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Abstract

Rapidly developing location acquisition technologies have provided us with big GPS

trajectory data, which offers a new means of understanding people’s daily behaviors as

well as urban dynamics. In this study, a raw GPS log dataset was collected from ap-

proximately 1.6 million mobile phone users in Japan over a three-year period (August 1,

2010 to July 31, 2013). With such data, predicting human mobility at the city level will

be of great significance for transportation scheduling, urban regulation, and emergency

management. However, in order to do this, we still confront with a few challenges. (1)

The urban area is too large, taking the Greater Tokyo area as an example, it is the most

populous metropolitan area in the world, has an urban area that can reach 3.925 km2,

and its metropolitan area can be 14.034 km2. How to deal with such huge spatial domain

is the first challenge; (2) Collected data used for model training are often limited to a

small portion of the total population, and we can’t collect every citizen’s long-term his-

torical trajectory data. How to train an effective model with limited training data (e.g.,

1% of the total population) is the second challenge; (3) Under some real-world appli-

cation scenario such as crowd management and crowd monitoring, it is important to

predict crowd mobility as well as crowd density, especially for the latter one. Because

high crowd density naturally means high risk for accidents. How to simultaneously

predict crowd density and crowd flow is the third challenge; (4) Sometimes we may

have no time or historical data for training a prediction model. Moreover, when some

big events happen such as an earthquake, typhoon, and national festival, people change

their behaviors from their routine activities. Thus, a model trained with historical data

can’t work very well for such kind of circumstances. Recently, the success of deep

learning in the fields of computer vision and natural language processing motivates us

to consider deep learning techniques as highly potential solutions to our problems, be-

cause it has the following advantages: (1) It can handle real big data; (2) It can model

highly complex spatiotemporal system; (3) It can deal with multimodal distribution;

(4) It can fuse multiple heterogeneous data. Then we propose four deep-learning-based

solutions to address those four challenges and demonstrate the superior performances

to the baseline methodologies. Finally, we summarize all of the works including some

complementary works, discuss the limitations of current proposed solutions, and point

out the future works.
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Chapter 1

Introduction

1.1 Big Human Mobility Data

A raw human trajectory collected from an individual person is essentially a sequence

of timestamped locations: (timestamp, location), which can indicate a person’s location

according to a captured timestamp. A typical GPS trajectory data is shown in Fig.1.1.

Figure 1.1: A typical GPS trajectory data.

Due to the continuing development of location acquisition technologies, massive GPS

trajectory data are generated by various sources such as car navigation systems, mobile

phones, location-based social networks, and Wi-Fi log as shown in Fig.1.2. Comparing

to other data sources, mobile phone has its huge advantage. For example, data from

car navigation system are biased, data from location-based social networks have low

sampling rate, and wifi log data may have small data volume.

In this study, “Konzatsu-Tokei (R)” from ZENRIN DataCom Co., Ltd. was used. It

refers to people flow data collected by individual location data sent from mobile phones

with an enabled AUTO-GPS function under the users’ consent, through the “docomo

map navi” service provided by NTT DoCoMo, Inc. Those data are processed collec-

tively and statistically in order to conceal private information. The original location data

1



Chapter 1. Introduction 2

Figure 1.2: GPS trajectory data are generated from various data sources.

is GPS data (latitude, longitude) sent at a minimum period of about 5 minutes, and does

not include information (such as gender or age) to specify individuals. In this study,

the proposed methodology is applied to raw GPS data from NTT DoCoMo, Inc. The

raw GPS log dataset was collected anonymously from approximately 1.6 million mo-

bile phone users in Japan over a three-year period (August 1, 2010, to July 31, 2013).

It contains approximately 30 billion GPS records, and the total size of the data is more

than 1.5 terabytes. Each record contains user ID, latitude, longitude, altitude, timestamp

and positioning accuracy level, there are three levels due to different satellite’s signal

strength, correspondingly the positioning error would be within 100m, 200m or 300m.

Anonymization and aggregation are carefully conducted to protect user privacy. Here is

a snapshot of a normal weekday morning in Tokyo and Osaka as shown in Fig.1.3.

Figure 1.3: One snapshot on a normal weekday 8.am. in Tokyo and Osaka.

Obviously, human activities in city are closely linked with point-of-interest (POI) in-

formation, which can reflect the semantic meaning of human mobility. By combining

human mobility data and city POI data, a more effective representation of human mo-

bility can be expected. Moreover, although cities can have different types, scales, and
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developmental levels, the POI distrubtions similar with each other. For example, a busi-

ness area often has more POIs (e.g. offices, shopping malls, and restaurants) and locates

at central part of city, while a residential area comes in an opposite way. Human mo-

bility in different cities generally follow the similar patterns. Taking commuting pattern

for example, people move from residential area to central business area to work and

then return to residential district. This provides us the possibilities to transfer human

mobility knowledge between cities via POI information. Thus, in this study, in ad-

dition to GPS trajectory data, we also collected big POI data for every major city in

Japan as geographical data by utilizing “Telepoint Pack DB February 2014” provided

by ZENRIN DataCom Co., Ltd 1. In the original database, each record is a registered

land-line telephone number with coordinates (latitude, longitude) and industry category

information included. We treated each “telepoint” as one specific POI.

Figure 1.4: Urban computing scenarios.

1.2 Urban Human Mobility

Simulating/predicting human mobility (individuals’ behaviors) with big trajectory data

for a large urban area is a significant research topic, which is related to a variety of urban

computing scenarios as shown in Fig.1.4. For example, it will be of great significance

for transportation scheduling, urban regulation, and emergency management.
1https://joras.csis.u-tokyo.ac.jp/dataset/show/id/14000201400



Chapter 1. Introduction 4

Figure 1.5: Urban human mobility (from 1 person’s mobility to 0.1 million peoples’
mobility).

Here is an illustration from 1 person’s mobility to 0.1 million peoples’ mobility as

shown in Fig.1.5. Individual human trajectory prediction has been widely studied in

recent years in the field of urban computing, but it is very difficult to expand such kind of

individual modeling methodology to a citywide level. Since there are millions of people

in a big city such as Tokyo, Shanghai, and Hong Kong, it is just infeasible to build a

prediction model for each person by using his/her long historical data, which can also be

an infringement on individual privacy. Moreover, crowd management under emergency

situations is considered as a direct application scenario of human mobility prediction

model. For this scenario, comparing with precisely mastering each individual’s location,

knowing and controlling the crowd density for any urban region is the real demand of

governments (e.g. police) or public service operators (e.g. subway/bus companies,

mobile service providers). Thus, in this study, our goal is to build one general model to

effectively predict human mobility at a citywide level. However, in order to model and

analyze urban human mobility, we still confront with a few challenges.
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1.3 Challenges

Modeling and analyzing urban human mobility has never been an easy task for the

following reasons: (1) The urban area is too large, taking the Greater Tokyo area as

an example, it is the most populous metropolitan area in the world, has an urban area

that can reach 3.925 km2, and its metropolitan area can be 14.034 km2. How to deal

with such huge spatial domain is the first challenge; (2) Collected data used for model

training are often limited to a small portion of the total population, and we can’t collect

every citizen’s long-term historical trajectory data. How to train an effective model

with limited training data (e.g., 1% of the total population) is the second challenge;

(3) Under some real-world application scenario such as crowd management and crowd

monitoring, it is important to predict crowd mobility as well as crowd density, especially

for the latter one. Because high crowd density naturally means high risk for accidents.

How to simultaneously predict crowd density and crowd flow is the third challenge;

(4) Sometimes we may have no time or historical data for training a prediction model.

Moreover, when some big events happen such as an earthquake, typhoon, and national

festival, people change their behaviors from their routine activities. Thus, a model

trained with historical data can’t work very well for such kind of circumstances. The

four challenges have been proposed and summarized as Fig.1.6

Figure 1.6: Challenges on modeling and analyzing urban human mobility.
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Figure 1.7: Multiple layers of neural networks.

1.4 Deep Learning

Emerging deep learning technologies have taken over the world since 2016 (The year

of AI). It belongs to Neural Networks family, a branch of Machine Learning. As shown

in Fig.1.7, it attempts to learn multiple levels of representation of increasing complexi-

ty/abstraction. “Deep learning is part of state-of-the-art systems in various disciplines,

particularly computer vision and automatic speech recognition (ASR). Results on com-

monly used evaluation sets such as TIMIT (ASR) and MNIST (image classification),

as well as a range of large-vocabulary speech recognition tasks have steadily improved.

Convolutional neural networks (CNNs) were superseded for ASR by CTC for LSTM.

The impact of deep learning in industry began in the early 2000s, when CNNs already

processed an estimated 10% to 20% of all the checks written in the US, according to

Yann LeCun. Industrial applications of deep learning to large-scale speech recognition

started around 2010. The 2009 NIPS Workshop on Deep Learning for Speech Recog-

nition[68] was motivated by the limitations of deep generative models of speech, and

the possibility that given more capable hardware and large-scale data sets that deep

neural nets (DNN) might become practical. It was believed that pre-training DNNs

using generative models of deep belief nets (DBN) would overcome the main diffi-

culties of neural nets.[69] However, it was discovered that replacing pre-training with

large amounts of training data for straightforward backpropagation when using DNNs

with large, context-dependent output layers produced error rates dramatically lower than

then-state-of-the-art Gaussian mixture model (GMM)/Hidden Markov Model (HMM)



Chapter 1. Introduction 7

and also than more-advanced generative model-based systems. The nature of the recog-

nition errors produced by the two types of systems was characteristically different, of-

fering technical insights into how to integrate deep learning into the existing highly ef-

ficient, run-time speech decoding system deployed by all major speech recognition sys-

tems. Analysis around 2009-2010, contrasted the GMM (and other generative speech

models) vs. DNN models, stimulated early industrial investment in deep learning for

speech recognition, eventually leading to pervasive and dominant use in that industry.

That analysis was done with comparable performance (less than 1.5% in error rate)

between discriminative DNNs and generative models. In 2010, researchers extended

deep learning from TIMIT to large vocabulary speech recognition, by adopting large

output layers of the DNN based on context-dependent HMM states constructed by de-

cision trees. Advances in hardware enabled the renewed interest. In 2009, Nvidia was

involved in what was called the big bang of deep learning, as deep-learning neural net-

works were trained with Nvidia graphics processing units (GPUs). That year, Google

Brain used Nvidia GPUs to create capable DNNs. While there, Ng determined that

GPUs could increase the speed of deep-learning systems by about 100 times. In par-

ticular, GPUs are well-suited for the matrix/vector math involved in machine learning.

GPUs speed up training algorithms by orders of magnitude, reducing running times

from weeks to days. Specialized hardware and algorithm optimizations can be used for

efficient processing.”1

Figure 1.8: Deep learning on computer vision.

The success of deep learning in the fields of computer vision (shown as Fig.1.8) and

natural language processing (shown as Fig.1.8) motivates us to consider deep learning

techniques as highly potential solutions to our problems, because it has the following

1https://en.wikipedia.org/wiki/Deep learning
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Figure 1.9: Deep learning on natural language processing.

advantages: (1) It can handle real big data; (2) It can model highly complex spatiotem-

poral system; (3) It can deal with multimodal distribution; (4) It can fuse multiple het-

erogeneous data. Four deep-learning-based solutions have been proposed to address

those four corresponding challenges as shown in Fig.1.10.

Figure 1.10: Deep learning based solutions.
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Related Works

2.1 Classical Methods on Human Mobility

Recently, various studies were conducted on human mobility data (e.g. mobile phone

GPS log data, taxi GPS data, and location-based services data). These are summarized

as urban computing problems in [5].

Figure 2.1: Comparison of location prediction methods [1].

Trajectory-pattern based methodologies have been proposed to predict future move-

ment of individual person [6–8]. An approach based on nonlinear time series analysis

of the arrival and residence times of users has been proposed, which focused on pre-

dicting most important places of each user [9]. J. Zheng [10] proposed an unsupervised

learning algorithm for location prediction. Some collaborative approaches have been

proposed to take social relationships of users into account for location prediction and

9
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recommendation, but they utilized big check-in data from location-based network ser-

vices [1, 11, 12]. Comparison of location prediction methods have been summarized in

Fig.2.1 by [1].

CityMomentum [2] is a state-of-the-art prediction approach that can predict short-term

human mobility at a citywide level. The performance of CityMomentum is not good

enough since it is constructed based on a simple first-order Markov model.

Figure 2.2: The main idea about CityMomentum[2].

CityProphet[13, 14] and [15] utilize query data of Smartphone APP to forecast only

crowd density other than crowd flow. [16, 17] conduct transition estimation from ag-

gregated population data, and [18] estimates the transition populations using inflow and

outflow defined by [19]. Some researchers tried to detect the urban anomalies from

mobility data based on statistical methodologies [20, 21]. Modeling human mobility

for very large populations [2, 22] and simulating human emergency mobility following

disasters [23] are similar problems to ours, however, their models are built based on

millions of individuals’ mobility.

Understanding the basic life patterns of the flow of people [24] and recommending

location-based services [25, 26] are studies that utilize the tensor factorization approach
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to decomposing urban human mobility. [12] conducted next place prediction in location-

based services based on user features. Using population-scale data, [27] detected popu-

lar temporal modes and [28] modeled urban population of multiple cellphone networks.

Traffic flow, which can be seen as a special human mobility constraint on road networks,

has also been studied in the form of traffic flow prediction [29] and traffic congestion

monitoring [30], but they also start with some kind of individual model for each road

segment. Moreover, C. Song [31] explored the upper bound of the predictability of hu-

man mobility. J. Zheng [10] proposed an unsupervised learning algorithm for location

prediction. A more advanced trajectory calibrating algorithm was proposed in [32].

Many factors (e.g. sampling rate, data type) are demonstrated to affect the modeling

performance of human mobility [22]. A transfer learning framework was designed to

transfer knowledge of the hourly air quality between cities [33]. [34] proposed a uni-

fied approach to predicting original taxi demands based on large-scale online platforms.

Construction of urban movement knowledge graph from GPS trajectory has been pro-

posed for understanding people lifestyles[35].

Furthermore, modeling human mobility for very large populations [22, 36] and simu-

lating human emergency mobility following disasters [37, 38] are other topics that are

close to ours. However, all of these approaches had different problem definitions and

modeling methods. For example, the approaches required disaster information such as

intensity of earthquake and damage level as additional input data in [37, 38]. In addi-

tion, they did not use the power of deep-learning technologies.

2.2 Deep Learning on Human Mobility

Social-LSTM [39] is an advanced multi-agent model, which builds a separate LSTM

network for each person. ST-RNN [40] utilized RNN to model spatio-temporal transi-

tions. SERM [41] is recurrent model designed for semantic trajectory. A RNN architec-

ture similar with our word-like embedding model was proposed in [42] for destination

prediction task. These models focused on individual mobility and were validated with

small-scale trajectory dataset, which are difficult to be applied to our urban mobility

modeling task. [43] proposed online deep ensemble learning for predicting citywide

human mobility.

Forecasting the citywide crowd flow [3, 19, 44] are related works, which build a time-

series prediction model based on inflow and outflow, which can only indicate how many
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Figure 2.3: The main idea about ST-ResNet[3].

people will flow into or out from a certain mesh-grid, and can’t answer where the people

flow come or transit. Their models also can’t give out the crowd density prediction in

a straight-forward way, which is very crucial for event crowd management. The main

idea about ST-ResNet is shown in Fig.2.3.

Moreover, some studies also applied deep learning to predict the traffic flow, traffic

speed, congestion, transportation mode as well as human mobility, and taxi demand[29,

30, 45–49]. [4] proposed Deep Multi-View Spatial-Temporal Network for taxi demand

prediction. Bidirectional RNN is reported to be more effective for taxi destination pre-

diction task [50]. DeepMove[51] is a framework for predicting human mobility with

attentional recurrent networks, which focused on the problem of mobility prediction

from the sparse and lengthy trajectories. [52] developed deep generative models of

urban mobility. [53] is a deep learning approach to traffic accident prediction on hetero-

geneous spatio-temporal data.
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Figure 2.4: The main idea about DMVST-Net[4].

2.3 Other Methods on Human Mobility

Traditional multi-agent based human mobility simulation (e.g. Matsim and Aimsun as

shown in Fig.2.5) needs: 1) A large amount work of parameterizing the city; 2) A large

number of assumptions on human behavior; 3) A rich expertise in citywide human

mobility to make it work properly. [54] did agent-based modeling of taxi behavior

simulation with probe vehicle data.

Figure 2.5: MATSim (the Multi-Agent Transport Simulation Toolkit) is an open source
software development project developing agent-based software modules intended for
use with transportation planning models. Aimsun Live is a simulation-based traffic

forecasting solution, developed and marketed by Aimsun.

Research on processing classic trajectory data has drawn a lot of attention, in which the

following three topics are most representative.
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(1)Clustering: TRACLUS (Trajectory Clustering)[55] is a method for clustering tra-

jectories that first splits inputed trajectories into small segments, and then conducts

clustering on those segments.

Figure 2.6: Semantic trajectory database and fine-grained sequential pattern [61].

(2)Pattern Discovery: T-Pattern (Trajectory Pattern)[56] is a method for discovering

trajectory patterns, which are represented by a sequence like RoI0 → t1 RoI1 → t2

... → tnRoIn, where RoIi(Region of Interest) represents the discovered region passed

through by a plenty of trajectories and ti stands for the transition time between two

RoIs. In addition to T-Pattern, flock[57], swarm[58], convoy[59], gathering[60] and

splitter[61] are also proposed as specific trajectory patterns.

(3)Optimal Route Discovery: MPR(Most Popular Route)[62] takes start point and end

point as inputs and returns the most popular route between the two points from tra-

jectories. Apart from the start point and end point, TPMFP(Time Period-based Most

Frequent Path)[63] also takes a time period as input and returns the most frequent path

between the two points during that time period.
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Problem and Overview

Figure 3.1: General objective of this study.

3.1 General Objective

The general objective of this study is to predict human mobility, namely future dis-

tribution of millions’ individuals for a large urban area with high precision. Like the

weather forecast, if it is possible to predict population distribution in real time, the re-

sult can be shared with various people and agencies for various kinds of disaster/event

response. Based on the observed mobility data from different people, we can give a

probability distribution as the prediction result for next step. For example, for a group

15
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of commuting people lets say 1000 people on the Seibu-Shinjuku line observed from

08:00 O’clock to 08:30, we could precisely predict around 60% of people will go to

Takadanobaba station, 20% will go to Shinjuku station, 10% will go to Ikebukuro sta-

tion. In this way, given all peoples’ observed mobility, we can predict human mobility

for the entire urban area. It should be noted that for one person’s mobility prediction, we

are concerned only about whether the model can precisely predict the next location with

the highest probability. However, a large crowd of people can share the same observed

trajectories (e.g. commuters taking the same train) but they may go to different places

after some time. Thus, for citywide human mobility prediction, our model should pre-

cisely predict the overall probability distribution of the next possible destinations. With

such model being deployed as an online service, we can precisely predict and simulate

how many person will enter a certain region in real time, which can play an important

role in controlling the crowd density for a city especially when some irregular events

happen. The trained model can generate or predict multiple steps of human mobility

in an autoregressive manner. Multiple steps of mobility can be generated one step by

one step according to the probability distribution in a similar way to a text generator.

For example, given the first word “how”, the second word can be generated as “are”,

then the third can be “you”. If the second was generated as “old”, then the next two

words could be “are you” with higher probability. Moreover, if one step corresponds

to 5 minutes time interval, generating next six steps of human mobility means that we

can get a next-30-minutes mobility prediction. For instance, our model can take all

of the 6-step observations from 07:35∼08:00 as inputs and report the prediction result

for 08:05∼08:30 at 08:00. This can help us understand how the crowd dynamics are

evolving step by step under a crowd management application scenario.

3.2 How to Predict Citywide Domain?

Rapidly developing location acquisition technologies have provided us with big GPS

trajectory data, which offers a new means of understanding people’s daily behaviors as

well as urban dynamics. With such data, predicting human mobility at the city level will

be of great significance for transportation scheduling, urban regulation, and emergency

management. In particular, most urban human behaviors are related to a small number

of important regions, referred to as Regions-of-Interest (ROIs). Therefore, in this study,

a deep ROI-based modeling approach is proposed for effectively predicting urban hu-

man mobility. Urban ROIs are first discovered from historical trajectory data, and urban
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Figure 3.2: Can we design an ROI-based approach for predicting short-term human
mobility at the citywide level with high precision? Big human mobility data and deep-

learning technologies provide us with the opportunity to implement this.

human mobility is designated using two types of ROI labels (ISROI and WHICHROI).

Then, urban mobility prediction is modeled as a sequence classification problem for

each type of label. Finally, a deep-learning architecture built with recurrent neural net-

works is designed as an effective sequence classifier. Experimental results demonstrate

that the superior performance of our proposed approach to the baseline models and

several real-world practices show the applicability of our approach to real-world urban

computing problems.

The complete framework is demonstrated in Fig. 3.2 and Fig.3.3.

The main contributions of this solution are as follows:

• To the best of our knowledge, this solution is the first attempt to utilize urban ROI

to model human mobility at a citywide level.

• An effective mining algorithm is proposed to discover urban ROIs given historical

raw trajectory data.

• The proposed approach constructs a deep-sequence learning model with RNN to

effectively predict urban human mobility.

• Our approach can be easily applied to real-world simulations and has been veri-

fied as a highly applicable approach.
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Figure 3.3: The input and output for solution 1.

3.3 How to Predict with Limited Data?

Rapidly developing location acquisition technologies provide a powerful tool for un-

derstanding and predicting human mobility in cities, which is very significant for urban

planning, traffic regulation, and emergency management. However, with the existing

methodologies, it is still difficult to accurately predict millions of peoples’ mobility in

a large urban area such as Tokyo, Shanghai, and Hong Kong, especially when collected

data used for model training are often limited to a small portion of the total population.

Obviously, human activities in city are closely linked with point-of-interest (POI) infor-

mation, which can reflect the semantic meaning of human mobility. This motivates us

to fuse human mobility data and city POI data to improve the prediction performance

with limited training data, but current fusion technologies can hardly handle these two

heterogeneous data. Therefore, we propose a unique POI-embedding mechanism, that

aggregates the regional POIs by categories to generate an artificial POI-image for each

urban grid and enriches each trajectory snippet to a four-dimensional tensor in an anal-

ogous manner to a short video. Then we design a deep learning architecture combining

CNN with LSTM to simultaneously capture both the spatiotemporal and geographical

information from the enriched trajectories. Furthermore, transfer learning is employed

to transfer mobility knowledge from one city to another, so that we can fully utilize

other cities’ data to train a stronger model for the target city with only limited data

available. Finally, we achieve satisfactory performance of human mobility prediction
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Figure 3.4: Can we design an effective approach to build one urban model for predict-
ing human mobility (future distribution of individuals) at a citywide level with limited
data? Fusing heterogeneous data (Human mobility data and city POI data) with deep

learning technologies may allow us to address this challenge.

Figure 3.5: The input and output for solution 2.

at the citywide level using a limited amount of trajectories as training data, which has

been validated over six urban areas of different types and scales.

The complete framework is demonstrated in Fig. 3.4 and Fig.3.5.

The main contributions of this solution can be summarized as follows:

• We constructed a standard deep sequence learning model for accurately predicting

a probability distribution of human mobility at the citywide level.

• We proposed a novel sequential embedding method called image-like embedding

that uses city POI data to enrich the original human mobility data with geograph-

ical features, where we applied CNNs to the standard model to obtain more effec-

tive representations.
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• Transfer learning was employed to work together with image-like embedding

mechanism. Through this, we can transfer mobility knowledge from source city

to target city via POI information, if the source city have relatively sufficient mo-

bility data and the target city only have limited data.

• We evaluated our approach based on multiple urban areas using different amounts

of training data and demonstrated the advantages of our method compared with

other baseline approaches.

3.4 How to Predict Mobility as Well as Density?

Event crowd management has been a significant research topic with high social impact.

When some big events happen such as an earthquake, typhoon, and national festival,

crowd management becomes the first priority for governments (e.g. police) and public

service operators (e.g. subway/bus operator) to protect people’s safety or maintain the

operation of public infrastructures. However, under such event situations, human be-

havior will become very different from daily routines, which makes prediction of crowd

dynamics at big events become highly challenging, especially at a citywide level. There-

fore in this study, we aim to extract the “deep” trend only from the current momentary

observations and generate an accurate prediction for the trend in the short future, which

is considered to be an effective way to deal with the event situations. Motivated by these,

we build an online system called DeepUrbanVideo which can iteratively take citywide

crowd dynamics from the current one hour as input and report the prediction results

for the next one hour as output. A novel deep learning architecture built with recurrent

neural networks is designed to effectively model these highly-complex sequential data

in an analogous manner to video prediction tasks. Experimental results demonstrate the

superior performance of our proposed methodology to the existing approaches. Lastly,

we apply our prototype system to multiple big real-world events and show that it is

highly deployable as an online crowd management system.

The complete framework is demonstrated in Fig. 3.6 and Fig.3.7.

This solution has the following key characteristics that make it unique:

• For predicting crowd dynamics at citywide-level big events, we build an online

deployable system that need only limited steps of current observations as input.
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Figure 3.6: Can we design an effective real-world system for predicting citywide crowd
dynamics at big events? Real-time human mobility data as well as deep learning tech-

nologies allow us address this high-social-impact problem.

• Citywide crowd dynamics are decomposed into two kinds of artificial videos,

namely crowd density video and crowd flow video, and a Multitask ConvLSTM

Encoder-Decoder is designed to simultaneously predict multiple steps of crowd

density and flow for the future time period.

• Using the predicted crowd density and flow video, we further build a series of

dynamic crowd mobility graph to help conduct probabilistic reasoning of crowd

movements during big events.
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Figure 3.7: The input and output for solution 3.

• We validate our system on four big real-world events with big human mobility

data source and verify it as a highly deployable prototype system.

3.5 How to Predict without Historical Data?

Big human mobility data are being continuously generated through a variety of sources,

some of which can be treated and used as streaming data for understanding and pre-

dicting urban dynamics. With such streaming mobility data, the online prediction of

short-term human mobility at the city level can be of great significance for transporta-

tion scheduling, urban regulation, and emergency management. In particular, when big

rare events or disasters happen, such as large earthquakes or severe traffic accidents,

people change their behaviors from their routine activities. This means people’s move-

ments will almost be uncorrelated with their past movements. Therefore, in this study,

we build an online system called DeepUrbanMomentum to conduct the next short-term

mobility predictions by using (the limited steps of) currently observed human mobility

data. A deep-learning architecture built with recurrent neural networks is designed to ef-

fectively model these highly complex sequential data for a huge urban area. Experimen-

tal results demonstrate the superior performance of our proposed model as compared to

the existing approaches. Lastly, we apply our system to a real emergency scenario and

demonstrate that our system is applicable in the real world. The complete framework is

demonstrated in Fig. 3.8 and Fig.3.9.

