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Abstract
Semiconductor quantum dot (QD) is an artificial system that confines electrons

in three-dimensions in the scale of the De Broglie wavelength (∼ 100 nm). It is
often called “artificial atom,” and the energy levels of electrons are discretized
by the quantum size effect, which is called the interaction effect. The QD sys-
tems have been widely utilized to study several topics: quantum transportation,
physics of the electron states, spin-spin interactions, spintronics, quantum simu-
lations and application for quantum information processing. These topics have
been studied mainly in the single or double QD (DQD) and the QD system has
been scaled up to study more complicated interactions and multiple qubits. Ow-
ing to the semiconductor micro-fabricating techniques, the multiple QD (MQD)
system has potential scalability but the scale-up of QD systems whose electronic
states can be precisely manipulated and detected requires several technical ad-
vances. For the application of the MQD system as spin qubits, the demonstration
of the basic manipulations in the QQD system is a necessary step. For exam-
ple, single spin control with a micro-magnet electron spin resonance (MM-ESR)
method are established in a DQD and demonstrated in a triple QD (TQD). In the
QQD system, four individual ESR signals are observed while individual control
of electron spins in a QQD has not been realized yet. The MQD system is also
considered as the promised platform for analogue quantum simulations owing to
the established control methods in spin qubits experiments. In the spin state of the
Fermi-Hubbard model, anti-ferromagnetism spin chain, spin frustration and Na-
gaoka ferromagnetism are expected to be observed; however experimental work
in this aspect is lacking. For these researches, the exact control and detection
method of the spin state in the further scaled up MQD system, such as QQDs and
5QDs, must be established.

This thesis present the demonstration of the charge and spin state in the MQD
system. First, we propose the new device architecture and demonstrate it by fab-
ricating and measuring the 5QD device with this new architecture. Then, utilizing
the MQD system and established control methods, we investigate their applica-
tions. Second, we aim the realization of the multiple spin qubits and demonstrate
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the coherent manipulation of the single electron spins confined in the QQD with
the MM-ESR method. Finally, we investigate the charge and spin states of the
QQD and suggest the measurement scheme to utilize the QQD system for the
analogue quantum simulation model.
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Chapter 1

Introduction

1.1 Background
Semiconductor quantum dot (QD) [1–3] is an artificial system that confines elec-
trons in three-dimensions in the scale of the De Broglie wavelength (∼ 100 nm).
It is often called an “artificial atom,” and the energy levels of electrons are dis-
cretized by the quantum size effect which is the so called interaction effect. The
number of electrons (or holes) in the dot can be electrically varied one-by-one;
in addition, the other parameters associated with the orbital, spin, etc.., can be
controlled. Utilizing these features, many types of quantum phenomena such
as Kondo effect [4] and Pauli spin blockade (PSB) [5] have been observed until
now. The QD systems have been widely utilized to study several topics: quantum
transportation, physics of the electron states, spin-spin interactions [6, 7], spin-
tronics [8], quantum simulations [9–11], and application for quantum information
processing [12].

These topics have been studied mainly in single or double QD (DQD) [13,14].
In these ten years, aiming to study more complicated interactions and multiple
qubits, several operations have been conducted to scale up the system. Owing
to the semiconductor micro-fabricating techniques, the multiple QD (MQD) sys-
tem has potential scalability. To date, the linear array of the QDs scaled up
to quadruple QDs (QQDs) have been fabricated and utilized for the above top-
ics [15–17]. More recently, half-filled QDs have been demonstrated in an array
of nine QDs [18]. In addition to the linear QD arrays, a two-dimensional array
of the QDs is also fabricated and the electrical control of the QD parameters are
demonstrated [19–21]. One may consider that five tunnel coupled QDs (quintuple
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Chapter 1 Introduction

QD: 5QD) can be prepared just by adding one QD to the QQD; however, scaling
up QD systems whose electronic states can be precisely manipulated and detected
requires several technical advances.

The theoretical model for quantum information processing with the QD sys-
tem was proposed in 1998 by Loss and DiVincenzo [22, 23]. The electron spins
confined in QDs form a natural two-level system and this system is utilized to
make quantum bits (spin qubits). Two electron spins confined in a DQD can be
also utilized as qubit which is called a singlet-triplet qubit [24]. The QD system
has advantages in implementing spin qubits, including a relatively long coherence
time in the solid-state devices, potential scalability owing to the well-established
fabrication technology and small physical size per qubit. Basic manipulations
such as initialization, readout, and single and two qubit control have been estab-
lished in DQDs [25–28]. In TQDs, further manipulation methods of spin qubits
have been established such as long-distant coherent couplings [29–31] and hybrid
qubits in different codes [32]. Considering the application as a spin qubit and
the realization of practical quantum information processing, one of the targets is
developing a five qubit system, the smallest quantum system that can be used to
perform perfect quantum error correction [33]. Toward the multiple qubit system,
the demonstration of the basic manipulations in the QQD system are necessary
steps. For example, the single spin control with the micro magnet electron spin
resonance (MM-ESR) method are established in a DQD [34] and demonstrated
in a triple QD (TQD) [17]. In the QQD system, four individual ESR signals are
observed [35] while the individual control of electron spins in a QQD has not been
realized yet.

Quantum simulation experiments are performed on multiple platforms [36–
42] because of the potential for realizing novel electronic and magnetic properties
of correlated-electron phases in low-dimensional condensed-matter physics [43–
45]. Since the MQD system is a scalable platform that is naturally described by a
Fermi-Hubbard model and can make use of the developments described above, it
is considered a promising platform for analogue quantum simulations. Recently,
an experimental work of the TQD system as the Fermi-Hubbard model was re-
ported; however, it focused on the charge interaction and not on the spin inter-
action [7]. In the spin state of the Fermi-Hubbard model, anti-ferromagnetism
spin chain, spin frustration [44,46–49], and Nagaoka ferromagnetism [50] are ex-
pected to be observed but the experimental work about it is rarely reported. For
these research studies, the exact control and detection method of spin states in
further scaled up MQD systems, such as QQDs and 5QDs, must be established.
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Chapter 1 Introduction

1.2 Motivation of Present Work
In the conventional device structure, there are some difficulties in the exact de-
tection and control of the charge states of the MQD. For further scaling up the
MQD system, we propose a new device architecture and demonstrate it by fabri-
cating and measuring the 5QD device with this new architecture. Then, utilizing
the MQD system and the established control methods, we investigate their ap-
plications. First, we aim to realize the multiple spin qubits and demonstrate the
coherent manipulation of the single electron spins confined in the QQD with the
MM-ESR method. Second, we investigate the charge and spin states of the QQD
and propose a method to utilize the QQD system for the analogue quantum simu-
lation model.

1.3 Organization of this Thesis
In chapter 2, the basics for spin qubits with single QDs are described. First, we
describe the electronic properties of QDs and the experimental techniques to con-
trol and detect the electron charge and spin states. Second, the theory and basic
techniques to realize the spin qubits are described.

In chapter 3, the difficulties in scaling up the MQD system and solutions are
described. First, the concept of the new device architecture for further scaling up
are described and then the measurement results in the fabricated 5QD device are
shown. In the measurement, the charge state control and the simultaneous readout
of the multiple charge sensors are demonstrated.

In chapter 4, the single spin manipulation measurement in each dot of the
QQD device with the MM-ESR method is described. First, the device design and
setup and the voltage pulse scheme are described. The coherent control of four
individual spins are demonstrated by observing four Rabi oscillations. Finally,
the estimation of the g-factor, local magnetic field, and the actual QD positions
are demonstrated from the measured results.

The part related to the application to quantum simulations (chapter 5) can not
be published in this thesis and it is replaced in this version.

In chapter 6, the conclusions and future prospects of this study are provided.
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Chapter 2

Spin Qubits in Quatum dot

In this chapter, we describe the basics for spin qubits with single QDs. Firstly,
we describe the electronic properties of QDs and the experimental techniques to
control and detect the electron charge and spin states. Secondly, theory and basic
techniques to realize the spin qubits are described.

2.1 Electronic property of Quantum Dots
Here, we first describe the basic properties of single QDs and then multiple QDs
such as double, triple and quadruple QD.

2.1.1 Basic theory of Single Quantum Dot
A QD is an artificial architecture that confines conduction electron (or hole) in
three dimentionally. In general, QDs are connected to electron reservoirs or other
QDs via tunnel barriers and confined electrons can be exchanged between the dot
and reservoirs or between the dots. Normally, in order to control the electrostatic
potential of QD, gate electrodes are capacitively connected to QDs. Especially
in single QD with two electron reservoirs, we can investigate its property with
transport current and voltages through a QD. In Fig.2.1, a QD is connected to two
electron reservoirs and one gate electrode is capacitively coupled.

Coulomb oscillation is one of the unique phenomena observed in the QD sys-
tem. By changing gate voltage, the conductance through a QD show periodic
peaks (Coulomb peak) and the conductance is strongly suppressed between the

4



Chapter 2 Spin Qubits in Quatum dot

Figure 2.1: Schematic of a QD device. A QD is connected with two electron
reservoirs, source and drain. Finite bias voltage Vsd is applied across the reservoirs
and the current through the QD I is measured. In order to tune the electronic
parameters of QD, usually more than one capacitively-coupled gates are used.

peaks (Coulomb blockade). These features are explained with Constant Interac-
tion (CI) model.

Constant Interaction model

CI model is the simplest model to explain Coulomb oscillation. This model is
based on following two assumptions:

1. Coulomb interaction between the electron inside QD is given by a capacitive
coupling constant C,

2. Single particle energy level spectrum of the electrons En are independent to
the interaction.

A capacitive constant C in 1st assumption is given by C = CS+CD+CG (CS

is a capacitive coupling between the QD and the source, CD is that between the
QD and the drain,CG is that between the QD and the gate electrode.) In the case of
a lateral QD, 2 Dimentional Electron Gass (2DEG) around the QD also connects
to QD capacitively and a capacitive coupling between the QD and 2DEG is also
added to C. Energy level of single particle confined in QD En depends on the
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Chapter 2 Spin Qubits in Quatum dot

confinement potential and the external magnetic field Bext but, from the second
assumption, does not depend on the number of electrons. Then, the total energy
U of a QD with N electrons in the ground state is given by

U(N) =
1

2C
[−e(N −N0) + CSVS + CDVD + CGVG]

2 +
N∑

n=1

En(B), (2.1)

where −e is the single electron charge, eN0 is the positive background charge
by donor ions in semiconductor. VS, VD and VG are the voltages applied on the
source, drain and gate, respectively. U(N) can be controlled continuously by
changing these voltages. The electrochemical potantial µ(N) is defined as the
energy diffrence between theN -electron ground state GS(N ) and (N−1)-electron
ground state GS(N − 1). From Eq.(2.1),

µ(N) ≡ U(N)− U(N − 1) (2.2)

=

(
N −N0 −

1

2

)
EC − EC

e
(CSVS + CDVD + CGVG) + EN, (2.3)

where EC ≡ e2/C is the single electron charging energy. By definition, µ(N)
corresponds to the energy required for the addition of N -th electron to QD in
GS(N−1). The addition energy is defined as the difference of the electrochemical
potentials between the successive ground states and is written by

Eadd(N) ≡ µ(N)− µ(N − 1) (2.4)
= EC +∆E, (2.5)

where ∆E ≡ EN+1 − EN is the succesive quantized energy level spacing. Only
when the N -th and (N +1)-th electron are spin degenerated and occupy the same
orbital with N -th electron, ∆E becomes 0 and Eadd(N) = EC.

Coulomb oscillation

The electron transport through a QD is determined by how the µ(N) is aligned
with the electrochemical potentials of the source µS and the drain µD. A bias
voltage VSD = VS − VD across the source and the drain opens an energy window
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Figure 2.2: The relationship between the electrochemical potential of the QD and
those of the source or drain in the low bias regime to generate Coulomb blockade
(a) and the single electron tunneling (b). (c) Coulomb oscillation as a function of
gate voltage and the corresponding change in the number of electron in the QD.

(bias window) with a gap of |eVSD|. When the chemical potential of a QD µ(N)
is within the bias window, electron transport through a QD is allowed. For the
observation of the Coulomb oscillation, electron temperature must be low enough
compared with charging energy EC and energy spacing ∆E, i.e. kBT ≪ EC,∆E
where kB is Boltzmann constant. In GaAs QD system, electron temperature
is typically below 1K. In the followings, we assume that this condition is al-
ways satisfied. The electron transport through a QD can be categolized in to two
different regime : low bias regime (|eVSD| ≪ EC,∆E) and high bias regime
(|eVSD| > EC,∆E).

Low bias regime |eVSD| ≪ EC,∆E In the low bias regime, at most only single
energy level in the QD can contribute to electron transport. Electron tunneling is
allowed only when an electrochemical potential µ(N) is within the bias window,
i.e. µS ≥ µ(N) ≥ µD. Otherwise electron transport through a QD is forbidden
and the number of electrons confined in a QD N is fixed (Coulomb blockade,
Fig.2.2 (a)). Coulomb blockade can be lifted by adjusting an electrochemical
potential µ(N) within the bias window, by tuning gate voltage (Fig.2.2 (b)). In
such condition, the number of electrons in the QD can be both of N − 1 and
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(a)

μ(N)

μ(N+1)

(b)

μ(N)

μ(N+1)

Figure 2.3: The relationship between the electrochemical potential of the QD and
those of the source or drain in the high bias regime. (a) Electron tunneling via a
ground state and the excited state for N electrons. (b) Two electron tunneling for
the N and N +1 electron state when the two ground states are in the bias window.

N , and a single electron can tunnel through the QD one by one. This process is
called as single electron tunneling or Coulomb peak. By sweeping gate voltage,
single electron tunneling and Coulomb blockade are repeated and dot current Idot
oscillates and it is known as Coulomb oscillation (Fig.2.2 (c)).

The separation of Coulomb peak ∆VG is given by

µ(N, VG) = µ(N + 1, VG +∆VG) (2.6)

Using Eqs.2.3 and 2.5, ∆VG becomes

∆VG =
C

eCG

Eadd(N) (2.7)

and is proportional to Eadd.

High bias regime |eVSD| > EC,∆E In the high bias regime, multiple levels can
be within the bias window and contribute to Idot. By increasing the bias window
to satisfy |eVSD| ≥ ∆E, not only the ground state but also excited state can be
within the bias window. Under this condition, there are multiple paths for electron
tunneling shown as Fig.2.3 (a). In general, Idot changes by the paths within bias
window, however, how much it changes depends on many parameters such as
tunnel coupling between the lead and the ground or excited state. By increasing
the bias window further to satisfy |eVSD| ≥ Eadd, the ground state for N + 1
electron is within the bias window and two electron tunneling is allowed (Fig.2.3
(b)).
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2.1.2 Lateral Quanrum Dots
There are various kinds of QDs with different materials and size. such as “verti-
cal” QDs and “lateral” QD in a semiconductor heterostructure, “self-assembled”
QDs with nano-gap electrodes, InAs nanowire QDs and carbon nanotube QDs.
For the research of spin qubits, lateral QDs are adopted because

1. High tunability of the QD parameters such as inter-dot and QD-lead cou-
plings with gate voltages,

2. Good scalability thanks to semiconductor micro-fabricating techniques.

These features are very important for application as spin qubit. Here, we de-
scribe about the character of the lateral quantum dot and established experimental
techniques.

