though the Chern numbers of all the bulk
quasienergy bands vanish [86,225] (see Fig. 3.3 (a)).

Here, we consider the tight-binding model on a bipartite square lattice introduced in
Ref. [225]. The hopping amplitudes are varied in a spatially homogeneous but time-periodic
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manner as shown in Fig. 3.3 (b). The Hamiltonian of this system is given by

H= Z(ckA,ckB> hik, 1) ( g:; ) (3.26)

—J(oe®* + he)+dap0. t€[0,7/5] mod T
—J(o,e®® + hc)) + dapo, te[T/5,2T/5] mod T;
h(k,t) = —J(o.e®* 4 he)+dapo, t€[27/5,37/5 mod T; (3.27)
—J(oye®* +he)+dapo, te([3T7/5,4T/5] mod T;
€ [4T/5,T] mod T,

. 5ABUZ

where cg, x is the annihilation operator of a particle on sublattice X = A, B with momentum
k and by = —b3 = (a,0) and by = —by = (0,a), with a being the lattice constant. Here, dap
describes the potential difference between the sublattices.

For the parameter values JT/5 = 7/2 and 045 = 0, we can rigorously prove the existence
of the edge states that propagate along the boundary. For this parameter set, a particle moves
with probability 1 between neighboring sites during each hopping step of the cycle. A particle
initially located at a bulk site makes a loop around a plaquette and returns to its initial position
after one cycle as shown as the blue trajectory in Fig. 3.3 (¢). Hence, the bulk Floquet operator
is trivial: U(T,0) = 1, which leads to the flat bulk bands as shown in Fig. 3.3 (d). On the
other hand, a particle initially located at an edge site moves along the edge with two sites
after one period, resulting in the gapless chiral bands in the quasienergy spectra (red and green
trajectories in Fig. 3.3 (c¢)). When J and d4p are slightly modified, the gapless chiral spectra
around € = /7 survive and the flat bulk bands split into two bands with the vanishing Chern
number. The resulting phase is called an anomalous topological insulator in the sense that it
has nontrivial edge states, although all the bulk Chern numbers vanish.

Let us decompose the time evolution operator U(t,0) according to the momentum k:
U(t,0) = >, U(k,t). When U(k,T) is a trivial Floquet unitary, the topological character-
ization of the anomalous TIs in two dimensions is given by the three-dimensional winding

number v of the map (k,t) (€ T?) — U(k,t) (€ SU(2)) [225]:

VvV = 8’/12 dtdkTr [Rt (Rk Rk — Rk Rk )} (328)

where R; = Uf(k,t)0;U(k,t). Even when U(k,T) is not a trivial Floquet unitary, U(k,t) :=
ert (K, t) is and Eq. (3.28) with the replacement of U with U gives the topological number
of the anomalous TIs. The number of the edge states coincides with |v| with their chirality
determined from its sign sgn (v), which is the bulk-edge correspondence for anomalous topo-
logical insulators. Recently, anomalous edge states have been observed in a two-dimensional
designer surface plasmon platform and a photonic crystal [226-228].

Similarly to static systems, symmetries, such as the CS and the PHS, play important roles in
protecting anomalous edge states [87,229-232]. The anomalous topological insulators protected
by symmetries are, in general, classified by the map (k,t) — U(k,t) under certain symmetry
constraint. Their complete classification is performed through the “Hermitianization” Hy (k,t)
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Table 3.1: Tenfold-way topological classification of anomalous topological insulators for spatial di-

mensionality d = 0,1,---,7 [146]. Notations are the same as in Tab. 2.1.
s ClaSSH@ C F‘ d=0 d=1 d=2 d=3 d=4 d=5 d=6 d="17
0o A 0 0 0| ZoZ 0 YASY/ 0 YASY 0 VASYA 0
1 AIIT| O 0 1 0 YRSYA 0 YASY/ 0 YASY/ 0 VASY/A
0 AI 1 0 0| ZoZ 0 0 0 27, P 27 0 Lo ® Lo Ty ® iy
1 BDI 1 1 1| Ze®Zs YASY/ 0 0 0 27. ¢ 27 0 Lo ® Zs
2 D 0 1 0| Ze®Zy Zo®Zy ZBZL 0 0 0 27 @ 27 0
3 DIOI|| -1 1 1 0 Lo ® Lo LoD 7o 7D7 0 0 0 27 & 27
4 AIl | -1 0 0 |2Z2a2Z 0 To® Lo Ly ® L 7®7 0 0 0
5 CI | -1 -1 1 0  22@®2Z 0 To® Ty To®Ty L&T 0 0
6 C 0 -1 0 0 0 27, & 27 0 Zo®lo To®ly LTDZL 0
7 CI 1 -1 1 0 0 0 27. ¢ 27 0 Zo@®Zy Zo®Zy ZDBZL
of the unitary operator U(k,t) [146]:
0 U(k,t)
Hy(k,t) .= ’ . 3.29
U( ) ) (UT(k,t) 0 ( )

We note that the Hamiltonian Hy(k,t) is a gapped Hamiltonian with flat dispersions because
we have [Hy(k,t)]> = 1. From the Hermitianization, the classification of U(k,t) reduces to
that of the Hamiltonian Hy (k,t) with the additional CS. As shown in Table 3.1, the resulting
classification is analogous to the original periodic table in Table 2.1, but the topological number
is doubled. This doubling reflects the usual and anomalous edge states near e = 0 and € = 7 /T,
respectively. For example, the topological number in class A in two dimensions is given by Z®Z,
where the first (second) Z represents the usual (anomalous) edge states.

3.2.3 Adiabatic topological pump revisited from the Floquet view-
point

Interestingly, an adiabatic pump without any symmetry features a topologically nontrivial
band structure in its quasienergy that is not achievable in a static system. To see this, consider
the Rice-Mele model analyzed in Sec. 2.3. From the adiabatic theorem, an occupied state
with momentum £ returns to the same state within one cycle; thus the Floquet operator is
decomposed according to the momentum k& and the Bloch-band index a:

0) = Ura(k). (3.30)
k,a
Then, the pumped fermion charge v14 in Eq. (2.34) is rewritten in terms of Up (k) as follows [85]:

m—Z/Wk%aWMM% (3.31)

«:0occe

where the sum ) is taken over the occupied bands. Since the Thouless pump does not
require any symmetry, the quasienergy has no accidental degeneracy and hence U, (k) acts on



28 CHAPTER 3. BRIEF REVIEW ON FLOQUET ENGINEERING

Tag T T T T T T
(b)""t“ . j
A}‘
u gt
(a) vl iy " ]
S 06 .l: -
o/ '\ L
041 . .
“ ﬁ. o 1.
A ) L]
0.2} ‘: 7’.' "‘:- 4
‘. ‘ .\\I °
00t 1 1*‘ 1 1 1 ...r

Figure 3.4: (a) Schematic illustration of a shaken optical lattice. By shaking the lattice, the hopping
amplitude J is renormalized to Jog while the on-site interaction U remains unchanged. (b) Dynamical
suppression of the hopping amplitude in a shaken optical lattice. The horizontal axis Ky := K/w is
the dimensionless driving strength and the vertical axis is the ratio |Jeg/J| between the renormalized
and bare hopping amplitudes. The dashed curve shows the theoretical curve and the different markers
correspond to different depths of the optical lattice and driving frequencies. Reproduced from Figs. 1
and 2 of Ref. [237]. © 2007 by the American Physical Society.

a single band. Therefore, Ur, (k) is expressed in terms of the quasienergy €, (k) as Upo (k) =
exp [—i€e,(k)T]; then, v, is rewritten as follows:

2 dl{?
vg=T Z o Oxcalk (3.32)

«:0CC

The right-hand side is the total winding number of the quasienergy bands as k runs over the
Brillouin zone.

For a unit winding v14 = 1, €,(k) is topologically equivalent to €,(k) = k/T, i.e., the band
of a single chiral fermion. It is known as the one-dimensional Nielsen-Ninomiya theorem that a
single chiral fermion is impossible to realize in a one-dimensional static lattice system [90,91].
In this sense, Floquet systems can realize topological band structures that are not achievable in
static systems utilizing the periodicity of the quasienergy spectrum. Other than a single chiral
fermion, it is known that a pair of helical fermions is known to be impossible to realize in a
lattice system with the TRS, while it can be realized as a quasienergy band in a periodically
driven lattice system with the TRS [89,184]. The impossibility of pure lattice realizations of
surface states is known to be deeply connected with their gapless nature protected under a
symmetry via quantum anomalies [233-235].

3.3 Floquet engineering of ordered states

In the above examples, we have treated Floquet engineering of a topological phase of non-
interacting particles, which is essentially a single-particle problem. Floquet engineering is also
applied to many-body systems to control hopping amplitudes and interactions, where one can
dynamically manipulate order parameters and even induce phase transitions [32-34,71-74, 76—
78,80,193-195,236-238].
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3.3.1 Bose-Einstein condensates

Consider the Bose-Hubbard model on a one-dimensional shaken optical lattice with L sites (see
Fig. 3.4 (a)):

L L L
U
H(t)=—-J g (c;r-ch + C;Cj+1) + 5 E nj(n; — 1) + K cos(wt) E nj, (3.33)

j=1 j=1 j=1

where ¢;,n; := c}cj, K, and w are the annihilation operator of the boson at site j, the number
operator, the strength of the shaking, and the shaking frequency, respectively. The first two
terms on the right-hand side of Eq. (3.33) describe the Bose-Hubbard model with hopping
amplitude J and on-site interaction U, while the third term represents the potential arising
from the shaking. Transforming into the co-moving frame of the shaking and performing the
vV HFE up to the lowest order, we obtain the effective Hamiltonian Hr = H };O ). The resulting
effective Hamiltonian H}(S) turns out to be the same as the Bose-Hubbard model on a static
lattice but with renormalized hopping:

L L
U
Hy = —JJo(K[w) D (c)oas + €jejn) + j§:1: ny(n; — 1), (3.34)

j=1

where Jo(x) is the zeroth-order Bessel function [32,33]. Since we have | Jy(z)| < 1, the hopping
is suppressed and even vanishes with suitable driving strength K, leading to the counterintuitive
localization induced by a periodic drive, which is known as the dynamical localization [10]. The
dynamical localization is observed in Bose-Einstein condensates of 8"Rb through measurements
of the ballistic spread of initially localized condensates [34,236,237]. In these experiments, the
expansion of the condensates is reduced and even completely suppressed in the suitable driving
strengths K ~ 2.4w, 5.5w as shown in Fig. 3.4 (b). Moreover, in Ref. [34], the superfluid-Mott
insulator transition is induced by adiabatically changing the driving strength.

It is worth mentioning that Floquet engineering of Bose-Einstein condensates is applied
for realizing classical frustrated magnets. Since the order-parameter manifold of a superfluid
and that of a classical XY model are both the circle S*, one can utilize an ultracold atomic
gas in a superfluid regime for simulating a classical XY model. Moreover, using its great
controllability, one can change various parameters in the model including spacial dimensionality,
lattice structures, anisotropies, and even the sign of an interaction, which are hard to control
in a usual solid-state setup [193-195]. Finally, we note that the dynamical localization is also
observed in solid-state systems [43,44,49], where the insulator-metal transition is induced.

3.3.2 Quantum Magnets

Controlling magnetic materials by laser attracts growing interest in recent years since it could
offer their ultrafast and non-contact manipulation [46,47]. Using a periodic drive by laser as
a tool of Floquet engineering, one can dynamically manipulate their magnetic orders [72, 73]
and even control their intrinsic interactions, such as the exchange interaction [74,75,79] and
the Dzyaloshinskii-Moriya (DM) interaction [76,80-82].
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Figure 3.5: (a) Expectation value of the vector chirality V&, as a function of time in the antifer-
romagnetic XXZ chain (3.40), where 6 = 0,7/2, and 7 correspond to the right-circularly, linearly,
and left-circularly polarized lasers, respectively. (b) The same as in (a) but with a ferromagnetic
interaction. Reproduced from Fig. 3 of Ref. [76]. © 2016 by the American Physical Society.

Laser-driven multiferroic spin chain

Multiferroics are materials that exhibit both ferromagnetism and ferroelectricity [239-241]. Be-
cause of the coupling between the spin degrees of freedom and the polarization, multiferroic
materials have potential applications to next-generation spintronics [242]. In Ref. [76], it was
shown that, by irradiation of circularly polarized lasers, a synthetic DM interaction [99, 100]
emerges with controlled magnitude and orientation, leading to a spiral magnetic order. More-
over, by spatially modulating the laser intensity, a spin current can be generated.

Consider a multiferroic spin chain with L spins irradiated by the laser field whose electric
and magnetic fields are given by

E(t) = Ey (cos(wt + ), —sin(wt), 0)" (3.35)
B(t) % (— sin(wt), — cos(wt + 8), 0)% (3.36)

Here, § = 0,7/2, and 7 correspond to the right-circularly, linearly, and left-circularly polarized
lasers, respectively. The overall Hamiltonian H(t) is given by

H(t) = Hy— P- E(t) — gupS - B(t), (3.37)

where the first, second, and third terms on the right-hand side represent the bare Hamiltonian,
the magnetoelectric coupling, and the Zeeman coupling, respectively. Here, g and up are
Lande’s g factor and the Bohr magneton, respectively. Here, P and S = ZJLZI S; are the
total polarization and the total magnetization, respectively, where S; is the spin at site j. We
assume that the magnetoelectric coupling is the antisymmetric magnetostriction type, which is
written in the following form:

L
P =g » e x(S;x8;), (3.38)

j=1
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where g, represents the strength of the magnetoelectric coupling and e; = (1,0, 0)" is the unit
vector along the chain axis. This magnetoelectric coupling is responsible for electric polarization
in various spirally ordered multiferroic magnets [243-246]. From the first-order vV HFE, the
effective Hamiltonian Hp is given by

L aBcoss " B2cosd
Hp = Hy + Z 5, Vet Z s (3.39)
7j=1 7j=1
where a = gnely and B := (gupFy)/c are the normalized electric and magnetic energies,
respectively. Here, V;, = e; - (S; x S;j11) is the vector chirality along the z direction and

the second term on the right-hand side of Eq. (3.39) describes the synthetic DM interaction
along the z direction. From the effective Hamiltonian (3.39), we expect the generation of the
vector chirality as time elapses. In Figs. 3.5 (a) and (b), the time evolution of the total vector
chirality Vi, := >_, V. for two different choices of Hy is shown. In Fig. 3.5 (a), H is taken as
the antiferromagnetic XXZ chain

L
H(] - JZ (SJ . Sj+1 - ASj,ij+1,x) 5 (340)

=1

where J > 0 and A are the antiferromagnetic coupling constant and the anisotropy parameter,
respectively, while Fig. 3.5 (b) is obtained from the same Hy but the ferromagnetic interaction,
i.e., J < 0. The time evolution is calculated by solving the Schrodinger equation by the fourth-
order Runge-Kutta method and the initial state is chosen as the ground state of Hy. In both
cases, the finite vector chirality is produced with its value controlled by the helicity parameter
d, which is consistent with the effective Hamiltonian (3.39). However, after a sufficiently long
time, |VE,| decreases because of the heating. When the laser intensity is spatially modulated,
the spatial gradient of V;, is induced. From the Heisenberg equation

/Ld—;’ ~ [Sjw, HO] =1J (ijl,x — Vj,x) y (341)

a spin current proportional to the spatial gradient is generated.

3.4 Floquet engineering of classical systems

Periodically driven classical systems have a long history of study, where a number of interesting
phenomena have been found including dynamical localization [9], stochastic resonance [11,12],
and dynamical stabilization [13—-15]. Motivated by recent experimental and theoretical progress
on Floquet engineering of quantum systems, this field attracts renewed interest. In this section,
we first review a well-known example of the dynamical stabilization, i.e., a Kapitza pendulum,
and then turn to the recent studies on the Floquet prethermalization in classical systems [115-
117].
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Figure 3.6: Schematic illustration of the Kapitza pendulum, where the suspension point oscillates
in the vertical direction with amplitude a and frequency w. Here, 0,1, and g are the angle measured
from the downward position, the length of the pendulum, and the gravitational constant, respectively.

3.4.1 Kapitza pendulum and dynamical stabilization

The Kapitza pendulum is a prototypical example of dynamical stabilization, a counterintuitive
stabilization of a system by a periodic drive. It is a classical rigid pendulum with an oscillating
point of suspension (see Fig. 3.6), where 6 is the angle measured from the downward position
and wy = \/g_/l is the frequency of the normal mode near § = 0 (g and [ are the gravitational
constant and the length of the pendulum, respectively). The point of suspension (z.,y.) os-

cillates vertically with amplitude a and frequency w: y. = —acos(wt). Its equation of motion
(EOM) reads [13,27,198]

0 = —w?sinf — %wz cos(wt) sin 6. (3.42)

While the first term on the right-hand side describes the gravitational force, the second one is
the inertial force arising from the oscillation of the suspending point. In what follows, we will
derive the stability of the inverted point # = 7 based on the following two ways: (i) a heuristic

derivation using a multi-scale perturbation analysis [13,247], (ii) a modern derivation based on
the vV HFE [117,198|.

Derivation of the stability based on the multi-scale perturbation analysis

In the multi-scale perturbation analysis, which is a kind of the singular perturbation theory
[248,249], the classical variable is decomposed into a slow dynamics and a rapid motion around
it. For the case of the Kapitza pendulum, when the driving frequency is large (wy < w), the
angle # can be regarded as a sum 6 = 65 + £ of the slow variable 6, and the rapid and small
oscillation £ < 1. Then, up to the first order of £, the equation of motion (3.42) is given by

O, + € = —wlsinf, — w2 cos A& — %wQ cos(wt) sin O — %w2 cos(wt) cos 0. (3.43)
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Because of the smallness of the oscillation, i.e., ¢ < 1, we have
= —w3 cos 0,€ — %oﬂ cos(wt) sin Oy — %wQ cos(wt) cos 0,€ ~ —%uﬂ cos(wt) sin b, (3.44)
which gives
a .
£ = 7 cos(wt) sin ;. (3.45)

Substituting this into Eq. (3.43), we obtain

. 2

0y = —wisinf, — %w2 cos(wt) sin O — (%) w? cos?(wt) cos b, sin 0. (3.46)
Since 0, is a slow variable, cos?(wt) can be replaced by its average 1/2 over one cycle [0, T7;
thus we obtain the equation of motion for 6,:

. 2

0, = —wj sin 6, — (%) sin 26,. (3.47)
This is the EOM of the Hamiltonian Hr = p?/2 + V¢ (6,), where p is the conjugate momentum
of 05 and Vg (0;) is the effective potential defined by

aw sin 6, 2
— ] . (3.48)

Vir(0,) = —wd cos b, + ( 5
Thus, the highest point § = 7 becomes stable above the critical frequency w, := ﬁlwo/a
and the pendulum exhibits an oscillation around this inverted position. This is an example of
the dynamical stabilization. The dynamical stabilization is employed in many areas of physics
[14-16, 250-252] including beam focusing in a synchrotron known as the alternating-gradient
focusing [15,16] and trapping ions in the Paul trap [14]. While the dynamical stabilization
is mostly discussed in few-body systems, its many-body generalization is recently discussed
[253-255] and moreover demonstrated experimentally [256].

Derivation of the stability based on the van Vleck high-frequency expansion

From the viewpoint of Floquet engineering, the stability of the inverted point can be explained
from the static effective potential derived from the vV HFE [13,27,198]. It is clarified in
Ref. [117] that, for a classical Hamilton system, the vV HFE of an effective Hamiltonian is
obtained by formally replacing the commutator (1/i)[-, -] appearing in the vV HFE in the
quantum case (3.14) by the Poisson bracket {-,-}. The time-dependent Hamiltonian with
EOM (3.42) is given by

2

H(t) = 5 [ 2+ %wQ cos(wt)] cos 0s, (3.49)

for which the first few terms of the vV HFE is given as follows [198]:

. 65 2
H}O) =5 wi cos b, H}l) =0, ng) = %pQ cos Os + wy <as21;;2w - %) sin® ;. (3.50)
wo
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Figure 3.7: (a) Energy (Q(IT)) as a function of the number [ of driving cycles, where the angle
bracket (-) denotes the ensemble average over the different initial states. Different colors correspond
to different driving frequencies €. Inset: rescaled energy curves with horizontal axis [/lnax. (b)
Variance (0Q(IT')) of Q(IT') as a function of [. Inset: the peak position lyax of (6Q(IT")) as a function
of Q. Reproduced from Fig. 1 of Ref. [116]. © 2019 by the American Physical Society.

By taking the limits @ — 0 and w — oo while keeping the value aw?/(Iw?) fixed, we obtain the
effective Hamiltonian
?

— + Vr(6;), (3.51)

Hp = Hy + Hy + Hy =

where Vr(0s) is the effective potential defined in Eq. (3.48).

3.4.2 Floquet prethermalization in classical spin systems

It has recently been shown that an isolated interacting classical system under a fast drive also
exhibits the Floquet prethremalization similarly to a quantum system [115-117]. In Ref. [116],
the authors consider a classical Ising chain described by the time-dependent Hamiltonian
N
. JS; .S, +hS; . tel0,T/2 dT;
H(t) = Zg\f:l G205+, T Wj, €[0,7/2] mo (3.52)
> =195z te[T/2,T] modT,

where J denotes the nearest-neighbour interaction strength, while A and ¢g are the magnetic

field strengths along the z and z-directions, respectively. Here, S; = (S;,S},,Sj) is the spin

variable at site j with unit magnitude: [S;| = 1, and its equation of motion is given by the
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Hamilton equation: S;; = {S;;, H(t)}. The initial state is taken to be the ground state of the
time-averaged Hamiltonian

Have = Z (JSj,szJrl,z + th,:v + gSj,:Jc) ) (353)

N
j=1

N | —

where a small randomness is introduced in the initial state to break its translational symmetry.
The normalized energy (Q(IT')) after [ periods defined by

<Have(Sj (ZT)» B EG’S

3.54
<Have>ﬁ:0 - EGS ( )

(QUT)) :=

is plotted in Fig. 3.7 (a), where (Haye)p—0 and Egg are the energies at the infinite-temperature
state and that of the ground state, respectively. Here, the angle bracket (-) denotes the average
over the randomness in the initial state. Figure 3.7 (b) shows the variance (0Q(IT)) of Q(IT),
whose peak position | = [,,.x indicates the onset of heating.

As shown in Fig. 3.7 (a), after the initial relaxation (I < 10?), a long-time plateau appears
with constant (Q(I7")), and finally the system goes to the infinite-temperature state with max-
imum energy Q(IT) = 1. The onset Iy, of heating grows exponentially with respect to w
as shown in the inset of Fig. 3.7 (b). These numerical findings indicate the presence of the
Floquet prethermal regime before heating up that is exponentially long with respect to the
driving frequency. It was later analytically proved that the energy absorption in a periodically
driven classical spin system is exponentially slow with respect to the driving frequency and
that the Floquet prethermal state is well approximated by the Gibbs ensemble with respect to
the effective Hamiltonian obtained from a truncation of the FM HFE [117].



Chapter 4

Brief review on classical stochastic
systems

In this chapter, we briefly review classical stochastic systems focusing on the relation between
their equations of motion and master equations. We start from one of the simplest models
of stochastic systems, i.e., a Brownian particle, and then consider a general stochastic system
described by a stochastic differential equation. Finally, we review the stochastic Landau-
Lifshitz-Gilbert equation, which is commonly used for describing a micromagnet coupled with
a finite-temperature thermal bath.

4.1 Langevin equation

The Langevin equation is a well-known example of stochastic differential equations [118,257].
Its study has fostered many fundamental developments of non-equilibrium statistical mechanics
[119,258] and profound applications in mathematics [259] and even in finance [260].

4.1.1 Langevin equation

A Brownian motion was first discovered in the study of a particle suspended in a fluid. Because
of incessant collisions with the surrounding molecules in the fluid, a particle undergoes a random
motion, which is modeled by the Langevin equation:

d*x dx
=~ p(t 4.1

where x, m and ~ are the position, the mass, and the flow viscosity of the particle, respectively.
For simplicity, we here consider a one-dimensional model, although generalizations to higher
dimensions are straightforward. The first term on the right-hand side of Eq. (4.1) describes the
frictional force and the second one is the random noise modeling collisions with the surrounding
molecules. If the relaxation timescale of the surrounding molecules is short enough, it is natural
to assume that n(t) is a Gaussian white noise:

(n(t)) =0,
(n(t)n(t")) = Tnd(t — 1), (4.2)

36
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where I, represents the strength of the noise, §(¢) is the Dirac delta function, and the angle
bracket () denotes the ensemble average over different noise realizations. The square mean
velocity (v?(t)) satisfies

Tt T, Tt

(1) = (H(O))e H 4+ I (1— e E), (13)

2mey

In the long-time limit, (v%(t)) = Ti./m follows from the equipartition theorem, with T}, being
the temperature of the surrounding molecules. Then, we obtain the fluctuation-dissipation
theorem:

T, = 29T, (4.4)

which dictates that the pair of the friction and random forces acts as a thermostat for a Langevin
system so that the temperature is well defined in the Langevin equation (4.1). As we can see
from Eq. (4.1), the velocity relax quickly for a sufficiently large friction m/y — 0. In this
limit, which is knowns as the overdamped limit, Eq. (4.1) reduces to the overdamped Langevin
equation:

dx

where h :=n/7.