It has the following key characteristics:

• It is built and tested based on a big human mobility data source, which stores the

GPS records of 1.6 million users over three years.
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Figure 3.8: Can we develop an online intelligent system for short-term human mobil-
ity prediction with high precision by using recent momentary mobility at a citywide
level? Big human mobility data and deep-learning technologies provide us with the

opportunity to implement this system.

Figure 3.9: The input and output for solution 4.

• It is built as an online prediction system driven by mobility stream and deep-

learning technologies.
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• It constructs a deep-sequence learning model with RNN for effective multi-step

predictions.

• It is applied to real-world scenarios and verified as a highly deployable prototype

system.



Chapter 4

Citywide Domain: Deep ROI-Based
Modeling

4.1 Introduction

A large urban area such as Beijing, Shanghai, or Tokyo usually has multiple Central

Business Districts (CBDs), and people are likely to gather at those CBDs for working,

shopping, and entertainment. Apart from CBDs for daily human behaviors, some stadi-

ums and tourist spots can also be hot urban regions for non-daily human behaviors. For

example, Tokyo Disneyland, one of the most famous theme parks, far away from the

Tokyo Station, can attract over 100,000 visitors a day. In addition, people visit Beijing

Workers’ Stadium to see a sports game or a concert. Essentially, most urban human be-

haviors (daily and non-daily) and urban phenomena can be related to these hot regions,

officially mentioned as Regions-of-Interest (ROIs).

Hot regions mean high crowd density, which naturally makes these areas at high risk

for various accidents. Recall the tragedy on New Year’s Eve in Shanghai, when around

300,000 people gathered to celebrate the arrival of 2015 near Chen Yi Square on the

Bund, which is the most representative tourist spot in Shanghai. However, the large

crowd was not well controlled, and a stampede occurred where 36 people died and 47

were injured in the tragedy. For governments and public infrastructure operators such

as metro companies, an ROI always should always have a higher priority over other

regions, and they should always allocate more resources to some ROIs to prevent emer-

gency situations from occurring. If not, a tragedy like the Shanghai stampede could

25
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Figure 4.1: Can we design an ROI-based approach for predicting short-term human
mobility at the citywide level with high precision? Big human mobility data and deep-

learning technologies provide us with the opportunity to implement this.

happen again. Therefore, paying close attention to urban ROIs can be of great signifi-

cance for transportation scheduling, urban regulation, and emergency management.

On the other hand, rapidly developing location acquisition technologies have provided

us with big data on human mobility. Obviously, this offers a new means of understand-

ing people’s daily behaviors as well as urban dynamics, which has been seen as one of

the most promising research topics in both academia and industry. However, modeling

big historical trajectory data has never been an easy task for the following reasons: (1)

The spatial domain is very large for a big urban area, and is difficult to predict with

high precision. For example, the Greater Tokyo Area, the most populous metropolitan

area in the world, has an urban area that can reach 3.925 km2, and its metropolitan area

can be 14.034 km2. 1 (2) In order to build a human mobility prediction model or mine

some mobility knowledge, we usually have to collect trajectory data over a long period

of time. The large temporal scale can be another big challenge for us. (3) Collected

raw trajectory data can be noisy and sparse owing to the limitation of location acqui-

sition technology itself or user privacy problems. Handling the raw trajectory data is a

significant issue that we have to face.

Motivated by all the above, in this article, we propose an effective ROI-based approach

for understanding and predicting human mobility with big raw and historical trajectory

data. Specifically, given a few steps of observed mobility from one person, predicting
1https://en.wikipedia.org/wiki/Greater Tokyo Area
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where this person will go next is the core problem we have been working on in the field

of urban computing. The key idea is to convert this problem into the following two

problems based on ROI: (1) Next, will this person enter any ROI? (2) If yes, which ROI

will this person enter next? Intuitively, our new modeling approach will first determine

if the input trajectory is so important that it can have a key influence on the urban

area. Then, it will predict which urban area the trajectory will influence. It can be

very effective, straightforward, and of high usability for human mobility prediction at

a citywide level due to the significance of ROI as mentioned above. In order to deliver

this idea, the complete framework demonstrated in Fig. 4.1 is designed as follows:

Framework Overview. Given multiple days of trajectory data (e.g., one month), our

goal is to build a 24-h mobility prediction system on these historical data, which itera-

tively runs in an online updating mode that takes observed human mobility within the

current hour as input and predicts how the mobility will be in the next hour. In order to

do this, first, dynamic ROIs for each hour will be discovered through divide-and-merge

mining from raw trajectory database. This divides the entire trajectory dataset by day,

finds the ROIs corresponding to a specified hour (e.g., 07:00∼07:59) from each day, and

finally merges the discovered ROIs of each day by the hour. Through this, 24 sets of

ROIs for 24 h are prepared. Second, all subtrajectories in a continuous 2 h are retrieved.

The data for the first hour are utilized as input features, and the second set of hourly

data are used to generate the two types of ROI-related target labels mentioned above:

“Enter-ROI-Or-Not” and “Which-ROI.” Last, 24 mobility prediction models are built

using deep Recurrent Neural Networks (RNNs), each of which consists of a typical bi-

nary classification model and a multiclass classification model. All of these processing

steps form a complete and effective mining-learning-predicting framework for modeling

urban human mobility on raw and historical trajectory data.

The main contributions of this paper are as follows:

• To the best of our knowledge, this paper is the first attempt to utilize urban ROI

to model human mobility at a citywide level.

• An effective mining algorithm is proposed to discover urban ROIs given historical

raw trajectory data.

• The proposed approach constructs a deep-sequence learning model with RNN to

effectively predict urban human mobility.
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• Our approach can be easily applied to real-world simulations and has been veri-

fied as a highly applicable approach.

The remainder of this paper is organized as follows: Section 4.2 gives an overview

of our data source. Section 4.3 gives the problem definition for the entire framework.

Section 4.4 explains the details of mining algorithms for dynamic urban ROIs. Section

4.5 explains the modeling details and deep-learning architectures. Section 4.6 shows the

experimental details and a performance evaluation. Section 4.7 describes the simulation

results in a real-world scenario. Section 4.8 introduces studies related to our research.

Section 4.9 contains summaries, the limitations of our approach, and our future work.

4.2 Data Source

“Konzatsu-Tokei (R)” from ZENRIN DataCom Co., Ltd., was used. It refers to people

flow data collected by individual location data sent from mobile phones with an enabled

AUTO-GPS function under the users’ consent, through the “docomo map navi” service

provided by NTT DoCoMo, Inc. Those data are processed collectively and statistically

in order to conceal private information. The original location data is GPS data (latitude,

longitude) sent at a minimum period of about 5 min, and does not include information

(such as gender or age) to specify individuals. In this study, the proposed methodology

is applied to raw GPS data from NTT DoCoMo, Inc.

The raw GPS log dataset was collected anonymously from approximately 1.6 million

mobile phone users in Japan over a three-year period (August 1, 2010, to July 31, 2013).

It contains approximately 30 billion GPS records, and the total size of the data is more

than 1.5 terabytes. Each record contains user ID, latitude, longitude, altitude, timestamp

and positioning accuracy level (there are three levels due to different satellite’s signal

strength, correspondingly the positioning error would be within 100m, 200m or 300m).

However, the record interval exceeds 5 minutes occasionally due to loss of signal or

battery power. Besides, the positioning function would be suspended when no motion

is detected, in this case no records will be uploaded. After filtering the records outside

of Tokyo and Osaka, the two prefectures have about 1.2 billion and 650 million records

for 680365 and 394980 unique users, respectively. In this research, we randomly take

one month of data of Tokyo as the simulation dataset, and get around 120000 distinct

user IDs for each day (from 00:00 to 23:59), which is approximately equal to 1% of the

total population of the Greater Tokyo Area.
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To better simulate a real-time situation for our online system, this dataset is stored on

a Hadoop cluster containing 32 cores, 32 GB of memory, and 16 TB of storage, which

can run 28 tasks simultaneously. Furthermore, we use Hive on top of Hadoop to make

the entire system support SQL-like spatial queries. Therefore, GPS trajectories of a

specified city and day can be retrieved in a short response time, and our database can be

regarded as a nearly real-time data source.

4.3 Problem Definition

Definition 4.1 (Raw Human Trajectory). A raw human trajectory collected from an in-

dividual person is essentially a sequence of 3-tuple: (timestamp, latitude, longitude),

which can indicate a person’s location according to a captured timestamp. In our re-

search, it will be denoted as a sequence of (d, t, l)-tuple by decomposing timestamp to

d, t and simplifying (latitude, longitude) as l, where d is the date and t is the time for a

24-h clock. Furthermore, a historical raw trajectory database is denoted as HT DB.

Urban ROI discovery will be conducted using the raw trajectories with long-period

records(i.e. one-month in our research), and more details will be described in Section

4.4. Note that the raw trajectory has a lot of temporal uncertainties because of differ-

ent time intervals between two consecutive timestamps. In order to effectively model

and predict citywide human movements, it motivates us to reduce temporal uncertainty

by calibrating the raw trajectory to have equal time intervals ∆t, which is defined as

follows:

Definition 4.2 (Calibrated Human Trajectory). A calibrated human trajectory from time

t1 to tm is a sequence of timestamp-location pairs denoted as: (t1, l1), (t2, l2), ..., (tm, lm)

that satisfies:

∀i ∈ [1,m) , |ti+1 − ti| = ∆t

The calibration operation is essentially to apply a linear interpolation to the raw trajecto-

ries to get the unified timestamps and the corresponding locations. A calibrated human

trajectory database is further denoted as T DB. Then, urban human mobility prediction

can be defined as follows:
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Definition 4.3 (Observed Urban Human Mobility). Given a T DB, an observation time

t and an integer α, current urban mobility Xt is defined as follows:

Xt = {tra j | tra j ∈ T DB ∧ ∀i, t − α∆t < tra j.ti ≤ t}

which intuitively means α steps of urban human mobility are observed at time t.

Definition 4.4 (Next Urban Human Mobility). Given a T DB, an observation time t, and

an integer β, the next urban mobility Xt+β is defined as follows:

Xt+β = {tra j | tra j ∈ T DB ∧ tra j.t = t + β∆t}

which means the human’s locations of the entire urban area at the moment of t + β∆t.

Definition 4.5 (Urban Human Mobility Prediction). Given the observed urban human

mobility Xt, urban human mobility prediction is to construct a model P(X̂t+β | Xt), in

which X̂t+β is the predicted next urban human mobility.

Our goal is to build an online updating system that can report the prediction results

every hour. In order to do this, ∆t is set to 10 minutes, α is set to 6 and β is set to

{1,3,6} which means our system will take the observed urban human mobility within

one hour as inputs to report three prediction results corresponding to the moment of

“Next-10-Minutes”, “Next-30-Minutes” and “Next-60-Minutes” respectively.

Now, based on a historical trajectory dataset, the problem of urban human mobility

prediction has been successful defined. In Section 4.4, we will show the details about

discovering urban ROIs from historical raw trajectory data. Then based on the discov-

ered urban ROIs, we will explain our deep ROI-based modeling approach for urban

human mobility prediction in Section 4.5.

4.4 Urban ROI Discovering

An urban ROI is a polygon region frequently traversed by the trajectories in HT DB,

which makes the region with maximal density within a specified time span. Urban ROI

discovery is a nontrivial task for urban computing. For professionals working in govern-

ment or a public service operator, they may be able to roughly point out the hot regions

according to their daily experience. However, by exploiting big human mobility data,
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dynamic urban ROIs with higher precision can be expected. Instead of utilizing only

one day’s trajectory data, multiple days’ data are required for highly convincing results.

Furthermore, daily human behaviors can be quite different from a long-time-period per-

spective, such as a weekday or weekend, this month and next month, or summer and

winter. To satisfy the need for this kind of human behavior analysis, exploiting multiple

days’ trajectory data of a large urban area becomes indispensable. Moreover, owing to

the limitation of location acquisition technology itself (e.g., loss of signal or low battery

power) or user privacy problems, massive raw trajectory data can be very noisy and

sparse. Handling the raw trajectory data at the citywide level is another significant issue

we have to dealt with.

Here, in our approach, a divide-and-merge mining algorithm is designed to discover

urban ROIs with multiple days’ data. The entire mining process is demonstrated in Fig.

4.2, which can be summarized as follows:

• First, multiple days’ raw trajectories are divided by the day, and pattern-based

filtering is proposed an advanced preprocessing technique for ROI discovery.

• Second, after trajectory filtering, for each hour, MeanShift [64] is applied to find

the point clusters with maximal density as preliminary ROIs.

• Third, to merge multiple days’ preliminary ROIs, all centroids from the same

time span of each day are once again clustered by MeanShift, and an urban ROI

is approximately represented by several neighboring fine-grained grids.

In summary, our urban ROI discovering approach has the following characteristics that

make it unique : (1) Be capable of handling large raw trajectory data. (2) Has high

applicability for long-period historical trajectory data. (3) Has high compatibility with

the prediction task for urban human mobility.

4.4.1 One-Day Preliminary ROI Discovering

As defined above, an ROI is a region with maximal population density in a time span,

which is an hour in our research. Given raw trajectories, we can get all the points within

each hour, and apply a clustering algorithm to these points to generate a preliminary

ROI, which is essentially a point cluster identified by a centroid with maximal density.

Two additional definitions are listed below:
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Figure 4.2: Mining process for urban ROI discovery from multiple days’ trajectories.

Algorithm 1: One-Day Preliminary ROI Discovering
Input: One-day raw trajectories DRT , a minimum support δ, a mesh M, a kernel

bandwidth h.
Output: Hourly Preliminary ROI sets. // Each hour has a set of ROIs
and each ROI is a cluster of points.

1 PROI ← ∅;
2 for each HH ∈ [0, 1, ..., 23] do
3 T ← TrajectoryFiltering(DRT , δ, M) ;
4 /* 4.2 Pattern-Based Trajectory Filtering. */

5 P← GetHourPoints(T , HH);
6 /* Iterate over all trajectories in T to pick out the

points within HH : 00 : 00 ∼ HH : 59 : 59. */

7 PROI[HH]←MeanShift(P, h);

8 return PROI

Definition 4.6 (Point). Given a trajectory, a sequence of (d, t, l)-tuple, each (d, t, l)-tuple

is called a point. When clustering is applied, a point will be treated as a normal 2D point

with a (longitude, latitude) coordinate. Points with the same l and different (d, t) will be

treated as different points.

Definition 4.7 (Preliminary ROI). Given the points within a specified hour (e.g., 08:00:00∼08:59:59),

an ROI is a cluster of points, and a centroid is a point located at the maxima of a density

function.

Through our definition of an urban ROI, one can realize that MeanShift is a good so-

lution to locate the maximal density as well as to get point clusters. MeanShift can

automatically set the number of clusters instead of relying on only one parameter called

the kernel bandwidth, which holds a physical meaning: the size of the region to search
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through. In our approach, a flat kernel is used for kernel density estimation in Mean-

Shift, which is defined as follows:

K(x) =

1 if ‖x‖2 ≤ h

0 if ‖x‖2 > h

where ‖x‖2 indicates the two-dimensional Euclidean distance between points.

Note that in addition to the proposed definition of an ROI, when comparing it with other

clustering algorithms such as K-Means, GMM, and DBSCAN, the most widely used

ones for spatial clustering, we still find that MeanShift is the most appropriate method.

K-Means and GMM require the user to set the number of clusters. For a large urban

area like that in our case, the number will be very difficult to determine. If the number

is set too small, clusters with too large an area will be generated, which will make the

urban mobility prediction—which ROI this person will enter—become meaningless.

DBSCAN, which requires a number threshold minPts and a distance threshold ε, is also

inclined to suffer from the same problems: (1) difficulty in determining the parameters

and (2) ease of generating too-large clusters, especially for the second one, because an

expanding strategy is used to form clusters in DBSCAN.

Since our historical trajectory data is raw data, there may exist many noise points as

well as too many normal points. This problem can be easily noticed in the fist subfigure

of Fig. 4.2, which is a snapshot of all raw trajectories of one day at “08:00:00.” Spatial

clustering on citywide points from raw trajectories cannot be applied without filtering

the trajectory data first, especially for a noise-sensitive algorithm such as MeanShift. In

addition, MeanShift is not highly scalable, as it requires many nearest-neighbor searches

during execution.

Therefore, pattern-based trajectory filtering is proposed as an advanced preprocessing

technique for our approach. More details about the trajectory filtering will be intro-

duced in the next subsection. A one-day preliminary ROI discovering is summarized as

Algorithm 1.

4.4.2 Pattern-Based Trajectory Filtering

Before conducting any spatial analysis, such as spatial clustering, a raw trajectory

dataset should be well preprocessed to filter out unnecessary trajectories including noisy
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Algorithm 2: Trajectory Filtering
Input: One-day raw trajectories DRT , a minimum support δ, a mesh M.
Output: Filtered one-day trajectories.

1 T , L, S ← ∅, ∅, ∅; /* T is final result, L is intermediate
trajectory set, S is cube sequence set. */

2 CUBES ← GenerateCubes(M, HH ∈ [0,1,...,23]);
3 for each tra j in DRT do
4 ID← ∅;
5 Initilize a cube trajectory ct j : ct j.id ← tra j.id, ct j.sequence← ∅;
6 Initilize a trajectory t j : t j.id ← tra j.id;
7 for each point in tra j do
8 CID← InWhichCube(point,CUBES );
9 if CID , ID then

10 Append CID to ct j.sequence, append point to t j;

11 ID← CID ;

12 S ← S ∪ ct j, L← L ∪ t j;

13 PA← PrefixSpan(S, min-length=2, max-length=2);
14 PT , PC ← GetPatternTIDs(PA), GetPatternCubes(PA);
/* PT is pattern-matched trajectory-ID list, PC is

pattern-matched cube-ID list. */

15 for each tra j in L do
16 if tra j.id in PT then
17 Initilize a trajectory t j : t j.id ← tra j.id;
18 for each point in tra j do
19 CID← InWhichCube(point,CUBES );
20 if CID in PC then
21 Append point to t j;

22 T ← T ∪ t j;

23 return T

ones. For our ROI discovery, some unnecessary points should also be pruned out. To

satisfy these needs, we propose a sequence-pattern-based filtering strategy in our ap-

proach. Our strategy follows the same idea as most outlier detection methodologies: if

a data sample does not follow a number of companions, this sample can be considered

as an outlier. Similarly, a definition of a trajectory pattern is proposed in our approach.

If a trajectory does not match any trajectory pattern, it will be filtered out from the

dataset used for urban ROI discovery.

Definition 4.8 (Spatiotemporal Cube). Let a time span be equally divided by n. We can

get n small continuous time spans, each denoted as τ. Given a mesh of an urban area, it

consists of m fine-grained grids of the same size, each denoted as σ. By multiplying the
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time spans and mesh grids, we can get n ·m small spatiotemporal cubes c, where each c

is a 3D region corresponding to a (τ, σ)-pair.

Definition 4.9 (Cube Trajectory). Given a point, a (d, t, l)-tuple of one trajectory se-

quence, it can be mapped into a cube c if the following is satisfied:

t ∈ c.τ ∧ l ∈ c.σ.

Through this kind of mapping, a trajectory can be converted into a sequence of a cube,

called cube trajectory ct. Note that if several continuous (d, t, l)-tuples match the same

cube, the cube will be only appended once into the cube sequence.

Definition 4.10 (Trajectory Pattern). Consider a cube trajectory database CT DB = {ct1,

ct2, ..., ctn}, where cti is a sequence of cubes (c1, c2, ..., cn). Given a minimum support

threshold δ, a trajectory pattern tp = (p1, p2, ..., pn) is defined as a frequent sequence

pattern with minimum length, as follows:

supporttp = | {ct | ct ∈ tp} | ≥ δ ∧ tp.length ≥ 2

where ct ∈ tp is satisfied if there exists a subsequence of ct, ct′ = (c′1, c′2, ..., c′n) such

that ∀i, c′i = pi. In the rest of the article, we say a trajectory tra j can match a trajectory

pattern tp if ct ∈ tp is satisfied, where ct is the corresponding cube trajectory of tra j.

Note that a “good” trajectory should have at least two “good” points that can match

a certain length-2 trajectory pattern. Otherwise, if a trajectory holds only one “good”

point, it cannot be treated as a real trajectory. This is why a minimum length equal to 2

is introduced in the definition.

Furthermore, the definition comes with a minimum length, which means we have to

discover all of the patterns longer than 2. However, according to the Apriori Property

[65]:

• Any subsequence of a frequent pattern is also frequent.

we can say that:

• If a trajectory tra j can match a trajectory pattern tp with length ¿2, tra j must

match a length-2 pattern tp′, where tp′ is a subsequence of tp.
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Based on this, we can only discover the length-2 patterns, which can notably improve

the performance.

Definition 4.11 (Trajectory Filtering). Given a raw trajectory tra j and a set of trajectory

patterns, trajectory filtering is conducted from the following aspects:

• Redundant points of tra j will be filtered out. If a trajectory holds several contin-

uous points located in the same cube, only the first point will be preserved as the

representative point. Thus, this person stays stationary in a region within a time

span.

• The noisy trajectory tra j will be filtered out if it cannot match any trajectory

pattern.

• Noisy points of tra j will be filtered out. Let a trajectory point be mapped to a

cube c. If c does not occur in any trajectory pattern, the point will be taken as a

noisy point.

Our proposed pattern-based trajectory filtering is summarized as Algorithm 2. Lines

3-12 of the algorithm generate cube trajectories for trajectory pattern mining and fil-

ter redundant points of inputted raw trajectories. At line 13, PrefixSpan [66], one of

the most widely used sequential mining algorithms, is applied. To meet our proposed

definition, apart from the minimum support, we make PrefixSpan capable of taking a

minimum length and a maximum length as two extra parameters, where both are set

to 2. At line 14, from the discovered trajectory patterns, we extract the cube IDs that

can have at least one trajectory pattern, as well as the trajectory IDs that can match at

least one pattern. Lines 15-22 filter out the noisy trajectories that cannot match any

pattern, and also the noisy points whose cube cannot occur at any pattern. For lines 8

and 19, which determine the cube to which a given point belongs, instead of searching

over all cubes, we can directly calculate the cube ID using the timestamp and location

coordinates of the point.

Through our proposed trajectory filtering, we can make sure that each cube traversed

by at least δ “good” (length ≥ 2) trajectories will be preserved, while cubes without a

sufficient number of “good” (length ≥ 2) trajectories passing by will be filtered out in

the ROI discovering phase. From Fig. 4.2, we can see the effectiveness by comparing

the trajectories before and after filtering. This can be as strong enough as a prepro-

cessing method for ROI discovering. Some other filtering methodologies may also be



Chapter 4. Citywide Domain: Deep ROI-Based Modeling 37

Algorithm 3: Multiple-Day Preliminary ROI Merging
Input: Multiple days of hourly preliminary ROI sets DPROI, a kernel bandwidth

h, a mesh M, an integer K.
Output: Hourly urban ROI sets.

1 ROI ← ∅;
2 GRIDS ← GenerateGRIDS(M);
3 for each HH ∈ [0, 1, ..., 23] do
4 HHROI ← Get all days’ preliminary ROI sets for HH from DPROI;
5 R, P,U ← ∅, ∅, ∅ ; /* R is urban ROI for HH, P is cluster

centroids, U is merged clusters. */

6 for each roi in PROI do
7 P← P ∪ roi.centroid;

8 C ←MeanShift(P, h); /* C is centroid-clusters (clusters of
centroids from mutiple days). */

9 for each c in C do
10 Initialize a cluster c′ : c′.centroid← c.centroid, c′.points← ∅;
11 for each centroid in c.points do
12 c′.points← c′.points ∪ HHROI[centroid].points;

13 U ←U ∪ c′ ;

14 Q← Select top-K largest clusters inU;
15 for each q in Q do
16 Initialize a region r : r.center← q.centroid, r.region← ∅;
17 R ← R ∪ r ;
18 for each point in q.points do
19 g← InWhichGRID(point,GRIDS );
20 r← GetNearestRegion(g,R);
21 r.region← r.region ∪ g;

22 ROI[HH]← R;

23 return ROI

considered, such as Trajectory Clustering[67]. However, these can be highly complex

and difficult to apply to citywide-level trajectory datasets. Since our filtering algorithm

takes only two parameters, mesh size and minimum support, it can be easily tuned and

set.

4.4.3 Multiple-Day Preliminary ROI Merging

Given a set of preliminary ROIs discovered on multiple days, a merging process is pro-

posed for our approach, which is summarized as Algorithm 3. Remember that each pre-

liminary ROI is a cluster of trajectory points identified by a centroid point. Our method
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of merging is to cluster all these centroids collected from multiple days by applying

MeanShift once again to get so-called centroid-clusters (Lines 4-8). All preliminary

ROIs are merged into large clusters. The centroid of each centroid cluster is utilized as

the centroid of the merged cluster (Lines 9-14). Then, the top-K largest merged clusters

are selected as the final urban ROIs (Line 15). Here, a threshold K is introduced because

for different applications and users, different ROI numbers should be set flexibly when

using our approach. Last, each candidate grid is extracted by iterating over all points of

the top-K largest merged clusters. Each grid is assigned to the nearest cluster centroid

to form the final urban ROIs (Lines 16-22). Thus, an urban ROI is approximately repre-

sented by fine-grained grids. Since each grid belongs only to a certain urban ROI, any

two ROIs will be disjointed from each other.

4.5 Urban Human Mobility Modeling

Our approach is designed for urban human mobility modeling on a big historical tra-

jectory database. Given a time t, a model can be built through a supervised learning

process by taking current observed urban mobility Xt as the inputs and next urban hu-

man mobility Xt+β as the outputs. By referring to this model, given a real-time observed

mobility of the same time t, the next urban mobility can be predicted. For example, a

mobility model can be built with one month of historical trajectory data (e.g., October).

The current-time urban mobility from 07:00 to 07:59 is taken as inputs, and the next-

time urban mobility from 08:00 to 08:59 is used as outputs. Assume that now is 08:00

on November 1. If we can get a person’s mobility observations from 07:00 to 07:59, we

can predict where this person will go from 08:00 to 08:59. Further, an online real-time

prediction is available like this by building 24 models, one for each hour.

It should be noted that for one person’s mobility prediction, we are concerned only about

whether the model can precisely predict the next location with the highest probability.

However, a large crowd of people can always share the same observed trajectories but

they will head to different places after some time. This is one of the main characteris-

tics of urban human mobility. Thus, our model should predict the overall probability

distribution with high accuracy.
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4.5.1 Modeling Urban Mobility on Grid

An observed α steps of one person can be simplified as: xt = l1, l2, ..., lα, and a next β-th

step mobility of this person xt+β = lα+β can be modeled and predicted based on mesh

grids as follows:

P(gα+β | g1, g2, ..., gα), ∀i, li ∈ gi (4.1)

where g represents the mesh-grid.

