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Abstract

Optical physics is a study of light-matter interaction. In the past decades,

controlling electric and magnetic properties of matter by laser beams has

been actively explored in the broad region of condensed-matter physics,

including spintronics and magneto-optics, supported by the development

of laser technologies. In this thesis, we discuss how optical physics and the

emerging field of ultrafast magnetism can be even more promising with

the help of the new types of lights, topological lightwaves, which possess

topologically nontrivial spatial profiles.

We take optical vortices, lightwaves carrying non-vanishing orbital an-

gular momentum, and cylindrical vector beams, lasers with unconventional

vortical polarization profiles, and theoretically discuss how they could be

useful for optical physics. We demonstrate that (i) optical vortices can

propel ultrafast magnetism through their orbital angular momentum and

the peculiar spatial profile, (ii) the unique focusing property and spatial

profile of cylindrical vector beams enable us to see and control matters in a

way difficult or totally impossible before, thus having substantial impacts

on condensed-matter physics and chemistry/biology.

We establish a connection between singular optics, a study of topo-

logical lightwaves, and optical physics. The new research field of singular

light optics will extend our ability to study and control electromagnetic

properties of matters.
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Chapter 1

Introduction

In this Introduction, we present the background of our study. We review

the two growing fields: optical physics and singular (or structured light)

optics. We first look back on the rapid advances of the laser technolo-

gies in the past decades such as the realization of ultrashort laser pulses

and strong terahertz (THz) light sources. We then discuss how they have

contributed to deepening our understanding of static and dynamical prop-

erties of matter. We review the developing field of the laser manipulation

of magnetism, namely ultrafast magnetism and why it is important both

from scientific and industrial viewpoints. We then introduce the notion of

the topological lightwaves which plays the central role in our study. We

explain the basic properties of those lasers comparing with those of conven-

tional Gaussian lasers and discuss how they could be potentially exploited

for optical physics.
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1.1. ULTRAFAST PHYSICS WITH LASERS

1.1 Ultrafast physics with lasers

In this section, we review the recent developments of experimental and

theoretical optical physics, in particular, in the growing field of ultrafast

magnetism; a study of laser-driven magnets.

1.1.1 Lasers in modern physics

The history of the laser goes back to the study of A. Einstein in 1917 [1]

on the quantum theory of radiation and stimulated emission. Using the

stimulated emission, we can coherently amplify the incident lightwave and

turn it into lasers. Today, lasers have become indispensable tools in modern

society, and those in the wide range of frequencies (from infrared to X-ray)

are utilized for various purposes, such as sensors, information processing,

ablation, welding, structural analyses, surgeries, and so on.

Lasers also keep their unique position in scientific researches. Us-

ing lasers, we can characterize the structural and electrical properties of

molecules and solids accurately. The obtained knowledge has been the

baseline of modern physics, chemistry, and life-science. In physics, our

knowledge of the atomic and molecular energy structures allows us to con-

trol the properties of atoms and molecules in the single particle level [2, 3].

The laser-trapped gases or ions nowadays offer unique playgrounds to build

quantum simulators, with which we could study the physics of strongly cor-

related many-body systems [4], the origin of thermodynamics [5], and even

black-holes [6].

Lasers are becoming even more important due to the rapid develop-

ments of the laser-related technologies in the past decades. The new lights

shine new lights on nature, and the realization of intense, ultra-short light

pulses [7] now allows us to measure the light-atom (light-matter) interac-

tions in a way impossible before. The electric-field intensity of lasers now

exceeds the intra-molecular field and the pulse width reaches to the order

of ten attoseconds. The former results in the strong ionization of molecules

and results in new ultrafast phenomena like Coulomb explosion of highly-

excited molecules [8]. The attosecond temporal resolution shines a light on

the intra-molecular dynamics of electrons [9, 10]1.

In the context of condensed-matter physics, the development of the in-

tense THz lasers is also important [11, 12]. Since THz is at the energy

scale of various collective physics in solid-state materials, such as phonons,

1The period of the electron circulation around the nucleus in the Bohr model is of
the order of 100 attoseconds.
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1.1. ULTRAFAST PHYSICS WITH LASERS

magnons, and superconductivity, THz lasers gather attention in the con-

text of materials manipulations. Indeed, various interesting experiments

like the ultrafast THz control of antiferromagnetism [13, 14, 15, 16] and

the THz resonant excitation of Higgs modes in superconductors were re-

ported [17, 18]. The intense ultra-short pulses are again important for

the developments as they provide a way of generating intense THz pulses

through nonlinear optical effects.

Those experimental developments casted questions on the properties of

highly nonequilibrium states of matters which go beyond the applicability

of conventional linear-response treatments [19]. Since the faithful treat-

ment of the time-evolution of many-body systems is possible only for lim-

ited cases such as classical spins only with short-ranged interactions, new

theoretical frameworks have been desired. Examples of such frameworks

include the Floquet-theory for periodically driven systems [20, 21, 22] and

time-dependent density-matrix renormalization-group (tDMRG) [23]. In

particular, the approaches based on the Floquet theory have been succeed-

ing in describing the driven system quite well. In the past few years, a

new phase of matter called the Floquet topological phase [24, 25] has been

established.

1.1.2 Ultrafast magnetism

Among various subjects in optical physics, in this thesis, we mainly focus on

the interplay of lightwaves and magnetic properties of solid-state materials.

Here we explain why magnetism and its optical control is a vital subject.

The study of interactions between magnetic materials and lightwaves

has a long history. Various magneto-optical phenomena, such as opti-

cal Kerr effect, Faraday effect, and the Cotton-Mouton effect, have been

known and utilized for materials characterizations [26]. Nevertheless, the

primary usage of lasers in condensed-matter physics before 90’ was for

spectroscopies of electronic properties of matter.

The change in the paradigm of optical physics was brought about by

the paper “Ultrafast Spin Dynamics in Ferromagnetic Nickel” [27]. In their

epoch-making experiment in 1996, Beaurepaire et al. demonstrated the

ultrafast demagnetization of ferromagnetic nickel. The possibility of con-

trolling and observing dynamical properties of magnets using laser pulses

turned the eyes of condensed-matter physicists to rich physics of light-

matter interactions, in particular, to light-magnet interactions.

The study of light-magnet interactions, namely ultrafast magnetism [28]

(or ultrafast spintronics) is getting important from the industrial and envi-
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1.1. ULTRAFAST PHYSICS WITH LASERS

ronmental viewpoints. The modern semiconductor-based information pro-

cessing consumes a vast amount of energy. For example, the dynamic

random-access memory (DRAM) is a major source of the consumption

because DRAMs are essentially an array of capacitors, and they require

continual refreshing of the electric charge to avoid errors.

A possible improvement in the energy consumption will be achieved by

replacing DRAMs by non-volatile memories which can keep the recorded

information without energy-consuming operations like refreshing. This

is precisely what the spintronics is pursuing. Using magnetic materi-

als for information storage is advantageous in its non-volatility and the

high-recording density. The developing magnetic random-access memory

(MRAM) utilizes the non-volatile nature of a spin texture in magnets to

suppress the energy consumption.

Regarding their operating speed, however, MRAMs today do not com-

pete with DRAMs. The ultrafast magnetization dynamics indued with

laser beams could be the key to overcome this problem. Writing and read-

ing of magnetically encoded information using lasers would be a strong

candidate of the replacement of semiconductor-based memories. Stimu-

lated by Beaurepaire et al. [27] there appeared a number of researches on

the all-optical switching of magnetic orders, namely the magnetization re-

versal induced with laser pulses [29, 30, 31]. Although the background

mechanism of the ultrafast change of magnetizations under laser pulses is

still under debate, the phenomenon itself has been well established, and

the study of the laser-based magnetic memory is ongoing.

Studies of light-matter interaction in the past decades also revealed the

other rich physics of laser-driven magnets. In addition to the traditional

semiclassical transport theories, nowadays the Floquet theory of driven

matters [20, 21, 22] offers a powerful way of theoretically studying the

laser-driven matters. The fruits of the recent theoretical works like laser-

induced magnetization [32, 33] and optically induced spin currents [34, 35,

36] provide milestones of ultrafast magnetism.

The importance of intense THz lasers is worth mentioning again. Firstly,

from the viewpoint of the Floquet theory (which is essentially a high-

frequency expansion), they are the most natural frequency to work with.

Secondly, they expand the range of ultrafast magnetism to novel targets like

multiferroics magnets [36, 37, 38, 39] and antiferromagnets [13, 14, 15, 16].

Because these materials often have their characteristic energy scale in the

(sub-) THz region, intense THz lasers and coherent control of these mag-

nets with them are propelling the discovery of new optical phenomena.
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1.1. ULTRAFAST PHYSICS WITH LASERS

1.1.3 A new direction of optical physics

As we have seen, optical physics, particularly ultrafast magnetism, in the

past decades has been supported by the intense ultra-short pulse lasers.

What comes in the next ten or twenty years? A possible research direction

is to apply established methods to new materials while keeping the light

sources improved. Ultrafast magnetism has been, so far, mostly focused on

ferromagnetic materials, but we could extend that to antiferromagnets, fer-

rimagnets, or other exotic magnetic materials. There would also be plenty

rooms for topological things to play roles. Optical control of topological

insulators [24], topological superconductors [40], and spin liquids [41] may

lead to novel applications.

This naive approach seems to be reasonable and would indeed work.

However, if we recall that all the past developments were brought about

by new light sources in the first place, it would be natural to pay more

attention to lasers themselves. Unfortunately, today we encounter a large

separation between optics and optical physics, presumably because of the

“too much” success in optical physics made with conventional laser tech-

niques. In the past twenty years, researches in optics realized a variety

of novel lightwaves. However, optical physics community has been happy

with conventional lasers and those “structured” lasers have been virtually

ignored by the community. In this thesis, we would like to build a miss-

ing bridge between optical physics and optics of such novel lasers, pushing

optical physics foward. In particular, we consider so-called topological

lightwaves and discuss how their unique properties provide novel tools for

optical physics.
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1.2. TOPOLOGICAL LIGHTWAVES

1.2 Topological lightwaves

In the previous section, we reviewed the developments in optical physics,

especially ultrafast magnetism. In this section, we introduce the notion of

topological lightwaves, which play the central role in this thesis. In the first

subsection, we introduce the notion of optical vortex, a lightwave carrying

orbital angular momentum. In the second subsection, we review cylindrical

vector beam, a laser with vortical polarization.

1.2.1 Optical vortices

An optical vortex (OV) is a structured lightwave characterized by its topo-

logically nontrivial phase profile. OVs have spiral-shaped phase struc-

ture [42] originating from their non-vanishing orbital angular momentum

(OAM). In this subsection, we give a brief review of OVs: their profiles,

mathematical descriptions, the way of their generation, and some applica-

tions.

The study of OVs was initiated by the paper “Orbital angular momen-

tum of light and the transformation of Laguerre-Gaussian laser modes” by

Allen et al. in 1992 published in Physical Review A [43]. There, the light

carrying orbital, not spin, angular momentum was established [44, 45].

OVs are quite often confused with circularly polarized lasers, but these

two are different since the angular momentum carried by circularly po-

larized lasers has its origin in the photon’s spin angular momentum. An

intuitive description of the OAM of OVs is that it refers to the circulating

motion of photons around their propagation axis (below we take that in

the z direction).

When electromagnetic fields of a laser have an azimuthal angular de-

pendence of the form exp(imϕ), such a laser becomes an eigenstate of the

angular momentum operator Lz = −ih̄∂/∂ϕ with the angular momentum

h̄m. This twist in the phase structure of the propagating beams charac-

terizes the OVs. The twisted phase structure forces the beams to have

a topological singularity along the propagation axis, a line with vanishing

beam intensity2. As a result, the spatial profile of the (time-averaged)

intensity of OVs becomes ring-shaped.

Let us give a mathematical description of OVs, or the Laguerre-Gaussian

(LG) modes, to make contrast with conventional Gaussian beams better.

The derivation is simple. The LG modes are derived from the Maxwell

2This is similar to the atomic wave function of p, d, f , ... orbitals or the cores of
vortices in liquids. Without the singularity, the electromagnetic fields are not single-
valued at the center.
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1.2. TOPOLOGICAL LIGHTWAVES

equations in a vacuum. If we assume electromagnetic waves with fixed

frequency ω, their propagation in a vacuum is governed by the following

wave equations directly derived from the Maxwell equations:(
∆+

ω2

c2

)
E = 0, (1.1)(

∆+
ω2

c2

)
B = 0, (1.2)

where ∆ is the three-dimensional Laplacian and c is the speed of light

in a vacuum. These equations are equivalent to Helmholz-type differential

equations. Since the wave equation for the electric fieldE and the magnetic

fieldB takes the same form in a vacuum, below we focus on the electric field

part. In the cylindrical coordinate (ρ, ϕ, z), where ρ is the radial coordinate,

ϕ the azimuthal angle, and z the coordinate along the cylindrical axis, the

three-dimensional Laplacian is written as ∆ = ∂2

∂ρ2
+ 1

ρ
∂
∂ρ

+ 1
ρ2

∂2

∂ϕ2 +
∂2

∂z2
.

We define the homogeneous polarization vector ê and write the electric

field in the form E = êψ(r). Using the wave vector k = ω/c, we write

the scalar part of the electric field as ψ(r) = u(r)eikz. Then, the wave

equation Eq. (1.2) reduces to(
∆T + 2ik

∂

∂z
+

∂2

∂z2

)
u(r) = 0, (1.3)

where ∆T = ∂2

∂r2
+ 1

ρ
∂
∂ρ
+ 1

ρ2
∂2

∂ϕ2 is the transverse component of the Laplacian.

Let us employ the paraxial approximation to Eq. (1.3). We consider

the case in which the function u(r) is a slowly varying one along the z axis,

and thus the overall z dependence of the electric field E(r) is divided into

the fast part captured by eikz and the rest, slow part in u(r). Keeping this

assumption in mind, we impose |∂2u
∂z2

| ≪ |∂2u
∂x2 |, |∂

2u
∂y2

| and |∂2u
∂z2

| ≪ 2k|∂u
∂z
|.

Then we can drop the second-order derivative in Eq. (1.3) and have(
∆T + 2ik

∂

∂z

)
u(r) = 0. (1.4)

The LG modes, forming a complete set of solutions for Eq. (1.4), are given

12



1.2. TOPOLOGICAL LIGHTWAVES

by

uLG(r) =
1√

|w(z)|

(
ρ

w(z)

)|m|

L|m|
p

(
2ρ2

w(z)2

)
×e−

ikρ2z

z2+Z2 e−iχ(z)(|m|+2p+1)eimϕe
− ρ2

w(z)2 , (1.5)

where the integers p and m label the mode, and L
|m|
p is the associated

Laguerre polynomials. We note that by setting p = m = 0, Eq. (1.5) falls

into the usual Gaussian beam. The beam width w(z) = w
√
1 + |z|

Z
takes

its minimum w, called the beam waist, at z = 0. The Rayleigh range Z,

determined by the optical system, is the distance from the focal plane along

the propagation axis at which the cross-section of the beam becomes twice

the minimum value. The phase factor determined by χ(z) = tan−1
(
z
Z

)
is

called the Gouy phase. As we have already mentioned, the twisted phase

factor eimϕ in Eq. (1.5) yields OAM h̄m and the topological singularity

uLG(0, ϕ, z) = 0 at ρ = 0. We again emphasize that the OAM is a property

of u(r) or ψ(r) and nothing to do with the polarization vector ê.

In this thesis, we mostly consider two-dimensional (2D) systems and

only need the fields at the focal plane (z = 0). Then the LG modes are

simplified to be

uLG(ρ, ϕ, 0) =
1√
w

( ρ
w

)|m|
L|m|

p

(
2ρ2

w2

)
eimϕe−

ρ2

w2 . (1.6)

In addition to the topological singularity at ρ = 0, when the radial index

p is non-vanishing, the associated Laguerre polynomial bears p different

nodes along the radial coordinate. As a whole, the field intensity (averaged

over the temporal period) takes the form of (p + 1)-fold rings. In Fig. 1.1

we show the time-averaged intensity profiles of Gaussian beams and OVs.

The generation of OVs is simple and has been already established [42].

We can use artificial dislocations to induce the singularity in the propa-

gating beams and transforms them to OVs. Spiral phase plates are the

common way of realizing that and are commercially available. Holograms

are convenient as well for that purpose. In addition to them, today a num-

ber of different methods like synchrotrons [46] and metamaterials [47] are

known.

Applications of OVs are actively explored. We can transfer their OAM

to classical particle or excitons to induce rotational motion of them [48, 49]

or use their phase structure to realize super-resolution microscope [50] and

chiral laser ablation [51, 52, 53, 53] to name a few. The most important one

13



1.2. TOPOLOGICAL LIGHTWAVES

Figure 1.1: In-plane field intensity distribution averaged over the period
of the beam. (a) Gaussian beam (m = p = 0). (b) OVs with p = 0 and
m ̸= 0 (c) OV with p = 1 and m ̸= 0. The value of the OAM m is not
essential for the topology of the averaged intensity unless nonzero. The
radial index p determines the number of nodes of the associated Laguerre
polynomials, thus of the rings.

is the stimulated emission depletion (STED) microscope [50] which allows

us to observe objectives with resolution beyond the diffraction limit. Using

STED microscopes, we can now perform high-resolution and non-invasive

measurement of living cells. OVs are playing the central role in realizing

this groundbreaking technology and in 2014, three researchers, E. Betzig,

S. W. Hell, and W. E. Moerner won the Nobel Prize in chemistry for their

contributions to developing the STED microscope [54]. Recently, OVs are

also becoming important for the telecommunication. The OAM degrees of

freedom could be a new information carrier inside optical fibers [55]. Since

there is no upper limit in the OAM carried by OVs, using OVs for the

multimode information transfer could result in the drastic speedup of the

telecommunication in the future.

In the field of optics, as we saw above, OVs have been already a central

subject and studied intensively under the name of singular optics or struc-

tured light optics. However, applications of OVs in the context of optical

physics have been unexplored. One of our goals in this thesis is to develop

a field we may call singular optical physics. We are to find applica-

tions of OVs (more generically of topological lightwaves) in probing and

controlling microscopic degrees of freedom in solid-state systems.

