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Chapter 1

Introduction

Vortex breakdown is still a big ocean of new research findings since its occurrence over a delta
wing was found in 1950’s [46]. It is a drastical change in a longitudinal vortex and is observed
in various situations where the longitudinal vortex exists. It is known that the vortex breakdown
takes place in a very wide range from a flow in a small pipe [29] even to a flow in a tornado [51].

On one side, this phenomenon is undesired to take place. It causes a loss in lift and an increase
in a pitching-up moment for a case of an aircraft with the delta wing [28] and it causes a rotating
stall for a case of a turbine blade [23]. Then, the aim of studies on the vortex breakdown at this
side is how it is vanished or weakened.

On the other side, this phenomenon is desired to take place. As the vortex breakdown yields a
recirculating region and a strong shear flow, it can be exploited to a device of mixing enhancement
such as a swirl burner [60]. These days, it is also applied to a bioreactor to efficiently feeding a
cell [62]. Then, the aim of studies on the vortex breakdown at this side is how it is generated and
kept.

By means of the both sides, it is very important and expected to reveal the physical property
of the vortex breakdown which will lead to let this phenomenon under control. In this thesis, we
investigate fundamental properties of the vortex breakdown. Then, this chapter gives what is the
fundamental properties, what has been understood so far, and what sholud be investigated at the
present state.

The fundamental research of the vortex breakdown is mainly classified to two ways, streamline
topology and stability. It is because they are keys to classify the vortex breakdown to several
types. Before reviewing previous studies on the fundamental properties of the vortex breakdown,
we need to explain the classification of the vortex breakdown. There are roughly two types of the
vortex breakdown coming from the observation of particle traces in experiments [54].

One is called bubble-type, because the particle traces seem to create a bubble. Its nature is a
recirculating flow region yielded along the axis of the longitudinal vortex as shown in Fig. 1.1. It
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Figure 1.1: Streamlines of bubble-type vortex breakdown

Figure 1.2: Instantaneous streamlines of spiral-type vortex breakdown

means the topological structure of streamlines changes when the bubble-type vortex breakdown
takes place. When a tracer particle is trapped into the recirculating flow region, it seems that the
bubble is created. Then, the streamline topology is the most important property of the onset of
the bubble-type vortex breakdown.

The other is called spiral-type, because the particle traces are swirling. It is essencially an
unsteady flow. The particle trace (or an intantaneous streamline) is rotating and its rotating
sense is opposite to that of the longitudinal vortex. Fig. 1.2 schematically shows this relation
using the instantaneous streamlines. It is often said that the spiral-type vortex breakdown follows
the buble-type vortex breakdown as a perodic emission of Kármán vortices follows a pair of twin
vortices at a wake of a cylinder [14]. The transition from the twin vortices to the Kármán vortices
is explained by a flow stability consisting of a growth rate and a frequency in time [70]. Then,
the flow stability is the most important property of the transition from the bubble-type to the
spiral-type.

Fig. 1.3 shows a relation between the bubble-type vortex breakdown and two properties: the
streamline topology and the stability. These two properties are investigated in this thesis. Below,
we review the previous studies and describe what is specifically investigated in this thesis. Before
that, we introduce dynamical system theory which is common to both analyses. A dynamical
system is defined as a set of differential equations evolving in time. The dynamical system theory
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CHAPTER 1. INTRODUCTION

Figure 1.3: Schematical relation between bubble-type vortex breakdown and two properties:
streamline topology and stability

treats how many possible patterns there are about topological changes, called bifurcation, in solu-
tions of the system and how stable the solutions are (if they are not stable, they are not observed
in real). The difference between them is in governing equations. The streamline topology is about
a dynamical system of equations of streamlines, and the stability is about a dynamical system of
equations of motion. In this thesis, both properties are investigated based on seveal theories. They
are explained in detail at Chapter 2.

1.1 Streamline topology of bubble-type vortex breakdown

Studies on topologies of flow fields mean to understand topological structure of integral curves. In
the flow fields, there are three types of the integral curves. One is a streamline, which is an integral
curve of the velocity vector field frozen in time. Taking a snapshot of the flow field and integrating
a line along the velocity vector, we can see the streamline. Second is a streakline, which consists
of positions of particles which pass a chosen point. We can see the streakline even in our daily
life: smoke is a typical example. Third is a pathline, which is a trajectory a particle follows. If
we record the position of the particle in time, we can see the pathline by conneting the positions.
We can see the pathline in a stroboscopic picture when we throw a ball and trace its position, for
example.

These three lines coincide for a steady flow. When we consider to analyze the topological
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1.1. STREAMLINE TOPOLOGY OF BUBBLE-TYPE VORTEX BREAKDOWN

structure of those lines, we look for limit sets such as a stagnation point, an attracting line, a
repelling line, and so on, because we can understand the topology of the flow as a dynamical
system. The dynamical system of streamlines enables us to simplify complicated structure of the
flow and it was often applied to understand separated flows. Lots of results are summarized in
review papers by Tobak and Peake [63], and Perry and Chong [47].

1.1.1 Streamline topology of linear dynamical system

The classification of flow patterns around a stagnation point in a three-dimensional flow field was
completed by Chong et al. [15]. We review how to classify the flow around the stagnation point.
System of equations are simply written as

d

dt
x = u(x), (1.1)

where x is a position vector and u is a velocity vector which is a function of x. Consider a
stagnation point is found. Linearizing Eq. 1.1 at the stagnation point, we obtain a system of
linear equations writen as

d

dt
x = A(x− x0), (1.2)

where x0 is the position vector of the stagnation point and A is a matrix called velocity gradient
tensor defined as

A = ∂xu(x0). (1.3)

The velocity gradient tensor has eigenvalues and eigenvectors. These eigenproperties tell us how
the flow pattern is. In a two-dimensional flow field, for example, the flow patterns count 5. Those
patterns are shown in Fig. 1.4. Based on this analysis, the topological structure of a localized flow
around the stagnation point can be determined.

A problem of this analysis is, however, we can understand only the localized flow around the
stagnation point. We often see streamlines with plural stagnation points. The dynamical system
including these streamlines is no longer a linear system, because the linear system never has plural
stagnation points. Then, another method was required to solve this problem.

1.1.2 Streamline topology of nonlinear dynamical system

The local bifurcation theory of fixed points treats the topological change or the bifurcation of a
vector field with fixed points. The fixed point is a point where the velocity vector is zero in a
space. Then, a stagnation point is always one of the fixed points. By this theory, we can explain
a case where a vector field with a single fixed point bifurcates to that with a few fixed points. An
important key is to consider the simplest nonlinearity of the dynamical system. This theory was
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CHAPTER 1. INTRODUCTION

Figure 1.4: Flow patterns around stagnation points in two-dimensional flow fields

developed and explained in detail by Guckenheimer and Holmes [27]. It is explained in Chapter
2. The local bifurcation theory was applied to the analysis on topologies of a wake of a cylinder
[17], a two-dimensional separated flow [10]. Possible patterns of the topologies were revealed.

Chaos is one of big themes in the context of dynamical systems. Beggining from the Lorenz
attractor [39], it has been revealed that dynamical systems can deterministically be unpredictable.
The chaotic bifurcation can take place on a nonlinear dynamical system by perturbations In order
to know whether the chaos appears or not, we often see there exists a random region in a Poincaré
section [20].

1.1.3 Previous studies on bubble-type vortex breakdown

Above topological analyses were also applied to vortex breakdowns. The reason why researchers
analyze a flow topology of a bubble-type vortex breakdown is to determine the topology observed
in real and to investigate whether other patterns of the topology possibly exist or not. Some of
previous studies are extracted and summarized in Table 1.1.

The eigenvalue analysis of a velocity gradient tensor at a stagnation point was applied to
a bubble-type vortex breakdown [66]. It revealed that a pair of stagnation points bounding a
recirculating flow region have the structure of a saddle-focus. The difference bitween them is
whether the focus is attracting or not. One is a repelling focus, and the other is an attracting
focus as shown in Fig. 1.5.
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1.1. STREAMLINE TOPOLOGY OF BUBBLE-TYPE VORTEX BREAKDOWN

Table 1.1: Review of topological analysis on vortex breakdown
Year Group Contents

1994 Blackmore [8] Polynomial expression of bubble satisfying axisymmetric NS
1995 Visbal [66] Eigenanaysis of velocity gradient tensor at stagnation points
1999 Brøns et al. [13] Bifurcation model of an axisymmetric incompressible bubble on the axis
2006 Bisgaard et al. [7] Bifurcation model of an axisymmetric incompressible bubble off the axis

Figure 1.5: Saddle foci around a recirculating flow region

The local bifurcation on an axisymmetric bubble-type vortex breakdown was firstly analyzed
by Brøns et al. [13]. They used a Stokes’ stream function which is a stream function of an
axisymmetric flow and derived a simple nonlinear dynamical system in which a bubble-type vortex
breakdown is yielded from a swelling longitudinal vortex as shown in Fig. 1.6. It is written in
cylindrical coordinates as

d

dt
r = −rz, (1.4)

d

dt
z = µ+ r2 +

1

2
z2, (1.5)

where µ is a bifurcation parameter. If µ is larger than zero, there exist a recirculating flow region,
while there doesn’t exist any recirculating flow region if µ is smaller than zero. By this group,
topological patterns of the axisymmetric bubble-type vortex breakdown off the axis were also
revealed [7].

It can be said that the topological patterns of the flow field with an axisymmetric bubble-type
vortex breakdown has been well understood for an incompressible flow so far. The next problem
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CHAPTER 1. INTRODUCTION

Figure 1.6: Topological bifurcation of axisymmetric and incompressible bubble-type vortex break-
down

was how the topology changes under nonaxisymmetry and compressibility. The influence of the
nonaxisymmetry on the topology was much more investigated than that of the compressibility be-
cause it strongly connected to chaos and essentially appeared in visualization results of experiments
mainly in a closed cylinder with a rotating bottom [67].

It was known that chaotic advection of particle traces was observed as finger-like structure
around a recirculaitng flow region for a periodic bubble-type vortex breakdown in a visualization
experiment by Escudier [19]. Holmes theoretically showed that time-periodic axisymmetric per-
turbations was able to yield Lagrangian chaos including the chaotic particle traces [31]. Lopez and
Perry numerically showed the particle traces of periodic axisymmetric solutions were chaotic with
finger-like structure in a Poincaré section visualized in the experiment [38].

However, this finger-like structure in the Poincaré section was not only for periodic axisym-
metric flows but also for steady nonaxisymmetric flows. Spohn et al experimentally showed the
finger-like structure of the particle traces was observed around a stagnation point downstream of
a recirculating flow region even for steady flows. Sotiropoulos and Ventikos numerically found
their solutions for a fully three-dimensional flow in the same configuration as the experiments also
yielded the chaotic structure in the Poincaré section [57]. In another article by Sotiropoulos et al.
[58], they concluded that the Shilnikov bifurcation [56], which was known as a chaotic bifurcation
of an aaxisymetric flow, can take place for the vortex breakdown in the closed cylinder. Brøns et al.
numerically showed imperfections of the experimental setup caused such a bifurcation [11]. Also,
it was shown that diffusive particle traces were able to yield similar pictures to the visualization
results [12].

In contrast to a lot of studies on the chaotic advection of the vortex breakdown in the closed
cylinder, the chaotic feature of asymmetric recirculating flow region in other geometries were not
investigated well. There exists a three-dimensional investigation but it mainly focused on vorticity
dynamics [59]. As a next step, we need to look for these chaotic topologies in other configurations.
Then, in this thesis, the asymmetric recirculating flow region is numerically investigated in a
swirling jet from the aspect of the chaotic property.

Also, an influence of the compressiblity is not known yet. For now, it is assumed that there
is no influence of the compressibility on the topology of the bubble-type vortex breakdown [73].
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1.2. STABILITY OF BUBBLE-TYPE VORTEX BREAKDOWN

Then, in this thesis, addtional patterns of the bifurcation of the bubble-type vortex breakdown
caused by the compressibility and non-axisymmetry are investigated. Appliying the above analyses
to data obtained by numerically simulating Navier-Stokes equations, we comprehensively examine
the topology of the bubble-type vortex breakdown.

