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EXECUTIVE SUMMARY 

Convolutional Neural Networks (CNN) offer promising opportunities to 
automatically glean scientifically relevant information directly from annotated images, 
without needing to hand craft features for detection. Crater counting started with hand 
counting hundreds, thousands, or even millions of craters in order to determine the age of 
geological units on planetary bodies of the solar system. Automated crater detection 
algorithms have attempted to speed up this process. Previous research has employed 
computer vision techniques with hand crafted features such as light and shadow patterns, 
circle finding, or edge detection. This research continues, but now some researchers use 
techniques like convolutional neural networks that enable the algorithm to develop its own 
features. As the field of machine learning undergoes exponential growth in terms of paper 
count and research methods, the crater counting application can benefit from the new 
research, especially when conducting joint interdisciplinary projects. Despite these 
advancements, the crater counting community has not yet adopted standard methods for 
automating the process despite decades of research. This research enumerates challenges for 
both planetary geologists and machine learning researchers, looks at the recent automatic 
crater detection advancements using machine learning techniques (primarily in methods using 
CNNs), and makes recommendations for the path toward greater automation.  

Machine learning segmentation techniques show great promise for automating crater 
counting. Developing effective segmentation neural networks for this task involves multiple 
design choices in the network architecture and training set preparation. This research 
evaluates two target types, measures the impact of hyperparameters (kernel size, filters), and 
varies the amount of data used to train the models from using 3 to 15 of the 24 tiles. (Each 
tile is 30º by 30º and is within ±30º latitude.) The algorithm is trained using annotations of 2-
32 km radius Martian craters and THEMIS Daytime Infrared (IR) Global Mosaic tiles. Pixel-
based machine learning metrics like loss and accuracy are used during training and 
validation. In addition, crater count metrics such as recall (match ratio), precision, and F1 
score are used to evaluate the performance and for model selection. The results innumerate 
how incorporating machine learning into the crater counting process is beneficial to planetary 
geologists: for example, by creating a list of craters in a region or suggesting potential 
degraded craters for further analysis. A segmentation network using convolutional neural 
networks is successfully implemented to find 65-76% of craters in common with a human 
annotated dataset, which is shown to obtain comparable ages of nine diverse regions.  
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CHAPTER 1:  INTRODUCTION 

The use of machine learning techniques in space science and engineering has grown 

in popularity and impact over the past several years. Scientists recognize the value in 

automating time-consuming tasks and identifying patterns in high dimensional data sets. 

Existing research marrying space and machine learning includes: prioritizing asteroid 

deflector technology (Nesvold et al., 2018), transient exoplanet discovery (Shallue & 

Vanderburg, 2018), hyperspectral image classification (Mou, Ghamisi, & Zhu, 2017), and 

classification of Cassini images (Stanboli, Bue, Wagstaff, & Altinok, 2017). When quality 

data is available and problems are well defined, there is potential for optimization and new 

discoveries. Shallue et al. found two new exoplanets using machine learning techniques that 

helped sift between transiting exoplanets and false positives (Shallue & Vanderburg, 2018). 

Stanboli et al. used a classification convolutional neural network to create a search tool to 

help organize the 800,000 images taken by the Cassini spacecraft by contents (rings, craters, 

etc.) (Stanboli et al., 2017). Another problem worthy of optimization is crater identification: 

the identification of craters caused by impacts or other erosion on the surface of a planetary 

body and the measurement of their size. Once crater locations and sizes are identified, the 

results can be used for age dating, hazard avoidance, or positioning.  

Planetary geologists use crater counting to age-date regions of planetary bodies 

(Crater Analysis Techniques Working Group, 1979) (Ivanov, 2001) (Hartmann & Neukum, 

2001) (Neukum, Ivanov, & Hartmann, 2001). The surface age is determined by counting the 

number of craters of various sizes in a region and comparing those counts to expected 

accumulation from a known production function based on an expected meteorite impact rate. 

Regions of interest could include a lava flow, a giant crater, or a dry river bed; interesting 

regions can be anywhere there is evidence of a common starting point from which craters 

have accumulated. More craters, and particularly more large craters, indicate older regions. 
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However, the count alone does not give an age directly. For Earth’s Moon, radiometric dating 

of the lunar samples returned during the Apollo missions anchor the chronologies to absolute 

ages (Crater Analysis Techniques Working Group, 1979). For other planetary bodies, relative 

ages can be determined and assumptions are needed to make predictions of absolute ages. As 

samples are returned from other bodies, those relative ages will yield absolute ages. 

Traditionally, the crater counting task is done by citizen scientists, graduate students, and 

experts who label – by hand – the characteristics of hundreds of thousands of craters.  

With the publication of large crater counting datasets and increased accessibility of 

machine learning methods and computational hardware, this historically tedious task can be 

automated. One challenge is that craters overlap and vary in size, depth, and visibility. One 

way to untangle this complex terrain is to use neural networks. Unlike other automated 

techniques which require a set of human-designed features (S. Liu, Ding, Gao, & Stepinski, 

2012; Urbach & Stepinski, 2009), neural networks find their own, and complex pattern 

recognition criteria can be developed. A Convolutional Neural Network (CNN) (LeCun, 

Bengio, & Haffner, 1998) is a common machine learning technique for analyzing data and is 

especially useful for processing images (LeCun, Bengio, & Hinton, 2015) in tasks from 

handwritten digit recognition (Denker et al., 1989) to scene segmentation and human pose 

estimation (He, Gkioxari, Dollár, & Girshick, 2017). They are particularly successful in 

situations with large multidimensional datasets. For example, Maggiori et al. used CNNs to 

segment remote sensing images of Earth (Maggiori, Tarabalka, Charpiat, & Alliez, 2017), 

and Long et al. used CNNs to locate objects in remote sensing images (Long, Gong, Xiao, & 

Liu, 2017). In this study, the use of a segmentation convolutional neural network to identify 

craters from Mars satellite imagery is explored. 
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1.1 RELATED WORKS 

Crater counting has developed over 40 years and anchors on the idea that 

understanding the distribution of craters by size and location gives insights into the relative 

age of regions. The founding techniques were described by the Crater Analysis Techniques 

Working Group in 1979 (Crater Analysis Techniques Working Group, 1979) and scientists 

have modified and extended the method since (Robbins et al., 2018). For example, further 

studies of the relationship of the crater ages on the moon linked the lunar absolute ages to 

relative ages on Mars (Ivanov, 2001) (Hartmann & Neukum, 2001) and other inner solar 

system bodies (Neukum et al., 2001). Insights from crater counting with these techniques led 

to the creation of a new global geological map of Mars and dating the different large craters 

or geological units (lowland, volcanic, impact, etc.) (Tanaka, 2014) (Tanaka et al., 2014) via 

crater counting techniques (Platz, Michael, Tanaka, Skinner, & Fortezzo, 2013). Regions that 

make up a geological unit are often unique shapes (many examples in Platz et al. (Platz et al., 

2013)). Other authors have developed analysis tools for the crater counting community 

(Michael & Neukum, 2010) (Michael, 2008), investigated topics such as identification of 

crater clustering (Michael, Platz, Kneissl, & Schmedemann, 2012), studied the minimum 

effective area for crater counting with high resolution data (Warner et al., 2015), explored the 

reproducibility of crater counts by experts (Robbins et al., 2014), and determined the 

potential for citizen scientists to contribute to crater identification (Bugiolacchi et al., 2016).  

Although researchers can glean insights by making direct observations while counting 

craters and general familiarity with the surface of the target celestial body is valuable, 

counting craters is a repetitive task that could be automated. While many methods for 

automated crater counting have been proposed (Cohen, 2016) (Yamamoto et al., 2017) (Salih 

et al., 2016), none of these methods has been definitive or adopted by the community to 

replace hand labelling data. Some techniques (Cohen, 2016) are exclusively devoted to 

classification, not localization (thus requiring significant pre-processing). Moreover, some 
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techniques (Yamamoto et al., 2017) (Salih et al., 2016) require information beyond image 

data, such as digital elevation models or digital terrain models, which are not available for all 

planetary bodies, require non-standard instruments, and have resolution limits.  

1.2 THESIS CONTRIBUTIONS 

1. Interdisciplinary approach to automatic crater detection, incorporating aspects of 

machine learning (ML), planetary geology, and systems engineering 

2. Analysis and categorization of the recent crater counting papers using convolutional 

neural networks 

• Enumerate challenges, advice for researchers entering this area, evaluate dataset 

“friendliness” for ML 

3. First work to develop a segmentation architecture for THEMIS Daytime Infrared data 

for Mars 

• Discovered the crater segmentation could still happen despite missing pixel data 

in imagery 

• Evaluation of the use of multiple targets for this application 

• Exploration of kernel size and filter numbers on final training using both 

traditional machine learning metrics (loss, accuracy) and post-processed metrics 

(F1 score, recall, precision) 

• Few studies compare impact of kernel size and filters so closely: from loss & 

accuracy on a pixel level through F1 score of counts. This is the first such study 

for crater counting. 

• Sensitivity analysis to determine how much data is needed for training 

4. Development of framework to consider crater counting as a machine learning-driven 

“human-in-the-loop” project 
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CHAPTER 2:  LITERATURE REVIEW 

2.1 SOURCE 

This chapter is based on a paper called “Automated Crater Detection Algorithms from 

a Machine Learning Perspective in the Convolutional Neural Network Era.” It aims to bridge 

the gap between planetary geologists and machine learning researchers and provide ideas and 

tools for those entering the field of automated crater counting using machine learning from 

either direction.  

2.2 INTRODUCTION 

Planetary geologists identified craters as a key to understanding planetary 

development in the 1970s (Crater Analysis Techniques Working Group 1979). When a major 

geological event occurs (like a large meteorite impact), it wipes the surface geographic slate 

clean. Scientists may want to determine the age of that large crater or another area of 

geographic interest. By counting the number and size of the craters in the geographic unit, 

absolute age (on the Moon) or relative age (Mars, Mercury) can be determined.  

Over time, researchers have developed various automated crater detection algorithms 

(CDA) which are intended to speed up the process of counting craters in new areas or to find 

smaller craters when higher resolution data is available. These automated methods largely 

track to the computer science methods of the time. Many computer vision techniques have 

been used and more recently, machine learning methods have become increasingly popular.  

Although on Mars and the Moon craters are identified down to 1 or 2 km over the 

entire surface (Robbins & Hynek 2012a; Robbins 2018a) capturing the smaller craters, 

especially over a very large region, remains a daunting task. Additionally, as new data, 

especially higher resolution data, is provided to the scientific community, researchers re-
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evaluate the surface looking for additional scientific potential (analysis of secondary craters 

or boulder degradation).  

While survey papers including some machine learning methods have been written on 

the topic of crater detection on planetary bodies (Salamunićcar & Lončarić 2008b; Stepinski 

et al. 2012; Patil & Kini 2015), none have yet covered the new machine learning approaches 

like the Convolutional Neural Network (CNN) based architectures of the past few years. 

Several other papers (Sawabe et al. 2006; Chung et al. 2014) compared a variety of methods 

on their dataset and included machine learning techniques among the number, but these 

papers came before the Convolutional Neural Network papers and techniques that are the 

focus of this review.  

Adopting one or several CDAs across the community is a big challenge (Stepinski et 

al. 2012) as researchers differ in their techniques for counting. Many techniques used have 

been specific to a terrain region. A few papers (DeLatte et al. 2019; Silburt et al. 2019) have 

applied their method to a much larger and diverse set of terrain: ±30º latitude, 0-360º 

longitude.  

While this chapter focuses on the use of machine learning for crater counting, it fits 

into a larger body of work evaluating machine learning for space applications. For example, 

Kerner et al. (Kerner et al. 2018) assess Mars images from Mars Science Laboratory rover 

Curiosity with a neural network and evaluate each image’s use for science. Nesvold et al. 

(Nesvold et al. 2018) use machine learning to prioritize technology development for 

deflecting asteroids. Nguyen et al. (Nguyen et al. 2018) evaluate six classifiers for detecting 

debris disks. Shallue and Vanderburg (Shallue & Vanderburg 2018) use a CNN to detect 

exoplanets in multi-planet systems. This is a small sample of the journal research from only 

the past year and speaks to the enormous potential of machine learning to help recognize 

patterns and aid space science. 



 
7 

The major contributions of this work include: (1) categorization of the CNN 

techniques used on the Moon, Mars, and other planetary datasets; (2) description of potential 

benchmark datasets: combinations of annotation and image datasets that have been used in 

this research; (3) enumeration of challenges in using machine learning for crater counting; (4) 

discussion of promising techniques being developed in the machine learning community.  

2.3 RESEARCH MOTIVATION & METHODOLOGY 

The goal of this survey is to understand where and how convolutional neural networks 

and other machine learning techniques have been applied to the crater detection and counting 

problem and consider future directions by looking to machine learning research in general. 

Accordingly, this work has two aims: (1) collect examples and evaluate a recent trend in 

using machine learning for crater counting, Convolutional Neural Networks (CNN), and (2) 

provide some context to both the machine learning and planetary geologist communities to 

help these communities understand the challenges of each discipline.  

Applying machine learning, and specifically techniques using convolutional neural 

networks, to crater counting is a natural direction for this research, but for planetary 

geologists to collaborate most effectively with machine learning researchers, each group 

needs to understand the challenges of the other discipline.  

This survey takes a close look at the use of convolutional neural networks in crater 

counting and puts that research in context by detailing other contemporary machine learning 

metrics. The focus of this study is papers that feature automatic crater detection using CNN 

and spanning 2015-2019 (and one early work from 2005). To accomplish the goals of the 

review, keywords such as “crater counting,” “crater detection algorithm” were combined with 

“convolutional neural network,” “support vector machines,” “machine learning,” and “deep 

learning” to find relevant papers. Further papers were found by reviewing citations within 

those papers. 
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In total, thirteen published journal papers, book chapters, theses, and conference 

papers (four of which were Lunar and Planetary Science Conference abstracts) are identified 

as related directly to the use of CNNs in crater detection. Table 2-1 lists the criteria for 

including or excluding papers from this count.   

Table 2-1: Criteria for including and excluding articles from comparison 

Inclusion (if all criteria are met) Exclusion (if any below criteria met) 

Published 2000 or later 
Included crater detection or crater counting 
application 
Included experimental results 

Non-English  
Conference papers whose contents were included 
in one of the journal papers (multiple publications 
by author) 
 

 

2.3.1 CHALLENGES 

Collaboration between two disparate fields has both challenges and tremendous 

potential. By examining some of the key challenges for both planetary geology and machine 

learning, researchers can better understand where the synergies and friction points are in 

implementation. For example, a planetary data processing task that may seem monumental to 

a machine learning researcher may be easier for a geologist familiar with the tools and 

formats of satellite imagery. Implementing several existing machine learning architectures 

from Github repositories may be a herculean task or part of a typical day. By working 

together, these two groups can take advantage of existing strengths and focus on new 

challenges. 

Key among the various planetary geology challenges are: 

• Visualization challenges. Overlapping craters, degraded craters, and oddly shaped 

craters make it difficult to craft good “crater” features by hand. Light and shadows 

render differently in each type of data: visual, infrared, and elevation. It can be 

difficult for humans to accurately determine crater boundaries or coverage.  
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• Consistency and repeatability challenges. Experts disagree on image data 

interpretation. Prior research has shown that there is up to a 45% difference in 

how expert crater counters label the same regions (Robbins et al. 2014). With so 

much variability among experts’ hand labeling of the same region, it will be 

difficult to create a single crater detection algorithm that is widely accepted. A 

machine learning algorithm would be consistent in the application of its feature 

detection, but for planetary geologists to agree on the best model would itself be a 

challenge. The treatment of secondary (craters formed after the primary impact, 

usually in an ejecta ring) and degraded craters would need to be chosen carefully.  

