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Abstract

New Methods in Strongly-Coupled Field Theories towards

Quantum Gravity

by

Masataka Watanabe

We study strongly-coupled quantum field theories and their universalities aiming
to constrain the theory-space of low-energy physics, characterising the Theory of Ev-
erything. In doing so, we develop an innovative and systematic method for analysing
strongly-coupled field theories, called the large-charge expansion. Applying this new
method to various systems, both non-supersymmetric and supersymmetric, we make
various universal predictions about higher-dimensional cfts. The main result includes
determining the entire chiral ring ope data of D = 4, N = 2, rank-one scfts, exactly
to all orders perturbatively in the inverse R-charge expansion, which turned out to be a
universal expression only dependent on each theory’s a-anomaly.
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Introduction

The most unexplored subject in the theory of high-energy physics is unarguably quan-
tum gravity. The evil but attractive face of quantum gravity appears most when one con-
siders Black Holes. Considerations of Black Holes using semi-classical gravity (wrongly)
immediately clashes with the fundamental law of nature which is quantum mechan-
ics [6]. General relativity for example suggests the loss of information behind the horizon
innocuously, but this is in stark contrast with unitarity. This seeming conflict between
general relativity and quantum mechanics, called the Black Hole information paradox, ends
with the victory of the latter, and an important takeaway is that one needs Planck-scale
description of gravity to solve such a problem.

Now, the correct description of the theory of quantum gravity is string theory; put it
more modestly, it is at least a way of quantising gravity without any known inconsisten-
cies. Aside from its mathematical beauty, the indication of how it should be the correct
Theory of Everything came from studying Black Holes, especially computing their en-
tropy; The entropy of Black Holes can be correctly computed in string theory, sometimes
up to and sometimes modulo numerical coefficients [7].

AdS/CFT correspondence was first devised in considering specific configurations
of extended objects in string theory [8], but it offers a more precise way of analysing
quantum gravity and Black Holes. It is, in short, a statement that each uv-complete
quantum gravity on AdSd+1 (times some compact manifold) is dual to a corresponding
CFTd. The power of AdS/CFT is so extraordinary that one can compute the Black Hole
entropy precisely, including its numerical factor [9]. One can even think of cfts, which
we somewhat know how to deal with, as the definition of quantum gravity, which we
hardly know anything about.

Experimentally so hopelessly impaired is our current understanding of the universe
that we have virtually no uv data which discerns what precise cft corresponds to the
Theory of Everything. The number of different models of quantum gravity roughly

6



corresponds to that of various ways of compactifications which is humongous, and we
are yet to know which is realised in the real world. However, we must not be left totally
perplexed; rather at this point we should study general or model-independent aspects
of quantum gravity. This, using AdS/CFT, reduces to studying the universalities of
various cfts. We can then set up a general formalism to study quantum gravity at least
in AdS spacetime. Especially, studying strongly-coupled cfts will be of great importance
in this context because they correspond to weakly-coupled gravity theories, which we
are interested in.

Strongly-coupled field theories are interesting in its own right aside from the con-
text above. Although the Standard Model itself, for example, is not strongly-coupled at
high energies, strongly-coupled field theories appear ubiquitously below certain energy
scales, because of renormalisation group flows. One can find a lot of such examples
in condensed matter or hadronic systems. One pity is that the fact that they are ubiq-
uitous does not mean that they are well understood; on the contrary, they are hardly
understood. Since most of the time we can only solve free theories and perturbations
thereof, studying strongly-coupled theories is almost tantamount to trying to solve the-
ories which we cannot solve. Maybe one can still extrapolate the perturbative series
outside of its regime of validity and hope that the error would not come out too big.
But that wouldn’t either be applicable to non-Lagrangian theories, which, intrinsically
strongly-coupled, lie exiled in the middle of the coupling constant space, without ay
simplifying limits whatsoever.

Attitudes of people towards strongly-coupled theories can vary, but there are roughly
three major ones and combinations thereof.1 One way is to come up with a nice new
parameter ε in terms of which one can expand, leading to a simplifying limit as ε → 0.
Examples are the ε expansion in the φ4 theory [10], the large-N expansion in gauge
theories [11] and the Regge limit (large-angular-momentum limit) in string theory [12–
14]. The last two are especially peculiar in that both limits are semi-classical, where the
loop counting parameters are suppressed.

The second is to focus on the consistency conditions of a theory. The idea dates
back as old as the S-matrix formulation of quantum field theory, and has recently re-
vived itself as a method called conformal bootstrap [15]. The virtue of this method is
that it is an intrinsic way of studying strongly-coupled theories (especially it does not
need Lagrangians at all), and that it only uses physical observables like the n-point func-

1 Exact methods like the susy localization and various techniques of integrability are also important.
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tions. Recent developments on quantum information theory can also be classified in this
category, considering how various quantum information theoretic inequalities produce
similar constraints on strongly-coupled field theories [16, 17].

The last is to develop or use various dualities. Dualities map strongly-coupled the-
ories into weakly-coupled ones, and they have been especially useful when the theory
has supersymmetry [18]. There also has been a recent interest in non-supersymmetric
counterpart in three dimensions [19]. Qualitative understanding of non-supersymmetric
strongly-coupled theories has expanded because of this method [20].

The first option – finding a small parameter – has been abandoned for a long time,
partly because it is indeed difficult to find such a parameter. However, this is the easiest
and the most systematic way of studying any theories, because one can use Lagrangians
and actually perturbatively compute physical quantities; if one can find such a param-
eter, it would be almost entirely solving the theory quantitatively, which could only be
partially hoped for in the other methods.

The underlying theme of this thesis, “the large-charge expansion,” is a new attempt
of pursuing the first attitude of finding a small parameter. When a theory has a global
symmetry, there is an intrinsic parameter in the theory, the global charge, J, and I, to-
gether with my collaborators, found that going to a sector of large charge, one can write
down effective Lagrangians for such theories, weakly-coupled in terms of 1/J [1–5].
Simple as it is, it turned out to be a systematic and universal method for analysing
strongly-coupled theories in different dimensions, with various different global symme-
tries, with or without supersymmetry, Lagrangian or non-Lagrangian. I hereby proclaim
that, if what future is lying ahead of this thesis, it will be a new understanding of field
theories and quantum gravity!

The rest of this thesis is organized as follows. In Chapter 1, I review the idea of the
large-charge expansion, especially focusing on its non-supersymmetric aspects (or more
precisely, theories without moduli space). This will make all the basic methodologies
clear. This part of the thesis is based on [1, 2, 5] written by myself and collaborators,
except the numerical parts which are based on [21] by Banerjee, et.al., and on [22] by de
la Fuente. In Chapter 2, I apply the method of the large-charge expansion to D = 4,
N = 2, rank-one scfts, deriving exactly to all orders in 1/n expansion the two-point
functions of chiral-ring elements On. I will also numerically check the formula for one
of the theories using exact localisation. This part is based on [3,4] written by myself and
collaborators with a special emphasis on the latter. I will conclude this thesis with an
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outlook, where I explain how studying the large-charge expansion will lead to a new
understanding of quantum gravity, although still a wild dream.
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Chapter 1

Review: The Large-Charge Expansion
and its Applications

1.1 The method of the large-charge expansion

Global symmetries can give conformal field theories (cfts) interesting and useful sim-
plifications. In spite of the common knowledge that most cfts have no weakly-coupled
Lagrangian, by taking a limit of large quantum number, J � 1, it is sometimes possible
to write down a weakly-coupled effective Lagrangian for such a theory, expanded in
terms of 1/J << 1. Such an effective Lagrangian is useful in computing physical quan-
tities (operator dimensions or operator product expansions (opes)) containing operators
of large quantum number/dimension, which is complimentary to the region of low
quantum number/dimension linear programming (of conformal bootstrap) has access
to.

Examples of such simplification at large quantum numbers used to be known in
various examples. The Regge theory is exactly the study of this kind, where one studies
the effective string theory in the large-angular-momentum limit. The famous leading
order behaviour of the spectrum of rotating strings was already known in [23] by Regge
himself; the revival of the idea and the computation of sub-leading terms were given
in [12–14].

Those papers pointed to a nice and general framework to describe the simplification
that occurs at large quantum numbers, J, which is that there will be an effective theory
description of physics whose Lagrangian is expanded in terms of 1/J. Such a general
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framework was then indeed found out by myself and collaborators in [1] for cfts with
a global symmetry, followed by applications to various systems [2–5, 21, 22, 24–33].

The general mechanism in which the theory simplifies in the large-charge limit is its
semi-classical nature. In order to understand why so, let us put the theory on a cylinder,
SD−1 ×R, with radius R and fix the charge density to ρ, where J ∝ ρRD−1 � 1. Then
the effective Lagrangian at large charge has its uv scale at ΛUV = ρ1/(D−1) and ir at
ΛIR = 1/R, so that the large separation in scales, ΛIR/ΛUV ∝ J−1/(D−1) renders the
theory semi-classical.1 In other words, by taking the Wilsonian cut-off Λ so that 1/R =

ΛIR << Λ << ΛUV = ρ1/(D−1), we suppress both quantum effects and higher-derivative
terms by a factor of 1/Jα. Because quantum effects are suppressed, the leading order
Lagrangian in terms of 1/J expansion should just be classically conformally invariant.
This can be easily and systematically done by writing down all terms in the effective
action according to the J-scaling.

The simplest example of the theory in which the large-charge expansion works is the
O(2) Wilson-Fisher fixed point in three dimensions. I will use this pedagogical example
to explain how the method works, by computing the lowest operator dimension at large
charge, J, whose result becomes

∆J = c3/2 J3/2 + c1/2 J1/2 − 0.094 · · ·+ O(J−1/4), (1.1.1)

where c3/2,1/2 are parameters that were undetermined by our method. I will then in-
troduce the idea of the large-charge universality class, in which, although the actual ir

fixed-point is different than the O(2) Wilson-Fisher fixed point, the physical quantities
of the theory at large charge are the same modulo undetermined coefficients like c3/2,1/2.
In other words, it means that c3/2,1/2 were the non-universal parameters at large charge.
I will also present two numerical results that checked our formula and fitted for the
values of c3/2,1/2.

This part of the thesis is mostly based on [1] written by myself and collaborators,
except the numerical parts which are based on [21] by Banerjee, et.al., and on [22] by de
la Fuente.

1 This is only when the theory has no moduli space of vacua. Also note that we can make artificial coun-
terexamples to this statement, e.g., two decoupled cfts one of which the symmetry acts trivially.
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1.2 Leading-order behaviour of models at large charge

1.2.1 O(2) model at large charge

Spontaneous symmetry breaking at large charge

Let us start from the simplest model that has the O(2) symmetry, which is called the
φ4 model, or simply the O(2) model,

LUV = −∂φ̄∂φ + m2 |φ|2 + g2 |φ|4 (1.2.1)

where φ is the complex bosonic field and m2 is fine-tuned in order to get to the Wilson-
Fisher conformal fixed point. For the sake of convenience, let us parametrise φ as

φ = a exp(iχ). (1.2.2)

Giving state a large charge density is the same as adding a chemical potential term
ω × ρ to the Lagrangian and taking ω big (in units of 1/R, of course). Here ρ is the
usual charge density, or the time-like component of the Noether current, so that

ρ ≡ i (φ̄∂0φ− φ∂0φ̄) . (1.2.3)

Although this looks as if an explicit symmetry breaking of the O(2) symmetry, it isn’t.
By redefining φnew ≡ eiωtφ, we recover the Lagrangian with the O(2) symmetry, which
is a combination of the original O(2) and time translation symmetry,

LUV + ω× ρ = −∂φ̄∂φ + (m2 −ω2) |φ|2 + g2 |φ|4 (1.2.4)

So taking ω large is tantamount to moving to the symmetry breaking phase, in which
the a-field gains a dimensionful vacuum expectation value (vev), proportional to

√
ρ, so

that
〈

a2〉 ≡ 〈|φ|2〉 ∝
√

ρ.

Renormalization group at large charge

The uv theory presented above was defined at the scale Λ ∼ g2 ∼ m, and ω was
taken large in units of 1/R but much smaller than m. Therefore the renormalisation
group flow is essentially the same as the usual O(2) model until the scale is of order ω.
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Here the coupling constants quickly reach the Wilson-Fisher fixed point where m[Λ]/Λ
and g2[Λ]/Λ are both of O(1), thus strongly-coupled. In other words,

g2[Λ] = hΛ (when Λ & ω). (1.2.5)

Because the mass parameter of the Lagrangian becomes negative, the theory now is in
the symmetry breaking phase, where I denote the vev of the a-field simply as a ∼

√
ω.

Because of this vev, the a-field gets mass

M2
a ∼ g2[ω]a2 ∼ ω2, (1.2.6)

and below Ma the renormalisation group flow comes to a halt and the running of g2[Λ]

stops. Therefore the final value of g2[Λ] becomes

g2[Λ] = g2[ω] ∼ ω2

a2 (when Λ . ω) (1.2.7)

by using (1.2.6). Matching the coupling constant computed from both sides of Λ ∼ ω,
i.e., (1.2.5) and (1.2.6), we get

hω =
ω2

a2 ⇐⇒ ω = ha2, (1.2.8)

so that
g2[Λ] = h2a2 (when Λ . ω) (1.2.9)

The potential generated from the renormalization group flow therefore becomes

V(a) =
h2

12
a6, (1.2.10)

where I have chosen some convenient normalization so that the coefficient becomes
h2/12. Note that this computation should be possible also using the ε-expansion and
setting ε = 1 (which is of course an uncontrolled approximation), although I will not do
this anywhere (I neither think there are any literatures yet that did this for this system).

Classical scale invariance

It was actually not necessary to work out the effective potential at large charge using
renormalization group analysis we did above. As the Lagrangian near the ir fixed point
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is approximately classically scale invariant, one can just write down such a Lagrangian
using a and χ. If we use a renomalization condition that the kinetic term for a is canon-
ically normalized, the effective Lagrangian at leading order in the derivative expansion
is uniquely determined,

LIR = −1
2
(∂a)2 − κ

2
a2(∂χ)2 − h2

12
a6 + (higher derivative terms), (1.2.11)

where κ and h2 are some numerical constants, which in principle can be calculated using,
say, the ε-expansion.

It is now easy to determine the equilibrium value for a using the charge density, via
Noether theorem and the Euler-Lagrange equation,

ρ =

√
κh2

2
a4. (1.2.12)

We can additionally see that χ = ωt, where ω ∝
√

ρ. Note that the analysis so far, again
has been correct in the regime where

1
R

<< Λ <<
√

ρ, (1.2.13)

so that we need
J = 4πR2ρ� 1, (1.2.14)

which is why this is called the large charge expansion. Schematic picture of this leading-
order (classical) analysis is shown in Figure 1.2.1.