High Electron Mobility Transistor

High Electron Mobility Transistor (HEMT) is a field effect transistor formed in
a Two-Dimentional Electron Gas (2DEG) at a semiconductor hetero-junction.
Thanks to the development of thin film facrication technique such as Molecular
Beam Epitaxy, it enabe to realize lattice-matched layer structure of quantum wells
and hetero-junctions inside of semiconductor. In such a hetero-junction where
semiconductor materials with different band gaps are connected with an atomi-
cally flat interface, an ideal 2DEG is formed. A typical example of a heterojunc-
tion is constructed by III-V group smeiconductors such as GaAs and AlxGa1−xAs
(AlxGa1−xAs is semiconductor in which some of Ga atoms are replaced by Al
atoms). By doping doners such as Si to AlxGa1−xAs layer, electrons suplied from
these doners are trapped at a triangle-shaped potential as shown in Fig.2.4 (a) and
(b). Here, the electron momentum in the growth direction is quantized due to the
strong confinement in the thin conduction layer. Therefore, the electron motion in
this direction is neglected when the quantized energy level splitting is much larger
than the thermal fluctuation energy.

This 2DEG is a clean system and has a very high electron mobility. This is
because ionized impurity scattering, main source of electron scattering in a low
temperature experiment, is suppressed since the donor layer and the 2DEG layer
are spatially separeted. Espacially at very low temperature, phonon scattering is
suppressed, and the electron mobility exceeds 106cm2/Vs. Therefore, electron
transport is ballistic even on sub-micrometer scales at cryogenic temperatures.
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(a) (b)

Figure 2.4: (a) A typical heterostructure of HEMT wafer. (b) Schematic image of
the corresponding energy profile of the conduction band. The images are adopted
from [51].

Thanks to this feature, HEMT wafers are widely utilized to realize low dimen-
tional electron systems such as lateral quantum dots and quantum wires. The
2DEG itself has long been an appealing system to study for mesoscopic physics
such as ballistic transport, wave interference and quantum Hall effects.

To fabricate nano-structures in the 2DEG, further confinement of carriers in
the lateral directions is necessary. For this purpose, metal gate electrodes with
Schottly barriers can be utilized to locally change the electriv potential. The
Schottky barrier is a current-rectifying junction formed at the metal-semiconductor
interface, with appropriate choices of metal and semiconductor materials. The
2DEG region beneath the gates can be depleted by application of sufficiently neg-
ative voltages on the Schottky gates. This gives in-situ tunability of confinement
potential in the 2DEG in the lateral directions.

Lateral Quantum Dot

Lateral QDs are formed in a 2DEG by applying negative voltages to metal gate
electrodes on the surface of the wafer (Fig.2.5). The metal gates create the Schot-
tky barriers when negatively biased, the barrier potential rises above the Fermi
level of the 2DEG to finally deplete it under the gate electrodes. Then, the lat-
eral QD is formed by applying appropriate voltages to the surface gate electrodes.
In lateral QDs, electrons are confined by barrier potential and the inter-dot and
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Figure 2.5: Schematic image of the lateral QD structure. The 2DEG is colored in
green. The images are adopted from [51].

dot-lead tunnel couplings can be controled by the gate voltages in wide range. In
addition to this, less limitation of the device design is one of the feature of lateral
QDs.

Quantum Point Contact

Quantum Point Contact (QPC) is the simplest exmaple of gate defined structures,
a quantum one-dimentional channel that is short enough to regard the constriction
as a point. A QPC can be formed in the 2DEG by negatively biasing a pair of
Schottky gate electrodes to deplete regions on two sides of a narrow channel. The
conductance G through a QPC follows Landauer fomula without scattering and is
given by G = Ne2/h, where N is the number of the occupied one-dimensional
subbands, e is charge of electron and h is Plank constant. Especially in the case
of no external magnetic field, N becomes even due to spin degeneracy. In 2DEG
system, QPC can be formed by applying negative voltage to two gate electrode
with small separation and its conductance is quantized. Fig.2.6 is the gate voltage
dependence of the conductance of a QPC and the conductance is quantized by
e2/h. The QPC conductance shows step-like feature. The number of subbands in
the bias window can be changed by the gate voltage here. While N is kept same,
the QPC conductance does not change (plateau). When N changes between the
plateaus, the QPC conductance changes drastically (step).

When the QPC conductance is tuned to the step region of the QPC conduc-
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Figure 2.6: Gate voltage dependence of the conductance of QPC. Conductance is
quantized by 2e2/h [52].

tance, QPC becomes highly sensitive to the electrostatic environment including
the arrangement of electrons trapped nearby. In rateral QDs, QPCs placed the
visinity of the QDs enables the measurement of the charge configuration inside
QDs from the conductance through an adjacent QPC. The change of charge con-
figuration changes nearby electrostatical environment and detected as the change
of the QPC conductance. This charge sensing technique is useful in the multiple
QD system that Idot through the multiple QD array become too small to detect on
a realistic time scale. A proximal SET can be used in place of a QPC for detecting
the QD electron number, since the only necessary ingredient is the susceptibility
to the surrounding electrostatic potential. Indeed, an SET tuned at the slope of
a Coulomb peak has more than an order of magnitude higher sensitivity to the
charge rearrangement in the QD.

Charge Sensing Techniques

In lateral QDs, current through the QD (Idot) can be utilized to measure charge
state inside QD. But, in order to achieve a few electron regime, large negative
voltage is necessary but tunnel barrier between the QD and reservoir becomes
too thick to measue Idot. In such a case, QPC placed nearby lateral QDs can be
utilized as a charge sensor. The conductance through a QPC changes drastically
from one plateau to the next when the number of the subbands in the bias window
is changed one by one. When the gate voltage is tuned at the steep slope between

12



Chapter 2 Spin Qubits in Quatum dot

(c)(a) (b) (c)

Figure 2.7: Charge sensing using QPC [53]. (a) Scanning electron microgpah
(SEM) image of DQD with QPC. (b) The gate voltage VM dependence of the
current through QPC IQPC and the gate voltages VAPC and VL dependence of
the conductance of QPC G VAPC and VL are the voltages applied on the gate
electrodes that form QPC. (c) The comparison between the transport current Idot
and the charge sensing signal dIQPC/dVM

the plateaus, the QPC conductance becomes highly sensitive to the electrostatic
environment including arrangement of electrons trapped nearby. This enables the
measurement of the charge occupation in a QD from the conductance through an
adjacent QPC. The change of electron number configuration in a QD modifies the
electrochemical potential in the QPC channel, which is detected as a step-like rise
in the QPC current or a kink in the current derivative.

Fig.2.7 shows the experiment of charge detection using QPC. In the following
measurement, by applying negative gate voltages on gate electrodes, the DQD
and two QPCs are formed at the position shown as white circle and white arrows
in Fig. 2.7 (a), respectively. Fig.2.7 (b) shows the VQPC−L dependence of the
QPC conductance G and VQPC−L is tuned to steep point depicted as the dotted
cross so as to be sensitive to nearby electrostatic potential. Fig.2.7 (b) also shows
the VM dependence of the IQPC. IQPC decreases by increasing VM negatively but
increases step-like at some point depicted as black arrows. At these points, an
electron tunnels to a reservoir and it causes the change in the nearby electrostatic
potential. This is detected as the increase of the G.

Fig.2.7 (c) shows the comparison of the VM dependence of the Idot and dIQPC/dVM
in the same range of VM. The dips are observed in dIQPC/dVM at the same posi-
tion of the Coulomb peak in Idot. It means that the QPC can detect the change of
the electron number in the QDs one by one.
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RF reflectometry

As mentioned above, the charge sensing techniques using QPC or SET are very
effective for the charge state measurement in multiple QDs. At first, the signal of
the charge sensor was detected as DC current through a QPC or SET with a finite
bias voltage. However, in this method, the resistance of the charge sensor (tens
of kΩ) and a parasitic capacitance between the wire and setup (hundreds of pF )
configures the RC filter and it causes the difficulty in fast measurement. In addi-
tion to this, in the measurements with low frequency, 1/f noise become dominant
and prevents highly sensitive measurements. RF reflectometry that configures the
tank circuit with charge sensor as resistance is one of the solutions of these diffi-
culties. In this section, we explain the basic principle of RF reflectometry and the
applications in multiple QDs.

Impedance matching Either RF-QPC or RF-SET uses a different principle for
charge state detection. But, in both method, the charge sensor is configured in
a tank circuit and charge state is readout with reflected RF signal by impedance
mismatch. In general, input voltage Vin, input current Iin, reflected voltage Vref
and reflected current Iref has following relation ship,

Vin + Vref = (Iin − Iref)Zeff =

(
Vin
Z0

− Vref
Z0

)
Zeff (2.8)

where output impedance Z0 and imput impedance Zeff . Reflection coefficient ρ
can be written as

ρ =
Vref
Vin

=
Z∗

eff − Z0

Zeff + Z0

. (2.9)

Here, we can write Z0 = R0+iX0 and ZL = RL+iXeff an dthe power transmitted
to the inut side PIN can be written as

PIN = Re

(
|VIN + VREF|2

ZL

)
=

4|VIN|2RL

(RL +R0)2 + (XL +X0)2
(2.10)

When ZL = Z∗
0 , eq.2.10 gives maximum value of PIN (PMAX)
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L

Cp

R

Zeff
Z0 = 50Ω

Figure 2.8: Schecmatic picture of the tank circuit for RF reflectometry

PMAX =
|VIN|2

R0

(2.11)

it gives the power reflection S11

S11 = 1− PIN

PMAX

=

∣∣∣∣Z0 − Z∗
L

Z0 + ZL

∣∣∣∣2 (2.12)

When ZL Z
∗
0 , S11 becomes 0 (Impedance matching). In normally, radio-frequency

circuit is designed to realize impedance matching so as to transmit RF power
efficiently. In RF reflectometry, however, ZL is modulated nearby Z0 and we
detect this Z[L] changes via the change of S11.

Tank circuit Tank circuit for RF reflectometry is configured of a resistance R
of the charge sensor, a inductance L of on chip coil and a parasitic capacitance
Cp between the measurement set-ups shown as Fig.2.8. The effective impedance
ZRC of this tank circuit of a rf career with frequency f is written as

ZRC = 2πifL+
1

2πifCp +
1

R

(2.13)
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From eq.2.13, we can get the resonant frequency fres that ZRC becomes real num-
ber as

fres =
1

2π

√
R2Cp − L

R2C2
pL

(2.14)

When R2Cp ≫ L is satisfied, eq.2.14 becomes

fres ∼
1

2π
√
CpL

(2.15)

and the impedance in resonance condition ZRC(f = dres) = Zres becomes

Zres =
L

RCp

(2.16)

Here, the resistance that realize impedance matching Rmatch is written as

Rmatch ≡ L

Z0Cp

(2.17)

The typical value of the resistance for charge sensor is about 10 kΩ and the tank
circuit is designed so that Rmatch becomes neighbourhood by choosing L. In
the experimental set-ups, Z0 is a characteristic impedance of coax cable (50Ω).
Fig.2.9 shows the frequency dependence of S11 in each charge sensor resistance.
In R = Rmatch, the reflection is suppressed at the resonance frequency of tank
circuit and a dip is observed.

2.1.3 Charge States of Multiple Quantum Dots
A multiple QD (MQD) is the system that some single QDs are tunnel coupled
each other. This system enables us to observe the various phenomena caused by
electron-electron interactions and it is also necessary for the realization of the
practical quantum information processing. For both purpose, it is the first impor-
tant step that its charge states are understood and controlled. Here we describe
about the charge stability diagram that is an essential tool for the charge state
manipulations and show those of some multiple QD systems. Furthermore, we
describe the spin correlated phenomena observed in these system.
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Figure 2.9: The numerical calculated frequency dependence of the power re-
flectance in each resistance value, where Cp = 1.06pF and L = 620nH.

Charge Stability Diagram of Double Quantum Dot

A charge stability diagram maps the equilibrium charge states in multiple QDs in
gate-voltage space. In the following, we denote the electron number in QDi as ni

and the equilibrium charge states of the multiple QD system as (n1,n2,...).
Figs.2.10 (a)-(c) show schematic pictures of the stability diagram of DQD.

Here, the solid straight lines (charge transition lines) indicate the gate voltages
that the equilibrium charge state changes. In Fig.2.10 (a), we assume that the
QDs are not capacitively coupled each other and the energy level of QDi is af-
fected only by the voltage of the gate electrode Gi (VGi). In this case, the charge
transition lines are either completely vertical or horizontal in the VG1-VG2 voltage
plane. The charge configureations in a DQD (n1,n2) in each voltage conditions
are distinguished by counting the charge transition lines from completely depleted
region (0, 0).

In the actual QD system, the neighboring QDs are capacitively coupled and
there are crosstalk between the QDi an the gate electrode Gj (i ̸= j). Fig.2.10
(b) shows a schematic image of stability diagram in case that Gi has a finite cross-
coupling with QDi. Normally, the coupling between a QD and a gate electrode
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Figure 2.10: DQD stability diagram. (a)-(c) Schematic pictures of charge stability
diagrams. In (a), QD1 and QD2 are not capacitively coupled each other and a
gate electrode G1 (G2) is capacitively coupled only to QD1 (QD2) with no cross-
coupling between the other dot. ni is solely determined by the gate voltage VGi

(i = 1, 2) as in single QD and charge transition lines are either completely vertical
or horizontal in the VG1−VG2 plane. In (b), Gi has finite cross-coupling to QDj
(i ̸= j). In (c), QD1 and QD2 are capacitively coupled.

is determined by a geometrical distance and cross-coupling between QD and Gj

is smaller than the coupling between QDi and Gi (i ̸= j). In Fig.2.10 (b), charge
transition lines have finite slopes due to cross-couplings. In Figs.2.10 (a) and (b),
four charge states are degenerated at the cross point of the charge transition lines.

In Fig.2.10 (c), the effect of the capacitive coupling between the QDs is further
included. Here, due to the capacitive coupling between the dots, cross point of
the charge transition lines are separated to two triple points and the honeycomb
structure is observed. The spacing between two triple points is defined by the
capacitive and tunnel coupling between the QDs.

In the low bias region, the electron transport through DQD is observed only
around the triple point that all energy levels locate inside the bias window and
the current measurement through the dots does not play a role so as to detect the
charge states of DQD. However, the charge sensor works even in the region that
all energy levels do not adjusted and can detect all charge transitions in DQD.