Key machine learning challenges: 

• Benchmark datasets. While annotations exist of various regions of planetary 

bodies, machine learning researchers entering the field do not initially have clear 

idea of the difficulty level of an area or interest. Currently, machine learning 

researchers choose datasets based on convenience, accessibility, and usability. 

Well formatted datasets on Github or another easily accessible, open source 

platform will be the first choice. Established datasets of agreed upon importance 

are needed, and those determinations can only be made by planetary geologists. 

• Label criteria. Even with perfect ability to determine crater status, the choice of 

labels can significantly impact results. For example, if one crater is inside another, 

the inner crater can be hidden if the labels are crater/non-crater but visible using 

“crater rim” or “location/radius” parameters. Choices of this nature permeate the 

problem.  

• Regularization and overfitting prevention. Large networks can “memorize” the 

training data, but these trained models most likely would not translate to a new 
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region. Techniques like dropout (Srivastava et al. 2014) and data augmentation 

(Chollet 2017) can help here, but there is no standard fix.  

• Quality training data. The phrase “garbage in, garbage out” holds true here. High 

quality annotations enable a well-trained network. Training annotations that 

confuse the network with false positives and false negatives decrease the 

network’s ability to correctly identify new craters. However, there are studies 

showing that neural networks are robust to significant label noise (Rolnick et al. 

2017) and in some cases may actually generalize better with a small about of label 

noise. An important caveat is quality does not offset a lack of data. 

• Transfer challenges. An algorithm that works very well for one type of terrain may 

be useless on another if features detected are too specialized to that terrain. 

Algorithms may not transfer or may transfer incompletely between planetary 

bodies. Furthermore, the type of loss used in training may be ill-suited if the 

density of features differs significantly between terrains. 

• Tuning hyperparameters. Hyperparameters consist of the precise values selected 

for the architecture like: base architecture (fully connected, U-Net, AlexNet, etc.), 

number of layers, number of filters, number of training epochs, learning rate, 

amount of training data, activation type for each layer, etc. Some have likened 

tuning hyperparameters to more art than science, and searching among various 

hyperparameter combinations efficiently is itself an area of ongoing research with 

methods like: grid search, Hyperopt  (Bergstra et al. 2015), and a growing field of 

“automatic machine learning” (Zoph & Le 2016; H. Jin et al. 2018). 

Some planetary bodies have properties that change crater appearance that are not 

directly related to age. Earth is the extreme example with craters being filled in by lakes, 

vegetation, or weathering over time decreasing the appearance of craters. (Even so, a 
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terrestrial surface algorithm was developed to detect Earth craters (W. Li et al. 2017).) On 

Mars, weather can erode craters over time, causing degradation, but sometimes “fresh” 

looking craters are actually old. In these cases, the weathering may have exhumed the craters 

instead (Malin & Edgett 2000). Airless bodies like the Moon or Mercury are less susceptible 

to this type of weathering.   

A potential source of confusion for researchers new to the area is the similarity 

between paper titles and the overloaded use of key terminology. Seven separate papers have a 

variation of “automated crater detection…using convolutional neural networks” as part of the 

title (Benedix et al. 2018; Cohen et al. 2016; DeLatte, Crites, Guttenberg, Tasker & Yairi 

2018a; Emami & Bebis 2015; Emami, Ahmad, Bebis, Nefian & Fong 2018a; Norman et al. 

2018; Palafox et al. 2017). The community needs to be more specific and unique with 

naming. Terms like “convolutional neural network,” “automatic detection of craters,” “novel 

detection algorithm,” and their variations have become so ubiquitous that sifting through the 

differences is challenging. In early papers (Kim et al. 2005; Enke & Merline 2005), neural 

networks are a novelty, but now with so many different types of CNN architectures available, 

more descriptive names are necessary to differentiate the techniques. Convolutional neural 

networks are used in a wide variety of algorithms that perform and work differently. Using a 

segmentation CNN (like U-Net) versus using Faster R-CNN involve CNNs in different 

places in the crater counting pipeline.  

A challenge to evaluating previous research in the field is the lack of similarity of 

datasets between papers. Even sharing statistics about the size of craters in meters, 

kilometers, etc. (as is common in planetary geology papers) could be somewhat misleading 

because of the difference in dataset resolution. (This issue is solved if the paper clearly states 

both the size in kilometers and the dataset resolution used.) A method that works on craters 

larger than 1 km using a particular dataset cannot necessarily be compared directly to another 

if they have different resolutions. Here, knowing the relative sizes of craters in pixels is 
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useful for machine learning researchers. Additionally, challenges that plague some datasets 

are unique to that type. Digital Elevation Model (DEM) and Digital Terrain Model (DTM) 

data does not need to consider the angle of light, but the incidence angle is a vital 

consideration in visual and a moderate one in infrared. Thus, the reported detection 

percentages must be caveated with several clarifications: type of dataset (visual, infrared, 

DEM/DTM), size of the crater detection in pixels (converted from the range and resolution), 

type of instrument, resolution of the dataset, and angle of incidence.  

The value of baseline datasets is found in both planetary geology and machine 

learning. In planetary geology, one region near the Apollo 16 landing site is used as a 

reference for lunar science and instrument calibration (Pieters et al. 2008) (pg. 251). In 

machine learning, datasets like MNIST (digit recognition, 0-9) and CIFAR-10 (images of 

common objects) are commonly used to compare classification algorithms. While these 

baselines provide value as points of comparison, one nuance is to ensure that they are not the 

only datasets used because optimizing for a single dataset limits transfer potential. (To 

address this, Kuzushiji-MNIST (Clanuwat et al. 2018), based on cursive Japanese characters, 

is proposed as an alternative to MNIST to expand the usage of those algorithms.) The closest 

baseline in the planetary science crater counting community could be the Mars Nanedi Valles 

region, which is used to compare classification accuracy. For machine learning, however, 

identifying a larger, more diverse baseline of image data and annotations would provide a 

better comparison of a network’s potential across various types of terrain and planetary 

bodies.  

2.4 CRATER COUNTING 

2.4.1 HISTORY 

Planetary geologists use crater counting on various solar system bodies to gain insight 

into the relative age of different geographic regions. An area contained within one geographic 
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unit is chosen and the sizes of craters are grouped in logarithmic size bins. These techniques 

were initially developed for the Moon (Crater Analysis Techniques Working Group 1979) 

and later expanded to other planetary bodies like Mars and Mercury (Hartmann & Neukum 

2001; Neukum et al. 2001; Ivanov 2006; Michael & Neukum 2010). Crater counts on the 

Moon can be anchored to absolute ages using returned Apollo samples. With an 

understanding of the population of projectiles, researchers can and do transfer the lunar 

chronology to other planets to get absolute age estimates (Hartmann & Neukum 2001; 

Neukum et al. 2001). The community awaits samples returned from other bodies to anchor 

the ages of Mars and other planetary bodies, but standards for transferring the lunar 

chronology are accepted (Michael & Neukum 2010). 

2.4.2 DEVELOPMENT: FROM HAND COUNTING TO MACHINE LEARNING 

Crater counting started with hand counting (Crater Analysis Techniques Working 

Group 1979) and various techniques have been employed to optimize researcher time using 

existing technology. Expert hand labels are valued for their ability to discern the context of 

the terrain to distinguish between impact craters and other crater-like features. To speed up 

this time consuming process, many computer vision techniques have been investigated, 

including recent research using object-based image analysis (Vamshi et al. 2016), hand 

crafted 3D features (Salih et al. 2017), rotational pixel swapping (Yamamoto et al. 2017), and 

terrain analysis (Zhou et al. 2018). The methods are contemporaries of machine learning 

methods that detect craters and other geographic features like decision trees, AdaBoost 

(Martins et al. 2009; S. Jin & Zhang 2014; Wang et al. 2017), Support Vector Machines, and 

Convolutional Neural Networks (see Table 2-3). Hand crafting features lets researchers be 

very specific but the creation process is time consuming and prone to bias. Using machine 

learning methods like CNNs where the algorithm finds its own features lets the decision 

burden shift to human annotators who use their full visual experience to identify the craters. 

Instead of a human crafting a feature for detection, the CNN learns by the expert annotator’s 
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example. Hundreds or thousands of examples of craters and non-craters tune a model, which 

creates the features via the training process. CNNs can therefore pick out more complex 

features than what could be hand crafted. There is even potential for CNNs to need fewer 

pixels to identify a crater than a human, but this requires further research. (For this 

experiment, the human would annotate a higher resolution image, and the CNN could be 

trained on slightly or significantly lower resolution data.) However, even today, human 

counts remain the standard for detecting craters. While numerous techniques for aiding crater 

counters have been researched, none have yet been accepted by the broader community as a 

replacement for human eyes and analysis (Stepinski et al. 2012). In terms of evaluating 

terrain context, secondary craters, and potential clusters, no machine learning algorithm has 

fully addressed these issues.  

DATABASES 

Existing planetary databases vary in their ease of use for non-planetary specialists. 

This is an area ripe for collaboration: databases in non-standard image formats are 

challenging for machine learning researchers to use, but planetary geologists are familiar with 

the data. Digital Elevation Models (DEM) represent one promising data type. Recent 

machine learning work by Silburt et al. (Silburt et al. 2019) uses DEM data from the Moon 

and Mercury. Other DEM datasets are available for planets and dwarf planets: Mars 

(Fergason et al. 2017), Venus (Magellan Team 1997), Mercury (Becker et al. 2016; Denevi et 

al. 2018), Vesta (Preusker et al. 2014), and Ceres (Preusker et al. 2016). DEM datasets are 

particularly valuable in this research due to their lack of encroaching shadows.  

However, in DEM data, the complex terrain context is lost. Visual data and infrared 

data keep this context but are “noisier” in this regard as well. Visual and infrared images have 

shadows. Thus, craters at different latitudes appear vastly different due to the differing sun 

angle. There are myriad sources of visual and infrared images of planetary bodies in the solar 
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system. A comprehensive resource for all types of data is the PDS Geosciences Node Orbital 

Data Explorer (NASA n.d.), which contains links to instrument data from Mars, Moon, 

Mercury, and Venus missions. Craters look different with each type of data; examples of 

DEM, infrared, and visible light imagery are in Figure 2-1. (These regions are chosen only to 

illustrate the differences between the data types; the locations have no particular 

significance.) 

   

(a) DEM, Mercury (b) Infrared, Mars (c) Visible, Moon 

Figure 2-1: Examples of DEM, infrared, and visible light images of craters. Craters pictured in 
(a) come from Mercury/Messenger (Denevi et al. 2018), (b) is infrared data from 
Mars/THEMIS (NASA Mars Odyssey/THEMIS Team 2010), (c) is visible data from the 
Moon/Wide Angle Camera Global.  

Annotation datasets exist for various regions of the solar system. While full planetary 

coverage by a single counter or method is rare, they do exist. Table 2-2 lists several of these 

existing crater location databases. Researchers have used these and other catalogs to obtain 

ages on Mars (Platz et al. 2013; Pasckert et al. 2015) and the Moon (Hiesinger et al. 2000; 

Hiesinger et al. 2010). Regional databases for Mars include: GT-57633 (Salamunićcar & 

Lončarić 2008a), MA130301GT (Salamunićcar et al. 2011), and Nanedi Valles region 

(#h0905_0000) (Bandeira et al. 2010; Cohen et al. 2016). A regional database for the Moon 

is: LU78287GT (Salamunićcar et al. 2014). 
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Table 2-2: Full planetary body crater location databases 

Region 
covered 

Size of 
craters 
detected 

Original image data 
used for counting & 
type 

Number of 
craters 
identified 

Comments Citation 

Mars ≥ 8 km 
(≥ 5 km) 

Viking 1:2M 
photomosaics 

25,826 craters 
(42,283) 

Paper notes use of ≥ 8 km for 
crater statistical analysis 
purposes and to exclude most 
secondary craters 

(Barlow 
1988) 

Moon ≥20 km Lunar Orbiter Laser 
Altimeter (LOLA), 64 
pixels per degree 
DTM data 

5,158 craters LOLA is an instrument on the 
Lunar Reconnaissance Orbiter 
(LRO) mission 

(Head et al. 
2010) 

Mars  ≥1 km THEMIS (near 
infrared) 

300,000+ 
craters 

Largest database of Mars 
craters, hereafter: RH2012 

(Robbins & 
Hynek 2012a; 
Robbins & 
Hynek 
2012b) 

Moon 200 km Gravity Recovery and 
Interior Laboratory 
(GRAIL) 

74 basins Basins detected using changes 
in gravitational data 

(Neumann et 
al. 2015) 

Moon 5-20 km LROC Wide Angle 
Camera (WAC), 100 
meters per pixel, 
monochrome (643 nm) 
mosaic and DTM 

22,746 craters Extended the work of (Head et 
al. 2010) 

(Povilaitis et 
al. 2018) 

Moon ≥1-2 km LRO WAC 100 m/px, 
LOLA, LOLA-Selene 
DTM 60 m/px, 
Kaguya 20 m/px 
Terrain Camera 

2 million+ 
craters 

In review (as of January 2019), 
will be the largest database of 
Moon craters 

(Robbins 
2018a; 
Robbins 
2018b) 

2.5 APPLICATION OF MACHINE LEARNING 

2.5.1 CONVOLUTIONAL NEURAL NETWORK (CNN) 

Convolutional Neural Network research has been active for decades. Recent advances 

and the availability of more powerful computational hardware has made CNNs a viable 

option for more types of image research in the past decade. Research has proven CNNs to be 

effective in two distinct image processing steps relevant to the crater counting pipeline, 

classification and segmentation (see below). The earliest found reference to a “neural 

network” applied to crater counting comes in Enke & Merline in 2005 (Enke & Merline 

2005), who deemed the technique not useful at the time. Much changes in ten years, 

especially in the machine learning community. The successful use of CNNs for classification 
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started in 2015 (Emami & Bebis 2015) and 2016 (Cohen et al. 2016). Segmentation is being 

applied more recently (Silburt et al. 2019; DeLatte, Crites, Guttenberg, Tasker & Yairi 

2018a). Applying this research has the potential to reduce the time spent counting craters by 

hand, provide a more consistent application of a crater counting technique (labeling varies 

between experts and even between areas done by the same expert), and eventually provide a 

list of smaller craters without human counting as the techniques and resolution of imagery 

improves. 

A CNN learns features important to analyzing the image by dragging a window 

(kernel) across the image. The kernel size refers to the number of pixels in a square window 

of interest. For example, a kernel size of 3 means that a sliding window of 3x3 pixels 

evaluates those nine pixels according to each of the filters. By using these square windows, a 

CNN captures two-dimensional location information. The weights (numerical values) of a 

filter each determine one feature that the network can detect. CNNs learn features (filters) 

through the training process. In order to learn the best weights, a lot of training data is needed 

and additional data is necessary to validate the results.  