1.2.2 The supersymmetric W = Φ3/3 model

The W = Φ3/3 model at large R-charge

Consider the N = 2 supersymmetric field theory in three dimensions, with a single
chiral superfield, Φ, Kähler potential K = Φ†Φ and superpotential W = Φ3/3. This the-
ory can be shown to flow to an interacting conformal fixed point using the extremization
principle [34, 35], where the R-charge and the dimension of Φ becomes equal to 2/3, in
the usual convention where the R-charge of Q is −1.

In this strongly-coupled theory, which has no marginal deformations nor any small
parameters, we wish to understand the spectrum of operators which have large R-
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V(|φ|) = |φ|6

φ = aeiχ

Figure 1.2.1: Schematic picture of our leading-order analysis. Because the ground
state is homogeneous, the computation reduces to a classical mechanics problem, where
we compute the energy of a particle in terms of its angular momentum. The “cup”
represents the potential V(|φ|) ∝ |φ|6 and the blob represents the field value φ = aeiχ.

charges. For the sake of convenience, we introduce the φ-charge, which is related to
the R-charge by a multiple of 3/2, so that φ has φ-charge 1. Hereafter when I write
“charge” unspecified, it will mean the φ-charge.

ir Lagrangian of the W = Φ3/3 model

Because of the holomorphicity, the superpotential is not renormalized. The Kähler
potential, however, gets renormalized, and because the Lagrangian has to be classically
conformal invariant in the ir, it becomes

K =
16bK

9
|Φ|3/2 , (1.2.15)

where bχ is again some undetermined proportionality constant. The component La-
grangian, therefore, includes the kinetic term

Lkin = bK
∂φ∂φ̄√
|φ|

(1.2.16)
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as well as the potential term,

V =
1

bK
|φ|9/2 . (1.2.17)

It also includes the Yukawa coupling of the form

iφψαψα + (h.c.), (1.2.18)

which will become important later on.

Taking the large R-charge limit

Taking the large R-charge limit is equivalent to taking the vev of |φ| large. By apply-
ing the similar method we used in the above subsection, we arrive at the ir Lagrangian
at large R-charge,

LIR = bK
(∂A)2

A1/2 + bK A3/2(∂χ)2 +
1

bK
A9/2 + (higher-derivative) + (fermions) (1.2.19)

where we have set φ ≡ A exp(iχ). We can see that this Lagrangian is essentially the
same as (1.2.11), by setting A ∝ a4/3.

Fermions and the massive Goldstini

The action above contains terms including fermions, but Yukawa coupling makes
fermions massive. This is in spite of the fact that we started from the supersymmetric
Lagrangian – supersymmetry is spontaneously broken and the Goldstini’s become mas-
sive. This fact can be explicitly seen by looking at the form of the Yukawa coupling, and
the fermions get mass of order O(

√
ρ).

This is again consistent with supersymmetry, and we have massive Goldstini’s in the
system [36]. The lowest state at fixed large charge J is described by a Bose condensate,
whose (classical) leading order energy is proportional to EJ ∝ ρ3/2. The supercharges
remove one φ quanta from the Bose condensate and replace it with a fermion almost
at rest. Because of supersymmetry, the energy of both states must be equal, and this is
compensated by a heavy mass Mψ for the fermion, which then becomes

EJ = EJ−1 + Mψ =⇒ Mψ ∝
√

ρ. (1.2.20)

This means that the fermions can safely be integrated out because they are massive.
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1.3 The large-charge universality class

1.3.1 Classification of operators at large global charge

The leading order Lagrangian with the angular field

In both of the models presented in the last section, after integrating all the massive
modes out, we are only left with the angular field, χ. In the O(2) model the massive
mode was the a-field, and in the cubic superpotential model, the massive modes were
|φ| and all the fermions.

The leading order Lagrangian after integrating them out becomes

LIR = bχ |∂χ|3 + · · · , (1.3.1)

where again |∂χ| ≡
√
−∂χ∂χ ∝

√
ρ. Note that we are only meant to use this Lagrangian

around the classical configuration, χ0 = ωt, such that ω ∝
√

ρ. The singular form of this
Lagrangian, therefore, is not a problem.

The fluctuations around the vacuum configuration can also be computed by separat-
ing χ into vev and fluctuations,

χ ≡ χ0 + χfluc. (1.3.2)

Since the leading order Lagrangian becomes

Lleading = bχ|∂χ0|3 +
3bχ|∂χ0|

2
χfluc

(
∂2

t −
1
2
4S2

)
χfluc + · · · , (1.3.3)

the fluctuation scales as
χfluc ∝

1√
|∂χ|

∝ ρ−1/4, (1.3.4)

because the canonical fluctuation of O(1) has to have a unit coefficient in front of the
quadratic fluctuation term.

Few remarks are in order. First, we can easily observe that this leading order term
has all the correct features to be in an effective Lagrangian, that is, it is classically Weyl-
invariant. Second, the form of the fluctuation indicates that the Goldstone boson of
the theory has a speed of 1/

√
2 times the speed of light. This clearly indicates that

the conformal symmetry is spontaneously broken. We will see in later sections that
this speed of the Goldstone represents the fact that there is a conformal symmetry in
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the underlying theory, or specifically because of the existence of the descendent of the
lowest operator at charge J.

Sorting operators in terms of the J-scaling

One then can just sort out all the terms in the effective Lagrangian according to the
following rules.

• The term must have Weyl weight 3.

• The term must be O(2) invariant (i.e., it must respect the shift symmetry of χ).

• The term must be parity invariant, χ↔ −χ.

• Only |∂χ| can appear in the denominator, because it is the mass for the a-field.

We also saw that the scaling of each operator follows the rules below

• ∂χ ∝ ρ1/2

• ∂ · · · ∂χ ∝ ρ−1/4

• The leading order equation of motion, ∂µ (|∂χ|∂µχ) = 0, can be used.

The last rule is because whenever such a combination appears, it can be replaced by
something of the lower ρ-scaling.

Order ρ3/2 The only operator at this order is

|∂χ|3 (1.3.5)

which can also be seen from (1.3.1).

Order ρ1/2 The only operator at this order is

Ric3 |∂χ| . (1.3.6)

This clearly has to be supplemented by a Weyl-completion, (∂ |∂χ|)2/ |∂χ|, but this term
goes as O(1/J). There can also be terms of the form Rµν∂µχ∂νχ, but this is vanishing
when the background metric is non-warped.
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Order ρ1/4 There are no operators; One can naively write two terms that go as O(ρ1/4),
but one of them vanish upon using the equation of motion and the other cannot appear
in the effective Lagrangian because it is parity odd.

Order ρ0 There are again no operators. This is an important fact so let me establish
it formally. First, there are no geometric invariants of dimension 3 including the back-
ground metric only (aside from the gravitational Chern-Simons term which is topologi-
cal). Therefore, what we have to show now is that there are no operators of dimension 3
and scaling as O(ρ0), including just ∂χ and ∂ · · · ∂χ.

This is indeed impossible. As the only thing that can appear in the denominator is
∂χ, we can schematically only allow for the form

∂n [(∂χ)m]
|∂χ|n+m−3 (1.3.7)

The ρ-scaling of the operator of this form is

3− n
2
− 3`

4
, (1.3.8)

where ` indicates how many ∂ · · · ∂χ there are in the numerator, and 1 6 ` 6 min (n, m)

when n ≥ 1 (` can only be 0 when n = 0, trivially). Also in order to bring the ρ-scaling
to an half-integer (this time, 0), we need to have ` even.

Hence, when n = 0, we can only have ` = 0, and we cannot have operators of
O(ρ0). Likewise, when n = 1, we simply cannot take ` even, so we cannot realise such a
possibility either. Finally, when n > 2, the ρ-scaling of operators is bounded above when
n = 2 and ` = 2 by −1/2. To sum up. we have proven the non-existence of operators
with ρ-scaling 0.

1.3.2 The effective Lagrangian and universality at large charge

The effective Lagrangian at large charge

We have therefore determined the effective Lagrangian at large charge, including
terms of order O(ρ0) or higher,

LIR = b3/2|∂χ|3/2 + b1/2Ric3|∂χ|+ O(J−1/4) (1.3.9)
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on the unit sphere, R = 1. Here, b3/2,1/2 were undetermined by our method, but it is
possible to compute these constants for each ir fixed points using some other methods.
The computation, however, could be cumbersome, and we leave them as undetermined
O(1) constants here. We can also determine them using numerical data, whose result I
will show in later sections.

There also is a more important excuse to leave them undetermined here, which is
the large-charge universality class; As one can see, the O(2) model and the cubic su-
perpotential model share the same effctive Lagrangian at large charge (with possibly
different b3/2,1/2) although they do not flow to the same fixed-point in the ir. This is not
a coincidence and rather a generic feature; If taking a sector of large charge leaves only
the χ-field as a massless mode, the only Lagrangian one can write down is of the form
(1.3.9).

Operator dimensions at large charge

From this Lagrangian, one can compute, e.g., the lowest operator dimension at large
charge. Because of the state-operator map, it amounts to computing the energy of the
lowest state at large charge on the unit sphere. This can be done using the textbook
method of separating the field into vev and fluctuations χ = ωt + χfluc and summing all
the loop corrections.

Most importantly, the loop expansion parameter is J3/2, which is an overall coefficient
of the Lagrangian. This means that the first quantum correction is of O(J0), which comes
from the leading term in the Lagrangian, b3/2 |∂χ|3/2. This is a one-loop effect, and can
be computed using the familiar Coleman-Weinberg formula for the effective action,

1
2T

log det
(
−∂2

τ −
1
2
4S2

)
=

1
2
√

2

∞

∑
`=0

(2`+ 1)
√
`(`+ 1), (1.3.10)

where T is the total time. This sum, of course, is divergent. One needs to regulate and
renormalise the sum. The counterterm that subtracts off the divergence is an explicit
cut-off dependent term in the effective action; I didn’t explicitly write down such a term,
but the one-loop renormalisation procedure on spatial slice S2 can be carried out using
the ζ-function regularization, which happens to be a diffeomorphism invariant way of
the renormalisation. The result becomes

1
2
√

2

∞

∑
`=0

(2`+ 1)
√
`(`+ 1) renormlization−−−−−−−−→ −0.094, (1.3.11)
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which actually is a universal (in the sense of the large-charge universality class) number,
because there are no cut-off independent counterterms at O(ρ0) in the effective action
(1.3.9).

So the result for the lowest operator dimension ∆(J) at large charge, J, becomes

∆(J) = c3/2 J3/2 + c1/2 J1/2 − 0.094 + O(J−1/4), (1.3.12)

where c3/2,1/2 are theory-dependent constants. This formula, again, holds for any the-
ories in this large-charge universality class, which both the O(2) model and the cubic
superpotential model belong to. One bit surprising corollary from this asymptotic for-
mula is that there are no scalar bps operators in the N = 2 supersymmetric model with
W = Φ3/3, contrary to what people tend to think at first glance.

1.3.3 Spectrum of operators at large charge

Energies of excited states

Let me restate what the lowest dimension of the operator at charge J � 1,

∆(J) = c3/2 J3/2 + c1/2 J1/2 − 0.094 + O(J−1/4). (1.3.13)

Now I would like to compute the energies of O(1) excited states from this large-charge
ground state. Because the leading order action for the fluctuation χ̂ = χfluctuation√

|∂χ|
is given

in (1.3.3) as

χ̂

(
∂2

t −
1
2
4S2

)
χ̂, (1.3.14)

its equation of motion becomes

χ̈ =
1
2
4S2 χ. (1.3.15)

The dispersion relation for χ, therefore, becomes

ω` =

√
`(`+ 1)

2
. (1.3.16)

Note especially that ω1 = 1, which must be equivalent to acting with ∂ in the operator
language, or taking the descendent. Therefore, one can see that the speed of the Gold-
stone boson, 1/

√
2 times the speed of light, is necessary in order to respect the conformal
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symmetry (or specifically, the existence of the descendent). Other operators including
modes with ` > 1 are all primaries, which can be seen by the fact that the increase in
energy cannot be integers.

Regge trajectory and the bootstrap

In [28], the authors reproduced that this excitation spectrum is the only one allowed
by using conformal bootstrap, when you have only one Regge trajectory i.e., when the
number of Goldstone bosons in the system is 1. This is just as expected from our effective
field theory approach. They also computed the spectrum of excited states when there
are multiple Goldstone bosons in the large-charge effective action, which may or may
not be reproduced using the Lagrangian method.

Energies of high-spin states

Apparently, in order for the effective action to be valid, the spin of the Goldstone
mode, `, cannot be larger than O(

√
J); otherwise it would contribute O(

√
ρ) or more to

the operator dimension, which falls out of the regime of validity of the effective theory.
This criterion is actually proven to be the same as having no vortex in the super-

fluid description [29]. In [29], the effective field theory including vortices was given,
using which the lowest operator dimension at large charge with spin 0 6 ` . J3/2 was
computed.

1.4 Numerical simulations

1.4.1 Monte-Carlo simulation of the O(2) model

O(2) sigma model regularized on a cubic lattice

In [21], the authors computed the lowest operator dimension in the O(2) model by
using the lattice regularization with spacing a and taking a → 0. This model is defined
by phases, exp (iθ~x) on (spatial) three-dimensional lattice sites (Remember that this is a
statistical system), ~x ≡ (anx, any, anz) with the following Hamiltonian,

H = −β ∑
~x,~α

cos(θ~x − θ~x+a~α), (1.4.1)
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where ~α runs through all the unit lattice vectors and θ ∼ θ + 2π. The Wilson-Fisher
fixed-point is reached by tuning β to a critical value, βc = 0.4541652 [37, 38].

Methods and the main numerical result

The authors computed the lowest operator dimension at fixed charge J by computing
the two-point functions of the form

CJ(r) =
〈
exp(i Jθ~r) exp(i Jθ~0))

〉
∼ A(J)
|~r|2∆(J)

, (|~r| → ∞) (1.4.2)

extracting ∆(J) from its large-distance behaviour. Note that their actual algorithm mea-
sured not the conformal dimensions themselves, but the differences of them, ∆(J + 1)−
∆(J), in order to avoid severe signal-to-noise problems. The result from the Monte-Carlo
simulation, as well as previous known results, are shown in Table 1.1.