4.1.2 Master equation: the Fokker-Planck equation

Because of the random nature of the equation, it is natural to consider the probability dis-
tribution P(x,t) for the Langevin equation (4.1). The equation governing the time evolution
of P(x,t) is generally called a master equation. For example, the master equation for the
overdamped Langevin equation (4.5) is given by the diffusion equation:

O,P(x,t) = DO?P(x,1), (4.6)

where D := 2T,/ is the diffusion constant. The derivation of Eq. (4.6) is given in Sec. 4.2.

4.2 General classical stochastic systems

4.2.1 Equation of motion

Let ¢(t) = [p1(t), Ppa(t), -+, dn(t)] be a set of classical variables describing the system, e.g.,
the positions of particles for the Langevin equation. A classical system under a stochastic force
is usually modeled by the stochastic differential equation [119,261]:

Gi(t) = fi (o) + Z 9ij (@) h(t), (4.7)
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where y := dy/dt is the time derivative and h; is a Gaussian random variables satisfying

(hi(t)) =0,
(hi(t)hi(t")) = 2Dd;;0(t — t'), (4.8)

with D being the diffusion constant. We note that when we consider the equation of motion
for a classical field ¢, = [¢r1(t), dr2(t), -+, dr N, (t)], the subscript i in Eq. (4.7) represents a
collection of the coordinate r and the internal degrees of freedom a. The equation of motion is
written as follows:

Gra(t) = fra(®)+ > grap (D) hes(t). (4.9)

Here we assume that the effect of the random field is local, i.e., the field ¢, at r is affected by
the random field h, at the same position 7.

4.2.2 Discretization prescriptions

When G(¢) depends (does not depend) on ¢, h; is called a multiplicative (additive) noise.
As in any stochastic differential equation with multiplicative noises, the discretization used to
define the time evolution should be carefully taken into account to obtain reasonable physical
results. For example, in the stochastic Landau-Lifshitz-Gilbert equation, the magnetization is
preserved if and only if the Stratonovich prescription (see the next paragraph for the definition)
is used [262].

This subtlety can be understood by looking at the integral

/tv ' dtG(p)h(t) = /t ' G(¢)dW (t) = lim Z G(pn) [W (tnsr) — W (L)), (4.10)

where W := dh/dt is the N-dimensional Wiener process and t; =ty < t; < to--- < ty, =ty
are the times in the interval [t;,t]. Here, ¢, is taken from the interval [¢(¢, 1), ¢(t,)]. Since
the Wiener process is not continuous, the integral (4.10) depends on the choice of ¢,,. In the
prescription called the a-prescription, one uses

P(tn) = i + (1 — @) Pui1,  9(b(tn)) = gloadn + (1 — 0a)Pnsa] (4.11)

where 0 < oy < 1 and ¢; := ¢(t;).* The prescriptions with g = 0,1/2, and 1 correspond to
the Ito, the Stratonovich, and the post-point prescription, respectively.

4.2.3 Master equation

Let P(¢',t) is the probability density for finding the variable ¢ = @' at time ¢ in the entire
parameter space of ¢. The master equation for Eq. (4.7), which is known as the Fokker-
Planck equation (FP equation), is derived from the standard technique of the stochastic calculus

*Although the Greek letter « is commonly used to distinguish the a-prescriptions with different values of «,
we do not use it to avoid possible confusion with the Gilbert damping « in the stochastic Landau-Lifshitz-Gilbert
equation introduced in Sec. 4.3.
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[122,262-264]. To this end, we start from the identity:

P(p,t +dt) = /d¢OP(¢,t + dt| o, t) P(¢o, t), (4.12)

where P(¢,t+ dt|¢y,t) is the conditional probability of finding ¢ at time ¢ + dt, provided that
¢ = ¢o at time t. Expanding P(¢,t + dt|py, t) in powers of A¢ = ¢ — ¢y, we obtain

00(p — ¢y) 19%5(¢ — o)
9; 2 0¢;00;

Here, we omit the summation of the repeated indices ¢ and j. For deriving the master equation,
we evaluate the right-hand side in the order of dt. From Eq. (4.7), we have

P(¢,t + dt[po, ) = 6(P — ¢po) — (Agy) + (ApiAg;).  (4.13)

t+dt
A = fi(Po)dt + gij (o + caAp(t + dt)] / dt'hy(t"). (4.14)

By using Eq. (4.8), we obtain

(AG;) = fi(po)dt + 2Daggri (o) 89;230)

(AdiAd;) = 2Dgir, (o) gjk (do) dt. (4.16)

Combining Eqgs. (4.12) and (4.13), we have

dt, (4.15)

0 0?
P(.t -+ i) — P(.1) = — - [(A0) P(.1)] + . S (Aol P@e.n]. (A1)
from which the master equation is derived:
oP(¢,t) 0 0?
ot 9o, [Fi(d)P(¢,1)] + 96:00, [Dij(#)P(@,t)]. (4.18)

The first and second terms on the right-hand side represent the drift and diffusion of the
probability, resprectively, and F; and D;; are defined are follows:

FA®) == ~1(9) — 2Dasgu(9) 202

Dij(@) := Dgir(¢)gji (). (4.20)

The second term 2Daygri(4)0p, gir(@) on the right-hand side of Eq. (4.19) is called the spurious
drift terms. By introducing the current J; := —F;P—0(D;;P)/(0¢,), we can rewrite Eq. (4.18)
into the continuity equation for P: 0,P + 04,J; = 0, which satisfies the conservation of the
probability: [ de¢P(¢,t) =1 at any time ¢.

(4.19)

For the case of the overdamped Langevin equation (4.5), we have ¢; = z, f; = 0, and g;; = 1.
The diffusion equation (4.6) follows from the general master equation (4.18) by substituting
these relations to Eqgs. (4.19) and (4.20).
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4.3 Stochastic Landau-Lifshitz-Gilbert equation

The control of magnetic materials lies at the heart of the current information technologies and
the development of spintronics [242,265]. When a ferromagnet is used to store information,
bits are encoded as the orientation of the local magnetization. It is practically important to
understand the impact of the damping and thermal fluctuations through the interaction with
an environment because they deteriorate the performance of magnetic recording devices. The
Landau-Lifshitz-Gilbert (LLG) and stochastic LLG equations are commonly used for describing
magnetic dynamics under these effects.

4.3.1 Equation of motion
Landau-Lifshitz-Gilbert equation

The Landau-Lifshitz-Gilbert (LLG) equation is a phenomenological equation of a ferromagnet,
which is formally the torque equation with damping [120,121]. Let m,. and H(¢) be the magnetic
moment at site 7 on some lattice L and the Hamiltonian (energy) of the system, respectively.
The LLG equation reads

1, = —ym, x H, + mimr X Ty, (4.21)
where H,, = —dH /dm,. is an effective magnetic field generated by the surrounding spins and
external fields with H being the classical Hamiltonian of the system. Here, «, 7y, and mg := |m,.|
are the Gilbart damping, the gyromagnetic ratio, and the magnitude of the magnetization,
respectively. In what follows, we set v = 1. We also set the magnitude my; = 1 because
ms is preserved in Eq. (4.21): d|m,|/dt = 0 [262]. The first term on the right-hand side of
Eq. (4.21) describes the precession around H,., while the second term, the so-called Gilbert
term, describes damping toward the effective magnetic field H,.. For a numerical simulation,
we rewrite Eq. (4.21) as follows:

m, = —m, X H, + &mT X [—m,, x H, + imT X 1M, (4.22)
mg e
= —m, X [HT + gmr X Hr} — o’m,, (4.23)
= = | H,+ Ym, x H, | (4.24)
1+ a2 s

where we have used m,. L m, in deriving Eq. (4.23).

Stochastic Landau-Lifshitz-Gilbert equation

For a sufficiently small magnetic device, thermal fluctuations become relevant for determining
the magnetization dynamics. In 1963, Brown proposed a simple generalization of the LLG
equation (4.21), which is known as the stochastic LLG (sLLG) equation, in which thermal
fluctuations are introduced as random magnetic fields [122]. The sLLG equation is widely used
in the field of spintronics and proved to be a powerful approach to modeling ultrafast mag-
netization processes [46,47] like the laser-induced demagnetization [53,266,267], non-thermal
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magnetization control [268], and spin-current generation [269,270] in a ferromagnet. The sLLG
equation reads

1 = —ym X [Hy + ho(8)] + ——m, x 1, (4.25)

s

where h,.(t) := [hp1(t), hyr2(t), hy 3(t)] is the random magnetic field at r satisfying
<h'l°7a(t)h7“’,b(t/)> = 2D§ab5'r7r’5(t - t,)- (426)

Here, D = 2kgTi.« is the diffusion constant which satisfies the fluctuation-dissipation theorem,
where T}, is the temperature of the environment. We can rewrite Eq. (4.25) in the form of
Eq. (4.9) in a manner similar to what we have done in deriving Eq. (4.24) from Eq. (4.21):

. m, o
m, = —1 n o2 X {Hr + hT.(t) + _Smr X [Hr + hr(t)]} . (427)

4.3.2 Master equation
Comparing Eqgs. (4.7) and (4.27), we obtain the drift and diffusion field:

m « 2D
= — x| Hy +—m, x H, —m,,
f 11 a2 ( —l—msm )+1+a2m
1 amg My oMoy
o= 1 qmes 1o (= T ). )

where €4, is the totally antisymmetric tensor of rank three. We obtain the FP equation for the
sLLG equation by substituting these equations into Eqs (4.18) and (4.20). For example, in the
case of a single spin, where m, = m and H, = H, we have

OP(m,t) .
T + le {

X (H + Smx H) P(m, 1)

a? My

+

T2 X Im X gradP(m,t)]} =0. (4.29)



Chapter 5

Floquet chiral magnetic effect

As we have reviewed in Sec. 3.2, a wide variety of band structures prohibited in static lattice
systems under given symmetries can be realized as gapless quasienergy spectra in adiabatic
and non-adiabatic pumps [84, 85,89, 185,271]. Examples include a single chiral fermion in a
one-dimensional lattice without symmetries [85]. While such realizations by Floquet systems
have been studied in the context of adiabatic pumps in one-dimensional lattices [18,89,178,184],
little is known on their higher-dimensional analogs [128,185,271], in particular the realizations
by non-adiabatic pumps. One notable example of such prohibited band structures in higher
dimensionalities is a single Weyl fermion on a three-dimensional lattice, which is prohibited by
the Nielsen-Ninomiya theorem [90,91].

In this chapter, we demonstrate that a single Weyl fermion can be realized on a periodically
driven lattice, thereby overcoming the above limitations. Our model is a three-dimensional
generalization of the Thouless pump and features a single Weyl fermion in the quasienergy
spectrum of its Floquet unitary operator. We study the dynamics of a spin-polarized ther-
mal gas under our driving protocol and show that the pumped fermion charge and hence the
current flow along its spin polarization as a consequence of the spin-momentum locking of
Weyl fermions. Moreover, when a synthetic magnetic field is applied, the pumped charge flows
opposite to the magnetic field even if an initial state is not spin polarized, offering a Floquet
realization of the chiral magnetic effect (CME). In particular, at half-filling, this pumped charge
can take a quantized value that is independent of the detail of the model. Our proposal can
be implemented by using ultracold atomic gases, where the Thouless pump has already been
experimentally realized [40,41]. Finally, by generalizing the above idea to include symmetries,
we provide a topological classification of Floquet unitary operators in the AZ symmetry classes,
which is found to coincide with that of gapless surface states of static TIs and TSCs. By con-
structing concrete models in each symmetry class and dimensionality, we show that all gapless
surface states of TIs and T'SCs can emerge in bulk quasienergy spectra in Floquet systems.

5.1 Definition of the model

We consider spin-half fermions on a cubic lattice Lo with a sublattice structure in the third
direction:

Lo = { (ml,mg, %) ‘ my, Mg, M3 € Z} ; (5.1)

42
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Figure 5.1: (a) Schematic illustration of the fermion pumps Z/{1jE (red arrows), 2/12jE (green arrows),
and L{;fg (blue arrows) defined in Egs. (5.3) and (5.5), on the three-dimensional lattice L¢, where
Loy and Loq denote the sublattices of Lo. The directions of the arrows describe the spin directions
of fermions. (b), (c) Driving protocols Ur of the pump (b) without and (c) with a magnetic field,
where U, = exp(—i2mpx122) and Us := exp(—itsH,) are the time evolution operator induced by a
sudden switch-on and -off of a quadrupole potential and that induced by laser-assisted hoppings with
Hamiltonian (5.45), respectively.

where the sublattices L., and L.q are defined as follows:

1
Ley := {(m1, mg, m3)|mi,ma, m3 € Z},  Loq := { (m1;m27m3 + 5) ‘ mi, Mg, m3 € Z} :
(5.2)

The lattice constant ap,; is set to be unity: ajy = 1. Although we do not make any distinction
between the sites on L., and those on L,q, they can be distinguished by, e.g., introducing
the potential difference. The main ingredient of our model is spin-selective Thouless pumps
[18,89,178] whose time evolution (unitary) operators L[;E (j = 1,2) are given by

Z Z [ aﬁ Tm:i:e ol + (P:F)aﬁ : vaﬁ] Zc;fcvi Ck:, (5'3)

z o,pB="]

where @ = (21, 29, x3) and k = (ky, ko, k3) denote the lattice site and the crystal momentum,
respectively, e; is a unit vector in the z; direction, and ¢, = (Cg1t,Cx,) is the annihilation
operator of a fermion with spin a (1 or |) at site . The matrix PjjE = (0p £ 0j)/2 is a
projection operator on a spin state o; = %1, with oy and o; (j = 1,2,3) being the 2 x 2
identity matrix and the Pauli matrices, respectively. Here, the Floquet-Bloch operators Vji(kj)
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are the 4 x 4 matrices defined by

PFe¥ks  pF 0 UE(k;) 0
:t - = J J . = J J
Vitlks) ( 0 Pfe™ki + PF ) ( 0 Uf(ky) ) ’ (5.4)

where Uji(k )= Pi T + P and the basis set for the four bands is taken as (|1, A), |1, B),
I, A), |4, B)). From the prOJectlve nature of Pi under the pump L{+ (U ), fermions in a spin
state 0; = +1 (—1) are displaced by one lattlce site in the posmve (negative) x; direction,
while fermions in a spin state o3 = —1 (+1) are not, thereby achieving spin-selective transport
(see red and green arrows in Fig. 5.1 (a)). We also introduce spin-selective Thouless pumps
L{,jf3 which displace fermions by a half lattice site in the x3 direction (see blue arrows in Fig. 5.1

(a)):
Z/I,f3' Z Z [PjE O‘BT Lo cm5+(PjF wacwg] ch s (k) e, (5.5)

z opf=1l

where their Floquet-Bloch operators Vh:I’:S(kfg) are defined as follows:

Py Pyeits . P, P
Vit = (e ) vt = (5 B ). 56)

The driving protocol of our topological pump is constituted of eight successive applications
of Ui, U, and Ll,fg as shown in Fig. 5.1 (b), where the total time-evolution operator U™ for
the whole four bands over one cycle is given by

U™ = U Uy Uy Uy U U USU S = V™ (K)c, (5.7)
k
VI (k) = Vi (k1) Vieg () Vo~ (k) Vil (k) ViT (k) Vigg (Ks) Vo (2) Vil () (5.8)

Then, the Floquet-Bloch operator V¥ (k) is decomposed into the two 2 x 2 matrices:

V' (k) = UM (k) @ U (k), (5.9)
U (k) == Uy (k1) Uy g (k) Uy (ko) Uy'y (k3) U (k1) Uy 5 (k) Uy (ko) Uyt y (k) (5.10)
U (k) := U*(ky, ko, ks — 27), (5.11)

where Uy, 3(k) := Us(k/2) represents the half-site translation along the x3 direction. We refer
to the bands which U*(k) (U (k)) acts on as the “lower” (“higher”) Floquet bands. Equa-
tion (5.11) can be understood from the sublattice structure along the x5 direction as follows.
Our model can continuously be deformed to a model without the sublattice difference, where the
Brillouin zone is extended from {(ky, ko, k3)| — 7 < k; < 7w} to {(k1, ko, ks)| — 7 < ky, ko, k3/2 <
7}. Equation (5.9) indicates that the “lower” Floquet bands correspond to the small-k3 region
—7 < kg < m, while the “higher” ones correspond to the folded region 7 < |k3| < 27.

We hereafter focus only on the “lower” Floquet bands and the unitary operator U(k) :=
UL(k). As we will see below, the Floquet-Bloch operator U(k) is a topologically nontrivial map
and features a single Weyl fermion within its quasienergy spectrum. It is worth mentioning that
such a nontrivial map is obtained from the smash product, which is a mathematical method of
constructing topologically nontrivial maps from a manifold like a torus [272]. See App. A.1 for
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the detail on the construction. A straightforward calculation shows that U(k) stays a constant
value —oy if k belongs to the boundary of the Brillouin zone T? := [, 7| and hence satisfies
the periodic boundary condition on T? (see App. A.2 for the derivation).

5.1.1 Topological number of the Floquet-Bloch operator

The Floquet-Bloch operator U(k) in Eq. (5.10) formally defines a map from T3, the Brillouin
zone, to U(n), which is a space of unitary operators with size n. Its topological characterization
is given by the three-dimensional winding number W on U(n):

dk <~
— ijk R.
W /247T2ij§k_16 Tr[RiR; Ry, (5.12)

where R; := U'(k)0,U(k) [273]. To examine the nontrivial topology of U(k), we parametrize
the element U in SU(2) in terms of u = (uy, us, uz, us) € S* as follows:

3
U= U4Uo+i(U101 +UQUQ+U30'3), Z(Uk)2 =1. (513)
k=0
If we parametrize U(k) as
U(k) = uy(k)og + i (uy(k)oy + us(k)og + us(k)os) , (5.14)

u(k) = (ui(k),uz(k),us(k),us(k)) defines a map from T3 to S3, where the explicit form of
u(k) is given by

ui (k) = —sin (k1) cos?® (£2) cos? (%) ;
us(k) = — cos? (&) sin(ky) cos (%) + L sin(ky) cos? (£) sin(k3);
. . i 2 (K1) o2 (b (5.15)
us(k) = —3 sin(ky) sin(ky) cos (%) — cos? (%) cos? (%) sin(k3);
us(k) = 2cos? (%) cos? (%) cos? () — 1

From Egs. (5.12) and (5.14), W is expressed as the three-dimensional winding number on
S3 273

4

dk Ou;(k) Ouy(k) 0w (k)
_ _— , 1
W / 27r2ijzkyl1€”’“ul(k) Ok, Ok, Ok; (5.16)

Substituting Eq. (5.15) into Eq. (5.16), we obtain the unit winding number:
W= 1. (5.17)

It is worth mentioning that the winding number (5.12) is a three-dimensional generalization
of the one-dimensional winding number (3.31), which is used for a topological characterization of
the Thouless pump [85]. In this sense, our model can be regarded as a three-dimensional analog
of the Thouless pump. While the existence of topologically nontrivial pumps characterized the
three-dimensional winding number (5.12) has already been discussed in a previous study [85],
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its physical consequence and concrete model had remained elusive.

Although U(k) has the nontrivial winding number W, the other Floquet-Bloch operator
UH (k) acting on the “higher” Floquet bands has the opposite winding number W = —1, and
hence the total winding number vanishes: W = 0. This is the same as what we have in
the Thouless pump in the Rice-Mele model (see Sec. 2.3). We have two Floquet-Bloch bands
corresponding to the particle and hole bands of an initial Hamiltonian, which we label as v = 1
and 2, respectively. Their one-dimensional winding numbers v, are written in terms of their
quasienergies €, (k) as follows:

[T dk Oey (k)
l/,y = /W%W (518)

When the Floquet-Bloch band v = 1 has a nontrivial winding number v,—;, a chiral current
flows under the pump when we start from the ground state of the initial Hamiltonian. On the
other hand, the winding number of the other Floquet-Bloch band should have the opposite
winding number v,—y = —v,—;. Thus, the current with the same strength flows in the opposite
direction under the pump if only the hole band is initially occupied. Therefore, the total
winding number vanishes: v,—s +v,,—; = 0. Similar things happen in static and anomalous TIs
and TSCs: edge states with the opposite topological numbers should appear in pairs on the
surfaces facing with each other [83,84,225]. One cannot isolate one of them with finite numbers
of bands.

5.2 Dispersion and dynamics without a magnetic field

5.2.1 Single Weyl fermion in the quasienergy spectrum
Let heg (k) be the effective Bloch Hamiltonian of U(k) defined by
U(k) =: exp [—iheg(k)T], (5.19)

with 7" being the period of the drive. In what follows, we set it to be unity: 7' = 1. Since U (k)
is an element of SU(2), its eigenvalues exp [+ie(k)T] satisfy

T [U(k)

cos [e(k)T] 5

= uy(k). (5.20)

Therefore, the quasienergy €(k) is obtained from Eq. (5.15) as

(k) = %cosl [2 cos® <%> cos® <%> cos® (%) — 1} : (5.21)

The quasienergy spectra along the loop connecting I' = (0,0,0), M = (0, 7, 7), and K = (7, 7, 7)
are shown in Fig. 5.2 (a). One can see that heg(k) vanishes only at the I' point, around which
the dispersion relation is linear. Since U(k) can be expanded around the I' point as

U(k) ~ oo — ik - o, (5.22)
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Figure 5.2: (a) Quasienergy spectra ¢(k) (blue) and —e(k) (red) of the Floquet-Bloch operator U (k)
in Eq. (5.10) along the loop connecting the points K = (w7, 7, 7), M = (0,7, 7), and I = (0,0,0)
within the Brillouin zone T3 = {(k1, ks, k3)| — 7 < kj < m} of the cubic lattice Lo. The quasienergy
spectra extend over —m < €(k) < m. (b) Pumped fermion charge AQ3 as a function of temperature
Tie for the spin-polarized thermal state (5.25) with the band filling n = 0.1, where Ep is the Fermi
energy. In the red (blue) curve, the initial state is fully polarized with spin-up (spin-down) fermions.
(¢) Pumped fermion charge AQ3 as a function of temperature Ti, and the band-filling n. The initial
state is the thermal state (5.25) polarized with spin-up. The pumped charge AQ3 becomes large at
low temperature and low band-filling.

from Eq. (5.10) together with the relation U]i(k;) ~ oy F z'leLk; for k ~ 0, the effective Hamil-
tonian can be written as
k-o
heff(k) ~ Tv (523)
which clearly indicates the presence of a single left-handed Weyl fermion at k = 0.

A few remarks are in order. First, the quasienergies are constant between the M and K
points, since we have U(k) = —oy on the boundary of T3. Secondly, our model should be
distinguished in topology from the previous proposals for realizing Floquet-Weyl semimetals
[64,274-282], where the Weyl points always appear in pairs within a single band in accordance
with the Nielsen-Ninomiya theorem. Finally, the presence and stability of the single Weyl
fermion is ensured from the nontrivial three-dimensional winding number (5.12) and hence not
restricted to our model. In fact, the stability of the single Weyl fermion is shown in another
model using an adiabatic pump [283].

5.2.2 Topological pump with spin-momentum locking

We now show that the dynamics under the driving protocol Ur reflects the spin-momentum
locking of Weyl fermions. The time evolution of the system is governed by the discrete-time
von-Neumann equation:

P47 = qutulTw, (5.24)

where p; is a many-body density matrix at time ¢. It is worth mentioning that we do not have
the notion of the “ground state” in a Floquet system because of the periodicity of quasienergies,
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and therefore there is no a priori guiding principle for choosing an initial state unlike in an
adiabatic pump. As an initial state py, we here take a thermal state of fermions on the lattice
Lcl

Po = Z fFD,a<q> |q7 a>0 <q7 a|0 ) (5'25)

which can easily be implemented in ultracold atomic gases. Here, |q, a), is the eigenstate with
momentum q (€ [—7r,7r]2 X [—2m, 27]) and spin o =1, |.:

lg.a)y =) e *|z) @ a), (5.26)

where |x)®|a) represents the localized state at site  with spin a. The population of eigenstates
is determined from the Fermi distribution function frp .(q):

feval) = {1 +exp (M)} N (5.27)

where T, and Er are the temperature and the Fermi energy, respectively, and

€0(q) == 2t;(1 — cosqr) + 2t5(1 — cos q2) + 2t3 [1 — cos (%)] (5.28)

is the dispersion relation of the tight-binding model on Lo with momentum g, with ¢; being
the hopping amplitude in the x; direction. We write the filling in the initial state as n:

Y qe fiD.a(@)
o — =ao JFDad)

S (5.29)

To analyze the dynamics under the pump, we calculate the pumped fermion charge AQ :=
(AQ1, AQy, AQ3), which is defined as the integral of the current J;(t) over one period:

Ji(t)=> Tr {pt%] : (5.31)
ki !

where p; and H(k,t) are the density matrix and the instantaneous Hamiltonian, respectively, at
time ¢. Then, AQ is shown to be written as the average of the velocity Ve, with respect to the
non-equilibrium distribution function f, (k) := (k,~| po |k,~) (see App. A.3 for the derivation):

1
AQ:=+ ; fo (k) Ve, (5.32)

where 7 is the label to distinguish the Floquet bands and N = 3, _ f, (k) is the particle number.
Note that the non-equilibrium distribution function f, (k) is determined from frp (k) and the
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overlap between |q, ), and |k, ) as follows:

k) = ZfFD,a(Q) ,Y1g. a) Z fep.a(k (k) 7, (5.33)

where u, (k) is the Floquet-Bloch state with momentum k and band . One can see from
Eq. (5.33) that one can effectively restrict oneself to the “lower” Floquet bands |k3| < 7 when
the band filling n satisfies n < 0.5 and the Fermi gas is degenerate around k = 0. To maximize
the population f,(k) in the “lower” Floquet bands, we assume ¢1,t, < t3 and henceforth set
tl = tQ = to and tg = 2t0

To analyze the effect of the Weyl point kK = 0, we first consider the low-temperature and
small band-filling case, where one can analytically calculate AQ. In this case, the initial state
has a localized population near the Weyl point. The quasienergies e, and the corresponding
Floquet-Bloch states |u,(k)) are approximated near k = 0 as

cos (0, /2) e 0%
(k) = [k, iy (k) = <9/2>) );

in (6y/2
el 50
sin (0/2) e
— k = — k, = k - )
rmalk) = Ikl o) = (MU0 )
where 0 and ¢y, are the polar and azimuth angles of the unit vector k/|k|:
w = (sin 0 cos ¢y, sin O sin @y, cos b,). (5.35)
Then, we have
Z |uy(K)) Ve, (u (k)] ~ k(k - ), (5.36)

where the pumped charge AQ is calculated to be

ZfFDa (alk(k - o)|a) =

(5.37)

Here, >, g denotes the sum over the Fermi sphere and Sy := Y frp.o(k) (a|o|a) is the spin
polarization at momentum k. Thus, AQ is the average of E(E - Sk) over the Fermi sphere.
For a spin-polarized initial state with spin state |a), Sk is parallel to (a|o|a). Therefore,
(ic\ - Sk) is maximized when k | (a]o|a), which gives AQ || («|o|a). Thus, the pumped charge
and hence the current flow parallel to the spin polarization, which is a manifestation of the
spin-momentum locking of a Weyl fermion.

