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Abstract

Microwave photons are indispensable for realizing a quantum information carrier or a
coupling bus between superconducting qubits. While microwave photons confined in a
resonator have been characterized in the quantum limit with a superconducting qubit
strongly coupled, it remains challenging to measure itinerant microwave photons due to
the lack of high-efficiency photodetectors in the microwave domain, in contrast to the
optical frequency domain. In this thesis, we demonstrate quantum measurements of itin-
erant microwave photons by using a circuit quantum electrodynamical system, where a
microwave cavity plays a crucial role in facilitating the interaction between itinerant pho-
tons and a superconducting qubit. First, we characterize the photon-number distribution
of a microwave squeezed vacuum by measuring the photon-number-resolved excitation
spectrum of the qubit in a cavity that is driven externally and continuously with the
squeezed vacuum. We confirm that the photon-number distribution reveals an even-odd
photon number oscillation and quantitatively constitutes the nonclassicality. Second, we
perform Wigner quantum state tomography of itinerant microwave photons by measur-
ing the quadratures which are efficiently amplified by a Josephson parametric amplifier.
The quantum state is reconstructed via the maximum likelihood method with corrected
measurement inefficiency, which is reliably calibrated based on the qubit dephasing in-
duced by itinerant microwave photons. Last, we implement a deterministic entangling
gate between a superconducting qubit and an itinerant microwave photon reflected by
a cavity containing the qubit. Using entanglement and high-fidelity qubit readout, we
demonstrate a quantum non-demolition detection of a single photon. The existence of
the detected microwave photon is confirmed by using Wigner quantum state tomography.
These results on the fundamental characterizations of itinerant microwave photons have
promising applications for quantum sensing and metrology in the microwave regime. Fur-
thermore, the efficient entangling gate between itinerant photons and a superconducting
qubit can be a building block for quantum networks connecting distant qubit modules as
well as for a microwave photon counting device for multiple-photon signals.
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Chapter 1

Introduction

A technological breakthrough in quantum measurement always opens up a new possibility
to explore a fundamental aspect in the quantum nature. Seeing the quantum world from
the new point of view brings us an improvement in quantum technology. The quantum
control and measurement with high fidelity offer various applications in a broad range of
fields, such as quantum computation, communication, and sensing.

For realizing these quantum applications by utilizing their own advantages, many
physical systems have been investigated, including trapped ions, ultracold atoms, nuclear
spins, electron spins in quantum dots, optical photons, and superconducting circuits [1].
Here, the important point is how to attack the trade-off between accessibility and quan-
tum coherence since quantum channels for control and measurement inevitably cause
relaxation and decoherence. Particularly, in the context of quantum computation, super-
conducting circuits are one of the leading candidates thanks to their design flexibility,
readily enabling the optimization of the trade-off. Moreover, taking full advantage of the
conventional technologies in integrated circuits and microwave engineering, the number of
individually controllable and measurable superconducting qubits have been dramatically
increased together with the improvements in their coherence.

A superconducting qubit was first controlled and measured in a quantum mechanical
manner [2], following the controversial discussions on the possibility of observing macro-
scopic quantum coherence [3, 4]. Although the coherence time in the first device was about
1 ns, there have been several improvements in circuit design and fabrication process, which
have increased their coherence times up to 10 - 100 µs [5, 6, 7, 8]. The invention of a trans-
mon qubit is one of the notable breakthroughs, which brings a charge-noise insensitivity,
a way of design based on microwave engineering, and a simple fabrication process [9, 10].

The family of superconducting qubits is considered microwave circuits with the non-
linearity brought by Josephson junctions and mimics the energy levels in an atom, in the
microwave frequency domain. The usefulness of this analogy is supported by the concept
of cavity quantum electrodynamics (QED), where an atom is strongly coupled to a cavity
mode [11]. In other words, a superconducting qubit can be considered an artificial atom
which coupled to a microwave photon in a resonator, which is called a circuit QED [12, 13].
By asking for the help of atomic physics, the building blocks for a quantum computer
have been established [14, 15].

In addition to the application to quantum computing, the circuit QED system is a
powerful platform for exploring a light-matter interaction. Because of the strong coupling
of the superconducting qubit and the microwave photons [16], the circuit QED system
can easily achieve the strong dispersive regime, where the state-dependent frequency shifts
exceed their dephasing rates [17, 18]. With the high-fidelity control and measurement of
superconducting qubits, microwave quantum states have been generated and characterized

1



2 CHAPTER 1. INTRODUCTION

with the comparable high fidelity. For example, the microwave state has been determinis-
tically prepared in an arbitrary superposition state of a few photon-number states [19, 20]
or a Schrödinger cat state with large-amplitude coherent states [21]. Furthermore, a
quantum non-demolition detection of a microwave photon was also demonstrated [22].
The longer lifetime of microwave photons in a three-dimensional cavity, due to the simple
structure and the large mode volume [23, 24], triggered the idea of utilizing the cavity
mode as a carrier of quantum information, giving rise to another architecture of quantum
computer [25, 26].

Thanks to the continuous efforts in the world, the number of integrated superconduct-
ing qubits has been increasing to several tens [27, 28]. In other words, small and noisy
quantum computers are now available. Today, one of the hottest topics in this field is how
we apply the baby quantum computers to industry and scientific research [29]. However,
to implement a fault-tolerant quantum computer, we need to push up the number of the
qubits by orders of magnitude.

It is not certain if it is sufficient to just scale up the existing superconducting circuit
technologies in order to achieve the number of qubits around 107 to 108 [30]. One of
the solutions may be to utilize a quantum network, where modules containing several
qubits are connected to each other via flying microwave photons [31]. The generation and
characterization of itinerant photons have been demonstrated [32, 33, 34]. More recently,
quantum state transfers are demonstrated between two localized circuit QED systems [35,
36, 37]. For realizing a well-defined communication channel as a key component of the
large-scale quantum computer, quantum technologies on itinerant microwave photons need
to be more matured. While the microwave photons confined in a cavity have successfully
been used as quantum information carriers, it remains challenging to improve the fidelity
of the manipulations on the itinerant microwave photons. One of the bottlenecks is the
imperfect quantum measurement of itinerant microwave photons due to the lack of a
high-efficient photodetector [38, 39, 40], in contrast to the case of the optical-frequency
domain [41].

In this thesis, we demonstrate quantum measurements of itinerant microwave photons
by using a three-dimensional circuit QED system, where a microwave cavity assists the
coupling between the itinerant microwave photons and a superconducting qubit. First,
we characterize the photon-number distribution in a microwave squeezed vacuum by mea-
suring the photon-number-resolved excitation spectrum of the qubit in the cavity that is
driven externally and continuously with the squeezed vacuum [42]. Second, we perform
a Wigner quantum state tomography of itinerant microwave photons by measuring the
quadratures which are efficiently amplified by a Josephson parametric amplifier (JPA) [43].
Finally, using an entanglement between an itinerant photon and a superconducting qubit
through a cavity mode, we demonstrate a quantum non-demolition (QND) detection of a
single photon [43].

1.1 Thesis overview

This thesis consists of the following parts.
Chapter 2 introduces the quantization of superconducting circuits. The basic circuit

models necessary for designing the circuit QED system and explaining the experimen-
tal results are presented. Chapter 3 describes the representation of quantum states in
a superconducting qubit and a harmonic oscillator. As a preparation for the Wigner
quantum state tomography of the microwave photons, we discuss the quantum measure-
ment of the quadratures through photon loss, amplification, and heterodyne detection.
Chapter 4 introduces the design of the three-dimensional circuit QED system using a
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classical electromagnetic simulator. We discuss the validity of the design methodology
by comparing the simulation results with the experimental data. Chapter 5 shows the
experimental setup. We discuss the required conditions for the setup based on the theo-
retical perspective on the circuit QED model in the dispersive regime. Chapter 6 describes
the experimental characterization of the circuit QED system. This chapter describes the
optimization methods of the control and readout of the superconducting qubit which is
dispersively coupled to the cavity.

Chapters 7, 8, and 9 shows the experimental results on the quantum measurements
of the itinerant microwave photons. Chapter 7 shows the results of the measurement
of the nonclassical photon-number distribution in the cavity driven by the microwave
squeezed vacuum. We discuss the determination of the actual photon number distribution
from the excitation spectrum of the superconducting qubit. Chapter 8 describes the
Wigner quantum state tomography of the itinerant microwave photons using the JPA as
a phase-sensitive amplifier. We introduce the iterative maximum likelihood reconstruction
without or with the correction of the inefficiency of the quadrature measurements. This
chapter describes the calibration of the measurement efficiency based on the microwave-
induced dephasing of the superconducting qubit. Chapter 9 describes the QND detection
of itinerant microwave photons using a entangling gate with the superconducting qubit in
the cavity. We characterize the QND detection with quantum efficiency and dark-count
probability. Finally, we discuss the quantum state of the itinerant mode after the QND
detection, which is reconstructed by the Wigner quantum state tomography.

Finally, we summarize the results discussed in this thesis and offer prospects. We
discuss the applications of our quantum measurement scheme of itinerant microwave pho-
tons.





Chapter 2

Superconducting quantum circuits

Here, we explain the quantization of superconducting circuits. In this thesis, we use a
transmon qubit, which can be considered as an anharmonic oscillator. Therefore, we
introduce its Hamiltonian from an LC resonator by treating a nonlinear term from a
Josephson junction perturbatively. Then, we derive the Hamiltonian of a circuit quantum
electrodynamical (QED) system, where a transmon qubit is coupled to an LC resonator.
Furthermore, we introduce the Hamiltonian of a Josephson parametric amplifier (JPA).
We also introduce coupling to a waveguide for each system. The basic procedure of
the quantization is explained in Appendix. A, where the description of the quantization
follows [44].

2.1 LC resonator

An LC resonator is known as a fundamental microwave circuit. It is often used for readout,
coupling, and filtering for superconducting qubits. By tightly confining electromagnetic
fields, it allows to readily reach the strong coupling regime. In the context of quantum
mechanics, an LC resonator is a harmonic oscillator with uniform energy level spacing.
An energy quantum in the LC circuit is conventionally called a photon.

As shown in Fig. 2.1, an LC resonator is formed by an inductor and a capacitor. The
Lagrangian of the circuit is written as

L =
C

2
Φ̇2 − Φ2

2L
, (2.1)

where L is the inductance, C is the capacitance and Φ is the magnetic flux in the inductor.
The conjugate momentum Q is calculated by

Q =
∂L
∂Φ̇

= CΦ̇, (2.2)

where Q is understood as the electric charge in the capacitor, since Φ̇ gives the voltage
across the capacitance. Through a Legendre transformation, we obtain the Hamiltonian

H =
Q2

2C
+

Φ2

2L
. (2.3)

By replacing the classical variables Φ and Q with their corresponding operators Φ̂
and Q̂ and imposing the canonical commutation relation [Φ̂, Q̂] = iℏ, we obtain the
quantum-mechanical Hamiltonian

Ĥ =
Q̂2

2C
+

Φ̂2

2L
. (2.4)

5
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Figure 2.1: LC resonator. (a) Circuit diagram. (b) Energy levels.

To diagonalize it, we define the annihilation and creation operators as

â =

(
C
ℏ2L

) 1
4 Φ̂ + i

(
L

ℏ2C

) 1
4 Q̂

√
2

, â† =

(
C
ℏ2L

) 1
4 Φ̂− i

(
L

ℏ2C

) 1
4 Q̂

√
2

, (2.5)

which satisfy the bosonic commutation relation, [â, â†] = 1. Then, the conjugate operators
Φ̂ and Q̂ are described in terms of the annihilation and creation operators by

Φ̂ =

(
ℏ2L
C

) 1
4 â+ â†√

2
, Q̂ =

(
ℏ2C
L

) 1
4 â− â†√

2i
. (2.6)

By substituting Eq. (2.6) in the Hamiltonian of Eq. (2.4), we can diagonalize the Hamil-
tonian as

Ĥ = ℏωc

(
â†â+

1

2

)
, (2.7)

where ωc = 1/
√
LC is the resonance frequency of the LC resonator. The eignestates are

the photon number state or the Fock states, as shown in Fig. 2.1(b).

2.1.1 Dimensionless parameters

It is useful to analyze the system with dimensionless parameters. Here, we define the
dimensionless magnetic flux and electric charge as

φ̂ =
Φ̂

ϕ0

, n̂ =
Q̂

2e
, (2.8)

where ϕ0 = ℏ
2e

is the reduced magnetic flux quantum and e is the elementary electric
charge. Note that the magnetic flux quantum is given by Φ0 = 2πϕ0 = h

2e
. The phase

φ̂ can be understood as the magnetic flux normalized with the reduced magnetic flux
quantum, which is consistent with the definition of the phase difference in a Josephson
junction. The number n̂ can be understood as the electric charge normalized with the
electric charge of a Cooper pair. Here, the new commutation relation is given by

[φ̂, n̂] = i. (2.9)
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The Hamiltonian of Eq. (2.3) is rewritten as

Ĥ = ℏ
(ωC

2
n̂2 +

ωL

2
φ̂2
)
, (2.10)

where ℏωC = (2e)2

C
= ℏZ0

C
is the capacitive energy quantum, and ℏωL =

ϕ2
0

L
= ℏ 1

Z0L
is

the inductive energy quantum. Here, we also define the quantum impedance Z0 = ϕ0

2e
=

ℏ/(2e)2, the ratio of the reduced magnetic flux quantum to the electric charge of a Cooper
pair. The annihilation and creation operators â, â† are now described by

â =

(
ωL

ωC

) 1
4
φ̂+ i

(
ωC

ωL

) 1
4
n̂

√
2

, â† =

(
ωL

ωC

) 1
4
φ̂− i

(
ωC

ωL

) 1
4
n̂

√
2

.
(2.11)

On the other hand, the pair of conjugate operators are now represented as

φ̂ =

(
ωC

ωL

) 1
4 â+ â†√

2
, n̂ =

(
ωL

ωC

) 1
4 â− â†√

2i
. (2.12)

We find that the zero-point fluctuations of the conjugate variables are described by the
ratio of the energy quanta. In additoin, the resonance frequency ωc is described by the
geometric mean of the frequencies of the capacitive and inductive energy quanta:

ωc =
√
ωLωC. (2.13)

An LC resonator is sometimes characterized by the characteristic impedance Z =√
L/C. From this definition, we find the characteristic impedance divided by the quantum

impedance corresponds to the ratio of the energy quanta: ωC/ωL = (Z/Z0)
2.

2.2 Capacitively coupled LC resonators

A coupled system is an indispensable tool for quantum information processing since a
coupling interaction between two or more quantum systems enables us to entangle the
systems together or to transfer quantum information. Here, we will study capacitively
coupled LC resonators as a basic coupled system. As shown in Fig. 2.2(a), two independent
magnetic fluxes Φ1 and Φ2 are defined as the degrees of freedom of the two LC resonators.
Using these variables, we derive the Lagrangian as

L =
C1

2
Φ̇2

1 −
Φ2

1

2L1

+
C2

2
Φ̇2

2 −
Φ2

2

2L2

+
Cg

2

(
Φ̇1 − Φ̇2

)2
, (2.14)

where the last term gives us the coupling between the two LC resonators. Using the
magnetic flux vector Φ and the capacitance matrix C, the Lagrangian can be represented
as

L =
1

2
Φ̇TCΦ̇− Φ2

1

2L1

− Φ2
2

2L2

, (2.15)

where

Φ =

(
Φ1

Φ2

)
, C =

(
C1 + Cg −Cg

−Cg C2 + Cg

)
. (2.16)

Then, we obtain the conjugate momentum vector

Q =

(
Q0

Q1

)
= CΦ̇ =

(
(C1 + Cg)Φ1 − CgΦ2

−CgΦ1 + (C2 + Cg)Φ2

)
. (2.17)
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Figure 2.2: Capacitively coupled LC resonators. (a) Circuit diagram. (b) Oscillation of
a single photon between the two resonators at the frequency of 2g.

and the inverse of the capacitance matrix

C−1 =
1

C∗
2

(
C2 + Cg Cg

Cg C1 + Cg

)
, (2.18)

where C∗
2 = (C1 + Cg)(C2 + Cg)− C2

g . For simplicity, C∗
2 = (C1 + Cg)(C2 + Cg)(1− ϵ),

where ϵ =
C2

g

(C1+Cg)(C2+Cg)
. Using Eq. (A.44), we obtain the Hamiltonian

H =
1

2
QTC−1Q+

Φ2
1

2L1

+
Φ2

2

2L2

=
Q2

1

2C̄1

+
Φ2

1

2L1

+
Q2

2

2C̄2

+
Φ2

2

2L2

+ (1− ϵ)
Cg

C̄1C̄2

Q1Q2,

(2.19)

where C̄n = (Cn + Cg) (1− ϵ) are the renormalized capacitances for n = 1, 2. We can
find that the first and the second terms describe one of the renormalized resonator, that
the third and the forth terms describe the other renormalized resonator, and that the last
term describes the coupling between the resonators.

We can then obtain the quantum-mechanical Hamiltonian by replacing the conjugate
variables with their corresponding operators:

Ĥ =
Q̂2

1

2C̄1

+
Φ̂2

1

2L1

+
Q̂2

2

2C̄2

+
Φ̂2

2

2L2

+ (1− ϵ)
Cg

C̄1C̄2

Q̂1Q̂2, (2.20)

where the pairs of conjugate operators have the commutation relation [Φ̂n, Q̂n] = iℏ, for
n = 1, 2.
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Using the annihilation and creation operators for each mode which are defined as in
Eq. (2.5), the Hamiltonian can be represented as

Ĥ = ℏ
[
ωc1 â

†
1â1 + ωc2 â

†
2â2 − g(â1 − â†1)(â2 − â†2)

]
, (2.21)

where ωrn = 1/
√
LnC̄n is the resonance frequency of the LC resonator for n = 1, 2 and

g = 1
2

√
ωc1ωc2C

2
g

(C1+Cg)(C2+Cg)
is the coupling strength.

The ratio of the coupling strength to the resonance frequency (the geometric mean of
both resonant frequencies) is important to characterize how strong the coupling strength
is. It is given by

g
√
ωc1ωc2

=
1

2

√
Cg

C1 + Cg

Cg

C2 + Cg

. (2.22)

We find the ratio of the coupling strength to the geometric mean of the resonator frequen-
cies is determined by the geometric mean of the ratios of the coupling capacitance Cg to
the total capacitance Cn+Cg, for n = 1, 2. The ratio of Cg/(Cn+Cg) is sometimes called
the participation ratio, which is useful for the characterization of the coupling strength
and the energy loss rate of the LC resonator.

In this thesis, we do not consider the ultra- or deep-strong coupling regime where
the coupling strength is comparable to the resonance frequencies of the system. We only

consider the regime g√
ωc1ωc2

≪ 1. In that limit, we can neglect ϵ =
C2

g

(C1+Cg)(C2+Cg)
since

the condition of g√
ωc1ωc2

≪ 1 exactly corresponds to ϵ =
C2

g

(C1+Cg)(C2+Cg)
≪ 1. Then, we

simply approximate the renormalized capacitance as C̄n = (Cn + Cg) and the resonance

frequency as ωrn = 1/
√
Ln(Cn + Cg) = 1/

√
LnC̄n, for n = 1, 2 hereinafter.

In the coupling Hamiltonian in Eq. (2.21), we have the terms of â†1â
†
2 and â1â2, which

are called the counter rotating terms. The frequency detuning between the interacting
states is described as ωc1+ωc2 and it is much larger than the coupling strength g as long as
the system is in the normal coupling regime. Therefore, the interactions are adiabatically
suppressed and the counter rotating terms can be safely neglected. This approximation is
called the Rotating Wave Approximation (RWA). Using this approximation, the Hamil-
tonian is represented as

Ĥ = ℏ
[
ωc1 â

†
1â1 + ωc2 â

†
2â2 + g(â†1â2 + â†2â1)

]
. (2.23)

2.2.1 Diagonalization

In the Hamiltonian of the capacitively coupled LC resonators, the two harmonic oscillator
modes exchange energy in a coupled oscillation. Here, it is useful to represent the Hamil-
tonian using diagonalized modes, which are defined as superpositions of the two harmonic
oscillator modes.

To proceed with the diagonalization, we write the Hamiltonian as

Ĥ = ℏ
[(
ω̄c +

∆

2

)
â†1â1 +

(
ω̄c −

∆

2

)
â†2â2 + g(â†1â2 + â†2â1)

]
= ℏ â† Ĥ â,

(2.24)

where ω̄c = (ωc1 + ωc2)/2 is the mean of the two resonance frequencies and ∆ = ωc1 −
ωc2 is the detuning between them. The one-dimensional column vector â and the two-
dimensional matrix Ĥ are defined as

â =

(
â1
â2

)
, Ĥ =

(
ω̄c +

∆
2

g
g ω̄c − ∆

2

)
. (2.25)
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Using the unitary operator Û , the matrix Ĥ can be diagonalized as

Ĥ = Û †
(
ω̄c +

∆′

2
0

0 ω̄c − ∆′

2

)
Û , (2.26)

where ∆′ =
√
∆2 + (2g)2 is the frequency splitting of the two resonator modes. Here, the

unitary operator can be determined as

Û =

(
cosΘ sinΘ
− sinΘ cosΘ

)
, (2.27)

where Θ = 1
2
arctan

(
2g
∆

)
is the mixing angle.

Then, we can define the diagonalizing annihilation operators as

â = Û â(
â1
â2

)
=

(
cosΘ â1 + sinΘ â2
− sinΘ â1 + cosΘ â2

)
,

(2.28)

where the diagonalizing annihilation and creation operators satisfy the commutation rela-
tion as [ân, â

†
m] = δnm, for n, m = 1, 2. The original annihilation operators are rewritten

as
â = Û †â(

â1
â2

)
=

(
cosΘ â1 − sinΘ â2
sinΘ â1 + cosΘ â2

)
.

(2.29)

Finally, we rewrite the Hamiltonian with the diagonalizing annihilation and creation
operators:

Ĥ = ℏ
[(
ω̄c +

∆′

2

)
â†1â1 +

(
ω̄c −

∆′

2

)
â†2â2

]
. (2.30)

After the diagonalization, we can consider the coupled LC resonator to be two independent
LC resonators with a splitting of ∆′ =

√
∆2 + (2g)2.

The minimum of the frequency splitting can be obtained with the resonance condition
of ∆ ≪ g as min ∆′ = 2g. In this condition, the diagonalized modes is given by(

â1
â2

)
=

(
1√
2
(â1 + â2)

1√
2
(−â1 + â2)

)
. (2.31)

It shows that a single photon oscillates between the two resonator modes of â1 and â2 at
the frequency of 2g, as shown in Fig. 2.2(b).

2.2.2 Dispersive regime

The dispersive regime is defined as the space in which the coupling strength is much
smaller than the detuning, g ≪ |∆| = |ωc1 −ωc2|. In this regime, we can approximate the
frequency splitting ∆′ =

√
∆2 + (2g)2 in the leading order of g/∆ as

∆′ = ∆+ 2
g2

∆
. (2.32)

Therefore, the Hamiltonian can be rewritten as

Ĥ = ℏ
[(
ωc1 +

g2

∆

)
â†1â1 +

(
ωc2 −

g2

∆

)
â†2â2

]
. (2.33)
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The above equation shows that the resonator modes obtain a frequency shift of g2

∆
, which

is called the Lamb shift.
Furthermore, the diagonalized basis is approximated with Θ = 1

2
arctan

(
2g
∆

)
≈ g

∆(
â1
â2

)
≈
(

cos
(

g
∆

)
â1 + sin

(
g
∆

)
â2

− sin
(

g
∆

)
â1 + cos

(
g
∆

)
â2

)
≈
(

â1 +
(

g
∆

)
â2

−
(

g
∆

)
â1 + â2

)
, (2.34)

where we neglect those terms with higher orders of g
∆
. From these calculations, we find

the diagonalized modes can be roughly considered to be the original modes.

2.3 Waveguide

Waveguides, which enable us to transmit microwave signals, are indispensable tools for
readout and control of superconducting circuits.

A waveguide is modeled by a ladder-type circuit as shown in Fig. 2.3(a). The total
length D is divided into 2n + 1 nodes and the unit length of the ladder is described by
d = D/(2n+1). Suppose that the inductance and capacitance per unit length are l and c,
then the inductance and capacitance in the ladder-type circuit are ld and cd, respectively.
Considering the circuit diagram around the node j shown in Fig. 2.3(b), the Lagrangian
of the circuit is described by

L =
n−1∑
j=−n

[
cd

2
ϕ2
j −

1

2ld
(ϕj+1 − ϕj)

2

]
, (2.35)

where ϕj is the magnetic flux at node j. With the conjugate momentum

Qj =
∂L
∂ϕ̇j

= cdϕ̇j, (2.36)

we obtain the Hamiltonian:

H =
n−1∑
j=−n

[
1

2cd
Q2

j +
1

2ld
(ϕj+1 − ϕj)

2

]
, (2.37)

where Qj is understood as the electric charge stored in the capacitor of capacitance cd

at node j. By replacing the conjugate variables ϕj and Qj with the operators ϕ̂j and

Q̂j and imposing the canonical commutation relations [ϕ̂j, Q̂k] = iℏδjk, [ϕ̂j, ϕ̂k] = 0, and

[Q̂j, Q̂k] = 0, we obtain the quantum-mechanical Hamiltonian of the waveguide:

Ĥ =
n−1∑
j=−n

[
1

2cd
Q̂2

j +
1

2ld

(
ϕ̂j+1 − ϕ̂j

)2]
. (2.38)

Note that δjk is the Kronecker delta.
In a realistic situation, the waveguide is not a ladder-type circuit but a distributed

circuit. Therefore, it is useful to take the limit of n → ∞ (d → 0). However, from
Eq. (2.36), the conjugate momentum Qj vanishes in this limit. Then, we define the new
conjugate momentum

qj ≡
Qj

d
= cϕ̇j. (2.39)
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(a)

(c)

(b)

0

Figure 2.3: Circuit diagram of a waveguide. (a) Entire circuit diagram. The total length
of the waveguide is D. (b) Magnified circuit diagram around node j. (c) Simplified circuit
diagram.

From this definition, qj is found to be the electric charge density at node j. In the same

way, the operator is defined as q̂j ≡ Q̂j

d
. Thus, the Hamiltonian is modified as

Ĥ =
n−1∑
j=−n

d

 1

2c
q̂2j +

1

2l

(
ϕ̂j+1 − ϕ̂j

d

)2
 , (2.40)

where [ϕ̂j, q̂k] =
iℏδjk
d

.
Taking the limit of n → ∞, we obtain the Hamiltonian of the waveguide in the

continuum limit as

Ĥ =

∫ D/2

−D/2

dx

 1

2c
q̂2x +

1

2l

(
∂ϕ̂x

∂x

)2
 , (2.41)

where [ϕ̂x, q̂x′ ] = iℏδ(x − x′). Here, we use jd
2n+1

→ x,
∑n−1

j=−n d →
∫ D/2

−D/2
dx, ϕ̂j → ϕ̂x,

q̂j → q̂x,
ϕ̂j+1−ϕ̂j

d
→ ∂ϕ̂x

∂x
, and

δjk
d

→ δ(x − x′). Note that δ(x − x′) is the Dirac delta
function.

