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Abstract

The concept of scale-invariance-associated universality has been successfully extended to

describe out-of-equilibrium phenomena with fluctuations, becoming an essential concept to

explore universality in out-of-equilibrium systems. In this dissertation, the author aims to

extend knowledge about the concept itself, by studying out-of-equilibrium interface growth

phenomena associated with the (1+1)-dimensional Kardar–Parisi–Zhang (KPZ) universality

class, a prototypical universality class for out-of-equilibrium systems.

The dissertation is devoted to the following two subjects: The first is the fluctuation of

interfaces in the KPZ class with curved initial conditions, and the second is the fluctuation of

a growing phase-boundary interface formed near the critical point of a nonequilibrium phase

transition of the directed percolation (DP) universality class.

The first study is motivated by recent theoretical and experimental findings which indi-

cate that interfaces in the KPZ class show distinct statistical properties depending on their

geometries, or equivalently, the initial conditions. Though the statistical properties have

been intensively studied for special cases such as flat and circular interfaces, knowledge for

more general cases is still limited. To experimentally investigate interfaces with general ini-

tial conditions, the author constructed an experimental setup that enables investigation of

the growth of the turbulent state of an electrically driven liquid-crystal film from arbitrarily

designed initial conditions. With the experiments as well as numerical simulations of a clus-

ter growth model, we revealed statistical properties of the interfaces with initial conditions

with a shape of a circular ring, which naturally generalize those of the flat and circular inter-

faces. We further discuss the theoretical representation of the height distribution for locally

parabolic initial conditions by a conjectural formula called the variational formula, which

was found to be consistent with the experimental and numerical results we obtained.

The second study is inspired by empirical observations implying that models showing the

DP-class transition also shows the growth of the phase-boundary interfaces with the KPZ-

class fluctuation far from the critical point. To elucidate interface fluctuation near the critical

point where the universality of the DP class arises, the author numerically investigated the

interface growth process with the Langevin equation which describes the DP-class transition.

We found a crossover connecting a novel interface fluctuation characterized by the DP-class

universal exponents and the KPZ-class fluctuation.
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Notations

X := Y Define X by Y .

X =: Y Define Y by X.

f(t) ∝ g(t) f(t) is proportional to g(t); f(t) = Cg(t) (C ̸= 0).

f(t) ∼ g(t) f(t) is asymptotically proportional to g(t); limt→∞
f(t)
g(t)

= C (C ̸= 0).

f(t) ≃ g(t) f(t) is asymptotically equal to g(t); limt→∞
f(t)
g(t)

= 1.

∂x Partial derivative with respect to a variable x ; ∂
∂x
.

f(t) = O (g(t)) f(t) is of the order of g(t); f(t) ∼ g(t).

f(t) = O (g(t)) f(t) is of the order smaller than g(t); limt→∞
f(t)
g(t)

= 0.

X ≈ Y X is approximately equal to Y .

1A The indicator function; 1A =

{
1 (if the condition A is satisfied)

0 (otherwise)
.

⟨X⟩ (Ensemble) average of X.⟨
Xk
⟩
c

k-th cumulant of X.

Sk[X] Skewness of X.

Ku[X] Kurtosis of X.

Cov[X,Y ] Covariance between X and Y .

Abbreviations

AC alternative current

CCD charge-coupled device

CDP compact directed percolation

(d+ 1)-D (d+ 1)-dimensional (d is the spatial dimension)

DP directed percolation

DSM dynamic scattering mode

EW Edwards–Wilkinson

FKPP Fisher–Kolmogorov–Petrovsky–Piscounov
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GOE Gaussian orthogonal ensemble

GUE Gaussian unitary ensemble

IFTA iterative Fourier transform algorithm

KPZ Kardar–Parisi–Zhang

LC liquid crystal

PNG polynuclear growth model

SLM spatial light modulator

(T)ASEP (totally) asymmetric simple exclusion process

TW Tracy–Widom

UV ultra violet
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Chapter 1

Introduction

Studying physical phenomena not only provides us with insights of themselves, but sometimes

also introduces novel perspectives to understand the real world. Critical phenomena are one

of the successful examples, which has led to the discovery of the renormalization group and

associated universality of the phenomenological theories. Standing on a giant of those efforts,

now we are on the stage to explore scale invariant phenomena in out-of-equilibrium systems

and see how the concepts of scale-invariance-associated universality are extended. In this

chapter, I briefly review the general background of the Kardar–Parisi–Zhang (KPZ) class,

one of the representative classes for out-of-equilibrium systems, and then state our motivation.

1.1 Scale invariance and universality in growing inter-

faces

In the field of equilibrium critical phenomena, the emergent scale invariance and the uni-

versality of the phenomenology near the critical point has been understood using the con-

cept of the celebrated renormalization group [1–3]. Regarding that the universality of the

phenomenology is associated with the scale invariance, it is natural to consider that the

scale-invariance-associated universality is not only for equilibrium systems. Indeed, universal

phenomenological theories associated with scale invariance have attracted considerable inter-

est in genuinely out-of-equilibrium systems, one example of which is fluctuations of growing

interfaces, our primary target in this dissertation.

Often spontaneous fluctuation appears in growing interfaces, both in models and experi-

ments [4, 5]. Here let us assume that, in a sufficiently coarse-grained scale, one can describe

the interface shape by one-valued function h(x, t), where x ∈ Rd is the position with the

substrate dimension d and t ∈ R is the time. We call interfaces described in this form

(d+ 1)-dimensional [(d+ 1)-D] interfaces.

Often large-scale profile of the interfaces are governed by two length scales diverging with

time, as first observed with numerical simulations of interface models called the ballistic

deposition model and the Eden model [4, 6, 7]. One is the fluctuation amplitude, defined

1



2 CHAPTER 1. INTRODUCTION

as, e.g., the standard deviation of the height. The other is a length scale transverse to the

growth direction which can be observed by the decay of the correlation of the height in a

snapshot of the interface.

Scale invariance often spontaneously appears in those interfaces with diverging length

scales. For example, let us consider the width of the height w(l, t), which is defined as the

standard deviation of the height measured in a box with a side length of l as

w(l, t) =:
√⟨⟨

(h(x, t)− ⟨h(x, t)⟩l)
2⟩

l

⟩
, (1.1)

where ⟨· · · ⟩l is the average in a box with a side length of l (Fig. 1.2). For a sufficiently large

system and long time, w(l, t) often follows a scaling form called the Family-Vicsek scaling [4,

6], which reads

w(l, t) ≃ tβf(l/ξ(t)), (1.2)

where f(x) is a function satisfying

f(z) ∼

{
zα (z ≪ 1)

const. (z ≫ 1)
, (1.3)

ξ(t) is a lengthscale called the correlation length satisfying ξ(t) ∼ t1/z, and the exponents

β, z and α satisfies α := βz. This scaling form suggests the existence of the scale invariance

with respect to the transformation

t → bt, x → b1/zx, δh → bβδh, (1.4)

where δh := h − ⟨h⟩. Similarly to that found critical phenomena, the scale invariance with

diverging characteristic scales suggests the universality of the exponents. Indeed, the expo-

nents have been experimentally and numerically found to be universal for microscopically

different systems, and regarded as the indices for the universality classes similarly to those

for critical phenomena [4, 5].

1.2 Continuum description and Kardar–Parisi–Zhang

universality class

Regarding the universality in the large scale, it is reasonable to consider a simplest coarse-

grained description of the growing interface reproducing the universal features, in analogy

with the ϕ4 model for the Ising universality class [3].

To begin with, let us put several assumptions for the dynamics. We consider the cases

where the growth is local in the sense that, in a coarse-grained scale, the time derivative

∂th(x, t) only depend on the value of the height h(x, t) and its spatial derivatives, excluding
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Figure 1.1: Examples of growing (1+1)-D interfaces showing scale-invariant fluc-
tuation, featuring those with the KPZ-class exponents. (a) Growing colony of
Bacillus subtilis [8]. The right is the magnified view. The figure is adopted from
[9]. (b) Slow combustion front in a paper sheet [10]. (c) Electrodeposition of sil-
ver in a quasi-two-dimensional cell [11]. (d) Front of the growing Hela cell colony
[12]. (e) Formation of ring-shaped deposition by evaporation of colloidal suspen-
sion (coffee-ring effect) [13]. The right is the magnified view during the evapora-
tion. KPZ-class fluctuations are observed with slightly ellipsoidal particles [14].
(f) Chemical reaction front in porous media [15]. The figures are adopted from
the corresponding references with permissions of (a) Elsevier (b-d,f) American
Physical Society and (e) Springer Nature.
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Figure 1.2: (a) Schematic for the definition of the height for the (1+1)-D interface.
The height h(x, t) of the interfaces are defined as a single-valued function by
coarse-graining the void and overhangs. (b) Schematic for the definition of the
width w(l, t) in the case of (1+1)-D interfaces [Eq. (1.1)]. (c) Schematic for an
intuitive interpretation of the nonlinear term in the KPZ equation (1.9). For a
interface with the slope |∇h|, isotropic growth with the speed v0 leads to the

growth of the height h as δh
δt

= v0

√
1 + (∇h)2 = v0 +

v0
2
(∇h)2 + · · · .

the cases where the growth rate at distinct points globally couples through other fields. We

further assume that the growth occurs homogeneously in space and time, which requires the

translational invariance of the equation with respect to x → x+x0, h → h+h0 and t → t+t0,

where x0, h0, and t0 are time-independent constants. Finally, for simplicity, we assume that

the noise has a shortly-ranged correlation, and can be approximated by a white Gaussian

noise in a sufficiently coarse-grained scale. With those assumptions, the Langevin equation

∂th(x, t) = F
[
∇h(x, t),∇2h(x, t), . . .

]
+
√
Dη(x, t), (1.5)

where D > 0 and η(x, t) is the white Gaussian noise satisfying

⟨η(x, t)⟩ = 0, ⟨η(x, t)η(x′, t′)⟩ = δ(x− x′)δ(t− t′), (1.6)

is a suitable description.

First, let us consider the simplest case without the spatial derivatives

∂th(x, t) =
√
Dη(x, t). (1.7)

This case corresponds to, for example, the case where particles fall to the surface randomly

and attach to the surface irrespective to the shape of the interface. This equation leads to

the divergent fluctuation amplitude irrespective to the length of the interface. Evidently,

w(l, t) diverges as w(l, t) ∼ tβ with β = 1/2 according to the central limit theorem, with the

one-point distribution of h(x, t) following the Gaussian distribution. No spatial correlation

is formed in this case.

To reproduce the Family-Vicsek scaling laws in which the time and length scales are

coupled, one needs to introduce the spatial derivative terms allowed by the symmetries. In
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1981, S. F. Edwards and D. R. Wilkinson considered a model in which a particle randomly

ascends and relax toward a local minimum of the interface, and derived a coarse-grained

linear Langevin equation [Edwards–Wilkinson (EW) equation] [16], which reads

∂th(x, t) = ν∇2h(x, t) +
√
Dη(x, t) (1.8)

where ν > 0. The solution of this equation possesses the scale invariance [4, 7, 16] with the

exponents β = (2− d)/4 and z = 2, defining the Edwards–Wilkinson universality class.

Notably, the exponents that had been universally found in numerical models such as the

ballistic deposition and the Eden model on a one-dimensional substrate was different from the

prediction of the EW class (β = 1/4 and z = 2) with the values taking β ≈ 1/3 and z ≈ 3/2

[4, 7]. One can interpret this discrepancy as the consequence of the symmetry h → −h that

the EW equation possesses, which is in general absent in non-equilibrium growing interfaces.

In 1986, M. Kardar, G. Parisi and Y.-C. Zhang proposed a simple Langevin equation

without the symmetry h → −h, which can be regarded as the equation describing the general

cases. It is nowadays called the Kardar–Parisi–Zhang (KPZ) equation and reads

∂th(x, t) = ν∇2h(x, t) +
λ

2
[∇h(x, t)]2 +

√
Dη(x, t) (1.9)

where λ > 0. The non-linear term, that breaks the symmetry, can be intuitively interpreted

by considering the effect of the growth normal to the interface [Fig. 1.2(c)] since the growth

speed v of an inclined interface growing normally to the interface with the speed v0 is written

as v = v0

√
1 + (∇h)2 = v0 +

v0
2
(∇h)2 + · · · [4] [Fig. 1.2(c)].

For the (1+ 1)-D cases, the exponents for the KPZ equation can be exactly derived [4, 7,

17]. First, because the stationary probability distribution for the Fokker-Planck equation is

that for the Brownian motion,

P [h(x)] ∝ exp

(
−
∫

dx
[ ν
D
(∂xh)

2
])

, (1.10)

one obtains α = 1/2. Then the z = 3/2 is obtained by the scaling relation α+ z = 2 which is

the consequence of the symmetry that the KPZ equation possesses [4, 7, 17]. The exponents

suggest the scale invariance with respective to

t → bt, x → b2/3x, δh → b1/3δh (1.11)

defining the (1+1)-D KPZ universality class. The exponents for the (1+1)-D KPZ class were

consistent with those found in the ballistic deposition and the Eden model, and nowadays have

been observed in various experiments (Fig. 1.1) and models [4], confirming its universality

[5].

For higher-dimensional cases 1, although the exact values of the exponents are still un-

1For the KPZ class with d ≥ 3, the renormalization-group argument suggests that the EW-class fluctuation
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known, its universality has been confirmed for some cases. Particularly, the properties of the

(2+1)-D KPZ class, relevant for applications such as thin-film growth, have been intensively

studied [20], and the universal exponents and even the universal height distribution have

been observed experimentally [21, 22].

1.3 Kardar–Parisi–Zhang class for various phenomena

The KPZ class not only describe interface fluctuations, but also is relevant for various fields

in nonequilibrium statistical physics. Here some examples out of the vast area are discussed.

First, by the variable transformation called the Hopf–Cole transformation

z(x, t) := exp

[
λ

2ν
h(x, t)

]
, (1.12)

the KPZ equation is transformed into the stochastic heat equation

∂tz(x, t) = ν△z(x, t) +
λ
√
D

2ν
z(x, t)η(x, t). (1.13)

The solution of (1.13) with the initial condition z(x, t) can be written in the form of the

path integral, which can be interpreted as the partition function for a directed polymer in a

random environment [4, 23, 24].

Also, by the transformation u := −λ∇h(x, t), one can transform the KPZ equation into

∂tu(x, t) + (u · ∇)u = ν∇2u− λ
√
D∇η (1.14)

which is known as the noisy Burgers equation [4, 24, 25], indicating that the KPZ class can

describe fluctuating hydrodynamics. An analogical argument has been used to understand

behavior of conserved quantities in an anharmonic chain in terms of the coupled KPZ equation

[26]. Another example in this context is a model called (totally) asymmetric simple exclusion

process [(T)ASEP] [27], a particle-transport model which can be mapped into a interface

growth model in the KPZ class [28].

In addition to those “classical” applications, the KPZ universality now has been found in

a variety of fields including, but not restricted to, perturbation of evolution in spatiotemporal

chaos [29], incompressible active matter [30], and even evolution of the entanglement entropy

in a quantum spin chain under random unitary dynamics [31].

is observed with sufficiently small value of (λ2D)/ν3, and there exists the transition between the EW regime
and the other regime with non-trivial “strong-coupling” exponents. The upper critical dimension dc below
which the strong-coupling exponents survive is still controversial, but some studies implies that dc = ∞ [18,
19].
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1.4 Exact solution, liquid crystal experiments and uni-

versality subclasses

In these two decades, there has been a breakthrough for the (1+1)-D KPZ class, that is, the

derivation of the exact solutions for statistical properties of the interface fluctuation such as

the height distribution and spatial correlation (Sec. 2.1.1). These theoretical efforts revealed

the novel property of the KPZ class: the geometry dependence (or equivalently, the initial

condition dependence) of the universal fluctuation. More specifically, for example, the flat

interfaces growing from a line and the circular interfaces growing from a point shows distinct

statistical properties of their interface fluctuation, while they are governed by the same

universal exponents [24, 32, 33]. The experimental relevance of this geometry dependence

was confirmed in experiments investigating the growth of a turbulent state invading another

metastable turbulent state in an electrically driven thin film of liquid crystal (LC) [34–36].

The theoretical, experimental (and also numerical) effort, overall, established the physically

relevant idea of the universality subclasses, that is characterized by the same scaling exponent

yet different statistical properties of the fluctuation.

1.5 Motivations and organization of the dissertation

In this section, I describe two perspectives for the KPZ class, that we expect to help us further

understand universal fluctuations in out-of-equilibrium systems. I then state our motivations

and outline the organization of the following chapters.

Generalization of flat and circular universality subclasses

One of the perspectives is the geometry-dependence of the universal fluctuations revealed in

the exact solutions and the LC electroconvection experiment. Since this feature has not been

expected, to our knowledge, from the standard argument of the renormalization group, it

is expectable that a novel framework is necessary to understand this geometry-dependence.

However, the problem is that the geometry for which the interface fluctuation has been ex-

plicitly investigated is rather limited at this time. In Chapter 2, we generalize our knowledge

by experimentally, numerically and theoretically studying interfaces with curved initial con-

ditions, which can naturally interpolate (and extrapolate) the particular cases of the flat and

circular interface which have been investigated intensively so far.