Among various applications of OVs developed in optics, the work by

Toyoda et al. [53, 56] is particularly a stimulating one for us. In the work,

they apply OVs for the laser ablation of (laser engraving to) a metal. In

the laser ablation, an intense light pulse is shone on a surface of a target

to evaporate atoms and form a pattern. They found that the processing

14



1.2. TOPOLOGICAL LIGHTWAVES

with OVs leaves after three-dimensional structures, which they call chiral

nano-needles. The spiral phase structure of the incident OVs results in

the different strength of the ablation at each point, making the processed

surface to have such a unique profile (see Fig. 1.2).

Figure 1.2: Chiral nano-needles created by the laser ablation with OVs.
The left panels are for an OV with a total angular momentum of −2,
and the right ones are for that of +2. Note: the figure is taken from
Ref. [56] with a permission from ACS (the direct link to the article:
https://pubs.acs.org/doi/10.1021/nl301347j). Further reuse of this mate-
rial requires another permission from ACS.

Regarding the generation of the chiral nano-needle structures as “print-

ing” of the spatial profile (phase or intensity) of OVs to a physical system,

as a natural extension of that, we hit on the possibility of their micro-

scopic analogue, i.e. encoding of the spatial profile of OVs into solids by

using electronic or magnetic degrees of freedoms. This would be the main

content of the second chapter.
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1.2. TOPOLOGICAL LIGHTWAVES

1.2.2 Cylindrical vector beams

Next, we move onto another type of the topological lightwaves: cylindrical

vector beams (CVBs) [57]. Unlike OVs, CVBs do not carry orbital angular

momentum and the phase structure of CVBs is in that sense, topologically

trivial. However, CVBs are still topological in that they have “vortical”

polarizations.

There are two types of CVBs, namely radial and azimuthal CVBs. If

we denote the in-plane component of the polarization vector of CVBs as

ep, the former has er
p = ρ̂ = (cosϕ, sinϕ) and the latter does ea

p = ϕ̂ =

(− sinϕ, cosϕ). That is, the polarization vectors are coordinate dependent

(dependent on the azimuthal coordinate ϕ) and have a vortical profile.

These are in contrast to the Gaussian lasers and OVs as both of them have

spatially homogeneous polarization vectors. Nevertheless, as we will see

below, CVBs are mathematically described as a superposition of OVs (and

generated as such).

Let us take two circularly polarized OVs with OAMs = ±1. Aside from

the radial (scalar) part, their electric fields are written as

e1 = (x̂− iŷ)eiϕ, (1.7)

e−1 = (x̂+ iŷ)e−iϕ. (1.8)

By superimposing them, we can construct both the radial and azimuthal

polarizations as:

er
p =

1

2
ℜ (e1 + e−1) , (1.9)

ea
p =

1

2
ℜ (ie1 − ie−1) . (1.10)

By construction, these CVBs do not carry OAMs unlike OVs. Since CVBs

are characterized as their polarization profile, they can carry OAMs in

general. Namely, being OVs and CVBs are not exclusive. However, in

this thesis, to simplify the argument, we take into account either OAMs

or vortical polarization, and we only deal with the simplest radial and

azimuthal CVBs.

In Fig. 1.3, we compare the conventional Gaussian beam with topolog-

ical lightwaves (OVs and CVBs). The arrows in the figure correspond to

the in-plane electric field of these beams propagating perpendicularly to

the x-y plane. The field configuration of the Gaussian beam is simple [see

Fig. 1.3(a)]. The polarization is spatially homogeneous, and its amplitude

is the strongest at the center, having Gaussian tails. Figure 1.3(b) is of a
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1.2. TOPOLOGICAL LIGHTWAVES

linearly polarized OV with OAM of unity. The field direction is inhomoge-

neous owing to the spiral phase structure, and the field amplitude vanishes

at the center due to the topological singularity. The field configuration

of azimuthal and radial CVBs are shown in Fig. 1.3(c, d). There, we see

vanishing intensity as well as the radially anisotropic field configurations

due to the vortical polarization vectors.

Figure 1.3: Snapshots of the in-plane (x and y) components of the electric
field of (a) linearly polarized Gaussian beam, (b) linearly polarized Optical
vortex with unit orbital angular momentum, (c) azimuthal CVB, and (d)
radial CVB. The field amplitude of the Gaussian beam is the strongest at
the center while beams (b)-(d) have vanishing in-plane components at the
center due to their topological nature. The size of the arrows in the figure
corresponds to the laser amplitude at each point. We show the definition
of (ρ, ϕ) in the cylindrical coordinate for later use.

The most important feature of CVBs manifests itself when they are

tightly focused by a lens [58, 59]. To make the argument concrete, below

we give more precise mathematical description of CVBs on the occasion

of focusing. The following argument follows Ref. [58]. As we mentioned,

the radial and azimuthal polarizations themselves can be constructed from

OVs, but in discussing the focusing properties of CVBs, we have to take into

account the longitudinal component of the polarization vector in addition

to the vortical in-plane polarization.

The geometry of focusing is shown in Fig. 1.4. We assume that the inci-

dent beam is propagating along the vector k = ẑ and that the polarization

vector ep of the incident beam is purely in-plane. We take a radial unit

vector g0 = cosϕx̂+ sinϕŷ. The azimuthal component is then denoted as

g0 × k. Using g0 and g0 × k we can write the electric field of the incident

beam as

e0 = l0(ρ) [erg0 + eag0 × k] , (1.11)

17



1.2. TOPOLOGICAL LIGHTWAVES

Figure 1.4: Setup of the focusing of the incident CVBs by the lens. The
lens transforms the incident beam in the coordinate subscripted with zero
into that in the coordinate subscribted with one on the focal sphere. The
angle θ specifies the position on the focal sphere whose maximum value α
is determined by the property of the optical system. The pupil-apodization
function encodes the beam profile at the pupil.

where the constants er and ea specify the field amplitudes of the radial and

azimuthal components respectively. Here l0(ρ) specifies the field amplitude

of the incident beam and thus is dependent on the radial coordinate of the

incident beam ρ but preserves the cylindrical symmetry.

An aplanatic lens placed after the entrance pupil generates spherical

waves in response to the incident beam. The beam distribution at the

pupil is then mapped onto the wavefront determined the ray projection

function g(θ) as

ρ/f1 = g(θ), (1.12)

where f1 is the focal length. With the ray projection function, we can

calculate the field distribution on the wavefront l1(θ) based on the energy

conservation of the propagating beam:

l0(ρ)
22πρdρ = l1(θ)

22πf 2
1 sin θdθ. (1.13)

For typical objective lenses, the sine condition is designed to be satisfied.

That is, the ray projection function is given by

g(θ) = sin θ. (1.14)
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1.2. TOPOLOGICAL LIGHTWAVES

As a result, the wavefront becomes spherical, defining the focal sphere with

radius f1. The field distribution is, in this case, obtained as

l1(θ) = l0(f1 sin θ)
√
cos θ. (1.15)

The lens also transform the polarization vector through the refraction.

We represent the “radial” unit vector of the beam on the focal sphere at

the point specified by θ as g1 (see Fig. 1.4). In the original coordinate, it

is written as

g1 = cos θ (cosϕx̂+ sinϕŷ) + sin θk. (1.16)

The propagation direction on the focal sphere is written as s = sin θ cosϕx̂+

sin θ sinϕŷ + cos θẑ = cos θk + sin θg0.

The Richard-Wolf theory [60] tells us that the field near the focus is

given by the diffraction integral of the field strength factor a1 over the

focal sphere:

es =
−ik
2π

∫
dΩa1(θ, ϕ)e

ikr·s, (1.17)

where r specifies the point near the focus at which we measure the focused

electric field, and dΩ is an integral over the solid angle. The factor a1(θ, ϕ)

is associated to the electric field on the focal sphere as a1 = f1e1 [60].

The field on the focal sphere is written as e1 = l1(θ)ê1. Here ê1 is the

vector in the direction of the field ê1 = [erg1 + eag1 × s]. Comparing ê1
with the incident field Eq. (1.11) helps us to understand the effect of focus-

ing. That is, l0(ρ), g0, and k are mapped to l1(θ), g1, and s respectively.

The pupil-apodization function l0(ρ) is somewhat arbitrary since we can

control it by using various filters at the pupil. As we see in a later chapter,

the details of the apodization function is not essential for our arguments

in this thesis. In the following, we redefine l0(f1 sin θ) as l0(θ) to simplify

the expression.

Summarizing above, the electric field near the focus is represented in

the following form (see also Fig. 1.4):

es = − ikf1
2π

∫ α

0

∫ 2π

0

dΩ sin θ
√
cos θl0(θ)e

ikr·s

×

er
 cos θ cosϕ

cos θ sinϕ

sin θ

+ ea

 − sinϕ

cosϕ

0

 . (1.18)
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This is the general form of the focused CVBs. More specifically, let us

consider the case in which the incident beam is purely azimuthal: er = 0.

The corresponding magnetic field components of the focused beam are

obtained by solving Faraday’s equation, and the electromagnetic fields are

obtained to be:

Eρ(ρ, ϕ, z) = Ez(ρ, ϕ, z) = Bϕ(ρ, ϕ, z) = 0, (1.19)

Eϕ(ρ, ϕ, z) = 2A

∫ α

0

sin θf(ρ, θ, z, 1)dθ,

Bρ(ρ, ϕ, z) = −2

c
A

∫ α

0

sin θ cos θf(ρ, θ, z, 1)dθ,

Bz(ρ, ϕ, z) =
2

c
A

∫ α

0

sin2 θf(ρ, θ, z, 0)dθ,

f(ρ, θ, z, n) = cos
1
2 (θ)ℓ0(θ)Jn(kρ sin θ)e

ikz cos θ,

where c is the speed of light in a vacuum. Here the field amplitude A is

defined to be A = kf1ea/2. The radial profile of the beams is governed by

the Bessel function Jn(x). Due to the property of the Bessel functions, all

field components vanish at the center ρ = 0 except the z component of

the magnetic field. The longitudinal component of the magnetic field is,

on the other hand, strongest at the center.

As a whole, the field distribution of the tightly focused azimuthally

polarized CVB is given as Fig. 1.5. Here, we take the pupil-apodization

function [58] as

ℓ0(θ) = exp

[
−β2

(
sin θ

sinα

)2
]
J1

(
2β

sin θ

sinα

)
, (1.20)

where β is the ratio of the radius of the pupil and the beam waist and

the maximum angle α is determined as α = sin−1(NA/n) with NA being

the numerical aperture of the lens. This figure also gives an intuitive

understanding of the mechanism bearing the longitudinal magnetic field.

Figure 1.5 (b) shows that near the center the longitudinal magnetic

field is the only non-vanishing component. Therefore, if a sample with its

size sufficiently smaller than the wavelength is placed at the focus, we can

virtually apply a “pure magnetic field at the optical frequency” without

accompanied by any electric fields (and other components of the magnetic

fields). We note that if we focus a radial CVB, there appears a longitudinal

electric field in the same way.

The longitudinal magnetic field at the optical frequency is unique to
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the azimuthal CVBs. The use of equipment like coils/solenoids is limited

to frequencies lower than gigahertz (GHz). From the condensed-matter

viewpoint, the purely longitudinal field at high (e.g. THz) frequency will

provide a new, powerful tool for studying various (collective) physics in

solids. This would be the main content of Chapter 3. There, we also

discuss an application of the electric field component of the azimuthal

CVBs to study and control circulating currents at the edges of topological

insulators. Moreover, we discuss applications of radial and azimuthal CVBs

for Floquet engineering [20, 21, 22].

Figure 1.5: (a), (b): Focusing of the Gaussian beam and the azimuthal
CVB. The characteristic spatial profile of the polarization vector of the
azimuthal beam results in the vanishing electric field and the growth of the
longitudinal magnetic field near the focus. (c) The intensity distribution
of the azimuthal beam in the focal plane at z = 0. The horizontal axis is
the distance from the center of the focal plane. We take β = 3/2, n = 1.0,
and NA = 0.95 in the panel (c). As the focusing becomes tighter, this
longitudinal field becomes more prominent.
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1.3 About this thesis

This thesis theoretically deals with potential applications of topological

lightwaves to condensed-matter physics (and chemistry in part). The rest

of this thesis is organized as follows. In this chapter, we introduced topo-

logical lightwaves, the main players of our study. In the second chapter,

we discuss how to utilize OVs for ultrafast magnetism. In particular, we

discuss how OVs could be useful in controlling the magnetic texture of chi-

ral magnets. This part will be based mainly on Refs. [61, 62]. In the third

chapter, we consider applications of CVBs for physics and (bio-) chemistry.

We propose a novel scheme of measuring electronic properties of magnets

and show how CVBs can be useful for spectroscopic uses, control of cir-

culating currents, and Floquet engineering. This chapter will be based on

Refs. [63, 64]. The final chapter will be devoted to concluding remarks and

outlook, followed by the publication list and references.
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Chapter 2

Optical vortices (OVs)

In this chapter, we discuss applications of optical vortices (OV) to ultrafast

magnetism. We argue how to exploit the characteristic spatial profile of

OVs for controlling the spin texture of solids. We first give a brief review

of chiral magnets and topological defects, skyrmions and their generaliza-

tions. We discuss why OVs are potentially useful for generating topological

defects in chiral magnets and give concrete examples of applications. We

show that with OVs we can shape the wavefront of spin waves in magnets,

transfer their OAM as topological defects in chiral magnets, and generate

a family of topological defects in both ferromagnetic and antiferromagnetic

chiral magnets. This chapter is based on Refs. [61, 62].
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2.1. OPTICAL VORTICES FOR MAGNETISM

2.1 Optical vortices for magnetism

In this section, we review chiral (ferro) magnets and skyrmionic defects in

them. We introduce static properties of chiral magnets and the nature of

the topological magnetic defects in them. We discuss an important issue

to be resolved in developing applications of OVs for ultrafast magnetism:

namely, a discrepancy in the spatio-tempral scales between lights and mag-

nets.

2.1.1 Chiral magnets and their topological defects

In this part, we shortly review basic properties of chiral ferromagnets

(FMs) [65, 66]. We show their ground-state phase diagram and introduce

the magnetic defects, skyrmions in them.

Figure 2.1: Ground-state phase diagram of a model of chiral ferromag-
nets (2.1) (reproduced from Ref. [67]). There are three distinct phases de-
pending on the external magnetic field in the out-of-plane direction (taken
to be the z direction). We draw the spin textures in the helically ordered
and the skyrmion crystal phases obtained by numerical simulations based
on the Landau-Lifshitz-Gilberg equation, using arrows and colors. We also
show the critical values of the phase boundaries.

Phase diagram and skyrmions

Chiral FMs such as MnSi [68, 69, 70, 71], Fe1−xCoxSi [72, 73], or FeGe [74,

75, 76], are characterized by their noncentrosymmetric lattice structures.

The symmetry breaking induces the Dzyaloshinsky-Moriya (DM) interac-

tion, which adds a twist to the spin texture in these materials. As a canoni-
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2.1. OPTICAL VORTICES FOR MAGNETISM

cal model of chiral FMs, the following two-dimensional square-lattice model

is well accepted:

H = −J
∑
r

mr ·
(
mr+aex +mr+aey

)
+
∑
r

Di · (mr ×mr+aei)−Hz
∑
r

mz
r, (2.1)

where a is the lattice constant and ei is the unit vector along the i-axis

(i = x, y). The vector mr represents the magnetic moment at the site

r1. In the following, we take m to be a vector with a unit length. This

model contains two inter-spin interactions; the ferromagnetic Heisenberg

interaction J > 0 and the DM interaction. The DM vector Di is defined

on the bonds (r, r + aei). The last term is the Zeeman coupling with an

external magnetic field applied in the z-direction.

The model Eq. (2.1) is a fairly simple one, but is known to reproduce

many experimental results in thin-film chiral magnets [77]. As long as we

are interested in the long-wavelength physics like spin waves or magnetic

defects much larger than the lattice constant, the model (2.1) would work

as a standard model.

Figure 2.2: (a, b) skyrmions with negative and positive topological num-
bers. (c) skyrmionium as a bound state of these two defects. Arrows
represent spins in chiral magnets [see Eq. (2.1)] and the colors represent
their z-component (red for +1, blue for −1, and green for 0). We take the
DM vector to be Di = Dei (D > 0) and the external magnetic field to be
in z-direction H = ±Hzez.

1By using the electron spin s the magnetic moment m is defined as m = −s
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Let us see the ground-state phase diagram of the model (2.1) [78]. As

shown in Fig. 2.1, depending on the external magnetic field, there appear

three distinct phases in the ground state. When the external field is weak

enough, the competition between the exchange coupling and the DM in-

teraction results in the helically ordered spin texture. When the external

field is strong enough to dominate over the other terms, the ground state

is turned into a forced ferromagnetic state in the out-of-plane direction.

In between these weak and strong magnetic-field regions, there appears a

peculiar phase called the skyrmion crystal phase.

The spin texture of the skyrmion crystal phase is a triangular lat-

tice of point-like magnetic defects called skyrmions [72]. A skyrmion is a

highly-stable magnetic defect in chiral magnets with a spin texture shown

in Fig. 2.2(a, b). The former is a skyrmion as an isolated defect in the

up-spin background while the latter is one in the down-spin background.

Skyrmions are characterized by their topological property quantified by

the non-vanishing skyrmion number:

NSK =
1

4π

∫
mr ·

(
∂mr

∂x
× ∂mr

∂y

)
d2r. (2.2)

In a continuous space, this skyrmion number is quantized to be an

integer and take a non-vanishing number for the spin configuration with

skyrmions. Since the trivial state, namely the homogeneous ferromagnetic

state, has NSK = 0, a spin texture with skyrmions is topologically different

from the trivial state. That is, any continuous deformations to the spin

texture of skyrmions cannot remove them. This topological nature ensures

the stability of skyrmions as magnetic defects. In lattice systems, this

topological protection works only imperfectly, but skyrmions are known to

be highly stable if their size is much larger than the lattice constant.

