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ABSTRACT  

The normal-mode method (NMM) is widely used in seismology, ocean tide and seiche 

studies. While most of the former NMM applications to tsunami focused on modal 

analysis of a bay with incoming waves, Satake and Shimazaki (1987, 1988) proposed a 

method to simulate tsunami waveforms based on mode superposition, which is 

considered to be faster than the finite difference method (FDM). They also pioneered to 

conduct a modal analysis of tsunami source characterization in the Sea of Japan using 

the NMM, where a tsunami source could be included into the model. However, their 

proposal was only tested in a simple ideal case which is far from the reality and few 

properties of NMM simulation were understood. Besides, their source characterization 

was qualitative due to the coarse grids and the limited number of modes. 

To validate NMM in a realistic case and quantitative source characterization, high 

resolution normal-mode solutions of the Sea of Japan are required. In this study, I first 

extended the previous NMM into a spherical coordinate system and used an experiential 

normalization way to simplify the numerical calculation. Then linear matrix storage and 

matrix-vector multiplication were implemented, and a modern sparse eigenvalue solver 

was incorporated, which made the calculation of large scale NMM problems realistic. In 

addition, a parallel version of the calculation was also developed.  

These improvements enabled us to obtain 6,000 modal solutions (down to a period of 

around 8 min) of 2-arc-min grids and 3000 modal solutions (down to around 11.5 min) 

of 1-arc-min grids for the Sea of Japan. By the superposition of these modes, tsunami 

waveforms were synthetized by the NMM, for the first time, for the 1983 Sea of Japan 

earthquake (Mw 7.7). Comparison with the results from the FDM and examination in 

both time and frequency domains confirmed the validity of the NMM when the modes 

cover the frequency range of the signal.  

Besides the validation of NMM waveform simulation, its properties were carefully 

examined. Simulation time were compared with FDM and an improvement was 

proposed so that the time using the NMM may be faster than using the FDM by several 

orders, which strengthens the advantage of the NMM. In addition, a relationship 

between the mode order and the mode frequency was proposed so that it is possible to 

estimate in advance the required number of modes of a given maximum frequency. 
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I then conducted a novel modal analysis, utilizing the high resolution normal-mode 

solutions to characterize 60 potential submarine faults in the Sea of Japan. A 

quantitative mode grouping method using kurtosis was proposed, dividing the obtained 

6,000 modes into three types: 622 basin-wide modes, 4,953 regional modes, and 425 

local modes.  

The excitation weights for the 60 fault models along the eastern margin of the Sea of 

Japan were computed, which showed that the average excitation was larger for the 

sources located at shallower water depth or with larger magnitude. Quantitative 

examinations showed that among the three types of modes, the regional modes 

distribute their energy more efficiently at a large costal area and therefore contribute the 

most to the costal tsunamis. 

Finally, a symmetric construction way of NMM eigenvalue-problem was proposed, 

which enabled us to compute 15,000 modes of the Sea of Japan down to 5 min in 

period. Using these modal solutions, tsunami waveforms synthetized by mode 

superposition can cover the usual frequency band in the Sea of Japan, which makes it 

possible to simulate waveforms with high frequency energy. Besides, this approach 

eliminated the inaccuracy introduced by the experiential mode normalization, resulting 

almost no energy before the initial arrival and better agreements to FDM around the 

onset.  These improvements further made the NMM a practical tool for the tsunami 

simulation in the Sea of Japan.
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1 INTRODUCTION 

A shallow-water wave theory is usually used to describe the propagation of tsunamis. 

Because the velocity of small-amplitude shallow-water waves depends only on the 

water depth, many numerical computations have been made for tsunami propagation. 

The tsunami numerical computation solves the equations of motion and continuity for 

shallow-water waves with appropriate boundary and initial conditions. The most 

common and well-known methods are the finite difference method (FDM) and finite 

element method (FEM). The normal-mode method (NMM) can also solve these 

problems, but it is less studied and used, especially in the field of tsunami research. 

Analytically, the solution of partial differential equations can be expressed by the 

combination of an infinite number of basis functions, or modes. For given equations, 

these modes are orthogonal (or “normal”) to each other, and together they span the 

solution space of these equations.  

When using a numerical approach, we can obtain only a finite number of modes. Even 

if we use analytical basis functions, we still cannot use an infinite number, which 

separates this method from the analytic case. The NMM has an advantage to synthesize 

any band-limited waveforms by the modal superposition of all finite number of modal 

solutions within the frequency band. With this advantage the NMM has been 

extensively used to compute band-limited seismic waveforms from a large number of 

the modal solutions of the whole Earth. A numerical advantage of the NMM is that, 

once the modal solutions of a specific area have been calculated and stored inside the 
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computer, waveforms excited by a given source in this area can be synthesized as a 

superposition of normal modes, which is an extremely fast process because it consists of 

only some simple calculations and file input and output. Another point of NMM is that, 

it can produce information directly in the frequency domain for purpose like modal 

analysis. 

The NMM is often used in geophysics. For example, gravest free oscillations of 

systems, such as the solid Earth and an ocean basin have been studied using the NMM. 

The Centroid Moment Tensor Project focal mechanism solution (Dziewonski & 

Woodhouse, 1983) used modal solutions to synthesize the seismic waveforms. This 

utilizes the fast superposition property of NMM. Meanwhile, as a frequency domain 

method, the NMM is also a powerful tool for assessing the resonant oscillations 

between the atmosphere and the solid earth. For example, Watada and Kanamori (2010) 

successfully used the NMM to explain the long-period harmonic Rayleigh waves 

observed during the 1991 Mt. Pinatubo eruption in the Philippines.  

Before talking about NMM applied to tsunami researches, it is worthy to mention the 

development of NMM in the field ocean tides. A series of papers (Platzman, 1978, 

1984a, 1984b; Platzman et al., 1981) first proposed a way to construct the eigenvalue-

problem of the world ocean from the linear shallow-water equations with Coriolis force 

and then solved it to obtain the normal-mode solutions for the world ocean in the tidal 

period range. Müller (2007) further expanded the calculation by incorporating a full 

loading effect into the calculation. The full loading effect means that the elasticity of the 

Earth is also considered so that a mass like water column will deform the surface of the 

earth. This is also an important topic in recent tsunami research (Allgeyer & Cummins, 

2014; Watada et al., 2014). For details of these ocean tide topics, see Sanchez (2008). 

These studies are quite illuminating for tsunami research because they are basically 

solving similar equations, but in a different frequency band. 

NMM applied in the field of tsunami research were mostly motivated by seiche or 

harbor oscillations (Rabinovich, 2009). The history of using the NMM to study 

tsunamis may go back to Loomis (1973), who described a novel method for calculating 

the normal-mode solutions for irregular bodies of water with variable depth. As an 

application, he used the method to calculate the normal-mode solutions for Honokohau 

Harbor in Hawaii and discussed its properties (Loomis, 1975). Using Loomis’s method, 
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Aida (1996) obtained the normal-mode solutions for Tokyo Bay to study the properties 

of the incident tsunami waves inside it. Again using Loomis’s method, Takigawa (2015) 

showed that Tokyo Bay responded differently to different tsunami events.   

These tsunami NMM studies focused on modal analysis of (almost) closed bays or 

basins which are surrounded by the land and artificial nodal lines in the ocean area. A 

modal solution with large amplitude in a concentrated area can be interpreted as a 

trapped wave characteristic to the area. Other modal solution with distributed 

amplitudes in a wide area corresponds to the traveling waves. Many modes have mixed-

type wave characteristics between these two types, depending on the location inside the 

area. 

Certainly, modal analysis can be conducted using other methods. Yalciner & Pelinovsky 

(2007), Bellotti et al. (2012b), and Heidarzadeh & Satake (2014) conducted modal 

analyses by simply looking at the Fourier amplitude spectrum of observed time domain 

waveforms. Bellotti et al. (2012a) proposed a novel modal analysis method that can 

estimate the frequency response of the water body in an area to the input waves coming 

through the open boundary, by introducing a radiation boundary condition for the open 

ocean. They identified modes at frequencies with large amplitude response. Their new 

method can be applied to even a bay surrounded by continental shelf (Bellotti et al., 

2012b; Cortés et al. 2017). The amplitude pattern of the gravest modes can be 

interpreted to understand the physical property of each mode. Notice that their modes 

are not normal-modes but rather quasi-normal-modes because of the radiation boundary.  

While most NMM researches were limited to modal analysis, Satake and Shimazaki 

(1987) demonstrated by a simple synthetic test that tsunami waveforms for ocean basins 

with an ideal geometry can be synthesized by a superposition of numerical normal 

modes obtained by Loomis’s method. This was perhaps the first time that numerical 

normal modes were used to synthesize waveforms. However, their work has two 

limitations. First, the calculation area is simple: it consists of only 32x16 grids and has 

uniformed water depth. Second, the source is simple: it is a square uniform rise of 

water. These limitations made the test far from realistic. Besides, little is known about 

the property of simulation using MNN: the calculation time, which supposed to be an 
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advantage of the NMM, was not measured; the relation between the goodness of 

synthesized waveforms and the modes used was also not clear. 

In another paper by Satake & Shimazaki (1988), they obtained the normal-mode 

solutions for the Sea of Japan and discussed the properties of the tsunamis excited by 

the 1964 Niigata earthquake and the 1983 Sea of Japan earthquake using the normal-

mode excitation weights in the Sea of Japan by these two events. This was a novel 

modal analysis approach since their NMM calculation area includes these sources, 

which are not possible for any other frequency domain modal analysis methods. Their 

modal analysis differs from other modal analysis in one more point: their modal 

analysis dealt with higher modes in a large region while most of the tsunami modal 

analysis deal with several leading modes in a small to moderate region. Novel approach 

requires novel tools, in this case a mode grouping criterion based on the affecting area is 

needed. However, in their research, they divided the calculated modes into two groups 

by pure observation. Besides, their modal solution was rather coarse because it 

contained only 100 modes down to about 50 min and it was obtained from 10 arc-min 

grids due to computational limitations. (This is also the reason that their modal solution 

could not be used to simulate tsunami waveforms.) 

In this thesis, I further develop the NMM from Satake and Shimazaki’s (1987, 1988) 

ideas to synthesize tsunami waveform and characterize the tsunamis sources based on 

the NMM.  

Section 2 presents the basic methodology and mathematical tools, together with my 

improvements to enable calculating a high-resolution modal solution, and some new 

tools. Starting from the linear shallow-water equations, the problem to solve is 

constructed. Then analytical solution in two ideal cases are shown. Next, the numerical 

scheme with an experiential mode normalization is introduced and improvements to 

accelerate the calculation are listed, as well as the parallelization of the calculation. 

After that, bathymetry data for high-resolution normal-mode solutions are introduced 

for the Sea of Japan. Besides, a relationship between mode order and mode frequency is 

proposed and examined. Finally, an automatic method to group modes is described by 

introducing a statistical value for each eigenfunction. This method is then applied to the 

Sea of Japan. Part of section 2.2 and part of 2.3 were published in a former research 

paper (Wu and Satake, 2018). 
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Section 3 mainly deals with tsunami wave simulation using NMM mode superposition. 

First with the obtained modal solutions, I successfully synthesize tsunami waveforms 

excited by the 1983 Sea of Japan earthquake (Mw 7.7), for what I believe to be the first 

time. Next in both time and frequency domain, the goodness of the simulation results is 

examined and their reasons are understood. Then a way to estimate the required mode 

number in order to simulate the tsunami waveform at a given place is given. Finally and 

most importantly, an improvement of mode superposition is proposed so that the 

waveform simulation time using NMM may be faster than FDM by several orders even 

in a moderate region like the Sea of Japan. Section 3.1, part of 3.2 and part of 3.3 were 

published in a former research paper (Wu and Satake, 2018). 

In Section 4, a novel modal analysis is conducted. Tsunami hazards of 60 potential 

submarine faults in the Sea of Japan are examined by characterizing the tsunami sources 

with their modal excitation weights. Grouping of the modes are incorporated into this 

novel modal analysis that includes sources in the calculation domain and that utilizes a 

large number of modes. Section 4.1, 4.2 and part of 4.3 were published in a former 

research paper (Wu and Satake, 2018). 

In Section 5, a symmetric construction way of NMM eigenvalue-problem in the Sea of 

Japan in the spherical coordinates is proposed, together with accurate mode 

normalization and superposition equations. The symmetric approach enables faster 

calculation of more modal solutions. Then I revisit the same problem in Section 2.3 and 

3 and manage to compute 15000 modes down to 5 min in period and simulate tsunami 

waveforms in the Sea of Japan which better reproduce the observations than these in 

Section 3. 

 In Section 6, a way to directly obtain higher modes, other forms of NMM equations as 

well as the potential of obtaining a NMM solution for the world ocean are discussed. 
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2 IMPROVED NMM 

SOLUTIONS AND THEIR 

PROPERTIES 

 

2.1 Basic Mathematics 

2.1.1 Basic Equations 

For many tsunami problems, linear shallow equations are the equations to solve: 

𝜕𝑽

𝜕𝑡
= −𝑔𝛻𝜂    (2.1a) 

𝜕𝜂

𝜕𝑡
= −𝛻 ∙ (𝐷𝑽)     (2.1b) 

where 𝑽 is the velocity vector of the water, 𝜂 is the sea surface elevation, 𝐷 is the water 

depth and g is the gravitational acceleration. 