2.3.1 Diagonalization

To diagonalize the Hamiltonian, the Fourier transformation of ϕ̂x, q̂x is defined with the
periodic condition as

ϕ̂kn =
1√
2π

∫ D/2

−D/2

dx ϕ̂xe
−iknx, q̂kn =

1√
2π

∫ D/2

−D/2

dx q̂xe
−iknx, (2.42)



2.3. WAVEGUIDE 13

where kn = 2πn/D (n = 0,±1,±2, · · · ). Note that ϕ̂†
kn

= ϕ̂−kn and q̂†kn = q̂−kn , since ϕ̂x

and q̂x are Hermite operators. Then, the inverse Fourier transformation is given by

ϕ̂x =

√
2π

D

∑
kn

ϕ̂kne
iknx, q̂x =

√
2π

D

∑
kn

q̂kne
iknx. (2.43)

Here, we use 1
D

∫ D/2

−D/2
dx eiknx = δkn,0 and 1

D

∑
kn
eiknx = δ(x). Then, the Hamiltonian is

represented as

Ĥ =
2π

D

∑
kn

{
1

2c
q̂†kn q̂kn +

k2n
2l
ϕ̂†
kn
ϕ̂kn

}
, (2.44)

where [ϕ̂†
kn
, q̂kn′ ] = [ϕ̂kn , q̂

†
kn′ ] =

iℏD
2π
δkn,kn′ . Using their corresponding annihilation and

creation operators, which are defined as

âkn =

(
k2nc
ℏ2l

) 1
4
ϕ̂kn + i

(
l

ℏ2k2nc

) 1
4
q̂kn

√
2

, â†kn =

(
k2nc
ℏ2l

) 1
4
ϕ̂†
kn

− i
(

l
ℏ2k2nc

) 1
4
q̂†kn√

2
,

(2.45)

the Hamiltonian can be diagonalized as

Ĥ =
2π

D

∑
kn

ℏωkn â
†
kn
âkn , (2.46)

where [âkn , â
†
kn′ ] =

L
2π
δkn,kn′ and constants are neglected.

2.3.2 Infinite-length limit

Here, we consider the infinite-length limit of D → ∞, then 2π
D

∑
kn

→
∫∞
−∞ dk and kn → k.

From Eqs. (2.42) and (2.43), we obtain the Fourier transformation in this limit as

ϕ̂k =
1√
2π

∫ ∞

−∞
dx ϕ̂xe

−ikx, q̂k =
1√
2π

∫ ∞

−∞
dx q̂xe

−ikx,

ϕ̂x =
1√
2π

∫ ∞

−∞
dk ϕ̂ke

ikx, q̂x =
1√
2π

∫ ∞

−∞
dk q̂ke

ikx,

(2.47)

where [ϕ̂†
k, q̂k′ ] = [ϕ̂k, q̂

†
k′ ] = iℏδ(k − k′). Note that we use

∫∞
−∞ dk eikx = 2πδ(x) and∫∞

−∞ dx eikx = 2πδ(k). Then, the diagonalized annihilation and creation operators can be
described as

âk =

(
l

ℏ2k2c

) 1
4 q̂k − i

(
k2c
ℏ2l

) 1
4
ϕ̂k

√
2

, â†k =

(
l

ℏ2k2c

) 1
4 q̂†k + i

(
k2c
ℏ2l

) 1
4
ϕ̂†
k

√
2

,
(2.48)

where [âk, â
†
k′ ] = δ(k − k′). In addition, the Hamiltonian can be represented as

Ĥ =

∫ ∞

−∞
dk ℏωk â

†
kâk, (2.49)

where ωk = |k|/
√
cl．
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The magnetic flux and electric charge in real space can be represented as

ϕ̂x =
1√
2π

∫ ∞

−∞
dk

√
ℏ
cωk

âke
ikx + â†ke

−ikx

√
2

,

q̂x =
1√
2π

∫ ∞

−∞
dk
√
cℏωk

âke
ikx − â†ke

−ikx

√
2i

.

(2.50)

Here, we calculate the time-evolution of these operators in the Heisenberg picture as

ϕ̂x(t) =
1√
2π

∫ ∞

−∞
dk

√
ℏ
cωk

âke
i(kx−ωkt) + â†ke

−i(kx−ωkt)

√
2

,

q̂x(t) =
1√
2π

∫ ∞

−∞
dk
√
cℏωk

âke
i(kx−ωkt) − â†ke

−i(kx−ωkt)

√
2i

.

(2.51)

We find the left- and right-going waves are orthogonal. Then, a phase velocity is found
to be v = ωk/|k| = 1/

√
cl.

2.3.3 One directional propagating mode

In the waveguide Hamiltonian, the right- and left- going modes are orthogonal. Thus, we
consider only one directional propagating mode, or a right-going propagating mode, here.
The Hamiltonian of the right-going propagating mode is described as

Ĥ =

∫ ∞

0

dk ℏωk â
†
kâk, (2.52)

where [âk, â
†
k′ ] = δ(k − k′).

In experiments, a right-going microwave in a waveguide is measured and controlled in
the frequency or time domains. Therefore, it is useful to represent the propagating mode
in terms of frequency as

âω =
1√
v
âk, (2.53)

where v is the phase velocity of the waveguide and âω is the frequency mode, which
satisfies [âω, â

†
ω′ ] = δ(ω − ω′). Note that the frequency ω labels the wavenumber mode

uniquely, since we consider only the right-going mode.
Then, the Hamiltonian can be represented as

Ĥ = ℏ
∫ ∞

0

dω ω â†ωâω (2.54)

where ω = ωk is the resonance frequency of the frequency mode, and we use the variable
transformation of k → ω = vk.

Suppose the right-going mode is weakly coupled to a localized mode with a resonance
frequency ω0. Only the frequency modes whose resonance frequency is close to ω0 are
involved with the dynamics. Therefore, we can add the virtual negative frequency modes
without affecting the dynamics as

Ĥ = ℏ
∫ ∞

−∞
dω ω â†ωâω. (2.55)

Furthermore, the time mode ât is defined as the Fourier transform of the frequency
mode:

ât =
1√
2π

∫ ∞

−∞
dω âωe

−iωt, (2.56)

where [ât, â
†
t′ ] = δ(t− t′). The field operator in time corresponds to the field operator in

real space.
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2.3.4 Pulse mode

In many experiments, only a few pulse modes may be concerned with the dynamics of
generations, interactions, and measurements. Therefore, it is useful to represent a quan-
tum state of the right-going mode with a finite number of pulse modes. The description
on pulse mode can be seen in [45].

Using a mode function described by m(ω) or m(t), the pulse mode is defined as

â =

∫ ∞

−∞
dω m(ω)âω

=

∫ ∞

−∞
dt m(t)ât.

(2.57)

Then, the pulse mode can be understood as the superposition of the frequency-domain
modes âω or of the time-domain modes ât with the coeeficients defined by the mode
functions. From the definition of Eq. (2.56), we obtain the relation of the Fourier trans-
formation between the mode functions as

m(ω) =
1√
2π

∫ ∞

−∞
dt m(t)e−iωt

m(t) =
1√
2π

∫ ∞

−∞
dω m(ω)eiωt.

(2.58)

Furthermore, the annihilation and creation operators of the pulse mode have a bosonic
commutation relation

[â, â†] =

∫∫ ∞

−∞
dωdω′ m∗(ω′)m(ω)[âω, âω′ ]

=

∫∫ ∞

−∞
dωdω′ m∗(ω′)m(ω)δ(ω − ω′)

=

∫ ∞

−∞
dω m∗(ω)m(ω) =

∫ ∞

−∞
dω |m(ω)|2 = 1,

[â, â†] =

∫ ∞

−∞
dt m∗(t)m(t) =

∫ ∞

−∞
dt |m(t)|2 = 1,

(2.59)

where we impose the normalization conditions on the mode functions as∫ ∞

−∞
dω m∗(ω)m(ω) = 1,∫ ∞

−∞
dt m∗(t)m(t) = 1.

(2.60)

Note that when one of the normalization conditions is satisfied, the other condition is
automatically satisfied by Parseval’s theorem. As the annihilation and creation operators
of the pulse mode have the same commutation relation as that of a harmonic oscillator
mode, we can consider the pulse mode as a single harmonic oscillator mode.

Examples of the quantum states of the pulse mode are shown in the following. Here,
the vacuum state of all the continuous modes is defined as |0⟩.

The single photon state of the pulse mode can be described as

|1⟩ = â†|0⟩

=

∫ ∞

−∞
dω m∗(ω)â†ω|0⟩ =

∫ ∞

−∞
dω m∗(ω)|1⟩ω

=

∫ ∞

−∞
dt m∗(t)â†t |0⟩ =

∫ ∞

−∞
dt m∗(t)|1⟩t.

(2.61)
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The single photon state can be understand as the superposition of the single photon states
in the frequency-domain modes (|1⟩ω = b̂†ω|0⟩) or in the time-domain modes (|1⟩t = b̂†t |0⟩).

The coherent state of the pulse mode can be described as

|β⟩ = eβb̂
†−β∗b̂|0⟩

= exp

[∫ ∞

−∞
dω
(
β(ω)b̂†ω − β∗(ω)b̂ω

)]
|0⟩

= exp

[∫ ∞

−∞
dt
(
β(t)b̂†t − β∗(t)b̂t

)]
|0⟩,

(2.62)

where β(ω) = βm∗(ω) and β(t) = βm∗(t). From this calculation, the coherent state in
the pulse mode can be described as the tensor product state of the coherent states in the

frequency-domain modes |β(ω)⟩ω = eβm
∗(ω)b̂†ω−β∗m(ω)b̂ω |0⟩ or in the time-domain modes

|β(t)⟩t = eβm
∗(t)b̂†t−β∗m(t)b̂t|0⟩.

Here, we define another pulse mode â′ using a new mode function n(ω) or n(t) as

â′ =

∫ ∞

−∞
dω n(ω)âω

=

∫ ∞

−∞
dω n(t)ât,

(2.63)

where the normalization conditions are satisfied for the mode functions. Then, the pulse
mode also has the same bosonic commutation relation as [â′, â′†] = 1. Suppose the new
mode functions n(ω) and n(t) are orthogonal to the previous mode functions m(ω) and
m(t), respectively, as ∫ ∞

−∞
dω n∗(ω)m(ω) = 0,∫ ∞

−∞
dt n∗(t)m(t) = 0.

(2.64)

The commutation relation between â and â′† can be calculated as

[â, â
′†] =

∫ ∞

−∞
dω n∗(ω)m(ω) = 0

=

∫ ∞

−∞
dt n∗(t)m(t) = 0.

(2.65)

It shows that the pulse modes â and â′, which have mode functions which are orthogonal
to each other, are themselves orthogonal modes which can be controlled and measured
separately in principle.

2.3.5 Replacement of pulse modes

A replacement of pulse modes is useful when we consider the mode matching between the
pulse modes. Here, we will replace a pulse mode â1 with a new pulse mode â′1. These
modes are defined as

â1 =

∫ ∞

−∞
dω m1(ω)âω (2.66)

â′1 =

∫ ∞

−∞
dω m′

1(ω)âω. (2.67)
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Note that although we represent the mode functions only with the frequency domain in
the following, we can consider the same treatment also with the time domain.

We describe the new mode function m′
1(ω) with m1(ω) and m2(ω), where m2(ω) is an

indispensable mode function which is orthogonal to m1(ω), as

m′
1(ω) =

√
η m1(ω) +

√
1− η m2(ω), (2.68)

which is a general form to satisfy the normalization condition of m′
1(ω). Since there is

arbitrariness in the global phases of mode functions,
√
η and

√
1− η can be defined to

be real numbers without loss of generality. Using the annihilation operators, this can be
represented as

â′1 =
√
η â1 +

√
1− η â2, (2.69)

where â2 =
∫∞
−∞ dω m2(ω)âω. From this, we find the replacement of the pulse modes

corresponds to a beam splitter transformation, as discussed in Sec. 3.4.4. To be consistent
with the unitary transformation, or the beam splitter transformation, the replacement is
fully characterized with introducing another pulse mode â′2 =

∫∞
−∞ dω m′

2(ω)âω which is
orthogonal to â′1, as (

â′1
â′2

)
=

( √
η

√
1− η

−
√
1− η

√
η

)(
â1
â2

)
. (2.70)

From Eq. (2.68), the transmittance can be calculated as the overlap between the mode
functions: ∫ ∞

−∞
dω m′∗

1 (ω)m1(ω)

=
√
η

∫ ∞

−∞
dω m∗

1(ω)m1(ω) +
√

1− η

∫ ∞

−∞
dω m∗

1(ω)m2(ω)

=
√
η

(2.71)

Furthermore, using the transmittance η, the mode function m2(ω) is obtained as

m2(ω) =
1√
1− η

m′
1(ω)−

√
η

1− η
m1(ω). (2.72)

Finally, the mode function m′
2(ω) is obtained as

m′
2(ω) = −

√
1− η m1(ω)−

√
η m2(ω). (2.73)

Thus, we can fully characterize the replacement of the pulse modes by using the beam
splitter transformation.

In summary, when we determine a new mode function m′
1(ω) which replaces an initial

mode functionm1(ω), the replacement corresponds to a beam splitter transformation with
the transmittance, calculated as

√
η =

∫∞
−∞ dω m′∗

1 (ω)m1(ω). The mode function m2(ω)

which participates in m′
1(ω) can be calculated as m2(ω) =

1√
1−η

m′
1(ω)−

√
η

1−η
m1(ω).

2.4 LC resonator connected to waveguide

Coupling between a system and a waveguide is indispensable to control and measure the
system.

Here, we consider a semi-infinite waveguide which is coupled to an LC resonator, as
shown in Fig. 2.4(a). As explained in Sec. 2.3, an infinite waveguide has independent
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right- and left-going waves. However, in the semi-infinite waveguide, a right-going wave is
converted to a left-going wave at the edge. Therefore, we can effectively consider the actual
system as a system in which only a right-going mode in an infinite waveguide is coupled
to an LC resonator, as shown in Fig. 2.4(b). Actually, the assumption is reasonable since
we can control and measure the right- and left-going waves in the semi-infinite waveguide
separately using a non-reciprocal device, such as a circulator.

According to the coupling terms in Eq. (2.23), the Hamiltonian of the LC resonator
coupled to the right-going mode can be described as

Ĥ = ℏωc â
†â+ ℏ

∫ ∞

−∞
dω

[
ω â†ωâω +

√
κ

2π
(â†âω + â†ωâ)

]
, (2.74)

where κ is the coupling constant. Here, the frequency dependence in the coupling strength
is approximately neglected. The Hamiltonian can be used to derive a Lindblad master
equation and an input-output formalism [46]. Note that the coupling mechanism is not
crucial to derive these formalisms.

Practically, the LC resonator has a finite energy relaxation, even when it is made
of superconductors. Regardless of the coupling mechanism with relaxation channels, the
energy relaxation can be modeled by coupling with a waveguide. The number of relaxation
channels is not necessarily unity. Nevertheless, the relaxation can be modeled by coupling
with a single waveguide with an effective coupling rate. Therefore, the full Hamiltonian of
the LC resonator coupled to a waveguide with a finite internal relaxation can be written
as

Ĥ = ℏωc â
†â+ ℏ

∫ ∞

−∞
dω

[
ω â†ωâω +

√
κex
2π

(â†âω + â†ωâ)

]
+ ℏ

∫ ∞

−∞
dω

[
ω ĉ†ω ĉω +

√
κin
2π

(â†ĉω + ĉ†ωâ)

]
,

(2.75)

where κex and κin are the external coupling rate and internal loss rate of the LC resonator,
and ĉω is a waveguide mode modeling the relaxation.

2.4.1 Lindblad master equation

According to the reference [46], the Lindblad master equation can be obtained from the
Hamiltonian in Eq. (2.75) as

dρ̂

dt
=

1

iℏ

[
Ĥsys, ρ̂

]
+D

[√
κex(nth,ex + 1) â

]
ρ̂+D

[√
κex nth,ex â

†] ρ̂
+D

[√
κin(nth,in + 1) â

]
ρ̂+D

[√
κin nth,in â

†] ρ̂ (2.76)

where ρ̂ is a density matrix of the LC resonator, Ĥsys = ℏωc â
†â is the system Hamiltonian

of the LC resonator, nth,ex and nth,in are the thermal photon numbers in the corresponding

waveguides, and D[Ô]ρ̂ = Ôρ̂Ô†− 1
2
(Ô†Ôρ̂+ ρ̂Ô†Ô) is the Lindblad superoperator. Then,

the master equation can be simply rewritten as

dρ̂

dt
=

1

iℏ

[
Ĥsys, ρ̂

]
+D

[√
κ(nth + 1) â

]
ρ̂+D

[√
κ nth â

†] ρ̂, (2.77)

where κ = κex + κin is the total relaxation rate of the cavity and nth =
κexnth,ex+κinnth,in

κex+κin
is

the effective thermal photon number.
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Figure 2.4: Schematic of LC resonator coupled to a waveguide. (a) LC resonator coupled
to a semi-infinite waveguide. (b) LC resonator coupled to the only right-going wave mode
in an infinite waveguide.

When the LC resonator is coherently driven by a microwave, the system Hamiltonian
is replaced by

Ĥsys = ℏ
[
ωc â

†â+

(
Ωd

2
â†e−iωdt +

Ω∗
d

2
âeiωdt

)]
, (2.78)

where Ωd = 2
√
κexṅd is the coherent amplitude of the drive, and ṅd is the photon flux

per unit time, reaching the LC resonator. In the rotating flame at ωd, the Hamiltonian
can be described as

Ĥsys = ℏ
[
(ωc − ωd) â

†â+

(
Ωd

2
â† +

Ω∗
d

2
â

)]
. (2.79)

Note that the Lindblad terms in Eq. (2.76) are the same in the rotating frame.

2.4.2 Input-output formalism

The dynamics of input and output field operators can be described, as well as system
operators in input-output formalism. Then, the Fourier transform of the frequency modes
is defined as the input modes:

âi(t) =
1√
2π

∫ ∞

−∞
dω âωe

−iωt

ĉi(t) =
1√
2π

∫ ∞

−∞
dω âωe

−iωt

(2.80)

where [ât, â
†
t′ ] = δ(t− t′) and [ĉt, ĉ

†
t′ ] = δ(t− t′). Note that these definitions are consistent

with Eq. (2.56). Furthermore, an input quantum state in the temporal mode âi(t) can be
controlled in experiments.
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According to the reference [46, 47], the time evolution of the annihilation operator â
in the LC resonator can be described in the Heisenberg picture as

dâ(t)

dt
=

1

iℏ

[
â(t), Ĥsys

]
− κex + κin

2
â(t)− i

√
κex âi(t)− i

√
κin ĉi(t)

= −iωc â(t)−
κex + κin

2
â(t)− i

√
κex âi(t)− i

√
κin ĉi(t)

(2.81)

where we assume Ĥsys = ℏωc â
†â.

Then, we also define the output mode after the interaction as

âo(t) =

∫ ∞

−∞
dω â′ωe

−iωt

ĉo(t) =

∫ ∞

−∞
dω ĉ′ωe

−iωt,

(2.82)

where â′ω and ĉ′ω are the frequency modes after the interaction with the LC resonator in
the Heisenberg picture. The quantum state in the temporal mode âo(t) can be measured
in experiments. Finally, the input-output relation is given by

âo(t) = âi(t)− i
√
κexâ(t). (2.83)

Using the Fourier transformation, Eqs. (2.81) and (2.83) can be transformed into

â(ω) = −i
√
κex âi(ω) +

√
κin ĉi(ω)

κex+κin

2
− i(ω − ωc)

âo(ω) = âi(ω)− i
√
κex â(ω)

= −
κex−κin

2
+ i(ω − ωc)

κex+κin

2
− i(ω − ωc)

âi(ω)−
√
κexκin

κex+κin

2
− i(ω − ωc)

ĉi(ω).

(2.84)

Supposing that the input state is a coherent state, we obtain the reflection coefficient
S11(ω) of the LC resonator as a function of the frequency as

S11(ω) =
⟨âo(ω)⟩
⟨âi(ω)⟩

= −
κex−κin

2
+ i(ω − ωc)

κex+κin

2
− i(ω − ωc)

, (2.85)

where we assume that the input state of the internal loss mode is in a vacuum or a thermal
state, i.e., ⟨ĉi(ω)⟩ = 0. Generally speaking, the solution of the reflection coefficient holds
for a general harmonic oscillator. Therefore, it is used to characterize the harmonic
oscillator with obtaining system parameters such as a resonance frequency, an external
coupling rate, and an internal loss rate.

In addition, using the inverse Fourier transformation, the average photon number in
the LC resonator can be calculated as

⟨â(t)†â(t)⟩ = κex
(κex+κin)2

4
+ (ω − ωc)2

⟨âi(t)†âi(t)⟩, (2.86)

where ⟨âi(t)†âi(t)⟩ = P/ℏω is the flux of the average photon number in the coherent drive
per unit time, and P is the coherent drive power.
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2.5 Superconducting qubit

Nonlinearity is the key ingredient which allows us to reach the realm of quantum state
engineering by enabling us to excite a single energy quantum. More concretely, we need
a non-dissipative element which gives a nonlinearity strong enough at the single energy
quantum level. In superconducting circuits, Josephson junctions play this role. A Joseph-
son junction is an element which is made by a thin insulator sandwiched between two su-
perconductors, as shown in Fig. 2.5. In the Josephson junction, a Cooper pair can tunnel
quantum-mechanically, introducing a strong nonlinearity. An sufficiently anharmonic mi-
crowave resonator with one or more Josephson junctions is called a superconducting qubit
since it can be operated as a qubit, or an effective two-level system, as shown in Fig. 2.5(c).
Here, we will focus on the transmon qubit, one of the simplest superconducting qubits.

The circuit diagram of the transmon qubit is shown in Fig. 2.6(a). It can be understood
as an LC resonator whose inductor is replaced with a Josephson junction. Since the
potential energy does not affect the quantization procedure in the node flux representation,
we can easily obtain the quantum-mechanical Hamiltonian just by replacing the inductive
energy with the Josephson energy:

Ĥ =
Q̂2

2C
− EJ cos

(
Φ̂

ϕ0

)
, (2.87)

where C is the total capacitance including the capacitance associated with the Josephson
junction, EJ is the tunneling energy of the Josephson junction, Φ̂ is the operator of the
generalized magnetic flux in the Josephson junction, and Q̂ is the operator of the conjugate
momentum of the magnetic flux, or the electric charge on the capacitance. The canonical
commutation relation is [Φ̂, Q̂] = iℏ.

In the analysis of the nonlinear potential energy of the Josephson junction, it is useful
to use dimensionless parameters as discussed in Sec. 2.1.1. Then, the Hamiltonian is
represented with φ̂ and n̂ whose commutation relation is [φ̂, n̂] = i:

Ĥ = ℏ
(ωC

2
n̂2 − ωJ cos φ̂

)
, (2.88)

where ωC = (2e)2

C
and ωJ = EJ/ℏ.

In the so-called transmon regime, the ratio of the capacitive to inductive energy quan-
tum is much smaller than unity: ωC/ωJ ≪ 1. Since the trapping potential energy (mag-
netic flux energy) is much larger than the conjugate momentum energy (capacitive en-
ergy), the dynamic range of φ̂ is smaller than the period of 2π. The localization of φ,
which corresponds to the delocalization of the charge n, gives rise to the robustness against
the charge noise which causes the dephasing of the charge qubit.

Then, thanks to the localization of φ, we can rewrite the Hamiltonian using the Taylor
expansion with respect to φ̂:

Ĥ = ℏ
(ωC

2
n̂2 +

ωJ

2
φ̂2 − ωJ

24
φ̂4
)
, (2.89)

where we consider up to the forth order terms of φ̂ and neglect the constant term. Now,
we can consider the first two terms as the Hamiltonian of a harmonic oscillator, where the
Josephson energy ℏωJ exactly corresponds to the inductive energy quantum ℏωLJ

= ϕ2
0/LJ.

From the relation, the Josephson inductance can be defined as

LJ =
ϕ2
0

EJ

=
ϕ2
0

ℏωJ

. (2.90)
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Figure 2.5: Josephson junction and superconducting qubit. (a) Josephson junction and
its circuit symbol. (b) Harmonic oscillator and its energy levels. (c) Anharmonic oscilator
with a Josephson junction and its energy levels.
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Figure 2.6: Transmon qubit. (a) Circuit diagram. (b) Energy levels.

Then, the annihilation and creation operators, b̂ and b̂†, are defined as

b̂ =

(
ωJ

ωC

) 1
4
φ̂+ i

(
ωC

ωJ

) 1
4
n̂

√
2

, b̂† =

(
ωJ

ωC

) 1
4
φ̂− i

(
ωC

ωJ

) 1
4
n̂

√
2

,
(2.91)

which can diagonalize the first two terms in the Hamiltonian:

Ĥ = ℏ
(
ωl
q b̂

†b̂− ωJ

24
φ̂4
)
, (2.92)
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where ωl
q =

√
ωJωC is the resonance frequency of the harmonic oscillator.

Next, we approximate the nonlinear term in the Hamiltonian. Since φ̂ is represented
by

φ̂ =

(
ωC

ωJ

) 1
4 b̂+ b̂†√

2
, (2.93)

the nonlinear term is rewritten as

−ωJ

24
φ̂4 = −ωC

96

(
b̂+ b̂†

)4
. (2.94)

When we expand the fourth order term, we find off-diagonal terms, such as b̂4 and b̂3b̂†.
Here, the frequency of the off-diagonal terms is on the order of ωC. The frequency de-
tuning between the qubit states which interact with each other through the off-diagonal
terms is on the order of the resonance frequency ωl

q. When the off-diagonal frequencies
are much smaller than the frequency detuning between the interacting states, the off-
diagonal elements can be neglected with the rotating wave approximation. The condition

is described by ωC

ωl
q
=
√

ωC

ωJ
≪ 1, which is well satisfied in the transmon regime ωC

ωJ
≪ 1.

By neglecting the off-diagonal terms with the rotating wave approximation, we obtain the
fourth order nonlinear terms as

−ωJ

24
φ̂4 ≈ −ωC

96

(
6 b̂†2b̂2 + 12 b̂†b̂+ 3

)
≈ −ωC

16
b̂†2b̂2 − ωC

8
b̂†b̂,

(2.95)

where the annihilation and creation operators are arranged in the normal order with the
commutation relation [b̂, b̂†] = 1. Note that we neglect the constant energy term in this
calculation. Then, we obtain the approximated Hamiltonian

Ĥ ≈ ℏ
(
ωl
q b̂

†b̂− ω
C

16
b̂†2b̂2 − ω

C

8
b̂†b̂
)

= ℏ
[(
ωl
q −

ω
C

8

)
b̂†b̂− ω

C

16
b̂†2b̂2

]
= ℏ

(
ωq b̂

†b̂− ω
C

16
b̂†2b̂2

)
,

(2.96)

where ωq =
√
ωJωC − ω

C

8
= ωl

q −
ω
C

8
is the resonance frequency of the first excitation of

the transmon qubit. Note that the frequency is shifted from the resonance frequency of
the harmonic oscillator due to the presence of the nonlinear terms.

In this thesis, we denote the states of the transmon qubit as the ground state |g⟩, the
first excited state |e⟩, the second excited state |f⟩, and the third excited state |h⟩. The
excitation frequencies of these states are given by:

ωeg = ωq

ωfe = ωq −
ω

C

8
= ωq + α

ωhf = ωq −
ω

C

4
= ωq + 2α,

(2.97)

where we define the anharmonicity of the transmon qubit as

α = ωfe − ωeg

= −ωC

8
.

(2.98)
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Note that the anharmonicity is always negative for the transmon qubit. The energy levels
of the transmon qubit are shown in Fig. 2.6.

Furthermore, the relative anharmonicity, which is used to characterize the transmon
qubit, is defined as

αr =
α

ωq

= −
ω
C

8√
ωJωC − ω

C

8

≈ −1

8

√
ωC

ωJ

. (2.99)

The anharmonicity vanishes in the small limit of ωC/ωJ. In other words, the transmon
qubit approaches a harmonic oscillator. A large relative anharmonicity is needed for the
operation of the transmon qubit as an ideal qubit. On the other hand, it is the necessary
condition of the transmon qubit that the ratio of ωC/ωJ is much smaller than unity.
Typically the ratio of ωC/ωJ is set to about 0.1.