Fig.2.11 shows the stability diagram near a pair of neighboring triple points
with no bias voltage. When the inter-dot tunnel coupling tC is much smaller
than the inter-dot capacitive coupling (weak-coupling regime), charge transition
lines are observed where two lowest electrochemical potentials degenerate shown
as solid lines in Fig.2.11. When tC is not negligible (strong-coupling regime),
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Figure 2.11: Stability diagram around neighboring triple points with no bias volt-
age [12].

electrons do not localized in either QD and they occupy the hybridized orbitals
which distribute over the whole DQD. Due to this hybridization, the energy of
the bounding (anti-bounding) state is decreased (increased) by |tC|. Therefore,
the charge transition lines around triple points bend as depicted the dotted lines in
Fig.2.11.

Charge Stability Diagram of Triple Quantum Dot

Generally speaking, increasing number of QDs causes more complexed charge
states and difficulty in clarification of its distribution due to the capacitive cou-
plings between the QDs. In n-QD system, capacitive coupling can be written as
n by n size matrix (cross-capacitance matrix) and its values are mainly defined
geometrical distance between the QDs. TQD has a degree of freedom in arrange-
ment of each three QDs and it also affects capacitive couplings. In addition to
this, the charge states of n-QD can be controlled with n-plunger gate voltages and
distribute n-dimensional space defined by these voltages. Two-dimensional sta-
bility diagram can be said as a slice of n-dimensional charge state distribution and
its shape is affected by combination of gate voltages.
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(a) (b)

Figure 2.12: Linearly aligned TQD. (a) SEM image of TQD device [54]. Three
QDs are formed the position shown as filled circle and they are named as QDA,
QDB and QDC. Charge states of three QD are modulated by voltage applied to
plunger gate electrode α , β and γ, respectively. This device has three QPC charge
sensors nearby each QD. (b) Stability diagram in Vα-Vγ voltage plane measured
by charge sensor near QDA. In each region, charge configuration of TQD is shown
as (NA, NB, NC) where Ni is the number of electron confined in QDi.

Two-dimentipnal stability diagram Fig.2.12 (a) shows SEM image of TQD
device. Three QDs are formed in the position shown as filled circle and named
as QDA, QDB and QDC. In such arrangement, neighboring QDs (QDA and QDB,
QDB and QDC) are capacitively coupled but coupling between QDs in both ends
of TQD array (QDA and QDC) is almost 0 due to large gate electrode c. This
TQD array connect with electron reservoirs II and III via QDA and QDC. Elec-
tron exchanges with reservoirs happen only at these QDs and electron tunnelings
between QDB and reservoirs becomes second order process.

Fig.2.12 (b) shows the charge stability diagram in Vα-Vγ voltage plane. Due to
capacitive coupling between QDs and gate electrodes, energy level of QDA (QDC)
is affected strongly by Vα (Vγ) and almost unaffected by Vγ (Vα). Then, charge
transition lines of QDA and QDC are observed as horizontal and vertical lines
in Vα-Vγ voltage plane, respectively. In case of QDB, its energy level is affected
equally by both gate voltages and its charge transition lines have some slope in this
voltage plane. This slope is defined by the ratio of capacitive couplings between
QDB and gate electrodes α and γ. In Fig.2.12 (b), QDB equally couples with gate
electrode α and γ, and the slope of charge transition line for QDB is about −1. It
also means QDB is formed near the middle point between gate electrodes α and
γ.

In the left-lower corner of diagram where any charge transition line is not ob-
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Figure 2.13: Three dimensional stability diagram measured in the TQD device
shown in Fig.2.12 (a) [54].

served, it indicate all electrons are depleted from TQD structure. Charge configu-
ration in each region can be identified by counting charge transition lines from this
region. In the diagram, charge configuration identified above method are shown
as NA, NB, NC where Ni is number of electrons in QDi.

At the cross-points of charge transition lines, anti-crossings are observed whose
distance are affected by the capacitive coupling between respective QDs. Com-
paring the anti-crossings, in the condition of Fig.2.12 (b), the coupling between
QDA and QDB is larger than that of QDB and QDC. Tunnel couplings between the
QDs can be estimated from the curvature of charge transition lines around triple
point.

Three dimentional stability diagram The charge states of TQD spread three-
dimensional space. Fig.2.13 shows the stability diagram in Vα-Vβ-Vγ voltage
space. In three-dimensional stability diagram, charge transitions occurs the volt-
age region shown as plane and triple points observed as lines. Two-dimensional
stability diagram shown in Fig.2.12 (b) is a slice of this three-dimensional stability
diagram. In multiple QD system from single to triple QD, charge states distribu-
tion can be visualized like two- or three-dimensional stability diagram. However,
the charge states of larger multiple QD system, such as quadruple QD (QQD), dis-
tribute multi-dimensional space larger than three-dimension and its visualization
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Figure 2.14: SEM image of QQD device (a) and stability diagram (b) [15]. (a)
SEM image of QQD device used in [15]. Four tunnel-coupled QDs are formed
linearly at the locations that are indicated by dashed white circles. They are named
as QD1, QD2, QD3 and QD4 from left to right. Cross marks indicate Ohmic
contacts. Two charge sensors are formed above the gate electrode C but only
left charge sensor formed with gate electrodes S1L, S1C and S1R is utilized here.
Left charge sensor is connected with chip inductance L and parasitic capacitance
between surrounding wires Cp and form tank circuit for RF reflectometry. (b)
Charge stability diagram of QQD measuring left charge sensor signal in (a) as a
function of plunger gate voltage of both ends od QQD array VP1 and VP4 (VP1-VP4
voltage plane). The QQD empty state (0,0,0,0) is observed in the left lower corner.

become hard. At that case, charge state investigation and control needs improve-
ment.

Charge Stability Diagram of Quadruple Quantum Dot

The charge states of QQD distributes four-dimensional space defined by gate volt-
ages for each QD’s energy levels. Full visualization of the charge states is impos-
sible and improvement in measurement and control method is necessary.

Fig.2.14 (b) shows the charge stability diagram measured with a QQD de-
vice shown in Fig.2.14 (a). Four QDs, named as QD1, QD2, QD3 and QD4 from
left to right, are linearly aligned and neighboring QDs are tunnel coupled each
other in this device. Similar with TQD stability diagram, charge transition line
for each QD have a slope defined by the aspect of capacitive couplings between
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QD and modulating gate electrodes. In stability diagram in VP1-VP4 plane shown
in Fig.2.14, they have different slopes and can be distinguished as those of QD1,
QD2, QD3 and QD4 from vertical to horizontal ones, respectively. By counting
the charge transition lines from the QQD empty state observed in the left lower
corner of Fig.2.14 (b), the charge configurations of QQD can be identified in any
region. However, considering the application as four-spin qubit system, conven-
tional control method that only uses one-voltage plane is insufficient and need
improvement.

2.2 Spin States in Quantum Dots
Spin qubit systems based on multiple QD usually consists of an array of singly-
occupied QDs. Investigation of energy levels of spin states is basic requirement
for spin qubit initialization, readout and control. In this section, we describe spin
states those are used for spin qubits in multiple QD.

2.2.1 Single-Electron Spin States
In non-magnetic semiconductors, electron-spins confined in QDs can be treated
as independent quantum systems since interactions between them are very weak.
The Zeeman Hamiltonian of a single spin in a QD under a magnetic field B is
given by,

HZ =
gµB

2
B · σ, (2.18)

where g is the Landé g-factor, µB is the Bohr magneton and σi (i = x, y, z) are the
Pauli matrices. The spin up and down eigenstates, aligned to the direction of B, are
shifted by the Zeeman energy EZ = |g|µB|B|. The spin precesses at the Larmor
frequency fL = |g|µB|B|/h, where h is Planck’s constant, in the laboratory frame.

To investigate the spin dynamics, it is useful to take a reference frame rotat-
ing at an angular frequency ω. A superposition spin state in the reference frame
|ψ⟩ref is given by |ψ⟩ref = Uω |ψ⟩lab, where Uω = exp( iωt

2
σz) and |ψ⟩lab is the

superposition spin state in the laboratory frame. The time dependent Schrödinger
equation in the laboratory frame is expected as

iℏ
d

dt
(U−1

ω |ψ⟩ref) = Hlab(U
−1
ω |ψ⟩ref). (2.19)
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(a) (b)

Figure 2.15: The Bloch sphere representation of a single spin. The direction of
the magnetic field aligns the z-axis. A pure spin state can be depicted by a Bloch
vector pointing to the surface of the sphere. The inclination from the z-axis θ is
determined such that the spin up probability P|↑⟩ = cos2θ. The azimuthal angle ϕ
corresponds to the relative phase between the spin up and down states. (a) Bloch
sphere in laboratory frame. The Bloch vector shown as purple arrow precesses
around the z-axis. (b) Bloch sphere in the reference frame rotating at the spin
precession frequency. The Bloch vector appears static.

Then the spin dynamics in the reference frame is obtained as,

Href = UωHlabU
−1
ω − ℏω

2
σz. (2.20)

When ω = 2πfL, Href = 0 and no time evolution of the spin state takes place in
the reference frame. Fig.2.15 shows the Bloch sphere representation of a single
spin in (a) the laboratory frame and (b) reference frame [55].

2.2.2 Two-Electron Spin States
In two-electron spin states, spin-spin interactions, especially exchange coupling
between QDs, play important roles in the entanglement control and two-qubit
operation. The exchange coupling is strongly enhanced at the charge degeneracy
of (1,1)-(2,0) and (1,1)-(0,2) in a DQD [25, 56].

To discuss the two-spin state in the vicinity of (1,1)-(2,0) charge degeneracy
point, it is convenient to introduce the level detuning, ε as the difference of elec-
trical potential between QDs. Here, we consider tunnel coupled DQD system and
name two QDs as QD1 and QD2. Fig.2.16 (a) shows the stability diagram of DQD

24



Chapter 2 Spin Qubits in Quatum dot

(a)

(c)

VG1

V
G
2

(2,0)

D
etuning

(1,0)

(2,1)

(b)

Figure 2.16: Energy level diagram of the two-electron spin states as a function
of the detuning ε. (a) Schematic picture of DQD stability diagram around (1,1)-
(2,0) charge transition. The black arrow shows the detuning axis. (b) Numerically
calculated energy level diagram of the two-electron spin states as a function of
ε. All parameters used in this calculation are normalized by tc. The three blue
lines show the (1,1) triplet states those are separated from each other by Zeeman
energy EZ = 10tc (assumed for the calculation). The two red lines show the (2,0)
and (1,1) singlet states. These two states are hybridized by the inter-dot tunnel
coupling t[c] and form anti-crossing with 2

√
2tc at ε = 0. (c) J as a function of ε.
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in VG1 − VG2 voltage plane and ε-axis is defined as black arrow. Fig.2.16 (b)
shows the numerically calculated energy level diagram as a function of ε. In the
large ε, the electrostatic potential of the QD1 decreases and the doubly-occupied
state in the left QD becomes the ground state. Due to Pauli’s exclusion principle,
the symmetric spins must occupy excited orbital s in QD1 and the spin state be-
comes singlet |S(2, 0)⟩ = (|↑1↓1⟩− |↓1↑1⟩)/

√
2. The energy difference between

localized singlet-triplet EST is normally much larger than other energies such as
inter-dot tunnel coupling tc and ε. Therefore, we only consider the singlet state
for doubly-occupied charge state. In ε = 0 condition, the electrostatic potentials
of both QD are aligned and hybridization between (1,1) and (2,0) charge states are
enabled. In (1,1) charge state, singlet and triplet states are degenerated but inter-
dot tunnelling process preserve spin state and hybridization with (2,0) state is
only allowed with singly-occupied singlet state|S(1, 1)⟩ = (|↑1↓2⟩− |↓1↑2⟩)/

√
2.

Then, the Hamiltonian describing the tunnel coupling is expressed as

HT = −ε|S(2, 0)⟩⟨S(2, 0)|+
√
2tc(|S(2, 0)⟩⟨S(1, 1)|+ |S(1, 1)⟩⟨S(2, 0)|).

(2.21)

This hybridization decreases the energy of |S(1, 1)⟩ by the exchange energy J/2.
Then, J is a function of ε and tc shown in Fig.2.16 (c) and given by,

J(ε, tc) =
√
ε2 + 8t2c. (2.22)

In the largely negative ε region where charge state is in the deep Coulomb block-
ade of (1,1), Eq.2.21 is well approximated by the Heisenberg Hamiltonian, JS1 ·
S2, where S1(2) is the spin operator of QD1(2). Then, the effective Hamiltonian of
the two-electron spin is given by

H = −J(ε)|S(1, 1)⟩⟨S(1, 1)|+∆EZ(|↑1↓2⟩⟨↓1↑2| − |↓1↑2⟩⟨↑1↓2|)
+EZ,0(|T+(1, 1)⟩⟨T+(1, 1)| − |T−(1, 1)⟩⟨T−(1, 1)|),

(2.23)

where ∆EZ is the difference of Zeeman energy between the two QDs andEZ,0

is the average Zeeman energy of the two QDs. |T±(1, 1)⟩ are the triplet substates
with parallel spins. In the experiments, a large magnetic field is usually applied
so that these triplet states are energetically separated from Sz = 0 states. These
remaining Sz = 0 states,|↑↓⟩ and |↓↑⟩ form a subspace and we can use it to form
qubit (Singlet-Triplet (ST) qubit). Here J and ∆EZ compete with each other as
shown in Fig.2.17.
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(a) (b)

Figure 2.17: The Bloch sphere representation of a two-spin system in the Sz = 0
subspace. (a) For ∆EZ much larger than J , the Bloch vector precesses around
∆EZ and |↑↓⟩ and |↓↑⟩ becomes good eigenstates. (b) For J much larger than
∆EZ,, the vector precesses around the J axis and |S⟩ and |T0⟩ becomes eigen-
states.

2.2.3 Three-Electron Spin States
The discussion on the two-spin states in above section can be extended to a three-
spin system in TQDs. Especially in linearly-coupled TQDs, single spins in respec-
tive QDs are coupled by the nearest neighbor exchange interactions Jij between
QDi and QDj where (i, j) = (1, 2), (2, 3). These exchange energies are similarly
enhanced near the charge degeneracy point between (1,1,1) and (2,0,1) or (1,0,2).
Fig.2.18 (a) shows schematic picture of the stability diagram of TQD in the vicin-
ity of (1,1,1) and (2,0,1) or (1,0,2) degeneracy point. Here, ε axis is defined as
the energy difference between the electrostatic potentials of QDL and QDR and a
black arrow in Fig2.18 (a) shows one of ε axis that does not detune energy level
of QDC. In ε = 0 condition, all electrostatic potential of TQD are aligned and
(1,1,1) charge states becomes the ground states. In negative (positive) ε, electro-
static potential of the QDL (QDR) decreases and the (2,0,1) ((1,0,2)) charge state
becomes the ground state.