To support the above analytical argument, we numerically calculate AQ according to
Eq. (5.32) for various temperature Ti, and the band filling n. We assume that the spin is
initially polarized in the S3 direction and calculate the pumped fermion charge AQ3 along the
x3 direction. In all the choices of the parameters, we confirm that the pumped charges AQ; and
AQ)s in the other directions vanish. In Fig. 5.2 (b), we plot AQj3 as a function of temperature
Tie for the small band filling n = 0.1. In the red (blue) curve, the initial state is fully polarized
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with spin-up (spin-down). Depending on the direction of the spin polarization, the current
with the same magnitude flows in the opposite, which is consistent with the above analytical
argument. The pumped charge AQ3 saturates in the low-temperature limit and survives even
at high temperatures Ti. < Er. In Fig. 5.2 (c), we present the temperature and the band-filling
dependence of AQs for an initial state polarized with spin-up. In a wide parameter region, AQ3
takes a positive value, which results from the effect of the spin-momentum locking of the Weyl

fermion.

5.3 Floquet chiral magnetic effect

5.3.1 Dispersion: chiral fermion under a magnetic field

When a magnetic field is applied, a Weyl fermion features chiral transport along the applied
magnetic field, which is a phenomenon known as the CME [92,93]. A magnetic field can be
introduced in our model through the replacement of 245" in Eq. (5.10) with U5 U, (see Fig. 5.1
(c)), where U, := exp(—i2m¢x1x2) is the time-evolution operator induced by a sudden switch-on
and -off of a quadrupole potential [191,284]. Since we have

UIV5 (ko )Uy = V5t (ko — 2m¢y),  UTUS (ko)Uy = Uy (ko — 2m¢m1), (5.38)
the effective Hamiltonian near k = 0 is given by
het = (k+ A) - o, (5.39)

with A = (0, —2w¢x1, 0) being the vector potential of a uniform magnetic field B = (0,0, —27¢)
in the Landau gauge. Equation (5.39) describes a Weyl fermion under the magnetic field of
strength B; = 27¢ along the (—z) direction.

To determine the quasienergy spectra, we first derive a Floquet analog of the Aubry-Andrei-
Harper model as we derive the Harper Hamiltonian from the two-dimensional Hamiltonian of
electrons under a magnetic field [285,286]. Let Ly be the number of sites along the x; direction.
The partial Fourier transform of UJL{SEL{(] and Uit in the zo- and 3-axes are given by

L]_ Ll
Uty =3 S & Us (ks — 2mon ), Ur=3 ) (ajclﬂpfam +et Pml) . (5.40)

kg,kg r1=1 k:g,kg r1=1

where ¢, := ¢z, g,k 1S the annihilation operator of the fermion at site z; with fixed momenta

ko and k3. Then, defining U*(x1) as U*(z;) := U}Zg(k’g)UZi(kQ — 21¢w1)U; 5(ks), we obtain

Uy UTUS UL s =) Z &t U (21)E,,, (5.41)
kQ k3 1= 1
Up = Uy Uy UTUs U UTU UTUS UL =2 U (s, is), (5.42)

ko,ks3
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where the overall Floquet-Bloch operator U’(ks, k3) is defined in Eq. (5.42) and given by

Ly
U'(ky ks) = ) <aj“+lalézl + &l o, + 611,112_16931) : (5.43)
r1=1
Uy = PfUi(l’l + 1)P1+U+(ZL‘1),
0 Pl_Ui(ZL'l—{—l)Pl—'—UJr(l'l)—|—P1—i_(77(93'1)P1_U+($1), (544)
U_1 = pl_U_(.ﬁL'l)Pl_U+(l'1)

I

However, the unitary operator U’(ks, k3) with nonzero ¢ does not satisfy the periodic bound-
ary condition along the kj direction, i.e, U'(ky,m) # U’(ke,—m), because the “lower” and
“higher” Floquet bands are coupled through the quadrupole fields. To completely decouple
them even in the presence of the quadrupole fields, we introduce the additional time evolution
U, with duration 7, under a static Hamiltonian H, defined by

H, = J, Z(z’cmr%acw + h.c.), (5.45)

which can be implemented by laser-assisted hopping [192]. By tuning 2J,7, = 7¢/2, we obtain
the whole time-evolution operator U(ks, k3) for the “lower” Floquet bands:

Ul(ka, k) = Ug(ks)U' (k2 ks), (5.46)

where Us(ks) := exp [—i(7¢/2) sin(k3/2)] is the Floquet-Bloch operator acting on the “lower”
Floquet bands. Through a straightforward calculation, we can show that U(ks, k3) satisfies
the periodic boundary condition: U(ky, 7) = U(ky, —7). The unitary operator U (kq, k3) gives
a Floquet analog of the Aubry-Andrei-Harper model [285,286] with two parameters ko and
ks. When the periodic boundary condition is imposed in the z; direction, a change in the
momentum ko — ko + Ak is compensated for by a shift of the position x; — z1 + Ak/(27¢)
along the x; direction, and therefore the spectrum of U(ky, k3) is independent of k.

Figures 5.3 (a) and (b) show the quasienergy spectra of U(0, k3) for ¢ = 0 and ¢ = 1/20, re-
spectively, where the color of the points represents the spin polarization S3 := (uq(ks)|o3|ua(ks3))
of eigenstate |u,(k3)). The flux ¢ opens the Landau gap with size 2wy, := 2v/2B, ~ 1.6 near
the Weyl point k3 = 0, and a spin-polarized chiral fermion emerges inside the gap. The energy
spectrum of the Weyl Hamiltonian (5.39) under the magnetic field is given by

VK3 4+ nw? n > 0;

€n(ks) = < k3 n=0; (5.47)

— k2 +|nlw? n<O.

Figure 5.3 (c) shows an enlarged spectrum near the Weyl point at k3 = 0 for ¢ = 1/20, where
we can see good agreement between the numerical result (points) and the analytical one (5.47)
(black dashed curves).
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Figure 5.3: (a), (b) Quasienergy spectra of U(0, k3) with flux (a) ¢ = 0 and (b) ¢ = 1/20, where
the color of the points represents the expectation value S3 of o3 for each eigenstate. (¢) Quasienergy
spectrum with ¢ = 1/20 near the Weyl point at k3 = 0. The dashed curves show the dispersion (5.47)
of the Weyl Hamiltonian (5.39) under a magnetic field.

5.3.2 Chiral transport along the magnetic field

Because of the presence the chiral dispersion, a spin-polarized wave packet moves in the direction
opposite to the applied magnetic field under the drive, which is a Floquet realization of the
CME. To see this, we calculate the pumped fermion charge of a degenerate Fermi gas with a
thermal initial state (5.25). Let us write the eigenstate of U (ky, k3) as |ks, ko, b), with b being
the label of Landau levels. The time evolution is governed by the discrete-time von Neumann
equation py 1 = L{FptL{} and the pumped fermion charge AQ)3 antiparallel to the magnetic field
is defined by

AQ Z f aﬁb Zkg,b fﬂ-ﬂ dz’;- fkg, k3)ak3€b
- hatl 8/@ Do [ B8 frpn(ks)

k27k3, T 2T

(5.48)

where fi, »(ks) := (ks, k2, b| po |k3, k2, b) is the non-equilibrium distribution function. One can
see from Eq. (5.48) that AQs is the sum of the weighted average of the winding-number density
Oks€p. Since the magnetic field is applied in the (—z) direction: B := (0,0, —27¢), we expect a
net pumped charge along the (+z) direction starting from an unpolarized spin state.

Figure 5.4 (a) shows the pumped fermion charge AQ3; as a function of temperature T,
with the small band filling n = 0.1 and flux ¢ = 1/10. The initial states are chosen as a
fully polarized state with spin-up (red solid curve), that with spin-down (blue solid curve),
or an unpolarized state with an equal mixture of the spin states (purple solid curve). For
reference, we present the same calculation but without a magnetic field (red, blue, and purple
dashed curves). For a wide range of temperature, the pumped charge of the down-spin state is
suppressed because of the Landau gap, while it is enhanced for the up-spin state owing to the
gapless chiral dispersion € o< k3. As a result, the net pumped charge AQ3 for the unpolarized
state takes a positive value in the presence of a magnetic field (purple solid curve) while it
vanishes without a magnetic filed (purple dashed curve). Figure 5.4 (b) shows the temperature
and the band-filling dependence of AQ3 with flux ¢ = 1/10 for an unpolarized initial state. In
the entire parameter region, AQ)3 takes a positive value, which is a manifestation of the chiral
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Figure 5.4: (a) Pumped fermion charge AQs antiparallel to the magnetic field as a function of
temperature Tt with the small band filling n = 0.1 and flux ¢ = 1/10, where EF is the Fermi energy.
The red, blue, and purple solid curves correspond to the thermal state polarized with spin-up, that
with spin-down, and the unpolarized initial states, respectively. The dashed curves show AQs for
the same initial states without a magnetic field. (b) Pumped fermion charge AQ3 as a function of
temperature Tt and the band filling n with the fixed flux ¢ = 1/10. The initial state is an unpolarized
state. (c) Pumped fermion charge AQ3 as a function of temperature Tie for various values of flux ¢.
The band filling is fixed as n = 0.1 and the initial state is an unpolarized state. (d) Pumped fermion
charge AQ3 as a function of flux ¢. The initial state is an unpolarized state and the temperature is
fixed to be zero. The red (blue) points correspond to the band filling n = 0.1 (n = 0.5) and the green
dashed line shows the analytical expression AQs = ¢/2 in Eq. (5.51).

transport of the CME. In Fig. 5.4 (c¢), we plot the temperature dependence of AQ3 for several
values of flux ¢ for the fixed band filling n = 0.1. The net pumped charge becomes larger for
larger ¢.

In Fig. 5.4 (d), we present the zero-temperature pumped fermion charge for an unpolarized
initial state. The band filling is fixed at n = 0.1 (n = 0.5) for the red (blue) points. At
half-filling n = 0.5, AQj is close to ¢/2 (green dashed line), which actually has the topological
origin explained as follows. In the limit t3 > 1, t5, only the “lower” Floquet band is occupied at
half-filling n = 0.5 and moreover the distribution frp (k) is uniform at the zero temperature.
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Then, the non-equilibrium distribution function fj, ;(k3) also takes a constant value:

kab ks ZfFDa k3,k2,b|q7 2 = Z | <k3,]€2,b|q704> ’2 = <k3,k2,b’k3,/€2;b> =1
(5.49)

Therefore, AQ3 in Eq. (5.48) reduces to the sum of the one-dimensional winding number over
all the bands divided by the number of bands:

dks
Zkz b fﬂn ﬁasz;, . Zkg,b Vp

Zk‘g,b 1 Zk‘g,b 1

For each ks, we have the (2L;)-Landau bands and the (¢L;)-chiral bands through the magnetic
flux ¢. Each chiral band gives the winding number v, = 41 and hence we have

AQs = 2 _ o (5.51)

Dok, (2L1) 2

We emphasize that this quantized pumped charge vanishes in usual Floquet-Weyl semimetals
obtained with topologically trivial U(k) because left- and right-handed Weyl fermions appear
with equal numbers within a single band in accordance with the Nielsen-Ninomiya theorem.
The quasienergy band in our setup, in contrast, hosts a single-chirality Weyl fermion without
a partner of opposite chirality within a single band, enabling us to realize the “maximally
imbalanced” population where only one chiral component is occupied.

AQs =

(5.50)

5.4 Experimental implementation

With high scalability and controllability [287], ultracold atomic gases are excellent candidates
for implementing the Floquet CME. The crucial ingredients are the spin-selective Thouless
pumps Z/{i and Z/lhig, which can be realized by a spin-dependent optical lattice [288-292] using
8TRb or by laser-assisted tunneling [89,293] using '™Yb. In both cases, the unitary operators U,
and U, can be implemented by a sudden switch-on and -off of a quadrupole potential [191, 284]
and the laser-assisted hopping [192], respectively.

5.4.1 Setup with ¥ Rb

Rubidium is the most-used atomic species in quantum simulation based on ultracold atomic gas.
The spin-dependent transport using spin-dependent optical lattices have already been realized
with 8Rb [291,292]. The two spin states |[1) and |]) are chosen as [1) = |F =2,mp = —2)
and |}) = |F' = 1,mp = —1). Consider a three-dimensional optical lattice produced by three
orthogonal laser beams and their retroreflected ones. To suppress the natural hopping J, we
apply an optical field gradient with a slope A, which is sufficiently small compared with the
lattice depth V4 but larger than J [35,37]. The three pairs of counterpropagating plane waves
are all linearly polarized, and we write the angle between the polarization vectors e{ 4+ and eﬁ’j_
of the beams along the x; axis as 0y, that along the x5 axis as 65, and that along the x3 axis
as 3. Those angles are dynamically controlled by electro-optical modulators by rotating the
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polarization vector of the retroreflected laser beams. Then, the wave vectors k;, (i = 1,2,3
and a = +,—) and the polarization vectors e, (i = 1,2,3 and a = +,—) of the six laser
beams are given by

kil’:t = :I:kel, kgd: = :tkeg,, k?3’:|: = :|:/{363, (552)
+6 +0 +0
ejlo,ia =R <Tl) €2, eg,i =Ry (72) €3, eg,i =Ry (—23) €1, (5.53)

where R;(6) is the rotation matrix around the z; axis through angle 6 (see Figs. 5.5 (a), (b),
and (c)). Then, the created optical potential U,(x) at the position x is given by

Up(x) = us| [€”(x)]" - €7 (x)|oo + uyBeg - 0, (5.54)

B =ileP(x)]" x e'(x), (5.55)

e’(x) = Z Z €; o exp(ikiq - T + ¢;), (5.56)
i=1,2,3 a=+

where ug and u, are the scalar potential and the vector potential, respectively [192]. Here, ¢;
is the phase of an incoming wave along the z; axis, which is phase-locked and controlled by
an additional electro-optical modulator. We first consider the spin transport along the z;-axis
through the changes of #; and ¢,. Suppose us; > u, > 0 and we initially set 6, =60, =03 =0
and ¢1 = ¢y = ¢3 = m. In this case, the atoms are trapped at @ = aja(m1, mo, m3) € Lo, where
a1ay = 7/k is the lattice constant. As we change (01, ¢;) from (0, 7) to (7, 27), atoms with spin
states 0; = 1 are displaced by one lattice site in the positive x; direction, while those with
spin states o1 = —1 are not, realizing spin-selective transport of atoms with o; = 1. For the
parameter change of (61, ¢1) from (0, 7) to (m,0), atoms with spin states o3 = —1 are displaced
by one lattice site in the negative x; direction, while those with spin states o7 = 1 are not,
realizing a spin-selective transport of atoms with ¢y = —1. The spin-selective transport along
the zo- and z3-directions can be achieved by changing (0o, ¢2) and (03, ¢3), respectively.

Although ¥ Rb is a boson and hence the observed pumped charge AQs is different from
that shown in Sec. 5.2, we still expect a nonzero AQ)3 originating from the chiral dispersion in
the quasienergy in Fig. 5.3 (b). Since the pumped charge AQ)s is largely determined from the
dispersion near the Weyl point k = 0, a Bose-Einstein condensate of 8"Rb, whose momentum
distribution are localized near k = 0, are sufficient to observe the spin-dependent transport
and the Floquet CME. In Fig. 5.5 (d), we calculate AQ3 (blue points), where the initial state
is taken as Bose-Einstein condensates at the momentum k& = 0. When the temperature is
low enough, the initial-state density matrix pg is given by the mixture of the Bose-Einstein
condensates with spin up and down with momentum k = 0:

po= > |k=0,a)(k=0ql. (5.57)
a=",{

As shown as the blue points in Fig. 5.5 (d), AQ3 exhibits the power-law behavior AQ3 o /¢
for a small ¢ (green dashed curve).

To observe the Floquet CME, we measure the shift X in the center of mass within one cycle,
which coincides with the pumped charge AQ under a semiclassical approximation. For the
observation, the timescale of the pump 7,ump should be made much smaller than the decoherence
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Figure 5.5: (a), (b), (c) Laser configurations of the spin-selective pumps (a) U, (b) U3, and (c) Z/{,f?),
where k; , and efa (1 =1,2,3 and o = +, —) are the wave vectors and the polarization vectors of the
six linearly polari,zed laser beams forming an optical lattice. The red and black arrows represent the
wave vectors of the counterpropagating laser beams and green arrows are their polarization directions,
and 0; denotes the angle between eﬁ 4 and eﬁ _, and ¢; denotes the locked phase of the incoming wave
along the z; axis. (d) Pumped fermion charge AQ3 for a bosonic atomic gas, where the initial state

is taken as a Bose-Einstein condensate at the momentum k = 0.

time 74 of the spin. The timescale of the pump T,ump is determined from the adiabaticity
condition for the lattice sliding, i.e., avoiding excitations to higher Bloch bands. This condition
is satisfied for T,ump > 40 psec for the lattice depth Vj = 30E,, with E, being the recoil
energy [291,292]. The dominant mechanism for decoherence may be the on-site interaction
between particles [291], by which 74, = 200 psec for the lattice depth Vy = 25E, with E,
being the recoil energy of 8Rb with wavelength A = 785 nm. When the single spin-selective
Thouless pump operates within 40 psec, atoms experience the interaction energy during the
time 745 = 40 psec X (w/A) with w being the size of a wave packet localized at a site. Then,
the total time 7440 during which the atoms experience the interaction is estimated to be
Tatot = STas- oince (w/A) ~ /Vy/E, for a deep optical lattice and the interaction energy
o Td;l is proportional to (V4/ ET)% [287], Tae/Tator = 8 for the lattice depth Vp/E, = 20. In this
case, the optical field gradient with the on-site energy difference A with tens of kHz is sufficient
to suppress the natural hopping J = 0.02FE, ~ kHz. Thus, 8 cycles of the pumps can operate,
which is sufficient to observe the displacement of the center of mass shown in Fig. 5.4 (d).
Another limitation is the excitation to higher Bloch bands through a quadrupole field pulse.
The weight wey. of the excited states is given by weye < ¢(w/A)? [191] and hence it is negligible
for a weak magnetic flux and a deep optical lattice.

5.4.2 Setup with *Yb

Motivated by the recent experiments on realizing synthetic gauge fields [219, 294] and the
proposals for implementing helical hopping [89,293], we consider yet another implementation
scheme using fermionic alkaline-earth-like atoms "¥Yb and a laser-assisted hopping using the
excited level 3P;. For the implementation, we rewrite U(k) as the combination of helical pumps
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as follows:
~ ~ [ ka\ ~ ~ (ks ~ ~ [(k3\ ~ ~ (k
(k) = Oulk) s (5 ) kol () Gutka () BB (). 559
where Ij}(k) .= e~i5" is the helical pump. The two spin states are taken as |mp = —5/2) and

|mp = —1/2) in the ground state manifold 'Sy with FF = I = 5/2. The six-fold degeneracy
between the spin states is lifted by a Zeeman splitting Ap 3 induced by a uniform magnetic
field in the z3 direction. The natural hopping is suppressed by a magnetic field gradient
0Bs = A1y + Agwg + Aszxs, where Ay, Ay, and Ajg are the on-site energy difference along the
x1, g, and x3 directions, respectively. For a lattice depth Vi = 20E,., where the natural hopping
J is given by J = 0.02E,, the Zeeman splitting Ap , of the order of tens of kHz is sufficient
for the suppression. A spin-flip hopping along the z3 direction can be induced by Raman laser
beams resonant to the energy difference Az [293]. The helical pump can be implemented by
this spin-flip hopping followed by the 7 pulse [89]. The helical hoppings (7172(7@2) in the other
two directions can be implemented by a combination of the /2 pulses and the helical pump
because we have

s iTo9 iToq]

52(73(161)6 4, (72(1{32) :em%ﬁg(kg)e_ 4 . (559)

[71(]{?1) =e

One can selectively induce these three-directional hoppings by making Ay, Ao, and Aj different
from each other and three pairs of Raman laser beams. This can be done also by a pair of
Raman laser beams and dynamically changing A;, Ay, and As.

To observe the Floquet CME, the timescale of the pump 7,ump should be made much smaller
than the lifetime 7 of the Raman induced hopping. The timescale of a Raman-induced
hopping €2 on a lattice system is of the order of kHz [219] when the one-photon detuning § of
the Raman process is taken to be of the order of 1 GHz [293,294]. In this case, the single pump
operates within one millisecond, leading to tens of millisecond for one cycle of the pump. The
lifetime 7, ~ d/(72) resulting from heating with the Raman process is of the order of 1 sec
for the lifetime of v = 850 nsec [295], which is much longer than an alkali-metal system [294].
Therefore, at least a few tens of pumps can operate within the lifetime, which is sufficient for
the observation of the Floquet CME.

5.5 Classification of gapless Floquet spectra

The emergence of a single Weyl fermion is a consequence of the nontrivial topology of the
Floquet-Bloch operator U(k). This phenomenon is generalized to a wider range of lattice-
prohibited band structures under certain symmetries. In general, topologically nontrivial
Floquet-Bloch operators as unitary maps from the Brillouin zone possess gapless quasienergy
spectra, since a gapped Floquet operator can continuously be deformed into a trivial unitary,
e.g., U(k) = 1y [18,296], where 1y is the identity matrix with size N. Here, N denotes the
number of bands. Let us take a Floquet-Bloch operator

U(k) := T; exp [—z /0 ' dth(k:,t)} e U(N) (5.60)
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given by some unitary matrix. We consider three symmetries in the AZ classes [101,102], i.e.
the time-reversal symmetry ©, the particle-hole symmetry C', and the chiral symmetry I':

Oh(k,t)0 ' = h(—k, T —t), Ch(k,t)C ' = —h(—k,t), Thk,t)[ ' =—h(k,T —1).
(5.61)

In terms of the Floquet-Bloch operators, these symmetries are expressed as follows [18]:
QU0 =U'(-k), CUK)C'=U(-k), TUEI ' =U'(k), (5.62)
which can be rewritten as the symmetries of the effective Bloch Hamiltonian heg(k):
Oher(k)O™" = he(—k), Cheg(k)'C = —heg(—k), Theg(k)L™" = —heg(k).  (5.63)

We allow any continuous deformation of Floquet-Bloch operators which respect the symmetry
of the system, and classify their stable equivalence classes according to the K-theory [102,103].
Note that we do not assume energy gaps of the quasienergy band.

We emphasize that the symmetry restrictions (5.62) on the Floquet-Bloch operator is dif-
ferent from those on adiabatic pumps. As we can see from Eqgs. (2.35) and (5.63), the AZ
symmetries are imposed on the instantaneous Bloch Hamiltonian h(k,t) in adiabatic pumps
while those are imposed on the effective Bloch Hamiltonian hes (k) of the Floquet-Bloch oper-
ators in our setup.