Differentiating both sides of (2.1b) by t and substituting (2.1a) into it, we get: 

𝜕2𝜂

𝜕𝑡2
= 𝛻 ∙ (𝑔𝐷𝛻𝜂)  (2.2) 
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Ignoring the change of gravitational acceleration g at difference places, and solve (2.2) 

using separation of variables, that is to set 𝜂(𝒙, 𝑡)= ℎ(𝒙)・𝑇(𝑡), we then obtain: 

1

𝑇

𝜕2T

𝜕𝑡2 =
𝑔

ℎ
𝛻 ∙ (𝐷𝛻h)  (2.3) 

Because the left side is a function of only t and the right side is a function of only 𝒙, the 

only possibility is that both sides equal to a constant that is irrelevant to either t or 𝒙. Set 

the constant to be λ′, we obtain two equations: 

𝜕2T

𝜕𝑡2
= λ′𝑇  (2.4a) 

𝛻 ∙ (𝐷𝛻ℎ) =  
λ′

𝑔
ℎ  (2.4b) 

Solving the first equation (2.4a) will yield solution 𝑇(𝑡) = 𝑒±𝑖ωt, where λ′ = −ω2 and 

ω is the angular eigen-frequency of the travelling wave. (We do not consider the case 

that λ′>0, which corresponds to a solution that the amplitude increases or decreases 

through time.) 

Finally we obtain the same equation of the eigenvalue problem as in Loomis (1973) to 

solve:  

𝛻 ∙ (𝐷𝛻ℎ) = 𝜆ℎ  (2.5) 

where λ =−
ω2

g
 

In addition to the differential equation, we also need the boundary condition to form a 

complete problem. There are two kind of boundaries. First is the boundary between 

water and land. This boundary condition is expressed as 
𝜕ℎ

𝜕𝒏
= 0, where n is unit vector 

perpendicular to the boundary. Another boundary is the open boundary between the 

water of calculation area and the water of outside. This boundary condition is expressed 

as ℎ=0, also called the node boundary. Note that the expression for the first boundary 

condition is exact. This boundary condition represents a total reflection of waves at the 

boundary between land and water, which is widely used in other calculation methods 

like FDM. But the second boundary condition is an approximation. This kind of 
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boundary is usually expressed by a formula that retains the shape of the water surface as 

a wave passes through the boundary, which is more physically reasonable. In normal 

mode approach, this is very hard to realize. Here I chose to use the simple form ℎ=0. 

Loomis (1973, 1975) has discussed about the validity of this approximation and 

concluded that the difference is not big against the result of assigning an infinite open 

sea outside the boundary. Similar results can be found in the case of Marina di Carrara 

harbour of Belloti et al. (2012b). Besides, for an area like the Sea of Japan, the portion 

of this node boundary condition is very small, thus we can expect little effect by 

introducing this kind of boundary condition. But special care should be taken when 

dealing with something near a node boundary. For example, when synthesizing tsunami 

waveform, it would better not trust the waveform near a node boundary. Another 

example is, when dealing with an earthquake source close or even at this kind of 

boundary, we may get a wrong result. In other words, dealing with something that is too 

close to a node boundary should be avoided. 

So finally the eigenvalue-problem to solve is: 

𝛻 ∙ (𝐷𝛻ℎ) = 𝜆ℎ 

where λ =−
𝜔2

𝑔
 and with boundary condition 

𝜕ℎ

𝜕𝒏
= 0 at 𝐵1 and ℎ=0 at 𝐵2. 𝐵1 is the land-

ocean boundary and 𝐵2 is the open ocean boundary. 

2.1.2 Mode Superposition 

The modal solutions have the property of orthogonality, namely: 

∫ℎ𝑙(𝒙)ℎ𝑚(𝒙)𝑑𝒙 = 𝛿𝑙𝑚        (2.6) 

where 𝛿𝑙𝑚 is the Kronecker delta. Equation (2.6) also indicates that the modes are 

normalized so that their L2-norm equals 1. 

Satake and Shimazaki (1987) pointed out that these obtained normal modes can be used 

to synthesize tsunami waveforms. The sea surface displacement η at any point x and 

time t can be expressed as a superposition of the normal modes: 

𝜂(𝒙, 𝑡) = ∑ 𝐶𝑙ℎ𝑙(𝒙)𝑐𝑜𝑠𝜔𝑙𝑡𝑙        (2.7) 
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where Cl is the excitation weight (or amplitude) for the l-th mode and can be obtained 

from the initial condition: 

𝐶𝑙 = ∫𝜂0(𝒙)ℎ𝑙(𝒙)𝑑𝒙       (2.8) 

where η0(x) is the initial distribution of the sea surface displacement. Note that the sea 

surface uplift is assumed to coincide instantly with the earthquake, which is generally a 

good approximation.  

The equation (2.8) can be deduced as following: 

The given initial condition η0(x) can be represented as 

𝜂0(𝒙) = 𝜂(𝒙, 𝑡 = 0) = ∑𝐶𝑙ℎ𝑙(𝒙)

𝑙

 

Multiply ℎ𝑚(𝒙) on both sides and integral over 𝑑𝒙 yields: 

∫ 𝜂0(𝒙)ℎ𝑚(𝒙)𝑑𝒙 = ∫∑𝐶𝑙ℎ𝑙(𝒙)

𝑙

ℎ𝑚(𝒙)𝑑𝒙 

                                 = ∫∑𝐶𝑙𝛿𝑙𝑚 

𝑙

𝑑𝒙 

            = 𝐶𝑚 

To calculate the above problem numerically, the spatial functions in equations (2.5), 

(2.7), and (2.8) need to be discretized. After discretization, equation (2.5) is in the form 

of a matrix-eigenvalue problem: 

𝑎𝑖𝑗ℎ𝑗 = 𝜆ℎ𝑖          (2.9) 

Here, matrix 𝑎𝑖𝑗 has dimension nn, where n is the total number of the ocean grids.  

Then we can solve this problem and obtain eigenvalue λ and its corresponding 

eigenfunction h, which form normal-mode solutions. Given an initial condition, we can 
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use the obtained normal-mode solutions to synthesize tsunami waveforms using 

equations (2.7) and (2.8). 

2.1.3 Analytical Solutions of a 2D Rectangular Basin 

If the area is a rectangle basin with uniform bathymetry, then an analytical solution of 

equation (2.5) exists. This is among the few cases that we can obtain an analytical 

solution for the normal mode solution. For a completely closed rectangular basin with 

length L in the x direction, width W in the y direction and uniform bathymetry D 

(Figure 2.1), we can write the equation (2.5) in the Cartesian coordinates: 

𝐷 (
𝜕2ℎ

𝜕𝑥2 +
𝜕2ℎ

𝜕𝑦2) = −
ω2

g
ℎ (2.10) 

 

Figure 2.1. An illustration of the problem geometry: a rectangular basin with uniform water depth D, 

length L and width W, surrounded by land. 

with land boundary conditions at all the four sides, that is: 

𝜕ℎ

𝜕𝑥
= 0 at x=0 and x=L 

𝜕ℎ

𝜕𝑦
= 0 at y=0 and y=W 

Using separation of variables, set ℎ(𝑥, 𝑦)= 𝑋(𝑥)・𝑌(𝑦) and substitute it into (2.10), we 

then obtain: 

1

𝑋

𝜕2X

𝜕𝑥2
+

1

𝑌

𝜕2Y

𝜕𝑦2
= −

ω2

𝑔𝐷
  (2.11) 
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Because the first term of the left side depends only on x, the second term of the left side 

depends only on y, and the right side is a constant, thus the first and second terms of the 

left side must be equal to two constants, respectively. Set the two constants to be −λ1 

and −λ2, we get two equations: 

𝜕2𝑋

𝜕𝑥2 + λ1𝑋 = 0  (2.12a) 

with boundary conditions 
𝜕𝑋

𝜕𝑥
= 0 at x=0 and x=L 

𝜕2𝑌

𝜕𝑦2
+ λ2𝑌 = 0  (2.12b) 

with boundary conditions 
𝜕𝑌

𝜕𝑦
= 0 at y=0 and y=W 

and 𝜆1 + 𝜆2 =
𝜔2

𝑔𝐷
 

Solving (2.12a), we know that the solution has the form 𝑋 = 𝑐𝑜𝑠√𝜆1𝑥 (we discard the 

sine term because of the boundary condition 
𝜕𝑋

𝜕𝑥
= 0 at x=0). Then using another 

boundary condition 
𝜕𝑋

𝜕𝑥
= 0 at x=L, we get a relation: 

√𝜆1𝐿 = 𝑚𝜋     m = 1,2,3 … 

Thus we obtain the solution 𝑋 = 𝑐𝑜𝑠
𝑚𝜋

𝐿
𝑥, m=1,2,3 … and λ1 = (

𝑚𝜋

𝐿
)
2

 

Similarly, solving (2.12b) yields 𝑌 = 𝑐𝑜𝑠
𝑛𝜋

𝑊
𝑦, n=1,2,3 … and λ2 = (

𝑛𝜋

𝑊
)
2

 

Put all of them together, we get the solution of the (m, n) mode: 

ℎ𝑚𝑛(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠
𝑚𝜋𝑥

𝐿
𝑐𝑜𝑠

𝑛𝜋𝑦

𝑊
𝑐𝑜𝑠𝜔𝑚𝑛𝑡  (2.13a) 

where 𝜔𝑚𝑛 = 𝜋√𝑔𝐷√(
𝑚

𝐿
)
2

+ (
𝑛

𝑊
)
2

 (2.13b) 

is the angular eigen-frequency.  
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In this case, we may also check the orthogonality of modes: 

∫ℎ𝑖𝑗(𝒙)ℎ𝑚𝑛(𝒙)𝑑𝒙 = ∫ cos
𝑖𝜋𝑥

𝐿

𝐿

0

cos
𝑚𝜋𝑥

𝐿
𝑑𝑥 ∫ cos

𝑖𝜋𝑦

𝑊

𝑊

0

cos
𝑛𝜋𝑦

𝑊
𝑑𝑦 =

𝐿𝑊

4
𝛿𝑖𝑚𝛿𝑗𝑛 

Thus any solution 𝜂(x, y, t) can be expressed as a mode superposition: 

𝜂(x, y, t) = ∑𝐶𝑚𝑛cos
𝑚𝜋𝑥

𝐿
cos

𝑛𝜋𝑦

𝑊
cos𝜔𝑚𝑛𝑡

𝑚,𝑛

 

where 𝐶𝑚𝑛 is the excitation weight of each mode. 

For rectangular basin with different boundary conditions (ex. node boundary instead of 

land boundary), the deduction is similar while some of the results may contains a sine 

function instead of a cosine function. 

2.1.4 Analytical Solutions of a 1D case 

For completeness, the analytical solution of equation (2.5) in 1D case with uniform 

bathymetry is also shown here. The equation is: 

𝐷
𝜕2ℎ

𝜕𝑥2
= −

𝜔2

𝑔
ℎ 

This is similar but far easier than the 2D case mentioned above. For one boundary 

condition 
𝜕X

𝜕𝑥
= 0 at x=0 and x=L, the solution is: 

ℎ𝑚(x, t) = cos
𝑚𝜋𝑥

𝐿
cos𝜔𝑚𝑡 (2.14a) 

where 𝜔𝑚 = 𝜋√𝑔𝐷
𝑚

𝐿
 (2.14b) 

Other boundary conditions will yield similar results. 
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2.2 Numerical Calculation of NMM 

2.2.1 Numerical Forms in the Cartesian Coordinates and the Construction 

of the Matrix Eigenvalue-Problem 

Now we start to construct the matrix eigenvalue-problem equation (2.9) from equation 

(2.5) in the Cartesian coordinates following Loomis (1973). 

In a staggered grid system in the Cartesian coordinates (Figure 2.2), the differential in 

the x direction in (2.7) can be discretized using central difference: 

𝜕

𝜕𝑥
(𝐷

𝜕ℎ

𝜕𝑥
) →

1

𝛥𝑥
{𝐷𝑥(𝑖, 𝑗 + 1)[

ℎ(𝑖, 𝑗 + 1) − ℎ(𝑖, 𝑗)

𝛥𝑥
] − 𝐷𝑥(𝑖, 𝑗)[

ℎ(𝑖, 𝑗) − ℎ(𝑖, 𝑗 − 1)

𝛥𝑥
]} 

And the similar for the y direction, thus we can get the numerical form of (2.7) in the 

Cartesian coordinates: 

 

Figure 2.2. Staggered grid system in the Cartesian coordinates 

Dx(i, j + 1)

Δx2
h(i, j + 1) +

Dx(i, j)

Δx2
h(i, j − 1) + 

Dy(i + 1, j)

Δy2
h(i + 1, j) +

Dy(i, j)

Δy2
h(i − 1, j) 

             −[
Dx(i,j+1)+Dx(i,j)

Δx2 +
Dy(i+1,j)+Dy(i,j)

Δy2 ] h(i, j) = λh(i, j)   

This is of the form: 
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𝑎𝑖𝑗(𝑖, 𝑗 + 1)h(i, j + 1) + 𝑎𝑖𝑗(𝑖, 𝑗 − 1)h(i, j − 1) 

+𝑎𝑖𝑗(𝑖 + 1, 𝑗)h(i + 1, j) + 𝑎𝑖𝑗(𝑖 − 1, 𝑗)h(i − 1, j) 

+𝑎𝑖𝑗(𝑖, 𝑗)h(i, j)=λh(i, j) 

If we reorder double index ij as a single index I, and double index (i, j) as a single index 

J, that is to say 𝑎𝑖𝑗(𝑖, 𝑗 + 1) → 𝑎𝐼𝐽, then we obtain: 𝑎𝐼𝐽h𝐼 = λh𝐽.  