Connection with directed percolation universality class

The fact that the KPZ fluctuation was found in the LC electroconvection was also suggestive,

since the DSM2 state in the LC electroconvection experience a non-equilibrium phase tran-

sition called the directed percolation (DP) transition (briefly reviewed in Sec. 3.1) [37, 38],

suggesting the connection between the KPZ class and the critical fluctuation of the directed
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percolation transition. Since the DP transition is also characterized by a scale-invariant fluc-

tuation, this let us anticipate that there is a relationship between the KPZ class and the DP

class that is yet to be revealed. In Chapter 3, with an extensive simulation of the Langevin

equation for the DP universality class, we establish a picture on the relationship between

those classes in terms of the interface growth.

Finally, we conclude in Chapter 4 with discussing future perspectives.



Chapter 2

Kardar-Parisi-Zhang interfaces with

curved initial conditions

Related publications by author:

• Y. T. Fukai and K. A. Takeuchi, “Kardar–Parisi–Zhang Interfaces with Inward Growth”,

Physical Review Letters 119, 030602 (2017).

• Y. T. Fukai and K. A. Takeuchi, in preparation.

Contribution:

The author (Y. T. Fukai) conducted the experiments and the numerical simulations under

advice and direction by the collaborator (Prof. K. A. Takeuchi). The theory (Sec. 2.4) mainly

owe to a discussion between Prof. P. le Doussal and Prof. K. A. Takeuchi, with the author’s

contribution on its numerical evaluation.

2.1 Topical introduction

In the previous chapter, the universality of the (1+1)-D KPZ class in the sense of the scaling

exponents has been discussed. In this section, we focus on the universality beyond the scaling

exponents and the concept of the universality subclasses, which have recently been revealed

by a synergy of theoretical, experimental and numerical efforts, and motivates the study in

this chapter.

2.1.1 Overview of theoretical perspectives

In this subsection, I summarize theoretical progress on the geometry-dependent fluctuation of

the (1+1)-D KPZ interfaces. I first note that, since the aim of this chapter is a brief overview,

I leave more precise and comprehensive description to review articles such as Ref. [24, 28, 33,

39–43].

9
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As well as the scaling exponents, the universal height distribution and correlation have

long attracted attention. If the correlation length ξ(t) ∼ t2/3 is sufficiently larger than the

system size (the total length of the interface) L (the stationary regime), the stationary height

profile (1.10) is realized and the height fluctuation is governed by the Gaussian distribution.

In contrast, for the cases where ξ(t) is much smaller than L (growth regime), numerical works

around 1990 revealed that the height distribution shows non-Gaussian distributions [44–46],

contrary to earlier expectations [47–49]. Studies on this fluctuation in the growth regime

have led to the concept of the geometry-dependent universal fluctuation and universality

subclasses.

To discuss the statistical properties of the fluctuation, let us consider rescaling the height

h(x, t) of the interfaces by non-universal characteristic time and length scales of the interfaces.

Following the method in in Ref. [17], we first define experimentally and numerically measur-

able parameters characterizing the typical time and length scales: the asymptotic growth

speed v∞, strength of the nonlinearity λ, and the amplitude of the stationary Brownian

motion A, which are defined by

v∞ := v∞(0) (2.1)

λ := v′′∞(0) (2.2)

A := lim
l→∞

lim
t→∞

lim
L→∞

l−1
⟨
[h(x+ l, t)− h(x, t)]2

⟩
, (2.3)

where ⟨·⟩ denotes the ensemble average and v∞(s) is the asymptotic growth speed of the

interfaces h(s)(x, t) with the initial condition h(s)(x, 0) = sx with the global slope s,

v∞(s) := lim
t→∞,L→∞

⟨
∂th

(s)(x, t)
⟩
. (2.4)

Then, considering the dimensions of v∞, λ and A, the KPZ scaling (1.11) suggests that one

can write the height h(x, t) in the growth regime in a form of

h(x, t) ≃ v∞t+ (Γt)1/3 χ (x/ξ(t), t) (2.5)

ξ(t) :=
2

A
(Γt)2/3, (2.6)

where Γ := A2|λ|
2

. χ(x′, t) is a universal stochastic variable, that has been revealed to be

geometry-dependent as we will see.

In 1992, the authors of Ref. [17] investigated the statistical properties characterizing

χ(x′, t) such as the cumulants
⟨
χ(x′, t)k

⟩
c
of the one-point distribution 1, and numerically

demonstrated its universality with several interface models and directed polymer models.

1The cumulants
⟨
Xk
⟩
c
of a random variable X with k = 1, . . . , 4 can be written as: ⟨X⟩c = ⟨X⟩ (mean),⟨

X2
⟩
c
=
⟨
δX2

⟩
(variance),

⟨
X3
⟩
c
=
⟨
δX3

⟩
,
⟨
X4
⟩
c
=
⟨
δX4

⟩
− 3

⟨
δX2

⟩
, where δX := X − ⟨X⟩.
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For interfaces with the flat initial condition, the cumulants values were estimated as∣∣⟨χ1
⟩
c

∣∣ = 0.729(49),
⟨
χ2
⟩
c
= 0.657(21),

∣∣⟨χ3
⟩
c

∣∣ = 0.142(10),
⟨
χ4
⟩
c
= 0.050(5), (2.7)

indicating that the distribution has non-zero mean and is clearly different from Gaussian

with the non-zero third and fourth cumulants, or equivalently, the skewness and kurtosis

Sk[χ] :=
⟨χ3⟩c
⟨χ2⟩3/2c

= 0.28(4) ̸= 0, Ku[χ] :=
⟨χ4⟩c
⟨χ2⟩2c

≈ 0.12 ̸= 0. (2.8)

They also observed an initial condition dependence of χ, by investigating the fluctuation of

interfaces in the stationary state, whose height h̄(x, t) is defined by

h̄(x, t) := h(x, t)− h(x, 0) (2.9)

where h(x, 0) takes the stationary profile of the interface [analogous to Eq. (1.10) for each

model]. The values of the mean, variance, third cumulant and the skewness

⟨χ⟩ = 0 (by definition),
⟨
χ2
⟩
c
= 1.130(5),

⟨
χ3
⟩
c
= 0.398(8), Sk[χ] ≈ 0.33 (2.10)

were found to be different from those of the flat interfaces. In particular, the difference in the

skewness implied that the distribution shape itself is different from that for the flat interfaces.

Around the beginning of the 2000s, the exact statistical properties for the universal

stochastic variable χ(x′, t) have been revealed for models belonging to the KPZ class. This

was accomplished for the totally asymmetric simple exclusion process (TASEP) by K. Jo-

hansson [27], and the polynuclear growth model (PNG) by M. Prähofer and H. Spohn [32, 50].

Notably, it was rigorously found that the statistical properties of stochastic variable χ(x′, t)

depend on the geometry, or initial condition of the interfaces. The circular (or droplet-shaped)

PNG interfaces whose initial condition is a point, flat interfaces with infinite line initial con-

dition, and stationary interfaces whose height is defined analogously to Eq. (2.9) showed

different one-point height distributions. For example, the height distribution of the flat (cir-

cular) interfaces are found to be governed by the largest-eigenvalue distribution for random

matrices called the Gaussian orthogonal (unitary) ensemble [GOE (GUE)] [51] [called the

GOE (GUE) Tracy–Widom [GOE (GUE)-TW] distribution]. In other words, the one-point

distribution of χ(x′, t) is the same as the distribution of a random variable χ1 (χ2) follow-

ing the GOE(GUE) distribution 2, whose cumulative distribution function can be written as

[51–54]

Prob [χ1 < s] = det [I− P0B22/3sP0] (2.11)

Prob [χ2 < s] = det [I− PsKAiPs] , (2.12)

2We note here χ1 is rescaled by the factor 22/3 from the conventional definition of GOE-TW, in order to
employ the same notation (2.5) for both of the flat and circular interfaces.
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respectively, where we det [I+ · · · ] is the Fredholm determinant [52, 55], defined by

det [I+ zK] :=
∞∑
n=0

zn

n!

∫ ∞

−∞
det [K (xi, xj)]

n
i,j=1 dx1 · · · dxn, (2.13)

where Px is the projection operator onto [x,∞), KAi(x, y) :=
∫∞
0

dλAi(x + λ)Ai(y + λ),

and Bs(x, y) := Ai(x + y + s) where Ai(·) is the Airy function [56]. Similarly, a different

distribution called the Baik-Rains distribution was found for the stationary interfaces [32,

57]. The GUE-TW distribution was also found in the Johansson’s exact solution for the

TASEP with the initial condition that corresponds to a wedge shape in the interface picture,

suggesting the universality of χ2 for curved interfaces with point or wedge initial conditions.

The values of the cumulants of the exact solutions are summarized in Table 2.1, which are

close to those observed numerically [(2.7), (2.10)].

Subsequent studies further revealed the universality of the geometry-dependent distribu-

tions. For example, the GOE-TW and the Baik-Rains distributions are also found in the

exact solutions for the TASEP with the initial conditions that corresponds to the flat and

stationary interfaces, respectively [53, 54, 58]. Also, notably, the exact solutions were de-

rived for the KPZ equation itself, despite its non-linear nature and its delicate mathematical

definition [24, 42, 59, 60]. In 2010, T. Sasamoto and H. Spohn considered the KPZ equation

with the narrow-wedge initial condition

h(x, 0) = |x| /δ, (δ → 0) (2.14)

which corresponds to the delta-function initial condition

z(x, 0) := exp

[
λ

2ν
h(x, 0)

]
= δ(x) (2.15)

in the sense of the stochastic heat equation (1.13), and found that the one-point distribution

is asymptotic to the GUE-TW distribution [39, 59, 61]. The similar result was also derived

independently by G. Amir, I. Corwin and J. Quastel rigorously [60]. Also, in the meanwhile,

P. Calabrese, P. le Doussal and A. Rosso and independently V. Dotsenko succeeded to derive

the GUE-TW for the wedge initial condition from a different approach, mapping to the

Schrödinger equation of the Lieb-Linger model and using the Bethe ansatz [24, 62, 63].

Although the calculation involves a diverging sum which cannot be treated rigorously, the

method is successfully extended to the flat [64] and the stationary [65, 66] interfaces to give

the asymptotic distributions and correlations consistent with the other KPZ-class models.

For the stationary case, the exact one-point distribution was later rigorously derived by A.

Borodin, I. Corwin, P. Ferrari, and B. Vető [67].

The equal-time spatial correlations of χ(x′, t) have also been derived exactly for sev-

eral models with the flat, circular and stationary interfaces 3. They are also found to take

3For the stationary case, we redefine the height by h̄(x, t) in (2.9).
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Table 2.1: Three canonical subclasses of the KPZ universality class

name flat circular stationary

initial condition flat point or wedge stationary

one-pt. distribution GOE-TW GUE-TW Baik-rains
χ(x′, t) χ1 χ2 χ0

⟨χ⟩ −0.76007 −1.77109 0
⟨χ2⟩c 0.63805 0.81320 1.15039
Sk[χ] 0.2935 0.2241 0.35941
Ku[χ] 0.1652 0.09345 0.28916

spatial correlation Airy1 Airy2 Airystat
χ(x′

1, t), . . . , χ(x
′
n, t) A1 (x) A2 (x) Astat (x)

temporal covariance
t−1 t−1/3 t−1/3

Ct(t, t0)

geometry-dependent forms, A1 (x
′), A2 (x

′) − x′2, and Astat (x
′), where A1 (·), A2 (·), and

Astat (·) are called Airy1, Airy2, Airystat processes (Table 2.1) [53, 66, 68–73].

Understanding the time correlation, on the other hand, has long been a challenging prob-

lem. As noted in the next subsection, indeed it was the experiments [36] that suggested the

scaling laws for the time covariance [Eq. (2.20)] with geometry dependent exponents, which

were later confirmed by exact solutions for the TASEP [74]. Recently, analytical forms of

the two-time joint probability have been obtained from several approaches [75–79], including

rigorous exact solutions [76, 77]. Particularly, the formula in [78, 79] was compared with the

experimental results and found to be consistent [78].

2.1.2 Liquid crystal experiment

With the exact solutions, it is natural to ask if the geometry-dependent universal fluctuations

are relevant also in real experimental systems, or is a consequence of a special feature of

the solvable models. This question was clearly answered by experimental studies by K.

A. Takeuchi, M. Sano and collaborators [34–36], which investigated an interface growth

phenomena in electrically-driven chaotic convection of nematic liquid crystal (LC) confined

in quasi-two-dimensional space.

In the experiments, they applied a voltage to the LC sample confined between electrodes

separated by spacers [Fig. 2.1(a)], and investigated interface growth of a cluster of a turbu-

lent state (or more precisely, spatiotemporal chaos with short-ranged spatial and temporal

correlation) called the dynamic scattering mode 2 (DSM2), which invades another turbu-

lent state, DSM1, with sufficiently high voltage [34, 80, 81] (See also Sec. 3.1.1). As shown

in Fig. 2.1(c,d), the DSM1 and DSM2 can be distinguished by the difference in their light

transmittances, which is due to high density of the topological defect threads in the DSM2

[Fig. 2.1(b)] [80, 82, 83] (also see [84]) accompanied by a breaking of the anchoring on the

electrode [81, 85, 86]. They nucleated the initial DSM2 cluster by shooting ultraviolet (UV)
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Figure 2.1: (a) Schematic of the LC cell. ITO: indium tin oxide, MBBA: N -(4-
Methoxybenzylidene)-4-butylaniline, AC: alternative current. The ellipses illus-
trates the director field of the LC without voltage. The magnified view illustrates
the homeotropic anchoring, which makes the director field perpendicular to the
electrode. (b) Schematic of the difference between DSM1 and DSM2, illustrating
that DSM2 consists of high density of topological defect in the LC sample. (c,d)
Raw image of a circular (c) and flat (d) DSM2 interface growing in DSM1 [24,
35, 36]. The time after shooting the UV laser is indicated in each image. The
definition of the height h and the position x is illustrated in the rightmost image.
(b-d) are adopted from Ref. [24, 36] with permission of Springer and Elsvier with
modifications.

laser pulses focused on a point (a line) and investigated circular (flat) interfaces, respectively.

As summarized in Fig. 2.2, these interfaces exhibited distinct geometry-dependent proper-

ties, which have been exactly derived for simple models as described [35, 36]. More precisely,

they measured the rescaled height

q(x′, t) :=
h(x, t)− v∞t

(Γt)1/3
≃ χ(x′, t) (2.16)

x′ = x/ξ(t) =
Ax

2
(Γt)−2/3 (2.17)

for the flat (circular) interfaces, and found that the one-point distributions of q(x′, t) agree

with the GOE (GUE)-TW distributions [Fig. 2.2(a)], respectively, with the cumulants
⟨
qk
⟩
c
(k =

1, . . . , 4) converging to those of the exact values [Fig. 2.2(b); the convergence is algebraic as
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shown in Ref. [36]]. Also, the spatial covariance of the flat and circular interfaces

Cs(ζ, t) := Cov[q(x′ + ζ, t), q(x′, t)] (2.18)

agreed with those of the Airy1 and Airy2 processes, Cov[A1 (x
′ + ζ) ,A1 (x

′)] and

Cov[A2 (x
′ + ζ) ,A2 (x

′)], respectively [Fig. 2.2(c)]. They also found that the temporal co-

variance

Ct(t, t0) := Cov[q(x′, t+ t0), q(x
′, t0)] (2.19)

has a scaling form

Ct(t, t0) ≃ F (t/t0) ∼ (t/t0)
−λ̄ (2.20)

with a certain function F (·) and the different exponents λ̄ = 1 (flat), 1
3
(circular). This

difference in the exponents leads to the even qualitative difference between the flat and

circular interfaces, with non-vanishing temporal correlation with

C̃t(t, t0) := Cov[h(x, t+ t0), h(x, t)] ≃ const. (2.21)

for the circular interfaces [Fig. 2.2(d)], which can be regarded as weak ergodicity breaking

[24, 36, 87]. The further difference between the flat and circular interfaces found in the

experiments are described in Ref. [36].

The experimental results, overall, demonstrated that the geometry-dependent statistical

properties are not only for theoretical models, but of great physical relevance as it appears in

an experimental system, highlighting the universality of the geometry-dependent fluctuations.

2.1.3 Universality subclasses

The numerical, theoretical, and experimental evidence, overall, established the idea of the

geometry-dependent flat and circular universality subclasses for the KPZ class [24, 33], which

are defined by the same scaling exponents yet different universal stochastic variables χ(x′, t)

governing the asymptotic fluctuation. Especially, the flat, circular, and stationary subclasses

(Table 2.1) are regarded as canonical subclasses [24, 33] 4.

The geometry-dependent universal fluctuations were also found in, e.g., universality class

for interface growth called nonlinear molecular beam epitaxy class [96] and absorbing phase

transitions [97], implying that the geometry dependence is a ubiquitous feature of some

universality classes. We anticipate that the knowledge for the geometry-dependent fluctuation

of the KPZ class help us understand other cases in future.

4We note that there are cases where χ(x′, t) shows statistical properties which are not included in Table
2.1. For example, the Gaussian symplectic ensemble Tracy–Widom distribution can appear for KPZ interfaces
typically with half-space boundary conditions [32, 88–95]
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Figure 2.2: A part of the results of the LC experiments by K. A. Takeuchi et.
al. [34–36], adopted from Ref. [36] with permission of Springer with modification
of the notations. (a) The histogram of the rescaled height q. The exact solutions,
GOE-TW (flat) and GUE-TW (circular) distributions are plotted by the broken
and dotted lines, respectively. (b) The difference between the cumulants

⟨
qk
⟩
c
k =

1, . . . , 4 of the rescaled height of the flat/circular interfaces and those of the exact
solutions

⟨
χk
1

⟩
c
/
⟨
χk
2

⟩
c
. (c) The spatial covariance of the rescaled height Cs(ζ, t).