1.2 Stability of bubble-type vortex breakdown

A flow stability explains how a small perturbation behaves both in time and in a space when a
prescribed flow is given. Starting from a famous pipe experiment by Reynolds [50], there is a
long history of tremendous research on the flow stability. In this section, we at first look back
at fundamental configuration and previous studies on the flow stability picking up some review
papers. Secondly, we focus on the stability of a vortex breakdown. We see what was revealed so
far from previous studies on the stability of the vortex breakdown. After that, what we investigate
in this thesis is shown.

1.2.1 Stability analysis

Consider governing equations of a fluid motion: they are often nonlinear partial differential equa-
tions (PDEs) like Navier-Stokes equations. Here, we denote them as

∂tq = Nq, (1.6)

where q is a variable vector andN is a nonlinear operator. When we directly analyze a development
in time of a solution of Eq. 1.6, it is nonlinear stability analysis, but it is often quite hard to analyze
it. If q̄ such that N q̄ = 0 exists, q̄ is a steady solution of Eq. 1.6. It is called base flow in many
literature. Then infinitesimal perturbations of the variable vector q′ such that q = q̄ + q′ can be
introduced. We can linearize Eq. 1.6 about q′ as

d

dt
q′ = Lq′, (1.7)

where L is a linearized operator of N around q̄. When we analyze the development in time of a
solution of Eq. 1.7, it is linear stability analysis.

On a linear stability analysis, we consider the spectral decomposition of L. There are mainly
two approaches to analyze the flow stability. One is local stability anaysis and the other is global
stability analysis. Difference between them is briefly showed here. For more detail, see a review
paper by Huerre and Monkewitz [32].

On the local stability analysis, a perturbation is assumed to be a plainwave, say x. Then we
need to assume the base flow is parallel. Also, we consider the perturbation can be written as a
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CHAPTER 1. INTRODUCTION

wave-like solution which is an exponential function of both time and the direction x:

q′ = q̆eikloc(x−cloct), (1.8)

where kloc is the wavenumber of the perturbation and cloc is the wave speed of the perturbation.
Substituting Eq. 1.8 into Eq. 1.7, we can reduce the original equation and solve an eigenprob-
lem and obtain kloc and cloc. For a two-dimensional viscous parallel flow such as Poiseuille flow,
the reduced equation is named Orr-Sommerfeld equation [44]. −kloccloc is the eigenfrequency.
The real part of the stability R(−ikloccloc) is a growth rate and the imaginary part of the sta-
bility I(−ikloccloc) is a frequency. If R(−ikloccloc) > 0, the flow is unstable, while it is stable if
R(−ikloccloc) < 0. If the flow is parallel, the local stability analysis gives good predictions for wakes
[64], jets [3], and two-phase flows [71]. However, if the flow is not parallel, it becomes difficult to
apply the local stability analysis.

1.2.2 Spectrum and eigenfunction of global flow field

On the global stability analysis, the perturbation is considered as a multiply of an exponential
function of time and there is no limitation to its spatially distribution. It can be written as

q′ = q̂eλt, (1.9)

where λ is the flow stability. Substituting Eq. 1.10 into Eq. 1.7, λ becomes the eigenspectrum of
L. Considering we numerically solce this prolem, it becomes an eigenproblem of a matrix L which
is discretization of the linear operator L:

Lϕi = λiϕi, (1.10)

where λi is i-th eigenvalue and ϕi is i-th eigenvector. Then, if R(λ) > 0, the flow is unstable,
while it is stable if R(λ) < 0. ϕi is a global mode which shows where the perturbation globally
develops. This global stability analysis can be applied to even a non-parallel flow. Then, it is
gathering attention to the global stability analysis these days, as computational power advances.

1.2.3 Spectrum and eigenfunction of adjoint flow field

More recently, the stability of the adjoint system of flow equations is becoming to be analyzed [22].
When we have an operator, there exists an adjoint operator. Denoting an inner product as ⟨·, ·⟩,
the adjoint operator L∗ of the original one L satisfies a following relation:

⟨Lf ,g⟩ = ⟨f ,L∗g⟩. (1.11)
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1.2. STABILITY OF BUBBLE-TYPE VORTEX BREAKDOWN

For example, transposing a matrix and taking its conjugate pair, we get an adjoint matrix. When
we solve the eigenvalue problem, it is worth to obatin not only eigenvectors but also adjoint
eigenvectors. It is called adjoint-based analysis. Solving the eigenvalue problem of the adjoint
matrix L∗, we obtain the conjugate eigenvalues of the direct matrix L and the adjoint eigenvectors
ψi. They are connected by the following relation:

L∗ψi = λ̄iψi, (1.12)

where ψi is i-th eigenvector of L∗. ψi is also a global mode which shows where the perturbation
develops in the adjoint system. In many literature, ψi is called adjoint mode, while ϕi is called
direct mode.

Adjoint-based analysis reveals receptivity of a base flow. We see the receptivity in studies
on laminar-turbulent transtion [30]. In the area of these studies, perturbations are inevitably
produced from enviromental or controlled disturbances. The receptivity phase consists of the
transformation from the disturbances to the perturbations. The receptivity has the sources such
as the enviroment or the flow control. They are explained in detail at Chapter 2 but, in this thesis,
three receptivities are used: receptivities to a mass injection, to an external forcing, and an external
heating. Giannetti and Luchini [24], who originally introduced the adjoint-based analysis, defined
another receptivity, which is to spatially localized feedbacks, called sensitivity. The sensitivity tells
us an internal feedback mechanism of the base flow and it is defined as

ζ ≡ ∥ψi∥∥ϕi∥
|⟨ψi,ϕi⟩|

. (1.13)

The sensitivity is a scalar function indicating where the pertubation is highly amplified. In another
paper by Giannetti and Luchini [22], they showed the receptivities and the sensitivity around a
circular cylinder and the sensitivity was high around the dividing streamlines of a pair of twin
vortices. Then, they concluded that the shear layer region had the largest sensitivity and it meant
feedback mechanism to amplify the perturbation was along the shear layer. The adjoint-based
analysis is the state of the art of the stability analysis and new receptivities are still defined and
invesitigated [41].

1.2.4 Previous studies on bubble-type vortex breakdown

Next, we focus on what has been understood about vortex breakdowns by the stability analysis so
far. The flow stability plays an important role on the bubble-type vortex breakdown in two senses.
In one sense, the onset of the bubble-type vortex breakdown is caused by a stability breaking. It
was an open problem since Benjamin [4, 5], but Wang and Rusak [68] theoretically showed that
there exists a stable bubble-type solution and it can take place when a colmunar-vortex solution
become unstable. In another sense, the onset of a spiral-type vortex breakdown can be also caused
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by the stability breaking. We can say this research is the mainstream of the research on the vortex
breakdown these days. Some researches say that its onset corresponds to the stability breaking of
the bubble-type vortex breakdown. In this study, this side is focused on, and then, those previous
studies are reviewed below.

Some of previous studies are extracted and summarized in Table 1.2.

Table 1.2: Review of stability analysis on vortex breakdown
Year Group Contents

2003 Ruith et al. [52] Direct numerical simulation of swirling jets and wakes
2006 Gallaire et al. [21] Local stability analysis on incompressible bubble
2011 Meliga and Gallaire [42] Global stability analysis on incompressible bubble
2013 Qadri et al. [49] Sensitivity analysis on axisymmetric and incompressible bubble

First of all, the onset of the spiral-type vortex breakdown was not attributed to stability break-
ing because the flow field was too complicated to analyze the stability. Ruith et al. [52], however,
conducted a direct numerical simulation (DNS) of a swirling jet and showed that transition from
a stedy bubble-type vortex breakdown to a periodic spiral-type vortex breakdown takes place like
transition from a steady twin vortex to a periodic emission of Kármán vortices [35]. Then, it
became considered that the stability breaking of the bubble-type vortex breakdown resulted in the
onset of the spiral-type vortex breakdown. Based on this DNS, the local stability analysis was
done by Gallaire et al. [21]. They showed there were two locations where the flow becomes con-
vectionally unstable and one of the local frequencies at the two locations agreed well with a global
frequency of the flow field observed by the DNS. That was at the wake of the recirculating flow
region. Then, they concluded the transition to the spiral-typ vortex breakdown was attributed to
the stability breaking at the wake of the bubble-type vortex breakdown. Next, the global stability
analysis was done by Meliga and Gallaire [42]. They showed a global mode of the bubble-type
vortex breakdown and a perturbation developed at the wake of the recirculating flow region. Re-
cently, the sensitivity of the bubble-type vortex breakdown was analyzed by Qadri et al. [49].
They found a case where the sensitivity upstream of the recirculating flow region was higher than
that at the wake of the recirculating flow region. Then, they concluded that the transition to the
spiral-type vortex breakdown was caused by both the centrifugal instability mechanism upstream
of the recirculating flow region and the Kelvin-Helmholtz instability mechanism at the wake.

As shown above, the stability mechanism of the bubble-type vortex breakdown has been un-
derstood well. Previous studies, however, assumed the base flow was axisymmetric. As discussed
in the last section, the axisymmetric topology of the bubble-type vortex breakdown can be easily
violated and chaotic bifurcation can take place because of a asymmetric perturbation. It is sure
that the asymmetric recirculating flow region is observed in a real experiment and this is a gap to
be filled. Then, as a next step, we need to investigate how the stability mechanism or structure
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changes when the base flow becomes asymmetric. In this thesis, we analyze the global stabilities
of asymmetic bubble-type vortex breakdowns obtained by CFD.

1.3 Contribution of this thesis

We have reviewed what has been known and what remains to be studied about the bubble-type
vortex breakdown in the foregong sections. In resoponse to them, research objectives in this thesis
are as follows.

• To reveal topologies of the bubble-type vortex breakdown for unsteady, fully three-dimensional
compressible.flows.

• To reveal global stabilities, receptivities, and sensitivities of the bubble-type vortex break-
down for fully three-dimensional compressible flows.

As a result, this thesis contributes to both the topology and the stability of the bubble-type
vortex breakdown. Chapter 4 presents an eigenvalue analysis and a local bifurcation analysis
on the bubble-type vortex breakdown from an aspect of the equation of streamlines. The main
contributions of this study are as follows.

• From the eigenvalue analysis of a velocity gradient tensor at a stagnation-point pair of a
bubble-type vortex breakdown, its topological structure is comprehensively revealed from its
onset for various configurations at Section 4.4.1 through Section 4.4.3.

• Simulating an unsteady compressible flow with a vortex breakdown, it is newly found that
there exist additional bifurcations of the topology of axisymmetric recirculating flow regions
for instananeous streamlines of the vortex breakdown at Section 4.4.2.

• Introducing an asymmetric parameter to an axisymmetric swirling jet, an asymmetic com-
pressible bubble-type vortex breakdown is numeically obtained and chaotic structure is ob-
tained in a Poincaré section at Section 4.4.3.

Chapter 5 presents a global stability analysis and an adjoint-based analysis on the buble-type
vortex breakdown from an aspect of the equation of motion. The main contributions of this study
are as follows.

• Analyzing a global stability on a compressible bubble-type vortex breakdown for linearized
Navier-Stokes equations, the global mode for thermodynamical variables as well as kinematic
variables is revealed at Section 5.5.1.
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• Also analyzing the global stability for adjoint equations, a receptivity to an external heating
is revealed at Section 5.5.1.

• Analyzing a sensitivity of an asymmetric compressible bubble-type vortex breakdown, a
relation between the high sensitivity region and the topological structure of streamlines is
newly obtained at Section 5.5.2.

Finally, Fig. 1.7 shows the research table of this thesis with what was already investigated,
what is not yet, and what is invetigated in this thesis by a table of assumptions versus two keywords
(aspects) as important properties of the bubble-type vortex breakdown.

1.4 Organization of this thesis

Chapter 2 presents background theories in this thesis. Chapter 3 presents computational configu-
rations and methods. Chapter 4 and Chapter 5 are main results. Chapter 4 presents the study on
the topology of the bubble-type vortex breakdown. Chapter 5 presents the study on the stability
of the bubble-type vortex breakdown. At last, Chapter 6 provides concluding remarks.

21



1.4. ORGANIZATION OF THIS THESIS

Figure 1.7: Two aspects and what is investigated in this thesis from these aspects
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Chapter 2

Background Theories

In this chapter, theories applied to analyze topologies and stabilities of bubble-type vortex break-
downs. Fig. 2.1 shows the research table and where each theory plays a role in this thesis.

2.1 Local bifurcation theory

In this section, we explain about methods for the topological analysis of streamlines of the bubble-
type vortex breakdown. The methods are

• Eigenanalysis of a velocity gradient tensor at a stagnation point.