Skyrmionium

In chiral FMs, a family of topological magnetic defects exists in addition

to skyrmions. An example of such defects is the one shown in Fig. 2.2(c),

called a 2π vortex [79] or a skyrmionium [80, 81, 82, 83]. To see the topo-

logical nature of the skyrmionium, we present, in Fig. 2.3, the “cumulative”

skyrmion number for it :

NSK(R) =
1

4π

∫
r<R

mr ·
(
∂mr

∂x
× ∂m

∂y

)
d2r. (2.3)
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Figure 2.3: (a) Cumulative skyrmion number NSK(R) of a skyrmionium
as a function of R/a, where a is the lattice constant. We take J = 1,
D = 0.15, and Hz = 0.014. (b) Definition of R for a skyrmionium. The
arrows represent the in-plane components of spins.

The integration is performed within the circle of radius R measured from

the center of the defect [see Fig. 2.3(b)]. As Fig. 2.3(a) shows, there appears

a bump structure characteristic to a skyrmionium. As a function of the

radius of the integration region R, the cumulative skyrmion number grows

to approach the saturation value +1 of a skyrmion in Fig. 2.2(b) and then

drops to zero.

A skyrmionium is a bound state of two skyrmions with the opposite

background spins as schematically shown in Fig. 2.2. Since skyrmions in

Fig. 2.2(a, b) have the opposite skyrmion number NSK = ∓1 respectively,

as their bound state, the skyrmion number of a skyrmionium is zero [see

2.3(a)]. In this sense, skyrmioniums are topologically trivial. Neverthe-

less, their local spin configurations are nothing but those of skyrmions as

is reflected to the bump structure of the cumulative skyrmion number.

Therefore, the topological protection works to stabilize skyrmioniums as

well.

More generically, we can consider a general nπ vortex (see Fig. 2.4).

For example, the spin texture of a 4π vortex is shown in Fig. 2.4(b). Al-

though nπ-vortices are excited states of chiral FMs, they are predicted to

be long-lived [79] once formed. As for a skyrmionium, it has been already

discovered experimentally [80, 83] and confirmed to be stable.

Both OVs and skyrmioniums have topological properties. Both have

a ring-shaped spatial profile in the (time-averaged) intensity and the spin
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Figure 2.4: (a) Schematic illustration of the definition of an nπ vortex.
The arrows represent the out-of-plane component of spins. For example,
2π vortex, or a skyrmionium has a spin texture whose spin orientation at
the center has the relative angle of 2π with respect to the surrounding
environment. (b) Spin texture of a 4π vortex defect.

texture. OVs have spiral phase structure inducing a chiral perturbation to

the target system (remember the ablation experiment shown in Fig. 1.2),

and skyrmioniums have twisted, chiral spin textures. The apparent similar-

ity between them sets our expectations to a novel spin dynamics induced

under OVs in chiral FMs. The aim of this Chapter 2 is to explore the

interplay of the topology and chirality of OVs and chiral magnets.

Multiferroics

Here we comment on multiferroics [37, 38], a subject closely related to chiral

magnets. In a class of matter called multiferroics, there co-exist multiple

orders like ferroelectricity, a ferromagnetic order, an orbital ferromagnetic

order, and so on. In particular, the coexistence of ferroelectricity and

ferromagnetism has been well studied in the context of spintronics. In

the presence of both ferromagnetic and ferroelectric orders, so-called the

magneto-electric (ME) coupling between the ferroelectric moment P and

ferromagnetic moments M : HME = αP ·M [84, 85, 86, 87, 88] appears.

This allows us to control the electric polarization with the magnetization

and vice versa.

In order for them to coexist, the following conditions have to be met;

1) the system is insulating, 2) the spatial-inversion symmetry should be

broken, 3) the time-reversal symmetry should be broken. The former two
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are for the existence of the electric polarization and the last one is for that

of the magnetization. Chiral magnets are a natural example meeting these

conditions. They have magnetic orders breaking the time-reversal symme-

try and their lattice structures break the inversion symmetry, inducing the

DM interaction. Therefore, in insulating chiral magnets, we can use the

electric field component of the incident OVs as well as the magnetic one

to affect the magnetic properties of the target. In the later section, we will

come back to this point.

2.1.2 Scales of lights and magnets

Our goal of this chapter is to propose applications of OVs for ultrafast mag-

netism of (chiral) magnets. As we explained in the previous chapter, OVs

are characteristic in their spiral phase structure and the intensity profile.

It is a natural expectation that the competition between the chiral nature

of OVs and that of chiral magnets would result in characteristic ultrafast

dynamics. The ring-shaped profile of the (time-averaged) intensity of OVs

also seems to be compatible with the spin texture of nπ vortices.

In developing applications of OVs to controlling magnetic properties of

matter, however, we have to be serious about the difference of the spatio-

temporal scales of lights and magnets. As long as we are working on the

long-wavelength physics in magnets, i.e. spin waves, there is no problem.

The length scale of the incident light and the target system are automati-

cally matched to induce characteristic dynamics. This will be the content

of Sec. 2.2. However, if we want to use OVs to generate topological defects,

a problem arises.

In chiral FMs, the length scale determining the size of a skyrmion is

governed by the competition among exchange coupling, the DM interac-

tion, and the external field. Our naive expectation is that in order for the

OVs to offer a way of generating magnetic defects, the beam waist should

be comparable with the stable size of magnetic defects in the target ma-

terial. Since the stable size of skyrmions (and other topological defects)

in chiral FMs is typically O(10) to O(1,000) nanometers, the beam waist

should be in this region. If there is no way of breaking the diffraction

limit (this will be discussed in Sec. 2.3), this means that the wavelength of

the applied OVs should be around this value. Hence, we have to work on

visible lights to extreme ultraviolet (EUV) lights.

Having OVs of this frequency is not at all problematic [89, 90]. The

problem is the timescale. The frequency of a laser with the wavelength of

10 nm is about 30 petaherz (PHz). This is much faster than the dynamics
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of spins in magnetic materials. The typical timescale of magnetization

dynamics in solids is GHz to THz, so that OVs with the beam waist of the

order of the size of magnetic defects is too fast for spins to follow. Hence,

they will not be able to induce any coherent dynamics of spins as they are.

Nevertheless, we can consider an incoherent coupling and use the effect of

heating to develop a way of ultrafast, systematic generation of a family of

topological defects in chiral magnets. This will be the content of Sec. 2.4.

We note that formally it is possible to discuss, for example, the change

of the selection rule of the optical transitions due to the non-vanishing

OAMs carried by OVs. However, we have to be careful about the result.

Neglecting the large deviation in the spatio-temporal scales between lights

and matters will lead to neither reliable nor meaningful arguments.
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2.2 Shaping spin waves with OVs

As we discussed in the previous section, the problem of the deviation in

spatio-temporal scales does not take place for spin waves with the wave-

length around k = 0. The spatial scale of the spin wave physics [91, 92]

induced by the external (long-wavelength) perturbation is automatically

matched with that of the perturbation. Hence, we only have to pay atten-

tion to the timescale. In this section, we study spin waves excited by (sub-)

THz OVs. In particular, when the frequency of OVs and the excitation

energy of the spin wave coincide with each other, a magnetic resonance

occurs and a large number of magnons are excited, resulting in spin waves

of large amplitude. In this part, we consider a Zeeman coupling between

magnetic moments and the magnetic field component of OVs.

We consider a simple ferromagnet on a square lattice:

H = −J
∑
⟨rr′⟩

mr ·mr′ −Hz
∑
r

mz
r −

∑
r

Br(t) ·mr. (2.4)

As we mentioned, though the microscopic spin Hamiltonian of real ma-

terials is far more complex, concerning macroscopic phenomena like long-

wavelength spin wave, a simplified model like (2.4) well describes the sys-

tem. We can regard Eq. (2.4) as discretization of a coarse-grained contin-

uous model at long wavelength.

There is no DM interaction and no characteristic length scale other

than the lattice constant in this model. The last term of Eq. (2.4) is

the Zeeman coupling between the magnetic field of an OV Br(t) and the

magnetic moment at site r. We assume that the system is placed at the

focal plane of the OV and take the magnetic field Br(t) as an LG mode

with p = 0;

Br(t) = Re

B0ep

(
ρ
w

)|m|
L

|m|
p

(
2ρ2

w2

)
e−

ρ2

w2 eimϕ−iωt− t2

σ2

maxr

[
|
(
ρ
w

)|m|
L

|m|
p

(
2ρ2

w2

)
e−

ρ2

w2 |
]
 . (2.5)

Here we take the peak value of the magnetic field within the focal plane

as B0 and assume a pulse-like temporal profile with the pulse width deter-

mined by the constant σ. The in-plane field distribution of OVs is presented

in Fig. 2.5. Depending on the sign of m, these magnetic field distributions

rotate in either clockwise or counter-clockwise way. We emphasize that the

polarization vector ep can be complex.

In this and the next sections, we ignore the effect of heating caused
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Figure 2.5: Snapshots of the spatial profile of the x-component of magnetic
fields Eq. (2.5). For a beam with OAM ̸= 0, if we go around the topological
singularity at ρ = 0, the magnetic field changes its sign 2m times. The
peak values of the fields are normalized to unity.

by the laser application as it is known to be small in the THz region. In-

deed, magnetic resonance experiments for THz light can be well explained

by theories without taking the heating effect into account (for example,

Refs [14, 87]).

The time evolution of classical spins under the drive can be directly

studied with the Landau-Lifshitz-Gilbert (LLG) equation [77]. In the

framework of the LLG equation, the dissipation of the angular momen-

tum to, for example, a phonon system is taken into account in the form of

a phenomenological damping term. The LLG equation is written as

dMr

dt
= −γMr ×

(
− ∂H

∂Mr

)
+ α

Mr

|Mr|
× dMr

dt
, (2.6)

where α in the second term is a dimensionless parameter characterizing

the damping strength. Here Mr = h̄γmr and γ is the gyromagnetic ratio

γ = gµB/h̄. The LLG equation describes the precession of the magnetic

moment Mr around the effective magnetic field (−∂H/∂Mr) which is

determined by external fields, magnetic anisotropies, and interactions with

other spins. Since the spin configuration around a particular Mr varies in

time, the effective field is time-dependent in general. By solving Eq. (2.6)

numerically, we obtain the magnetization dynamics. In all the calculations

of this section, we assume the initial state to be the uniform FM state in

the +z direction.

If we take the radial index of the OV to be zero, the beam is parametrized

by the frequency ω, pulse width σ, beam waist w, and OAM m. In the fol-
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lowing, we measure ω in the unit of the exchange coupling J and the time

t in the unit of h̄/J . Typically the energy scale of the exchange coupling

of magnets is at O(1-10) meV, so that h̄/J is of the order of 0.1 ps.

Although it is rather difficult to directly simulate the model (2.4) in

the scale of THz OV (> 100µm), because of the scale-free nature of the

spin wave in the long-wavelength regime, as long as the beam waist is

sufficiently longer than the lattice constant, qualitatively its value does

not matter, and we can take an artificially small value of w (for example

w = 7.5a) to study the qualitative aspects of the spin wave physics induced

with the OV [62]。

2.2.1 At the magnetic resonance

First, we consider the excitation of spins by linearly polarized, resonant

lasers (ω = Hz) with the polarization vector ep = x̂. If the applied beam

is a Gaussian one without OAM, both the external drive and the model are

radially isotropic in the scale of the wavelength. As a result, the wavefront

of the excited spin waves becomes rotationally symmetric.

In contrast, if we use OVs to excite spin waves, we obtain a qualitatively

different outcome as shown in Fig. 2.6(a, b). We see that the wavefronts of

the spin waves become spiral shaped for OVs. In the Fig. 2.6(c) we show

the temporal profile of the incident OV. The spin texture is modulated

from the collinear ferromagnetic state in a radially anisotropic way. As a

result, if (and only if) the laser beam carries OAM, we can dynamically

induce net scalar spin chirality χi,j,k = Si · (Sj × Sk) [70, 93, 94] (j, k are

neighboring sites of the site i) as shown in Fig. 2.6(d).

2.2.2 Off resonance: fast drive

Next we consider the case in which the frequency of the applied field

is larger than both the exchange coupling and the resonance frequency

ω0 = Hz. For Gaussian beams, the result is qualitatively the same as the

resonance case; isotropic propagation of spin waves (but with much smaller

amplitude). However for OVs as we show in Fig. 2.7 the wavefronts in this

case have multipolar shapes. Depending on the absolute value of the OAM

carried by the OV, we obtain spin waves with a shape of dipolar, quadrupo-

lar, octapolar, and so on.

We have seen that by using OVs we can excite spiral-shaped or mul-

tipolar spin waves in magnets. The results above do not depend on the

details of the model and would hold also for ferrimagnets and antiferromag-
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Figure 2.6: Spiral spin waves induced by linearly polarized optical vortices
(a, b) at the magnetic resonance Hz = ω = 0.3 (other parameters are the
same as Fig. 2.7) and the dynamically induced total scalar spin chirality
for m = 0,±1 (d). Due to the anisotropic spin wave structure, we observe
non-vanishing, OAM dependent net scalar spin chirality for m ̸= 0. We
also present the temporal profile of the field (c) for m = 1 at ρ = w/

√
2

and ϕ = 0. For J = 5 meV, the case ω = Hz = 0.3 corresponds to 0.4 THz
and 26 Tesla. The solid line in (d) is the envelope of the incident field.

nets. By using the ultrashort laser pulses, nowadays we can observe the

propagation of spin waves in the space-time resolved way [95, 96] as shown

in Fig. 2.8. Hence, the observation of the anisotropically propagating spin

waves is feasible.

Optical excitation and control of spin waves is a developing field. With

various optics and electronics techniques, we can control the spatio-temporal

profile of electromagnetic fields in details. On the other hand, controlling

the propagation of spin waves is by far difficult. Today, using lasers with

a nontrivial spatial profile is considered to be a route toward it [95] (see

Fig. 2.8). The use of OVs is, therefore, a new option to achieve the detailed

control of spin waves, which could lead to new functionalities of magnetic

materials.
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Figure 2.7: Multipolar spin wave radiation (a, b) induced by linearly polar-
ized optical vortices with ep = x̂ for D = 0, Hz = 0.015, W = 7.5a, ω = 2,
σ = 20, t0 = 40, B0 = 0.05, and α = 0.1. We show the x-component of
spins (×104) at t = 80 and the temporal profile of the magnetic field (c)
for m = 1 at ρ = w/

√
2 and ϕ = 0. The initial state at t = 0 is the ferro-

magnetic state (mz
r = 1 for all sites r). For J = 5 meV, ω = 2 corresponds

to 2.4 THz and the beam amplitude B0 = 0.05 does 4.3 Tesla.
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Figure 2.8: Optical excitation of anisotropic spin waves and their space-
time resolved observation. A rectangular aperture is placed in front of
the lens to generate an anisotropic beam spot for the excitation. Note:
Reprinted by permission from Springer Nature: Nature, “Directional con-
trol of spin-wave emission by spatially shaped light”, T. Saitoh et al., Nature
photonics, 6, 662 (2012) [95], copyright (2012).
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2.3 OAM selective generation of magnetic

defects with OVs

As we repeatedly mention, the spatio-temporal scale of lights and matter

differs very much in general. In the previous part, by focusing on the scale-

free physics of magnets, i.e. spin waves, we avoided this problem. However,

in order to exploit OVs for the control of chiral magnets, the discrepancy

becomes essential.

2.3.1 Subwavelength focusing

Here we restate the problem which we are facing to. Our goal is to find a

novel way of controlling magnetic properties of (chiral) magnets with OVs.

In particular, we are to exploit the characteristic spatial profile of OVs

for the optical generation of topological defects in chiral magnets such as

skyrmions, skyrmioniums, and so on. However, while the size of (meta-)

stable magnetic defects in chiral magnets is within the range of 10-1000 nm,

the possible size of the beam spot of OVs is far larger since it is limited

to the order of the wavelength because of the diffraction limit. In this

subsection, we consider the direct coherent coupling of OVs and magnets

so that the frequency should be around the typical timescale of the physics

of magnets, i.e. GHz to THz. Even if the incident light is at THz, the

possible beam waist will be around 100 µm. That is, there exists a large

gap in the spatial scale of lights and topological defects, and we have to find

a way to fill the gap. The key idea is provided by the emerging technology

of the subwavelength focusing in the field of plasmonics [97].

Plasmonics is a field studying localized modes of lights on the surface

of metals [98]. Due to the coupling between photons and conduction elec-

trons, lights can be localized at the surface of metals. These localized

lights provide a way of controlling lights in the scale much smaller than its

wavelength. Plasmonics has been explored in a wide range of frequencies.

In the visible and infrared regions, plasmonics plays an essential role for

developing near-field microscopes and the tip-enhanced Raman scattering

method used for the imaging and analysis of (biological) molecules [99].

In the microwave region, it plays the central role in the design of various

metamaterials with unusual properties like negative refractive index [100].

Even in the THz region, it is becoming possible to achieve the control of

lights in the subwavelength scale. In 2017, the subwavelength focusing of a

THz OV [97] is experimentally demonstrated [101]. Although the plasmon-

ics technology in the THz frequency is still very primitive, and the focusing
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is not very tight at present (in the paper by Arikawa et al. the reduction of

the beam size is limited to a factor of 3.4), the rapid developments in the

THz optics impart the future realization of tight subwavelength focusing

resolving the discrepancy in the spatial scale of lights and matter.

In this part, as a possible outcome of the tight subwavelength focusing

of THz OVs, we consider the optical generation of topological defects in

chiral magnets. In contrast to the simple ferromagnets treated in the pre-

vious subsection, chiral magnets have intrinsic chirality determined by the

DM interaction coming from their noncentrosymmetric crystal structure.

We will see that the competition between the chirality of the incident light

and the intrinsic chirality of the material results in the OAM-dependent

response which leads to the optical creation of topological defects in an

OAM-dependent way. As chiral magnets are a prototypical system sup-

porting multiferroicity, below we will consider both the Zeeman and mul-

tiferroic couplings as a way to couple OVs with spins.