Similar with DQD case, the exchange couplings and the local Zeeman energy
differences compete with each other. When the exchange couplings are dominant,
the eight eigenstates of (1,1,1) charge state are four quadruplets QSz with the total
spin S = 3/2 which are not affected by ε (triplet-like states) and four doublets
D±

Sz
with S = 1/2 which depend on ε (singlet-like states). The explicit forms of

these states without normalization are written as follows,
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Figure 2.18: Energy level diagram of three-electron spin states in TQD. (a)
Schematic picture of stability diagram of TQD in VG1-VG3 voltage plane around
(2,0,1), (1,1,1) and (1,0,2) charge states. The diagonal arrow shows detuning ε
axis. (b) The energy level diagram of three-electron spin states as a function of ε.
All parameters used in this calculation are normalized by tC(= tLC = tCR, assum-
ing symmetric inter-dot couplings.) The boundary between (1,1,1) and (1,0,2) or
(2,0,1) charge states is located at ε = 15tC or −14tC shown as black dotted lines.
(c) Enlarged diagram of (b) around Q+1/2. The three states with Sz = 1/2 are
energetically separated due to the exchange-interaction. (d) Energy difference
between D−

+1/2 and D+
+1/2 (JΣ) as a function of ε. JΣ decreases when moving

into the center of CB of (1,1,1) charge state (ε = 0). Therefore, the three-spin
eigenstates deep in (1,1,1) are determined by the Zeeman Hamiltonian, not the
exchange coupling.

28



Chapter 2 Spin Qubits in Quatum dot

Q+3/2 =|↑↑↑⟩
Q+1/2 =|↑↑↓⟩+ |↑↓↑⟩+ |↓↑↑⟩
Q−1/2 =|↓↓↑⟩+ |↓↑↓⟩+ |↑↓↓⟩
Q−3/2 =|↓↓↓⟩
D±

+1/2 = (J12 − J23 ± JΣ) |↑↑↓⟩+ (J23 ∓ JΣ) |↑↓↑⟩ − (J12) |↓↑↑⟩
D±

−1/2 = (J12 − J23 ± JΣ) |↓↓↑⟩+ (J23 ∓ JΣ) |↓↑↓⟩ − (J12) |↑↓↓⟩ (2.24)

where JΣ =
√
J2
12 + J2

23 − J12J23. Fig.2.18 (b) shows the energy level diagram of
twelve states as a function of ε.The four black solid lines indicate (1,1,1) QSz sep-
arated from each other by Zeeman energy EZ = 10tC (assumed for calculation).
The six red lines indicate the two D±

±1/2 and four doubly-occupied singlet states,
(S,0,σz,R) and (σz,L,0,S) where σz,i =↑ or ↓ . At the boundary between (1,1,1)
and (2,0,1) or (1,0,2) charge states (shown as black dashed lines in Fig.2.18 (b)),
the doubly-occupied singlet states and D±

Sz
generate the hybridized states energet-

ically separated by 2
√
2tC due to the inter-dot tunnel coupling. Fig.2.18 (c) shows

the enlarged energy level diagram of Fig.2.18 (b) around Sz = 1/2. D±
+1/2 can

be used as a qubit (exchange-only qubit) [57,58] under an external magnetic field
which energetically separates these two states from others.

When the local Zeeman energy differences ∆EZ,12 and ∆EZ,23 are dominant,
the eigenstates are approximated by those of the Zeeman Hamiltonian, σz,i (i=L,
C, R). This condition is achieved in ε = 0 where (1,0,2) and (2,0,1) are ener-
getically separated and the exchange couplings decreases as shown in Fig.2.18
(d).

2.3 Spin State Initialization and Readout
The readout of single-spin state is an essential technique for spin qubit experi-
ments. However, the direct measurement of single spin states is normally diffi-
cult because the magnetic moment of single electron spins is too small to detect
directly. Nevertheless, some spin state readout methods are established by com-
bining the charge sensing and spin-to-charge conversion. In this section, we will
review these techniques and also the spin state initialization schemes.
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(a) (b) (c)

Ndot=1
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Figure 2.19: Electron exchange between the QD and the adjacent reservoir. (a)
Schematic image of the energy level in the readout stage when the initial spin
state is the excited state with down spin. The electron can tunnel out from the
QD and then another electron with up spin enters the QD to occupy ground state.
(b)Schematic image of the energy level as same as (a) but the initial spin state
is the ground state with up spin. The charge state in unchanged. (c) Real-time
change of the charge sensor current IQPC for (a) (broken line) and (b) (solid line).

2.3.1 Electron Exchange between Quantum Dots and Leads
The first method uses the energy-selective spin state readout. In this scheme, a
large external magnetic field is applied to make Zeeman energy larger than the
thermal energy kBTe in the reservoirs (Te is the electron temperature). Then, to
perform spin state readout, the electrochemical potential of the QD is tuned so
that only the ground state with up spin is under the Fermi level of the reservoir.
If an electron occupies the excited state with down spin, then it tunnels out to the
reservoir and other electron enters the QD to form the ground state. If an elec-
tron occupies the ground state with up spin, the electron tunnelling is forbidden
(see Figs.2.19(a) and (b)). This single-electron tunnelling process can be detected
by monitoring a charge sensor Fig.2.19 (c). Utilizing this technique, single-shot
readout of single spins [59], independent two spin readout in DQD [60] and a
sequential readout of three spins using a single reservoir [61] are realized.

This scheme requires large Zeeman energy compared to the thermal energy.
Since the Zeeman energy is usually a few tens of GHz in experiments, low electron
temperature (⪯ 100mK) is necessary for high fidelity readout. In addition to this,
the tunnel rate between the QD and the adjacent reservoir has to be adjusted to an
appropriate value in order to detect the real-time tunnelling (see Fig.2.19(c)).
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T-

T+

S

(1,1) (2,0) or (0,2)

Figure 2.20: Energy level diagram of two-electron spin state as a function of ε
defined in Fig.2.16. This diagram is numerically calculated as same as Fig.2.16
(b) but the parameter for Zeeman energies in QDs are changed to EZ = tC. The
red curves are for the hybridized singled states due to the inter-dot tunnel coupling,
while the blue curves are for the Zeeman-split triplet states (singly occupied).

2.3.2 Pauli Spin Blockade
Since electron spin is generally preserved in the tunneling process, there are some
conditions where an electron tunneling process becomes spin-dependent. One of
the prominent examples is the Pauli Spin Blockade (PSB), where the inter-dot
electron transport is forbidden by Pauli exclusion principle. It was first observed
in GaAs vertical DQDs [5] and later in various DQD systems including GaAs
lateral DQDs [62–64].

The PSB effect is often observed in DQDs by using voltage pulse operation.
Here for simplicity, we consider the PSB observed in DQD with voltage pulse
method. To understand this scheme, the energy level diagram of two-electron spin
states shown in Fig.2.20 is helpful. In this scheme, spin initialization is started by
waiting at negative ε region where S(2,0) state becomes the ground state. This
waiting time has to be longer than the spin relaxation time T1 but it can be short-
ened to tune the voltage condition nearby the charge transition line of the left QD
where electron exchange between the QD and adjacent reservoir happens in tunnel
rate. Then one of electrons is transferred to the other QD to form (1,1) charge state
(negative ε). In this detuning ramp, the ground state undergoes two anti-crossings.
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The first is between singlet and triplet+ states mediated by the local in-plane mag-
netic field difference between neighboring QDs [65, 66] with anti-crossing size
∆ST+ . The second is between the singlet states of (1,1) and (2,0) charge states
hybridized by the inter-dot tunnel coupling tC. By changing the rate of ramping
the detuning across each anti-crossing, we can prepare and measure the two-spin
state of interest. If the detuning ramp sufficiently slow or is adiabatic at the first
anti-crossing, two-electron spin state is initialized to T+ (purple dashed arrow in
Fig.2.20). If the detuning ramp is non-adiabatic or to the first anti-crossing but
adiabatic for the second one as long as the ramp rate ≪ |g|µB∆BZ/h, two-spin
state is initialized to |↓↑⟩ which is an eigenstate determined by the local Zeeman
energies (orange dashed arrow in Fig.2.20). This so-called slow adiabatic passage
is also utilized to spin readout not only two-spin state initialization. If two-spin
state is |↓↑⟩ in (1,1) charge state, the slow adiabatic passage to the reverse direc-
tion results the hybridized singlet state in (2,0) charge state. If two-spin state is
one of triplet states, above passage results the triplet state and block the electron
tunneling due to Pauli exclusion rule. These spin dependent electron tunneling
from (1,1) to (2,0) or (0,2) can be detected by charge sensors.

2.4 Single Qubit operation
Single qubit operations requires control of the spin state about two independent
axes. For the single spin qubit, this is commonly achieved via via electron spin
resonance (ESR) technique. Here we describe a basic theory of ESR and several
schemes for implementing ESR.

2.4.1 Theoty of Electron Spin Resonance
ESR is a magnetic resonance induced by oscillating magnetic field with resonant
frequency fESR which is orthogonal to the static magnetic field Bext. Electron
spin states |↑⟩ and |↓⟩ under Bextlz are energetically split by the Zeeman en-
ergy |g|µB|Bext| and the state precesses aroun the z axis with the Larmor fre-
quency fL = |g|µB|Bext|/h. When we apply an magnetic field oscillating in
the x-direction with a frequency ω ∼ fL/2π with an amplitude Ba.c., the time-
dependent Hamiltonian of the spin is given by

Hlab =
gµBBext

2
σz +

gµBBa.c.

2
cos(ωt + φ)σx (2.25)

32



Chapter 2 Spin Qubits in Quatum dot

where φ is the phase of Ba.c. at t = 0. In the reference frame rotating at the
frequency ω/2π, this equation becomes simpler and clearer. From Eq.2.25, the
corresponding Hamiltonian becomes

Href = −ℏδ
2
σz + ℏωRcos(ωt + φ)[cos(ωt)σx − sin(ωt)σy], (2.26)

where δ/2π = ω/2π− fL is the frequency detuning from the resonance condition
and ωR = |g|µBBa.c./2ℏ.

Eq.2.26 includes the term which oscillate at 2ω, however, these terms do not
contribute much to the spin dynamics in the regime of experimental interest where
ω ≫ ωR is satisfied. This is because the time evolution oscillating at 2ω is av-
eraged out in the timescale of the vertical spin rotation 2π/ωR. Rotating wave
approximation neglects these terms and the effective Hamiltonian is simplified to
,

Href ≈ −ℏδ
2
σz +

ℏωR

2
[cos(φ)σx + sin(φ)σy] ≡ HESR. (2.27)

Under HESR, the spin rotates around the axis of (x, y, z) = (ωRcosφ, ωRsinφ,−δ)
at a frequency

√
ω2
R + δ2/2π in the reference frame as shown in Fig.2.21 (a).

Especially in the ESR resonance condition where δ = 0 (ω = 2πfL), spin will
flip completely with a Rabi frequency ωR/2π. The rotation axis can be chosen
arbitrarily in xy plane by changing the initial phase φ and therefore ESR enables
arbitrary single qubit operation.

Under ESR drive, the spin dynamics is coherent oscillation between |↑⟩ and
|↓⟩. The ESR time tESR dependence of the spin flip probability is given by the
Rabi formula,

Pflip =
ω2
R

2Ω2
R

[1− cos(ΩRtESR)], (2.28)

where ΩR =
√
ω2
R + δ2 is the generalized Rabi frequency. Fig.2.21 (b) shows a

characteristic Chevron pattern obtained by the spin flip probability as a function
of tESR and δ.
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(a) (b)

Figure 2.21: (a) Schematic image of the spin dynamics under HESR in the rotat-
ing frame at the frequency of the oscillating field. The frequency detuning δ is
expressed as the vector pointing in the z direction with ℏδ in energy (blue arrow).
The oscillating field is shown as one pointing in the x direction with ℏωR in en-
ergy(green arrow). The rotation axis and frequency is given by the sum of these
contributions (red arrow). (b) Chevron pattern of spin flip probability as a function
of δ/ωR and ESR drive time t in unit of 2π/ωR
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2.4.2 Micro-Magnet Electron Spin Resonance
ESR requires two different magnetic field, a static and an oscillating magnetic
fields perpendicular to each other. In the low temperature experiment, it is chal-
lenging to apply a high-frequency effective magnetic field to the QDs. The first
attempt of single ESR in QD was achieved by injecting an a.c. current to an
on-chip coil [67] but this scheme is not appropriate to realize fast spin rotation
because a strong oscillating field for the fast spin rotation causes Joule heating. In
addition, the oscillating field created by the on-chip coil cannnot be restricted to
only one of the multiple QD and individual control of electron spins is difficult.
Therefore, electrically driven ESR schemes have been investigated which can be
more localized and free from the Joule heating. However, electric fields do not
directly couple to electron spin and indirect coupling mechanisms are required to
drive ESR electrically [68]. One of the mediation mechanisms is to utilize a slant-
ing magnetic field created by proximal micro-magnets (MMs) [27, 69] (Fig.2.22
(d)). This scheme solves above two problems in on-chip coil scheme as mentioned
below.

Here, we review tha teory of MM-ESR method [69]. Assuming that a time-
dependent electric field E(t) is applied to the electron confined in a QD with a
harmonic potential V (r) = m∗ω2

0(y
2 + z2)/2 and an un-uniform static magnetic

field B(r). Here, m∗ is the effective mass of an electron in the QD. The Hamilto-
nian of the system in the laboratory frame is written as

Hlab =
p2

2m∗ + V (r) + eE(t) · r +
gµBB(r) · σ

2
. (2.29)

Consider a local magnetic field whose x component is slanted in the z direction
which satisfies Maxwell’s equation as

B(r) = B(x, z) = (B0 + bslx)ẑ + (Bx + bslz)x̂, (2.30)

where B0 is the magnetic field component parallel to ∥ ẑ. Assuming strong con-
finement of the electron in the x direction which is perpendicular to the 2DEG,
the term bslxẑ can be neglected. Since the Bx is normally much smaller than B0

in the experiment, it only modifies the quantization axis. A crucial role is played
b ythe term bslzx̂ which mixes the charge and the spin degrees of freedom via the
last term in Eq.2.30.

35



Chapter 2 Spin Qubits in Quatum dot

When an oscillating electric field Ez(t) = Ea.c.sin(ωt) is applied in the z
direction at a frequency of ω/2π, Eq.2.30 is written as

Hlab = H0 +Hmix +Hexc(t) (2.31)

H0 =
p2

2m∗ + V (r) +
gµBB0

2
σz (2.32)

Hmix =
gµBbslz

2
σx (2.33)

Hexc(t) = eEa.c.sin(ωt)z. (2.34)

Since H0 does not mix the orbital and the spin degree of freedom, the eigenstates
|m,n;σz⟩ and their eigenenergies εm,n;σz can be expressed as

⟨y, z|m,n;σz⟩ = ϕm(y)ϕn(z)ψσz , (2.35)

εm,n;σz = ℏω0(m+ n+ 1) +
gµBB0

2
σz, (2.36)

where ϕm(y) and ϕn(z) are the orbital eigenstates in the harmonic potential, and
ψσz is the spinor whose eigenvalues are ±1. Here, the Zeeman energy |g|µBB0 is
much smaller than the level spacing ℏω.