• Weakly nonlinear bifurcation analysis.

2.1.1 Eigenanalysis of velocity gradient tensor

Velocity gradient tensor

Consider a dynamical system of streamlines. It is rewritten as

d

dt
x = u(x).

u is a velocity vector and a vector function of x. If it is linearized at a fixed point,

d

dt
x = Ax, (2.1)

where A is a Jacobian matrix called velocity gradient tensor.
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2.1. LOCAL BIFURCATION THEORY

Figure 2.1: Research table and where each theory plays a role in this thesis

As introduced in Chapter 1, the eigenproblem of the velocity gradient tensor A at a fixed point is
the most fundamental property on the topological analysis of the dynamical system of streamlines.
In this thesis, we also begin from this analysis. It is already known that a pair of stagnation
points which bound a bubble-type vortex breakdown are both saddle foci. We investigate this
structure for various parameters from its onset and we see the existence of a non-hyperbolic fixed
point. The non-hyperbolic fixed point has a velocity gradient tensor whose eigenvalues have at
least zero-real-part. Such a fixed point is quite important to analyze a bifurcation phenomenon.

Calculation methodology

The velocity gradient tensor at the stagnation-point pair is calculated from CFD data. At first,
the location of the stangation point is represented by the grid point where the velocity magnitude
is the smallest. Next, the differential terms are calculated by the 2nd order central difference using
neighbor grid points.

2.1.2 Weakly nonlinear bifurcation analysis

Non-hyperbolic fixed point

As shown in Chapter 1, a one-parameter bifurcation model of streamlines for the onset of an in-
compressible axisymmetric bubble-type vortex breakdown was obtained by Brøns et al. [13]. In
mathematics, a two-parameter bifurcation model including the one-parameter model was consid-
ered and its possible patterns of the bifurcation were examined by Guckenheimer and Holmes [27].
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In this subsection, we introduce a method which derives the two-parameter model and see how
many patterns are mathematically possible.

The key to analyze the bifurcation patterns is the non-hyperbolic fixed point introduced at the
last subsection. When the non-hyperbolic fixed point exists, the structure of streamlines around
the fixed point is easily influenced by nonlinear terms. For example, following system has a non-
hyperbolic fixed point at the origin:

d

dt
x =

(
0 −1
1 0

)
x+ µ

(
x3

y3

)
, (2.2)

where µ is a parameter. When we analyze the eigenvalues of the velocity gradient tensor at the
fixed point, the fixed point is classified to a center. Streamlines around the fixed point, however,
are attractected to the fixed point when µ < 0 and repelled from the fixed point when µ > 0. It
means a bifurcation phenomenon takes place and µ is a bifurcation parameter. Then, when we
observe the non-hyperbolic fixed point, it means the bifurcation phenomenon can take place by a
slightly change in bifurcation parameters.

Normal form

When there exists a non-hyperbolic fixed point in a dynamical system, we can narrow down the
patterns of streamlines around it by its velocity gradient tensor. One of the simplest forms which
describe the dynamical system of streamlines around the fixed point is called normal form [69]. A
normal form has the least numbers of nonlinear terms. The nonlinear terms are derived from the
normal form theorem. Actually, the velocity gradient tensor obtained in this thesis is very simple,
and then, the normal form is already known by Guckenheimer and Holmes [27]. It is written as

dr

dt
= a1rz, (2.3)

dz

dt
= b1r

2 + c1z
2, (2.4)

dθ

dt
= ω, (2.5)

where a1, b1, c1, and ω are coefficients, which characterize the topological structure of streamlines
around the non-hyperbolic fixed point. Under the axisymmetry, θ is independent to the other
variables. Then, there is no influence on the topology of the streamlines by θ. Transforming the
coordinate system in order to reduce the combination of the coefficients

ř =
√
|b1c1|r, (2.6)

ž = c1z, (2.7)

a = a1c1, (2.8)
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Figure 2.2: Topological patterns of the non-hyperbolic fixed point

we can rewrite Eqs. 2.5 as

dř

dt
= ařž, (2.9)

dž

dt
= bř2 + ž2, (2.10)

where b = ±1.
It is worth to mention that the topogy in řž-plane is same as that in rz-plane. There are six

patterns of the streamlines for various a and b as shown in Fig. 2.2. The case of the onset of a
bubble-type vortex breakdown is the case for a < 0 and b = 1.

Two-paramter model

The non-hyperbolic fixed point also tells us how many parameters can change the topological
patterns of the local dynamical system around the fixed point. According to Guckenheimer and
Holmes [27], the number of parameters is two. By some mathematical manipulations, we can add
two parameters to the normal form. One of the forms is written in cylindrical coordinates as

dř

dt
= µ1ř + ařž, (2.11)

dž

dt
= µ2 + ř2 + ž2, (2.12)
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where µ1, and µ2 are bifurcation parameters.

This two-parameter model has up to three fixed points on the řž-plane. A pair of fixed points
can exist at (ř, ž) = (0,±

√
−µ2) when µ2 < 0. They are saddles on the axis (saddlefoci in the

three-dimensional space). A fixed point off the axis can exist at (ř, ž) = (

√
µ2 +

µ2
1

a2
,−µ1

a
) when

µ2 < −µ2
1

a2
. It is a center, an attracting focus, or repelling focus. Taking the trace of the velocity

gradient tensor at the focus, we can obtain

tr(A) = −2µ1

a
. (2.13)

Then, it is attracting when µ1 < 0, it is repelling when µ1 > 0, and it is a center when µ1 = 0.
Fig. 2.3 shows the plot of the bifurcation patterns on the µ1µ2-plane.

When µ1 = 0, this model corresponds to the one-parameter model by Brøns et al. [13]. How-
ever, the two-parameter model indicates us additional bifurcation patterns. Those are bifurcation
phenomena of a fixed point off the axis. In this thesis, the additional patterns are investigated by
numerical simulations. We not only visualize the topological structure of streamlines but also fit
the data on the two-parameter model and analyze the two bifurcation parameters.

Calculation methodology

In Chapter 4, the two parameters are approximately obtained by fitting CFD data to the bi-
furcation model. At first, the bifurcation parameters are connected to physical variables. Next,
corresponding physical variables are extracted from the CFD data at the middle grid point of the
locations of the pair of stagnation points.

2.1.3 Investigation of chaos

In this thesis, we investigate not only an axisymmetric bubble-type vortex breakdown but also a
fully three-dimensional one. At this subsection, a few concepts to analyze the asymmetric topology
are explained.

Poincaré map

A Poincaré map is defined as a sequential plot of streamlines crossing a fixed plane, which is a
lower-dimensional subspace, called a Poincaré section. It becomes a discrete dynamical system on
the Poincaré section and describes the map from the first point on the section to the second point.
The Poincaré map preserves the dynaimcal property of the periodic orbit of the original dynamical
system.
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Figure 2.3: Bifurcation map of two-parameter model [27]
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Figure 2.4: Schematics of stable and unstable manifolds [27]

In this thesis, the Poincaré map of three-dimensional streamlines is plotted on a two-dimensional
plane. Actually, it is easy for us to imagine the Poincaré map of the streamlines of a bubble-type
vortex breakdown because the visualization of tracer particles by a laser sheet in an experiment is
that.

Stable and Unstable manifolds

In order to investigate chaotic property of streamlines, finger-like structure becomes a key. This
structure is characterized by intersections of stable and unstable manifolds [20]. The stable man-
ifold means streamlines into a stagnation point while the unstable manifold means streamlines
from a stagnation point as shown in Fig. 2.4. The Poincaré map of the unstable manifold of the
stagnation point upstream of the recirculating flow region corresponds to the visualization of the
paricle traces put close to the stagnation point. Then, we can calculate the unstable manifold by
directl integrating the equations of streamlines in time. In this thesis, the equations of streamlines
are integrated by 1st-order explicit method by δt = 0.01. The stable manifold can be calculated
by invertedly integrating the equations of streamlines in time. The integration method and the
time width are same as those for the unstable manifold.

Calculation methodology

We see the structure of unstable and stable manifolds on a Poincaré section for an asymmetric
bubble-type vortex breakdown in Chapter 4. At first, the Poincaré section is represented by a plane
for x = 0. Next, the unstable manifold from the stagnation point upstream of the recirculating flow
region is calculated by integrating a hundered non-diffusive particles along the velocity vector field
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from a starting position which is set by a width between the grid points around the stagnation
point. Time integration is done by the 1st order explicit method and the time width is set at
δt = 0.01. At every time step, whether the orbit from the starting position cross the Poincaré
section is checked and, when it crosses, the position is memorized by linearly interpolating the
positions at the last and the present steps. Third, the stable manifold to the stagnation point
downstream of the recirculating flow region is calculated by the same method as the unstable
manifold. The diffference is only the time width which is set at δt = −0.01. By setting the time
width negative, we can caluculate the stable manifold like the unstable manifold. At last, chaotic
saddles are approximately calculated by looking for positions where the distance between the both
manifolds are smaller than a threshold which is set as the one tenth of the minimum grid width.

2.2 Global stability theory

2.2.1 Global stability analysis

Eigenproblem of flow operator

A flow opereator N is consisted from all the terms other than the time derivative of the variable
vector. As shown in Chapter 1, it is rewritten as

∂tq = Nq. (2.14)

When we have a steay solution q̄, a linear dynamical system of perturbation vector q′ can be
obtained as

d

dt
q′ = L(q̄)q′. (2.15)

Discretizing the linear operator L(q̄) in a computational domain, we obatin a discretized system
such that

d

dt
q

′

n = L(q̄n)q
′

n, (2.16)

where q
′
n is a discretized variable vector in an n-dimensional space, L(q̄n) is an n × n matrix

computed from the stedy solution q̄n, and n is a multiple of the total grid point and the number
of variables.

Solving the eigenproblem of the matrix L, we obtain i-th eigenvalue λi and its eigenvector ϕi.
They are connected by the following relation:

Lϕi = λiϕi. (2.17)

The real and the imaginary parts of λi are the growth rate and frequency respectively. If the
growth rate is larger than zero, the steady solution is unstable. Before introducing the method to
solve this eigenproblem, we introduce how to obtain the unstabe steady solution.

30



CHAPTER 2. BACKGROUND THEORIES

Selective frequency damping method

It is impossible to obatin an unstable steady solution by normally solving the governing equations,
but there are several methods to obtain the unstable steady solution. One of the methods is the
selective frequency damping (SFD) method [1]. This method requires some modification of the
governing equations 2.14. Modified equations are written as

∂tq = Nq− χ1(q− q̃), (2.18)

∂tq̃ =
q− q̃

χ2

. (2.19)

where χ1 and χ2 are positive-value parameters, and q̃ is another varaible vector which will be a
steady solution. Applying this SFD method, we can obtain q̄ even if it is unstable. Next, we show
how to solve the eigenproblem of L.

Time stepping method

If log10n ≈ 5, it is becoming to be able to directly solve the eigenproblem of L with advance in
computational power. Directly solving the matrix means to memorize the all components of the
matrix. It is called matrix-forming method. If log10n > 5, however, it is still difficult to directly
solve it. Such an amount of the grid points is required for a computation of a three-dimensional
flow field. Then, a method without forming the matrix, called matrix-free method, is used instead
of the matrix-forming method. One of those methods is time stepping method proposed by Eriksson
and Rizzi [18].

The routine of the time stepping method is briefly shown here. It doesn’t solve the eigenproblem
of L but solve that of a matrix L̂ such that

L̂ ≡ Leδt, (2.20)

where δt is a time width of the computation. Then, L̂ is a linear map which takes the flow state
one time step further. Eigenvalues λ̂ of L̂ and the eigenvalues of L are connected by a relation
such that

λ̂ = eλδt. (2.21)

The time stepping method is based on a Krylov subspace method [34]. The Krylov subspace
method calculates the eigenvalues λ̂ and the eigenvectors ϕ̂ on a Krylov subspace Km(L,q

′
0) such

that
Km(L,q

′

0) = span{q′

0, L̂q
′

0, L̂
2q

′

0, · · · , L̂mq
′

0}, (2.22)

where q
′
0 is an initial vector which can be arbiterally chosen. From the definition of L̂, we can

rewrite Km as
Km(L,q

′

0) = span{q′

0,q
′

1,q
′

2, · · · ,q
′

m}, (2.23)
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where q
′
m is the flow state at t = mδt beggining from q

′
0. It means computing a flow field gives a

basis of Km. If m is large, we can consider only the modes with the eigenvalues whose real part
is large, and then, we can approximate L̂mq

′
0 by a linear combination of bases of Km. From this

approximation, we solve the eigenproblem of a upper-Hessenberg m×m matrix H instead of n×n
matrix L̂. The specific form of H is shown later.