The anharmonicity α can be experimentally determined and is often used to char-
acterize the transmon qubit together with the first excitation frequency ωq. Using the
anharmonicity α, we write the Hamiltonian as

Ĥ = ℏ
(
ωq b̂

†b̂+
α

2
b̂†2b̂2

)
. (2.100)

2.5.1 Superconducting qubit connected to waveguide

A superconducting qubit is modeled by a harmonic oscillator with a perturbatively-added
nonlinear term. Therefore, we can simply obtain the Hamiltonian of a qubit connected to
a waveguide by replacing the system Hamiltonian in Eq. (2.75) by that of the qubit as

Ĥ = ℏ
(
ωq b̂

†b̂+
α

2
b̂†2b̂2

)
+ ℏ

∫ ∞

−∞
dω

[
ω â†ωâω +

√
γex
2π

(b̂†âω + â†ω b̂)

]
+ ℏ

∫ ∞

−∞
dω

[
ω ĉ†ω ĉω +

√
γin
2π

(b̂†ĉω + ĉ†ω b̂)

]
+ ℏ

∫ ∞

−∞
dω

[
ω d̂†ωd̂ω +

√
2γϕ,n
2π

b̂†b̂(d̂ω + d̂†ω)

]
,

(2.101)
where γex and γin are the external coupling rate and internal loss rate of the qubit, and γϕ,n
is the natural dephasing rate of the qubit. Note that we add another channel describing
the natural dephasing of the qubit, since the qubit dephasing rate may not be limited by
the energy relaxation.

Then, we obtain the Lindblad master equation of the qubit as

dρ̂

dt
=

1

iℏ

[
Ĥsys, ρ̂

]
+D

[√
γ(nth + 1) b̂

]
ρ̂+D

[√
γ nth b̂

†
]
ρ̂+D

[√
2γϕ,n b̂

†b̂
]
ρ̂,

(2.102)

where ρ̂ is a density matrix of the transmon qubit, Ĥsys = ℏ
(
ωq b̂

†b̂+ α
2
b̂†2b̂2

)
is the

system Hamiltonian of the qubit in the free evolution, γ = γex+γin is the total relaxation
rate of the qubit, and nth is the effective thermal photon number of the relaxation channels.

Furthermore, the system Hamiltonian of the coherently driven qubit in the rotating
frame at the drive frequency ωd can be described as

Ĥsys = ℏ
[
(ωq − ωd) b̂

†b̂+
α

2
b̂†2b̂2 +

(
Ωd

2
b̂† +

Ω∗
d

2
b̂

)]
. (2.103)

where Ωd = 2
√
γexṅd is the coherent amplitude of the drive, and ṅd is the photon flux per

unit time, reaching the qubit.
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2.5.2 Truncation to qubit subspace

While the transmon qubit is a multi-level system, it can be considered as a qubit because
of the anharmonicity. Here, we explain the truncation in terms of the Hamiltonian of
the driven transmon qubit. The Hamiltonian in Eq. (2.103) can be represented in the
subspace spanned by {|g⟩, |e⟩ , |f⟩} as

Ĥsys =

 0 Ωd

2
0

Ωd

2
δ

√
2Ωd

2

0
√
2Ωd

2
2δ + α

 , (2.104)

where δ = ωq − ωd is the detuning between the qubit frequency and the drive frequency.
Note that the higher energy eigenstates are omitted since they do not affect the qubit
subspace. Here, the drive frequency is set to be the qubit frequency, i.e., δ ≈ 0. Then, for
the transition element between |e⟩ and |f⟩ much smaller than the corresponding detuning,
i.e.,

√
2Ωd ≪ α, the Hamiltonian regarding the subspace of |e⟩ and |f⟩ can be diagonalized

approximately as

Ĥsys =

 0 Ωd

2
0

Ωd

2
δ − |Ωd|2

2α
0

0 0 2δ + α + |Ωd|2
2α

 , (2.105)

where we use the results of the dispersive Hamiltonian in Eq. (2.32). Moreover, we assume
δ/α ≈ 0, for simplicity. We find that the transition between |e⟩ and |f⟩ is adiabatically
suppressed and the eigenfrequency of |e⟩ obtains an ac Stark shift from |f⟩. Therefore, we
can consider the Hamiltonian of the driven transmon qubit as a driven qubit with the ac
Stark shift as

Ĥsys = ℏ


(
ωq − |Ωd|2

2α

)
− ωd

2
σ̂z +

(
Ωd

2
σ̂+ +

Ω∗
d

2
σ̂−

) , (2.106)

where σ̂z is the Pauli z operator, σ̂− and σ̂+ are the annihilation and creation operators
in the qubit subspace. The schematic of the energy levels with thre qubit drive is shown
in Fig. 2.7(a). Note that the frequency shift can be neglected in the weak drive amplitude
limit (

√
2Ωd ≪ α). Furthermore, when the ac Stark shift is not negligible, it can be

canceled by using a Derivative Reduction by Adiabatic Gate (DRAG) pulse [48, 49].
Using the truncation, the Hamiltonian including the waveguides can be represented

as

Ĥ = Ĥsys + ℏ
∫ ∞

−∞
dω

[
ω â†ωâω +

√
γex
2π

(âωσ̂+ + â†ωσ̂−)

]
+ ℏ

∫ ∞

−∞
dω

[
ω ĉ†ω ĉω +

√
γin
2π

(ĉωσ̂+ + ĉ†ωσ̂−)

]
+ ℏ

∫ ∞

−∞
dω

[
ω d̂†ωd̂ω +

√
2γϕ,n
2π

σ̂z
2
(d̂ω + d̂†ω)

]
.

(2.107)
Then, the Lindblad master equation can be described as

dρ̂

dt
=

1

iℏ

[
Ĥsys, ρ̂

]
+D

[√
γ(nth + 1) σ̂−

]
ρ̂+D [

√
γ nth σ̂+] ρ̂+D

[√
2γϕ,n

σ̂z
2

]
ρ̂.

(2.108)
From the master equation without the drive (Ωd = 0), the energy-relaxation and

dephasing times of the qubit are given by 1/T1 = (2nth+1)γ and 1/T ∗
2 = (2nth+1)γ/2+

γϕ,n, respectively.
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Figure 2.7: Control of transmon qubit. (a) Truncation to qubit subspace. (b) Transition
to second excited state with two photon drive.

2.5.3 Transition to second excited state

Anharmonicity of α is one of the characteristic parameters for the transmon qubit. To
obtain the anharmonicity in experiments, the qubit is excited to the second excited state
with a two-photon drive. Here, we derive the Hamiltonian of the transmon qubit with a
two-photon drive. The Hamiltonian of the driven transmon qubit is described as

Ĥsys = ℏ
[
δ b̂†b̂+

α

2
b̂†2b̂2 +

(
Ωd

2
b̂† +

Ω∗
d

2
b̂

)]
, (2.109)

where δ = ωq − ωd is the detuning. Now, the drive frequency is set to be about half of
the transition frequency between the ground and second excited state, and then δ ≈ α/2.
When the drive amplitude is much smaller than the detuning, i.e., Ωd ≪ δ ≈ α/2, the
driven terms of the Hamiltonian can be diagonalized using the displacement operator of
D̂(−Ωd/2δ). In other words, the Hamiltonian can be approximated as

Ĥsys ≈ D̂†
(
−Ωd

2δ

)
Ĥsys D̂

(
−Ωd

2δ

)
= ℏ

[(
δ +

2|Ωd|2

α

)
b̂†b̂+

α

2
b̂†2b̂2 +

(
Ωtpd

2

b̂†2√
2
+

Ω∗
tpd

2

b̂2√
2

)]
,

(2.110)

where Ωtpd =
√
2Ω2

d/α is the amplitude of the two-photon drive, and we neglect the
constant terms and the far-off-resonant drive terms. Moreover, we use

D̂†
(
−Ωd

2δ

)
b̂ D̂

(
−Ωd

2δ

)
= b̂− Ωd

2δ
. (2.111)

From the effective Hamiltonian, we find that the transmon qubit can be resonantly excited
to the second excited state with a two-photon drive at the frequency of ωd = ωq + α/2 +
2|Ωd|2/α, as shown in Fig. 2.7(b). Note that the transition frequency is shifted by the
order of the magnitude of the linewidth of the Rabi broadening. Nevertheless, as long as
the drive amplitude is much smaller than the anharmonicity, we obtain the anharmonicity
by measuring the transition frequency.



2.6. CIRCUIT QUANTUM ELECTRODYNAMICS 27

(b)

(a)

Figure 2.8: (a) Circuit QED and Cavity QED. (b) Circuit diagram of a circuit QED
system.

2.6 Circuit quantum electrodynamics

Cavity quantum electrodynamics (QED) is a powerful tool for studying light-matter in-
teractions, where a cavity mode is coupled to an atom strongly. Then, a concept of circuit
QED is derived from the cavity QED [12], as shown in Fig. 2.8(a). So far, control and
measurement of superconducting qubits and photons in a circuit QED system have been
dramatically developed by applying the technologies which have been implemented in a
cavity QED system.

A typical circuit diagram of a circuit QED system consists of an LC resonator capac-
itively coupled to a transmon qubit, as shown in Fig. 2.8(b). As discussed in the quanti-
zation of a transmon qubit, the nonlinear term in the Josephson potential energies does
not affect the quantization of the circuit. Therefore, we derive the quantum-mechanical
Hamiltonian of the circuit QED system by replacing one of the inductive energy in the
Hamiltonian of the capacitively coupled LC resonators Eq. (2.20) with a Josephson energy
as

Ĥ =
Q̂2

c

2C̄c

+
Φ̂2

c

2Lc

+
Q̂2

q

2C̄q

− EJ cos

(
Φ̂q

ϕ0

)
+

Cg

C̄cC̄q

Q̂cQ̂q, (2.112)

where Φ̂n and Q̂n are the conjugate operators whose commutation relation is [Φ̂n, Q̂n] = iℏ
(for n = c, q), Cg is the coupling capacitance, C̄c = Cc+Cg is the renormalized capacitance
of the LC resonator, Lc is the inductance of the LC resonator, C̄q = Cq + Cg is the
normalized capacitance of the transmon qubit, and EJ is the Josephson energy of the
Josephson junction. Note that the capacitance of the transmon qubit Cq includes that of

the Josephson junction and that we assume ϵ =
C2

g

(C1+Cg)(C2+Cg)
≈ 0 for simplicity. Here,

taking into account up to the second order of the conjugate operators, the Hamiltonian
exactly corresponds to that of the coupled LC resonators in Eq. (2.20).
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According to Sec. 2.2 and Sec. 2.5, the Hamiltonian therefore is described using the
corresponding annihilation and creation operators as

Ĥ = ℏ
[
ωl
c â

†â+ ωl
q b̂

†b̂−
ωC̄q

96

(
b̂+ b̂†

)4
− g(â− â†)(b̂− b̂†)

]
, (2.113)

where â (â†) is the annihilation (creation) operator of the LC resonator, b̂ (b̂†) is the
annihilation (creation) operator of the transmon qubit, ωl

c =
√
ωC̄c

ωLc and ω
l
q =

√
ωC̄q

ωJ

are the linearized resonance frequency of the LC resonator and the transmon qubit, and

g = 1
2

√
ωl
cω

l
qC

2
g

(Cc+Cg)(Cq+Cg)
is the coupling strength. Note that ℏωC̄n

= (2e)2

C̄n
(n = c, q) are the

capacitive energy quanta, and ℏωLc =
ϕ2
0

Lc
is the inductive energy quantum.

By using the rotating wave approximation, valid under the conditions g ≪ ωc + ωl
q

and ωC̄q
≪ √

ωJωC̄q
(corresponding to the transmon qubit limit

ωC̄q

ωJ
≪ 1), we obtain the

approximate Hamiltonian,

Ĥ = ℏ
[
ωc â

†â+ ωq b̂
†b̂+

α

2
b̂†2b̂2 + g(â†b̂+ âb̂†)

]
, (2.114)

where ωc = ωl
c and ωq = ωl

q −
ω
C

8
is the resonance frequencies of the LC resonator and

the transmon qubit, and α = −ωC̄q

8
is the anharmonicity of the transmon qubit. Note

that the LC resonance frequency is not affected by the nonlinear term of the Josephson
junction, here. This is the Hamiltonian of the typical circuit QED system, which is called
the generalized Jaynes-Cummings Hamiltonian.

2.6.1 Dispersive regime

As discussed in Sec. 2.2.1, except for the nonlinear term, we can diagonalize and approx-
imate the Hamiltonian in the dispersive regime g ≪ |∆| = |ωl

c − ωl
q| as

Ĥ = ℏ
[(
ωl
c +

g2

∆

)
â†â+

(
ωl
q −

g2

∆

)
b̂†b̂−

ωC̄q

96

(
b̂+ b̂†

)4]
= ℏ

[
ωl
c

′
â†â+ ωl

q

′
b̂†b̂−

ωC̄q

96

(
b̂+ b̂†

)4]
,

(2.115)

where ωl
c
′
= ωl

c+
g2

∆
and ωl

q
′
= ωl

q−
g2

∆
are the Lamb-shifted linearized resonance frequencies

of the LC resonator and the transmon qubit, respectively. Here, we need to represent the

nonlinear terms
ωC̄q

96

(
b̂+ b̂†

)4
by diagonalizing annihilation operators â and b̂. Since the

original annihilation operators are approximated in the leading order of g
∆

as(
â

b̂

)
≈
(

â− g
∆
b̂

g
∆
â+ b̂

)
, (2.116)

the nonlinear term is represented by

−
ωC̄q

96

(
b̂+ b̂†

)4
≈−

ωC̄q

96

( g
∆

â+ b̂+
g

∆
â† + b̂†

)4
≈−

ωC̄q

96

[
6
( g
∆

)4
â†2â2 + 24

( g
∆

)2
â†âb̂†b̂+ 6 b̂†2b̂2 + 12

( g
∆

)2
â†â+ 12 b̂†b̂+ 3

]
≈−

ωC̄q

16

( g
∆

)4
â†2â2 −

ωC̄q

4

( g
∆

)2
â†âb̂†b̂−

ωC̄q

16
b̂†2b̂2 −

ωC̄q

8

( g
∆

)2
â†â−

ωC̄q

8
b̂†b̂,

(2.117)
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where we have used the rotating wave approximation under the condition
ωC̄q

ωl
q
=
√

ωC̄q

ωJ
≪

1,
ωC̄q

ωc
≪ 1 and neglected the constant terms. From these calculations, the dispersive

Hamiltonian is therefore written as

Ĥ = ℏ
[
ω′
c â

†â−
ωC̄q

16

( g
∆

)4
â†2â2 + ω′

q b̂
†b̂−

ωC̄q

16
b̂†2b̂2 −

ωC̄q

4

( g
∆

)2
â†âb̂†b̂

]
, (2.118)

where ω′
c = ωl

c
′ − ωC̄q

8

(
g
∆

)2
and ω′

q = ωl
q
′ − ωC̄q

8
are the resonance frequencies of the LC

resonator and the transmon qubit with the shift due to the nonlinear terms.
For simplicity, we define the anharmonicity and the dispersive interaction parameter

as in the Hamiltonian

Ĥ = ℏ
[
ω′
c â

†â+
K

2
â†2â2 + ω′

q b̂
†b̂+

α

2
b̂†2b̂2 + 2χ â†âb̂†b̂

]
, (2.119)

where K = −ωC̄q

8

(
g
∆

)4
is the self-Kerr frequency shift (anharmonicity) of the LC res-

onator, α = −ωC̄q

8
is the anharmonicity of the transmon qubit, and χ = −ωC̄q

8

(
g
∆

)2
=

α
(

g
∆

)2
is the dispersive interaction strength. The interaction strength is described by

the geometric mean of the two anharmonicities, i.e., χ = −
√
Kα. From the interaction

Hamiltonian, the dispersive interaction can be understood as the strength of the state-
dependent frequency shifts. Normally, the anharmonicity of the LC resonator is neglected
since it is on the order of (g/∆)4.

With the larger photon number in the cavity, the coupling strength between the qubit
and the resonator mode are increased. For example, the coupling strength between |g, n⟩
and |e, n− 1⟩ is calculated as ⟨e, n− 1|(g(â†b̂ + âb̂†))|g, n⟩ = g

√
n. Here, the detuning is

unchanged as ∆. Therefore, when twice the coupling strength matches the detuning, the
approximation of the dispersive regime completely collapses. Then, the critical photon
number [12] is defined as

ncrit =
∆2

4g2
. (2.120)

The power of a cavity probe or a qubit readout should be set to be so weak to excite the
average photon number much below the critical photon number.

As explained in Sec. 2.5.2, the Hamiltonian of the transmon qubit can be truncated
to the qubit subspace as b̂†b̂ → σ̂z/2 and b̂ → σ̂−. Thus, the Hamiltonian can be written
as

Ĥ = ℏ
[
ωc â

†â+
ωq

2
σ̂z + χ â†âσ̂z

]
, (2.121)

where we replace the resonance frequencies and the operators as ω′
c → ωc, ω

′
q → ωq, and

â → â for simplicity. Furthermore, we neglect the anharmonicity of the LC resonator. A
schematic of the resonance frequencies in the dispersive circuit QED system are shown in
Fig. 2.9.

2.6.2 Dispersive circuit QED system connected to waveguide

Here, we consider a dispersive circuit QED system where only an LC resonator is coupled
to a waveguide, as shown in Fig. 2.10(a). Therefore, by adding the external coupling to
the LC resonator, the Hamitonian in Eq. (2.115) can be described as

Ĥ = ℏ
[(
ωl
c +

g2

∆

)
â†â+

(
ωl
q −

g2

∆

)
b̂†b̂−

ωC̄q

96

(
b̂+ b̂†

)4]
+ ℏ

∫ ∞

−∞
dω

[
ω â†ωâω +

√
κex
2π

(â†âω + â†ωâ)

]
,

(2.122)
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Figure 2.9: Resonance frequencies of a circuit QED system in the dispersive regime. The
qubit obtains the photon-number dependent shift (discrete as Stark shift). The resonator
obtains the qubit-state dependent shift.

where κex is the external coupling rate of the LC resonator. As the nonlinear terms are
represented in terms of the diagonalized modes in Sec. 2.6.1, the external coupling term
can be also represented in terms of the diagonalized modes. Using the relation(

â

b̂

)
≈
(

â− g
∆
b̂

g
∆
â+ b̂

)
, (2.123)

the Hamiltonian can be described as

Ĥ = ℏ
[
ω′
c â

†â+
K

2
â†2â2 + ω′

q b̂
†b̂+

α

2
b̂†2b̂2 + 2χ â†âb̂†b̂

]
+ ℏ

∫ ∞

−∞
dω

[
ω â†ωâω +

√
κex
2π

(â†âω + â†ωâ)−
g

∆

√
κex
2π

(b̂†âω + â†ωb̂)

]
,

(2.124)

where the frequency parameters are defined as in Eq. (2.119). As shown in Fig. 2.10(b),
we find that the qubit mode is coupled to the waveguide through the resonator mode with
the external coupling rate of γex = (g/∆)2κex, via the Purcell effect [12]. Note that the
qubit and resonator modes are coupled to an identical waveguide. Nevertheless, due to
the large detuning between the qubit and the resonator, these modes can be considered
to be coupled to independent waveguides.

Again, the transmon qubit mode can be truncated to the qubit subspace as b̂†b̂ → σ̂z/2
and b̂ → σ̂−. Thus, the Hamiltonian can be represented as

Ĥ = ℏ
[
ωc â

†â+
ωq

2
σ̂z + χ â†âσ̂z

]
+ ℏ

∫ ∞

−∞
dω

[
ω â†ωâω +

√
κex
2π

(â†âω + â†ωâ)−
√
γex
2π

(âωσ̂+ + â†ωσ̂−)

]
.

(2.125)

where we replace the resonance frequencies and the operators as ω′
c → ωc, ω

′
q → ωq,

and â → â for simplicity. Here, the internal loss and dephasing terms are not included.
However, these terms can be easily added as discussed in Sec. 2.5.1 and Sec. 2.4.

2.7 Josephson parametric amplifier (JPA)

A Josephson parametric amplifier (JPA) is a useful tool for implementing a single-shot
readout of a superconducting qubit. Furthermore, it is used for the characterization of
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(a)

(b)

≈

Figure 2.10: (a) Circuit QED system in the dispersive regime, where a resonator mode
is coupled to a waveguide. (b) Approximate circuit QED system in the dispersive regime.
These diagonalized modes are coupled via the state-dependent dispersive shift. The qubit
mode obtains the external coupling to the waveguide through the resonator mode.

quantum states in propagating modes. There are several types of microwave amplifiers
based on Josephson junctions [50, 51, 52, 53]. Here, we focus on a flux-driven JPA, which
is used in this thesis. For the circuit diagram shown in Fig. 2.11, the JPA is a parallel
circuit consisting of a capacitor and a SQUID (Superconducting QUantum Interference
Device) which is formed by two parallel Josephson junctions. The Hamiltonian of the
JPA is written as

Ĥ =
Q̂2

2C
− EJ(Φex) cos

(
Φ̂

ϕ0

)
, (2.126)

where C is the total capacitance including the one from the SQUID, Φex is the external
magnetic flux penetrating the loop of the SQUID, EJ(Φex) = ϕ0Ic(Φex) is the tunneling

energy of the SQUID, and Ic(Φex) = 2Ic0 cos
(

Φex

2ϕ0

)
is the critical current depending on the

external magnetic flux Φex, Ic0 is the critical current of a single Josephson junction forming
the SQUID. The canonical commutation relation of the pair of the conjugate operators
is [Φ̂, Q̂] = iℏ, where we approximate the operator of the generalized magnetic field by
neglecting the periodic condition since the Josephson energy is much larger than that of
the capacitance. Thus, we consider the SQUID as a nonlinear inductor with tunability
provided by an applied external magnetic flux.

When we operate the JPA as an amplifier, we bias the SQUID with the dc magnetic
flux Φdc to tune the resonance frequency of the JPA and pump the SQUID with the ac
magnetic flux Φac to obtain the gain, i.e., Φex = Φdc + Φac. Considering that the ac
magnetic flux is much smaller than the magnetic flux quantum, Φac ≪ Φ0 (2πϕ0), we can
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linearize the ac magnetic dependence of the tunneling energy of the SQUID

EJ(Φex) = EJ cos

(
Φdc + Φac

2ϕ0

)
= EJ

[
cos

(
Φdc

2ϕ0

)
cos

(
Φac

2ϕ0

)
− sin

(
Φdc

2ϕ0

)
sin

(
Φac

2ϕ0

)]
≈ EJ cos

(
Φdc

2ϕ0

)
− EJ sin

(
Φdc

2ϕ0

)
Φac

2ϕ0

=
[
1− tan

(φdc

2

) φac

2

]
EJ cos

(φdc

2

)
(2.127)

where EJ = 2ϕ0Ic0 is the maximum tunneling energy of the SQUID or the sum of the two
tunneling energies of the single Josephson junctions, φdc = Φdc

ϕ0
is the dimensionless dc

magnetic flux, and φac =
Φac

ϕ0
is the dimensionless ac magnetic flux. Then, the Hamiltonian

is given by

Ĥ =
Q̂2

2C
−
[
1− tan

(φdc

2

) φac

2

]
EJ cos

(φdc

2

)
cos

(
Φ̂

ϕ0

)
. (2.128)

To obtain a large dynamic range of the amplification or to reduce the nonlinearity of
the JPA, the tunneling energy of the SQUID should be much larger than the capacitive
energy. In this regime, the nonlinear potential of the SQUID can be expanded as

Ĥ ≈ Q̂2

2C
+
[
1− tan

(φdc

2

) φac

2

]
EJ cos

(φdc

2

) 1

2

(
Φ̂

ϕ0

)2

=
Q̂2

2C
+
[
1− tan

(φdc

2

) φac

2

] EJ cos
(
φdc

2

)
ϕ2
0

Φ̂2

2

=
Q̂2

2C
+

Φ̂2

2LJ

− 1

4
tan
(φdc

2

)
φac

Φ̂2

LJ

,

(2.129)

where LJ =
ϕ2
0

EJ cos(φdc
2 )

= ϕ0

2Ic0 cos
(
π

Φdc
Φ0

) is the inductance of the SQUID. Note that unlike a

transmon qubit, we neglect forth-order terms of Φ̂ since the anharmonicity of a conven-
tional JPA is much smaller than that of a transmon qubit. The first two terms describe
the Hamiltonian of the harmonic oscillator and the last term corresponds to a driving
term with φac.

By using the annihilation and creation operators, which are defined as in Eq. (2.5),
we can diagonalize the harmonic terms as

Ĥ = ℏ
[
ωr â

†â− ωc

8
tan
(φdc

2

)
φac

(
â+ â†

)2]
, (2.130)

where ωr is the resonance frequency of the JPA. Now, we describe the Hamiltonian with
φac = φp cos (ωpt+ ϕp), where φp is the dimensionless pump amplitude, ωp is the pump
frequency, and ϕp is the pump phase. When the JPA is operated as an amplifier, the
pump frequency is twice the resonance frequency of the JPA: ωp ∼ 2ωc. In that case, the
Hamiltonian can be described, in the rotating wave approximation, as

Ĥ = ℏ
[
ωr â

†â− ωr

8
tan
(φdc

2

)
φp cos (ωpt+ ϕp)

(
â+ â†

)2]
≈ ℏ

[
ωr â

†â− Ωp

2

(
â2ei(ωpt+ϕp) + â†2e−i(ωpt+ϕp)

)]
,

(2.131)
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Pump

Figure 2.11: Circuit diagram of Josephson parametric amplifier (JPA).

where Ωp = ωr

4
tan
(
φdc

2

)
φp = ωr

4
tan
(

Φdc

ϕ0

)
Φp

ϕ0
is the pump amplitude, and Φp is the pump

magnetic flux penetrating the loop of the SQUID. Note that we neglect the modulation
terms of the resonance frequency of the JPA. From the Hamiltonian, we find the flux-
driven JPA is a harmonic oscillator with a two-photon drive.

2.7.1 JPA connected to waveguide

Here, we study the JPA coupled to a waveguide. As in the case for the LC resonator, the
Hamiltonian can be represented as

Ĥ = ℏ
[
ωr â

†â− Ωp

2

(
â2ei(ωpt+ϕp) + â†2e−i(ωpt+ϕp)

)]
+ ℏ

∫ ∞

−∞
dω

[
ω â†ωâω +

√
κex
2π

(â†âω + â†ωâ)

]
+ ℏ

∫ ∞

−∞
dω

[
ω ĉ†ω ĉω +

√
κin
2π

(â†ĉω + ĉ†ωâ)

]
,

(2.132)
where κex and κin are the external coupling rate and internal loss rates of the JPA.

The time evolution of â is described in the Heisenberg picture as

dâ(t)

dt
=
(
−iωr −

κ

2

)
â(t) + iΩpe

−iωpt−iϕp â† − i
√
κexâi(t)− i

√
κinĉi(t), (2.133)

where âi(t) and ĉi(t) are the input modes in the waveguide and the loss channel, and
κ = κex+κin is the total relaxation rate of the JPA. The Fourier transform of Eq. (2.133)
can be described as

−iωâ(ω) =
(
−iωr −

κ

2

)
â(ω) + iΩpe

−iϕp â†(ωp − ω)− i
√
κexâi(ω)− i

√
κinĉi(ω). (2.134)

Here, the pump frequency is set to be twice the JPA frequency, i.e., ωp = 2ωr. The
frequency ω is represented by the detuning between the input signal and the JPA fre-
quency, i.e., ω = ωr + δ. Then, â(ω), âi(ω) and ĉi(ω) are denoted as â(δ), âi(δ) and ĉi(δ),
respectively. Then, Eq. (2.134) can be represented as

−iδâ(δ) = −κ
2
â(δ) + iΩpe

−iϕp â†(−δ)− i
√
κexâi(δ)− i

√
κinĉi(δ). (2.135)

Using the conjugate relation, Eq. (2.135) can be simply represented as(
κ
2
− iδ −iΩpe

−iϕp

iΩpe
iϕp κ

2
− iδ

)(
â(δ)
â†(−δ)

)
= i

√
κex

(
−âi(δ)
â†i (−δ)

)
+i

√
κin

(
−ĉi(δ)
ĉ†i (−δ)

)
. (2.136)
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Then, we have(
â(δ)
â†(−δ)

)
=

i(
κ
2
− iδ

)2 − Ω2
p

(
κ
2
− iδ iΩpe

−iϕp

−iΩpe
iϕp κ

2
− iδ

)[
√
κex

(
−âi(δ)
â†i (−δ)

)
+
√
κin

(
−ĉi(δ)
ĉ†in(−δ)

)]
.