The perturbation of Hmix mixes the orbital and the spin degree of freedom.
The hybridized two lowest levels can be expressed as pseudo-spins |σp⟩. By cal-
culating the eigenstates and the eigenenergies of H0 + Hmix up to the first order
in the characteristic coupling energy Esl ≡ gµBbsl

√
ℏ/m∗ω0 as,

|σp⟩ = |0, 0;σz⟩ −
∑
n>0

gµBbsl/2 ⟨0, n| z |0, 0⟩
nℏω0 − gµBB0σz

|0, n;−σz⟩ . (2.37)

Assuming the symmetric confinement potential where ⟨m,n| z |m,n⟩ = 0, there
is no correction of the eigenenergies in the leading order of Esl.

From here, we can include the effect of the oscillating electric field onto the
pseudo-spin. The diagonal elements of Hexc become 0 up to the first order in Esl

by assuming the symmetric confinement potential and the linearity of the slanting
magnetic field. The non-diagonal elements are calculated as ⟨−σp|Hexc |σp⟩ =
gµBBa.c.

2
sin(ωt) + O(Esl)

2. Here, the amplitude of the affective magnetic field is
written as
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Ba.c. = −
∑
n>0

2nℏωbsleEa.c.

(nℏω)2 − (gµBB)2
| ⟨0, 0| z |0, n⟩ |2 ≈ −eEa.c.bsl

m∗ω2
. (2.38)

The effective Hamiltonian of the pseudo-spin is written by

Hlab = ℏω0σp0 +
gµBB0

2
σpz +

gµBBa.c.

2
σpx (2.39)

up to leading order of Esl where σpi is the Pauli matrices of the pseudo-spin. This
is equivalent to the ESR Hamiltonian in Eq.2.25 up to overall energy shift, and it
indicates that ESR can be driven in an electric manner in a slanting magnetic field.

Eq.2.39 also suggests that the spin rotation speed is in proportion to the slant-
ing field. In addition, the local magnetic field created by MM can modify B0 at
the dot position Bz and shift the ESR resonance conditions [27, 70]. These two
parameters of the local magnetic field are important for the demonstration of fast
and individual spin rotation with the MM-ESR. Fig.2.22 (a) shows the SEM im-
age of the DQD device with MM whose design is optimized for fast and individual
control of spin. The U-shaped MM shown as yellow shaded region realize large
slanting field (Fig.2.22 (b)) and large difference of Bz between the QDs (Fig.2.22
(c)) simultaneously [71]. In this device, over 100MHz fast spin rotation and the
individual control of electron spins in DQDs are realized [34]. This MM design
can be extended larger multiple QD system liken TQD and individual control of
electron spins are realized [17].

2.5 Two-Qubit operation
Two-qubit entangling operation is another key techniques for the universal gate
operation since the combination of single- and entangling operations realizes it.
For single spin qubits, the two-qubit operations is achieved using the exchange
interaction between spins in neighboring dots [23, 72]. This can be easily seen by
rewriting the exchange term −J |S⟩ ⟨S| in Eq.2.23 as J(ε)(|↑↓⟩ ⟨↓↑|+ |↓↑⟩ ⟨↑↓|+
|T+⟩ ⟨T+| + |T−⟩ ⟨T−|) , ignoring the global shift in energy. As discussed in
§2.2.2, J(ε) can be switched by quick modulation of ε (see Fig.2.22). The SWAP
operation can be performed by starting from deep in the Coulomb blockade regime
with J ≪ ∆EZ where the eigenstates are |↑↓⟩ and |↓↑⟩ for the Sz = 0 sub-
space and then activating activating J with the condition of J ≫ ∆EZ for a time
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Figure 2.22: Device structure and simulated stray fields for MM-ESR. (a) The
SEM image of the DQD device used to demonstrate fast and individual spin rota-
tion [34]. The yellow shaded region shows the MM consisted by Co placed on top
of the device with an 80nm thick insulator in between. (b) Numerically simulated
distribution of the x component of the stray field Bx created by the MM shown in
Fig.(a) [34]. The origin of the QD plane is chosen at the center of the two QDs. (c)
Numerically simulated distribution of the z component of the stray field Bz [34].
(d) The schematic image of the device configuration for MM-ESR. The MM is
fabricated on top of the QD device with an insulator in between and magnetized
by the external magnetic field B0 in the z direction. It is so designed that the
out-of-plane (x) component of the stray field is slanted at the QD position. The
slanting field, bsl = dBx/dz, couples the orbital and the spin states of electron.
An oscillating electric field is applied in the z direction to drive ESR.
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tSWAP = h/2J [25]. The maximally entangling gate
√
SWAP can be obtained by

reducing the interaction time tSWAP to the half.

2.6 Source of Decoherence
All qubits interact with their environments which leads to information loss [73]
and it is assumed to be one of the central problems in implementing quantum
computation. To correct the lost qubit information, implementing error correction
codes is on eof the main motivation in this research. This section reviews the
source of decoherence of single spin qubits in GaAs QDs.

Decoherence can be generally categorized into two general types [55,74]. The
first type is energy relaxation caused by the qubit evolution toward thermody-
namic equilibrium by transferring energy to the environment. The characteristic
time T1 is called the energy relaxation time. The second type is phase relaxation
(decoherence) where the qubit loss phase information through interactions with
the environment, wile preserving energy. The time constant of this phase random-
ization process, T2, is called the (intrinsic) phase coherence time. The loss of
phase information becomes quicker when the average is taken over ensembles in
an inhomogeneous environment, which is the case for real experiment. This char-
acteristic time T ∗

2 , called ensemble phase coherence time, gives the decay time of
the ensemble qubit phase.

Relaxation and decoherence can be caused by many different sources such
as the charge noise generated by the background moving charges [75, 76], lat-
tice vibrations, fluctuating magnetic impurities, thermal and spurious noises from
electrical circuits, and nuclear spin bath fluctuations [12, 77]. Qubit coherence
is strongly affected by the spectrum and dynamics of relevant noise sources and
the system Hamiltonian [78]. The main limitation of T1 is caused by spin-orbit
interaction (SOI) combined with phonon coupling [12]. On the other hand, T ∗

2 is
limited by the nuclear field fluctuation through the hyperfine coupling in the envi-
ronment [12].

2.6.1 Spin-Orbit Intereaction in Quantum Dots
For electrons in a 2DEG formed in III-V semiconductors, there are two main
sources of SOI, the Dresselhaus term which is present in crystals with bulk in-
version asymmetry [79] and the Rashba term which results from the structural
inversion asymmetry [80, 81]. Since the SOI length (∼ 100µm) is much larger

39



Chapter 2 Spin Qubits in Quatum dot

than the size od GaAs QDs (typically ∼ 100nm), the SOI effect can be treat as a
perturbation. The eigenstates become admixtures of spin and orbital states [82].
The two lowest pseudo-spin states up to the leading order are

|σz⟩p = |0, 0;σz⟩+
∑

(m,n) ̸=(0,0)

⟨m,n;−σz|HSO |0, 0;σz⟩
E0,0 − Em,n − EZ,σz

|m,n;−σz⟩ , (2.40)

where HSO is the spin-orbit Hamiltonian, and quantum numbers m and n charac-
terize the orbitals in the QD. Due to the SOI effect, these pseudo-spin states are
susceptible to the electrical noise. The spin flipping process requires energy dissi-
pation to the environment produced predominantly by phonons. From the Fermi’s
golden rule, T1 is

1

T1
=

2π

ℏ

[
⟨↑|pHe−ph |↓⟩p

]2
Dph(EZ,p), (2.41)

where He−ph is the electron-phonon coupling Hamiltonian, Dph is the phonon
density of states, and EZ,p is the pseudo-spin Zeeman energy. This process only
causes energy relaxation without the effect to phase information [83]. From
Eq.2.41, T1 depends on the phonon density of states at the energy splitting of the
pseudo-spin due to conservation of energy. The effect of piezoelectric phonons
dominates over that of deformation potential phonons and optical phonons due
to small energy scales. T1 has a strong field dependence of T1 ∝ B−5 in the
low temperature limit [82]. The T1 value ranging from 120 µs at 14 T to 170 ms
at 1.75 T is observed for one-electron GaAs QDs with the expected B−5 depen-
dence [12, 59, 82, 84]. In leading order in HSO, there is no phase randomization,
such that in fact T2 = 2T1 [83].

2.6.2 Hyperfine Interaction in Quantum Dots
An electron spin confined in QD interacts with nuclear spins in the host material
through the hyperfine coupling unless the nuclei are spinless. In case of GaAs
QDs, all nuclei 69Ga, 71Ga and 75As have spin 3/2 and the hyperfine coupling is
known as the central spin problem [85, 86]. Since the electron wave function is
non-zero at the nucleus, the Hamiltonian of hyperfine interactions is described by
the Fermi contact hyperfine interaction,
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HHF =
N∑
k

AkIk · S, (2.42)

where Ik and S are the spin operators for the k-th nuclear spin and the electron
spin, respectively, andAk is the coupling strength between these two. The dynam-
ics of nuclear-nuclear flip-flop, mediated by the hyperfine interaction, is usually a
complex many-body problem and hard to solve. In GaAs QDs, an electron spin
confined in QD interacts with 105 to 106 nuclear spins and, in a semi-classical
description, the effect of the nuclear spins can be treat as an effective magnetic
field,

HHF =

(
N∑
k

AkIk

)
· S = gµBBN · S, (2.43)

where BN is the Overhauser field, the effective nuclear field seen by electron spins
due to nuclear spins. When the nuclear spins are fully polarized, the maximum
value of the Overhauser field |BN|max ∼ 5T [87]. Under typical experimental
conditions without complicated nuclear spin pumping pulses, the nuclear spins are
in the thermodynamic equilibrium since their Zeeman energies are mush smaller
than the thermal energy even at cryogenic temperature. From the central-limit
theorem, the statistical fluctuation of the Overhauser field follows the Gaussian
distribution with a standard deviation

√
⟨|BN|2⟩ ∼ |BN|max/

√
N where N is

the number of the nuclear spins interacting with the electron spin. In GaAs QDs,
N ≃ 106 and the nuclear field deviation is a few mT [12, 62] with a correlation
time scale of ∼10-100 s [88].

The effective magnetic field which the electron spin feels is a sum of the ex-
ternal B0 (∥ ẑ) and Overhauser field : Beff = B0 + BN. For |B0| ≪ |BN|,
the contribution of the transverse components of BN (∥ x̂, ŷ) becomes negligi-
ble. The longitudinal component BN,z causes a change of the Larmor frequency
by |g|µBBN,z/h and results in dephasing when a time-ensemble average is taken
over the fluctuating BN,z. Under typical experimental conditions, the fluctuating
BN,z follows Gaussian distribution, and then the spin phase coherence decay is
also Gaussian with a characteristic time [89]

T ∗
2 =

ℏ
√
2

|g|µB

√
⟨(BN,z)2⟩

. (2.44)
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When
√

⟨(BN,z)2⟩ = 1 mT and g ≈ −0.4, T ∗
2 becomes 40 ns [25]. This short T ∗

2 ,
however, does not reflect the intrinsic coherence of the system, i.e. T2 ≫ T ∗

2 . The
lower bound on T2 is characterized by echo measurements which removes the low
frequency nuclear spin fluctuation, such as Hahn echo [25, 74] and Car-Purcell-
Meiboom-Gill (CPMG) decoupling [74, 90]. The phase coherence time as long
as TCPMG

2 ∼ 800µs has been demonstrated [91] and this is considered to be the
lower bound of T2.

Preparation of less fluctuating nuclear environment is another approach to en-
hance spin coherence and increase the quantum gate accuracy. The dynamic nu-
clear spin polarization (DNP) is used to prepae less fluctuating nuclear environ-
ment and improve the coherence time by a factor of ∼ 10 [92]. Recently, the
adaptive qubit control after nuclear field estimation is demonstrated using a tech-
nique of fast measurement and then the coherence time enhanced by a factor of
∼ 100 [93].

2.7 Application as the Fermi-Hubbard Model
Here, we describe the other application of the semiconductor QD system toward
the quantum simulation experiments. Due to the potential for realizing novel elec-
tronic and magnetic properties of correlated electron phases in low dimentional
condensed matter physics such as high-TC superconductivity and electronic spin
liquids [43–45], the quantum simulations have been investigated in multiple plat-
forms [36–42]. There are two methods to achieve quantum simulations; digital
or analougue simulation. In the digital quantum simulation, theoretical and ex-
perimental work has shown [41, 42] but it comes at the cost of requiring huge
number of qubits with additional error correction overhead. The analogue quan-
tum simulations aim to implement well-defined Hamiltonian directly. Since the
semiconductor QD system is a scalable platform that can be described by a Fermi-
Hubbard model and the control and detection method of the charge and spin states
are highly established, it can be said the promised platform of the analogue quan-
tum simulation.

Experimental work in TQD are reported in [7]. In this paper, realize a detailed
characterization of the finite-size analogue of the interaction-driven Mott metal-
to-insulator transition [43]. The benefit of the analogue quantum simulation gets
bigger in larger MQD system but, as discussed in §2.1.3, the control and detection
of the charge and spin state of MQD gets more difficult. Especially in QQD, the
spin state measurement with PSB needs the voltage control in the multiple voltage
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plane [15].
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Chapter 3

Control and Detection of the Charge
States of Quintuple Quantum Dot

A semiconductor quintuple quantum dot (5QD) with two charge sensors and an
additional contact for the center dot to an electron reservoir is fabricated to demon-
strate the concept of scalable architecture. This design enables the formation of
five dots whose charge states are gate-tunable. The gate-tunability is confirmed
from measurements of the charge states in the three dots with the nearest charge
sensor. The gate performance of the measured stability diagram is well reproduced
by a capacitance model. These results provide an important step towards realizing
controllable large scale multiple quantum dot systems. In this chapter, we first
describe the difficulties in scaling up the MQD system and then the solutions and
fabrication of the 5QD device with a concept relevant for further scale-up and
measurement of the charge state.