The exact solutions, Airy1 covariance (flat) and Airy2 covariance (circular) are
plotted by the broken and dotted lines, respectively. (d) The temporal covariance
of the rescaled height Ct(t, t0) (inset) and the covariance of the height C̃t(t, t0)
(main plot). The values of t0 are indicated near the rightmost point of each series.
In the insets, the guides for the eyes with the exponent −λ̄ are indicated by the
dashed lines.
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2.1.4 Motivations

With the exact solutions and clear experimental realizations, the (1+1)D KPZ class can be

regarded as a crucial example to reveal the origin and generality of the geometry-dependent

universal fluctuations. In order to further integrate the knowledge obtained so far and acquire

a comprehensive picture that can explain the geometry-dependent universality, we need to

understand the fluctuations with a broader class of initial conditions, which, however, remains

to be investigated in detail in contrast to the canonical cases described in the previous

subsection.

In this study, we aimed to experimentally and numerically extend our knowledge toward

interfaces with more general initial conditions than those investigated so far. With this aim,

I constructed an experimental setup which enables us to investigate the interface fluctuation

of a growing DSM2 cluster (see Sec. 2.1.2) with arbitrarily designed initial conditions. Using

this system, we studied interfaces growing inward or outward from initial conditions with the

shape of a circular ring (Fig. 2.4). These initial conditions are experimentally natural initial

conditions appearing in, e.g., bacterial colony growth [8, 97, 98] and coffee rings [14], yet our

knowledge on the properties of whose universal fluctuation is still limited 5. I also carried

out numerical Monte-Carlo simulations of an off-lattice model in the KPZ class [101] to

elucidate universal properties of the KPZ interfaces with this initial condition. The following

list further explains our motivations to study the ring-shaped initial conditions:

• Investigating the ingrowing interfaces provides as an opportunity to clarify whether the

sign of the curvature is relevant for the asymptotic fluctuation, enabling us to infer

relevant parameters that determine the universal subclasses.

• For the outgrowing interfaces, one can expect a temporal crossover (or a transition)

connecting the Tracy-Widom distributions (and the corresponding spatial and temporal

correlations of the flat and circular subclasses), which may be an interesting object even

in a different field.

• Generally in experiments, a large number of samples enables us to elucidate detailed

properties of χ(x′, t) with accuracy. In this sense, investigating the cases with the

circular ring-shaped initial conditions is a good starting point, since one can make use

of the rotational invariance to take the positional average as well as ensemble average

to achieve high accuracy.

In the course of study, we found that a representation of the height distribution called

the variational formula [52, 102], which is recently developed with the aim of describing the

general cases, can explain nontrivial behavior of the statistical properties of the interfaces we

observed, (Sec. 2.4). This representation further allows us to predict the statistical properties

of χ(x′, t) for general interfaces with curved initial conditions.

5The skewness and kurtosis of the GUE-TW distribution have been reported in the coffee-ring experiment
[14], in which the interfaces grow inward from a circular ring. Also, numerical studies on analogous geometries
have been conducted almost simultaneously with our study [99, 100], as we note in Sec. 2.5
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2.2 Experimental and numerical procedures

In order to investigate the interface fluctuations with the ring-shaped initial conditions, I

conducted experiments with the LC electroconvection and simulations of the isotropic inter-

face model called the off-lattice Eden model. In this section, I describe the experimental and

numerical setups and procedures which we employed.

2.2.1 Experimental setup

Liquid-crystal cell preparation

As in the previous studies [34–36], I prepared LC cells consisting of two glass plates coated

with transparent electrodes of made by a ≈ 100 µm layer of indium tin oxide, separated by

spacers of 12 µm thickness [Fig. 2.1 (a)]. The electrodes were coated by N,N -dimethyl-

N -octadecyl-3-aminopropyltrimethoxysilyl chloride to obtain the homeotropic alignment.

The LC sample, N -(4-Methoxybenzylidene)-4-butylaniline (MBBA) doped with 0.01wt%

of tetra-n-butylammonium bromide, was introduced to a 1.5 cm × 1.5 cm area enclosed by

the spacers by the capillary effect.

I used different LC cells for the experiments investigating the ingrowing and outgrowing

interfaces. In order to characterize properties of the cells, I measured the cutoff frequency

fc [103], the frequency characterizing the maximum timescale with which the ion flow can

respond to the electric field. The values are found to be fc ≈ 1.7× 103Hz for both cells used

in the experiment. We also measured the minimum voltage with witch DSM2 can exists at

500Hz, which was roughly 20V for both of the cells. Though those parameters were not (at

least apparently) different between the cells, we note that there are slight differences in the

conditions between the cells as one can see in the difference in the non-universal parameters

and the finite time effects for the interface growth (Sec. 2.3.2).

Laser holographic technique for arbitrary-shaped initial conditions

As demonstrated in Ref. [35, 36] (Sec. 2.1.2), the initial condition of the DSM2 interfaces

can be controlled by controlling the amplitude profile of the UV laser at the LC cell. In this

study, I constructed an optical setup [Fig. 2.3(a)] which enables us to design the amplitude

profile of the UV laser at the LC cell into arbitrary shapes [as demonstrated in Fig.2.3(b)],

using a device called the spatial light modulator (SLM).

The SLM is a device capable of spatially and temporally varying modulation of the

light. One can find its application in various fields ranging from femtosecond laser pulse

shaping [104] to optical tweezers [105]. In this study, we used the LCOS-SLM X10468-05

(Hamamatsu Photonics), which enables us to modulate the phase of the reflecting UV light

with the wavelength λ = 355 nm at the resolution of 792 × 600 pixels by controlling the

nematic alignment of the LC by a grid of electrodes. As shown in Fig. 2.3(a), UV laser

beam [pulse beam with the width of 4-6ns, the third harmonics (the wavelength λ = 355 nm)

of the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser beam, extracted by a
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band-pass filter] was first expanded to ≈ �1.5 cm by a beam expander and reflected by the

SLM device, whose head size is 12 cm× 16 cm. The reflected beam is then focused at the LC

cell by a convex lens with the focal length f = 250mm.

We utilized this device as follows to realize the arbitrary initial condition of the DSM2.

Let us denote the electric field of the laser light before the reflection at the position (x, y) by

E0(x, y)e
−iωt, where the two-dimensional coordinate is defined perpendicularly to the light

direction. The electric field after the phase modulation E ′
0(x, y) is approximately written as

E ′
0(x, y) ∝ E0(x, y) exp {−i [ωt+ ϕ(x, y)]} (2.22)

where ω is the frequency of the laser light and ϕ(x, y) is the phase modulation by the SLM.

Then, let us consider putting a convex lens with the focal length f and let the modulated

light go through it. With the Fresnel approximation, the electric field we obtain at the focus

of the lens is written as [106]

|E(x, y)| =
∣∣∣∣ 1

iλf

x
dx0dy0E

′
0(x0, y0) exp

[
2πi

λf
(xx0 + yy0)

]∣∣∣∣ (2.23)

∝
∣∣∣∣x dx0dy0E0(x0, y0) exp [−iϕ(x0, y0)] exp

[
2πi

λf
(xx0 + yy0)

]∣∣∣∣ , (2.24)

where λ = 2πc
ω

is the wavelength of the light.

Equation (2.24) lets us expect that one can achieve a light profile with a desired amplitude

by solving the optimization problem to adjust the modulation profile ϕ(x, y) so that the

amplitude |E(x, y)| is close to the designed one. Assuming that the incoming laser beam is a

plain wave (E0(x0, y0) = const.), this reduces to the problem to find ϕ(x, y) to give the desired

|E(x, y)| after the Fourier transformation, which can be efficiently solved by an algorithm

called iterative Fourier transform algorithm (IFTA) [107, 108]. In this study, I performed the

IFTA with 100 iterations to obtain the modulation profile ϕ(x, y) output to the SLM.

Technically, one needs to avoid the nucleation of the DSM2 by light reflected without

the phase modulation, e.g., that reflected at the surface of the device where the refractive

index largely changes. In our study, this problem was solved by shifting the effective focal

distance of the lens only for the phase-modulated light, by superimposing a phase difference

equivalent to a convex Fresnel lens at the SLM.

Initial conditions

With the constructed experimental setup, we studied the interfaces growing inward or out-

ward from the ring-shaped initial conditions, as exemplified in Fig. 2.4(a). I conducted two

sets of the experiments, using different LC cells, in each of which I investigated either of the

ingrowing and outgrowing growth as summarized in Table 2.2. In the first set of the experi-

ments, the interfaces with the radius of the initial condition of R0 = 1342 µm, 1241 µm and

826 µm, and flat interfaces with a line-shaped initial condition was investigated. The length

of the line for the flat interfaces was ≈ 8mm and we observed the region around the center
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Figure 2.3: (a) Schematic of the optical setup. Nd:YAG: neodymium-doped yt-
trium aluminum garnet, SLM: spatial light modulator, CCD: charge-coupled de-
vice camera, LED: light-emitting diode. The whole setup is placed in an isother-
mal chamber as described in the text. (b) An image of DSM2, growing from a
“KPZ” initial condition as a demonstration of the holographic technique. The
scale bar is 1mm.

of the line with the span-wise length ≈ 4mm. In the second set of the experiments, the

interfaces with the radius R0 = 219 µm and 366 µm, flat interfaces with the same condition

as the first set of the experiments, and the circular interfaces with the point initial condition

was investigated. We automated the experiment and observed ⪆ 1000 realizations for each

initial condition (Table 2.2). The shape of generated DSM2 clusters had a deviation from

the designed shape in the order of 10 µm, but we think this deviation is irrelevant for the

asymptotic height fluctuation 6.

Image acquisition

For each realization, I applied 500Hz 31V AC voltage to the cell, shot UV laser pulses to

generate the initial DSM2 cluster, and recorded the images of the LC cell through the trans-

mitted light at 5 frames per second by a charge-coupled device (CCD) camera (IGV-B1620M,

Imperx) equipped with a 4x objective lens (UPlanFLN 4X,Olympus) and an imaging lens

with the focal length f = 120mm [Fig. 2.3(a)] 7. After the acquisition, the voltage was turned

off and the LC cell relaxed to the initial state. The observation area was about 3mm×4mm

and the resolution was 2.68 µm/pixel. The energy of the laser pulse was adjusted so that it is

as low as possible while sufficient to create the DSM2 cluster (⪅ 0.7mJ for the ingrowing and

flat interfaces, and ⪅ 0.4mJ for the outgrowing and circular interfaces). During the experi-

6Intuitively, because the fluctuation amplitude and the correlation length diverge, the fluctuation of the
initial conditions are overwhelmed by the growing spontaneous fluctuation. Indeed, the variational formula
(Sec. 2.4.1) suggests that the initial fluctuation with a fixed amplitude is irrelevant for the asymptotic
fluctuation.

7A dichroic mirror (HOTM-25.4C3.3, Sigma Koki) was placed in front of the CCD camera in order to cut
the UV laser to avoid the damage to the camera.
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Table 2.2: Experimental conditions and non-universal parameters.

initial condition # of samples v∞(µm/s) Γ(µm3/s)
flat(ingrowing experiment) 1273 31.08(1) 1.74(8)× 103

R0 = 1342 µm, ingrowing interfaces analyzed 1721 31.75(5) 1.52(8)× 103

R0 = 1241 µm, ingrowing interfaces analyzed 2235 33.52(5) 1.43(7)× 103

R0 = 826 µm, ingrowing interfaces analyzed 1830 33.23(4) 1.45(7)× 103

line (outgrowing experiment) 1417 30.84(2) 1.25(2)× 103

point (outgrowing experiment) 941 29.68(3) 1.31(4)× 103

R0 = 366 µm, outgrowing interfaces analyzed 1936 30.84(2)* –
R0 = 219 µm, outgrowing interfaces analyzed 1521 30.60(2)* –
* Estimated by fitting the last point of the mean rescaled velocity ⟨p⟩ against the result
of the Eden model (see the main text).

ment, the cell was placed in a temperature controller, which is an aluminum block whose size

is 12 cm × 8 cm × 2.2 cm equipped with a thermistor and Peltier devices. The temperature

of the block was maintained at 25 ◦C by the PID control with the temporal fluctuation of

≈ ±0.01 ◦C. The whole experimental setup, including the optics, was contained in an isother-

mal chamber covered by heat insulating material, in which the temperature is maintained at

25 ◦C by circulating temperature-controlled water in copper pipes in the chamber.

Image processing and definition of height

The shape of the interface was extracted by thresholding. In order to reduce the effect of the

illumination inhomogeneity, I used position-dependent thresholds. At each pixel (i, j), I ob-

tained the probability distribution function of the intensity IDSM1(i, j) and IDSM2(i, j) for the

DSM1 and DSM2, respectively [Fig. 2.5 (a)], using the images before shooting the UV laser

(for DSM1) and those after the DSM2 occupies the whole area of the observation (for DSM2).

There is an overlap between the probability distribution functions, which inevitably leads to a

non-zero probability of misclassification [Fig. 2.5 (b,c)]. However, I empirically found that by

choosing the threshold Ith so that Prob [IDSM1(i, j) < Ith] = rProb [IDSM2(i, j) > Ith] where

r is a constant manually adjusted to 0.5 and smoothing out the structures smaller than the

typical length scale of the DSM2 ≈ 12 µm/
√
2 [37, 80, 82], one can extract the boundary

between the DSM2 and DSM1 which is reasonably close to that distinguished by one’s eyes,

with small amount of artifact fluctuation by misclassification [Fig. 2.5 (b,d)]. The small

change in the value of r did not change our conclusions.

The height h(x, t) for the interfaces with the ring-shaped initial conditions was defined

as follows. I first determined the center of the initial ring, using the ensemble average of

the images taken at the first frame used in the analysis. Then, h(x, t) was defined as the

radial displacement from the initial ring and x was measured along the circumference whose

radius is equal to the mean radius of the interfaces at time t [Fig. 2.4(a)]. If there is an

overhang [Fig. 1.2(a)], the height is defined as the averaged distance between the pixels on

the interface and the center. The time t was defined as the elapsed time after shooting the
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Figure 2.4: The examples of the interfaces and the definition of the heights. (a)
The LC experiment. Images of DSM growing from R0 = 366 µm and R0 =
1342 µm, whose heights of the outgrowing and ingrowing interfaces are measured,
are shown in the upper and lower rows, respectively. The elapsed times after
shooting the laser is indicated below each columns. The dotted lines indicate the
initial ring estimated as described in the text. The scale bars are 1mm. (b) The
Eden model. A cluster growing outward from a ring with the initial number of
the cells N = 1000 is shown. The time step of the cell creation is indicated by
the color. The dotted line indicates the initial condition.

Figure 2.5: The example of the thresholding. (a) Probability distribution function
(PDF) for the transmitted light intensity of the DSM1 IDSM1(i, j) and the DSM2
IDSM2(i, j). (b) Original image before thresholding. (c) Image after thresholding.
(d) The interface detected by thresholding with (yellow line) and without (red
line) the smoothing. For (b-d), the scale bar is 50px ≈ 134 µm.
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Table 2.3: Parameters for the Eden model.

growth direction outgrowing
N 100 500 1000 4000 10000 20000 40000
# of samples 16000 7200 3600 10400 1000 3200 3200
growth direction ingrowing
N 8000 16000 32000 100000
# of samples 2400 3200 3200 1600

UV laser initiating the DSM2 cluster. The height was analogously defined for the flat and

circular interfaces.

2.2.2 Numerical model

In order to avoid anisotropy induced by the background lattice structures [109, 110], I used

an off-lattice version of the Eden model introduced in Ref. [101], growing inward or outward

from the ring-shaped initial conditions [Fig. 2.4(b)]. In the simulations, circular particles

(with the diameter one) were stochastically added to form a cluster. The simulations were

initiated with a circular ring formed by N particles, and proceeded as follows:

1. Randomly choose a parent particle at the interface of the cluster.

2. Put a new particle in a random direction in touch with the parent particle, only if there

are no overlapping particles with the new particle.

3. Increase the time by 1/(the number of the particles at the interface).

The interface was defined as the loop of the connected particles wrapping the cluster, where

two particles are regarded as connected if the distance between them is smaller than
√
3, since

the particles inside the loop cannot interfere the particles outside the loop [101]. As in the

experiments, the height h(x, t) was measured as the radial displacement of the particles at

the interface from the initial circle, and the position x was measured along the circumference

whose radius is the same as the averaged distance between the origin and the particles at

the interface [Fig. 2.4(b)]. The initial radius R0 is defined as R0 := N/2π. The parameters

used in the simulations are summarized in Table 2.3. For the flat interfaces, I simulated the

growth of the same model, with the initial condition of a line formed by 25000 particles with

the periodic boundary condition in the spanwise direction, with the number of the samples

set to be 3200.

In order to efficiently conduct the simulations for large clusters, I optimized the algorithm

in several ways. For example, each particle was equipped with a list of the intervals of the

direction in which a new daughter particle can grow, which is updated at a time a new

particle is added nearby the particle. Also, a particle has a list of particles closer than
√
3,

stored with their relative orientations, which enables us to identify the interface effectively.