Then, given all the current observed mobility data Xt from a T DB, urban human mobil-

ity prediction basically involves obtaining a predicted probability distribution P(X̂t+β |

Xt), which should be as close as possible to the true probability distribution Q(Xt+β | Xt).

Therefore, we can obtain a grid-based model with the parameters θ that satisfies:

θ = argmin
θ

H(P(X̂t+β | Xt),Q(Xt+β | Xt)) (4.2)

where Xt+β denotes the true next step of human mobility, X̂t+β denotes the predicted

results for the whole urban area, and H(·) is the cross-entropy, which is widely used to

measure the similarity between two probability distributions.

Modeling mobility on grid is similar to an n-gram language model, which is a typical

probabilistic sequential model for predicting the next item in such a sequence in the

form of a (n-1)-order Markov model. Like the language model, in which each word

from a sequence of text or speech is a discrete value, each location is converted to a

spatial grid for mobility modeling. However, it is difficult to directly apply this for

modeling human mobility on a huge urban area:

• It will contain too many grids. In our case, around 6000 spatial grids will be gen-

erated for our experimental area with a 500-meter meshing. Even for a Bi-Gram

model (first-order Markov), it still will lead to an extremely sparse transition ma-

trix.

• The current mobility sequence can be long. Maintaining a high-order Markov

model such as 5-gram model can be very inefficient. Typically for a language

model, only the Bi-Gram model and Tri-Gram model are considered.

Hence, a new modeling approach should be designed to improve this naive grid-based

n-gram model. As mentioned in Section 4.1, people mobility is related to urban ROIs to
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a large degree. Because of this, urban ROIs are always a first concern for public service

operators (e.g., governments, event organizers, and infrastructure companies). Instead

of predicting mobility on massive fine-grained grids with poor performance, mobility

prediction on urban ROIs with high precision is much more valuable and applicable.

On the other hand, deep-learning technologies such as RNNs [68] and their special

variants of long short-term memory (LSTM) networks [69] have provided an impressive

performance in modeling sequential data[70] such as speech and text[71]. In particular,

for our approach, they can help us model human mobility as a sequence classification

problem and bring superior performance to classical methodologies. Motivated by the

above, modeling urban human mobility on ROIs with deep neural networks is proposed

in the following.

4.5.2 Modeling Urban Mobility on ROI

Definition 4.12 (ISROI Label). Given next urban human mobility Xt+β and a set of

urban ROIs w.r.t [t, t + β∆t], for a trajectory xt+β ∈ Xt+β, the IS ROI label for xt+β is

defined as follows:

zt+β = xt+β.IS ROI =

1, if ∃ j, xt+β.l ∈ ROI j

0, otherwise

The definition is essentially a formulation to the answer (1) (Enter any ROI or not ?)

mentioned above. And the IS ROI label sets for Xt+β is denoted with Zt+β.

Definition 4.13 (WHICHROI Label). Similarly, given next urban human mobility Xt+β

and a set of urban ROIs w.r.t [t, t + β∆t], for a trajectory xt+β ∈ Xt+β, the WHICHROI

label for xt+β is defined as follows:

yt+β = xt+β.WHICHROI =

 j, if ∃ j, xt+β.l ∈ ROI j

∅, otherwise

The definition is essentially a formulation to the answer (2) (Enter which ROI ?) men-

tioned above. And the WHICHROI label sets for Xt+β is denoted with Yt+β.

Given a historical raw trajectory database HT DB, through our proposed urban ROI

discovering algorithm, hourly urban ROIs can be retrieved. Then next urban human

mobility Xt+β can be attached with two kinds of ROI-labels to get Zt+β and Yt+β : (1)
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IS ROI label and (2) WHICHROI label. This is done by iterating over each point in

Xt+β. Similarly, given an observed mobility xt = l1, l2, ..., lα of a person, the next ISROI-

label and WHICHIROI-label prediction can be modeled as follows:

P(zt+β | g1, g2, ..., gα), ∀i, li ∈ gi (4.3)

P(yt+β | g1, g2, ..., gα), ∀i, li ∈ gi (4.4)

Specifically, z is labeled by z = 0, 1, which means this person will enter any ROI or not.

y is labeled by y = 1, 2, ...,K, and K is the number of urban ROI, that means which ROI

this person will enter.

Given the observed urban human mobility Xt, corresponding next IS ROI labels Zt+β

and WHICHROI labels Yt+β, urban human mobility related to urban ROI areas can still

follow multimodal distribution, which means a crowd of people who share the same

observed mobility may eventually arrive at different urban ROIs. Therefore, ROI-based

urban mobility prediction is to construct two probability distribution : P(Ẑt+β | Xt) and

P(Ŷt+β | Xt), which should be as close as possible to the true probability distribution

Q(Zt+β | Xt) and Q(Yt+β | Xt) respectively. Ẑt+β represents the predicted IS ROI labels

and Ŷt+β represents the predicted WHICHROI labels. Therefore, an ROI-based model

consists of (1) ISROI model with the parameters η (2) WHICHROI model with the

parameters ε that satisfy the following objective functions respectively:

η = argmin
η

H(P(Ẑt+β | Xt),Q(Zt+β | Xt)) (4.5)

ε = argmin
ε

H(P(Ŷt+β | Xt),Q(Yt+β | Xt)) (4.6)

where H(·) is the cross-entropy as mentioned above.

Working Mode: our urban human mobility prediction system can work on two modes

when the models proposed above are well trained by big human mobility data. (1)

ROI mode. First the system utilize ISROI model to discriminate which trajectories

will enter urban ROIS, then for those ROI trajectories, it utilizes WHICHROI model to

predict the probability distribution over each urban ROI. This mode can be very effective

for some emergency situations or for the users who only care about some key urban

areas such as railway operators. (2) Hybrid mode. To predict the entire urban human

mobility, a hybrid mode is performed to combine grid-based modeling and ROI-based

modeling together. Given an input trajectory, ISROI model is first utilized to judge

the input trajectory will enter any ROI or not. If yes, WHICHROI model is utilized
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as same as ROI mode, otherwise, a grid-based model will be utilized to generate the

next possible grid with a probability distribution. Through this hybrid mode, all urban

human mobility can be covered and predicted.

Figure 4.3: Deep Sequential Modeling Architecture.

4.5.3 Deep Sequential Modeling Architecture

Compared with traditional neural networks, RNNs are specially designed for sequential

data modeling. In traditional neural networks, neurons in one layer and its neighboring

layers are fully connected, whereas neurons in the same layer do not have any con-

nections. Such structures cannot effectively deal with the situation when data are not

independent, such as words in a sentence. The typical structure of a simple RNN is

shown in Fig.4.1. We can see that the neighboring neurons in the same hidden layer

are connected to one another so that the network can memorize former information and

have an impact on the output of the current timestep τ. Therefore, the total input not

only contains the input at the timestep τ, but also the output at the timestep τ-1. To train

an RNN, the standard method is “backpropagation through time” (BPTT). It begins

by unfolding RNN through time and generalizes the backpropagation for feed-forward

networks to minimize the total error. In other words, it can also use gradient descent in

proportion to the procedure to change the weight matrix like traditional neural networks.

To implement the sequence classification models defined as Equation 4.3 and 4.4, an

RNN-based deep-learning architecture is constructed as shown in Fig.4.3. It works in

the following steps: (1) The first layer is an embedding layer to turn an integer of grid id

into a vector of continuous values, which is a more efficient low-dimension vector rep-

resentation than a one-hot vector. (2) The second layer is an encoding layer constructed

by the RNN, where a tanh function is used to map the α steps of the embedded mo-

bility (e1, e2, ..., eα) into a single latent vector sα, which can be taken as auto-extracted

features for the entire sequence. (3) The third layer is an activation layer, where a
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S o f tmax function is used to convert the latent vector sα to probability values for each

class.

The formulas that govern the entire computation in our architecture are as follows:

eα = Egα (4.7)

sα = tanh(Ueα + Wsα−1) (4.8)

o = softmax(V sα) (4.9)

where g represents the input mobility sequence (g1, g2, ..., gα), s is the value of each

hidden state in the encoding layer, o represents the output vector (o1, o2, ..., on) and each

oi is the probability for each class, E is the embedding matrix in the embedding layer,

W and U are weight matrices in the encoding layer, and V is the weight matrix in the

activation layer. All of these weight parameters will be determined by applying the

BPTT algorithm to minimize the cross entropy as defined in Equation 4.5 and 4.6. The

algorithm details are omitted in this paper. This deep sequential modeling architecture

has high applicability that can be easily applied to grid-based (GRID) modeling, ISROI

modeling, and WHICHROI modeling by modifying only the number of hidden units

in the final activation layer. Specifically, for GRID, ISROI, WHICHROI modeling, the

number should be set to the number of mesh-grids, 2, and the number of urban ROIs

(i.e. K) respectively.

Table 4.1: Parameter Description Table for Urban ROI Discovering

Parameter Relevant Component Tuned Value
Mesh M Trajectory Filtering, ROI Merging ∆Lon=0.005, ∆Lat=0.004
– – ≈ 450 m, 450 m
Minimum Support δ Trajectory Filtering 10
Bandwidth h ROI Discovering, ROI Merging 500 m
Top-K K ROI Merging 50

Table 4.2: Parameter Description Table for Deep Sequential Learning

Parameter Relevant Component Tuned Value
Embedding Vector e Embedding Matrix (Embedding Layer) 64
Encoding Vector s RNN (Encoding Layer) 64
Output Vector o Softmax (Activation Layer) ISROI:2, WHICHROI:K
– – GRID: grid number
Learning Rate RMSprop (Optimizer) 0.001
Batch Size Training process 512
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4.6 Experiment

4.6.1 Experimental Setup and Parameter Settings

Experimental setup: In this research, from our three-year historical trajectory dataset,

we randomly chose one month (October 2011) for the Greater Tokyo Area (longitude ∈

[139.5, 139.9], latitude ∈ [35.5, 35.8]) as the experimental urban area. Urban human

behaviors on weekdays and weekends are distinct from each other, so we separated

this one month of data into two parts: a weekday dataset and a weekend dataset. Fur-

thermore, trajectories were naturally segmented according to date, which means we

had an individual small trajectory dataset on each day of October 2011. The weekday

dataset contained around 1,700,000 trajectories, while the weekend dataset contained

around 660,000 trajectories. For each dataset, we selected 60% of the trajectories as a

training dataset, 15% of the data as a validation dataset, and the remaining 25% for test-

ing. Based on this setup, given one-hour observed urban human mobility Xt (Xt.α = 6)

three types of urban human mobility predictions X̂t+1, X̂t+3 and X̂t+6 (“Next-10-Minutes,”

“Next-30-Minutes,” and “Next-60-Minutes”) were tested. Correspondingly, three types

of ISROI predictions Ẑt+1, Ẑt+3 and Ẑt+6, and three types of WHICHROI predictions

Ŷt+1, Ŷt+3 and Ŷt+6 were also taken as the evaluation targets.

Parameter settings: For the mining process, all parameter settings are summarized

in Table 4.1. The parameters were tuned and selected by us through a series of back-

ground indexes such as (1) the urban ROI area (percentage of total urban area) and (2)

the percentage of ISROI trajectories, which is the total number of trajectories that will

enter one of the urban ROIs in the next hour. Some additional investigations were con-

ducted to determine the appropriate total ROI number for the Tokyo area and the mesh

size. For the learning part, the key parameter settings are summarized in Table 4.2. A

64-dimension embedding vector was used in the embedding layer, and a 64-dimension

latent representation was used in the encoding layer. The RMSprop algorithm was

adopted in our system to govern the entire training process. All parameter settings were

kept the same for the weekday dataset and weekend dataset. Java was used to imple-

ment the mining algorithm of our approach, while Python and some Python libraries

including Keras [72] and TensorFlow [73] were used to implement the learning part.
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(a) Urban ROI Area

(b) ISROI Trajectories

Figure 4.4: Effectiveness Evaluation for Urban ROI Discovering

4.6.2 Evaluation for Urban ROI Discovering

With these parameters, discovered urban ROIs keep the properties as shown in Fig. 4.4.

This demonstrates a 50/10 rule for urban human mobility in which an average 10%

urban area can cover nearly 50% urban human mobility, which can be an analogy to the

Pareto principle (also known as the 80/20 rule). In addition, for ISROI, a binary-class

classification, 50% is an ideal percentage for positive samples and negative samples.

We have also verified that how many hot stations in Tokyo area can be covered by our

discovered top-50 urban ROIs. In Fig.4.5, each of the 50 urban ROIs is represented by

a random color, and each hot station is represented with a small red marker. We can

see that among the top 100 hot stations in Greater Tokyo Area, around 80 stations are

covered by the discovered 50 urban ROIs.

In the following subsections, we evaluated our deep ROI-based modeling approach from

the following three aspects: (1) comparing deep sequential classification models with

non-deep-learning classification models for ISROI and WHICHROI modeling, (2) com-

paring ROI-based modeling with classical grid-based modeling for the prediction, and

(3) studying how the key parameters impact the overall performance.
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Figure 4.5: Top-50 Urban ROIs and Top-100 Hot Stations

4.6.3 ISROI and WHICHROI Modeling Evaluation

In this subsection, we compare our proposed deep sequential learning architecture with

classical models for ISROI and WHICHROI modeling.

Metrics: We evaluated the performance of the proposed models using two metrics.

Cross-entropy (denoted as LOSS) was used as the loss functions for both ISROI and

WHICHROI modeling. It describes the loss between two probability distributions, and

it was also used as the primary metric in the evaluation. Furthermore, to be intuitive,

accuracy (ACC) was used as the secondary metric to help us get a straightforward un-

derstanding of the results. Note that urban human mobility essentially follows a multi-

modal distribution because people share the same short-term trajectories but they will

go to different places after some time. Thus, LOSS is a better metric than ACC for our

urban human mobility prediction task. Specifically, these metrics are defined as follows:

LOS S IS ROI =
1
n

n∑
i

−[z(0)
i log (ẑ(0)

i ) + z(1)
i log (ẑ(1)

i )] (4.10)

ACCIS ROI =
1
n

n∑
i

1(zi = ẑi) (4.11)
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LOS S WHICHROI =
1
n

n∑
i

K∑
k

−y(k)
i log (ŷ(k)

i ) (4.12)

ACCWHICHROI =
1
n

n∑
i

1(yi = ŷi) (4.13)

where n is the number of samples, z(0), z(1) denote the one-hot true probability of ISROI

(i.e., if ISROI = 1, z(0) = 0, z(1) = 1. Otherwise, z(0) = 1, z(1) = 0), ẑ(1), and ẑ(0) are the

predicted probability about entering the ROI or not, z and ẑ are the true ISROI label and

the predicted ISROI label (with the highest probability), K is the ROI number, y(k) and

ŷ(k) are the one-hot true probability (i.e., if WHICHROI = k, y(k) = 1 and y(,k) = 0) and

the predicted probability on each ROI, respectively, and y and ŷ are the true WHICHROI

label and the predicted WHICHROI label (with the highest probability).

Figure 4.6: ISROI Modeling Evaluation by LOSS

Comparison models: (1) N-Gram-Like. This is a widely used algorithm for modeling

sequential data, especially in the field of natural language processing. In our study, we

applied this model based on a gridded space to predict the ISROI and WHICHROI la-

bels. Here, we calculated the probability distribution for ISROI and WHICHROI based

on the last three steps. This is similar to a Four-Gram model (3-order Markov model).

(2) KNN. A KNN-based learning model [74] is a type of instance-based learning where

classification is computed from a simple majority vote of the nearest neighbors of each

point. (3) DT. A decision tree [75] is built to predict the target value by learning simple

decision rules. (4) RF. A random forest [76] is constructed with a multitude of decision

trees, which usually can bring better performance than a decision tree. For (2)∼(4),
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Figure 4.7: ISROI Modeling Evaluation by ACC

Figure 4.8: WHICHROI Modeling Evaluation by LOSS

these classical methodologies are extended to output the probability distribution for IS-

ROI and WHICHROI rather than only the predicted label. As the input features, the

grid-mapped trajectories with α steps are represented as α-dimension vectors, and each

dimension stores the grid ID for the corresponding step. These four models are used as

our baselines, which can very effective for both binary classification (ISROI) and mul-

ticlass classification (WHICHROI). (5) SimpleRNN. This is a deep sequential learning

architecture constructed with traditional RNNs. (6) LSTM. We also implement a deep

sequential learning architecture with LSTM[69], which shares the same architecture

with RNN except that ordinary neurons in traditional RNNs are replaced with special

computation blocks, namely LSTM. This has shown superior performance to traditional
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Figure 4.9: WHICHROI Modeling Evaluation by ACC

RNNs for long time-series modeling; therefore, we want to test if it can further improve

the performance of our short-term prediction.

Evaluation results: Fig. 4.6∼4.9 (LOSS of ISROI, ACC of ISROI, LOSS of WHICHROI,

and ACC of WHICHROI) are the evaluation results of six comparison models for ISROI

and WHICHROI modeling using LOSS and ACC as the metrics, where only the results

for the core hours 07:00 ∼ 22:59 are given. In each figure, three subfigures (a)∼(c)

on the top show the “Next-10-Minutes,” “Next-30-Minutes,” and “Next-60-Minutes”

on weekdays, and the subfigures (d)∼(f) at the bottom show the results on weekends.

Through Fig. 4.6∼4.9, we can see that

(1) Compared with N-Gram-Like model, KNN, DecisionTree, and RandomForest, tra-

ditional RNN and LSTM-RNN achieve the best performance for both ISROI and

WHICHROI modeling over different prediction time intervals (10 min, 30 min, and

60 min). Note that the performances of SimpleRNN and LSTM are almost the

same, which indicates that a traditional RNN is sufficient for encoding only 1-h

short urban mobility.

(2) As the prediction time interval increases, the dependency on current mobility be-

comes weak; therefore, the prediction performances decrease owing to this reason.

However, our deep-learning methods can still achieve satisfactory performances

even for the “Next-60-Minutes,” where the ACC of ISROI remains around 90%

on both weekdays and weekends (Fig. 4.7-(c) and Fig. 4.7-(f)), and the ACC of

WHICHROI remains around 80% on both weekdays and weekends (Fig. 4.9-(c)
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and Fig. 4.9-(f)). These high accuracies demonstrate high applicability in real-

world prediction systems.

(3) The urban mobility prediction results show different oscillating patterns on week-

days and weekends. On weekdays, all models perform relatively badly around

08:00 am, the typical morning commuting hours in Tokyo. All models also per-

form badly around 6:00 pm, the evening commuting hours in Tokyo, but not that

bad compared to 08:00 am. This makes sense because the commuting behaviors are

much more obvious in the morning than in the evening. Some salarymen tend to

stay late in the office under Japan’s overtime culture, so the commuting hours can

be from 6:00 pm to 10:00 pm or even later. On weekends, the models give similar

and stable performances during the daytime (9:00 am-6:00 pm), and better perfor-

mances appear during other hours (early morning or at night) since human behav-

iors become less active. Note that urban human mobility running on a highly com-

plicated transportation system will change drastically during rush hours on week-

days, and urban human mobility will follow a much more complex multimodal

distribution during these hours. It is difficult to effectively measure WHICHROI

modeling by ACC since people with the same current trajectories may head to dif-

ferent ROIs after some time. We will show an example of this in the next section.

From Fig. 4.8 and Fig. 4.9, we can also observe that the evaluation results of ACC

oscillate more drastically than the LOSS results on weekdays.

In summary, deep sequential learning architecture built with RNNs demonstrates supe-

rior performance for ISROI and WHICHROI modeling over classical methodologies.

4.6.4 Evaluation between Grid-based and ROI-based Modeling

In this subsection, we compare ROI-based modeling with classical grid-based model-

ing for urban human mobility prediction. How grid-based modeling and ROI-based

modeling work for urban mobility prediction will be described as follows:

(1) A grid-based modeling method defined by Equation 4.1 can also be implemented

with a deep sequential learning architecture by modifying only the Softmax layer

with the mesh-grid number. For an input trajectory, a probability distribution over

all mesh grids can be outputted by our deep sequential model, and one grid will be
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Figure 4.10: MAE for All Trajectories

Figure 4.11: MAE for ROI Trajectories

generated as the prediction result by probability sampling with that probability dis-

tribution. Eventually, the centroid of the chosen grid will be utilized as the predicted

point.

(2) An ROI-based modeling method will perform in a hybrid mode to predict the entire

urban human mobility. Given an input trajectory, an ISROI model is first utilized

to judge whether the input trajectory will enter any ROI. If yes, the WHICHROI

model is further utilized to predict the probability distribution over all urban ROIs.

Then, one urban ROI will be generated as the prediction result by probability sam-

pling, and the centroid of the predicted ROI will be utilized as the predicted point.
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Otherwise, instead of a WHICHROI model, a grid-based model will be utilized to

generate the centroid of one sampled grid as the final predicted point. This follows

the same procedure as (1).

Through such mechanisms, grid-based and ROI-based modeling can be fairly compared

with each other. Furthermore, to better check the differences between these two mod-

eling methods, we run two separate evaluations as follows: (1) Utilize all testing tra-

jectories to run on a grid-based model and ROI-based hybrid model to test the overall

performance. (2) Pick up the ROI trajectories (the ones that enter urban ROIs) from the

entire testing dataset to run on a grid-based model and a WHICHROI model.

Metrics: We redefine the Mean Absolute Error (MAE) as follows:

MAE =
1
n

 n∑
i=1

||li − l̂i||


where n is the total number of trajectories, and ||l− l̂|| is the Euclidean distance between

the real location and the predicted grid centroid or the predicted ROI centroid, which

will be measured in kilometers (km).

Comparison models: Here, four types of meshes are utilized to implement the grid-

based modeling, and the parameters of these four meshes are listed in Table 4.3. The

four grid-based models are denoted as GRID500, GRID1000, GRID2000, and GRID4000.

They all implement a deep sequential learning architecture with traditional RNNs fol-

lowing the same parameter settings listed in Table 4.2. The only difference is that the

Softmax layer will be modified according to the corresponding mesh-grid number.

Table 4.3: Mesh Parameter

Mesh Name Parameter
GRID500 (∆Lon = 0.005, ∆Lat=0.004 ≈ 450 m, 450 m) × 6000

GRID1000 (∆Lon = 0.01, ∆Lat=0.008 ≈ 900 m, 900 m) × 1480
GRID2000 (∆Lon = 0.02, ∆Lat=0.016 ≈ 1800 m, 1800 m) × 360
GRID4000 (∆Lon = 0.04, ∆Lat=0.032 ≈ 3600 m, 3600 m) × 90

Evaluation results: The overall evaluation results measured by MAE for all testing

trajectories are summarized in Fig. 4.10. The evaluation results focusing only on ROI

trajectories are summarized in Fig. 4.11. Similarly, subfigures (a)∼(c) show the MAE

results of “Next-10-Minutes,” “Next-30-Minutes,” and “Next-60-Minutes” on week-

days. Subfigures (d)∼(f) show the MAE results on weekends. The ROI-based model



Chapter 4. Citywide Domain: Deep ROI-Based Modeling 53

works in a hybrid mode along with the GRID2000 model. This is denoted as Hy-

brid(ROI+GRID2000) in Fig. 4.10. The WHICHROI model is denoted as ROI for sim-

plicity in Fig. 4.11. Through Fig. 4.10∼4.11, we can observe that (1) similar oscillating

patterns appear with ISROI and WHICHROI modeling on weekdays and weekends, and

(2) as the prediction time interval increases, the MAEs also become large. Additional

key points are listed as follows:

(1) In Fig. 4.10, GRID2000 achieves the best performance among these four grid-based

models. An ROI-based hybrid model can further improve the overall performance

by working with the GRID2000 model.

(2) In Fig. 4.11, for ROI trajectories, ROI-based modeling (i.e., the WHICHROI model)

holds a clear advantage over grid-based modeling. Especially on weekdays, the ad-

vantage becomes more obvious when the prediction time interval increases to 60

min, which can be crucial for conducting a multistep prediction.

In summary, ROI-based modeling shows better performance for urban human mobility

prediction than classical grid-based modeling.

Figure 4.12: Coverage w.r.t TopK

Figure 4.13: LOSS of ISROI and WHICHROI w.r.t TopK
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Figure 4.14: MAE w.r.t TopK

Figure 4.15: Coverage w.r.t ROI Size

Figure 4.16: LOSS of ISROI and WHICHROI

4.6.5 Parameter Study

We mainly study how two key parameters impact on the overall performance: (1)

the ROI number denoted as TopK; (2) the ROI size. By varying the two parame-

ters, we evaluate how the coverage (Percentage of ROI trajectories), LOSS of ISROI

and WHICHROI model and MAE of mobility prediction will be effected. Specifi-

cally, the results of Coverage, LOSS, MAE with respect to TopK are summarized as

Fig.4.12∼4.14, and the results with respect to ROI size are summarized as Fig.4.15∼4.17.

TopK: We vary TopK from 10 to 200 to get different numbers of urban ROI. To make

the results look more straightforward, we only list the evaluation results of 08:00∼08:59
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Figure 4.17: MAE w.r.t ROI Size

rather than 07:00∼22:59 in Fig.4.12∼4.14. Evaluation results w.r.t TopK are listed as

follows:

1. Through Fig.4.12, we can see that as TopK increases, coverage of urban ROI

area and ROI trajectories both become larger, and the slope of coverage of ROI

trajectories is higher than coverage of urban ROI area. Furthermore, we can also

see that from 08:00 to 08:59 more trajectories will enter ROI area as time goes

by, and this phenomenon is more obvious on weekday than weekend.

2. In Fig.4.13, the ISROI LOSS of weekday keeps stable after TopK is bigger than

50; the ISROI LOSS of weekend has a clear growth as the TopK goes bigger;

the WHICHROI LOSS of both weekday and weekend have a slight growth after

TopK is larger than 50.

3. Through Fig.4.14(a)(c), we can see that the MAE for all testing trajectories does

not change too much along with TopK for both weekday and weekend. “Next-60-

Minutes” MAE for the ROI trajectories shown in Fig.4.14(b)(d) becomes larger

as TopK increases, and the MAE results keep relatively stable for “Next-10-

Minutes” and “Next-30-Minutes”prediction.

In general, ISROI and WHICHROI modeling and urban mobility predictions are stably

performed over TopK.

Size of ROI: We utilize four different meshes with the parameters listed in Table.4.3

to vary the ROI size, and denote the four kinds of ROI as ROI500, ROI1000, ROI2000

and ROI4000 respectively. Similarly, to make the results look more straightforward,

we only list the evaluation results of “Next-60-Minutes” prediction in Fig.4.15∼4.17.

Evaluation results w.r.t ROI size are listed as follows:
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1. Through Fig.4.15, we see that as ROI size increases, the trajectory coverage be-

comes higher, but the difference between RO500 and ROI1000 is just around 5%,

which is not so big.