5.5.1 Floquet-Bloch operators without chiral symmetry

The classification of the unitary matrices can be performed in a manner similar to that of
anomalous edge states in Sec. 3.2 [146,297]. We construct from the Floquet-Bloch operator
U(k) a Hermitian matrix

Hy(k) = (UT(zk) v g’”) o @U (k) + 0. @ U(K), (5.64)

where ® denotes the tensor product. Since we have [Hy (k)] = 1y, Hy(k) is a gapped
Hamiltonian with flat bands. This Hamiltonian has the following CS:

Do Hy(k)T; ' = —Hy(k), (5.65)
where the CS I's is defined by
1 0
Iy = ( (f)V _1N) =03 ® 1y. (5.66)

Therefore, the classification of class-A (i.e., no symmetry) Floquet-Bloch operators in d di-
mensions is equivalent to that of class-AIll topological insulators in d dimensions. When the
Floquet operator has the TRS OU(k)©~! = UT(—k) with eg := ©% = %1, the Hamiltonian
Hy (k) has the following symmetries

©.Hy(k)O1' = Hy(—k), ©2Hy(k)O;' = —Hy(—k), (5.67)
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where

0 © 0 —© :
@1 = <® O) =0 (29 @’ @2 = €g (@ 0 ) = —1€g09 & O. (568)
These symmetries are regarded as effective TRS and PHS of Hy (k). Since ©2 = eg and
©2 = —cp, the classification of class-AI (class-AIl) Floquet-Bloch operators in d dimensions

corresponds to that of class-CI (class-DIII) topological superconductors in the same dimension-
ality. Similarly, when U(k) has the PHS CU(k)C~! = U(—k) with ¢c := C? = +1, we can
define

C 0 c 0
Cl = (0 C) =09 C, OQ = 6001F2 = €C (0 —O) = €003 X O, (569)
so that
C\Hy(k)Ct = Hy(—k), CoHy(k)Cyt = —Hy(—k), (5.70)

with O = C% = ec. Therefore, the classification of class-D (class-C) Floquet-Bloch operators
in d dimensions corresponds to that of class-BDI (class-CII) topological superconductors in the
same dimensionality.

5.5.2 Floquet-Bloch operators with chiral symmetry

Next, we consider the cases where the Floquet-Bloch operator has the CS TU (k)I'™! = UT(k).
Then, the Hamiltonian Hy (k) satisfies

I Hy (k)T = —Hy(k), (5.71)

where I'; is another CS of the Hamiltonian:

Iy = (19 _OF> = —ioy ®T. (5.72)

By combining the two chiral symmetries (5.65) and (5.71), we have

[Ty Hy (k) (TiTy) ™t = Hy(k), (5.73)

and therefore the Hamiltonian Hy (k) can be block-diagonalized simultaneously with T';T'y. For
the unitary matrix V' defined by

1 I =T
V_E(ljv 1y >, (5.74)

we obtain the block-diagonalized Hamiltonian and I'1I's:

i _ [ TU(k) 0 _
ViHy (k)V = ( 0 rU) ) =7 U (K), (5.75)
VI DV = ~* Iy 0 = v*03Q 1y, (5.76)
0 —1y
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where I'y o have off-diagonal forms in this basis:
VI = —iv'o @ 1y, VT,V = -0, ® 1y. (5.77)

When we assume that © and C' commute with each other: [©,C] = 0, ©;5 and ()5 are
expressed in the new basis as follows:

VIO,V = eo(03Rey — oolmy) @ C, VIO,V = —i(0yRey + o3Imy) ® C, (5.78)
1 2 1—~2 -1 2 1 2
VTC'1V = (03 —;7 “+ 04 27 ) X C, VTCQV = (0’0 ;7 — 01 —;7 ) X C. (579)

Thus, the classification of Hy; (k) reduces to that of A(k) := yI'U(k). Note that the Hermiticity
of A(k) follows from the CS of U(k). If the Floquet-Bloch operator has the CS only (i.e., class
AIIT), A(k) is a Hamiltonian without symmetry. Therefore, the classification of class-AIIl
Floquet-Bloch operators in d dimensions reduces to that of class-A topological insulators in the
same dimensionality. For the remaining classes, where the Floquet-Bloch operators have TRS,
PHS, and CS, we identify the symmetry of A(k) by using 7? = I'> = egec. When 72 = 1, we
find from Egs. (5.78) and (5.79) that ©, and C; are symmetries of A(k) while ©5 and C; are
not because ©, and C5 have off-diagonal forms. The symmetry conditions for ©; and C are
expressed as

CA(k)C™! = A(—k), (5.80)

and this is the TRS of A(k). Therefore, the classification of class-BDI (class-CII) Floquet-Bloch
operators in d dimensions is mapped to that of d-dimensional class-Al (class-All) topological
insulators. When 7?2 = —1, we find from Egs. (5.78) and (5.79) that ©5 and Cy are symmetries
of A(k) while ©; and C] are not because ©; and C; have off-diagonal forms. The symmetry
conditions for ©, and C5 are expressed as

CA(k)C™! = —A(—k), (5.81)

which is the PHS of A(k). Thus we find that the classification of class-DIII (class-CI) Floquet-
Bloch operators in d dimensions is equivalent to that of class-D (class-C) topological supercon-
ductors in the same dimensionality.

5.5.3 Periodic table for Floquet-Bloch operators

Let KgP(s,d) be the K-group of the Floquet-Bloch operators with dimensionality d and the
AZ symmetry class (F,s). From the above discussion, we obtain the following results on the
classification of Floquet-Bloch operators:

KgB(s,d) = Kp(s — 1,d) = Kg(s,d + 1), (5.82)

where Kp(s,d) is the K-group of static TIs and TSCs with dimensionality d and the AZ sym-
metry class (F, s). In the second equality in Eq. (5.82), we use the K-group isomorphism (2.22).
Equation (5.82) shows the equivalence between the class of gapless bulk states in Floquet sys-
tems and that of surface gapless states of static TIs and TSCs. The final results are summarized
in Table 5.1. These results strongly suggest that the gapless surface states of TIs and TSCs,
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Table 5.1: Tenfold-way topological classification of Floquet-Bloch operators for spatial dimensionality
d = 0,1,---,7. The notations are the same as in Tab. 2.1. The Floquet single Weyl fermion in
Eq. (5.10) corresponds to class A in d = 3.

s cass[[ © C T|d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7
0 A Jo o0 o] 0 Z 0 Z 0 Z 0 Z
1 AT 0 0 1| Z 0 Z 0 Z 0 Z 0
0 AL |1 0 0] 0 0 0 27 0 Lo I Z
1 BDI|| 1 1 1| Z 0 0 0 27 0 Ly Ly
2 D |0 1 0| Z Z 0 0 0 2Z 0 Zs
3 DIL| -1 1 1| Zy Zs Z 0 0 0 27 0
4 AIl||-1 0 0| O Ly Ly Z 0 0 0 27
5 CII | -1 -1 1| 2% 0 Zy Iy Z 0 0 0
6 C |0 -1 0] 0 27 0 Zy 7y Z 0 0
7 CI| 1 -1 1| 0 0 27 0 Zy 7o Z 0

which cannot have pure lattice realization without bulk, can be realized in bulk quasienergy
spectra of periodically driven lattice systems. For example, the single Weyl fermion presented
in Sec. 5.1 corresponds to a surface state of a four-dimensional topological insulator [128].
The correspondence with gapless surface states of TIs and TSCs can be understood from the
symmetry constraints (5.63) on the effective Hamiltonian hes (k). For simplicity, consider the
continuum Dirac Hamiltonian heg(k) = k-, where av is a set of anticommuting matrices. The
stability condition of its gapless point k = 0 is the same as that of surface states of TIs and
TSCs with the same AZ symmetry class and dimensionality, leading to the same classification
table. Using the periodicity of the quasienergy, this continuum Dirac Hamiltonian can be ex-
trapolated to the boundary of the Brillouin zone such that the periodicity of the Brillouin zone
is satisfied.

Some remarks are in order. To prove the correspondence between the gapless surface states
of TIs and TSCs and the gapless spectra of Floquet-Bloch operators, we must find the time-
dependent Hamiltonian that satisfies Eq. (5.61) in each symmetry class. While the classification
in this section is performed by considering the symmetry conditions (5.62) for Floquet-Bloch
operators, Eq. (5.62) does not necessary mean that Eq. (5.61) is satisfied. Therefore, the
presence of concrete models are, in general, a nontrivial problem. In App. A.4, we show the
above correspondence by constructing concrete models in all the symmetry classes and spatial
dimensionalities up to three.

We note that the classification of gapless Floquet states in d dimensions coincides with
that of anomalous edge (or surface) states of Floquet TIs and TSCs given by unitary loops
in (d 4+ 1) dimensions [146]. Indeed, it has been discussed that the gapless Floquet spectrum
can be realized as the edge state of the anomalous TIs and TSCs [225]. We can interpret
our result to be a generalization of this correspondence to all the Altland-Zirnbauer classes.
The correspondence between the gapless topological singularities and topologically nontrivial
unitaries has been discussed in the context of anomalous TIs and TSCs [146, 296].

Finally, we emphasize that the obtained classification is different from that of adiabatic
pump in Sec. 2.3 (see Table 2.2 and Table 5.1). In fact, the K group K (s,d) of adiabatic
pumps with dimensionality d and symmetry class (I, s) is related with that of the Floquet-Bloch
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operators as follows:
KiB(s,d) = K&¥(s —2,d). (5.83)

While this difference does not gives rise to any distinction for the complex class F = C because
of the Bott periodicity, i.e., KAF(s — 2,d) = KAF(s,d), it gives different topological number
for the real class F = R, which should lead to different transport phenomena. The difference
in Eq. (5.83) arises from the following two reasons. First, the imposed symmetries (2.35) and
(5.61) are different: while an instantaneous Bloch Hamiltonian h(k,t) has TRS, PHS, and
CS in adiabatic pumps, the effective Bloch Hamiltonian heg(k) has these symmetries in our
pump. Secondly, the adiabatic condition is not imposed on the topological pumps characterized
by Floquet-Bloch operators. To see this, consider the class D in one dimension, where only
the PHS is imposed. While the PHS gives the same symmetry constraint (see Egs. (2.35)
and (5.61)), adiabatic and non-adiabatic pumps have different topological numbers, Z, and Z,
respectively. The former corresponds to the fermion-parity pump [103] while the latter counts
the number of chiral Majorana fermions in its quasienergy spectra. Since the adiabaticity is no
longer imposed in a non-adiabatic pump, the Z, index is ill-defined.



Chapter 6

Floquet engineering of nonlinear
systems

As we have seen in Chapter 3, Floquet engineering has various applications in quantum systems.
The Floquet theorem and the high-frequency expansion (HFE) are commonly used techniques
there because they allow us to map non-equilibrium systems to effective static ones, thereby
greatly simplifying their analysis. It is therefore clearly important to extend these techniques
to classical systems, in particular, to develop a general framework for performing the HFE of
their equations of motion (EOMs). In fact, such a generalization potentially has a wide range
of applications because classical EOMs appear not only in classical systems, e.g., a Langevin
system in biology and chemistry [119], but also in quantum systems in symmetry-broken phases,
e.g., Bose-Einstein condensates described by the Gross-Pitaevskii (GP) equation [298,299].
Additionally, it is desirable to generalize it to including open classical systems because a coupling
with an environment plays an important role in preventing the system from heating up against
a persistent drive, as emphasized in the studies on open quantum systems [59,60,223,300-306].

However, the HFE of classical EOMs has so far been developed only for Hamilton systems
[117,198]. Although a heuristic approach based on the multi-scale perturbation analysis [248,
249] is found to be successful in specific examples [253, 254, 307-309], its calculation often
becomes involved, which is usually the case with the singular perturbation theory. This makes
the analysis of a general system difficult and little is known on the validity and convergence
property of this perturbative expansion. One difficulty in treating classical systems is that
the Floquet theorem can be applied only to linear differential equations like the Schrodinger
equation [27,30,31], while classical EOMs are, in general, nonlinear. Another difficulty arises
in an open classical system coupled to a thermal bath, where a thermal fluctuation arises in its
EOM as a stochastic variable. Its randomness breaks the exact periodicity of the EOM; thus
the Floquet theorem cannot be applied directly.

In this chapter, we develop the HFE for a general periodically driven classical system. Our
idea is simple and general: using a master equation rather than the EOM itself. Since the
master equation is linear in the probability distribution function and periodic with time, one
can safely apply the Floquet theorem and perform the HFE. The effective EOM is obtained
from the expanded master equation through the correspondence between an EOM and a master
equation. Our method is applicable not only to isolated systems but also to open systems
coupled to thermal reservoirs as far as they are described by stochastic differential equations.
Furthemore, it can be used to a Markov process on a discrete state space like the asymmetric

63
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simple exclusion process (ASEP) [310,311] and the abelian sandpile model [312,313]. Since the
HFE is performed in a manner parallel to a quantum system, one can systematically analyze the
higher-order terms and the convergence property of the FM HFE by adapting the techniques
developed in quantum systems [95,96]. These results are hard to obtain by the multi-scale
perturbation theory because of the complexity of the calculation. From these analyses, we find
that the FM HFE is, at least asymptotically, convergent for a high-frequency drive. Moreover,
for a non-chaotic few-body system and a generic many-body systems, the HFE is found to well
describe its steady state including a Floquet prethermal state of an isolated system and a non-
equilibrium steady state (NESS) of a driven dissipative system. To support these analytical
findings, we numerically test the validity of the HFE by two driven dissipative systems: (i)
a Kapitza pendulum with friction and (ii) a laser-irradiated magnet described by the sLLG
equation. Comparing the exact time-dependent EOMs and the effective EOMs obtained from
the vV HFE, we confirm that the latter well approximate the former not only for a short time
during an initial relaxation but also for a long time until their NESSs. This result is in stark
contrast to closed quantum systems where the truncated HFE fails to capture eventual heating
to infinite temperature [27,94-98]. Finally, we present an application to spintronics, where we
analyze a multiferroic spin chain irradiated by a circularly polarized laser. A spiral magnetic
order appears in the NESS through a laser-driven DM interaction.

6.1 High-frequency expansion of a classical equation of
motion

6.1.1 Equation of motion and master equation

Consider a classical system under a periodic drive with period T', which is described by a set
of classical variables ¢(t) := [¢1(t), d2(t), -+, dn(t)]. We assume that its EOM is given by a
stochastic differential equation [314]:

ilt) = filep(t),t] + Z 9is [P(1), ] hy (1), (6.1)

where h; is a Gaussian random variable with the Markovian nature (4.8). A Markov process on a
discrete state space is discussed at the end of this subsection. This equation is a generalization
of Eq. (4.7) in that the drift force f;(¢,t) and the diffusion matrix g;; (¢,t) become time-
periodic with period T f; (¢,t +T) = fi (¢,t) and g;; (¢, t +T) = gij (¢, t). For a classical
field ¢, = [Pr1(t), Pr2(t), -+, Pr N, (t)], its EOM is given by

Sral®) = Fra B0, 1)+ s [(0),1) (1), (62)

where r is the coordinate and Nj is the number of the internal degrees of freedom. We here
choose the Stratonovich prescription for the application to the sLLG equation in Sec. 6.4 though
a generalization to the other prescriptions is straightforward [314].

Equations (6.1) and (6.2) with a finite diffusion constant D > 0 are commonly used to
describe diffusive processes in nature, such as a Langevin motion [119] and the spin dynamics of
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a micromagnet [122]. When D = 0, Eq. (6.1) gives a deterministic equation: ¢>l(t) = fi[o(t),1],
which describes an open classical system at sufficiently low temperature or a closed classical
system including a Hamilton system. It is worth mentioning that Eq. (6.1) can describe even
quantum systems in symmetry-broken phases or the semiclassical limit. In the former case, ¢
and Eq. (6.1) are the order parameter and its equation, e.g., the GP equation [298,299] and the
Ginzburg-Landau equation [315], respectively. For the GP equation, the order parameter ¢ =
{tr}cas With d being the spatial dimensionality, represents the macroscopic wavefunction,
with its equation written into the form of Eq. (6.1) with D = 0:
\&

Ur
om + (p + 90‘¢T|2)¢r . (6.3)

Wy = —i
Here, m, p and g. are the mass of atoms, the chemical potential and the coupling constant,
respectively. An example of the latter case is the Dicke model in the semiclassical limit, which
describes two-level atoms coupled to a large number of photons in a cavity [316,317]. In this
limit, the system is described by the effective collective atomic pseudospin J := (J,, Jy, J.) (€
R3) and the coherent-state amplitude a (€ C) of photons. Its EOM is derived from the Ehrenfest
equation d(A)/dt = i([H, A]), which is given as follows:

J = (2X\Re(a),0,w,) x J, a=—i(w,a+ AJ,), (6.4)

where w,,w,, and A are the atomic frequency, the optical frequency, and the coupling constant
between the photons and atoms, respectively.

The master equation corresponding to Eq. (6.1) is given by

OP(p.t) 0 0>
— [Fi(p, ) P, t)] + 96,00,

ot O,
where F;(¢,t) and D;;(¢, t) are the drift field and the diffusion matrix, respectively, which are
defined as follows:

-Fz((ﬁ? t) = _fi(¢7 t) - ngl(¢7 t)%;zjt)v (66)

D;j(@,t) := Dgin(, t)g;r(, ). (6.7)

Equations (6.6) and (6.7) give the relation between an EOM and a master equation. We note
that the master equation (6.5) contains only up to the second-order derivative of ¢ because
the random variable h; is Markovian and Gaussian. In other words, if the master equation
contains higher-order derivative or becomes an integro-differential equation, the random noise
must be either non-Markovian or non-Gaussian [318-322]. We will comment on this issue again
in Sec. 6.1.2.

By introducing the vector fields f := (fi, fo,- -, fn) and h := (hy, ha, -+, hy), and the

matrix-valued function G := {gij}i\;:l, we can rewrite Eq. (6.1) in compact forms:

¢ = f(o.t) + G(¢,1)h(1). (6.8)

Similarly, if we introduce the vector field F := (Fy, Fo, -+, Fn) and the matrix-valued field
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Equation of motion of Floquet theorem
a periodically driven system High-frequency expansion
¢ = f(p,) + G(¢, t)h(t) x
— non-linear & aperiodic H
Step 1 l Effective equation of motion
¢ = fr(d) + Gp(P)h(D)

Master equation of
a periodically driven system

9;P = div[F(£)P] + div,[D(t)P] Step 3
— linear & periodic
| Step 2 Effective master equation
High-frequency expansion 0.P = div[FpP] + div,[DpP]

Figure 6.1: Procedure for performing the HFE of the classical EOM described by the stochastic
differential equation (6.1). In the first step, we turn to the master equation (6.5) corresponding to
Eq. (6.1), where we perform the HFE to obtain the effective master equation (6.24) in the second step.
Finally, in the third step, we find a stochastic differential equation corresponding to Eq. (6.24).

D= {Dij}%:p Eq. (6.5) can be rewritten in a compact form:

O, P(¢p,t) = div (FP) + divsy (DP), (6.9)

where the operator div, on a matrix D" = {D;;(¢)},; is defined by div,(D’) := (0°D};) [ (0hi09;).
Finally, we comment on a Markov process on a discrete space. Its master equation is written
in terms of the transition matrix Wy (¢) as follows:

dpa(t)
dt

= Wa(t)p(t), (6.10)

where p,(t) represents the probability of finding the system in state a at time t. Here, W (1)
expresses the transition from the state b to the state a and satisfies the periodicity We,(t+1) =
Wa(t). By introducing the vector p(t) := (p1,pa, - -+, py) and the matrix W := {Wab}i\’[bzl (N
is the number of the states), we can rewrite Eq. (6.10) as follows:

dp(t)

== = W(np(). (6.11)

6.1.2 High-frequency expansion of a master equation

As mentioned above, we cannot apply the Floquet theorem directly to classical EOMs because
the original equation (6.1) is neither linear with respect to ¢ nor time-periodic because of the
presence of the random variable h;(t). However, we can apply it to its master equation (6.5)
because it is linear with respect to P and time-periodic. Our strategy is summarized in Fig. 6.1.
The HFE of an EOM is performed via that of the corresponding master equation.

By introducing the FP operator £; defined by

L.(P) = div[F(t)P] + divs [D(t)P)], (6.12)
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we can regard Eq. (6.5) as the “Schrodinger equation” driven by the non-Hermitian time-
periodic “Hamiltonian” H(t) :=iL; [323]:

i0,P = H(t)P, (6.13)

where the probability distribution P plays the role of a wave function. In the case of a Markov
process on a discrete space (6.11), H(t) is related with the transition probability W (t) as
H(t) := iW(t). We can formally solve Eq. (6.13) as P(¢,t) = U(t,0)P(¢,t = 0), where
U (t2,t1) is the time evolution operator from ¢; to 5. From the Floquet-Lyapunov representation
theorem [30,31], U(t2,t1) can be written in terms of the effective Hamiltonian Hr and the kick
operators Gr(s) as follows [27,110]:

to )
Ul(ta, t1) := Trexp [—z/ H(t)dt} = U;(tg)e_z(tZ_tl)HFU;(tl) — eIr(t2)gltz=t)Lr o =Fr(t)
(6.14)

where we introduce the effective FP operator Lr := —iHp in the last equality. Note that the
Floquet-Lyapunov representation theorem itself does not require the Hermiticity of H(t) and
hence can be applied to the above non-Hermitian Schrodinger equation.

For a fast drive, we can formally expand the effective FP operator L and the kick operator
Gr in powers of w™! as follows:

LF_ZLF . Ge(t) ZgF ), (6.15)

where L0 = O(w™™) and GV (t) = O(w™). Let us expand £, and H(t) in their Fourier
harmonics as follows:

L= Lpe ™' H(t)=> Hye ™", (6.16)

where L,, = —iH,,. Then, by substituting £,, = —iH,, in the vV HFE in quantum systems in
Sec. 3.1, we obtain the HFEs of Lz and Gp(t). For example, the first three terms of ﬁﬁpm) and

those of g}’”) (t) are expressed to be

£ = —iHY = £, (6.17)
(1) . (1) . [E—maﬁm]
Ly =—iH, _ZZ—2mw : (6.18)
m##0
E—ma £07£ ]] [‘C—m'7 [‘Cm'—mVCm]]
E —zHF =1 Z{ + Z ETee——— , (6.19)
m7#0 m/#0,m
G0 (1) =0, (6.20)
Doy N Leme™! 21
t) ) Z o s (6 )

m#0
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imwt , i(m—m/)wt
g}(?) (t) — ’i2 Z { [£07 E—m]f + Z [[’m 7£—m] € } ) (622)

_ 2
= (mw) T 2m(m —m’)w
We note that the commutator [-, -] is interpreted as that between operators:

We further note that we have taken the convention fOT Gr(t)dt = 0 such that the effective FP
operator becomes time-independent. If we focus on the averaged dynamics ignoring the kick
operator Gr(t), the effective equation is given by the following static master equation:

OP =LpP~Y LYP, (6.24)

m=0

where myg is the truncation order. So far, we have focused only on the vV HFE. However, it
is straightforward to generalize our analysis to other expansions like the FM HFE [114], the
Brillouin-Wigner expansion [63], and the Floquet-Schriefer-Wolff transformation [74,77,78,324].
For example, for the FM HFE E%z = E%";z, the mth-order term E%n?o is given from
Egs. (3.19) and (3.20) as follows:

to+T
Ly = / dt L, (6.25)
to
m (=1)m=9-0,!(m — 6,)!
ﬁ%,tz) = Z

(m+1)?>m!T

oESm

to+T to+ta
></ dthm/ dty L, 1, (L, (L5, L1]]] for m>1,  (6.26)

to to

where L := L(t,3)).

To complete the procedure in Fig. 6.1, we must find an EOM whose master equation co-
incides with the truncated effective master equation obtained from the HFE (the step 3 in
Fig. 6.1). For a Markov process on a discrete space, this can always be performed. However,
this problem is, in general, nontrivial for a classical system described by a stochastic differ-
ential equation (6.1). If the effective master equation includes only up to the second-order
derivative terms 9?(D;; P)/(0¢;0¢;), we can find an EOM through Egs. (6.6) and (6.7). This
case includes several physically relevant situations, e.g., the cases where the diffusion is ab-
sent or time-independent. On the other hand, when the truncated HFE of a master equation
contains derivatives higher than the second-order (e.g., 9*(D;jxP)/(06:0¢;¢x)), the random
variable h; must be either non-Markovian or non-Gaussian [318-322]. It is unclear whether
one can construct a modified stochastic differential equation even in this case, though several
approximation schemes have been developed [261,325]. Finally, it is worth mentioning that an
emergent non-Markov nature in the effective generator can also appear in a quantum system:
the time evolution over one period of a time-periodic Lindblad equation is, in general, not
generated by a Markovian generator but a generator with a memory kernel [326].
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6.1.3 Deterministic system

We here consider the system without diffusions, i.e., D = 0 and h;(t) = 0. In this case, its
EOM ¢ = f(¢,t) can be regarded as a flow equation generated by f(¢,t). Let f, be the
mth-order Fourier harmonics of f(¢,t): f(¢p,t) = >, fme ™™ Then, L,, is written as
L, (P) := —div(f,,P), and the commutator [L,,, L,] is given by

(Lo, L] (P) = div [frndiv(f, P)] — div [f,.div(fn P)]
= div{[(fm - V) fo = (Fo - V) fi] P} = =div (= [fon, ] P) - (6.27)

Here the commutator [A, B]_ between two vector fields A and B is defined by

9B; B%
"0 O
which is called the Lie bracket in mathematics. It is clear from Eq. (6.27) that the operators
of the form £ := div(f-) is closed with respect to the commutator (6.23), and thereby the
effective dynamics is described by the renormalized drift force fr. The mth-order vV HFE

™) of the drift field is obtained from H'"™ by replacing the commutator [H,,, H,| between

Hamiltonians with that [f,,, f.], between drift fields, followed by the multiplication by ™.
Then, the resulting effective EOM up to the second order in w™! is given by

¢ = fr(e)
= fO(d)) +1 Z —[f_n“ fm]d — Z { [‘f_m’ [‘f07 f;l]cl]cl + Z [f—m’v [fm’—ma fm]cl]cl} )

2mw 2(mw) 3mm/w?
m##0 m#0 m/#0,m

[A,B],. =(A-V)B,— (B-V)A; = A (6.28)

clj

(6.29)

This result is consistent with the Magnus expansion of general non-autonomous (not necessarily
time-periodic) ordinary differential equation ¢ = f(¢,t) [189,327-329].