J ∆(J) ε-expansion Monte-Carlo bootstrap

1 0.516(3) 0.518(1) 0.5190(1) 0.5190(1)
2 1.238(5) 1.23(2) 1.236(1) 1.236(3)
3 2.116(6) 2.10(1) 2.108(2) -
4 3.128(6) 3.103(8) 3.108(6) -
5 4.265(6)
6 5.509(7)
7 6.841(8)
8 8.278(9) NO KNOWN RESULTS
9 9.796(9)

10 11.399(10)
11 13.077(11)
12 14.825(12)

Table 1.1: Results for the conformal dimensions ∆(J) given in [21]. Also compared with
previous results using ε-expanison to 6 loops (5 loops for Q = 1) [39–41], the Monte-
Carlo simulation [42], and the conformal bootstrap [43]. No known previous results to
compare for Q > 4.

The result can be fitted using our formula for ∆(J),

∆(J) = 4π

(
c̃3/2

(
J

4π

)3/2

+ c̃1/2

(
J

4π

)1/2

− 0.094
4π

+ (subleading)

)
. (1.4.3)
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and the result for the fit was

c̃3/2 = 1.195, c̃1/2 = 0.075. (1.4.4)

The plot of ∆(J) against J is shown in Figure 1.4.1, and one can see that not only is it
perfectly fitted, but the fit works pretty well even down to J = 1.

MC data

fit

2 4 6 8 10 12
J

2

4

6

8

10

12

14

Δ(J)

Plot of the lowest operator dimensions against charge

Figure 1.4.1: The plot of the values of ∆(J) from the Monte-Carlo simulations of the O(2)
model [21]. The solid line is the graph (1.4.3), with the estimated values of c̃3/2 = 1.195
and c̃1/2 = 0.075. Quite surprisingly, the fit works very well even down to J = 1. Note
that the error bars in this graph are too tiny to be visible.

1.4.2 The large-N behaviour of the CPN−1 model at large monopole

number

Dualitites at large charge and the CPN−1 model

Systems of compact bosons have a duality transformation to the Abelian gauge the-
ory in three dimensions. The duality map transforms the Noether current J µ to the
monopole current,

J µ 7→ 1
4π

εµνρFνρ. (1.4.5)

Note that this is the correct coefficient because of the Dirac quantization.
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Let us now analyse the CPN−1 model at large monopole number. This model is the
non-linear sigma model with target space CPN−1, and its action is given by

S =
N
g

∫
dx3

[∣∣(∂µ − iAµ

)
φa
∣∣2 + iλ

(
|φa|2 − 1

)]
, (a = 1, . . . , N) (1.4.6)

where g is tuned to criticality. By taking the monopole number large, the mass of the
bosons gets heavy, and we are indeed left with just the gauge field, Aµ in the ir. The
duality map relating Fµν and |∂χ| is the following

Fµν =
1√
2

εµνρ

√
|g| |∂χ| ∂ρχ, (1.4.7)

because this is the only relation respecting the Weyl and diffeomorphism invariance.
The numerical factor was chosen so that |F|2 = |∂χ|4.

The effective action for the CPN−1 model at large monopole number is therefore
given to be

LIR = bχ |F|3/2 + (subleading), (1.4.8)

and we can see that the CPN−1 model also lies in the same large-charge universality
class as in the O(2) model.

The large-N behaviour of the CPN−1 model

The CPN−1 model can also be solved perturbatively in 1/N-expansion (the large-N
expansion). In [22], based on the method first presented in [44], the author computed
the lowest operator dimension at large monopole number using the large-N expansion.
The method is to write down the saddle point which gives contributions of O(N), and
then compute the one-loop determinant around it for contributions of O(1).

Schematically the result of the large-N computation at large monopole number J
must be written as a infinite double sum,

∆N(J) = N∆[1](J) + ∆[0](J) +
1
N

∆[−1](J) + · · · (1.4.9)

where
∆[i](J) = c[i]3/2 J3/2 + c[i]1/2 J1/2 + c[i]0 + · · · . (1.4.10)

Now, because the model, for any N, falls into the same universality class at large
monopole number, it should also give the universal prediction for the O(J0), which was
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−0.094. This predicts
c[i]0 = 0 (i 6= 0), c[0]0 = −0.094. (1.4.11)

Indeed this can be checked analytically for i = 1 too.
In [22], the author computed the one-loop determinant to compute ∆0(J). The com-

putation was done for J = 1, · · · , 100, which was fitted with the function

∆[0](J) = c[0]3/2 J3/2 + c[0]1/2 J1/2 + c[0]0 + c[0]−1/2 J−1/2 + (error). (1.4.12)

The result of the fit given in [22] is the following

∆fit
0 = 0.2182275 J3/2 + 0.23764 J1/2 − 0.0935(3) + 0.025 J−1/2 + · · · . (1.4.13)

The fitted value of c[0]0 = −0.0935(3), therefore, comes out consistent with the universal
prediction of the effective field theory, −0.0937256 . . . , within one percent.

The author of [22] used a machine-learning like method to do the above fit, because of
the signal-to-noise ratio problem due to the rapidly increasing function, J3/2. However,
because the actual dataset was given in the paper, we can independently check this
universal prediction using a standard fit method of the least square. In order to do this,
notice that the following expression is independent of c[0]3/2 or c[0]1/2 at O(J0):

I(J) ≡ J2 × ∆[0](J)−
(

J2

2
+

J
4
+

3
16

)
∆[0](J − 1)−

(
J2

2
− J

4
+

3
16

)
∆[0](J + 1), (1.4.14)

which becomes, using (1.4.12),

I(J) =
3c[0]0

8
+ O

(
J−1/2

)
. (1.4.15)

So we can easily fit I(J) using the fit function,

Ifit(J) ≡
3c[0]0

8
+ pJ−1/2 + qJ−1 + rJ−3/2. (1.4.16)

Here I have assumed the operator dimension to be fitted with a function

∆[0](J) = c[0]3/2 J3/2 + c[0]1/2 J1/2 + c[0]0 + c[0]−1/2 J−1/2 + c[0]−1 J−1 + (error) (1.4.17)
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where the term coloured in red turned out to be crucial for the precision of the fit. Even
without knowing the existence of such a term in the classical effective action, we expect
that the contribution of that order is present due to the one-loop correction to the Ricci
curvature term in the Lagrangian. Now the result of the fit becomes

parameter fitted value standard error

c[0]0 −0.0942538 0.000222076
p 0.00463937 0.00152049
q 0.0318169 0.00223002
r −0.0729223 0.000857753

(1.4.18)

and the resulting function along with the plot of the numerical data is shown in Fig-
ure 1.4.2.
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Plot of the universal combinationℐ(J)

Figure 1.4.2: Plot of the universal combination I(J) constructed from ∆(J) in (1.4.14).
The dot represents the numerical data calculated from the actual data presented in [22],
while the line represents the result of the fit using the standard least square method. The
result of the fit implies the universal contribution to be −0.094, consistent with [22] as
well as with our universal prediction. The seeming randomness of data points starting
roughly at J ∼ 40 is because of the numerical error entirely from stopping at ∼ 100th

Landau level in computing the one-loop determinant.
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1.5 Miscellanea

1.5.1 Higher-rank symmetries

Inhomogeneous ground states at large-charge

Throughout this part, I have assumed that the ground state at large charge is homo-
geneous, which is correct for the large-charge universality including the O(2) model. For
higher-rank symmetries, however, this is not always true, and the inhomogeneity hap-
pens when we turn on more than one Cartans of the charge matrix [24] (They actually
proved the contrapositive statement). In [2, 5], I computed such an example of inhomo-
geneous ground states using the O(4) model, making the above statement clearer. The
result was that the inhomogeneity of the ground state at large charge is inevitable when
we turn on more than one Cartans, but the inhomogeneity happens at the ir scale so
that the effective field theory does not break down.

Goldstone counting and the inhomogeneity

In [5], I found that this inhomogeneity can be understood by counting the number
of modes in the effective action and comparing it with the dimension of the coset of
the spontaneously symmetry breaking. It was found there that the inhomogeneity, or
the spontaneous symmetry breaking of the translational symmetry, can be related to the
Goldstone bosons predicted from the low-energy effective action.

For example, in the O(4) model on T2 ×R, the low-energy effective action at large
charge is just the non-linear sigma model on S3. This means that the number of available
independent degrees of freedoms (dofs) is three. Now the O(4) symmetry is explicitly
broken down to U(1)×U(1) by fixing two eigenvalues of the charge density matrix to
ρ1 6= 0 and ρ2 6= 0. Because of the inhomogeneity, the solution to the classical equation
of motion breaks the whole U(1) × U(1) spontaneously. But this breaking cannot be
in two spatial directions, because if so, the coset dimension is four, but there are not
enough available modes in the effective action. We were therefore able to prove that the
inhomogeneity can only be in one spatial dimension.

1.5.2 Chern-Simons-matter duality at large charge

SU(2)k Chern-Simons-matter theory and the homogeneous-inhomogeneous transition
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The Chern-Simon-matter theories at large k reduces to the usual O(4) theory with the
singlet condition, ρ1 = ρ2. It is therefore apparent that the ground state for the theory is
inhomogeneous for large enough k. It is also analytically possible to solve the classical
equation of motion analytically for low values of k, which gives homogeneous ground
states, on the contrary.

These two facts, when combined, predicts the existence of a phase-transition for some
value of k (which I already worked out but will not write here), where the translational
symmetry is spontaneously broken. Note that because SU(N)k Chern-Simons-matter
theory for N < 12 has no interacting fixed-point, the analysis of, say, the ground state
energy has to be supplemented by a subleading one-loop effect that goes as O(log ρ). For
N > 12, there is an interacting fixed-point, and thus the classical analysis is applicable
around it.

Free Dirac fermion

Dealing with fermions is difficult in this method, because we do not know how to
renormalise the fermi surface at finite volume. This difficulty might be solved using
three-dimensional particle-vortex duality, as some of them map a boson into a fermion.
For example, a free Dirac fermion is believed to be dual to the Chern-Simons-matter
theory at level k = 1. Note that the lowest energy of the free fermion at charge J also
scales as J3/2, as in the case of the O(2) model, but this of course lies in a different
universality class than that.
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Chapter 2

Chiral Ring from Moduli Space at
Large-R-Charge

2.1 Moduli space and the effective action at large-R-charge

As we learned in Chapter 1, a theory with a global symmetry has a weakly-coupled
effective Lagrangian at large charge, containing one or more Goldstone bosons which
come from breaking the symmetries of the theory due to the vevs of charged operators.
This procedure is obviously dependent on the vacuum structure of the original theory. In
Chapter 1, I have only used examples where the theories have no moduli space of vacua,
but what happens if the original theory itself has one? Such a possibility is often realised
in theories with supersymmetry, and for example the dimension of the Bogomol’nyi–
Prasad–Sommerfield (bps) operators at large charge should behave differently (∆ ∝ J)
than the result we got in Chapter 1 (∆ ∝ J3/2 + · · · ).

One important fact to recoup here is that supersymmetry is not at all a sufficient
condition for having a moduli space. Indeed as we saw in Section 1.2.2, the supersym-
metric theory with superpotential W = Φ3 has no moduli spaces of vacua. As a result,
the lowest operator dimension at large-R-charge does not saturate the bps bound, but
instead exceeds it parametrically;

∆(J) ∝ J3/2 + · · · � J (2.1.1)

This should not happen when the theory has moduli spaces of vacua, and hence has the
bps states, protected from quantum corrections. What I will write about here is this type
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of different behaviour at large charge, when the theory has moduli spaces of vacua.
Supersymmetry and moduli space accompanied by it makes a lot of things easier, and

this also is such a case in which it does. First of all, the leading order action is just a free
Lagrangian, because the Goldstone boson is just the entire multiplet on the moduli space,
as opposed to just the angular field in the case without moduli. Also the supersymmetry
is not broken spontaneously by the vevs of charged operators when there are moduli
spaces, so there are more constraints on the form of subleading operators. Sometimes
there can be cases where there are no subleading operators at all of a certain class, which
possibility is actually realised in four dimensionalN = 2, rank-one superconformal field
theories (scfts), which is the main topic of this thesis.

This part of the thesis is mostly based on [4], written by myself and collaborators.
This is also based on [45], where Hellerman and Maeda (also among the collaborators
of [4]) computed the two-point functions of bps operators of the form

〈
On(x)Ōn(y)

〉
of four dimensional N = 2, rank-one scfts, up to O(log(n)). New results from [4]
include noticing the nonexistence of subleading F-terms in the effective action, and the
computation of

〈
On(x)Ōn(y)

〉
exactly to all orders in 1/n-expansion, based on this fact.

This computation showed that the Coulomb branch chiral ring data is universal up to
the a-anomaly in four dimensional N = 2, rank-one scfts, modulo non-universal effects
of O(−

√
n).

2.2 The effective action of four-dimensional N = 2, rank-

one SCFTs at large-R-charge

2.2.1 The effective Lagrangian at large-R-charge

Four-dimensional N = 2, rank-one scfts and their Coulomb branch

What we will be interested in is four-dimensional N = 2, rank-one scfts, whose
Coulomb branch is complex one-dimensional. The moduli space of vacua is parametrised
by the vev of an operator, O, which is the generator of the Coulomb branch chiral ring.1

The theories are symmetric under rotating two supercharges, Q1
α and Q2

α, which is called

1 The chiral ring of rank-one scfts is conjectured in [46–50] (and proven in [51]) to be freely generated, so
the number of generators of the Coulomb branch chiral ring and the dimension of the moduli space match,
as there are no algebraic relations between generators. For rank higher than one, non-freely generated
chiral rings can be constructed via discrete gauging [52].
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the U(2)R-symmetry. The Coulomb branch is their moduli space of vacua, which con-
tains a vectormultiplet charged under diagonal U(1)R ⊂ U(2)R and is neutral under
the remaining SU(2)R symmetry. Let us now denote O the generator of the Coulomb
branch chiral ring, whose vev parametrises the Coulomb branch moduli space.

The origin of the Coulomb branch is typically singular, in which the theory has more
symmetry than the generic points on the moduli. However, for the rest of the analysis
we take the large-R-charge limit, so we will be only looking at the classical saddle-points
far from the origin, where it has flat sections.