2. The LOSS results of ISROI and WHICHROI on ROI500, ROI1000 and ROI2000

are similar with each other as shown in Fig.4.16. The ROI-based modeling can

perform relatively stably on ROIs with different size.

3. To predict the entire urban mobility, we still utilize GRID2000 model mentioned

above to work along with the four ROI models of different ROI size. From

Fig.4.17(a)(c), we can see that ROI500, ROI1000 and ROI2000 achieve almost

the same performances. As shown in Fig.4.17(b)(d), for the prediction only on

ROI trajectories, ROI500 and ROI1000 obtain better performances than the other

two.

Based on these results, the size of the fine-grained grids used for approximate ROI

representation can be up to around 1000 meters. Furthermore, these two parameters

TopK and ROI size will both have impact on the urban mobility prediction, and these

two parameters should fine-tuned together for a real-world application.

Figure 4.18: Simulation for One Person.
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(a) ISROI Ground Truth (b) ISROI Simulation Result

(c) WHICHROI Ground Truth (d) WHICHROI Simulation Result

Figure 4.19: Simulation for Urban Mobility

4.7 Real-world Simulation

In the experimental stage, our proposed models are built based on the dataset of October

2011. For a real-world simulation, we assume that now is 08:00:00 on November, 1,

2011. A mobility prediction model of 08:00 ∼ 08:59 has been successfully trained with

last month’s historical trajectory data. Then, simulations for one specific person and for

the entire urban human mobility can be conducted with the trained model.

Simulation for one person: Here, we assume that now Tom is on his way from home

to work by the “Seibu Shinjuku Line” 2, which connects Shinjuku Station of Tokyo

with Hon-Kawagoe Station of Saitama Prefecture. His observed trajectories from 07:00

to 07:59 are represented by a couple of blue marks at the top left of Fig. 4.18. Our

2https://en.wikipedia.org/wiki/Seibu Shinjuku Line
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proposed model can output a probability distribution on each ROI with Softmax, as

shown at the bottom right of Fig. 4.18. Then, the next possible destination of Tom

can be predicted as a heatmap, where the dark color represents high probability. For

this person, his top-three possible destinations during the next hour are Takadanobaba

Station, Shinjuku Station, and Ikebukuro Station, which are quite reasonable results

from an empirical perspective. In particular, the prediction in a probability distribution

format can be very useful for predicting a large crowd of people who share the same

observed trajectories. For example, if 1,000 people are on the same train with Tom, we

can predict that around 600 people will go to Takadanobaba Station, around 200 people

will go to Shinjuku Station, and around 100 people will go to Ikebukuro Station.

Simulation for urban mobility: Given one-hour observed urban human mobility of

07:00∼07:59, a simulation for “Next-30-Minutes” urban human mobility prediction was

conducted using the data of 2011-11-01. The visualization results for this simulation

are listed in Fig. 4.19. The ground truth and simulation results for ISROI are shown in

Fig. 4.19(a) and Fig. 4.19(b), respectively. Those trajectories that will enter a certain

urban ROI during the next hour are marked in red; otherwise, the trajectories are marked

in blue. We can see that the urban human trajectories are clearly divided into two parts.

The ground truth and simulation results for WHICHROI are shown in Fig. 4.19(c)

and Fig. 4.19(d), respectively. The random color indicates which urban ROI it will

enter. The simulation result has high similarity with the ground truth for both ISROI

and WHICHROI prediction. Through this simulation, we can further confirm that our

ROI-based modeling on urban human mobility is effective even for this morning rush

hour.

4.8 Related Work

Recently, various studies were conducted on human mobility data (mobile phone GPS

log data, taxi GPS data, and location-based services data). These are summarized as

urban computing problems in [5].

Trajectory-pattern based methodologies have been proposed to predict future movement

of individual person [6, 7]. An approach based on nonlinear time series analysis of the

arrival and residence times of users has been proposed, which focused on predicting

most important places of each user [9]. These models focused on individual mobility,
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which are difficult to be applied to our urban mobility modeling task. Some collabo-

rative approaches have been proposed to take social relationships of users into account

for location prediction and recommendation, but they utilized big check-in data from

location-based network services [1, 11, 12].

CityMomentum [2] is the most closely related work to ours; however, it builds a pre-

diction model with real-time current observed data, while ours predicts the mobility

using historical data of the same hour. Most important, our work is the first attempt to

model urban mobility based on urban ROIs, which has shown its own advantages over

grid-based modeling approach like [2]. Furthermore, modeling human mobility for very

large populations [13, 22, 36] and simulating human emergency mobility following dis-

asters [37, 38] are other topics that are close to ours. However, all of these approaches

had different problem definitions and modeling methods. For example, the approaches

required disaster information such as intensity of earthquake and damage level as addi-

tional input data in [37, 38]. In addition, they did not use the power of deep-learning

technologies. Forecasting citywide crowd density [3, 19] is a related endeavor based on

deep learning that builds a long time-series model for predicting the density value for

each grid, whereas our approach aims at predicting citywide human mobility through

sequence classification.

Understanding the basic life patterns of the flow of people [24] and recommending

location-based services [25, 26] are studies that utilize the tensor factorization approach

to decomposing urban human mobility, whereas ours utilizes urban ROIs to represent

urban mobility and can provide more details of human mobility in comparison with an

O-D matrix. Traffic flow, which can be seen as a special human mobility constraint on

road networks, has also been studied in the form of traffic flow prediction [29] and traf-

fic congestion monitoring [30], but they also start with some kind of individual model

for each road segment. Some researchers have applied deep learning to traffic problems

such as traffic speeds and transportation modes along with human mobility [45–49].

Moreover, C. Song [31] explored the upper bound of the predictability of human mobil-

ity. J. Zheng [10] proposed an unsupervised learning algorithm for location prediction.

A more advanced trajectory calibrating algorithm was proposed in [32].
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4.9 Conclusions

In this article, an effective ROI-based approach was proposed for predicting the next

urban human mobility with historical trajectory data. A divide-and-merge mining al-

gorithm was designed to discover urban ROIs from raw trajectories of multiple days.

Based on the discovered urban ROIs, urban human mobility was modeled with two

questions: (1) Will this person enter any ROI? and (2) Which ROI he will enter? To

implement this, a deep sequential architecture was specially designed with an RNN

as an effective sequence-classification model. The experimental results demonstrated

the superior performance of our proposed approach compared to the baseline models.

Furthermore, we applied our approach to a real-world simulation and verified its appli-

cability.

Our modeling approach is a complete and highly applicable framework that can handle

large and raw trajectory data with long-period historical records. It demonstrates the

advantage of combing data-mining methodologies and deep-learning technologies to

obtain the deep knowledge about urban human behaviors from big trajectory data. It

can be easily utilized to implement real-world mobility prediction systems for various

urban areas basing on different trajectory data sources. For instance, if we can get

similar data source of Shanghai (big historical data for mining and training, real-time

streaming data for prediction), we can deploy our system to run on top of Shanghai

ROIs for next 10, 30, 60 minutes mobility prediction. As one of the most important

ROIs of Shanghai, the population density of the Bund can be accurately predicted in

advance by our system, thus, we believe that a stampede tragedy like that New Year’s

Eve in Shanghai can be prevented from happening again.

Our study has some room for improvement in the following aspects: (1) Our approach is

still struggling to deal with situations in which urban mobility is full of sudden changes

such as morning rush hour. (2) Currently, only one month’s data was used for our exper-

imental evaluation. To validate the scalability and improve the overall performance of

our approach, we need to try more trajectory data over one month. Furthermore, our ap-

proach was only validated on the Greater Tokyo Area, the applicability and limitations

for other urban areas should also be checked in the future work.



Chapter 5

Limited Data: Deep Embedding and
Transffering

5.1 Introduction

Understanding and predicting citywide human mobility are considered as important

problems for urban planning, traffic regulation and emergency management. Due to the

continuing development of location acquisition technologies, massive GPS trajectory

data are generated by sources such as mobile phones, car navigation systems, WLAN

networks, and location-based social networks, and they provide the opportunity to solve

the problem of human mobility prediction. Individual human trajectory prediction has

been widely studied in recent years in the field of urban computing, but it is very diffi-

cult to expand such kind of individual modeling methodology to a citywide level. Since

there are millions of people in a big city such as Tokyo, Shanghai, and Hong Kong, it

is just infeasible to build a prediction model for each person by using his/her long his-

torical data, which can also be an infringement on individual privacy. Moreover, crowd

management under emergency situations is considered as a direct application scenario

of human mobility prediction model. For this scenario, comparing with precisely mas-

tering each individual’s location, knowing and controlling the crowd density for any

urban region is the real demand of governments (e.g. police) or public service operators

(e.g. subway/bus companies, mobile service providers). Thus, in this study, our goal is

to build one general model to effectively predict human mobility at a citywide level. Our

problem is then defined as predicting the probability distribution for locations of a large

61
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Figure 5.1: Can we design an effective approach to build one urban model for predict-
ing human mobility (future distribution of individuals) at a citywide level with limited
data? Fusing heterogeneous data (Human mobility data and city POI data) with deep

learning technologies may allow us to address this challenge.

group of people at the next time step, which can meet the demands on crowd manage-

ment. However, to implement such kind of prediction model, the following challenges

need to be addressed. (1) Citywide human mobility is a highly nonlinear and com-

plex phenomenon with multimodal distribution, and we can hardly achieve satisfactory

prediction models for a large urban area with the classical methods. (2) The human mo-

bility data used for model training can be limited to a small percentage (e.g. 1%∼10%)

of the total population, because it is impossible to collect every citizen’s trajectory data

for a large city. In our case, we have tried our best to collect up to 100,000 peoples’

mobility data of Tokyo area, but it is difficult for us to collect any more data nor the total

9 million peoples’ mobility data of Tokyo. To address these, we aim to design an ap-

proach to obtain a more effective representation of human mobility using heterogeneous

data and advanced AI technologies especially the emerging deep learning technologies.

Obviously, human activities in city are closely linked with point-of-interest (POI) in-

formation, which can reflect the semantic meaning of human mobility. By combining

human mobility data and city POI data, a more effective representation of human mo-

bility can be expected. Moreover, although cities can have different types, scales, and

developmental levels, the POI distrubtions similar with each other. For example, a busi-

ness area often has more POIs (e.g. offices, shopping malls, and restaurants) and locates

at central part of city, while a residential area comes in an opposite way. Human mo-

bility in different cities generally follow the similar patterns. Taking commuting pattern
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for example, people move from residential area to central business area to work and

then return to residential district. This provides us the possibilities to transfer human

mobility knowledge between cities via POI information. All these motivate us to fuse

human mobility data and city POI data to improve the prediction performance espe-

cially when the amount of training data is small, but current fusion technologies can

hardly handle these two heterogeneous data. Thus, in this study, we propose a deep se-

quential modeling architecture with a unique POI embedding mechanism for effectively

predicting human mobility at the citywide level. In this study, an urban mesh-grid is ex-

tended to obtain an artificial POI image by aggregating the regional POIs by categories,

where POI information is utilized as geographical features. Then each trajectory snip-

pet is enriched to a four-dimensional tensor in an analogous manner to a short video.

An LSTM-on-CNN architecture is designed to simultaneously capture both the spa-

tiotemporal and geographical information from the enriched trajectories, where CNNs

are utilized as advanced embedding layers to replace the standard word-like embedding

for each mesh-grid to get better representations. The new embedding mechanism can

work very well with transfer learning to transfer human mobility knowledge from one

city to another, so that other cities’ data can be fully utilized to train a stronger model for

the target city with only limited data available. Finally, our learning model can achieve

satisfactory prediction performance using a limited amount of trajectories as training

data. A brief overview of this study has been summarized as Fig.5.1. To the best of our

knowledge, our approach is the first attempt to fuse big heterogeneous data to enhance

the performance of citywide human mobility prediction, and our main contributions can

be summarized as follows:

• We constructed a standard deep sequence learning model for accurately predicting

a probability distribution of human mobility at the citywide level.

• We proposed a novel sequential embedding method called image-like embedding

that uses city POI data to enrich the original human mobility data with geograph-

ical features, where we applied CNNs to the standard model to obtain more effec-

tive representations.

• Transfer learning was employed to work together with image-like embedding

mechanism. Through this, we can transfer mobility knowledge from source city

to target city via POI information, if the source city have relatively sufficient mo-

bility data and the target city only have limited data.
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• We evaluated our approach based on multiple urban areas using different amounts

of training data and demonstrated the advantages of our method compared with

other baseline approaches.

The remainder of this paper is organized as follows. In Section 5.2, we introduce our

data sources. In Section 5.3, we illustrate the modeling of citywide human mobility

using a deep learning architecture. In Section 5.4, we explain the details of image-like

embedding and transfer learning. We present the results of the experimental evaluation

in Section 7.5, and discuss the results in Section 5.6. Related works are summarized in

Section 6.2. In Section 6.8, we give our conclusions as well as explaining the limitations

of our method and providing suggestions for future research.

5.2 Data Source

5.2.1 Human Mobility Data

“Konzatsu-Tokei (R)” from ZENRIN DataCom Co., Ltd. was used. It refers to people

flow data collected by individual location data sent from mobile phones with an enabled

AUTO-GPS function under the users’ consent, through the “docomo map navi” service

provided by NTT DoCoMo, Inc. Those data are processed collectively and statistically

in order to conceal private information. The original location data is GPS data (lati-

tude, longitude) sent at a minimum period of about 5 minutes, and does not include

information (such as gender or age) to specify individuals. In this study, the proposed

methodology is applied to raw GPS data from NTT DoCoMo, Inc.

The raw GPS log dataset was collected anonymously from approximately 1.6 million

mobile phone users in Japan over a three-year period (August 1, 2010, to July 31, 2013).

It contains approximately 30 billion GPS records, and the total size of the data is more

than 1.5 terabytes. Each record contains user ID, latitude, longitude, altitude, timestamp

and positioning accuracy level (there are three levels due to different satellite’s signal

strength, correspondingly the positioning error would be within 100m, 200m or 300m).
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5.2.2 City POI Data

In this study, we collected big POI data for every major city in Japan as geographical

data by utilizing “Telepoint Pack DB February 2014” provided by ZENRIN DataCom

Co., Ltd 1. In the original database, each record is a registered land-line telephone num-

ber with coordinates (latitude, longitude) and industry category information included.

We treated each “telepoint” as one specific POI. All the POIs were classified into 40

categories as listed in Table 5.1. The total numbers of POIs for Tokyo, Osaka, Fukuoka,

Sapporo, Naha and Tottori were 281,400, 153,377, 47,418, 73,635, 35,014 and 17,743

respectively, which were used as the six target cities in our experiments. Furthermore,

we used R-tree to index all of the POIs to speed up the range queries. Given an urban

mesh, POIs can be retrieved for each mesh-grid by iteratively executing range query.

Table 5.1: POI Category Table

Fishery, Agriculture Mining Construction
Foods Textiles, Apparels Pulp, Paper
Chemicals Oil, Coal Products Rubber Products
Ceramics, Glass Steel Nonferrous Metals
Metal Products Machinery Electric Appliances
Transportation Equipment Precision Instruments Other Products
Commerce Financial Insurance Real Estate
Transportation(land) Transportation(sea) Transportation(air)
Warehousing Communication Electric Power, Gas
Technician Related Sports Facilities Sports Shop
Entertainment, Restaurant Resort Hospital
Large Retail Store Lifestyle Related Store Car Related
Education Public Organization Other
Dummy – –

5.3 Citywide Human Mobility Modeling

5.3.1 Preliminaries

Definition 1 (Human trajectory): The human trajectory collected for an individual per-

son essentially comprises a 3-tuple sequence: (timestamp, latitude, longitude), which

1https://joras.csis.u-tokyo.ac.jp/dataset/show/id/14000201400
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can indicate a person’s location according to a captured timestamp. It can be further de-

noted as a sequence of (t, l)-pair by simplifying timestamp as t and (latitude, longitude)

as l.

Our raw human trajectories were collected with a minimum sampling rate of about 5

minutes, but the record interval exceeds 5 minutes occasionally due to loss of signal or

battery power. Besides, the positioning function would be suspended when no motion

is detected, in this case no records will be uploaded. Thus, we fully conducted pre-

processing to our raw human trajectory dataset in the following step: (1) Conducting

data clearning and noise reduction to filter out low-quality trajectories or points. (2) De-

tecting stay points and conducting trajectory segmentation according to the stay points.

After this, redundant points (continuous points located in the same position) will be

filtered out. (3) Merge the trajectory segmentations of the same person within 24-hour

(00:00∼23:59) time interval as one human trajectory. Usually trajectory is mapped onto

a mesh-grid or transportation network so that the trajectories can be handled as nor-

mal sequential data. In order to cover the entire urban area, we used grid-mapping to

simplify the human trajectory as defined in the following.

Definition 2 (Grid-mapped human trajectory): Given a set of mesh-grids for an urban

area {g1,g2,...,gK} and a raw trajectory {(t1, l1), (t2, l2), ..., (tm, lm)}, a grid-mapped human

trajectory tra j is defined as a sequence of mesh-grids:

tra j = (t1, g1), (t1, g2), ..., (tm, gm),∀i, li ∈ gi. (5.1)

A trajectory database T DB refers to a set of grid-mapped trajectories from a certain

urban area.

In this study, we would like to focus on exploiting how to effectively predict the dis-

tribution of the next step location only based on previous locations from a spatial per-

spective, therefore only sequential information on the spatial axis were utilized. Then

we can treat the raw trajectories as pure sequential data constituted by mesh-grids, and

design an effective embedding mechanism for modeling the grid-mapped trajectories,

which is the core problem of this study. Trajectory database T DB can be taken as a big

corpus like a typical text database in the filed of natural language processing (NLP).

Human mobility prediction problem is defined in an analogous manner to word/text

modeling in the following.

Definition 3 (Human mobility prediction): Given a trajectory database T DB, we treat it

as a big text corpus to generate partial trajectories. Specifically, when observation step α
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is given, for each length-m tra j (m > α ), we can obtain (m-α) length-α trajectory snip-

pets and their corresponding next-step trajectory snippets by setting the size of sliding

window to 1. The length-α trajectory snippet is denoted as x = g1, g2, ..., gα, whereas

the corresponding next-step trajectory snippet is represented as y = gα+1. One trajec-

tory snippet x is essentially representing one pattern of urban human mobility within α

observation steps, since the same mobiliy g1, g2, ..., gα can be observed from a group of

different people at different time peoriods. Then, the human mobility prediction for the

next step can be modeled as follows:

P(y = gα+1 | x = g1, g2, ..., gα). (5.2)

The definition given above can be considered as a direct application of the n-gram lan-

guage model, which is a typical probabilistic sequential model for predicting the next

item in a sequence with the form of an (n-1)-order Markov model. Thus, N-gram is

implemented as the first comparison model in our evaluation experiments (Section 7.5).

Definition 4 (Citywide human mobility prediction): Given all the human mobility data X

with α steps of observations generated from T DB, citywide human mobility prediction

for the next step basically involves obtaining a predicted probability distribution P(Ŷ |

X), which should be as close as possible to the true probability distribution Q(Y | X).

Therefore, our goal is to obtain a model with the parameters θ that satisfies:

θ = argmin
θ

H(P(Ŷ | X),Q(Y | X)), (5.3)

where Y denotes the true next-step mobility, Ŷ denotes the predicted results, and H(·)

represents the cross-entropy function, which is widely used to measure the divergence

between two probability distributions. The lower the cross-entropy is, the two proba-

bility distributions have higher similarity. Thus, it is used as the loss function as well as

the primary evaluation metric in our supervised learning models.

It should be noted that for one person’s mobility prediction, we are concerned only

about whether the model can precisely predict the next location with the highest proba-

bility. However, a large crowd of people can share the same observed trajectories (e.g.

commuters taking the same train) but they may go to different places after some time.

Thus, for citywide human mobility prediction, our model should precisely predict the

overall probability distribution of the next possible destinations. For instance, as shown
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Figure 5.2: Citywide Human Mobility Prediction.

in Fig.5.2, we assume that 1,000 people on the same train have the same observed mo-

bility, which is represented by a series of blue marks. We should precisely predict that

around 600 people will go to Takadanobaba Station, 200 people to Shinjuku Station,

and 100 people to Ikebukuro Station by obtaining the precise probability distribution

(0.6, 0.2, and 0.1, respectively). With such model being deployed as an online service,

we can precisely predict and simulate how many person will enter a certain region in

real time, which can play an important role in controlling the crowd density for a city

especially when some irregular events happen.

The trained model can generate or predict multiple steps of human mobility in an au-

toregressive manner. Multiple steps of mobility can be generated one step by one step

according to the probability distribution in a similar way to a text generator. For ex-

ample, given the first word “how”, the second word can be generated as “are”, then the

third can be “you”. If the second was generated as “old”, then the next two words could

be “are you” with higher probability. Moreover, if one step corresponds to 5 minutes

time interval, generating next six steps of human mobility means that we can get a next-

30-minutes mobility prediction. For instance, our model can take all of the 6-step ob-

servations from 07:35∼08:00 as inputs and report the prediction result for 08:05∼08:30

at 08:00. This can help us understand how the crowd dynamics are evolving step by

step under a crowd management application scenario.

Currently, for simplicity, our prediction model with 1-step ahead is similar to a tradi-

tional n-gram language model as shown in Definition 3. We can further build a β-step

ahead prediction model in a similar way to skip-gram language model[77], in which the



Chapter 5. Limited Data: Deep Embedding and Transffering 69

words need not be consecutive with the next step.

P(y = gα+β | x = g1, g2, ..., gα). (5.4)

By modifying Definition 3 to the formula above, given α-step observations of human

mobility, this model can directly predict or generate the human mobility at the next β

step. If we only want to know the human mobility at a specific timestep in the future,

this model would be helpful and effective. But if we want to obtain multi-step mobil-

ity predictor or generator, the original definition would be appropriate. Besides, in this

study, we would like to focus more on designing a more powerful embedding mecha-

nism for sequential mobility data. Therefore, this skip-gram-like mobility model will

not be taken as our main target.

5.3.2 Deep Sequential Modeling Architecture

Citywide human mobility prediction is essentially defined to predict a probability distri-

bution as shown by Definition 4. Since citywide human mobility data comprise highly

complex and nonlinear sequential data, the overall probability distribution at next step

is essentially a multimodal probability distribution, which is difficult to precisely pre-

dict using classical methods. Deep learning techniques such as long short-term mem-

ory (LSTM)-recurrent neural networks (RNNs) and gated recurrent unit (GRU)-RNNs

[69, 78] are two improved RNNs that are highly successful at modeling highly complex

sequential data such as text data and speech data. Specifically, they inherit the basic

structure of the RNN but special computation blocks are introduced, i.e., LSTM and

GRU, respectively, to replace the ordinary neurons in an RNN. These two architectures

obtain similar performance in many deep learning tasks [79]. Hence, in this study, we

used LSTM-RNN to implement a deep sequential model to predict the complex proba-

bility distribution using a limited amount of training data.

Word-Like Embedding for Grid. Word embedding is a state-of-the-art technique for

many NLP tasks, where it is used to convert non-negative integers (i.e. word IDs) to

a set of fixed-length dense and continuous-valued vectors. It has shown to boost the

performance in NLP tasks such as syntactic parsing [80] and sentiment analysis [81].

One-hot embedding is the most naive embedding technique to map non-negative inte-

gers to vectors. However, the dimensionality of the vectors with one-hot embedding

is equal to the size of the supported vocabulary, and these vectors are very huge and
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Figure 5.3: Deep Sequential Modeling Architecture.

sparse. Therefore, word embedding is employed in most natural language application

scenarios to create a more efficient vector representation for each word. It has two huge

advantages over one-hot embedding: (1) the representation vector is low-dimensional,

far lower than the total size of vocabulary; and (2) the contextual similarity of words

can be better captured, which means that if two words have similar semantic meanings,

the two embedding vectors have high similarity. In our study, the model runs on grid-

mapped trajectory data, it is natural to treat the entire urban mesh as the total vocabulary

and each mesh-grid as a word. Each mesh-grid has a unique grid ID in the same way

as word ID, which is called word-like embedding for grid. Note that comparing with

a typical natural language model, it is more indispensable for our citywide human mo-

bility prediction model to employ the state-of-the-art word-like embedding technique.

Because the total number of mesh-grids for a big urban area can be larger than the to-

tal number of words in one language. Taking Tokyo area as an example, it is meshed

with 6,400 500m×500m mesh-grids in our study, whereas there are just 2,500 to 3,000

most common words in English. Thus, we utilize word-like embedding instead of naive

one-hot embedding as the basic technique to construct the mobility prediction model.

The RNN-based deep learning architecture with word-like embedding is constructed as

shown in Fig.5.3, which operated according to the following steps: (1) the first layer is

an embedding layer that changes an integer of grid id into a vector of continuous values

by using an K × M embedding matrix, where M is the embedding dimension and K

is the number of mesh-grid; (2) the second layer is an encoding layer constructed by

the LSTM-RNN, where the tanh function is used to map the α steps of the embedded

mobility (e1, e2, ..., eα) into a single latent vector sα, which can be taken as the auto-

extracted features for the entire sequence; details about the calculation for LSTM are

listed below; and (3) the third layer is an activation layer where the S o f tmax function
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is used to convert the latent vector sα into probability values over K different possible

mesh-grids (g1, g2, ..., gK). This architecture can be easily applied to different urban

areas by modifying the embedding layer and the activation layer with the new mesh-

grid number.

LSTM-RNN. An LSTM has three gates comprising an input gate i, an output gate o,

and a forget gate f . Hidden state sα in an LSTM is calculated iteratively from 1 to α for

an input embedded mobility (e1, e2, ..., eα) as follows:

iα = σ(Wieα + Uisα−1 + bi) (5.5)

fα = σ(W f eα + U f sα−1 + b f ) (5.6)

oα = σ(Woeα + Uosα−1 + bo) (5.7)

C̃α = tanh(Wceα + Ucsα−1 + bc) (5.8)

Cα = iα � C̃α + fα �Cα−1 (5.9)

sα = oα � tanh(Cα), (5.10)

where W and U are weight matrices, b is a bias vector, and � represents elementwise

multiplication. All of the model parameters are determined by applying the standard

“backpropagation through time” algorithm, which starts by unfolding the RNN through

time and it then generalizes the backpropagation for feed-forward networks to minimize

the loss function namely cross-entropy, as defined in Equation 5.3.

5.4 Embedding Trajectory with POI

A standard deep learning model is proposed for modeling the mobility data described

in the previous section, which shares most of the same techniques employed by the

RNN-based deep natural language model. However, in addition to spatio-temporal in-

formation, human mobility in an urban area can also highly rely on geographical infor-

mation, which can reflect the semantic meaning of human behavior. Thus, we consider

to fuse human mobility data and city POI data to obtain a more powerful representation

for mobility prediction. A novel embedding mechanism called image-like embedding

with POI for grid is proposed to replace the naive word-like embedding for grid in the

following.
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5.4.1 Image-Like Embedding for Grid with POI

Definition 5 (Grid POI): Given a set of mesh-grids for an urban area and a set of POIs

with σ categories, the POIs inside each mesh-grid g can be aggregated by category into

a σ-dimension frequency vector as follows:

g.POI = ( f1, f2, ..., fσ),∀i ∈ [1, σ],

fi = |{poi | poi.coordinate ∈ g ∧ poi.category = i}| (5.11)

where f represents the aggregated frequency based on each POI category. Each f is

further scaled into [0,1].