About the boundary conditions, node boundary h=0 is easy to achieve: just eliminate 

the corresponding element in vector h and matrix a. For land boundary 
𝜕ℎ

𝜕𝑛
= 0, because 

the structure of 𝛻 ∙ (𝐷𝛻ℎ), 
𝜕ℎ

𝜕𝑥
 or 

𝜕ℎ

𝜕𝑦
 is always coupled with D, so this kind of boundary 

can be achieved by setting D = 0. 

Now we have already turned an eigenvalue problem of a differential equation into a 

matrix eigenvalue problem. That is, given a matrix 𝑎𝐼𝐽, find the set of pairs of 

eigenvalue λ𝑖 and eigenvector 𝐡𝑖. This may be solved by many excellent existing 

numerical methods. Noting that 𝑎𝐼𝐽 = 𝑎𝐽𝐼 so 𝑎𝐼𝐽 is a symmetric matrix. As an example 

for I=ij and J=(i,j+1), we have: 

𝑎𝐼𝐽 = 𝑎𝑖𝑗(𝑖, 𝑗 + 1) =
Dx(i, j + 1)

Δx2
 

𝑎𝐽𝐼 = 𝑎𝑖𝑗+1(𝑖, 𝑗) =
Dx(i, j + 1)

Δx2
 

The symmetry promises all the eigenvalue and eigenvector are of real numbers, which 

makes the numerical problem easier to solve. Another important property of 𝑎𝐼𝐽 is that it 

is a very sparse matrix, which contains only 5 elements per row. And dimension of 𝑎𝐼𝐽 

is n times n, n is the total number of ocean grid. This means if we double the number of 

grids in both x and y direction, the dimension of the new matrix will be 16 times of the 

original one, instead of 4 times. Here lies the difficulty of a high-resolution calculation. 
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2.2.2 Numerical Forms in the Spherical Coordinates and an Experiential 

Normalization Method 

In the previous research of Loomis (1973) and Satake and Shimazaki (1987), they used 

Cartesian coordinates when discretizing equation (1). However, for an area like the Sea 

of Japan, which spans more than 10° of latitude from north to south, a spherical 

coordinate system is more suitable. In this study, spherical coordinates are used in the 

numerical scheme, so equation (2.5) becomes: 

1

𝑅2 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝐷 𝑠𝑖𝑛 𝜃

𝜕ℎ

𝜕𝜃
) +

1

𝑅2 𝑠𝑖𝑛2 𝜃

𝜕

𝜕𝜑
(𝐷

𝜕ℎ

𝜕𝜑
) = 𝜆ℎ 

where θ is the co-latitude and φ is longitude. In the staggered grid system used in this 

study (Figure 2.3), this equation has the discrete form of: 

 

Figure 2.3 Staggered grid system in the spherical coordinates 

𝐷𝜑(𝑖, 𝑗 + 1)

s(𝑖)2𝑅2𝛥𝜑2
ℎ(𝑖, 𝑗 + 1) +

𝐷𝜑(𝑖, 𝑗)

s(𝑖)2𝑅2𝛥𝜑2
ℎ(𝑖, 𝑗 − 1) 

+
𝑠′(𝑖 + 1)𝐷𝜃(𝑖 + 1, 𝑗)

𝑠(𝑖)𝑅2𝛥𝜃2
ℎ(𝑖 + 1, 𝑗) +

𝑠′(𝑖)𝐷𝜃(𝑖, 𝑗)

𝑠(𝑖)𝑅2𝛥𝜃2
ℎ(𝑖 − 1, 𝑗) 

−[
𝐷𝜑(𝑖, 𝑗 + 1) + 𝐷𝜑(𝑖, 𝑗)

s(𝑖)2𝑅2𝛥𝜑2
+

𝑠′(𝑖 + 1)𝐷𝜃(𝑖 + 1, 𝑗) + 𝑠′(𝑖)𝐷𝜃(𝑖, 𝑗)

𝑠(𝑖)𝑅2𝛥𝜃2
] ℎ(𝑖, 𝑗) 

=λℎ(𝑖, 𝑗)                               (2.15) 
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where Dφ and Dθ represent the water depth at the grid point in the θ and φ directions, 

respectively, since in a staggered grid system, two depth grid systems are required; s 

represents the value of sinθ at the corresponding Dφ (or h); and s' represents the value of 

sinθ at the corresponding Dθ. Notice that equation (2.15) has the form of equation (2.9). 

Using the original orthogonality of normal modes equation (2.6), all the integration has 

to deal with the 𝑑𝒙 part, which is varying with the latitude in the spherical coordinate 

system. For simplicity, I first assume that 𝑑𝒙 is not changing, so that an experiential 

normalization equation (2.16) as in the Cartesian coordinates can be used: 

∑ ℎ𝑙(𝑖, 𝑗)ℎ𝑚(𝑖, 𝑗)𝑖,𝑗 = 𝛿𝑙𝑚    (2.16) 

The assumption generally holds since the change of 𝑑𝒙 from north to south in the Sea of 

Japan is relatively small. The results in Section 3 and 4 will be based on this 

experiential normalization equation. While the exact normalization and its application 

will be provided and discussed in Section 5. And in Section 5 it is shown that 

waveforms derived from these two normalization equations have significant differences 

only before the onset. 

Using equation (2.16), mode superposition equation then remains the same form as (2.7): 

𝜂(𝒙, 𝑡) = ∑ 𝐶𝑙ℎ𝑙(𝒙)𝑐𝑜𝑠𝜔𝑙𝑡𝑙     (2.17)       

while the mode excitation weight  𝐶𝑙 now has a new form: 

𝐶𝑙 = ∑𝜂0(𝒙)ℎ𝑙(𝒙)    (2.18) 

where the summation is taken over the whole ocean grids. 

As shown, if we use Cartesian coordinates, the constructed matrix 𝑎𝑖𝑗 is symmetric 

(Loomis, 1973), which mathematically guarantees all the eigenvalues and the 

eigenfunctions to be real numbers. Currently matrix 𝑎𝑖𝑗 is not symmetric due to the 

differentiation along the θ direction. In this case, the problem has to be solved by 

allowing the eigenvalues and eigenfunctions to be complex numbers. Although this 

makes the calculation more difficult, the eigenvalue solver introduced in Section 2.2.3 

can handle this problem. An important physical insight into our eigenvalue problem is 

that, because there is no energy flux into or out of the region of interest, all the 
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eigenvalues and eigenfunctions should be real numbers. However, since we now solve 

the asymmetric eigenvalue problem, the results may contain imaginary parts due to 

computational instability. Whether our numerical calculation can overcome this kind of 

potential instability remains a challenge. Another way to overcome the asymmetry is to 

construct a symmetric eigenvalue-problem, which will be demonstrated in Section 5.1. 

2.2.3 Acceleration of the Numerical Calculation 

Previous studies (Loomis, 1973; Satake & Shimazaki, 1987) employed an inefficient 

method to solve the matrix eigenvalue-problem, which made it impossible to deal with 

the problem in a large dimension. To obtain high-resolution normal-mode solutions in a 

large area like the Sea of Japan, we introduce the following method:  

(1) Because the structure of matrix 𝑎𝑖𝑗 is sparse, with at most five elements in a row, we 

can store the matrix linearly by ignoring all the zero elements; storing diagonal, 

subdiagonal, and superdiagonal entries pi, qi, and ri, respectively, in three arrays; and 

storing the value of the other two entries xi and yi and their corresponding indices in 

another array. A brief illustration of the structure of 𝑎𝑖𝑗 is shown in equation (2.19), 

where the locations of xi and yi are arbitrary. 

[
 
 
 
 
 
 
 
𝑝1 𝑟2
𝑞2 𝑝2 𝑟3 𝑥2

𝑞3 ⋱ ⋱
⋱ ⋱

𝑥1 𝑦1

𝑦2

𝑥3

⋱

𝑦3

⋱

𝑥𝑛

⋱ ⋱
⋱ ⋱ ⋱

⋱
𝑦𝑛

⋱ 𝑟𝑛
𝑞𝑛 𝑝𝑛]

 
 
 
 
 
 
 

        (2.19)  

(2) We implement a matrix-vector multiplication that requires O(n) instead of the usual 

O(𝑛2) computation time, where n is the dimension of the matrix. That is, 

𝑤𝑖 = 𝑎𝑖𝑗𝑣𝑗 = 𝑞𝑖𝑣𝑖−1+𝑝𝑖𝑣𝑖 + 𝑟𝑖+1𝑣𝑖+1 + 𝑥𝑖𝑣𝑖𝑛𝑑𝑒𝑥(𝑥𝑖)
+𝑦𝑖𝑣𝑖𝑛𝑑𝑒𝑥(𝑦𝑖)

 

where the index function indicates the index of the element xi or yi in the storage array.  

(3) We use an implicitly restarted Arnoldi method (IRAM) provided by Arpack library 

(Lehoucq et al., 1996), an iteration method that fully utilizes a fast matrix-vector 
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multiplication process. This method also provides solvers for asymmetric problems. 

Therefore, it is suitable for our calculation, since we are using the spherical coordinates. 

With the improvements mentioned above, we make it possible to calculate high-

resolution normal-mode solutions for the Sea of Japan, which is the key to synthesizing 

tsunami waveforms using NMM 

2.2.4 Test of Rectangular Basin in the Cartesian Coordinates 

Before we calculate the normal mode of a real area, it is a good idea to first do some test 

to verify the numerical method developed above with analytical solutions. Here I 

choose a completely closed rectangle basin with a uniform depth and computed the 

eigenvalue λ =−
ω2

g
 and compare them with the analytical solution (2.13b). 

 

Figure 2.4 Comparison of calculated λ with theoretical value in a closed rectangle basin. Different 

numbers of grids are used for the same area. 

For the same area, I try to calculate using different numbers of grids. From Figure 2.4 

we can see that, the numerical result trend to converge to the theoretical one, when we 

use finer grids. This infers us that the result of numerical calculation is reliable when we 

have finer grids. Therefore, it is very important to conduct normal mode calculation 

with higher resolution bathymetry data. 

I also plot the calculation time to obtain 100 mode in Figure 2.5. We can then 

understand how difficult it would be to obtain a high-resolution normal mode solution 

in the past. After these efforts made in Section 2.2.3, I finally find a reasonable way to 

handle a large dimension NMM problem. 
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Figure 2.5 Comparison of time needed to get 100 modes in single precision using symmetry solver 

by 1. Householder-Givens method used in Loomis (1973) 2. IRAM directly 3. IRAM with 

improvements mentioned in this study. 

2.2.5 Parallelization with MPI 

The numerical calculation of the matrix eigenvalue-problem is extremely time 

consuming, even with the mentioned improvement in Section 2.2.3. To further 

accelerate the calculation, parallelization is needed. Fortunately, there is a parallel 

library of IRAM called Parpack (Maschhof and Sorensen, 1996). The library offers two 

choices of message passing, one is MPI (Message Passing Interface) and another is 

BLACS (Basic Linear Algebra Communication Subprograms). Here I chose to use the 

MPI implementation. Most things are similar to the serial version when using the serial 

IRAM, except that: 

(1) The originally linearly stored matrix is divided into several parts according to the 

number of cores used in the calculation. Each part is now stored and processed (as much 

as possible) in the corresponding core (Figure 2.6). 

(2) The matrix vector multiplication required by IRAM modified to a parallel version. 

Of course now message passing is required. 
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Figure 2.6. Illustration of the matrix distributed in each core 

Then with the parallel version of the code, test calculations are made. These calculations 

aim to calculate the first 100th, 200th, 400th and 800th modes of the 2-arc-min Sea of 

Japan, with different number of cores used. Table 2.1 shows the calculation time for 

each case and Table 2.2 shows the actual efficiency of one core for each case. (Single 

core efficiency is set to one).  

Table 2.1 Calculation time of 100, 200, 400 and 800 leading modes of the 2-arc-min Sea of Japan, 

using 1, 8, 32, 64, 432 cores on EIC computer system, respectively. The unit is second. 