Leading-order action on the moduli space

Because the moduli space is flat, the low-energy effective Lagrangian at large-R-
charge is given by just the free Lagrangian, with the Goldstone boson denoted φhol

inside a vectormultiplet, which is defined by2

Φhol ≡ O1/∆O , (2.2.1)

where ∆O is the dimension of O, where φ is the bottom component of Φ. The definition
for φhol is that it has both R-charge and dimension 1. Also note that this procedure is
well-defined far from the origin of the Coulomb branch. Therefore, the leading order
low-energy Lagrangian of four-dimensional N = 2, rank-one scfts at large-R-charge is
given by the usual free one,

Lfree = C× Im
[

τ
∫

dθ2dθ̃2Φ2
hol

]
3 C× Im(τ)× |∂φhol|2 , (2.2.2)

where C is a holomorphic constant in terms of the background gauge fields like τ ≡
1/g2

YM.
For the sake of the later analysis, it is convenient to newly define

Φ ≡ Φunit ≡ (NO)
−1 Φhol (2.2.3)

so that
Lfree 3 |∂φhol|2 , (2.2.4)

2 ∆O , the dimension of O, is shown to be a rational number in [53], so we can understand (2.2.1) as
(Φhol)

n ≡ Om.
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where NO ≡ 1
/√

C× Im(τ) . Note that NO is non-holomorphic in background gauge
fields. Also note that NO should not enter in the computation of actual physical quanti-
ties, because it is dependent on how we define O; linear transformation of O can change
it arbitrarily. To make this fact noticeable, I have coloured NO in gray.

The structure of the effective Lagrangian at large-R-charge

Because the low-energy effective Lagrangian on the moduli space respects the N = 2
supersymmetry, it can be broken up into three pieces,

LIR = Lfree + (F-term) + (D-term). (2.2.5)

Surprisingly, on backgrounds conformally equivalent to R4 (like S4 or S3×R), there are
no subleading F-terms aside from the N = 2 supersymmetric Wess-Zumino term (This
will be proven in section 2.5.1.), so

LIR = Lfree + LWZ + (D-term). (2.2.6)

The first two terms scale as O(J) and O(log J) (the latter will be explained in Section
2.2.2), respectively, evaluated on the saddle point we consider later, which go as 〈|φ0|〉 ∼√

J.

Almost uv-completeness of the action and regularization

The ir action at large charge in general must be supplemented by regulator depen-
dent terms, which become counter terms in order to compute physical quantities and
get a finite result. However, in (2.2.6), because of the absence of subleading F-terms,
there are no superconformally invariant regulator dependent terms. In other words, the
F-term action, LIR = Lfree + LWZ, already has the desired (anomalous) superconformal
invariance, there must not be any counterterms if we use a superconformally invariant
regulator.

If we use a non-superconformal invariant regulator, there certainly exist terms that
depend on it. In computing physical quantities, ultraviolet (uv) divergences proportional
to powers of |Λ|

/
|φ| are subtracted in a canonical way by those counterterms to restore

superconformal invariance.
For practical purposes, we can write down Feynmann diagrams with some regulator

in mind, and use known results to actually know what values they are. For example,
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in [3], we are able to, in theory, compute the energy of the lowest state at large-R-charge,
J, by computing and summing up all the diagrams. It is cumbersome to conduct such a
calculation using a specific choice of a regulator, but we need not to. Because the state
must saturate the bps bound, we trivially know that the diagrams, after renormalizing,
must give exactly 0 at each order in J−n because of superconformal invariance.

2.2.2 The Weyl-anomaly and the wz term

The axiodilaton for the wz term

Because the Weyl-symmetry and the U(1)R-symmetry are anomalous in theories we
consider, the anomaly mismatch ∆a ≡ aCFT − aEFT between the original cft and the
effective field theory (eft) must be compensated by the Wess-Zumino term [54, 55].3 In
rank-one theories, the a-anomaly for the eft is that of a U(1) vectormultiplet, so

aEFT = aU(1)-vector. (2.2.7)

In this case, moving onto a generic point of the moduli space breaks conformal sym-
metry spontaneously, and one can write such a term using the dilaton, or the Nambu-
Goldstone boson from spontaneous conformal symmetry breaking [56]. The transfor-
mation law for the axiodilaton �hol + i�hol (�hol for the dilaton and �hol for the axion
associated to spontaneous U(1)-symmetry breaking) is

gµν 7→ e�hol+i�hol gµν �hol + i�hol 7→ �hol + �hol + i(�hol + �hol), (2.2.8)

so in four-dimensional N = 2, rank-one scfts, the only option for the realisation of the
dilaton is

�hol + i�hol ≡ − log
(

φhol

µ

)
, (2.2.9)

where for later purposes we define

�+ i� ≡ �unit + i�unit ≡ − log
(

φunit

µ

)
= �hol + i�hol + log NO, (2.2.10)

throughout which µ was an arbitrary mass scale.

3 This is specific in even-dimensional spacetimes. For example, one needed not worry about such a term in
three-dimensional N = 2 supersymemtric model with superpotential W = gXYZ [3].
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N = 2 supersymmetrization of the wz term

Now we need to write down the Wess–Zumino (wz) term using this axiodilaton field,
which is given by the the N = 2 supersymmetrisation4 [57] of the bosonic wz term [56],

LN=2
WZ = (constant)×

∫
d4θd4θ̄ log

(
Φ
µ

)
log
(

Φ†

µ

)
. (2.2.11)

The overall coefficient is fixed by the requirement that the bosonic part of this supersym-
metrization has the correct coefficient, ∆a[KS] in [56], where the superscript [KS] (which
will be dropped unless one needs to be specifically careful) denotes the convention used
in [56] where the Euler density E[KS]

4 is given by

E[KS]
4 ≡ R2

µνρσ − 4R2
µν + R2, (2.2.12)

related to the Euler number by the relation χM ≡ 1
32π2

∫
M E[KS]

4 ∈ Z. In this normalisa-
tion, the bosonic part of the N = 2 wz term contains the term

−
(

∆a[KS]
)
× �E[KS]

4 , (2.2.13)

which goes as log J. This is indeed the biggest subleading effect in the effective action.
For later reference, we also write down the full form of the bosonic wz action, which
will be explicitly computed from (2.2.11) in Section 2.5.2,

L[bosonic]
WZ = L�1 + L�2 + L�3 + L�4 + L�2 + L�1�2 + L�2�2 + L�4 , (2.2.14)

4 The emphasis on “the” was because there is only one unique supersymmetrization of such a term [57],
as opposed to the case of N = 1 supersymmetrization [58] where alternate supersymmetrizations of the
term can be obtained by adding N = 1 superconformally-invariant terms. For N = 2, there are no such
terms.
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where
L�1 = −

(
∆a[KS]

)
� E4,

L�2 = −4
(

∆a[KS]
) [

Rµν − 1
2
Ric4 gµν

]
∇µ�∇ν�,

L�3 = +4
(

∆a[KS]
)
(∇�)2 (∇2�),

L�4 = −2
(

∆a[KS]
)
(∇�)4,

L�2 = −4
(

∆a[KS]
) [

Rµν − 1
6

R gµν

]
(∇µ�)(∇ν�),

L�1�2 = −8
(

∆a[KS]
)
(∇µ∇ν�)∇µ�∇ν�,

L�2�2 = −4
(

∆a[KS]
) [

2 (∇� · ∇�)2 − (∇�)2(∇�)2
]

,

L�4 = −2
(

∆a[KS]
)
(∇�)4

(2.2.15)

modulo terms involving the Weyl tensor, which vanish on conformally flat backgrounds
we are interested in.

This ∆a again is dependent on the convention of E4, by a multiplicative factor, but a
combination (∆a)× E4 should be convention independent and can enter the final result.
As a convention independent alternative for ∆a, we use

α ≡ ∆a
2

∫
S4

E4

(
= 32π2 ×∆a[KS]

)
, (2.2.16)

which can also be represented as

α ≡ 5
12

aCFT − aU(1)-vector

aU(1)-vector
(2.2.17)

by cancelling the convention dependent numerical factor.

2.3 Chiral ring data from EFT at large R-charge

2.3.1 What we compute

Chiral ring data, ope and normalisations for two-point functions

In a cft, it is customary to normalise every two-point function to have a unit nor-
malised coefficient, 〈

Oi(x)Oj(y)
〉
=

δij

|x− y|2∆O
. (2.3.1)
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Concerning the chiral ring, this is not the most natural way of normalising; in fact,
because of its ring structure, the most natural way of defining On is from

On(x) ≡ lim
y→x
On−m(x)Om(y), (independent of m) (2.3.2)

so that the two-point functions of On are not unit normalised and rather becomes

〈
On(x)Ōn(y)

〉
=

C(m, n−m; n)

|x− y|2n∆O
. (independent of m) (2.3.3)

Here C(m, n−m; n) are the ope coefficients, defined by the relation

〈
Om(x1)On−m(x2)Ōn(y)

〉
≡ C(m, n−m; n)

|x1 − y|2m∆O |x2 − y|2(n−m)∆O
. (2.3.4)

This is independent of m, so we redefine

Yn ≡ C(m, n−m; n) (2.3.5)

so that 〈
On(x)Ōn(y)

〉
=

Yn

|x− y|2n∆O
. (2.3.6)

Now go back to the usual cft definition of operators where all of them are unit
normalized, 〈

O(CFT)
n (x)Ō(CFT)

n (y)
〉
=

1

|x− y|2n∆O
, O(CFT)

n ≡ On
√
Yn

, (2.3.7)

and then we have the ope coefficients

〈
O(CFT)

m (x1)O
(CFT)
n−m (x2)Ō(CFT)

n (y)
〉
≡

√
Yn

YmYn−m
× 1

|x1 − y|2m∆O |x2 − y|2(n−m)∆O
.

(2.3.8)
So computing two-point functions in our normalization is equivalent to computing all
the Coulomb branch chiral ring data.

Two-point functions of Coulomb branch chiral ring operators
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What we are interested in computing here is the two-point function

Yn ≡
〈
On(x)Ōn(y)

〉
=
〈

φJ
hol(x)φ̄J

hol(y)
〉

, Yn ≡ |x− y|2n∆O Yn, (2.3.9)

where
J ≡ n∆O. (2.3.10)

By using the path integrals Z(hol)
n ≡ exp(q(hol)

n ) with source insertions S(hol)
source = −J log φhol(x)−

J log φ̄hol(y), the coefficient Yn can be written as

Yn = |x− y|2n∆O × Z(hol)
n

Z(hol)
0

(2.3.11)

Let us rewrite the above formula in terms of φunit for convenience,

Yn = (NO)
2J × Z(unit)

n

Z(unit)
0

= (NO)
2J ×

〈
φJ

unit(x)φ̄J
unit(y)

〉
, (2.3.12)

where Z(unit)
n is likewise the path integral with source insertions S(unit)

J sources = −J log φunit(x)−
J log φ̄unit(y). What we will compute in the next subsection is the object Z(unit)

n . Notice
that we already know such a correlator when ∆a = 0, because〈

φJ
unit(x)φ̄J

unit(y)
〉

∆a=0
= Γ(J + 1) = J!, (2.3.13)

from Wick contraction. Let us abbreviate the superscript (unit) for simplicity hereafter,
since we will only actually compute things with it.

2.3.2 The structure and the diagrammatics of qn from EFT

The structure of the path integral

The whole action we are going to consider is the following,

S = Sfree + SWZ + SJ sources, (2.3.14)

where SWZ was proportional to α. Now, using this action, qn ≡ log Zn is just the sum of
all the connected vacuum diagrams, computed by separating φ into vev and fluctuations.
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A particularly simple way of organizing diagrams is to use the saddle point value of
φ when ∆a = 0 for the vev even when ∆a 6= 0. Such a saddle point value has already
been worked out in [45] on R4. The result was then conformally transformed onto a
cylinder S3 ×R with radius R, whose result was

φ
[α=0]
cl (x) =

et/R

2πR
×
√

J, φ̄
[α=0]
cl (x) =

e−t/R

2πR
×
√

J, (2.3.15)

which is the homogeneous helical solution as expected. In terms of the axiodilaton, we
have

�[α=0]
cl = log(2πµR)− 1

2
log(J), �[α=0]

cl = i
t
R

, (2.3.16)

on the cylinder frame. Let us now use this helical solution to compute qn.

Loop contributions to qn

When we expand φ around this vev (with fluctuation φfluc), building blocks of the
Feynmann diagram include a one-point vertex (∆a) φfluc as well as ordinary j-point ver-
tices, (φfluc)

j. Term in the effective action, evaluated on this vev again scale as

Sfree = O(J), SWZ = α×O(log J), (2.3.17)

which means that a α-vertex comes with a subleading factor of 1/J. Organizing diagrams
in the 1/J-expansion, at order 1/Jm, we have diagrams that have the following numbers
of loops and α-vertices,

# of loops # of α-vertices

m + 1 1
m 2
...

...
1 m
0 m + 1

(2.3.18)

so that when summed up, give a contribution of

Pm+1(α)

Jm , Pm+1(α) ≡
m+1

∑
n=0

Km,nαn (2.3.19)
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at order O(J−m). For example, we have diagrams at O(1/J),

term diagrams

K1,0

J

k

+

k

K1,1α

J

k

+

k

K1,2α2

J

k

(2.3.20)

Classical contributions to qn

The classical contribution of this vev can be computed by evaluating the action on
this configuration of φ

[α=0]
cl (x). We already know how much Sfree contributes to this

classical configuration, because at α = 0,

qn(α = 0) = A(τ, τ̄)n + B(τ, τ̄) + log Γ(J + 1), (2.3.21)

which gives the all-loop sum of diagrams without α-vertices. Here A(τ, τ̄) is dependent
on the convention of linear multiplication of φ, while B(τ, τ̄) is the sphere partition
function which is scheme dependent. Note that both can depend on τ and τ̄, but that
these are the only places they can appear. In order to make these facts noticeable, I have
also coloured them in gray along with NO. Note again that because this is an all-loop
sum, and the coefficient of each term in the loop-expansion can also inferred from the
Stirling series,

qn(0) = J log J +
1
2

log J + An + B +
∞

∑
m=0

Km,0

Jm , Km,0 =
(−)mBm+1

m(m + 1)
, (2.3.22)

where Bm+1 is the Bernoulli number. which not only determines the classical contribu-
tion, but also infinite coefficients of quantum corrections. To be more precise, J log J is
the classical contribution, log J/2 is the one-loop determinant, and the rest is higher-loop
corrections.

We also need to take care of the wz term which was given in (2.2.14). Evaluated on
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the classical configuration (2.3.16), this will give

−
∫

S4

(
∆a[KS]

)
× �[α=0]

cl E[KS]
4 = α log J (2.3.23)

plus various constants of O(J0), which will be absorbed into the scheme dependent
constant, B.

The whole structure of qn All in all, the whole structure of qn becomes

qn = J log J +
(

α +
1
2

)
log J + A(τ, τ̄)n + B(τ, τ̄) +

∞

∑
m=0

Pm+1(α)

Jm + O
(

e−
√

n
)

, (2.3.24)

where again Pm+1(α) is a polynomial of order m + 1. The error term O
(

e−
√

n
)

included
in the final result should come from massive bps dyons, ignored in our eft analysis as
parametrically heavy. In this case, because of the non-existence of subleading F-terms,
it will be of great importance to keep track of such a term.