In this thesis, actual manipulation of the Krylov subspace method is done by Arnoldi method
[2]. This method is an iterative method constructing an orthogonal basis of Km. Consider to
obtain an orthogonal basis ξi of Km by the Gram-Schmidt process. ξi is an orthogonal basis of
L̂ξi and coefficients to express L̂ξi by ξi are elements of H. We can write L̂ξi as

L̂ξi =
i−1∑
j=1

h1jξi. (2.24)

Then, H is

H =

h11 · · · h1m
...

. . .
...

0 · · · hmm

 (2.25)

From the eigenvectors ξi of H, we can approximate the eigenvalues and the eigenvectors of the
original matrix:

ϕi =
m∑
k=1

ψikϕi. (2.26)

As m increases, we can more acculately obtain a few eigenvalues and eigenvectors. If m → ∞,
it has been proved that the approximated eigenvalues converge to the true eigenvalues [53]. It is
enough for the stability analysis on a steady or periodic flow, because a few eigenvaules from the
largest real part of λ and corresponding eigenvectors are dominant.

Calculation methodology

Using the methods introduced in the above subsections, the global stability analysis on the bubble-
type vortex breakdown is conducted in Chapter 5. At first, a steady solutions are calculated by the
SFD method regardless of stable or unstable solution. In this thesis, χ1 and χ2 are set at 0.1 and
1.5 respectively. Next, the global stability and mode are analyzed by the time stepping method.
The dimension of the Krylov subspace is 500, and the integration time is set as unit. Setting the
integration time longer and increasing the dimension of the Krylov subspace, the convergence of
the eigenvalue becomes better, but its imaginary part depends on the inverse of the integrating
time. Then, when we want to quantitatively evaluate the frequency, we need to set the integration
time shorter. In the present case, instead of the unit integration time, the dimension of the Krylov
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subspace is very large. Although we can obtain five hundred stabilities and modes, we only focus
on the least stable stability and mode.

2.2.2 Adjoint-based analysis

The point of an adjoint-based analysis is we can obtain a scalar function indicating an influence
on the eigenvalue.

Eigenproblem of adjoint flow opertor

As shown in Chapter 1, when we have an operator, there exists its conjugate transpose, called an
adjoint operator. Denoting an inner product as ⟨·, ·⟩, the conjugate transpose L∗ of the original
operator L is defined as an operator which satisfies a following relation:

⟨Lf ,g⟩ = ⟨f ,L∗g⟩. (2.27)

This inner product is an interral in the whole domain but an integrand is not straightforward.
Then this is discussed in detail in Appendix A. For the case of the discretized matrix L(qn), it
becomes the eigenproblem of the adjoint matrix L∗(qn). Solving the eigenproblem of the adjoint
matrix L∗, we obtain the conjugate eigenvalues of the direct matrix L and the adjoint eigenvectors
ψi. They are connected by the following relation:

L∗ψi = λ̄iψi. (2.28)

In this thesis, we apply the time stepping method to solve the adjoint eigenproblem. Then, we
need adjoint flow equations. They are specifically shown in Chapter 3.

Sensitivity

The adjoint mode yields receptivities to various disturbances. The receptivity to a disturbance
is often used in the transition process as receptivity phase [30]. This phase is the initial stage
of the transition process consisting the transformation from the disturbance into a perturbation.
When we consider a flow control, we need to know where we should put disturbances by a mass
injection, an external forcing, an external heating, and so on. Then, Giannetti and Luchini [22]
defined the receptivities to the above disturbances by considering how the global mode ϕi changes
by adding the disturbances. Denoting the disturbances added to the governing equations as ϵ and
the perturbed mode as δΛϕi,

⟨Lϕi + ϵ,ψi⟩ = ⟨(λi + δΛ)ϕi,ψi⟩. (2.29)
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Through some manipulations, we arrive at

⟨ϵ,ψi⟩ = δΛ⟨ϕi,ψi⟩. (2.30)

Then, the global mode’s amplitude δΛ can be written as

δΛ =
⟨ϵ,ψi⟩
⟨ϕi,ψi⟩

. (2.31)

Denoting ϵ = (ρϵ,mϵ, pϵ) and ψi = (ρ∗i ,m
∗
i , p

∗
i ),

δΛ =

∫
V
ρϵp̄

∗
i dV +

∫
V
mϵ · m̄∗

i dV +
∫
V
pϵρ̄

∗
i dV

⟨ϕi,ψi⟩
. (2.32)

Each term in the right hand side of Eq. 2.32 is the effect on the global stability from each
disturbance. For examle, consider the first term of the right hand side of Eq. 2.32. Evaluating
this term by the triangular inequality,∫

V
ρϵp̄

∗
i dV

⟨ϕi,ψi⟩
<

∫
V
|ρϵ||p∗i |dV
|⟨ϕi,ψi⟩|

. (2.33)

The receptivity to the mass injection is |p∗i |. When this value is high at some regions, the effect
of the mass injection on the global stability can be high. As well as |p∗i |, the receptivities to the
external forcing and to the external heating are |m∗

i | and |ρ∗i | respectively.
When we get known where the perturbation is yielded, we want to know where the perturbation

is amplified. Giannetti and Luchini [22] also defined another receptivity to spatially localized
feedbacks, in another name, sensitivity. The sensitivity tells us where the perturbation is amplified
by the internal feedback mechanism of the system. We can derive the sensitivity by the alomost
same way for the above receptivities. Consider a case where the linear system of Eq. 2.16 is
perturbed and the system matrix L changes to

L 7→ L+ δL. (2.34)

By this perturbation, i-th eigenvalue λi also changes to

λi 7→ λi + δλi. (2.35)

There is a relation between Eq. 2.34 and Eq. 2.35 such that

(L+ δL)ϕi = (λi + δλi)ϕi. (2.36)
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Taking an inner product of Eq. 2.36 and i-th adjoint mode ψi,

⟨(L+ δL)ϕi,ψi⟩ = ⟨(λi + δλi)ϕi,ψi⟩. (2.37)

Through some manipulations, we arrive at

⟨δLϕi,ψi⟩ = ⟨δλiϕi,ψi⟩. (2.38)

Then, the variation of the i-th eigenvalue can be obtained as

δλi =
⟨δLϕi,ψi⟩
⟨ϕi,ψi⟩

. (2.39)

When we consider δL is localized in the space such that

δL = Cδ(x− ξ), (2.40)

the above equation reduces to

δλi =
[Cϕi(ξ)] ·ψi(ξ)

⟨ϕi,ψi⟩
. (2.41)

From the triangle inequality, we can separate C from ϕi

|δλi| < ∥C∥∥ϕi(ξ)∥∥ψi(ξ)∥
|⟨ϕi,ψi⟩|

, (2.42)

where ∥C∥ is a Frobenius norm of the matrix C such that

∥C∥ =

√√√√ n∑
i=1

n∑
j=1

c2ij. (2.43)

Then, the sensitivity function ζ(x) is

ζ(x) =
∥ϕi(x)∥∥ψi(x)∥

|⟨ϕi,ψi⟩|
, (2.44)

A high sensitivity region is called wavemaker, where the perturbation is amplified [22]. In this
thesis, we investigate the sensitivity of the bubble-type vortex breakdown.

Calculation methodology

The methodology of the adjoint-based analysis is same as that of the global stability analysis.
After obtaining adjoint modes, the receptivitier incuding the sensitivity are calculated.
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Chapter 3

Flow Configurations and Computational
Methods

Fig. 3.1 shows the research table and where each computation is used in this thesis.
In this dissertation, vortex breakdowns in two configurations are numerically simulated. One

is a confined flow in a closed cylinder with a rotating bottom (called CC), and the other is an
unconfined flow, a swirling jet laterally surrounded by free-slip boundaries (called SJ). Here, com-
putational configurations and methods for these configurations are described.

In this thesis, incompressible flows and low-Mach-number approximated (LMN) flows are
simualted for CC case. We investigate stable steady solutions for incompressible flows and un-
steady solutions for LMN flows. Then, for convinience, the former is labelled as CC-Incomp and
the latter is labelled as CC-LMN. Also, for SJ case, fully three-dimensional compressible flows are
numerically simulated and we labell this as SJ-Comp. Computational methods applied to these
flows are explained below.

3.1 Flow in closed cylinder with rotating bottom

Consider a fluid is filled in a closed cylinder. When one of the covers starts rotating, the viscosity
creates a rotational flow near the rotating cover. The rotational flow moves to the sidewall by the
centrifugal force, and it subsequently moves to the static cover along the sidewall. Around the
static cover, the rotational flow gathers to the center of the cover, and then, a longitudinal vortex
is created along the center axis of the cylinder. The longitudinal vortex moves from the static
cover to the rotating one, and the flow moves to the sidewall again. This is one of the scinarios of
the flow in the CC-configuration.

Vogel [67] found a sphere-like recirculating region along the axis of the longitudinal vortex for
some rotational speeds. This phenomenon was comprehensively investigated by Escudier [19]. He
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Figure 3.1: Research table and where each computation is used in this thesis

conducted experiments by controlling two parameters, an aspect ratio (a height-to-radius ratio
of the cylinder) and the Reynolds number defined by the viscosity, the cover’s radius, and its
angular velocity. Experimental results showed highly axisymmetic and steady bubble-type vortex
breakdown exists within a wide range of the parameter space as shown in Fig. 3.2. There are two
parameters: one is a height-to-radius ratio of the cylinder H

R
, the other is a rotational Reynolds

number Re. It is defined as

Re =
R2Ω

ν
. (3.1)

This figure shows there are steady solutions with up to three bubble-type vortex breakdowns.

Not only experimental researches but also numerical researches have been done for the CC-
configuration. Lopez [37] showed the location and the size of the recirculating flow region of
numerical results by computing axisymmetic Navier-Stokes equations are in very good agreement
with those of the experimental results.

Advantages of numerical simulations in the CC-configuration are sammarized as follows.

• The structure of the vortex breakdown is simple.

• Steady solutions exist.

• Computational results are in good agreement with experimental results.
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Figure 3.2: Parameter map of vortex breakdown for CC (reproduced from Escudier [19])

3.1.1 Axisymmetic incompressible flow simulation

Governing equations

Axisymmetric incompressible Navier-Stokes equations are written in cylindrical coordinates as

∂rur +
ur
r

+ ∂zuz = 0, (3.2)

∂tur + ur∂rur + uz∂zur −
u2θ
r

= −∂rp+
1

Re
(∂2rur +

∂rur
r

− ur
r2

+ ∂2zur), (3.3)

∂tuθ + ur∂ruθ + uz∂zuθ +
uruθ
r

=
1

Re
(∂2ruθ +

∂ruθ
r

− uθ
r2

+ ∂2zuθ), (3.4)

∂tuz + ur∂ruz + uz∂zuz = −∂zp+
1

Re
(∂2ruz +

∂ruz
r

+ ∂2zuz). (3.5)
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Figure 3.3: Computational domain and boundary conditions for CC-Incomp

Computational method

In this computation, the advection term is discretized by a 2nd-order consistent central difference
scheme [33], and the other terms are discretized by a 2nd-order central difference scheme. To
compute the above equations, SMAC method [16] is applied. This method is often used to simulate
incompressible turbulent flows, as this procedure gives good convergence of the dilatation. It is a
projection method: the flow data is at first predicted by calculating the governing equations and
it is secondly modified by the pressure.

Computational condition

The computational domain and boundary conditions are schematically shown in Fig. 3.3. Bound-
ary conditions are written in equations as

ur(0, z) = 0, uθ(0, z) = 0, ∂ruz(0, z) = 0, ∂rp(0, z) = 0, (3.6)

ur(r, 0) = 0, uθ(r, 0) = 0, uz(r, 0) = 0, ∂zp(r, 0) = 0, (3.7)

ur(1, z) = 0, uθ(1, z) = 0, uz(1, z) = 0, ∂rp(1, z) = 0, (3.8)

ur(r,H/R) = 0, uθ(r,H/R) = r, uz(r,H/R) = 0, ∂zp(r,H/R) = 0. (3.9)

In this thesis, we simulate steady solutions at H
R
= 1.5. Here, Re is variable:

1000 ≤ Re ≤ 1256 (3.10)

The grid point is a uniform mesh and consists of 128 points in r-direction and 192 points in
z-direction.
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Validation

Table 3.1 shows the comparison of computational results with experimental reesults by Escudier
[19] from an aspect of the position of stagnation points. The fine grid consists of 256 points in
r-direction and 384 points in z-direction. The grid convergence was checked and no difference
between normal and fine meshes was observed. As a result, we can see the computational results
are in good agreement with the experimental results.