2.3.2 Zeeman coupling

First we consider the Zeeman coupling between chiral magnets and the

magnetic field component of the OVs. As we noted, here we assume a tight

focusing of OVs beyond the diffraction limit and take the beam waist much

smaller than the diffraction limit by hand. The model that we consider is

the following one:

H = Hchi −
∑
r

Br(t) ·mr. (2.7)

Here Hchi is the model of a square-lattice chiral magnet (2.1). We use pa-

rameters corresponding to the skyrmion crystal phase: D/J = 0.15, Hz/J =

0.015 and take the initial state to be the meta-stable ferromagnetic one in

the +z-direction. Since the phase transition between the ferromagnetic

and skyrmion crystal phases is the first-order one, it is easy to prepare

such a meta-stable state. As the ground state is a skyrmion crystal, this

initial state is prone to form topological defects in response to the external

perturbations. Our goal is to generate topological defects with OVs so that

this meta-stable initial state seems to be a natural choice.

Gaussian beam

As a reference, we first consider Gaussian beams. We take a left-handed

ep = x̂ + iŷ. Gaussian beam of a frequency ω = 0.075J . In Fig. 2.9,
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we show the z-component of the magnetic moments driven by a half-cycle

Gaussian beam pulse. Although the spin texture is partially inverted in

the intermediate period, this transient magnetic defect vanishes eventually.

In order for topological defects like skyrmions to be stabilized, the incident

beam has to change the topological number of the spin texture. However,

since the in-plane field configuration of the incident beam is spatially ho-

mogeneous for a half-cycle Gaussian beam pulse, it only induces a collective

rotation of spins which is just a continuous deformation of the spin texture.

Therefore, with the present beam parameters we cannot create topological

defects through the Zeeman coupling with Gaussian beams.

Figure 2.9: Application of Gaussian beam on the meta-stable ferromagnetic
state of a 150×150 sites chiral magnets with parameters D/J = 0.15,
Hz/J = 0.015, and α = 0.1 with beam parameters (ω/J = 0.075, B0/J =
0.15, w = 10a, σ = 10, and t0 = 30).

Optical vortices

We next switch to OVs. The temporal profile and the polarization of the

beam are the same as the Gaussian beam. As Fig. 2.10 shows, in contrast

to the Gaussian beam, the transient magnetic defects do not vanish, and

we obtain different topological defects depending on the OAM of the OVs.

The point-like defects (blue-colored region) are skyrmions and the ring-

shaped one is a skyrmionium. We see that different OAMs result in the

different number of created skyrmions. Since each skyrmion has a topolog-

ical number of −1, the net topological number of the final state is found

to be sgn(m)(m+1). Only when m = −1 we obtain a skyrmionium whose

topological number is zero.

The OAM-dependent creation of topological defects could be phrased

as an encoding of the OAM in the chiral magnets in the form of their
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topological number. The explicit dependence on the sign of the OAM is a

manifestation of the competition of the chiralities of the light and matter.

Just as the spiral-shaped spin waves discussed in the previous part, the

OAM-dependent in-plane field configuration of OVs induces a twist to the

spin texture. In the presence of a DM interaction, the laser-induced twist

competes with the intrinsic chirality of the target material. Therefore,

the sign of OAM, which determines the direction of the induced twist,

qualitatively changes the resulting topological defects.

After a sufficiently long period, the defects created by OVs in Fig. 2.10

relax to their equilibrium shape. Because of the repulsive interaction

among defects, skyrmions in the cluster-like states in, for example, the

panels of m = ±5 drift apart to form a collection of ordinary skyrmions.

Figure 2.10: Generation of topological defects on the meta-stable ferromag-
netic state of a 150×150 sites chiral magnets with parameters D/J = 0.15,
Hz/J = 0.015, and α = 0.1 by a half-cycle OV pulse (ω/J = 0.075,
B0/J = 0.15, and w = 10a). Depending on the OAM of the beam m, we
see different outcomes. The OV is assumed to be left-handed ep = x̂+ iŷ,
and its temporal profile is shown in the right-bottom panel. The color
corresponds to the z-component of the magnetic moment at each site.

Contrary to the left-handed case, when the field polarization is right-

handed ep = x̂ − iŷ, OVs with the same parameters cannot generate any

magnetic defects as shown in Fig. 2.11. The apparent difference between

the right-handed and the left-handed OVs can be easily understood by

moving into the rotating frame with the frequency ω where the incident

beam looks static. In this frame, the magnetic field of OVs can be written
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Figure 2.11: Irradiation of a right-handed magnetic field with ep = x̂ −
iŷ and orbital angular momentum m = ±1. Time evolutions of the z
component of spins for Hz = 0.015, W = 10a, p = 0, ω = 0.075, σ = 10,
t0 = 30, B0 = 0.15, D = 0.15, and α = 0.1 are presented.

as a sum of the static in-plane field (with the spatial profile shown in

Fig. 1.3) and the static field in the z-direction coming from the rotation.

Depending on the polarization (either left-handed or right-handed), the

rotation-induced field changes its sign. In the left-handed case, the field is

in the (−z)-direction, and this works to lower the external field, making the

initial state to be unstable to the formation of defects. On the other hand,

the corresponding rotation-induced field for a right-handed field stabilizes

the ferromagnetic initial state.

Timescale of the process

Let us examine the timescale of the process above. As we see in Fig. 2.10,

the formation of defects complete within the time 300 h̄/J , which corre-

sponds to 10-100 ps for typical values of the exchange coupling. This short

timescale could be important for skyrmionics. However, we have to remem-

ber that we are assuming an artificially strong sub-wavelength focusing in

the present calculation.

As we mentioned previously, the beam waist should be comparable

with the stable size of magnetic defects in the target. In reality, the

sub-wavelength focusing cannot be so strong (at least near future) and

therefore, we would work on materials hosting large skyrmions. The large

stable size of skyrmions means that the DM interaction in such materials
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is smaller than that assumed in Fig. 2.10. Because the stabilization of

the twisted spin texture is due to the DM interaction, the smaller it is,

the longer the timescale it takes for defects to relax to their stable shape.

Therefore, to really address the timescale in the realistic situation, we have

to study how the timescale depends on the magnitude of the DM interac-

tion.

We calculate the time evolution of the cumulative skyrmion number (2.3)

to study its dependence on the value of the DM interaction. The result

is summarized in Fig. 2.12. We take the temporal profile of the beams to

be the same as Fig. 2.10. We fix JHz/D
2 = 0.6. For several values of

the beam waist W = 10a, 30a, 50a we calculated the cumulative skyrmion

number for m = ±1. For each value of the beam waist, we change the

strength of the DM interaction accordingly to match the beam waist and

the stable size of defects.

We see that for the OAM of m = +1, which corresponds to the forma-

tion of a pair of skyrmions (see Fig. 2.10), as we make the beam waist (or

the stable size of skyrmions) larger, it takes longer time for line-shape of the

cumulative skyrmion number to reach the equilibrium one. In the interme-

diate time domain, the cumulative skyrmion number shows qualitatively

different dependence on the distance from the center of the beam spot,

depending on the value of the DM interaction. This indicates that the for-

mation of skyrmions in this case is primarily driven by the DM interaction,

and the timescale becomes longer for the a smaller DM interaction.

On the other hand, for m = −1 (corresponding to the formation of a

skyrmionium), we see that even for a large beam waist, formation of the

characteristic bump structure in the cumulative skyrmion number com-

pletes immediately after the irradiation. That is, the timescale of generat-

ing skyrmioniums with m = −1 OVs is essentially the same for OVs with

the different beam waist.

For our choice of the DM vector, the optically induced perturbation by

the m = −1 OVs is consistent with the spin texture of a skyrmionium:

direction of the spin twist and the existence of the topological singularity.

Hence, the DM interaction in this case only works to relax the “ready-

made” spin texture. Therefore, even if we consider models with smaller

DM interaction and use OVs with a larger (more realistic) beam waist, the

advantage in the timescale would remain in this case.
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Figure 2.12: Time evolution of the cumulative skyrmion number for
m = ±1 and W = 10a, 30a, and 50a. We fix JHz/D

2 = 0.6 and take
D = 0.0850a

W
. For small D (large W ), it takes longer time for the induced

defects to relax to their equilibrium states. However, when m = −1, the
characteristic bump structure of skyrmioniums is formed even right after
the pulse is injected, regardless of the beam waist W (or the magnitude of
D equivalently).
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2.3.3 Magneto-electric coupling

So far, we have worked on the laser control of magnets with the magnetic

field component of the OVs. In multiferroic materials, there exists a local

electric polarization p written as a function of magnetic moments. There-

fore, there is a possibility that we can do similar control of chiral magnets

using electric field components of the beam through the ME coupling:

HME = −
∑
r

pr ·E(r), (2.8)

where pr is the electric polarization which is a function of the magnetic

moments {mr′} in multiferroics.

There are several different mechanisms of ME coupling. Here we discuss

two of them: spin-current mechanism [85] and p-d hybridization [84, 88].

The former gives the electric polarization: p(ri,i+1) ∝ ei,i+1 × (mri ×
mri+1

), where ei,i+1 is the unit vector pointing from site ri to site ri+1.

A non-vanishing electric polarization from this mechanism needs a canted

magnetic structure. Hence, even if the coupling between spins and the

electric field is large, as long as we are considering of smooth magnetic

structures (e.g. spin waves and skyrmions), the ME coupling is effectively

weakened, and we could ignore that. On the other hand, ME coupling

from the p-d hybridization mechanism could be important. In Cu2OSeO3,

for example, the electric polarization comes from this mechanism and is

written as p(r) = λ(my
rm

z
r,m

z
rm

x
r,m

x
rm

y
r) with λ = 5.64 × 10−33 Cm [88,

102], if we take the c-axis to be the z-axis.

Substituting the polarization vector p(r) = λ(my
rm

z
r,m

z
rm

x
r,m

x
rm

y
r)

into the Hamiltonian HME and differentiate it by −mr, we can obtain

the effective magnetic field which enters in the LLG equation;

HME
eff = λ (Eymz

r, E
xmz

r, E
xmy

r + Eymx
r) . (2.9)

If we consider a ferromagnetic initial state with mr = ẑ, Eq. (2.9) is

equivalent to the Zeeman coupling with a magnetic field B = λ(Ey, Ex, 0).

Therefore, we can expect that even for the ME coupling, we will observe

qualitatively the same results as those obtained for the Zeeman coupling.

The model that we consider is as follows:

H = Hchi +HME. (2.10)

We consider the right-handed OVs with ep = x̂ − iŷ. The ME coupling

is taken to be of the p-d hybridization [Eq. (2.9)]. Figure 2.13 shows the
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time evolution of the model (2.10) for D = 0.15, Hz = 0.015, and α = 0.1

under the electric field of an OV with W = 10a, p = 0, ω = 0.075, σ = 10,

t0 = 30, and E0λ = 0.25. We note that the functional form of the electric

field of OVs is the same as that of the magnetic field. If we take J ∼ 1 meV

and λ ∼ 10−32 Cm, the electric field strength we assumed corresponds to

40 MV/ cm.

Figure 2.13: Orbital angular momentum dependence of the creation of
topological defects with the electric field component of optical vortices
through the magneto-electric coupling. The fields are assumed to be right-
handed ep = x̂− iŷ. We show the time evolution of magnetic moments of
the model (2.10) with D = 0.15, Hz = 0.015, W = 10a, p = 0, ω = 0.075,
σ = 10, t0 = 30, E0λ = 0.25, and α = 0.1. The system is periodic in both
x and y directions, and its size is 150 sites in both directions.

As is shown in Fig. 2.13, the outcome is qualitatively the same as the

Zeeman coupling. We obtain topological defects depending on the OAM

of the incident OVs. The main difference between the Zeeman and ME

couplings is the polarization of the incident beams. In the former case

left-handed beams were advisable for the creation while in the latter, right-

handed ones are better. As we discussed, the ME coupling in the present

case is, at least for the initial state, equivalent to the Zeeman coupling with

a magnetic field B = λ(Ey, Ex, 0). Therefore, right-handed electric fields

work as left-handed (effective) Zeeman fields, being suitable for creating

defects.

Electric-field control through the ME coupling also applies to the spin

wave shaping discussed in the previous section. We can show that qual-

itatively the same phenomena (multipolar and spiral spin waves) can be

realized with the ME coupling between OVs and magnetic moments in

(non-chiral) magnets [62].
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2.4 Thermal generation of magnetic defects

with OVs

In this section, we consider an incoherent coupling between spins and lights.

As we noted, in order to adapt the wavelength of OVs to the typical size of

magnetic defects in chiral magnets, the corresponding frequency reaches to

(sub-) PHz region and is too high to induce any coherent dynamics of spins.

Instead, OVs create hot electrons and excite high-energy lattice vibrations

which (locally) equilibrate within 100 fs to 1 ps [28].

In this section, we consider OVs as a source of heating whose intensity

determines the local temperature profile. We assume that OVs simply

induce a temperature distribution proportional to the local beam intensity:

T (r) ∝ |uLG(ρ, ϕ, 0)|2 and see whether the heating can generate magnetic

defects in chiral magnets.

As is theoretically shown by Koshibae and Nagaosa [103], for chiral

FMs, local heating with a disk-shaped profile can generate skyrmions.

What we expect is, therefore, that we can extend their result to the an-

nular temperature profile realized with OVs and examine whether we can

use OVs for nucleating general nπ-vortices in chiral magnets.

2.4.1 Laser control of local temperature

Firstly, let us be sure that we can indeed control the temperature profile

using lasers. Although we are to model the temperature profile as T (r) ∝
|uLG(ρ, ϕ, 0)|2, the actual temperature profile should be obtained by solving

the heat equation.

In order to validate the assumption on the temperature profile, below we

examine the spatio-tempral profile of a laser-heated system. For simplicity,

we consider the following one-dimensional heat equation:

∂T (x, t)

∂t
− α

∂2T (x, t)

∂x2
= −T (x, t)− T 0(x, t)

τ
, (2.11)

where α is the diffusion rate of the system and τ is the relaxation rate

to the equilibrium. In metals, α is around 10−4 and in insulators around

10−6 [104]. The timescale of the cooling τ is determined by the energy

scale of the coupling between the electron and phonon systems, so that it

should be shorter than 10 ps. At each time, the temperature approaches

the enviroment temperature T 0(x, t) determined by the applied laser and

the background cooling.

We assume that the overall system is in contact with a thermal bath
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at the liquid Helium temperature THe = 4.2 K. On top of this background

cooling, there exists the heating induced by the laser. As a whole, the

instantaneous temperature of the environment T 0(x, t) is set to be

T 0(x, t) = THe + Tb
x2

w2
e−

x2

w2

(
1− t

100

)
, (2.12)

where Tb is a constant determined by the intensity of the laser. Here, we

assume that incident OV is gradually weaken down to zero. We measure

the time in the unit of ps.

We take the following parameters for the simulation: α = 10−5, τ = 5

ps, Tb = 50 K. We discretize the system into a lattice with the lattice

constant of 1 nm and take w = 50 nm. In Fig. 2.14, we show that the

temperature profile follows that of the heating. We see that after switching

on the heating, the system starts to follow the environment temperature

T 0(x, t) shortly after the initial time-domain. Therefore, as long as the

timescale of the process we are interested in is sufficiently longer than the

period of this initial time-domain determined by τ , assuming the spatio-

temporal profile proportional to the laser profile is acceptable.

2.4.2 Stochastic LLG equation

We numerically calculate the time-evolution of laser-heated spin systems.

In order to do that, we have to take into account the effect of thermal fluc-

tuation. Among various possible ways, here we introduce the fluctuation

as a random noise ξr(t) in the effective magnetic field Heff :

dMr

dt
= −γMr ×

(
−∂H(Mr1 , ...,MrN )

∂Mr

+ ξr(t)

)
+ α

Mr

|Mr|
× dMr

dt
,

(2.13)

where ξµr (t) is the µ (µ = x, y) component of a Gaussian white noise on

the site r satisfying

⟨ξµr (t)⟩ = 0,

⟨ξµr (t)ξνr′(t′)⟩ = 2Drδ
µ,νδ(r − r′)δ(t− t′). (2.14)

This formulation is called the stochastic LLG (sLLG) equation [103, 105,

106]. The sLLG equation is a powerful tool for studying thermally induced

dynamics of spin systems as it allows us to calculate the real-time dynam-

ics of many-body system at finite temperature. For example, by using this
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Figure 2.14: (a) Spatio-temporal profile of the temperature in the laser
heated system obtained by solving the heat equation (2.11) assuming
(2.12). (b) Maximum values of T (x, t) and T 0(x, t) at each time.
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sLLG equation, Mochizuki et al. [107] have shown that the experimen-

tally observed ratchet motion of a skyrmion lattice is due to the thermal

gradient.

The random field ξr(t) is tied to the local temperature distribution

T (r) through the fluctuation-dissipation theorem. In order for the random

field to mimic the thermal fluctuation at temperature T , the distribution

function P (Mr1 , ...,MrN , r, t) obtained by the Focker-Plank equation cor-

responding to the sLLG equation must satisfy the condition [106]

P (Mr1 , ...,MrN , r)eq

= P (Mr1 , ...,MrN , r, t→ ∞) ∝ exp [−β(r)H(Mr1 , ...,MrN )] . (2.15)

Namely, the asymptotic distribution should locally coincide with the canon-

ical distribution at the inverse temperature β(r) = 1/[kBT (r)]. We can

confirm that, to meet this condition, we have to set

Dr = kBT (r)α/(γ
2h̄). (2.16)

2.4.3 Chiral ferromagnets

By using this sLLG equation for the temperature profile determined by OVs

T (r) ∝ |uLG(ρ, ϕ, 0)|2, we calculate the dynamics of a chiral FM (3.1). We

mostly use the following parameters: J = 1, D = 0.15, and α = 0.1. For

these values of J and D, the phase boundary between the helical order

phase and the skyrmion crystal phase is Hz = 0.0052 and that between

the skyrmion crystal and the ferromagnetic phase is Hz = 0.018. The

value of the static field Hz is chosen as the ground state is in the skyrmion

crystal phase. Same as the previous case, we consider the meta-stable

ferromagnetic state as the initial state of our calculation. For the numerical

integration of the sLLG equation in terms of the Stratonovich stochastic

differential equation, below we use the stochastic generalization of the Heun

method [105] with a numerical time step of ∆t = 0.02.