The most popular data types in existing research are: visual/panchromatic, infrared, 

and elevation/terrain data. The type of data has a significant impact on the study. Visual data 

is available at very high resolutions for the planetary bodies of interest and is a popular 

choice for hand labeling craters. Some of the highest resolution data is available for this type 

and there are several complete sets of images for different planetary bodies. The major 

downside to using visible light data for automatic crater counting is the variety of lighting 

conditions, which can make craters near the equator look very different than craters near the 

poles. There are also significant variations in lighting between datasets because of the 

incidence angle. Infrared data, like the Mars THEMIS Daytime IR image set (NASA Mars 

Odyssey/THEMIS Team 2006), partially addresses the lighting condition issue. Shadows are 

still visible, but the gradient is less than with visual data. Another data type, used successfully 
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in Silburt et al. 2019 (Silburt et al. 2019), is digital elevation model or digital terrain model 

data. This data type has no issues with shadows as only the elevation data is reported for each 

pixel. With the regularity and symmetry of crater circular shapes, this type works very well 

for detecting craters; Silburt et al. 2019 also found many new crater candidates. (Yamamoto 

et al. 2017 (Yamamoto et al. 2017) also take advantage of this symmetry in their non-CNN 

method.) The biggest drawbacks to this type of data are it not being available for all planetary 

bodies and resolution limitations. To collect DEM data, a laser is bounced over the entire 

surface. The specialized instrument required is less common on planetary missions compared 

to imagers.  

For any of these types of data used, researchers need to take care to include a 

representative sample of terrain types and levels of crater degradation in training if they are 

trying to apply their method over diverse terrain. Randomization of the separation of data into 

training, validation, and test sets is part of the solution.  Across the Martian equatorial mid-

latitudes (±30º N), for example, encompasses volcanic, highlands, and even a small amount 

of basin (Tanaka et al. 2014). It does not include polar, so methods trained in the equatorial 

mid-latitudes may not transfer as well to the polar region without additional training. Craters 

look visually different in those regions for both panchromatic and infrared data. Additionally, 

some of the typical methods of generating additional data (like rotating, flipping, etc.) images 

may not work as well when the features are learning to detect shadow patterns to distinguish 

between craters and mountains or boulders in visible and infrared data. Other techniques like 

sliding and resizing do work well to generate more data and rotations do aid in DEM data 

(Silburt et al. 2019). 
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Table 2-3: List of crater counting papers that use CNN in their pipeline 

Paper Title Source 
Type 

Region 
Studied 

Datasets Used Resolution Technique Citation 

Learning to 
Detect Small 
Impact Craters 

Conference Not 
specified 

Not specified Not 
specified 

Neural 
network 

(Enke & 
Merline 2005) 

Lunar crater 
Identification via 
deep learning 

Journal Moon ±30º 
latitude, 0-
360º 
longitude 

DEM (Lunar 
Reconnaissance 
Orbiter, Kaguya) 

512 px/deg, 
59 m/px 

Segmentation 
(U-Net)  

(Silburt et al. 
2019) 

Segmentation 
Convolutional 
Neural Networks 
for Automatic 
Crater Detection 
on Mars 

Conference, 
Journal (in 
review) 

Mars ±30º 
latitude, 0-
360º 
longitude 

Infrared (THEMIS 
Daytime IR); 
Annotations 
RH2012  

231.55 
m/px 

Segmentation 
(Custom U-
Net)  

(DeLatte, 
Crites, 
Guttenberg, 
Tasker & 
Yairi 2018a; 
DeLatte et al. 
2019) 

Automated 
Detection of 
Craters in 
Martian Satellite 
Imagery Using 
Convolutional 
Neural Networks 

Conference  Mars ±30º 
latitude, 0-
360º 
longitude 

Not specified Not 
specified 

 (Norman et 
al. 2018) 

Automated 
Detection of 
Martian Craters 
Using a 
Convolutional 
Neural Network 

LPSC 
abstract 

Mars ±30º 
latitude, 0-
360º 
longitude 

Infrared 
(THEMIS), 
Panchromatic 
(CTX); 
Annotations 
RH2012 (>1 km), 
Wener (0.1-1 km) 

Not 
specified 

Pretrained 
CNN, 
GoogLeNet-
Overfeat 

(Benedix et 
al. 2018) 

Lunar Crater 
Detection via 
Region-Based 
Convolutional 
Neural Networks 

LPSC 
abstract 

Moon Hand labeled (200 
tiles of 600x400 
px); annotations, 
270 craters larger 
than 20x20px 

Not 
specified 

Localization + 
Classification 
(Faster R-
CNN) 

(Emami, 
Ahmad, 
Bebis, Nefian 
& Fong 
2018a) 

On Crater 
Classification 
Using Deep 
Convolutional 
Neural Networks 

LPSC 
abstract 

Moon Lunar 
Reconnaissance 
Orbiter; 
annotations hand 
labeled 

Not 
specified 

Classification 
(VGGNet, 
GoogLeNet, 
ResNet) 

(Emami, 
Ahmad, 
Bebis, Nefian 
& Fong 
2018b) 

Recognizing 
terrain features 
on terrestrial 
surface using a 
deep learning 
model 

Conference Earth Color images; self 
annotated various 
Earth craters 

Not 
specified 

Classification 
(Faster R-
CNN, ZF-net) 

(W. Li et al. 
2017) 

Automated 
detection of 
geological 
landforms on 
Mars using 

Journal Mars Mars 
Reconnaissance 
Orbiter, HiRISE, 
CTX 

HiRISE = 
0.3 m/px; 
CTX = 6 
m/px 

Multi-class 
CNN, SVM + 
HOG 

(Palafox et al. 
2017) 
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Convolutional 
Neural Networks 

Deep Networks: 
Applications, 
Interpretability, 
and Optimization 

Thesis Mars Visual; Mars 
Express HRSC 

12.5 m/px Haar-
initialized, 
CNN classifier 
(scaled down 
versions of 
LeNet, 
AlexNet, 
GoogleNet) 

(Lo 2016) 

Crater Detection 
via Convolutional 
Neural Networks 

LPSC 
abstract 

Mars Visual; Mars 
Express HRSC 

12.5 m/px Classification; 
fully 
connected 
CNN 

(Cohen et al. 
2016) 

Automated Crater 
Detection Using 
Machine 
Learning 

Thesis Mars Visual; Mars 
Express HRSC 

12.5 m/px Classification; 
fully 
connected 
CNN; 
RandomOut 

(Cohen 2016) 

Automatic Crater 
Detection Using 
Convex Grouping 
and 
Convolutional 
Neural Networks 

Book Moon Visual; Lunar 
Reconnaissance 
Orbiter; 
annotations of hand 
labeled custom set 

Not 
specified 

Classification 
(Regions 
proposed with 
multi scale 
edge detection; 
candidates 
classified with 
CNN) 

(Emami & 
Bebis 2015) 

 

2.5.2 USE OF CNN FOR CRATER COUNTING 

Machine learning, and specifically CNNs, can be used at various points within the 

crater counting pipeline. The pipeline consists of the steps between taking an image that 

contains craters and outputting a list of the crater locations.   

While the descriptor “Convolutional Neural Network” helps identify machine 

learning papers, the use of a CNN model in a crater counting pipeline can vary greatly. Two 

major CNN research directions have emerged for the crater detection application: (1) 

classification methods (Figure 2-2a, Figure 2-2b) and (2) segmentation (plus localization, 

finding the relative pixel locations within the image of the craters) methods (Figure 2-2c). 

The main difference from the CNN model’s perspective between the categories is the scope 

of classification. In the first, the entire pre-processed (usually) square image is classified as a 
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crater or non-crater image. In the second, a large image containing multiple craters (zero to 

hundreds) is passed in and each pixel gets classified as belonging to a crater rim or not. (This 

means each pixel is designated as either a crater or non-crater pixel.) The rim crater pixels 

form rough circles or ellipses which can then be detected and used for localization.  

 

(a) Classification (without localization) 

 

(b) Classification (with localization) 

 

(c) Segmentation + Localization 

Figure 2-2: Comparison in the use of trained CNNs (or machine learning) for classification vs 
segmentation: (a) Shows the classification pipeline, (b) classification with localization, (c) 
segmentation and localization.  

Some CNN-based research classifies pre-processed images as crater or non-crater 

while other research segments the craters using a pixel-wise CNN classifier to create image 

maps of circles indicating where craters are and separately uses computer vision based circle 

finding methods to make a list of craters. The machine learning components of these two 

approaches serve a difference purpose, thus are not directly comparable. The main difference 
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between these two methods is the function of machine learning. Comparing results between 

classification and segmentation methods is challenging because it is important to compare 

metrics created by a similar process. In classification methods (after training), crater 

candidates must be pre-processed and rescaled, then each candidate is presented to the 

network for evaluation. This can be done by employing various computer vision techniques 

such as generating PHOG (Liu et al. 2012) or Gist (Yin et al. 2015) features, then passing the 

candidates through a CNN classifier. The location of the candidate examples must be known. 

The recall scores (number of matches divided by number of annotations) (Chinchor 1992) 

tend to be extremely high, even 99% (Emami, Ahmad, Bebis, Nefian & Fong 2018b), but 

there is a significant effort in preparing crater candidates. (This is very promising research, 

but the test set in that particular paper was limited). In segmentation plus localization 

methods, the entire image is given to the algorithm, which splits it into chunks irrespective of 

the locations of craters, identifies crater candidates, which then can be post-processed to find 

the location. Traditional computer vision methods like template matching can be used to turn 

the newly identified circular shapes into a list of location and radius.  

The feature identification step is treated differently in these two categories. Several of 

the classification methods used either existing image databases of crater and non-crater 

examples or created their own for the purpose of training the classifier. (One example that is 

less labor intensive in advance is to use a Region Proposal Network, as used in Faster R-CNN 

(Ren et al. 2016).) Then the crater examples are passed through the CNN-based classifier, 

which could have one of various architectures. Example architectures used in image 

classification include GoogLeNet, Alexnet, VGGNet, and ResNet.   

This second segmentation category is less labor intensive in data preparation for the 

crater counter because during the training process, the features are automatically generated by 

the CNN. Further images can be presented as they are without the pre-processing. Once the 

model is trained, this is quick. Post-processing, however, can be time consuming because the 
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computer vision template matching algorithms are comparatively slow. For example, for the 

work in Chapter 3, to evaluate a 30º by 30º THEMIS tile takes 2 minutes with a GPU, but the 

post-processing with the match template algorithm to obtain the full list of craters sized from 

7 to 140 px in the tile (7680 x 7680 px) takes 20 minutes with a CPU.  

While it is tempting to compare the percentages of recall between methods directly, 

results must be taken in context of terrain, crater size (in relation to pixels), network type, 

pre-processing complexity, and post-processing complexity. Comparing CNN classification 

methods versus segmentation methods recall percentages directly removes the vital nuances 

of the implementation complexities, scaling up challenges, and transfer learning potential. 

Another important distinction is understanding which terrain was used in training and test. A 

clear understanding of these differences allows future researchers to choose the best option 

for the scale of data they plan to evaluate.  

Several researchers, including Emami et al. (2015) (Emami & Bebis 2015), Cohen et 

al. (2016) (Cohen et al. 2016), and Palafox et al. (2017) (Palafox et al. 2017) evaluated the 

performance of CNN classifiers on planetary datasets. In Emami et al. (2015) (Emami & 

Bebis 2015) and Cohen et al. (2016) (Cohen et al. 2016), resized and centered examples of 

craters and non-craters were used to train the CNN classifier. Palafox et al. (2017) use a 

multi-size classifier structure that could distinguish between examples of volcanic rootless 

cones and transverse aeolian ridges. (The same architecture was used to train separately for 

each geologic feature of interest.) While that research was not explicitly looking for craters, 

the same method could be used to find other geologic points of interest such as craters. For 

some applications, training a multi-class classifier can improve the recognition of objects of 

each class. This is theorized to be due to the additional training data available and ubiquity of 

some types of features (such as edges or shapes) (Emami, Ahmad, Bebis, Nefian & Fong 

2018b). Future research validating that for craters may inspire crater counters to more 

directly collaborate with boulder counters or groups interested in other geological features. 
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A promising lead for classification is to use a network first trained on other data. 

Benedix et al. (Benedix et al. 2018) and Norman et al. (Norman et al. 2018) use a pre-trained 

GoogLeNet-OverFeat to detect craters. Emami et al. (Emami, Ahmad, Bebis, Nefian & Fong 

2018b) pre-trained using ImageNet, then compare VGGNet, GoogLeNet, and ResNet, 

obtaining over 99% recall on their hand-annotated dataset. While very promising, this 

research is difficult to independently evaluate due to the lack of a baseline.  

Emami et al. (Emami, Ahmad, Bebis, Nefian & Fong 2018a) continued research in 

the use of CNNs and implement Faster R-CNN for full pipeline crater detection. Although 

the scope of the craters used was limited, this research is promising and should be expanded 

to other annotation datasets and crater sizes. Unlike the methods that need hand crafted 

features, Faster R-CNN uses Region Proposal Networks to identify potential objects, which 

are then each resized and classified. Faster R-CNN outputs the location correction with the 

classifications, which removes the need for a post-processing step like template matching.  

Segmentation methods, those that extract the edges of the target object, are used by 

both this work (Chapter 3) and Silburt et al. (Silburt et al. 2019). Both research groups used 

segmentation networks inspired by U-Net (Ronneberger et al. 2015). Chapter 3 describes 

evaluating different segmentation targets (edge-only and filled in crater) on a custom “Crater 

U-Net” to determine which had the best recall score for craters using infrared Mars images 

and the Robbins & Hynek annotations (RH2012) (Robbins & Hynek 2012a). Silburt et al. 

(Silburt et al. 2019) use the original U-Net architecture to segment crater edges for lunar 

digital elevation model data and the Povilaitis et al. (5-20 km) (Povilaitis et al. 2018) and 

Head et al. (>20 km) (Head et al. 2010) annotation datasets. Both use a computer vision 

technique, template matching, to extract the crater locations and create the final list of craters. 

Silburt et al. also use transfer learning to apply their model to Mercury craters. The use of 

segmentation for crater counting has several advantages: the images do not need to be pre-

processed into smaller “potential crater” images before being sent to the network and 
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automatic localization is possible through the use of computer vision circle-finding methods. 

To perform localization, no bookkeeping needs to be done, and this method most closely 

resembles that of a human crater counter.  

2.5.3 OTHER MACHINE LEARNING METHODS 

Several other machine learning methods have been applied to crater counting, 

including Support Vector Machines (SVM) and decision trees. With most of these methods, 

the crater candidates must be localized prior to the machine learning algorithm being run. 

Accordingly, the locations are known a priori, but the identity of “crater” or “non-crater” is 

not. Several of these examples involve hand crafted features, especially in earlier research. 

Machado et al. (Machado et al. 2015) use Haar textural features and a SVM classifier to 

detect craters in Kaguya Terrain Camera (evening illumination, 7.4 m/px) data of the lunar 

maria. Li et al. (B. Li et al. 2015) use binary decision trees to evaluate LOLA DEM data.  

These and other early machine learning research fall in the classification category with hand 

crafted feature development (PHOG, Gist, Haar).  