Table 3.1: Comparison of the position of stagnation points for CC-Incomp
Data type Re H/R zup zdown

Experimental data [19] 1256 1.5 0.51 0.70
Numerical data (normal) 1256 1.5 0.51 0.71
Numerical data (fine) 1256 1.5 0.51 0.70

3.1.2 Axisymmetic low-Mach-number flow simulation

Governing equations

Majda and Sethian [40] derived axisymmetric low-Mach-number Navier-Stokes equations (LMN
equations) by an order analysis of compressible Navier-Stokes equations in terms of a small per-
turbation, ϵ = γM2. They are written in cylindrical coordinates as

∂tρ+ ∂r(ρur) +
ρur
r

+ ∂z(ρuz) = 0, (3.11)

ρ∂tur + ρur∂rur + ρuz∂zur − ρ
u2θ
r

= −∂rpϵ +
1

Re
(∂2rur +

∂rur
r

− ur
r2

+ ∂2zur), (3.12)

ρ∂tuθ + ρur∂ruθ + ρuz∂zuθ + ρ
uruθ
r

=
1

Re
(∂2ruθ +

∂ruθ
r

− uθ
r2

+ ∂2zuθ), (3.13)

ρ∂tuz + ρur∂ruz + ρuz∂zuz = −∂zpϵ +
1

Re
(∂2ruz +

∂ruz
r

+ ∂2zuz), (3.14)

∂rp = 0, (3.15)

∂zp = 0, (3.16)

p = ρT. (3.17)

We can see that the dissipation term through the viscosity vanishes because this term is smaller
than the other terms by M2 order. This is a typical feature of this LMN equations, and then,
there is no variation of the entropy from the viscosity. Also, we can see two pressures, p and pϵ.
p is uniform in the whole space and is conneted to the thermodynamical variables, while pϵ is a
function in the space and is connected to the kinematic variables.
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In this thesis, to be investigated by these equations is the compressibility effect on the bifurca-
tion of the topology of the bubble-type vortex breakdown. The above equations are suited for the
present purpose because there is no constraint on the topology. There exists the Boussinesq equa-
tions as another choice of LMN equations, but they assume the flow field satisfies the solenoidal
condition [65]. It means the Boussinesq equations have a constraint on the topology of the flow
field and is the main reason why they are not applied in this thesis.

Computational method

In this computation, the discretization method is same as that for CC-Incomp case. Nicoud [43]
proposed a routine to solve the LMN equations, which we use in this thesis. At first, ρ ,T , and
p are renewed because thermodynamical variables move faster than kinematic variables. Next, ui
and pϵ are renewed by the same method for CC-Incomp case.

Computational condition

We consider a fluid is the air. Table 3.2 shows reference values common to the all computations
for CC-LMN case. The other parameter is the rotational speed of the disc. In this thesis, this
parameter is calculated by the Reynolds number which we set.

Table 3.2: Reference values for CC-LMN
ρref Tref Rref

1.225[kg/m3] 300[K] 0.1[m]

Fig. 3.4 schematically shows the computational domain and boundary conditions. Boundary
conditions are almost same as those for CC-Incomp case. The same parts are written in equations
as

ur(0, z) = 0, uθ(0, z) = 0, ∂ruz(0, z) = 0, ∂rp(0, z) = 0, (3.18)

ur(r, 0) = 0, uθ(r, 0) = 0, uz(r, 0) = 0, ∂zp(r, 0) = 0, (3.19)

ur(1, z) = 0, uθ(1, z) = 0, uz(1, z) = 0, ∂rp(1, z) = 0, (3.20)

ur(r,H/R) = 0, uθ(r,H/R) = r, uz(r,H/R) = 0, ∂zp(r,H/R) = 0. (3.21)

Only the difference is the existence of the boundary condition for T . From the simulation of
the LMN equations, we investigate the additional bifurcation of the topology for an unsteady
compressible flow. Then, in order to obtain such a solution, at the static wall with the variable
temperature, the boundary condition for T is set as

T (r, 0) = 1 + ∆T cos
2πt

Ωf

, (3.22)
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Figure 3.4: Computational domain and boundary conditions for CC-LMN

where ∆T is the difference in temperature, and Ωf is the frequency of the temperature variation.
At the other boundaries,

∂rT (0, z) = 0, ∂rT (1, z) = 0, T (r,H/R) = 1. (3.23)

In this thesis, we simulate unsteady (periodic) solutions for Re = 1100, 1400 at H/R = 2.0. Table
3.3 summarizes the setting of the parameters. The grid point is a uniform mesh and consists of
128 points in r-direction and 256 points in z-direction.

Table 3.3: Area of investigation for CC-LMN
Re H/R Pr ∆T Ωf

1100 2 0.7 0.2 100
1400 2 0.7 0.1 100

Validation

In oreder to validate the computational results, a steady solution is numerically simulated for
(Re,H/R,∆T ) = (1256, 1.5, 0). Table 3.4 shows the comparison of the position of stagnation
points among the computational result for CC-LMN case, the computational result for CC-Incomp,
and the experimental result by Escudier [19].

3.2 Flow in swirling jet with free-slip boundaries

Fundamental studies on vortex breakdown have been conducted not only in a close cylinder but also
in a divergent pipe. Harvey showed that a vortex breakdown took place in a divergent pipe whose
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Table 3.4: Comparison of the position of stagnation points for CC-LMN
Data type Re H

R
zup zdown

Experimental data [19] 1256 1.5 0.51 0.70
Numerical data (CC-Incomp) 1256 1.5 0.51 0.71
Numerical data (CC-LMN) 1256 1.5 0.51 0.71

inlet has swirling vanes like a rotary compressor [29]. Sarpkaya comprehensively investigated the
vortex breakdown in the divergent pipe and he observed several types of the vortex breakdowns:
bubble-type, spiral-type, double-helix-type [54], and turbulent vortex breakdowns [55].

As there were lots of experimental results, numerical simulations of a swiring flow in a pipe
were attempted but it was quite sensitive to boundary conditions especially at the inlet and the
outlet [9]. Then, Grabowski and Steger computed an axisymmetric swirling flow with free-slip
boundaries [26]. They numerically produced a bubble-type vortex breakdown whose shape was
similar to the experimental one. They imposed an exact solution of Euler equations such that

ur = 0, (3.24)

uz =

{
α + (1− α)r2(6− 8r + 3r2) (r < 1)

1 (otherwise)
(3.25)

uθ =

{
Sr(2− r2), (r < 1)
S
r
, (otherwise)

(3.26)

where S is a swirling parameter and α is an axial parameter: The axial velocity is jet-like if α > 1
and wake-like if α < 1. This profile was investigated in a fully three-dimensional flow by Ruith
et al. [52]. They found not only a bubble-type vortex breakdown but also a spiral-type and a
double-helix-type vortex breakdowns. Also, they found the transition from the steady bubble-type
vortex breakdown to the periodic spiral-type vortex breakdown. Then, their result indicated that
the stability breaking caused the transition to the spiral-type vortex breakdown.

This scinario was confirmed by a stability analysis as shown in Chapter 1. However, the stability
analyses in previous studies were based on an axisymmetric bubble-type vortex breakdown, because
only an axisymmetric steady solution was obtained from the Grabowski profile.

In this thesis, we modify the Grabowski profile in order to investigate assymetric bubble-type
vortex breakdowns. After showing the governing equations, we introduce another velocity profile
called misaligned Grabowski profile. This profile satisfies the Euler equation as well as the original
profile and enables us to yield a fully three-dimensional bubble-type vortex breadown as a base
flow.
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3.2.1 Fully three-dimensional compressible flow simulation

Governing equations

Compressible Navier-Stokes equations in Cartesian coordinates are written as

∂tρ+ ∂xmx + ∂ymy + ∂zmz = 0, (3.27)

∂tmx + ∂x(mxux) + ∂y(mxuy) + ∂z(mxuz) = −∂xp+ ∂xτxx + ∂yτxy + ∂zτxz, (3.28)

∂tmy + ∂x(myux) + ∂y(myuy) + ∂z(myuz) = −∂yp+ ∂xτyx + ∂yτyy + ∂zτyz, (3.29)

∂tmz + ∂x(mzux) + ∂y(mzuy) + ∂z(mzuz) = −∂zp+ ∂xτzx + ∂yτzy + ∂zτzz, (3.30)

∂t(ρE) + ∂x[(ρE + p)ux] + ∂y[(ρE + p)uy] + ∂z[(ρE + p)uz] (3.31)

= ∂x(uxτxx + uyτyx + uzτzx + qx) + ∂y(uxτxy + uyτyy + uzτzy + qy) + ∂z(uxτxz + uyτyz + uzτzz + qz),

where mi(i = x, y, z) are momentum flux components in Cartesian coordinates, E is a total energy
per mass, τij(i = x, y, z, j = x, y, z) are elements of a viscous stress tensor, and qi(i = x, y, z) are
heat flux components. They are written as

mi ≡ ρui, (3.32)

E ≡ 1

γ − 1

p

ρ
+

1

2
(u2x + u2y + u2z), (3.33)

τij ≡ µ[∂iuj + ∂jui −
2

3
δij(∂xux + ∂yuy + ∂zuz)], (3.34)

qi ≡ µ

(γ − 1)RePrM2
∂iT, (3.35)

where µ is the kinematic viscosity of the fluid calculated by Sutherland equation:

µ = C1
T

3
2

T + C2

, (3.36)

where T is temperature.

Computational method

These equations are discretized by the 6th-order compact scheme [36], in which the 2nd-order
one-sided and the 4th-order central difference schemes are used at the edge point and the second
one from it respectively. Also, in order to remove numerical high-frequency oscillation, 10th-order
low pass filter is used. The discretized equations are integrated in time, t, by the 3rd-order TVD-
Runge-Kutta method.
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Computational condition

We consider a fluid is the air as well as CC-LMN case. Table 3.5 shows reference values common
to the all computations for SJ-Comp case. In this case, the characteristic length is calculated by
the Reynolds number and the Mach number which we set.

Table 3.5: Reference values for SJ-Comp
ρref Tref

1.225[kg/m3] 300[K]

We can obtain the misaligned Grabowski profile by adding an offset parameter to the Grabowski
profile. The misaligned Grabowski profile is written as

ur = 0, (3.37)

uz =

{
α + (1− α)r2off (6− 8roff + 3r2off ) (roff < 1)

1 (otherwise)
(3.38)

uθ =

{
Sr(2− r2), (r < 1)
S
r
, (otherwise)

(3.39)

where roff is the offset parameter defined as

roff =
√
x2off + y2off . (3.40)

Fig. 3.5 shows the contour map of the axial velocity with white vectors of the rotational velocity
of both profiles. We can see there exists the offset between the center axis of the jet-like axial
velocity and the center axis of the swirling velocity. It satisfies the solenoidal condition of the
velocity vector field and is also an exact solution of Euler equations.

There are some paramters we can control. In this thesis, Re, M , and α are fixed:

Re = 200, (3.41)

M = 0.2, (3.42)

α = 1.2. (3.43)

The others are variable parameters:

0.9 ≤ S ≤ 1.0, (3.44)

0 ≤ roff ≤ 0.5. (3.45)
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Figure 3.5: Contour map of the axial velocity with vectors of the rotational velocity: (a) Grabowski
profile (b) misaligned Grabowski profile for (xoff , yoff ) = (1, 1)

Fig. 3.6 shows the area of investigations in this thesis.
At this area, it is known that a periodic spiral-type vortex breakdown takes place for an

incompressible flow [52]. We need to obtain an unstable steady solution for a global stability
analysis. Then, the unstable steady solution is calculated by the SFD method introduced in
Chapter 2.