(2.137)
Using the input-output relation as âo(δ) = âi(δ)− i

√
κexâ(δ), we obtain

âo(δ) =
1(

κ
2
− iδ

)2 − Ω2
p

[(
−
(
κex − κin

2
+ iδ

)(κ
2
− iδ

)
− Ω2

p

)
âi(δ) + iκexΩpe

−iϕp â†i (−δ)
]

+

√
κinκex(

κ
2
− iδ

)2 − Ω2
p

[
−
(κ
2
− iδ

)
ĉi(δ) + iΩpe

−iϕp ĉ†i (−δ)
]
.

(2.138)

We find that the output mode state is the input mode state multiplied with a squeezing
operator with a finite photon loss. In this thesis, the JPA is used for a squeezed source
or a phase-sensitive amplifier.



Chapter 3

State representation and
transformation

Here, we explain the representations of a quantum state in a qubit and a harmonic oscil-
lator (photonic mode). The basic concepts in this chapter can be seen in [54, 55, 56, 1].

3.1 Qubit

A qubit, a quantum system with two eigenstates, is known as the fundamental compo-
nent of in a quantum information processor. Although the superconducting qubit is a
multi-level system, it is well approximated as a two-level system due to its strong anhar-
monicity (see Sec. 2.5.2). The Hamiltonian of the qubit is written as

Ĥ =
ℏωq

2
σ̂z, (3.1)

where ωq is the resonance frequency of the qubit and σ̂z is the Pauli z operator. The
lower and higher eigenstates are called the ground state |g⟩ and the excited state |e⟩,
respectively.

3.1.1 Bloch sphere

An arbitrary quantum state of the qubit, including a classical mixed state, is represented
as

ρ =
1

2
(1̂ + rxσ̂x + ryσ̂y + rzσ̂z), (3.2)

where σ̂x, σ̂y, and σ̂z are the Puali matrices, and r2x + r2y + r2z ≤ 1 is satisfied. Therefore,
the quantum state is visually represented by the coordinate of a point (rx, ry, rz) in the
Bloch sphere, as shown in Fig. 3.1. The Bloch sphere is a three-dimensional sphere with
the radius equal to unity. The pure state |Ψ⟩ is represented by the point on the surface
(rx, ry, rz) = (sin θ cos θ, sin θ sin θ, cos θ), which satisfies r2x + r2y + r2z = 1. The pure states
located at the antipodes on the Bloch sphere are the states orthogonal to each other.
While the pure state is located on the surface, the mixed state is located inside the Bloch
sphere. The projection onto one axis corresponds to the occupation probability of the
eigenstate defined by the axis.

35
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Figure 3.1: Bloch sphere.

3.1.2 Unitary operation

A generator or Hamiltonian of an unitary operator for the qubit system is described in
the basis of the Pauli matrix as

Ĥ ∝ nxσ̂x + nyσ̂y + nzσ̂z, (3.3)

where n2
x + n2

y + n2
z = 1 can be satisfied without loss of generality. Then, the unitary

operator with the Hamiltonian is described as

Û = exp

[
−iΘ

2
(nxσ̂x + nyσ̂y + nzσ̂z)

]
= cos

Θ

2
1̂− i sin

Θ

2
(nxσ̂x + nyσ̂y + nzσ̂z).

(3.4)

In the Bloch sphere, the unitary operation corresponds to the rotation by +Θ about the
axis of −→n = (nx, ny, nz).

3.1.3 Rabi oscillation

As explained in Sec. 2.5.2, a superconducting qubit is controlled by applying an on-
resonant microwave pulse. As schematically shown in Fig. 3.2(a), the driven qubit state
goes back and forth between the ground state and the excited state without being excited
to the higher energy levels.

From Sec. 2.5.2, the Hamiltonian of the driven qubit is represented in the rotating
frame at the drive frequency ωd as

Ĥ = ℏ
[
ωq − ωd

2
σ̂z +

(
|Ωd|
2
e−iϕdσ̂+ +

|Ωd|
2
eiϕdσ̂−

)]
=

ℏ
2

(
δ |Ωd|e−iϕd

|Ωd|eiϕd −δ

)
,

(3.5)

where |Ωd| is the drive amplitude, ϕd is the drive phase, and δ = ωq − ωd is the detuning
between the qubit frequency and the drive frequency. Note that the as Stark shift from
the second higher excited state is neglected for simplicity. When the detuning is much
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Figure 3.2: Unitary operation of the Rabi oscillation.

less than the Rabi frequency, δ ≪ |Ωd|, the Hamiltonian is rewritten as

Ĥ =
ℏ|Ωd|
2

(
0 e−iϕd

eiϕd 0

)
=

ℏ|Ωd|
2

(cosϕd σ̂x + sinϕd σ̂y).

(3.6)

As shown in Fig. 3.2(b), the rotation axis with this Hamiltonian is n⃗ = (cos θ, sin θ, 0)
or the x-axis rotated by ϕd on the xy-plane in the Bloch sphere. The unitary operator
describing the evolution from time ti to tf is given by

Û = exp

(∫ tf

ti

dt
|Ωd|
2

(cosϕd σ̂x + sinϕd σ̂y)

)
= exp

(
Θ

2
(cosϕd σ̂x + sinϕd σ̂y)

)
,

(3.7)

where Θ =
∫ tf
ti
dt |Ωd| is the rotation angle in the Bloch sphere. From this, the Rabi

frequency is found to be the angular velocity of the rotation due to the unitary operation.
By using the two different drive phases, we can realize the rotations about the two

different rotation axes on the xy plane. Therefore, the unitary operation with the Rabi
oscillation enables us to perform an arbitrary unitary operation on the qubit.

3.1.4 Gates

Here, we introduce Pauli operations on the qubit, which are often used for characterization
of the qubit itself and for implementing various algorithms.

By setting the rotation angle to π/2 and π with a drive phase of ϕd = 0, the X̂/2 gate
and the X̂ gate can be implemented as

X̂/2 =
1√
2

(
1 −i
−i 1

)
, X̂ =

(
0 −i
−i 0

)
. (3.8)

A operation with a drive phase of ϕd = π corresponds to the inverse operation of that of
ϕd = 0. Therefore, we have

ˆ−X/2 = X̂/2
†
=

1√
2

(
1 i
i 1

)
, −̂X = X̂† =

(
0 i
i 0

)
. (3.9)
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Figure 3.3: Schematic of the Pauli operation of the qubit. The superposition states are
denoted as |±⟩ = 1√

2
(|g⟩ ± |e⟩) and | ± i⟩ = 1√

2
(|g⟩ ± i|e⟩).

Furthermore, by setting the rotation angle to π/2 and π with a drive phase of ϕd = π/2,
the Ŷ /2 gate and the Ŷ gate can be implemented as

ˆY/2 =
1√
2

(
1 −1
1 1

)
, Ŷ =

(
0 −1
1 0

)
. (3.10)

The inverse operations of the ˆY/2 and Ŷ gates are realized by using a drive phase of 3π/2
as

ˆ−Y/2 = ˆY/2
†
=

1√
2

(
1 1
−1 1

)
, −̂Y = Ŷ † =

(
0 1
−1 0

)
. (3.11)

A schematic showing examples of the Pauli operations is shown in Fig. 3.3.

3.1.5 Quantum state tomography

In order to perform quantum state tomography of the qubit, we must determine (rx, ry, rz)
in the Bloch sphere.

By measuring the qubit in the basis of σ̂x, we can obtain the expectation value of ⟨σ̂x⟩,
which is calculated as

⟨σ̂x⟩ = Tr [ρ σ̂x]

=
1

2
Tr
[
(1̂ + rxσ̂x + ryσ̂y + rzσ̂z)σ̂x

]
=
rx
2
Tr
[
1̂
]

= rx,

(3.12)

where we use σ̂2
x = 1̂, σ̂yσ̂x = −iσ̂z, σ̂zσ̂x = iσ̂y. From this calculation, we find that

a measurement of the expectation value of σ̂x enables us to determine rx of the density
matrix. In the same way, we can determine ry and rz by measuring the qubit in the basis
of σ̂y and σ̂z, respectively:

⟨σ̂y⟩ = Tr [ρ σ̂y] = ry

⟨σ̂z⟩ = Tr [ρ σ̂z] = rz.
(3.13)

Thus, we realize quantum state tomography of the qubit by measuring the qubit in the
three orthogonal bases σ̂x, σ̂y, and σ̂z.
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In usual experiments, a superconducting qubit can be measured only in the basis of
σ̂z or in an energy eigenstates. However, we can measure the qubit in an arbitrary basis
by a measurement of σ̂z with a qubit control.

For example, we can measure the qubit in the σ̂x basis by performing the ˆ−Y/2 gate
and then measuring σ̂z:

Tr
[

ˆ−Y/2 ρ ˆ−Y/2
†
σ̂z

]
= Tr

[
ρ ˆ−Y/2

†
σ̂z ˆ−Y/2

]
= Tr [ρ σ̂x]

= ⟨σ̂x⟩
= rx.

(3.14)

In the same way, we can measure the qubit in the σ̂y basis with the X̂/2 gate:

Tr
[
X̂/2 ρ X̂/2

†
σ̂z

]
= ry.

(3.15)

Therefore, by using the expectation value of these measurements, we can perform quantum
state tomography of the superconducting qubit.

3.2 Harmonic oscillator

Here, we study how to describe a quantum state in a harmonic oscillator. The Hamiltonian
is written as

Ĥ = ℏωc â
†â, (3.16)

where ωc is the resonance frequency and â and â† are the annihilation and creation op-
erators, respectively. The bosonic commutation relation is imposed on the operators as
[â, â†] = 1.

We also define the dimensionless quadrature operators as

x̂ =
â+ â†√

2
, p̂ =

â− â†√
2i

. (3.17)

The operators x̂ and p̂ correspond to the real and imaginary parts of â, respectively. The
commutation relation is [x̂, p̂] = i. From the definition, the annihilation and creation
operators are represented as

â =
x̂+ ip̂√

2
, â† =

x̂− ip̂√
2
. (3.18)

By using the quadrature operators, the Hamiltonian is rewritten as

H =
ℏωc

2

(
x̂2 + p̂2

)
. (3.19)

3.2.1 Fock basis

A photon number â†â can be measured with a quantum-limited energy detector for the
electromagnetic field, which is called a photon detector.
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The eigenstates of the photon number operator â†â are called Fock states, which satisfy

â†â|n⟩ = n|n⟩, (3.20)

where n is a non-negative integer of the photon number. The Fock states are schematically
shown in Fig. 3.4.

The annihilation and creation operators literally decrease and increase the photon
number of the Fock state as

|n− 1⟩ = 1√
n
â|n⟩, |n+ 1⟩ =

1√
n+ 1

â†|n⟩. (3.21)

The ground state with a photon number of zero is called the vacuum state, which satisfies
â|0⟩ = 0. An arbitrary Fock state can be generated from the vacuum state with repeated
application of the creation operator as

|n⟩ = â†n√
n!
|0⟩. (3.22)

The set of eigenstates |n⟩ is the complete orthogonal basis, which satisfies

⟨n|n′⟩ = δn,n′ ,

∞∑
n=0

|n⟩⟨n| = 1̂, (3.23)

where 1̂ is the identity operator. In other words, an arbitrary quantum state |Ψ⟩ in the
single harmonic oscillator is represented in the Fock basis as

|Ψ⟩ =
∞∑
n=0

⟨n|Ψ⟩|n⟩ =
∞∑
n=0

Ψn|n⟩, (3.24)

Ψn = ⟨n|Ψ⟩ is a complex value, which contains complete information about the pure
quantum state. From the normalization condition, Ψn ensures that

∞∑
n=0

|Ψn|2 = 1. (3.25)

The occupation probability in the Fock basis is described as

Pn = |Ψn|2, (3.26)

which is called the photon-number distribution. Although it does not contain phase
information in the quantum state, the photon-number distribution is sometimes used for
characterization of the quantum nature of the state in the harmonic oscillator.

3.2.2 Quadrature basis

The amplitude associated with quadrature operators of x̂ and p̂ can be measured by a
quantum-limited electromagnetic field detector, which is realized by the homodyne or
heterodyne scheme in quantum optics [54, 57].

By using the rotation operator R̂(θ) = e−iθâ†â, we can generalize the quadrature
operators x̂ and p̂ as

x̂θ = R̂†(θ) x̂ R̂(θ) = x̂ cos θ + p̂ sin θ =
âe−iθ + â†eiθ√

2

p̂θ = R̂†(θ) p̂ R̂(θ) = −x̂ sin θ + p̂ cos θ =
âe−iθ − â†eiθ√

2i
,

(3.27)
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Figure 3.4: Energy levels and energy eigenstates (Fock states) of the single harmonic
oscillator. The eigenstates are depicted by the wave functions plotted on the corresponding
energy levels.

where [x̂θ, p̂θ] = i. From this definition, we find that these operators can be understood
as the real and imaginary part of âe−iθ = R̂†(θ) â R̂(θ):

âe−iθ =
x̂θ + ip̂θ√

2
. (3.28)

The eigenstates of the quadrature operators x̂θ satisfies

x̂θ|x, θ⟩ = x|x, θ⟩, (3.29)

where x is the eigenvalue. The set of these eigenstates is the complete orthogonal basis,
which satisfies

⟨x, θ|x′, θ⟩ = δ(x− x′),

∫ ∞

−∞
dx |x, θ⟩⟨x, θ| = 1̂ (3.30)

Therefore, we can represent an arbitrary quantum state as

|Ψ⟩ =
∫ ∞

−∞
dx ⟨x, θ|Ψ⟩|x, θ⟩ =

∫ ∞

−∞
dxθ Ψθ(x)|x, θ⟩ (3.31)

where Ψθ(x) = ⟨x, θ|Ψ⟩ is called wave function. Note that the wave function satisfies the
normalization condition ∫ ∞

−∞
dx |Ψθ(x)|2 = 1. (3.32)

Thus, the probability density of the measurement outcome of the quadrature with θ
is described as

Pθ(x) = |Ψθ(x)|2. (3.33)

The quadrature distribution is observed to reconstruct a quantum state in the harmonic
oscillator via Wigner quantum state tomography.

Here, we consider the eigenstate of x̂θ. First, the eigenstate of the original quadrature
operator of x̂ is given by

x̂|x⟩ = x|x⟩. (3.34)

Using the unitary rotation operator, the equation is deformed as

R̂†(θ)x̂R̂(θ)R̂†(θ)|x⟩ = xR̂†(θ)|x⟩
x̂θR̂

†(θ)|x⟩ = xR̂†(θ)|x⟩.
(3.35)
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Then, we find R̂†(θ)|x⟩ is the eigenstate of x̂θ with the eigenvalue of x. Therefore, we
have

|x, θ⟩ = R̂†(θ)|x⟩. (3.36)

This relation is used for the maximum likelihood reconstruction of a quantum state in the
harmonic oscillator.

3.3 Wigner function

From the quadrature measurement of x̂θ, we can obtain a quadrature distribution Pθ(x).
As we will see later, the set of the distributions Pθ(x) in the various phases contains the
complete information about a quantum state of a single harmonic oscillator. In other
words, the set of distributions has one-to-one correspondence to the density matrix of
the quantum state. However, the set of the distributions is not representable easily and
not understandable intuitively. Then, we define a quasi-probability distribution W (x, p)
on the two-dimensional plane, which is called a Wigner function. One of the important
properties is that the marginal distribution of xθ (the distribution obtained by the integral
of W (x, p) with respect to the orthogonal quadrature pθ) corresponds to the distribution
Pθ(x). Therefore, the Wigner function is well associated with the quadrature measure-
ments and is easy to use in order to imagine how the quantum state is represented.

3.3.1 Definition and properties

A Wigner function W (x, p) is a quasi-probability distribution in phase space (quadrature
space). First, we define the characteristic function for a density matrix ρ̂ as

W(u, v) =
1

2π
Tr
[
ρ̂ e−iux̂−ivp̂

]
. (3.37)

The definition can be understood intuitively as a kind of Fourier transform of the density
matrix ρ̂ with the quadrature operators x̂ and p̂.

Then, the Wigner function is defined as the inverse Fourier transform of the charac-
teristic function:

W (x, p) =
1

2π

∫∫ ∞

−∞
dudvW(u, v)eiux+ivp, (3.38)

or

W (x, p) =
1

4π2

∫∫ ∞

−∞
dudv Tr

[
ρ̂ e−iux̂−ivp̂

]
eiux+ivp. (3.39)

The characteristic function is also obtained from a Fourier transform of the Wigner func-
tion as

W(u, v) =
1

2π

∫∫ ∞

−∞
dxdp W (x, p)e−iux−ivp. (3.40)

Coordinate transformation

We consider the coordinate transformation of the Wigner function W (x, p). Here, we
represent W (x, p) with a new coordinate system (x̄, p̄) which is described as

x̄ = Ax+ b

x = A−1(x̄− b),
(3.41)

where xT = (x p), x̄T = (x̄ p̄), A is the 2 × 2 real matrix describing the scaling and
rotation, and b is the real column vector describing the displacement. The coordinate
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(a) (b)

Figure 3.5: Coordinate transformation of Wigner function. (a) Wigner function repre-
sented in the coordinate system (x, p). The coordinate system (x̄, p̄) is shown at the same
time. (b) Wigner function represented in the coordinate system (x̄, p̄).

transformation given by the matrix A and the vector b is called an Affine transforma-
tion. Here, we assume that the coordinate transformation is consistent with the unitary
operation in the Heisenberg picture:

ˆ̄x = Û †x̂Û = Ax̂+ b

x̂ = Û ˆ̄xÛ † = A−1(ˆ̄x− b),
(3.42)

where x̂T = (x̂ p̂), ˆ̄x
T
= (ˆ̄x ˆ̄p), and Û is the unitary operator. Note that the Affine trans-

formation corresponds to the unitary operation whose generator (Hamiltonian) is com-
posed of up to the second order of the annihilation and creation operators. As schemati-
cally shown in Figs. 3.5(a) and (b), the Wigner function in the coordinate system (x̄, p̄)
is represented by

W̄ (x̄, p̄) = W (x, p). (3.43)

Note that the coordinate system (x, p) is represented as a function of x̄ and p̄ from
Eq. (3.41).

Here, we will derive the Wigner function W̄ (x̄, p̄) from the density matrix ρ̂ using the
transformed quadrature operators ˆ̄x, ˆ̄p. First of all, the Wigner function in the coordinate
system (x, p) can be written as

W (x, p) =
1

4π2

∫∫ ∞

−∞
dudv Tr

[
ρ̂ e−iuTx̂

]
eiu

Tx

=
1

4π2

∫∫ ∞

−∞
dudv Tr

[
ρ̂ e−iuTx̂

]
eiu

TA−1(x̄−b)

=
1

4π2

∫∫ ∞

−∞
dūdv̄ det(J ) Tr

[
ρ̂ e−iūT(Ax̂+b)

]
eiū

Tx̄

=
1

4π2

∫∫ ∞

−∞
dūdv̄ Tr

[
ρ̂ e−iūT ˆ̄x

]
eiū

Tx̄,

(3.44)

where uT = (u v) and ūT = (ū v̄). Here, we define ū = (A−1)
T
u. Note that the

determinant of the Jacobian matrix from (u, v) to (ū, v̄) is unity det(J ) = 1, as long as
the coordinate transformation is consistent with the unitary operation of the quadrature
operators. From the Eqs. (3.43) and (3.44), we find the Wigner function W̄ (x̄, p̄) can be
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derived from the density matrix ρ̂ using the corresponding quadrature operators ˆ̄x and ˆ̄p
as

W̄ (x̄, p̄) =
1

4π2

∫∫ ∞

−∞
dūdv̄ Tr

[
ρ̂ e−iūT ˆ̄x

]
eiū

Tx̄. (3.45)

Note that the Wigner function W̄ (x̄, p̄) is obtained in the same way as in Eq. (3.39).

Finally, we will study the effect of the coordinate transformation of the Wigner func-
tion on the corresponding characteristic function. The characteristic function W̄(ū, v̄) is
obtained by the Fourier transformation of the Wigner function W̄ (x̄, p̄) as

W̄(ū, v̄) =
1

2π

∫∫ ∞

−∞
dx̄dp̄ W̄ (x̄, p̄)e−iūx̄−iv̄p̄. (3.46)

It is also given by

W̄(ū, v̄) =
1

2π
Tr
[
ρ̂ e−iūT ˆ̄x

]
. (3.47)

Using the transformation relation in Eq. (3.42), this is deformed as

W̄(ū, v̄) =
1

2π
Tr
[
ρ̂ e−iūT ˆ̄x

]
=

1

2π
Tr
[
ρ̂ e−iūT(Ax̂+b)

]
= e−iuTb 1

2π
Tr
[
ρ̂ e−iuTx̂

]
= e−iuTb W(u, v).

(3.48)

Therefore, we find the coordinate transformation of the Wigner function results in the
coordinate transformation and the sinusoidal modulations of the characteristic function.

Integral representation

We will obtain another representation of the Wigner function. Here, the Wigner function
is represented by the coordinate system (x̄, p̄) for generality. The characteristic function
W̄(ū, v̄) in Eq. (3.47) is transformed as

W̄(ū, v̄) =
1

2π
Tr
[
ρ̂ e−iūˆ̄x−iv̄ ˆ̄p

]
=

1

2π
e

−iūv̄
2 Tr

[
ρ̂ e−iūˆ̄xe−iv̄ ˆ̄p

]
(∵ CBH Lemma)

=
1

2π
e

−iūv̄
2 Tr

[
e−i v̄

ˆ̄p
2 ρ̂ e−iūˆ̄xe−i v̄

ˆ̄p
2

]
=

1

2π
e

−iūv̄
2

∫
dξ̄ ⟨ξ̄|e−i v̄

ˆ̄p
2 ρ̂ e−iūˆ̄xe−i v̄

ˆ̄p
2 |ξ̄⟩

=
1

2π
e

−iūv̄
2

∫
dξ̄ ⟨ξ̄ − v̄/2|ρ̂ e−iūˆ̄x|ξ̄ + v̄/2⟩ (∵ Displacement)

=
1

2π

∫
dξ̄ e−iūξ̄⟨ξ̄ − v̄/2|ρ̂|ξ̄ + v̄/2⟩,

(3.49)
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where |ξ̄⟩ is the eigenstate of the quadrature operator ˆ̄x. Then, the Wigner function in
the coordinate system (x̄, p̄) is obtained through the inverse Fourier transformation as

W̄ (x̄, p̄) =
1

2π

∫∫ ∞

−∞
dūdv̄ W̄(ū, v̄)eiūx̄+iv̄p̄

=
1

4π2

∫∫ ∞

−∞
dūdv̄

∫ ∞

−∞
dξ̄ eiū(x̄−ξ̄)+iv̄p̄⟨ξ̄ − v̄/2|ρ|ξ̄ + v̄/2⟩

=
1

4π2

∫∫ ∞

−∞
dv̄dξ̄ 2πδ(x̄− ξ̄)eiv̄p̄⟨ξ̄ − v̄/2|ρ|ξ̄ + v̄/2⟩

=
1

2π

∫ ∞

−∞
dv̄ eiv̄p̄⟨x̄− v̄/2|ρ|x̄+ v̄/2⟩.

(3.50)

This is the integral representation of the Wigner function.

Radon transformation (Marginal distribution)

The integral transformation of a function with respect to one axis on a two-dimensional
plane is called Radon transformation. Therefore, the marginal distribution of a Wigner
function corresponds to the Radon transformation of the Wigner function. Then, one
of the important properties of the Wigner function is that the marginal distribution
of a Wigner function corresponds to the distribution of the outcomes from quadrature
measurements.

Suppose that the coordinate system (xθ, pθ) is rotated by ϕ with respect to the co-
ordinate system (x, p). The corresponding quadrature operators x̂θ and p̂θ are described
by the rotation operation of the original quadrature operators x̂ and p̂:(

x̂θ
p̂θ

)
=

(
R̂†(θ) x̂ R̂(θ)

R̂†(θ) p̂ R̂(θ)

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x̂
p̂

)
. (3.51)

As schematically shown in Fig. 3.6(a), from Eq. (3.45), the Wigner function in the
coordinate system (xθ, pθ), or the Wigner function W (x, p) which is rotated by −θ, is
written as

W−θ(xθ, pθ) =
1

4π2

∫∫ ∞

−∞
duθdvθ Tr

[
ρ̂ e−iuθx̂θ−vθ p̂θ

]
eiuθxθ+ivθpθ , (3.52)

where (
xθ
pθ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
p

)
. (3.53)

As shown in Eq. (3.50), the integral representation writes

W−θ(xθ, pθ) =
1

2π

∫ ∞

−∞
dvθ e

ivθpθ⟨xθ − vθ/2, θ|ρ|xθ + vθ/2, θ⟩, (3.54)

where |x, θ⟩ is an eigenstate of x̂θ with a eigenvalue of x. Then, we can easily calculate
the integral of the Wigner function with respect to pθ as∫

dpθ W−θ(xθ, pθ) =
1

2π

∫∫ ∞

−∞
dvθdpθ e

ivθpθ⟨xθ − vθ/2, θ|ρ|xθ + vθ/2, θ⟩

=
1

2π

∫ ∞

−∞
dvθ 2πδ(vθ)⟨xθ − vθ/2, θ|ρ|xθ + vθ/2, θ⟩

= ⟨xθ, θ|ρ|xθ, θ⟩
= Pθ(xθ).

(3.55)
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(a) (b)

Figure 3.6: Wigner functionW (x, p) and quadrature distribution Pθ(x). (a) Wigner func-
tion represented in the coordinate system (x, p). The coordinate system (xθ, pθ) rotated by
−θ is shown on the same plot. (b) Wigner function represented in the coordinate system
(xθ, pθ). The blue line is the quadrature distribution Pθ(x) or the marginal distribution
obtained by the integral of the Wigner function W−θ(xθ, pθ) with respect to pθ.

As schematically shown in Fig. 3.6(b), from this calculation, we confirm that the marginal
distribution of the Wigner function corresponds to the quadrature distribution Pθ(xθ).
This property of the Wigner function gives us the intuitive understanding of the density
matrix ρ from the viewpoint of the quadrature measurements.

Inverse Radon transformation

As discussed in the previous section, we can obtain the quadrature distribution by the
Radon transformation of the Wigner function. On the other hand, we will find the
Wigner function can be reconstructed from the set of the quadrature distributions at
various phases, which is called inverse Radon transformation. Since the Wigner function
exactly corresponds to the density matrix of a single harmonic oscillator, we can perform
quantum state tomography by measuring the quadratures at various phases.

From the definition in Eq. (3.40), the characteristic function can be represented as

W (x, p) =
1

2π

∫∫ ∞

−∞
dudvW(u, v)eiux+ivp

=

∫ ∞

0

dk

∫ 2π

0

dθ kW(k cos θ, k sin θ)eik(x cos θ+p sin θ),

(3.56)

where the integral is represented with the polar coordinate system (u = k cos θ, v =
k sin θ). Note that dudv = 2πk dkdθ. From Eq. (3.48), the characteristic function can be
represented in the coordinate system (uθ, vθ) as

W(u, v) = W−θ(uθ, vθ), (3.57)

where (
uθ
vθ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
u
v

)
. (3.58)

Note that the coordinate transformation between (u, v) and (uθ, vθ) corresponds to that
between (x, p) and (xθ, pθ) in the case of the rotation operation. Using the coordinate
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transformation, the Wigner function in Eq. (3.56) can be written as

W (x, p) =

∫ ∞

0

dk

∫ 2π

0

dθ kW−θ(k, 0)e
ik(x cos θ+p sin θ). (3.59)

By changing the integration interval, the Wigner function can be represented as

W (x, p) =

∫ ∞

−∞
dk

∫ π

0

dθ |k|W−θ(k, 0)e
ik(x cos θ+p sin θ), (3.60)

where we use that W−θ+π(−k, 0) = W−θ(k, 0).