2.3.3 Computation of coefficients Km,n

Computation of Km,0

This was already done in the last subsection by using the result of Wick contraction
and expanding in 1/J. The results are

Km,0 =
(−)mBm+1

m(m + 1)
, (2.3.25)

so for example,

K1,0 =
1

12
. (2.3.26)

Computation of Km,m+1

The contributions are actually classical pieces in disguise, in that these are due to the
shift of the classical saddle-point for finite α. The calculation can be done by finding the
shifted saddle point of the action, and then plugging it into back into the action. Let us
now find the shifted saddle point. The Lagrangian here is

L = Lfree + LWZ (2.3.27)
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Here Lfree can be written in terms of axiodilaton as

Lfree = −µ exp(−2τ)

[
(∂�)2 + (∂�)2 − 1

6
Ric4

]
, (2.3.28)

where Ric4 = 6/R2 on S3 ×R, and LWZ was given in (2.2.14).
Because of the bps property if the helical frequency of the lowest solution [3], we

exactly have

�[α]cl = ± t
R

. (2.3.29)

in the Lorentzian signature, independent of α.
We are now left to determine the value of �[α]cl . This can be done by computing the

R-charge using Noether theorem,

J = 2π2R3 × δL
δ�̇

= (2πR)2 ×

∣∣∣φ[α]
cl

∣∣∣2 − 8
(

∆a[KS]
)

R2

 (2.3.30)

where 2π2R3 is the area of S3. Solving the above equation for
∣∣∣φ[α]

cl

∣∣∣2, we get

∣∣∣φ[α]
cl

∣∣∣2 =
J

4π2R2 ×
(

1 +
α

J

)
. (2.3.31)

Note that we recover (2.3.15) by setting α = 0.
By plugging this classical configuration into the action, we get

S[α]
saddle = (J + α) log(J + α) = J log J + α log J (2.3.32)

so modulo terms of O(J) and O(1) (which can be absorbed into A and B), the value of
the action classical configuration is shifted by

∞

∑
m=1

Km,m+1

Jm =
∞

∑
m=1

(−)m+1

m(m + 1)
αm+1

Jm . (2.3.33)

For example, we have

K1,2 =
1
2

. (2.3.34)

Determining K1,1
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Determining Km,n for generic values of m and n by brute force computation is difficult
and includes regularizing and renormalizing the multi-loop diagrams, but we need not
do so. Let us show how we determine all the coefficients at O(1/J) explicitly here. Since
the contribution at O(1/J) has a quadratic polynomial dependence on α, and we already
know

K1,0 =
1

12
, K1,2 =

1
2

, (2.3.35)

if by some other method we know the contribution at O(J) for some theory, we can
determine all the coefficients of the polynomial.

We take this theory to be N = 4 super Yang–Mills (sym) with gauge group SU(2);
this theory has α = 1 (A list of values of α for known theories are given in [45].), and qn

are already computed in [59, 60],

qn = An + B + log Γ(J + 2), (2.3.36)

where J = n∆O ≡ 2n in this case. By expanding qn in terms of 1/J, we get the coefficient
of O(1/J) contribution, and by matching with the eft prediction we get

13
12

= P1(α = 1) = K1,0 + K1,1 + K1,2. (2.3.37)

By combining with (2.3.35), we get

K1,1 =
1
2

. (2.3.38)

This determines the O(1/J) contribution to qn, universally for all rank-one theories to be

1
J

(
1

12
+

α

2
+

α2

2

)
, (2.3.39)

not just for N = 4 sym.

Determining other values of Km,n

Likewise, we can determine all values of Km,n universally for any rank-one scfts. This
requires a trick of preparing theories in which we know how to compute qn. This can
be done with the help of tt∗-equations [59, 60] for four-dimensional Lagrangian gauge
theories with an exact marginal coupling (so that ∆O = 2). There actually are countably
infinite number of them, if we allow the theory to be non-unitary, whose construction
will be given later in Section 2.5.3.
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For such theories, it is known that qn obeys a differential recursion equation called
the Toda equation [59, 60],

∂τ ∂̄τ̄qn = exp (qn+1 − qn)− exp (qn − qn−1) , ∂τ ∂̄τ̄q0 = exp (q1 − q0) . (2.3.40)

Although there are many known solutions to the infinite Toda equation, in this case
it has to satisfy the boundary condition at n = 0 so that q0 = ZS4(τ, τ̄). Now, any
physical solution should be cast into the form of (2.3.24) because the eft analysis should
apply in those cases too. Having no factors of Im τ in the final result aside from the
overall multiplicative constant A(τ, τ̄) and the error term, we can reduce this differential
recursion relation to an algebraic recursion relation, whose solution is

q[Toda]
n = A(τ, τ̄)n + B(τ, τ̄) + log Γ [(n− n+ + 1) (n− n− + 1)] + O(e−

√
n), (2.3.41)

We show how to derive this formula later in Section 2.5.4.
We have already partially determined the form of qn using eft and the exact local-

ization result from sym, so if the solution q[Toda]
n dare be a physical one at all, it should

have the expansion like

qn = · · ·+
(

α +
1
2

)
log J +

1
J

(
1

12
+

α

2
+

α2

2

)
+ · · · (2.3.42)

where J = n∆O = 2n in this case. This information is enough to constrain n+ and n−,
because by matching two coefficients in front of log J and 1/J, we get two equations,

1− n+ − n− = α +
1
2

, n+(n+ + 1) + n−(n− + 1) +
1
3
=

1
12

+
α

2
+

α2

2
(2.3.43)

whose solutions for n± are

n+ =
1
2
− α

2
, n− = −α

2
. (2.3.44)

Therefore we got

q[Toda]
n = An + B + log Γ(J + α + 1) + O(e−

√
n), (2.3.45)

for countably infinite values of α, where scfts with a marginal coupling lie.
This is yet too early to conclude that this formula is universal for any values of
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α, until we notice that the number of values for which the above formula holds are
countable infinite. Let us hypothetically assume that the number of α were finite, or
even just imagine an extreme possibility that we could not find any values of α where
Toda equation holds, aside from α = 1, or sym. In this case, we could have safely
add terms like α(α− 1)/J2 to qn and still not contradict with all we had known. This
possibility is not realised exactly because we have infinitely many data points of α to
compare to.

2.3.4 The final result

The final result of the computation of qn therefore becomes

qn = An + B + log Γ(J + α + 1) + O
(

e−
√

n
)

(2.3.46)

for any four-dimensional, N = 2, rank-one scfts. For N = 2 Lagrangian gauge theories
with gauge coupling τ, the error term scales as O

(
e
√

n/ Im τ
)

. This is because the mass

of the bps dyon scales as
√

n/ Im τ ∝ gYM
√

n.

2.4 Comparison to known data

2.4.1 N = 2, SU(2) SQCD with four fundamental hypermultiplets

The second difference of qn

In order to do numerical checks of the result, what is most important is to choose the
actual data which is independent of theory and scheme dependent coefficients, A and
B. The easiest thing to compute here is the second difference of qn,

42
n qn = qn+2 − 2qn+1 + qn. (2.4.1)

The eft prediction for such a value is

42
n qn = log

[
(2n + α + 3) (2n + α + 4)
(2n + α + 1) (2n + α + 2)

]
+ O

(
e
√

n/ Im τ

(Im τ)α

)
≡ 42

nq[EFT]
n + O

(
e
√

n/ Im τ

(Im τ)α

)
(2.4.2)

which is independent of Im τ perturbatively in 1/n-expansion.
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In Figure 2.4.1, we compare this prediction of eft with that of exact localization. The
procedure of the numerical computation is given in the next subsection, whereas the
theory we use is the N = 2, SU(2) supersymmetric quantum chromodynamics (sqcd)
with four fundamental hypermultiplets (which is the only case where we have easily
accessible exact localisation results while the sphere partition function having nontrivial
Im τ dependence). This theory has α = 3/2. Note that it is correct to have bigger
errors as Im τ gets bigger, because the mass of the bps dyon gets lighter as one goes to
weaker-coupling.
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Figure 2.4.1: Second difference in n for 42
nq[loc]

n (dots) and for 42
nq[EFT]

n (continuous
lines) as function of Im τ at fixed values of n. The numerical results quickly reach τ-
independent values that are well approximated by the asymptotic formula when n is
larger than n & 5.

The double scaling limit

As one can see above, weaker-coupling leads to bigger errors in eft results. The
double-scaling limit [61] is a way to avoid this problem by taking the weak-coupling
limit while fixing

λ ≡ 2π J
Im τ

. (2.4.3)

In this limit, the mass of the bps dyon is fixed in terms of λ, so that the effect from the
macroscopic massive propagation is supressed exponentially as e−(const.)×

√
λ.
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Im τ at fixed values of n/ Im τ = λ/(4π). The agreement is quite good already for
λ = 3.

In Figure 2.4.2, we plotted the error between the second differences of qn, denoted
δqn ≡ q[loc]

n − q[EFT]
n , computed from eft and exact localization, for the same theory, sqcd.

The plot was fitted with a fit function for the error, based on the above prediction

42
n (δqn) ≡ 42

n

(
P× e−

√
Qπλ/2

)
. (2.4.4)

The result for the fit became
P ∼ 1.6, Q ∼ 1.0, (2.4.5)

where the agreement with the numerical data looked good for λ & 3. The comparison
of exact localization results and the eft data plus the fit function for the error is also
shown in Figure 2.4.3.

2.4.2 Numerical methods and error analysis

Computing two-point functions from exact localization.

In the case of N = 2 sqcd with 4 flavors the correlators that we discuss can be
computed via localization [62]. The two-point function between On and Ō, called G2n,
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is the ratio of two determinants:

G2n = 42n det(Mn)

det(Mn−1)
, (2.4.6)

where Mn is the upper-left (n− 1) × (n− 1) submatrix of the (normalized) matrix of
derivatives M of the partition function Z0:

M|m,n =
1

Z0
∂n∂̄

mZ0. (2.4.7)

The partition function for N = 2 sqcd is written in terms of the Barnes G-function :

Z0 = Zsqcd

S4 (τ, τ̄) =
∫ ∞

−∞
daa2e−4a Im τ |G(1 + 2ia)|4

|G(1 + ia)|16 |Zinst(ia, τ)|2 , (2.4.8)

where Zinst is the instanton partition function [63, 64]:

Zinst(a, τ) = 1 +
1
2

(
a2 − 3

)
e2πiτ + O

(
e4πiτ

)
. (2.4.9)

For simplicity we will consider the regime Im τ > 1 and ignore the instanton corrections
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(this only produces the error of order e−2π ∼ 1%). Note that in this approximation the
partition function Zinst(a, τ) is independent of Re(τ).

Sensitivity to initial conditions

Since we want to evolve the recursion relations numerically starting from an approx-
imate initial condition for the S4 partition function, we need to estimate the sensitivity
of large-J correlation functions to imprecise initial conditions.

We may wish to start at some initial value ni greater than 0. The recursion relation
is second order, so in order to define initial conditions, we need to define both qni and
qni+1. These initial conditions are of course functions of τ and τ̄, but we will suppress
in this section the dependence on the arguments τ, τ̄ in our notation.

It is useful to write the rank-one recursion relations in their “deterministic” form.
Given any initial conditions at ni, ni + 1, there is always a unique solution to the recursion
relations for n ≥ ni + 2. One can consider two nearby solutions, separated by a small
amount δn, and analyze how the linearized deviation propagates to larger values of n.
The deviation propagation equation is:

δn+2 + δn − 2δn+1

=
16 (Im(τ))2

(2n + 3 + α)(2n + 4 + α)
∂τ∂τ̄ δn+1 −

2 (4n + 2α + 5)
(2n + α + 3)(2n + α + 4)

(δn+1 − δn) .

(2.4.10)
Even at the linearized level, this equation is nontrivial, and depends on the decom-
position of the error into eigenvalues of the Laplacian on the upper half plane or its
quotient under the modular group. We do not analyze the propagation of errors for
general perturbations. Instead, we use the fact that the perturbative piece of Z0(τ, τ̄)

is a good approximation at weak coupling. As pointed out in [61], the clash between
weak coupling and large J can be avoided if one considers the limit J → ∞ while
taking λ ≡ 2π J / Im(τ) fixed. Since our formula for the power-law corrections is τ-
independent for rank-one theories, these two limits coincide for the power-law piece
log(Γ(J + α + 1)), differing only in the behavior of the nonuniversal exponential cor-
rection. We can therefore isolate this correction easily in the fixed-λ limit, in which the
instanton contributions to Z0(τ, τ̄) go to zero exponentially in n.

One might expect the exponentially small corrections to be associated with the break-
down of the eft altogether, capturing the leading effects of massive states propagating
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over distances on the infrared scale, as discussed in (2.3.24). One would therefore antic-
ipate exponentially small corrections proportional to ∝ exp[−κλ1/2], with κ̃ some fixed
number depending on the geometry of the virtual propagation, but not on n or τ, τ̄. Nu-
merically, we find a remarkably accurate match to such an exponential, with κ̃ =

√
π/2,

as shown below.

Consideration of the second difference

In (2.3.24) we have seen that only the coefficients of n0 and n1 in the asymptotic
expansion of qn(τ, τ̄) are expected to depend on τ. This means that the second variation
in n of qn(τ, τ̄) is τ-independent. Let 4 be the difference operator ∆nqn = qn+1− qn. We
want to compute the second difference

42
nq[loc]

n (τ, τ̄) = q[loc]
n+2(τ, τ̄)− 2q[loc]

n+1(τ, τ̄) + q[loc]
n (τ, τ̄) (2.4.11)

and compare it with the result in (2.4.2),

42
nq[EFT]

n = log
[
(2n + α + 3) (2n + α + 4)
(2n + α + 1) (2n + α + 2)

]
. (2.4.12)

Figure 2.4.1 shows the results of a numerical computation for imaginary values of
τ between 1 and 60 and for n between 1 and 40, representing the values of 42

nq[loc] as
function of τ at fixed values of n. We see that quite rapidly, already for τ ' 4i, the
τ-dependence drops for all values of n. The asymptotic value is well approximated by
42

nqeft
n for n larger that n & 5, where the discrepancy is of order

1− 4
2
nq[EFT]

n

42
nq[loc]

n

∣∣∣∣∣
n=5,τ�1

≈ 1%. (2.4.13)

At n = 1, the discrepancy is of order

1− 4
2
nq[EFT]

n

42
nq[loc]

n

∣∣∣∣∣
n=1,τ�1

≈ 8%. (2.4.14)

Estimation of the error

The numerical data can help us estimate the τ and n dependence of the difference
42

n(q
[loc]
n − q[EFT]

n ). As discussed in the last subsection, we expect the leading contribution
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to the difference to have the form

q[loc]
n − q[EFT]

n ∼ fn(τ, τ̄)e−κ
√

n/ Im τ = fn(τ, τ̄)e−κ
√

λ/(4π), (2.4.15)

where λ = ng2 = 4πn/ Im τ. To verify this conjecture and estimate the proportionality
factor fn(τ, τ̄) and the coefficient κ we have computed the difference as a function of
τ, keeping the ratio n/ Im τ = λ/(4π) fixed (see Figure 2.4.2). The numerical data
is consistent with fn(τ, τ̄) being a constant approximately equal to fn(τ, τ̄) ≈ 1.6 and
κ ≈ π. Already for τ ≈ 3 our conjecture seems to reproduce the localization data to high
accuracy. Interestingly, this single exponential term seems to account for the discrepancy
42

n

(
q(loc)

n − q[EFT]
n

)
both in the small-τ, large-n (i.e. large-λ) regime and in the large-τ

regime (see Figure 2.4.3).