Definition 6 (Grid Region): Given an η × η window and a mesh-grid g, we can obtain

an η × η region r as follows:

r = {g′ | |g′.ix − g.ix| ≤
η − 1

2
∧ |g′.iy − g.iy| ≤

η − 1
2
} (5.12)

where ix and iy denote the mesh-grid coordinates in the entire urban mesh. To make g

the centroid, η is always set as odd in our method.

Definition 7 (POI Image): According to these definitions, each region can be treated as

an image where each mesh-grid inside the region can be seen as a pixel. The category

number σ corresponds to the σ channels. Therefore, a mesh-grid can be extended to

obtain an artificial POI image represented by an η × η × σ tensor.

This embedding mechanism has two advantages for mobility modeling: (1) geographi-

cal information is considered because of the POI information, and (2) in addition to the

mesh-grid itself, the regional information around the mesh-grid is also taken into con-

sideration by utilizing an η × η window. To effectively handle such kind of POI image,

we use the-state-of-the-art convolutional neural network (CNN) to extract higher-level

feature representation as the embedding vector.

CNN. Compared with traditional neural networks, CNNs were designed specifically

for analyzing visual imagery [82], where the neurons in a layer are only connected to

a small region of the previous layer instead of all of the neurons in a fully-connected

manner. To hierarchically capture the spatial structural information from a POI image,

a classical CNN constructed using a convolutional layer and pooling layer is employed

in our deep sequential learning architecture as an advanced embedding component. In



Chapter 5. Limited Data: Deep Embedding and Transffering 73

Figure 5.4: Visualization of the extracted features by embedding CNNs for a 15×15
POI image with the mesh-grid containing Tokyo Station as its centroid. The feature
maps for each layer along the processing path are displayed in a block, where each
channel or filter is plotted as a small subfigure (40 channels, 32 filters, and 64 filters

are listed with sizes of 10×4, 8×4, and 8×8, respectively).

Figure 5.5: Visualization of the extracted features by embedding CNNs for a 15×15
POI image with the grid containing Shinjuku Station as its centroid. The feature maps
for each layer along the processing path are displayed in a block, where each channel
or filter is plotted as a small subfigure (40 channels, 32 filters, and 64 filters are listed

with sizes of 10×4, 8×4, and 8×8, respectively).

our method, the convolutional feature value at pixel (i, j) in the k-th feature map, con-

volutional feature c fi, j,k, is calculated as:

c fi, j,k = ReLU(wk pti, j + bk) (5.13)

where wk and bk are the weight and bias matrix of the k-th filter, respectively, and pti, j is

the input image patch centered at pixel (i, j). Kernel size (i.e. the size of the input image

patch) needs to be specified for the convolutional operation. In our study, kernel size

is set to 3×3, which is widely used in many state-of-the-art computer vision models.

ReLU is used as the activation function. The pooling feature p fi, j,k is calculated using
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Figure 5.6: Visualization of the extracted features by embedding CNNs for a 15×15
POI image with the grid containing Shinagawa Station as its centroid. The feature
maps for each layer along the processing path are displayed in a block, where each
channel or filter is plotted as a small subfigure (40 channels, 32 filters, and 64 filters

are listed with sizes of 10×4, 8×4, and 8×8, respectively).

the max-pooling operation:

p fi, j,k = MaxPooling(c fm,n,k),∀(m, n) ∈ Ri j (5.14)

where Ri j is the local neighborhood around pixel (i, j). By stacking several convolu-

tional and pooling layers (2 conv layers → 1 pool layer → 2 conv layers → 1 pool

layer), we can gradually extract higher-level feature representations for a large grid re-

gion because one convolution can only capture nearby spatial dependencies. The input

POI image around the mesh-grid of Tokyo Station, Shinjuku Station, and Shinagawa

Station, as well as the features extracted by the CNNs step by step are visualized in

Fig.5.4 ∼ 5.6. To better illustrate how image-like embedding is performed, the flowchart

has been drawn as Fig.5.7 by taking a grid-mapped human trajectory (Tokyo Station→

Shinjuku Station→ Shinagawa Station) as an example.

Originally, grid-mapped human trajectory is represented as a α × 1 vector. Now, with

image-like embedding, an input human trajectory can be represented as an α×η×η×σ

tensor, which can be considered as an artificial video made from an α-frame η × η ×

σ POI image. By replacing naive word-like embedding with CNN-based image-like

embedding, our deep sequential learning architecture essentially becomes a deep video

model, which takes a four-dimensional shape tensor as the input. As shown in Fig.??,

the hierarchical geographical features inside a region are extracted by a CNN and fed

into an LSTM layer for sequential prediction. The LSTM is stacked on CNNs (denoted

as LSTM-on-CNNs) in combination to exploit both the geographical and sequential

information related to citywide human mobility. It should be noted that we set the same



Chapter 5. Limited Data: Deep Embedding and Transffering 75

Figure 5.7: Flowchart of image-like embedding using a grid-mapped human trajectory
g1 (Tokyo Station)→ g2 (Shinjuku Station)→ g3 (Shinagawa Station) as an example.
For each mesh-grid in the given trajectory, first a region with the mesh-grid as its
centroid will be obtained according to Def.6, then the POIs inside the region will be
extracted to generate the POI image according to Def.7. Through a series of CNNs, the

extracted final features from the POI image can be seen as the embedding result.

CNN layers to be shared across each slice of the total α frames, where this sharing

mechanism has several advantages, such as reducing the model complexity and making

the network easier to train. The overall networks can still be trained using the standard

backpropagation algorithm. Finally, the use of multiple stacked layers of RNNs can also

be considered to boost the performance in difficult time-series modeling tasks according

to [83]. LSTM-on-CNNs architecture has been proposed in the filed of computer vision

for visual recognition and description [84]. However, in our approach, CNNs and LSTM

are utilized as embedding component and encoding component separately for the human

mobility modeling problem. In particular, a series of CNNs are utilized to replace the

standard embedding matrix to generate more powerful embedding vectors for each step

of the input human mobility.
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5.4.2 Transfer Learning between Cities via POI

Transfer learning is a powerful tool that helps deep learning models to achieve better

performance [85]. Citywide human mobility predictions for different cities are highly

related tasks, which motivated us to transfer the mobility knowledge learned from one

city to improve the learning process for another city. In particular, a mobility prediction

model is unlikely to achieve satisfactory performance if sufficient trajectory data are

not collected from one urban area. However, if sufficient human mobility data exist

for another or more urban areas, we can exploit these large amounts of data from other

areas by using transfer learning to boost the performance for the target area.

Image-like embedding with POI is assumed to have good natural compatibility with

transfer learning between different cities because: (1) the POI distributions share some

common properties between different cities, e.g., a central area often contains more

POIs, including shopping malls and offices; and (2) human mobility in different cities

generally follow similar patterns and comprise similar semantic meanings. Taking com-

muting pattern for example, people move from residential area to central business area

to work and then return to residential district. All these provide us the possibilities to

transfer human mobility knowledge between cities via POI information.

Moreover, the embedding matrix used for word-like embedding must be modified for

each city according to the mesh-grid number of that city, which hinders transfer learn-

ing. Assuming that we have two cities A, B meshed with KA and KB mesh-grids, re-

spectively (KA < KB), it is difficult to directly transfer the knowledge in A-model to

city B because the integers in [KA,KB) will not be well trained or embedded due to the

lack of corresponding training data in A1. Meanwhile, the CNN architectures for image-

like embedding can remain the same for different cities. These advantages of image-like

embedding over word-like embedding will be further validated and discussed in Section

5.6.

We tested two different transfer methods for our problem: (1) freezing the LSTM-on-

CNNs trained from the source city and training a completely new S o f tmax activation

layer for the target city; (2) using the LSTM-on-CNNs as a pre-trained model, connect-

ing it with a new S o f tmax activation layer, and training the overall networks again with

new dataset. Experiments showed that the latter obtained better performance.

1The index for mesh-grid starts from 0 in this study.
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5.5 Experiment

Table 5.2: Geographic Details of Six Experimental Cities

City Geographic Interval Number of Grids
Tokyo Long. ∈ [139.50, 139.90], Lat. ∈ [35.50, 35.82] 6,400
Osaka Long. ∈ [135.35, 135.65], Lat. ∈ [34.58, 34.82] 3,600
Fukuoka Long. ∈ [130.20, 130.50], Lat. ∈ [33.46, 33.70] 3,600
Sapporo Long. ∈ [141.22, 141.47], Lat. ∈ [43.00, 43.16] 2,000
Naha Long. ∈ [127.64, 127.74], Lat. ∈ [26.17, 26.25] 400
Tottori Long. ∈ [134.12, 134.32], Lat. ∈ [35.44, 35.56] 1,200

Table 5.3: Data Information of Six Experimental Cities

City Number of Trajectory Average Trajectory Length Number of Samples (x,y pairs)
Tokyo 33,261 85.0 2,658,077
Osaka 22,182 76.5 1,584,579
Fukuoka 26,425 69.3 1,697,885
Sapporo 24,727 67.7 1,545,297
Naha 15,304 55.1 766,085
Tottori 7,268 58.2 386,751

Table 5.4: Parameter Description Table

Parameter Relevant Component Tuned Value
∆Long. ∆Lat. Mesh Size ∆Long.=0.005, ∆Lat.=0.004
α Observation Step 5
σ POI Categories 40
η Window Size of Grid Region 15
Embedding Dimension Word-Like & Image-Like Embedding 256
Encoding Dimension LSTM-RNN Encoding 256
Output Dimension (K) Softmax Activation Tokyo:6,400 (etc. in Table 6.2)
Learning Rate RMSprop Optimizer 0.001
Batch Size Training Process 1024

Experimental Setup: We randomly selected two consecutive weeks as our experimen-

tal period and conducted evaluations in six cities of Japan. As we all know, Japan

is a stratovolcanic archipelago consisting of about 6,852 islands. The main islands,

from north to south, are Hokkaido, Honshu, Shikoku and Kyushu. The Ryukyu Is-

lands, which include Okinawa, are a chain to the south of Kyushu1. Tokyo and Os-

aka, as the two biggest cities of Japan, were chosen as the representatives of Honshu.

Fukuoka and Sapporo were included as the representatives of Kyushu and Hokkaido

respectively. Naha was selected to represent Okinawa, which is very far from the main

1https://en.wikipedia.org/wiki/Japan
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islands. By utilizing these five cities, we would like to verify our proposed framework

could be effective among multiple isolated areas. Additionally, Tottori City was se-

lected to verify the effectiveness of our framework in rural areas from Tottori Prefecture

of Honshu, which is the least populous prefecture in Japan2. More geographical details

about these six areas are summarized as Table 6.2. Python and some Python libraries

such as Keras[72] and TensorFlow[73] were used in this study. The experiments were

performed on a GPU server with a GeForce GTX 1080Ti graphics card installed.

Parameter Settings: We treated the 24-hour (00:00∼23:59) GPS log of each individual

person as one trajectory, and after pre-processing (e.g., data cleaning, noise reduction,

etc.). 33,261, 22,182, 26,425, 24,727, 15,304, and 7,268 trajectories were generated

for Tokyo, Osaka, Fukuoka, Sapporo, Naha, and Tottori respectively, where the average

trajectory lengths (number of points) were approximately 85.0, 76.5, 69.3, 67.7, 55.1,

and 58.2. We set the observation step α as five to obtain length-5 trajectory snippets

as inputs and their corresponding next locations as outputs. Total number of generated

snippet samples for each city was summarized and listed in Table 5.3. We randomly

selected 60% of the data as the training dataset, 20% of the data as the validation dataset,

and the remaining 20% as the testing dataset for every city. The mesh size was set

to ∆Long.=0.005, ∆Lat.=0.004 (approximately 450m × 450m) for each city. Finally,

6,400, 3,600, and 3,600 mesh-grids were generated for the Tokyo area, Osaka area, and

Fukuoka area. 2,000, 400, and 1,200 mesh-grids were generated the Sapporo area, Naha

area, and Tottori area. So the Softmax activation layer output the probability distribution

over the corresponding number of mesh-grids for each city. The RMSprop algorithm

was employed to control the overall training process, where the batch size was set to

1024 and the learning rate to 0.001. The training algorithm was stopped early if the loss

stopped decreasing based on the validation dataset for five consecutive epochs. All of

the learning settings were kept the same for each model and each city.

Baseline models: We considered the following models as baseline models for compar-

ison.

(1) N-Gram. N-Gram is a widely used algorithm for modeling sequential data, espe-

cially for text and speech data. Tri-Gram was found to be the most appropriate for

our problem.

2https://en.wikipedia.org/wiki/Tottori Prefecture
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(2) KNN. A KNN-based learning model [74] is a type of instance-based learning where

classification is computed from a simple majority vote of the nearest neighbors of

each point.

(3) DecisionTree. A decision tree [75] is built to predict the target value by learning

simple decision rules.

(4) RandomForest. A random forest [76] is constructed with a multitude of decision

trees to gain better performance. For (2)∼(4), these classical methodologies are

extended to output the probability distribution over mesh-grids. One-hot encoding

was utilized to encode the K mesh-grids for each city, then the grid-mapped tra-

jectories with α steps were converted to α × K-dimension vectors as the final input

features.

(5) Word-Like Embedding. This is the deep learning model shown in Fig.5.3 with a

typical word-like embedding. An embedding layer, which is essentially an em-

bedding matrix, embedded each grid id into a continuous 256-dimensional vector

space. The subsequent LSTM-RNN layer shown in Fig.5.3 also contained 256 hid-

den units.

(6) Image-Like Embedding. This is our proposed image-like embedding model without

transfer learning. We set the window size to 15 and each trajectory snippet was

expanded to a video where each frame comprised a 15×15 POI image. A six-layer

CNN was utilized in this model, where the first two convolutional layers used 32

filters of 3×3 and the third layer was a 2×2 max-pooling layer. The subsequent

two convolutional layers used 64 filters of 3×3 and the sixth layer was a 2×2 max-

pooling layer. Using these settings, each mesh-grid could be embedded into a 256-

dimensional vector and an LSTM-RNN layer with 256 hidden units followed in the

same manner.

(7) Word-Like Embedding+Transfer. This model applied transfer learning to baseline

method (5) mentioned above. We assumed that a limited amount of data could be

retrieved from one urban area, whereas a large amount of data could be obtained

from another urban area. The embedding layer and the encoding layer in method

(5) were pre-trained with the sufficient data from other urban area and they were

then continuously trained with the limited data from the target area. Specifically,

“TransferO” denotes performing transfer learning based on Osaka model, which is

pre-trained with the whole training dataset of the Osaka area (60% of all). And

“TransferT” denotes performing transfer learning based on Tokyo model, which
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is pre-trained using the whole training data of the Tokyo area (60% of all). The

network settings were kept the same as those in method (5).

Our proposed model is denoted as Image-Like Embedding+Transfer. “TransferO”

and “TransferT” follows the same meaning as mentioned above. The network settings

were kept the same as those in method (6). The embedding layer and the encoding

layer were pre-trained with the same transfer learning settings mentioned in (7). All the

parameter settings of the experiments are summarized as Table 6.3.

Table 5.5: Performance Evaluation of Citywide Human Mobility Prediction for Tokyo

Model (Tokyo 1/2)
1% data 5% data

Loss Acc Loss Acc
N-Gram 7.06 42.55% 4.43 57.29%

KNN 7.07 29.84% 3.54 44.17%
DecisionTree 7.28 9.50% 4.11 37.32%

RandomForest 5.07 30.79% 2.68 49.38%
Word-Like Embedding 4.52 27.54% 2.21 51.19%
Image-Like Embedding 3.10 36.21% 1.73 54.96%

Word-Like Embedding+TransferO 4.27 34.71% 2.18 54.67%
Image-Like Embedding+TransferO 2.75 45.09% 1.65 57.98%

Table 5.6: Performance Evaluation of Citywide Human Mobility Prediction for Tokyo

Model (Tokyo 2/2)
10% data 50% data

Loss Acc Loss Acc
N-Gram 3.42 60.82% 1.91 64.64%

KNN 2.81 46.43% 1.95 56.39%
DecisionTree 3.02 49.79% 1.74 58.93%

RandomForest 2.37 48.94% 1.77 52.74%
Word-Like Embedding 1.73 59.14% 1.23 67.38%
Image-Like Embedding 1.53 59.67% 1.25 65.76%

Word-Like Embedding+TransferO 1.75 60.48% 1.28 67.35%
Image-Like Embedding+TransferO 1.51 60.89% 1.28 65.75%

Evaluation metric: We evaluated the performance of the proposed models using two

metrics. Cross-entropy (denoted as Loss) was used as the loss function defined in Def-

inition 4, where it describes the predicted loss between the ground-truth and the pre-

diction. Predicting a spatial probability distribution of next step in a large urban area is

the goal of our study. Thus, it was used as the primary metric in the evaluation. Fur-

thermore, accuracy (denoted as Acc) was used as the secondary metric, and it is more

suitable to evaluate one person’s mobility prediction rather than our human mobility

prediction task. These two metrics are defined as follows:
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Table 5.7: Performance Evaluation of Citywide Human Mobility Prediction for Osaka

Model (Osaka 1/2)
1% data 5% data

Loss Acc Loss Acc
N-Gram 7.07 42.04% 4.51 57.47%

KNN 7.19 22.66% 3.61 44.40%
DecisionTree 7.19 19.78% 4.06 50.31%

RandomForest 4.90 30.44% 2.60 51.21%
Word-Like Embedding 4.49 25.67% 2.08 52.59%
Image-Like Embedding 2.85 37.26% 1.63 56.22%

Word-Like Embedding+TransferT 3.96 39.02% 2.03 56.79%
Image-Like Embedding+TransferT 2.62 45.28% 1.56 58.86%

Table 5.8: Performance Evaluation of Citywide Human Mobility Prediction for Osaka

Model (Osaka 2/2)
10% data 50% data

Loss Acc Loss Acc
N-Gram 3.52 60.95% 1.97 64.75%

KNN 2.87 46.64% 2.03 56.87%
DecisionTree 2.96 51.28% 1.73 60.04%

RandomForest 2.30 50.48% 1.75 54.50%
Word-Like Embedding 1.63 60.25% 1.19 68.02%
Image-Like Embedding 1.45 60.87% 1.21 66.93%

Word-Like Embedding+TransferT 1.65 61.98% 1.23 68.25%
Image-Like Embedding+TransferT 1.40 62.75% 1.21 67.23%

Table 5.9: Performance Evaluation of Citywide Human Mobility Prediction for
Fukuoka

Model (Fukuoka 1/2)
1% data 5% data

Loss Acc Loss Acc
N-Gram 6.47 47.65% 3.78 58.07%

KNN 5.28 33.02% 3.30 47.26%
DecisionTree 5.63 35.20% 3.44 55.56%

RandomForest 3.49 42.12% 2.23 51.69%
Word-Like Embedding 3.04 37.75% 1.66 58.36%
Image-Like Embedding 2.20 45.85% 1.55 58.87%

Word-Like Embedding+TransferT 2.93 45.21% 1.73 58.72%
Image-Like Embedding+TransferT 2.10 50.30% 1.50 60.28%

Loss =
1
n

n∑
i

K∑
k

−y(k)
i log (ŷ(k)

i ) (5.15)

Acc =
1
n

n∑
i

1(yi = ŷi) (5.16)

where n is the number of samples, K is the mesh-grid number for each urban area,
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Table 5.10: Performance Evaluation of Citywide Human Mobility Prediction for
Fukuoka

Model (Fukuoka 2/2)
10% data 50% data

Loss Acc Loss Acc
N-Gram 2.91 60.29% 1.77 62.65%

KNN 2.66 48.45% 2.10 56.89%
DecisionTree 2.52 56.66% 1.66 61.31%

RandomForest 2.00 51.20% 1.70 52.85%
Word-Like Embedding 1.44 62.23% 1.21 66.15%
Image-Like Embedding 1.43 61.57% 1.25 65.14%

Word-Like Embedding+TransferT 1.49 62.23% 1.23 66.09%
Image-Like Embedding+TransferT 1.39 62.17% 1.24 65.20%

Table 5.11: Performance Evaluation of Citywide Human Mobility Prediction for Sap-
poro

Model (Sapporo 1/2)
1% data 5% data

Loss Acc Loss Acc
N-Gram 6.37 40.45% 3.16 51.01%

KNN 4.42 29.70% 2.53 42.45%
DecisionTree 5.39 20.97% 2.53 49.55%

RandomForest 3.88 31.98% 2.00 47.45%
Word-Like Embedding 2.78 39.36% 1.50 57.25%
Image-Like Embedding 2.09 43.06% 1.47 55.17%

Word-Like Embedding+TransferT 2.56 45.26% 1.53 58.53%
Image-Like Embedding+TransferT 1.95 48.28% 1.39 58.06%

Table 5.12: Performance Evaluation of Citywide Human Mobility Prediction for Sap-
poro

Model (Sapporo 2/2)
10% data 50% data

Loss Acc Loss Acc
N-Gram 2.40 52.89% 1.58 54.77%

KNN 2.20 47.23% 1.70 56.78%
DecisionTree 2.08 55.89% 1.62 65.01%

RandomForest 1.75 49.25% 1.52 51.45%
Word-Like Embedding 1.30 61.45% 1.09 65.72%
Image-Like Embedding 1.33 58.30% 1.14 63.94%

Word-Like Embedding+TransferT 1.32 61.85% 1.11 65.77%
Image-Like Embedding+TransferT 1.28 60.61% 1.14 64.06%

y(k) and ŷ(k) are the true probability and predicted probability based on each mesh-grid,

respectively, z is the true grid id, and ŷ is the predicted grid id. Here, the grid id with

highest probability will generated as the predicted result, which essentially makes the

Acc metric equal to Rank@Top1. We may further utilize Rank@TopK as the metric

by setting different TopK in the future work, which is widely used in recommendation
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Table 5.13: Performance Evaluation of Citywide Human Mobility Prediction for Naha

Model (Naha 1/2)
1% data 5% data

Loss Acc Loss Acc
N-Gram 4.61 46.92% 2.18 52.99%

KNN 2.91 35.95% 2.12 45.07%
DecisionTree 3.21 38.02% 2.06 54.51%

RandomForest 2.37 44.64% 1.63 51.06%
Word-Like Embedding 1.89 47.42% 1.28 59.03%
Image-Like Embedding 1.64 50.47% 1.33 55.91%

Word-Like Embedding+TransferT 2.11 48.23% 1.35 58.85%
Image-Like Embedding+TransferT 1.62 51.81% 1.27 58.71%

Table 5.14: Performance Evaluation of Citywide Human Mobility Prediction for Naha

Model (Naha 2/2)
10% data 50% data

Loss Acc Loss Acc
N-Gram 1.80 54.18% 1.38 55.02%

KNN 1.90 49.40% 1.52 57.53%
DecisionTree 1.86 58.91% 1.50 64.30%

RandomForest 1.51 52.41% 1.38 54.98%
Word-Like Embedding 1.17 61.45% 1.04 64.15%
Image-Like Embedding 1.22 59.39% 1.08 63.24%

Word-Like Embedding+TransferT 1.22 61.15% 1.05 64.00%
Image-Like Embedding+TransferT 1.20 60.37% 1.08 63.16%

Table 5.15: Performance Evaluation of Citywide Human Mobility Prediction for Tot-
tori

Model (Tottori 1/2)
1% data 5% data

Loss Acc Loss Acc
N-Gram 5.66 44.07% 2.75 53.45%

KNN 4.30 29.41% 2.54 41.90%
DecisionTree 4.59 25.05% 2.54 48.95%

RandomForest 3.85 32.14% 2.03 48.72%
Word-Like Embedding 2.86 39.59% 1.45 59.57%
Image-Like Embedding 2.17 46.94% 1.36 57.93%

Word-Like Embedding+TransferT 2.73 44.84% 1.50 59.70%
Image-Like Embedding+TransferT 2.07 48.86% 1.31 60.64%

system.