As a special case, if the dynamics is governed by some classical Hamiltonian H (), the drift
field f(t) and the commutator [-, -] , are replaced by the Hamilton flow and the Poisson bracket
—{+, -}, respectively. The master equation (6.5) is nothing but the Liouville equation. Let g
and p be a canonical conjugate pair. Then, the classical variable ¢ and f,, are given by

0H,, O0H,,
¢ =(q,p), fm= (W’_a—q> . (6.30)

By a straightforward calculation, we obtain

O{Hpn, Hn}  O{Hm, Ha}
op 7 oq '

[frns Fula = — ( (6.31)

The above results correctly reproduce the previous ones for periodically driven isolated Hamil-
ton systems [27,117,198] and are consistent with the Magnus expansion of general time-
dependent (not necessarily time-periodic) Hamilton systems [330-332].
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6.1.4 Time-independent diffusion

We here assume that the diffusion matrix G and hence D are time-independent and L,, is given
by

Lo(P) :=div (FoP) +divy [DP], L,(P):=div(F,P) for m#0, (6.32)

where F,, is the mth-order Fourier harmonics of F(t). Under this assumption, one can always
find the effective EOM corresponding to the effective FP operator Lg if we truncate at the
second order.

First-order perturbation

From Eq. (6.22), the first-order vV HFE is obtained to be

W _ N Lems L] T )
£ =iy = gy 7, (6.33)
m##0
W ._ g , (F _ ! . _(f .
Fr' = mZﬂ)Qmw (Fon V) Fon = (Fn - V) F ol ;ﬂ)zmw (Fom V) o= (fon - V) fom]
(6.34)
where the effective FP operator is given by
Lr(P) = div | (Fo + f%’)P] + divs(DP). (6.35)

A crucial observation here is that only the drift field is normalized; then the EOM corresponding
to the Fokker-Planch operator (6.35) is obtained to be

® = fr(¢) + G(p)h(t). (6.36)

Here fr is the renormalized drift term:

fr=Fo+ Y 5 [ V)= (P V). (6:37)

m##0

The time evolution without the kick operator is obtained by solving Eq. (6.36). Notably, if
fr represents the potential force of some potential Vi (¢) and the environment satisfies the
detailed-balance condition at temperature Ti., the NESS is a canonical distribution P(¢) o
exp [—Vr(¢)/Tie] of the potential V().

The time evolution with the kick operator is calculated from three steps corresponding to
the three exponential operators exp [—Gr(t1)], exp [(ta — t1)Lr], and exp [Gr(t2)], as shown in
Eq. (6.14). Let us first consider the effect of the kick operators on the EOM. The kick operator
Qg)(s), with s (= t1,t9) being either the initial- or final-kick time, is given from Eq. (6.22) as

G (5) = ——div [0,(6.) - . (6.3%)
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where fF mic is the oscillating drift field:

Frmiel®:8) = =i ) = f‘mews (6.39)

m##0

From Eq. (6.39) and the definition of an exponential operator, exp [+Gr(s)] Py(¢p) is formally
the solution of the master equation

% = Fdiv | fnic(@,)P(,7)| . P, 7 =0) = Po(e), (6.40)

at time 7 = 1/w. Thus, the exponential exp [£Gr(s)] has the following physical interpretation:
it is the integration of the flow field f}(,%iﬁc from 7 = 0 to 7 = 1/w, where 7 is an auxiliary time
for calculating the kicks and 1/w is the duration of the kick. Since the above equation does
not contain the diffusion term, plugging Py(¢yick) = 0(@rick — ¢o) into Eq. (6.40), we rewrite it
into the equation for @yu:

% = lec(d)kldﬁ )7 d)kick(T - 0) - ¢0- (641)

Thus, ¢o is mapped to the solution of Eq. (6.41) at time 7 = 1/w by the kick operators
exp [£Gr(s)]. Note that Eqgs. (6.40) and (6.41) are autonomous equations, i.e., they do not
explicitly depend on the time 7. Practically, because of the smallness of the integration time
1/w, the solution ¢y (7 = 1/w) is well approximated by the Euler method:

(1)
Prick (T = é) R g+ M- (6.42)

From the above discussions, the time evolution operator U(ty,t;) = e97(t2)elt2=t1)Lre=0r (1)
is calculated as follows: Let ¢ be the initial state of ¢. First, to calculate the effect of the
initial kick exp [-Gp(t1)], we integrate Eq. (6.41) with the minus sign on the right-hand side
and s = t; for initial condition ¢y:

depyi
?;Ck == gr)mc(ﬁbkick,tl)’ Grick (T = 0) = o. (6.43)
The solution at time 7 = 1/w gives the state after the initial kick, which we write as ¢;:

b1 = i (T = 1/w). Next, we evaluate the effective dynamics exp [(t; — t1)LF] by integrating
Eq. (6.37) from within time (ty — ¢;) with the initial state is taken as ¢;:

¢

= = 1r(9) + GOIh(D). $lt=0) =1 (641

The solution at t = t5 — t; gives the state after the effective flow Lz, which we write as ¢s:
¢2 = ¢(t =ty — t1). Finally, we integrate Eq. (6.41) with the plus sign on the right-hand side
and s = t up to time 1/w for the initial condition ¢, and calculate the final kick exp [Gg(t2)]:

d¢kick

dr fginc@kick,tz), Prick (T = 0) = ¢pa. (6.45)
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Then, the solution ¢3 = @i (T = 1/w) gives the state after the final kick, and hence the state
applied by the three operators e 97(1) e(t2=t)Lr and e97(t2) to the initial state ¢y.

Second-order perturbation

In the calculation at the second order, there appears the commutator between £(P) = div(FP)+
dive(DP) and L'(P) = div(F'P), which is calculated as follows:

£, L] (P) = div [Fdiv(F'P)] — div [F'div(FP)] + divs [Ddiv(F'P)] — div [F'diva(DP)]
(6.46)
=: div [drf(F, F', D) P] + div, [diff (F', D) P], (6.47)

where the corresponding drift field drf(F, F', D) := {drf;(F, F', D)}~ | and the diffusion ma-
trix diff (F', D) = {diffij(}"?D)}gj:l are given by

O*F!
defy(F,F' D)= (F-V)F — (F -V)F, — ——Dj, 6.48
(F.F.D) = (F-V)F ~ (F - V)Fi~ 520D (6.45)
OF; OF! 0D;;
diff;:(F', D) = =—Dy; + —2Dyi — F,—2. 6.49
The second-order term Eg) is given by

LE(P) = div(FP P) + divo(DP P), (6.50)

drf [drf [Fo, F o, D], F i, D] —[F s [F e, Fnl ol
(2) — 0 ) ) ) cllcl 1
Fr Z { 2(mw)? - Z 3mm’w?  (6:51)

m#0 m/'#0,m
diff [F_,,, diff (F,,, D)]

D2 .— d d .52

which indicates that not only the drift vector but also the diffusion matrix is renormalized at
the second order. The kick operator gﬁ?) is given by

2 (1) = div(Fp ) + diva(Di, ). (6.53)
(2) _ dI'f [-7:07 f—rrm D] eimwt [j:'m’7 T—m]cl ei(miml)wt 4
F Fmie = Z { (mw)? T Z 2m(m — m/)w? J (6.54)
m#0 m/#0,m
diff [F_,,, D] cime!
,D(2) o ms .
F,mic mzio (mw)2 (6 55)

In this case, the renormalized drift field fr and the diffusion matrix Gy are determined from
Egs. (6.6) and (6.7). For a semi-positive matrix Dp, the diffusion matrix G is uniquely deter-
mined from Eq. (6.7) up to the multiplication of an orthogonal matrix O and fr is determined
from Fr and G as shown in Eq. (6.6). Note that the ambiguity with O does not matter to
the statistics of the random field h(t) (see Eq. (4.8)).
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6.2 Validity and convergence of the high-frequency ex-
pansion

Mathematically, the FM HFE of a master equation is guaranteed to converge if its FP operator
L, satisfies

T
/0 de|Ll| < ¢, (6.56)

where || - || is the operator norm and ¢ = O(1) is a universal constant [189]. There are two
problems on applying the bound (6.56) to classical systems. First, |£;|| and hence the left-
hand side of Eq. (6.56) grows linearly with a system size for a many-body system. Secondly,
L; usually contains unbounded operators like a derivative operator 0,,. Although these two
problems make it hard to discuss rigorously the validity and the convergence of the FM HFE
in a general classical system, the HFE is found to be valid for non-chaotic few-body systems
and generic many-body systems as we will see below.

Before analyzing general cases, we comment on some exceptional cases in classical systems
where the second problem does not appear, where a rigorous discussion is available using the
techniques developed in an isolated quantum system [95,96]. An important example is a Markov
process on a discrete state space described by Eq. (6.10). Since the dimension of the state space
is finite, the transition matrix W (t) in Eq. (6.10) is a finite-dimensional matrix constituted from

bounded operators. For the FM HFE Qp = 3> _, Q%m) of W(t) (the subscript ¢, representing
)

the initial time is omitted for simplicity), we can show that an
convergent up to the order mgy ~ w/(gk):

is, at least asymptotically,

14 — Q|| < NO[(2gkT)™)  for  m < my, (6.57)

and that the exact steady state Ilgg is well approximated by the steady state Hgsno) obtained
from the mgth-order truncated FM HFE:

1 m o
7 //Mss — || < O [(gr)2k27™] . (6.58)
Here, g, N, 7, and k are the maximum transition rate per site, the number of sites, the

relaxation timescale to the steady state, and the number of sites associated with the interaction,
respectively. See App. B.1 for the detail of the statement and its derivation.

6.2.1 Few-body system

For a few-body systems, where the only second problem arises, the HFE is expected to be con-
vergent for a non-chaotic system, typically for a weakly driven system under strong dissipation.
In this system, L, is expected to be a Lyapunov continuous:

L.Py — L.P) < Cy|Py— P (6.59)
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where Py and P are some probability distributions, and C; is some constant independent of w.
Therefore, when w is sufficiently large such that w > (27 maxo<i<r Ct)/(, we have

T
[ aned <7 c< (6.60)

Thus, Eq. (6.56) is satisfied. The above discussions is consistent with the previous studies on
the chaos and the bifurcation in periodically driven systems [333-336].

On the other band, the HFE is useless for predicting the long-time behavior of a chaotic
system irrespective to whether it is convergent or not. Let L(Tn&()) and Py be the truncated
FM HFE with truncation order mgy and some initial probability distribution, respectively.
Then, two probability distributions at time ¢ with different truncation orders my, and my, i.e.,

exp(L( t)Py and exp(L(TRO)t)PO, are quite different for large ¢ because of the onset of chaotlc
nature. This indicates that the time evolution strongly depends on the truncation order my
and that the FM HFE is useless.

6.2.2 Many-body system: preliminaries and statements

In a general classical many-body system, there appear both problems; the extensiveness of
||£:]| and the presence of unbounded operators. Although the first problem appears even in
interacting quantum spin or fermionic systems, rigorous results on the energy absorption and
the existence of the Floquet prethermal states are obtained by fully utilizing the boundedness of
their local operators [95,96,98,209]. On the other hand, it is quite hard to obtain a similar bound
on the classical systems because unbounded operators are notoriously difficult to handle even
in mathematics. Nevertheless, as we will see below, we can estimate the higher-order terms in
the FM HFE by combining the dimensional analysis with the techniques developed in quantum
systems [95,96]. We note that such a general discussion is hard to obtain within the framework
of the multi-scale perturbation theory [248,249] because its calculation becomes involved even
in low orders. From this analysis, we argue that the FM HFE is, at least asymptotically,
convergent. Moreover, its truncated series is found to well describe the steady state for a
generic many-body system, e.g., a prethermal state for an isolated system and a NESS for a
driven dissipative system.

Consider a generic (non-integrable) many-body system, which is described by a classical field
¢, obeying the EOM (6.2). We assume that the drift field f,. and the diffusion matrix G,. depend
on the fields ¢, on, at most, k neighboring sites of 7. That is, the interaction and diffusion are,
at most, k-body. We introduce a dimensionless field ¢y. := (¢r1/001, Pr2/00.2; - - ¢r N/ Do, ),
with ¢, being the typical magnitude of ¢, ;, and rescale the random fields h, := h, /V/D.
For example, for the GP equation (6.3), the typical magnitude of i, is \/po, With Po being the

average den51ty of a condensate. Then, the rescaled EOM is given by dqbr /dt = fr—kG hr, where

fr and G, are the rescaled drift field and diffusion matrix, respectively. The corresponding
master equation is given by

_ 2
i > [%m (FruP) + m (BuP) | = M0 (6.61)

where the local operator L, (t) acts on, at most, k neighboring sites of r. More generally, we




6.2. VALIDITY AND CONVERGENCE OF THE HIGH-FREQUENCY EXPANSION 75

define the locality of the operator as follows: an operator A := )" A, is said to be ka-local if
A, depends on the fields on, at most, k4 neighboring sites of r. According to this definition, the
FP operator L(t) := 3, L,(t) is a k-local operator. Note that a similar discussion holds for a
Markov process on a discrete space with a translationally invariance because its master equation
takes the form of Eq. (6.61). Since ¢, is dimensionless, L,(t) has the physical dimension of
frequency, where we write its typical magnitude as wy. Formally, the time evolution operator
U(t,0) of Eq. (6.61) is given by the Dyson series:

U(t,0) = i %/Ot dt, - ../Ot dtTs [ﬁ(zﬁl) . .ﬁ(tm)} = T, exp {/Oti(t’)dt’} . (6.62)

Then, the exponent Q(t) defined by U(t,0) =: exp [Q(t)] satisfies the following differential
relation [189]:

—— =) —!adg';(t)ﬁ(t), (6.63)

where adgfj = [Q, ﬁ] and B,, is the mth Bernoulli number.

Let us formally expand the effective operator Qp := Q(T') in powers of w™! as follows:

Qp = QY (6.64)
m=0

where an) = O(w™™). The FM HFE of the effective FP operator Ly := Qp/T is obtained
by iteratively substituting Eq. (6.64) into Eq. (6.63) followed by the integration of ¢ over one

period. We denote the mth-order truncated series of {2y as Q(T"é) and the time evolution operator
generated by it as U™ (t):

m - m’ tQ(m)
= Yo a, () = exp | IR (6.65)
m’'=0

If this formal expansion converges, the exact time evolution U(t,0) is well approximated by
U™ (t). For a generic many-body system, because of the non-integrability of the system,
the system equilibrates with some typical timescales, which we denote by 7. Then, the two
steady states ng) .= U™ (t)Py and Psg := U(t,0) Py with ¢ > 7 do not depend on an initial
probability distribution F,. We note that 7 defines the timescale of the initial equilibration to
the Floquet prethermalization for an isolated system and that of the relaxation to a NESS for
a driven dissipative system.

In what follows, we will claim the following two statements based on the evaluation of Q%m).
We assume that the driving frequency w is much larger than kwy. (i) The formal expansion
(6.64), at least asymptotically, converges up to the order m = mg ~ w/(kwy):

Q(wal{) — Q(T%O) =0 [(k:wo/w)mﬁl} for m < my. (6.66)

ii) The exact steady state Psg is well approximated by the steady state P obtained from
y Y y SS
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the truncated FM HFE (6.65):

P ~ Py (6.67)

6.2.3 Many-body system: derivation
The mth-order term an) with m > 1 is given from the FM HFE in Eq. (6.26) as follows:

—1)™=%0,(m -6, [T 2 .
ol — Z( ) (m )/Odtm+1~--/0 dtyad; _ ad; ---ad;, L,  (6.68)

= (m+ 1)?m!

where L; := f,(to(i)) and the initial time ¢y in Eq. (6.26) is taken to be zero.

The typical magnitude of the commutator in Eq. (6.68) is estimated from the locality of L.
as follows. Consider two operators A =) A, and B =) B,, where A, (B,) depends on the
fields on, at most, k4 (kp) neighboring sites and its typical magnitude is denoted as ga (gp)-
Their commutator [A, B] =: > C, is (k4 + kp)-local and the typical magnitude of C,. is given
by (ka + kp)gags. Therefore, the m-fold commutator in Eq. (6.68) is (m + 1)k-local and its
typical magnitude is estimated as follows:

ad; _ad; ---ady L1 = O [N(wpk)™ " (m+ 1)1] , (6.69)
where N is the number of sites. Combining Eq. (6.69) with the inequality (—1)™~®70,!(m —
O,)! < m!/2™, we obtain

Q] < ml

1 m! Tm+l Nm! (Wkwo)mH
-~ .

T 1)eml X o X R X (wok)™ " (m + 1)IN = CESIE
(6.70)

This indicates that the mth-order term describes the collective motion of the fields on (m+ 1)k
sites excited by a drive and that such a process is suppressed exponentially up to the order
m = my ~ w/(kwy). By taking m = mg, we obtain Q&T) ~ Ne ¢™ with a constant number
¢" = O(1), which completes the derivation of Eq. (6.66). Then, we obtain

|Q(T"P? — Q(T7'§0)| =0 (Ne_clm) for m < my, (6.71)

which indicates that the truncated series Q(T"f{) seems to converge up to the order m < my.

Next, we evaluate the difference between U~(T,0)Q0 U (T, 0) and Q7). Let us expand
them in powers of w™! as follows:

o) 1 T T
U\, 0)Q0) U (T,o)zz%/ dtl---/ it T; [y, - 0, 2] = ZA Q)
m=0 ©J0 0

(6.72)

m m m, — 1 m = m
QSPRO) = [U( 0)<T)] Q&‘RO Z Z T!adggl) T adggr)Q’(TRO) = Z AlmQSFRO)’

m=0 r=0 {ll 1 m=0

(6.73)
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where » 1 denotes the sum over all the sets of integers {/; }_, that satisfy > ., (L;+1) =m

and 0 < I; < my. In the FM HFE, Q" is chosen such that A/, Q) coincides with A, Q57
for any m < my; thus we have

UH(T, 0025 U(T,0) — 05 = 3" (AmQ&";: A0 m) (6.74)

m=mo+1

Using the argument for folded commutators around Eq. (6.69), we obtain

4
4,050 < (M) o). a0 < (8”—1“”’) g (6.75)
Thus, we have
(mo) (mo) 8mhwo ) " (mo) —¢m
(U N0 U(T,0) - | S (2 )QTR < Ne¢mo, (6.76)
where we used Eq. (6.70) in the last relation. Finally, we obtain
‘U*l(ntT, 0O U (n, T, 0) — Q0| <, [U1(T, 0020 U(T, 0) — QO] < Noge<mo,
(6.77)
where n; is an integer and ( is a constant number. Consider two autonomous equations
dP
E) _ o), (6.75)
dP
% = U Y (n,T,0)Q7 U (n,T, 0) P(s), (6.79)

with the same initial probability distribution Py: P(s = 0) = P,, where s is an auxiliary time.
For a sufficiently large frequency w, the relaxation timescale 7 satisfies

o
WT < eSM0 ~ ek, (6.80)

Then, from the bound (6.77), the solutions U)(s)Py and U~*(n,T,0)U™)(s)U(n,T,0) P,
of Egs. (6.78) and (6.79), respectively, at time s 2 7 shows almost similar thermodynamic
properties:

U™ (s)Py ~ U (n, T, 0)U"™) (s)U (n,T, 0) P (6.81)
By applying U(n;T,0) to the both sides of Eq. (6.81) from the left, we have
U(neT,0)U™0) () Py =~ U™ (s)U (n,T,0)P,. (6.82)

For a generic many-body system, the state after the relaxation n,7" 2 7 (s 2 7), U(nT,0)

~Y

Umo)(s) Py (U™)(s)U(nT,0)Py) approaches the steady state Pgg (ngo)) that is solely deter-
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mined from U(n,T,0) (U (s)):

U(n,T,0)U™) (n,T)Py = U(n,T,0)Py = Psg, (6.83)
U (n, T)U(n, T, 0)Py = U™ (0, T) Py = P{7°. (6.84)

Combining Egs. (6.82), (6.83), and (6.84), we obtain Pgg = Pé?()), which completes the deriva-
tion of Eq. (6.67).

6.2.4 Many-body system: discussion

For an isolated Hamilton system, Eq. (6.77) indicates that the truncated effective Hamiltonian
Héqﬁ‘)) = iQ(qu‘)) /T is a quasi-conserved quantity, where the transient state is given by the
generalized Gibbs distribution Pgg o exp(—H%r{O) /Tte), which is known as the Floquet-Gibbs
state [117]. From Eq. (6.71), H%EO) and the prethermal state are well approximated by a

lower-order truncation H%r{) and the Gibbs state of Hgﬁ), respectively. We note that while
macroscopic properties are well approximated by the truncated FM HFE, local dynamics is not
because of the onset of chaos [117].

Next, we consider an isolated system that is not a Hamilton system, such as a general
dynamical system [337] and a stochastic process on a discrete space including the ASEP. For
these systems, there is no a priori method to determine their steady state like the equipartition
principle in a Hamilton system. Nevertheless, the above results tell us that the exact steady
states are well approximated by the truncated FM HFE Q(T"ﬁo). We know from Eq. (6.71) that
Q(TT%‘)) is well approximated by the lower-order truncation Q(Trﬁ) and hence we expect that the

exact steady states are obtained from Q(Tn;{) If the FM HFE is divergent, the system is expected
to finally become a featureless state with a chaotic nature, which is an analog of an infinite-
temperature state. This implies that some transient state described by the truncated series
Q(Trg) might exist in a general classical system, which is reminiscent of a Floquet prethermal
state [95,96,98,209].

In a driven dissipative system, the system relaxes into an NESS with time 7 through the
balance between the drive and damping. Therefore, the steady state Psg is not a transient
state but an NESS; thus the truncated HFE well captures the whole dynamics of the system
up to the NESS. This point is numerically confirmed in Secs. 6.4 and 6.5 by an example of the
sLLG equation. Thus, we can control the exact steady states of classical systems by Floquet
engineering, avoiding the problem of heating in isolated systems.

Before ending this section, we comment on an application of the above results to quantum
systems. While the above derivation is conducted with classical systems in mind, similar results
are obtained for open quantum systems by replacing the classical master equation (6.5) with a
Markovian quantum master equation [338-340]:

dp , 1
P [H(t), p] + Z (Li<t>pLi<t>T 5 {Li(t)TLi(t)a P}) =: Liina(t)p- (6.85)
Here, the generator £; of a classical master equation is replaced by the Lindbladian Lynqg(t).
Equation (6.85) gives the most general description with Markovian, completely-positive, and
trace-preserving nature that is and consistent with quantum mechanics [341]. As a by product
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of the above analysis, we can show that the HFE works even in quantum many-body system
described by Eq. (6.85). More precisely, for the FM HFE Qp = >~ _, an) of Lrina(t), we can

show the (asymptotic) convergence of Q%m) up to the order my ~ w/(gk):
|24 — Q)| < NO[2ghT)™]  for m < m, (6.56)

and the correspondence of the exact steady state psg is well approximated by the steady state
pgg") obtained from the mgth-order truncated FM HFE:

1 m m
Sless = sl < O [(g7)%k2 7] (6.87)

See App. B.1 for further discussions and the derivation of the above results.

A few remarks are in order. First, while the HFE of a Lindbladian is, so far, applied and
confirmed to be valid numerically only in few-body systems [342-345], the above results hold
for many-body systems. Secondly, the effective equation is not necessarily be the Lindblad
equation (6.85) because the Floquet operator U(T,0) is, in general, not generated by a time-
homogeneous Markovian generator. In fact, in an example of a single qubit coupled with an
environment, the effective equation is found to be non-Markovian [326] by using the measures
of non-Markovianity [346, 347]. Finally, while the FM HFE is shown to be asymptotically
convergent from Eq. (6.86), it is unclear where it is absolutely convergent. The divergent nature
of the HFE in an isolated system is closely related to a sharp resonance and energy absorption
associated with it [94, 96, 198-201, 348, 349]. Since they are suppressed in the presence of
dissipation, the FM HFE might be absolutely convergent. It is worth mentioning that, when
the HFE is applied only to the Hamiltonian part, i.e., the first term on the right-hand side of
Eq. (6.85), it diverges above an optimal truncation order [350].

6.3 Kapitza pendulum with friction

In this section, we take the Kapitza pendulum with friction as an example of a driven dissipative
few-body system to test the validity of the HFE. Although this is a single-body problem, the
convergence of the Flouquet-Magnus expansion is a nontrivial issue because the unbounded
operator like 0, is present and the driving strength is proportional to w?.

6.3.1 Setup

Let us introduce a friction term —79 into the EOM (3.42) of the Kapitza pendulum to ensure
that the system reaches to a stable point after a long time. The EOM with friction is given by

0 =—~0— [wg + %wQ cos(wt)| sin 6. (6.88)
In what follows, we analyze this EOM using the HFE developed in Sec. 6.1 and confirm that it
correctly reproduces the time evolution of the pendulum and the stability at the inverted point
0 = w. We note that the systems is no longer a Hamilton system because of the presence of the
friction term, where the HFE previously developed for Hamilton systems cannot be applied.
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6.3.2 Hih-frequency expansion and effective equation of motion

To apply the general formalism developed in Sec. 6.1, we rewrite Eq. (6.88) into a first-order
ordinary differential equation with respect to 6 and v (v is the angular velocity) as follows:

{ o=v | (6.89)

b= —yv — [wg+ 2w? cos(wt)] sin .