Modes                 

Cores 
100 200 400 800 

1 2910 5080 14277 81613 

8 558 1101 3170 21431 

32 255 384 1240 9971 

64 207 292 921 8737 

432 62 101 510 6642 

 

Table 2.2 Actual efficiency of one core for each case (Single core efficiency is set to one) 

                     Modes                 

Cores 
100 200 400 800 

1 1 1 1 1 

8 0.65 0.58 0.56 0.48 

32 0.35 0.41 0.35 0.26 

64 0.21 0.27 0.24 0.15 

432 0.11 0.12 0.065 0.028 

From these results, first we see reduction of calculation time when using more cores. 

Second, we find that the calculation efficiency decreases when the number of cores 
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increases, as well as the dimension of the problem increases. This is firstly due to that 

the communication part of the current program is not optimized. Another reason is 

related to the nature of the parallel IRAM used because it is not fully parallelized: there 

is a key step to generate the Arnoldi factorization 

𝑨𝑽𝒃 = 𝑽𝒃𝑯𝒃 + 𝒇𝒃𝒆𝒃
𝑻 

where A, with dimension n x n, is the matrix in equation (2.9), 𝑽𝒃, with dimension n x b, 

is the set of Arnoldi vectors, (b is the number of modes to calculate), 𝒇𝒃 is the residual 

vector and 𝑯𝒃 is the b x b projection matrix. The problem is that 𝑯𝒃 is replicated on 

every processor (so does operations on 𝑯𝒃). So when b is larger, the scalability becomes 

worse. In contrast, when n increases (ex. when grid size decreases) while keep b the 

same, the paralleled calculation time increases only linearly, which is a good point. 

Besides, there is another parameter k. In order to obtain b eigenvectors, the IRAM 

actually keeps iteration on k vectors and k is larger than b. Therefore, the selection of k 

also affects the calculation time. The following Table 2.3 shows the calculation of 

b=1000 modes using 432 cores with different k. Since larger k means less vector-matrix 

multiplication while more work at Arnoldi factorization, a small k results faster 

calculation. Here, the proper choice of k makes the calculation of 1000 modes even 

faster than that of 800 modes in Table 2.1. 

Table 2.3 calculation time of 1000 modes of the 2 arc-min Sea of Japan using different number of 

iterating vectors k. 

k time/s 

1500 4095 

2000 14872 

4000 30470 

As a conclusion, the parallelization with MPI even without optimization enables a 

moderate acceleration, if combined with a proper choose of k and with moderate 

number of cores. And parallelization is especially suitable when the dimension n of the 

problem is increased while the required number of modes is kept. Actually in the next 

Section we will see that when the grid size is decreased, similar mode order has still 

similar frequency. 
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2.3 Modal Solutions of the Sea of Japan 

In this study, we focus on tsunamis in the Sea of Japan, which are suitable for the new 

NMM. The Sea of Japan is far larger than a bay but still of a moderate size. Thus, our 

new calculation can show the improvement clearly while still being computationally 

manageable. Also, we can compare the result with that obtained from Satake and 

Shimazaki (1988) to evaluate the development of the method. They used a grid size of 

around 10 arc-min and obtained only 100 modes, which made it impossible to 

synthesize tsunami waveforms from the obtained mode solutions. 

To calculate the normal-mode solutions for an ocean basin, the only input data needed is 

the bathymetry. We use the 30 arc-sec General Bathymetric Chart of the Oceans 

(Intergovernmental Oceanographic Commission, International Hydrographic 

Organization, and British Oceanographic Data Centre, 2003) and resampled it to 

generate 2 arc-min grids as the input bathymetry, which reduced the eigenvalue-

problem dimension. Another resampled 1 arc-min grids are also constructed as an input 

for the parallel computation. The boundary contained four straits, as shown in Figure 

2.7a. For strait 1 (Tatar Strait), we set it to be a land–ocean boundary because the water 

depth there is less than 10 m. For the other three straits, we set them to be open ocean 

boundaries, or nodes.  

The normal-mode solutions for the Sea of Japan are calculated using the bathymetry 

input. The dimension n of the matrix 𝑎𝑖𝑗 was 95,148 for the 2-arc-min grids case (as a 

contrast, the matrix in Satake and Shimazaki (1988) is of dimension 2521). In total, 

6,000 modes are obtained with periods down to about 8.3 min, much shorter than 50 

min, the shortest period obtained by Satake and Shimazaki (1988). The calculation time 

of 6,000 modes is about 15 days on an ordinary desktop computer. All the obtained 

eigenvalues and eigenfunctions have a zero imaginary part. Figure 2.8 shows the 

frequency distribution of the 6,000 modes, where modes are ordered starting from 

longer period. From the distribution, we can observe a decrease in the slope as the order 

of the mode increases. This means that the number of modes in a given frequency band 

becomes larger as the order increases. 
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Figure 2.7. (a) Bathymetry of the Sea of Japan with domain boundaries marked as lines. The faults 

of the 1983 Sea of Japan earthquake proposed by Satake (1985) are shown by yellow rectangles. (b) 

Enlarged map near the faults of the 1983 Sea of Japan earthquake. The red and blue contours are the 

uplift and subsidence, respectively, calculated by Okada’s method (1985), with an interval of 0.1 m. 

 

Figure 2.8. Frequency distribution of the 6,000 modes obtained by NMM, where modes are ordered 

starting from longer period. 
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Figure 2.9. Oscillation patterns (eigenfunctions) for selected modes. Red and blue mean opposite 

oscillations, while white indicates a node (zero amplitude). 

Figure 2.9 shows the oscillation pattern (eigenfunction) for some selected modes. The 

amplitude is normalized by the largest amplitude of that mode to show the pattern more 

clearly. The polarity is not important as long as it is coupled with excitation weights 

defined in equation (2.7), because a mode ℎ𝑖(𝒙) is mathematically equivalent to a mode 

−ℎ𝑖(𝒙) in equations (2.5)–(2.8). We can see several white areas between the boundaries 

of red and blue areas. These are nodes of the mode, where the oscillation amplitude is 

zero. As the mode order increases, more nodes appear, which means the wavelength is 

becoming shorter. Because of the mode normalization, as the mode affects a larger area, 

its overall amplitude decreases. As a reference, see the 1D case (Figure 2.14). 

For the parallel computation of 1 arc-min grids, the dimension n of the matrix 𝑎𝑖𝑗 is 

380,662, which is already larger than a 2 arc-min Mediterranean Sea. In total, we have 

obtained 3,000 modes with periods down to about 11.5 min. The calculation time is 

about 77 hours on EIC computer system using 64 cores. Figure 2.10 shows the mode 

order versus mode frequency for the obtained 1 arc-min grids solution and the 2 arc-min 

ones. Similar mode order has close mode frequency for the same region. This is an 

important property since we can estimate the mode order obtained from finer grids 

based on coarser grids. In the following part, otherwise specified, I use the 2 arc-min 

solution since it covers higher frequency. 
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Figure 2.10. Comparision of the relation between mode order and mode frequency for the obtained 1 

arc-min grids solution and the 2 arc-min solution of the Sea of Japan 

After obtained modal solutions, modal analysis is usually conducted. Here I rather not 

conduct a traditional modal analysis, but want to point out an interesting issue usually 

ignored by many modal analysis researches. Figure 2.11 shows an enlarged view of 

mode 8 in Figure 2.9 with bathymetry counters. Many modal analysis papers such as 

Bellotti et al., (2012b), Cortés et al. (2017) stated that mode pattern is related to either 

bathymetry or the shape of the costal line. From Figure 2.11 however, we may find that 

none of these are true (at least impossible to observe), if the oscillation is global. 

Actually this is rather obvious when refer to a 2D rectangular case with uniform water 

depth, where the only thing can be observed is that the nodal lines are 

parallel/perpendicular to the sides and other conclusions are very hard even for this 

simple case. Therefore, in this thesis I rather do not conduct traditional modal analysis 

of the whole Sea of Japan. While in Section 4, source characterization using NMM is 

presented. This can be considered as a novel modal analysis which cannot be conducted 

before, since none of the researches were able to include the source fault into the 

interested region, nor did they deal with higher modes in a large region. 
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Figure 2.11. An enlarged view of mode 8, with bathymetry contours. 

2.4 A Relationship between Mode Order and Mode Frequency 

For a given calculation area, we may have a target frequency upper limit, that is, we 

may want to cover a frequency band up to a high frequency limit. However, when we do 

normal mode calculation of a given area, only after we obtain the modal solutions do we 

first know the frequency band coverage. For a small region like Tokyo bay, this is fine 

because we can easily get several hundreds of modes, which covers the energy band of 

the tsunami signal (if the grid size is not too fine). But for a large dimension target like 

the Sea of Japan, this is not desirable. Since we cannot know the frequency band our 

modal solution can cover until we get a modal solution, while to get the modal solution 

itself takes rather long time. Therefore, if we can establish a relationship between the 

mode order and the mode frequency, we can have many insights before starting the 

numerical calculation. This relationship may seem hard to establish, yet we have got 

some hints from the known analytical and numerical modal solutions. 
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Figure 2.12. Analytical relationship between mode order and mode frequency for 3 ideal rectangular 

basins. Blue, red and black line represent the results from 3 rectangular basin with 3000m x 3000m, 

2000m x 4000m, 4000m x 12000m in size, and of 2000m, 2000m, 1000m water depth, respectively. 

Figure 2.12 shows the relationship between mode order and mode frequency for 3 

analytical cases. These are solutions from 3 ideal rectangular totally closed basin with 

uniform water depth. The size and water depth of each basin are 3,000m x 3,000m and 

2,000m, 2,000m x 4,000m and 2,000m, and 4,000m x 12,000m and 1000m, respectively. 

In this logarithm scale plot, we find that these are three “straight” lines (if we only focus 

on the higher order) parallel with each other, although the intercept may be different. 

This plot gives hint that the relationship may be similar for the problem with the same 

dimension.  

Then in Figure 2.13, the relationship between the mode order and the mode frequency 

in 3 cases are plotted: the Sea of Japan numerical case, the 1D analytical case and the 

2D rectangular numerical case. In this logarithm scale plot, we find that for higher 

modes, the slope of the 1D case is 1, and the slope of the 2D rectangular case as well as 

the Sea of Japan case is 1/2, they are parallel. 

For these analytical cases, this can be proven. In 1D case, recall the relationship 

equation (2.14b), mode frequency f is proportional to 𝜔𝑚, which is proportional to the 

mode order m.  
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Figure 2.13. Relationship between mode order and mode frequency for 1D and 2D ideal cases as 

well as the numerical Sea of Japan case. 

In 2D case, recall equation (2.13b), mode frequency f is proportional to √(
𝑚

𝐿
)
2

+ (
𝑛

𝑊
)
2

, 

while mode order is not obvious here. By its definition, mode order is determined if we 

can sort the  (
𝑚

𝐿
)
2

+ (
𝑛

𝑊
)
2

 array and therefore a function of m and n. One thing is clear 

that the point (m, n) has larger value of (
𝑚

𝐿
)
2

+ (
𝑛

𝑊
)
2

 than all points with smaller m and 

n. So the mode order is roughly proportional to mn. Therefore, f is proportional to the 

square root of the mode order, if L and W are of similar order. 

From the two analytical cases, we may conjecture that in a logarithmic scale, the mode 

frequency is proportional to the mode order, with a slope determined by the dimension 

of the problem, that is the reciprocal of the dimension: 

log(f) = log (
𝑜

dimension
+ 𝑏) 

Here o is the order of the mode and b is the intercept. 

Therefore, in the Sea of Japan case, we may also get: 

𝑓 = 𝑏𝑜1/2   (2.20) 
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Using the data from mode order 2,000 to mode order 4000, we get b = 2.5672x10−5. So 

we obtained a relationship between the order of the mode and the frequency of the mode 

in the Sea of Japan: 

𝑓 = 2.5672⨯10−5𝑜1/2   (2.21) 

Using this formula to predict the frequency of mode order 6,000 yields 503s, and the 

numerical solution yields 501s, which means the deduced formula is fairly good 

approximation.  Also notice that equation (2.21) predicts that the 15,000th mode has 

period of 314s, while the calculated result in Section 5.2 is 303s. We can say that 

extrapolation using only 2,000 modes yields a reasonable prediction. 

Combined with the parallel code developed in this study, the following procedure is 

advised when dealing with new calculation: We may first use the parallel computing to 

get the leading say 1,000 or 2,000 modes, which can be done in a rather short time. 

Then using these obtained modes, we may estimate a similar formula as equation (2.21) 

and then we can have ideas about the relationship between the mode order and the mode 

frequency before a further detailed calculation. 

2.5 An Automatic Mode Grouping Method 

Different from the traditional modal analysis, to better understand the properties of their 

100 calculated modes, Satake and Shimazaki (1988) roughly grouped them as two 

kinds, the whole Sea of Japan modes and regional modes, according to the area that 

each mode affects. Here, with far more calculated modes and a higher spatial resolution, 

I have adopted criteria to divide these modes into three groups with the help of a 

statistical quantity: basin-wide modes, regional modes, and local modes. The basin-wide 

mode affects almost the whole Sea of Japan. The regional mode affects a large region 

but is not basin-wide. The local mode only has high energy in very local structures, such 

as a very small bay. 