Fig. 3.7 shows the computational domain and boundary conditions. In order to avoid non-
physical reflections of propagating waves at boundaries, we often apply characteristic boundary
conditions. Here, the boundary conditions at the inlet and the outlet are Navier-Stokes charac-
terstic boundary conditions (NSCBC) for subsonic inflow and outflow proposed by Ponsiot and
Lele [48], respectively. The NSCBC is based on a simple characteristic boundary condition (CBC)
using local one-dimensional inviscid (LODI) relations proposed by Thompson [61]. For example,
when we consider the normal condition to the boundary is x, a LODI system can be written as

∂t


ρ
ux
uy
uz
p

+


ux ρ 0 0 0
0 ux 0 0 1

ρ

0 0 ux 0 0
0 0 0 ux 0
0 γp 0 0 ux

 ∂x


ρ
ux
uy
uz
p

 =


0
0
0
0
0

 . (3.46)

We can rewrite this system to

∂t


p− ρcux
c2ρ− p
uy
uz

p+ ρcux

+


ux − c ρ 0 0 0

0 ux 0 0 0
0 0 ux 0 0
0 0 0 ux 0
0 0 0 0 ux + c

 ∂x


p− ρcux
c2ρ− p
uy
uz

p+ ρcux

 =


0
0
0
0
0

 , (3.47)
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Figure 3.6: Area of investigations for SJ-Comp

where c is a sonic speed written as

c =

√
γp

ρ
. (3.48)

For a subsonic flow, there are four incomig waves from the outside of the computational domain
at the inlet, while there is only one incoming waves at the outlet. Giving some variables at
the boundary, we can calculate the other variables by the LODI system without the numerical
oscillation. This is the procedure of the characteristic boundary condition by Thomson [61]. On
the NSCBC, we calculate Navier-Stoke equations again using differential terms in x-direction
obtained from the LODI system.

The other boundary conditions are isothermal free-slip boundaries written as

T = 1, (3.49)

un = 0, (3.50)

τnj = 0, (3.51)

where n is the normal direction. The misaligned Grabowski profile is set as the initial condition of
the computation, and then, the numerical solution at the next step is calculated. The grid point
consists of 160 points in both x-direction and y-direction, and 192 points in z-direction.

Validation

In this configuration, we do not have experimental results to compare but computational results
for incompressible flows. Here, a computational result for (Re,M, α, S, roff ) = (200, 0.2, 1, 1, 0)
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Figure 3.7: Computational grid with boundary conditions, computational domain with streamlines,
and zoomed-in view of streamlines for SJ-Comp

49



3.2. FLOW IN SWIRLING JET WITH FREE-SLIP BOUNDARIES

is compared to the computational result by Qadri et al. [49] from an aspect of the locations of
stagnation points. Table 3.6 shows the comparison between the present result and the reference
result. The fine mesh consists of 240 points in both x-direction and ydirection, and 288 points in
z-direction. We can see the present result is in good agreement with the result of Qadri et al. [49]
by 2% about the locations of stagnation points.

Table 3.6: Comparison of the position of stagnation points for SJ-Comp
Data type Re α S zup zdown

Numerical data (incompressible) [49] 200 1 1 1.32 2.21
Numerical data (normal) 200 1 1 1.31 2.18
Numerical data (fine) 200 1 1 1.30 2.18

3.2.2 Linearized Navier-Stokes equations

Governing equations

In this thesis, we analyze a global stability on not only linearized Navier-Stokes equations but also
adjoint Navier-Stokes equations. In order to derive the adjoint equations, it is convinient to use
the pressure instead of the total energy. The pressure equation can be written as

∂tp+ ∂x(pux) + ∂y(puy) + ∂z(puz) (3.52)

= (γ − 1)[−p(∂xux + ∂yuy + ∂zuz) + ∂xqx + ∂yqy + ∂zqz

+τxx∂xux + τyy∂yuy + τzz∂zuz + τxy(∂yux + ∂xuy) + τyz(∂zuy + ∂yuz) + τzx(∂xuz + ∂zux)].
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We can write the linearized Navier-Stokes equations for fully three-dimensional compressible flows
as follows:

∂tρ
′ + ∂xm

′

x + ∂ym
′

y + ∂zm
′

z = 0, (3.53)

∂tm
′

x + ∂x(m
′

xux) + ∂y(m
′

xuy) + ∂z(m
′

xuz) + ∂x(mxu
′

x) + ∂y(mxu
′

y) + ∂z(mxu
′

z) (3.54)

= −∂xp
′
+ ∂xτ

′

xx + ∂yτ
′

xy + ∂zτ
′

xz,

∂tm
′

y + ∂x(m
′

yux) + ∂y(m
′

yuy) + ∂z(m
′

yuz) + ∂x(myu
′

x) + ∂y(myu
′

y) + ∂z(myu
′

z) (3.55)

= −∂yp
′
+ ∂xτ

′

yx + ∂yτ
′

yy + ∂zτ
′

yz,

∂tm
′

z + ∂x(m
′

zux) + ∂y(m
′

zuy) + ∂z(m
′

zuz) + ∂x(mzu
′

x) + ∂y(mzu
′

y) + ∂z(mzu
′

z) (3.56)

= −∂zp
′
+ ∂xτ

′

zx + ∂yτ
′

zy + ∂zτ
′

zz,

∂tp
′
+ ∂x(p

′
ux) + ∂y(p

′
uy) + ∂z(p

′
uz) + ∂x(pu

′

x) + ∂y(pu
′

y) + ∂z(pu
′

z) (3.57)

= (γ − 1)[−p′(∂xux + ∂yuy + ∂zuz)− p(∂xu
′

x + ∂yu
′

y + ∂zu
′

z) + ∂xq
′

x + ∂yq
′

y + ∂zq
′

z

+∂xu
′

xτxx + ∂yu
′

yτyy + ∂zu
′

zτzz + (∂xu
′

y + ∂yu
′

x)τxy + (∂yu
′

z + ∂zu
′

y)τyz + (∂zu
′

x + ∂xu
′

z)τzx

+∂xuxτ
′

xx + ∂yuyτ
′

yy + ∂zuzτ
′

zz + (∂xuy + ∂yux)τ
′

xy + (∂yuz + ∂zuy)τ
′

yz + (∂zux + ∂xuz)τ
′

zx],

wherem
′
i(i = x, y, z) are momentum flux perturbations in Cartesian coordinates, τ

′
ij(i = x, y, z, j =

x, y, z) are elements of a perturbed viscous stress tensor, and q
′
i(i = x, y, z) are heat flux pertur-

bations. They are written as

m
′

i ≡ ρ′ui + ρu
′

i, (3.58)

τ
′

ij ≡ µ[∂iu
′

j + ∂ju
′

i −
2

3
δij(∂xu

′

x + ∂yu
′

y + ∂zu
′

z)] (3.59)

+ µ′[∂iuj + ∂jui −
2

3
δij(∂xux + ∂yuy + ∂zuz)],

q
′

i ≡ µ

(γ − 1)RePrM2
∂iT

′ +
µ′

(γ − 1)RePrM2
∂iT, (3.60)

where µ is the perturbation of the kinematic viscosity obtained by differentiating the Sutherland
equation in T :

µ′ ≡ dµ

dT
T ′ = C1(

3

2

T
1
2

T + C2

− T
3
2

(T + C2)2
)T ′, (3.61)

where T ′ is temperature perturbation.

Computational method

The linearized equations are solved by the same way as the compressible Navier-Stokes equations.
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Computational condition

we need to solve the linealized Navier-Stokes equations for the global stability analysis, because
the time-stepping method is used. The computational domain is the same as the domain for the
nonlinear Navier-Stokes equations but boundary conditions are slightly different as shown in Fig.
3.8. Instead of the characteristic boundary conditions at the inlet and the outlet, charcteristic
boundary conditions [61] are simply imposed there. For example, when we consider the normal
condition to the boundary is x, the LODI system can be written as

∂t


ρ

′

u
′
x

u
′
y

u
′
z

p
′

+


ux ρ 0 0 0
0 ux 0 0 1

ρ

0 0 ux 0 0
0 0 0 ux 0
0 γp 0 0 ux

 ∂x


ρ

′

u
′
x

u
′
y

u
′
z

p
′

 =


0
0
0
0
0

 . (3.62)

At the inlet, there are four incoming waves which should be estimated, while there is only one
incoming wave at the outlet. Then, ρ

′
= 0 and m

′
= 0 are imposed at the inlet, and p

′
= 0 is

imposed at the outlet.

On the other boundaries, the isothermal free-slip conditions are imposed. We can write the
isothermal free-slip boundary as

T
′

= 0, (3.63)

u
′

n = 0, (3.64)

τ
′

nj = 0, (3.65)

where n is the normal direction.

3.2.3 Adjoint Navier-Stokes equations

Governing equations

When we derive adjoint Naveir-Stokes equations, we need to integrate the linearized Navier-Stokes
equation by parts. The manipulation is written in Appendix B because it is long and comlicated.
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Figure 3.8: Computational grid and boundary conditions for linearized Navier-Stokes equations

Here, we see only the adjoint Navier-Stokes equations written as

∂tρ
∗ +

p

ρ
(ux∂xρ

∗ + ∂yρ
∗ + ∂zρ

∗) + (γ − 1)
p∗

ρ
(ux∂xp+ ∂yp+ ∂zp) (3.66)

= −ux(ux∂xm∗
x + ∂ym

∗
x + ∂zm

∗
x)− uy(ux∂xm

∗
y + ∂ym

∗
y + ∂zm

∗
y)− uz(ux∂xm

∗
z + ∂ym

∗
z + ∂zm

∗
z)

+
1

ρ
[∂x(uxσxx + uyσyx + uzσzx) + ∂y(uxσxy + uyσyy + uzσzy) + ∂z(uxσxz + uyσyz + uzσzz)]

−p
ρ
(s∗visc + s∗heat),

∂tm
∗
x − ux∂xm

∗
x − uy∂ym

∗
x − uz∂zm

∗
x + ux∂xm

∗
x + uy∂xm

∗
y + uz∂xm

∗
z (3.67)

= ∂xρ
∗ + γ

p

ρ
∂xp

∗ +
1

ρ
(∂xσ

∗
xx + ∂yσ

∗
xy + ∂zσ

∗
xz),

∂tm
∗
y − ux∂xm

∗
y − uy∂ym

∗
y − uz∂zm

∗
y + ux∂ym

∗
x + uy∂ym

∗
y + uz∂ym

∗
z (3.68)

= ∂yρ
∗ + γ

p

ρ
∂yp

∗ +
1

ρ
(∂xσ

∗
yx + ∂yσ

∗
yy + ∂zσ

∗
yz),

∂tm
∗
z − ux∂xm

∗
z − uy∂ym

∗
z − uz∂zm

∗
z + ux∂zm

∗
x + uy∂zm

∗
y + uz∂m

∗
z (3.69)

= ∂zρ
∗ + γ

p

ρ
∂zp

∗ +
1

ρ
(∂xσ

∗
zx + ∂yσ

∗
zy + ∂zσ

∗
zz),

∂tp
∗ − ∂xm

∗
x − ∂ym

∗
y − ∂zm

∗
z (3.70)

= ux∂xp
∗ + uy∂yp

∗ + uz∂zp
∗ − (γ − 1)(∂xux + ∂yuy + ∂zuz)p

∗

+s∗visc + s∗heat,
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where m∗
i (i = x, y, z) are adjoint momentum fluxes in Cartesian coordinates, σ∗

ij(i = x, y, z, j =
x, y, z) are elements of an adjoint viscous stress tensor, and s∗visc, s

∗
heat are source terms from the

viscosity and the heat. They are written as

m∗
i ≡ ρ∗ui + ρu∗i , (3.71)

σ∗
ij ≡ τ ∗ij − 2(γ − 1)τijρ

∗, (3.72)

τ ∗ij ≡ µ[∂im
∗
j + ∂jm

∗
i −

2

3
δij(∂xm

∗
x + ∂ym

∗
y + ∂zm

∗
z)] (3.73)

s∗visc ≡ −T
p

dµ

dT
(3.74)

{[∂xm∗
x − (γ − 1)∂xuxp

∗]
τxx
µ

+ [∂xm
∗
y − (γ − 1)∂xuyp

∗]
τxy
µ

+ [∂xm
∗
z − (γ − 1)∂xuzp

∗]
τxz
µ

+[∂ym
∗
x − (γ − 1)∂yuxp

∗]
τyx
µ

+ [∂ym
∗
y − (γ − 1)∂yuyp

∗]
τyy
µ

+ [∂ym
∗
z − (γ − 1)∂yuzp

∗]
τyz
µ

+[∂zm
∗
x − (γ − 1)∂zuxp

∗]
τzx
µ

+ [∂zm
∗
y − (γ − 1)∂zuyp

∗]
τzy
µ

+ [∂zm
∗
z − (γ − 1)∂zuzp

∗]
τzz
µ
},

s∗heat ≡ γ

ρPrRe
[∂x(µ∂xp

∗) + ∂y(µ∂yp
∗) + ∂z(µ∂zp

∗)− dµ

dT
(∂xT∂xp

∗ + ∂yT∂yp
∗ + ∂zT∂zp

∗). (3.75)

Computational method

The adjoint equations are solved by the same way as the set of the compressible Navier-Stokes
equations.