Entropy is a widely used measurement for comparing distributions. However, we also

aim to evaluate our results in a more intuitive way. The ground-truth probability can

be represented more intuitively through the density of the population. Therefore, two

additional metrics regarding density were employed in the supplementary evaluation to

check the ground-truth density and the predicted density for selected areas in the city.
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Table 5.16: Performance Evaluation of Citywide Human Mobility Prediction for Tot-
tori

Model (Tottori 2/2)
1% data 5% data

Loss Acc Loss Acc
N-Gram 2.12 55.20% 1.41 57.18%

KNN 2.09 48.43% 1.52 58.38%
DecisionTree 2.09 56.85% 1.49 65.90%

RandomForest 1.72 52.89% 1.43 57.78%
Word-Like Embedding 1.22 62.95% 0.99 67.02%
Image-Like Embedding 1.22 60.64% 1.02 65.81%

Word-Like Embedding+TransferT 1.26 63.13% 1.01 66.88%
Image-Like Embedding+TransferT 1.17 62.73% 1.01 66.29%

Table 5.17: Evaluation of Human Mobility Density for Shinjuku Station Area (Tokyo)

Model (Tokyo 1/2)
1% data 5% data

Err RE Err RE
N-Gram -1215 8.94% -386 2.84%

KNN 2340 17.22% 1561 11.49%
DecisionTree -1869 13.75% -111 0.82%

RandomForest 1688 12.42% 891 6.56%
Word-Like Embedding 1589 11.69% -208 1.53%
Image-Like Embedding 1343 9.88% -61 0.45%

Word-Like Embedding+TransferO 2251 16.56% 244 1.80%
Image-Like Embedding+TransferO 1025 7.54% -5 0.04%

Table 5.18: Evaluation of Human Mobility Density for Shinjuku Station Area (Tokyo)

Model (Tokyo 2/2)
10% data 50% data

Err RE Err RE
N-Gram -320 2.35% -45 0.33%

KNN 1015 7.47% 328 2.41%
DecisionTree -210 1.55% 51 0.38%

RandomForest 1133 8.34% 614 4.52%
Word-Like Embedding -110 0.81% 50 0.37%
Image-Like Embedding -91 0.67% 78 0.57%

Word-Like Embedding+TransferO 122 0.90% 57 0.42%
Image-Like Embedding+TransferO -57 0.42% 144 1.06%

With these metrics, it will be easier for us to understand if the system is overshooting

or undershooting the numbers/densities. They are defined as follows:

Err = d̂area − darea (5.17)

RE =
|d̂area − darea|

darea
, (5.18)
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Table 5.19: Evaluation of Human Mobility Density for Tokyo University Area (Tokyo)

Model (Tokyo 1/2)
1% data 5% data

Err RE Err RE
N-Gram -636 13.00% -183 3.74%

KNN 69 1.41% -129 2.64%
DecisionTree -2833 57.91% -469 9.59%

RandomForest 232 4.74% 207 4.23%
Word-Like Embedding 942 19.26% -95 1.94%
Image-Like Embedding 495 10.12% -137 2.80%

Word-Like Embedding+TransferO 761 15.56% 171 3.50%
Image-Like Embedding+TransferO 44 0.90% 64 1.31%

Table 5.20: Evaluation of Human Mobility Density for Tokyo University Area (Tokyo)

Model (Tokyo 2/2)
10% data 50% data

Err RE Err RE
N-Gram -191 3.90% 55 1.12%

KNN -222 4.54% -247 5.05%
DecisionTree -30 0.61% -173 3.54%

RandomForest 88 1.80% 188 3.84%
Word-Like Embedding 127 2.60% -79 1.61%
Image-Like Embedding 9 0.18% -186 3.80%

Word-Like Embedding+TransferO 53 1.08% -123 2.51%
Image-Like Embedding+TransferO -288 5.89% -85 1.74%

Table 5.21: Evaluation of Human Mobility Density for Odori Park Area (Sapporo)

Model (Sapporo 1/2)
1% data 5% data

Err RE Err RE
N-Gram -1925 8.89% -769 3.55%

KNN 179 0.83% 1331 6.14%
DecisionTree -1677 7.74% 606 2.80%

RandomForest 1044 4.82% 839 3.87%
Word-Like Embedding -495 2.29% 94 0.43%
Image-Like Embedding 726 3.35% -93 0.43%

Word-Like Embedding+TransferT 570 2.63% 530 2.45%
Image-Like Embedding+TransferT -128 0.59% 59 0.27%

where darea and d̂area are the true density and predicted density on a selected area. Err

represents the prediction error, positive number (+) means overshooting and negative

number means undershooting (-). RE represents the relative prediction error in per-

centage. By iteratively checking each sample in Ŷ and Y , we can get the ground-truth

density dg and the prediction density d̂g for each mesh-grid. The density of a selected

area can be calculated by adding up the densities of the mesh-grids belonging to the

area.
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Table 5.22: Evaluation of Human Mobility Density for Odori Park Area (Sapporo)

Model (Sapporo 2/2)
10% data 50% data

Err RE Err RE
N-Gram 1582 7.30% 965 4.46%

KNN 864 3.99% 459 2.12%
DecisionTree 92 0.42% 330 1.52%

RandomForest 762 3.52% 558 2.58%
Word-Like Embedding 996 4.60% 391 1.81%
Image-Like Embedding 980 4.52% 751 3.47%

Word-Like Embedding+TransferT 677 3.13% 622 2.87%
Image-Like Embedding+TransferT 926 4.27% 516 2.38%

Overall performance: We compared the performances of the baselines and our pro-

posed model using different amounts of training data. The overall evaluation results

are summarized in Table 5.6∼5.16, which shows that based on all six cities: (1) our

model performed better than the others on both metrics when the amount of training

data was small to 1%; (2) when training data were increased to 5% and 10%, our model

outperformed other models in Tokyo and Osaka on both metrics, and also kept an advan-

tage in Fukuoka, Sapporo and Tottori on the primary metric; when using 10% training

data, word-like embedding worked best for Naha; (3) when 50% of the data were used

as training data, deep-learning models using word-like embedding performed better

than the other models. In general, our proposed methodology had a clearer advantage

for larger urban areas (Tokyo and Osaka) when using less training dataset (1%∼10%).

Furthermore, we found that even without transfer learning, image-like embedding still

performed better than word-like embedding with small training datasets, where the ad-

vantage increased as the amount of training data became smaller. Finally, as shown

above, we achieved relatively good performance with only 10% of the data by using

Image-Like Embedding+Transfer.

Using the metrics Err and RE, we conducted a supplementary evaluation to compare

the ground-truth density and predicted density on three selected areas, namely Shinjuku

Station area (Tokyo), Tokyo University area (Tokyo), and Odori Park area (Sapporo).

Each area consists of 5×5 neighboring mesh-grids, with Shinjuku Station, Tokyo Uni-

versity, and Odori Park locating at the central mesh-grid respectively. Shinjuku Sta-

tion area can be seen as a typical central business area, whereas Tokyo University area

(Tokyo) as well as Odori Park area (Sapporo) can be seen as areas with special functions

and less population density than central area. The evaluation results are listed as Table
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5.18, 5.20, and 5.22, from which we can also see that our proposed framework Image-
Like Embedding+Transfer could achieve the best performance comparing other base-

lines if only using 1%∼ 5% of training data.

Transfer learning performance: We also verified the performance of transfer learning

by checking the learning curve obtained by each deep-learning model based on different

amounts of training data. The verification results for the Tokyo area, Osaka area and

Fukuoka area are presented in Fig.5.8. Through it, we could clearly see transfer learning

brought the original models with lower start loss, lower final loss, and higher learning

slope, especially with small datasets. Thus, a positive transfer between different urban

areas was verified for human mobility predictions. Especially when the training data

are limited to 1%, the advantages of Image-Like Embedding+Transfer become much

more noticeable.

5.6 Discussion

Here we further discuss the advantages of image-like embedding over word-like em-

bedding as follows:

Table 5.23: Comparison of Word-Like Embedding and Image-Like Embedding on
Capturing The Similarity between Cities

Cosine Similarity Word-Like Em. Image-Like Em.
Tokyo Station vs Osaka Station 0.004 0.177
Shinjuku Station vs Nanba Station 0.118 0.224
Tokyo Disneyland vs Universal Studios Japan 0.120 0.273

Table 5.24: Basic Statistics of Embedding Vectors for “Tokyo Station → Shinjuku
Station→ Tokyo Disneyland Station”

Word-Like Embedding Image-Like Embedding
Min Max Mean Std Min Max Mean Std

Tokyo Station -1.27 1.18 0.05 0.47 0.00 27.00 0.87 2.68
Shinjuku Station -0.83 0.84 0.06 0.37 0.00 8.19 0.44 1.17

Tokyo Disneyland -1.00 0.84 0.02 0.28 0.00 3.22 0.32 0.66

(1) Based on public recognition, corresponding relationships between some places from

two different cities can be set up. Taking Tokyo and Osaka as example, Tokyo Sta-

tion can correspond to Osaka Station, because both of them can be seen as the city
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(a) Learning Curves of Transfer Learning (Tokyo Model)

(b) Learning Curves of Transfer Learning (Osaka Model)

(c) Learning Curves of Transfer Learning (Fukuoka Model)

Figure 5.8: Learning Curves of Transfer Learning on Three Cities.

center. Shinjuku Station of Tokyo can correspond to Nanba Station of Osaka, be-

cause they both can be seen as the sub city center. Similar relationship can also be

established between Tokyo Disneyland and Universal Studios Japan, which are the

two most famous theme parks in Japan located in Tokyo and Osaka respectively.

A good embedding method should be capable of capturing the similarity between

those corresponding places of two cities. Therefore, we trained two Tokyo models

using the whole training dataset (60% of the data) based on the two different em-

bedding methodologies. Two Osaka models were built and trained in the same way.

Transfer learning was not applied between the cities and other settings were kept

the same as described in Section 7.5. The cosine similarity between those corre-

sponding places of two cities was calculated and summarized as Table 5.23, from
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Figure 5.9: Visualization of word-like embedding and image-like embedding for
“Tokyo Station → Shinjuku Station → Tokyo Disneyland Station” and “Osaka Sta-
tion → Nanba Station → Universal Studios Japan”. Word-like embedding results are
listed on the top, and the image-like embedding results are listed at the bottom. The
256-dimension vector of word-like embedding is reshaped to a 2×2×64 tensor so that

it can be visualized in a similar way with image-like embedding.

which we can see that image-like embedding could better capture the similarity.

The reason behind this is that POI distributions in different cities share some simi-

larity to some degree. The word-like embedding and image-like embedding results

of those corresponding places of Tokyo and Osaka were visualized as Fig.5.9. And

some basic statistic values are listed as Table 5.24 to further elaborate the difference

between word-like embedding and image-like embedding. Through Table 5.24, we

could see the standard deviation of image-like embedding is larger than word-like

embedding.

Table 5.25: Verification of ID Problem of Word-Like Embedding

Osaka
Model

Before Training After Training Difference
Min Max Min Max L1-norm L2-norm

ID1=6113 ∈ [3600, 6400) -0.05 0.05 -0.05 0.05 8.62 0.66
ID2=6399 ∈ [3600, 6400) -0.05 0.05 -0.05 0.05 8.86 0.68
ID3=1770 ∈ [0, 3600) -0.05 0.05 -0.88 0.80 78.08 5.83
ID4=1821 ∈ [0, 3600) -0.05 0.05 -0.85 0.77 67.14 5.14

(2) As mentioned in Section 5.4, word-like embedding will not work well with transfer

learning due to the different numbers of mesh-grids for different cities (e.g. 6400

mesh-grids for Tokyo and 3600 mesh-grids for Osaka). When using word-like em-

bedding with transfer learning, the Osaka model had to be built with a 6400 ×

256 embedding matrix instead of a 3600 × 256 embedding matrix so that trans-

fer learning from Osaka to Tokyo could work. If not so, mesh-grid IDs of Tokyo in

[3600, 6400) can’t be taken as input by the model. However, the IDs in [3600, 6400)
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will not be well trained or embedded due to the lack of corresponding training data

in Osaka. Four test cases were listed as Table 5.25. We verified how the mini-

mum and the maximum of the embedding vector were updated before and after

training. We also measured the difference between the updated value and the ini-

tial value with L1-norm and L2-norm. From Table 5.25, we could see those two

IDs in [3600, 6400) were not well embedded by the Osaka model with word-like

embedding.

(3) Word-like embedding requires more parameters than image-like embedding. Using

the settings mentioned above, for the Tokyo area, the word-like embedding layer

contained around 1.6 million parameters whereas the image-like embedding layer

(CNNs) only required around 0.07 million parameters in total. As the target urban

area increased in size, more parameters were required to construct the embedding

layer, whereas image-like embedding method could use the same network archi-

tecture with the same number of parameters to model different urban areas. This

allowed transfer learning to work better as well as enhancing the interpretability

and usability for the embeddings between different urban areas.

5.7 Related Work

Recently, various studies were conducted on human mobility data (e.g. mobile phone

GPS log data, taxi GPS data, and location-based services data). These are summarized

as urban computing problems in [5].

Trajectory-pattern based methodologies have been proposed to predict future movement

of individual person [6, 7]. An approach based on nonlinear time series analysis of the

arrival and residence times of users has been proposed, which focused on predicting

most important places of each user [9]. J. Zheng [10] proposed an unsupervised learn-

ing algorithm for location prediction. Social-LSTM [39] is an advanced multi-agent

model, which builds a separate LSTM network for each person. ST-RNN [40] utilized

RNN to model spatio-temporal transitions. SERM [41] is recurrent model designed for

semantic trajectory. A RNN architecture similar with our word-like embedding model

was proposed in [42] for destination prediction task. These models focused on individ-

ual mobility and were validated with small-scale trajectory dataset, which are difficult

to be applied to our urban mobility modeling task. Some collaborative approaches have

been proposed to take social relationships of users into account for location prediction
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and recommendation, but they utilized big check-in data from location-based network

services [1, 11, 12].

Urban human mobility prediction problem was studied in [86], where it involved an aux-

iliary Region-of-Interest (ROI) mining process from long-period human trajectory data

and demonstrated the better effectiveness of ROI than mesh-grid. Predicting citywide

human mobility under some rare events such as live concerts or disasters is a related

problem, but it built an online prediction model using real-time current observed data

[2]. Furthermore, modeling human mobility for very large populations [36] and simu-

lating human emergency mobility following disasters [37, 38] are other topics that are

close to ours. However, all of these approaches had different problem definitions and

modeling methods. For example, the approaches required disaster information such as

intensity of earthquake and damage level as additional input data in [37, 38]. Fore-

casting the citywide crowd density [3, 19] is another related problem, but a time-series

model was built to predict the crowd density for each region of a city, whereas our

system predicts the mobility for millions of individuals based on short-term observa-

tions. Population prediction model [13, 14] was built for urban dynamics and city-scale

irregularity prediction using transit app logs.

Moreover, some studies also applied deep learning to predict the traffic flow, traffic

speed, congestion, and transportation mode as well as human mobility[29, 30, 45–49].

Bidirectional RNN is reported to be more effective for taxi destination prediction task

[50]. Many factors (e.g. sampling rate, data type) are demonstrated to affect the model-

ing performance of human mobility [22]. A transfer learning framework was designed

to transfer knowledge of the hourly air quality between cities [33]. Previous studies that

aimed to understand the basic life patterns in the flows of people [24] and recommend

location-based services [25, 26] utilized the tensor factorization approach to decompose

citywide human mobility.

5.8 Conclusion

In this paper, we studied the citywide human mobility prediction problem using big

GPS trajectory data and POI data. We proposed image-like embedding with POIs to

represent a trajectory like an artificial video. We also designed an LSTM-on-CNNs

architecture to simultaneously capture both the spatio-temporal and geographical infor-

mation from citywide human mobility. Transfer learning was employed to work with
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image-like embedding to further boost the performance by exploiting the data obtained

from different cities. The experimental results obtained based on multiple urban ar-

eas demonstrated the superior performance of our proposed model compared with the

baseline methods especially when the training data are limited.

However, our method can be improved in the following ways. (1) In addition to POI

data, transportation network data and other types of heterogeneous data such as the

population density can be utilized as geographical features. (2) Current framework only

takes spatial information into account, temporal information could also be used to im-

prove the performance, and conduct the time-series modeling for citywide human mo-

bility. (3) The current dataset only contained approximately 1% of the total population

of Japan. Thus, we need to collect more trajectory data from other sources and design

reasonable scaling factors in order to simulate and predict citywide human mobility in

a more realistic manner.



Chapter 6

Mobility as Well as Density: Deep
Multi-task Learning

6.1 Introduction

Event crowd management has been a significant research topic with highly social im-

pact. When some big events happen such as an earthquake, typhoon, and national fes-

tival, crowd management becomes the first priority for governments (e.g. police) and

public service operators (e.g. subway/bus operator) to protect people’s safety or main-

tain the operation of public infrastructures. Especially for a large urban area such as

Tokyo, Shanghai, and HongKong, the population density is very high, which naturally

leads to high risk for various accidents and emergency situations. Recall the tragedy

on New Year’s Eve in Shanghai, when around 300,000 people gathered to celebrate

the arrival of 2015 near Chen Yi Square on the Bund, which is the most representative

tourist spot in Shanghai. However, allocated police forces were not enough, the large

crowd was not well controlled, and a stampede occurred where 36 people died and 47

were injured in the tragedy. Meanwhile, AI technology is rapidly developing and the 5G

mobile Internet technology is forthcoming. Big human mobility data are being continu-

ously generated through a variety of sources, some of which can be treated and utilized

as streaming data for understanding and predicting crowd dynamics. All these stimulate

us to take new efforts and achieve new success on this social issue by using such stream-

ing mobility data and advanced AI technologies. However, when big events or disasters

happen, urban human mobility may dramatically change from normal situations. It

means people’s movements will almost be uncorrelated with their daily routines. As

93
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shown in Fig.6.1, the big earthquake occurred at 14:46 JST 11th March 2011. Citywide

human mobility in Tokyo area was greatly impacted since the transportation network

was suddenly shut down by the earthquake. Due to this big event, an abnormal pattern

of crowd density can be observed in both Tokyo station area and Shinjuku station area.

All these demonstrate that predicting crowd dynamics under event situations is of high

social impact, but very challenging, especially at a citywide level.

Figure 6.1: Citywide human mobility in Tokyo before (upper left) and after (upper
right) the Great East Japan Earthquake is listed above. Crowd density in Tokyo station

area and Shinjuku station area is listed below.

To address this challenge, we aim to extract the “deep” trend only from the current

momentary observations and generate an accurate prediction for the trend in the short

future, which is considered to be an effective way to handle the situations at big events.

We build an intelligent system called DeepUrbanVideo based on collected big human

mobility data and a unique deep-learning architecture. It is designed to be deployed

as an online system for crowd management at big events, which can continuously take

limited steps of currently observed crowd dynamics as input and report multiple steps

of prediction results for a short time period in the future as output. With such multiple
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steps of prediction, it can help us understand how the crowd dynamics are evolving with

more details.

Specifically, in this study, citywide crowd dynamics are first decomposed into two parts:

crowd density and crowd flow. By meshing a large urban area into fine-grained grids,

they can both be represented by a four-dimensional tensor (Timestep, Height, Width,

Channel) analogously to a short video, where Timestep represents the number of obser-

vation/prediction steps, and Height, Width is determined by mesh size. Crowd densi-

ty/flow video represents a time series of density/flow value for each mesh-grid, therefore

Channel for density is equal to 1, whereas Channel for flow is equal to the size of flow

kernel window η × η. The stored value indicates how many people inside a central

mesh-grid will transit to each of η × η neighboring mesh-grids in a given time interval.

A Multitask ConvLSTM Encoder-Decoder architecture is designed to simultaneously

model these two kinds of high-dimensional sequential data to gain concurrent enhance-

ment. Based on this architecture, our system works as an online system that can contin-

uously take limited steps of currently observed crowd density and crowd flow as input,

and report multiple steps of predictions results as output for the future time period.

Finally, we validate our system on four big real-world events that happened in Tokyo

area, namely 3.11 Japan Earthquake, Typhoon Roke(2011), New Year’s Day(2012), and

Tokyo Marathon(2011), and demonstrate the superior performance to baseline models.

The overview of our system has been shown in Fig.7.1. In summary, our work has the

following key characteristics that make it unique:

• For predicting crowd dynamics at citywide-level big events, we build an online

deployable system that need only limited steps of current observations as input.

• Citywide crowd dynamics are decomposed into two kinds of artificial videos,

namely crowd density video and crowd flow video, and a Multitask ConvLSTM

Encoder-Decoder is designed to simultaneously predict multiple steps of crowd

density and flow for the future time period.

• Using the predicted crowd density and flow video, we further build a series of

dynamic crowd mobility graph to help conduct probabilistic reasoning of crowd

movements during big events.

• We validate our system on four big real-world events with big human mobility

data source and verify it as a highly deployable prototype system.
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Figure 6.2: Can we design an effective real-world system for predicting citywide crowd
dynamics at big events? Real-time human mobility data as well as deep learning tech-

nologies allow us address this high-social-impact problem.

The remainder of this paper is organized as follows. In Section 6.2, we review some

related works. In Section 6.3, we provide a description of our data source. In Section

6.4, we give the problem definition of citywide crowd dynamics prediction. In Section

6.5, we illustrate the proposed deep sequential learning architecture. In Section 6.6, we
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explain how to build dynamic crowd mobility graph. We present and discuss the results

of the experimental evaluation in Section 7.5. In Section 6.8, we give our conclusions

as well as future work.

6.2 Related Work

Forecasting the citywide crowd flow [3, 19, 44] are related works, which build a time-

series prediction model based on inflow and outflow, which can only indicate how many

people will flow into or out from a certain mesh-grid, and can’t answer where the people

flow come or transit. Their models also can’t give out the crowd density prediction in a

straight-forward way, which is very crucial for event crowd management.

CityProphet[13, 14] and [15] utilize query data of Smartphone APP to forecast only

crowd density other than crowd flow. [16, 17] conduct transition estimation from ag-

gregated population data, and [18] estimates the transition populations using inflow and

outflow defined by [19]. Some researchers tried to detect the urban anomalies from

mobility data based on statistical methodologies [20, 21]. Modeling human mobility

for very large populations [2, 22] and simulating human emergency mobility following

disasters [23] are similar problems to ours, however, their models are built based on

millions of individuals’ mobility.

Many recent studies have analyzed human mobility data and they were summarized

as urban computing problems by [5]. For example, [24–26] utilized the tensor factor-

ization approach to decompose urban human mobility, which aimed to understand the

basic life patterns of people or recommend location-based services. [12] conducted next

place prediction in location-based services based on user features. Using population-

scale data, [27] detected popular temporal modes and [28] modeled urban population of

multiple cellphone networks. Moreover, some studies also applied deep learning to pre-

dict the traffic flow, traffic speed, congestion, and transportation mode as well as human

mobility[29, 45–49, 87].

6.3 Data Source

“Konzatsu-Tokei (R)” from ZENRIN DataCom Co., Ltd. was used. It refers to people

flow data collected by individual location data sent from mobile phones with an enabled
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AUTO-GPS function under the users’ consent, through the “docomo map navi” service

provided by NTT DoCoMo, Inc. Those data are processed collectively and statistically

in order to conceal private information. The original location data is GPS data (latitude,

longitude) sent at a minimum period of about 5 min, and does not include information

(such as gender or age) to specify individuals. In this study, the proposed methodology

is applied to raw GPS data from NTT DoCoMo, Inc. The raw GPS log dataset was col-

lected anonymously from approximately 1.6 million mobile phone users in Japan over a

three-year period (August 1, 2010, to July 31, 2013). It contains approximately 30 bil-

lion GPS records, and the total size of the data is more than 1.5 terabytes. Each record

contains user ID, latitude, longitude, altitude, timestamp and positioning accuracy level.

6.4 Citywide Crowd Dynamics Modeling

Table 6.1: Notation Description

Symbol Description
M, g mesh for an urban area, mesh-grid
Timestep the number of observation/prediction steps
Height number of mesh-grids along Latitude-axis
Width number of mesh-grids along Longitude-axis
Channel dimension to store the value for density/flow
Γiu each user’s(u) trajectory on each day(i)
dtm crowd density at timeslot t on mesh-grid gm

ftmw crowd flow from gm at t-1 to gw at t
dt, ft citywide density/flow at t
xd, x f current α steps of density/flow w.r.t t
yd, y f next β steps of density/flow w.r.t t
X samples from all timeslots for the current
Y samples from all timeslots for the next
∧ the predicted results

Definition 1 (Calibrated human trajectory database): Human trajectory is stored and

indexed by day (i) and userid (u) in the trajectory database Γ. Given a mesh M of

an area {g1,g2,...,gHeight∗Width} and a time interval ∆t, each user’s trajectory on each day

Γiu is mapped onto mesh-grids and then calibrated to obtain constant sampling rate as

follows:

Γiu = (t1, g1), ..., (tk, gk) ∧ ∀ j ∈ [1, k) , |t j+1 − t j| = ∆t,
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Figure 6.3: Citywide Crowd Dynamics Prediction.

which means that the time interval between any two consecutive timeslots is calibrated

into ∆t. For simplicity, from now on we only consider one-day slice of the trajectory

database Γ, then the day index (i) can be omitted when refer to Γ.

Definition 2 (Crowd density): Given Γ,M, crowd density at timeslot t on mesh-grid gm

is defined as follows:

dtm = |{u|Γu.gt = gm}|,

which intuitively indicates how many people inside gm at t.

Definition 3 (Crowd flow): To capture the crowd flow starting from a certain mesh-grid,

we utilized a kernel window denoted as η × η w.r.t gm, which represents a square area

made up of η × η neighboring mesh-grids with gm as the centroid mesh-grid. Given Γ,

M, and a kernel window η × η w.r.t each g, crowd flow at timeslot t on mesh-grid gm is

defined as follows:

ftmw = |{u|Γu.gt−1 = gm ∧ Γu.gt = gw}|,

which intuitively indicates how many people transit from mesh-grid gm at timeslot t-1

to a neighboring mesh-grid gw inside a kernel window at timeslot t. After calculating

the crowd density/flow for each mesh-grid over the entire mesh, citywide crowd densi-

ty/flow can be obtained for each timeslot.

Definition 4 (Crowd density/flow video): As the mesh is represented in a 2-dimensional

format, a crowd density/flow video containing a couple of consecutive frames can be
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represented by a 4-dimensional tensor RTimestep×Height×Width×Channel, where Timestep rep-

resents the number of video frames, Channel for density is equal to 1, and Channle for

flow is equal to the size of the given kernel window namely η2. An illustration for crowd

density/flow video has been shown in Fig.7.1.

Definition 5 (Crowd density/flow video prediction): Given currently observed a-step

crowd density/flow video xd=dt−(α−1), ..., dt, x f = ft−(α−1), ..., ft at timeslot t, prediction for

the next β-step density/flow video ŷd=d̂t+1, ..., d̂t+β, ŷ f = f̂t+1, ..., f̂t+β is modeled as fol-

lows:

ŷd = d̂t+1, d̂t+2, ..., d̂t+β =

argmax
dt+1,dt+2,...,dt+β

P(dt+1, dt+2, ..., dt+β | dt−(α−1), ..., dt),

ŷ f = f̂t+1, f̂t+2, ..., f̂t+β =

argmax
ft+1, ft+2,..., ft+β

P( ft+1, ft+2, ..., ft+β | ft−(α−1), ..., ft).

Definition 6 (Citywide crowd dynamics prediction): Given currently observed a-step

crowd density/flow video, citywide crowd dynamics prediction aims to simultaneously

generate next β-step density/flow video, which is modeled as follows:

ŷd, ŷ f = argmax
yd ,y f

P(yd, y f | xd, x f ).

Moreover, by jointly modeling these two highly correlated tasks, concurrent enhance-

ment for both can be expected. It should be noted that crowd density video and crowd

flow video are summarized and proposed as a new concept called crowd dynamics here,

which aims to not only reflect the crowd density for each mesh-grid but also depict how

a crowd of people move/transit among the mesh-grids. Fig.6.3 demonstrates the overall

problem definition mentioned above.

6.5 Deep Sequential Learning Architecture

As shown above, citywide crowd dynamics problem has been defined in an analogous

manner to a video prediction task. However, citywide crowd dynamics are highly com-

plex phenomenon especially when big events happen, which makes it very difficult for

handling these high-dimensional sequential data with some classical methodologies.
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This naturally motivates us to employ the most advanced deep video learning model as

the basic component of our system.

Convolutional LSTM. ConvLSTM[88] has been proposed to build an end-to-end train-

able model for the precipitation nowcasting problem. It extends the fully connected

LSTM (FC-LSTM) to have convolutional structures in both the input-to-state and state-

to-state transitions and achieves new success on video modeling tasks. Thus, ConvL-

STM is utilized as the core component of our system for the density and flow video

prediction task. As shown in Fig.7.1, a ConvLSTM has three gates comprising an in-

put gate i, an output gate o, and a forget gate f as same as an ordinary LSTM. Hidden

state ht in a ConvLSTM is calculated iteratively from t=1 to T for an input sequence of

frames (x1, x2, ..., xT ) as follows:

it = σ(Wxixt + Whiht−1 + Wci � ct−1 + bi)

ft = σ(Wx f xt + Wh f ht−1 + Wc f � ct−1 + b f )

c̃t = tanh(Wxcxt + Whcht−1 + bc)

ct = it � c̃t + ft � ct−1

ot = σ(Wxoxt + Whoht−1 + Wco � ct + bo)

ht = ot � tanh(ct),

where W is weight, b bias vector, and � represents Hadamard product. All of these

weight parameters are determined by applying the standard “backpropagation through

time” (BPTT) algorithm, which starts by unfolding the recurrent neural networks through

time and it then generalizes the backpropagation for feed-forward networks to minimize

the defined loss function, which will be Mean Squared Error (MS E) for our problem.