2.6 CONCLUSIONS  

Analysis of sensor and image data presents a valuable collaboration opportunity for 

machine learning researchers and planetary scientists. Planetary scientists can contribute their 

vast knowledge of dataset and formatting nuances. They can enable better collaboration by 

deciding which benchmark datasets are the best for algorithm comparison. Machine learning 

researchers can contribute expertise in image processing. Methods like segmentation and 

localization have been extensively developed in that community and are highly applicable to 

planetary analysis. Those who want their work to be used by the planetary science 

community can export their crater lists in formats friendly to the most popular crater analysis 

software, like JMARS (for verifying the list of craters) and Craterstats (for obtaining ages). 
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Since CNNs are used in several distinct ways, including segmentation and 

classification, throughout the crater counting pipeline, it is more important than ever to 

carefully define the methods. In order to improve the collaboration potential and enable 

machine learning researchers to build on existing research, key information needed in papers 

includes: technique(s) being used during each stage of crater identification and processing, 

annotation dataset(s) used to create training data, source of data, data augmentation methods, 

regions used for training, regions used for testing, hardware (i.e., specifications for Graphical 

Processing Units, Tensor Processing Units), training time, hyperparameters, and source code 

for repeatability.  

Although there is not yet an accepted crater detection algorithm to replace human 

crater counters, the techniques presented represent tremendous progress to eventually reduce 

the time needed for new data to be processed. The recent trend of starting with pre-trained 

networks may ultimately represent the best solution, but until the community agrees on a set 

of benchmark annotations to be used for such training, exporting results to the formats of 

popular age dating programs and working with a human in the loop is the best short-term 

solution. Collaboration between planetary geologists and machine learning experts will 

enable great research and improvements in the way craters are detected.  
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CHAPTER 3:  EXPERIMENTS WITH CRATER U-NET  

3.1 SOURCE 

This chapter is based on a paper called “Segmentation Using Convolutional Neural 

Networks for Automatic Crater Detection on Mars: Experiments and Analysis.” It explores 

the use of a custom segmentation CNN (based on the U-Net architecture) for the crater 

counting application.  

3.2 INTRODUCTION 

Here, the authors explore a machine learning technique called segmentation (J. Long, 

Shelhamer, & Darrell, 2015) (Garcia-Garcia, Orts-Escolano, Oprea, Villena-Martinez, & 

Garcia-Rodriguez, 2017), where an image map is created of all the detected objects (in this 

case, craters). The image map marks each pixel with a value related to whether the pixel in 

the original image belongs to the object category of interest. Segmentation relies only on 

images and a training set of existing annotations for crater size and location. Once trained, the 

machine learning model is used to detect craters in new images. The source of annotations is 

the Robbins & Hynek’s Mars crater dataset (Robbins & Hynek, 2012a) (Robbins & Hynek, 

2012b) (hereafter RH2012). These annotations consist of the latitude, longitude, and 

diameters of all craters larger than 1 km on Mars. The source of image data is the Mars 

daytime infrared images from the NASA THEMIS instrument (NASA Mars 

Odyssey/THEMIS Team, 2006). 

Challenges to automation include: the orders of magnitude differences in object sizes, 

faded or old craters being nearly invisible, need to work with multiple datasets, different 

resolutions of images, projection difficulties, differing techniques for counting, and 

secondary craters influencing the count.  

 



 

 
28 

3.2.1 CONTRIBUTIONS 

This work advances a collection of efforts by crater counters and machine learning 

researchers to automate the detection of craters. This paper is the first to use a segmentation 

Convolutional Neural Network to find Martian craters in THEMIS thermal infrared data 

(NASA Mars Odyssey/THEMIS Team, 2006). Crater U-Net introduced here is a 

Convolutional Neural Network (CNN) for image segmentation that is inspired by the U-Net 

(Ronneberger, Fischer, & Brox, 2015a). Mars crater annotations (Robbins & Hynek, 2012a) 

are used for training. Contemporary researchers have independently used a U-Net to find 

lunar craters in digital elevation data (Silburt et al., 2019). Additional contributions of the 

current work include an exploration of the impact of kernel size and filter numbers on 

accuracy, an evaluation of the effect of using two different types of targets (solid circles vs. 

edge targets), and an assessment of the effect of varying the amount of training data used to 

create the model, which sheds light on the tradeoff between quantity of hand annotations and 

model quality. Together these contributions provide insights that support the design of 

automated crater counting frameworks for new datasets. 

3.3 METHODS 

These experiments study the use of segmentation Convolutional Neural Network 

(CNN) architectures applied to the crater detection and localization problem, specifically 

using a variation on a CNN called a U-Net (Ronneberger, Fischer, & Brox, 2015b). CNNs 

capture local features in a layer by sliding a square kernel across the image, restricting the 

input to a sequence of small regions of size, e.g. 3x3 or 7x7 pixels, and multiplying it by a 

filter. The number of times this process occurs depends on the number of filters in the layer. 

A series of tests systematically explores hyperparameter, or architecture design choices 

(different kernel sizes and number of filters), target options (solid and edge), and the impact 

of using different amounts of training data to train the models (from 3 to 15 of 24 tiles).  
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3.3.1 DATA 

For supervised learning, a dataset of annotated data-target pairs is needed to train a 

convolutional neural network in the art of detecting craters. The largest, most complete 

(Robbins & Hynek, 2012a) dataset of Martian craters available is that of Robbins & Hynek 

(RH2012) (Robbins & Hynek, 2012a) (Robbins & Hynek, 2012b). This comprehensive 

dataset identifies craters down to 1 km diameter. Each row of the annotation spreadsheet 

includes latitude, longitude, and diameter for a circle and ellipse, each representative of the 

crater. For training the neural network, circular representations of craters are used to create 

the targets and all annotations are included, regardless of crater degradation level. As a result, 

non-experts inspecting data images may not be able to identify the old craters by eye. It is 

important to note that since a single annotation set is used, this model is being trained to find 

craters in the style of RH2012. Previous work (Robbins et al., 2014) (Bugiolacchi et al., 

2016) indicates even experts disagree. Up to ±45% difference in annotated crater sizes and 

distribution between crater counting experts is found. 

THEMIS Daytime Infrared (IR) Global Mosaic (12.7um) images (Figure 3-1) of Mars 

are chosen because of the dataset’s high resolution and their use by (Robbins & Hynek, 

2012a) in creating the annotation database. The THEMIS mosaic tiles are each 30º per side 

(7680 x 7680 pixels) with a resolution of 256 pixels per degree (PPD) and have excellent 

visual match with the RH2012 annotations without adjusting the projection.  

One challenge in using the THEMIS images is the absence of data in some areas, seen 

as the black streaks in Figure 3-1. To mitigate the missing pixel issue, all black pixels in the 

image are replaced with the average value of the tile before training. This preprocessing step 

keeps the missing data from becoming a hard edge that might interfere with training. This 

approach was successful: no obvious network errors were detected in the vicinity of the 
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missing pixels, and the network is able to identify craters which partially overlap the missing 

region. Craters entirely within a missing pixel region are not detected.  

 

              (a)               (b) 

Figure 3-1: original THEMIS tile, thm_dir_N-30_030 (NASA Mars Odyssey/THEMIS Team, 
2006) (a), tile with filled in missing pixels (b) 

Choosing the latitude range ±30º simplifies processing and avoids the need to re-

project high latitude THEMIS data. Within ±30º latitudes, the craters in the cylindrical 

projection remain circular. In extreme latitudes by the poles, the cylindrical projection 

stretches the appearance of the craters into ellipses. This subset of the THEMIS dataset 

contains 24 “tiles” of 30º by 30º, shown in Figure 3-2. Each is 7680 x 7680 pixels (px). These 

initial tests use a subset of the available (Figure 3-3) annotations: craters sized 2-32 km in 

radius (Figure 3-4). This range is comfortably within the limits of the annotations (all craters 

larger than 1 km diameter) and is clearly visible within the 512 x 512 px sub-images chosen 

as the network input size. This sub-image divides evenly in the full tile pixel size (15 per 

side). For reference, a 2 km radius crater is 8.6 pixels at this dataset’s resolution (256 pixels 

per degree or 231.55 meters per pixel (NASA Mars Odyssey/THEMIS Team, 2006)).  

 

Figure 3-2: Mars in the Mid-Latitudes, original THEMIS data (NASA Mars Odyssey/THEMIS 
Team, 2006). The top row consists of 0º to 30º latitude, and the bottom row -30º to 0º latitude. 
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The left edge is 0º longitude. Each tile is 30º by 30º (7680 by 7680 pixels) with a resolution of 256 
pixels per degree (231.55 m/px). 

 

Figure 3-3: Graphical display of annotations of all craters annotated by RH2012 (Robbins & 
Hynek, 2012a). 

 

Figure 3-4: Graphical display of annotations of craters 2-32 km radius from (Robbins & Hynek, 
2012a). These are one set of targets for the data.  

For the training process, the 24 tiles are split randomly into one of three groups: 

training, validation, and test. For each neural network architecture, the training tiles and 

corresponding annotations (target) are used to learn a model. Validation data is used to 

compare architectures on data unseen in training. In Section 3.4.1, six tiles are used for 

training and three for validation. In Section 3.4.2, 3 to 15 tiles are used for training, 

depending on the test, and six are used for validation. The tiles used for training and 

validation are selected randomly with no overlap. The data tiles and generated target images 

are split into 512 x 512 pixel sub-images before being fed through the network (3.3.2).  

3.3.2 SEGMENTATION NETWORK DESIGN 

While both classification (Krizhevsky, Sutskever, & Hinton, 2012) and segmentation 

(J. Long et al., 2015) have uses in image processing, for this application, instance 

segmentation is most appropriate for automating crater counting. Segmentation differs from 

standard image classification in that its result effectively separates the objects of interest from 

the background. On the smallest scale (one pixel) and for a one-object detection, 
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“segmentation” amounts to a binary classification of each pixel, giving a measure of whether 

the pixel is part of an example of the objects being identified. Semantic segmentation does 

not distinguish between examples of the object while instance segmentation identifies each 

example object separately (Garcia-Garcia et al., 2017). 

Humans who manually count craters consider many details such as edge geometry, 

patterns of light and shadow, local geologic structures, and angle of impact when classifying 

a true crater. For example, secondary craters (ejecta from the primary impact) are typically 

omitted from the count, even though they largely look like primary craters (Robbins & 

Hynek, 2011). Segmentation methods are similar, from a data processing perspective, to what 

humans would do: take a whole image, identify the craters, and determine the number and 

locations of those craters inside the region of interest.  

The family of Crater U-Nets explored here is inspired by results of Ronneberger et al. 

(Ronneberger, Fischer, & Brox, 2015a), who originally developed U-Net for the 

segmentation of biological cells in images. The default network (Figure 3-5) has the 

following components: Rectified Linear Unit (ReLU) activation function (Krizhevsky et al., 

2012), convolutional kernel size of 3x3, and filter values of the layers (starting at the upper 

left of Figure 3-5): [16, 24, 32, 48, 64, 96, 128, 128, 128, 96, 64, 48, 32, 24, 16]. Convolution 

(Chollet, 2017), dropout (Srivastava, Hinton, & Salakhutdinov, 2014), average pooling 

(Chollet, 2017), and upsampling (Chollet, 2017) layers are used. The network is coded in 

Python using Keras (Chollet, 2017), a framework for developing neural network models, and 

a TensorFlow (Abadi et al., 2016) backend. 
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Figure 3-5: Default Crater U-Net structure, visualized in the style of (Ronneberger, Fischer, & 
Brox, 2015a). For this network, the kernel size is 3x3, and filter values for each layer are on top 
of the purple boxes. 

Data (grayscale 512 x 512 px image) enters the Crater U-Net on the upper left. As it 

"goes down" the left half of the network, downsampling occurs as features at larger scales are 

computed. After seven rounds of downsampling, upsampling though seven layers ("going 

up") produces an output array of the same size as the original input. Names of the Keras 

layers are used in Table 3-1; see (Chollet, 2017) for layer definitions):  

Table 3-1: Layers in Crater U-Net 

Layer type Comments 

Going down 

Conv2d Filter value, kernel size, “same” padding, ReLU activation 

Dropout (where indicated) Increasing from 0.2 to 0.5 

Averagepooling2d  

Bottom of the “u” 

Conv2d  

Dropout 
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Going up 

Upsampling2d Size 2 

Conv2d  

Dropout  

Add Adding the result of the previous dropout with the 
correspondingly sized conv2d layer from going “down” 

Final layer 

Conv2d Kernel size 1, “same” padding, sigmoid activation 

In Section 3.4.1, variations on this default include (1) changing the kernel size (3x3, 

7x7, 11x11) and (2) changing the number of filters for each layer ( ½, 1, and 2 times the 

number of filters in the default array).  

The reported loss uses the binary cross-entropy function, and the accuracy uses the 

default Keras definition (Chollet, 2017). The hardware used for the tests is a Deep Learning 

Box with four 8GB NVIDIA GeForce GTX 1080 Graphical Processing Units (GPUs). Up to 

four tests can run simultaneously, each on one GPU. The number of filters and kernel size for 

the largest test is at the limit of this GPU’s capability. 

3.3.3 CRATER DETECTION PIPELINE 

After training, in order to get from raw data to a list of detected craters, each of the 24 

large THEMIS tiles goes through the following: 

• Split 7680 x 7680 px large THEMIS tile into 512 x 512 px sub-tiles 

• Each 512 x 512 px sub-tile is fed to the segmentation network 

• Results from the prediction are stitched back together into the full-size 7680 px tile. 

At this point, the prediction is still an image that can be compared to an image of the 

targets. 

• The match template algorithm is used to detect the locations and radii, using the 
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method described by Silburt et al. (Silburt et al., 2019). The matching algorithm looks 

only for matches within the range of interest (2-32 km). Craters found by the network 

that are larger or smaller are excluded. 

• The crater counts are compared to the human annotations, again using the Silburt et 

al. method (Silburt et al., 2019). 

• Crater counts are converted from their pixel x, y, radius to latitude, longitude, 

diameter. 

 

Figure 3-6: Images representing the crater detection pipeline. First, the data (with black pixels 
filled in) is passed to the network as a grayscale image, shown here with a color palette for 
visualization (a). The network creates a “Prediction” image which gives each pixel a value 0-1. 
(The “target” (b) image is included for the reader’s visual comparison to the “craters found” 
image, but this example was not used during network training.) Finally, a threshold is selected 
(0.4 here) and the prediction image (c) is run through the matching algorithm. (The matching 
algorithm looks only for craters that match the 2-32 km range and excludes others.) This list of 
x, y, radius is plotted to create the “Craters Found” (d) image.  

The example in Figure 3-6 shows a 1024 x 1024 pixel subset of the full tiles (after 

they have been stitched back together from 512 x 512 px). The data sub-tiles are each passed 
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to the network, which evaluates the sub-tile, resulting in the “Prediction” image. This is 

processed through the match algorithm (Silburt et al., 2019), generating a list of crater 

location and sizes (x, y, radius), which are used to generate the final “Craters Found” image. 

In the final image, the width of the edges has no meaning since this was generated from a list 

of coordinates and sizes. 

3.3.4 EVALUATING CRATER DETECTIONS 

Many pixel-based measurements are available for evaluating the results of a trained 

neural network. However, for the application of creating lists of craters in a region, these loss 

and accuracy measures are not the most suitable for evaluating which model will give the 

best scientific result. Scientists are less concerned by a pixel out of place and more concerned 

with whether the crater was detected. A metric derived from the actual crater counts is 

preferred. As a result, the F1 score (Chinchor, 1992), the harmonic mean of precision and 

recall (Sasaki, 2007), is used on a per identified crater basis.  