Computational condition

With the adjoint equations obtained through an integral by part, we obtain a boundary term also.
It is written as

b = bEuler + bvisc + bheat (3.76)

bEuler =

∫
∂Ω

[ρ∗m
′

i + p′m∗
i +m∗

j(m
′

iuj +miu
′

j) + p∗(p′ui + γpu
′

i)]dAi (3.77)

bvisc =

∫
∂Ω

[τ
′

ijm
∗
j − τ ∗iju

′

j + 2(γ − 1)p∗τiju
′

j]dAi (3.78)

bheat =

∫
∂Ω

[(γ − 1)p∗q
′

i − ∂ip
∗ µ

M2RePr
T ′]dAi. (3.79)

We also need to solve the adjoint Navier-Stokes equations for the global stability analysis, because
the time-stepping method is used. Then, we need to impose boundary conditions on boundaries but
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we must be careful for the boundary conditions for the adjoint equations because of the existence
of the boundary term.

Substituting (direct) boundary conditions for the linearized Navier-Stokes equations to the
boundary term, we can choose the adjoint boundary conditions to get b = 0. It is known that, if
the direct boundary condition is an inflow (outflow) characteristic boundary condition, the adjoint
boundary condition becomes an outflow (inflow) characteristic boundary condition [25]. Fig. 3.9
shows the computational domain and the adjoint boundary conditions. Note that the boundary
conditions at the inlet and the outlet are outflow and inflow characteristic boundary conditions,
respectively.

When we consider the normal condition to the boundary is x, the adjoint LODI system can be
written as

∂t


ρ∗

u∗x
u∗y
u∗z
p∗

−


0 −ρu2x 0 0 −u(c2 + u2)
1
ρ

ux 0 0 c2

ρ

0 0 ux 0 0
0 0 0 ux 0
0 ρ 0 0 2ux

 ∂x


ρ∗

u∗x
u∗y
u∗z
p∗

 =


0
0
0
0
0

 . (3.80)

In contrast to the direct boundary conditions, at the inlet, there is only one incoming wave, while
there are four incoming waves at the outlet. Then, ρ∗ = 0 and m∗ = 0 are imposed at the outlet,
and p∗ = 0 is imposed at the inlet.

We can also write the adjoint isothermal free-slip boundary as

p∗ = 0, (3.81)

u∗n = 0, (3.82)

τ ∗nj = 0, (3.83)

where n is the normal direction.
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3.2. FLOW IN SWIRLING JET WITH FREE-SLIP BOUNDARIES

Figure 3.9: Computational domain and boundary conditions for adjoint Navier-Stokes equations
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Chapter 4

Local Bifurcation Analysis on
Bubble-Type Vortex Breakdown

In this chapter, results of topological analyses are shown and discussed. Beggining from the results
for CC-Incomp case, we see the results for CC-LMN case and for SJ-Comp case, respectively. The
topological analyses consist of the eigenvalue analysis of a velocity gradient tensor at a stagnation
point for all the cases and the bifurcation analysis of the streamline topology for the axisymmetric
cases. As shown in Chpater 1, the eigenvalue analysis of the velocity gradient tensor is the most
fundamental structure of a dynamical system of streamlines and it is known that the stagnation
point is a saddle-focus [66]. It is shown that this topological structure of the stagnation point is
identical for the all cases even if the recirculating flow region is asymmetric or the flow includes the
compressibility. Moreover, we see that there exists only one stagnation point at the onset of the
bubble-type vortex breakdown and it is non-hyperbolic for CC-Incomp case. Next, introducing a
two-parameter bifurcation model for the bifurcation of the topology of instantaneous streamlines
for compressible flows, other topologies, which have not been observed in literature of flow simula-
tions or experiments but mathematically predicted by Guckenheimer and Holmes [27], are found
in instantaneous streamlines for CC-LMN case. Finally, we see and examine the axisymmetry
breaking of the streamline topology of the bubble-type vortex breakdown for SJ-Comp case. Fig.
4.1 shows the research table and what is investigated in Chapter 4.

4.1 Axisymmetric incompressible case

4.1.1 Eigenanalysis of velocity gradient tensor

In this section, we revisit the identification of the topological structure of stagnation-point pairs.
Aformentioned in Chapter 1, the saddle focus structure of the stagnation point is the most fun-
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4.1. AXISYMMETRIC INCOMPRESSIBLE CASE

Figure 4.1: Research table and what is investigated in Chapter 4

damental property of the vortex breakdown. Results shown in this section are based on the
preliminary investigation for CC-Incomp case by the authors [72].

Here, we see both stagnation points and fixed points. The stagnation point is used for a
stationary point in a three-dimensional flow field and the fixed point is used for a stationary point
in a space we choose. Then, stagnation points are fixed points but not vice versa. Fig. 4.2 shows
a computed flow field for Re = 1256. Rotating the wall at z = 1.5, we have a counter-clockwise
circulating flow. In some regions of the Reynolds number, we can observe a recirculating flow
region along the axis. It is a buble-type vortex breakdown in the closed cylinder. In rz-plane,
there are three fixed points. One is a fixed point off the axis, then it is a periodic orbit in xyz-plane.
The others are the pair of stagnation points.

We see the velocity gradient tensors of stagnation points in xyz-plane. How to construct the
velocity gradient tensor is rewritten here. At first, we look for the stagnation point from CFD
data. It is represented by a grid point where the velocity is the lowest. Next, differentials of the
velocity components are calculated by the 2nd central difference method.

For CC-Incomp case, the velocity gradient tensor and its eigenvalues at both stagnation points
upstream and downstream of the recirculating flow region for Re = 1256 are

Aup =

0.062 −0.056 0
0.056 0.062 0
0 0 −0.124

 , (4.1)

Adown =

−0.030 −0.096 0
0.096 −0.030 0
0 0 0.060

 , (4.2)
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BREAKDOWN

Figure 4.2: Two-dimensional streamlines for Re = 1256 in CC-Incomp case
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4.1. AXISYMMETRIC INCOMPRESSIBLE CASE

respectively. Then, their eigenvalues are

κup = 0.062± 0.056i,−0.124, (4.3)

κdown = −0.030± 0.096i, 0.060, (4.4)

respectively. We can see all the stagnation point are hyperbolic and the difference is only the sign
of the real part of the eigenvalue. Taking the summation of the three eigenvalues, it becomes zero
because the numerical solutions well satisfy the solenoidal condition of the velocity vector field for
an incompressible flow.

Next, we see how the eigenvalue changes by varying parameters from the onset of the recir-
culating flow region. Fig. 4.3 shows the change of the eigenvalues for various Reynolds numbers
for CC-Incomp case. It is shown that, at the onset, there exists only one stagnation point whose
velocity gradient tensor is non-hyperbolic:

Aonset =

 0 −0.061 0
0.061 0 0
0 0 0

 . (4.5)

The eigenvalues are
κonset = ±0.061i, 0. (4.6)

4.1.2 Nonlinear bifurcation model

According to Guckenheimer and Holmes [27], we can introduce a two-parameter bifurcation model
about this non-hyperbolic fixed point such that

dř

dt
= µ1ř + ařž, (4.7)

dž

dt
= µ2 + ř2 + ž2, (4.8)

where µ1 and µ2 are bifurcation parameters, and řž-plane is transformed from rz-plane in order
to make the coefficients simple as shown in Chapter 2.. For an axisymmetric incompressible flow,
there is only one parameter µ2 in a bifurcation model of the recirculating flow region by Brøns et
al. µ2 is the minimum of the velocity ϖ. If it is negative, the recirculating flow region is observed.
However, we need to confirm the second parameter can appear in the context of fluid dynamics,
because the mathematics indicates the two-parameter bifurcation. Taking the divergence of the
velocity field, we can easily obtain the dilatation such that

div(ǔ) = 2µ1 + 2(a− 1)ž. (4.9)
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BREAKDOWN

Figure 4.3: Eigenvalues of velocity gradient tensor at stagnation-point pairs for various Reynolds
numbers: arrows indicate the increase in the Reynolds number

At the same time, we can understand why this second parameter doesn’t appear for the incompress-
ible flow. It is because µ1 must be zero to satisfy the solenoidal condition. Then, it is considered
that the other bifurcation by varying µ1 can be observed in the dynamical system of streamlines.
Here, we denote µ1 by ∆. Also, we rewrite the two-parameter model as

dř

dt
= ∆ř + ařž, (4.10)

dž

dt
= ϖ + ř2 + ž2. (4.11)

We can conclude that the two-parameter model includes the one-parameter model proposed by
Brøns et al. [13] and reduces to the one-parameter model when the solenoidal condition is satisfied.
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4.2. AXISYMMETRIC LOW-MACH-NUMBER CASE

4.2 Axisymmetric low-Mach-number case

(This section is not open to the public, because it will be published as a journal paper.)

4.2.1 Eigenanalysis of velocity gradient tensor

4.2.2 Nonlinear bifurcation model
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4.3 Asymmetric case

(This section is not open to the public, because it will be published as a journal paper.)

4.3.1 Eigenanalysis of velocity gradient tensor

4.3.2 Topological structure of streamlines
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4.4. SUMMARY OF THIS CHAPTER

4.4 Summary of this chapter

(This section is not open to the public, because it will be published as a journal paper.)
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Chapter 5

Global Stability Analysis on
Bubble-Type Vortex Breakdown

In this chapter, results of stability analyses are shown and discussed. We conduct global stability
analyses for direct and adjoint systems based on two types of steady solutions for SJ-Comp case.
One is axisymmetric and the other is asymmetric. At first, we see results of an axisymmetric case
for (Re,M, α, S, roff ) = (200, 0.2, 1.2, 1, 0). We check the eigenvalue distribution and then examine
both the direct and the adjoint modes. Although there exists previous studies on the same analysis
for incompressible flows, the present study can reveal where thermodynamical perturbations grow
and originate by the global stablility analysis for a compressible flow. Then, we see where not
only motional perturbations but also thermodynamical pertubations grow from the direct mode,
while, from the adjoint mode, we see where those pertuabtions originate. Also, we examine the
sensitivity indicating where the perturbations are amplified by an internal feedback. It is shown
that the sensitivity is high around the stagnation point upstream of the recirculating flow region.
Next, we examine the results of asymmetric cases, varying S and roff . Although there is not big
difference in the direct and the adjoint modes between the axisymmetric and the asymmetric cases,
the highest sensitivity region strongly relates to the place where streamlines just upstream of the
recirculating flow region separate to those through and around the recirculating flow region. Fig.
5.1 shows a revised research table by Chapter 4 and what is investigated in Chapter 5.

5.1 Axisymmetric case

(This section is not open to the public, because it is going to be published as a journal paper.)
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5.1. AXISYMMETRIC CASE

Figure 5.1: Revised research table by Chapter 4 and what is investigated in Chapter 5

5.1.1 Eigenvalue distibution

5.1.2 Direct and adjoint global modes

5.1.3 Sensitivity
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BREAKDOWN

5.2 Asymmetric case

(This section is not open to the public, because it is going to be published as a journal paper.)

5.2.1 Misalignment effect on the least stable eigenvalue

5.2.2 Direct and adjoint global modes

5.2.3 Sensitivity

5.3 Summary of this chapter

(This section is not open to the public, because it will be published as a journal paper.)
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Chapter 6

Conclusion

(This chapter is not open to the public, because it is going to be published as a journal paper.)
In this thesis, bubble-type vortex breakdowns were investigated from aspects of its topology and

stability. Its aims were to reveal the topology of the bubble-type vortex breakdown for unsteady,
fully three-dimensional, and compressible flows, and to reveal the stability, the receptivities, and
the sensitivity of the bubble-type vortex breakdown for fully three-dimensional compressible flows.