2.5 Technical details

2.5.1 Nonexistence of higher-derivative F-terms on conformally flat space

Higher-derivative F-terms on the Coulomb branch

In generalN = 2 supersymmetric gauge theories, the effective action on the Coulomb
branch has higher derivative F-terms, of which those with few derivatives have been
partially classified by [65–68]. In the case of superconformal gauge theories with rank
one, the remarkable simplifications of the dynamics of the Coulomb branch have to do
with the absence of such terms.

More precisely, the only half-superspace integrands consistent with superconformal
symmetry on a general curved background, are the tree-level kinetic term proportional to
Φ2, and terms involving the background Weyl multiplet, which contains the graviphoton
background and the self-dual part of the Weyl tensor.

Coupling to background supergravity

Consider the effective action of a single Abelian vector multiplet in a superconfor-
mally invariant theory. The symmetries of a N = 2 superconformal theory include
dilatation and U(1) R-symmetry, which act on a vector multiplet φ by rescalings and
complex phase rotations respectively, both in the underlying microscopic cft and in the
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eft of the Coulomb branch. The Weyl symmetry acts as

φ→ eρφ , (2.5.1)

and the U(1)R acts as

φ→ eiγφ . (2.5.2)

One can combine the Weyl and U(1)R parameters into a single complex parameter σ ≡
−ρ− iγ, which acts as

φ→ e−σφ , φ̄→ e−σ̄φ̄ . (2.5.3)

As long as we only consider vector multiplets, it is possible to promote σ to a local
function of superspace, not only just of the x coordinates. Such a superspace formalism
in N = 2 supergravity of vector multiplets has already been worked out in [69]. In order
to preserve the chirality constraint Q̄i

α̇ · φ = 0 we can require σ to obey the same chirality
constraint Q̄i

α̇ · σ = 0.
The chiral superfield Weyl parameter σ consists of a complex scalar, fermions, and a

vector parameter λ̂µ, and other components which act only on the auxiliary fields. The
scalar and fermionic members of the parameter superfield implement Weyl, U(1)R, and
local supersymmetry transformations, respectively, whereas the λ̂µ-transformations shift
the gauge field as

δAµ = φ λ̂µ . (2.5.4)

Local transformations are not themselves symmetries of the dynamical fields alone,
but can be understood as “spurionic” symmetries, that preserve the action for dynamical
variables together with a set of transformations onto background fields. In the case of
local dilatation and local U(1)R transformations, the corresponding background fields
are the metric and the U(1)R gauge field, which transform by Weyl transformations and
local U(1)R gauge transformations, respectively. The λ̂µ-transformations can be thought
of as shifting a background antisymmetric tensor field Bµν by a gauge transformation

Bµν 7→ Bµν + (dλ̂)µν (dλ̂)µν = ∂µλ̂ν − (µ↔ ν) . (2.5.5)
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Constraints on the EFT from super-Weyl invariance

The eft inherits the super-Weyl invariance of the underlying cft, so we can now
consider what possible terms one might write in a supersymmetric N = 2 eft con-
sistent with super-Weyl invariance. For a single U(1)gauge vector multiplet, the Weyl
and local U(1)R transformations give enough freedom to set the complex scalar φ equal
to some fixed nonzero value, say µ, everywhere that it is nonvanishing: By choosing
σ = +log(φ/µ) we can fix the “gauge,” φ = µ.

The fermions ψi
α in the Abelian vector multiplet are superpartners of φ, and super-

symmetry implies that if φ− µ can be made to vanish with a local transformation, then
ψi

α can be made to vanish as well at the cost of turning on a nonzero but flat background
for the (spurionic) gravitini. Also, the freedom to make λ̂µ-transformations allows us to
set the gauge field to zero as well, and so the entire vector multiplet in the eft can be
gauged away.

We are now left with various background fields from which to construct super-Weyl
invariant action, if it ever exists. As we are considering only the maximally supersym-
metric background R4 (and backgrounds equivalent to it such as the sphere S4 and the
cylinder S3 ×R), we need only consider couplings involving the Ricci curvature and its
derivatives, since the Weyl curvature and R-symmetry gauge flux vanish in the back-
grounds we consider.5

For D-terms there are many such terms one can construct: The dressed metric
ĝµν ≡ |φ|2 gµν is Weyl-invariant and its superspace extension is super-Weyl-invariant
by construction. So any term constructed from these has Weyl weight zero and is suit-
able for addition to the action as a D-term (i.e., full N = 2 superspace d4θ d4θ̄ integrand)
consistent with super-Weyl invariance.

Two-point functions of elements of the chiral ring, correlators we considered in the
main body of the thesis, are computable by localization and insensitive to D-terms how-
ever. We need therefore consider only super-Weyl-invariant F-term contributions to the
effective action.6

5 Remember that in four dimensions, the Riemann tensor can be decomposed into the Ricci and the Weyl
tensors.

6 In addition to the familiar D-terms and F-terms, N = 2 supersymmetric effective theories with hyper-
multiplets may have terms that can be represented as 3

4 -superspace integrals but not true F-terms. Some
such terms have been worked out in [65–68]. However we can restrict our attention to theories with only
a pure Coulomb branch and no massless neutral hypers, rather than an enhanced Coulomb branch. For
theories with no hypermultiplets we may consider only the usual F-terms and D-terms.

53



Such terms must be of the form

∆L =
∫

d4θ φ2 I0 , (2.5.6)

where I0 is a super-Weyl-invariant term that is also a chiral primary field, i.e., annihilated
by all the D̄i

α̇ superderivatives. As we have pointed out above, such terms must be
constructed from Ricci curvatures R̂µν of the hatted metric ĝµν and the R-gauge field α

with a condition dα ≡ 0 imposed (pure gauge). It is rather immediate however that the
latter ingredient, α, cannot really be used because when we demand gauge invariance,
the only gauge invariant building block is dα, which vanishes on our background. Of
course you can also construct topological terms inside I0, but multiplying φ2 will again
break gauge invariance.

Now, let’s turn to ĝµν. What is important is that this is not a chiral field, nor is the
Ricci curvature or any of its derivatives;

D̄i
α̇(ĝµν) = ω ĝµν , ω ≡ ψ̄i

α̇

φ̄
. (2.5.7)

In other words, even though ĝµν is Weyl-invariant (unhatted Weyl invariance), acting
with the antichiral supersapce derivative on ĝµν is equivalent to infinitesimally Weyl-
transforming the hatted metric by a Weyl parameter proportional to ψ̄i

α̇/φ̄ (hatted Weyl
transformation), which does not vanish identically, obviously.

Therefore only quantities that can be constructed from ĝµν are the hatted Weyl-invariant
quantities. But since these quantities are Weyl-invariant, hatted nor unhatted does exactly
make a difference. They are exactly the same as the ones constructed from gµν, that is,
the unhatted Weyl curvature and various powers of it and its Weyl-covariantized deriva-
tives.

Again, many such terms can be constructed, and would contribute to F-terms on a
non-conformally-flat background; however for a background with vanishing Weyl cur-
vature, all such terms vanish. We therefore conclude that all higher-derivative F-terms
vanish identically on a conformally flat background, in the effective theory of a single
Abelian vector multiplet.

More comments on the currents

The action of the super-Weyl transformations on the physical fields is generated by
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currents with protected integer operator dimensions living in a single current multiplet;
for the case of dilatations the generating operator is the trace of the stress tensor with
dimension 4 and for U(1) transformations the generating current is the U(1)R-current
with dimension 3. The current generating the λ-transformations is an antisymmetric
tensor of weight 3 (see for instance [70, 71]).

Since these currents are local, they can be integrated against arbitrary functions to
generate well-defined local transformations of the fields. This is the physical basis of
the super-Weyl transformation: An infinitesimal change of the sugra background is
equivalent to an infinitesimal transformation of the physical degrees of freedom, which
in turn is equivalent to inserting integrated currents into the path integral. For instance
an infinitesimal change in the background metric is equivalent to

S→ S +
∫ √

|g| (δgµν) Tµν ; (2.5.8)

an infinitesimal change in the R-symmetry gauge connection is equivalent to

S→ S +
∫ √

|g| (δAU(1)R
µ ) Jµ

U(1)R
; (2.5.9)

and an infinitesimal change in the antisymmetric tensor background is equivalent to

S→ S +
∫ √

|g| (δBµν)Zµν + (c.c.) . (2.5.10)

Diffeomorphism and Weyl invariance are equivalent to the statements that Tµν is
divergenceless and traceless, respectively; U(1)R invariance is equivalent to the state-
ment that Jµ

U(1)R
is divergenceless. There is no simple analogous statement about the

Z-current, which sits in the (short) stress tensor multiplet as an anti-self-dual tensor
with conformal dimension 3. At the free-field level, the Z-current is proportional to
φF(−)

µν , where F(−) is the anti-self-dual part of the gauge field strength. Its complex
conjugate generates λ̂-transformations on the vector multiplet when integrated against
λ̂.

Unlike the R-current and stress tensor, its divergence does not vanish. Correspond-
ingly, the coupling of Zµν to the background Bµν-field is somewhat subtle; the λ̂ one-
form transformations must act on other background fields in addition to the Bµν-field.
The coupling of the Z-current to the sugra background is formalism-dependent, as the
B-field is not part of the minimal N = 2 sugra multiplet and the details have not been
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worked out in the sugra literature. One can infer the physically relevant properties
of the coupling by considering the current directly, whose properties are formalism-
independent.

The Zµν current, which generates the λ̂µ-transformations which shift the gauge field
in the vector multiplet, is less well-studied than the other members of its multiplet, the
stress tensor and R-current. Since the super-Weyl transformation generated in part by
Zµν plays a role in forbidding higher-derivative F-terms for one-dimensional Coulomb-
branch efts, we comment briefly on properties of this current for the sake of context [70–
72].

The Zµν current is similar to the line-charge symmetry that shifts the photon in a
weakly-coupled Maxwell gauge theory [73, 74], but it is a different sort of current. The
line-charge current in four-dimensional Abelian gauge theory has dimension approxi-
mately two at weak coupling rather than three, and cannot be exactly conserved unless
the dimension is exactly two and Maxwell field is exactly free, in analogy with the par-
allel Sugawara theorem for spin-one currents in two dimensions [75].

By contrast the Z-current has dimension three and is not divergenceless. Indeed, the
divergence of the Z-current contributes to the central charge in the N = 2 supersymme-
try algebra. That is,

{Qi
α, Qj

β} = 2 εij εαβ Z ,

Z 3
∫

d3N µ∇ν Zµν ,

Zµν ∝ εij ([σµ, σν])
αβ εij Qi

α ·Q
j
β · Jscalar ,

(2.5.11)

where Jscalar is the lowest component of the stress tensor multiplet, a scalar primary of
dimension ∆ = 2 transforming trivially under the R symmetry and equal to φφ̄ in the
Coulomb-branch eft [70, 71].

In a superconformal N = 2 theory without marginal operators, this current is the
only contribution to the central charge; there are no other currents of dimension three
and the correct quantum numbers to appear in the supersymmetry (susy) algebra. The
normalization of the central charge Z is therefore determined by the three-point function
of the current multiplet in such theories, which means its value is fixed entirely by the
anomaly coefficients a and c. This has interesting implications for the bps dyon spectrum
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on the Coulomb branch of non-Lagrangian N = 2 scft.
In a superconformal N = 2 theory with marginal operators, there is a second inde-

pendent component of the central charge, also a total derivative, of a current which we
shall call Yµν:

Z 3
∫

d3N µ∇ν Yµν ,

Yµν = ∑
A

yA εij ([σµ, σν])
αβ εij Qi

α ·Q
j
β · O

A ,
(2.5.12)

where A runs over all marginal operators OA and yA can vary over the conformal man-
ifold. All the dependence of the central charge on the marginal directions is through the
Y-current contribution.

2.5.2 Weyl anomaly action in 4d N = 2, rank-1 scfts

N = 2 super-Wess-Zumino term for the Weyl anomaly

When a conformal field theory has a moduli space, moving to a generic point of
it breaks the conformal symmetry spontaneously. Because of the argument of t’Hooft
anomaly matching, in flowing from uv to ir, there must be a term that cancels the change
in a- and c-anomalies. This is accomplished by writing down the effective action of the
dilaton, which is the Nambu-Goldstone boson of conformal symmetry breaking. This
term, the wz term for the Weyl anomaly, is given in [76].

An N = 1 supersymmetrization of this term was given in [58]. This term is not the
unique supersymmetrization preserving N = 1 superconformal symmetry. Alternate
supersymmetrizations of the term can be obtained by adding N = 1 superconformally-
invariant terms to the action, for instance involving a N = 1 superconformal action for
the gauge fields.

Because of peculiarity of the full superspace integrand in N = 2 that it is dimension-
less, this non-uniqueness is absent in D = 4, N = 2, rank-1 theories [57]. In N = 2
superspace, the term can be written formally as a full-superspace integral

LN=2 super−WZ = (constant)×
∫

d4θd4θ̄ log(Φ/µ) log(Φ†/µ) . (2.5.13)

We wish to write this in components, particularly the terms involving the scalar φ, φ̄
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and its derivatives. The constant can also be determined by matching with the non-
supersymmetric wz term.