The full details of the algorithm are omitted from this study.

6.5.1 Stacked ConvLSTM Architecture

As a comparative modeling approach, we would like to verify how the performance of

our system would be like if we use a one-step-by-one-step prediction model and obtain
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Figure 6.4: Stacked ConvLSTM for One-Step Prediction.

multiple steps of predictions by iterating in an autoregressive manner. Then one-step-

by-one-step crowd density prediction model can be defined as follows:

d̂α+1, d̂α+2, ..., d̂α+β =

β∏
i=1

argmax
dα+i

P(dα+i | di, di+1, ..., di+α−1).

The definition given above can be regarded as a typical application of the n-gram lan-

guage model except that each item d is a 3D tensor. Crowd flow prediction could also

be modeled in a similar formula, which will be omitted in this paper for simplicity.

Moreover, the use of multiple stacked layers of neural networks can also be consid-

ered to boost the performance in difficult time-series modeling tasks according to [83].

Thus, a deep architecture constructed with multiple stacked ConvLSTM layers has been

shown in Fig.6.4 for one-step prediction. It has strong representational power which

makes it suitable for giving predictions in complex phenomenons like the citywide

crowd dynamics. Note that the same network architecture can also be applied to one-

step crowd flow prediction, but a special AutoEncoder component is first necessary due

to the uniqueness of crowd flow video which will be explained in the following.
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Figure 6.5: CNN AutoEncoder for Crowd Flow.

6.5.2 CNN AutoEncoder for Crowd Flow

Crowd density and flow video are both represented as 4D tensorRTimestep×Height×Width×Channel,

however, the Channel for flow is much larger than density. In our system, each grid-

cell is set to 500m×500m, by taking into account all the possible transportation modes

such as WALK, BUS, CAR and TRAIN, the transition distance from one grid-cell to

another neighboring one can be up to 4km within 5 minutes time interval (approxi-

mately 48km/h at most). Thus kernel window needs to be 15×15 to capture all the

possible crowd flow within 5 minutes. Channel for flow is then equal to 225, which is

just too large for most of the state-of-the-art video learning models to handle. Thus, we

build a special CNN AutoEncoder [89, 90] to obtain a low-dimension representation of

Channel for crowd flow.

Compared with traditional neural networks, CNNs were designed specifically for ana-

lyzing visual imagery [82], where the neurons in a layer are only connected to a small

region of the previous layer instead of all of the neurons in a fully-connected man-

ner. CNNs are the state-of-the-art method for image recognition or classification tasks

[91, 92]. For a typical CNN layer, the convolutional feature value at location (i, j) in the
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k-th feature map, feature ci, j,k, is calculated as:

ci, j,k = ReLU(wkxi, j + bk),

where wk and bk are the weight and bias of the k-th filter, respectively, and xi, j is the

input patch centered at location (i, j). ReLU is often used as the activation function.

The details of the special CNN AutoEncoder has been proposed in Fig.6.5. An original

crowd flow image is represented with a 3D tensor (15, 15, 225), an encoder is con-

structed with 3 convolutional layers to encode the image into a small 3D tensor (15,

15, 4), and then an decoder is constructed with 3 convolutional layers to decode the

compressed tensor back to the original 3D tensor (15, 15, 225). The end-to-end model

parameters can be optimized by minimizing reconstruction error (MS E) between the

original flow image and decoded flow image. In our system, we aim to obtain a com-

pressed Channel (from 225 to 4) but keep the spatial structural information of the flow

image at (15, 15). Thus, only convolutional layer with 1×1 kernel window is utilized.

At the last layer of the encoder, a unique ReLU(MAX=1.0) function was utilized to

ensure that the values are all scaled into [0,1], which can help the value range of crowd

flow approximately same to the value range of crow density. Without this, the multitask

learning mechanism introduced in the following couldn’t function well.

Figure 6.6: Multitask ConvLSTM Enocder-Decoder for Simultaneous Multi-Step Pre-
diction of Crowd Density and Crowd Flow.

6.5.3 Multitask ConvLSTM Encoder and Decoder

With such a CNN AutoEncoder, citywide crowd flow can be modeled and computed

with the same architecture for crowd density shown in Fig.6.4. The prediction can be

performed in an iterative one-by-one manner, but one major limitation of this model is

to predict a relatively long short-term crowd dynamics. With the iteration going on, the

accumulated iteration error will become large, which can result in terrible performance
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on the last several predicted steps. To tackle this problem, we improve the one-step-

by-one-step modeling with multi-step-to-multi-step modeling (Definition 5) aimed at

achieving better performance on “long” short-term predictions. To deliver this idea, a

sequential encoder and decoder architecture [88, 93] has been built with four ConvL-

STM layers in this study. It works in the following steps: (1) the first two hidden layers

of ConvLSTM (encoder) map the α steps of the inputted crowd density or flow video

into a single latent vector, which contains information about the entire video sequence;

(2) this latent vector is repeated β times to a constant sequence; and (3) the other two

hidden layers of ConvLSTM (decoder) are used to turn this constant sequence into the

β steps of the output video sequence. Batch normalization layer is added between two

consecutive ConvLSTM layers. ReLU is used as the activation function in the final

decoding layer. The ConvLSTM Enc.-Dec. model for crowd density and flow can be

separately trained by minimizing the prediction error L(θd) and L(θ f ), described as fol-

lows:

L(θd) = ||ŶD − YD||
2, L(θ f ) = ||ŶF − YF ||

2

Crowd density video and crowd flow video share important information and are highly

correlated with each other. The insights behind this are two folds: (1) People flow

tend to follow the trend, especially under the event/emergency situations, which may

make crowded places attract more and more people; (2) Higher inflow will lead to

higher density for each grid-cell, and similarly higher outflow will reduce the crowd

density. Moreover, as mentioned above, an online crowd management system needs to

predict not only the crowd density but also the crowd flow for each grid-cell. Thus,

we jointly model these two highly correlated tasks defined as Definition 6, and propose

a Multitask ConvLSTM Encoder and Decoder architecture as shown in Fig.6.6. The

key concept of multi-task learning [94] is to learn multiple tasks simultaneously with

the aim of gaining mutual benefits; thus, learning performance can be improved through

parallel learning while using a shared latent representation. Therefore, it is reasonable to

expect better performances from this learning framework for our system. Our Multitask

ConvLSTM Encoder and Decoder architecture first takes XD and XF as two separate

inputs. The separate input encoders first encode the crowd density and crowd flow

video respectively. Then, the shared encoder maps the encoded crowd density and flow

into a joint latent representation zα, which can be taken as the auto-extracted features

for the entire crowd dynamics; zα is then repeated β times to be passed to the shared

decoder, and finally the output decoders give the multiple steps of prediction results for

crowd density video ŶD and flow video ŶF respectively. The entire model can be trained
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by minimizing the total prediction error L(θ) of crowd density and flow, described as

follows:

L(θ) = λd||ŶD − YD||
2 + λ f ||ŶF − YF ||

2.

where λd and λ f are set equally to 0.5 in our final system. CNN AutoEncoder still needs

to be applied first to original crowd flow.

6.6 Dynamic Crowd Mobility Graph

So far, multiple steps of citywide crowd density and crowd flow can be modeled and

predicted simultaneously as crowd dynamics. At this stage, citywide crowd dynamics

are still represented with grid-cells, in order to help conduct probabilistic reasoning of

crowd movements during big event situations, we build a series of dynamic crowd mo-

bility graph using the predicted crowd dynamics. By using graph instead of mesh, a

high-level representation of citywide crowd dynamics can be obtained, more easily and

efficiently used for citywide-level event crowd management. Moreover, if severe disas-

ters happen, some parts of the real transportation network might be damaged, therefore

we need to build a virtual transportation network to replace or work together the real-

world one. Comparing with the static transportation network, our proposed graph is a

dynamic one because: (1) One crowd mobility graph is corresponding to one frame of

crowd dynamics video; our system can report multiple steps of prediction results, thus

we can build a series of graph for each timeslot; (2) Our graph can be updated every 5

minutes by our online updating system.

Specifically, given one frame of predicted crowd density video, we view the centroid

of each mesh-grid as a point, the density of the mesh-grid as the weight, then apply

weighted KMeans clustering on all the weighted points to get clusters of mesh-grids.

Each cluster can be taken as one Region-of-Interest (RoI), as well as one node of the

mobility graph. Given one frame of predicted crowd flow video, it is easy to build a

transition matrix Ω between each mesh-grid pair. By summing up the total transition

number between each node pair, the edges of the mobility graph can be generated. The

details of this process are summarized in Algorithm 4. Note that other clustering or RoI

construction algorithms (e.g. T-Pattern[56], MeanShift or PopularRoutes[95]) may also

be used here, however KMeans is adopted in our system because it can be easily tuned

using the only one parameter K.
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Algorithm 4: Dynamic Crowd Mobility Graph Building
Input: Citywide crowd density and flow yd, y f , a mesh M, node number K.
Output: Dynamic Crowd Mobility Graph

1 Ψ← ∅ ; // dynamic crowd mobility graph.
2 for each t ∈ [t1, ..., tβ] do
3 dt, ft ← retrieve density,flow at t from yd,y f ;
4 V← Node Construction(dt, M, K) ;
5 E ← Edge Construction( ft, M,V) ;
6 Ψ← Ψ ∪ (V, E);

7 return Ψ ;
8 Function Node Construction (d, M, K):
9 C, W ← ∅, ∅;

10 for each gm ∈ M do
11 C ← C ∪ gm.centroid,W←W ∪ dm;

12 V←Weighted Kmeans Clustering(C, W, K);
13 returnV;

14 Function Edge Construction ( f , M,V):
15 Ω[|M|][|M|]← build grid transition matrix using f ;
16 E[|V|][|V|]← initialize node transition matrix with 0;
17 for each pair (gp, gq) ∈ (M, M) do
18 v← find gp belongs to which node inV;
19 v′ ← find gq belongs to which node inV;
20 E[v][v′]← E[v][v′] + Ω[p][q];

21 return E;

Given β-step crowd flow video f1, f2,..., fβ, using each frame of crowd video, transi-

tion matrices Ω1,Ω2,...,Ωβ can be calculated. Each Ωt essentially represents transition

probability between each mesh-grid pair in the timeslot t namely Ωti j = P(gi→g j) after

normalization. Each Ωt in our final system is just a transition matrix within 5 minutes,

which is not sufficient for a relatively long short-term probabilistic reasoning. To ad-

dress this issue, we view each Ωt as a first order probability and leverage the first order

probability to get higher order transition probabilities. Ω1×Ω2 contains all the second

order transition probability, thus Ω1:2=Ω1 + Ω1×Ω2 after normalization corresponds to

the 2-step transition probability, which is the likelihood of transition from gi to g j within

two steps namely 5*2 minutes. Analogously, we can get the β-step transition probability

by calculating the matrix Ω1:β=Ω1 + Ω1×Ω2 + ... + Ω1×Ω2×...×Ωβ with normalization.

Ω1:β built with multiple steps of crowd flow can be used to replace the simple first order

transition matrix Ω in Algorithm 4 (Edge Construction Function), then crowd mobil-

ity graph can contain the transition information within a longer time interval i.e. 5*β

minutes.
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Table 6.2: Event Information

Event Date Training Dates
3.11 Earthquake 2011/03/11 2011/03/01-2011/03/10
Typhoon Roke 2011/09/21 2011/09/11-2011/09/20
New Year’s Day 2012/01/01 2011/12/22-2011/12/31
Tokyo Marathon 2011/02/27 2011/02/17-2011/02/26

Table 6.3: Summary of Tuned Parameters

Parameter Tuned Value
Height,Width 80, 80
Time Intervals of One Day 5 minutes×288
Train/Test Timeslots 2880/288
Kernel Window η × η 15×15
(1)Timestep α/β (Max lead time) 6/6 (30 minutes)
(2)Timestep α/β (Max lead time) 12/12 (60 minutes)
Optimizer Adam
Epoch 200
Learning Rate 0.0001
Batch Size 4
Scaling Factor for Density/Flow 500/100

Table 6.4: Performance Evaluation of 30 Minutes Ahead Prediction on Four Events

Model 1/2
3.11 Earthquake Typhoon Roke

Density Flow Density Flow
HistoricalAverage 106.032 0.726 75.402 0.519

CopyYesterday 129.436 0.912 85.641 0.592
CityMomentum 27.670 0.653 29.305 0.962

ARIMA 10.430 NA 13.376 NA
VectorAutoRegressive 10.843 NA 13.377 NA

CNN 8.698 0.178 10.245 0.196
CNN Enc.-Dec. 7.115 0.117 8.571 0.187

MultiTask CNN Enc.-Dec. 6.802 0.119 8.226 0.197
ConvLSTM 6.737 0.124 7.959 0.195

ConvLSTM Enc.-Dec. 6.281 0.102 7.508 0.171
MultiTask ConvLSTM Enc.-Dec. 5.549 0.102 6.753 0.170

6.7 Experiment

6.7.1 Settings

Experimental Setup: We selected the Greater Tokyo Area (Long. ∈ [139.50, 139.90],

Lat. ∈ [35.50, 35.82]) as our target urban area. Four citywide-level events happened in

this area were selected as the testing events as follows. (1) 3.11 Earthquake (2011/03/11),
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Table 6.5: Performance Evaluation of 30 Minutes Ahead Prediction on Four Events

Model 2/2
New Year’s Day Tokyo Marathon

Density Flow Density Flow
HistoricalAverage 0.519 176.013 1.099 33.381

CopyYesterday 110.444 0.660 65.765 0.437
CityMomentum 23.058 0.235 25.774 0.475

ARIMA 8.343 NA 7.808 NA
VectorAutoRegressive 9.511 NA 9.380 NA

CNN 6.178 0.083 6.614 0.100
CNN Enc.-Dec. 5.216 0.079 6.004 0.095

MultiTask CNN Enc.-Dec. 5.158 0.084 5.953 0.097
ConvLSTM 4.679 0.077 5.675 0.094

ConvLSTM Enc.-Dec. 4.500 0.074 5.372 0.089
MultiTask ConvLSTM Enc.-Dec. 4.117 0.074 5.012 0.086

Table 6.6: Performance Evaluation of 60 Minutes Ahead Prediction on Four Events

Model 1/2
3.11 Earthquake Typhoon Roke

Density Flow Density Flow
HistoricalAverage 104.604 0.731 75.927 0.529

CopyYesterday 128.133 0.920 86.069 0.601
CityMomentum 32.034 0.570 35.090 0.821

ARIMA 24.296 NA 32.933 NA
VectorAutoRegressive 22.355 NA 29.872 NA

CNN 12.247 0.189 17.670 0.360
CNN Enc.-Dec. 11.372 0.164 13.876 0.245

MultiTask CNN Enc.-Dec. 10.812 0.177 13.800 0.247
ConvLSTM 11.355 0.139 12.285 0.228

ConvLSTM Enc.-Dec. 9.309 0.122 11.186 0.197
MultiTask ConvLSTM Enc.-Dec. 8.094 0.122 9.900 0.196

a magnitude 9.0-9.1 earthquake off the coast of Japan that occurred at 14:46 JST, which

caused a great impact on people’s behaviors in the Great Tokyo Area. (2) Typhoon Roke

(2011/09/21), recorded as one of the strongest typhoon in Japan’s history, which made

subway operators shut down part of their services. (3) New Year’s Day (2012/01/01).

There are a number of New Year celebrations in Tokyo area, especially, for “Hat-

sumode” (the first visit in Buddhist temple or shrine), most of the railway lines operate

overnight on the New Year’s Eve for this. (4) Tokyo Marathon(2011/02/27). The num-

ber of people attending this event was 2.16 million (the number of people along the road

was 1.53 million, and the number of visitors to the Tokyo Marathon Festival was 0.63

million). Also traffic regulation was strictly conducted along the Marathon route. These

four event days were used as testing dates, and 10 consecutive days before the event day

were utilized as training and validation dataset, which means 2011/03/01-2011/03/10,
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Table 6.7: Performance Evaluation of 60 Minutes Ahead Prediction on Four Events

Model 2/2
New Year’s Day Tokyo Marathon

Density Flow Density Flow
HistoricalAverage 175.344 1.102 33.422 0.225

CopyYesterday 106.991 0.645 65.725 0.440
CityMomentum 25.867 0.207 28.825 0.400

ARIMA 15.411 NA 15.259 NA
VectorAutoRegressive 21.072 NA 17.261 NA

CNN 10.469 0.119 12.114 0.223
CNN Enc.-Dec. 8.311 0.097 9.127 0.119

MultiTask CNN Enc.-Dec. 8.153 0.101 9.004 0.124
ConvLSTM 7.615 0.118 9.511 0.140

ConvLSTM Enc.-Dec. 6.885 0.086 7.843 0.103
MultiTask ConvLSTM Enc.-Dec. 6.496 0.085 7.483 0.101

2011/09/11-2011/09/20, 2011/12/22-2011/12/31, and 2011/02/17-2011/02/26 were the

selected periods for the four events respectively. Our data source contained approx-

imately 100,000∼130,000 users’ GPS logs on each day within the target urban area.

After conducting data cleaning and noise reduction to the raw dataset, we did linear

interpolation to make sure each user’s 24-hour (00:00∼23:59) GPS log has a constant

5-minute sampling rate. Then by mapping each coordinate onto mesh-grid, crowd den-

sity video and crowd flow video can be generated based the definitions listed in Section

6.4.

Parameter Settings: We meshed the entire area with ∆Long.=0.005, ∆Lat.=0.004 (ap-

proximately 500m × 500m), which resulted an 80×80 mesh-grid map. As mentioned

above, the time interval ∆t of our system was set to 5 minutes. Therefore, we got 2880

timeslots (288 * 10 days) as training dataset and 288 timeslots as testing dataset, and

crowd density frame and crowd flow frame were generated for each timeslot. Kernel

window was set to 15×15 for crowd flow, which could capture enough transit distance

of crowd flow within 5 minutes. We set the observation step α and the prediction step β

both to 6 to generate length-6 crowd/flow video as inputs and their corresponding next

length-6 videos as outputs. This means our system could predict the crowd dynamics

for the next 30 minutes. In each report, it contained a 6 steps of prediction results for

each 5 minutes, and the result at 6th step gave us the maximum lead time 30 minutes.

Similarly, an evaluation for the prediction with 60 minutes lead time is also conducted

by setting α and β to 12. Finally we could get 2,868 sample pairs from training dataset,

and randomly selected 80% of them (2,294) as the training samples and 20% of them
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(574) as the validation samples. The Adam algorithm was employed to control the over-

all training process, where the batch size was set to 4 and the learning rate to 0.0001 for

all deep learning models except that the learning rate of CNN AutoEncoder was tuned

as 0.001. The training algorithm would be stopped after 200 epochs and only the best

model would be saved. In addition, we used 500 as the scaling factor for crowd density

to scale the data down to relatively small values, and 100 as the scaling factor for crowd

flow value. In the evaluation, we rescaled the predicted value back to the normal values,

and compared them with the ground-truth. All the parameter settings of the experiments

are summarized as Table 6.3. The parameter settings were kept the same for each event.

Python and some Python libraries such as Keras[72] and TensorFlow[73] were used in

this study. The experiments were performed on a GPU server with four GeForce GTX

1080Ti graphics cards.

Baseline models: We considered the following models as baseline models for com-

parison. (1) HistoricalAverage. Crowd density/flow for each timeslot were estimated

by averaging last 10 days’ corresponding values. (2) CopyYesterday. We directly used

yesterday’s value as the predicted value on event days. (3) CityMomentum[2]. It was

firstly proposed for momentary mobility prediction at the citywide level for big events.

Although the model was build from a perspective of individual’s mobility, the pre-

dicted/simulated trajectory of each individual could be used for generating aggregated

crowd density and flow, which makes it comparable with our system. (4) ARIMA. It

is a classical time-series prediction model designed for one dimensional data. For each

mesh-grid, we build one ARIMA model to predict the time-series density prediction.

However, for flow tensor (80,80,225) at each timeslot, the dimension was just too high

for ARIMA to handle. (5) VectorAutoRegressive. It is an advance time-series prediction

model designed for high dimensional data. By flattening density tensor (80,80,1) at each

timeslot into 6400-dimension vector, the model could handle the crowd density predic-

tion task. For flow tensor (80,80,225), the dimension was also just too high for VAR to

deal with. (6) CNN. It is a one-step predictor constructed with four Conv layers. Note

that the 4D tensor would be converted to 3D tensor (Height,Width,Timestep∗Channel)

by concatenating the channels at each timestep just as the way [3] did, so that CNN

could take our 4D tensors as inputs. The first three Conv layers used 32 filters of 3×3

kernel window, and the final Conv layer used a ReLU activation function to output sin-

gle step of video frame. (7) CNN Enc.-Dec.. It is a multi-step predictor also constructed

with four Conv layers. It shares the same parameter settings with (5). The only differ-

ence is the final Conv layer outputs a 3D tensor (Height,Width,Timestep∗Channel) as

multiple steps of predictions. (8) Multitask CNN Enc.-Dec. It has 4 Conv layers sharing
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a similar multitask architecture as illustrated in Fig.6.6, namely separate input encoding

Conv layer, shared encoding and decoding layer, and separate output Conv layer. All the

parameters were kept same with (6). (9) ConvLSTM (one-step-by-one-step) and (10)

ConvLSTM Enc.-Dec (multi-step-to-multi-step) are the proposed comparison models

constructed with four ConvLSTM layers in Section 6.5. Each ConvLSTM layer uses

a 32 filters of 3×3 kernel window and the ReLU activation is used in the final layer.

BatchNormalization was added between two consecutive CNN/ConvLSTM layers for

all the models. Note that for all of the crowd flow parts, as shown in Fig. 6.5, CNN

AutoEncoder will be first applied to encode the original flow tensor and then decode the

(predicted) encoded flow back to the original format. Our final system is implemented

using MultiTask ConvLSTM Enc.-Dec..

6.7.2 Performance Evaluation

Evaluation metric: We evaluated the performances of the models with Mean Squared

Error (MS E) as follows:

MS E =
1
n

n∑
i

||Ŷi − Yi||
2

where n is the number of samples, Y and Ŷ are the ground-truth value and predicted

value in 4D tensor format, namely, (Timestep, Height, Width, Channel). Density tensor

and flow tensor differ at the Channel.

Overall performance: We compared the performance of the baseline models and our

proposed model Multitask ConvLSTM Enc.-Dec. on four events. The overall eval-

uation results are summarized in Table 6.5 for 30 minutes ahead prediction and Table

6.7 for 60 minutes ahead prediction, which both show that based on all four events:

(1) our model performed better than the others; and (2) all deep learning models had

advantages compared with existing methodologies (CityMomentum and VAR). In par-

ticular, we could also find that (1) the superiority of ConvLSTM to CNN on video-like

modeling tasks; (2) Encoder-Decoder architecture had the advantage on multi-step se-

quential prediction task; and (3) the effectiveness of mutlitask learning on enhancing

the correlated tasks.

Performance on density: We also verified the performance of our system by using

a times-series evaluation over the event day to show the ground-truth and predicted

density for selected areas (Tokyo Station Area and Shinjuku Station Area) in the city.

Each area consist of 3×3 neighboring mesh-grids, with Tokyo Station and Shinjuku
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(a) Ground Truth and 30 Minutes Ahead Prediction for Crowd Density

(b) Ground Truth and 60 Minutes Ahead Prediction for Crowd Density

Figure 6.7: Visualization of the ground-truth crowd density and the predicted result of
our system (MultiTask ConvLSTM Enc.-Dec.) at four events. The prediction lead time

is 30 minutes in (a) and 60 minutes in (b) respectively.

Station locating at the central mesh-grid respectively. From Fig.6.7, we can confirm the

effectiveness of our model for both 30 minutes and 60 minutes ahead predictions and its

high deployability for a real-world online event crowd management system. Referring

to the normal weekday and weekend pattern shown in Fig.6.1, we can find that the

densities on event weekday (3.11 Earthquake and Typhoon Roke) are very different

from normal weekday, and the densities on event weekend (New Year’s Day and Tokyo

Marathon) also differ a lot from normal weekend. Furthermore, even comparing 3.11
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(a) Ground-truth Graph at 2011-03-11
14:00:00

(b) Ground-truth Graph at 2011-03-11
15:00:00

(c) Ground-truth Graph at 2011-03-11
16:00:00

(d) Predicted Graph at 2011-03-11
14:00:00

(e) Predicted Graph at 2011-03-11
15:00:00

(f) Predicted Graph at 2011-03-11
16:00:00

Figure 6.8: Visualization of the ground-truth dynamic crowd mobility graph (top) and
the predicted results (bottom) at 3.11 Earthquake from 14:00 to 16:00. The larger
and darker nodes have higher crowd density and the darker edges represents higher
transition probability. The node number K is set to 100, and the edges correspond to

6-step transition matrix Ω1:6.

Earthquake vs. Typhoon Roke or New Year’s Day vs. Tokyo Marathon, the density

patterns are quite different with each other. This could further demonstrate the crowd

management at event situations is really challenging and our online prediction system

can be so indispensable for these special cases.

Performance on dynamic graph: Using the proposed algorithm in Section 6.6, we

build a series of dynamic crowd mobility graph for the 3.11 Earthquake event, and

demonstrate three snapshots of the graph at 14:00, 15:00 and 16:00 (the earthquake oc-

curred at 14:46 JST) in Fig.6.8. We generate 100 nodes and build the edge for each

node pair based on 6-step transition matrix Ω1:6, which can indicate the crowd flow

transition probability in the next 30 minutes. Through Fig.6.8, we could see how the

crowd dynamics were gradually evolving during the earthquake. No matter the ground-

truth or predictions, it showed quite different details at 14:00, 15:00 and 16:00. Crowd

density prediction could achieve very good performances as shown in the previous, and
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the nodes of the graph showed a close resemblance between the ground-truth and pre-

dictions. However, there still existed some gap between the ground-truth and prediction

of the transition probability on edges. Underestimation could be observed through the

figure, which left us room for further improvement on the high-dimensional crowd flow

video.