An appropriate statistical quantity was needed to group the modes. Variance—

𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2], where μ is the expected value of the data set X and E is the 

mathematical expectation function—is used to describe the deviation of data from their 

average level and seemed to be a good candidate. However, because the difference of 
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variance is less pronounced even in two extreme cases (Figures 2.14a and 2.14d), it fails 

to clearly discern the mode types. In this study, we adopt the statistical quantity kurtosis 

(Kurt), whose definition is 𝐾𝑢𝑟𝑡(𝑋) =
𝜇4

𝜎2 =
𝐸[(𝑋−𝜇)4]

(𝐸[(𝑋−𝜇)2])2
. Higher kurtosis means a larger 

variance but infrequent extreme deviations.  

To facilitate better visualization of the difference, 1D examples are shown in Figure 

2.14. Here we use a similar number of 1D grid points as the 2D Sea of Japan case as in 

Section 2.3. We consider both panels (a) and (b) as basin-wide modes, (c) as a regional 

mode, and (d) as a local mode. From this figure, we can also see the advantage of using 

kurtosis instead of variance, whose difference is less than 1 digit between the 2 extreme 

cases (panels a and d). It is necessary to note that the cross-section of a 2D case is not 

identical to the corresponding 1D case because of the additional dimension. 

 

Figure 2.14. Four normalized 1D modes and their corresponding kurtoses and variances. Panels (a) 

and (b) are basin-wide modes, while (c) and (d) are regional and local modes, respectively. 

Then I apply this grouping method to the modal solution of the Sea of Japan to form 

three mode groups. By visual inspections and trial and error, we defined modes with a 

kurtosis value smaller than 35 as basin-wide modes, those between 35 and 350 as 

regional modes, and those larger than 350 as local modes. Using these thresholds, 622 

basin-wide, 4,953 regional, and 425 local modes are obtained.  

To illustrate the characteristics of each group, I select five representative modes to show 

the continuum from a “pure” basin-wide mode to a “pure” local mode (Figure 2.15). 
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The oscillation pattern for the first mode (No. 8, Kurt=4) is basin-wide. Near the 

boundary between the basin-wide and regional modes (Kurt=39), we see partial basin-

wide oscillation, and there are also some regional structures emerging near the coast. 

Then at Kurt=145, oscillations are confined to only part of the basin. Near the boundary 

between the regional and local modes (Kurt=344), the pattern is vague but more 

localized (concentrated near the south-west corner in this case). For the local mode 

(Kurt=4,802), all oscillations are limited to a very small area (at the south-west corner 

here). 

 

Figure 2.15. Five modes demonstrating the difference between basin-wide modes (Kurt=4), regional 

modes (Kurt=145), and local modes (Kurt=4,802); two transitional modes (Kurt=39 and 344) are 

also shown. 
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3 TSUNAMI EXCITATION 

SYNTHETIZED BY MODE 

SUPERPOSITION AND ITS 

PROPERTIES 

3.1 The 1983 Sea of Japan Earthquake 

After obtaining the high-resolution normal-mode solutions for the Sea of Japan, we 

proceed to synthesize tsunami waveforms using the NMM. 

In this study, we choose the May 26, 1983, Mw 7.7 Sea of Japan earthquake, which is 

among the largest instrumentally recorded events inside the Sea of Japan, and it 

generated a destructive tsunami. The tsunami affected a wide area along the coast of 

Japan, as well as the Korean Peninsula and Russia. This earthquake led to 104 fatalities, 

with 100 of them caused by the tsunami. According to Watanabe (1998), the highest 

tsunami wave was about 14 m at Minehama village, which is located in the northern 

part of Akita Prefecture in Japan. 

Fault model from Satake (1985) is used, which contains two rectangular subfaults with 

slip amounts of 5 m (northern part) and 4 m (southern part). The static ocean bottom 

displacement is calculated using Okada’s method (1985), and the initial sea surface 

displacement is assumed to be the same as the seafloor displacement (Figure 2.7). 
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Notice that the dominant tsunami period T by the fault can be estimated by: 

𝑇 = 
𝜆

𝑣
=

2𝐿

√𝑔𝐷
 

where g is the gravitational acceleration, D is the water depth in the source region, and L 

is the width or length of the fault. There is a factor two in the numerator because a full 

waveform consists of both uplifted and subsided parts, as shown in Figure 2.7b. The 

water depth in the source region is around 2,500 m, and the shorter edge of the fault has 

a length of 40 km. Therefore, the lower boundary of the dominant period is about 8.5 

min, which is covered by our modal solution. 

3.2 Simulation Results by NMM and Comparisons with FDM 

With the initial sea surface displacement and the normal-mode solutions, we have 

calculated the weight of each mode using equation (2.18). With these weights, the 

tsunami waveforms at any position could be calculated using equation (2.17). Here, a 

cosine taper is used for the weights of the 1,000 highest-order modes to smooth the 

result. 

Figure 3.1 compares the waveforms calculated by NMM and FDM (Satake, 1995), both 

based on the same 2-arc-min grids, at three tide gauge stations, Iwanai, Saigo, and 

Kutsugata. Comparison of the two simulation methods shows that they are almost 

identical at Iwanai, where the amplitude of the later phases is different, while the shape 

of the waves still has a good match at Kutsugata and the later phases are totally different 

at Saigo. For Kutsugata and Saigo, the reasons for such differences may be mainly due 

to the frequency (period) of computed tsunami waves. At Iwanai, the FDM waveform is 

almost in the frequency range covered by the mode solution, which is down to 8.3 min. 

At Saigo, the FDM waveform contains high-frequency oscillations that are out of the 

range of calculated modes. While at Kutsugata, the frequency coverage is probably not 

the reason as we will see in Section 5.3. The discrepancy is more likely due either to 

that Kutsugata is located near the node boundary (since the node boundary is very 

different from the usual open ocean boundary) or to that Kutsugata is located where the 

bathymetry changes rather dramatically. The observed tsunami waveforms (Japan 

Meteorological Agency, 1984) are also shown as a reference. We suspect that the 
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difference between the simulations and observations is due to the rather coarse grid size 

(2-arc-min) of the bathymetry data. 

 

Figure 3.1. Synthesized tsunami waveforms using NMM at Iwanai, Saigo, and Kutsugata (blue lines). 

As a reference, the synthesized tsunami waveforms using FDM (red lines) and actual observations 

(black lines) are also plotted. 

3.3 Modal Superposition Process 

Figure 3.2 shows an example of the mode superposition process for the Iwanai 

waveforms shown in Figure 3.1. Waveforms synthesized by superposition of the first 

1,000, 2,000 and 6,000 modes, which covers periods down to 20 min, 15 min, and 8 

min, respectively, are shown. Here the cosine taper applied in Section 3.2 was not used. 

The same FDM result as in Figure 3.1 is also plotted as a reference.  

This figure illustrates the mechanism behind the mode superposition. It also shows the 

importance of acquiring more modes. Most notable is that at the second positive wave 
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(after 60 min), the NMM result is closer to that of FDM when we add more modes for 

superposition. 

It is also counterintuitive but an expected feature that, before the first wave comes, 

mode superposition using a large enough number of modes will result in nearly zero 

amplitude. 

 

Figure 3.2. Mode superposition process for tsunami waveforms of the 1983 Sea of Japan earthquake 

at Iwanai station. Blue, red, and black lines are the waveforms synthesized using the first 1,000, 

2,000, and 6,000 modes, respectively. Green line is the synthesized waveform using the FDM. 

 

Figure 3.3. Correlation coefficient between FDM simulated waveform and NMM simulated 

waveforms from superposition of different numbers of mode, at Iwanai. 
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Figure 3.3 shows the correlation coefficient of waveforms at Iwanai, simulated by FDM 

and NMM mode superposition. The result is similar as in Figure 3.2: when more modes 

are added, the match becomes better. 

3.4 A Way to Estimate the Required Mode Number 

In Section 3.2 and 3.3 we have shown the NMM performance from the view of time 

domain. Here, a view from the frequency domain is presented. Figure 3.4 shows the 

power spectrum of the observed tsunami data as in Figure 3.1. The frequency band 

covered by the 2-arc-min NMM solution of the Sea of Japan is also added. Then the 

goodness of NMM waveform synthetization is clear: For Iwanai, the strong energy 

peaks are all covered by the NMM frequency band, therefore the waveform synthesized 

at Iwanai presented the best match. For Kutsugata, one of the strongest energy peaks 

lies within the frequency band coverage boundary, therefore the frequency coverage is 

probably enough. For Saigo, the main peak is not covered by the NMM solution, 

therefore a poor synthesized waveform is not strange. 

Then with the relationship between the mode order and the mode frequency obtained in 

Section 2.4, we now have a way to estimate the required mode number to reproduce the 

tsunami waveforms at a given place. The general process is like the following:  

1. Calculate the power spectrum of the tsunami waveforms at a given place 

either using some historical data or using the background noises. 

2. From the energy peaks or minor peaks, decide an upper limit of 

frequency that the calculation may want to cover. 

3. Using the relationship between the mode order and the mode frequency 

equation (2.20), estimate the required mode order. 

Now we follow this procedure to estimate the required mode number for Saigo. (while 

for Iwanai, the match is already fairly good). 

For Saigo, the major peak is located at around 400s, that is equivalent to 9,500 modes. 

While minor peaks are located at around 330s, that is equivalent to 14,000 modes. 

Therefore, to have the synthesized waveform to match roughly, 9,500 modes are need 

while in order to have a fine reproduction of the waveforms, 14,000 modes are needed. 
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Figure 3.4. Power spectrum of the observed waveforms at three stations. 

3.5 Calculation Time of NMM Simulation and an Improvement 

While the NMM method is thought to have the advantage of being able to conduct 

waveform simulation really fast, it is necessary to measure the actual time cost and 

compare it to other methods like FDM (Satake, 1995).  Table 3.1 shows the tsunami 

simulation time using NMM and FDM in the Sea of Japan in 2-arc-min grids and 1-arc-

min grids. For the NMM, number of modes used are 6,000 for 2-arc-min grids and 

3,000 for 1-arc-min grids. For FDM, the numerical computations are both made for 180 

minutes of tsunami propagation, and time step dt are 2s for 2-arc-min grids and 1s for 1-

arc-min grids. We can see small advantage in 2-arc-min grids case while around a 10-

time acceleration in 1-arc-min grids. Although the simulation time of FDM itself is not 

long because the Sea of Japan region is not that large. 
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When grids size is halved, the time consumption of NMM is theoretically around 4 

times longer because now there are four times more grids take part in mode 

superposition. While for FDM, the time consumption becomes 8 times because in 

addition to the increased ocean grids, dt need also be halved.  

Table 3.1 Comparison of tsunami waveform simulation calculation time by FDM and NMM 

 
2 min grids 1 min grids 

NMM 8.9s 24s  

FDM 14s 219s 

Although this measurement shows some advantage of NMM, it seems not satisfying. In 

order to accelerate the NMM waveform simulation, one easy idea raised from 

improving the time consuming part.  When doing NMM waveform simulation, the 

mode solutions need to be read into memory from the disk first. This I/O (input and 

output) process take a large portion of NMM calculation time and can be reduced by 

using faster storage devices like solid state disk. 

Here we would rather propose a major improvement that accelerate the NMM 

waveform simulation by several orders. According to equation (2.8), the excitation 

weight is calculated based on the initial condition over the whole ocean grids. For the 

usual earthquake faults, static displacement tends to zero when the distance from the 

fault increases. Therefore, it is reasonable to assume that the fault displacement is zero 

outside some region. This region is rather larger than the fault region, but far smaller 

than the whole ocean region. 

In the case of the Sea of Japan, for the Sea of Japan earthquake, a 3°x 3°area (Figure 

3.5) is enough to reproduce the same simulation result as using the whole ocean grids. 

Instead of the former 8.9s, now the overall simulation time is around 0.2s. The 

improvement is roughly proportional to the ratio between the ocean grids taken part in 

the calculation before and after. With this improvement, even in the Sea of Japan NMM 

proves its great waveform simulation speed against FDM. 

Another good property of the improvement is that now, instead of the whole ocean 

grids, the calculation time is proportional to the size of the selected interested area 

around the source. This size is rather determined by the magnitude of the earthquake 

and have an upper limit. Therefore, even when dealing with a larger area than the Sea of 



 

43 

 

Japan, the NMM simulation time will remain the similar. Now NMM simulation time is 

affected only by the grid size, but not by the total size of the calculation area. 

 

Figure 3.5. Reduced 3°x 3° calculation area in red when conducting NMM waveform simulations 
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4 SOURCE 

CHARACTERIZATION IN THE 

SEA OF JAPAN USING NMM 

 

 

4.1 Hazard in Sea of Japan and MLIT Faults 

A Japanese government committee that investigated large earthquakes in the Sea of 

Japan proposed parameters for 60 faults along the eastern margin of the Sea of Japan 

(locations of these fault can be found in Figure 4.1), and these were published by the 

Ministry of Land, Infrastructure, Transport and Tourism (MLIT, 2014). Hereafter, we 

refer to these as the MLIT fault models. The purpose of the MLIT report was to provide 

realistic fault models for tsunami hazard assessments by local (prefectural) governments 

on the coast of the Sea of Japan. Using submarine seismic reflection data, they located 

active faults and established their length and strike angles. The assigned dip angles were 

mostly 90º, 45º, 60º, or 30º. The fault widths were estimated from the thickness of the 

seismogenic zone (either 15 or 18 km) and the dip angle. The slip angles were assigned 

from the tectonic stress field; most faults in the northern areas are reverse faults, 

whereas those in western areas are strike-slip faults. The slip amounts were determined 



 

45 

 

using the scaling relation of Irikura and Miyake (2001) considering the variance of the 

parameters. Detailed MLIT fault parameters can be found in Appendix A. 