The stored particle positions Pi were sorted by θi := ∠PiOX, where O is the origin (0, 0) and
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X = (1, 0), and when a new particle is added to the position P , the distance with a particle Pi

is evaluated only if the angle |∠POPi| is sufficiently small to avoid unnecessary computations.

The particles that cannot contribute to the further growth process were excluded from the

simulation every time when the interface is identified.

2.3 Results and analysis

2.3.1 Cumulants, skewness and kurtosis

To investigate how the fluctuation amplitude grows, I first evaluated the k-th cumulant of the

height
⟨
h(x, t)k

⟩
c
for k = 1, 2, 3, 4. Figure 2.6 and 2.7 show the experimental and numerical

results, respectively. For the flat and circular interfaces, the scaling laws
⟨
h(x, t)k

⟩
c
∼ tk/3

expected from the scale invariance of the KPZ class (1.11), are clearly observed for the flat

and circular interfaces, consistent with the earlier results [34–36]. On the other hand, for the

interfaces growing from the ring-shaped initial conditions, the slopes for the variance ⟨h2⟩c
are slightly but clearly different from those of the flat and circular interfaces. As shown in

the following, we think this does not mean that the height is no longer described by Eq.

(2.5), but is due to the temporal change of the stochastic variable χ(x′, t) itself.

To further elucidate the statistical properties of the one-point height distribution of

χ(x′, t), I then evaluated the skewness Sk[h(x, t)] := ⟨h3⟩c / ⟨h2⟩3/2c and the kurtosis

Ku[h(x, t)] := ⟨h4⟩c / ⟨h2⟩2c (Fig. 2.8), which converge to Sk[χ(x, t)] and Ku[χ(x, t)] assuming

(2.5), respectively. In the LC experiments, the values for the flat and circular interfaces were

close to those for the corresponding exact solutions, χ1 (flat) and χ2 (circular) [Fig. 2.8(a,b)]

consistently to the earlier results [34–36]. Similarly, in the Eden model, the values for the

flat interfaces were asymptotic to those of χ1 as expected [Fig. 2.8(c,d)].

For the interfaces with the ring-shaped initial conditions, despite the large statistical error

in the experimental results, one can observe clear trends common in the experimental and

numerical results: First, in the ingrowing cases [Fig. 2.8(a,c)], the values do not approach to

those of χ2 (circular), but instead follow those of χ1 (flat) at early time. The numerical data

suggests that the values deviate from the result of the flat interfaces at timescale growing with

N . The consistent behavior can also be observed in the experimental results. In contrast, in

the outgrowing cases [Fig. 2.8(b,d)], the values of the skewness and kurtosis take the values

between those of χ1 and χ2. In the numerical results, the values deviate from those of the

flat interfaces at a timescale growing with N as in the ingrowing cases, and then approaches

to the values of χ2. Again, the experimental result was consistent with the numerical results,

except the fact that the short-time values of the skewness and kurtosis of the outgrowing

interfaces does not overlap on those of the flat interfaces. We avoid to draw a conclusion

about this difference between the experimental and numerical results here, but this might

be consequence of the relatively small diameter compared with the ingrowing experiments,

assuming that the finite-time fluctuation itself is affected by the initial radius.

To summarize, the skewness and kurtosis suggest two distinct behaviors of the stochastic
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Figure 2.6: The cumulants of the height h(x, t) one-point distribution for the LC
experiment. The data for the ingrowing and outgrowing experiments are shown
in (a) and (b), respectively. (Note that I conducted independent experiments
with the flat initial conditions for the ingrowing and outgrowing cases.) The solid
lines are guides for the eyes with the slope 1 for the mean ⟨h⟩ and the KPZ class
exponents k/3 for the higher-order cumulants
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(k ≥ 2).
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Figure 2.7: The cumulants of the height h(x, t) one-point distribution for the Eden
model. The data for the ingrowing and outgrowing experiments are shown in (a)
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Figure 2.8: The skewness and kurtosis of the height h(x, t) one-point distribu-
tion for (a,b) the LC experiment and (c,d) the Eden model. The values for the
ingrowing and outgrowing interfaces are shown in (a,c) and (b,d), respectively.
The values for χ1 (flat) and χ2 (circular) are shown by the dashed and dotted
lines, respectively. For the experimental data (a,b), the statistical standard error
is indicated by the error bars on the first and the last points.
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variable χ(x, t) for the ingrowing and outgrowing interfaces. Those of the ingrowing interfaces

show the deviation from the values of the flat interfaces at a characteristic time with no sign

of the circular-subclass fluctuation χ2. On the other hand, those of the outgrowing interfaces

also seems to depart from the values for the flat interfaces at a characteristic timescale and

approach to that of the circular interfaces. We compare the experimental and numerical

results quantitatively in Sec. 2.3.4.

In the following subsections, to draw clearer conclusions, I turn our attention to the

quantities with more statistical accuracy to elucidate the interface fluctuations with the ring-

shaped initial conditions.

2.3.2 Estimation of the non-universal parameters

In order to access properties of the universal stochastic variable χ(x′, t) with more statistical

accuracy, one needs to estimate the non-universal parameters v∞, Γ and A to rescale the

height according to Eq. (2.5). In this section, I describe how I estimated the non-universal

parameters in this study.

Isotropy and non-universal parameters

Though one needs to estimate the three independent parameters to rescale the scales of

the time, length and height as noted in Sec. 2.1.1, only two parameters are necessary in an

isotropic system, because of the relationship between the parameters [36, 111]

A =

√
2Γ

v∞
. (2.25)

This is because of the relation v∞(s) = v∞
√
1 + s2 for an isotropic system (Eq. (2.4)), which

leads to λ = v∞. This relationship has been confirmed for the LC experiments [36, 111] and

for the Eden model [101, 111].

Liquid crystal experiment

Flat and circular interfaces For the flat and circular interfaces, one can employ methods

already developed to estimate v∞ and Γ [17, 34–36], with assuming the asymptotic height

is written as Eq. (2.5) with χ(x′, t) = χ1(x
′) and χ2(x

′), respectively. The results of the

skewness and kurtosis (Fig. 2.8) suggests the validity of using this method. First, I estimated

v∞ by plotting ∂t ⟨h(x, t)⟩ against t2/3 and regressing by a line [Fig. 2.9 (a,b; left)], since

∂t ⟨h⟩ ≃ v∞ +
Γ1/3

3
⟨χ(x′)⟩ t−2/3 (2.26)

is expected from Eq. (2.5). We varied the upper limit of the fitting range t
−2/3
0 , and found

a range of t0 in which the values of the intercept show a plateau [region between the broken
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lines in Fig. 2.9 (a,b, right)]. We estimated the value of the v∞ by averaging the value in the

plateau, and the uncertainty δv∞ as the maximum difference between the estimated value

and the values in the plateau (Table 2.2).

For the other parameter, I estimated the parameter Γ by

t−2/3
⟨
h(x, t)2

⟩
c
≃
⟨
χ2
⟩
c
Γ2/3 , (2.27)

expected from Eq. (2.5) [35, 36], where χ is χ1 and χ2 for the flat and circular interfaces,

respectively 8. More specifically, with expecting the finite-time effect (l.h.s.) ≃ ⟨χ2⟩c Γ2/3 +

O
(
t−2/3

)
as observed in Ref. [36], I plotted t−2/3 ⟨h(x, t)2⟩c against t−2/3 [Fig. 2.9(c-e)] and

estimated the value of Γ as the intercept of the linear fitting, which is denoted by Γft with the

statistical uncertainty δΓft. I also estimated Γ just by averaging the value of t−2/3 ⟨h(x, t)2⟩c
for t ≥ 30 s, because it was not clear whether the slope I fitted is the true asymptotic one

as one can see in Fig. 2.9(c-e). The value and the uncertainty estimated in this method is

denoted by Γave and δΓave. Finally, I simply estimated the value and the uncertainty Γ, δΓ

as

Γ = Γft, δΓ = max (δΓft, |δΓft − δΓave|+max (δΓave, δΓft)) . (2.28)

The estimated values are summarized in the Table 2.2.

The estimated values of v∞ and Γ for each experiment are slightly different beyond the

uncertainty. This may be because of the slight difference of the temperature, the material

parameter or cell thickness depending on the position in the LC cell, or aging of the material

as discussed in Ref. [36].

Interfaces with ring-shaped initial conditions As for the interfaces with the ring-

shaped initial conditions, one cannot use the same method as the flat and circular interfaces

because of the temporal change of the cumulant values
⟨
χ(x′, t)k

⟩
c
discussed in Sec. 2.3.1.

Therefore, I employed ad hoc methods to estimate the parameters on the basis of experimental

observation.

As for the ingrowing interfaces, the short-time values of the skewness and kurtosis overlap

on those of the flat interfaces [Fig. 2.8(a)], letting us expect that the cumulant values itself

is close to those for the flat interfaces. With this observation, I estimated the values of v∞
and Γ for the ingrowing interfaces so that the values of the cumulants at early time agree

with those of the flat interfaces 9. The estimated values are summarized in Table 2.2.

For the outgrowing interfaces, the short-time values of the skewness and kurtosis did not

overlap on those of the flat interfaces (Fig. 2.8), making us doubt about the validity to use

the same method as for the ingrowing interfaces. Thus, I simply used the value of v∞ and Γ

8In principle, one can estimate the value for A directly from the definition (2.3) [17, 34]. However, the
accurate estimation is challenging practically in the LC experiments [34], due to the slow convergence to the

asymptotic height profile
⟨
(h(x+ l)− h(x))

2
⟩
≃ Al with respect to l.

9More precisely, first I defined a non-dimensional quantity

α(Γ, t) :=
⟨
h(x, t)2

⟩
c
(Γt)−2/3 (2.29)
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Figure 2.9: Non-universal parameter estimation for the LC experiment. (a,b)
Estimation of v∞ for the (a) ingrowing and (b) outgrowing interfaces. In the left
plot, the velocity of the mean height

⟨
∂h
∂t

⟩
averaged for 2.25 s is plotted against

t−2/3. The statistical standard error is indicated by the error bars on the first
and the last points. v∞ is estimated as the value of the intercept of the line,
regressed against the data with t ≤ t0 (see the main text). The black solid line
is the regressed line. In the right plot, the value of the intercept with varied t0 is
plotted. The uncertainty of the v∞ is estimated by the variation of the intercept
with varied t0 between the vertical broken lines. (c-e) Estimation of Γ for the (c)
ingrowing and (d,e) outgrowing interfaces. The rescaled cumulant of the variance
of the height t−2/3 ⟨h2⟩c is plotted against t−2/3. The value of Γ assuming the finite
time effect (Γfinite−time, see the main text) is estimated as the value of the intercept
of the line, regressed against the data with t ≤ 0.2 and t ≤ 0.23 for the ingrowing
and outgrowing interfaces, respectively. The black solid line is the regression line.
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estimated for the flat interfaces. With considering the possible drift of the parameters, I esti-

mated the uncertainty as δv∞ =
√

δv2∞,drift + δv2∞,flat and δΓ =
√

δΓ2
drift + δΓ2

flat, respectively,

where δv∞,drift and δΓdrift represents the difference of the values of v∞ and Γ between the

flat and circular interfaces, and δv∞,flat and δΓflat are the uncertainty for the flat interfaces.

This estimation led to relatively large uncertainty in the estimation of v∞, and I discuss the

improvement with a further assumption in the Sec. 2.3.4.

Eden model

For the Eden model, I used the values estimated in Ref. [109] with large-scale simulation of

circular interfaces, v∞ = 0.51371(2), Γ = 1.00(1) and A =
√

2Γ/v∞ = 1.97(1) while using

the values estimated in Ref. [101] does not alter our conclusions.

2.3.3 Rescaled cumulants

With the estimated parameters in the previous subsection, I calculated the rescaled height

q(x′, t) :=
h(x, t)− v∞t

(Γt)1/3
≃ χ(x′, t) (2.16)

x′ = x/ξ(t) =
Ax

2
(Γt)−2/3 (2.17)

for the experimental and numerical results, and evaluated the cumulants
⟨
q(x′, t)k

⟩
c
for k =

1, 2, 3, 4.

The numerical results are shown in Fig. 2.10(a). Except for ⟨q(x′, t)4⟩c which is too

scattered to distinguish χ1 and χ2, behaviors analogous to those of the skewness and kurtosis

(Fig. 2.8) is observed; The values of the cumulants for the interfaces with the ring-shaped

initial conditions first follow those of the flat interface, and then depart at a characteristic

timescale which increases as N = 2πR0 increases. After the departure, the values for the

and determined the value of Γ so that it minimizes the deviation from the flat data at early times:∫ tM

t0

(α(Γ, t)− αflat(Γflat, t))
2
dt. (2.30)

Here, the quantities with subscript flat take the values for the flat case, t0 is the first observation time, and
I chose tM = 5 s because the skewness and kurtosis were found to be close to those for the flat interfaces for
t ⪅ 5 s [Fig. 2.8(a)]. Similarly, I defined another non-dimensional quantity

β(v∞,Γ, t) := Γ−1/3t2/3 (⟨∂th⟩ − v∞) (2.31)

and estimated v∞ as the minimizer of∫ tM

t0

(β(v∞,Γ, t)− βflat(v∞flat
,Γflat, t))

2
dt (2.32)

In both cases, the uncertainty was determined from the uncertainty of the parameters for the flat interfaces,
and the variation of the estimated value with varying tM .



32 CHAPTER 2. KPZ INTERFACES WITH CURVED INITIAL CONDITIONS

outgrowing interfaces approaches to those of χ2, circular interfaces, whereas the values for

the ingrowing interfaces moves in the opposite direction.

The experimental results of the ⟨q(x′, t)⟩ and the variance ⟨q(x′, t)2⟩c are shown in

Fig. 2.11(a,b). Consistently with the Eden model (Fig. 2.10), the variance ⟨q(x′, t)2⟩c show

departure from the values for the flat interfaces. The values move toward that for the circular

interfaces ⟨χ2
2⟩ in the cases of the outgrowing interfaces [Fig. 2.11(b)], while they showed a

deviation to the opposite direction in the ingrowing cases [Fig. 2.11(a)]. On the other hand,

the values of the mean ⟨q(x′, t)⟩ has large finite-time effects. By plotting the difference from

the asymptotic values ⟨χ1⟩ and ⟨χ2⟩ for the flat and circular interfaces, respectively, the dif-

ference from the asymptotic value decreases as t−1/3 as observed in the previous experiments

[36] [Fig. 2.13(a,b; upper plots inset)].

The exponent −1/3 for the finite-time difference in the mean rescaled height ⟨q(x′, t)⟩
indicates that the term contributing this effect is O(1) in terms of h(x, t). Also, the uncer-

tainty of the initial position of the interfaces h(x, 0) leads to O(1) effect on h(x, t). In order

to avoid the effects of those terms, we defined a quantity using the derivative ∂th(x, t)

⟨p(x′, t)⟩ :=
⟨
3t2/3

Γ1/3
[∂th(x, t)− v∞]

⟩
(2.33)

≃ ⟨χ(x′, t)⟩+ t∂t ⟨χ(x′, t)⟩ , (2.34)

that we call the mean rescaled velocity 10.

The numerical and experimental results for ⟨p(x′, t)⟩ are plotted in Fig. 2.12(b) and

Fig. 2.13(c,d), respectively. For the numerical results [Fig. 2.12(b)], the behavior of the

cumulants described above are also observed in ⟨p(x′, t)⟩; Again the values of the ingrowing

and outgrowing interfaces is close to that of the flat interfaces for short time, and then de-

parts at a characteristic time which increases as R0 increases. For the outgrowing interface,

the clear approach to the circular value ⟨χ2⟩ was observed. For the experimental results, al-

though the relatively large uncertainty of the non-universal parameters makes it challenging

to draw a conclusion for the outgrowing interfaces [Fig. 2.13(d)], the behavior of the other

quantities including those for the ingrowing interfaces show (at least qualitative) agreement

with the result of the Eden model. We conduct more quantitative comparison between the

experimental and numerical results in the next section.

2.3.4 Characteristic timescale and scaling functions

In the previous subsections, we observed that the statistical properties of the interfaces

growing from ring-shaped initial conditions seemingly depart from those of the flat interface

at a timescale which increases as R0 increases. Then, one natural interest is the characteristic

timescale for the departure, and whether one can understand the statistical properties of the

interfaces with different R0 in a unified way. One candidate of the characteristic timescale

10We noticed a similar quantity is used in Ref. [17].
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Figure 2.10: (a) The cumulants of the rescaled height q(x′, t) and (b) the mean
rescaled velocity p(x′, t) for the Eden model. The values for χ1 (flat) and χ2

(circular) are shown by the dashed and dotted lines, respectively.
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Figure 2.11: (a) The cumulants of the rescaled height q(x′, t) and (b) the mean
rescaled velocity p(x′, t) for the LC experiment. The statistical standard errors
are shown by the error bars on the first and the last points. The systematic error
due to the uncertainty of the non-universal parameters v∞ and Γ are indicated
by the shaded area with the corresponding color of the markers. The values for
χ1 (flat) and χ2 (circular) are shown by the dashed and dotted lines, respectively.
For the mean ⟨q(x′, t)⟩, the difference between the values for the flat and circular
interfaces and their asymptotic values ⟨χ1⟩ (flat) and ⟨χ2⟩ (circular) are plotted
in the insets with a guide to eye with the slope −1/3.
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is tc := R0/v∞, which is identical to the collapse time for the ingrowing interfaces. We will

demonstrate that rescaling the time by this timescale indeed rescales the statistical properties

of the fluctuation with different R0 onto scaling functions.