Comparing Eq. (6.89) with Eq. (6.1), we find that the classical variable ¢ is a two-dimensional
vector: ¢ = (0,v). The Fourier components of the drift force f(¢,t) := fo + fie ! + f e
are given by

P— f7 J— U Pp— f b J— O
son = (1) = (Lo ) 2200 = (522) = (Lfann )
(6.90)

and the diffusion matrix g vanishes. From the vV HFE in Eq. (6.29), we obtain the effective
drift fields £ (v, ) and £ (v,6):

7 (v,0) = —=2kd i[f_l’ i hla 0, (6.91)
0 0 0 2 i
[fo, fila = fos3g fl gt ouy f — Sy fO ~fiu fo _ ail ( _UCOSSén_@fVSine > . (6.92)
(2) . [f—h [f(bfﬂd]c [f1, [.f()af—l]cl]c _ 0
i (v,0) = — 12w2 L= ( ~ (2)? sin(26) ) : (6.93)

where the effective EOM is given as follows:

{ o=v (6.9

b= —v —wisind — (%) sin(20).
Comparing Eqgs. (6.89) and (6.94), we find that the original static potential —w? cos 6 is replaced
by the effective potential

2
Vr(6) = —wi cos ) — (2—?) sin? 6, (6.95)

through the periodic drive. We note that Vg(0) is independent of the friction strength v and
the same as the one obtained from the analysis without friction [13,198]. Because of the second
term on the right-hand side of Eq. (6.95), the effective potential develops a new local minimum
at = 7 above the critical driving frequency w. = (v/2lwg)/a. Since (0,v) = (0,0) and (7, 0)
are both stationary solutions of Eq. (6.94), the system converges to either of these points after a
sufficiently long time with the help of the friction —yv. The steady state angle fgg := 0(t — ),
in general, depends on 0y, w, v(t = 0), and 7, as we will see below.
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Figure 6.2: Time evolution of angle 6(¢) for (a) slow (w/wp = 10) and (b) fast (w/wp = 20) drives,
where the parameters are chosen as a/l = 0.1 and v/wp = 0.2. The red and blue curves are obtained
by solving the time-dependent EOM (6.89) and the effective EOM (6.94), respectively, which are in
excellent agreement. Starting from the same initial state 8g = 0.87 with v = 0, the angle approaches
0 for the slow drive (a), while it approaches 7 for the fast drive (b). The purple dashed lines show the
steady state angle 6gg, which is either 0 or .

6.3.3 Comparison between the time-periodic and effective equations
of motion

In what follows, we compare Egs. (6.89) and (6.94) through the dynamics 6(¢) and the steady-
state angle fgs. The parameters a/l and v are fixed as a/l = 0.1 and v = 0.2wy, respectively.
The time evolution of (t) for slow (w/wy = 10) and fast (w/wy = 20) drives are shown in
Figs. 6.2 (a) and (b), respectively. The initial states are taken as (6,v) = (0.87,0) in both
cases. The red and blue curves are obtained from the time-dependent EOM (6.89) and the
effective EOM (6.94), respectively, which are in excellent agreement. After a sufficiently long
time, the pendulum approaches the lowest point § = 0 for the slow drive (a) below the critical
frequency w,, while it approaches the inverted point § = 7 for the fast drive (b).

In Fig. 6.3 (a), we present the steady state “phase diagram” of the pendulum for fixed
parameters v(t = 0) = 0 and 7 = 0.2wy. We see that the inverted steady state with § = =
(shaded region in Fig. 6.3 (a)) is preferred for an initial angle close to 7 with a fast driving,
while it approaches the lowest point § = 0 for the other parameter region. The boundary curve

between g5 = 0 and 0gg = 7 for the effective EOM is determined from the effective potential
(6.95) as follows:

o 6.96
|6 — 7| < arccos [(%)2] : (6.96)

Although the effective EOM (6.94) (blue curve in Fig. 6.3 (a)) gives a boundary (6.96) close
to that obtained from the time-dependent EOM (6.89) (red curve in Fig. 6.3 (a)), there is a
slight deviation even in the high-frequency region, which might contradict the validity of the
HFE. In particular, in the high-frequency limit, fg5/(27) converges to 1/4 for the effective EOM
(dashed black line in Fig. 6.3 (b)), while it converges to 0.267 for the EOM (dashed purple line
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Figure 6.3: (a) Dependence of the steady-state angle g on the initial state [#(0),v(0)] = (6p,0)
and frequency w, where a/l and v/wy are fixed in the same parameters as Fig. 6.2. In the shaded
region, the angle approaches § = 7 after sufficiently long time, while it approaches 8 = 0 in the other
region. The red and blue curves show the boundary obtained from the time-dependent EOM (6.89)
and that obtained from the effective EOM (6.94), respectively. (b) Boundary of the steady-state angle
0ss = 0, obtained from the time-dependent EOM (6.89) (red), the time-independent effective EOM
(6.94) (blue), and the time-independent effective EOM (6.94) with the kick operator (green). The red
and green curves overlap almost completely. The black and purple lines are guides to the eyes.

in Fig. 6.3 (b)). This deviation is, in fact, attributed to the w-dependent coefficient in the drive:
f+1 o< w?. Since we fix a/l rather than the coefficient aw?/(2l) of f11, the resulting potential,
the second term on the right-hand side of Eq. (6.95), is proportional to w?. However, when we
take into account the kick operator Gr(t) in Eq. (6.14), we obtain perfect agreement between
the time-dependent EOM and the effective one, which are shown as the red and green curves
in Fig. 6.3 (b), respectively. The above numerical results are consistent with the analytical
argument in Sec. 6.2.

6.4 Stochastic Landau-Lifshitz-Gilbert equation

In this section, we treat a driven classical many-spin system described by the time-dependent
sLLG equation. By calculating the time evolution of the magnetization and its time average
at a NESS, we compare the time-dependent sLLG equation and the effective sLLG equation
obtained from the HFE. Through a detailed comparison changing various parameters including
the frequency, dissipation strength, and temperature, we confirm that the latter well approxi-
mates the former for a long time up to the NESS.

Consider the sLLG equation (4.27) with time-dependent Hamiltonian H(¢):

_ 1:”; _ x {HL(t) + h (1) + mﬁsmr x [H,(t) + hy (1))}, (6.97)

m, =

where H,.(t) = —(6H(t))/(dm,.) is an effective magnetic field generated by the surrounding
spins and external driving fields. Comparing Eqgs. (6.2) and (6.97), we find that ¢, = m,
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Figure 6.4: (a) Schematic illustration of a periodically driven two-dimensional ferromagnet with
100 x 100 spins. The nearest-neighbor spins are coupled with a ferromagnetic interaction of exchange
interaction J and a static magnetic field of strength B; is applied in the m, direction. (b) When the
system is irradiated by a circularly polarized magnetic field with strength By, the average magnetiza-
tion S, emerges. (c) Time evolution of the averaged magnetization S, for the time-dependent sLLG
equation (6.97) (red), the effective sSLLG (6.109) with (blue) and without (green) the kick operator.
The parameters are chosen as J =1,w =5J,B;=14J,B; =1.4J,a = 0.1, and T;c = 0.

represents the spin configuration, and f, and g, are given by

m, « 2D
folt) = — 7705 x [HT(t) e x HT(t)] e (6.98)
1 amg MMy
r.ab — T 5 Cabclllc T 5 5(1 - 75 | > 6.99
Gr.ab 1+a2€bm+1+0z2< b (mS)Q) ( )

which describe the spin precession generated by H,. and the spin diffusion induced by h,..

As a concrete example, we consider a classical ferromagnetic Heisenberg model on a square
lattice (see Fig. 6.4 (a)), whose Hamiltonian #(t) reads

H(t)=—T > m,-my —gug y_B(t) m,, (6.100)

(r,r’)

where J > 0 is the ferromagentic coupling constant and B(t) is an external magnetic field.
The summation },, . is taken over all the pairs of the nearest-neighbor sites. We measure
the external magnetic field in units of gupg and thereby set it to be unity: gug = 1. We apply
a circularly polarized driving magnetic field of strength B, in the (m,, m,) plane (see Fig. 6.4
(b)). The total field B(t) is given by

B(t) = (B, + Bycos(wt), —Bgsin(wt), 0)" (6.101)

which is decomposed into the Fourier harmonics as follows:

. . B
B(t) = By + Bie ™ + B_j¢*', By =(B,,0,0)", By, = 7d(1, Ti,0)". (6.102)
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6.4.1 High-frequency expansion and the effective sLLG equation

The Fourier harmonics fi; and the drift force fl(;?), obtained from the first-order vV HFE are
given from Egs. (6.37) and (6.99) as follows (see App. B.2 for the derivation):

m, a
frir = 7 o2 X (Bj:l + Hmr X Bj:l) ) (6.103)
M _ & Ofar Ofie| . My wn , o (1)
Frr = w {fl’r om, P om,|  1+a2 <\ Hrr F msmr < Hp, ). (6:104)

iB_l X B+1 ZB_l X B+1
-«
(1+a?)w (1+ a?)w

Hy) = X M. (6.105)

While the first term on the right-hand side of Eq. (6.105) describes the effective magnetic field

. 2
. BaxBu - (Bd) 6.106
1+ a®)w 2w(1+a2)63’ (6.106)

with e3 = (0,0, 1) being the unit vector perpendicular to the plane, the second term describes
the so-called spin-transfer torque [351-354]. The emergence of an effective magnetic field par-
allel to i(B_; x B,1) can be qualitatively understood in an analogy with a quantum system.
In the presence of the external drive H(t) = —B(t) - S, the first-order vV HFE

o [H—lwﬁl]

AY = = (B_,xB,)-8 (6.107)
w

w
represents the effective magnetic field i(B_; X By1)/w. However, we find from Eq. (6.106) that
its magnitude decreases by a factor of (1 + a?)~!. Moreover, there appears the spin-transfer
torque as a consequence of the coupling with the environment, which is absent in an isolated
system. The drift field f

I’IllC a

corresponding to the kick operator g}”(t) is given by

FU (g t) = - <H<1) (t) + —m, x HY (¢ )) : (6.108)

mic,r 1 + aQ mic ms mic

where HU (1) = i (B_ie™" — B, e~*!) describes an oscillating magnetic field.

mic

The second-order expansion term is much more complicated owing to the renormalization
of the diffusion matrix G. The effective sSLLG equation is obtained to be

[HFT + T+ xoh, + —m,° (HF,T T thr)} , (6.109)

where Hp, and y,.(m,) are given as follows (see App. B.3 for the derivation):

m, = — 1+

Hp, =Y (Jmy+6J, )+ Br+ Vp x m,, (6.110)

r/:n.n.

By )2 3(ms)? — (my2)” (6.111)

Xr(Mmy) == — (msw(l a7 5

Here the sum is taken over the nearest-neighbor sites of . The total effective external

r/:n.n.
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magnetic field Bp, the spin-transfer torque Vr, and the effective interaction are, respectively,
given by

amgD  dxy

Bp = By+bY + (1 —a?)b? — 0t o) 5 (6.112)
Vi = _m%bm — %’:b@) 50 foﬁ) (;Z‘z (6.113)
B, 2 Myt 5Oy 1
e atem) v B\ sl ) O
where dmy,. .o ;= m, — m,. and b is defined by
2
b? = — (ﬁ> B.e. (6.115)

6.4.2 Short-time dynamics

In Fig. 6.4 (¢), we calculate the time evolution of the spatially averaged magnetization S, :=
(1/N)>, m,, with N = 100x100 being the number of spins, using three different equations: (i)
the time-dependent sLLG equation (6.97) (red curve), (ii) the effective sSLLG equation (6.109)
without the kick operator Gr (green curve), and (iii) the effective sSLLG equation (6.109) with
the kick operator Gp (blue curve). We use the Heun method for numerical integration of the
sLLG equation with the linearization technique [355].

The initial state is taken as the fully polarized state along the m, direction, i.e., m, =
(1,0,0). The parameters are chosen as J = 1,B; = 1.4J,w = 5J, B, = 1.4J,a = 0.1, and
Tie = 0. After a long time ¢ > (aJ)™!, the system approaches a NESS, where S, oscillates
with period T'. Because of the effective magnetic field bg)(H es), the long-time average S, of
S, becomes positive. As we can see from Fig. 6.4 (c), the effective sSLLG equation with the
kick operator (blue curve) shows good agreement with the time-dependent sLLG equation (red
curve). Although the effective SLLG equation without the kick operator (green curve) fails to
capture the oscillating behavior, it correctly reproduces the long-time average S, for the NESS.

6.4.3 Non-equilibrium steady state

In Fig. 6.5, we show a comprehensive analysis on the dependence of the long-time average of the
magnetization S, on (a) the driving frequency w, (b) the driving amplitude By, (c) the Gilbert
damping «, and (d) temperature Ti.. The curves with the three colors, red, green, and blue,
are obtained from the three equations (i), (ii), and (iii), respectively. Except for the parameter
changed in each panel, the parameters are fixed as J = 1,w =7J,B; = J, B, = 1.4J, a = 0.1,
and T, = 0.2J. As shown in Fig. 6.5 (a), the average magnetization S,(oc w™!) is induced
by the effective magnetic field b")(oc w™') and the time-dependent sLLG equation (6.97) and
the effective one (6.109) are in excellent agreement in the high-frequency regime w/J > 5.
In Fig. 6.5 (b), the driving amplitude is varied from weakly driven (By/J = 0) to strongly
driven (Bg/J < 1) regimes, where the effective sSLLG equation with kick operators shows
better agreement for strong drives. The effect of the Gilbert damping is shown in Fig. 6.5
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Figure 6.5: Long-time average S, of the magnetization as functions of (a) the driving frequency w,
(b) the driving strength By, (c) the Gilbert damping «, and (d) temperature Ti.. The red, green, and
blue points are obtained from the time-dependent sLLG equation (6.97), and the effective static sSLLG
equation (6.109) without the kick operators, and the effective SLLG (6.109) without them, respectively.
The parameters are fixed as J = 1,w = 5J,By = 1.4J,B; = 1.4J,a = 0.1, and T{, = 0.2J, except
for the parameter that is varied in each panel. The inset in the panel (d) shows an enlarged image
between 0.12 < S, < 0.15.

(c), where the calculation is performed from weakly dissipative (« ~ 0) to strongly dissipative
(v < 1) regimes. In Fig. 6.5 (d), where we vary temperature to simulate the sLLG equation
with (Ti. > 0) and without (Ti. = 0) the random field h,.. Although a slight deviation is visible
between the time-dependent and effective sSLLG equation (see the inset), the latter correctly
reproduces the temperature dependence of the former, i.e., the slope of the curve. From the
above results, we can conclude that the effective sLLG equation obtained from the HFE well
approximates the original one, irrespective of the magnitude of the dissipation and thermal
fluctuation. These results are consistent with the analytical argument in Sec. 6.2.

6.5 Application to spintronics

In this section, we consider a multiferroic spin system described by the sLLG equation. Our
setup is a classical analog of Ref. [76] reviewed in Sec. 3.3. While a vector spin chirality and a
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(a) (b) § B(t), E(t)

Figure 6.6: (a) Schematic illustration of a multiferroic spin chain. The nearest-neighbor spins are
coupled with a ferromagnetic coupling of J and the magnetoelectric coupling of polarization P, which
is given by Eq. (6.117). The static field By is applied in the m, direction. (b) Irradiation of the laser
field with electric field E(t) and magnetic field B(t) induces the effective DM interaction D and the
effective magnetic field B, leading to a spiral spin texture and emergence of the vector chirality V!
along the x direction. The static field is tuned to cancel the effective field Bp.

spin current have been shown to emerge in this study, they vanish after a long time through the
heating effect. On the other hand, the system reaches the NESS with a finite vector chirality
in our setup through the balance between the heating effect and the Gilbert damping.

6.5.1 Synthetic Dzyaloshinskii-Moriya interaction in a multiferroic
spin chain

The Hamiltonian Hyr(t) that we consider is given by that of a ferromagnet (6.100) with a
magnetoelectric coupling:

Haw(t) = H(t) — P - E(1). (6.116)

Here, the second term represents the magnetoelectric coupling, which we consider having the
same form as that considered in Sec. 3.3:

P = Z Pr’»,,/ = Ome Z €p pr X (mr X mr/), (6117)
(r,r") (r,r")
where e,.,» := (r’ —r)/|r’ — r| is the unit vector connecting the nearest neighbor sites r and

r’, and gy denotes the magnitude of the magnetoelectric coupling. Combining Eqs. (6.100)
and (6.117), we obtain the explicit forms of H(¢) and the effective field H,.(t):

H(t) == Z [er “ My + Dr,r’(t) ’ (mr X mr’)] - Z [Bs + B(t)] s My, (6'118)
(r,r) r
H,(t)= Y (Jmu + Dy p(t) x my) + B, + B(t), (6.119)

where D, ./ (t) := gmeE(t) X €, is the DM coupling induced by the electric field.

To observe a spiral spin texture induced by a laser, consider a spin chain aligned along the
x direction irradiated by the laser field traveling along the (—z) direction (see Figs. 6.6 (a) and
(b)). The electric field E(t) and magnetic field B(t) are given by

E(t) = E, (sin(wt), cos(wt),0)", B(t) = — X E = % (cos(wt), — sin(wt),0)™ . (6.120)



88 CHAPTER 6. FLOQUET ENGINEERING OF NONLINEAR SYSTEMS

Although a realistic multiferroic system has a strong three-dimensional nature [356, 357], we
here analyze a spin chain for simplicity. From the first-order vV HFE, the effective static field
H, r at site 7 is given from Eq. (6.37) by

HT,F = Z [Jm,,/ + _DF77.7,,./ X m,,/] + B, + Bp

Ene m? + M Oy
BEE
—aBpxm,— Y P me, | 6.121
F r S~ 2m5(1 +a2)w 78 > ( )
2
€EEER €p
Dy = — 2% ¢ — Dpeyn, Br=-—D5 ¢, 6.122
i 21+ a?)w Fe T2+ a?)w ( )
where € := gnmeFo and e := (gupEp)/c are the normalized electric and magnetic energies,

respectively (see App. B.4 for the derivation). Equation (6.121) shows that a synthetic DM
field Dp, , emerges from the combination of the magnetoelectric and Zeeman couplings, in
addition to the effective magnetic field By that appeared in Sec. 6.4. The strongest magnetic
field ep of terahertz lasers attains 1 - 10 T [358,359] and the magnitude of g, can be large in
a gigahertz region [246,360-362]. For standard magnets with J = 0.1 - 10 meV, both eg/J and
ep/J can achieve values of 0.1 - 1.

For a weak dissipation a@ < 1, H,.  is approximated to be

H’r,F ~ Z [Jm'r’ + DF,'r,'r’ X mr’] + Bs + BF; (6123)

r’:n.n.

which is the effective field in the sLLG equation with the static Hamiltonian

L
Hp == _[Jmj-mj + DrVia + (Br + By) -my]. (6.124)

j=1
Here, V;, = e; - (m; x my;;;) is the vector chirality along the z axis. One can see from

Eq. (6.124) that the system exhibits a spiral spin texture through the synthetic DM interaction,
leading to the emergence of the vector chirality (see Fig. 6.6 (b)). To maximize the total vector
chirality VIt := Ele V; », we introduce a static field B along the z axis to cancel out Bp,
i.e., By + Br = 0, which has not been considered in the previous study [76]. With the purely
ferromagnetic and DM interactions in Eq. (6.124), a spin spiral state, which is known as the
chiral soliton lattice, emerges whose vector chirality per site is given as follows [363,364]:

VtOt 1 1 DF 1 €EEER
z . E . — _ . 12
= . Vj@ = tan ( ) tan (1 2) (6 5)

6.5.2 Emergent vector chirality by laser irradiation

To demonstrate the emergent vector chirality V' predicted from the effective theory (6.125),
we perform a numerical simulation of the time-dependent sLLG equation (6.97) with time-
dependent effective magnetic field H,(t) in Eq. (6.119). We fix the Zeeman coupling g,
Gilbert damping «, and temperature Ty, as eg/J = 0.2, a = 0.05, and Ti, = 0, respectively.
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Figure 6.7: (a) Spatiotemporal dynamics of the vector chirality (V;—1+V};.)/2 with driving frequency
w/J = 4. The vector chirality penetrates into the system from the edges j = 0, L, where it spreads
uniformly over the system after a sufficiently long time. (b) Time evolution of the spatially averaged
vector chirality Vi°*/L with different driving frequencies w/J = 4 (blue) and w/J = 10 (red). The
dashed lines show the values at the NESSs. (c), (d) Spatial profile of V; , at the NESS for two system
sizes (L = 100 for (c¢) and L = 1000 for (d)) in the NESSs. The inset in Fig. (d) shows the logarithmic
plot of V; ,/(max;V; ;) for the first 100 sites 0 < j < 100.

The initial state is set to be the polarized state m, = (0,0, —1), and the laser is turned on at
t = 0. Since V;, emerges from the edges as we will see below, we solve the SLLG equation with
the open boundary condition, i.e., my = mg.; = 0.

In Fig. 6.7 (a), the spatiotemporal dynamics of the vector chirality (V;_; + V;.)/2 is pre-
sented, while the time evolution of the spatially averaged vector chirality V°*/L is plotted
in Fig. 6.7 (b). In the initial relaxation (¢ < 200J7'), the vector chirality enters the system
from the edges 7 = 0, L and spreads uniformly over the system after a sufficiently long time
(t ~ 10*J71). Through the balance between the drive and damping, the system reaches a NESS
with constant Vi /L (dashed lines in Fig. 6.7 (b)). In Figs. 6.7 (¢) and (d), we plot the spatial
profiles of V; . at the NESSs for the chain lengths L = 100 and L = 1000, respectively. For a
larger chain length (L = 1000) shown in Fig. 6.7 (d), the vector chirality in the NESSs is local-
ized at the edges. For a smaller system (L = 100) shown in Fig. 6.7 (c), on the other hand, the
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Figure 6.8: (a) Mean vector chirality Vi°*/L as a function of (a) the driving frequency w and (b) the
magnetoelectric coupling eg. The red curves are obtained from the solution of the sLLG equation with
a time-dependent effective field (6.119) while green ones are drawn from Eq. (6.125) that is derived
from the vV HFE.

vector chirality uniformly spreads over the system because of a rather long localization length
(e.g., ~ 100 sites for w/J = 4). Note that the localization length becomes larger for larger w as
shown in the inset of Fig. 6.7 (d). This result implies that one can optically induce a tunable
vector chirality in nanomagnets and disordered spin systems where impurities effectively play
the role of boundaries.

Finally, we quantitatively check the validity of the effective theory by calculating the de-
pendence of the mean vector chirality Vi*/L at the NESS on the frequency w and the magne-
toelectric coupling e€x. As shown in Fig. 6.8, the effective-theory results (6.125) (green curves)
show excellent agreement with the vector chirality of the exact NESSs (red curves) in the
high-frequency or weak magnetoelectric-coupling regions. In these regions, the synthetic DM
interaction Dp is small and hence the HFE is expected to be good, which is consistent with
the analytical argument in Sec. 6.2.



Chapter 7

Summary and outlook

7.1 Summary

In this thesis, we have applied Floquet engineering to topological quantum phenomena and
nonlinear classical systems.

In Chapter 2, we have briefly reviewed topological quantum phenomena. Starting from a
Chern insulator to illustrate basic concepts on topological phases of matter, we have discussed
SPT phases, which are topological phases protected by symmetries, and their classification by
means of the K theory [101,102]. In SPT phases such as in the SSH model and the Kitaev
chain [135], topological edge modes protected by symmetries emerge. They are immune to
disorder that preserves the symmetries. Next, we have overviewed Weyl fermions and its exotic
magnetic response, namely the CME [92,93]. When a magnetic field is applied to a Weyl
fermion, a chiral current flows parallel to the magnetic field as a consequence of quantum
anomaly [162-165]. However, a pair of Weyl fermions with the opposite chirality must appear
in a Weyl semimetal as a consequence of the Nielsen-Ninomiya theorem [90,91], and therefore
the chiral current vanishes. Finally, we have discussed adiabatic pumps and their classification
by the K theory [103]. The classification of adiabatic pumps shows the same periodic structure
as that of TIs and TSCs, which can be understood from the isomorphism in the K theory.

In Chapter 3, we have discussed some basic concepts of Floquet engineering and presented
its applications for controlling topological band structures, superfluids, magnets, and classical
systems. The Floquet theorem [30,31] dictates that the time evolution of a periodically driven
quantum system be, on average, generated by a time-periodic Hermitian operator, which is
usually called an effective Hamiltonian. The effective Hamiltonian is systematically determined
from the HFE, which is a perturbative expansion in powers of the inverse frequency [109,110].
Although the HFE is a divergent series for a generic many-body system, its truncated series can
describe the transient stationary state before heating up to an infinite-temperature state, which
is known as the Floquet prethermal state [95,96,98,209]. By means of Floquet engineering,
exotic topological band structures have been realized that are difficult (e.g., the Haldane model)
and even prohibited (e.g., a single chiral fermion) in a static lattice system [19, 20, 40, 41].
Floquet engineering is also applied to control symmetry-broken phases including superfluids and
magnets, which have potential applications to quantum simulations and ultrafast spintronics.
Floquet engineering in classical systems has a long history of study dating back to the study
of the Kapitza pendulum [13], which is a prototypical example of dynamical stabilization.
Recently, isolated classical Hamilton systems are found to approach the Floquet prethermal
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states before heating up similarly to isolated quantum systems [115-117].