In order to calculate a F1 score for crater counts, definitions of true positives (TP), 

false negatives (FN), and false positives (FP) are needed. True positives are matches between 

the human annotated set and the list produced by the pipeline. False negatives are the craters 

from the annotations list that are not found.  False positives are craters that are identified but 

that do not match the human annotation list. In other words, FP in Eq. 1 is the difference 

between the number of found craters and the number of matches. It is worth noting that false 

positives may indeed be craters missed in the original annotated set. These could be newly 

identified craters, but here we note this as a failure and discuss it further in Section 3.5.4. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 =
𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + (𝑓𝑜𝑢𝑛𝑑 −𝑚𝑎𝑡𝑐ℎ𝑒𝑠) =
𝑚𝑎𝑡𝑐ℎ𝑒𝑠
𝑓𝑜𝑢𝑛𝑑  Eq. 1 

Precision 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 =
𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + (𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 −𝑚𝑎𝑡𝑐ℎ𝑒𝑠) =
𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 Eq. 2 
Recall 
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𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 = 2 ∗

𝑚𝑎𝑡𝑐ℎ𝑒𝑠
𝑓𝑜𝑢𝑛𝑑 ∗ 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
𝑚𝑎𝑡𝑐ℎ𝑒𝑠
𝑓𝑜𝑢𝑛𝑑 + 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
=

2 ∗ 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
𝑓𝑜𝑢𝑛𝑑 + 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 Eq. 3 

F1 

In order to evaluate the matches, found, and annotations, the match template method 

used in (Silburt et al., 2019) is adapted to the specifications of this dataset. This method is a 

brute force template matching algorithm that sets a target threshold (tt) on the prediction 

image, finds the examples that match the size range of the circle shapes, then compares the 

results to the annotations (in this case RH2012 (Robbins & Hynek, 2012a)).  

3.4 RESULTS 

This section describes experiments aimed at implementing the network then tuning it 

to improve performance. The next sections detail results from each of the test campaigns. 

Each campaign includes the exact same set of architecture tests, detailed in Section 3.4.1. 

Sections 3.4.1.1 and 3.4.1.2 contain tests evaluating the use of different targets on the crater 

data tiles (with missing pixels filled). The same training data is used for each of the tests. The 

key difference is in the “target” or goal. Sections 3.4.1.1 includes tests using a filled circle 

while Section 3.4.1.2 discusses two sizes of edge targets. Section 3.4.1.3 aggregates the 

results and Section 3.4.1.4 evaluates the models using crater counts. Section 3.4.2 presents 

results from changing the selection of tiles used in training. Section 3.4.3 uses one of the 

models to do a proof of concept example of age dating.  

3.4.1 NETWORK TESTING WITH DIFFERENT TARGETS 

Data-target pairs are used to train the machine learning algorithm. This section details 

the results of testing with two types of targets. The results are evaluated by comparing the 

loss and accuracy. Two types of targets are explored: solid circle targets (experiments using 

this target have names starting with C) and edge targets of fixed width (E, F). Examples of 
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each type are found in Figure 3-7. The streaks visible in Figure 3-7a are always filled with 

the tile’s average gray value prior to injection in the pipeline. 

 

Figure 3-7: Examples of the data and targets are pictured: unmodified data from (NASA Mars 
Odyssey/THEMIS Team, 2006) (a), solid circle target (C) (b), edge target (E) (c), and thinner 
(half width) edge target (F) (d). 

 

Table 3-2: List of Tests Used in Each Target Campaign 

Test Number of Filters by 
Layer 

Kernel Network Tests IDs Seconds per epoch 

*-1 default (Figure 3-5) 3x3 C-1, E-1, F-1 33-35 
*-2 default 3x3 C-2, E-2, F-2 34-37 
*-3 default 3x3 C-3, E-3, F-3 35-37 
*-4 default 7x7 C-4, E-4, F-4 

(Note, tests in Section 3.4.2 
also use this: 1A to 1E, 2A to 
2E, 3A to 3E, 4A to 4E)  

67-75 

*-5 ½ default 3x3 C-5, E-5, F-5 29-30 
*-6 2x default 3x3 C-6, E-6, F-6 52-59 
*-7 default 11x11 C-7, E-7, F-7 129-137 
*-8 2x default 7x7 C-8, E-8, F-8 126-130 

For all tests in Section 3.4.1, the network architecture numbers are the same between 

datasets. For example, tests C-3, E-3 and F-3 have the same network architecture (same 

convolutional kernel size, filters, activation, layer types, etc.). The letters C, E, and F refer to 
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the different data-target pairs each was trained on: filled circle targets, thicker edge targets, 

and thinner edge targets, respectively. For all tests in this section, six tiles are used for 

training and three are used for validation.  

For relative training times when using the hardware (Section 3.3.2), the seconds per 

epoch are given. Although exact values can differ by a few seconds on different runs using 

different GPUs (or even throughout training), the relative ratios give insight into training time 

between models. Test *-8 takes almost four times as long as test *-1 to train. 

 

Figure 3-8: Summary of network training on the three different targets. Loss and accuracy 
values are shown at 50 and 500 epochs during training. Within each of section for target type, 
network architecture 1 - 8 are shown consecutively so that the left-most point is the result from 
test C-1, a 3x3 kernel network with default filters, and the right-most point is test F-8, a 7x7 
kernel network with twice the number of filters. 

Figure 3-8 summarizes loss and accuracy among the three targets. While loss (lower 

is better) and accuracy (out of 1, higher is better) cannot be compared directly across target 

types because of the different number of pixels engaged for training in each target type, 

within a single target type we can use this comparison to select the most promising 

architectures to explore in detail.  
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3.4.1.1 CIRCLE TARGETS (FILLED) 

This section details the results from the experiments using crater data with filled circle 

targets. An example of a target tile, corresponding to one of the THEMIS 30º tiles is in 

Figure 3-7b. The test numbers match the architecture from Table 3-2. Kernel and filter 

numbers are not shown.  

To create these targets, a solid circle of the appropriate radius is added to the image 

using the “white” color (set pixel value to 1), leaving all remaining pixels black. This method 

falls under semantic segmentation because it does not distinguish between different instances 

of craters. 

The accuracy of each of the eight architectures plotted for each target in Figure 3-8 

improves by a small amount between 50 and 500 epochs of training. (One pass through all of 

the training data is one epoch.) The loss (difference between the expected and actual output) 

went up dramatically in all but C-5, which likely indicates the model is overfitting where 

features specific to the training examples and not those relevant to generalized crater 

identification are being found.  

Figure 3-8 reveals small differences between the training performance of the 

individual architectures. While little difference is seen between the loss and accuracy 

measurements in training, visual inspection of the results reveals that kernel size is a 

significant factor in successful detection of faded craters. Several examples of this are shown 

in Figure 3-9. A large crater in the bottom right of the tile (Example #1, red box) is only 

identified by networks with larger kernel values (C-4, C-7). This effect is also seen for 

smaller craters in Example #2 and #3. The original validation 512x 512 pixel image along 

with the solution “target” image are included to help the reader evaluate the relevant 

predicted images from tests C-3 (3x3), C-4 (7x7), and C-7 (11x11) in Figure 3-9. 
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Figure 3-9: Effect of kernel size. Three examples of a 512 x 512 px data image (Original) passed 
to networks and not used in training, target image for reader reference (Target), result of 3x3 
convolution kernel size (C-3), result 7x7 convolution kernel size (C-4), 11x11 convolution size 
(C-7). Red boxes show craters that are visible only in larger kernel sizes. 

3.4.1.2 EDGE TARGETS 

This section details the results from the experiments using crater data with two sizes 

of edge targets. Examples of a target tile, corresponding to one of the THEMIS 30º tiles, is in 

Figure 3-7. Two edge targets are generated in thicker (E, Figure 3-7c) and thinner (F, half the 

width of E, Figure 3-7d), options. 

The purpose of the edge target testing is to see how a target with the same width for 

all sizes would perform compared to the two previous types. Edge targets are useful because, 

unlike filled circle targets, they allow craters within craters to be detected.  

In Figure 3-10, one prediction output is shown across four architectures. In the 

training process, pairs of images like Figure 3-10a & b are passed to the network for training 

or validation. While some craters are clear to human eye, some, like the largest crater on the 
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right edge, are difficult to spot. Many such examples of faded craters exist in the dataset, and 

detecting them is difficult. In Figure 3-10, none of the tests could detect that particular crater, 

although the distinct craters are detected well.  

Each image includes the test designation in the bottom left corner. In this example, 

the larger kernel size (7x7) predicts more circular craters. While the majority of the craters 

detected show up in all panels, a few appear only in a subset. A specific example of this is the 

center-most crater in Figure 3-10b (blue box). That crater is detected in only E-6 (Figure 

3-10c). To contrast, the small double ring in Figure 3-10b (green box) on the right side is 

detected in E-3, E-6, and E-4 but is not detected in E-8. This may indicate a combination of 

trained models may be optimal to detect the faintest, most degraded craters. 

For more eccentric elliptical craters, the predicted image is more circular with a larger 

kernel size (e.g., E-4, E-8). Other architectures with a smaller kernel (e.g., E-3, E-6) result in 

an elliptical prediction more reflective of the original data. An example is the small elliptical 

crater at the bottom of the original image in Figure 10a (orange box) and the corresponding 

regions in Figure 3-10c-f.  
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Figure 3-10: Comparison of effects of filters and kernel size with larger edge target. Example of 
a 512x512 pixel validation sub-tile passed to networks (a), target image for reader reference (b), 
result of E-3 test: 3x3 convolution kernel size (e), result of E-4 test: 7x7 convolution kernel size 
(f), result of E-6 test: 3x3 convolution size and double the number of default filters compared to 
E-3 (c), result of E-8 test: 7x7 convolutional kernel size and double the number of filters 
compared to E-4 (d). The blue box and green box in (b) are example craters that show up in 
different subsets of the models. 

3.4.1.3 COMPARING TARGETS & ARCHITECTURES 

The loss and accuracy measures as a result of training are shown in Table 3-3. These 

are measured against the same tiles of validation images (not used to train the model). The 

top four accuracy measurements are bolded in each column for ease of readability. This is the 

same data shown graphically in Figure 3-8. Loss and accuracy varied across both target types 

and architectures. As with the plot (Figure 3-8), in Table 3-3, only values within one target 

type are comparable. Across architectures, more complexity (*-4, *-6, *-7, *-8) generally but 

not always led to better results.  
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Table 3-3: Summary of Validation Loss and Accuracy Across All Target Types 

Test Filled Circle (C) Edge-thick (E) Edge-thin (F) 

 Loss at 
500 ep 

Acc at 
500 ep 

Loss at 
500 ep 

Acc at 
500 ep 

Loss at 
500 ep 

Acc at 
500 ep 

*-1 0.271 0.9618 0.1008 0.9806 0.0615 0.9875 

*-2 0.261 0.9616 0.1064 0.9811 0.0651 0.9876 

*-3 0.288 0.9617 0.1038 0.9813 0.0651 0.9876 

*-4 0.398 0.9658 0.1560 0.9816 0.0982 0.9872 

*-5 0.182 0.9582 0.0756 0.9810 0.0510 0.9877 

*-6 0.374 0.9652 0.1361 0.9807 0.0849 0.9872 

*-7 0.416 0.9658 0.1702 0.9820 0.1083 0.9875 

*-8 0.446 0.9662 0.1777 0.9829 0.1156 0.9881 

For the specific application of crater counting, the output of the model (prediction 

image) needs to be converted to a list of craters consisting of x, y, and radius. However, to 

generate crater counts, distinct craters need to be detected. For overlapping craters and craters 

within craters, this is an issue. While the solid circle targets are less precise for this specific 

application, those initial tests did prove that craters can be detected using Crater U-Net. 

Additionally, as seen in Figure 3-11, the solid target architecture confidently detected a few 

craters that the edge target missed, particularly faded craters (Figure 3-11, Example #3). 

However, the solid target entirely missed craters within craters and distinguished overlapping 

craters poorly.  
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Figure 3-11: Comparison of Solid and Edge Targets. Craters of interest are highlighted in red 
boxes.  

While solid targets are less useful for direct counts, it could be a useful for a human 

annotator to train models for both types of targets. For the evaluation of crater counts, E and 

F are selected for further analysis. 

3.4.1.4 EVALUATING CRATER COUNTS FOR EDGE TARGET CRATERS 

The next step is turning each of the prediction tiles into a list of crater locations and 

radii for use in crater counting applications. To evaluate the crater counts, the Silburt et al. 

(Silburt et al., 2019) match algorithm and the scores outlined in Section 3.3.4 are used. 

An important parameter to select is the threshold used when making a match. As part 

of the prediction output of the trained Crater U-Net model, each pixel in the image has a 

value between 0 and 1. The pixel value indicates the pixel’s fit with the crater category; it is a 

normalized measure of how “crater edge-like” the pixel is. A very low threshold (i.e., 0.1) 

would mean that even shapes weakly identified as craters would be included in the final 
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count. A high threshold would exclude many craters. To quantify these differences, an 

architecture is selected and post-processing performed at each of nine different threshold 

values from 0.1 to 0.9 in steps of 0.1 for each of the two edge targets. Graphing the precision 

and recall results of E-4 in Figure 3-12 illustrates an example of the trade between the two 

scores.  

 

Figure 3-12: Precision vs. Recall for E-4 and F-4 using nine target thresholds (tt) from 0.1 to 0.9. 

As a standard for further testing, 0.4 is selected as the target threshold to compromise 

between precision and recall, while slightly favoring recall. Recall is favored for the crater 

counting application as it represents the match ratio, the percentage of craters found by the 

network that are in the human annotations list. 

The next important decision is whether the E-type tests (thicker edge) or the F-type 

tests (thinner edge) are better for the crater counting application. Looking at the recall scores 

of the test tiles of E-4 vs F-4 in Figure 3-12, the E-type tests collectively have the higher 

recall score, but the range of values between F-7 (lowest) and F-8 (highest) is less than 0.01. 

However, the F tests have a lower recall score, and between recall, precision, and F1 metrics, 

the higher recall is more important to crater counters who want to age date a region. 

Obtaining an age depends on the identification of true craters, so having a high recall, or 
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match ratio, is important. This quantitatively supports the visual findings displayed in Figure 

3-11.  

For all of the tests in Figure 3-13, the same six tiles are used in training, and three for 

validation. Fifteen tiles are used to calculate the recall (Eq. 2), precision (Eq. 1), and F1 

scores (Eq. 3) and the chosen target threshold 0.4 is used.  

 

Figure 3-13: Comparison of test data across the eight architectures. All of these models were 
trained with six tiles for 500 epochs. The three score types are calculated as the overall score 
across fifteen test tiles with a target threshold of 0.4. (For quick reference: E-* is the thicker, 
edge target. *-1 through *-3 is 3x3 kernel, default number of filters; *-4 is 7x7 kernel, default 
number of filters; *-5 is 3x3 kernel, half the default number of filters; *-6 is 3x3 kernel, double 
filters; *-7 is 11x11 kernel, default filters; *-8 is 7x7 kernel, double filters.) 

The two models with the highest recall score are E-4 and E-6 (Figure 3-13). The 

difference between the two scores is very close, less than 0.01. E-4 is higher in both precision 
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(+0.026) and F1 (+0.005). For the upcoming series of tests in Section 3.4.2, the volume of 

tests necessitated choosing a single model type (see Table 3-2 for average training times per 

epoch), so only E-4 is extensively explored. These differences are overall very small and 

could vary if other training data is used.  