Using Eq. (3.55), the Fourier transform of the quadrature distribution of Pθ(x) can be
calculated as

Pθ(k) =
1√
2π

∫ ∞

−∞
dxθ Pθ(x)e

−ikxθ

=
1√
2π

∫∫
dxθdpθ W−θ(xθ, pθ)e

−ikxθ

=
√
2πW−θ(k, 0),

(3.61)

where we use the fact that the characteristic function in the coordinate system (uθ, vθ) is
defined by

W−θ(uθ, vθ) =
1

2π

∫∫ ∞

−∞
dxθdvθ W−θ(xθ, pθ)e

−iuθxθ−ivθpθ . (3.62)

From Eqs. (3.60) and (3.61), the Wigner function can be represented with Pθ(k) as

W (x, p) =
1√
2π

∫ ∞

−∞
dk

∫ π

0

dθ |k|Pθ(k)e
ik(x cos θ+p sin θ)

=

∫ π

0

dθ

[
1√
2π

∫ ∞

−∞
dk |k|Pθ(k)e

ik(x cos θ+p sin θ)

]
=

∫ π

0

dθ Hθ(x cos θ + p sin θ),

(3.63)

where we define the high-pass filtered quadrature distribution as

Hθ(x) =
1√
2π

∫ ∞

−∞
dk |k|Pθ(k)e

ikx. (3.64)

This is the inverse transform of the quadrature distribution with the high-pass filter
function of |k|. Using a convolution integral, Hθ(x) can also be described in terms of the
observable quadrature distribution as

Hθ(x) =

∫ ∞

−∞
dx′ Pθ(x

′)K(x−x
′), (3.65)

where K(x′) = 1√
2π

∫∞
−∞ dk |k|e−ikx′

is the inverse transformation of the filter function.

From these calculations, we find the Wigner function can be calculated by integrating
the high-pass filtered quadrature distributions with respect to the various phases. The
quantum state tomography of a single harmonic oscillator from the set of the quadrature
distributions is called Wigner tomography.
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Notable properties

Real function

The Wigner function is a real function, which is confirmed by the definition:

W ∗(x, p) =
1

2π

∫ ∞

−∞
dv e−ivp⟨x+ v/2|ρ|x− v/2⟩

=
1

2π

∫ ∞

−∞
dv eivp⟨x− v/2|ρ|x+ v/2⟩

= W (x, p),

(3.66)

where we use the variable transformation of v → −v in the second row.

Normalization condition

From the integral representation of Eq. (3.50), we can easily confirm that the Wigner
function of the density matrix is normalized in the two-dimensional plane:∫∫

dxdp W (x, p) = Tr [ρ̂] = 1. (3.67)

Product

We can define the Wigner function of any operator, rather than a density matrix. For
example, we consider the Wigner functions W1(x, p) and W2(x, p) which are derived from
the operators Ô1 and Ô2, respectively.

Then, the trace of the product of these operators can be calculated with the product
of Wigner functions as

Tr[Ô1 Ô2]

=

∫∫
dx′ ⟨x′|Ô1 Ô2|x′⟩

=

∫∫
dxdv ⟨x− v/2|Ô1|x+ v/2⟩⟨x+ v/2|Ô2|x− v/2⟩

=
1

2π

∫∫
dxdp

∫∫
dvdv′ eip(v+v′)⟨x− v/2|Ô1|x+ v/2⟩⟨x− v′/2|Ô2|x+ v′/2⟩

= 2π

∫∫ ∞

−∞
dxdp W1(x, p)W2(x, p).

(3.68)

Therefore, we can calculate the expectation value of an operator Ô for the density matrix

ρ̂, i.e., Tr
[
ρ̂ Ô
]
. We also calculate the state fidelity of the density matrix ρ̂ to a pure

state |Ψ⟩, i.e., Tr [ρ̂|Ψ⟩⟨Ψ|].

Completeness

We will confirm that the Wigner function has one-to-one correspondence to the density
matrix ρ̂. Using the Fock basis, the density matrix is described by ρ̂ =

∑
n,m ρnm|n⟩⟨m|.

We can define the Wigner function Wnm(x, p) from the operator |n⟩⟨m|. Then, ρnm is
calculated from the product integral of the Wigner functions:

ρnm = ⟨n|ρ̂|m⟩
= Tr [ρ̂|m⟩⟨n|]

= 2π

∫∫ ∞

−∞
dxdp W (x, p)Wmn(x, p).

(3.69)
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(a) (b)

Figure 3.7: Effect of unitary operation on Wigner function. (a) Wigner function repre-
sented in the coordinate systems (x, p) and (x′, p′). The Wigner function transformed
by the unitary operation Û is obtained by replacing x′and p′ with x and p in the Wigner
function represented in the coordinate system (x′, p′). (b) Wigner function transformed
by the unitary operator Û .

This means that we can reconstruct the density matrix ρ̂ from the Wigner functionW (x, p)
and that the Wigner function has complete information about the density matrix ρ̂.

Unitary operation

Here, we discuss how the Wigner function is transformed by the unitary operator Û , or
how the Wigner function acts on the density matrix ρ̂′ = Û ρ̂Û †.

Suppose that the generator of the unitary operator Û is composed of up to the second
order of â and â†. Then, the quadrature operators transformed in the Heisenberg picture
correspond to the Affine transformation [58] as

x̂′ = Û †x̂Û = Ax̂+ b

x̂ = Û x̂′Û † = A−1(x̂− b),
(3.70)

where x̂′T = (x̂′ p̂′), x̂T = (x̂ p̂), A is a 2× 2 real matrix, and b is a real vertical vector.
From its definition, the transformed Wigner function W ′(x, p) can be described as

W ′(x, p) =
1

4π2

∫∫ ∞

−∞
dudv Tr

[
ρ̂′ e−iuTx̂

]
eiu

Tx

=
1

4π2

∫∫ ∞

−∞
dudv Tr

[
Û ρ̂Û † e−iuTx̂

]
eiu

Tx

=
1

4π2

∫∫ ∞

−∞
dudv Tr

[
ρ̂ e−iuTÛ†x̂Û

]
eiu

Tx

=
1

4π2

∫∫ ∞

−∞
dudv Tr

[
ρ̂ e−iuTx̂′

]
eiu

Tx.

(3.71)

As discussed in Sec. 3.3.1, the Wigner function W (x, p) can be represented in the coordi-
nate system (x′, p′) as

W (x, p) = W ′(x′, p′) =
1

4π2

∫∫ ∞

−∞
dudv Tr

[
ρ̂ e−iuTx̂′

]
eiu

Tx′
. (3.72)
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From Eqs. (3.71) and (3.72), we find that the Wigner function transformed by the unitary
operator Û is obtained by replacing x′and p′ with x and p in the initial Wigner function
in the coordinate system (x′, p′). In other words, the unitary transformation of the
Wigner function corresponds to the coordinate transformation, as schematically shown in
Figs. 3.7(a) and (b). Mathematically, the Wigner function W (x, p) transformed by the
unitary operator Û is described as

W ′(x, p) = W (x′, p′), (3.73)

where the coordinate transformation is obtained from Eq. (3.70) as

x′ = A−1(x− b). (3.74)

Note that the coordinate transformation between x and x′ is the inverse transformation
between the quadrature operators x̂ and x̂′, since we replace x′and p′ with x and p in the
transformation.

3.4 Transformation of Wigner function

3.4.1 Rotation operation

As explained before, the rotation operator is defined as

R̂(θ) = exp
(
−iθ â†â

)
, (3.75)

which can be implemented by shifting a resonance frequency of a harmonic oscillator or
changing the rotating frame.

In the Heisenberg picture, the annihilation operator transformed by the rotation op-
erator is described as

â′ = R̂†(θ)âR̂(θ) = âe−iθ. (3.76)

Therefore, the quadrature operators are transformed as(
x̂′

p̂′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x̂
p̂

)
. (3.77)

From the transformation of the quadrature operators, the transformedWigner function
can be calculated from Eqs. (3.73) and (3.74). Using the coordinate transformation given
by (

x′

p′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
p

)
, (3.78)

the Wigner function transformed by the rotation operator is described as

W ′(x, p) = W (x′, p′) = W (x cos θ − p sin θ, x sin θ + p cos θ). (3.79)

As schematically shown in Fig. (3.8), the rotation operation with R̂(θ) corresponds to
rotation of the Wigner function about the origin by −θ in quadrature space.
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Figure 3.8: Rotation operation of Wigner function. The Wigner function is rotated
about the origin by the rotation angle −θ.

3.4.2 Displacement operation

A displacement operator is defined as

D̂(α) = exp
(
α â† − α∗ â

)
, (3.80)

which can be implemented by applying a resonant drive to a harmonic oscillator. Note
that the rotating frame is set to be at the drive frequency.

In the Heisenberg picture, the annihilation operator transformed by the displacement
operator is written as

â′ = D̂†(α)âD̂(α) = â+ α. (3.81)

The transformed quadrature operators are calculated as(
x̂′

p̂′

)
=

(
x̂+ xα
p̂+ pα

)
, (3.82)

where xα and pα are the real and imaginary parts of the complex amplitude, which are
defined as

α =
xα + ipα√

2
. (3.83)

From the transformation of the quadrature operators, the transformedWigner function
can be calculated from Eqs. (3.73) and (3.74). Using the coordinate transformation given
by (

x′

p′

)
=

(
x− xα
p− pα

)
, (3.84)

the Wigner function transformed by the displacement operator is represented as

W ′(x, p) = W (x′, p′) = W (x− xα, p− pα). (3.85)

As schematically shown in Fig. (3.9), we can observe the displaced Wigner function in
quadrature space.

3.4.3 Squeezing operation (Phase-sensitive amplification)

A squeezing operator is defined as

Ŝ(r, θ) = exp
[r
2

(
â†2ei2θ − â2e−i2θ

)]
, (3.86)
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Figure 3.9: Displacement operation of Wigner function.

Figure 3.10: Squeezing operation of Wigner function. The Wigner function is squeezed
and anti-squeezed in the pθ and xθ axis, respectively.

which can be implemented by driving a harmonic oscillator with a two-photon process.
Note that the rotating frame is set to be at half the drive frequency.

In the Heisenberg picture, the annihilation and creation operators are transformed as

â′e−iθ = Ŝ(r, θ)† â e−iθŜ(r, θ) = âe−iθ cosh(r) + â†eiθ sinh(r)

â′†eiθ = Ŝ(r, θ)† â† eiθŜ(r, θ) = â†eiθ cosh(r) + â†e−iθ sinh(r),
(3.87)

where we use the Campbell-Baker-Hausdorff formula. This transformation is called the
Bogoliubov transformation. Then, the quadrature operators rotated by θ are transformed
as

x̂′θ = Ŝ†(r, θ) x̂θ Ŝ(r, θ) = [cosh(r) + sinh(r)] x̂θ = erx̂θ

p̂′θ = Ŝ†(r, θ) p̂θ Ŝ(r, θ) = [cosh(r)− sinh(r)] p̂θ = e−rp̂θ.
(3.88)

From the transformation of quadrature operators Eqs. (3.73) and (3.74), the Wigner
function transformed by the squeezing operator can be calculated. By using the coordinate
transformation given by (

x′θ
p′θ

)
=

(
xθ

er
pθ
e−r

)
, (3.89)

the transformed Wigner functions is written as

W ′
−θ(xθ, pθ) = W−θ

(xθ
er
,
pθ
e−r

)
= W−θ

(
xθ√
G
,

pθ

1/
√
G

)
, (3.90)



3.4. TRANSFORMATION OF WIGNER FUNCTION 53

where W−θ(xθ, pθ) is the initial Wigner function in the coordinate system (xθ, pθ) or the
Wigner function W (x, p) rotated by −θ.

In this thesis, we use a squeezing operation for phase-sensitive amplification. Thus, we
define the phase-sensitive gain as G = e2r in Eq. (3.90). The phase-sensitive amplifier can
amplify a single quadrature without adding any noise, while de-amplifying the orthogonal
quadrature.

As schematically shown in Fig. 3.10, the Wigner function is squeezed and anti-squeezed
along the axes of pθ and xθ, respectively.

3.4.4 Non-unitary operation

So far, we have explained the unitary operations on Wigner function. However, we need to
consider a non-unitary operation to describe photon loss, phase-insensitive amplification,
and heterodyne detection. Here, these non-unitary operations are modeled by a harmonic
oscillator which is coupled to an ancilla one.

Wigner function of dual harmonic oscillators

First of all, Wigner function of dual harmonic oscillators is defined straightforwardly. The
characteristic function of the dual modes are defined as

W(u1, v1, u2, v2) =
1

4π2
Tr
[
ρ̂ e−iu1x̂1−iv1p̂1−iu2x̂2−iv2p̂2

]
, (3.91)

where ρ is the density matrix of the dual harmonic oscillators, x̂n and p̂n are the quadrature
operators of each mode, for n = 1 and 2. Then, the Wigner function is defined as the
inverse Fourier transform of the characteristic function

W (x1, p1, x2, p2)

=
1

4π2

∫∫ ∞

−∞
du1dv1du2dv2 W(u1, v1, u2, v2)e

iu1x1+iv1p1+iu2x2+iv2x2

=
1

16π4

∫∫ ∞

−∞
du1dv1du2dv2 Tr

[
ρ̂ e−iu1x̂1−iv1p̂1−iu2x̂2−iv2p̂2

]
eiu1x1+iv1p1+iu2x2+iv2x2 .

(3.92)

Basically, the properties of the Wigner function are also satisfied in the case of the dual
harmonic oscillators.

The partial trace is described as the integral with respect to the corresponding quadra-
tures. For instance, when the mode n = 2 is traced out, the Wigner function of the mode
n = 1 is described as

W (x1, p1) =

∫∫
dx2dp2 W (x1, p1, x2, p2). (3.93)

Beam splitter transformation

A beam splitter is an object used in conventional optical physics experiments which divides
a single beam of light into two separate beams, or combines two separate beams into one
single beam.

A unitary operator of a beam splitter on dual harmonic oscillators is defined as

B̂(Θ) = exp
[
Θ(â†1â2 − â1â

†
2)
]
, (3.94)



54 CHAPTER 3. STATE REPRESENTATION AND TRANSFORMATION

Figure 3.11: Schematic of beam splitter transformation.

which can be implemented by a resonant coupled dual harmonic oscillator. In the Heisen-
berg picture, the annihilation operator is transformed as(

â′1
â′2

)
=

(
B̂†(Θ)â1B̂(Θ)

B̂†(Θ)â2B̂(Θ)

)
=

(
cosΘ sinΘ
− sinΘ cosΘ

)(
â1
â2

)
=

( √
η

√
1− η

−
√
1− η

√
η

)(
â1
â2

)
,

(3.95)

where
√
η = cosΘ,

√
1− η = sinΘ and η is the transmittance of the beam splitter.

Hereinafter, we characterize the beam splitter transformation using the transmittance η
as schematically shown in Fig. (3.11).

Then, the quadrature operators are transformed as(
x̂′1
x̂′2

)
=

( √
η

√
1− η

−
√
1− η

√
η

)(
x̂1
x̂2

)
,

(
p̂′1
p̂′2

)
=

( √
η

√
1− η

−
√
1− η

√
η

)(
p̂1
p̂2

)
(3.96)

Suppose that the initial state of the dual harmonic oscillators is a product state, i.e.,
ρ = ρ̂1⊗ ρ̂2. Then the Wigner function is described as the product of each of the harmonic
oscillators:

W (x1, p1, x2, p2) =
1

4π2

∫∫ ∞

−∞
du1dv1 Tr

[
ρ̂1 e

−iu1x̂1−iv1p̂1
]
eiu1x1+iv1p1

× 1

4π2

∫∫ ∞

−∞
du2dv2 Tr

[
ρ̂2 e

−iu2x̂2−iv2p̂2
]
eiu2x2+iv2p2

= W1(x1, p1)W2(x2, p2),

(3.97)

where Wn(xn, pn) is the Wigner function of each oscillator, for n = 1 and 2. Then, the
Wigner function transformed by the beam splitter operator is described as

W ′(x1, p1, x2, p2) = W1(x
′
1, p

′
1)W2(x

′
2, p

′
2), (3.98)

where(
x′1
x′2

)
=

( √
η −

√
1− η√

1− η
√
η

)(
x1
x2

)
,

(
p′1
p′2

)
=

( √
η −

√
1− η√

1− η
√
η

)(
p1
p2

)
.

(3.99)
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Therefore, we have

W ′(x1, p1, x2, p2)

=W1(
√
ηx1 −

√
1− η x2,

√
ηp1 −

√
1− η p2)W2(

√
1− η x1 +

√
ηx2,

√
1− η p1 +

√
ηp2).

(3.100)

Noise function

As we will see later, photon loss, phase-insensitive amplification, and heterodyne detection
can be modeled by a rescaled Wigner function with an added noise.

To mathematically treat the added noise, we define a Gaussian noise function with an
isotropic quadrature variances of n as

N(x, p, n) =
1

2πn
exp

(
−1

2

x2

n
− 1

2

p2

n

)
. (3.101)

Note that the noise function satisfies the normalization condition and that it describes the
amount of noise added to a signal mode, though it does not describe a physical quantum
state.

Furthermore, we define the convolution integral of an initial Wigner function W (x, p)
with the noise function as

W∗N(x, p, n) = (W ∗N) (x, p) =

∫∫
dxadpa W (xa, pa) N (x− xa, p− pa, n) , (3.102)

where xa and pa are the quadratures of the ancilla mode, and the transformed distribution
satisfies the normalization condition. We find the convolution integral with the Gaussian
function describes the Wigner function with the adding noise. Note that the Wigner
function with the added noise is consistent with a s-parameterized quasi-probability dis-
tribution, which is defined in [54].

Moreover, the convolution integral with n = 0 is the identity operation on the input
Wigner function as

W∗N(x, p, n = 0) = W (x, p). (3.103)

3.4.5 Photon loss

One of the main decoherence sources of a harmonic oscillator is photon loss. We can model
photon loss by a harmonic oscillator which has undergone a beam splitter transformation
with a vacuum state in an ancilla mode. Then, the ancilla mode is traced out.

From Eq. (3.100), the initial Wigner function W (x, p) after the photon loss with the
transmittance of η is described as

W ′(x, p)

=

∫∫
dxadpa W (

√
ηx−

√
1− ηxa,

√
ηp−

√
1− ηpa)W0(

√
1− ηx+

√
ηxa,

√
1− ηp+

√
ηpa)

=

∫∫
dxadpa

1

η
W

(
xa√
η
,
pa√
η

)
1

1− η
W0

(
x− xa√
1− η

,
p− pa√
1− η

)
,

(3.104)
where W0(x, p) =

1
π
e−x2−p2 is a Wigner function of a vacuum, which is defined in Sec. 3.6.

Here, we use the variable transformation of xa →
√

η
1−η

x− 1√
η(1−η)

xa and pa →
√

η
1−η

p−
1√

η(1−η)
pa in the second row. We find that the obtained Wigner function is obtained by
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(a) (b)

Figure 3.12: Effect of photon loss on Wigner function.

taking the convolution integral between the initial Wigner function scaled by
√
η and the

Wigner function of the vacuum state scaled by
√
1− η.

From the viewpoint of the input referred noise, it is useful to rescale the initial Wigner
function as

W ′(x, p) =
1

η

∫∫
dxadpa W (xa, pa)

η

1− η
W0

 x√
η
− xa√
1−η
η

,

p√
η
− pa√
1−η
η


=

1

η

∫∫
dxadpa W (xa, pa) N

(
x
√
η
− xa,

p
√
η
− pa, n =

1− η

η
× 1

2

)
=

1

η
W∗N

(
x
√
η
,
p
√
η
, n =

1− η

η
× 1

2

)
,

(3.105)

where we use the variable transformation of xa√
η
→ xa and pa√

η
→ pa in the first row.

Here, the Wigner function of the vacuum state is represented by the noise function as

W0

(
x√
1−η
η

, p√
1−η
η

)
= N

(
x, p, n = 1−η

η
× 1

2

)
. The transformation of the Wigner function

by the photon loss is schematically shown in Fig. 3.12.

Generally speaking, when the ancilla mode is not well cooled down, the ancilla mode
is in the thermal state, which is defined in Sec. 3.6 as

Wnth
(x, p) =

1

π(2nth + 1)
exp

(
−1

2

x2

nth +
1
2

− 1

2

p2

nth +
1
2

)
, (3.106)

where nth is the average photon number. Thus, the Wigner function acted on by the
photon loss with the thermal state can be described as

W ′(x, p) =
1

η
W∗N

(
x
√
η
,
p
√
η
, n =

1− η

η
×
(
nth +

1

2

))
. (3.107)

3.4.6 Phase-insensitive amplification

A phase-insensitive amplification is used to amplify both of the quadratures x̂ and p̂ simul-
taneously or can also be used to magnify the Wigner function of the signal mode isotrop-
ically. However, this process does not satisfy the commutation relation as [

√
Gx̂,

√
Gp̂] =
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(a) (b)

Figure 3.13: Phase-insensitive amplification of Wigner function.

iG ̸= i. Therefore, there is no unitary operation to perform the phase-insensitive am-
plification without adding amplifier noise. As we will see, a phase sensitive amplifier is
realized by adding the noise of the ancilla mode.

Here, we model a phase-insensitive amplification with two-mode squeezing operation.
A unitary operator of a two-mode squeezing is defined as

Ŝ(r) = exp
[r
2
(â†â†a − ââa)

]
. (3.108)

In the Heisenberg picture, the annihilation operator is transformed as(
â′

â′†a

)
=

(
cosh(r) sinh(r)
sinh(r) cosh(r)

)(
â
â†a

)
=

( √
G

√
G− 1√

G− 1
√
G

)(
â
â†a

)
, (3.109)

where G is the gain of the amplifier,
√
G = cosh(r) and

√
G− 1 = sinh(r).

Then, the quadrature operators in the Heisenberg picture are described by(
x̂′

x̂′a

)
=

( √
G

√
G− 1√

G− 1
√
G

)(
x̂
x̂a

)
(
p̂′

p̂′a

)
=

( √
G −

√
G− 1√

G− 1 −
√
G

)(
p̂
p̂a

) (3.110)

Generally speaking, the ancilla mode is in a thermal state with an average photon
number of nth. From the coordinate transformation, we therefore obtain the Wigner
function acted on by the two mode squeezing operation as

W ′(x, p, xa, pa) = W (x′, p′)Wnth
(x′a, p

′
a), (3.111)

where (
x′

x′a

)
=

( √
G −

√
G− 1

−
√
G− 1

√
G

)(
x
xa

)
(
p′

p′a

)
=

( √
G −

√
G− 1√

G− 1 −
√
G

)(
p
pa

)
.

(3.112)

Then, we obtain the Wigner function of the signal mode after the phase-insensitive am-
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plification by tracing out the ancilla mode as

W ′(x, p) =

∫∫
dxadpa W (

√
Gx−

√
G− 1xa,

√
Gp−

√
G− 1pa)

×Wnth
(−

√
G− 1x+

√
Gxa,

√
G− 1p−

√
Gpa)

=
1

G

∫∫
dxadpa W (xa, pa)

G

G− 1
WT

 x√
G
− xa√
G−1
G

,

p√
G
− pa√
G−1
G


=

1

G

∫∫
dxadpa W (xa, pa) N

(
x√
G

− xa,
p√
G

− pa, n =
G− 1

G

(
nth +

1

2

))
=

1

G
W∗N

(
x√
G
,
p√
G
,n =

G− 1

G

(
nth +

1

2

))
,

(3.113)

where we use the variable transformation of xa →
√

G
G−1

x− 1√
G−1

xa and pa →
√

G
G−1

p−
1√
G−1

pa in the second row. Furthermore, we use the property that the Wigner function of

the thermal state is symmetric with respect to the x-axis, i.e., Wnth
(x,−p) = Wnth

(x, p).
As discussed in Sec. 3.4.5, similarly to the case with the photon loss, the phase-insensitive
amplification can be understood as the addition of noise and scaling.

When the gain is much larger than unity: G≫ 1, the Wigner function is well approx-
imated as

W ′(x, p) =
1

G
W∗N

(
x√
G
,
p√
G
,n =

(
nth +

1

2

))
. (3.114)

In other words, the amplified Wigner function is the Wigner function with the amplifier
noise nth +

1
2
added and scaled by the amplifier gain G. Note that the noise corresponds

to the input referred noise of the amplifier. The transformation of the Wigner function
by the phase-insensitive amplification is schematically shown in Fig. 3.13

3.4.7 Heterodyne detection

With a heterodyne detection, information of two conjugate quadratures can be obtained
simultaneously. Generally, however, conjugate operators not commuting with each other
cannot be measured in the quantum limit simultaneously. Thus, in the heterodyne detec-
tion, we measure a composite complex amplitude operator, which is defined as

â′ = â+ ĥ†, (3.115)

where â and ĥ are the annihilation operators of the signal mode and the ancilla mode,
respectively. The real and imaginary parts of the complex amplitude operator, which are
defined as x̂′ = (â′ + â′†)/

√
2 and p̂′ = (â′ − â′†)/

√
2i, can commute with each other as

[x̂′, p̂′] = 0. Compared with Eq. (3.109), Eq. (3.115) corresponds to the phase-insensitive
amplification in the large gain limit without the scaling. Then, the transformation of the
Wigner function W (x, p) is described as

W ′(x, p) = W∗N

(
x, p, n =

(
nth +

1

2

))
, (3.116)

where nth is the thermal average photon number in the ancilla mode. The transformed
Wigner function can be directly measured as the probabilistic distribution of the mea-
surement outcomes of the real and imaginary parts of the complex amplitude operator
â′. Adding the noise larger than half a vacuum noise enables us to obtain both of the
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conjugate quadratures simultaneously. While the vacuum-noise-limited heterodyne detec-
tion can be realized in the optical frequency domain [54, 57], the heterodyne detection,
which is realized with a demodulator and a digitizer, in the microwave domain is normally
limited by thermal noise [32, 59].

3.5 Transformation of quadrature distribution

As explained in Sec. 3.3, a Wigner function can be reconstructed from a set of the ob-
servable quadrature distributions. It is useful to consider how the quadrature distribution
is transformed in each process, such as amplification, photon loss, and detection. From
Eq. (3.55), the quadrature distribution is obtained from the Wigner function as

Pθ(xθ) =

∫ ∞

−∞
dp W−θ(xθ, pθ), (3.117)

where xθ is a outcome of the measurement of x̂θ.
First of all, the quadrature distribution from the noisyWigner functionW−θ ∗N(xθ, pθ, n)

in Eq. (3.102) can be calculated as

Pθ∗N(xθ, n) =

∫ ∞

−∞
dpθ W−θ ∗N(xθ, pθ, n)

=

∫ ∞

−∞
dpθ

∫∫
dxadpa W−θ (xa, pa) N (x− xa, p− pa, n)

=

∫ ∞

−∞
dxa Pθ (xa) N (xθ − xa, n) ,

(3.118)

where W−θ ∗N(xθ, pθ, n) is the noisy Wigner function of W∗N(x, p, n) in the coordinates
(xθ, pθ). Here, we define the normalized noise distribution as

N(x, n) =
1√
2πn

exp

(
−1

2

x2

n

)
. (3.119)

Thus, the noisy quadrature distribution can be described by the convolution integral
between the original quadrature distribution Pθ(x) and the noise distribution N(x, n) as

Pθ∗N(x, n) =

∫ ∞

−∞
dxa Pθ (xa) N (x− xa, n) . (3.120)

Using the noisy quadrature distribution with the corresponding scaling, we can obtain
the quadrature distribution transformed by each process, as follows.