In Chapter 4, we have briefly reviewed classical stochastic systems described by stochastic
differential equations. The time evolution of the probability distribution function is governed
by a master equation, which is a linear equation with respect to the probability distribution
function. For a Gaussian random variable with the Markovian nature, the master equation
becomes a second-order differential equation, which is known as the FP equation. As a concrete
example, we have discussed the sLLG equation [120,121], which is a phenomenological equation
for a ferromagnet coupled with an environment. In the sLLG equation, a damping and a thermal
fluctuation through the interaction with the environment are modeled as the Gilbert-damping
term and a random magnetic field, respectively.

In Chapter 5, we have presented a periodically driven three-dimensional lattice system
that exhibits a single Weyl fermion in its quasienergy spectrum. Although a single Weyl
fermion is prohibited by the Nielsen-Ninomiya theorem in a static lattice system [90,91], one
can surpass this obstacle by using the topology unique to Floquet unitary operators, namely the
(27 /T)-periodicity of the quasienergy. Our model provides the first example of non-adiabatic
topological pumps characterized by Floquet unitary operators in higher spatial dimensions.
Reflecting the spin-momentum locking of a Weyl fermion, a current flows parallel to the spin
polarization under the drive. When a magnetic field is introduced in our driving protocol, a
single chiral fermion emerges in the quasienergy spectrum. This leads to the chiral current
parallel to the magnetic field, which is a Floquet analog of the CME. Through a detailed
numerical analysis, we have confirmed that this chiral current survives over a wide range of
parameters, e.g. the fermion density, temperature, and the strength of the magnetic field. In
particular, at the half filling and zero temperature, this current takes a quantized value in half
of the flux per site. Our model can be implemented in ultracold atomic gases by using the spin-
dependent optical lattice or a laser-induced hopping. Generalizing the above discussion, we
have given the topological classification of Floquet-Bloch operators in the AZ symmetry classes
by means of the K theory. The obtained classification shows the same periodic structure as that
of static TIs and TSCs [101,102]. This result, together with the concrete models constructed
in App. A.4, shows that all the gapless band structures in static TIs and TSCs can be realized
as quasienergy band structures of periodically driven lattice systems.

In Chapter 6, we have developed the HFE of classical Floquet systems. Unfortunately, we
cannot apply the Floquet theorem directly to classical systems owing to the nonlinearity of their
EOMs and a random noise modeling a thermal fluctuation. The key idea is using, rather than
the EOM itself, the master equation corresponding to the EOM of a system, to which we apply
the Floquet theorem and perform the HFE. The HFE of the EOM is obtained from that of the
master equation by using the correspondence between the EOM and the master equation. Our
formalism is applicable to a wide variety of systems from purely classical to quantum ones in
symmetry-broken phases and to both isolated and open ones at any temperature, as long as their
EOMs are written as nonlinear (stochastic) ordinary differential equations or they are Markov
processes on discrete spaces. By examining the generator of the time evolution, we find that the
HFE is found to be convergent for a non-chaotic few-body system. Furthermore, by evaluating
the higher-order terms of the expansion, we have found that it is, at least asymptotically,
convergent and correctly reproduces the exact non-equilibrium steady state of a generic many-
body system. These findings are numerically confirmed in a single-particle system and a many-
body system by examples of the Kapitza pendulum with friction and driven magnets described
by the sLLG equation, respectively. In both examples, the effective EOMs obtained from the
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HFE well approximate the exact time evolution for a long time up to their NESS. This result is
in stark contrast to closed systems where the truncated HFE fails to capture their steady states,
i.e., infinite-temperature states after the Floquet prethermalization [95,96,98,209]. Finally, we
have presented an application to spintronics. We have demonstrated an optical creation of a
spin vector chirality in a multiferroic spin chain by a circularly polarized laser, which could be
used for ultrafast generation of a spin current.

7.2 QOutlook

7.2.1 Floquet engineering of topological phenomena

First, while the topological classification of the Floquet-Bloch operators has been achieved and
concrete models have been constructed, their physical implications are yet to be clarified. Re-
markably, the obtained classification is found to be different from that of adiabatic pumps [103],
indicating that non-adiabatic pumps and adiabatic ones may feature different dynamical re-
sponses, e.g., topologically protected transport phenomena and the robustness against disorder.
It would be interesting to study them in detail based on the models presented in App. A.4 for
exploring topological phenomena unique to Floquet systems.

Secondly, the effect of the particle correlation on our model should be investigated since it
is relevant in solid-state systems and ultracold atomic gases, and hence is expected to affect
the chiral current of the Floquet CME. Moreover, it is well-known that the strong correlation
dramatically changes the topological classification both in static and Floquet systems, such as
the reduction of a topological index [365,366] and anomalous TIs and TSCs characterized by a
rational topological index [367-369]. Therefore, the interaction effect may alter the topological
classification on non-adiabatic pumps established in this theses, where exotic phases of matter
might emerge.

7.2.2 Floquet engineering of nonlinear systems

First, it would be interesting to study application to Floquet engineering in solids. Although it
is analyzed as isolated systems in most cases for simplicity [72-74,76-78,370,371], a coupling
with an environment is unavoidable in a realistic solid-state system. Furthermore, numerical
simulations of many-body systems are limited to small system sizes because of the exponentially
increasing dimension of the Hilbert spaces. Our approach allows us to simulate driven classical
systems with considerably larger system sizes than quantum ones, and moreover, we can take
into account the effect of dissipation and temperature at the same time. Non-equilibrium
phase transitions and critical phenomena have been intensively studied in driven dissipative
classical many-body systems [308,372-375] and our theory can provide a reliable framework for
predicting and even controlling them.

Secondly, a master equation offers a natural realization of the non-Hermitian Schrodinger
equation as mentioned in Sec. 6.1. Recently, considerable efforts have been made to explore
non-Hermitian physics both experimentally and theoretically using the state-of-art experimental
techniques in atomic, molecular, and optical physics, in particular their topological aspects [376—
389]. Remarkably, the topological classification of static non-Hermitian systems [5,390,391] is
found to be significantly different from the Hermitian counterpart [102,143,392]. Besides,
Hermitian Floquet systems host unique topological phenomena that have no counterparts in
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static ones including anomalous TIs and TSCs [85, 87, 225] and gapless topological spectra
[1,85,89]. Therefore, it is natural to expect that, through the interplay between the non-
Hermiticity and a periodic drive, non-Hermitian Floquet systems also host unique topological
phases, which are different from both Hermitian Floquet systems and non-Hermitian static
systems. While non-Hermitian Floquet systems have been studied in the context of quantum
walks [393-395], their realizations and properties of topological edge states in classical stochastic
systems remain largely unexplored.

Finally, it would be interesting to clarify the role of the integrability of a system in the
relaxation to a NESS. In the context of periodically driven isolated quantum systems, it is
known that integrable systems show quite different relaxation dynamics from non-integrable
ones. More precisely, the heating is suppressed for a high-frequency drive in an integrable system
because of the presence of an infinite number of conserved quantities [94,205,208]. While a
similar scenario may hold for a driven dissipative system, i.e., an integrable one and a non-
integrable one exhibit different relaxation processes and approach different NESSs, no analytical
and numerical studies have been done so far. The ASEP is appropriate to test this scenario
both analytically and numerically. Its master equation can be mapped to a non-Hermitian
XXZ chain, which can be solved by the Bethe-ansatz method [396,397]. Its integrability can be
controlled by considering a step-wise driving protocol or by introducing an additional hopping
term that breaks the integrability.



Appendix A

Details of mathematics and derivations
in Chapter 5

In App. A.1, we provide the construction of the Floquet-Bloch operator U(k) in Eq. (5.10),
which has the nontrivial three-dimensional winding number on S3. In App. A.2, we discuss the
boundary condition of the Floquet-Bloch operator U(k). In App. A.3, we derive the expression
(5.32) of the pumped fermion charge. In App. A.4, we present concrete models with the Floquet-
Bloch operators that feature lattice-prohibited band structures in all the symmetry classes and
spatial dimensionalities up to three.

A.1 Construction of the Floquet-Bloch operator U(k)

A nontrivial map from T? to S? is generally constructed from the smash product [272], which is
a mathematical tool for constructing a manifold from two manifolds. Let X (V) be a manifold
and zo (yo) be a point on X (Y). The smash product X AY is defined as the product space
X x Y with the space ({20} x Y) U (X X {yo}) identified with a point on X x Y. For example,
the smash product S' A S, with S! being a circle, is isomorphic to the two-dimensional sphere
S2. We parametrize these two circles as

St={k|l-nm<k<nm}, S'={K|-7m <K <7}, (A.1)

and take xy and yy as k = &7 and k' = %, respectively. Then, the product space S* x S* and
its subspace,

{zo} x Y)U (X x {yo}) ={(&m, k)| — 7 <k <a}U{(k,x7)| — 7 < k <7}, (A.2)

are identified with the Brillouin zone T? = [—7T,7T]2 of a square lattice and its boundary,
respectively. As we can obtain S? from T? by wrapping up the square [—7r,7r]2, the smash
product S'AS? i.e., the square [—, 7r}2 with its boundary identified with a point, is isomorphic
to S2. The isomorphic mapping f ; is given by

fia(k, k) = [—2 cos” (g) cos? <%) + 1] e, — cos? (g) sin (k") e — sin (k) cos (%) es,

(A.3)
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where e; = (1,0,0)", ey = (0,1,0)", and e3 = (0,0, 1)* are the unit vectors in three orthogonal
directions.

As we will show below, the nontrivial map U (k) is constructed from the following isomor-
phism [272]:

S'ASTA ST 52 A S 83 (A.4)

Let & = (€1, &, &)™ be a unit vector on 2, ie., 330 (§)? =1, and ky € [—m, 7] = S'. The
isomorphic mapping f: S? x S — S3 of the second isomorphism in Eq. (A.4) is given by

fa1(€&, k) :& 2_ L sin (k1) a1 + cos (%) (&3a0 + &aa3) — {sin2 <%) + cos? (ﬁ) 51} ay,

2
(A.5)
where a; (i = 1,2,3,4) are unit vectors in four dimensions defined by
a; = (1,0,0,0)", ay=(0,1,0,0)", a3=(0,0,1,0)", as=(0,0,0,1)". (A.6)
Then, the composition of fi; and fs; defined by
u(k) = for[fi1(k2, k3), ki] (A.7)

gives an isomorphic mapping between S* A ST A S' and S%. Since the isomorphic mapping
f21 [f11(k2, k3), k1] to S® naturally has a unit winding number and the domain of S* A S* A S*
and that of T3 are both cubic [—, 7]*, (k) has a unit winding number:

4

W = /%”;1 €¢jkzﬂi(k)azg}€(:c) 81;}52145) &gé:c) =L (A.8)

We note that w(k) stays constant on the boundary of the Brillouin zone T3 = [—, 7]3:
u(k) = (0,0,0,—1). (A.9)
We define a continuous deformation wugs(k) := Roz(ski/2)u(k) with a deformation parameter

s(€ [0,1]), where Ra3(f) is a rotation matrix defined by

1 0 0

0 cosf —sinf
0 sinf cosf
0 0 0

Ros(0) := (A.10)

_— o O O

It follows from Eq. (A.9) that u,(k) = (0,0,0,—1) on the boundary of T* and hence u,(k) is
continuous on T?. Furthermore, combining Egs. (5.15), (A.3), and (A.5), we obtain

TUsoo(k) = U(k), Uy (k) = u(k), (A.11)

where u(k) = [ui(k), uz(k), us(k), us(k)] is defined in Eq. (5.15). Therefore, u(k) is also an
isomorphic mapping between S* A S* A St and S? and has a unit winding number W = 1.
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A.2 Boundary condition of the Floquet-Bloch operator
U(k)

From the relation

U (k) = 2" [Pji 54 PR ] = e U,(k), (A.12)
where U;(k) := e""2* we have
U (k) =0, (k)T (’“3> Oy (k) U (%) 0, () U ("" ) 0y (k) U (’“23) | (A.13)

USiIlg ﬁ](ﬂ:ﬂ') = :FZ.O'j,O'lijg(kZ)O'l = ﬁg(—k’) and 0'1(73(:1{3)0'1 = ﬁg(—k’), we have

U(£m, ko, k3) = — 01Us (k?’) Us(ks)Us (l;?’) o1Us (k?’) Us(ks)Us (%) (A.14)

0 (S () (B (3) - v

Similarly, we have

Uk, 7, ks) = — Uy (k) Us (k;’> o5 Us (k;) Uy (k,)Us (2”) o5 Us (k;’) (A.16)

= — Uy (k1)Us (k;’) U3( 2"’3) Uy (— kl)ﬁg( ;3) Us (k’;) =—0o, (A7)

where we use 03Uy (k)oy = Uy(—k) and o03Us(k)oy = Us(—Fk) in the second and third lines,

respectively. By a straightforward calculation of the product of 2 x 2 matrices, we have

U (ig) U (ko) Us (ig) = FioyU, (£ks), (A.18)
and thus we obtain
Uk, ke, ) = Ui () [FiosOn (k) | D (k) [Fios0s (k)| (A.19)
= —U, (k) Uy (Fko) Uy (k1) Uy (£ks) = —0, (A.20)
which completes the derivation of the boundary condition U(k) = —oy.

A.3 Derivation of Eq. (5.32)

For the time-evolution operator U (k;,t) := Te™" Jo ' Hkit') with fixed momentum (i=1,2,3),
we have
OU (s, T)
ok;

OH (ki t)

i

= —iU(k;,T) /T dt U'(k;, 1) U(ks, ). (A.21)
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From the solution of the Schodinger equation, we have

J(t) = /_7r Cék {poUT(kl,t)%U(ki,t)] : (A.22)
and hence obtain
AQ: = Z/W o {poU (/@,T)%]:T)}
= Z £ (k; ae“* : (A.23)

where we use f, (ki) == (v, kilpoly, ki) and U (k;, T) = 35 e %) |y k) (7, k;| in the last line,
with « being the band label or quantum numbers other than k;. Thus, the derivation has been
completed.

A.4 Floquet-Bloch operators in the other symmetry classes

A.4.1 Topological invariant in each symmetry class

Before presenting concrete lattice models, we identify the topological invariants for Floquet-
Bloch operators for given symmetry classes. For a Floquet-Bloch operator U (k) in the symme-
try class (I, s), its topological invariant is given by that of the Hermitian matrix H,(k) in the
symmetry class (F,s — 1), which is defined as follows:

H, (k) — U (k) W?th CS Ty (A.24)
o, @U(k)+o_®U'(k) without CST.

Here, ~ is a complex number defined by ? = I'> = £1. We note that, without the CS, H,(k)
is nothing but its “Q matrix” [101] since it has a flattened spectrum [H, (k)] = 1. As we can
see from Tab. 5.1, there are fifteen nontrivial classes in spatial dimensionality d = 1,2, 3, for
which we identify their topological invariants one by one.

Class A (F,s,d) = (C,0,1), class D (F,s,d) = (R,2,1), and class CII (F,s,d) = (R,6,1):

one-dimensional winding number

Since the CS is absent in these classes, H,(k) is given by H,(k) = 0, @ U(k) +o_ @ U'(k),
where its topological invariant is given by the one-dimensional winding number

Vig =i /_ ] %Tr [ (e )0k, U (K1) (A.25)

™
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Class AIII (F,s,d) = (C,1,2), class DIII (F,s,d) = (R,3,2), and class CI (F,s,d) =
(R,7,2): Chern number

Since the CS I is present these classes, we have H,(k) = yI'U(k), where its topological number
is the Chern number

Chy = / dk [0k, A, (k) — O, Ar, ()] . (A.26)

Here, Ay, is the Berry connection of the Bloch states |a, k) of the lower bands of H,(k):

A, = =i Y {0 k| Ok, |, k) . (A.27)

Class A (F,s,d) = (C,0,3), class AI (F,s,d) = (R,0,3), and class AII (F,s,d) = (R, 4, 3):
three-dimensional winding number

Since the CS is absent in these classes, H,(k) is given by H,(k) = o, @ U(k) +0_ @ U'(k).
Its topological invariant is given by the three-dimensional winding number

3
/ T > T [RiR; Ry, (A.28)

1,7,k=1

with R; := Ul (k)0 U(k).

Class DIII (F,s,d) = (R, 3,1): Chern-Simons integral

Since the CS T is present in this class, we have H,(k) = yI'U(k), where its topological invariant
is given by the Chern-Simons integral of the berry connection Ay, defined in Eq. (A.27):

Ves 1= exp (2/ &A;ﬂ) : (A.29)

Class CII (F,s,d) = (R,6,3): Z, invariant

Since the CS I is present in this class, we have H,(k) = yI'U (k). Although the topological in-
variant 15 in this class does not have a closed integral expression, it can be defined operationally
by the dimensional reduction [128,392] or the Moore-Balents argument [398,399].

Class AII (F, s,d) = (R,4,1),(R,4,2) and class CII (F, s,d) = (R,5,2), (R,5,3): Z, Parity

The topological invariants in these classes are written as the product of the parities at TR
time-reversal invariant momenta:

y Pt fw (k)] A.30
par — H \/W ( )
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where the product is taken over all the time-reversal invariant momenta. Here, w(k) is the
sewing matrix that satisfies

[w(k)]" = —w(—k). (A.31)

Therefore, w(k) becomes an antisymmetric matrix at time-reversal invariant momenta, where
Pf[w(k)] denotes the Pfaffian of w(k). Let Vrrs be the unitary matrix of © in class All, i.e.
© = VrrsK, and |u(k)) be the Bloch state of the lower band of 4/T'U(k) for class CII. Then,
w(k) is defined as follows:

| ViRsU(R) class AT
wik) = {(u(—sk)|C|u(k)> class CIL. (A.32)

Note that Eq. (A.31) is automatically satisfied from the TRS QU (k)OT = UT(—k) for class All
and from the Kramers theorem for the PHS C' with C? = —1 for class CIL

For class All, the corresponding Hamiltonian H,(k) = o, @ U(k) + o_ ® U'(k) have the
TRS O; := 01 ® ©. By the unitary matrix V defined by

_( Vrrs O
() s

the TRS ©; and H,(k) are transformed as follows:
view =iy @ 1yK, VIH,(E)V = -0, @ w(k) —o_ @ wi(k), (A.34)

where w(k) is defined in Eq. (A.32). From the topological invariants in class DIII [400,401], the
topological invariant of H, (k) is given by Eq. (A.30) . For class CII, we have H, (k) = y['U(k),
which is in class AIl with the TRS C, i.e. CH,(k)CT = H,(—k). Thus, its topological
invariant is given by the Zs-parity in Eq. (A.30), where the with the sewing matrix is defined
as Eq. (A.32) [131,184,402,403].

The above results are summarized from the first to fourth columns of Tab. A.1.

A.4.2 General method for model construction

In what follows, we present concrete lattice models with topologically nontrivial Floquet-Bloch
operators in all the spatial dimensionalities up to three and the symmetry classes except for
class A.

Let 01,03, 03 be the matrices that satisfy the anticommutation relation

where 7y is the identity matrix. Then, we define the Floquet-Bloch operators Uy4(k1 ), Usq(k1, ko),
and Usg(ky, ko, k3) as follows:

—iky5) —ikoFy —iksdy —ikoGy —ik1dy —ikooy —ikydy —ikody —ik15]

Usa(ki, ko, ks3) :==e~ 4 e 4 e 2 e 4 e 2 e 4 e 2 e 4 e 1 | (A.36)
—ik161 —ikgog —ikyoy —ikgog —ik10q

Ugd(kl, k’z) = Ugd(k'l, kg, 0) =e 4 € 2 e 2 e 2 e 4 | (A37)

Uld(kl) = Ugd(kl, 0) = exXp (—zk;{avl) . <A38)
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Table A.1: Topological invariants for nontrivial Floquet-Bloch operators for spatial dimensionality
d=1,2,3 in the symmetry class except for class A. The notations are the same as in Tab. 2.1 and the
fourth column represents the pair of the topological index and the topological number K¥B(F, s, d).
The topological indices vi4, Chi, W, vcs, and vp,, are the one-dimensional winding number (A.25),
the Chern number (A.26), the three-dimensional winding number (A.28), the Chern-Simons invariant
(A.29), and the Zy parity (A.25), respectively. Although v is not expressed as a closed integral form,
it can be defined operationally by the dimensional reduction or the Moore-Balents argument. The
anticommuting matrices o are the basis of the Floquet-Bloch operators in Eqs. (A.36), (A.37), and
(A.38).

class s d H invariant \ © C r o

D 2 1 (Vlda Z) 0 O'1K: 0 (0'2)

C 6 1 (Vlda 2Z) 0 Zb’o X TQIC 0 (0'2 (24 7'1)

AIII 1 2 (Chl, Z) 0 0 03 (0’1, 0'2)

DIIT 3 2 (Chl,Z) iUQ@To/C 01®7'01C 03 X Ty (01@7’0,02@7’0)

CI 7T 2 (Ch1,22> 0'1®T0]C iO’o@Tg’C ’i01®T2 <0'2®72,0'3®7'0)

Al 0 3| (W,2Z) | o9 ®@1K 0 0 (01 ® 9,09 ® Ta,03 ® Tp)
AIl 4 3 (W,Z) | ioy @ 1K 0 0 (01 ® Ty, 02 ® Ty, 03 @ Tp)
DIII 3 1 (l/cs,ZQ) iO’Q ®7‘0’C 01 ®7‘0’C 03 & Ty (0'1 ®T[))

C 6 3 (v2, Zs) 0 109 ® T 0 (09 ® 11,03 ® Ty, 01 @ Tp)
AIl 4 1| (vpar, Za) | i3 @ 0K 0 0 (01 ® 70)

All 4 2 || (Vpar, Za) | G0 @ oK 0 0 (01 ® 70,02 ® Tp)

CII 5 2| (Vpar,Zo) | 102 @ToK 100 @K 0@ (01 ® 79,02 @ 71)

CIl 5 3| (VparsZa) | ioa @ 1K 00 @K 02@7 (01 ®7Tp,00 ®T1,03 X Tp)

Using the anticommutation relation (A.35), Usq(ki, ko, k3) can be rewritten in terms of 7; as
follows:

Usa(ky, k2, k3) = us(ky, k2, k3)ao + 4 [ug (K1, k2, ks)o1 + ua(ky, ko, k3)oa + ug(ky, ke, k3)os),

(A.39)
wi (kr, ko, k) i= —sin (k) cos? () cos? (&) ;
up(kr, ko, kg) = —sin (k) cos (%) cos? (&) ;
. : \ (A.40)
ug(ky, ko, k3) := — sin (k3) cos (71) coS (72) :
ug(ky, ko, k3) := 2 cos? (1“2—1) cos? (’“2—2) cos? (%3) —1

Note that Usq(ky, ko, k3) satisfies the periodic boundary condition of the Brillouin zone because
Usa(ky, k2, k3) = —0p on its boundary.

In what follows, we first find the Floquet-Bloch operators with the symmetry conditions
(5.62), and then construct time-dependent Hamiltonians with the symmetry conditions (5.61).
Let k be the d-dimensional momentum in the Brillouin zone [, 7]? and & := (71, -+ ,04q)
be the first d elements in {7y, 02,03}. The Floquet-Bloch operators U(k) = Uy(k), Usq(k),
or Usg(k) satisfy the conditions of the TRS © for Floquet-Bloch operators in Eq. (5.62), i.e.,
OU(k)O~! = U'(—k), if o is odd under ©: ©0~! = —a. On the other hand, & must be
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even under the PHS C and the CS T, i.e.,, SoS™! = & for S = C, T, such that U(k) have the
PHS C and CS T, respectively. To summarize, the TRS ©, PHS C, or CS T" for Floquet-Bloch
operators in Eq. (5.62) are satisfied if o satisfies the following conditions:

60 '=-5, CoC'=0c, Tol'=-go. (A.41)

It is worthwhile to mention that these relations are nothing but the symmetry conditions for
the (static) Dirac Hamiltonian H(k) = & - k in the same symmetry class.

The Floquet-Bloch operators Uy4(k), Usg(k), and Usy(k), indeed, have the gapless spectra
protected by symmetries. To see this, we first consider the case with three spatial dimensions.
Let 6 be the parameter defined by

cos(vl) = uy, sin(fv) = —v (A.42)

for the three-dimensional vector v = (uy, ug, ug), with v := |v| = +1/1 — (u4)? being its norm.
Then, the exponential operator exp(—ifv - o) can be expanded as

- ~ in(6 - - ~
exp(—ifv - o) = cos(bv)ay — Z_sm( U)'v 0 =uy0 +iv - 0 = Usq(k). (A.43)
v
Thus, the effective Hamiltonian is given by
het (k) = 6v - o, (A.44)

where we set the driving period as unity: T'= 1. Since we have
[he(K))” = (00)%F = [cosfl(u4)]250, (A.45)

its quasienergies €34(k) are given by

esq(k) = £ cos ! [uy(k)] = £ cos™! {2 cos? (%) cos? (%) cos? (%) — 1] : (A.46)

This dispersion has only one gapless point k = 0, around which heg(k) is expanded as
he(k) = 7 - k. (A.47)

It is clear that, for a given symmetry class (IF, s), this gapless point is protected by its symmetries
since the Dirac Hamiltonian & - k cannot be gapped out without breaking them. The same
discussion holds in the lower dimensionalities d = 1, 2.