As the temporal profile of the temperature, we use the following “an-

nealing” like one T (t) = T0

(
1− t

t0

)
Θ(t)Θ(t0 − t). Here Θ(x) is the Heav-

iside theta function. That is, we assume that the temperature is instan-

taneously raised to its maximum (T0) and gradually cooled down (see also

Fig. 2.14). This can be achieved by gradually lowering the laser inten-

sity as discussed in Sec. 2.4.1. Since the spatial profile is set to be of the

beam-induced one, the spatio-tempral profile of the temperature is given

as T (t, r) = T (t)
[
|uLG(ρ, ϕ, 0)|2/max

r
(|uLG(ρ, ϕ, 0)|2)

]
.
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Figure 2.15: The creation of topological defects with the local heating
using OVs. In the left-hand side, we show the time-averaged intensity
profile (and the temperature profile assumed) of the incident beam. The
right-hand side is the time-evolution of the z component of spins for each
case. (a): Nucleation of a skyrmionium by the local heating with a single-
ring OV (p = 0, m = 5, and w = 12.5a). (b): Nucleation of a 4π defect
with an OV (p = 1, m = 3, and w = 33.3a). In each case, the initial state
is taken to be the meta-stable ferromagnetic state in the z-direction. We
fix the Gilbert damping constant to be α = 0.1. For (a) we take Hz = 0.01,
T0/J = 2, and t0 = 500h̄/J while for (b) we use Hz = 0.011, T0/J = 4,
and t0 = 800h̄/J .
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When the beam waist is small, the result is essentially the same as the

local heating with Gaussian beams, and the results by Koshibae et al. [103]

is reproduced. On the other hand, when the beam waist is compatible with

the stable size of magnetic defects, as we see in Fig. 2.15, the spatial profile

of the beam is “printed” as topological defects. Depending on the radial

index p, determining the number of rings in the intensity profile, we obtain

nπ-vortices with n = p+ 1. As we noted previously, those nπ-vortices are

meta-stable once formed. Therefore, the local heating with OVs could be

a systematic way of generating a family of skyrmionic defects.

However, in order the local heating to be a practical scheme of gen-

erating those defects, we have to check the reliability or stability of this

approach. Since our method relies on the nucleation of defects by the

thermal fluctuations induced by OVs, whether the defects are successfully

generated or not is even theoretically nondeterministic. Below, we numer-

ically study how reliable the local heating is as a nucleation scheme.

We fix the temporal profile of the heating in the annealing type as

before and take the parameters: p = 0, m = 5. That is, we examine the

creation of a ring-shaped defect, skyrmionium with OVs. While changing

the strength of the heating, the external static magnetic field, and beam

waist, we calculate the success probability of obtaining a skyrmionium

after the heating procedure. We perform the numerical simulations twenty

times for each set of parameters and obtain the probability of having a

skyrmionium.

The result is summarized in Fig. 2.16 [in (d) we show the temporal pro-

file of the temperature]. We see that when the heating is sufficiently strong

(of the order of the exchange coupling) and the beam waist is comparable

with the stable size of the target defect, we can generate a skyrmionium

with high probability of success. Since the high probability is achieved in

a wide parameter region, this approach is expected to be robust against

slight changes in material parameters, beam parameters, temperature pro-

files, and so on. Therefore, the local heating with OVs would be a reliable

and practical way of generating topological defects in chiral magnets.

So far we have been working on chiral FMs. However, the applicability

of our method is not limited to it. Indeed, the important feature of the

local heating is that it does not depend on the details of the system. It

does not require the system to be insulating or metallic and not need a

specific form of DM interactions. To show the wide applicability of our

method, let us consider chiral antiferromagnets next.
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Figure 2.16: Success probability of creating skyrmioniums by vortex beams
with p = 0 and m = 5, for J = 1, D = 0.15, and α = 0.1. (a) Probability
forHz = 0.01, (b)Hz = 0.0125, and (c)Hz = 0.015. The local temperature
T (t, r) is set to be proportional to the intensity of the beam: T (t, r) =
T (t)

(
|uLG(ρ, ϕ, 0)|2/max(|uLG(ρ, ϕ, 0)|2)

)
. Here the temporal profile of the

temperatures is given as panel (d): T (t) = T0

(
1− t

t0

)
Θ(t)Θ(t0 − t) with

t0 = 500. The highest probability is achieved when the magnetic field is
small and the beam waist satisfies w ∼ 11.5a for which the wavelength of
the beam is comparable with the size of skyrmions. We also show where
the chosen magnetic fields Hz locate in the phase diagram.

52



2.4. THERMAL GENERATION OF MAGNETIC DEFECTS WITH OVS

2.4.4 Chiral antiferromagnets

Chiral antiferromagnets are also expected to host skyrmion-like defects. As

a simple theoretical model, we consider a square lattice antiferromagnets

with a DM interaction. Unlike the ferromagnetic case, we cannot use a

Zeeman field to stabilize magnetic defects so that we rely on a magnetic

anisotropy:

HAF = J
∑
r

mr ·
(
mr+aex +mr+aey

)
+
∑
r

Di · (mr ×mr+aei)− A
∑
r

(mz
r)

2. (2.17)

Here the exchange coupling is antiferromagnetic J > 0, and A is the

uniaxial magnetic anisotropy. Due to the DM interaction, for example,

Dx = Dey, Dy = −Dex, a Néel-type antiferromagnetic skyrmion (and

skyrmionium) [shown in Fig. 2.17(a, b)] is stabilized with appropriate pa-

rameters.

Figure 2.17: Schematics of a Néel-type antiferromagnetic (a) skyrmion
and (b) skyrmionium. There are two magnetic sublattices in Néel ordered
states in the square lattice, and a skyrmion and skyrmionium can be seen
as bound states of their ferromagnetic counterparts living in different mag-
netic sublattices.

The phase diagram of this model for A/J = 0.055 [108] is given in

Fig. 2.18. For D/J < 0.22, the ground state is a Néel state. However,

antiferromagnetic skyrmions are (meta-)stable only if D/J > 0.16. Fol-

lowing Ref. [108], we particularly call this region as antiferromagnetic

skyrmion (AFMS) region. For larger DM interaction satisfying D/J >

0.22, skyrmions deform (d-AFMS region) and form warm domains (WD

region). In upper panels of Fig. 2.18 we show typical spin textures of AFMs

and WD regions using staggered spins mz
r,± ≡ mz

r=(i,j) × (−1)i+j. We note
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that WDs can be regarded as a collection of strongly deformed skyrmions

so that the boundary between the d-AFMS and WD regions is unclear

from our LLG calculation.

Figure 2.18: Phase diagram of the canonical model of chiral AFMs
Eq. (2.17) for A/J = 0.055 reproduced from Ref. [108]. When DM in-
teraction is very weak, we have an antiferromagnetic (AFM) region where
we cannot have skyrmions. As we increase DM interaction D, antiferro-
magnetic skyrmions become energetically stable at D/J ∼ 0.16 as isolated
defects. For larger DM interaction (D/J ≥ 0.22), skyrmions deform to
lower their energy (d-AFM state) and eventually warm domains are formed
(WD). The phase boundary between d-AFM and WD is unclear from our
calculations. We visualize the spin textures of typical states in the AFMS
and d-AFMS phases obtained from LLG calculations by using staggered
spins mz

r,± ≡ mz
r=(i,j) × (−1)i+j.

As in the ferromagnetic case, we model the effect of OVs as a local heat-

ing and examine the time evolution of spins with the sLLG equation. Our

goal is to show that local heating with OVs offers a practical way of gen-

erating antiferromagnetic skyrmioniums. As we see from Fig. 2.17(b), the

spin texture of an antiferromagnetic skyrmionium consists of two skyrmio-

niums living in the different sublattices.

Because the two possible Néel states are energetically degenerate, hav-

ing magnetic defects costs energy proportional to the perimeter, not the

area of them. This makes magnetic defects have lower energy than those

in ferromagnets, allowing them to easily deform and split. Because of that,

it is more difficult to control the formation of defects compared with fer-
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Figure 2.19: Examples of magnetic defects generated with heating by
single-ring OVs. The upper-left panel is the ordinary antiferromagnetic
skyrmionium, and the lower-left one corresponds to antiferromagnetic 3π
vortex.

romagnets. Even if we apply a single-ring (p = 0) OV, heating caused by

that can result in a variety of defects (see Fig. 2.4.4), though they have a

ring-like structure in common. In the following, we call those ring-shaped

defects as vortex defects altogether.

We will solve the sLLG equation for the antiferromagnetic Hamilto-

nian (2.17):

dMr

dt
= −γMr ×

(
−∂HAF

∂Mr

+ hT (r)(t)

)
+

α

M
Mr ×

dMr

dt
, (2.18)

where Mr = h̄γmr, and hT (r)(t) is again the random field satisfying

Eq. (2.14) and σ(r) = 2kBT (r)α. We take a system with 150 × 150 sites

with periodic boundaries. The numerical time step is set to be ∆t = 0.03.

Hereafter we take J = 1 and fix D = 0.205 and A = 0.055. Those param-

eter values correspond to the AFMS ground state. Namely, here we are

taking an actual ground state of the model as the initial state.

After some trials and errors, we noticed that to keep heating the system

for a long period is advantageous. Therefore, in the following, we assume

the following temporal profile of the temperature T (t) = T0Θ(t0 − t)Θ(t)

with t0 = 3000, 5000, and 7000. Here T0 is proportional to the time-

averaged intensity of an OV with p = 0 and m = 5. We show a typical

time evolution under this temperature profile in Fig. 2.20. Under the static
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Figure 2.20: Time evolution of staggered spins in a particular trial with
parameters D/J = 0.205, A/J = 0.055, T0/J = 1, w = 12.5a, and α = 0.1.
The ring-shaped heating caused by OVs with p = 0 and m = 5 creates
magnetic domains on the background Néel order.

heating, magnetic domains on the background Néel state appear and merge

to form an antiferromagnetic skyrmionium.

As is done for the ferromagnetic case, let us examine the probability of

success in generating defects. As we noted, in the antiferromagnetic case,

we encounter various vortex defects as shown in Fig. 2.4.4. Instead of stick-

ing to an antiferromagnetic skyrmionium, here we study the probability of

getting general vortex defects. We try calculations twenty times for each

set of (T0, t0, w) and see whether we have one of such ring-shaped defects

or not.

The result is summarized in Fig. 2.21. We find that with proper beam

waist and heating strength, the probability can be very high. Hence, heat-

ing with OVs can be a reliable way of nucleating vortex defects in chiral

antiferromagnets. The optimal beam waist is comparable with the sta-

ble size of skyrmions which is determined by the balance among exchange

coupling, DM interaction, and anisotropy.

2.4.5 Remarks

As we noted previously, OVs can be conveniently generated with the spiral

phase plates, holograms, synchrotrons, and so on. In the wide range of

frequencies covering the range of the typical size of skyrmions, OVs are

available. Heating with OVs is a very simple scheme as a way of creating

defects. Compared to other proposed methods like the spin-current injec-

tion, it is more widely applicable. We can create various types of defects

just by changing beam parameters. It applies to both ferromagnets and

antiferromagnets as we have shown, and does not require the target to be
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Figure 2.21: Success probability of creating antiferromagnetic vortex de-
fects by vortex beams with p = 0 and m = 5. We fix J = 1, D = 0.205,
A = 0.055, and α = 0.1, with which the system is in the AFMS region (see
Fig. 2.18). The initial state at t = 0 is a Néel ordered ground state and
the temperature is varied in accord with T (t) = T0Θ(t0 − t)Θ(t) for (a)
t0 = 3000, (b) t0 = 5000, and (c) t0 = 7000. The probability is high when
the wavelength of OVs is of the same order of the size of antiferromagnetic
skyrmions, and the period of the irradiation of vortex beams is long.
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metallic unlike the injection of spin-polarized current.

Heating with OVs is unique in that it allows us to systematically gener-

ate nπ vortices in chiral magnets. In considering applications of skyrmionic

defects for information processing, the increased number of possible defects

has a substantial impact. In skyrmion-based memories, information will

be encoded as presence/absence of a skyrmion. That is, if the number of

memory units is N , the amount of information stored scales as 2N . On the

other hand, if a skyrmionium and a 4π vortex are available in addition to

skyrmions, the scaling improves to 4N . Namely, increasing the number of

available magnetic defects exponentially increases the recording density of

the memory.
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2.5 Summary of Chapter 2

In this chapter, we discussed ultrafast magnetism with OVs. We reviewed

chiral magnets and their topological magnetic defects. We pointed out the

problem of the deviation in the spatio-temporal scales of lights and magnets

and enumerated three possible ways to overcome it. We showed that OAM

carried by OVs results in the characteristic spatial profile and chiral time

evolution of electromagnetic fields, enabling us to control spin waves in an

unconventional way. We found that if tight subwavelength focusing of OVs

at THz frequency becomes possible, we can optically generate topological

defects in chiral magnets with systematic OAM dependence. Finally, we

demonstrated that heating with OVs allows us to systematically generate

a family of topological defects; skyrmion, skyrmionium, 4π vortex, and so

on, without relying on the materials details.
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Chapter 3

Cylindrical vector beams

(CVBs)

In this chapter, we discuss how to exploit the unique spatial and the focus-

ing properties of CVBs for the use of optical physics. In the first section we

propose a nonequilibrium extension of the magnetic oscillation measure-

ments, which allows us to measure the Fermi surface profile of magnetic

materials. In the next section, we discuss how to use CVBs for the spec-

troscopy of matters and control of their electromagnetic properties. We

study how much the electric-field absorption can be suppressed by using

the focused CVBs instead of Gaussian beams and give applications for

magnetic-field spectroscopy. We also propose to use the azimuthal profile

of the electric-field component of the azimuthal CVBs for the imaging and

control of the circulating edge current in topological insulators. Moreover,

we claim that CVBs can be a powerful tool of designing nonequilibrium

states of driven matters through the Floquet engineering approach. This

chapter is based on Refs. [63, 64].
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3.1 Nonequilibrium magnetic oscillation with

azimuthal CVBs

In this section, we propose a nonequilibrium extension of magnetic os-

cillation measurements of Fermi surfaces using CVBs. This new method

enables us to probe the full three-dimensional (3D) profile of Fermi-surfaces

of magnetic metals.

3.1.1 Magnetic oscillation: probe of Fermi surfaces

When electric conductors are placed under a strong magnetic field, the

cyclotron motion of electrons results in the formation of Landau levels

and Landau tubes in the momentum space. For a fixed Fermi energy, the

change in the Landau tube structure as a function of the external magnetic

field causes oscillating behaviors in various electronic properties. [109, 110].

A notable example is the de Haas-van Alfphen effect of the magnetization.

There, we observe oscillations as a function of the inverse magnetic field

with its frequency determined by the area surrounded by the extremal

orbit of the Fermi surface cross-section perpendicular to the external field.

By measuring the oscillating frequency while changing the direction of the

external field, we can obtain the 3D profile of the Fermi surface.

Measuring the Fermi surface geometry with the de Haas-van Alphen

effect has been developed decades ago, but is still quite important in

condensed-matter physics [111, 112, 113, 114, 115, 116, 117, 118, 119, 120],

being a source of new discoveries. A notable example is the recent discov-

ery of the bulk-like quantum oscillations in the family of Kondo insulators

like SmB6 [112]. As we mentioned, following the traditional theory of the

de Haas-van Alphen effect, the oscillation takes place only when there ex-

ists a clear Fermi surface. Hence, the quantum oscillation observed in the

insulating systems posed a critical question on their electronic properties,

and triggered studies [121, 122] searching for a novel charge-neutral Fermi

surface [123, 124, 125, 126].

The magnetic oscillation is powerful without doubt. However, if we are

going to apply it to magnetic materials, a problem arises. In performing

the magnetic oscillation measurement, we apply a static magnetic field and

change its direction and strength to probe the Fermi surface. When the

target material is magnetically ordered, the external field affects both the

electric and magnetic properties. In particular, when the external field

is very strong (which is usually the case in the magnetic oscillation mea-

surement), the original magnetic order is strongly modulated by the field,
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changing the electronic property that we are interested in. Therefore, if we

are to study the electronic properties of antiferromagnetic, ferrimagnetic,

or non-collinear magnetic states, for example, what we observe would al-

ways be those of a forced ferromagnetic state [Fig. 3.1(a)].

The strong external field is problematic even for collinear magnetic

states. To probe the 3D Fermi surface, we have to change the direction

we apply the external field. However, under a strong external field, the

magnetic moments would follow the change in the direction of the field

and hence we cannot probe the full 3D profile of the Fermi surface.

To probe the Fermi surface profile of conducting magnets, therefore,

the magnetic oscillation is not a suitable option. As a way of studying

the electric band structure of metals, angular resolved photoemission spec-

troscopy (ARPES) exists but it is as well not applicable to systems with

macroscopic magnetizations or those under an external field. Therefore,

it has been difficult to study the field-induced phase transitions where

the strength and direction of the external magnetic field play important

roles. For example, pyrochlore iridates are known to show a field-induced

change of their electronic structure as metals, insulators, and topological

semimetals [127, 128]. Measurement of the field-induced phase transition

in pyrochlore iridates relies on the change in the electric conductivity at

present, but the magnetic oscillation, if properly extended to conducting

magnets, will allow us to directly measure the change in the Fermi sur-

face as a function of the external field. As we have seen in the previous

chapters, a thin film of chiral magnets is also an example showing the

field-induced phase transition in which we observe helical magnetic phase,

skyrmion crystal phase, and ferromagnetic state [69, 72, 77] depending on

the strength of the out-of-plane magnetic field.