Results to be analyzed were obtained by a numerical approach. Simulated cases are three
cases: an axisymmetric incompressible flow in a closed cylinder (CC-Incomp), an axisymmetric
low-Mach-number flow in the closed cylinder (CC-LMN), and a compressible swirling jet with free-
slip boundaryies (SJ-Comp). For SJ-Comp case, another parameter is added to the classical profile
of a longitudinal vortex in order to examine the axisymmetry breaking of a streamline topology.

Finally, Fig. 6.1 shows a revised research table by the present study. Some contents were newly
investigated here and we saw there still remains some future works and open problems. We hope
those problems will be solved in the near future and the vortex breakdown phenomenon is not
only blown out over a delta wing but also utilized in many applications.
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Figure 6.1: Revised research table by the present study
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Appendix A

Definition of Inner Product

In this thesis, an inner product ⟨·, ·⟩ is defined as

⟨f(x),g(x)⟩ =
∫
V

(f1(x)g1(x) + f2(x)g2(x) + f3(x)g3(x) + f4(x)g4(x) + f5(x)g5(x))dV, (A.1)

where f = (f1, f2, f3, f4, f5) and g = (g1, g2, g3, g4, g5) are state vectors.
From the inner product, we can understand a relation between a direct mode Φi and an adjoint

mode Ψi. We can write a solution of perturbation variables as

q′(x, t) = etLq′(x, 0) =
∑
i

eλit⟨q′(x,0),Ψi⟩Φi. (A.2)

Analyzing eigenvalues and eigenvectors of an original system, we can obtain a temporal growth
rate and a corresponding spatial distribution of the perturbation. However, we cannot evaluate
the amplitude which indicates an influence of the direct mode on the solution. As shown in the
above equation, it is calculated by the inner product of the initial condition and the adjoint mode.
It means, when we put a disturbance at a location where the adjoint mode is large, the influence
of the direct mode becomes large. It is the reason why the adjoint mode is called a receptivity.
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Appendix B

Derivation of Adjoint Navier-Stokes
Equations

In researches of optimal designs, there exists adjoint method. This method uses adjoint equations to
obtain a gradient to an otimized state. Then, we can find adjoint equations for some flow equations
in those areas [6]. However, as the adjoint equations for fully three-dimensional compressible
Navier-Stoke equations are little investigated, we can find only one example in Otero [45]. Then,
the adjoint equations for three-dimensional compressible Navier-Stokes equations are derived here.

We can derive adjoint equations of Eq. 3.53 thorugh an integral by parts using the inner
product defined in Appendix A. Applying the integral by parts to ⟨Lq′

,q∗⟩, we obtain

⟨Lq′
,q∗⟩ =

∫
V

(Lq′)1q∗1 + (Lq′)2q∗2 + (Lq′)3q∗3 + (Lq′)4q∗4 + (Lq′)5q∗5dV. (B.1)

What we want to obtain is

⟨q′
,L∗q∗⟩ =

∫
V

q
′

1(L∗q∗)1 + q
′

2(L∗q∗)2 + q
′

3(L∗q∗) + q
′

4(L∗q∗)4 + q
′

5(L∗q∗)5dV. (B.2)

Then, we need to precisely integrate the differential terms of q
′
i by parts, combine terms into one

about q
′
i, and extract multipliers of q

′
i. When L consists of only constants, we need not to integrate

this equation by parts. However, linearized Navier-Stokes equations have first-and second-order
differential terms, and then, we have to integrate the above equations by parts twice, although we
can independently integrate each term.
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At first, integrating the linearized continuity equation by parts,

∫
V

(Lq′)1q∗1dV ≡
∫
V

−(∂xm
′

x + ∂ym
′

y + ∂zm
′

z)ρ
∗dV, (B.3)

=

∫
V

m
′

x∂xρ
∗ +m

′

y∂yρ
∗ +m

′

z∂zρ
∗dV

−
∫
∂V

(m
′

x +m
′

y +m
′

z)ρ
∗dA.

The integrand of the first term is parts of adjoint equations and the second term is parts of the
boundary term, which is required to be zero.

Next, integrating the linearized equation of motion in x-direction by parts,

∫
V

(Lq′)2q∗2dV ≡
∫
V

−(∂x(m
′

xux) + ∂y(m
′

xuy) + ∂z(m
′

xuz) (B.4)

+∂x(mxu
′

x) + ∂y(mxu
′

y) + ∂z(mxu
′

z)

+∂xp
′ − ∂xτ

′

xx − ∂yτ
′

xy − ∂zτ
′

xz)m
∗
xdV,

=

∫
V

m
′

xux∂xm
∗
x +m

′

xuy∂ym
∗
x +m

′

xuz∂zm
∗
x

+mxu
′

x∂xm
∗
x +mxu

′

y∂ym
∗
x +mxu

′

z∂zm
∗
x

+p
′
∂xm

∗
x − τ

′

xx∂xm
∗
x − τ

′

xy∂ym
∗
x − τ

′

xz∂zm
∗
xdV

−
∫
∂V

(m
′

xux +m
′

xuy +m
′

xuz

mxu
′

x +mxu
′

y +mxu
′

z

p
′ − τ

′

xx − τ
′

xy − τ
′

xz)m
∗
xdA.

Integrating left derivative terms (viscous shear stress) by parts,

∫
V

−τ ′

xx∂xm
∗
x − τ

′

xy∂ym
∗
x − τ

′

xz∂zm
∗
xdV =

∫
V

u
′

x(∂xτ
∗
xx + ∂yτ

∗
xy + ∂zτ

∗
xz)dV (B.5)

−
∫
∂V

u
′

x(τ
∗
xx + τ ∗xy + τ ∗xz)dA.
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In y-and z-directions,

∫
V

(Lq′)3q∗3dV ≡
∫
V

−(∂x(m
′

yux) + ∂y(m
′

yuy) + ∂z(m
′

yuz) (B.6)

+∂x(myu
′

x) + ∂y(myu
′

y) + ∂z(myu
′

z)

+∂yp
′ − ∂xτ

′

yx − ∂yτ
′

yy − ∂zτ
′

yz)m
∗
ydV,

=

∫
V

m
′

yux∂xm
∗
y +m

′

yuy∂ym
∗
y +m

′

yuz∂zm
∗
y

+myu
′

x∂xm
∗
y +myu

′

y∂ym
∗
y +myu

′

z∂zm
∗
y

+p
′
∂ym

∗
y − τ

′

yx∂xm
∗
y − τ

′

yy∂ym
∗
y − τ

′

yz∂zm
∗
ydV

−
∫
∂V

(m
′

yux +m
′

yuy +m
′

yuz

myu
′

x +myu
′

y +myu
′

z

p
′ − τ

′

yx − τ
′

yy − τ
′

yz)m
∗
ydA,∫

V

(Lq′)4q∗4dV ≡
∫
V

−(∂x(m
′

zux) + ∂y(m
′

zuy) + ∂z(m
′

zuz) (B.7)

+∂x(mzu
′

x) + ∂y(mzu
′

y) + ∂z(mzu
′

z)

+∂zp
′ − ∂xτ

′

zx − ∂yτ
′

zy − ∂zτ
′

zz)m
∗
zdV,

=

∫
V

m
′

zux∂xm
∗
z +m

′

zuy∂ym
∗
z +m

′

zuz∂zm
∗
z

+mzu
′

x∂xm
∗
z +mzu

′

y∂ym
∗
z +mzu

′

z∂zm
∗
z

+p
′
∂xm

∗
z − τ

′

zx∂xm
∗
z − τ

′

zy∂ym
∗
z − τ

′

zz∂zm
∗
zdV

−
∫
∂V

(m
′

zux +m
′

zuy +m
′

zuz

mzu
′

x +mzu
′

y +mzu
′

z

p
′ − τ

′

zx − τ
′

zy − τ
′

zz)m
∗
zdA,
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respectively. Integrating left derivative terms (viscous shear stress) by parts,∫
V

−τ ′

yx∂xm
∗
y − τ

′

yy∂ym
∗
y − τ

′

yz∂zm
∗
ydV =

∫
V

u
′

y(∂xτ
∗
yx + ∂yτ

∗
yy + ∂zτ

∗
yz)dV (B.8)

−
∫
∂V

u
′

y(τ
∗
yx + τ ∗yy + τ ∗yz)dA,∫

V

−τ ′

zx∂xm
∗
z − τ

′

zy∂ym
∗
z − τ

′

zz∂zm
∗
zdV =

∫
V

u
′

z(∂xτ
∗
zx + ∂yτ

∗
zy + ∂zτ

∗
zz)dV (B.9)

−
∫
∂V

u
′

z(τ
∗
zx + τ ∗zy + τ ∗zz)dA.,

respectively.

At last, integrating the linearized pressure equation by parts,∫
V

(Lq′)5q∗5dV ≡
∫
V

{−[∂x(p
′
ux) + ∂y(p

′
uy) + ∂z(p

′
uz) + ∂x(pu

′

x) + ∂y(pu
′

y) + ∂z(pu
′

z)] (B.10)

+(γ − 1)[−p′(∂xux + ∂yuy + ∂zuz)− p(∂xu
′

x + ∂yu
′

y + ∂zu
′

z) + ∂xq
′

x + ∂yq
′

y + ∂zq
′

z

+∂xu
′

xτxx + ∂yu
′

yτyy + ∂zu
′

zτzz + ∂xuxτ
′

xx + ∂yuyτ
′

yy + ∂zuzτ
′

zz

+(∂xu
′

y + ∂yu
′

x)τxy + (∂yu
′

z + ∂zu
′

y)τyz + (∂zu
′

x + ∂xu
′

z)τzx

+(∂xuy + ∂yux)τ
′

xy + (∂yuz + ∂zuy)τ
′

yz + (∂zux + ∂xuz)τ
′

zx]}p∗dV,

=

∫
V

p
′
ux∂xp

∗ + p
′
uy∂yp

∗ + p
′
uz∂zp

∗ + pu
′

x∂xp
∗ + pu

′

y∂yp
∗ + pu

′

z∂zp
∗

−(γ − 1)[p′p∗(∂xux + ∂yuy + ∂zuz)− u
′

x∂x(pp
∗)− u

′

y∂y(pp
∗)− u

′

z∂z(pp
∗)

+q
′

x∂xp
∗ + q

′

y∂yp
∗ + q

′

z∂zp
∗

+u
′

xτxx∂xp
∗ + u

′

yτyy∂yp
∗ + u

′

zτzz∂zp
∗ + ∂xuxMxx + ∂yuyMyy + ∂zuzMzz

+(u
′

y∂xp
∗ + u

′

x∂yp
∗)τxy + (u

′

z∂yp
∗ + u

′

y∂zp
∗)τyz + (u

′

x∂zp
∗ + u

′

z∂xp
∗)τzx

+(∂xuy + ∂yux)Mxy + (∂yuz + ∂zuy)Myz + (∂zux + ∂xuz)Mzx]dV

−
∫
∂V

{−(p
′
ux + p

′
uy + p

′
uz + pu

′

x + pu
′

y + pu
′

z)

+(γ − 1)[−p(u′

x + u
′

y + u
′

z) + q
′

x + q
′

y + q
′

z

+u
′

xτxx + u
′

yτyy + u
′

zτzz + (u
′

y + u
′

x)τxy + (u
′

z + u
′

y)τyz + (u
′

x + u
′

z)τzx]}p∗dA,

where

Mij ≡ µ(u
′

i∂jp
∗ + u

′

j∂ip
∗ − 2

3
u

′

k∂kp
∗)− dµ

dT

τij
µ
T ′p∗. (B.11)
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APPENDIX B. DERIVATION OF ADJOINT NAVIER-STOKES EQUATIONS

Integrating left terms by parts,∫
V

−(γ − 1)(q
′

x∂xp
∗ + q

′

y∂yp
∗ + q

′

z∂zp
∗)dV (B.12)

=

∫
V

µ

RePrM2
T

′
(∂2xp

∗ + ∂2yp
∗ + q

′

z∂zp
∗)dV

−
∫
∂V

µ

RePrM2
T

′
(∂xp

∗ + ∂yp
∗ + ∂zp

∗)dA.

Combining above terms about each adjoint variable, we can obtain the adjoint equation shown
in Chapter 3. Also, taking the summation of the integrals around boundaries, we can obtain the
boundary term.
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Appendix C

Validation of numerical differences
between direct and adjoint eigensystems

(This chapter is not open to the public, because it is going to be published as a journal paper.)
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Appendix D

Effect of Mach Number on Unstable
Mode

(This chapter is not open to the public, because it is going to be published as a journal paper.)
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