3.4.2 SENSITIVITY TO TRAINING DATA 

Two natural questions are: how do these results change if different training tiles are 

selected? how does training with different amounts of data affect the results? Mars' surface is 

diverse and terrain types and surface age vary. Geologic surface differences may affect crater 

identification, so these experiments were repeated four times, each run with a distinct mix of 

training and validation tiles. In addition to choosing different tiles, the authors study the 

effect of choosing different numbers of tiles for the training set. Tiles selection was made by 

random assignment. Like in Section 3.4.1.4, all numbers in this section refer to a “per crater” 

instead of “per pixel” value.  

Five combinations of training, validation, and test data ratios were used. The twenty 

tests are named in Table 3-4. For example, in test 4E, these fifteen tiles are used in training: 

23, 10, 20, 14, 11, 1, 16, 5, 22, 13, 21, 19, 18, 8, and 6. (See these geographically placed in 

Figure 3-14.) This leaves nine tiles in each sequence that can be used to compare the results 

between tests in the same case. Each “Case” corresponds to the sequence of tiles for that 

random seed value.   

Table 3-4: Test Identifiers 

Case  
(Random Seed) 

 Number of Tiles Used 

Training 3 6 9 12 15 
 Validation 6 6 6 6 6 
 Test 15 12 9 6 3 
1  1A 1B 1C 1D 1E 
2  2A 2B 2C 2D 2E 
3  3A 3B 3C 3D 3E 
4  4A 4B 4C 4D 4E 
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Figure 3-14 shows the tiles used, corresponding to the tiles in Figure 3-2, Figure 3-3, 

and Figure 3-4 in Section 3.3.1. For example, test 1E uses the random assortment of tiles in 

Figure 3-14a. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3-14:  Tiles used for comparison test sets. Training tiles are shown in red and validation 
and test in blue. The red tiles are the 15 training tiles of 1E (a), 2E (b), 3E (c), and 4E (d). The 
locations of these tiles match those of Figure 3-2-Figure 3-4. 

The F1 scores (Eq. 3) in Figure 3-15 are comparing whether the annotated 2-32 km 

craters were found or not found are on the crater level, not the pixel level. 
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(b) 

 

(c) 

Figure 3-15: Graphs for the data amount tests (using E-4 architecture, see 3.4.1.4), comparing 
F1, precision, and recall scores for each of the four cases. Error bars for each point show the 
standard deviation between the scores in the nine tiles used for testing the model at each point. 
Each point represents the overall F1, precision, or recall value at that number of training tiles, 
calculated using the same nine validation and test tiles within the case. The overall average 
between the point values for the four cases is included to show the general trend. Important 
note: since the tiles used in training between cases are different, some cases are particularly 
affected by tough terrain in a particular tile. The values between cases are not directly 
comparable because they are the average of different tiles. Tiles within one case are directly 
comparable because each point of one particular case uses the same nine tiles.  

Figure 3-15 shows that depending on the exact tiles used in training, the F1 score 

trends upward as more training tiles are used, but there is variability (see standard deviation 

error bars). Although the F1 score (Eq. 3) and recall (Eq. 2) mostly increased with additional 

training tiles then started to flatten, the precision (Eq. 1) scores varied more while trending 

toward increasing. The recall score, representing the match ratio, on average gains 5.9% 

between 3 and 15 tiles, but those gains are not linear across the four different examples. For 

an example of visual representation of the difference between the matches in three and fifteen 

tiles, see Figure 3-16.  

0.72
0.77
0.82
0.87
0.92
0.97

0 3 6 9 12 15

Number of Tiles vs Precision

Case 1 Case 2 Case 3 Case 4 Average

0.55

0.60

0.65

0.70

0.75

0 3 6 9 12 15

Number of Tiles vs Recall

Case 1 Case 2 Case 3 Case 4 Average



 

 
51 

Based on the results above, it is beneficial to use at least 9-12 tiles to train this 

architecture. For the 4E model, the recall score ranged from 65.1% to 76.4% between the tiles 

with an overall score of 69.4%. The images in Figure 3-16 are taken from the most 

conservative example with recall 65.1%. To make the strongest case for the robustness of this 

approach, the same worst-case choice is made for age dating. 

  

(a) (b) 

Figure 3-16: This is Tile 00 (Figure 3-14d) using 3 (left image, test 4A) and 15 (right, test 4E) 
training tiles. Blue is false negatives, (annotated craters); yellow is true positives (matches); and 
red is false positives (detected by network but not in annotations).  

3.4.3 AGE DATING 

One of the reasons scientists count craters is to age date a geologic unit. While this 

work is not a study in age dating, it is worth comparing the age obtained from one of the 

neural network’s crater counts versus the annotation’s estimate and ages for the same 

geological unit obtained by independent crater counters (Platz et al., 2013) (Figure 3-17). A 

region from the same tile shown in Figure 3-16 is chosen from within the Middle Noachian 

highland unit (mNh) (Tanaka et al., 2014).  
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The Craterstats tool (Michael & Neukum, 2010) (Michael, 2008) is used with the 

Ivanov 2001 Mars production function (Ivanov, 2001) and the Hartmann & Neukum 2001 

chronology function (Hartmann & Neukum, 2001), to analyze crater statistics obtained from 

the 4E model and to compare with RH2012 annotations for the same region. The RH2012 

annotations obtain an age of 3.90C.DEFG.DEH billion years (Ga) and the 4E model obtains an age of 

3.87C.DHKG.DEL Ga. Platz et al. (Platz et al., 2013) dated the mNh unit using crater counts on High 

Resolution Stereo Camera image data and obtained ages ranging from 3.85 to 3.98 Ga at a 

nearby location. Not only do the two calculated ages have overlapping error bars, both of 

these age calculations are within the error bars of P2103 and larger than the minimum, 

making the results of Figure 3-17 low but very promising. These results demonstrate that this 

model’s crater counts in that area are consistent with both RH2012 and P2013. 
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                            (b) 

 

(a)                             (c) 

Figure 3-17: Cumulative crater count frequency comparison (a) area contained within the red 
boxes in Tile 00 (b) and the same box zoomed in (c). The black line is the counts according to the 
test 4E, trained with the 15 red tiles from Figure 3-14d. This region is taken from one of the tiles 
not used in training, Tile 00 (shown in blue in Figure 3-14d). The whole tile is pictured in (b). 
The area is chosen to stay within one geologic unit, mNh, and avoid neighboring units. Sub-
figure (c) is the same portion of Tile 00 as in Figure 3-16b.  
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3.5 DISCUSSION 

3.5.1 CRATER U-NET 

Crater U-Net is a close cousin of the original U-Net (Ronneberger, Fischer, & Brox, 

2015a). The Crater U-Net architecture is deeper which may generate features that draw out 

information from multiple scales useful for fitting the wide range of crater sizes. The Crater 

U-Net final output image is the same size as the input image, which helps with localization of 

the craters in post-processing. Dropout (Srivastava et al., 2014) is used instead of cropping 

the layers to preserve the edge information. From these experiments, the best architecture of 

the variations in Section 3.4.1.4 was the one with the 7x7 kernel size (architecture *-4 from 

Table 3-2), though the 3x3 kernel with double the number of filters (*-6) was not much 

different. Further research could explore the similar architectures through the lens of tests in 

3.4.2 and 3.4.3.  

3.5.2 TARGET TYPE & ARCHITECTURE COMPARISON 

The target comparison tests (3.4.1) yielded a variety of insights. Edge fixed-width 

targets are superior in terms of the loss and accuracy, in ease of post processing, and most 

importantly in crater detection. Edge targets also enable detection of craters within craters. 

From the perspective of applications choosing the “best” target and architecture 

combination is a challenge. Although edge targets had better properties overall, visual 

inspection of images suggests that solid targets improved detection of some faded craters. 

Metrics available during the image segmentation training process are imperfect for judging 

crater count quality and probably not the metrics that a human annotator would design. 

Crater-count-based metrics like the recall, precision, and F1 score are available after post 

processing. Scientists have the flexibility to choose which is more important to their 

application to inform their choice of network. 
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3.5.3 IMPACTS OF TILE CHOICE AND AMOUNT OF TRAINING DATA 

The tests show noticeable gains in the recall and F1 scores for each additional three 

tiles used in training up to 9 or 12 tiles, after which the differences begin to level off. The 

geology of Mars may make the amount of data from some tiles more useful than others in 

training. Tiles with a variety of geological features may be particularly useful. 

3.5.4 FUTURE PROSPECTS 

Future work could connect the geologic map of Mars (Tanaka et al., 2014) with tiles 

used during training to predict how good the model would be for other tiles not in the ±30º 

range. Another consideration is how to record crater predictions that are not in the original 

annotations, i.e., false positives in this investigation. Some of these may be unlabeled craters, 

craters above or below the crater size threshold, faded craters, or objects of interest worth 

investigating further. An expert crater counter could be enlisted to provide an appraisal of the 

false positives. A few potential craters showed up in multiple models, and these are of 

particular interest. One such example is in the bottom left (red circle) of both Figure 3-16a 

and Figure 3-16b. 

Ultimately, these lessons could be synthesized into a crater counting system that may 

include an ensemble of networks. There is a large subset of craters that appeared in every 

prediction, but some annotated craters showed up in only one model’s prediction and an 

ensemble would allow these to be captured. Training the same architecture with multiple 

target types may improve effectiveness. With the larger kernel size, solid filled circle targets 

seem to help detect some particularly faded craters. Even though the solid target is not useful 

for creating a list of craters, it may be helpful for human annotators to run as a visual 

suggestion of where craters may be. 
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3.5.5 POTENTIAL APPLICATIONS 

Scientists may be motivated to prioritize precision or recall depending on their 

application. By a judicious choice of architecture and threshold, the work that is shifted from 

human annotators to computers can be tailored. For example, a high precision model will 

have few false positives but many missed craters. In a crater counting application, a human 

may prefer to add to the computer-provided results by manual annotation. A high recall 

model will find more craters but may have more false positives. This may be preferred by 

many crater counters.  

Crater maps for hazard avoidance applications may favor emphasizing recall. For a 

mission considering using these techniques to support entry, descent, and landing of 

spacecraft on a planetary surface, a low target threshold will detect more potential crater 

hazards while potentially producing more false positives. 

Overall, using these methods in the crater counting pipeline may save time for a crater 

counter. The architectures are a starting point for training models for new datasets.  

3.6 CONCLUSION 

The authors detail a successful implementation of Crater U-Net, a convolutional 

neural network to identify craters on the surface of Mars. In the chosen model (E-4 

architecture and 4E tiles for training), untrained regions of craters have a match accuracy of 

65-76%, and returns age dating results consistent with human annotations of the same 

geological units. In addition to exploration of the architecture design, a pre- and post-

processing framework is provided, resulting in a cumulative crater frequency plot that is 

within the error range of a corresponding plot based on human annotations. 

This work fits into a larger body of research demonstrating that convolutional neural 

networks offer an advantageous approach to the challenging and labor-intensive task of 

analyzing space image data. General approaches to image processing enabled by deep neural 
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networks provide a promising start toward work reduction and eventually automation. The 

full realization will require continued collaboration with space scientists to design tailored 

algorithms that fully incorporate deep expertise derived from human annotators. 
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CHAPTER 4:  EXPANDING CRATER DETECTION 

4.1 SUMMARY 

This section details work related to expanding and using the Crater U-Net described 

in Chapter 3. Three extension projects are explored: comparison of original U-Net and Crater 

U-Net (Chapter 3), using results from Chapter 3 to age date nine diverse regions of Mars 

terrain, and discussion of two machine learning model improvement techniques (ensemble 

learning and bagging) that could improve the results.  

4.2 COMPARISON OF U-NET AND CRATER U-NET 

The original U-Net by Ronneberger et al. (Ronneberger, Fischer, & Brox, 2015) 

segmented the edges of cells in a grayscale image. The roughly round shape and success of 

the method indicated a potentially promising method for segmenting craters, which also have 

distinct edges and are often identified from grayscale images. The work by Silburt et al. 

(Silburt et al., 2019) showing the U-Net was successful at identifying craters from a digital 

elevation model on the moon was promising, but there was not a guarantee that the method 

would work to find features for the more complex infrared data used to train Crater U-Net.  

Original U-Net differs from the Crater U-Net used in Chapter 3 in several key ways: it 

is deeper, it does single convolutions at each layer down, and it uses average pooling instead 

of max pooling. To compare the two on the same crater detection problem, U-Net is re-

implemented in Keras.  

Original U-Net is adjusted to accept the same 512 by 512 pixel images that Crater U-

Net does. The original U-Net was designed for a specific competition where the input image 

was 572 x 572 px and the output segmentation map is 388 x 388 px (Ronneberger et al., 

2015). Those sizes hold no value outside that specific experiment, so a 512 x 512 input and 

same size output are adopted for this comparison. Additionally, it is a common U-Net variant 
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to use dropout instead of copy and crop (e.g., (Silburt et al., 2019), (Kohl et al., 2018)), so 

that is explored as well for the following comparison.  

The tables below show results of the match ratio (recall score) from testing various 

target thresholds for different models that are closer to original U-Net. Hardware limits 

prevented the test of an exact match, but these provide reasonable comparisons. The 

comparison tests fell into two categories: (1) using another researcher’s implementation of 

the original U-Net against the best Crater U-Net, results in Table 4-1; (2) modifying the 

Crater U-Net model to resemble the structure of original U-Net as closely as possible but 

with dropout instead of copy and crop, results in Table 4-2.   

Table 4-1: Comparison between U-Net (with copy and crop), Crater U-Net with 3x3, and 7x7 
kernel size  

Tile Tile 
Type 

Match 
ratio 
(tt=0.3) 

Match 
ratio 
(tt=0.5) 

Match 
ratio 
(tt=0.3) 

Match 
ratio 
(tt=0.5) 

Match 
ratio 
(tt=0.3) 

Match ratio 
(tt=0.5) 

Model  U-Net 
(ZZ) 

U-Net 
(ZZ) 

Crater 
U-Net  

3x3 kern 

Crater 
U-Net  

3x3 kern 

Crater 
U-Net  

7x7 kern 

Crater  
U-Net  

7x7 kern 

Tile 04 Test 0.69282 0.68770 0.71136 0.69992 0.71293 0.70584 

Tile 15 Test 0.63007 0.62076 0.64338 0.63473 0.66267 0.65070 

Tile 12 Test 0.64397 0.64131 0.65728 0.64397 0.66603 0.65804 

Tile 03 Test 0.69241 0.68670 0.70996 0.70118 0.71610 0.70513 

Tile 09 Test 0.75819 0.75367 0.75819 0.75028 0.76836 0.76158 

Tile 07 Test 0.65955 0.64650 0.62515 0.61922 0.66311 0.65599 

U-Net (ZZ) uses a slightly modified version of the model by Zizhao Zhang in a 

Github repository1. This model implements copy and crop, as did the original U-Net. 

                                                

1 https://github.com/zizhaozhang/unet-tensorflow-keras/blob/master/model.py 
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However, since the output image is the same size as the input image for this application, copy 

and crop is not an effective regularization method. To compare, two models from Chapter 3 

that use 3x3 and 7x7 kernel sizes are shown in Table 4-1. Crater U-Net has a higher match 

ratio in each of the six test tiles, with the 7x7 kernel producing the best result.  

In this second comparison, an original-adjacent U-Net (using Dropout at Crater U-net 

levels and using similar reduced number of filters to be run-able with the test hardware) is 

compared to tests with Crater U-Net with 3x3 and 7x7 (pixel) kernels. The most striking 

difference is the amount of training time per epoch: over twice as much training time for the 

original Dropout U-Net. Another interesting note is the similarity of the validation accuracy 

between the models and the difference in the match ratio. This is further evidence (seen in 

Chapter 3) of the machine learning metrics not necessarily reflecting the metrics that matter 

to crater counters, like recall (match ratio) and precision. It is also interesting that Crater U-

Net is overfitting less (judging by the difference between the match ratio for the test vs 

training tile), but this is not an entirely fair comparison because the regularization strategy is 

optimized to Crater U-Net and not original U-Net. 