The aim of this section is to propose a possible extension of the mag-

netic oscillation measurement in a way applicable to metallic magnets. We

consider a system in which we have both conduction electrons and localized

magnetic moments. As we see below, the use of CVBs instead of the static

magnetic field would suppress the “side effect” on the magnetic structure.

We mention that in this section, we do not consider magnetic metals where

conduction electrons themselves are responsible to the magnetization.

The key idea is to exploit the difference in the timescale [28, 129, 130]

which we also used in the previous chapter. The relaxation time of elec-

trons is orders of magnitude shorter than that of spins. The former is

typically of the order of 10-100 femtoseconds coming from the electon-

electron scatterings with the energy scale of eV while the latter is longer

than 1 ps because of the smaller energy scale of the magnon-magnon and
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magnon-electron scatterings [Fig. 3.1(c)].

3.1.2 Magnetic oscillation with a pulse field

Let us consider a pulse of magnetic field with its duration between these

two different timescales. For conduction electrons, such a pulse works as a

static magnetic field and forms Landau levels while for localized moments,

that is too short to follow. Therefore, by changing the amplitude of the

pulse we can measure the oscillation associated to the original magnetic

structure of localized moments [see Fig. 3.1(b)]. The proper pulse width

would be 100 fs to a few ps, so that the frequency of the beam to be used

is in the region of far-infrared to THz. In such a high frequency region, we

cannot use equipments like coils and solenoids to produce magnetic fields

and we would rely on optical means.

The side-effect problem would be avoided by using a pulsed magnetic

field. However, if we use conventional Gaussian beams, heating caused by

the electric-field component becomes problematic. The electron tempera-

ture after the pulse excitation will be much higher than the energy scale

of Landau tubes, smearing out the oscillation in physical quantities. What

we need is thus a source of a “pure magnetic field” without accompanying

the electric field in the optical frequency regime1. Here, the CVBs takes

the role.

As we introduced in Chapter 1, near the focus, a focused azimuthal

CVB develops the longitudinal AC magnetic field, and its electric-field

components is suppressed there. Unlike Gaussian beams, therefore, the

strong heating due to the electron-hole excitations could be avoided. The

important point to be kept in mind is the length scale. The longitudinal

magnetic field of focused CVBs is present only around the focus. Therefore,

taking into account the diffraction limit, the size of the region is most

probably of the order of the wavelength. As we are considering CVBs in

the far-infrared to THz region, the wavelength would be around O(10 −
100) µm. To avoid being heated up by the electric field and measure the

magnetic oscillation, the sample size should be small enough compared to

that. Therefore, the typical sample size of the nonequilibrium magnetic

oscillation will be O(100) nm to O(1) µm. Preparing a sample of this size

is, in nowadays not so difficult by using, for example, a focused ion beam

equipment.

1Near the focus, the longitudinal magnetic field is spatially homogeneous.
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Figure 3.1: (a): Schematic illustration of the conventional magnetic oscil-
lation measurement performed to a conducting magnet. Arrows on vertices
of the lattice represent localized moments and the thick black arrows do
the static magnetic field perpendicular to the lattice. Irrespective of the
original spin texture, the static field makes the system to be a forced fer-
romagnet. (b): Schematic illustration of the laser-based nonequilibrium
measurement proposed in this paper. We apply a cylindrical vector (CV)
beam (explained later) pulse to form the Landau levels to which electrons
relax. The latter method has the sensitivity to the magnetic structure of
the initial state. Panel (c) shows the hierarchical structure of the scattering
times [28, 129, 130].
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3.1.3 Example: s-d coupled electrons

We take a simple model to clarify the situation and see how the oscillation

signal depends on the magnetic structure of the localized moments. We

consider the following Hamiltonian for a Kondo-like system; a tight-binding

model on a square lattice with an s-d type coupling:

H =− t
∑

⟨r,r′⟩,σ

c†r,σcr′,σe
−i e

h̄

∫ r′
r A(x)·dx

− 2µBB
∑
r

szr − 2Jex
∑
r,α,β

mr · sr +Hm. (3.1)

The first term is the nearest-neighbor hopping with amplitude t. We use

r and r′ to specify the sites on the lattice. The magnetic field B of the

focused CVB is introduced by the Peierls substitution of the vector po-

tential A(r) = (By, 0, 0). Here, the magnetic field B is of the focused

azimuthal CV beam. As we discussed before, in a limited time domain we

can treat that as a static magnetic field for electrons. The second term

is the Zeeman coupling of the electron spins (sr)α,β = c†r,ασα,βcr,β with

the magnetic field of the beam. The third term is the s-d type coupling

between the conduction electrons and the localized moments. Depending

on the direction of the magnetic moment mr, an electron at that site r

feels an effective magnetic field. The last term Hm includes possible terms

relevant for magnetic moments except the coupling with the external field.

This is made possible by the discrepancy in the timescale we have discussed

in Sec. 3.1.2. That is, for localized moments, the external field is too short

in its pulse width to be affected by it.

The coupling constant of the s-d type exchange Jex is typically of the

order of sub eV to eV. For example, that of the f-d exchange in pyrochlore

iridates R2Ir2O7, Jex is around 5 % of the hopping t [131]. If we regard the

Jex as the Hund coupling in transition-metal compounds like Mn oxides,

its energy scale would even reach to eV [132, 133]. In the following, we

take t = −3, Jex = 2 in the unit of electron volt and measure the magnetic

field B in the unit of Tesla. The lattice constant is taken to be a = 5 Å. In

this case, the band edge is at EF = −1 for the ferrimagnetic and EF = −2

for the antiferromagnetic cases.

We consider three different magnetic structures; ferromagnetic [mr =

(0, 0, 1) for all r], antiferromagnetic, and ferrimagnetic which are realized

by the proper choices of Hm. In the latter two cases, we divide the system

into two sublattices s1 and s2, and then define mr∈s1 = (0, 0, 1), mr∈s2 =

(0, 0,−1) for the antiferromagnetic case and mr∈s1 = (0, 0, 1), mr∈s2 =
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Figure 3.2: Fermi surface of the model (3.1) for ferromagnetic (FM), an-
tiferromagnetic (AFM), and ferrimagnetic (Ferri) orders of the localized
moments. We take t = −3 and Jex = 2 and draw the corresponding Fermi
surfaces for two different Fermi energies EF = −1.5 and −2.5. Since the
valence-band edge of the AFM state is at E = −2.0, in the left panel, we
see no Fermi surface in th e AFM case.

(0, 0,−0.5) for the ferrimagnetic case. In Fig. 3.2, we show the Fermi

surfaces of the model (3.1) for these different magnetic structures.

We calculate the spin polarization of conduction electrons with the

Fermi energy EF at zero temperature of the system with the linear dimen-

sions Lx,y = 30a where a is the lattice constant. We take a fixed Fermi

energy EF irrespective to the external field since the change in the chemical

potential as a function of the external field does not affect the oscillation

frequency at T = 0 [134].

The conduction-electron spin polarization of a free-electron system in

the ground state is defined as

⟨sztot⟩B =
∑

En<EF

⟨En|sztot|En⟩ . (3.2)

Here sztot =
∑

r s
z
r is a sum of the z component of conducting-electron spins

at each site, and |En⟩ is the single-electron eigenstate with energy En. As-

suming the discrepancy in the relaxation timescale, we study this electron

spin polarization while changing the amplitude of the applied magnetic

field coming from the CVB.

Figure 3.3 summarizes the field dependence of the conduction-electron
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spin polarization. We focus on the oscillating part of the spin polarization

by plotting ⟨sztot⟩B /B as a function of the inverse magnetic field. We

consider two different Fermi energies EF = −1.5 and EF = −2.5 and

show the results in the panels (a1-a2) and (b1-b2), respectively. We see

clear oscillations and peaks in the Fourier space. Using the Fermi surface

contour [shown in Fig. (3.2)] and the formula

δ

(
1

B

)
=

2πe

h̄Sf

, (3.3)

we calculate the oscillating frequency and compare that with the numerical

plot. The left-hand side is the period of the oscillation, and Sf is the area

of the extremal orbit in the Fermi surface. The peak positions predicted

from Eq. (3.3) [109, 110] are shown as vertical lines in the panels (a2, b2).

We see that the numerically obtained frequency perfectly matches with the

formula Eq. (3.3).

As we saw above, the formula Eq. (3.3) works also for conducting mag-

nets. By changing the pulse field amplitude of the azimuthal CVBs, we

can study the Fermi surface in a way having sensitivity to the magnetic

order. Moreover, using CVBs allows us to easily change the direction in

which we apply the beam so that we can study the full 3D profile of the

Fermi surface.

3.1.4 Discussion

Here we discuss several issues on the feasibility of the proposed method.

As we mentioned, in this part we assumed that the large discrepancy in the

relaxation timescale makes it possible for us to fix the magnetic structure

of the localized moments. However, since the energy scale of the s-d type

exchange coupling can be very high, this is in reality a subtle assumption.

If the longitudinal magnetic field of CVBs drastically changes the elec-

tron spin polarization, through the large s-d type exchange, there might

appear a very large effective magnetic field for the localized moments, re-

sulting in the fast magnetization dynamics. Fortunately, this is not the

case. The field-induced change in the electron spin polarization is small.

In realistic experiments, we use an external field of O(1-10) Tesla. The

energy scale of the Zeeman coupling with this field is of the order of meV

at most. Hence, compared to the electron-spin polarization induced by

the s-d type coupling, the field-induced change in that will be quite small.

This can be also confirmed from Fig. 3.3. There, we see that the change

is very small: O(mµB) for O(10) Tesla. Hence, the change in the effective
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Figure 3.3: Magnetic oscillation for (a1,a2): EF = −1.5 and (b1,b2):
EF = −2.5. We consider three (ferromagnetic, antiferromagnetic, and
ferrimagnetic) different magnetic orders. (a1, b1): field dependence of the
electron spin polarization ∆ ⟨sztot⟩B = ⟨sztot⟩B − ⟨sztot⟩0. The origins are
shifted for visibility. These oscillations are Fourier transformed to obtain
panels (a2, b2). The vertical lines in these panels correspond to the oscilla-
tion frequency calculated from the area of each extremal orbit of the Fermi
surface [see Eq. (3.3)].
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magnetic field felt by the localized moments will be very small for the real-

istic value of the beam amplitude, and the original magnetic configuration

will be virtually unchanged in most cases.

The frequency of the incident beam should be around THz to far-

infrared. To observe the magnetic oscillations in the wide range of ma-

terials, we need a field amplitude of O(1-10) Tesla. In the THz region, this

is a bit challenging, though a field of O(1) Tesla is becoming possible very

recently. In the far-infrared region, it is much easier. There are a variety

of molecular lasers with fairly large field amplitude. For example, we could

use CO2 lasers or lasers pumped by them.

In order to observe the oscillation, we have to measure the nonequilib-

rium spin polarization in the optical timescale. Hence, we would rely on

the magneto-optical measurements such as Kerr or Faraday rotations for

the femtosecond pulses. Since the magnetic oscillation originates form the

Landau tube structure, we may use any physical quantities related to that.

For example, we could use the optical conductivity to probe the oscillation

as in Shubnikov-de Haas measurement.

The proposed method is advantageous for investigating metals with lo-

calized moments but is also useful in studying non-magnetic metals. The

key point is the all-optical nature of that method. As an example, let us

consider a magnetic oscillation of metals under ultra-high pressure of a

diamond anvil cell. Diamond anvil cell [135] is a common way of press-

ing materials to more than a hundred gigapascal but has a weakness in

the accessibility to a sample inside the cell. There, both the conventional

de Haas type measurement and ARPES are hard or totally impossible so

that Fermi surface of materials under ultra-high pressure is, even for sim-

ple metals, hard to probe. Unlike existing methods, our nonequilibrium

magnetic oscillation method is all-optical and thus applicable to this situ-

ation because diamonds are highly transparent in the THz to far-infrared

frequency.
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3.2 Magnetic field spectroscopy with CVBs

In the previous section, we discussed the possibility of nonequilibrium mag-

netic oscillation. There, we completely ignored the electric field effect.

However, in order to use CVBs for spectroscopic purposes, electric absorp-

tion could cause a severe problem.

Suppose that we are interested in magnetic properties of a target and

are to measure magnetic field absorption to probe them. In particular,

we work on high-frequency properties, for example, in the THz region.

Magnetic-field spectroscopy at the optical frequency has two advantages

over that with microwaves. Firstly, it has much better temporal resolu-

tion because it is basically determined by the pulse width of the incident

oscillating field. Secondly, it has a wider range of applicability. For exam-

ple, magnetic resonance frequency of antiferromagnetic materials can be

at (sub-)THz due to so-called exchange enhancement. In this case, the use

of THz fields is essential to probe their properties.

Unlike in the low-frequency region like GHz, at the THz frequency

we have to rely on optical means to apply an oscillating magnetic field.

The problem is, if we use conventional lasers, the strong electric-field ab-

sorption, which is usually dominant over the magnetic one by several or-

ders [136], masks the magnetic field absorption in which we are interested.

Therefore, optical probe of magnetic properties of matters is possible only

for insulators where electromagnetic field absorption comes dominantly

from magnetic dipole transitions.

In the following, we first discuss how small the electric-field absorption

can be by replacing Gaussian beams by focused CVBs. Based on it, next

we give several applications; time-resolved electron spin resonance (ESR) of

conducting materials, measurement and control of multiferroic materials,

electron paramagnetic resonance (EPR) study of dynamical properties of

biomolecules in their living environment.

3.2.1 Suppressed electric-field absorption for CVBs

Let us consider the competition of electric and magnetic field absorption

in conductors. The electric-field absorption is determined by the real part

of the electric conductivity, and the magnetic one is by the imaginary part

of the magnetic susceptibility. In order for the magnetic absorption to be

detectable, it does not have to be larger than the electric-field absorption

in general. The electric-field absorption of conductors is well described by

the phenomenological Drude model [109]. Therefore, the true competition

70



3.2. MAGNETIC FIELD SPECTROSCOPY WITH CVBS

appears after subtracting the Drude-type contribution.

When the magnetic-field absorption is larger than (or at least com-

parable with) the electric-field absorption corresponding to the deviation

from the Drude model (we call this deviation as microstructures in the

following), we could probe it. For example, when the target has strong

spin-orbit-coupling (SOC), the electric-field absorption through the mech-

anism so-called electron dipole spin resonance (EDSR) takes place. EDSR

absorption is an example of the microstructures of electric conductivity.

In the following, we study absorption of focused CVBs by matters as-

suming that the sample (radius R) is sufficiently smaller than the wave-

length λ. The electromagnetic-field absorption of matters is written as2

α =
∑
i,j

σ′
ij(ω)EiEj + ωχ′′

ij(ω)BiBj. (3.4)

Here σ′ and χ′′ are the real and imaginary parts of the electric conductivity

and the magnetic susceptibility, respectively. The subscripts i, j are for the

spatial coordinates. Since R ≪ λ, we can expand Eϕ(ρ, ϕ) in Eq. (1.19) in

terms of ρk < R/λ≪ 1:

Eϕ(ρ, ϕ) = 2Akρ

∫ α

0

sin θ cos
1
2 (θ)ℓ0(θ)

sin θ

2
+O(k3ρ3). (3.5)

The leading order term is O(kρ), and that of absorption is, therefore,

O(k2ρ2). After integrating over the sample area, the total absorption is

found to be O(R2/λ2) in the leading order. In contrast, if the incident

beam is of a simple Gaussian type, as it is approximately a plane wave

near the focus, the leading order of the absorption is independent of the

ratio R/λ. This shows that replacing Gaussian beams by focused CVBs

serves to suppress the electric-field absorption by the factor of O(R2/λ2).

We define “effective conductivity” σ′
eff(ω) =

R2

λ2 σ
′(ω) to make the con-

trast with Gaussian beams better. Since the lattice constant is much

smaller than THz wavelength, locally electrons feel the fields as if being

linearly polarized one. Hence, suppression of the electric-field absorption

by the geometrical feature of the electric field is equivalent to replacing

σ′(ω) by σ′
eff(ω). For example, when R = 1 µm, and the wavelength is 300

µm (1THz), σ′
eff becomes about 10−5 smaller than σ′(ω).

2In multiferroic materials, there could appear cross-terms of electric and magnetic
fields. However, as we are interested in conductors here, we ignore them.

71



3.2. MAGNETIC FIELD SPECTROSCOPY WITH CVBS

Below we use the ratio of the two contributions in Eq. (3.4),

P =
ωχ′′(ω)B2

CVB

σ′(ω)E2
CVB

, (3.6)

as a measure of the relative strength of absorption. Here BCVB and ECVB

are field amplitudes of the incident CVB. By using the effective conductiv-

ity, we can rewrite Eq. (3.6)

P =
ωχ′′(ω)B2

G

σ′
eff(ω)E

2
G

=
ωχ′′(ω)

σeff
0 c

2
(3.7)

Here we define EG and BG as field amplitudes of the corresponding Gaus-

sian beams and use the relation BG = EG/c to reach to the final expression.

We also use the DC value of the effective conductivity σeff
0 since the domi-

nant Drude-type contribution is, at THz frequency, well approximated by

the DC value.