 

Figure 4.1. 60 potential submarine faults proposed by MLIT. 

4.2 General Factors that Affect the Amplitude of Average 

Excitation Weight 

The excitation weight for each mode is calculated for the 60 MLIT fault models 

(Appendix B). Figures 4.2a and 4.2b show weights for several faults with different 

magnitudes located near shore and off the coast of the Tohoku region. When we 

compare faults at similar locations (faults 1 and 4 or faults 2 and 3), the faults with 

larger magnitude (Mw 7.8) had larger excitation weights than those with smaller 

magnitudes (Mw 7.3–7.4). Thus, the first observation is that weights are larger for faults 

with larger magnitudes. We then compare the faults with similar magnitudes but 

different locations (faults 1 and 2 or faults 3 and 4) and noted that faults near shore with 

shallower water depths had larger weights than those at offshore locations with deeper 

water depths. Similar conclusions could be drawn from other comparisons, as shown in 

Figure 4.2b. From these comparisons, we conclude that when the source has a larger 

magnitude, or is located at a shallower water depth, the overall excitation weights are 

larger.  
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Figure 4.2. (a) and (b) Selected average excitation weights of events. (c) Average excitation weight 
of each event versus its magnitude. Different colors indicate the depth of the source. The size of the 

circle is proportional to its magnitude. 
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To confirm the above conclusions for the entire the Sea of Japan, we calculate and plot 

the average excitation weight of each fault versus its magnitude and water depth 

(Figure 4.2c). First, from the relation between the magnitude and excitation weight, it is 

quite clear that the average weight increased as the magnitude increased. Next, we 

observe the vertical variation for the same magnitude, and we find that, for the events 

with similar magnitudes, the upper positions are usually occupied by the events with 

shallower water depths. To further understand these relationships, we need to consider 

the contribution from different mode groups.  

4.3 Excitation Weight for Different Groups of Mode and the 

Importance of Regional Modes 

We examine the contribution of basin-wide, regional, and local modes to the excitation 

for each fault. Because the number of modes for each type is different (622, 4,953, and 

425, respectively), we compute the average of the top 425 highest-order modes in each 

type (Figure 4.3a).  

We find that among these three types of modes, the weight for the regional modes 

increased fastest as the magnitude of the source increased. This indicates that the 

contributions of regional modes become more significant for faults with larger 

magnitudes. To further examine the contribution of regional modes to faults, we 

separate the 60 faults by their water depth (shallower or deeper than 1,000 m) and plot 

them in Figure 4.3b. This figure shows that the weight for sources located at shallower 

water depths increase faster as the magnitude of the source increased. This indicates that 

the contribution of regional modes is more significant for faults at shallower water 

depths. This is probably due to the fact the regional modes have larger amplitudes at 

shallower water depths. 

I then examine the amplitude distributions for some of the regional modes. Figure 4.4 

shows the five regional modes with the largest average excitation weights for the 60 

faults. These regional modes all have a larger amplitude at some shallower parts. Many 

other regional modes also have strong oscillation amplitude at these locations, where the 

usual submarine faults are located. Thus, these regional modes are more sensitive to 

potential submarine faults, especially shallow faults.  
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Figure 4.3. (a) Average excitation amplitude against source magnitude for three different mode 

groups. (b) Average excitation amplitude of regional modes against source magnitude, grouped by 

water depth at the source. 

To have a clear view of the waveform contributions from local modes, Figure 4.5 shows 

the mode superposition at Iwanai with and without the local modes. We can see that, 

although the local modes do have some nonnegligible contributions, they neither have 

large contribution, nor do they shape the waveforms.  

To confirm that regional modes have more influences than the other two groups, I plot 

in Figure 4.6 the relationship between a mode’s kurtosis, which determines its group 

(remember that basin-wide modes are defined as Kurt < 35), regional ones as 35 < Kurt 

< 350, and local ones as Kurt > 350), and the average excitation weight of this mode 

over 60 MLIT submarine faults. The figure shows that, with very few exceptions, 

regional modes (these around the peak) do have the largest energy contributions. The 

envelope (red arrows) demonstrates the properties of modes’ energy. For basin-wide 

modes, energy is distributed through the whole Sea of Japan, therefore they yield 
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similar weights. Then for regional modes, some have most of the energy at the MLIT 

sources region, thus with larger weights (the ascending upper arrow), while some have 

much energy off the MLIT sources region, thus with smaller weights (the descending 

bottom arrow). Finally for local modes, because their energy are confined in a region 

that is much smaller than the MLIT sources’ region, they only yield smaller weights 

(both the descending upper and bottom arrows).  

 

Figure 4.4. Five regional modes with the largest average excitation weights for the 60 faults. The 

locations of large amplitudes (indicated by red ellipses) correspond to the locations of the 60 faults. 

 

Figure 4.5 NMM simulated waveforms at Iwanai with and without local modes. 
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Figure 4.6 Relationship between a mode’s kurtosis, which determines its group, and the average 

excitation weight of this mode over 60 MLIT submarine faults. Red arrows form an envelope of 

most of the points and show the ascending and descending trends when modes turn from a basin-

wide one, through a regional one and finally to a local one. 

Therefore, in contrast to regional modes, whose energy is distributed much more 

efficiently to affect a large coastal area, basin-wide modes have their energy distributed 

through the whole Sea of Japan, and local modes distribute their energy in a very small 

area. A summary is shown in Table 4.1. 

Table 4.1 Contributions from each group of modes 

 Basin-wide modes Regional modes Local modes 

Excitation weight 𝐶𝑖 moderate moderate - large small 

Energy distribution 

ℎ𝑖(𝒙) 
Very wide A large coastal area Very confined 

Contribution Low High Low 

For these reasons, more attention and further detailed studies are needed for these 

regional modes. 
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5 A SYMMETRIC 

CONSTRUCTION OF NORMAL 

MODE PROBLEM AND ITS 

APPLICATION 

 

5.1 Equations of the Eigenvalue-problem and an Accurate Mode 

Superposition 

In Section 2, an asymmetric NMM problem in the spherical coordinates is constructed 

from a given bathymetry, and an experiential normalization equation (2.16) is used. 

Here, a novel approach allows us to construct a symmetric one in the spherical 

coordinates, with an accurate normalization equation (5.11). Similar as in the Cartesian 

coordinates case, a symmetric construction has the following advantages over 

asymmetric one: 1) Faster time to solve. 2) Less storage requirement. 3) Achieving true 

orthogonality. Instead of constructing a standard eigenvalue-problem which has the 

form of equation (2.9), a generalized eigenvalue-problem equation (5.2) is constructed 

first. Using its special property, it is converted to a standard eigenvalue-problem 

equation (5.7), which is faster to be solved than the original generalized eigenvalue-

problem. 
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In the spherical coordinates, equation (2.5) can be written as: 

𝜕

𝜕𝜃
(𝐷 𝑠𝑖𝑛 𝜃

𝜕ℎ

𝜕𝜃
) +

1

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜑
(𝐷

𝜕ℎ

𝜕𝜑
) = 𝜆𝑅2 𝑠𝑖𝑛 𝜃 ℎ    (5.1) 

which is equivalent to a generalized eigenvalue problem: 

 𝑨𝒉 = 𝜆𝑩𝒉    (5.2) 

In a staggered grid system,  𝑨 and 𝑩 have the following forms: 

𝐴𝑖𝑗,𝑖′𝑗′ =
𝛿

𝑗,𝑗′

Δ𝜃2 [𝐷𝑖+1/2,𝑗 𝑠𝑖𝑛 𝜃𝑖+1/2(𝛿𝑖+1,𝑖′ − 𝛿𝑖,𝑖′) − 𝐷𝑖−1/2,𝑗 𝑠𝑖𝑛 𝜃𝑖−1/2(𝛿𝑖,𝑖′ − 𝛿𝑖−1,𝑖′)] +

𝛿
𝑖,𝑖′

𝑠𝑖𝑛𝜃𝑖Δ𝜑2
[𝐷𝑖,𝑗+1/2(𝛿𝑗+1,𝑗′ − 𝛿𝑗,𝑗′) − 𝐷𝑖,𝑗−1/2(𝛿𝑗,𝑗′ − 𝛿𝑗−1,𝑗′)]     (5.3) 

𝐵𝑖𝑗,𝑖′𝑗′ = 𝑅2 𝑠𝑖𝑛 𝜃𝑖 𝛿𝑖𝑖′𝛿𝑗𝑗′      (5.4) 

Here 𝑨 is a symmetric matrix and 𝑩 is a diagonal matrix. Conducting Cholesky 

decomposition to 𝑩: 

𝑩 = 𝑹𝑻𝑹     (5.5) 

we have 

(𝑹𝑻)−𝟏𝑨𝑹−𝟏𝑹𝒉 = 𝜆𝑹𝒉     (5.6) 

which can be reduced to  

𝑬𝒉′ = 𝜆𝒉′     (5.7) 

where 𝑬 = (𝑹𝑻)−𝟏𝑨𝑹−𝟏 and 𝒉′ = 𝑹𝒉. This is the eigenvalue-problem to solve. 

Because E is also a symmetric matrix, the above equation (5.7) is a symmetric 

eigenvalue-problem. 

Because B is a diagonal matrix, R is also a diagonal matrix and can be deduced from B 

easily: 

𝑅𝑖𝑗,𝑖′𝑗′ = √𝑅2 𝑠𝑖𝑛 𝜃𝑖 𝛿𝑖𝑖′𝛿𝑗𝑗′      (5.8) 

Other terms are therefore obtained: 
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𝐸𝑖𝑗,𝑖′𝑗′ =
𝛿

𝑗,𝑗′

𝑅2√𝑠𝑖𝑛𝜃𝑖 𝑠𝑖𝑛 𝜃𝑖′Δ𝜃2 [𝐷𝑖+1/2,𝑗 𝑠𝑖𝑛 𝜃𝑖+1/2(𝛿𝑖+1,𝑖′ − 𝛿𝑖,𝑖′) −

𝐷𝑖−1/2,𝑗 𝑠𝑖𝑛 𝜃𝑖−1/2(𝛿𝑖,𝑖′ − 𝛿𝑖−1,𝑖′)] +
𝛿

𝑖,𝑖′

𝑅2𝑠𝑖𝑛2𝜃𝑖Δ𝜑2 [𝐷𝑖,𝑗+1/2(𝛿𝑗+1,𝑗′ − 𝛿𝑗,𝑗′) −

𝐷𝑖,𝑗−1/2(𝛿𝑗,𝑗′ − 𝛿𝑗−1,𝑗′)]     (5.9) 

ℎ𝑖,𝑗
′ = √𝑅2 𝑠𝑖𝑛 𝜃𝑖 ℎ𝑖,𝑗      (5.10) 

The orthogonality of the eigenvectors h in (5.2) is B based, that is: 

𝒉𝑖
𝑇𝑩𝒉𝑗 = 𝛿𝑖𝑗     (5.11) 

where 𝛿𝑖𝑗 is the Kronecker delta. 

Then from the superposition of the normal modes: 

𝜂(𝒙, 𝑡) = ∑ 𝐶𝑖ℎ𝑖(𝒙)𝑐𝑜𝑠𝜔𝑖𝑡𝑖      (5.12) 

where ℎ𝑖 can be easily deduced from ℎ𝑖
′. 

And from the initial condition 𝜂0(𝒙) when t=0, we can calculate the coefficient: 

𝐶𝑖 = 𝒉𝒊
𝑻𝑩𝜼0=𝒉𝒊

𝑻𝑹𝑻𝑹𝜼0=𝒉′𝑻𝑹𝜼0      (5.13) 

Table 5.1 shows a quick comparison of the time needed to solve the “same” eigenvalue-

problem between a symmetric one and an asymmetric one. When the required number 

of modes grows, there is a significant advantage of the symmetric one. 

Table 5.1 Basic comparison of calculation time between symmetric and asymmetric mode solving 

methods of the same 2 arc-min Sea of Japan 

Num. modes obtained CPU Time Symmetric (s) CPU Time Asymmetric (s) 

100 2678 2910 

200 4911 5080 

400 12133 14277 

800 33908 81613 
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5.2 Modal Solution Calculation Results 

Solving the symmetric eigenvalue-problem constructed in Section 5.1 using the same 2 

arc-min as in Section 2.3 and a symmetric solver of the same Arpack library mentioned 

in Section 2.2, 15,000 modes (period down to 5 min) are obtained, which is totally 

difficult when the problem is asymmetric.   

Table 5.2 shows the calculation time to obtain a specific number of modes, and the 

shortest period of the modes that can be obtained through that computation, based on a 

symmetric problem construction. Comparing to the asymmetric one in Section 2.3, 

which took 15.2 days to obtain 6,000 modes, the new approach can double the number 

of modes with the same computation time.  