Table 4-2: Comparison between dropout U-Net, Crater U-Net with 3x3 kernel size, and Crater 
U-Net with 7x7 kernel size  

Stats at 200 epochs U-Net (dropout) Crater U-Net  
(3x3 kern) 

Crater U-Net  
(7x7 kern) 

Time per epoch 151 - 167 sec 66 - 71 sec 68 - 73 sec 

Val loss 0.1426 0.0896 0.0905 

Val acc 0.9776 0.9773 0.9774 

Match ratio,  
Tile 04 (test) 

0.710962 0.704259 0.699527 

Match ratio,  
Tile 05 (training) 

0.865377 0.753396 0.762454 

Despite the longer training time per epoch which made Crater U-Net better for the 

rapid architecture testing in Chapter 3, the results with the original-adjacent U-Net do 
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indicate that it is would be a good network for segmenting craters in general and would be a 

good candidate for ensemble learning with Crater U-Net. (This is discussed more in Section 

4.4.)  

4.3 EVALUATING AGES PRODUCED BY CRATER U-NET IN MULTIPLE 
LOCATIONS 

In order to evaluate the best Crater U-Net model (7x7 kernel size), nine locations are 

chosen2 that span across the three major eras of terrain: Noachian, Hesperian, and 

Amazonian. These locations can be found in Figure 4-1. The models used for this analysis are 

those of Chapter 3 with the same randomly selected lists of craters, each trained with 12 of 

the 24 tiles for 200 epochs. The match is performed with a target threshold of 0.2. Since the 

locations vary across all the tiles and some models use those tiles in their training, only 

results from a model that had the relevant tile as validation or test data are reported. (Training 

tile matches potentially would be artificially high.) 

Since the tiles were used as training or test data for different models, it is vital to keep 

track of which tiles were used in training and use a different one for the age evaluation in 

Table 4-2. The “model” column indicates which of the models (per Chapter 3) are used. For 

the “D” models, there are twelve training tiles, which limits the available test tiles by half. 

The relevant tile’s match ratio (per the model) is included for comparison, but note that the 

match ratio is for the entire tile, not the rectangular region being used to obtain an age.   

                                                
2 The author thanks Ryodo Hemmi and Prof. Hideaki Miyamoto for their assistance choosing 
appropriate locations. The results of this work are used to create the DIAM files that are loaded into 
CraterStats, and Ryodo Hemmi used them to obtain the network ages listed in Table 4-3 this section. 
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Figure 4-1: Locations of age analysis overlaid on the Tanaka map of geologic units (Tanaka et 
al., 2014), visualized here as a cylindrical projection. White mosaic tile numbers are included 
for comparison. These match with the tile numbers in Figure 3-14.  

Table 4-3: Locations and ages obtained using Crater U-Net 

Name Coordinates 
Upper left 

Tile Model Tile’s Match 
Ratio 

Network 
Age 

RH2012 
Age 

Noachian1 -160E, -9N 06 4D 0.66347 3.92%&.'()&.'* 3.94%&.'*)&.', 

Noachian2 -15E, +11N 23 2D 0.68571 3.86%&.&//)&.&'0 3.88%&.&/&)&.&'1 

Noachian3 +121E, -4N 04 3D 0.73028 3.92%&.&'()&.&'* 3.95%&.&'3)&.&', 

Hesperian1 +67E, +12N 14 1D 0.60081 3.72%&.&,5)&.&,& 3.68%&.&*,)&.&,, 

Hesperian2 -73.5E, +12N 21 2D 0.78297 3.76%&.&,')&.&/( 3.73%&.&,,)&.&/5 

Hesperian3 -97E, -15N 08 2D 0.72139 3.44%&.'0)&.&1( 3.40%&./*)&.&0( 

Amazonian1 -135E, -11N 07 3D 0.68565 2.20%&.,5)&.,5 1.54%&.,&)&.,& 

Amazonian2 -104E, +19N 20 3D 0.79699 2.51%&.,0)&.,5 1.71%&.,')&.,' 

Amazonian3 -170E, +30N 18 3D 0.62681 2.32%&.35)&.33 2.26%&.3')&.3& 

To provide more context for the ages shared in Table 4-3 above, Figure 4-1 shows the 

locations of the tiles, Figure 4-2 shows the precise location of Noachian1 in Tile 06 with the 

cumulative crater frequency graph (indicating the obtained ages), and Figure 4-3 shows a 

zoomed in view of the region with the annotation, network prediction, and matches 
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highlighted. Figure 4-4 and Figure 4-5 show the same for Hesperian2. Figure 4-6 and Figure 

4-7 show the results for Amazonian3.  

The Amazonian terrain shows noticeably different ages despite being relatively 

similar in the tile’s match ratio. First, the tile match ratios are for the whole 30ºx30º tile and 

therefore are not necessarily representative of the terrain in a smaller ~5º box that the craters 

are taken from at the location to obtain ages. Second, Amazonian terrain is the newest part of 

Mars and has the fewest craters. For age dating, smaller craters than the 2-32 km radius (4-64 

km diameter) are typically used to age date this region. Craters that are 1 km in diameter are 

considered better here, so these age tests could be repeated with higher resolution data to get 

more representative results. Interestingly, the model seems to have identified more craters 

than were annotated by RH2012. 
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(a) (b) 

Figure 4-2: (a) THEMIS data of Tile 06 with Noachian1 boxed in red. (b) The age obtained for 
this region. The black line represents the output of the network prediction; the red line 
represents the craters annotated by RH2012. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-3: Noachian1 location pictured as (a) original data, (b) RH2012 annotations (within 2-
32 km radius range), (c) network predictions (within range), and (d) matches highlighted. 
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(a) (b) 

Figure 4-4: (a) THEMIS data of Tile 21 with Hesperian2 boxed in red. (b) The age obtained for 
this region. The black line represents the output of the network prediction; the red line 
represents the craters annotated by RH2012. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-5: Hesperian2 location pictured as (a) original data, (b) RH2012 annotations (within 2-
32 km radius range), (c) network predictions (within range), and (d) matches highlighted. 
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(a) (b) 

Figure 4-6: (a) THEMIS data of Tile 18 with Amazonian3 boxed in red. (b) The age obtained for 
this region. The black line represents the output of the network prediction; the red line 
represents the craters annotated by RH2012. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-7: Amazonian3 location pictured as (a) original data, (b) RH2012 annotations (within 
2-32 km radius range), (c) network predictions (within range), and (d) matches highlighted. 
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4.4 ENSEMBLE LEARNING & MODEL BAGGING 

Ensemble learning is a method used to combine multiple trained models to improve 

the overall classification score. This general methodology is effective on a wide variety of 

machine learning tasks and has become very popular in machine learning competitions, such 

as those run by Kaggle. The core idea is that if models that focus on different detections are 

combined, the combination is stronger than either of the models alone. Models can either be 

averaged directly, as in: 

pred1 = model1.predict(X) 

pred2 = model2.predict(X) 

pred3 = model3.predict(X) 

pred4 = model4.predict(X) 

pred5 = model5.predict(X) 

num_models = 5 

pred_final = (pred1 + pred2 + pred3 + pred4 + pred5) / 
   num_models 

Or models can be weighted to indicate stronger detection potential from some models: 

pred_final = 0.5 * pred1 + 0.3 * pred2 + 0.2 * pred3  

Regardless of the exact distribution, the goal is to use diversity to let the biases cancel 

each other out. Chollet summarizes, “you should ensemble models that are as good as 

possible while being as different as possible” (Chollet, 2017).  

To contrast, bagging refers to using the same model architecture multiple times but 

changing the data used in training. For example, implementing a bagging method could 

consist of (1) split the data into five pieces; (2) train on four and reserve one for validation; 

(3) repeat so each piece is the validation, creating five distinct models; (4) make an ensemble 

by averaging the five models.  
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4.4.1 MODEL COMBINATIONS FOR CRATER COUNTING 

For the work presented in Chapter 3, all of the craters are known through the 

annotations. An interesting problem to consider is how to detect smaller craters than were 

detectable by the first model. To test ensemble learning for crater counting, a few tests are 

envisioned: 

1. Ensemble method: averaging a Crater U-Net with a dropout U-Net (similar to original 

U-Net but using dropout instead of cropping for regularization) 

2. Bagging method: training with overlapping sections of the data (leaving the remaining 

for validation) — repeat six3 times, average. 

Exploration into the nuances and optimization of this is future work. 

4.4.2 OPPORTUNITY WITH THEMIS-593 

The NASA Mars Odyssey mission has a visible and infrared camera called Thermal 

Emission Imaging System (THEMIS) that has produced global datasets of the red planet. 

These images continue to be valuable in many facets of research including landing site 

selection, crater counting, and understanding the formation of Mars. In the infrared, both 

daytime and nighttime images are published. The THEMIS Daytime IR camera is published 

at two resolutions:  

1. THEMIS-256, 256 pixels per degree (PPD) and 231.55 meters per pixel (MPP) 

2. THEMIS-593, 593 PPD and 99.7 MPP 

The THEMIS-256 data has some advantageous properties in terms of the size of each 

tile. Each tile is 30º by 30º, 7680x7680 px. When the crater counting pipeline splits the large 

                                                
3 Six is chosen because it is a factor of 24, the number of data tiles (7680 x 7680 px) used 
from THEMIS-256.  
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image into smaller 512 x 512 boxes, this makes for a perfect 15 by 15 box grid. A tile of 

THEMIS-593, however, is 35565 x 17783 px. For the tiles near the equator (±30º latitude), 

each is 30º latitude (Y-direction) by 60º longitude (X- direction). An important decision 

needs to be made regarding how to treat the differently-sized image within the pipeline: what 

is the best way to split the new image. Since this discussion may be useful for adapting this 

code or method to future datasets, it is included here.  

The first option is to use the image exactly as it is. The code will start from its 0,0 

point (top right corner of the image) and slice 512 x 512 chunks. However, the 0º by 0º point 

of the tile is actually the bottom left corner. This would cause a mismatch when matching the 

latitude and longitude to the pixel values later. (This can be accommodated for by adding the 

offset pixels back, but must be tracked.) The second option is to resize or crop the image to 

something that is a good multiple of 512. The closest multiple of 512 to the original size 

(35565 x 17783 px) is 34816 x 17408 px, which contains 68 boxes (of 512 x 512 px) across 

and 34 boxes down. This is relatively close to the original size, but a little data is lost, and it 

relies on choosing a good image resizing algorithm. If cropping, that data is lost entirely. The 

third option is to add a border of pixels to the top and right sides of the image so that the 

pixels of the image is a multiple 512. Here, adding 275 pixels to the top edge and 137 pixels 

to the right edge accomplishes this, giving 70 boxes (of 512 x 512 px) across and 35 boxes 

down. Since we are evaluating an image, not training, adding the buffer seems like the best 

option in this situation. We can maintain the bottom left origin point and calculate the final 

relative longitude and latitudes using that point as the start.  

One potential use for this is to use a model, bagged models, or an ensemble of models 

trained on THEMIS256, and generate craters lists for data from THEMIS-593. 
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4.5 CRATER DETECTION CODE PACKAGE 

These extensions represent only a fraction of the tests and studies that could be done. 

To facilitate further exploration by other researchers, the code is published. The crater 

detection code package contains useful functions, classes, and Python Jupyter notebooks 

demonstrating their use.  

The code is published at https://github.com/ddelatte/.   

4.6 WHAT’S NEXT? 

The extensions enumerate a sample of other experiments that could be conducted 

using this research. The results of the original U-Net comparison show the complexity in 

determining a “best” network. Depending on how “original” is defined (and limited by 

hardware realities), the networks performed similarly in some metrics (i.e., accuracy) and 

vastly different in others (i.e., time). A promising future direction is optimizing the use of 

both networks in an ensemble to capture more craters.  
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CHAPTER 5:  CRATER COUNTING FRAMEWORK 

5.1 MOTIVATION 

A baseline framework anchors the discussion and comparison of crater detection 

algorithms and methods. Depending on the needs of a researcher, choosing to hand count or 

use a particular technique will be impacted by the availability of the tool, its ease of use, and 

the similarity between the tool and the new application. With an increase in collaborations 

between machine learning researchers and planetary geologists, having a central frame of 

reference aids in each’s understanding of the problem. Between the two groups, there can be 

misunderstanding regarding problems that might be considered simple or very difficult in 

each field. For example, a machine learning researcher may be confident in a CNN based 

technique’s ability to create features related to craters through training, while a planetary 

geologist used to hand crafting crater features may initially be skeptical that this step is 

automated. 

In order to anchor the discussion, the key interfaces are identified, a few CDA 

pipelines are enumerated, and the existing hand counting pipeline is examined. Then, the 

improved pipeline is presented and the merits of a single framework are discussed. 

5.2 OBJECT PROCESS METHODOLOGY 

Object Process Methodology (OPM) is a systems architecture diagram used to 

document the interaction of “objects” and “processes” in a system (Dori, 2011; 2016). The 

method is used here to represent the crater counting processes and framework. “Objects“ are 

parts of the system which are input, created, consumed, or changed by a process. In this 

chapter’s diagrams, objects are designated with a rectangle and arrows indicating whether 

they are inputs or outputs.  A “process,” designated with a circle, is something that 

transforms one or more objects. An “instrument” is an object that can be used by a process 

but is not changed during the processes; this is indicated as a box with a closed circle (instead 
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of an arrow) to a process. An “agent” is a person that provides input to a process and is 

designated with an open circle (instead of an arrow). When the same object is being used by a 

sequence of processes, an “invocation” is shown, represented by a broken arrow. 

Demystifying the “Black Box”: 

• Obtain data (process): A lot is contained in this bubble: the satellite downlink and 

transfer by which scientists receive usable data from other planets. This is assumed to 

be at the level of an image file and outputs DATA. 

• Data (object): This DATA object is the image file obtained from the planetary 

science mission. It could be a digital elevation model, infrared, or visible image file.  

• Formating data (process): Formatting the DATA object can be a simple or complex 

process depending on the dataset. For THEMIS data for example, it is possible to 

directly download a PNG file. For other datasets, the NASA Planetary Image format 

must be converted to a tiff or png for processing by a machine learning algorithm.  

• Pre-process (process): This pre-processing is what gets the DATA (which has been 

passed through the pipeline) into the format necessary for the machine learning 

algorithm. With the Crater U-Net experiment, this consisted only of filling in black 

pixels with the average gray of the tile, but for other pipelines could be extensive. For 

some computer vision methods, this has included exaggerating the image to enable 

edge detectors. For classification machine learning methods, this is the step that 

identifies the regions of interest that will be sorted into crater and non-crater by a 

machine learning classifier.  

• Find craters (process): This step is done manually for hand counting craters or 

automatically with a trained machine learning model. For hand counting, this can take 
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days, weeks, or months depending on the amount of data. For a trained machine 

learning model, this takes minutes or hours. 

• Make list (process):  This step may be done by a program like JMARS (used to aid 

crater counters), may be an output of a machine learning algorithm (like Faster R-

CNN), or may involve using a computer vision technique on a segmented image (like 

with Crater U-Net).  