N = 1 superfield decomposition of the N = 2 super-wz term

The full form of the N = 2 super-wz term is easiest to write in terms of N = 1
superfields, as expressed in [77, 78]. The N = 2 vector multiplet Φ decomposes into
an N = 1 superfield φN=1 and an N = 1 vector multiplet V whose gauge-invariant
super-field strength isWα. In N = 1 superspace, the form of the term is

LN=2 super−WZ =
∫

(d4θ)N=1

[
C1 I

[N=1]
1 + C2 I [N=1]

2

]
+ (terms involving Wα) ,

(2.5.14)
where C1 and C2 are constants and

I1 ≡
1

φN=1 φ̄N=1
(∂µφN=1)(∂

µφ̄N=1) , (2.5.15)

I2 ≡
1

φN=1 φ̄N=1
(εαβDαDβ φN=1) (ε

α̇β̇D̄α̇D̄β̇ φ̄N=1). (2.5.16)

The Dα and D̄α̇ are the spinorial superspace covariant derivatives.

Reducing the N = 2 super-wz action into scalar components on flat space

First for our purposes, we only need to write down the purely scalar part of the whole
action. To this goal, one just drops all terms including the auxiliary field F ≡ φN=1|θ2 ,
as well as fermions and superfield strength. The reason for this is the following; Because
Re F and Im F form a triplet under SU(2)R together with D, the real auxiliary field for
the vector multiplet, the coupling linear in those auxiliary fields will necessarily include
two or more fermions. Especially, there is no way in which one can write down purely
scalar terms after integrating out those auxiliary fields. So we need only consider the
superspace integrals of the two terms I1,2, and in particular only the component terms
containing no fermions or auxiliary fields.

With attention restricted to such component terms, the superspace integral of I2 is
easiest to compute. In order to obtain a term involving only scalars, we must take the
θ̄θ̄ component of D2ΦN=1 and the θθ component of D̄2Φ†

N=1, which are proportional to
∂2φ and ∂2φ̄, respectively. So we have

∫
(d4θ)N=1 I2 ' (const.)× (∂2φ)(∂2φ̄)

|φ|2 , (2.5.17)
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where the ' denotes the omission of terms involving fermions and auxiliary fields.
The superspace integral of I1 can be evaluated easily using a trick: Treat ∂µφN=1 and

its conjugate as independent superfields Gµ, G†
µ, and write the superspace integrand as

a Kähler potential for the five superfields χA ∈ {φN=1, Gµ} and their conjugates. So

I1 = K(χ, χ†) = |φN=1|−2 ηµνGµG†
ν . (2.5.18)

Then the superspace integral is given by the usual formula written in terms of the Kahler
potential,∫

(d4θ)N=1I1 ' K,χAχB† ∂νχA∂νχB†

= |φ|−4 (∂φ∂φ̄)2 − φ−2φ̄−1 (∂µ∂νφ̄)(∂µφ)(∂νφ)

− φ̄−2φ−1 (∂µ∂νφ)(∂µφ̄)(∂νφ̄) + |φ|−2 (∂µ∂νφ)(∂µ∂νφ̄) .
(2.5.19)

Rewriting the two terms with the substitution (black τ is preserved for the gauge cou-
pling parameter),

φ = µ e−�−i� , φ̄ = µ e−�+i� , (2.5.20)

we get∫
(d4θ)N=1 I1 = (const.)× (∂µ∂ν�)(∂µ∂ν�) + (fermions and auxiliary) , (2.5.21)

and

∫
(d4θ)N=1 I2 = (const.)×

[
(∂µ∂ν�)(∂µ∂ν�)− 2 (∂µ∂ν�)(∂µ�)(∂ν�) + (∂�)4

]
+ (fermions and auxiliary) , (2.5.22)

where we call � as the dilaton and the � as the axion and have set � to be constant to
simplify results.

Modulo total derivatives, this is∫
(d4θ)N=1 I1 = A× (∂2�)2 + (fermions and auxiliary) , (2.5.23)
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and

∫
(d4θ)N=1 I2 = B ×

[
(∂2�)2 − 2 (∂�)2(∂2�) + (∂�)4

]
+ (fermions and auxiliary) .

(2.5.24)

The coefficients are given in [77, 78], and it can be determined as follows. First of all,
because of the absence of the term proportional to (∂2�)2 in the bosonic wz term in [76],
the relative coefficient of the above two must be −1, i.e., A = −B,

L(Euclidean)
WZ = B×

[
(∂�)4 − 2(∂2�)(∂�)2

]
(2.5.25)

The absolute coefficient can hence be matched with [76] to be B = 2× (∆a)[ks],

L(Euclidean)
WZ = 2(∆a)[ks] ×

[
(∂�)4 − 2(∂2�)(∂�)2

]
(2.5.26)

We therefore arrive at the dilaton and axion part of the super-wz term,

L(Euclidean)
super−WZ = +2 (∆a)[ks] ×

[
(∂�)4 − 2(∂2�)(∂�)2 + 2 (∂2�)(∂�)2

− 4(∂� · ∂�) (∂2�)− 2(∂�)2(∂�)2 + 4(∂� · ∂�)2 + (∂�)4
]

, (2.5.27)

where we have evaluated the term in flat space, and dropped terms involving the gauge
field, fermions, and auxiliary fields. Note that this agrees with the flat space expression
given in [58].

Expression for other conformal frames

The term above is not conformally invariant – it is, after all, the wz term for the
Weyl anomaly, and conformally transforming the above expression to S4 or S3 × R,
legitimately, looks complicated. This impression, however, is delusional; the whole ex-
pression can be decomposed into the Komargodski–Schwimmer (ks) action (2.5.26) plus
a reminder, and the former is solely responsible for the anomalous Weyl transformation.
Especially, the reminder terms are invariant under Weyl transformations.

On flat space, the wz Lagrangian breaks up as:

L[�, �, g] = L[ks][�, g] + L[remainder][�, �, g] , (2.5.28)
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where

L[ks][�, g] ≡ 2(∆a)[ks]

[
(∂�)4 − 2(∂2�)(∂�)2

]
L[remainder][�, �, g] ≡ 2(∆a)[ks]

[
2(∂2�)(∂�)2 − 4(∂� · ∂�) (∂2�)

− 2(∂�)2(∂�)2 + 4(∂� · ∂�)2 + (∂�)4
]

.

(2.5.29)

The covariantization of the two terms gives [58]

S(lorentzian)
super−WZ, curved

= − ∆a[ks]
∫

d4x
√
−g
[
� E[ks]

4 +

(
4
(

Rµν − 1
2

R gµν
)
∇µ�∇ν�− 2 (∇�)2

(
2��− (∇�)2

))]
+ 4
√
−ĝ
[(

R̂µν − 1
6

R̂ ĝµν
)
∇µ�∇ν�+

1
2

(
ĝµν∇µ�∇ν�

)2
]

+ (covariant terms invoving the Weyl tensor)
(2.5.30)

where the first term matches the one given in [76], while the rest can be interpreted
as the supersymmetric completion of it. We also dropped all terms involving the Weyl
tensor because we are only interested in conformally flat spaces.

It is convenient to separate the dependence on the powers of dilaton and axion:

L(Lorentzian)
super−WZ = L�1 + L�2 + L�3 + L�4 + L�2 + L�1�2 + L�2�2 + L�4 , (2.5.31)

where

L�1 = −(∆a) � E4 , (2.5.32)

L�2 = −4 (∆a)
[

Rµν − 1
2
Ric4 gµν

]
∇µ�∇ν� , (2.5.33)

L�3 = +4(∆a) (∇�)2 (∇2�) (2.5.34)

L�4 = −2(∆a) (∇�)4 (2.5.35)

L�2 = −4(∆a)
[

Rµν − 1
6

R gµν

]
(∇µ�)(∇ν�) (2.5.36)

L�1�2 = −8 (∆a) (∇µ∇ν�)∇µ�∇ν� , (2.5.37)
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L�2�2 = −4 (∆a)
[

2 (∇� · ∇�)2 − (∇�)2(∇�)2
]

, (2.5.38)

L�4 = −2 (∆a) (∇�)4 . (2.5.39)

2.5.3 N = 2 superconformal gauge dynamics with ghost hypermulti-

plets and rank-1 scfts

We construct countably infinite number of super-Weyl invariant theories with a one-
dimensional Coulomb branch.

Weyl anomalies and β-functions for N = 2 gauge theory with G = SU(2)

Consider for instance the case of an N = 2 gauge theory with G = SU(2) and
ordinary hypermultiplets. A hypermultiplet in a representation R of SU(2) contributes
to the β-function as

βordinary hypermultiplet in R = +
gYM

3

16π2 TrR(tA tA) , (2.5.40)

where A = 1, 2, 3 and the representation matrices tA are taken to be Hermitean and nor-
malized so that the level spacing of tA=3 is differences of 1. In this normalization, if R is
the k-dimensional representation then t3 has eigenvalues {− k−1

2 ,− k−3
2 , · · · ,+ k−3

2 ,+ k−1
2 },

so

TrR(tA tA) = 3× trR((tA=3)2) =
k(k2 − 1)

4
. (2.5.41)

In terms of the largest eigenvalue ` ≡ k− 1
2 of tA=3, this is just the dimension k = 2`+ 1

of the representation, times the quadratic Casimir `(`+ 1) = 1
4(k

2 − 1).
So the β-function of an ordinary hypermultiplet is

βordinary hypermultiplet in Rk
= +

gYM
3

16π2
k(k2 − 1)

4
. (2.5.42)

The β-function in N = 2 theories comes entirely from one loop.

Ghost hypermultiplets

If we were to couple hypermultiplets in representation R with spin-statistics opposite
to the usual ones, then the β function would be of the same magnitude and opposite sign
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as for ordinary matter. Such opposite-statistics “ghost matter” in supersymmetric gauge
theory as been considered elsewhere in a similar spirit [79–82]. So

βghost hypermultiplet in Rk
= −gYM

3

16π2
k(k2 − 1)

4
. (2.5.43)

The SU(2) vector multiplet contribution to the β-function is

βSU(2) vector multiplet = −6 , (2.5.44)

so the condition for the cancellation of the β-function is

∑
k

k(k2 − 1)
4

× (n(hyper)
k − n(ghost hyper)

k ) = +6 , (2.5.45)

where n(hyper)
k and n(ghost hyper)

k are the numbers of ordinary hypermultiplets and ghost
hypermultiplets, respectively, in the k-dimensional representation of SU(2).

The β-function depends only on the differences ñ(hyper)
k ≡ n(hyper)

k − n(ghost hyper)
k , and

so we can write formula (2.5.45) as

∑
k

k(k2 − 1)
4

× ñ(hyper)
k = +6 . (2.5.46)

This is just the generalization of the usual β-function formula to negative numbers of
hypermultiplets; the path integral with ghost hypers gives this generalized formula a
concrete physical interpretation, at least in terms of a superconformal statistical system
in four euclidean dimensions, if not a quantum theory in 3 + 1 spacetime dimensions.

Ghost hypermultiplets as regulators

Our only intended use for this system is to serve as a nonunitary regulator for the
effective vector multiplet action with various values of the α-coefficient of the super-wz

term. Since we only wish to define the effective theory up to the scale Λ << |φ|, the
nonunitary nature of the ghost hypers is irrelevant since all hypermultiplet degrees of
freedom are massive at the scale set by |φ|: So long as the ghost hypers satisfy this condi-
tion, then they just serve as a nice regulator for the wz action that has the useful property
of preserving the spontaneously broken N = 2 superconformal symmetry. Similar regu-
lators forN = 4 theories involving ghost matter have been considered elsewhere [79–82].
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The present ghost regulators are similar to those of [82], which are simpler than those
of [79–81], in that the latter theories considered there involved nonunitary degrees of
freedom in the gauge sector as well as in the matter sector, necessarily so in order to
preserve the full N = 4 supersymmetry. Our regulating theories, like those of [82], have
nonunitarity only in the matter sector.

We therefore need to engineer a vacuum manifold consisting solely of an Abelian
vector multiplet, with no additional massless degrees of freedom from the hypers when
the vector multiplet scalar has a nonzero vev. That is, we wish to exclude the case
of an “enhanced” Coulomb branch or its ghost generalization. To achieve this, it is
necessary and sufficient to choose all the representations to be even-dimensional. Then
the mass matrix for the hypers, tA

RφA, has no vanishing eigenvalues for nonzero φA, and
the vacuum manifold is a pure Coulomb branch. So we will restrict our representation
content to k even. With this criterion, all ghost degrees of freedom have masses of order
|φ| and are above the cutoff Λ.

Now let us write an expression for the a-anomaly of the underlying cft. So long
as the β-function vanishes, the gauge coupling τ is marginal and the anomaly is τ-
independent, and we can compute the Weyl anomaly accurately in free field theory. Just
as for the gauge anomaly, the ghost hypermultiplets contribute to the Weyl anomaly
oppositely to the ordinary hypermultiplets in the same representation. Thus we have
the total a- coefficient

a[aefj]
CFT = a[aefj]

SU(2) vector multiplet + a[aefj]
matter =

5
8
+

1
24
×∑

k
k ñhyper

k , (2.5.47)

where Anselmi–Freedman–Grisaru–Johansen [83] (aefj) is a name for the different kind
of normalization of the a-coefficient, related to a[ks] by

a[AEFJ] ≡ 16π2a[KS]. (2.5.48)

If we have chosen all the k to be even, then there are no massless degrees of freedom on
the Coulomb branch other than the vector multiplet, and so the Coulomb branch eft has

a[aefj]
EFT = a[aefj]

U(1) vector multiplet = +
5

24
. (2.5.49)
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Then the anomaly mismatch in aefj units [83] is

(∆a)[aefj] ≡ a[aefj]
EFT − a[aefj]

EFT =
5

12
+

1
24
×∑

k
k ñ(hyper)

k (2.5.50)

and the α-coefficient then comes out to

α ≡ 2× (∆a)[aefj] =
5
6
+

1
12 ∑

k
k ñ(hyper)

k (2.5.51)

We include only even k in the sum, but other than that there is no restriction on the
ñk other than the requirement (2.5.46) that the β-function vanishes.

Conformal combinations of matter and ghost matter

Since the ñk can be positive or negative, there are many ways to satisfy equation (2.5.46)
while giving different values for α as determined by equation (2.5.51). For instance, for
ñ(hyper)

4 any integer, we can takeñ(hyper)
2 = 4− 10 ñ(hyper)

4 ,

ñk = 0 ∀k 6= 2, 4 .
(2.5.52)

Then the β-function cancellation equation (2.5.46) is satisfied, and the value of α is

α =
3
2
− 4

3
ñ(hyper)

4 . (2.5.53)

Super-Weyl invariance of the ghost-hyper theories

The vanishing of the β-function means that these theories are scale-invariant. How-
ever we can see that they are not only scale-invariant, they are Weyl-invariant on curved
space and therefore super-Weyl-invariant on curved superspace [84, 85].