In Fig. 2.12 and Fig. 2.13, I plot the numerical and experimental results for the mean, vari-

ance, skewness, kurtosis and the mean rescaled velocity ⟨p(x, t)⟩ with the rescaled timescale

τ := t/t0 = v∞t/R0 , (2.35)

respectively. As for the Eden model (Fig. 2.12), the long-time values of all the quantities plot-

ted collapsed onto scaling functions. Notably, the long-time values of the variance ⟨q(x′, t)2⟩c
(the outgrowing case), the skewness Sk[q(x′, t)], kurtosis Ku[q(x′, t)] and the mean rescaled

height ⟨p(x′, t)⟩ for the LC experiment are rescaled onto the same scaling function as the

Eden model within the uncertainty [Fig. 2.13].

For the mean rescaled velocity ⟨p(x′, t)⟩ for the outgrowing interfaces in the LC exper-

iment, the uncertainty of v∞ significantly affects the values [Fig. 2.13(b; inset)]. However,

by re-estimating the values of v∞ so that the value of ⟨p(x′, t)⟩ at the final measured time

overlaps on the values of the Eden model, the whole range of the data of ⟨p(x′, t)⟩ overlapped
on the values of the Eden model [Fig. 2.13(b; main plot)], suggesting that ⟨p(x′, t)⟩ is also

rescaled onto the same scaling function as the Eden model. The estimated values of v∞ here

are shown in Table 2.2.

One may notice that the mean rescaled height ⟨q(x′, t)⟩ and the variance ⟨q(x′, t)2⟩c for

the ingrowing interfaces do not overlap on those for the Eden model. However, we believe

this is due to the finite-time effect, since (1) the values even for the flat/circular interfaces

are distant from the asymptotic values within our time window, and (2) the curves seemingly

approaches to the results of the Eden model with larger R0, implying they might overlap on

the result of the Eden model in the limit of R0 → ∞.

To summarize the results, let us denote the rescaled height q(x′, t) with the initial radius

R0 by q(x′, t;R0). Then, the results imply the existence of the crossover stochastic variable

χc(x
′, τ) parameterized by τ as q(x′, t;R0) ≃ χc(x

′, τ) in the long-time limit. More precisely,

with fixed τ = v∞t/R0, we expect

lim
R0,t→∞

⟨q(x′, t;R0)
n⟩c = ⟨χc(x

′, τ)n⟩c , (2.36)

where χc(x
′, τ) is a stochastic variable parameterized by τ which satisfies

lim
τ→0

⟨χc(x
′, τ)n⟩c = ⟨χn

1 ⟩c , lim
τ→∞

⟨χc(x
′, τ)n⟩c = ⟨χn

2 ⟩c . (2.37)

2.3.5 Spatial correlation

Figure 2.14 shows the experimental and numerical results of the spatial covariance

Cs(ζ, t) := Cov[q(x′ + ζ, t), q(x′, t)] . (2.38)
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Figure 2.12: (a) The cumulants of the rescaled height q(x′, t) and (b) the
mean rescaled velocity ⟨p(x′, t)⟩ for the Eden model, plotted against the rescaled
timescale τ = v∞t/R0. For the sake of visualization, only the data with t ≥ 103

are plotted. The values for χ1 (flat) and χ2 (circular) are shown by the dashed
and dotted lines, respectively.
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rescaled velocity ⟨p(x′, t)⟩ for the LC experiment, plotted against the rescaled
timescale τ = v∞t/R0. As for the outgrowing interfaces, values rescaled with the
same v∞ as the flat interfaces are shown in the inset, with the uncertainty defined
in Sec. 2.3.2. The main plot is with the value of v∞ estimated by comparing with
the result of the Eden model (see the main text). The data for the Eden model
(Fig. 2.12) is replotted with the same colors for the sake of comparison. The exact
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respectively.
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Figure 2.14: Spatial covariance Cs(ζ, t), plotted against the normalized length ζ,
for the ingrowing (a) and outgrowing (b) interfaces. τ and R0 (or N) or the data
points are indicated in the legend. The solid and dashed lines indicate the Airy1
(flat) and Airy2 (circular) correlation function, respectively.

One can observe, as τ is varied, that the function moves simultaneously with the values of

the cumulants; For the ingrowing interfaces [Fig. 2.14(a)], Cs(ζ, t) is first close to the Airy1
covariance, the exact solution for the flat interfaces, and then deviates toward the lower

direction as τ becomes larger. For the outgrowing ones [Fig. 2.14(b)], it crossovers between

the Airy1 and Airy2 covariance, the exact solution for the flat and circular interfaces. The

overlap of the experimental and numerical results suggests the universality of the spatial

correlation of the crossover fluctuation.
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2.4 Theory and generality

Why it was possible to rescale the statistical properties of the fluctuation only by scaling

the timescale as τ = v∞t/R0, and are there any theoretical expression for the crossover

fluctuation? In this section, we demonstrate that we can answer these questions using a

representation of the height distribution of the KPZ interfaces called the variational formula

[52, 102].

2.4.1 Variational formula for curved initial conditions

Short summary on variational formula

For the one-point distribution of KPZ interfaces h(x, t) with the initial height h(x, 0) =: h0(x),

the variational formula conjectured in Ref. [52] reads

h(x, t)− v∞t

(Γt)1/3
≃ sup

Y ∈R

[
A2 (X − Y )− (X − Y )2 +H0(Y )

]
, (2.39)

where

X := x/ξ(t) (2.40)

H0(Y ) := (Γt)−1/3h0(ξ(t)Y ), (2.41)

the correlation length ξ(t) defined by Eq. (2.6), and A2 (·) is a stochastic variable called the

Airy2 process [52, 68, 69]. The formula is conjectural for, e.g., the KPZ equation, but proved

to be valid for the TASEP [112, 113].

Roughly speaking, one can derive this formula as follows [112]. With the Hopf-Cole

transformation

z(x, t) := exp

[
λ

2ν
h(x, t)

]
, (1.12)

let us consider the stochastic heat equation

∂tz(x, t) = ν∂2
xz(x, t) +

λ
√
D

2ν
z(x, t)η(x, t) (1.13)

and denote its solution with the initial condition z(x, 0) := δ(x) by zδ(x, t). Considering the

linearity of the stochastic heat equation, one can expect that the solution z(x, t) with the

initial condition z(x, 0) = z0(x) = exp
[

λ
2ν
h0(x)

]
is written as

z(x, t) =

∫ ∞

−∞
zδ(x− y, t)z0(y)dy. (2.42)
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Here, the exact solution for the narrow wedge initial condition (2.14) reads

zδ(x, t) = exp

{
λ

2ν

[
v∞t+ (Γt)1/3At(X)−X2

]}
, (2.43)

where X is that defined in (2.40), v∞ = −3−12−7ν−4λ3D2, Γ = λA2

2
, A = D

2ν
and At(·) is

a stochastic variable called the crossover Airy process [52, 60], which has the conjectural

asymptotic limit

At(X) → A2 (X) (t → ∞). (2.44)

Substituting Eq. (2.43) into (2.42) and assuming Eq. (2.44) leads to

z(x, t) =

∫ ∞

−∞
exp

{
λ

2ν

[
v∞t+ (Γt)1/3

(
A2 (X − Y )− (X − Y )2 +H0(Y )

)]}
dy, (2.45)

where H0(Y ) is defined in (2.41). Finally, in order to obtain the fluctuation of z(x, t) in the

limit t → ∞, we approximate (2.45) by the saddle point to obtain

h(x, t) :=
2ν

λ
log |z(x, t)| (2.46)

≃ v∞t+ (Γt)1/3 sup
Y ∈R

[
A2 (X − Y )− (X − Y )2 +H0(Y )

]
+ O(t1/3), (2.47)

which is identical to Eq. (2.39). Here we note that this formula is only valid in the sense of

the one-point distribution [112]; To obtain the multi-point correlation, one needs to consider

another variational formula including a conjectural two-parameter process called the Airy

sheet [112, 114]. In this dissertation, I only focus on the one-point distribution with Eq. (2.39).

Variational formula for curved initial conditions

Now we are ready to compute the variational formula (2.42) in the case of the curved initial

conditions. Let us consider an initial condition in a general form

h0(x) = R0g

(
x

R0

)
(2.48)

where g(z) is a function which can be Taylor-expanded near the origin as 11

g(z) =
∞∑
n=2

cn
n!
zn. (2.49)

For example, one can take g(z) = ±
(√

1− z2 − 1
)
1|z|<1 for the cases with the ring-shaped

initial conditions.

11Note that the terms with n = 0, 1 can be eliminated by translation and rotation.
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Substituting (2.48) and (2.49) into (2.41), one obtains

H0(X) = (Γt)−1/3h0(ξ(t)X) (2.50)

=
∞∑
n=2

c′n
n!
R1−n

0 t(2n−1)/3Xn (2.51)

=
∞∑
n=2

c′′n
n!

(
v∞t

R0

)n−1

t−(n−2)/3Xn, (2.52)

where c′n := 2nΓ(2n−1)/3A−ncn and c′′n = c′n/v
n−1
∞ . Let us consider the limit R0, t → ∞ with

fixed τ = v∞t/R0. Then, the terms in (2.52) with n ≥ 3 vanish as ∼ t−(n−2)/3. Thus we

obtain

H0(X) ≃ 2c2Γ

A2v∞
τX2, (2.53)

and substituting into (2.39) and setting x = 0 yields

h(x, t)− v∞t

(Γt)1/3
≃ sup

Y ∈R

[
A2 (Y )−

(
1− 2c2Γ

A2v∞
τ

)
Y 2

]
, (2.54)

where we used the property of the Airy2 process A2 (−Y ) = A2 (Y ), which is intuitively clear

from the symmetry of the interface fluctuation with respect to x → −x. In the isotropic

cases, by using the relationship (2.25), one can further simplify the formula as

h(x, t)− v∞t

(Γt)1/3
≃ sup

Y ∈R

[
A2 (Y )− (1− c2τ)Y

2
]
. (2.55)

Finally, let us consider the cases with the ring-shaped initial conditions g(z) =

σ
(√

1− z2 − 1
)
1|z|<1, where σ = −1 for the ingrowing interfaces and +1 for the outgrowing

interfaces. Since
√
1− z2 = 1− 1

2
z2 +O(z4), one finds

h(x, t)− v∞t

(Γt)1/3
≃ χ

(τ̂)
parbl := sup

Y ∈R

[
A2 (Y )− (1 + τ̂)Y 2

]
, (2.56)

where τ̂ := στ . The formula (2.56) explains the observation in Sec. 2.3.4, with suggesting

that the one-point distribution of χc(x
′, τ) [Eq. (2.37)] is indeed given by χ

(τ̂)
parbl. Also, the

discussion in this section suggests that the fluctuation described by Eq. (2.53) generally

appears for the initial conditions described by (2.48) and (2.49), such as ellipses.

2.4.2 Numerical evaluation of variational formula

In order to compare the formula with the experimental and numerical results, one needs to

evaluate the formula (2.56) [or more generally, (2.39)] numerically. Here I consider three
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candidates of the methods to evaluate (2.56):

1. Using the explicit Fredholm-determinant formula presented in Eq. (1.49) in Ref. [102]

for the variational problem Eq. (2.55) (in a different context):

Prob

[
sup
Y

[
A2 (Y )− (1 + τ)Y 2

]
< r

]
= det

[
I−KAi + AP̄0Sτ,τ

parblP̄0A
∗] (τ > 0),

(2.57)

where A, P̄0 and Sβ1,β2

parbl are integral operators defined in Ref. [102].

2. Using the Fredholm-determinant formula for the general initial condition presented in

Thm. 8 in Ref. [52]:

Prob [A2 (Y ) ≤ g(Y ) for t ∈ [−L.L]] = det
[
I−KAiΘ

g
He

2LHKAi

]
, (2.58)

where H := − △ +x and Θg
H is an operator that maps a function f(·) to a function

u(L, ·) where u(t, x) satisfies the partial differential equation (PDE) ∂tu+Hu = 0 with

an appropriate boundary condition involving f (see Ref. [52] for details).

3. Directly evaluating the variational formula (2.56) through a Monte-Carlo (MC) simu-

lation of the Airy2 process.

Though the methods 1 and 2 are attractive in a sense that they directly provide the

cumulative distribution function Prob
[
χ
(τ)
parbl < r

]
, we think the numerical evaluation of those

representations are still challenging practically. For the method 1, this is because Sτ,τ
parbl

includes an infinite sum and nested integrals in its representation. For the method 2, the

difficulty is due to, for example, the lack of knowledge on the accuracy of the numerical

evaluation of the PDE, and the computational cost to evaluate e2LHKAi for the boundary

condition for the PDE. With these reasons, here I evaluated Eq. (2.56) by the method 3 in

this study as follows.

I approximated the Airy process A2 (Y ) by the largest eigenvalue λN(u) in the Dyson’s

Brownian motion of N × N GUE random matrices [51], the time-evolving Hermite random

matrices H(u) = {Hjk(u)}j,k=1,...,N , whose elements follow the Ornstein-Uhlenbeck processes

as

dHjk(u)

du
=

−Hjk(u) + η
(1)
jk (u) (j = k)

−Hjk(u) +
√

1
2

[
η
(1)
jk (u) + iη

(2)
jk (u)

]
(j > k)

(2.59)

where η
(m)
jk (u) is the Gaussian noise satisfying⟨

η
(m)
jk (u)

⟩
= 0,

⟨
η
(m′)
j′k′ (u

′)η
(m)
jk (u)

⟩
= δj′jδk′kδm′mδ(u

′ − u), (2.60)

since it is known that λN(u) converges to the Airy2 process with N → ∞ with so-called the
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edge scaling

λ̃N(ũ) :=
√
2N1/6

(
λN(N−1/3ũ)−

√
2N
)

(2.61)

as

lim
N→∞

λ̃N(ũ) = A2 (ũ) , (2.62)

in the sense of the convergence of finite-dimensional distributions [52, 69, 115].

The detailed steps for the MC evaluation are as follows:

1. We first prepared the initial Hermite random matrix drawn from the stationary distri-

bution of Eq. (2.59),

Hjk(0) =


√

1
2
N (1)

jk (j = k)

1
2

[
N (1)

jk + iN (2)
jk

]
(j > k)

, (2.63)

where N (m)
jk are mutually independent random variable following the normal distribu-

tion with the mean 0 and the variance 1.

2. We then simulated the Ornstein-Uhlenbeck process (2.59) for each element, using the ex-

act formula presented in Ref. [116] with the timestep ∆u. We compute the largest eigen-

values λN
j := λN(j∆u)(j = 0, . . . , jmax) for each timestep j∆u. Following Eq. (2.61),

the values were rescaled as

λ̃N
j :=

√
2N1/6

(
λN
j −

√
2N
)

(2.64)

∆ũ := N1/3∆u. (2.65)

3. We approximated the variational formula by

χ
(τ̂)
parbl = sup

Y

[
A2 (Y )− (1 + τ̂)Y 2

]
≈ max

k

[
λ̃N
j+k − (1 + τ̂) ((j + k)∆ũ)2

]
, (2.66)

where j = L, . . . , jmax − L and L is taken sufficiently large to avoid the effect of the

boundaries. The cumulants
⟨
(χ

(τ̂)
parbl)

k
⟩
c
were evaluated by taking the average of the

right-hand side with respect to j and independent realizations of the random matrices.

We used the matrix size of N = 256, which has been shown to be sufficiently large to

reproduce, e.g., the covariance of the Airy2 process Cov[A2 (X) ,A2 (0)] [117]. The other

parameters are set to be ∆u = 10−3N−1/3 and jmax = 106. We simulated 320 independent

series of random matrices. In the following section, we present the result of the MC evaluation

of (2.55), and compare it with the fluctuation of the interfaces with the ring-shaped initial

conditions.
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2.4.3 Comparison with interfaces with ring-shaped initial condi-

tions

In Fig. 2.15(a), we plot the mean, variance, skewness and kurtosis of χ
(τ̂)
parbl evaluated by the

variational formula for several points (indicated by the triangular markers) together with

the result of the Eden model replotted from Fig. 2.12 (circular markers, in the same way as

2.13). The uncertainty of each cumulant (the shaded area) for the MC result of the variational

formula was estimated by calculating the standard error (standard deviation of the results

each of which was estimated using single sequence of the random matrices, divided by the

square root of the number of the sequence of the random matrices). Note that the statistical

error can be correlated for different points because we used the same random matrices to

evaluate the values for different τ . Also, the rescaled mean⟨
ϕ
(τ̂)
parbl

⟩
:=
⟨
χ
(τ̂)
parbl

⟩
+ 3∂τ

⟨
χ
(τ̂)
parbl

⟩
(2.67)

corresponding to the mean rescaled velocity ⟨p(x′, t)⟩ (Eq. (2.33)) was evaluated by interpo-

lating
⟨
χ
(τ̂)
parbl

⟩
by Lagrange polynomials at 10 Chebyshev points for each of the τ > 0 and

τ < 0 branches, and analytically calculating the derivative of the interpolating polynomials

[Fig. 2.15(b)].