• Crater List (object): This is the list of craters found in the images provided. It should 

be in either x, y, radius (diameter) with known latitude and longitude bounds or 

directly in latitude, longitude, radius (diameter).  

• Format list (process): This may happen automatically if using a software tool like 

JMARS to count the craters (users can select export options) or may require separate 

code to turn a CRATER LIST into the file type necessary for the software used to 

obtain an age.   

• Load list (process): Here, the generated list is loaded into a tool that aids in obtaining 

an age.  

5.3 PIPELINE FOR HAND COUNTING: BASELINE FRAMEWORK  

 

Figure 5-1: Object Process Methodology diagram for the hand counting craters 
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5.4 IMPROVING THE PIPELINE WITH MACHINE LEARNING 

 

Figure 5-2: Object Process Methodology diagram for the crater counting process with 
segmentation machine learning included 

5.5 ONE FRAMEWORK? 

Although it is tempting to try to fit crater counting in a single framework, the reality is 

more complex. Iterations and ensemble learning with many methods prevent a single simple 

diagram from being the gold standard. Since some algorithms specialize in a particular type 

of terrain, size, or data type, the needs of a particular researcher may necessitate using several 

to complete her work. Despite this nuance, understanding the way the data flows through this 

framework is important especially for new researchers entering the field so they can make 

process improvements and avoid inefficiencies.  

Even if one framework is not possible, there are a family of machine learning 

techniques that do fit in the framework described here. For these algorithms that fit, a set of 

regulations can be made that could organize these similar methods in such a way that they 

can be combined into a single software that could be used by crater counters to make their 

crater list for their region of interest. 
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CHAPTER 6:  DISCUSSION  

6.1 SUMMARY 

This chapter details the significance of various threads throughout this work and notes 

some of the outstanding challenges and potential collaborations of crater detection research. 

First, U-Net and Crater U-Net are compared and the method’s significance to crater counting 

and other research is explored. Second, extensions of this work to other applications and 

fields are considered. Finally, the significance of this thesis’s work applied to crater counting 

is examined, best practices are shared, and high impact next steps are listed. 

6.2 EXTERNAL APPLICATIONS 

There are numerous extensions of this research, including: using results to analyze 

chain craters and secondary craters, spacecraft localization and navigation, and expanding to 

other types of targets like boulders.  

Current research allows for detecting secondary craters via proximity algorithms, and 

having clean output of crater locations would be an asset for such research. Secondary craters 

are typically not included in the official tally of craters but their presence is somewhat 

accounted for within the age dating formulas.  

Given the success of the basic U-Net architecture on the crater segmentation problem, 

future work in the domain could include implementing multiple classes that indicate the level 

of crater degradation, detection of other geological features (boulders, dunes, aeolian ridges, 

or dry river beds have been of interest to other researchers (Palafox, Hamilton, Scheidt, & 

Alvarez, 2017)), or trying U-Net on visible images, or comparing the performance on each 

type of data (digital elevation, infrared, and visible light). Outside the crater counting domain, 

problems of interest could include detecting objects with night vision and detecting 

camouflage animals or objects. 
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Another future application is spacecraft localization and navigation. An algorithm can 

be used to detect known distinct craters and their pattern could be matched to an expected 

pattern to aid in landing. This has been considered (Lee et al., 2010) and while presently 

machine learning algorithms are not robust enough to be the primary instrument, adding a 

similar capability on upcoming missions would be valuable. There is clear interest in such 

technology with missions like JAXA’s Smart Lander for Investigating Moon (SLIM) 

mission, which is working on pin-point landing technology (JAXA, n.d.). Should Mars 

landings become frequent in the future, this could be a good way to localize on the surface, 

especially if guiding markers were created to aid in the spacecraft navigation. 

6.3 COMPARING CRATER U-NET AND ORIGINAL U-NET 

Section 4.2 discusses the actual numerical comparison between the original U-Net 

and Crater U-Net. One of the challenges in machine learning is maximizing training output 

with other parameters. The two biggest differences between the two is (1) Crater U-Net trains 

much faster for comparable performance to original U-Net and (2) can be Crater U-Net can 

be trained on the hardware available. These two differences were crucial in the 

implementation of this research. Since the main point of Chapter 3 was to try as many 

architectures as possible (and sometimes the same repeatedly), being able to iterate quickly 

without crashing the code is of primary importance.  

As discussed in Section 4.4, ensemble learning and bagging have much potential for 

improving the results and finding additional craters. Optimizing this process would itself be 

another project and one worth studying further.  

6.4 NEED FOR COMMUNITY AGREEMENT 

The community’s agreement on two topics is vital to efficiently and rapidly explore 

the possibilities of machine learning for crater detection and age dating: 
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1. A baseline reference dataset must be established. This is not a trivial feat. As found in 

previous research, up to 45% difference (Robbins et al., 2014) can be found between 

crater counters labeling the same region.  

2. Tools are needed to rapidly test and compare models. 

The reference dataset provides much needed continuity and comparison between 

papers. Currently, researchers are testing on a wide variety of ranges, pixel sizes, and actual 

sizes of craters, and this is crucial information to comparing methods. Results of algorithms 

on elevation (DEM) data with large craters (5 km+) are not directly comparable to results of 

based on visual data that includes smaller crater sizes (1-10 km). To begin to compare 

datasets, instead of talking about the meter or kilometer sizes, the relative pixels should also 

be discussed. Accordingly, the reference dataset should have the following characteristics: 

• Easily accessible, well formatted data in an image format that can be read by any 

computer (recommended: PNG) 

• Cover a wide range of terrain on the planetary body. Cylindrical projections stretch 

out the appearance of roughly circular craters, so keeping the reference to ±30º limits 

issues 

• Open source reference code that describes how to run the data and analyze it, 

preferably in multiple languages and machine learning frameworks, but at a minimum 

in Python using Keras/Tensorflow in a Jupyter notebook 

Ideally, the reference dataset would also have the following characteristics: 

• Image and annotation data from multiple planetary bodies, starting with Mars and the 

Moon 

This is not a perfect solution, but it would vastly improve the current situation. 

Currently, machine learning researchers interested in the field (who lack a planetary geologist 
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collaborator) must sift through multitudes of previous research and dataset types. Those 

outside the field are unfamiliar with standards like NASA’s Planetary Data System (PDS) 

format.  

6.4.1 COMMUNITY NEEDS TOOLS & BASELINE 

Comparing the differences between algorithms remains a challenge due to the lack of 

an established baseline. Salamuniccar et al. (Salamunićcar & Lončarić, 2008) proposed an 

open framework, but key elements have yet to be broadly adopted. However, several dataset 

combinations are better studied in crater counting and machine learning research. These 

regions are not necessarily better studied because of scientific value, but rather ease of use, 

especially if one researcher has published an easily accessible dataset. In a few cases 

(DeLatte, Crites, Guttenberg, Tasker, & Yairi, 2019; Silburt et al., 2019), the ±30º region was 

selected because the circular form of craters is preserved in the cylindrical projection. For 

example, (Benedix et al., 2018; DeLatte et al., 2019; DeLatte, Crites, Guttenberg, Tasker, & 

Yairi, 2018a; Norman et al., 2018) use THEMIS images (NASA Mars Odyssey/THEMIS 

Team, 2006) and RH2012 annotations (Robbins & Hynek, 2012) are used with THEMIS in 

(DeLatte et al., 2019; DeLatte, Crites, Guttenberg, Tasker, & Yairi, 2018a). The Mars Nanedi 

Valles region, imaged by the Mars Express High Resolution Stereo Camera (HRSC) nadir 

panchromatic (#h0905_0000, 12.5 meters per pixel) (Bandeira, Ding, & Stepinski, 2010) is 

studied by numerous research groups (Bandeira et al., 2010; Cohen, Lo, Lu, & Ding, 2016; 

DeLatte, Crites, Guttenberg, Tasker, & Yairi, 2018b; Ding et al., 2011; Urbach & Stepinski, 

2009). On the Moon, annotations by Head et al. (>20 km) (Head et al., 2010) and Povilaitis et 

al. (5-20 km) (Povilaitis et al., 2018) are used for machine learning research (e.g., by (Silburt 

et al., 2019)). 

A larger-scale candidate for an annotation baseline on Mars is the use of Robbins and 

Hynek Mars annotations (Robbins & Hynek, 2012) and on the Moon, a combination of 
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Povilaitis et al. (2018) (5-20 km) and Head et al. (2010) (>20 km), evaluated on ±30º latitude 

and all longitudes. Both datasets are well formatted, annotated by expert crater counters, and 

easy to use. Even if researchers are interested in other regions, also running their method on 

one or both of these datasets will allow real comparisons to be made between methods. An 

established set of crater baselines will provide the community with valuable comparisons for 

evaluating machine learning research. 

6.5 HUMAN IN THE LOOP 

In order to work toward generally accepted increased automation, a phased autonomy 

approach could help. Currently, crater detection algorithms are primarily used only by their 

original developers and no standard exists for analyzing new image data or regions.  

Table 6-1: Increasing autonomy for crater counting with human in the loop 

Phases of Autonomy  Characteristics  Requirements 

Phase 1 Hand counted Humans trained, agree on standard crater counting method 

Phase 2 Human in the loop 

Using established hand annotations, research many machine 
learning algorithms in use in other domains, output results to 
formats that can be loaded into programs like JMARS to 
evaluate, modify the predictions, and obtain ages 

Phase 3 Full automation Crater detection algorithms have gained sufficient accuracy 
and confidence among the planetary science community 

The current state of research is in Phase 2: Human in the loop. There have been a few 

notable periods in the history of crater counting with massive shifts forward in thinking (i.e., 

adopting the cumulative crater curves to evaluate Mars (Michael & Neukum, 2010)), and the 

community will likely need such a consensus to adopt either a single or a collection of 

automated algorithms. In the future, like how Craterstats is used to determine isochrons via 

various production functions (Michael, 2008), planetary geologists may be able to load one or 

an ensemble of several models for detecting craters in new data.  

In order to move to the next stage of crater detection algorithms, development of code 

and software that uses one or more CDAs to generate a crater list that is then verified by 
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humans may be the solution. The feedback from users could provide valuable additional 

training data. Over time, the algorithms could become tailored to the user if the corrections 

are used as additional training data.  

6.6 FUTURE USE OF MACHINE LEARNING 

Several of the trends in machine learning research such as the use of region proposal 

networks and classifiers (i.e., Faster R-CNN (Ren, He, Girshick, & Sun, 2016), Mask R-CNN 

(He, Gkioxari, Dollár, & Girshick, 2017)) and Generative Adversarial Networks (GAN) 

(Goodfellow et al., 2014) may have uses in the crater counting and localization problem. 

GANs in particular may be used to produce additional training data to avoid overfitting and 

the adversarial techniques approach may help improve transfer between different conditions. 

Although no journal papers have been published on these topics yet (that we could find), 

early results using techniques like Faster R-CNN have been published at the Lunar and 

Planetary Science Conference (Emami, Ahmad, Bebis, Nefian, & Fong, 2018) and other 

conference poster sessions, showing this is a promising direction within the community. With 

additional annotation datasets, more objects like boulders or lava tubes could possibly be 

detected using these techniques. Some research, such as (Palafox et al., 2017), already looks 

for multiple geological landforms on Mars, and Wang et al. (Wang, Di, Xin, & Wan, 2017) 

looks for dark slope streaks. As more annotated databases become accessible and are 

formatted in ways that enable loading them into a machine learning algorithm, it is likely 

more research will go in this direction.  

An interesting trend in machine learning is transfer learning, which can mean less 

specificity in training. A technique that has proved useful even in the crater counting domain 

is using pre-trained networks as the base (trained on other images) and doing additional 

training with craters. This type of transfer learning will only improve as new networks are 

trained and represents an opportunity for scientists to use less data. Training from scratch 
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requires more hyperparameter tuning. By using pre-trained or partially pre-trained networks, 

training time may be reduced and more types of network architectures can be used. For 

example, Norman et al. use GoogLeNet-OverFeat pre-trained with ImageNet to detect craters 

on Mars (Benedix et al., 2018; Norman et al., 2018). 

6.7 LESSONS 

Numerous lessons emerged throughout this research. From the experiments with 

Crater U-Net, the following recommendations emerge: 

• Different applications will want to use different hyperparameters for the model. 

Crater counters value repeatability and similarity to the trained set, so the recall score 

is highly valued but needs to be balanced with precision. Those using this to find 

crater hazards would want a low target threshold to get more false positives.  

• When consider the application, architecture matters. For example, the 3x3 kernel 

preserves more of the crater edge size while larger kernels forces roundedness. 

Having a variety of kernel sizes helps find different faded craters. Higher kernel 

values help with finding large faded craters.  

• Improvements from adding more data may plateau for a given kernel size and number 

of filters. This will be dependent on the dataset used. 

• Even using the exact same training data, model results can vary. If constrained to 

using a smaller dataset, running multiple times may yield better results.  

• Fixed edge targets were consistently preferred over variable edge and solid targets.  

From the review of CNN’s use for crater counting: 

• A priority for the community is identifying which annotations are the correct ones for 

various planetary bodies. (Even a small number of “correct” annotations would be 
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beneficial. The important point is that the best ones are identified and accessible to 

machine learning researchers.) 

• Using massively huge databases of labeled craters can provide foundation of a 

classifier/model which then is used as the pre-trained model for other new databases.  
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CHAPTER 7:  CONCLUSION  

This is the first work to evaluate a segmentation U-Net on Mars thermal infrared data. 

It details several projects related to automated crater detection using segmentation 

Convolutional Neural Networks and supports the conclusion that machine learning methods 

can augment manual work by human experts.  

In Chapter 1, the interdisciplinary crater counting and automatic crater detection is 

introduced. Contributions of this thesis are reported, and the reader is introduced to some of 

the problem’s complexities.  

In Chapter 2, a comprehensive review of the crater counting papers utilizing CNNs is 

completed, and two categories (classification and segmentation) are used to sort the papers by 

their machine learning function. This chapter also lists many of the challenges experienced 

while doing crater counting and machine learning research to enable each group of 

researchers to understand better where the difficulties lie. The two groups are encouraged to 

collaborate because of the highly specialized nature of the data formats, similarity between 

the crater counting problem and other applications of interest within the machine learning 

community, and the tremendous potential of working together.  

In Chapter 3, Crater U-Net, in the same architecture family as U-Net, is introduced 

and experiments are run to learn the impact of various hyperparameters on the specific 

application of crater detection. In the process, several models are created and the use of 

metrics (loss, accuracy, recall, precision, F1) are evaluated for their usefulness throughout the 

process. Sensitivity analysis is performed by training with 3, 6, 9, 12, and 15 tiles (out of 24, 

each is 30ºx30º, 7680x7680 pixels, THEMIS Daytime IR) and training with four different 

randomly selected sets of tiles.  
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In Chapter 4, the Crater U-Net is both compared to original U-Net and used to age 

date nine locations around Mars that span the Noachian, Hesperian, and Amazonian terrain.  

In Chapter 5, a systems engineering diagram, Object Process Methodology, is used to 

visualize the pieces and flow of crater counting by hand versus with a human in the loop.  

In Chapter 6, recommendations for those interested in performing their own machine 

learning crater counting research are made. In particular, there is a need for a diverse baseline 

with which to compare all machine learning algorithms is sorely needed to enable 

comparisons between techniques.  

Together, this research makes a strong case for using segmentation for crater 

detection, particularly with a human in the loop. Segmentation can actively reduce the 

workload for crater counters.  
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