3.1 Difficulties in Further Scaling Up the Multiple
Quantum Dot

MQD devices usually consist of QDs tunnel-coupled in a row and a single charge
sensor. In this geometry, an oscillating electric field can be uniformly applied to
the whole QD array. This is done to prevent unnecessary photon-assisted tunnel-
ing caused by a non-uniform electric field. The utility of such a device geometry
has been proved by the realization of TQD and QQD devices; however, at the same
time, it has been understood that there are some difficulties in further scaling up
MQD.
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3.1.1 Insufficient Sensitivity of Charge Sensor
One of the difficulties is the limited sensitivity of the charge sensor. As discussed
in §2.1.2, the combination of QPC or SET and rf-reflectometry is utilized to detect
the charge states in the MQD. The sensitivity of the charge sensor depends on the
capacitive coupling of the sensor to the respective QDs, and therefore, it decreases
as the QD becomes distant. It also depends on the property of the semiconductor
wafer such as electron density or mobility; however, generally speaking, the sen-
sitivity of the charge sensor to the MQD array is only good for the nearest three
QDs. Therefore, in the further scaled-up system such as 5QDs, a single charge
sensor cannot distinguish between all charge states.

3.1.2 Complicated Charge States Distribution
The second difficulty is the complicated charge state distribution. As discussed in
§2.1.3, the charge states of n-QDs are spread in the n-dimensional space defined
by n plunger gate voltages. The two-dimensional (2D) stability diagram is one
slice of the n-dimensional charge states distribution, and therefore, mapping out
the whole charge state distribution in 2D is impossible. In TQD, we could map
out the full charge state distribution in the three-dimensional stability diagram
as shown in Fig.2.13; however, this cannot be done for more multiple QDs. In
addition, cross-capacitive couplings between QDs and gate electrodes disable the
independent controls of MQD parameters such as chemical potentials and tunnel
barriers.

3.1.3 Difficulties in the Electron Exchanges
MQDs are usually constructed by connecting dots in a row with a tunnel-coupled
reservoir at each end. This geometry makes it difficult to load electrons from
the reservoirs to the inner dots [94]. As discussed in §2.3.1 and §2.3.2, electron
exchange with a reservoir is utilized for the readout and initialization of the spin
states confined to the QDs. In single and double QD devices, all QDs connect
with the reservoir. On the other hand, in TQD and QQD devices, QDs at each end
only connect with reservoirs, but the initialization of the two electron spin states
can be performed by loading electrons from the reservoirs. However, in the 5QD
device, the center QD is well isolated from the reservoirs. One of the possible
solutions is to use a single spin CCD method; however, it can induce undesired
spin flips due to spin-orbit interaction.
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... ...

Figure 3.1: Schematic of the new device architecture. Yellow rectangles, dotted
circles, and blue arrows indicate gate electrodes, QDs, and QPCs, respectively.
The dashed green rectangle indicates a unit structure configured of three QDs and
one charge sensor.

3.2 New Device Architecture for Further Scaling-
Up

Here, we describe a device architecture to solve the above difficulties shown
schematically in Fig.3.1. This architecture is designed for application to not only
5QDs but also further scaled-up MQDs. In order to complement limited sensitiv-
ity of the charge sensor, multiple charge sensors are formed so that there is one
charge sensor for the 3 QDs (shown as blue arrows in Fig.3.1). In rf-reflectometry,
as discussed in §2.1.2, the charge sensor configures the tank circuit with the in-
ductance L and parasitic capacitance Cp, and the charge transition of neighboring
QDs are detected as changes of the reflected signal at the resonance frequency
fRES of the tank circuit. Therefore, by changing L in each tank circuit, the charge
sensor signals in the rf-reflectometry can be detected by the reflected signal in
different fRES. Utilizing this architecture, we can consider a unit cell of MQD
structure configured of 3 or 4 QDs and a charge sensor (shown as dashed green
rectangle in Fig.3.1). We will utilize this unit cell structure even in the charge
state control. As discussed in §2.1.3 and [15], for the control of the charge states
of QQD, multiple voltage planes are used. With a single voltage plane defined by
two plunger gate voltages in end QDs, we could not observe the required charge
state for PSB but it was not observable for two voltage planes of VP1 − VP2 and
VP3 − VP4 . This multi-voltage plane control is, in other words, the control of each
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CL CR

Figure 3.2: SEM image of the 5QD device and schematic of the measurement
setup. White rectangles with crossmarks indicate Ohmic contacts.

unit cell for the left and right DQDs. In each voltage plane, due to the difference of
capacitive couplings, the charge state of the left (or right) DQD are modulated and
the other DQD is not affected so much. In the same way, the concept of different
voltage plane control will work in a further scaled-up system.

3.3 Measurement of Quintuple Quantum Dot
In this section, we describe the measured result in the 5QD device in the new
architecture.

3.3.1 Device Structure
Fig3.2 shows an SEM image of the 5QD device. The gate electrodes are shown in
white. The 2DEG is formed 60 nm under the wafer surface. We patterned a mesa
by wet-etching and formed Ti/Au Schottky surface gates by metal deposition. All
measurements were conducted in a dilution fridge cryostat at a temperature of 27
mK. By applying negative voltages to the gate electrodes, seven QDs in total will
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be formed at the positions indicated by five solid circles and two dotted circles.
The five QDs under the horizontal gate electrodes CL and CR are the qubit QDs
named QD1, QD2, QD3, QD4 and QD5 in red, orange, yellow, green and blue,
respectively. The plunger gate Pi tunes predominantly the energy level of QDi ,
while the tunnel gate Tj tunes the tunnel coupling between QDj and QDj+1. In
the conventional device architecture, the 5QD array connects with two reservoirs
via both end QDs (QD1 and QD5) of the array. In the new architecture, a gap
between CL and CR induces an additional coupling of QD3 to the upper reservoir.
Electrons are then loaded from the three reservoirs to all dots.

The two QDs above CL and CR are the sensor QDs named S1 and S2 in red and
blue, respectively. The sensor QDs are connected to the respective RF resonators
configured by the inductances L1 = 270 nH and L2 = 470 nH, and the parasitic
capacitances Cp1 ≃ Cp2 ≃ 0.4 pF. They configure resonance circuits with dif-
ferent resonant frequencies fRES1 and fRES2. These charge sensors are designed
to detect the leftmost (QD1, QD2 and QD3) and rightmost (QD3, QD4 and QD5)
TQDs, respectively.

3.3.2 Measurement Circuit
Fig.3.3 shows a schematic of the measurement circuit that refers the circuit uti-
lized in [58]. This circuit includes two sets of the demodulation circuit for rf-
reflectometry considering the simultaneous readout of the two charge sensors. The
basic theory of rf-reflectometry is already described in §2.1.2; and therefore, we
only describe the difference here. First, two local oscillators produce rf-carriers
in different frequencies f1 and f2. The rf-carriers are separated in two directions
by the directional coupler. One side is used to demodulate the reflected signal
in each frequency at the mixers. The other side of the separated carriers are sent
to the device via the combiner and attenuators. The reflected carriers are divided
from incident carriers by a directional coupler in the low temperature part of the
refrigerator. The reflected signal is amplified by a two step amplifier and split to
two mixers.

Fig.3.4 (a) shows the frequency dependence of the reflected rf signal |S21| with
different values of sensor conductance measured in the setup, as shown in Fig.3.2
and Fig.3.3 but not using the demodulation circuits. Three resonance dips caused
by the resonance circuits including S1 and S2 are observed. The red and blue
traces show |S21| in the different conductances of S1 and S2, respectively. The dip
observed at 207 MHz (240 MHz) is largely affected by the conductance change
of S1 (S2), and not by that of S2 (S1). This result indicates that the resonance dips
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Figure 3.3: Schematic of measurement setup used in the experiment. Bottom
white circle is connected to the white circle in Fig.3.2. Blue dashed lines indicate
the boundary of the environment temperature.
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Figure 3.4: Rf-reflectometry (a) Frequency dependence of the reflected signal for
different values of sensor conductance. (b)-(c) Gate voltage dependence of the
VRF1 and VRF2. In each figure, voltage applied on the gate electrode that form the
sensor QD is modulated (VS1R in (b) and VS2L in (c)).

50



Chapter 3 Control and Detection of the Charge States of Quintuple Quantum Dot

observed at 207 MHz and 240 MHz are caused by the left and right charge sensors,
respectively. The center dip is not sensitive to either of the charge sensors and it
is probably caused by the resonance circuit that is not connected to the device.

Fig.3.4 (b) and (c) shows the gate voltage dependences of the demodulated rf
signals VRF1 and VRF2. By modulating the gate voltage forming the sensor QD,
the change in the charge sensor conductance, gi, is detected as VRFi (i = 1, 2).
Note that due to a difference in phase, the VRF2 change appears in the opposite
direction to the VRF1 change in Fig.3.4 (c). In the following measurement, the
gate voltages for each charge sensor are adjusted to the condition most sensitive
to the electrostatic changes of the surrounding environment.

3.3.3 Tuning of the Quintuple Quantum Dot
Here, we describe the tuning method in MQD. First, we estimate the voltage
conditions for each single QD by the dot current measurement. Then, we read-
justs these voltage conditions to form DQD, TQD, QQD and 5QD with the rf-
reflectometry measurement.

Forming Single and Double Quantum Dots

In the initial tuning of the single QD, the dot current measurement is still a useful
method to estimate the appropriate voltage conditions. First, we measure the gate
voltage dependence of the QPC conductance in each pair of the gate electrodes
such as L and CL or R and CR. To form a single dot, the voltage on the tunnel gate
electrode is tuned to the near pinch-off point of QPC and that on the plunger gate
electrode is tuned to the value where the 2DEG beneath the electrode is depleted.
We derive all these voltage values from the QPC traces. DQD can be formed by
combining the values of gate voltages for two respective QDs. Figs.3.5 (a) - (c)
show the measured dot current as a function of the voltage on the three tunnel
gates L,T1, and T2, and Coulomb oscillations are observed. Fig.3.5 (d) shows
the deviation of VRF1 to VP1 as a function of VP1 , and VP2 with the tunnel gate
voltages when tha second or third most negative Coulomb peaks are observed in
Figs.3.5 (a)-(c). The charge transition lines with two different slopes are observed
in this figure, indicating that the DQD comprises of QD1 and QD2. The voltage
conditions to form the DQD configured of QD4 and QD5 are estimated similarly.
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Figure 3.5: Initial tuning of DQD. (a) -(c) Idot through DQD as a function of tun-
nel gate voltages VL, VT1 , and VT2 , respectively. (d) Stability diagram of DQD
configured of QD1 and QD2 in the VP1 − VP2 plane. In this measurement, VREF1

is measured without bias voltage through DQD. (e) Schematic of the relative po-
sition of DQD, charge sensor and measured Idot.
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(a) (b)

Figure 3.6: Stability diagrams of 5QD in multiple voltage planes. (a) Stability
diagram in the VP1-VP3 plane measured by S1. (b) Stability diagram in the VP5-VP3

plane measured by S2. At the center of both diagrams, all gate voltage conditions
are same (VL = −1500 mV, VP1 = 286 mV,VT1 = −1180 mV, VP2 = −1140
mV, VT2 = −1100 mV, VP3 = −1120 mV,VT3 = −1010 mV, VP4 = −1260 mV,
VT4 = −1510 mV, VP5 = −298 mV and VR = −1200 mV.)
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Tuning of the Quintuple Quantum Dot in Multiple Voltage Planes

Gate tuning of the 5QD can be simplified by splitting 5QDs into two TQDs and
manipulating the charge states on the two different stability diagrams. Figs.3.6
(a) and (b) show the stability diagrams measured in the different voltage planes
of VP1-VP3 in (a) and VP5-VP3 in (b). In each diagram, we observe three sets of
distinct charge transition lines with three different slopes, reflecting the capacitive
couplings between the TQD and modulating gate electrodes. In each diagram, the
most and second most horizontal charge transition lines can be assigned to the
charge transition lines for QD1 and QD2 in (a) and QD5 and QD4 in (b). In these
voltage planes, the charge transition lines for the other QDs (QD3, QD4, and QD5

in (a), QD1, QD2 and QD3 in (b)) have almost the same slopes, and therefore, it
is hard to distinguish. We adjust the voltages on VT1 , VT2 , VT3 , and VT4 to make
all tunnel or electrostatic couplings between the adjacent dots roughly the same
judging from the size of avoided crossings between two different charge transition
lines. Here we confirm that there are no apparent couplings present between non-
neighboring dots, because the corresponding charging lines just cross each other.
Since the two diagrams share a common VP3 axis in the same range, we are able
to evaluate the appropriate voltages of all gates to manipulate the charge state of
the 5QD.

3.3.4 Simultaneous Readout of Charge State of the Quintuple
Quantum Dot

We use the gate voltage setting derived from Fig.3.6 as a guide to establish the
stability diagram of the 5QD. Figs.3.7 (a) and (b) show the diagram in the VP1-
VP5 voltage plane measured by S1, and S2, respectively. In both figures, five sets
of charge transition lines with different slopes can be distinguished, and from the
slopes, we can assign them to charging five different dots: QD1 to QD5 from ver-
tical to horizontal. The difference in the spacing of the charge transition lines
of QD1 and QD5 is caused by the difference in the lever arm of the gates or the
charging energy. These diagrams are measured simultaneously using the multi-
plex technique of RF reflectometry. Note the charge transition lines of QD1 to
QD3 are clearly visible whereas those of QD4 and QD5 are less visible in (a). In
contrast the charging lines of QD3 to QD5 are more visible in (b). This obser-
vation indicates that each sensor is sensitive to charging of at least three nearest
QDs, and two sensors can together detect all charge transitions of the 5QD; note
that the QDs in Fig.3.7 (a) and (b) are not in a few electron regime due to the lim-
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(a) (b)

(c)

Figure 3.7: Stability diagrams of 5QD in the VP1-VP5 plane. (a) and (b) Diagrams
measured by S1 and S2, respectively. They are measured simultaneously with
VP2 = −1585 mV, VP3 = −1020 mV, and VP4 = −470 mV. (c) Data points
extracted from the charge transition lines in (a) and (b): Red or blue points from
(a) or (b), respectively.
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itation of the gate voltage range, and it contain dozens of electrons, judging from
the spacing of the charge transition lines [16]. Further, QD3 has the most elec-
trons because of the gate electrode design. We will be able to reduce the number
of electrons by reducing the gaps between the gates to form smaller dots.

In Fig.3.7 (c), we show the charging lines for the 5QD by plotting the data
points of the dark and white lines in Figs.3.7 (a) and (b): red and blue points from
(a) and (b) and purple points from both. Avoided crossings of charging lines of
neighboring QDs indicate finite capacitive couplings among all five QDs, as is
the case in Fig.3.6. Further, none of the charge transition lines are fragmented,
suggesting that the tunneling rates are kept sufficiently high for all QDs.