The action for ghost hypers is Weyl-invariant at the Lagrangian level exactly as it
is for ordinary hypers: For both types of multiplet, the action is exactly quadratic in
hypermultiplet degrees of freedom, and the ghost hypers are taken to have exactly the
same super-Weyl transformation laws as the ordinary hypers. So even though nonuni-
tary scale-invariant theories are not Weyl-invariant in general, the ghost-hyper scfts are
special cases which are in fact super-Weyl invariant. This is important to emphasize,
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because we will use super-Weyl invariance, not just scale invariance, as a symmetry
to eliminate higher-derivative F-terms in the Coulomb branch eft of the ghost-hyper
theories.

For vector multiplet actions, N = 2 super-Weyl invariance follows automatically
from Weyl-invariance and N = 2 susy because the N = 2 supergravity background has
a superspace formalism which couples naturally to half-superspace F-terms for vector
multiplets as well as full-superspace terms. For hypermultiplet F-terms, maintaining
manifest supersymmetry off-shell is more subtle, requiring more sophisticated super-
space formalisms such as harmonic superspace or projective superspace, to which we
know of no currently developed formalism for coupling to a curved superbackground.

However it is possible to see directly that the action for ghost hypermultiplets must be
super-Weyl-invariant, if the action for ordinary hypermultiplets is super-Weyl-invariant.
There are two more or less equivalent ways to see this, one “on-shell” and one “off-
shell”. Both forms of the proof use the fact that the action for hypermultiplets, both
ghost type and ordinary type, is exactly quadratic in the hypermultiplet fields.

The on-shell, operator argument is as follows. Since the action is exactly quadratic
in the hypermultiplet degrees of freedom, so must be the stress tensor, supersymme-
try generators, and other currents. In particular, the virial current would have to be
quadratic in hypermultiplet degrees of freedom, and there is no candidate virial current
that is quadratic in hypermultiplet degrees of freedom.

This operator proof translates into an off-shell argument in component fields, as
follows:

Given an N = 2 supergravity background and a fixed (not necessarily supersym-
metric or on-shell) background for the vector multiplet, we can perform a super-Weyl
transformation on the metric and vector-multiplet degrees of freedom.

The full action for vector and hypermultiplets is super-Weyl invariant, and thus for
an arbitrary super-Weyl transformation of the background metric and dynamical SU(2)
vector multiplet, there must exist a corresponding transformation on the components of
the hypermultiplet that leaves the Lagrangian invariant, not just up to a total derivative
or local susy transformation, but invariant exactly, since the virial current must vanish.
The action is exactly quadratic, and the transformation of the off-shell hypermultiplet
component fields under the super-Weyl transformation is linear.

The exact same super-Weyl transformation can be applied as a linear transformation
to the off-shell ghost hypermultiplet component fields, and the action will necessarily
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still be invariant: For a quadratic action for a complex field, a linear transformation on
a bosonic field leaves the action invariant if and only if the corresponding action for a
fermionic field also does so: For a quadratic action for a complex field, the statistics of
the field are irrelevant to the invariance of the action so long as the transformation is
linear.

We therefore conclude that the fixed points with ghost-hypermultiplets are invariant
under the same super-Weyl transformations as the scfts with ordinary unitary hyper-
multiplets.

2.5.4 The Chiral ring of 4d N = 2 rank-1 scfts and recursion relations

The superconformal algebra on S4

The superconformal group of D = 4, N = 2 scfts on flat space is SU(2, 2|2). In doing
exact localisation computation, whose result I used in the main body of the thesis, one
needs to put the theory on S4. The superconformal group is then broken explicitely and
becomes OSp(2|4) [60]. The R-symmetry group is especially broken to SO(2), which
is the Cartan of SU(2)R, so that the usual U(1)R-charge is explicitly broken. Therefore,
one has to consider mixing between operators with operators with lower dimensions
multiplied by the curvature of the sphere, because there are no superselection rules that
prohibit this.

Let us restrict to the case where there is a chiral primary O of dimension 2. Then
the two-point fucntions of On can be computed using the deformed partition functions
Z[S4] on the sphere,

〈On(N)Om(S)〉S4 =
1

Z[S4]
∂n

τ∂m
τ̄ Z[S4] . (2.5.54)

where τ is a parameter associated to the exactly-marginal deformation. The correlators
on R4 can be obtained by diagonalising the mixing between operators.

Solving the recurrence equation

The set of two-point functions can especially be cast into a form of recursion relations
when there is only one exactly marginal operator. The diagonalisation is done with
the usual Gram-Schmidt algorithm, which prodeces the Toda lattice equation as a final
form, [60, 86–89]

∂∂̄qn(τ, τ̄) = exp[qn+1(τ, τ̄)− qn(τ, τ̄)]− exp[qn(τ, τ̄)− qn−1(τ, τ̄)], (2.5.55)
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where qn ≡ log Zn, as defined in the main body of the text. Here we want to show
how to solve this equation using the extra information coming from the eft about the τ

dependence of the asymptotic expansion of qn for large n.
First, it is convenient to rewrite the second-order equation as a system of two first-

order equations: ∂Pn(τ, τ̄) = Pn(τ, τ̄) (Qn(τ, τ̄)−Qn−1(τ, τ̄))

∂̄Qn(τ, τ̄) = Pn+1(τ, τ̄)− Pn(τ, τ̄),
(2.5.56)

where

Qn(τ, τ̄) = ∂qn(τ, τ̄), Pn(τ, τ̄) = exp[qn(τ, τ̄)− qn−1(τ, τ̄)]. (2.5.57)

In (2.3.24) we saw that the dependence of qn(τ, τ̄) on τ is at most affine (i.e. only the
constant and linear in n terms depend on τ). We can separate this by writing

qn(τ, τ̄) = n f (τ, τ̄) + k0(τ, τ̄) + Mn. (2.5.58)

The variables Qn and Pn then read

Qn(τ, τ̄) = n ∂ f (τ, τ̄) + ∂k0(τ, τ̄), (2.5.59)

Pn(τ, τ̄) = e f (τ,τ̄) exp[Mn −Mn−1] = e f (τ,τ̄)Λn. (2.5.60)

With this ansatz the first equation in Eq. (2.5.56) is identically satisfied and we only need
to solve

n ∂∂̄ f (τ, τ̄) + ∂∂̄k0(τ, τ̄) = e f (τ,τ̄) (Λn+1 −Λn) . (2.5.61)

If we isolate the terms that do not depend on τ, τ̄ we can rewrite the equation as the
system

∂∂̄ f (τ, τ̄) = 2Ae f (τ,τ̄), (2.5.62)

∂∂̄k0(τ, τ̄) = Be f (τ,τ̄), (2.5.63)

Λn+1 −Λn = 2An + B, (2.5.64)

where A and B are constants. We see that f (τ, τ̄) obeys the Liouville equation (2.5.62)
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on a hyperbolic plane of Gaussian curvature −4A, and it sources the Poisson equa-
tion (2.5.63) satisfied by k0(τ, τ̄).

The equation for Λn is easily solved and gives

Λn = An (n− 1) + Bn + C′ = A (n− n+) (n− n−) , (2.5.65)

where C′ is an integration constant and n± are two numbers that satisfy

n+ + n− = 1− B
A

, n+n− =
C′

A
. (2.5.66)

Using this expression we can solve for Mn:

eMn−Mn−1 = Λn (2.5.67)

and find
M(n) = D + n log A + log[Γ(n− n− + 1)Γ(n− n+ + 1)], (2.5.68)

where D is an integration constant.
Let us now consider the τ-dependent equations. The Liouville equation (2.5.62) for

f (τ, τ̄) admits the general solution

e f (τ,τ̄) =
1
A

|∂φ(τ)|2(
1− |φ(τ)|2

)2 , (2.5.69)

where φ(τ) is a meromorphic function. Now that we have solved for f (τ, τ̄), we can
recast the equation for k0(τ, τ̄) as a Laplace equation:

∂∂̄

(
k0(τ, τ̄) +

B
2A

f (τ, τ̄)

)
= 0 (2.5.70)

so that k0(τ, τ̄) is given by

k0(τ, τ̄) = − B
2A

f (τ, τ̄) + ψ(τ) + ψ̄(τ̄). (2.5.71)
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We can now collect our results and write the final expression for qn(τ, τ̄):

qn(τ, τ̄) = n f (τ, τ̄) + k0(τ, τ̄) + Mn

= n ( f (τ, τ̄) + log A) + k0(τ, τ̄) + D

+ log [Γ(n− n+ + 1)Γ(n− n− + 1)] .

(2.5.72)

Our solution depends on the constants, n+, n−. They can be fixed in terms of the
anomaly coefficient α by comparing the large-n expansion of qn(τ, τ̄) with the results of
the eft. Expanding the gamma function in the expression in Eq. (2.5.72), we get

qn(τ, τ̄) = n ( f (τ, τ̄) + log A− 2) + k0(τ, τ̄) + D + log(2π)− (n+ + n− − 1) log n+

+
1 + 3n+ (n+ − 1) + 3n− (n− − 1)

6n
+ . . . . (2.5.73)

2.5.5 Values of α for three Lagrangian rank-one theories

We list the values of α for three rank-one Lagrangian theories we know in N = 2.

Theory α

Free theory 0
N = 4 sym with G = SU(2) 1

SU(2) sqcd with N f = 4 3/2

(2.5.74)
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Conclusions

Conclusions

In this thesis, I have used the large-J (large-charge) expansion to derive various uni-
versal formula for strongly-coupled theories. The large charge expansion, invented by
myself and collaborators, is a way of analysing a strongly-coupled theory like a weakly-
coupled one, where the loop counting parameter is 1/J. As we have seen, this method
turned out to be very systematic and thus powerful. One just needs to write down the
effective action according to the symmetries of the system, and each allowed term can
be classified using the J-scaling, because we can evaluate it around the classical saddle
point far from the origin of the field space. Unlike the usual treatments where we need
individual care depending on the dimension or the number of supersymmetries, this
method treats SUSY and non-SUSY theories on an equal footing.

In Chapter 1, we find that the behaviour of the lowest operator dimension at large
charge is the same for various theories with a global U(1) symmetry. This universality,
which we named the large-charge universality class, included both non-SUSY (the O(2)
model) as well SUSY models (W = Φ3 model). This fact was somewhat counterintu-
itive because naively we expect that there exist bps operators of arbitrary high R-charge
in SUSY theories (there actually are bps operators, but those are of high-spin and their
dimensions go as J2); As we have correctly explained, the non-existence of the bps oper-
ators should be associated with the absence of moduli space, so that the supersymmetry
is spontaneously broken in the ir.

The distinction between explicit and spontaneous breaking was also made precise.
Especially important was the fact that the chemical potential term is not an explicit
breaking of symmetry in the usual sense, and that through redefinition of fields, we
recover the same symmetry we started with. This was particularly important in higher-
rank theories, where some of the original symmetries are explicitly broken by fixing the
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charge, while some are then broken spontaneously by the vev of charged fields. By
tracking what spontaneous breaking the system undergoes, we were able to prove the
existence and the non-existence of translational Goldstone bosons in a large-charge eft.
The attempts in solving for such inhomogeneous ground states at large charge showed
us one of the realizations of peculiar quantum phases of matter.

In Chapter 2, I applied the method of the large-charge expansion to systems with
moduli space of vacua. This is particularly convenient for testing the method of the large
charge expansion, because supersymmetry heavily constrains the eft in the infrared (ir).
For 4d N = 2, rank-one scfts we considered in the chapter, the constraints from SUSY
is so strong that there were no subleading F-terms in the eft. This fact was quite useful
because the eft just reduced to be a sum of the free kinetic term and the wz term for
the Weyl anomaly. Using this Lagrangian, we computed the Coulomb branch chiral ring
data exactly to all orders in the large-R-charge expansion, and as expected, the result is
universal (perturbatively) only up to the theory’s a-anomaly.

We also commented on the possible non-universal nonperturbative corrections to the
universal perturbative formula. It made us possible to make predictions about chiral ring
data between operators of low dimensions. This made us possible to verify our formula
against known results for some of the theories using exact localization. In summary, the
final formula we derived using the large charge expansion almost completely solves the
chiral ring structure of any rank-one scfts, while exact localization can only determine
it for Lagrangian theories with an exact marginal coupling and conformal bootstrap can
for ope data among operators of low dimension.

Future directions

As our understanding of the large charge expansion has become somewhat theoret-
ically firm, what would be interesting in the future is to apply the method to various
interesting systems. The most interesting direction would be to use holography to un-
derstand quantum gravity for finite N. For example, what is the holographic dual of the
state at large charge for the O(N) model? It cannot for sure be a Black Hole, because
such a highly-charged Black Hole would be unstable via Schwinger mechanism. All the
more, because the ground state at large charge is unique, it cannot account for the large
entropy Black Holes must have. We are still yet to know the description of such an ob-
ject in gravity, partly because we need to take J � N in understanding the large-charge
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limit. However, in understanding such an object would directly contribute to our under-
standing of genuinely quantum regime of gravity theories, which we ultimately would
like to understand.

The first step in this direction would be to consider higher-rank theories in four-
dimensional N = 2 scfts. The theories we considered were of rank one, so in the lan-
guage of the gravity dual, these should correspond to the uninteresting theories without
weakly-couple description of gravity. Even if we take the rank N to be large, the analysis
is only for J � N, but because of the particularly simple structure of the effective action,
one might hope to analyse the regime which intersects with the BMN limit [90] where
N ∼ J2.

There are various interesting future directions aside from quantum gravity, which
hopefully are more tractable. For example, understanding systems including fermi seas
is theoretically important, but it is still yet to be understood. This is because of the
technical difficulty in renormalising fermi seas at finite volume, but this needs to be
solved in order to even understand a simple theory of a free fermion. Because the
particle-vortex duality includes dualities of the bosonization type, combining it with the
method of large charge is an interesting future problem to consider.

There are also various interesting directions for supersymmetric theories too. For
example, making an exact bound for the non-universal corrections in (2.3.24) would be
interesting, because this will make our predictions for low R-charge an exact bound, not
an approximate computation. Related to this, it would also be interesting to compare
the result to the bootstrap result given in [91] (preliminary attempts at matching these
two predictions have been done and were successful). It could also be interesting to
extend the analysis to Higgs branches. Because we have the SU(2)R symmetry at low-
energies, even at leading order, the inhomogeneous ground states will appear in the
theory. It would be very interesting to understand the consequence of such ground
states in supersymmetric theories with a moduli space of vacua.
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