The values of the cumulants calculated by the variational formula is consistent with those

of the rescaled height
⟨
q(x′, t)k

⟩
c
and the mean rescaled velocity ⟨p(x′, t)⟩ of the Eden model

(and also those of the LC experiments as we saw in Fig. 2.13) with the ring-shaped initial

conditions, respectively. These results corroborate the idea that the one-point distribution

of χc(x
′, τ) [Eq. (2.37)] is identical to χ

(τ̂)
parbl. The small but systematic deviation between the

values for the variational formula and that for the Eden model was, however, observed. This

deviation may be attributed to the estimation error of the non-universal parameters, or the

“finite R0 effect”, since the formula (2.56) was derived in the limit of R0 → ∞ with fixed

τ . Considering the next order term in the expansion (2.52) might help us understand the

corrections due to finite R0.

2.5 Summary and discussions

To summarize, we constructed an experimental setup which enables us to investigate the

growth of DSM2 cluster with arbitrary designed initial conditions. Experimentally using this

setup as well as numerically, we investigated interfaces growing inward or outward from the

ring-shaped initial conditions. We found that the cumulants of the rescaled height
⟨
q(x′, t)k

⟩
c

and the spatial covariance Cs(ζ, t) seem to be parametrized only by the rescaled timescale

τ = v∞t/R0 for large t suggesting the existence of the universal fluctuation χc(x
′, τ) satisfying

q(x′, t;R0) ≃ χc(x
′, τ). For both of the ingrowing and outgrowing cases, the statistical

properties of the flat subclass were observed with small values of τ , whereas the behavior for

large τ was distinct between the ingrowing and outgrowing cases. The outgrowing interfaces
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Figure 2.15: (a) The mean, variance, skewness and kurtosis of χ
(τ̂)
parbl and (b) the

rescaled mean
⟨
ϕ
(τ̂)
parbl

⟩
evaluated by the MC simulation for the variational for-

mula (2.55). The triangular markers indicate the values of the formula evaluated
at the Chebyshev points, and the shaded areas indicate the statistical uncertainty
estimated by the doubled standard error. (Note that the error is not necessar-
ily independent for the different points.) The cumulants of the rescaled height⟨
q(x′, t)k

⟩
c
and the mean rescaled velocity ⟨p(x′, t)⟩ for the Eden model (Fig. 2.12)

is replotted as in Fig. 2.13. The values for χ1 (flat) and χ2 (circular) are shown
by the dashed and dotted lines, respectively.
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show the crossover to the circular subclass as τ → ∞, while statistical properties of the

ingrowing interfaces deviate from those of the flat subclass with no sign of the circular

subclass. This result demonstrates that the sign of the curvature is relevant to determine the

subclasses.

In order to understand the observed behaviors, we constructed a formula for the one-point

distribution of the rescale height, on the basis of the variational formula for general initial

conditions (2.39). Our formula naturally explains why the asymptotic fluctuation seems

to be parametrized by τ , and suggests that the same behavior can be found in the limit

we considered for any interfaces with locally-parabola initial conditions. The values of the

cumulants numerically evaluated by our variational formula were consistent with those for

the interfaces with the ring-shaped initial conditions, suggesting that our experiment is in

the regime explained by the formula we derived.

We anticipate that the method we employed provides us an intuitive perspective to un-

derstand interface fluctuations with more general initial conditions. For example, from the

formula (2.55), the formula suggests that for interfaces with locally-flat initial conditions such

as polygons, one needs to consider a different time rescaling to observe a nontrivial behavior

such as the crossover to the circular subclass.

We note that the spatial covariance Cs(ζ, t) for the curved interfaces is still not numerically

evaluated from the variational formula. We find it interesting to consider whether one can

numerically evaluate (or approximate) the Airy sheet and compare the result of the spatial

covariance of the variational formula to the experimental results. We also note that our

evaluation of the variational formula (2.55) is by the rather näıve Monte-Carlo method in

this dissertation. Numerically tractable explicit formula (e.g. Fredholm determinant formula)

for Eq. (2.55) may help further studies.

Finally, we briefly remark several potentially related studies.

• The spatial crossover of the fluctuation between the flat and circular subclasses, the

crossover of χ(x′, t) depending on the position x′ in the limit of t → ∞, has been found

in e.g., the half-flat initial condition [33, 118, 119]. It might be interesting to investigate

if there are similarities between those cases and the temporal crossover appeared in this

study.

• Numerically, interfaces on a substrate enlarging or shrinking with time have been in-

vestigated [99, 100], for which the statistical properties of the fluctuations are similar

to those with the curved initial conditions. Our results suggest that the variational

formula may also describe fluctuations found in this system. It may be interesting to

study how the variational formula can be extended for those cases.

• The geometry-dependent fluctuations are found not only for the (1 + 1)-dimensional

interfaces, but also for the (2 + 1)-dimensional KPZ interfaces [20]. Considering that

the variational formula relies on the linearity of the stochastic heat equation (1.13), it is

natural to expect that a similar variational formula describes the interface fluctuation

with general initial conditions also in the case of (2 + 1)-D, where the Airy2 process is
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replaced by the solution of the (2 + 1)-D KPZ equation with the “sharp needle” initial

condition

h(x, 0) =

{
0 (x = (0, 0))

−∞ (otherwise)
, (2.68)

which corresponds to the delta-function initial condition in terms of the stochastic heat

equation.





Chapter 3

Relationship between directed

percolation and Kardar-Parisi-Zhang

universality classes

Related publications by author:

• in preparation. (in collaboration with K. Tamai, H. Yamaguchi and T. Hiraiwa)

Contribution:

The author (Y. T. Fukai) conducted the numerical simulations and analyzed the results under

discussion with the collaborators (K. Tamai, H. Yamaguchi and T. Hiraiwa).

3.1 Topical introduction

In this section, first I introduce the directed percolation (DP) universality class, which is one

of the fundamental classes for an absorbing state phase transition: a phase transition into

a state from which the escape is not possible. Then I remark the relationship between the

DP class and the partial differential equation known as the Fisher–Kolmogorov–Petrovsky–

Piscounov (FKPP) equation which describes the front propagation. Finally, I briefly review

the studies on the relationship between the stochastic version of the FKPP equation and the

interface fluctuation and state our motivation.

3.1.1 Brief overview on directed percolation universality class

In order to review the idea of the absorbing state phase transition and the DP universality

class, let us begin with a simple model called the contact process on an infinitely large d-

dimensional lattice [120–123] as an example. In the model, each lattice site takes either of

the two states called the “active” or “inactive” state which obeys the following two processes

[Fig. 3.1(a)]:

49
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Figure 3.1: Schematic illustration of the contact process. (a) The evolution rule.
The gray and white squares denotes the active sites and the inactive sites, re-
spectively. One of the active sites is marked by red in the top figure in order to
illustrate the dynamics it can follow. The site can either divide to the nearest
neighbor site or deactivate with the rate 1 and γ−1, respectively. (b) Illustration
of the absorbing state. If all of the sites become inactive, the state of the sys-
tem does not change furthermore. (c) Qualitative behavior of the steady-state
density of the active sites ρss with respective to the inactivation timescale γ for a
sufficiently large system.

• Active sites turn one of its adjacent site active at a constant rate of 1.

• Active sites inactivate at a constant rate of γ−1.

One can regard this model as, for example, a simple model for epidemics where the active

sites correspond to an infected individual [122], or a population dynamics model of two spices

including mutations [97]. As one can imagine, small inactivation timescale γ leads to the state

in which all the sites are in the inactive state [Fig. 3.1(b)]. This state is the one example of

the absorbing state from which the system cannot escape to other states, since there are no

spontaneous nucleations of an active site in the model.

Let us consider the stationary density of the active sites ρss(γ) realized with the initial

condition such that, for example, all of the sites are active. It is known that there is a critical

value γc above which ρss(γ) takes a non-zero value as illustrated in Fig. 3.1(c) [120, 121, 123].

Regarding ρss(γ) as the order parameter, transition from the active state ρss(γ) > 0 to the

absorbing state ρss(γ) = 0 at γ = γc exemplify the absorbing phase transition, which is a

nonequilibrium phase transition by its nature since the detailed balance of the dynamics is

broken due to the existence of the absorbing state [Fig. 3.1(b)].

The continuous singularity at the transition point [Fig. 3.1(c)] reminds us of the second-

order phase transition and critical phenomena in equilibrium systems. Indeed, the correlation

time and correlation length diverge at the critical point, leading to the universal phenomena.

More specifically, defining the distance from the transition point ϵ by ϵ := (γ − γc)/γc,

theoretical and numerical observations are consistent with the following scaling ansatz : The



3.1. TOPICAL INTRODUCTION 51

Table 3.1: The critical exponents for the DP class.

d = 1 [124] d = 2 [125] d = 3 [125]

βDP 0.276486(8) 0.580(4) 0.818(4)
ν∥ 1.733847(6) 1.287(2) 1.106(3)
ν⊥ 1.096854(4) 0.729(1) 0.582(2)

zDP := ν∥/ν⊥ 1.580745(10) 1.7665(2) 1.8990(4)
αDP := βDP/ν∥ 0.159464(6) 0.4510(4) 0.7398(10)

large-scale configuration of the active sites are invariant under the following multiplicative

variable scaling

ϵ → bϵ, ρ → bβDPρ, t → b−ν∥t, x → b−ν⊥x, (3.1)

where b > 0, ρ, t and x are characteristic scales of the density, time and length. The values

of the exponents β, ν∥, ν⊥ (summarized in Table 3.1 1), which take nontrivial values different

from the mean-field theory with the dimension less than dc = 4, are found to be universal

in various systems [120, 121], suggesting that the concept of the universality classes can also

be applied to the absorbing state transitions. The transitions characterized by the same

exponents as the contact process on a d-dimensional lattice are called to belongs to the

(d+1)-D directed percolation (DP) universality class.

The DP class is known to be quite robust in theoretical contexts, leading to the DP

conjecture [120, 121], which is attributed to the works by H. K. Janssen and P. Grassberger

[126, 127], stating that a model generally falls into the DP class if:

1. The model displays a continuous phase transition from a fluctuating active phase into

a unique absorbing state.

2. The transition is characterized by a positive one-component order parameter.

3. The dynamic rules involve only short-range processes.

4. The system has no unconventional attributes such as additional symmetries or quenched

randomness.

According to Ref. [120, 121], no counterexamples for the conjecture have been found, while

even a model which does not fulfill the above conditions can fall into the DP class.

In contrast to the theoretical situation, it had not been fully confirmed whether the

DP class behavior is experimentally observed, until the (2+1)-D critical behavior of the

DP class was found in the LC electroconvection (Sec. 2.1.2) in 2007 by K. A. Takeuchi

and the collaborators [37, 38]. In the experiment, they investigated the dynamics of the

DSM2 patches, which coexist with the DSM1 [Fig. 3.2(a,b)] at a voltage lower than the

1We use αDP, βDP, and zDP instead of the standard notations α, β and z in order to avoid possible
confusions with the KPZ exponents.
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interface-growth experiment (Sec. 2.1.2). Since the DSM2 is barely created from the DSM1

spontaneously, they regarded the DSM2 as the active sites. They identified 12 exponents, 5

scaling functions and 8 scaling relations confirming that the DSM1-DSM2 transition indeed

belongs to the (2+1)-D DP universality class [Fig. 3.2(c,d)]. Recently, the DP-class behaviors

are identified in the shear-induced laminar-turbulent transition of a Newtonian fluid [128,

129]. This finding supported the Y. Pomeau’s conjecture that laminar-turbulent transition

through the spatiotemporal intermittency belongs to the DP universality class [130], and

provided us a clear characterization of the transition which has been a long-standing problem

from the experiment by Reynolds [131].

Before proceeding, let us present the consequence of the scale invariance (3.1) in a con-

venient manner. As an example, let us consider a quantity f(ρ, t, x; ϵ) which depends on the

normalized control parameter ϵ = (γ − γc)/γc and the parameters ρ, t and x which scale in

the same way as the steady-state density, the correlation time and the correlation length.

Assuming (3.1), one can see that f(ρ, t, x; ϵ) is a generalized homogeneous function [132]

satisfying

f(ρ, t, x; ϵ) = b−lf(bβDPρ, b−ν∥t, b−ν⊥x; bϵ) (3.2)

for any b > 0, where the exponent l can be inferred either from the physical dimension of f

or consistency with other scaling laws.

As an illustration, let us consider the mean density of the active particles ρ̄(t) in a system

evolving from the initial condition such that all the sites are active. Then, the scaling form

ρ̄(t) = b−βDPg(b−ν∥t, bϵ) (3.3)

can be inferred from the scale invariance (3.1). By setting b = t1/ν∥ , one finds

ρ̄(t) = t−αDPg(1, t1/ν∥ϵ) (3.4)

where αDP := βDP/ν∥. In particular, at the critical point ϵ = 0, one obtains the power law

ρ̄(t) = t−αDPg(1, 0) ∼ t−αDP . (3.5)

In order to compare results for different systems, it is convenient to further define char-

acteristic scales of the density ρ0, the time t0 and the length x0 (called the metric factors)

and write (3.2) in the nondimensional form

f̃(ρ/ρ0, t/t0, x/x0; ϵ) = b−lf̃(bβDPρ/ρ0, b
−ν∥t/t0, b

−ν⊥x/x0; bϵ). (3.6)

With this form, one can expect that the function f̃(ρ̃, t̃, x̃; ϵ) itself is universal for systems in

the DP class, if one uses the same definition for ρ0, t0 and x0 [120, 121].
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Figure 3.2: Observation of DP critical behavior in the DSM1-DSM2 transition
in LC electroconvection [37, 38]. (a) (left) An image taken at 35.153V. DSM2
patches appears darker in the relatively brighter DSM1. (right) A binarized image.
Black patches correspond to the DSM2. (b) Temporal dynamics of the DSM2
patches near the critical voltage Vc = 34.856(4)V. Branching and disappearance
of DSM2 patches are observed. The size of the box is 1206 µm × 899 µm in the
x and y directions and 6 s in time. (c,d) A part of the results confirming the
scaling exponents for the DP class. (c) The steady-state density of the DSM2
ρss plotted against the voltage. The blue broken line is the fitting curve by the
function ρss = ϵβDP with ϵ := (V 2 − V 2

c )/V
2
c where V is the applied voltage

and Vc is the critical voltage (fitting parameter), which yielded βDP = 0.59(4)
consistently with the (2+1)-D DP class exponent βDP = 0.580(4). (inset) The
same data in the log-log scale with the horizontal axis set to ϵ. (d) The correlation
length (left) and the correlation time (right) in the steady state plotted against ϵ.
The correlation length was measured in the direction of the director field without
voltage. The broken lines are guides for the eyes showing the estimated exponents.
The estimated values of the exponents are consistent with the (2+1)-D DP class
exponents ν∥ = 1.287(2) and ν⊥ = 0.729(1). The figures are adopted from Ref. [38]
with permission.
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3.1.2 Directed percolation, interface growth and stochastic

Fisher–Kolmogorov–Petrovsky–Piscounov equation

Let us consider a situation where a cluster of the active sites is invading the inactive phase.

The following two observations let us conjecture that the interface fluctuation of the (1+1)-D

KPZ class appears in models showing the (2+1)-D DP class transition.

• First, let us reconsider the contact process on a two-dimensional lattice we discussed

at the beginning of the previous subsection. In the case where the inactivation rate

is negligible as γ → ∞, the dynamics is similar to that of an interface growth model

called Eden model [4, 6, 133, 134] which belongs to the KPZ class.

• Next, as remarked in [135], both of the DP transition and the KPZ interface growth

appears with the DSM2 in LC electroconvection. Although one needs to be careful

about the fact that they were conducted with the different alignment of LC director

fields, those results imply a relationship between the (2+1)-D DP and (1+1)-D KPZ

classes.

In order to obtain a more transparent viewpoint on the interface growth observed in the

DP class, let us turn our attention to the standard Langevin equation for the DP class [120,

121], describing the local density of the active site ρ(x, t) at position x and time t, which

reads

∂tρ(x, t) = κρ− λρ2 + D̄△ρ+ Γ̄
√
ρη(x, t), (3.7)

where η(x, t) is the white Gaussian noise satisfying

⟨η(x, t)⟩ = 0, ⟨η(x′, t′)η(x, t)⟩ = δ(x′ − x)δ(t′ − t), (3.8)

and the multiplicative noise is defined by the Itô product. The Langevin equation can be

derived by taking a continuous limit of the contact process [126, 136], and the multiplicative

noise ∝ √
ρ can be understood as the consequence of the central limit theorem, since the

density fluctuation depends on the density ρ(x, t) itself [120, 121].

When one considers the phase transition in d < dc = 4, it is convenient to non-

dimensionalize Eq. (3.7) into

∂TR(X, T ) = AR−R2 +△R +
√
Rη(X, T ) (3.9)

R(X, T ) :=
ρ(x, t)

ρ∗
, X :=

x

x∗ , T :=
t

t∗
, A := κt∗ (3.10)

where x∗ :=
(
Γ̄2λ/D̄2

) −1
4−d , t∗ :=

(
Γ̄4λ2/D̄d

) −1
4−d , ρ∗ := (t∗)−1 λ−1, and the parameter A acts

as the control parameter. There is the critical value Ac, such that the absorbing state Rss = 0

and the active phase Rss > 0 are realized for A < Ac and A > Ac, respectively, where Rss
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denotes the steady-state mean value of R(X, T ) in a sufficiently (or precisely, infinitely) large

system. One can control the noise amplitude instead of the coefficient of the linear term.