3.3.5 Capacitive Coupling Model
In large MQD systems, the charge states become complicated and difficult to dis-
criminate. Therefore, numerical calculations of stability diagrams are helpful in
the process of adjusting gate voltages to search for the desirable charge states.
We find that the stability diagram obtained here is well reproduced in a qualitative
manner using a capacitive QD model [15,95]. Fig.3.8 (a) shows a schematic of the
capacitive coupling model for 5QD. This model is an extension of the capacitive
DQD [95] and QQD [15] model to five QDs. In this model, we consider that QDi

is capacitively coupled to the other QDj (i ̸= j) via a mutual capacitance Cmij ,
and to the plunger gate Pj via cross-talk capacitanceCij (i, j = 1, 2, 3, 4, 5). QD1,
QD3 and QD5 are also coupled to the three electron reservoirs via CL, CC and CR,
respectively, but their effect can be ignored since VL = VC = VR = 0 in the
measurements. There are 45 parameters in total to adjust in this model but we can
assume Cmij = Cmji since it is defined only by the relative position of QDi and
QDj . Here, we estimate the parameters for the capacitive model from some sta-
bility diagrams. Cmij can be estimated from the size of the anti-crossing of charge
transition lines of QDi and QDj , and Cii can be estimated from the spacing of the
charge transition lines of QDi. The ratio of Cij to Cjj can be estimated from the
slope of the charge transition line of QDj in the VPi

-VPj
plane.

From the measured results, the values of mutual capacitances are estimated as
Cm12 = 0.1, Cm13 = 0.05, Cm23 = 0.18, Cm24 = 0.05, Cm34 = 0.18 and Cm45 =
0.05, as the ratio to the charging energy of each QD. The cross-capacitance can
be written as a 5× 5 matrix and estimated as
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Figure 3.8: (a) Schematic of 5QD capacitive coupling model used to calculate the
charge stability diagram. (b) Measured charge stability diagram of 5QD in (VP1-
VP5) voltage plane (same data with Fig.3.7(c)). (c) Calculated stability diagram of
5QD in (VP1-VP5) voltage plane.
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(a)

(c)

(b)

(d)

Figure 3.9: Measured and calculated stability diagrams of 5QD in (VP1-VP5) volt-
age plane. In each diagram, VP3 or the parameter equivalent to VP3 is shifted from
the conditions in Fig.3.8 (b) and (c). (a) Measured diagram with negative shift
in VP3 about 20mV. (b) Calculated diagram with negative shift in the parameter
equivalent to VP3 . (c) Measured diagram with positive shift in VP3 about 20mV.
(d) Calculated diagram with positive shift in the parameter equivalent to VP3 . In
all diagram, one of the charge transition lines for QD3 is colored red.
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Ccross =


1.0 0.5 0.05 0.05 0.0
0.5 1.0 0.75 0.4 0.1
0.25 0.85 1.0 0.85 0.3
0.1 0.4 0.80 1.0 0.5
0.0 0.05 0.05 0.5 1.0

 . (3.1)

With this Ccross, the shifts of the chemical potential for QDi, δµi, can be written
as


δµ1

δµ2

δµ3

δµ4

δµ5

 = Ccross ·


∆VP1

∆VP2

∆VP3

∆VP4

∆VP5

 (3.2)

where ∆Vi is the gate voltage change of plunger gate Pi. Fig.3.8 (c) shows the
calculated stability diagram with Ccross in Eq.3.1. This simple model shows good
agreement with the experiment in which the QDs contain many electrons and
when we focus on a limited range of the charge stability diagram. We see that
the main features in Fig.3.8 (b) are well reproduced by the calculation. Figs.3.9
(a) and (b) show the stability diagrams measured in different values of VP3 from
the voltage conditions in Fig.3.8 (b) (VP3 = −1040 mV in (a) and VP3 = −1000
mV in (b)). In these figures, the charge transition line in red shifts largely but
the other lines also shift due to the finite capacitive couplings. Even under these
conditions, the capacitive coupling model can reproduce the stability diagrams
only by slightly changing VP3 in Fig.3.9 (b) and (d). This model also reproduces
the shifts of the transition lines in the other plunger gate voltages. The capacitive
model is a powerful tool to distinguish the charge configuration in the complicated
charge state distribution.

3.3.6 Conditions for Pauli Spin Blockade in Quintuple Quan-
tum Dots

With the capacitive coupling model, we consider the realization of spin readout
using PSB. In PSB, it is necessary that two neighboring QDs have adjacent two
charge states of (2,0) (or (0,2)) and (1,1). In the case of TQD, the PSB mea-
surement for the (1,1,1) charge state can be performed on the left DQD: (2,0,1)
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Figure 3.10: Numerically simulated stability diagrams by capacitive coupling
model. (a) The stability diagram in the VP1-VP5 plane around the (1,1,1,1,1) charge
state shown as the blue region. (1,0,2,1,1) and (1,1,2,0,1) charge states shown as
red regions are adjacent to (1,1,1,1,1) and the PSB measurements in QD2, QD3,
and QD4 are available in this voltage plane. (b) The stability diagram in the VP1-
VP2 plane around the (1,1,1,1,1) charge state. The (2,0,1,1,1) charge state is ad-
jacent to the (1,1,1,1,1) charge state, and the PSB measurement in QD1 and QD2

is available in this voltage plane. (c) The stability diagram in the VP4-VP5 plane
around the (1,1,1,1,1) charge state. The (1,1,1,0,2) charge state is adjacent to the
(1,1,1,1,1) charge state and the PSB measurement in QD4 and QD5 is available in
this voltage plane.
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↔(1,1,1) , and right DQD: (1,0,2) ↔ (1,1,1). These three charge states become
adjacent in the VP1-VP3 voltage plane [17, 96]. In the case of QQD, however,
the necessary charge states of the PSB measurement for the (1,1,1,1) charge state
cannot be allocated in one voltage plane and we need voltage control in mul-
tiple voltage planes [15]. Similar to Ref. [15], we consider the voltage planes
and voltage condition to realize PSB measurements in each QD of 5QD with the
(1,1,1,1,1) charge state. Figs.3.10 (a)-(c) show the numerical simulation of the
stability diagram with the capacitive coupling model, and the voltage conditions
of VP1 to VP5 are assumed to be the same at the center of each diagram. In these
figure, the basic charge state (1,1,1,1,1) used for qubit operation is colored blue
and the charge states for PSB readout are colored red. Fig.3.10 (a) is the stability
diagram in the VP1-VP5 voltage plane, and the (1,0,2,0,1) and (1,1,2,0,1) charge
states become adjacent. In this condition, the PSB measurements for the center
three QDs (QD2, QD3, and QD4) can be performed. Fig.3.10 (b) shows the stabil-
ity diagram in the VP1-VP2 plane and the PSB measurement can be performed for
QD1 and QD2 with the transition of (1,1,1,1,1) ↔ (2,0,1,1,1). Fig.3.10 (c) shows
the stability diagram in the VP4-VP5 plane and the PSB measurement can be per-
formed for QD4 and QD5 with the transition of (1,1,1,1,1) ↔ (1,1,1,0,2). From
these numerical simulation results, we predict that the PSB measurements can be
performed for all five QDs in three different voltage planes.

3.4 Summary
In conclusion, we fabricated a 5QD device based on the scalable architecture of
MQDs, which consists of a TQD unit cell with two reservoirs and a charge sen-
sor. Though the 5QD device have three reservoirs and two charge sensors, we
characterized the gate performance on the charge state stability diagram and well
distinguished the charge transition lines corresponding to all five QDs owing to
the use of the two charge sensors. We also studied the spin and charge state con-
trol in the 5QD with the numerical simulation by the capacitive coupling model,
and we found that at most three different voltage planes are necessary for the PSB
measurements in all QDs These results are important steps to further scale up the
MQD system and to employ this system as a spin qubit system.
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Chapter 4

Four single-spin ESR and Rabi
oscillations in a quadruple quantum
dot

Scaling up qubits is a necessary step to realize useful systems of quantum compu-
tation. In this chapter, we demonstrate coherent manipulations of four individual
electron spins using a MM-ESR method in each dot of a QQD - the largest num-
ber of dots used for the single spin control in MQDs. We observe c.w. ESR and
Rabi oscillations for each dot though ESR and evaluate the spin-electric coupling
of the four QDs, and finally discuss practical approaches to independently address
single spins in MQD systems containing even more QDs.

In this chapter, we demonstrate single spin manipulation in each dot of the
QQD device with the MM-ESR method. We use a correlated double sampling
(CDS) technique [93] to enhance the ESR signal and observe a coherent oscilla-
tion (Rabi oscillation) of an electron spin in each dot by sweeping the ESR driving
time. The acquired data allow us to estimate the QD positions and discuss how to
improve the quality of the Rabi oscillations by considering the control speed and
the addressability of the electron spin in each dot.

4.1 Device and Setup
Fig.4.1 shows a SEM image of the QQD device and a schematic picture of the
measurement electric circuit. The device is fabricated in a modulation doped
GaAs/AlGaAs heterostructure wafer containing a 2DEG whose depth from the
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Figure 4.1: SEM image of the QQD device with a schematic representation of the
measurement electric circuit. Here, z and y axes are parallel to the [011] and [01̄1]
crystal axes, respectively.

surface is 100 nm. The Ti/Au gate electrodes placed on the surface appear in
white. The MM (shown as a yellow shaded region) is placed on top of the gate
electrode layer with a 100 nm thick insulator in between. By applying negative
voltages on the gate electrodes, we form six dots in total as pictorially indicated by
four solid and two dotted circles. The four dots under the horizontal gate electrode
named C are the qubit dots named QD1 , QD2 , QD3 and QD4 in red, yellow, green
and blue, respectively and tunnel-coupled next to each other. The two dots above
gate C are the sensor dots named S1, and S2 in red, and blue, respectively. The
sensor dots are connected to the respective RF resonators configured by induc-
tances L1 and L2 and stray capacitances Cp1 and Cp2 with resonance frequency of
fRES1 = 298 MHz for S1 and fRES2 = 207 MHz for S2. We monitor the charge
state of the QQD via the reflected RF signals [97, 98], VRF1 and VRF2 of the two
sensors at the respective resonance frequencies. The MM-ESR is performed by
applying a microwave (MW) to gate C in the presence of an external magnetic
field Bext along the z-axis as shown in Fig.4.1. The MM is magnetized in the
Bext direction and creates a stray field across the QQD. The shape of the MM is
specially designed for the MM-ESR to address the four dots [17, 35, 71] such that
the stray field produces a slanting field BSl(x-component of the stray field slanted
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along z) for driving the electron spin rotation and a local magnetic field BZ along
z axis that changes the resonance condition among the four dots. All measure-
ments described below are conducted in a dilution fridge at a base temperature of
T = 13 mK.

4.2 Spin State Initialization and Readout

4.2.1 Spin State Initialization Using a Detuning Pulse
Fig.4.2 (a) shows the stability diagram measured by monitoring VRF1 in the VP1-
VP4 plane. We identify the dot-lead and inter-dot charge transition lines indicated
by the dotted lines, and assign them in red, yellow, green and blue from horizontal
to vertical to the dot-lead charge transition lines of QD1 , QD2 , QD3 and QD4

, respectively. We denote the charge state as (n1, n2, n3, n4), where ni with i =
1, 2, 3, 4 is denoting the number of electrons confined in QDi. At the lower left
corner of this diagram, all dots are completely depleted ((0,0,0,0) charge state).
The inter-dot transition lines are depicted as purple dotted lines.

In the MM-ESR experiment, we use PSB in DQDs for the spin readout [25].
Then the spin configuration, up or down is distinguished by measuring the tran-
sition between (2,0) (or (0,2)) and (1,1). As discussed in the§2.1.3, the necessary
charge states of the PSB measurement for (1,1,1,1) charge state cannot be allo-
cated in one voltage plane and need voltage control in multiple voltage plane [15].
Because Our target is the demonstration and evaluation of the MM-ESR method
in the QQD device, in the following measurements, we separate the QQD into
two DQDs of QD1-QD2 and QD3-QD4, and mainly focus on the charge states
of (2,0,0,1) and (1,1,0,1), and (1,0,1,1) and (1,0,0,2) to operate the MM-ESR in
QD1 and QD2 with S1, and QD3 and QD4 with S2 , respectively. In Fig.4.2(a), all
of these charge states are observed and positioned tight next to (1,1,1,1) charge
state. We note that the tunnel coupling between QD2 and QD3 is not precisely
tuned or measured but we can change it over a wide range. Fig.4.2 (b) (or (c))
shows the enlarged stability diagram around the boundary line between (2,0,0,1)
(or (1,0,0,2)) and (1,1,0,1) (or (1,0,1,1)). By utilizing these charge configurations,
we can use the similar operation protocol established in the DQD system [34] for
both DQDs without large voltage condition changes.

Fig.4.3 (a) shows a schematic of the gate voltage pulses for the ESR measure-
ments. Here three voltage conditions named I, M and O are specified in Figs.4.2
(b) and (c) by the green circles to define the four operation sections,“Initializa-
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Figure 4.2: Stability diagrams of QQD measured in the device shown in Fig.4.1.
(a) Stability diagram in (VP1-VP4) voltage plane measuring VRF1 with a back-
ground plane subtracted. (b) Enlarged stability diagram relevant for experiments
in QD1 and QD2. Green circles and bars show the voltage conditions and pulse
shape that are utilized in ESR measurements in left DQD. (d) Enlarged stability
diagram relevant for experiments in QD3 and QD4. Here the voltage conditions
and pulse shape for the ESR measurements in right DQD are shown similarly.
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Figure 4.3: (a) The pulse sequence for the ESR measurement. The horizontal
axis shows time and the vertical axis pictorially denotes the voltage conditions
at points O, M and I in Figs.4.2 (b) and (c). (b) Measured charge sensor signal
histograms. Each histogram consists of 512 readout results, each representing the
VRF value averaged over 33µs, and is generated in about 100ms. This VRF his-
togram measurement is repeated 100 times in total. The horizontal axis indicates
charge sensor signal and the vertical axis is the number of trials. (c) Measured
charge sensor signal histograms with the CDS techniques. The horizontal axis
indicates subtracted charge sensor signal.
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tion” in red,“Reference” in yellow,“Control” in green and“Readout” in
blue. Note that throughout the four operation sections, the third electron spin is
decoupled from the controlled spins with an empty QD in between. In the“Initial-
ization”section, the voltage condition is tuned to point I that is close to the charge
transition line of the outer dots (QD1 and QD4 ). The two-electron spin state in
QD1-QD2 (or QD3-QD4) is initialized to the ground doubly occupied singlet state
|S⟩ in QD1 (or QD4) by exchanging electrons with the adjacent reservoir. In the
“Reference” section the voltage condition is tuned to point M that is deep inside
the Coulomb blockade region of the doubly occupied charge state (2,0,0,1) (or
(1,0,0,2), discuss later). This stage does not influence the spin state and we ob-
tain the background signal of the charge sensor in this section. In the“Control”
section the voltage condition is changed to point O where two electrons in QD1

(or QD4) are separated into QD1 and QD2 (or QD3 and QD4) to form (1,1,0,1) (or
(1,0,1,1)) having the anti-parallel spin state |↓⟩ |↑⟩ [25, 35]. Then, a MW burst is
applied on gate C to spatially oscillate electron spins in all dots in the MM induced
BSl. The electron spin coherently flips between |↑⟩ and |↓⟩ but independently in
each QD when the resonance condition of fMW = |g|µB(Bext+BZ)/h is satisfied.
Here fMW is the MW frequency, g is the Lande g-factor of the electron confined
in the QD, and µB is the Bohr magneton, respectively. Finally, in the“Readout”
section with the voltage condition back to point M, the spin state is detected using
PSB. When the spin is not flipped in either of QD1 or QD2 (or QD3 or QD4), the
two-electron spin state returns to the doubly occupied |S⟩ in QD1 (or QD4). When
the spin is flipped in either dot, the two-electron state is either |T+⟩ or |T−⟩, the
charge state remains singly occupied in QD1-QD2 (or QD3-QD4) without relaxing
to the doubly occupied |S⟩. Here, we measure the singlet return probability PS or
the probability of finding the two electron spin state in the |S⟩ by taking the dif-
ference of VRF1 (or VRF2) from that measured in the”Reference” section (CDS
method).