From Eq. (3.90), the quadrature distribution amplified in the phase-sensitive manner
can be written as

P ′
θ(x) =

1√
G
P

(
x√
G

)
=

1√
G
Pθ∗N

(
x√
G
,n = 0

)
, (3.121)

From Eq. (3.107), the quadrature distribution with the photon loss can be written as

P ′
θ(x) =

1
√
η
Pθ∗N

(
x
√
η
, n =

1− η

η
×
(
nth +

1

2

))
. (3.122)

From Eq. (3.114), the quadrature distribution amplified by the phase-insensitive am-
plifier can be described as

P ′
θ(x) =

1√
G
Pθ∗N

(
x√
G
,n = nth +

1

2

)
. (3.123)



60 CHAPTER 3. STATE REPRESENTATION AND TRANSFORMATION

Finally, from Eq. (3.116), the quadrature distribution measured by the heterodyne
detection is given by

P ′
θ(x) = Pθ∗N

(
x, n = nth +

1

2

)
. (3.124)

To sum up, these transformations are characterized by the scaling and the added noise.
The added noise amounts and scalings in each process are listed in Table 3.1.

3.5.1 Cascade transformation

Practically, microwave photons are measured through many processes in a measurement
chain. Therefore, it is useful to consider a cascade transformation of the quadrature
distribution.

Here, we suppose that the quadrature distribution of Pθ(x) will be measured after the
cascade transformation in the quadrature measurement chain. Without loss of generality,
using Pθ(x), the input quadrature distribution Pθ,i(x) to a process in the measurement
chain can be described as

Pθ,i(x) =
1

√
ci
Pθ∗N

(
x
√
ci
, n = ni

)
=

1
√
ci

∫ ∞

−∞
dxa P (xa) N

(
x
√
ci
− xa, n = ni

)
,

(3.125)

where ci and ni is the input quadrature distribution, respectively. Then, the quadrature
distribution is transformed by the process with the scaling ck and the added noise nk as

Pθ,o(x) =
1

√
ck

∫ ∞

−∞
dx′a Pθ,i (x

′
a) N

(
x

√
ck

− x′a, n = nk

)
=

1
√
cick

∫∫ ∞

−∞
dxadx

′
a Pθ (xa) N

(
x′a√
ci
− xa, n = ni

)
N

(
x

√
ck

− x′a, n = nk

)
=

1
√
cick

∫∫ ∞

−∞
dxadx

′
a Pθ (xa) N (x′a, n = ni)N

((
x

√
cick

− xa

)
− x′a, n =

nk

ci

)
=

1
√
cick

∫∫ ∞

−∞
dxa Pθ (xa) N

(
x

√
cick

− xa, n = ni +
nk

ci

)
=

1
√
cick

Pθ∗N

(
x

√
cick

, n = ni +
nk

ci

)
,

(3.126)

Table 3.1: Transformations of quadrature distribution.

Process Scaling Added noise

Photon loss
√
η 1−η

η
× (nth +

1
2
)

Phase-sensitive amplification
√
G nth +

1
2

Phase-insensitive amplification
√
G 0

Heterodyne detection 1 nth +
1
2
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in out

Noise
Scaling

Figure 3.14: Transformation of quadrature distribution.

where, we use the variable transformation of x′
a√
ci
− xa → x′a and

N

(
x√
c
, n

)
=

√
cN(x, cn),∫ ∞

−∞
dxa N (x, n1) N (x− xa, n2) = N(x, n1 + n2).

(3.127)

From these calculations, we find that the input scaling ci and added noise ni are modified
by the transformation with ck, nk as

ci → co = cick

ni → no = ni +
nk

ci
.

(3.128)

The transformation of the quadrature distribution schematically shown in Fig. 3.14.
Therefore, Pθ(x), which is transformed in a step-by-step manner with the scalings of

c1, c2, c3 · · · and the added noise of n1, n2, n3, · · · , can be described as

Pθ,tot(xθ) =
1

√
ctot

Pθ∗N

(
x

√
ctot

, n = ntot

)
=

1
√
ctot

∫ ∞

−∞
dxa P (xa) N

(
x

√
ctot

− xa, n = ntot

)
,

(3.129)

where
ctot = c1c2c3 · · ·

ntot = n1 +
n2

c1
+

n3

c1c2
+ · · · . (3.130)

We find that the added noise at a certain stage is divided by the scaling until then. In other
words, the gain of a preamplifier can suppress the noises in the latter stages. Therefore,
when a quantum-limited amplifier is used as the preamplifier, the quantum measurement
of the quadrature can be achieved even with a classical measurement device.

3.6 Examples of quantum states

Here, we show examples of quantum states in a harmonic oscillator.

3.6.1 Fock states

A Fock state is an eigenstate of the photon number operator â†â or the Hamiltonian of
the single harmonic oscillator.
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First, we can obtain the wave function of the vacuum state by solving the differential
equation:

â|0⟩ = x̂+ ip̂√
2

|0⟩ = 0. (3.131)

The equation is represented in the quadrature basis |x⟩ as(
x+

∂

∂x

)
Ψ0(x) = 0, (3.132)

where Ψ0(x) = ⟨x|0⟩ is the wave function of the vacuum state. With the normalization
condition, we obtain the wave function of the vacuum state

Ψ0(x) = ⟨x|0⟩ =
(
1

π

) 1
4

e−
x2

2 . (3.133)

Here, the expectation value and the variance of the quadrature are calculated as

⟨x⟩ = ⟨0|x̂|0⟩ = ⟨0| â+ â†√
2

|0⟩ = 0

⟨p⟩ = ⟨0|p̂|0⟩ = ⟨0| â− â†√
2i

|0⟩ = 0

(3.134)

and

⟨0|(x̂− ⟨x⟩)2|0⟩ = ⟨0|x̂2|0⟩ = 1

2
⟨0|(â2 + â†â+ ââ† + â†2)|0⟩ = 1

2

⟨0|(p̂− ⟨p⟩)2|0⟩ = ⟨0|p̂2|0⟩ = 1

2
⟨0|(−â2 + â†â+ ââ† − â†2)|0⟩ = 1

2
.

(3.135)

We find that the expectation of the quadrature is zero and that the variance of the
quadrature is 1

2
, which is called the vacuum fluctuation or the vacuum noise.

Fock states with an arbitrary photon numbers are derived from Eq. (3.22) as

Ψm(x) = ⟨x|m⟩ =
(
1

π

) 1
4 1√

n!

(
x+

∂

∂x

)m

e−
x2

2 . (3.136)

With the Hermite polynomial Hn(x), the Fock state is represented as

Ψm(x) =

(
1

π

) 1
4 1√

2mm!
Hm(x)e

−x2

2 . (3.137)

The photon-number distribution of the Fock state |m⟩ is obviously described by

P (n) = δn,m. (3.138)

Here, we show the examples of the Hermite polynomial for m = 0, 1, 2

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

(3.139)
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Figure 3.15: Wigner functions and photon-number distributions of Fock states of (a) the
vacuum state |0⟩, (b) the single photon state |1⟩, and (c) the two photon state |2⟩.

and the corresponding wave functions

Ψ0(x) =

(
1

π

) 1
4

e−
x2

2

Ψ1(x) =

(
1

π

) 1
4 √

2x e−
x2

2

Ψ2(x) =

(
1

π

) 1
4 2x2 − 1√

2
e−

x2

2 .

(3.140)

The Wigner functions are calculated in the coordinate system (x, p) from Eq. (3.50)
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as

Wm(x, p) =
e−x2−p2

π
3
22mm!

∫ ∞

−∞
dv ei(v−ip)2Hm(x− v)Hm(x+ v)

=
(−1)m

π
Lm

(
2(x2 + p2)

)
e−x2−p2 ,

(3.141)

where Ln(x) are the Laguerre polynomials. Here, we show examples of the Laguerre
polynomials for m = 0, 1, 2:

L0(x) = 1

L1(x) = 1− x

L2(x) = 1− 2x+
1

2
x2

(3.142)

and the corresponding Wigner functions

W0(x, p) =
1

π
e−x2−p2

W1(x, p) =
−1

π

(
1− (x2 + p2)

)
e−x2−p2

W2(x, p) =
1

π

(
1− 2(x2 + p2) +

1

2
(x2 + p2)2

)
e−x2−p2 .

(3.143)

Here, we rewrite the Wigner function of the vacuum state to show the quadrature
variances of 1

2
more clearly as

W0(x, p) =
1

π
exp

(
−1

2

x2

1
2

− 1

2

p2

1
2

)
. (3.144)

The examples of the Wigner functions and the photon-number distributions of Fock
states are shown in Fig. 3.15.

3.6.2 Coherent states

A coherent state |α⟩ is defined as the vacuum state acted on by a displacement operation:

|α⟩ = D̂(α)|0⟩. (3.145)

The coherent state can also be defined as the eigenstate of the annihilation operator:

â|α⟩ = α|α⟩. (3.146)

Note that the annihilation operator â is not Hermitian and that the eigenvalues are not
real, but rather a complex numbers. Using Eq. (3.146), we can easily calculate the average
photon number as

⟨n⟩ = ⟨α|â†â|α⟩ = |α|2. (3.147)

Furthermore, the coherent state is represented in the Fock basis as

|α⟩ = exp
(
α â† − α∗ â

)
|0⟩

= e−|α|2/2eαâ
†
e−α∗â|0⟩

= e−|α|2/2
∞∑
n=0

αn

√
n!
|n⟩.

(3.148)
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Figure 3.16: Wigner functions and the photon-number distributions of the coherent states
with the average photon numbers of (a) ⟨n⟩ = 0.1 (α = 0.32), (b) ⟨n⟩ = 0.5 (α = 0.71),
and (c) ⟨n⟩ = 1 (α = 1).

Therefore, the photon-number distribution is

Pα(n) = e−|α|2 |α|2n

n!

= e−⟨n⟩ ⟨n⟩n

n!
,

(3.149)

where ⟨n⟩ = |α|2 is the average photon number of the coherent state. We find the photon-
number distribution corresponds to the Poisson distribution.

In the Heisenberg picture, the quadrature operators are transformed with the displace-
ment operation as (

x̂′

p̂′

)
=

(
x̂+ xα
p̂+ pα

)
, (3.150)
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where

α =
xα + ipα√

2
. (3.151)

The expectation values and the variances of the quadratures are calculated as

⟨x⟩ = ⟨α|x̂|α⟩ = ⟨0|D̂†(α)x̂D̂(α)|0⟩ = ⟨0|(x̂+ xα)|0⟩ = xα

⟨p⟩ = ⟨α|p̂|α⟩ = ⟨0|D̂†(α)x̂D̂(α)|0⟩ = ⟨0|(p̂+ pα)|0⟩ = pα
(3.152)

and

⟨α|(x̂− ⟨x⟩)2|α⟩ = ⟨0|x̂2|0⟩ = 1

2

⟨α|(p̂− ⟨p⟩)2|α⟩ = ⟨0|p̂2|0⟩ = 1

2
.

(3.153)

We find that the coherent state is the state whose expectation values of the quadratures
are displaced but variances are the same as that of the vacuum state.

Using Eq. (3.85), the Wigner function of the coherent state Wα(x, p) is described as
the coordinate transformation of the vacuum state W0(x, p):

Wα(x, p) = W0(x− xα, p− pα)

=
1

π
exp

(
−1

2

(x− xα)
2

1
2

− 1

2

(p− pα)
2

1
2

)
.

(3.154)

Examples of these Wigner functions and photon-number distributions of coherent
states are shown in Fig. 3.16.

3.6.3 Squeezed vacuum states

A squeezed vacuum state is defined as the vacuum state acted upon by a squeezing
operation:

|S(r, θ)⟩ = Ŝ(r, θ)|0⟩. (3.155)

Using the Campbell-Baker-Hausdorff formula, it is represented in the Fock basis as

|S(r, θ)⟩ = e−
1
2
â†2ei2θ tanh(r)e−(â

†â+ 1
2) ln[cosh(r)]e

1
2
â2ei2θ tanh(r)|0⟩

=
1√

cosh(r)
e−

e2iθ tanh(r)
2

â†2|0⟩

=
∞∑
k=0

√
(2k)!√

cosh(r)2kk!

[
− tanh(r)ei2θ

]k |2k⟩.
(3.156)

Then, the photon-number distribution of the squeezed vacuum state is calculated as

P (2k) =
(2k)!

(k!)222k cosh(r)
tanh2k(r). (3.157)

We find that the squeezed vacuum state contains only even photon numbers. The average
photon number is also calculated as

⟨n⟩ = sinh2(r). (3.158)

In the Heisenberg picture, the quadrature operators are transformed under the squeez-
ing operation as

x̂′θ = Ŝ†(r, θ) x̂θ Ŝ(r, θ) = [cosh(r) + sinh(r)] x̂θ = erx̂θ

p̂′θ = Ŝ†(r, θ) p̂θ Ŝ(r, θ) = [cosh(r)− sinh(r)] p̂θ = e−rp̂θ,
(3.159)
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Figure 3.17: Wigner functions and photon-number distributions of the squeezed vacuum
states with the average photon numbers of (a) ⟨n⟩ = 0.1 (r = 0.31, θ = 0), (b) ⟨n⟩ = 0.5
(r = 0.66, θ = 0), and (c) ⟨n⟩ = 1 (r = 0.88, θ = 0).

where we use sinh(r) = er−e−r

2
and cosh(r) = er+e−r

2
. The expectation values and the

variances of the quadratures of the squeezed vacuum state are calculated as

⟨xθ⟩ = ⟨S(r, θ)|x̂θ|S(r, θ)⟩ = ⟨0|Ŝ†(r, θ) x̂θ Ŝ
†(r, θ)|0⟩ = ⟨0|erx̂θ|0⟩ = 0

⟨pθ⟩ = ⟨S(r, θ)|p̂θ|S(r, θ)⟩ = ⟨0|Ŝ†(r, θ) p̂θ Ŝ
†(r, θ)|0⟩ = ⟨0|e−rp̂θ|0⟩ = 0

(3.160)

and

⟨(x̂θ − ⟨xθ⟩)2⟩ = ⟨S(r, θ)|(x̂θ − ⟨xθ⟩)2|S(r, θ)⟩ = ⟨0|e2rx̂2θ|0⟩ =
e2r

2

⟨(p̂θ − ⟨pθ⟩)2⟩ = ⟨S(r, θ)|(p̂θ − ⟨pθ⟩)2|S(r, θ)⟩ = ⟨0|e−2rp̂2|0⟩ = e−2r

2
.

(3.161)
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We find that the expectation values of the quadratures are zero as in the vacuum state and
that the variance of one quadrature is squeezed while that of the orthogonal quadrature
is anti-squeezed.

From Eq. (3.90), the Wigner function of the squeezed vacuum state in the coordinate
system (xθ, pθ) is calculated from the coordinate transformation of the vacuum state
W0(xθ, pθ):

W−θ S(xθ, pθ) = W0

(xθ
er
,
pθ
e−r

)
=

1

π
exp

(
−1

2

x2θ
e2r

2

− 1

2

p2θ
e−2r

2

)
.

(3.162)

The Wigner function is represented in the coordinate system (x, p) as

WS(x, p) = W0

(
e−r(x cos θ + p sin θ), er(−x sin θ + p cos θ)

)
=

1

π
exp

(
−1

2

(x cos θ + p sin θ)2

e2r

2

− 1

2

(−x sin θ + p cos θ)2

e−2r

2

)
,

(3.163)

which is derived from the rotation transformation of W−θ S(xθ, pθ) by θ.
Examples of these Wigner functions and the photon-number distributions of squeezed

vacuum states are shown in Fig. 3.17.

3.6.4 Thermal states

A thermal state is a state which is in equilibrium with a thermal bath. The state is no
longer a pure state but a classical mixed state of Fock states. The energy distribution or
the photon-number distribution is the Boltzmann distribution. Then, we have the density
matrix of the thermal state as

ρ̂nth
= (1− e−β)

∞∑
n=0

e−nβ|n⟩⟨n|, (3.164)

where β = ℏωc/kBT is the energy quantum normalized by kBT , ωc is the resonance
frequency of the oscillator, T is the bath temperature, and kB is the Boltzmann constant.
The thermal state taking the zero-temperature limit corresponds to the vacuum state.

The photon-number distribution is described by

P (n) = (1− e−β)e−nβ. (3.165)

The average photon number is calculated by

⟨n⟩ = (1− e−β)
∞∑
n=0

ne−nβ

=
1

eβ − 1
.

(3.166)

Taking the high temperature limit of β = ℏωc/kBT → 0, the average photon number is
approximated by ⟨n⟩ ≈ kBT/ℏωc.

We find a thermal state can be characterized as an average photon number of ⟨n⟩ = nth.
Thus, the density matrix and the photon-number distribution can be described as

ρ̂nth
=

1

nth + 1

∞∑
n=0

(
nth

nth + 1

)n

|n⟩⟨n|

P (n) =
1

nth + 1

(
nth

nth + 1

)n

.

(3.167)
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Figure 3.18: Wigner function and photon-numbers distributions of thermal states with
the average photon number of (a) ⟨n⟩ = 0.1, (b) ⟨n⟩ = 0.5, and (c) ⟨n⟩ = 1.

The Wigner function of the thermal state is described by

Wnth
(x, p) =

1

2nth + 1
W0

(
x√

2nth + 1
,

p√
2nth + 1

)
=

1

π(2nth + 1)
exp

(
−1

2

x2

nth +
1
2

− 1

2

p2

nth +
1
2

)
.

(3.168)

The variances of the quadratures are calculated as

⟨x̂2⟩ = ⟨p̂2⟩ = nth +
1

2
. (3.169)

Examples of these Wigner functions and the photon-number distributions of thermal
states are shown in Fig. 3.18.





Chapter 4

Design

In this section, we explain how to design superconducting circuits. We focus on a three-
dimensional (3D) circuit QED system, where a transmon qubit [9, 10] on a sapphire
substrate is coupled to a 3D microwave cavity [23]. Since the transmon qubit can be
modeled as an anharmonic LC resonator, we can simulate the system and extract its
parameters, such as the resonance frequency, using a classical electromagnetic field simu-
lator. We use the “Eigenfrequency Analysis” tool in the “RF module” of the COMSOL
Multiphysics R⃝ software [60].

To design a 3D circuit QED system, it is known to use the Black Box Quantization,
which is introduced by [61]. However, we design the system based on a circuit model to
understand the system more concretely.

4.1 Three-dimensional (3D) microwave cavity

The reasons why we use the 3D cavity in this thesis are as following. First, the Q
factor of the 3D cavity is known to be higher than that of a two-dimensional resonator,
since its mode volume is larger and its electromagnetic field at the possibly lossy surface
is diluted [24, 62]. Second, the external coupling rate of the 3D cavity is tunable by
controlling the position of a coupling pin. Last, the transmon qubit on the substrate is
separable from the 3D cavity, which enables us to choose the best samples from among
transmon qubits and insert the selected qubit into 3D cavities after characterizations.
The drawbacks of the 3D cavity when compared to the 2D resonator are that 3D cavities
are too bulky for scaling up, vulnerable to crosstalk, and hard to implement functionality
introduced by other elements common in 2D systems such as Purcell filters [63, 64].

We use a rectangular 3D cavity as shown in Fig. 4.1(a). A microwave field is confined
in the 3D cavity with fixed-end conditions for the electric field, and thus a mode forms
with the standing wave. The resonance frequencies of the TEn0m mode of the rectangular
3D cavity can be calculated analytically as

ωc/2π =
c

2D

√(
m

cos θc

)2

+

(
n

sin θc

)2

, (4.1)

where c is the speed of light, D =
√
D2

x +D2
y is the length of the hypotenuse, Dx =

D cos θc, and Dy = D sin θc are the length of the width (x) and height (y), and n and m
are the mode numbers of the x and y components, respectively. The TE mode stands for
a transverse electric mode, where the electric field is orthogonal to the direction of the
propagation on the xy-plane.

71
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(a) (b)
200 μm

(c)
1 mm

1 μm(d)

Figure 4.1: 3D circuit QED system. (a) 3D cavity. The connector with a coupling pin is
installed on the top of the cavity. (b) Transmon qubit on a sapphire substrate. (c) Picture
of a transmon qubit. (d) SEM image of a Josephson junction.

For the circuit QED system, we use the fundamental mode of the 3D rectangular
cavity with θc = π/4 and n = m = 1. The resonance frequency of the fundamental mode
can be calculated as

ωc/2π =
c

D
. (4.2)

Thus, the resonance frequency of the fundamental mode can be easily calculated with
chosen design parameters as

10 GHz ≈ c

30 mm
. (4.3)

We can roughly estimate the length of the cavity with the resonance frequency of 10 GHz
as D = 30 mm and Dx = Dy = 21 mm.

The electric field distribution in the 3D cavity is useful to design the coupling strength
of the 3D cavity with the transmon qubit, which can be roughly determined by the inner
product between the normalized electric field of the 3D cavity and the dipole moment
of the transmon qubit. The electric distribution of each TEn0m mode of the rectangular
cavity can be calculated analytically as

Ez(x, y) = E0 sin

(
nπx

Dx

)
sin

(
mπy

Dy

)
, (4.4)

where E0 is the normalized electric field. Note that the x and y components of the electric
field are zero in the TEn0m mode.

Some examples of the resonance frequencies and the electric field distributions of the
3D rectangular cavity modes are shown in Fig 4.2.

The aluminum-made cavity, as shown in Fig. 4.1(a), is machined by Ono Denki. We
use the aluminum of “A1050” (Al:≥ 99.5%) for the 3D cavity. The cavity is composed of
two parts, whose joint surface is machined to be as flat as possible to suppress the seam
loss. Six screws are used to close the cavity tightly. Two alignment pins are installed
within the accuracy of 0.01 mm. The 3D cavity can be coupled to a waveguide through
a pin connector. We use the pin connector model “PE4530”, which is manufactured by
Pasternack. The female-SMA connector with the coupling pin is made of beryllium copper
to reduce magnetic noises.
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Figure 4.2: Resonance frequencies and electric field distributions of the rectangular 3D
cavity. The lower cavity modes are shown in (a) (n, m) = (1, 1), (b) (n, m) = (2, 1), (1, 2),
(c) (n, m) = (2, 2), and (d) (n, m) = (3, 1), (1, 3). The distributions of the normalized
electric fields along the z-axis are plotted. Here, we set D = 30 mm and θc = π/4 so that
the resonance frequency of the fundamental mode is around 10 GHz.

4.1.1 Resonance frequency

The shape of the rectangular cavity, shown in Fig. 4.1(a), is not precisely rectangular
due to the convenience for the machining. Furthermore, the sapphire substrate, on which
the transmon qubit is fabricated, is placed at the center of the 3D cavity. Nevertheless,
we can calculate its resonance frequency and its electric and magnetic field distributions
using an electromagnetic field simulator. Here, we use the eigenfrequency analysis tool in
COMSOL Multiphysics. We model the inner wall of the cavity including the coupling pin

Table 4.1: Resonance frequencies of the 3D cavities without the sapphire substrate. In
the simulation, the cavity frequency is calculated from the design. The external coupling
rates of the cavity at room temperature and at the base temperature are set individually.

Configuration ωc/2π (GHz) κex/2π (MHz) κin/2π (kHz)
Simulation 11.6650988 - -

Room temperature 11.69451 39.4 3420
Base temperature 11.7504721 4.7 2.0
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and the substrate as shown in Fig. 4.3. The boundary condition of the wall is set to be
a perfect electric conductor (PEC), since the 3D cavity becomes a superconductor at the
base temperature of a dilution refrigerator. Therefore, we can design a 3D cavity with
the target resonant frequency.

The accuracy of the resonance frequency is limited by the machining error. From
Eq. (4.1), we can roughly estimate the effect of the machining error on the resonance
frequency as

∆ωc

ωc

= −∆D

D
, (4.5)

where ∆ωc and ∆D are the errors of the resonance frequency and length of the 3D cavity.
Suppose the typical machining error is 0.1 mm, then the relative frequency error at 10 GHz
(D =30 mm) can be calculated as ∆ωc/ωc = 0.003, which corresponds to a frequency shift
of 30 MHz at 10 GHz. We compare the resonance frequency of the 3D cavity between
the simulation and the actual device without loading a sapphire substrate. The cavity
frequencies of the simulation and the actual device at room temperature are shown in
Table 4.1. The relative frequency error can be calculated to be about 0.0025, which is
within the expectations.

For the cavity frequency at the base temperature of the dilution refrigerator, we may
consider the effect of thermal expansion. By comparing the cavity frequencies between
room temperature and the base temperature, shown in Table 4.1, we obtain a frequency
shift of about 56.0 MHz at 11.75 GHz, which corresponds to ∆ωc/ωc = −∆D/D =
0.00476. From Eq. (4.5), the thermal-expansion length from the base to room temperature
can be calculated to be about 0.15 mm with the cavity length of 30 mm. Since the thermal-
expansion length is comparable to the machining error, we may not dismiss the effect.
Note that the thermal expansion coefficient obtained from the frequency shift is about
(∆D/D)/∆T = 17 µK−1, where ∆T is the difference between room temperature and the
base temperature. This is consistent with the literature data of 23 µK−1 within an error
of a few tens of percents.

As explained later, the transmon qubit is fabricated on a sapphire substrate and is
placed in the 3D cavity. Then, the relative permittivity of the substrate is also needed
for the simulation. We obtain the relative permittivity by measuring the cavity frequency
shift at the base temperature. The cavity frequency with the sapphire substrate at the
base temperature is listed in Table 4.2. Then, the frequency shift is found to be about
0.75 MHz. By fitting the cavity frequency in the simulation, we obtain the relative
permittivity of the sapphire at the base temperature as εr = 7.96. Here, the machining
error and the thermal expansion effect are considered in the simulation. However, the
anisotropy of the permittivity of sapphire is not considered, since the direction of the
electric field of the cavity mode can be uniform in the substrate.

Table 4.2: Resonance frequencies of the 3D cavities with the sapphire substrate. In the
simulation, the machining error and the heat expansion effect are considered. The position
of the coupling pin is set to be the same as the bare cavity in the base temperature, shown
in Table 4.1.

Configuration ωc/2π (GHz) κex/2π (MHz) κin/2π (kHz)
Simulation (εr = 7.96) 11.0034030 - -
Base temperature 11.0034484 2.92 29
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Figure 4.3: 3D cavity modeled in the simulation. (a) 3D cavity with the sapphire
substrate and the coupling pin. The outer box and the blue box depict the cavity and
the sapphire substrate, respectively. The yellow rod is the coupling pin. The red part is
the lumped element port. (b) Coupling pin and 50 Ω lumped element port. The lumped
port is defined at the part between the root of the pin and the external ground electrode.
(c) Side view of the SMA connector and the cavity. (d) External coupling rate as a
function of the pin position in the z-axis. The horizontal axis on the bottom is the spacer
thickness, as shown in (c). The horizontal axis on the top is the position of the pin tip
from the inner wall of the upper side of the 3D cavity. The blue and red dots are the
experimental and simulated results, respectively. The black line is the exponential curve
fit.

4.1.2 External coupling rate

The external coupling rate of the 3D cavity is set depending on a specific purpose. For
instance, for the readout of the transmon qubit, it should be set to be on the same order
of magnitude as the state-dependent dispersive shift, which is typically around 1 MHz.
For the evaluation of the internal loss of the 3D cavity, it should be set to the order of
magnitude of the internal loss, which is typically from 1 kHz to 100 kHz. Therefore, the
3D cavity is designed to have a tunable external coupling rate from 1 kHz to 10 MHz. As
shown in Fig. 4.1, the pin connector is used for external coupling to the waveguide.

In the eigenfrequency analysis in COMSOL Multiphysics, the external coupling rate of
the 3D cavity is characterized as the energy relaxation of the 3D cavity into the waveguide.



76 CHAPTER 4. DESIGN

While the resonance frequency corresponds to the real part of the eigenfrequency, the total
energy-relaxation rate corresponds to twice the imaginary part of the eigenfrequency as

Eigenfrequency = ωc/2π + i
κ

2
/2π, (4.6)

where κ is the total energy-relaxation rate of the cavity mode. The reason why twice the
imaginary part corresponds to the energy-relaxation rate is that the simulator calculates
the eigenfrequency of the electromagnetic field, or the square root of the energy. The
semi-infinite waveguide whose end is coupled to the 3D cavity can be modeled with a
resistive termination matched with the characteristic impedance of the waveguide. As
shown in Figs. 4.3(b) and (c), we simulate the 3D cavity from the root of the pin, since
the part of the connector is designed to have the characteristic impedance of 50 Ω. The
50 Ω lumped-element port is defined at the part between the root of the pin and the
external ground electrode, the red part in Fig. 4.3(b). Then, the external coupling rate of
the cavity can be obtained as the imaginary part of the eigenfrequency as κex = κ, since
there is no energy-relaxation channel except for the external coupling to the waveguide.