With the proper scaling of the variables, the equation

∂TR (X, T ) = R−R2 +△R +B
√
R η (X, T ) (3.11)

can be mapped to (3.10) with A = B− 4
4−d , indicating that the active phase is realized with

sufficiently small noise amplitude B < Bc where Bc := A
4

4−d
c .

It is instructive to see that the deterministic part of the DP Langevin equation (3.11)

∂TR (X, T ) = R−R2 +△R (3.12)

is identical to the equation called Fisher–Kolmogorov–Petrovsky–Piscounov (FKPP) equa-

tion [137, 138] describing front propagation. In the one-dimensional case, Kolmogorov proved

[138] that the solution of the FKPP equation

∂tf(x, t) = f(1− f) + ∂2
xf (3.13)

with the step initial condition

f(x, 0) =

{
1 (x < 0)

0 (x ≥ 0)
(3.14)

converges to the traveling wave solution [Fig. 3.3(a)]

f(x, t) = g(x− 2t) (t → ∞), (3.15)

where the function g(z) is determined by solving an associated ordinary differential equation

with appropriate boundary conditions [139] 2. Even for a higher (e.g. two-) dimensional

case of (3.12), one can easily see that the traveling wave solution is realized with the initial

condition such as

R(X, 0) =

{
1 (x < 0)

0 (x ≥ 0)
, X =: (x, y). (3.16)

Beyond the deterministic cases, it has long attracted attention how noise affects the

growth of the front propagation of the FKPP equation. The natural form of the noise can be

inferred by taking the continuous limit of a reaction model. We already found one example

2The convergence to the traveling wave solution has been proved for more general initial conditions in
[140].
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Figure 3.3: (a) Schematic illustration of the traveling-wave solution for FKPP
equation 3.13. With the step initial condition (the blue line), the solution con-
verges to the traveling-wave solution g(x − 2t) (the red line) moving with the
velocity 2. (b) Numerically evaluated solution of the stochastic FKPP equation
(3.18) in two-dimensional space [141]. The equipotential lines with ρ = 1/2 and
ρ = 1/N := B−2 are shown by the white lines. The figure is adopted from [141]
with modifications with permission of American Physical Society.

∝
√
Rη with the contact process. Another choice of the noise term is the form of

∂TR(X, T ) = A(R−R2) +D△R +
√
R−R2η(X, T ) (3.17)

or equivalently (with proper rescaling of the variables and B ∝ D−d/4A(d−2)/2),

∂TR(X, T ) = R−R2 +△R +B
√
R−R2η(X, T ) (3.18)

which naturally arises from, for example, coarse-graining a reaction a ⇄ 2a of a particle a

with spatial diffusion [142, 143]. This Langevin equation can be regarded as the standard

equation for the absorbing phase transition called compact directed percolation class (CDP)

characterized by two symmetric absorbing states R = 0 and R = 1, whose critical point is

A = 0 [121]. Here we call Eq. (3.17) and (3.18) the CDP Langevin equation.

The FKPP equation with the noise term such as Eq. (3.11) and (3.18) [stochastic FKPP

(sFKPP) equation] has been studied in various contexts. Especially, the asymptotic velocity

of the traveling wave in the one-dimensional cases has been extensively studied. For example,

the exact velocity is known for the weak-noise limit B → 0 (far from the critical point) in the

DP and CDP Langevin equations [Eq. (3.11) and (3.18)] [144, 145] and the strong-noise limit

in the CDP Langevin equation [146, 147]. For the two-dimensional case, which is relevant

for this study, several numerical studies have been conducted in the context of the interface

growth. S. Nesic and the collaborators numerically demonstrated that the interface of the

solution of the 2-D CDP Langevin equation (3.18) in the weak noise limit B → 0 [he(x, t)

and hf (x, t) in Fig. 3.3(b)] belongs to the KPZ class with the fluctuation amplitude and

characteristic lengthscale scaling as ∼ (− logB)1/2 and ∼ − logB, respectively [141], which

are generally not negligible even with small B. Also, E. Moro investigated a discrete model
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whose continuous limit is the CDP Langevin equation (3.17) and observed that the stationary

interface fluctuation agrees with that of the KPZ interfaces in the case of d = 2 [143]. They

also investigated a model which corresponds to the DP Langevin equation (3.10) far above

the transition threshold A ≫ Ac, where they also observed the KPZ stationary fluctuation

[143].

3.1.3 Motivation

Although the examples presented above suggest that the KPZ fluctuation appears in the

systems which belong to the DP class far from the critical point, to our knowledge no study

has elucidated the interface fluctuation that appears near the transition point, where the

universality in a sense of the DP class arises. In particular, it is still not known whether the

KPZ fluctuation survives in the situation where the system is near the transition point, and

if it does, how the fluctuations of the DP class and the KPZ class are related to each other.

In this study, we aim to explicitly answer those questions by extensive simulations of

the two-dimensional DP Langevin equation with the active boundary condition, a boundary

condition such that ρ(x, t) at the boundary is always set to active. We investigate the interface

fluctuation of the active phase growing from the boundary, with the interface height being

intuitively defined as the maximum distance between an active site and the boundary. We

describe the statistical properties of the interfaces in terms of the scaling functions of the DP

transition, which are expected to be observed universally for systems in the DP universality

class. We finally remark a conjecture arose from our study about a universal relationship

between the non-universal parameters for the DP class and the KPZ class.

3.2 Methods

In this section, we explain the numerical scheme we used for the simulation of the DP

Langevin equation, and describe the conditions we used to investigate the interface fluctua-

tion.

3.2.1 Splitting-step method for directed percolation Langevin

equation

We simulated the non-dimensionalized version of the DP Langevin equation

∂tρ(x, y, t) = Aρ− ρ2 +△ρ+
√
ρη(x, y, t) (3.10)

with varied A, where η(x, y, t) is a white Gaussian noise satisfying ⟨η(x, y, t)⟩ = 0,

⟨η(x′, y′, t′), η(x, y, t)⟩ = δ(x − x′)δ(y − y′)δ(t − t′). We approximated the spacial deriva-
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tive by the finite difference method to obtain

d

dt
ρi,j(t) = Aρi,j − ρ2i,j +△ρi,j +

1

∆x

√
ρi,jηi,j(t) (3.19)

where ρi,j(t) := ρ(i∆x, j∆x, t), △ρi,j(t) :=
1

(∆x)2

[(∑
k=−1,1
l=−1,1

ρi+k,j+l(t)

)
− 4ρi,j(t)

]
and ηi,j(t)

is a white Gaussian noise satisfying ⟨ηi,j(t)⟩ = 0, ⟨ηi′,j′(t′)ηi,j(t)⟩ = δi′,iδj′,jδ(t
′ − t). The pref-

actor 1
∆x

in the last term is placed so that the stochastic term is stochastically the same as the

spatially averaged noise term of the continuous version 1
(∆x)2

∫ x+∆x

x
dx′ ∫ y+∆x

y
dy′η(x′, y′, t).

Regarding the time discretization, it is known that the näıve Euler-type time discretization

with approximating the noise term by a Gaussian random variable Ni,j(t) with the zero mean

and the unit variance as

ρi,j(t+∆t) = ρi,j(t) +
[
Aρi,j − ρ2i,j +△ρi,j

]
∆t+

(∆t)1/2

∆x

√
ρi,jNi,j(t), (3.20)

is not appropriate, since there is a finite probability of breaking the non-negativity condition

ρ(x, y, t) ≥ 0 that is a crucial property for the solution of the DP Langevin equation. To

avoid this problem, we used a scheme proposed in Ref. [148] which is the operator splitting

method [149] that splits the terms into groups each of which can be exactly treated and

integrate the terms group by group. The steps of the algorithm for a single timestep ∆t are

conducted as follows:

1. In Eq. (3.19), we first integrate the terms Aρi,j +△ρi,j +
1
∆x

√
ρi,jηi,j(t) by integrating

the stochastic differential equation (SDE)

d

dt
ρ(t) = βρ+ αi,j +

1

∆x

√
ρηi,j(t) (3.21)

with the initial condition ρ(0) = ρi,j(t) for the timestep ∆t, where αi,j :=

(∆x)−2
∑

k=−1,1
l=−1,1

ρi+k,j+l(t) is treated as a constant and β := A − 4
(∆x)2

. This step

is conducted by using the exact solution for the Fokker-Plank equation of the SDE

(3.21), which leads to the expression for ρ∗ := ρ(∆t) [148],

ρ∗ = Gamma [µ+ 1 + Poisson [λωρ(0)]] /λ (3.22)

where Gamma [z] is a random variable following the gamma distribution with the shape

parameter z and the scale parameter 1, Poisson [w] is a random variable following the

Poisson distribution with the mean w, µ := −1+2αi,j(∆x)2, λ := 2β(∆x)2

ω−1
and ω := eβt.

2. We then integrate the remaining part −ρ2i,j for the timestep ∆t by solving dtρ(t) = −ρ2

with the initial condition ρ(0) = ρ∗ to obtain

ρi,j(t+∆t) = ρ(∆t) =
ρ∗

1 + ρ∗∆t
. (3.23)
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It has been shown that this algorithm preserves the non-negativity of the solution, and that

the result of this algorithm converges to the solution of the original SDE as the timestep ∆t

is sent to 0 with the error in the order of O(∆t) [148, 150].

3.2.2 Numerical setup and parameters

Quench simulation

In order to confirm the basic properties of the DP critical phenomena and estimate the

system-dependent geometric factors, we first conducted the quench simulation [120, 121], in

which the system evolved from the initial state such that the value of ρ(x, y, 0) was uniformly

set to a constant 1. The system size was set to 8192 × 8192 with the periodic boundary

condition (PBC), and the ∆x and ∆t was varied as described later in Sec. 3.3.1. at least 10

independent simulations were conducted for each set of parameter values.

Interface growth simulation

We then simulated the Langevin equation with the active boundary condition with the ge-

ometry illustrated in Fig. 3.4(a). The length of the interface Lx is set to ≥ 217 (in most of the

cases, 218) so that it is sufficiently larger than the correlation lengths in the sense of the DP

and KPZ classes. The PBC was imposed with respect to x. For each simulation, ρ(x, y, t)

of the sites except those at the boundary was initially set to 0, and the growth of the active

phase from the boundary was simulated. Ly is determined so that the value of ρ at sites

y = Ly are always zero in order to avoid the effect from the boundary. The value of ρ at the

boundary y = 0 is always set to a fixed value ρbo, which was varied as described in Sec. 3.4.

4 independent simulations were conducted for each set of parameter values.

Since y such that ρ(y, t) > 0 is proved to be finite almost surely for the one-dimensional

DP Langevin equation [151] for a class of initial conditions, we assumed that the region

ρ(x, y, t) > 0 is bounded with respective to y also in the two-dimensional cases, and defined

the height of the interface h(x, t) as

h(x, t) := arg max
y

[ρ(x, y, t) > 0] (3.24)

where arg max
y

f(y) means the value of y such that f(y) takes the maximum value 3. The

configurations of the active sites satisfying ρ(x, y, t) > 0 and the shape of the interfaces are

exemplified in Fig. 3.4(b).

3Defining the interface by thresholding with a non-zero value of ρ did not alter our results significantly,
while the systematic investigation is ongoing.
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Figure 3.4: (a) The configuration for the simulation. The DP Langevin equation
is simulated in a lattice of the size Lx×Ly. The value of ρ(x, y, t) is always set to
ρbo at y = 0 (active boundary condition). The interface height h(x, t) is defined
as the maximum distance between the boundary and the site (x, y) satisfying
ρ(x, y, t) > 0. (b) Snapshots of the interfaces (red lines) and the configuration
of the active sites satisfying ρ(x, y, t) > 0 (black patches) plotted together. The
value of ϵ and the time t is denoted above the images, respectively.

3.3 Quench simulation and validation of basic proper-

ties

In this section, we describe the results for the quench simulation conducted in order to

estimate the basic properties such as the transition point, the correlation time and correlation

length.

3.3.1 Estimation of transition point

Figure 3.5(a) shows the mean value of rho ⟨ρ(x, y, t)⟩ in the quench simulation for various

values of A with ∆t = 0.25, ∆x = 3. In agreement with the knowledge of the DP-class

transitions [120, 121], there is a critical value Ac of A (red curve) above which ⟨ρ(x, y, t)⟩
converges to a constant value and below which it decreases superalgebraically. The slope

at A = Ac was consistent with the prediction by the DP scaling ansatz, ∼ t−αDP where

αDP := βDP/ν∥ [120, 121].

The precise value of Ac was estimated by plotting tαDP ⟨ρ(x, y, t)⟩ against the time and

finding the value of A such that the curve becomes parallel to the horizontal axis [Fig. 3.5(b)].

We found

Ac = 0.18136(1). (3.25)
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By rescaling the density ⟨ρ(x, y, t)⟩ and the time t according to the DP scaling ansatz as

|ϵ|−βDP ⟨ρ(x, y, t)⟩ and |ϵ|ν∥ t, respectively, all the curves were collapsed onto the scaling func-

tions [Fig. 3.5(c)] confirming that the DP scaling ansatz is valid for this simulation.

It should be remarked that one needs to be careful about the fact that the value of Ac

depends on the choice of ∆t and ∆x as shown in Fig. 3.6. While the dependence on ∆t was

rather small and in the order of O(∆t) consistently with the results shown in [148, 150], we

found rather large (≈ 50%) change of the value of Ac with respect to ∆x as we varied ∆x

form 1 to 4. In this study, since we are interested in the universal feature generally applicable

for a model in the DP class, we just used ∆t = 0.25 and ∆x = 3 with remarking that it might

be necessary to use finer spatial lattice if one is interested in the behavior in the continuous

limit.

3.3.2 Estimation of non-universal parameters for directed perco-

lation Langevin equation

For the sake of writing our results as a nondimensional scaling functions (3.6) that is expected

to be universal for systems in the DP class, we further defined and estimated the metric

factors for the density, correlation length and correlation time from the result of the quench

simulations.

We first defined the metric factor for the density ρ0 so that the steady-state density ρss
above the critical point satisfies ρss ≃ ρ0ϵ

βDP . We plotted ϵ−βDP ⟨ρ(x, t)⟩ for the data with

sufficiently large ϵν∥t and empirically found the line regression

ϵ−βDP ⟨ρ(x, t)⟩ ≃ ρ0 + ρ1ϵ (ϵν∥t ≫ 1) (3.26)

ρ0 = 0.168(1), ρ1 = 0.17(3) (3.27)

well describes the data within the uncertainty [Fig. 3.7(a)]. Hereafter we define ρss(ϵ) :=

ϵβDP (ρ0 + ρ1ϵ)

Also, the metric factors t0 and x0 for the timescale and the length scale was defined so

that the correlation time ξ∥(ϵ) := t0 |ϵ|ν∥ and the correlation length ξ⊥(ϵ) := x0 |ϵ|ν⊥ satisfies

⟨ρ(x, t)⟩ ∼ exp

(
− t

ξ∥(ϵ)

)
(ϵ < 0, |ϵ|ν∥ t ≫ 1) (3.28)

Cov[ρ(x′, t), ρ(x, t)] ∼ exp

(
−|x′ − x|

ξ⊥(ϵ)

)
(ϵ > 0, |ϵ|ν∥ t ≫ 1). (3.29)

Our estimation led t0 = 6.97(8) and x0 = 1.5(2) [Fig. 3.7(b-d)]. We note that it is possible to

define the correlation length and the correlation time in other ways [120, 121], but the values

can be converted to each other by multiplying universal constants that we can estimate from

numerical simulation of a model in the DP class.
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Figure 3.5: The estimation of the transition point for the DP Langevin equation
by a quench simulation with ρ(x, 0) = 10. The values of A is indicated by the
color as color bar at the right of the plots. (a) The mean order parameter ⟨ρ(x, t)⟩
plotted with time. The red line is the values with the critical control parameter
A = Ac. the broken line is a guide for the eyes with the DP exponent ∝ t−αDP .
(b) The same data as (a), with the vertical axis rescaled by tαDP . The red line is
the values with the critical control parameter A = Ac and the blue lines are those
with |A− Ac| ≤ δA, where δA is the uncertainty of A. (c) The rescaled mean
order parameter |ϵ|−βDP ⟨ρ(x, t)⟩ plotted with the rescaled time |ϵ|ν∥ t. The curves
in (a) are rescaled onto a scaling function.



3.4. RESULTS AND ANALYSIS 63

0.0 0.1 0.2 0.3
∆t

0.0

0.1

0.2

0.3

0.4

0.5
A c

(a)
∆x = 1.00
∆x = 1.50
∆x = 2.00

∆x = 3.00
∆x = 4.00

0.0 0.5 1.0 1.5 2.0√
∆x

0.0

0.1

0.2

0.3

0.4

A c
(∆

t→
0)

(b)

Figure 3.6: The dependence of the transition point Ac on ∆t (a) and ∆x (b). (a)
The value of Ac plotted with ∆t with varied ∆x. The solid line is the result of
the line regression, the color of which is the same as the color for the fitted data.
(b) The value of the intercepts in the plot (a), Ac(∆t → 0) plotted with

√
∆x.

It was empirically found that the values of Ac can be fitted by a linear function
with respective to

√
∆x. The solid line is the result of the line regression.

3.4 Results and Analysis

In this section, we describe the results of the simulation investigating the growth of the active

phase from the active boundary (Sec. 3.2.2).