Table 5.2 Calculation results of modal solutions of the 2 arc-min Sea of Japan, using a symmetric 

problem construction.  

Num. modes obtained Shortest period (min) Calculation time (day) 

6000 8.5 6.7 

9500 6.6 11.9 

12000 5.7 15.5 

15000 5.0 20.4 

 

Figure 5.1 The relation between the mode order and their frequency for the symmetric approach. The 

asymmetric approach result in Section 2 is also plotted as a reference. Notice the overlay of the first 

6000 modes: this indicates that the new numerical calculation is valid, and the accuracy is at least 

not less than using the asymmetric one. 
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5.3 Synthesized Waveforms and their Properties 

Using the obtained 15,000 normal modes of the Sea of Japan, tsunami waveforms 

generated by the 1983 Sea of Japan earthquake are simulated, similar to in Section 3.2. 

The results are shown in Figure 5.2.  

For Iwanai, since the simulation was already good, the new synthetized waveform 

improves a little near the peaks around 40 min and 90 min.  For Saigo, the synthetic 

waveform using 15,000 modes in general matches FDM waveform well, which 

improves significantly over the waveform synthetized by the 6,000 modes. The latter 

does not cover high frequency energy at all. This indicates that the novel modal solution 

covers the usual frequency band of tsunami waveforms in the Sea of Japan.  

For Kustugata, the waveform is almost identical to the 6,000 asymmetric based modal 

result, which means that the latter is already the “final” waveform. Therefore, as 

mentioned in Section 3.2, the discrepancy is probably due either to being located close 

to the node boundary or to being located where the bathymetry changes rather 

dramatically. Further investigations show that if using a finer bathymetry (1-arc-min) to 

do FDM simulation (Figure 5.3a), or just shifting the location of Kutsugata in the 

original 2-arc-min FDM simulation by one grid (Figure 5.3b), we can get far better 

match. These results suggest that, while the node boundary may still be a reason, the 

discrepancy is more likely due to the dramatic bathymetry change. 

Besides, an important improvement in the leading wave part can be observed. Figure 

5.4 shows the enlarged leading wave part of Iwanai, Kutsugata and Saigo. To ensure 

fairness, symmetric and asymmetric NMM simulated waveforms are both using 6,000 

modes (using 15,000 modes makes the waveforms even better). First, we can observe 

that in the new synthetic waveforms have almost no energy before the initial arrival. In 

contrast, for example at Iwanai, the asymmetric solution has unignorable energy starting 

from the beginning till around 15 min and also around 25 min. Besides, the new 

synthetic waveforms have better agreements to FDM around the onset. This is more 

notable at Kutsugata, where the asymmetric solution has a five-minute earlier onset. 
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Figure 5.2 Waveforms simulated by 15,000 modes from symmetric NMM construction. The 

simulations from former asymmetric NMM construction and FDM are also shown. 
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Figure 5.3 (a) At Kutsugata. The same as Figure 5.2 (b), but the FDM result is from a 1 arc-min grid 

instead of a 2 arc-min one. (b) At Kutsugata. Comparison between FDM simulated result in Figure 

3.1 and simulated waveform by 15,000 modes from symmetric NMM construction, with one grid 

shift from the Kutsugata location in Figure 3.1. 

It is of interest to notice that, if we multiply 𝑩−𝟏 to both side of equation (5.2), we 

obtain equation (2.15), the asymmetric eigenvalue-problem, while equation (5.7), the 

symmetric eigenvalue-problem we are solving, is also deduced from eq. (5.2). The two 

problems should be therefore identical. As shown in Figure 5.1, the eigenvalues are 

exactly the same. 

Therefore, the differences are only due to the choice of normalization equations. The 

former results in Section 3 are based on the experiential normalization equation (2.16), 

which ignores the changes of 𝑑𝒙 term in (2.6), while in the novel approach, accurate 

normalization (5.11) is used, where the B matrix incorporates the 𝑑𝒙 term. And when 
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the region of interest is reasonably small (like the Sea of Japan case), B is close to an 

identical matrix (multiplied by a constant). That is why we can get reasonable solutions 

even by using an experiential normalization equation (2.16). 

 

Figure 5.4 Comparison between initial phases simulated by modes from symmetric NMM 

construction and from the asymmetric one. Number of modes used are both 6,000 to ensure fairness. 

FDM results are also shown as a reference. 
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6 PERSPECTIVES TOWARDS A 

MODAL SOLUTION OF THE 

GLOBAL OCEAN 

 

6.1 Using Shift Method to Obtain Higher Modes Directly 

For matrix A and B = A – pI, where I is the unit matrix and p is a given scalar number, 

if B has eigenvalues 𝜆𝑖, then A has eigenvalues 𝜆𝑖 + 𝑝, and the corresponding 

eigenfunctions are the same. Because iteration methods can only obtain extreme eigen-

pairs (ex. eigen-pairs with largest eigenvalues), applying a shift p to the origin matrix A 

will enable the calculation of higher modes directly. This is useful when combined with 

parallel computing. 

For the 2-arc-min Sea of Japan case, applying shift to obtain around 180 modes from 

the 6,000th modes takes about 67 hours using 32 cores on EIC computer system. 

Therefore this approach is not fast but still affordable. 
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6.2 NMM Equations with Elastic Loading, Gravitational Potential 

Change and Seawater Compressibility 

Watada et al. (2014) demonstrated the importance of elastic loading, gravitational 

potential change and seawater compressibility when considering far-field tsunami 

propagations. Trans-Pacific tsunamis may be delayed up to 15 minutes with an initial 

phase reversal due to these effects. In order to achieve better far field simulation results, 

it is desirable to take these effects into account. 

Elastic loading and gravitational potential change are referred to as self-attraction and 

loading (SAL) effects in the field of physical oceanography (Baba et al, 2017). That is, 

when a mass loads the Earth, its gravity field will be changed through crustal 

deformation and self-gravitation processes. 

Linear shallow-water equations considering SAL effects has the following form 

(Allgeyer & Cummins, 2014) 

𝜕𝑽

𝜕𝑡
= −𝑔𝛻𝜂  (6.1a) 

𝜕(𝜂+𝜉)

𝜕𝑡
= −𝛻 ∙ (𝐷𝑽)  (6.1b) 

This is identical with equation (2.1) except that the displacement of the ocean floor ξ is 

also taken into account. Notice that seawater compressibility of the ocean may also be 

considered (Tsai et al, 2013), with (6.1b) modified to: 

𝜌𝐻

𝜕(𝜂 + 𝜉)

𝜕𝑡
= −𝜌𝑎𝑣𝑔𝛻 ∙ (𝐷𝑽) 

where 𝜌𝐻 is the water density at the sea floor and 𝜌𝑎𝑣𝑔 is the average water density. 

Here, we only discuss the case of (6.1b), and the seawater compressibility case is 

similar. 

Using a similar process described in Section 2.1.1, we can get one second order 

differential equation: 

𝜕2(𝜂+𝜉)

𝜕𝑡2 = 𝑔𝛻 ∙ (𝐷𝛻𝜂)    (6.2) 
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The earth’s response ξ to SAL effects can be calculated using a Green’s function 

(Vinogradova et al., 2015), which represents the response at r’ to a unit mass loading at 

a given surface point r: 

𝐺(𝒓′, 𝒓) = 𝐺(𝛼) =
−𝑅

𝑀𝑒
∑(1 + 𝑘𝑛

′ − ℎ𝑛
′ )𝑃𝑛(𝑐𝑜𝑠𝛼)

∞

𝑛=0

 

where 𝑃𝑛 is the nth Legendre polynomial, α is the angular distance between the loading 

point and the response point, R is the radius of the earth, 𝑀𝑒 is the mass of the earth and 

𝑘𝑛
′  and ℎ𝑛

′  are the loading Love number of angular order n. 

Then ξ can be calculated from a convolution of the height of the water column and the 

corresponding Green’s function (Hendershott, 1972): 

𝜉( 𝒓) = ∬𝐺(𝒓′, 𝒓)[𝜂( 𝒓′) + 𝜉( 𝒓′)]𝑑𝑆 

While we have 𝜉( 𝒓′) << 𝜂( 𝒓′), the equation now becomes: 

𝜉( 𝒓) = ∬𝐺(𝒓′, 𝒓)𝜂( 𝒓′)𝑑𝑆 

And equation (6.2) becomes: 

𝜕2(𝜂 + ∬𝐺(𝒓′, 𝒓)𝜂( 𝒓′)𝑑𝑆)

𝜕𝑡2
= 𝑔𝛻 ∙ (𝐷𝛻𝜂) 

Then the only difference with equation (2.2) is that the left side is now the 

differentiation of the linear combination of 𝜂 over the space, instead of just 𝜂. Similarly, 

if we substitute 𝜂(𝒙, 𝑡) = 𝑒𝑖ωtℎ(𝒙), then we can get the following eigenvalue-problem: 

(ℎ + ∬𝐺(𝒓′, 𝒓)ℎ( 𝒓′)𝑑𝑆) = −
𝑔

ω2
𝛻 ∙ (𝐷𝛻𝜂) 

or  

𝛻 ∙ (𝐷𝛻ℎ) = 𝜆(ℎ + ∬𝐺(𝒓′, 𝒓)ℎ( 𝒓′)𝑑𝑆) 
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where λ =−
ω2

g
. 

This has a discrete matrix form of: 

Ah=λBh    (6.3) 

Here, A is the discretization of 𝛻 ∙ 𝐷𝛻, and B is a matrix representing a correction due to 

the elastic loading. This is a generalized eigenvalue-problem and can be solved by many 

numerical libraries including Arpack. Notice that although equation (6.3) has the same 

form as equation (5.2), it cannot be transformed to a standard eigenvalue-problem 

because B here is not a diagonal matrix. 

The orthogonality of the eigenvectors h, same as equation (5.11)  is B based orthogonal, 

that is: 

𝒉𝑖
𝑇𝑩𝒉𝑗 = 𝛿𝑖𝑗 

where 𝛿𝑖𝑗 is the Kronecker delta. 

Then from the superposition of the normal modes is the same as equation (5.12): 

𝜂(𝒙, 𝑡) = ∑𝐶𝑖ℎ𝑖(𝒙)𝑐𝑜𝑠𝜔𝑖𝑡

𝑖

 

and the initial condition 𝜂0(𝒙) when t=0, we can calculate the coefficient similar to 

equation (5.13): 

𝐶𝑖 = ℎ𝑖𝑩𝜂0 

6.3 NMM Equations with Coriolis Force 

For far-field tsunamis, since the travel time is comparable with the earth’s rotation 

period, the Coriolis force may have nonnegligible influences. Therefore, Coriolis Force 

is worthwhile to taken into account. 

The linear shallow-water equations with Coriolis force are: 

𝜕𝑽

𝜕𝑡
= −𝑔𝛻𝜂 − 2𝜴 × 𝑽 
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𝜕𝜂

𝜕𝑡
= −𝛻 ∙ (𝐷𝑽) 

Where the −2𝜴 × 𝑽 term is the term related to Coriolis force. The linearity of the 

equations enables the possibility of using NMM, while the cross product makes the 

problem more difficult. One way to deal with the problem is to use first order 

differential equations instead of one second order differential equation, and to use scalar 

potentials to replace the velocity vectors. In Platzman (1978), Stokes/Helmholtz 

potentials are used: 

𝑽 = 𝑝(𝜑) + 𝑞(𝜓) 

𝑝(𝜑) = −𝛻𝜑 

𝑞(𝜓) =
𝑘

𝐷
⨯ 𝛻𝜓 

And then an eigenvalue-problem can be constructed: 

−𝑖𝑨𝑋 = 𝜔𝑩𝑿  

Here, the vector X is the eigenvector representing 𝜂, φ and ψ. A and B are matrix 

constructed from the bathymetry and Coriolis force. This is a generalized eigenvalue-

problem similar to (5.3), whose solution is: 

𝑥(𝑡) = 𝑅𝑒(𝑋𝑒𝑖𝜔𝑡) 

where x consists of 𝜂, φ and ψ.  

6.4 Potential and Future of NMM 

In this study, necessary tools for conducting NMM calculation and analysis are 

developed as well as a careful examination of their properties. We have seen that the 

agreement of waveforms simulated by the NMM and FDM depends on the number of 

modes. Therefore, to compute waveforms at shorter periods, calculation of more modes 

will be the key to further development of this method. It is also of interest to obtain the 

normal-mode solutions for larger areas like the Mediterranean Sea, which is roughly 2.5 
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times as large as the Sea of Japan. (Actually the calculation for the Mediterranean Sea in 

2-arc-min grids is already possible).  

Ultimately, we may be able to perform this analysis for the whole global ocean. In this 

case, we may need to include both the Coriolis force and elasticity effect of the Earth. 