As shown in Fig. 4.3(c), we can control the pin position in the z-axis by interposing the
spacer with 0.1 mm increments of thickness. The external coupling rate of the fundamental
mode of the 3D cavity as a function of the total spacer thickness is shown in Fig. 4.3(d).
Here, we measure the 3D cavity with the sapphire substrate at room temperature. The
experimental results agree well with the simulation results. The data can also be fitted
with an exponential curve [62].

Practically, the external coupling rate of the cavity is fine-tuned at room temperature.
The important point is that the external coupling rate of the 3D cavity is determined
only by the relative position between the pin and the 3D cavity. Therefore, the external
coupling rate which is tuned at room temperature is supposed not to change at the
base temperature of the dilution refrigerator. Here, the external coupling rates of the
3D cavity at room and base temperatures are shown in Table 4.3.We confirm that the
external coupling rate does not change within ten percent.

4.2 Transmon qubit

The transmon qubit, which is used in this thesis, is shown in Fig. 4.1. The capacitor of
the electrodes and the Josephson junction are deposited on the sapphire substrate. The
Josephson junction is fabricated by the doube The transmon qubit can be considered as
an anharmonic LC resonator. More precisely, the Josephson junction can be modeled
as a lumped-element inductor. Then, the resonance frequency and the electromagnetic
mode of the linearized transmon qubit can be obtained. By treating the nonlinearity of
the Josephson junction perturbatively, the resonance frequency and the anharmonicity of
the transmon qubit can be determined.

Table 4.3: External coupling rates of the 3D cavities with the sapphire substrate.

Configuration ωc/2π (GHz) κex/2π (MHz) κin/2π (kHz)
Room temperature 10.56061 3.075 4000
Base temperature 10.62524 3.32 250
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4.2.1 Josephson junction

The Josephson junction can be replaced with a corresponding lumped-element inductor
in the model. The Josephson junction is characterized by the critical current Ic and the
tunneling energy EJ = ℏωJ, where ωJ is the energy in frequency units. The relation
between them can be described as

ℏωJ = Icϕ0, (4.7)

where ϕ0 = ℏ/2e is the reduced magnetic flux quantum. Remember that the tunneling
energy in the trasmon qubit corresponds to the inductive energy quantum in the LC
resonator as ℏωJ = ϕ2

0/LJ. Therefore, the Josephson inductance can be obtained as

LJ =
ϕ2
0

ℏωJ

. (4.8)

The Josephson inductance will be used in the electromagnetic field simulator.
It is useful to estimate the tunneling energy of the Josephson junction before cryogenic

measurement of the transmon qubit. Here, we estimate the tunneling energy indirectly
by measuring the normal-state resistance of the Josephson junction at room temperature.
Following the Ambegoakar-Baratoff relation [65], the tunneling energy can be described
as

ℏωJ = π

(
Z0

Rn

)
∆s, (4.9)

where Rn is the normal-state resistance of the Josephson junction, Z0 = ℏ/(2e)2 ≈ 1.03 kΩ
is the reduced impedance quantum, and ∆s is the superconducting gap energy. By mea-
suring the normal-state resistance and assuming the superconducting gap, the tunneling
energy of the Josephson junction can be estimated before the cryogenic measurement.

In this thesis, the Josephson junction is fabricated with Al/AlOx/Al, as shown in
Fig 4.1. The superconducting gap of thin-film aluminum is known in frequency units
to be about 2∆s/h = 84 GHz [66]. Then, the tunneling energy of the aluminum-made
Josephson junction can be determined in terms of the normal-state resistance as

ωJ/2π =

(
Z0

Rn

)
× 132 GHz. (4.10)

For the simulation, it is also useful to show the direct relation between the Josephson
inductance and the normal-state resistance as

LJ =

(
Rn

Z0

)
× 1.24 nH

Rn =

(
LJ

1.24 nH

)
× 1.03 kΩ.

(4.11)

4.2.2 Resonance frequency and anharmonicity

To design the transmon qubit is to determine the ratio of ωC/ωJ and the resonance
frequency ωq, where the capacitive energy quantum is defined as ℏωC = (2e)2/C. First,
the ratio should be much smaller than unity to realize the transmon qubit. However,
decreasing the ratio of ωC/ωJ also decreases the anharmonicity of the qubit. Empirically,
ωC/ωJ is set to about 0.1. Second, the resonance frequency of the transmon qubit is
described as ωq = ωl

q − ωC/8 ≈ ωl
q, where ω

l
q =

√
ωJωC is the linearized qubit frequency.
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Figure 4.4: Transmon qubit modeled in the simulation. (a) Transmon qubit on the
sapphire substrate in the 3D cavity. The outer box depicts the cavity. The inner box
is used to make the finner mesh for the qubit mode. The blue box depicts the sapphire
substrate. The green pattern is the transmon qubit. (b) Circuit design of the transmon
qubit. (c) Electric field modes of the transmon qubit. The normalized electric fields along
the z-axis are plotted. (d) Linearized qubit frequency as a function of the Josephson
inductance. The blue dots are the simulation results and the red line is the theoretical
fits.

Here, we roughly estimate the tunneling energy and the capacitive energy quantum
to achieve the target ratio and resonance frequency. Given the ratio of ωC/ωJ and the
resonance frequency ωq ≈ ωl

q =
√
ωJωC, the tunneling energy and the capacitive energy

quantum can be roughly determined in frequency units as

ωJ =

√
ωJ

ωC

ωl
q ≈

√
ωJ

ωC

ωq

ωC =

√
ωC

ωJ

ωl
q ≈

√
ωC

ωJ

ωq.

(4.12)

For instance, to achieve ωC/ωJ = 0.1 and ωq/2π = 8 GHz, ωJ/2π = 25 GHz and ωC/2π =
2.5 GHz or α/2π = −ωC/8/2π = −0.3 GHz are required. The Josephson inductance and
the capacitance can be calculated as LJ = 6.5 nH and C = 62 fF, respectively.

As for the 3D cavity, the resonance frequency and electromagnetic field of the transmon
qubit can be calculated in the classical electromagnetic field simulator. As shown in
Fig. 4.4(a), the transmon qubit on the sapphire substrate is placed in the cavity. Note
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that the cavity mode frequencies are pushed further away from the qubit frequency, so as
not to affect the qubit mode, here. The example of the circuit pattern of the transmon
qubit is shown in Fig 4.4(b). The two electrodes, on which the perfect electric conductors
are defined, behave as the geometric capacitance. The lumped-element inductor LJ is
assigned to the bar between the two electrodes, the red bar in Fig. 4.4(b). Furthermore,
the junction capacitance can also be defined as the lumped element in the same way.
Then, the circuit pattern of the capacitance is designed so that the resonance frequency
can be the target one. Once the target resonance frequency is obtained, the target ratio
of ωC/ωJ can be automatically satisfied. The result of the linearized frequency and the
electric field of the transmon qubit mode is shown in Fig. 4.4(c). Note that the junction
capacitance is set to zero in this simulation.

Then, we consider the nonlinear effect from the Josephson junction perturbatively.
From the results in Sec. 2.5, the qubit frequency shifts and the anharmonicity due to
the nonlinearity are given by −ωC/8, where ℏωC/2π = (2e)2/C is the capacitive energy

quantum. Although it can be calculated as ωC = ωl
q
2
/ωJ, it is considered more carefully

by calculating the resonance frequency of the qubit mode as a function of the Josephson
inductance LJ, shown in Fig. 4.4(d). Note that the inductance range is determined such
that the cavity modes does not affect the qubit frequency. The simulation results are
well-fitted by

ωl
q =

√
ωJωC =

1√
(LJ + LS)C

, (4.13)

where C is the total capacitance of the transmon qubit and LS is the stray inductance
in series with the Josephson junction. With the obtained fitting parameters of C =
49.1 fF, LS = 0.14 nH, the capacitive energy quantum is calculated in frequency units
as ωC/2π = (2e)2/C/h = 3.16 GHz. We confirm that the stray inductance accounts for
about ten percent of the total inductance. Thus, we may neglect the stray inductance in
determining the capacitance. Nevertheless, the fitting is helpful to confirm that the qubit
frequency is not affected by the frequency shift due to the coupling with the cavity modes.
Furthermore, we also confirm that the capacitance is not varied within one percent in the
case of the different size of the cavity as long as the cavity does not affect the qubit
frequency. Now, we can accurately calculate the resonance frequency of the transmon
qubit with the Josephson inductance LJ = 7.8 nH as ωq = ωl

q − ωC/8 = 7.663 GHz.
Furthermore, the anharmonicity of the transmon qubit is obtained as α = −ωC/8 =
−395 MHz.

By comparing the capacitances between the simulation and the experiment, we can
evaluate the junction capacitance. The simulation and experimental results are listed in
Table 4.4.Here, since the junction capacitance is set to zero in the simulation, the capac-
itance is composed of only the geometric capacitance from the two electrodes. Thus, the
difference of the capacitances gives the actual junction capacitance, which is calculated as
7.5 fF. We find that the junction capacitance is about 15 percent of the total capacitance,
which may not be neglected. Therefore, we take into account the junction capacitance in
the simulation, hereinafter. Note that the junction capacitance is varied in proportional
to the tunneling energy of the Josephson junction as both of them scale with the Junction
area.

4.3 3D Circuit QED system

We explain how to design the 3D circuit QED system, where the transmon qubit is coupled
to the 3D cavity. In the eigenfrequency analysis of the electromagnetic field simulator,
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we obtain their diagonalized modes and the resonance frequencies of the coupled system.
By comparing the results with the eigenfrequency of the Hamiltonian of two coupled
resonators, we can characterize and design the circuit QED system.

4.3.1 Coupling strength

Assuming that there are only two modes, or a cavity mode and a transmon qubit mode, the
eigenfrequency of the electromagnetic field simulation can be modeled by two capacitively-
coupled resonators. The assumption is valid when the other modes are far-detuned in fre-
quency from the circuit QED system. As explained in Sec. 2.2.1, the frequency splitting
of the coupled resonators in the resonance condition corresponds to twice the coupling
strength. In other words, the minimum of the frequency splitting in terms of the fre-
quency detuning gives us twice the coupling strength. In the simulation, since the qubit
frequency can be varied by changing the Josephson inductance while keeping the capac-
itance structures, the minimum of the frequency splitting can be obtained. One of the
good points of this characterization is that the frequency splitting cannot be affected by
the coupling with the other far-detuned modes. As shown in Fig. 4.5(a), the 3D circuit
QED system is modeled in the simulation. The cavity and qubit frequencies and the
frequency splitting as a function of the Josephson inductance are shown in Figs. 4.5(b)
and (c). By fitting the frequency splitting with the polynomial function, the minimum of
the frequency splitting can be obtained more accurately. Then, the coupling strength is
calculated as g0/2π = 185 MHz. Note that the coupling strength is valid in the resonance
condition.

4.3.2 Dispersive regime

The 3D circuit QED system is often used in the dispersive regime, where the frequency
detuning is larger than the coupling strength.

Resonance frequencies

First of all, since the simulator calculates the eigenfrequencies of the diagonalized modes,
we can directly obtain the cavity frequency and the linearized qubit frequency with the
Lamb shifts as

ω′
c = ωc +

g2

∆

ωl
q

′
= ωl

q −
g2

∆

(4.14)

where ∆ = ωc − ωl
q is the frequency detuning and g is the coupling strength in the

dispersive regime. Here, we use ω′
c and ωq

′ for the characterization.

Table 4.4: Capacitive energy quanta of the transmon qubit. In the simulation, the junc-
tion capacitance is not included. Thus, the difference indicates the junction capacitance
of CJ=7.5 fF.

Configuration ωC/2π (GHz) α/2π (MHz) C (fF)
Simulation 3.16 −395 49.1
Experiment 2.74 −342 56.6
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Figure 4.5: 3D circuit QED system modeled in the simulation. (a) 3D cavity simulation
with the sapphire substrate and the external coupling pin. The outer box and the blue
box depict the cavity and the sapphire substrate, respectively. The green pattern is the
transmon qubit. The yellow rod and the red part depict the coupling pin and the lumped
element port, respectively. (b) Eigenfrequencies of the qubit and the cavity as a function
of the Josephson inductance. The minimum frequency splitting gives twice the coupling
strength. (c) Frequency splitting as a function of the Josephson inductance. The blue
dots and the red line are the simulation results and the polynomial function fit. The
coupling strength in the resonance condition is evaluated to be g0/2π = 185 MHz.

Next, the capacitance energy quantum ωC is calculated by the qubit frequency as a
function of the Josephson inductance, as discussed in Sec. 4.2.2. Note that the qubit
frequency should be set to be far detuned from the cavity modes. Using the obtained
ωC, the qubit frequency and the anharmonicity can be calculated as ω′

q = ωl
q
′ −ωC/8 and

α = −ωC/8, respectively.

Table 4.5: State-dependent shift. In the simulation, the junction inductance is set to be
6.54 nH so that the qubit frequency can reproduce the experimental results.

Configuration ω′
c/2π (GHz) ω′

q/2π (GHz) α/2π (GHz) g/2π (MHz) χ/2π (MHz)

Simulation 10.62 7.87 −343 163 1.60
Experiment 10.6267 7.8693 −342 - 1.50
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State-dependent dispersive shift

From Eq. (2.22) in Sec. 2.2, we know that the coupling strength induced by the capacitive
coupling has the frequency dependence in terms of the linearized qubit frequency as

2g√
ωcωl

q

= Const., (4.15)

where the right side is constant in terms of the Josephson inductance, which is determined
from the capacitances. Therefore, with the value of g0 which can be obtained from the
minimum frequency splitting as in Sec. 4.3.1, the coupling strength in the dispersive
regime can be calculated as

g =

√
ωl
q

ωc

g0 ≈

√
ωl
q
′

ωc
′ g0. (4.16)

The approximation is valid as long as the carrier frequencies of ωc and ω
l
q are much larger

than the Lamb shift of g2/∆.
The actual frequency detuning ∆ = ωc − ωl

q is also indispensable for the state-
dependent dispersive shift. From Eq. (4.14), the frequency detuning in the diagonalized
modes ∆′ = ω′

c − ωl
q
′
is described as

∆′ = ∆+ 2
g2

∆
. (4.17)

Then, the actual frequency detuning is calculated approximately in the leading order of
g/∆′ as

∆ ≈ ∆′ − 2
g2

∆′ . (4.18)

Finally, the state-dependent dispersive shift can be calculated as

χ =
( g
∆

)2
α. (4.19)

The state-dependent dispersive shift χ as a function of the qubit frequency ω′
q is shown

in Fig. 4.6(a). The dispersive shift in the 3D circuit QED system is found to be in the
order of 1 MHz.

The summary of the simulation and experimental results are listed in Table 4.5.Note
that the junction inductance is set to 6.54 nH so that the qubit frequency can reproduce
the observed one, since we did not measure the normal-state resistance of the Joseph-
son junction for this sample. The cavity length is also adjusted to reproduce the cavity
frequency and to compensate the machining error. The junction capacitance is also deter-
mined to reproduce the anharmonicity, as explained in Sec. 4.2.2. The important point
is that the state-dependent dispersive shift calculated from the simulation results well
reproduces the observed one.

Table 4.6: Comparison of the relaxation times of the qubit.

Experiment All-modes Purcell decay Single-mode Purcell effect
T1 (µs) 32 43 11



4.3. 3D CIRCUIT QED SYSTEM 83

(a) (b)

6.0 6.5 7.0 7.5 8.0 8.5 9.0
Qubit frequency (GHz)

0
2
4
6
8

10
12
14

R
el

ax
at

io
n 

ra
te

 (
kH

z)

6.0 6.5 7.0 7.5 8.0 8.5 9.0
Qubit frequency (GHz)

0

1

2

3

4
D

is
pe

rs
iv

e
 s

hi
ft 

(M
H

z)

All modes

Single mode 
(TE101)

4.25 3.75 3.25 2.75 2.25 1.75

Detuning (GHz)
4.25 3.75 3.25 2.75 2.25 1.75

Detuning (GHz)
1.251.25

Figure 4.6: Dispersive 3D circuit QED system. (a) State-dependent dispersive shift as a
function of the qubit frequency. (b) External relaxation rate of the qubit as a function
of the qubit frequency. The horizontal axis on the upper side depicts the frequency
detuning between the cavity and the qubit. The blue data are directly obtained from the
electromagnetic field simulator．The red data are calculated from the theoretical Purcell
decay induced by the fundamental mode TE101.

External coupling rates in the dispersive regime

The external coupling rates in the dispersive regime can be also obtained from the imagi-
nary parts of the eigenfrequencies. First, the cavity external relaxation rate is evaluated,
as explained in Sec. 4.1.2. Second, we obtain the qubit external relaxation rate in the
same way. As explained in Sec. 2.5.1, the diagonalized qubit mode with the finite mixing
of the cavity mode is coupled to the waveguide, which gives the external relaxation rate to
the qubit. Since the simulation calculates the eigenfrequencies of the diagonalized modes,
including the imaginary parts, the Purcell effect can be naturally included. Therefore,
the qubit external relaxation rate can be simply obtained by calculating twice the imag-
inary part of the eigenfrequency of the qubit mode. Furthermore, we can calculate the
qubit relaxation rate by taking into account all the cavity modes which are coupled to
the qubit. Thus, the results of the qubit relaxation rate can be more accurate than that
obtained from the circuit model in Sec. 2.5.1. The qubit external relaxation rate as a
function of the qubit frequency ω′

q is shown as blue dots in Fig. 4.6(b). The red dots
are the external coupling rates, which are calculated based on the Purcell effect via the
fundamental mode TE101 as (g/∆)2 κex. Surprisingly, the actual external coupling rate is
about five-times smaller than that from the single-mode Purcell effect. In other words, the
energy-relaxation time in the Purcell limit is longer in the 3D circuit QED system than
a circuit QED system with a single cavity mode. It can be understood that the higher
cavity modes play a role of the Purcell filter, where the qubit relaxation is canceled by
the relaxation through the higher cavity modes to some extent [67]. The experimental
result of the relaxation time and the simulated relaxation times in the Purcell limit are
listed in Table 4.6.We find that our qubit relaxation time reaps the benefit of the Purcell
filter.





Chapter 5

Experimental setup

In this section, we explain the experimental setup. To control a superconducting qubit,
it is crucial to make the environment in which our system exists well-cooled down. To
measure it, we need to amplify a weak probe microwave signal with high efficiency. Here,
we evaluate and modify our experimental setup by measuring the coherence and the
thermal excitation of a transmon qubit.

5.1 Dilution refrigerator

Since quantum information is encoded in the energy excitations in microwave circuits,
it is crucial to use superconductors for the circuit materials in order to hold the energy
excitations as long as possible. Therefore, the microwave circuits should be cooled far
below the critical temperature of the materials. Moreover, Josephson effects, which are
indispensable for the realization of a superconducting qubit, can be observed only in super-
conductors. Therefore, a refrigerator is indispensable to realize superconducting circuits.
The critical temperatures of the materials which are typically used for superconducting
circuits are listed in Table 5.1.

To promote superconducting circuits to superconducting “quantum” circuits, it is also
important to cool down their environment well. The typical environment of superconduct-
ing circuits are electromagnetic modes. From the lindblad master equation in Eq. (2.102)
in Sec. 2.5.1, the transition rates of the qubit in the thermal environment can be described
as

γ↓ = (1 + nth)γ

γ↑ = nthγ,
(5.1)

where γ↓ is the transition rate from the excited to ground states, γ↑ is the transition rate
from the ground to excited states, γ is the coupling rate of the qubit to the environment,
and nth is the thermal photon number in the environment around the qubit frequency.
The transition rates are increased as the thermal photon number is increased. From the
detailed balance, the qubit excitation probability at thermal equilibrium can be written
as

Pe =
nth

1 + 2nth

, (5.2)

Table 5.1: Examples superconducting of critical temperatures.

Al Nb TiN In
1.2 K 9.2 K 3.7 K 3.4 K

85
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which corresponds to the initialization error, or the success probability in the conditional
experiments. Moreover, the dephasing rate of the qubit, which is coupled to the readout
cavity, can be written as

γϕ,th =
4χ2κ

κ2 + 4χ2
nth, (5.3)

where χ is the dispersive shift, κ is the coupling rate of the cavity to the environment, and
nth is the thermal photon number in the environment around the cavity frequency [68, 7].
The dephasing rate is also increased as the thermal photon number is increased. From
these calculations, we find that the thermal photon number in the environment is crucial
for quantum control of the qubit.

From Eq. (3.166), the average photon number in the environment is determined as

nth =
1

eℏω/kBT − 1
, (5.4)

where ω is the system frequency and T is the environment temperature. Here, it is useful
to convert the system frequency to the corresponding temperature Tω, which is described
as

Tω =
ℏω
kB
. (5.5)

Then, Eq. (5.4) can be written as

nth =
1

eTω/T − 1
(5.6)

For superconducting circuits, the typical resonance frequency of 10 GHz can be converted
to the corresponding temperature of ∼500 mK. When the temperature of the environment
is cooled down to be less than the corresponding temperature, the average photon number
can be suppressed exponentially as nth ∝ e−Tω/T . Using a dilution refrigerator, we can
cool down the environment to be tens of mK, which corresponds to the average photon
number at 10 GHz of as small as 10−22. Therefore, we can control superconducting circuits
quantum-mechanically in the dilution refrigerator. Note that the effective temperature of
the superconducting circuits is not cooled down to the base temperature in most of cases.

The average photon number in the cavity and the thermal excitation probability of
the qubit as a function of the temperature are shown in Fig. 5.1.

In Fig. 5.2, we show the inner part of the “Triton 200” dilution refrigerator made by
Oxford Instruments. This inner part is covered with an outer vacuum chamber (OVC),
which create a vacuum and suppress heat conduction with room temperature environment
via the residual gas. We need to pump the OVC for at least half a day before starting
the cool-down process. As shown in Fig. 5.2, there are five plates which are at different
temperature inside the dilution refrigerator. Radiation shields are connected to each stage
to suppress the heat contact mediated by the radiation fields. The dilution refrigerator
uses mainly two different cooling mechanisms [69]. First, the pulse tube refrigerator cools
down the 60 K and 4 K plates to be at their corresponding temperatures. Since the
still and mixing chamber (MC) plates are isolated from the cold parts of the pulse tube
refrigerator, they are thermally connected by the mixture of 3He and 4He gases After the
mixing chamber plate becomes below 10 K, the mixture gas is removed from the pre-cool
line, and then is compressed and injected through the condensing line. The mixture of
gas is condensed in the still pot and the mixing chamber by the Joule-Thomson effect.
At about 900 mK, the mixture liquid is separated into two liquid phases, a 3He-rich
phase (concentrated phase) and a 3He-poor phase (dilute phase). By pumping the 3He
from the dilute phase in the still chamber, the 3He in the concentrated phase is evaporated
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Figure 5.1: Average photon number in the cavity (blue) and thermal excitation prob-
ability of the qubit (red) as a function of the temperature. The horizontal axes on the
lower and upper sides indicate the ratio β = ℏω/kBT and the temperature at 10 GHz,
respectively.

to the dilute phase in the mixing chamber. The evaporation of the 3He into the dilute
phase is the heart of the cooling of the dilution refrigerator, which cools the mixing
chamber plate to tens of mK. Since the lower temperature prevents the liquid He from
exchanging heat with the metal, heat exchangers, which have a large contact area, are
installed between the still pot and the mixing chamber. As a result, the mixing chamber
stage achieves tens of mK within one and a half day after starting the cooling down.

5.2 Sample setting

The superconducting circuits should be thermally well-connected to the mixing chamber
plates. We made a copper cold finger, as shown in Fig. 5.3(b). There is a space for wiring
between the MC plate and the sample plate. Each microwave component, such as a filter
and a circulator, should be mounted to the cold finger with enough thermal contact.

A three-dimensional (3D) microwave cavity is simply mounted on a sample holder, as
shown in Fig. 5.3(a). The 3D cavity is well connected thermally to the sample holder.
A coupling pin for the 3D cavity is connected to a flexible coaxial cable via an SMA
connector.

A two-dimensional (2D) microwave circuit, such as a JPA, is mounted on a sample
table, as shown in Fig. 5.3(d). The signal and ground electrodes which are fabricated on
a silicon substrate are connected to a PCB on the sample table by wire bondings. On the
PCB board, there are many vias which connect the top and bottom ground electrodes to
remove the spurious modes induced by stray capacitance. Furthermore, SMP connectors
are mounted on the PCB board with paste solders for input and output of microwaves.
The 2D sample is covered by a copper cap to suppress box modes, which may cause
radiation loss of the superconducting circuit. The sample table with the cap is mounted
on a sample holder, as shown in Fig. 5.3(c).

Superconductors are easily affected by magnetic fluxes. For instance, magnetic-flux
noise causes a jump in the resonance-frequency of superconducting circuit. Therefore, the
sample holder is covered by a magnetic shield, as shown in Fig 5.4 (a). The magnetic shield
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Figure 5.2: Inner part of the dilution refrigerator. There are the five plates at the
different temperature stages. The sample plate is thermally well-connected to the mixing
chamber (MC) plate. The sample holder covered by the magnetic shield is connected to
the sample plate.

is composed of three layers, which is connected thermally to a copper jig, as shown in
Fig. 5.4(b). The innermost shield is made of aluminum which becomes superconducting at
the base temperature and shields the magnetic-flux noise by the Meissner effect. However,
the aluminum shield can trap a residual magnetic flux when it becomes superconducting.
Therefore, the two outer shields are installed to suppress the residual magnetic flux.
They are made of µ-metal (A4K from Amuneal) with very high permeability and which
is magnetically neutral. Note that µ-metal is easy to be magnetized by a physical shock.
Our magnetic shield is not completely closed magnetically, and the magnetic flux can
penetrate from the open end to the sample. Therefore, the sample is hung from the cold
finger by a distance longer than the radius of the shield. The length-to-diameter ratio of
the shield is designed to be about 4:1.
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Figure 5.3: Sample setting. (a) Sample holder for the 3D cavity. (b) Cold finger and
wiring space. (c) Sample holder for the 2D sample. (d) 2D sample on the sample table.
The 2D sample is electrically connected to a PCB board with wire bondings and is covered
by a copper-made cap to suppress box modes. SMP connectors are installed on the PCB
board for input and output of microwaves.
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Figure 5.4: Magnetic shield. (a) Image. (b) Design.

5.3 Josephson parametric amplifier

We use a flux-driven JPA, which is designed and fabricated in Nakamura group in RIKEN [52].
The λ/4 coplanar waveguide resonator, which is made of niobium, is patterned on a silicon
substrate, as shown in Fig. 5.5(a) and (d). There are many holes in the ground plane to
trap magnetic-flux noise. The resonator is over-coupled to a waveguide with an external
coupling capacitor, as shown in Fig. 5.5(b). The external Q factor is designed to be about
300. The other end of the resonator is shunted to the ground plane via a SQUID, as
shown in Fig. 5.5(c). Therefore, the resonance frequency of the JPA is determined from
the resonator length and the shunt inductance of the SQUID, which is designed to be
about 10 GHz. The SQUID loop has a mutual inductance with the pump line, which
enables us to modulate the SQUID inductance. The area of the SQUID loop is designed
to be 100 µm2. Note that SQUID is made by double-angle evaporation of aluminum, as
show in Fig. 5.5(e). The image of the JPA, which is mounted and wire bounded on the
sample table is shown in Fig. 5.5(d).
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Figure 5.5: Josephson parametric amplifier. (a) Design of the JPA. The blue and green
frames depict the regions of an external coupling capacitor and a SQUID, respectively.
(b) Design of the external coupling capacitor. (c) Design of the SQUID and a pump line.
The SQUID loop has a mutual inductance with the pump line. The green square depicts
the SQUID area. (d) Image of the JPA mounted on a sample table. (e) SEM image of
one of the Josephson junction in the SQUID.