6.8 Conclusion

In this study, we built a data-driven intelligent system called DeepUrbanVideo to pre-

dict citywide crowd dynamics at big events in an analogous manner to a video prediction

task. We proposed to decompose crowd dynamics into crowd density and crowd flow

and designed a Multitask ConvLSTM Encoder-Decoder architecture to simultaneously

predict multiple steps of crowd density and crowd flow for the future time period. The

experimental results based on four big real-world events demonstrated the superior per-

formance of our proposed model compared with the baseline methods. However, our

method can still be improved in the following aspects. (1) Transportation network data

and other types of heterogeneous data such as the census data can be utilized to improve

the performance. (2) Current dataset contained approximately 1% of the total popula-

tion of Japan. We need to collect more trajectory data from other sources and design

reasonable scaling factors in order to predict crowd dynamics closer to the reality. (3)

Advanced deep learning technologies such as ResNet[96] and PredNet[97] can also be

utilized to further boost the performance, especially for the crowd flow prediction part.



Chapter 7

No Historical Data: Deep Online
Learning

7.1 Introduction

The next-generation 5G mobile Internet technologies will mark a new era in the infor-

mation industry, and they will play an important role in stimulating the growth of the

Internet of Things (IoT). Against this background, massive GPS trajectories that are

being continuously generated from sources, such as smartphones, GPS devices on cars,

WLAN networks, and location-based social networks, become important for use as

real-time human mobility data streams. With such valuable streaming data, people’s fu-

ture behaviors and movements can be predicted step-by-step in an online manner, based

on an intuitive Markov-like assumption that people’s next behaviors mostly rely on

their recent ones. Especially, when big rare events or disasters, such as high-magnitude

earthquakes happen, people’s behaviors and movements will become rather different

from their daily routines. Such online short-term predictions using recent momentary

mobility will become very necessary and practical. Elevating this to a citywide level,

namely predicting UrbanMomentary human mobility for a huge urban area, can play

a crucial role in effective urban planning, transportation scheduling, and emergency

management.

However, even for a short period, human mobility and transportation transitions for a

large-scale transportation system are highly complex, which are almost impossible to be

effectively modeled using classical methodologies or simple neural network-based mod-

els. Emerging deep-learning technologies have demonstrated superior performances on

116
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various datasets (e.g., images, texts, and videos) [68, 89, 90] of existing classical ap-

proaches. Hence, in this study, we investigate the various aspects of human mobility

during a short period in a large urban area by using a deep-learning-based approach.

We also develop an intelligent system for citywide short-term human mobility predic-

tion with high precision compared with the existing approaches.

Figure 7.1: Can we develop an online intelligent system for short-term human mobil-
ity prediction with high precision by using recent momentary mobility at a citywide
level? Big human mobility data and deep-learning technologies provide us with the

opportunity to implement this system.1

1“Konzatsu-Tokei (R)” from ZENRIN DataCom CO.LTD is used by us, which refers to people flows
data collected by individual location data sent from mobile phone with enabled AUTO-GPS function
under users’ consent, through the “docomo map navi” service provided by NTT DOCOMO, INC. Those
data is processed collectively and statistically in order to conceal the private information. Original lo-
cation data is GPS data (latitude, longitude) sent in about every a minimum period of 5 minutes and
does not include the information to specify individual such as gender or age. In this study, the proposed
methodology is applied to raw GPS data by NTT DOCOMO, INC.
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In this study, we first collect big human mobility data and process them into calibrated

trajectories, and construct an artificial human mobility data stream for a large urban

area. Then, we build an online intelligent system called DeepUrbanMomentum to con-

tinuously take the recent momentary mobility as the input and predict next short-term

urban human mobility as the output, as shown in Fig.7.1. The modeling component

of our system is based on the deep Recurrent Neural Network (RNN) architecture con-

structed using two layers: one RNN layer is used to turn the inputted location sequence

into a single latent vector containing information about the entire sequence. Then, a

functional layer will repeat this latent vector multiple times and pass this vector se-

quence to another RNN layer that is used to turn this constant sequence into multiple

steps of output mobility. This deep model is built essentially as a regression model that

can directly take continuous values (location coordinates) as input and output. Finally,

given an artificial mobility data stream for a big urban area, DeepUrbanMomentum will

automatically conduct an online deep-learning process and report the prediction results

of UrbanMomentum by a well-trained model by using the current urban mobility data.

To the best of our knowledge, DeepUrbanMomentum is the first system that applies the

deep-learning approach to effectively perform online short-term human mobility pre-

dictions at a citywide level. It has the following key characteristics:

• It is built and tested based on a big human mobility data source, which stores the

GPS records of 1.6 million users over three years.

• It is built as an online prediction system driven by mobility stream and deep-

learning technologies.

• It constructs a deep-sequence learning model with RNN for effective multi-step

predictions.

• It is applied to real-world scenarios and verified as a highly deployable prototype

system.

The remainder of this paper is organized as follows: Section 2 gives an overview of

our data source. Section 3 gives the definition of UrbanMomentum and the prediction

model. Section 4 explains the modeling details and the deep-learning architectures.

Section 5 shows the experimental details, the performance evaluation, and the prediction

results in a real-world scenario. Section 6 introduces studies related to our research.

Section 7 contains summaries, the limitations of our current system, and our future

work.
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7.2 Data Source

A raw GPS log dataset was collected anonymously from approximately 1.6 million mo-

bile phone users in Japan over a three-year period (August 1, 2010 to July 31, 2013)1.

Data collection was conducted by a mobile operator and a private company under an

agreement with the mobile phone users. This dataset contains approximately 30 bil-

lion GPS records, and the total size of the data is more than 1.5 TB. To better simulate

a real-time situation for our online system, this dataset is stored on a Hadoop cluster,

containing 32 cores, 32 GB memory, and 16 TB storage, which can run 28 tasks si-

multaneously. Furthermore, we use Hive on top of Hadoop to make the whole system

support SQL-like spatial queries. Therefore, GPS trajectories of a specified city and day

can be retrieved in a short response time, and our database can be regarded as a nearly

real-time data source that can provide streaming trajectory data to our online system.

7.3 Preliminaries

Definition 1 (Raw human trajectory): The raw trajectory collected from an individual is

essentially a sequence of 3-tuple: (timestamp, latitude, longitude), which can indicate

a person’s location according to a captured timestamp. In the rest of this paper, it is

further simplified as a sequence of (t, l)-pairs.

Note that the raw trajectory has a lot of temporal uncertainties because of different time

intervals between two consecutive timestamps. Our goal is to predict citywide human

movements; therefore, it motivates us to reduce temporal uncertainty by calibrating the

raw trajectory to have equal time intervals ∆t, which is defined as follows:

Definition 2 (Calibrated human trajectory): A calibrated human trajectory tra j from

time t1 to tm is a sequence of timestamp-location pairs denoted as: (t1, l1), (t2, l2), ...,

(tm, lm) that satisfies:

∀i ∈ [1,m) , |ti+1 − ti| = ∆t

In fact, this calibration operation is performed based on the following assumption.

Definition 3 (Temporal certainty assumption): For each individual person, his/her loca-

tion coordinates can be retrieved every ∆t time.
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Definition 4 (Urban human mobility stream): Based on the above definitions, urban

human mobility can be regarded as a kind of streaming data arriving every ∆t time in-

terval, from which we can get n infinite human trajectories corresponding to n individual

persons. Furthermore, these n trajectories will all be spatially contained in one urban

area denoted as ur. Therefore, an urban human mobility stream is determined by three

parameters ur, n, and ∆t, which are given as:

uhms = F(ur, n,∆t)

Figure 7.2: Deep Sequential Modeling Architecture.

Ideally, n should be the total number of a city’s resident population, and ∆t should be

several seconds. However, this ideal mobility stream is extremely hard to build because

of various limitations of location acquisition technologies. Therefore, n is more likely

to be the total number of active users of a certain smartphone application, and ∆t is set

to 10 min or a longer time interval.

Definition 5 (Current urban mobility): given an uhms, a current time t and an integer α,

current urban mobility Xt is defined as follows:

Xt = {tra j | tra j ∈ uhms ∧ ∀i, t − α∆t ≤ tra j.ti ≤ t}

which intuitively means current α steps of urban human mobility accumulated from

uhms.

Definition 6 (Next urban mobility): Similarly, given an uhms, a current time t, and an

integer β, the next urban mobility Xt+1 is defined as follows:

Xt+1 =

{tra j | tra j ∈ uhms ∧ ∀i, t + ∆t ≤ tra j.ti ≤ t + β∆t}

which means the next β steps of urban human mobility.
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Definition 7 (UrbanMomentum prediction model): Given the current urban mobility Xt,

UrbanMomentum prediction will construct a model Pθ(X̂t+1 | Xt), in which θ represents

a set of model parameters and X̂t+1 is the predicted next urban mobility. It will be built

as a regression model, and its parameters can be obtained by minimizing the prediction

error L(X̂t+1, Xt+1) as follows:

θ = argmin
θ

L(X̂t+1, Xt+1) = argmin
θ

||X̂t+1 − Xt+1||
2

7.4 Short-Term Urban Mobility Modeling

Our system is built based on a given uhms to predict the next urban mobility X̂t+1 using

Xt in an online manner. It is a relatively easy task when X̂t+1.β = 1, which means the

online system accumulates the current α steps of the urban human mobility Xt and uses

them to predict only one-step of the next urban mobility. However, it is always not suf-

ficient to give out only the one-step prediction, especially during times of emergencies,

such as rare events or some natural disasters. Therefore, a more meaningful prediction

X̂t+1 with a large β called Short-Term Urban Mobility Prediction becomes the main task

of our online prediction system.

7.4.1 SimpleRNN Modeling Architecture

Given a Xt and based on our temporal certainty assumption, a current mobility of one

person can be simplified as: xt = l1, l2, ..., lα, and similarly a next short-term prediction

can be represented as: x̂t+1 = lα+1, lα+2, ..., lα+β. It can be further modeled as:

P(lα+1, lα+2, ..., lα+β) =

β∏
i=1

P(li+α | li, li+1, ..., li+α−1) (7.1)

Spatial Continuity. This model is similar to the n-gram model, which is a typical prob-

abilistic sequential model for predicting the next item in such a sequence in the form of

a (n-1)-order Markov model. However, the longitude and latitude of each location l is a

continuous value in our problem definition because of the spatial continuity for which it

is not simple to utilize the Markov model. Some may suggest a classical methodology

that partitions the whole area into massive grids to convert the continuous space into

discrete values. It is still difficult because our online system has to predict short-term
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human mobility for large urban areas, such as the Great Tokyo Area. Even with 1000-

meter meshing, it still generates about 4,000 grids for the whole urban area (3,925 km2),

which will lead to an extremely sparse transition matrix if we apply the Markov model

based on this huge mesh. In conclusion, urban human mobility on a continuous large-

scale area is a highly complex phenomenon, which cannot be modeled without using

classical methodologies. The above information motivates us to employ deep-learning

technologies, such as RNNs [68], and their special variants of the long short-term mem-

ory (LSTM) networks [69], to our system for mobility modeling. These have provided

an impressive performance in modeling sequential data, such as speech and text. In par-

ticular, for our system, they can help us model human mobility on a continuous large

urban space in a regression manner.

Recurrent Neural Networks. Compared with traditional neural networks, RNNs are

specially designed for sequential data modeling. In traditional neural networks, neu-

rons in one layer and its neighboring layers are fully connected, whereas neurons in the

same layer do not have any connections. Such structures cannot effectively deal with

the situation when data are not independent, such as words in a sentence. The typical

structure of a simple RNN is shown in Fig.7.1. We can see that the neighboring neu-

rons in the same hidden layer are connected with one another so that the network can

memorize former information and have an impact on the output of the current timestep

τ. Therefore, the total input not only contains the input at the timestep τ, but also the

output at the timestep τ-1. To train an RNN, the standard method is “backpropagation

through time” (BPTT).

Our goal is to build an Urban Mobility Model for short-term prediction described by

Equation (7.1) using an RNN. A simple recurrent network structure is depicted in

Fig.7.2-(a), which typically contains an input layer, a hidden layer and an output layer,

where tanh is used in the hidden layer for mapping inputs into a s single latent vector

also called the latent representation. ReLU is used as the final activation function, and

mean-squared-error (mse) is the objective function defined in Definition 8.

The formulas that govern the whole computation in our architecture are as follows:

sτ = tanh(Uiτ + Wsτ−1) (7.2)

oτ = ReLU(V sτ) (7.3)

where iτ represents the input (li, li+1, ..., li+α−1), oτ represents the output lα+i described

in Equation (7.1), W and U are weight matrices in the hidden layer and V is weight
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Figure 7.3: Performance Evaluation of Weekday and Weekend.

matrix in the output layer. All these weight parameters will be determined by applying

the BPTT algorithm as mentioned above; the algorithm details will be omitted in this

paper.

With this construction, an n-gram-like mobility regression model called SimpleRNN is

built; the model can take continuous value of location coordinates as input and output.

7.4.2 DeepRNN Modeling Architecture

Short-Term mobility can be modeled and computed as defined in (7.1) in an itera-

tive one-by-one manner. One major limitation of this model is to predict a relatively

long short-term mobility. With the iteration going on, the accumulated iteration error

will become large, which can result in terrible performance on the last several pre-

dicted steps. To tackle this problem, we improve the multi-step-to-one-step modeling

in (7.1) with multi-step-to-multi-step modeling aimed at achieving better performance

on “long” short-term predictions. This is defined as follows:
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P(lα+1, ..., lα+β)

=

d
β
m e−1∏
i=0

P(lα+i·m+1, ..., lα+i·m+m | l1+i·m, ..., lα+i·m)
(7.4)

where m is multiple output steps at one time.

To deliver this idea, a deep-learning architecture called DeepRNN is constructed as

shown in Fig.7.2-(b). It works in the following steps: (1) the first hidden layer of

RNN maps the α steps of the inputted mobility into a single latent vector h, which

contains information about the entire sequence; (2) this vector is repeated m times; and

(3) another hidden layer of RNN is used to turn this constant sequence into the m steps

of the output mobility. Similarly, SimpleRNN, tanh, and ReLU are used as activation

functions in these two RNN layers. Our deep architecture is similar to a sequence-to-

sequence model [93], and the two RNN layers act as an encoder and a decoder.

7.5 Experiment

7.5.1 Experimental Setup and Parameter Setting

From our big human mobility database, we select one month of data (October 2011) and

divide them into two parts, weekday dataset and weekend dataset, since urban human

behaviors on weekdays and weekends are distinct from each other. Based on these, we

construct two independent urban human mobility streams, denoted as uhmsd (weekday)

and uhmse (weekend), respectively, where uhmsd.n ≈ 112, 360 and uhmse.n ≈ 94, 812

averaged by each day, uhmsd.∆t and uhmse.∆t are both set to be 10 min, uhmsd.ur and

uhmse.ur are both set to the Greater Tokyo Area by default (Long. ∈ [139.5, 139.9],

Lat. ∈ [35.5, 35.8]).

Then, the two types of UrbanMomentum predictions are tested on these two streams.

One is called “Next 60 minutes” with X̂t+1.β equal to 6, and another is called “Next 30

minutes” with X̂t+1.β equal to 3. This means our system will predict the next-one-hour

or next-half-hour urban human mobility in each report. Based on the empirical tuning

result, we found the current urban mobility Xt.α = 3 and m = 3 in DeepRNN would be

appropriate.
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Lastly, all settings about modeling training and testing are kept the same in these two

cases. For both SimpleRNN and DeepRNN, a 64-dimension vector is used as the latent

representation Zt of the entire Xt. The RMSprop algorithm is adopted in our system to

govern the whole training process. We randomly select 80% of the data for model train-

ing and use the remaining 20% for validation, which is used to early-stop our training

algorithm if the validation error is converged. This early-stopping strategy is very cru-

cial for an online learning system like ours. Python and some Python libraries including

Keras[72] and TensorFlow[73] are used to implement our system.

7.5.2 Performance Evaluation

Comparison models: (1) N-Gram. It is a widely used algorithm for modeling se-

quential data, especially in the filed of natural language processing. In our study, we

applied this model basing on a gridded space to predict next possible grid. Then the

location coordinates were generated randomly inside the predicted grid from a uniform

distribution. In order to avoid sparsity problem on a large urban area, we utilized Four-

Gram model with ∆Long.=0.01 × ∆Lat.=0.008 (approximately 900m × 900m) as the

mesh-size. (2) CityMomentum [2]. It was firstly proposed for this kind of momentary

mobility prediction at the citywide level. It is a predicting-by-clustering framework

using a mixture of multiple random Markov chains. Each of them is an improved first-

order markov model that considers not only the next-step probability from one subject’s

movements, but also the probability based on the cluster’s movements, where the clus-

ter is a bunch of subjects sharing similar movements with the subject. The parameter

settings used in our experiment were kept same with the original paper. (3)∼(4) Sim-

pleRNN and DeepRNN. These are the two models proposed by us. (5) DeepLSTM. We

also implement another comparison model with LSTM[69] called DeepLSTM, which

shares the same architecture with DeepRNN except that ordinary neurons in traditional

RNNs are replaced with special computation blocks namely LSTM. It has shown supe-

rior performance to traditional RNNs for long time-series modeling; therefore, we want

to test if it can further improve the performance for our short-term prediction system.

Evaluation metrics: For n trajectories in a given uhms, the next β steps of locations

will be predicted by every report of our online system. Therefore, to evaluate the overall

accuracy of simulation results in a simpler way, we redefine two different metrics, the
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mean absolute error (MAE) and the root-mean-square error (RMSE), as follows:

MAE =
1
n

n∑
i=1

1β
β∑

j=1

||li j − l̂i j||


RMSE =

1
n

n∑
i=1

1β
β∑

j=1

||li j − l̂i j||
2


1
2

where ||l − l̂|| means the Euclidean distance between the real location and the predicted

one for each trajectory at each step, which will be measured in meters.

Figure 7.4: Visualization for human mobility in the core area of Tokyo in first six
hours after the Great East Japan Earthquake. The prediction results are listed on the
top in blue, and the corresponding ground truths are at the bottom in red. The 64-
dimensional latent representations of UrbanMomentum learned by RNN at each times-
tamp are listed in the middle. The maximum, average and minimum are calculated
across each dimension (0∼63) separately as a concise summary of the entire represen-

tations. 1

Performance comparison: Using the two metrics above, we compared the perfor-

mances of the baseline models and our proposed deep-learning-based models for each

hour by averaging each day’s result. The evaluation results are summarized in Fig.7.3,

and the results of the “Next 60 minutes” and “Next 30 minutes” are listed as Fig.7.3-

(a)∼(d) and Fig.7.3-(e)∼(h), respectively. We can see that the DeepRNN model outper-

formed N-Gram, CityMomentum and SimpleRNN in each subfigure, and the advantage
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Figure 7.5: Performance Evaluation of 3.11 Japan Earthquake and New Year’ Day.

over SimpleRNN is more obvious for a relatively long-term “Next 60 minutes” predic-

tion than a short “Next 30 minutes” one. Furthermore, DeepLSTM achieved better per-

formances than DeepRNN, which demonstrates that the traditional RNN is not sufficient

for modeling short momentary human movements. All the models performed relatively

badly around 8:00 am and 6:00 pm of weekday-the typical morning and evening rush

hours in Tokyo. Urban human mobility running on a highly complicated transportation

system will change drastically during these hours, and UrbanMomentum becomes hard

to predict by just using a few recent observations, which are a major limitation of our

system for the normal weekday scenario.

7.5.3 Application to Real-World Scenario

We apply our prototype system to two real-world scenarios: (1) 3.11 Japan Earth-
quake (2011-03-11). On March 11, 2011, at approximately 2:46 pm local time, the

9.0 magnitude Great East Japan Earthquake occurred off the east coast of Japan; this

is considered one of the most powerful earthquakes worldwide. The earthquake caused

a great impact on people’s behaviors in the Great Tokyo Area. We apply our system

to this major emergency scenario to validate its applicability by using a constructed
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mobility stream of 2011-03-11 00:00∼23:59. Our system gave out reports of “next

60 minutes” and “next 30 minutes” short-term urban mobility prediction every hour.

Taking about 30,000 people who were in the core area of Tokyo at 3:00 pm as obser-

vation targets, we selected 15:30, 17:30, 19:30, and 21:30 (approximate 6 hours after

the earthquake happened) as four evaluation timestamps, and compared their predicted

locations with the ground truth. The visualization results are shown in Fig.7.4. This

figure shows that our system can work with a relatively high accuracy level to predict

urban human mobility after such a huge disaster and a slow evacuation process. Fig.7.4

also demonstrates the encoding RNN has effectively learned the latent representations

of UrbanMomentum for the different timestamps after the earthquake. Furthermore, we

used the same quantitative measures and summarized the evaluation results as Fig.7.5-

(a)(c)(e)(g). Through the figures, we can see the different performance result around

3:00 pm comparing with normal weekdays because of the huge influence of the earth-

quake on urban transportation system. (2) New Year’s Day (2012-01-01). New Year

can also be treated as a kind of rare event although it is not that rare as 3.11 earthquake.

There are a number of New Year celebrations in Tokyo area, such as Disney Land New

Year party and Shibuya square countdown. Especially, for “Hatsumode” (the first visit

in Buddhist temple or shrine), a large crowd of people gather at Meiji Shrine, Sensoji

Temple and Zojoji Temple, and most of the railway lines operate overnight on the New

Year’s Eve for this. All these make urban human behaviors very different from normal

days. We constructed a mobility stream of 2012-01-01 00:00∼23:59 to test the per-

formance of our system under this scenario and summarized the evaluation results as

Fig.7.5-(b)(d)(f)(h). Different performance result during midnight (01:00∼05:00) can

also be observed through the figures. DeepLSTM still achieved the best performances

under both of the scenarios.

7.6 Related Work

CityMomentum [2] is the most closely related work with ours; however, our deep-

learning-based approach can outperform it as shown in our experiments. Simulating

human emergency mobility following disasters was addressed in [37, 38], but it required

disaster information such as intensity of earthquake and damage level as additional in-

put data. Modeling human mobility for very large populations [13, 22, 36] are research

topics close to ours, but still different from our problem definition. Moreover, traffic

flow has also been studied in [29, 30]. However, all of these approaches did not use
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the power of deep learning technologies. Forecasting citywide crowd density [3, 19] is

a related endeavor based on deep learning, which builds a long time-series model for

each region of a city, whereas our system predicts citywide short-term mobility based on

the recent observations rather than a long-period’s. Some researchers also have applied

deep learning to predict traffic flow, traffic speed, congestion, and transportation mode

along with human mobility [45–49]. Moreover, various studies conducted on human

mobility data, are summarized as urban computing in [5]. C. Song [31] explored the

upper bound of predictability of human mobility. J. Zheng [10] proposed an unsuper-

vised learning algorithm for location prediction.

7.7 Conclusions

In this study, we collected big human mobility data to construct artificial mobility data

streams for large urban area. Based on this, we build an intelligent system call Deep-

UrbanMomentum for online short-term mobility prediction at a citywide level based

on momentary human movements that we achieved. A deep RNN was specially de-

signed as an effective multistep-to-multistep prediction model. Experimental results

demonstrated the superior performance of our proposed model compared to the exist-

ing approaches and other shallow models. Furthermore, we applied our system to a

real-world scenario and verified its applicability.

Our system has some room for improvement in the following areas: (1) Our system is

still struggling to deal with the situation when urban mobility is full of sudden changes

such as morning rush hours. (2) Other heterogeneous data, such as transportation net-

work and Point-of-Interest data, can also be used as auxiliary features for deep-learning

models. (3) More sophisticated preprocessing will be included to improve the overall

performance of our system. Particularly, we will apply map matching algorithm and

trajectory calibration algorithm [32] to improve the quality of the raw trajectories.



Chapter 8

Conclusion

Rapidly developing location acquisition technologies have provided us with big GPS

trajectory data, which offers a new means of understanding people’s daily behaviors as

well as urban dynamics. In this study, a raw GPS log dataset was collected from ap-

proximately 1.6 million mobile phone users in Japan over a three-year period (August 1,

2010 to July 31, 2013). With such data, predicting human mobility at the city level will

be of great significance for transportation scheduling, urban regulation, and emergency

management. However, in order to do this, we still confront with a few challenges. (1)

The urban area is too large, taking the Greater Tokyo area as an example, it is the most

populous metropolitan area in the world, has an urban area that can reach 3.925 km2,

and its metropolitan area can be 14.034 km2. How to deal with such huge spatial domain

is the first challenge; (2) Collected data used for model training are often limited to a

small portion of the total population, and we can’t collect every citizen’s long-term his-

torical trajectory data. How to train an effective model with limited training data (e.g.,

1% of the total population) is the second challenge; (3) Under some real-world appli-

cation scenario such as crowd management and crowd monitoring, it is important to

predict crowd mobility as well as crowd density, especially for the latter one. Because

high crowd density naturally means high risk for accidents. How to simultaneously

predict crowd density and crowd flow is the third challenge; (4) Sometimes we may

have no time or historical data for training a prediction model. Moreover, when some

big events happen such as an earthquake, typhoon, and national festival, people change

their behaviors from their routine activities. Thus, a model trained with historical data

can’t work very well for such kind of circumstances. Recently, the success of deep

learning in the fields of computer vision and natural language processing motivates us

130
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to consider deep learning techniques as highly potential solutions to our problems, be-

cause it has the following advantages: (1) It can handle real big data; (2) It can model

highly complex spatiotemporal system; (3) It can deal with multimodal distribution;

(4) It can fuse multiple heterogeneous data. Then we propose four deep-learning-based

solutions to address those four challenges and demonstrate the superior performances

to the baseline methodologies. Finally, we summarize all of the works including some

complementary works, discuss the limitations of current proposed solutions, and point

out the future works.

Each task in the citywide human mobility is an under-explored problem, there is a large

room for improvement in the future: 1) improving accuracy 2)new application scenar-

ios. Also we need to explore more challenges/problems on citywide human mobility

prediction, and propose corresponding solutions. We also try to apply deep learning

technologies to traffic flow/density prediction on transportation network. Our study has

some room for improvement in the following aspects: (1) Our approach is still strug-

gling to deal with situations in which urban mobility is full of sudden changes such as

morning rush hour. (2) Currently, only one month’s data was used for our experimental

evaluation. To validate the scalability and improve the overall performance of our ap-

proach, we need to try more trajectory data over one month. (3) In addition to POI data,

transportation network data and other types of heterogeneous data such as the popula-

tion density can be utilized as geographical features. (4) Current framework only takes

spatial information into account, temporal information could also be used to improve

the performance, and conduct the time-series modeling for citywide human mobility.

(5) The current dataset only contained approximately 1% of the total population of

Japan. Thus, we need to collect more trajectory data from other sources and design

reasonable scaling factors in order to simulate and predict citywide human mobility in

a more realistic manner. (6) Advanced deep learning technologies such as ResNet[96]

and PredNet[97] can also be utilized to further boost the performance, especially for

the crowd flow prediction part. (7) Exploit the maximum prediction lead time of our

system. (8) More sophisticated preprocessing will be included to improve the overall

performance of our system. Particularly, we will apply map matching algorithm and

trajectory calibration algorithm [32] to improve the quality of the raw trajectories.
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