Let us consider a two-dimensional (2D) conductor placed in the y − z

plane under a static in-plane magnetic field B0. This is a standard situ-

ation of ESR, where the magnetic resonance takes place at the resonance

frequency ω = γB0. The imaginary part of the magnetic susceptibility is,

by solving Bloch equation of electron spins derived to be

χ′′ ≃ χ0

2
γB0T2

1

1 + (ω − γB0)2T 2
2

, (3.8)

where T2 is the transverse relaxation time of the total spin, and χ0 is the

real-part of magnetic susceptibility at ω = 0. At the resonance ω = γB0 ≡
ω0, we have χ′′ = χ0(ω0T2)/2. If we assume THz resonance frequency

and take T2 to be about a nanosecond (which is the typical timescale of

the dynamics of a macroscopic magnetization), the peak height will be

χ′′ ≃ 103χ0/2. Using these parameters, Eq. (3.7) leads to

P ∼ 0.02
χ0

σeff
0

= 2000
χ0

σ0
. (3.9)

The dimensionless factor P works as a criterion. If P is too small,

absorption peaks from magnetic dipole transitions would be smeared out

by electric absorption peaks (in particular, those from microsctructures

of electric conductivity). The amplitude of microsctructures is strongly

material dependent. In the next subsection, we take EDSR as a source of

the microstructure and examine the threshold quantitatively, but here we

just assume that the amplitude of the microstructure is 1% of σ0. In this
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case, the P factor has to satisfy P > 0.01 in order for us to detect magnetic

absorption peaks. Then, the DC electric conductivity of the target material

must satisfy σ0 < 2× 105χ0. If χ0 ∼ 4π × 10−7[H/m], we obtain σ0 ≤ 0.3

[S/m]. Remember that if we use Gaussian beams in the first place, the

threshold value becomes ∼ 10−5 times smaller.

The threshold value σ0 = 0.3 [S/m] is higher than the electric con-

ductivity of typical semiconductors like Si or GaAs at weak doping (see

Fig. 3.4). Hence, though it strongly depends on the details of microstruc-

tures and the value of magnetic susceptibility, using focused CVBs instead

of Gaussian beams could be quite useful for studying magnetic absorption

in various semiconductors.

The magnetic absorption does not necessarily come from conduction

electrons. The resonance can also originate from magnetic impurities, lo-

calized moments, and magnetic subsystems in conductors. Moreover, the

dipole-transition itself can have a different origin like zero-field splitting

due to magnetic anisotropy. As we will discuss in the next subsection, in

antiferromagnets, the zero-field splitting is often at (sub-) THz region, so

that high-frequency measurement plays an important role.

Figure 3.4: Enlarged scope of magnetic-field spectroscopy by the use of
the cylindrical vector beam. We assume that the square of the ratio of
the wavelength and the system size to be (R/λ)2 = 10−5. We show known
values of the electric conductivity of several materials [137].

In the argument above, we have electric conductors in mind. However,

electric absorption can originate also from electric dipoles, i.e. dielectric

absorption, in insulating systems. In the following, we discuss spectroscopic

uses of focused CVBs, discussing both conducting and dielectric systems.
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3.2.2 Applications

Given the argument above, here we propose several applications of focused

CVBs for magnetic-field spectroscopy of both conducting and dielectric

systems.

Magnetic resonance of conducting systems

Here we discuss magnetic resonance measurements in more details. As

we noted, in spin-orbit-coupled systems, one of the primary sources of the

conductivity microstructures is EDSR. Hamiltonian of a Rashba-type SOC

is, for example, given by

HRSOC ∝
∑
p,α,β

c†p,α(dp · σα,β)cp,β, (3.10)

where σ are Pauli matrices with matrix indices α and β, and dp is the

SOC vector. The operators cp,α and c†p,α are the annihilation and creation

operators of fermions in the second quantization form [109]. The SOC vec-

tor works as a momentum-dependent magnetic field for electrons, leading

to EDSR absorption with broad and high peaks.

Let us take a simple one-dimensional tight-binding model to study the

effect of EDSR quantitatively. The model that we consider is the following

one:

H = −t0
∑
i,α

c†i+1,αci,α + h.c.− gµBB
∑
i,α,β

c†i,ασ
x
α,βci,β

+ iλR
∑
i,α,β

c†i+1,ασ
y
α,βci,β + h.c., (3.11)

where the second term is the Zeeman coupling with the external field, and

the third one is the Rashba SOC. Here t0 is the electron hopping, g is the

g-factor, µB is the Bohr magneton, and λR is the SOC constant. This is

a spacial case of the model investigated in Ref. [138]. Although this is a

one-dimensional model, we can take a collection of such chains to calculate

the standard, three-dimensional electric conductivity.

As parameters, we take λR/t0 = gµBB/t0 = 10−3. We assume the

intra- and inter- chain lattice constants to be a∥ = a⊥ = 0.5 nm. Since

the electron hopping t0 is of the order of eV, the magnitudes of the SOC

constant and the magnetic field are of THz. According to the calculation

in Ref. [138], for these parameters, the EDSR contribution to the electric

conductivity at the frequency ω ∼ gµBB is about 10−8 to 10−1 [S/m] de-
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pending on the electron filling per lattice sites. Recalling Fig. 3.4, we notice

that the EDSR contribution is in the “insulating” region of the effective

conductivity σeff . Therefore, with CVBs, we may overcome the dominant

EDSR contribution to the THz absorption in various semiconductors with

SOC.

So far, we have considered magnetic resonance of paramagnetic or ferro-

magnetic conductors. In these cases, the resonance frequency is determined

by the Zeeman coupling with the external field. Therefore, to lift the reso-

nance frequency to be at the THz region, we have to apply a fairly strong

magnetic field over 10 Tesla. However, magnetic resonance can also come

from localized magnetic moments. In particular, when these moments are

coupled antiferromagnetically, so-called the exchange enhancement takes

place. Because of the strong exchange coupling J , antiferromagnetic res-

onance coming from a magnetic anisotropy A is lifted to the (sub-) THz

region as ω =
√
JA [15, 16]. In ferromagnetic conductors, the advantage

of ESR using CVBs over ESR at low-frequency using existing methods is

limited to its improved temporal resolution. However, in antiferromagnetic

cases, the large zero-field splitting makes low-frequency AFMR impossible.

Therefore, CVBs would be a unique and natural way of studying antifer-

romagnetic conductors.

Electromagnons in multiferroics

The suppression of electric-field absorption is also true for dielectric losses.

In this and the next subsections, we consider dielectric systems.

As we noted in the previous chapter, multiferroic materials like chiral

magnets gather attention nowadays. The coupling between the local elec-

tric polarization and local magnetic moments makes spin excitations to be

electromagnons which are active to both electric and magnetic fields.

To study the magneto-electric coupling and electromagnons in multifer-

roic materials, we would perform absorption measurements and/or pump-

probe measurements of multiferroic materials using lasers. However, if we

use Gaussian beams, as both electric and magnetic fields drive the magne-

tization dynamics, we cannot experimentally separate these contributions.

In a limited case in which we already know the magneto-electric properties

of the target beforehand [139], we could identify individual contributions to

the dynamics by, for example, combining measurements using lasers with

several different polarizations. However, this is not always the case. In

general, we do not even know the background mechanism of multiferroic-

ity. In particular, if the target is a newly synthesized material, separating

the two contributions in that way is impossible.
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Using CVBs allows us to excite the dynamics of electric and magnetic

dipoles individually. As a proof of the concept, let us consider a simple

toy model of multiferroic magnets: a pair of classical spins S1 and S2,

and apply a linearly polarized plane wave to model the situation of mea-

surements with Gaussian beams. We assume that due to the spin-current

mechanism [85], there appears an electric polarization p = λce1,2×(S1×S2)

where e1,2 is the unit vector in the direction connecting these spins (which

we take in the x direction; e1,2 = x̂).

We apply a strong static magnetic field H0 in the x direction and a

linearly polarized beam; B(t) = Bŷ cos(ωt), E(t) = Eẑ sin(ωt). Using the

instantaneous directions of the spins at each time t: S1(t) and S2(t), the

Hamiltonian of this system is given in the following form:

H = −p(t) ·E(t)− gµB(S1 + S2) ·B(t)− gµBH0(S
x
1 + Sx

2 )− JS1 · S2.

(3.12)

Assuming that the incident beam is weak compared with the static

field, we consider the laser-induced dynamics of spins in the linear order of

E and B. We expand the time-evolution of spins S1(t) and S2(t) as

S1(t) ≃ x̂+ δS1(t) + O(E2, B2), (3.13)

S2(t) ≃ x̂+ δS2(t) + O(E2, B2), (3.14)

where δS1 and δS2 are small-amplitude vectors linear in E and B.

In the linear order of E and B, these spins can be independently treated

as the instantaneous polarization vector p(t) becomes a linear sum of each

spin:

p(t) = λce1,2 × (S1(t)× S2(t))

= λc [(δS
z
1(t)− δSz

2(t))ŷ + (δSy
2 (t)− δSy

1 (t))ẑ] + O(E2, B2), (3.15)

and the exchange coupling also does as S1 ·S2 = 1+δSx
1 +δS

x
2 +O(E2, B2).

Therefore, as long as the beam amplitude is weak and the frequency of the

beam is far away from the magnetic resonance, the laser-induced dynamics

of spins can be easily calculated as a solution of a single-body problem.

We focus on the time evolution of S1(t) (see Fig. 3.5) and analytically

solve the Landau-Lifshitz equation to obtain the time evolution of δSy
1 (t)

as

δSy
1 (t) =

γ2H̃0B + ωλcE

γ2H̃2
0 − ω2

cos(ωt), (3.16)
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Figure 3.5: Setup of the calculation of the dynamics of S1 in the leading
order of the incident fields.

where we assumed that Sy
1 (t) = 0 if E = B = 0 and define H̃0 = H0 +

J/(gµB). We see that the spin dynamics is driven by both Zeeman and

magneto-electric couplings with the beam. As we know the functional

form of the dynamics Eq. (3.16), in this case, we can read out magnetic

and electric contributions by measuring the time evolution while changing

parameters like ω and H0. However, as we noted, this is not possible in

general.

On the other hand, if we use CVBs instead of linearly polarized beams,

we can set E = 0 or B = 0 while keeping the other finite in Eq. (3.16).

Therefore, we can study the spin dynamics purely induced through mag-

netic or electric mechanisms without being annoyed by the contribution

from the other one.

The fact that we can change the directions, amplitudes, and the rela-

tive phase of applied electric and magnetic fields by using focused CVBs

enables us to obtain richer information of multiferroic materials. This ap-

proach does not require any prior knowledge of the magneto-electric cou-

pling in the target. Hence, CVBs will largely streamline the experimental

characterization of (newly-synthesized) multiferroic materials.

Electron paramagnetic resonance in absorbing media

As a primary tool for chemistry and biology, EPR [140, 141, 142] is widely

accepted. In EPR, magnetic absorption spectrum works as a fingerprint of

unpaired electrons (free radicals) in the target system. The free radical is

not necessarily a part of the target molecule. We can use a stable radical

as a “marker” and use its spectrum to probe the target indirectly. This

approach is known as a spin label (or spin probe) method of EPR and is a

common way of studying macromolecules like a protein and DNA.
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Among variants of EPR methods, time-dependent EPR provides infor-

mation of molecular dynamics like rotation on the occasion of chemical

reactions. In the time-dependent EPR, we use a pulse field and measure

its absorption by free radicals, and its temporal resolution is limited by the

pulse width, or the frequency. This is one of the driving forces toward the

very high frequency (VHF) EPR/ESR [143].

If we are interested in the dynamical properties of biological molecules

in their living environment, the most natural way of studying them is to

probe EPR of the target molecules in an aqueous environment. However,

at high frequency like THz, strong dielectric absorption by liquid water

causes large dielectric loss and makes it difficult for us to measure the

magnetic-field absorption [144]. Using a pulse CVB is a way of avoiding

absorption by solvent molecules like water. Since the spin-triplet-excitation

energy of liquid water is of the order of eV [145], magnetic-field absorption

at (sub-)THz frequency would be, if exists, by the solute molecules.

As we noted, the absorbing radical could be the target molecule itself

or spin markers of the spin label/probe methods. A commonly used spin

marker is a nitroxide radical or molecules with it. However, in order to

perform a VHF EPR, we have to apply a strong magnetic field to lift the

Zeeman energy. Although this is possible, it costs and the strong field may

alter the sample property.

Another way of measuring EPR at high-frequency explored recently is

to use spin markers with a sizable zero-field splitting like single-molecule

magnets [146, 147, 148]. For example, recent developments in chemistry

allow us to design highly anisotropic molecules [149] which have the res-

onance frequency of (sub-)THz. Using CVBs would make it possible for

us to use variety of single-molecule magnets as spin markers for the time-

dependent EPR at high frequency.

3.2.3 Discussion

In this part, we explored the possibility of selectively measuring magnetic

absorption of matters with CVBs. Under the realistic assumption for the

sample size, we showed that the electric absorption can be suppressed

several orders of magnitude. We enumerated some applications such as

magnetic resonance measurement of conductors, study of magneto-electric

coupling and electromagnons in multiferroics, and VHF EPR of molecules

in biological environments. Other systems to be explored may include the

spin-momentum-locked states of topological insulators [150, 151], magnetic

superconductors, quantum dots/wells, and so on. The proposed THz time-
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domain spectroscopy with CVBs would be, in these ways, a new window

to nonequilibrium physics in diverse fields.
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3.3 Imaging and controlling circulating cur-

rents

So far, our focus was on the longitudinal magnetic field of azimuthal CVBs.

We discussed how to utilize that to applications like nonequirlibrium mag-

netic oscillation and magnetic absorption spectroscopy. In these situations,

the electric-field component has been just a nuisance. In this subsection,

on the other hand, we consider the azimuthal electric field. As long as we

are primarily interested in the azimuthal nature of the electric field, we can

ignore the effect of focusing and simplify the electric field as

E(ρ, ϕ) =
C√
w

( ρ
w

)
êϕe

−iωt−ρ2/w2

. (3.17)

Here C is a constant. Because of the weak focusing, the magnetic-field

configuration can be approximated by B ∝ êρ. As noted before, Eq. (3.17)

is obtained by superimposing two OVs.

For the following arguments, the value of the beam width w is not

essential, though there is a physical limitation due to the diffraction limit.

In particular, we do not require a sample to be smaller than that contrary

to the applications discussed in the previous parts.

What we consider is a coupling between the azimuthal electric field (3.17)

and circulating currents in matters. In particular, we consider its ap-

plication to visualize and control edge current in topological insulators

(TIs) [150, 151].

TIs are characterized by the coexistence of their insulating bulk and

metallic edges/surfaces. Notable examples of TIs in 2D is quantum Hall

insulators and quantum spin Hall insulators. As a prototypical example

of TIs, both have been well studied both experimentally and theoretically.

The existence of their metallic edge states and their chiral/helical nature

are well studied by the transport measurements [152]. Researchers are also

active for directly visualizing the edge modes [153, 154, 155, 156, 157].

Here we discuss how CVBs can contribute to characterize and control the

edge transport.

3.3.1 Edge visualization

We consider a disk-shaped 2D TI with helical edge modes. We apply the

azimuthal field (3.17) and consider its coupling with those edge states.

We model the edge conduction as an inhomogeneous electric conductivity
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coming from the exponential decay of the wavefunction away from the edge:

σ(ρ) = SΘ(R− ρ)e2
ρ−R
ξ , (3.18)

where R is the sample radius, ξ is the localization length, S is a constant,

and Θ(x) is the Heaviside theta function. The value of ξ is determined

by the bulk property of the sample like the band gap and is typically

of the order of nm. As the peak position of the incident electric field is

around the beam width w, we can expect that when the sample size R

matches with the beam width w we would observe strong absorption by

the edge modes. Then, by measuring the absorption while changing the

beam width (focusing strength) we can quantify where and how much the

electric conduction localizes.

By using Eq. (3.4), the electric absorption (time averaged) is, if we

ignore the magnetic-field contribution, given by

α(w) =
SC2

2

∫ R

0

1

w
e2

ρ−R
ξ

( ρ
w

)2

e−2ρ2/w2

ρdρ. (3.19)

This integration can be performed analytically, and we have

α(w) ∝
∫ R

0

1

w
e2

ρ−R
ξ

( ρ
w

)2

e−2ρ2/w2

ρdρ

=
e−2R( 1

ξ
+ R

w2 )

32ξ3w
(
√
2πw3

(
3ξ2 + w2

)
e

2R2

w2 + w2

2ξ2

×
(
erf

(
w√
2ξ

)
− erf

(
w2 − 2ξR√

2ξw

))
+ 2ξw2e

2R2

w2
(
2ξ2 + w2

)
− 2ξe

2R
ξ
(
4ξ2R2 + 2ξw2(ξ +R) + w4

)
).

(3.20)

Here erf(x) is the error function. If the localization is sufficiently strong,

and the localization length ξ is much smaller than both w and R, we can

expand Eq. (3.20) in terms of ξ to obtain the lowest-order expression

α(w) =
SC2

2

ξR3e−
2R2

w2

2w3
. (3.21)

Figure 3.6 shows the w dependence of the absorption α(w). The panel

(a) shows a schematic illustration of the measurement. We measure the

electric-field absorption while changing the beam width w. For comparison

with edge modes of TIs, we also calculate the absorption by an ordinary
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metal with homogeneous conductivity σ(ρ) = const.×Θ(R−ρ). The panel
(b) is for the ordinary metal and the panel (c) is for the TI. The inset of

the panel (c) shows the conductivity profile assumed.

When the conductivity is spatially homogeneous, the absorption is lin-

ear in w for small w. On the other hand, when the current is localized at the

edge, as is also obvious from Eq. (3.21), the w dependence is strongly non-

linear in w for small w, and there appears a rising edge around w = R/2.

Moreover, as we expected, when the beam width w is around the sample

radius the absorption takes its maximum. Therefore, from the absorption

intensity we can read out where the current localizes and how large the

localization length is.

For the calculation, we take the localization length to be ξ = 0.05R,

which is unrealistically large since ξ is typically order of nm in TIs. Nev-

ertheless, as shown in Fig. 3.6(c), the lowest-oder expression (3.21) works

quite well. Hence, the simplified expression (3.21) would be useful as a

fitting function for experiments.

Figure 3.6: (a) Schematic illustration of the proposed measurement of the
electric absorption. Beam width w dependence of the absorption by (b) an
ordinary metal and (c) a topological insulator. In the inset of the panel
(c), we show the spatial profile of the electric conductivity. We take the
localization length ξ = 0.05R. The dashed and the solid curves in the
panel (c) are calculations based on Eq. (3.20) and Eq. (3.21), respectively.
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3.3.2 Orbital magnetization

Although the visualization of edge currents discussed above is interesting as

a proof of concept, there are a number of other options for the purpose. In

particular, in artificial systems like photonic and phononic crystals, their

visualization is well established [153, 154]. Even in electronic systems,

equipment like microscopes and SQUID offer a way of realizing is [155,

156, 157].