3.4.1 Qualitative observation and spanwise averaged density

The examples of the configuration of the sites satisfying ρ(x, y, t) > 0 and the associated

interface at time t = 105 are shown in Fig. 3.4(b). One can observe that the interface profile

at the same time t is quite different for different values of ϵ. The interface appears to be

rather continuous with a compact cluster behind it for the case where ϵ = 1.0× 10−1, whereas

many apparent discontinuities are observed for the smaller value of ϵ = 1.0× 10−4.

Considering the spanwise averaged density

ρ̄x(y, t) :=

⟨
1

Lx∆x

∫ Lx∆x

0

ρ(x, y, t)dx

⟩
(3.30)

helps one to understand this change in the morphology. Figure 3.8 exemplifies the result of

the simulation with ρbo = 1. In the critical case ϵ = 0, the density profile approaches to a

power law. In the supercritical cases ϵ > 0, the density profile deviates from that for the

critical case at some timescale comparable to the correlation time ξ∥(ϵ), and make a plateau

whose density is close to ρss. The edge of the plateau proceeds with time analogously to the

traveling wave solution for the FKPP equation [Fig. 3.3(a)]. It is natural to expect that the

qualitative change of the interface shape is accompanied by this crossover. We will confirm

this statement later.
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Figure 3.7: Estimation of the characteristic scales of the order parameter, time
and length scales for the DP Langevin simulation. (a) The estimation of the
characteristic scale of the order parameter. The mean order parameter ⟨ρ(x, t)⟩
averaged for data points with t > t0, where t0 is varied as shown in the legend of the
plot. The solid line is the result of the line regression, where the color corresponds
to the color of the fitted data points. (b) The estimation of the characteristic
timescale. The rescaled mean order parameter |ϵ|−βDP ⟨ρ(x, t)⟩ is plotted against
the rescaled time |ϵ|ν∥ t for A < Ac (the lower branch of Fig. 3.5(c)), in the semi-
log scale. The black line is the result of the line regression. (c,d) The estimation
of the characteristic length scale. The two-point covariance ϵ−2βDPCDP

s (l, t) at
sufficiently long time ϵ−ν∥t > 10 is plotted against the rescaled length ϵν⊥l, in the
log-log scale (c) and semi-log scale (d). The black line in (d) is the result of the
line regression.
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Figure 3.8: The order parameter ρ(x, t), averaged in the spanwise direction. The
normalized control parameter ϵ and the correlation time ξ∥(ϵ) is indicated upon
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The behavior of the spanwise averaged density can be explained by the DP scaling ansatz.

From Eq. (3.6), one can expect that ρ̄x(y, t) is written in the scaling form [120, 121]

bβDP ˜̄ρx(y, t) = fρ̄x(b
−ν⊥ ỹ, b−ν∥ t̃; bϵ) (3.31)

where ˜̄ρx(y, t) := ρ̄x(y, t)/ρ0, ỹ = y/x0 and t̃ = t/t0, which leads

˜̄ρx(y, t) = ỹ−βDP/ν⊥fρ̄x(1, ỹ
zDP t̃; ỹ−1/ν⊥ϵ) (3.32)

by taking b = ỹ−1/ν⊥ , where zDP := ν∥/ν⊥. Substituting ϵ = 0 and t → ∞, we obtain the

asymptotic power law ˜̄ρx(y, t) ∼ ỹ−βDP/ν⊥ , which is consistent with our numerical observation.

Also, one can derive

˜̄ρx(y, t) = ϵβDPfρ̄x(y/ξ⊥(ϵ), t/ξ∥(ϵ); 1) (3.33)

by taking b = ϵ−1. This representation suggests that ξ∥(ϵ) is the characteristic timescale for

the crossover from the critical power law to the traveling wave. In the following sections, we

will see that this correlation time is indeed the characteristic timescale for the crossover of

the interface fluctuation qualitatively observed in the beginning of this section.
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3.4.2 Height cumulants

In order to elucidate the nature of the height distribution, we plotted the cumulants of the

height
⟨
h(x, t)k

⟩
c
for k = 1, . . . , 4 (Fig. 3.9) for the cases where ρbo = 0.1, 1 and 10. The

data with different ρbo overlaps for large t, implying that the value of ρbo is not relevant in

the long-time limit 4. Two characteristic slopes were observed in the plot. One of which is

consistent with a power law characterized by the DP exponents ∼ tk/zDP and the other is

consistent with the exponents for the KPZ scaling laws (∼ tkβ = tk/3 for k ≥ 2, ∼ t for k = 1

due to the linear growth). By rescaling the height and the time by the correlation length and

the correlation time for the DP class as

hξ := h(x, t)/ξ⊥(ϵ), tξ := t/ξ∥(ϵ), (3.34)

all the data for each k were collapsed onto a single curve whose slope amplitude crossovers

from the DP exponents to the KPZ exponents (Fig. 3.10).

The following scaling arguments can explain these results. With the scaling ansatz (3.6),

let us assume that the height of the interface h(x, t) is written in the scaling form of

b−ν⊥h̃(x, t) = fh(b
−ν⊥x̃, b−ν∥ t̃; bϵ), (3.35)

where h̃(x, t) := h(x, t)/x0, t̃ := t/t0 and x̃ := x/x0. Then, setting b = ϵ−1, one obtains

hξ(x, t) = fh(x/ξ⊥(ϵ), t/ξ∥(ϵ); 1) =: f ′
h(x/ξ⊥(ϵ), t/ξ∥(ϵ)), (3.36)

which leads to ⟨
hξ(x, t)

k
⟩
c
=
⟨
f ′
h(x/ξ⊥(ϵ), t/ξ∥(ϵ))

k
⟩
c
=: gk(tξ), (3.37)

consistently with the scaling collapse in Fig. 3.10. Our numerical results further suggest that

hξ(x, t) follows the KPZ scaling laws for t > ξ∥(ϵ). Also, the short-time behavior can be

explained by setting b = t̃1/ν∥ in (3.35), which yields

hξ(x, t) = t
1/zDP

ξ fh(t
1/zDP

ξ xξ, 1; t
1/ν∥
ξ ) =: t

1/zDP

ξ f ′′
h (t

1/zDP

ξ xξ, t
1/ν∥
ξ ) (3.38)

and ⟨
hξ(x, t)

k
⟩
c
= t

1/zDP

ξ

⟨
f ′′
h (t

k/zDP

ξ xξ, t
1/ν∥
ξ )k

⟩
c
=: t

k/zDP

ξ g′k(tξ), (3.39)

suggesting
⟨
h(x, t)k

⟩
c
∼ tk/zDP in the case of tξ ≪ 1, assuming limtξ→0 g

′
k(tξ) = const. ̸= 0.

The crossover from the DP regime to the KPZ regime is accompanied by the change of the

shape of the height distribution. In the left panels of Fig. 3.11, the skewness Sk[h(x, t)] and

4We note that the effect of the boundary condition (e.g. the density ρbo at the boundary) might be
systematically treated by the scaling argument considering ρbo itself in the scaling function [120, 121].
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threshold ρth = 0 and the boundary values of ρbo = 0.1 (diamond) 1 (circle) and
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k = 1 due to the linear growth], respectively.



68 CHAPTER 3. RELATIONSHIP BETWEEN DP AND KPZ CLASSES

10−5 10−3 10−1 101 103
tξ

10−2

10−1

100

101

102

103

〈h
ξ
〉

t1/zDPξ

tξ

ε = 1× 10−1
ε = 5× 10−2
ε = 2× 10−2
ε = 1× 10−2
ε = 5× 10−3
ε = 2× 10−3

ε = 1× 10−3
ε = 5× 10−4
ε = 2× 10−4
ε = 1× 10−4
ε = 5× 10−5

10−5 10−3 10−1 101 103
tξ

10−5

10−4

10−3

10−2

10−1

100

101

102

〈h
2 ξ
〉 c

t2/zDPξ

t2/3ξ

10−5 10−3 10−1 101 103
tξ

10−6

10−4

10−2

100

102

〈h
3 ξ
〉 c

t3/zDPξ

tξ

10−5 10−3 10−1 101 103
tξ

10−8
10−6
10−4
10−2
100
102
104

〈h
4 ξ
〉 c

t4/zDPξ

t4/3ξ

Figure 3.10: The cumulants of the rescaled height
⟨
hξ(x, t)

k
⟩
c

=⟨
h(x, t)k

⟩
c
/ξ⊥(ϵ)

k plotted against the rescaled time tξ = t/ξ∥(ϵ) for k = 1, . . . , 4.
The values of ρth and ρbo are the same as those in Fig. 3.9, but only data with
t > 5× 103 are plotted for the sake of visualization. The black broken and solid
lines are guides for the eyes with the DP dynamic exponent k/zDP and the KPZ
exponents [kβ = k/3 for k > 1, 1 for k = 1 due to the linear growth], respectively.



3.4. RESULTS AND ANALYSIS 69

10−4 10−2 100 102
tξ

−0.6
−0.4
−0.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sk
[ h
]

ε = 1× 10−1
ε = 5× 10−2
ε = 2× 10−2
ε = 1× 10−2
ε = 5× 10−3
ε = 2× 10−3
ε = 1× 10−3
ε = 5× 10−4
ε = 2× 10−4
ε = 1× 10−4
ε = 5× 10−5

10−2 100 102
tξ

−0.6
−0.4
−0.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ku
[ h
]
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the kurtosis Ku[h(x, t)] are plotted against the rescaled time tξ. It is clearly observed that

the values of the skewness and the kurtosis approach to the values of the exact solution of the

KPZ class, the GOE-TW distribution (χ1, Sec. 2.1.1), consistently with the scaling exponents.

Also, although the data points are rather scattered, the values appear to take constant values

in the DP regime tξ ≪ 1, implying the existence of a universal height distribution in the limit

of tξ → 0.

3.4.3 Universal relationship between non-universal parameters

Finally, we remark the relationship between the non-universal parameters for the KPZ in-

terface growth and the those for the DP transition. The scaling form (3.35) suggests that

when the length scales and timescales are respectively rescaled by the correlation length and

the correlation time, the statistical properties of the interface are invariant with respect to

the change of the ϵ. Thus, by dimensional analysis, we can naturally expect that the non-

universal parameters in terms of the KPZ class, the asymptotic velocity v∞, the fluctuation

amplitude Γ and the amplitude of the stationary Brownian motion A [See Eq. (2.5)] depends

on the correlation length ξ⊥(ϵ) and the correlation time ξ∥(ϵ) of the DP class as

v∞ = γv
ξ∥(ϵ)

ξ⊥(ϵ)
, Γ = γΓ

ξ⊥(ϵ)
3

ξ∥(ϵ)
, A = γAξ⊥(ϵ) (3.40)

where γv, γΓ and γA are constants that are universal if one fixes the definition of the metric

factors. The relationship suggests the power laws for the non universal parameters

v∞ ∼ ϵν⊥−ν∥ , Γ ∼ ϵν∥−3ν⊥ , A ∼ ϵ−ν⊥ . (3.41)

This relationship further suggests that one can predict the statistical properties of the

interfaces of the active phase, only by estimating the correlation length and the correlation

time by, for example, the quench experiment or simulation. This observation also suggests

that the properties of the critical fluctuation in the bulk might be inferred from the evolution

of the interface fluctuation.

3.5 Summary and discussions

In this chapter, we investigated the growth of active phase from an active boundary in 2-D

DP Langevin equation. The interface of the active phase was simply defined as the set of

active sites mostly distant from the active boundary.

We found that the statistical properties of the fluctuation of the interface show a crossover

from the DP regime (t/ξ∥(ϵ) ≪ 1) where both of the mean height and the amplitude of

the fluctuation is characterized by the DP dynamic correlation length ∼ t1/zDP to the KPZ

regime (t/ξ∥(ϵ) ≫ 1) where the mean height grows linearly ∼ t and the fluctuation amplitude

follows the (1+1)-D KPZ-class scaling ∼ t1/3. The skewness and the kurtosis of the height
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distribution were consistent with those of the GOE-TW distribution, the exact solution for the

flat KPZ interfaces in the KPZ regime. On the other hand, they seemed to take the different

constant values in the DP regime t/ξ∥(ϵ) ≪ 1, suggesting the existence of another universal

distribution which appears in the DP regime. With the scaling relation, we conjectured the

universal relationship between the non-universal parameters of the DP and KPZ classes.

Finally, we discuss future perspectives. Since we focused solely on the DP Langevin

equation, the universality of the scaling form of the interface height hξ(xξ, tξ) is one subject

that we need to confirm. The found that results obtained from simulations of the bond

percolation model [120, 121], at least qualitatively, consistent with the phenomena observed

in the DP Langevin equation [152]. The quantitative comparison with estimating the metric

factors x0 and t0 is desirable.

It would be also interesting to ask about the generality of the KPZ fluctuation for other

absorbing phase transition in the regime t/ξ∥(ϵ) ≫ 1. Numerical simulation of the biased

voter model, a model which belongs to the CDP universality class [120, 121] suggests the

existence of the similar scaling functions of the height cumulants with the KPZ-class scaling in

the regime t/ξ∥(ϵ) ≫ 1 [153] (where ξ∥(ϵ) is the correlation time for the CDP class), implying

that those properties are generally found for absorbing phase transitions with short-ranged

dynamical rules.

Considering application to the experimental systems such as the laminar-turbulent tran-

sition in channel flow [128], It is of crucial importance to investigate the effect of the ad-

vection [154, 155], which can significantly affect of the growth of the active phase [154].

Also, a future study investigating other initial conditions such as the half-active condition

ρ(x, y, t) = ρinit(y > 0), 0(y < 0) would be instructive to capture the phenomenology of the

interface growth.





Chapter 4

Conclusion and outlook

Throughout this dissertation, the author aimed to elucidate mutual relationships between

different universal fluctuations in nonequilibrium systems to extend our knowledge on the

universality emerging from scale invariance. Particularly, we experimentally and numerically

studied universal scale-invariant fluctuations which appear in growing interfaces, with special

attention to the (1+1)-D KPZ universality class. In Chapter 2 and Chapter 3, I presented ex-

perimental and numerical results that generalizes our understanding of universal fluctuations

of the KPZ class in the scaling limit. In the following, I briefly summarize the conclusion for

each chapter, and discuss the significance, generality and long-term future perspectives.

Chapter 2: Generalization of flat and circular KPZ subclasses

In Chapter 2, we focused on the geometry dependence of the universal fluctuation of the

(1 + 1)-D KPZ class. To investigate the fluctuation of the KPZ class with general initial

conditions experimentally, I constructed the experimental setup with which we can study the

growing interface of the DSM2 in the LC electroconvection with arbitrary-designed initial

conditions. Experimentally with this setup and numerically by the simulation of the off-

lattice Eden model, I investigated the growth of the KPZ interfaces with the ring-shaped

initial conditions, which naturally generalizes the special cases of the circular and the flat

interfaces.

We found that the rescaled timescale τ := v∞t/R0 governs the height distribution and the

spatial correlation. For both of the ingrowing and outgrowing cases, the interfaces showed

the statistical properties of the flat interfaces with τ ≪ 1. On the other hand, the departure

from the flat subclass was observed for τ ∼ 1; The statistical properties of the outgrowing

interfaces approached those of the circular interfaces in the limit of τ → ∞, whereas those of

the ingrowing interfaces seemingly diverged with no sign of the circular subclass. We found

that the theory derived from the variational formula reasonably explains our observations,

and predicts the same statistical properties generally for curved initial conditions.

Notably, to our knowledge, this study is the first experimental illustration that the vari-

ational formula was utilized to understand the KPZ-class fluctuation beyond the standard

73
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flat, circular and stationary subclasses. Our study suggest that it provides us a novel way to

interconnect the theory and experiments of the KPZ interfaces. For example, we expect that

it is also possible to conjecture a variational representation of the height distribution from

the experimental or numerical observations. It may be also intriguing to ask whether the sim-

ilar formulation for geometry-dependent fluctuation exists for other universality classes for

nonequilibrium systems. In this direction, it may be essential to consider the generalization

of the variational formula for the KPZ class, which relies on the linearity of the stochastic

heat equation, a spatial property of the KPZ equation.

Chapter 3: Crossover to KPZ fluctuation in DP active phase growth

In Chapter 3, we studied the interface of the active phase for the (2 + 1)-D DP transition,

growing from the active wall into the inactive phase. We found that the interface fluctuation

shows the crossover connecting the regime characterized by the exponents associated with

the DP class and the regime with the (1 + 1)-D KPZ-class fluctuation. The scaling collapse

of the data suggests the universality of the height fluctuation generally for the systems in

the DP class. The height distribution showed crossover connecting that in the DP regime,

which is yet to be fully characterized, toward that for the KPZ flat interfaces, the GOE-TW

distribution.

Our results suggest an intuitive picture that the correlation time and the correlation

length acts as the “building block” of in the sense of the KPZ interface. In other words,

there seems to be a hierarchical structure of the universal fluctuation, where the large-scale

scale invariant fluctuation (the KPZ class) is built by units whose typical length scale (and

the timescale) is the correlation length (and the correlation time) in the for the original phase

transition (DP class). It may be interesting to consider how one can theoretically understand

this situation by coarse-graining the original microscopic model or the Langevin equation to

extract the interface fluctuation we observed.

Overall, I hope the studies presented in this dissertation will be an inspiration to extend our

knowledge toward more general understanding of scale-invariance-associated universality in

nonequilibrium systems.
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