With this readout method, the charge-state distinction fidelity affects the spin
readout fidelity. However, the signals of both charge sensors show the low fre-
quency drifts which leads to the low distinction fidelity. Fig.4.3 (b) shows a series
of one hundred VRF histograms taken continuously at the ”Readout” section of
the pulse without a MW burst. The horizontal axis indicates VRF value and the
vertical one indicates the sequence number of histograms that are continuously
measured. The time evolution of the histogram reveals the drift of VRF whose
standard deviation is 2.34mV that may be due to charge noise or fluctuation of the
gate voltages. The difference in VRF between singly and doubly occupied charge
states are roughly 50mV and 10mV in S1 and S2, respectively. The difference be-
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tween the charge sensor sensitivities may be caused by the difference of the actual
position of dot sensor. This VRF drift can cause the wrong charge state assignment
and lower the visibility of the ESR signal.

Here, we utilize a CDS method to stabilize the low frequency VRF drift. To
perform CDS, we extend the ”Reference” section of the pulse sequence and VRF

is measured for the same acquisition time as in ”Readout” section. In this method,
VRF signal measured in ”Reference” section is used as the background signal level
to be subtracted from that in the ”Readout” section. Fig.4.3 (c) shows a series of
compensated VRF histogram. We can see that the drift in VRF is greatly suppressed
and the standard deviation of this drift is reduced to 0.20mV. With this stable
charge sensor, we can utilize fixed threshold value for the distinction of the charge
states. Without CDS method, the threshold value for the distinction is estimated
from the VRF histogram in each time but this method is unstable in this case.
However, with the fixed threshold value that is estimated from VRF histogram
before ESR measurement, such instability in the readout can be removed and the
readout fidelity can be improved.

4.3 Realization of c.w. ESR of Four Individual Spins
Figs.4.4 (a) and (b) show the PS as a function of fMW and Bext upon application
of the MW pulse with pulse sequence shown in Fig.4.3 (a). Figs.4.3 (a) and (b)
are measured for the left and right DQD using S1 and S2 , respectively. We ob-
serve two distinct lines due to ESR in QD1 and QD2 in (a) and QD3 and QD4

in (b). The separation of the two ESR lines in each figure is due to the Zeeman
energy difference, which arises from the differences in the MM-induced BZ and
g-factor among dots. This separation is much larger than the ESR line width of
∼ 10 MHz and therefore enables us to access each resonance condition indepen-
dently by choosing the fMW and Bext properly. The line width is likely dominated
by the nuclear spin fluctuation, consistent with the Rabi frequencies fRabi values
(discussed later) smaller than the typical standard deviation of the nuclear field
(about 7MHz in GaAs QDs).

For the comparison, Figs.4.4 (c) and (d) show the similar results measured in
the same device but without CDS method. Even in these figure, four individual
ESR lines are observed but the S/N ratios and the strength of the ESR lines are
quite smaller than that in Figs.4.4 (a) and (b). It indicates that the CDS method
and stabilization of charge sensor improve the strength of ESR.
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Figure 4.4: Measured PS as a function of Bext and fMW with CDS method ((a)
and (b)) and without CDS method ((c) and(d)) [35] . (a) and (c) show the ESR
signal of the left side DQD (QD1 and QD2). (b) and (d) show the ESR signal of
the right side DQD (QD3 and QD4). The two yellow or black lines in each figure
indicate the ESR lines for two different QDs.
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4.4 Coherent Control of Four Individual Spins

4.4.1 Observation of Four Individual Rabi Oscillations
Next, we perform measurements of single-electron spin oscillations by applying
same pulse sequence but changing the MW burst time tMW in the “Control” sec-
tion. Figs.4.5 (a), (b), (c), and (d) show the PS measured at the respective reso-
nance condition of QD1, QD2, QD3 and QD4. We observe Rabi oscillations of the
electron spin in each dot. The Rabi oscillations are best resolved in QD2 with fre-
quency 5.32 MHz, the highest among all dots. On the other hand, the Rabi oscilla-
tion is less clear for the other QDs because of the lower frequency of about 2 MHz.
In these figures, the curve fittings are shown fitted by a power law envelope func-
tion with a π/4 phase shift [99] PS = A√

tMW
cos(2πfRabitMW+π/4)+Boff−CtMW.

The last linear term accounts for the reduction of PS due to the leakage to non-
qubit states presumably caused by photon-assisted tunneling [100]. Unfortunately,
the fidelities of initialization, single electron spin control, and readout would be
too low to estimate the control fidelity using the existing methods such as ran-
domized benchmarking [101]. As for the quality of Rabi oscillation, possible
improvements include optimizing the tunnel coupling between the QDs and reser-
voirs and applying higher PMW in order to enlarge the effective a.c. magnetic
field. We can estimate the contributions of spin orbit interaction [26] and nuclear
spin polarization [102] to the observed fRabi values. Our device is fabricated so
that spin orbit interaction accelerates the MM-ESR [17, 34] and its contribution
is calculated to be tens of mT/µm. Similarly, the contribution of nuclear spin po-
larization is estimated to be about tens of mT/µm from the typical parameters for
GaAs QDs. These values are two orders of magnitude smaller than theBSl created
by MM (∼1T/µm).

4.4.2 Analysis of the Rabi Oscillations
We measured Rabi oscillations for various MW output power PMW values and
derived fRabi from the curve fitting described above. The obtained values of fRabi

are shown as a function of MW amplitude in Fig.4.4 (e). The MW amplitude
is calculated from the applied PMW and the RF line attenuation solely given by
discrete attenuators (−39 dB). We observe fRabi linearly depending on the MW
amplitude for each QD. We derive the slope of the linear fitting to the data points
and find that it is different from dot to dot with ratio of 3 : 10 : 11 : 26 for QD1 to
QD4. The slope of the fitting line is related to the spin-electric coupling roughly
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Figure 4.5: Rabi oscillations of the single electron spins measured for QD1 with
fMW = 2751 MHz, Bext = 0.45 T and PMW = 10 dBm in (a), QD2 with
fMW = 2280 MHz, Bext = 0.45 T and PMW = 10 dBm in (b), QD3 with
fMW = 3650 MHz, Bext = 0.6 T and PMW = 0 dBm in (c), and QD4 with
fMW = 4400 MHz, Bext = 0.6 T and PMW = −6 dBm in (d). The fitting
parameters are A = 0.73

√
ns, fRabi = 1.62 MHz, Boff = 0.65, C = 0.26µs−1

for QD1, A = 0.81
√
ns, fRabi = 5.32 MHz, Boff = 0.46, C = 0.051µs−1 for

QD2, A = 0.38
√
ns, fRabi = 2.02 MHz, Boff = 0.69, C = 0.012µs−1 for QD3,

A = 0.22
√
ns, fRabi = 2.03 MHz, Boff = 0.79 and C = 0.018µs−1 for QD4. We

checked the robustness of the fitting results against the initial values used and the
errors in estimated fRabi values are about 0.05MHz. (e) MW amplitude depen-
dence of fRabi derived for each dot from the curve fitting to the Rabi oscillation
data. The dotted lines are the fitting to the data points constrained to cross the
origin. Data points extracted from (a) to (d) are indicated by black arrows.
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proportional to the product ofBSl and l2orb/∆ where lorb is the orbital spread along
z axis and ∆ is the QD confinement energy. Considering the MM design used
in this device, the BSl value should gradually increase from QD1 to QD4. The
experimental data seemingly agree with this trend but the observed variation of
the slope is quantitatively larger than expected. We discuss this discrepancy later
using Fig.4.6.

We note that we could not apply a large PMW to the right DQD (QD3 and
QD4) while we could to the left DQD (QD1 and QD2), because the ESR signals
of QD3 and QD4 become obscure in the high PMW range. So the Rabi oscillations
shown in Figs. 4.5 (c) and (d) are only measured at a small PMW, and therefore
the oscillation frequency is significantly lower than that for QD2. This may not
be related to the robustness of the ESR conditions because PS decreases with
increasing PMW even in the off-resonance conditions. One of the possible reasons
is that the tunnel barrier between QD4 and the right reservoir is not well closed
and the electron can tunnel out to the reservoir more easily as the PMW becomes
large.

4.5 Estimation of the Actual Quantum Dot Positions

4.5.1 Estimation of g-Factor and Local Magnetic Field
In what follows, we discuss the electron spin addressability in the QQD device.
We estimate the g-factors and BZ values of individual QDs from the resonance
lines in Figs.4.4. More specifically, we extract the values of Bext and fMW at the
resonance condition from the local minima of PS and perform the linear fit to the
formula hfRES = gµB(Bext +BZ) to obtain the values of g and BZ. The obtained
values are shown by the red circles in Figs. 4.6 (a) and (b). Those extracted
from the data measured with the different gate voltage condition in our previous
experiment [35] are also shown by the blue circles. With both variations of g and
BZ we are able to independently address the MM-ESR in each dot. Indeed, theBZ

difference alone will not be large enough to resolve resonances between QD1 and
QD2 in the present experiment, because the ESR line separation will be only 20
MHz comparable to the ESR line width. The variation of g between QDs may be
explained by the difference in the confinement potential [103]. On the other hand,
that of BZ is probably due to variation of the dot position and inhomogeneity of
the MM induced stray field. In support of this, we find the observed BZ in each
dot different when changing the gate voltage conditions.
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Figure 4.6: (a) g factors in each dot estimated from Figs.4.4 (a) and (b) (colored
in red) and Figs.4.4 (c) and (d) (colored in blue). (b) BZ in each dot estimated
from the same data with (a) (colored in red and blue). The 90% confidence inter-
val of estimated g and BZ are shown as error bar. (c) Spatial distribution of the
numerically calculated BZ and the dot positions construed from the result in (b).
The solid, and dotted circles indicate the positions for the data set in red, and blue
in (b), respectively. Here we define the origin of the y and z axis as the center of
the QD array.
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This result implies that BZ is varied from QD to QD in a controlled manner
with the gate voltage condition and therefore allows us to independently address
the MM-ESR in each dot. Fig.4.6 (c) shows a two-dimensional distribution (y-
z plane in Fig.4.1) of the BZ calculated numerically from the shape of the MM
and the QD positions that explain the results of Fig.4.6 (b). The solid, and dotted
circles indicate the positions for the data set in red, and blue in Fig.4.6 (b), respec-
tively. The shifts of the QD positions from the center of gate structure are indeed
rather large, exceeding the typical orbital spread of GaAs QDs ∼50nm. We spec-
ulate that these might have been caused by charged impurities or large variations
among the voltages applied to the surface gates. Considering the application as
quantum information processing hardware, such shifts from the center position
may cause difficulties in coupling the qubits. However, Fig.4.6 (c) also indicates
that their positions can be tuned by voltage conditions by a good fraction of 100
nm.

4.5.2 Estimation of Actual Quantum Dot Position
Finally, we discuss the variation of the MW amplitude dependence of fRabi among
the four dots as observed in Fig.4.5 (e). The QD positions which can explain the
BZ values shown in Fig.4.6 (c) give the BSl ratio of 3 : 3 : 2 : 4 for QD1 to
QD4. These BSl values are numerically calculated in the same way with BZ. This
variation of BSl among dots is too small to fully account for that of the slopes of
MW amplitude dependence. The variation of the g as shown in Fig.4.6 (a) can
also influence the control speed but not so significantly. This discrepancy may
be caused by inhomogeneity of the spin-electric coupling, which depends on the
inhomogeneity of the confining potential profile and MM geometry or domain,
although not well characterized.

4.6 Summary
In conclusion, we demonstrate coherent manipulations of four individual electron
spins in each dot of a linearly coupled QQD with the MM-ESR method. The QQD
is the largest multiple QD system ever used for coherent control of single electron
spins. From measurements of Rabi oscillations and ESR signals, we quantified
variations of the g-factor and the MM induced stray field at the dot positions.
Our analysis hints at inhomogeneity in the spin-electric coupling, which may be
due to the inhomogeneous dot potentials or MM stray field. The results obtained
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here imply the gate-voltage-tunable addressability of four individual spins with
the MM-ESR method, and therefore may pave the way towards the realization of
four qubits system and the further scale-up of the spin qubit systems with QDs.
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Chapter 5

Application of Quadruple Quantum
Dot as a Quantum Simulation
Platform

As discussed in §2.7, semiconductor MQDs can be a promising platform for the
analogue quantum simulation of the Fermi-Hubbard model. Precise experiments
were performed in the TQDs to study the interaction effect [7]; however, it fo-
cuses only on the charge degree of freedom. In this chapter, we investigate the
method to scale up this analogue simulation to larger MQDs. First, we investigate
the charge state distributions and the energy level diagrams of the QQD with the
numerical simulations. Then, we measure and demonstrate the charge state distri-
bution expected in the numerical calculations. Based on the demonstrations, we
propose the measurement scheme for the analogue quantum simulation model.

However, this chapter could not be published in UT Repository because the
results in this chapter are intended to published to journal later. In this version of
my thesis, this chapter is deleted.
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Summary

This thesis focuses on scaling up the multiple QD system and its applications such
as spin qubits and quantum simulations. The presented results are summarized as
follows.

1. We fabricated the 5QD device with a new device architecture that considers
further scaling up the MQD system. Utilizing this device, for the first time,
we formed a tunnel-coupled five QD linear array. We also investigated its
control and measurement method. (Chapter 3)

2. We demonstrated individual single spin control in each dot of the QQD with
the MM-ESR method. We also estimated the actual dot positions from the
ESR condition date and determined the possibility of further improvement
of the single spin control in the QQD architecture. (Chapter 4)

3. We investigated the four electron spin states and proposed the scheme for
the four electron spin state measurement in the QQD device. We demon-
strated the charge state distribution when the necessary charge states are
adjacent on one voltage plane. (Chapter 5, deleted in this version)

We believe that these results and improvements in scaling up the MQD system
and applying the established techniques will contribute to research on quantum
information processing with electron spin qubits and the application for analogue
quantum simulations. In the near future, we will scale up the QD system quickly
and focus on developing a multiple qubit system and we will demonstrate the
quantum algorithms in this system.
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