To show that U(k) can be constructed with a time-dependent Hamiltonian h(k,t) that
respects the TRS ©, PHS C, or CS I' for time-dependent Hamiltonians in Eq. (5.61), it is
sufficient to prove that each helical pump exp(—igk;0;) (¢ = 1,1/2,1/4) can be implemented
with a time-dependent Hamiltonian h(k,t) that satisfies Eq. (5.61). To see this, consider the
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time-dependent Hamiltonian h(k;,t) defined by

—Jo} 0<t<T,/3;
h(k;,t) == < 2J(sin(gk;)o; + cos(gk;)ol)  Tr/3 <t < 2T}/3; (A.48)
—Jo! 9T},/3 < t < Tj,/3,

(e =1, olo;+ 0,0, =0. (A.49)

We note that the first and third processes in h(k;,t) represent the rotation of the internal
states, while the second one expresses a spin-dependent tunneling along the x; direction with a
sublattice structure. When J7},/3 = 7/4, from the straightforward calculation using Eq. (A.49),
the time-evolution operator of h(k;,t) from ¢t = 0 to ¢t = T}, is shown to coincide the helical
pump exp(—igk;0;):

Th . / s . k' ,.\_,‘ k, / . /
T: exp (—2/ dth(ki’t)) — exp (Zﬂ;l(fl) exp { im(sin(gk;)o; + cos(q I)O-z):| exp (maz)
0

2 4
(A.50)
= exp(—iqk;0;). (A.51)
From Eq. (5.61), h(k;,t) has the TRS ©, PHS C, or CS I if ¢/ satisfies ©0/0~! = ¢/, ColC™! =
—al, or T'o/l'"! = —¢/, respectively. Thus, the helical pumps in U(k) can be implemented if
there exists d matrices o’ := (0], -+ ,0),) that satisfy
Q0 '=0, Co'C'=-0, ToT'=-0. (A.52)

In summary, nontrivial Floquet-Bloch operators under given symmetries can be constructed by
finding suitable matrices o and o’ that satisfy the symmetry constraints (A.41) and (A.52),
respectively, and the anticommutation relation (A.49).

A.4.3 Concrete models in each symmetry class

Nontrivial Floquet-Bloch operators in class AIIl can exist in d = 2. Let us take the CS I' as
I' = 3. Then, o = (01,02) and o’ = (09,07) satisfy Egs. (A.41) and (A.52), respectively.
Its topological number is the Chern number (A.26) of the lower band of the Hermitian matrix
T Usq(k). For the two-band model defined in Eq. (A.37), yT'Usq(k) is rewritten as y['Upy(k) :=
d(ky, k) - o, where d(kq, ko) is the three-dimensional vector with unit length defined by

d(l{fl, kg) = [Ug(l{il, ]Cg, 0), —ul(k:l, ]{52, 0), U4(]€1, kQ, O)} . <A53)

Then, the Chern number (A.26) reduces to the winding number of d(k1, k2) on S?:

dk od od
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In general, a model with higher Chern number n (€ Z) is obtained by replacing k; in Usy(k)

Nontrivial Floquet-Bloch operators in class Al can exist in d = 3. Let us take the TRS ©
as © = 01 @ 1o. Then, o = (01 ® 79,09 ® To,03 ® 7p) and o' = (09 ® 71,00 @ T1,01 @ Tp)
satisfy Eqs. (A.41), (A.49), and (A.52), respectively. The topological number is given by the
three-dimensional winding number W in Eq. (A.28). Substituting Eq. (A.36) into Eq. (A.28),
together with & = (01 ® 72,09 ® 72,03 ® Tp), we obtain W = —2. A higher winding number
2n (€ 27) is obtained by replacing k1 in Usq(k) by —nk;.

Nontrivial Floquet-Bloch operators in class BDI do not exist in d = 1, 2, and 3.

Nontrivial Floquet-Bloch operators in class D can exist in d = 1. Its topological number
is given by the one-dimensional winding number v14 in Eq. (A.25). In this class, we cannot
construct a nontrivial Floquet-Bloch operators by using Eqgs. (A.36), (A.37), and (A.38) because
Eq. (A.38) is generated by a traceless matrix o;, where 114 automatically vanishes. Therefore,
we here must consider another protocol. Let us take the PHS in the Majorana basis C' = o3/C,
where o3 = 1 (—1) corresponds to the real (imaginary) Majorana field. Consider two species
of fermions labeled by @ = 1,2 and we denote the real (imaginary) Majorana state with
momentum k; and species « by |k, R, ) (|k1, I, «)). The PHS acts on the fermions with The
driving protocol is given by the time-dependent Bloch Hamiltonian h(k;,t) defined by

(b t) = {J\Iﬁ,l,2> (k1, R, 1| + h.c 0<t<T/2 (A.55)
Je 1k1|k31,R,1> <k’1,],2|+h.C T/2§t§T

Since |k1, R, ) and |ki, I, «) are the eigenstates of C' with the opposite parity, h(k;,t) has
the PHS. When JT'/2 = 7/2, the entire Floquet operator is decomposed into the two Floquet
operators that do not mix the species. The Floquet-Bloch operator Up(k;) that acts on the
species a = 1 is given by

Up(ky) = Z0F T8 ik | J0— 05 (A.56)
2 2
This operator, indeed, has the PHS, CU (k;)C~! = U(—ky), and a unit winding number v14 = 1.
A higher winding number n is obtained by replacing k; with nk;.

Nontrivial Floquet-Bloch operators in class DIII can exist in d = 1,2. Let us take the TRS
© and PHS C as © = ioy ® 79K and C' = 01 ® 79/, respectively. Then, o = (01 ® 19, 02 ® T0)
and o' = (02 ® 7,01 ® Tp) satisfy Egs. (A.41), (A.49), and (A.52), respectively, and hence
U(k) has the TRS and PHS. For the one-dimensional model Uy4(k1), its topological number is
determined from the Chern-Simons invariant vcg defined in Eq. (A.29). From a straightforward
calculation, we obtain vog = —1 for Uyg(k1) with o7 = 01 ® 1. For the two-dimensional model
Usa(ki, k2), its topological number is given by the Chern number (A.26), which is obtained to
be Ch; = 1.

Nontrivial Floquet-Bloch operators in class AIl can exist in d = 1,2, 3. Let us take the TRS
O as © = i0,@7oK. Then, o = (017, 02R7), 03R7) and o’ = (02 ®Ty, 01 R Ty, 01 R Ty) satisfy
Egs. (A.41), (A.49), and (A.52), respectively, and hence U(k) has the TRS. The topological
invariant for the one- and two-dimensional models U (k) are given by the Zy parity (A.30). For
the one-dimensional model, we have Pf [w(k;)]/ \/det (k1)] = 1(—1) for ky =0 (k; = 7) and
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hence v, = —1. For the two-dimensional model, we have
Pf [w(k)] _ 1 k=1(0,0); (A57)
det [w(k)] -1 k= (r0),(0,m), (m,m),

which gives v,,, = —1. Finally, consider the three-dimensional model Usq(k1, k2, k3). Its topo-
logical number is the three-dimensional winding number W defined in Eq. (A.28). Substituting
Eq. (A.36) into Eq. (A.28), together with & = (01, 02, 03), we obtain W = —1.

Nontrivial Floquet-Bloch operators in class CII can exist in d = 2, 3. Let us take the TRS ©
and PHS C as © = io,@70K and C' = icy @72k, respectively. Then, o = (0179, 02®71, 03R7))
and o' = (03 ® 7,00 ® 73,01 ® T2) satisfy Eqs. (A.41), (A.49), and (A.52), respectively, and
hence U(k) has the TRS and PHS. The topological numbers of the two- and three-dimensional
models are both given by the Z, parity (A.30) for the time-reversal invariant Hamiltonian
H,(k) =~T'U(k). By a straightforward calculation, we obtain

Pfw(k) _ [-1 k=(0,0) N
det [w(k)] {1 k = (n,0),(0,m), (7, m), (A.58)
for the two-dimensional model and
f;f[w(k)] _ {—1 k = (0,0,0); (A5
et [w(k)] 1 other momenta,

for the three-dimensional model. Thus, we obtain v,,, = —1 for both models.

Nontrivial Floquet-Bloch operators in class C can exist in d = 1, 3. Let us take the PHS C
as C' = iog®@1o/K. Then, o = (02 ®71,03R 79,01 ®7) and o’ = (09 @ 73,01 ® T, 03 R Ty) satisfy
Eqgs. (A.41), (A.49), and (A.52), respectively, and hence U(k) has the PHS. The topological
number of the one-dimensional model is given by the one-dimensional winding number 44 in
Eq. (A.25). As a model with nontrivial winding number, we consider the pair of the driving
protocol in class D and its time-reversal. The whole time-dependent Hamiltonian hc(kq,t) is
the direct product ho(kyi,t) = h(k1,t) ® [—h(—k,t)], where h(kq,t) is defined by

J k1, R,2) (k1, R, 1| + h. 0<t<T/2
Wk, 1) = 4 7 1P B 2) (R, B 1 e <t<T/2 (A.60)
Je=®1 |k, R 1) (ky, R,2| +he T/2<t<T.
When JT'/2 = /2, the corresponding Floquet-Bloch operator Uc(k;) is given by
Uc(kr) = Up(ky) @ UL(=k1) = Up(k1) & Up(ky), (A.61)

where Up(kq) is the Floquet-Bloch operator defined in Eq. (A.56). The Floquet-Bloch operator
Uc (k1) indeed has the PHS, CUq(k)C~' = Ug(—Fky), and a unit winding number vy =
2. Although we do not have a closed integral expression for the Z, invariant for the three-
dimensional model, we can compute it by means of the Moore-Balents argument [398, 399].
The Floquet-Bloch operator Usq(k) is given by Eq. (A.39), ks > 0 (ks < 0) corresponds to the
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north (south) hemisphere of $3. Let us define a modified model Usy(k) by

U3d(k) for /{33 Z O,

~ - ~ (A.62)
ug(k)og + ui(k)oy + ug(k)os +ug(k)es for ks <0,

ﬁgd(k) = {

where e; := 07 ® 7y transforms under the TRS and the PHS as Qe;0' = e;3 and CesCT = —es,
respectively. Note that its parities are the opposite to those of &3 since O30T = —75 and
Co3CT = 3. Since we have from Eq. (A.40) that

U4<k5H, kg) = U4(—k§||, k‘g), Ul(k”, ]{53) = —ul(—k:”, k‘3), <A63)
uz(ky, ks) = —uz(—ky ks),  us(ky, ks) = us(—ky, ks), (A.64)

with kj := (ki, k2) being the momenta other than ks, Usq(k) for ks < 0 defines a continuous
deformation of Usq(ky,0) into a trivial insulator that satisfies

OUsq(key, ks)OT = Ul (—ky, ks),  CUsa(ky, ks)Ct = Usa(—ky, ks). (A.65)

Thus, from the Moore-Balents argument, the Z, topological number is given by the parity of the
three-dimensional winding number W of the Hamiltonian H, (k) := o_ QUi ,(k)+0, @Usq(k) in
class AIIL Substituting Eq. (A.62) into Eq. (A.28), we obtain W = 1 and hence vy = (—1)V =
—1.

Nontrivial Floquet-Bloch operators in class CI can exist in d = 2. Let us take the TRS ©
and PHS C as © = 01 @ 7oK and C = iy ® 12K, respectively. Then, o = (09 ® 1o, 03 ® 79) and
o' = (oo @71, 01 ®7) satisfy Egs. (A.41), (A.49), and (A.52), respectively, and hence U (k) has
the TRS and PHS. The topological invariant is given by the Chern number (A.25) of the lower
bands of the Hamiltonian yI'U (k). For the two-dimensional model Usq(ky, k2), its topological
number is given by the Chern number (A.26), which is obtained to be Ch; = —2. Note that
the Chern number is alway an even integer because the model is constituted from two copies
of a Chern insulator, which are related by the TRS.

The above results are summarized from the fifth to eighth columns of Table. A.1.



Appendix B

Details of derivations in Chapter 6

In App. B.1, we present rigorous discussions on a Markov chain on a discrete state space under
a periodic drive and and a periodically driven Markovian quantum master equation, comparing
it with the results on an isolated quantum system [95,98]. In Apps. B.2, B.3, and B.4, we
calculate the low-order terms of the vV HFE for the sLLG equations describing laser-driven
magnets analyzed in Secs. 6.4 and 6.5.

B.1 Rigorous results on discrete systems

B.1.1 Markov chain on a discrete space

Consider a Markov chain on a lattice with N sites with the generator of its master equation
being L(t):

a—]; = L(t)P, (B.1)
where L(t) is periodic in time with period T: L(t) = L(t 4+ T). Here, L(t) and P are the
transition matrix W (t) and the probability distribution function p(¢) in Eq. (6.11), respectively.
We assume that the state space on a site is discrete, where P is a finite-dimensional vector. This
is in stark contrast to the case with a continuum classical variable ¢ analyzed in Sec. 6.2, where
P is an infinite-dimensional vector even in a single-particle system and hence a mathematically
rigorous results are hard to obtain. It is worth mentioning that some of Markov processes
have an exact correspondence with quantum spin systems; for example, E(t) for the ASEP is
nothing but the Hamiltonian of the non-Hermitian XXZ chain [396,397]. We assume that L(t)
is written in the following form:

L(ty= Y Ix(1), (B.2)

X:|X|<k

where X = {7’1, To, - ,7'|X|} and lx(t) are a set of sites with its number not more than k and
an operator acting on the sites in X, respectively. This indicates that the transition process
of a particle at some site depends on the state on, at most, k sites. We also assume that the
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transition rate per site is bounded from above with g:

S @l < 0. (B.3)

X:Xer

for any site r. We define the effective generator Ly and Qg by U(T,0) =: exp (LpT) and
Qp := LpT, respectively. For the FM HFE Qp = >"*_ Q%m), the mth-order term Q%m) is given

by Eq. (6.68). For a global drive, using the same techniques as that used an isolated quantum
system [95,96], we can bound Q%m) from above as follows:

(2gkT)™m!

Q|| < 2T N2
907 < 207N

(B.4)

which implies that Q%m) is, at least asymptotically, convergent up to the order mgy ~ w/(gk):
10 — Qlm)| < NO[(2gkT)™  for m < my. (B.5)

Thus, the derivation of Eq. (6.57) has been completed. Furthermore, for t = mT € mZ and
mo = | (8gkT)~* — 1|, with |-] being the floor function, we can show the following bound for

the truncated FM HFE Q{70 = $™mo qim).

m=0
1O~ (£, 00U (¢, 0) — QU|| < 16¢%kTt2-™ N. (B.6)

Equation (B.6) should be compered with the bound (3.23) on an isolated quantum system. In
fact, Bq. (3.23) is obtained from Eq. (B.6) by replacing Q5 and U~1(t,0) with —iH{"T
and UT(t,0), respectively, because the bound (3.23) is obtained without using the Hermiticity
of H(t).

In the case of an isolated quantum mechanics, Eq. (3.23) shows that H%né()) is a quasi-
conserved quantity and that, together with the ETH [202-204], the Floquet prethermal state
is given by the Gibbs state of H%;O) if Hy ~ H%?) is non-integrable. On the other hand,
one cannot determine the steady state from Eq. (B.6) because there is no guiding principle to
determine the steady state for an open system. Therefore, we must analyze the steady-state
properties in another way. Let us define Q07 by QU .= U-1(¢,0)Q72U(t,0) and consider
the following two master equations:

op  Qlwp
— = B.7
op  Qmp
—— = . B.8
dt T (B.8)
We denote the steady states of Egs. (B.7) and (B.8) by I:IgS"O) and H(ng) , Tespectively:
1m0 .= exp (Q&’;O%) Py=U"Y(t,0)exp (Qg@%) U(t,0) P, (B.9)
TG = exp (H(Fm”%) B, (B.10)

where Py and 7 are an initial probability distribution and the relaxation timescale to the steady
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states, respectively. For a non-integrable isolated system, a steady state is solely determined
by conserved quantities like a Hamiltonian. As a counterpart, we here assume that the steady
states Ilgs and Hég“)) of the two master equations (B.1) and (B.8), respectively, are inde-
pendent of the initial probability distributions. Assuming that 7 is sufficiently shorter than
16g?kTT?2™ | we obtain from Eq. (B.6) that

1, L =(mo m —m
U (7, 0 FU(r, 0) R — G| = LIS — 1) < O (k2] . (BA1)

Thus, we obtain

mg) T 1
W U (7, 0) Py — U(T,O)eQ(TRO)TPOHSNHU_I(T,O)H%LO)U(T,O) nio|| (B.12)

< O [(g7)°k27], (B.13)

e

N

because U (t, 0) is a probability matrix and hence its norm is less than one. Since Ilgg and H(Sg“’)
are independent of the initial probability distribution, we have

Mg = U(, 0) exp (Q&R) T) Py = U(r,0) P, (B.14)
Héfsno) = exp <Q(Tn;{0)%> U(r,0) P = exp (Q(TT'E{O)%> Py. (B.15)

Therefore, we finally obtain
1 m m
s — g™ < O [(gm)*k27™] | (B.16)

which indicates the coincidence between the exact steady state Ilgg and the steady state H(mO)

obtained from the FM HFE. This completes the derivation of Eq. (6.58). Furthermore, the

difference between Hggo) and Hgg), which is obtained from the lower-order truncation (m < my),
is of the order of (2gkT)™ from Eq. (B.5), which gives

1 m —m m
s — 5] < O [(g7)2k27™ + (29kT)™] . (B.17)

Equation (B.17) indicates the coincidence between the exact steady state Ilgg and the steady

state Hggo) obtained from the low-order FM HFE. From the above discussion, we can conclude
that the FM HFE developed in Chapter 6 is valid for a Markov process on a discrete state
space.

B.1.2 Markovian quantum master equation

Consider the Lindblad equation (6.85) with time-dependent Hamiltonian H(¢) and Lindblad
operators {L; }, which are defined on a lattice with N sites. The Lindblad equation p = Lyn4(t)p
is regarded as a non-Hermitian Schrodinger equation. We assume that H(¢) and the dissipator
are written in the form of Eq. (B.2) that satisfies Eq. (B.3):

Hi = 3 lix(t), (5.15)
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Z x| < g, (B.19)

Z(LupL( L0} ) = 3 tax(o) (5.20)
X[ X|<k

Z I x@® < gr. (B.21)

We further assume that the Hilbert space on each site is finite, where the density matrix p is
spanned by tensor products of finite-dimensional matrices { M, },. on each site 7. Then, Lynq(?)
is local and bounded in that it can be written in the form of Eq. (B.2) that satisfies Eq. (B.3)
for some k and g. We can derive Egs. (6.86) and (6.87) in the same manner as we derive the
similar results in Eqgs. (6.57) and (6.58) for a Markov chain on a discrete space. One different
point is the derivation of Eq. (B.13) where we use the bounded nature of the probability matrix
U(T,0). This should be replaced by ||[U(T,0)|| < 1, which is derived from the dissipative nature
of the Lindblad equation as follows [404,405]. Let || M||s, := 1/ Tr (MTM) be the trace norm of
a matrix M. For the density matrix p; at time ¢, we obtain from Eq. (6.85) that

%Hmllfr =Tr [pl (ﬁLmd(t) + ELnd(t)> pt] (B.22)
S (o) = 5 {10 10,01 )
=53 (1o 2+ | oo 2]

Therefore, the trace norm ||p||¢, is @ monotonically decreasing function of ¢, which gives

— Ty + (Li(t) = Lj(t)) (B.23)

) <0. (B.24)

IU(T,0)poller = llorller < llpollers (B.25)

and hence |U(T,0)| < 1.

B.2 Two-dimensional ferromagnet: first order

For a systematic calculation of a commutator, we rewrite the FP operator in terms of the
angular momentum operators. Let us define the angular momentum operators L, , and the
operators K., and N, , by

0
L'r,a = _Eabcmr,ba—a K’r,a = 6abc-[/r,anr,c’ N'r',a = Lr,a + aKr,aa <B26)

r,C

where « is the Gilbart damping in the sLLG equation. These operators satisfy the following
commutation relations:

[Lr,m Lr’,b] = r,r’eabch,ca [Kr,aa Kr’,b] = _5r,r’€achr,c; [Lr,a; Kr’,b] = 6r,r’6abch,07 <B27)
[Nr,ay N'r’,b] = 67',1" {eachr,c +« (N'r,amr,b - mr,aNr,b)} 3 <B28)
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Consider the commutator between the operators L, := — > div[fr - ] and Lz = =)
div[f, s - |, where f,, (v = A, B) is given by
m, a
Frr = a2 X (Hh7 + qua X H,W) ) (B.29)
From the equation
(€apemp p Hy ) ma(H)LH (B.30)
A \CabcMyp rc) = “CabcMpra 7y ry,c) — Lp " Ly, .
dmyg ~ T T O o 7

we can rewrite £, in terms of IV, as follows:

Ly=> (L,-H,,+a K, -H,,) =Y N, -H,, (B.31)

’l” a

where H,., = H,.,/(1 + o?). Using Eq. (B.28), we obtain

(B.32)

r,mag ’

(LA, L] = ZNT [H4, Hp|

where the commutator [FI 2 H B] . is defined by

7,ma,

am,

[H,, Hg] =H, s x H.p+

r,mag

x (Hy 4 x H, )

Mg

+ Z [(Hr’,A ’ Lr’) -HT,B - (-EIT’,B ’ Lr’) -H—'I‘,Aj|

+ 25" [(m - Hya x L) Hyp — (my - Hyp x L) Hoa] . (B.33)

ms =
T

Thus, [£4, Lp] defines the drift field with magnetic field [FI 2 H B]rmag' For example, when
H, ,=B_; and H, p = By, we obtain

— — B_1 X B+1 am, B_1 X B+1 am,
H,H = = pW) bV, B.34
[ A B]r,mag <1+&2)w m, X (1+Oé2>(.d M, X ( )
Therefore, we have
1 am,
£y =>"L, (b<1>+ X b(1)>, (B.35)

which gives Eq. (6.105).
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B.3 Two-dimensional ferromagnet: second order

The second-order vV HFE Eg) is given by

Lo - (L1 [Lo, L1l + [£1[Lo, La]] (B.36)

2?2

We decompose L, into the terms on the external field, the nearest-neighbor interaction, and
the diffusion as follows:
ext

_ ! > L. By, Ly'= J Lo Y my, LiF=diva(D - ), (B37)

0 1+ a2 1+ a2

r r’:n.n

and decompose .c;?’ accordingly; Eg) = Eg)’eXt + Lﬁ?“m + ﬁﬁ?’dif. Combining Egs. (B.33) and
(B.37), we obtain

2),ext 2Oém7.
LI, ((1 -t + 2 b<2>) | (B.38)
@i aB 2 mr’,xdmr,r’,z
L 2),int — L'r‘ - J (—d ) Myt v (Sm'r- r .,z (ng)
r 2,,.: mSW(l + 042) r;n 7 — My 0 ’/y — ’;TL 7/ OMp
n, r’ z r.r’ x r'y 7y
= Ly Y 8Jp ., (B.40)
L&A i 2xr m, | - | +divs [x»DGG™ - ] (B.41)
F 14 a? ’

where dm,. ,» = m, — m,,. The overall effective master equation is given by

— . 2(1+ . .
oP = 2 <LT . HF,'I"P> + div {(%mw) p} 1 divy [(1 + X)DGGt P] ’ (B.42)
where the effective field H, FriS
TFo _ 0 2\p(2) Q) 20
Hp, =Y (Jmy+6J,,)+ B+ bV + (1—a”)b? + [ ——b) — —b® ) x m,..
Mg M

r’:nn

By defining a new diffusion matrix G by Gr := (1 + x)"/?G, the second and third terms on
the right-hand side of Eq. (B.42) are rewritten as

- 2(1+ x) i, DD :
le [(Wm,r) P‘| = ;LT‘ . <_b( ) + TS X M, P —+ le (—dFP) s <B44)

divy [(1+ x)DGG" P| = div, [DGpGEP], (B.45)
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where dr; := gru0kgru and

, Dmg 0y
bt = ) = B.46
2(1+ a?) om, ( )
Equation (B.42) is then rewritten as
0P =) (L, Hp,P)+ div (—dpP) + divy [DGrGEP] (B.47)

r

where Hp, is the effective field defined in Eq. (6.111). Comparing this equation with Eq. (6.7),
we finally arrive at the sLLG equation (6.109).

B.4 Multiferroic spin chain

The calculation is done in a manner similar to what we have done in App. B.2. The first-order
FP operator E%l) is given by

Z L, —[H. H,,,, (B.48)

where the Fourier harmonics H; of the effective field is

gmeEd

) B
Hy =Y Dixmu+Bsy, Di = (+i,1,0)", B. :{(1,;@0)“. (B.49)

r:in.n.

By a straightforward calculation, we obtain

N _ ZLT _ Hgi (B.50)

QEne M3 + M y0my.,

1 BCE

Hyjpi= 32 (Drpgr xmp) + Br = aBrxme = 3 5 0P | —manybme
; 0

r’:n.n. r’:n.n.

(B.51)

where D, ,» and By are defined in Eq. (6.122). Equation (6.121) follows from the correspon-
dence between the master equation and the EOM explained in Sec. 6.1.
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