The advantage of using CVBs for studying edge currents is that it allows

us to control them, not just to measure. Local probes like microscope

and SQUID are sensitive to the local density of states but cannot drive

circulating currents unlike CVBs. Since circulating currents generate an

orbital magnetization[158, 159]:

M edge
orb ∝

∫ R

0

2πr × jedgeρdρ =

∫ R

0

2πρ2σ(ρ)Eϕ(ρ)dρ, (3.22)

the azimuthal electric field of CVBs would be a unique way of controlling

orbital magnetization within an optical timescale (see Fig. 3.7).

The total magnetization of a sample is given by the sum of the orbital

and spin magnetization3. Therefore, changing the orbital magnetization

with CVBs enables us to electrically control the magnetic properties of

matters. Since we are assuming a weakly focused CVBs, the magnetic-

field component can be regarded as purely radial B⃗ ∝ êρ, so that the spin

magnetization is not induced by the beam. Therefore, we can just measure

the change in the total magnetization to demonstrate the electric control

of the orbital magnetization.

The argument above does not require the current to have a topological

origin. Rather, the induced orbital magnetization itself would be much

larger for metals because of the large current density. In particular, when

there exists a spin-orbit-coupling in the target, the orbital and spin mag-

netizations mutually affect with each other. Therefore, the laser-induced

orbital magnetization may provide a new approach of optically controlling

the spin degrees of freedoms.

3More precisely, the orbital magnetization is a sum of the surface and bulk contribu-
tions. The latter, which we ignored, comes from the microscopic circulating motions of
electrons around each atom. Since these motions do not couple to the azimuthal electric
field, the change in the bulk orbital magnetization would be negligible in the present
case.
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Figure 3.7: (a) Excitation of edge currents j with a linearly polarized laser
(or a static electric field). There is no net circulating current and thus
no bulk orbital magnetization. (b) Excitation with the cylindrical vector
beam applied from the out-of-plane direction. The azimuthal electric field
generates the circulating current j, and thus a net orbital magnetization
Morb in the out-of-plane direction appears.

3.3.3 Discussion

A candidate system for the proposed measurements is a thin film of 3D

topological insulators such as Bi compounds and HgTe wells [150, 151].

Although the quantum Hall insulator is the simplest topological system,

the chiral nature of their edge modes may cause a complication. It is

indeed interesting to see how the chiral nature of quantum Hall insulators

or chiral topological superconductors affects the absorption of CVB pulses.

The interplay of the azimuthal electric field and chiral modes may result

in nonreciprocal response which is useful as a fingerprint of such modes.

In the above, we did not discuss the possibility of controlling metallic

or superconducting rings using azimuthal CVBs, but it is definitely an in-

teresting subject to explore. The fact that we can insert magnetic fluxes

within an optical timescale with focused CVBs enables us to study the

Aharonov-Bohm effect at a high-frequency region and flux-quench dynam-

ics of superconductors.
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3.4 Floquet Engineering

The highly controllable nature of CVBs would offer an ideal building block

for Floquet engineering [20, 21, 22]. In Floquet engineering, we consider

a system under a periodic drive with, for example, lasers. There, we are

interested in the properties of such a driven system and how they can be

designed at our will.

3.4.1 Floquet theory

Our concern is on the time evolution described by a time-periodic Hamil-

tonian H(t) =
∑

mHme
imt. For a time evolution over one period of the

external drive U(T, 0) = Tte
i
∫ T
0 H(t)dt, we introduce a “Floquet effective

Hamiltonian” HF as

U(T, 0) = eiHFT , (3.23)

Here Tt is the time-ordering operator, and T is the period of the external

drive. When the driving frequency is sufficiently high, the Floquet-Magnus

expansion of the effective Floquet Hamiltonian,

HF = H0 +
∑
m>0

[H−m, Hm]

2mω
+O

(
1

ω2

)
, (3.24)

gives an approximate description for the short-time dynamics of the driven

system. This effective Hamiltonian enables us to predict the nonequilib-

rium dynamics under the drive in an intuitive way. For example, for a

Zeeman coupling between spins and a circularly polarized magnetic field,

Eq. (3.24) predicts a large synthetic magnetic field which is in consistent

with numerical calculations of the real-time evolution [32, 33].

The advantage of CVBs over conventional driving sources like circularly

polarized beams is that we can independently control the electric and mag-

netic field applied to the target4. This is achieved by combining focused

radial and azimuthal CVBs, and then we can freely vary the relative angles,

phases, and amplitudes of the incident electromagnetic fields. This makes

CVBs unique and powerful tools for Floquet engineering of nonequilbrium

states of matters.

4if the target is sufficiently small compared to the wavelength
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3.4.2 Floquet engineering with CVBs

Let us take a simple example, laser-induced multiferroicity [22, 36], to see

this point. We consider a pair of quantum spins S1 and S2 placed along

the x-axis and apply focused CVBs to them. The spins couple to magnetic

fields through the Zeeman coupling:

HB = −gµB cos(ωt+ δ)(Sz
1 + Sz

2)B
z, (3.25)

where we consider a focused azimuthal CVB applied along the z-axis. We

assume that spins couple to electric fields through the magneto-electric

coupling of the spin current mechanism:

Hp = −gmep ·E, (3.26)

p = x̂× (S1 × S2). (3.27)

We take the electric field to be in the following form: E = E(cos θẑ +

sin θŷ) cos(ωt). This is equivalent to apply a focused radial CVB in the

direction (0, sin θ, cos θ). We show the setup of the calculation in Fig. (3.8).

Figure 3.8: Setup of the calculation: a pair of quantum spins driven by
focused radial and azimuthal CVBs.

From Eq. (3.24), the Floquet effective Hamiltonian is obtained as

HF = H0 +
sin δ

2ω
ggmeµBEB cos θ [Sz

1S
y
2 − Sy

1S
z
2 ] +O

(
1

ω2

)
. (3.28)

We see that the periodic drive by the focused CVBs results in the synthetic

DM type interaction between the spins. There is no other O(1/ω) term

in the synthetic Hamiltonian, in stark contrast to the previous work [36]

dealing with the same model but using circularly polarized lasers along the

z axis instead. In that case, we inevitably have a synthetic Zeeman field in
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addition to the DM interaction. The absence of such an additional term is

advantageous from the viewpoint of Floquet engineering.

3.4.3 Numerical validation

To check whether the effective description (3.28) is consistent with the

actual time evolution, below we compare Eq. (3.28) and a numerical cal-

culation. We take a pair of s = 1/2 spins; S1 and S2. For simplicity, we

fix S1 to +z direction and ignore the time-independent terms (namely, we

take H0 = 0). In this case, Eq. (3.28) is reduced to be

HF =
sin δ

4ω
ggmeµBEB cos θSy

1 +O

(
1

ω2

)
. (3.29)

As we are not taking any dissipation into account, the time evolution would

be a spin precession around the −y direction if θ = 0 and δ = π/2. In

this case, classically this effective Hamiltonian corresponds to an effective

magnetic field in the −y direction.

We take θ = 0 and solve the Schrödinger equation for the time-periodic

Hamiltonian

H(t) = −B̃ cos(ωt+ δ)Sz
2 − Ẽ cos(ωt)Sx

2 . (3.30)

Figure 3.9 presents the real-time evolution of Sx
2 for Ẽ = B̃ = 0.1 and

ω = 1. The result is consistent with the argument above. For δ = ±π/2,
the spin precesses around ∓y axis while for δ = 0 it does not.

87



3.4. FLOQUET ENGINEERING

Figure 3.9: Spin precession induced by the synthetic DM term for three
different values of the relative phase δ. We take Ẽ = B̃ = 0.1 and ω = 1.
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3.5 Summary of Chapter 3

In this chapter, we considered applications of CVBs for various condensed-

matter purposes. By using the longitudinal electromagnetic fields of fo-

cused CVBs, we can independently control electric and magnetic fields

applied to a target. We proposed a nonequilibrium extension of magnetic

oscillation measurements in a way applicable to magnetic metals or met-

als in a diamond anvil cell. We quantitatively discussed how small the

electric-field absorption will be by using focused azimuthal CVBs and ar-

gued potential usefulness of CVBs for spectroscopic purposes. We pointed

out that the azimuthal electric field offers a mean of characterizing and

controlling circulating currents in topological materials which may have

applications in spintronics. In the final part, we claimed that focused ra-

dial and azimuthal CVBs will be a building block of Floquet engineering

of magnets.
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Chapter 4

Conclusion

Lasers are becoming more and more important both scientifically and in-

dustrially. As the realization of intense ultra-short pulse lights has been

an engine of the enormous success of modern science in the past decades,

new technologies like teraherz optics and plasmonics will keep reinforcing

our ability to understand and control matters. Optical physics, a study of

light-matter interaction, will thus remain important in modern science.

In this thesis, we pushed optical physics forward by building its connec-

tion with singular (structured light) optics. In chapter 2, we showed how

optical vortices could be useful for ultrafast magnetism. By using the chiral

nature of optical vortices, we can excite spin waves with an unusual wave-

front. Combined with the existing approach relying on designed apertures,

optical excitation of spin waves with optical vortices will extend our abil-

ity to control spin waves and may lead to new functionalities of magnetic

materials. As we showed, the anisotropic wave-front of spin waves hosts

net scalar spin chirality. It may be an interesting future study to explore

the outcome of this laser-induced spin chirality on electric transport.

The optical generation of topological defects discussed in Sec. 2.3 is also

interesting. Although it would take long time before the tight subwave-

length focusing of terahertz optical vortices becomes available, its realiza-

tion will have a substantial impact on terahertz optical physics; we will

be able to exploit the orbital angular momentum degrees of freedom for

various purposes, as our result suggests. Exploring potential outcomes of

the subwavelength focusing of optical vortices in the future will stimulate

and propel its technological advance.

In terms of the immediate experimental feasibility, the thermal gener-

ation of topological defects discussed in Sec. 2.4 seems to have no problem

at present. As we showed, heating with optical vortices allows us to nu-

cleate general nπ vortices within an optical timescale in a systematic and
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reliable manner. Since the number of available topological defects directly

determines the possible recording density of information storages based on

the magnetic defects, our result largely strengthens the prospect of the

skyrmion-based memories as an alternative to the existing ones.

In chapter 3, we focused on cylindrical vector beams and propose their

applications for characterizing and controlling electromagnetic properties

of matters. The unique focusing property of azimuthal cylindrical vector

beam, namely the appearance of the longitudinal magnetic field, leads to

the suppression of electric-field absorptions. The drastic reduction of the

heating and the electric dipole excitations will bear chances of nonequi-

librium magnetic oscillation measurements applicable to (magnetic) met-

als (Sec. 3.1) and novel magnetic-field spectroscopy of conductors and di-

electrics (Sec. 3.2). They have been difficult or totally impossible by ex-

isting methods so that experimental realizations of our proposals will have

a drastic impact on the study of magnetic properties of matters in diverse

fields.

We also showed that, with the azimuthal electric-field component of

the beam, we may optically access circulating currents in (topological)

materials (Sec. 3.3). Unlike existing methods, cylindrical vector beams can

actually drive the currents and induce a net orbital magnetization to the

system relying solely on the electric-field component. It is worth studying

how the laser-induced orbital magnetization affects the spin degrees of

freedom through a spin-orbit coupling and whether it has any spintronics

applications.

The fact that we can independently control the relative amplitude,

phase, and angle of electric and magnetic fields is unique to focused cylin-

drical vector beams. In Sec. 3.4, we argued that, due to this property,

combining focused radial and azimuthal cylindrical vector beams will pro-

vide a building block of Floquet engineering of magnets. Cylindrical vector

beams will thus enable us to achieve a detailed design of nonequilibrium

states of matters at a level impossible with conventional light-sources.

From condensed-matter physics to biochemistry, topological lightwaves

would make significant contributions by “shedding a new light” on optical

properties of atoms, molecules, and solids. In this thesis, we only focused

on the simplest kinds of topological lightwaves. The applications proposed

in this thesis must be just the tip of the iceberg. We are at the intersection

of optical physics and singular optics. This emerging field of singular optical

physics would provide a new way of looking at both lights and matters.
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Andreas Scherz, Joachim Stöhr, Arata Tsukamoto, Bert Hecht,

Alexey V. Kimel, Andrei Kirilyuk, Theo Rasing, and Hermann A.
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M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fain-

man, M. Aeschlimann, and E. E. Fullerton. Engineered materials

for all-optical helicity-dependent magnetic switching. Nat. Mater.,

13(3):286–292, 03 2014.

[31] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto,

A. Itoh, and Th. Rasing. All-optical magnetic recording with circu-

larly polarized light. Phys. Rev. Lett., 99:047601, Jul 2007.

[32] Shintaro Takayoshi, Hideo Aoki, and Takashi Oka. Magnetization

and phase transition induced by circularly polarized laser in quantum

magnets. Phys. Rev. B, 90(085150):085150, Aug 2014.

[33] Shintaro Takayoshi, Masahiro Sato, and Takashi Oka. Laser-induced

magnetization curve. Phys. Rev. B, 90:214413, Dec 2014.
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[105] José Luis Garćıa-Palacios and Francisco J. Lázaro. Langevin-

dynamics study of the dynamical properties of small magnetic parti-

cles. Phys. Rev. B, 58:14937–14958, Dec 1998.

[106] Masamichi Nishino and Seiji Miyashita. Realization of the ther-

mal equilibrium in inhomogeneous magnetic systems by the Landau-

Lifshitz-Gilbert equation with stochastic noise, and its dynamical

aspects. Phys. Rev. B, 91:134411, Apr 2015.

[107] M. Mochizuki, X. Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang,

M. Mostovoy, Y. Tokura, and N. Nagaosa. Thermally driven ratchet

motion of a skyrmion microcrystal and topological magnon Hall ef-

fect. Nat. Mater., 13(3):241–246, 03 2014.

[108] Xichao Zhang, Yan Zhou, and Motohiko Ezawa. Antiferromagnetic

Skyrmion: Stability, Creation and Manipulation. Sci. Rep., 6, 04

2016.

[109] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Saunders

College, Philadelphia, 1976.

[110] C. Kittel. Introduction to Solid State Physics. Wiley, 2004.

[111] G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tins-

man, A. Berkley, S. Wolgast, Y. S. Eo, Dae-Jeong Kim, C. Kurdak,

J. W. Allen, K. Sun, X. H. Chen, Y. Y. Wang, Z. Fisk, and Lu Li.

Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science,

346(6214):1208–1212, 2014.

[112] B. S. Tan, Y.-T. Hsu, B. Zeng, M. Ciomaga Hatnean, N. Harri-

son, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. D.

Johannes, T. P. Murphy, J.-H. Park, L. Balicas, G. G. Lonzarich,

G. Balakrishnan, and Suchitra E. Sebastian. Unconventional fermi

surface in an insulating state. Science, 349(6245):287–290, 2015.

104



[113] Zengwei Zhu, Xiao Lin, Juan Liu, Benôıt Fauqué, Qian Tao, Chongli
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[144] Kálmán L. Nagy, Dario Quintavalle, Titusz Fehér, and András

Jánossy. Multipurpose High-Frequency ESR Spectrometer for Con-

densed Matter Research. Applied Magnetic Resonance, 40(1):47–63,

2011.

[145] Daniel M. Chipman. Excited electronic states of small water clusters.

The Journal of Chemical Physics, 122(044111), 2005.

[146] Anne Laure Barra, Dante Gatteschi, and Roberta Sessoli. High-

frequency EPR spectra of a molecular nanomagnet: Understanding

quantum tunneling of the magnetization. Phys. Rev. B, 56:8192–

8198, Oct 1997.

[147] R. S. Edwards, S. Maccagnano, E. C. Yang, S. Hill, W. Wernsdorfer,

D. Hendrickson, and G. Christou. High-frequency electron param-

agnetic resonance investigations of tetranuclear nickel-based single-

molecule magnets. Journal of Applied Physics, 93(10):7807–7809,

2018/08/31 2003.

[148] En-Che Yang, Cem Kirman, Jon Lawrence, Lev N. Zakharov,

Arnold L. Rheingold, Stephen Hill, and David N. Hendrickson.

Single-Molecule Magnets: High-Field Electron Paramagnetic Res-

onance Evaluation of the Single-Ion Zero-Field Interaction in a

ZnII3NiII Complex. Inorganic Chemistry, 44(11):3827–3836, 05

2005.

[149] Katie E. R. Marriott, Lakshmi Bhaskaran, Claire Wilson, Marisa

Medarde, Stefan T. Ochsenbein, Stephen Hill, and Mark Murrie.

Pushing the limits of magnetic anisotropy in trigonal bipyramidal

ni(ii). Chem. Sci., 6:6823–6828, 2015.

[150] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and

superconductors. Rev. Mod. Phys., 83:1057–1110, Oct 2011.

108



[151] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators.

Rev. Mod. Phys., 82:3045–3067, Nov 2010.

[152] Andreas Roth, Christoph Brüne, Hartmut Buhmann, Laurens W.
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[154] Roman Süsstrunk and Sebastian D. Huber. Observation of phononic

helical edge states in a mechanical topological insulator. Science,

349(6243):47, 07 2015.

[155] H. Ito, K. Furuya, Y. Shibata, S. Kashiwaya, M. Yamaguchi,

T. Akazaki, H. Tamura, Y. Ootuka, and S. Nomura. Near-Field

Optical Mapping of Quantum Hall Edge States. Phys. Rev. Lett.,

107:256803, Dec 2011.

[156] Keji Lai, Worasom Kundhikanjana, Michael A. Kelly, Zhi-Xun Shen,

Javad Shabani, and Mansour Shayegan. Imaging of Coulomb-Driven

Quantum Hall Edge States. Phys. Rev. Lett., 107:176809, Oct 2011.

[157] Katja C. Nowack, Eric M. Spanton, Matthias Baenninger, Markus

König, John R. Kirtley, Beena Kalisky, C. Ames, Philipp Leub-
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