These makes the computation more complicated: we need to solve a generalized 

eigenvalue-problem and the matrix may no longer be sparse. A recent record for solving 

dense-matrix eigenvalue-problems was set by the K-computer, which solved a 1 million 

by 1 million dense matrix in 1 hour (Imamura & Yamamoto, 2014). The global ocean is 

around 350 times larger than the Sea of Japan. If we use 10-arc-min grids instead of 2-

arc-min grids, there will be around 14 times more ocean grids. This makes the 

dimension n of the eigenvalue matrix also 14 times larger, which has the order of 1 

million. So in the near future, it may be possible to obtain normal-mode solutions for 

the global ocean. The merit for obtaining such a solution for the world ocean is huge: 

normal FDM simulation of a trans-Pacific tsunami take hours of calculation time while 

NMM mode superposition takes only seconds of time, as shown in Section 3.5. Besides, 

waveform data from deep ocean pressure gauges are available. Instead of tide gauges, 

high frequency energy is limited at these pressure gauges and therefore suitable for the 

property of the NMM.  

When more powerful computers and algorithms become available in the future, the 

NMM may become a very powerful tool for tsunami numerical computation. 
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7 CONCLUSION 

 

Important problems of the tsunami NMM were solved, together with some powerful 

tools were provided to conduct and analyze NMM calculation of a region.  

First, the previous NMM was converted into a spherical coordinate system together with 

an experiential normalization way to simplify the numerical calculation. Then 

implementations of linear matrix storage, matrix-vector multiplication a modern sparse 

eigenvalue solver made the calculation of large scale NMM problems realistic. A 

parallel version of the calculation was also developed. 

Then, 6,000 normal-mode solutions were obtained for the Sea of Japan with a grid 

interval of 2 arc-min, as well as 3,000 modal solutions for 1-arc-min grids using parallel 

computing. Using these fine modal solutions, tsunami waveforms were synthesized by 

the NMM for what the authors believe to be the first time: tsunami waveforms 

generated by the Mw 7.7 Sea of Japan earthquake were computed. Comparison with the 

results from the FDM and examination in both time and frequency domains confirmed 

the validity of the NMM when the modes cover the frequency range of the signal.  

Measurement showed that waveform simulation time of original NMM is faster than 

that of FDM, but the advantage is not significant. A way to accelerate NMM waveform 

simulation time was proposed and enables the calculation time faster than FDM by 



 

66 

several orders even in a moderate region like the Sea of Japan, which further 

strengthens the advantage of the NMM. Besides, a relationship between the mode order 

and the mode frequency was proposed so that it is possible to estimate the number of 

modes to calculate in advance. And based on this relationship, a method to estimate the 

required modes for simulation waveforms at a given place was also proposed.  

In addition, unique to the traditional modal analysis, in this study, the NMM was also 

used to characterize tsunami sources with excitation weights. This study included 

calculation of the excitation weights of 60 potential submarine faults in the Sea of 

Japan, as determined by MLIT. With the help of kurtosis, modes were divided into three 

groups: basin-wide, regional, and local groups. These excitation weights suggested that 

sources located at shallower water depths have the potential to generate larger regional 

modes, which made the largest contribution among the three kinds of modes and could 

significantly affect coastal areas. 

Finally, a practical NMM in the Sea of Japan in the spherical coordinates was proposed: 

a symmetric NMM eigenvalue-problem construction together with accurate mode 

normalization and superposition equations. The symmetric approach enabled faster and 

better calculation of modal solution, which yielded modal solutions of the Sea of Japan 

down to 5 min in period. Using these modal solutions, tsunami waveforms synthetized 

by mode superposition can cover the usual frequency band in the Sea of Japan. Besides, 

the accurate mode normalization resulted almost no energy before the initial arrival and 

better agreements to FDM around the onset.  

In the future, it is of interest to calculate the modal solution of a larger area. The 

Mediterranean Sea, whose size is about 2.5 times of the Sea of Japan, can already be 

handled. Ultimately, with the development of matrix eigenvalue-problem solver, the 

modal solution of the world ocean may also be obtained. 
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APPENDIX A: FAULT PARAMETERS OF 60 MLIT 

SUBMARINE FAULTS

 

（km） （km） （km） （degree） （degree） （degree） （ｍ）

46.5 7.0 340 45 78 44.8177 141.7569

47.9 7.0 351 45 84 45.2075 141.5506
67.6 7.0 342 45 79 45.6343 141.4535
46.5 18.0 340 30 84 44.8329 141.8155
47.9 18.0 351 30 88 45.2144 141.6126
67.6 18.0 342 30 84 45.6480 141.5137
53.7 19.3 355 45 82 45.1870 140.9505
36.3 19.3 23 45 100 45.6630 140.8859
27.6 19.3 7 45 89 45.9643 141.0736

F03 7.23 44.6 19.5 1.2 19 45 105 2.91 44.7424 140.5945
F04 7.33 58.4 18.8 1.7 34 45 138 3.28 44.7263 139.6710
F05 7.27 53.5 18.2 2.2 7 45 79 3.08 44.5380 139.3913

42.0 19.1 217 45 82 44.3185 140.7304
62.5 19.1 191 45 79 44.0135 140.4097
29.0 17.9 176 45 54 44.5843 139.5556
21.6 17.9 201 45 76 44.3286 139.5818
25.3 17.9 167 45 48 44.1416 139.4856
31.3 18.4 218 45 93 44.1467 140.1912
20.9 18.4 189 45 77 43.9197 139.9500
23.1 18.4 153 45 63 43.7285 139.9106
24.4 27.9 347 30 103 43.6888 139.1853
29.2 27.9 2 30 104 43.8979 139.1166
18.8 27.9 347 30 103 44.1640 139.1298

F10 7.47 73.2 20.6 3.4 194 45 98 3.94 43.6878 139.6577
F11 7.48 78.1 19.5 4.2 180 45 67 3.97 43.9732 139.3373

24.0 18.7 156 45 62 43.4047 139.8615
29.3 18.7 161 45 65 43.2076 139.9794
19.7 18.7 177 45 79 42.9607 140.0946

F13 7.34 53.4 21.2 3.0 172 45 70 3.33 42.6991 139.4869
43.3 20.3 3.6 195 45 99 43.4326 139.5697
79.6 20.3 3.6 192 45 111 43.0566 139.4315
51.9 16.6 3.6 167 60 105 42.3542 139.2327
45.2 20.1 3.8 173 45 97 43.4568 139.3648
79.6 20.1 3.8 192 45 111 43.0566 139.4315
51.9 16.4 3.8 167 60 105 42.3542 139.2327

F16 7.61 75.9 26.7 4.6 14 30 94 4.79 41.7417 138.6545
53.9 21.5 10 45 106 41.0201 139.4058
81.0 21.5 350 45 96 41.4998 139.5198
100.0 18.1 7 45 95 40.8886 139.7757
37.4 18.1 348 45 87 41.7824 139.9293
58.6 27.3 33 30 110 40.8783 138.1776
42.8 27.3 18 30 97 41.3225 138.5646
30.8 18.4 2.0 151 45 68 41.4831 139.5716
47.2 18.4 2.0 199 45 102 41.2482 139.7485
52.4 18.4 2.0 165 45 103 40.8430 139.5615
39.2 18.4 2.0 175 45 88 40.3887 139.7171
30.8 17.9 151 45 68 41.4831 139.5716
47.2 17.9 199 45 102 41.2482 139.7485

F22 7.34 63.9 17.5 2.6 1 45 98 3.31 40.9131 139.5750
52.4 18.8 165 45 103 40.8430 139.5615
39.2 18.8 175 45 88 40.3887 139.7171
53.7 28.2 21 30 74 40.1054 138.9259
77.9 28.2 349 30 80 40.5641 139.1542

F25 7.29 49.5 20.2 3.7 205 45 116 3.12 40.2604 138.7649
F26 7.43 70.9 19.4 1.3 184 45 85 3.73 39.9742 139.5708
F27 7.31 56.3 18.9 1.6 184 45 82 3.23 39.6464 138.9724

35.7 18.0 200 45 115 40.0114 138.8859
39.7 18.0 185 45 93 39.7079 138.7422
50.9 18.0 202 45 118 39.3551 138.7060

F29 7.29 61.6 16.3 3.5 25 45 100 3.13 39.4819 138.3429
96.1 19.3 202 45 98 39.8052 139.8661
56.5 19.3 247 45 120 39.0100 139.4516

Latitude Longitude

Average

slip
Strike Dip rakeLength width

Fault

number

No.

Top depth
Mw

6.00

F28 7.67 2.3

F30 7.79 1.3

6.007.80

5.18

3.76

4.30

F19 7.77 4.3

F24 7.86 3.9

F21 7.44 2.4

F23 7.54 1.7

F20

6.00

6.00

6.00

5.52

F17 7.78 2.8

F18 7.71 2.2

F09 7.61 4.0

F12 7.43 1.8

4.78

3.71

3.75

4.73

F08 7.44 2.0

F06 7.61 1.5

F07 7.42 2.4

6.00

3.70

5.18

6.0

F02 7.67 1.4

F01 7.88

1.1

F15 6.007.83

F14 6.007.83
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（km） （km） （km） （degree） （degree） （degree） （ｍ）

F31 7.58 96.1 19.5 1.2 202 45 98 4.54 39.8052 139.8661

F32 7.32 56.5 19.0 1.5 247 45 120 3.24 39.0100 139.4516
F33 7.52 89.1 18.8 1.7 234 45 123 4.22 39.2937 139.3574

71.9 19.7 211 45 106 39.0485 139.7337
52.0 19.7 197 45 97 38.4894 139.3120

F35 7.58 99.1 19.2 1.4 200 45 96 4.59 38.9890 138.8728
31.3 19.1 4 45 46 38.3432 138.2586
23.6 19.1 36 45 97 38.6196 138.2837
33.9 18.8 227 45 130 38.8706 138.4683
41.0 18.8 185 45 90 38.6578 138.1766

F38 7.46 62.6 23.6 1.3 209 45 95 3.89 38.2341 138.7683
37.3 18.0 350 45 67 37.7431 138.1239
36.9 18.0 38 45 73 38.0658 138.0489
14.7 18.9 26 45 84 37.4338 138.2858
27.7 18.9 338 45 66 37.5605 138.3581
51.5 22.7 37 45 76 36.9922 137.5859
34.1 22.7 55 45 102 37.3618 137.9308
37.7 17.7 201 45 78 38.0095 137.8939
18.1 17.7 241 45 112 37.6983 137.7436
48.3 19.7 64 45 113 37.3274 136.6811
45.9 19.7 55 45 105 37.5179 137.1753
36.0 19.6 230 45 99 37.9886 137.2724
13.7 19.6 267 45 145 37.7836 136.9640
16.2 18.3 228 45 103 37.2339 137.3179
26.4 18.3 191 45 62 37.1319 137.1774

F46 6.85 26.0 13.0 1.1 177 60 42 2.05 37.0610 136.5533
F47 7.12 42.5 15.8 1.4 30 60 107 2.59 36.7282 136.0648
F48 6.91 28.2 14.1 2.1 81 60 215 2.14 37.0353 135.6625

21.1 14.5 81 60 264 36.5243 134.8006
36.3 14.5 47 60 145 36.5547 135.0374
29.9 14.5 54 60 215 36.7748 135.3371

F50 6.78 23.7 11.8 1.2 39 60 126 1.95 36.4860 136.0401
F51 7.17 48.0 16.0 1.2 232 60 145 2.74 36.4332 136.0822

22.5 16.1 319 60 35 35.7951 136.0921
25.4 16.1 27 60 125 35.9418 135.9285
22.5 16.1 344 60 40 36.1493 136.0572
17.2 14.0 291 90 35 35.4324 135.9466
11.4 14.0 310 90 35 35.4868 135.7681
31.3 14.0 319 90 35 35.5523 135.6705

F54 7.19 57.6 13.9 1.1 332 90 35 2.80 35.5833 135.0833
69.0 16.0 261 60 215 35.7569 134.4138
25.8 16.0 249 60 215 35.6530 133.6580
7.1 16.0 217 60 143 35.6189 132.9596
42.4 16.0 268 60 215 35.5699 132.9171
72.4 16.0 271 60 215 35.4992 132.4222
30.1 16.0 235 60 145 35.5023 131.6174

F58 7.13 50.1 13.9 1.1 329 90 325 2.63 34.6586 131.5104
F59 7.38 87.9 13.9 1.1 310 90 325 3.49 34.1000 131.0833
F60 7.59 136.9 14.0 1.0 321 90 325 4.60 33.3933 130.8816

Longitude

Fault

number

No.

Mw
Length width Top depth Strike Dip rake

Average

slip Latitude

7.71 1.1 5.45

7.31 1.5 3.20

7.44 1.7 3.78

7.42 2.3 3.67

7.19 1.6 2.80

7.60 1.9 4.66

7.28 2.5 3.10

7.57 1.1 4.50

3.08

7.18 2.0 2.77

7.51 1.2 4.15

7.21 1.0 2.86

7.48 1.1 3.96

F41

7.19 1.1 2.79

7.39 2.4 3.56

7.34 1.1 3.34

7.27 1.2

F34

F36

F37

F39

F40

F53

F55

F56

F57

F42

F43

F44

F45

F49

F52
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APPENDIX B: EXCITATION WEIGHTS OF THE 60 MLIT 

FAULTS 
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