5.4 Cryogenic microwave wirings

The superconducting circuits are connected to microwave lines which extend through the
dilution refrigerator to room temperature. Therefore, reducing the thermal noise from
room temperature is indispensable for control and readout of a superconducting qubit
quantum mechanically. Here, we explain the microwave wirings for input and output,
respectively.

Before going into detail, we calculate how much power we need for control and readout
of a transmon qubit.

The transmon qubit is controlled by a Rabi oscillation. The Rabi frequency is given
by

ΩRabi = 2
√
γexṅct, (5.7)

where γex is the coupling rate to the control line, ṅct = Pct/ℏωq is the photon flux for the
qubit control, Pct is the control power and ωq is the qubit frequency. For trasmon qubit,
the Rabi frequency is limited by the anharmonicity. Then, the critical control power for
the transmon qubit is defined as the power when the Rabi frequency coincides with the
anharmonicity as

P crit
ct =

α2

4γex
ℏωq. (5.8)

From this, we can roughly estimate how much control power we need. The order of
the critical control power can be calculated as P crit

ct = −70 dBm, where we use α/2π =
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−100 MHz, γex/2π = 1 kHz, and ωq/2π = 10 GHz.
Furthermore, the transmon qubit is read out by a dispersive shift of the cavity. As

explained in Sec. 2.4.2, the average photon number in the cavity can be calculated as

⟨â†â⟩ = 4

κex
ṅro, (5.9)

where κex is the coupling rate to the readout line, ṅro = Pro/ℏωc is the photon flux for
the qubit readout, Pro is the readout power and ωc is the cavity frequency. Note that
the internal loss of the cavity is neglected for simplicity. In additon, the critical photon
number in the cavity, which is defined in Sec. 2.6.1, is given by

ncrit =
∆2

4g2
, (5.10)

where ∆ and g are the detuning and coupling strength between the cavity and the qubit,
respectively. Then, the critical readout power is defined as the power when the average
photon number reaches the critical photon number:

P crit
ro =

(
∆

g

)2
κex
16

ℏωc. (5.11)

This is also useful to estimate how much readout power we need. The order of the critical
readout power can be calculated as P crit

ro = −126 dBm, where we use g/∆ = 0.1 and
κex/2π = 1 MHz. Using these reference powers, we should optimize the attenuation and
filtering of the thermal noise at each frequency.

5.4.1 Input microwave wiring

For the input microwave wiring, the thermal noise from room temperature should be
attenuated and filtered suitably while keeping the transmission for the control and read-
out of the qubit. The thermal photon number at room temperature at 10 GHz can be
calculated as ∼600.

First of all, the total attenuation rate should be set to more than at least 40 dB, which
roughly corresponds to the ratio of the base temperature to room temperature. However,
since the cooling power at the MC plate may not be strong enough to absorb the 300 K
noise in the entire frequency range, it is not reasonable to install all the attenuators at
the MC plate. Taking into account the fact that an attenuator at a finite temperature
also emits a corresponding thermal noise, the attenuation rate at each plate should be
determined from the temperature ratio between the plates step by step. In our setup, the
attenuators with a total combined attenuation of 42 dB for the input line are installed
across separate plates as shown in Fig 5.6. Each attenuator is thermally anchored to
each plate. For the input microwave line, we use phosphor-bronze coaxial cables with a
diameter of 1.19 mm, “SC-119/50-PCB-PCB”, which is manufactured in COAX CO. The
cables are bent to release the stress induced during thermal cycles. The total attenuation
rate including the cable loss is about 50 dB around 10 GHz. Then, the thermal photon
number at base temperature can be calculated as 0.006.

Furthermore, the frequency range which we do not use should be attenuated as much
as possible. In this thesis, the control and readout frequencies for the qubit are set to
about 8 GHz and 10 GHz, respectively. Therefore, we install a low-pass filter with a
cutoff frequency of 12.4 GHz, which is the “F-30-12.4-R” model from RLC Electronics.
The stopband frequency range of 60 dB is from 16.74 GHz to 40 GHz. A picture of the
low pass filter is shown in Fig. 5.7(a).
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Figure 5.6: Summary of the wirings in the dilution refrigerator.

We consider the attenuation around the qubit frequency in terms of the thermal excita-
tion of the qubit. Taking into account the 50 dB attenuation for the input line, the qubit
excitation probability can be calculated as 0.006 from Eq. (5.2). However, the typical
qubit excitation probability is measured to be around 0.1 with an effective temperature
of 100 mK in a single-shot experiment (see Sec. 6.2.6). We also confirm that the qubit
excitation probability cannot be suppressed by installing additional attenuators in the
input line and additional circulators in the output line. It shows that the qubit effective
temperature is limited by another environment, such as a high-frequency radiation field
and quasiparticles [70, 71]. Here, it is important to confirm that the thermal excitation
probability is much less than unity, which ensures that the qubit coherence is not limited
by the thermal photon number in the environment. As shown in Eq. (5.1), until the
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Figure 5.7: Microwave components. (a) Filters and a circulator with the magnetic shield.
(b) HEMT amplifier. The amplifier is connected to the thermal anchor together with a
circulator.

thermal noise is comparable to the vacuum noise, it does not affect the qubit coherence
much. Therefore, as long as the qubit coherence is not limited by the thermal excitation,
the initialization error of the thermal excitation is not so critical since it can be corrected
by the use of postselection or feedback control.

Next, we consider the attenuation around the cavity frequency from the viewpoint
of the qubit dephasing. As shown in Eq. (5.3), since the dephasing rate is proportional
to the thermal photon number in the cavity, it may be not enough only to decrease the
thermal photon number below unity. For example, the dephasing rate is calculated to be

γϕ/2π =
4χ2κ

κ2 + 4χ2
nth/2π = 0.5 nth MHz (5.12)

where we assume κ/2π = 2χ/2π = 1 MHz. To obtain the thermal-noise-induced dephas-
ing rate of 1 kHz, which does not limit the best dephasing time of a transmon qubit,
we should have nth = 0.001. Thus, we need to attenuate the thermal noise from room
temperature by at least 60 dB.

We find that there is a difference of an order of magnitude for the required attenuation
level between the qubit and cavity frequencies, as shown in Eqs. (5.8) and (5.11). There-
fore, the frequency-dependent attenuators are needed for the realization of an efficient
measurement setup. However, for simplicity, we just install additional attenuators of 26
dB at the MC plate and confirm that the dephasing time of the qubit is saturated.

Thermal noise in the infrared-frequency range, which cannot be cut by structure-type
filters, may affect the qubit coherence. This is because the noise with a large photon energy
easily excites quasiparticles. An Eccosorb filter, which is composed of a lossy material with
a linear-frequency-dependent attenuation, is used to cut the infrared thermal noise [72].
However, we confirm that there is no difference in the qubit coherence with or without
the Eccorsorb filter, which indicates the infrared-frequency noise does not limit our qubit
coherence.

In this thesis, a flux-driven JPA is used for a single-shot readout of the qubit. Then, we
need to pump the JPA at twice the readout frequency using a pump line. The attenuators
with a total attenuation rate of 42 dB is installed, as shown in Fig. 5.6. Thanks to the
large detuning, we can completely suppress the thermal noise from the pump line for
the circuit QED system by using a band-pass filter at the pump frequency. We use the
band-pass filter model “F-19799” which is custom made in RLC Electronics.
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5.4.2 Output microwave wiring

For the output microwave wiring, we need to install a cryogenic amplifier while suppressing
the thermal and amplifier noise.

First of all, we use a High-Electron-Mobility Transistor amplifier (HEMT amplifier)
at the 4 K plate. Typical gain and noise temperature of a HEMT amplifier are 35-40 dB
and 5-10 K, respectively. Note that the noise temperature of 5-10 K corresponds to
the thermal photon number of 10-20 at 10 GHz. This is always useful for the average
measurement of microwave signals. However, the noise temperature is not low enough to
perform a single-shot readout of a superconducting qubit since the readout pulse typically
contains only tens of signal photons. This is the critical reason why we use an amplifier
based on Josephson junctions for the single-shot readout. As shown in Fig. 5.7(b), we
install the HEMT amplifier model “CITCRYO1-12A” which is manufactured by Cosmic
Microwave Technology, Inc. (a spin-off from California Institute of Technology). The
amplifier is connected to a thermal anchor at the 4 K plate. The gain is about 40 dB, the
gain bandwidth is from 1 GHz up to 15 GHz, and the noise temperature is around 5 K.
Although the HEMT amplifier itself plays a role in the isolation of the thermal noise, it
emits a backward thermal noise. Therefore, the backward thermal noise should also be
attenuated in the output line, as well as the 300 K noise.

For the output wiring, we need to pass and amplify microwaves while attenuating
the thermal noise. Therefore, it is indispensable to use nonreciprocal devices, such as
circulators and isolators. Note that an isolator is realized by terminating one of the
ports of a circulator. In general, the circulator has a finite working bandwidth since
its nonreciprocity is realized by interference in a magnetic material inside the circulator.
Therefore, we should use the circulator together with a band-pass filter to cut the thermal
noise out of the circulator bandwidth. We use the circulator model “XTE0812KC” and the
isolator model “XTE0812KI” which are made by Quinstar. The isolator is installed at the
4 K plate together with the HEMT amplifier, as shown in Fig. 5.7(b). The circulator with
the magnetic shield (”XTE0812KCS”), which is shown in Fig. 5.7(a), is installed directly
above the sample plate. The circulation bandwidth is from 8 GHz to 10 GHz. The
insertion loss is about 1 dB. Practically, since the isolation of the circulator or the isolator
is about 20 dB, at least in a total of three isolators or circulators are needed between the
HEMT amplifier and the sample in order to not decrease the qubit dephasing time. Then,
together with the circulators and isolators, we use a band-pass filter with a bandwidth
from 8 GHz to 10 GHz, which is custom made by RLC electronics. The model number
of the band-pass filter is “F-18851”. The isolation from DC to 7 GHz and from 13 GHz
to 20 GHz is designed to be about 60 dB.

Furthermore, the circulator is indispensable to separate the outgoing signal from the
incoming input signal. As shown in Fig. 5.6, we use the circulators for the circuit QED
system and the JPA to realize the reflection-type measurements. In this thesis, to suppress
the amplifier noise from the JPA (squeezed vacuum leaked from the isolator), we install an
additional isolator between the circuit QED system and the JPA. Although the dephasing
of the qubit during the single-shot readout is not always a problem, it is very crucial for
quantum state tomography of itinerant microwave photons.

From the MC plate to the HEMT amplifier, we use a NbTi superconducting coaxial
cable with a diameter of 2.19 mm of “SC-219/50-NbTi-NbTi”, which is manufactured by
COAX CO. with connectors from Kawashima Manufacturing Co., Ltd. From the HEMT
amplifier to the output port at room temperature, we use a stainless steel made coaxial
cable with a diameter of 2.19 mm of “TCR-219CG/SUS”, which is manufactured by
COAX CO. with connectors from Kawashima Manufacturing Co., Ltd. The low thermal
conductivity of stainless steel is helpful for thermal isolation. The cables are also bent to
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Figure 5.8: Low-pass filters for the DC current lines. (a) Equivalent circuit and image
of π-filters. (b) Equivalent circuit and image of RC filters. The RC filter is installed at
4-K plate.

release the stress induced during thermal cycle.
The microwave power, which is amplified in the dilution refrigerator, is not enough for

typical measurement devices, such as a vector network analyzer and an analog-to-digital
converter. Therefore, we additionally install a room-temperature microwave amplifier
“AFS4-08001200-09-10P-4” which is manufactured by MITEQ Inc. The gain is about
35 dB, the gain bandwidth is from 4 GHz to 12 GHz, and the noise temperature is about
70 K. The 4 K noise temperature with 40 dB gain from the HEMT amplifier exceeds
that of the Miteq amplifier. It means that our signal-to-noise ratio is limited by the noise
of the HEMT amplifier. When the JPA is used as a preamplifier, the microwave signals
can be amplified in the near quantum limit by suppressing the HEMT noise effectively.
However, the insertion loss of the circulator needed for the reflection-type JPA often limits
the efficiency of the quantum measurement.

5.5 Cryogenic current lines

For operating the JPA, we need to apply a DC magnetic flux into the SQUID loop. In
our setup, the JPA on the silicon substrate is mounted in the 2D sample holder, which is
equipped with a superconducting coil made of NbTi. The superconducting coil of about
4000 turns can apply a uniform magnetic field of 1 Gauss at the sample with a current of
1 mA. Taking into account our SQUID area of about 100 µm2, a current of about 200 µA
is needed to apply the magnetic flux quantum into the SQUID loop. The estimated
magnetic flux penetrating into the SQUID loop may deviate from the coil design due
to the screening effect of the superconductors. However, practically, we can estimate the
magnetic flux in the SQUID by measuring the periodic behavior of the SQUID inductance.
The resistance of the coil at room temperature is about 2.5 kΩ.

As shown in Fig 5.8, to filter out a high-frequency noise, a π-filter and an RC filter are
installed at room temperature and at the 4 K plate, respectively. The π-filter with a feed-
through capacitor is used as a low-pass filter with a cutoff frequency of about 1 MHz and
an insertion loss at 100 MHz of about 65 dB. The RC filter with resistors and capacitors
is used as a low-pass filter with a cutoff frequency of about 2 kHz and an insertion loss at
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100 kHz of about 50 dB. As shown in Fig. 5.6, a twisted pair made of copper is used for
the connection between the DC current input and the RC filter. A twisted pair made of
NbTi is used for the connection between the RC filter and the connector. The NbTi coil
is connected to the connector at the MC plate.

5.6 Frequency-domain measurement setup

Here, we explain a frequency-domain measurement setup. First, a vector network analyzer
(VNA) is a powerful tool in frequency-domain measurements. The VNA can measure the
reflection and transmission coefficients of the circuits as a function of the probe frequency.
Second, a microwave source is additionally used for driving the circuits which are being
measured by the VNA. Third, a current source is also used to apply a magnetic flux into
the SQUID loop of the circuits. Finally, a rubidium atomic clock is an essential tool
to decrease the phase noise or to improve the long-term stability of microwave devices.
Microwave devices, such as the VNA or the microwave source, should be connected to the
rubidium atomic clock. In the following, we explain the measurement devices we use in
this thesis; the VNA, the microwave source, the current source, and the rubidium atomic
clock.

5.6.1 Vector network analyzer

The VNA can modulate and demodulate between the intermediate and probe frequencies
using an identical internal local oscillator. Therefore, the VNA can perform a phase
sensitive measurement with high long-term stability.

We use the VNA model “N5222A”, which is manufactured by Keysight (former Agi-
lent). The picture of the VNA is shown in Fig. 5.9(a). From the specification details of the
device, the dynamic range and the noise floor with the IF bandwidth of 10 Hz are 127 dB
and −114 dBm, respectively. Then, the noise spectral density of the VNA is calculated as
−124 dBm/Hz. The vacuum noise spectral density is ℏω/2 = −205 dBm/Hz at 10 GHz
Therefore, if we have ideal amplifiers with the total gain of at least 80 dB, we can measure
the probe microwave in the vacuum noise limit by the VNA. Since the sum of the gains
of the HEMT and Miteq amplifiers is about 75 dB, the noise spectral density of the VNA
is comparable with the amplified vacuum noise. As explained before, without the JPA,
the signal-to-noise ratio is limited by the HEMT amplifier. The noise spectral density
of the HEMT amplifier with a noise temperature of 5 K is −191 dBm/Hz at 10 GHz,
which corresponds to −115 dBm/Hz with a total gain of 75 dB from the HEMT and
Miteq amplifiers. The noise spectral density exceeds the noise floor of the VNA, which
means that we can achieve microwave measurement with the noise floor −191 dBm/Hz
at 10 GHz at the base temperature.

The SSB phase noise is about −83 dBc/Hz from 8 GHz to 16 GHz with a frequency
offset of 1 kHz, which shows that the linewidth of the probe microwave from the VNA
is much narrower than 1 kHz. Therefore, the linewidth of the probe microwave is much
less than that of the typical superconducting circuits, which enable us to measure the
linewidths of the superconducting circuits accurately.

5.6.2 Microwave source

The microwave source is useful to additionally drive the superconducting circuit which is
being measured by the VNA.
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Figure 5.9: Photographs of instruments. (a) Vector network analyzer (VNA). (b) Mi-
crowave source. (c) Current source. (d) Rb atomic clock.

In this thesis, we use the microwave source model “E8257D”, which is manufactured
by Keysight (former Agilent). The microwave source is shown in Fig. 5.9(b). From the
device specifications, the microwave source can generate microwaves with a power range
from −20 dBm to 20 dBm and with a frequency range from 250 kHz to 20 GHz. The
dynamic range of the output power can be controlled with suitable attenuators. The
SSB phase noise is about −40 dBc/Hz at 10 GHz with a frequency offset of 1 Hz, which
shows the linewidth of the microwave is much narrower than 1 Hz. Again, it is much less
than that of the typical superconducting circuits, which enables us to control or drive the
superconducting circuits in the limit of their linewidths.

5.6.3 Current source

The current source is used to apply the magnetic flux into the SQUID loop. In this thesis,
we use the current source model “GS200”, which is manufactured by Yokogawa Electric
Corporation. The current source is shown in Fig. 5.9(c). From the device specifications,
the current resolution of the 1 mA range is 10 nA. For our superconducting coil, the
current of 10 nA corresponds to about 1 µG. Taking into account the typical area of our
SQUID of about 100 µm2, the magnetic field of 1 µG applies a magnetic flux of about
1 × 10−19 Wb into the SQUID loop, which corresponds to ∆Φex/Φ0 = 5 × 10−5. The
frequency deference of the JPA in terms of the magnetic flux can be rewritten as

∆ωr

ωr

=
1

4
tan

(
π
Φex

Φ0

)
2π

∆Φex

Φ0

≈ 8× 10−5, (5.13)

where we set Φex/Φ0 = 1/4. Typically, the Q factor of the JPA is from 102 to 103. From
this, we confirm that ∆ωr

ωr
≪ Q−1, which means that the resolution of the current source

is low enough to tune the JPA frequency within its linewidth. The long-term stability of
the current is within tens of nanoampere in a day, which does not drift the JPA frequency
largely beyond the linewidth. Note that high-frequency current noise is expected to be
strongly attenuated by the low-pass filters, the π-filter at room temperature and the RC
filter at the 4 K plate.
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5.6.4 Rubidium atomic clock

A microwave device generates a frequency-stable microwave using a phase-locked loop
(PLL), where an unstable voltage controlled oscillator (VCO), which generates a mi-
crowave, is stabilized by a reference signal. The low-frequency signal which is frequency-
divided from the microwave of the VCO is compared with the reference signal at a phase
comparator to stabilize the VCO. Most of the microwave devices have their own refer-
ence signals which are generated from quartz crystal oscillators. However, a more stable
reference signal enables the microwave devices to generate more stable microwaves.

It is known that an atomic clock generates a more stable reference signal than a
quartz crystal oscillator. Therefore, a caesium atomic clock is used for the definition of
the second. However, in laboratories, a rubidium atomic clock is commonly used for the
reference signal since it is more compact and inexpensive than that of caesium.

In this thesis, we use a rubidium atomic clock model “FS725”, which is manufactured
by Stanford Research Systems (SRS). The rubidium atomic clock is shown in Fig. 5.9(d).
The clock generates a reference signal at 10 MHz. The relative Allan variance measured
in 1 second, which shows the long-term stability, is less than 2.0×10−11, which means
that the clock is working with an expected error of only 1 second in about ten thousand
years. The SSB phase noise is about −130 dBc/Hz at 10 MHz with a frequency offset of
10 Hz. Thus, the SSB phase noise of the microwave with the ideal PLL can be estimated
as about −100 dBc/Hz at 10 GHz with a frequency offset of 10 Hz, which is much better
than that of the microwave source we use in this thesis. This shows that the reference
signal from the clock may improve the phase noise of the microwave source. Therefore,
all microwave devices are connected to an identical rubidium atomic clock. Furthermore,
the microwave devices which share identical reference signals can be phase-locked with
each other.

5.7 Time-domain measurement setup

For the time-domain measurement, we need to control and measure microwave pulses.
In the state-of-the-art technology for microwaves, we may directly control and measure
microwave pulses using a digital-to-analog converter (DAC) and an analog-to-digital con-
verter (ADC) with ultrafast sampling frequencies. However, in this thesis, we establish
a system similar to what is used in radio communications, where low-frequency signals,
which can be easily controlled by DACs and ADCs, are up- and down- converted to and
from microwave signals. The continuous microwave carrier signal from the microwave
source is modulated to a microwave pulse by a low-frequency signal at an IQ mixer. The
returning microwave pulse is demodulated to a low-frequency signal at another IQ mixer
driven by the continuous microwave carrier signal.

Here, we will explain our system by dividing them into three components; the IQ
mixer, the DAC system, and the ADC system.

5.7.1 IQ mixer

We use a IQ mixer to up- and down- convert the low-frequency signals to microwave
signals. The IQ mixer is a passive device based on diodes, which can multiply incoming
signals at different frequencies with each other, performing frequency conversion. The
multiplication of the signals is realized by the nonlinearity of the diodes. The spurious
frequency signals are cut by the interferences inside the mixer and the filters outside of
the mixer.
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In this thesis, we use the IQ mixer “IQ-0318L”, which is manufactured by Marki
Microwave. The possible sideband frequency (IF) is from DC to 500 MHz. The IQ
mixer can modulate and demodulate microwaves with a carrier frequency from 3 GHz
to 18 GHz. From the device specifications, the conversion loss is 7 dB and the isolation
of the continuous microwave carrier signal (LO) from the modulated microwave signal is
about 40 dB.

5.7.2 Modulation

First of all, we will explain how to up-convert the low-frequency signals into microwave
signals. The simplified circuit diagram of the IQ mixer is shown in Fig. 5.10. There are
a total of four ports in the IQ mixer. One of the ports is for the input of continuous
microwave carrier signal from the microwave source. The other two ports, I and Q ports,
are used for up-conversion of the low-frequency signal input. The last port is for the
output of the up-converted microwave signals. Inside the IQ mixer, the carrier signal is
split into two, one of which is multiplied with the low-frequency signal from the I port,
and the other is phase-shifted by −π/2 and is multiplied with the signal from the Q port.
Thus, the output signal can be written as

VS(t) = I(t) cosωLOt+Q(t) sinωLOt, (5.14)

where the real parts of I(t) and Q(t) are the low-frequency signals which were sent into the
I and Q ports, and ωLO is the microwave frequency, or the local oscillator (LO) frequency.
I(t) and Q(t) are called the in-phase and out-of-phase quadratures at the frequency of
ωLO, respectively. The output signal can be described by a point in the IQ plane in
the rotating frame of ωLO. Therefore, it is obvious that the in-phase and out-of-phase
quadratures at the frequency of ωLO can be controlled directly by I(t) and Q(t). Note
that I and Q correspond to x and p, respectively, which are used for the representation
of a quantum state of a harmonic oscillator in Sec 3.3.

The output signal of the IQ mixer in Eq. (5.14) can be transferred to the output
propagating microwave, which is described as

S(t) = [I(t) + iQ(t)]e−iωLOt. (5.15)

Note that the output signal corresponds to the real part of the complex amplitude of the
output propagating microwave signal as VS(t) = Re[S(t)]. To sum up, by applying I(t)
and Q(t), we can directly control the in-phase and out-of-phase signals with the carrier
frequency of ωLO.

Next, we will explain how to control the in-phase and out-of-phase quadratures with
another carrier frequency of ωLO + ωs, where ωs is called a sideband frequency. Here, the
in-phase and out-of-phase quadratures at ωLO+ωs are described as Is(t) and Qs(t). Then,
the output signals should be

VS(t) = Is(t) cos(ωLO + ωs)t+Qs(t) sin(ωLO + ωs)t

= [Is(t) cosωst+Qs(t) sinωst] cosωLOt+ [−Is(t) sinωst+Qs(t) cosωst] sinωLOt.
(5.16)

Therefore, I(t) and Q(t) can be represented as(
I(t)
Q(t)

)
=

(
Is(t) cosωst+Qs(t) sinωst
−Is(t) sinωst+Qs(t) cosωst

)
. (5.17)

It can be interpreted that I(t) and Q(t), which are rotating at the frequency of ωs in the
IQ plane in the rotating frame of ωLO, can generate a signal at the frequency of ωLO+ωs.
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Figure 5.10: Equivalent circuit of the modulation at the IQ mixer.

The output propagating microwave signal can be described as

S(t) = [Is(t) + iQs(t)]e
−i(ωLO+ωs)t. (5.18)

Thus, we can control the in-phase and out-of-phase quadratures at ωLO + ωs using I(t)
and Q(t) which are determined in Eq. (5.17). Note that I(t) and Q(t) can control not only
the in-phase and out-of-phase quadratures at ωLO + ωs but also the carrier frequency of
the output propagating microwave by changing ωs. This frequency control is quite useful
since the microwave source cannot change its output frequency very quickly. Moreover, we
can generate the output propagating microwaves with the different sideband frequencies
simultaneously.

Our purpose here is to generate a microwave pulse with the carrier frequency of ωLO+
ωs. As discussed in Sec. 2.3.4, the pulse mode is defined as

m(t) = f(t)e−i(ωLO+ωs)t, (5.19)

where f(t) is a normalized complex function, describing the pulse form. Then, the output
microwave pulse is described as

S(t) = αm(t) = αf(t)e−i(ωLO+ωs)t, (5.20)

where α is the coherent amplitude of the pulse mode, describing the amplitude and phase.
By comparing Eq. (5.20) with Eq. (5.18), Is(t) and Qs(t) should be set to

Is(t) = Re [αf(t)]

Qs(t) = Im [αf(t)] .
(5.21)

Using Eq. (5.17), I(t) and Q(t) should be set to(
I(t)
Q(t)

)
=

(
Re [αf(t)] cosωst+ Im [αf(t)] sinωst
−Re [αf(t)] sinωst+ Im [αf(t)] cosωst

)
. (5.22)

Practically, it is useful to obtain I(t) and Q(t) in Eq. (5.22) intuitively from the
microwave pulse in Eq. (5.20). First, we define S̃(t) with the replaced carrier frequency
of ωs as

S̃(t) = αm̃(t) = αf(t)e−iωst, (5.23)

where m̃(t) = f(t)e−iωst is the pulse mode with the replaced carrier frequency of ωs. Then,
we can easily confirm that the real and imaginary parts of S̃(t) exactly correspond to I(t)
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and Q(t) in Eq. (5.22) as (
I(t)
Q(t)

)
=

 Re
[
S̃(t)

]
Im
[
S̃(t)

]  . (5.24)

The modulation process is also valid with a sideband frequency less than or equal to
zero. However, practically, the signals with a sideband frequency of zero easily contain
larger low-frequency noise, such as 1/f noise. Moreover, the continuous leakage noise at
the LO frequency from the IQ mixer may affect the system resonantly. Therefore, we do
not perform the modulation with a sideband frequency of zero.

5.7.3 Demodulation

Demodulation is realized by using the inverse process of modulation. As shown in
Fig. 5.11, the IQ mixer and the continuous microwave carrier signal at ωLO are used
here.

First of all, we will show the output signals from the I and Q ports correspond to
the in-phase and out-of-phase quadratures of the input propagating microwave at ωLO.
Generally speaking, the input propagating microwave signal can be described as

S(t) = [I(t) + iQ(t)]e−iωLOt, (5.25)

where I(t) and Q(t) are the in-phase and out-of-phase quadratures at ωLO. The input
signal at the IQ mixer corresponds to the real part of S(t), which can be calculated as

VS(t) = Re[S(t)] = I(t) cosωLOt+Q(t) sinωLOt. (5.26)

As shown in Fig. 5.11, the output signals from the I and Q ports are described as

Output from I port = VS(t) cosωLOt =
I(t)

2
+���������I(t)

2
cos(2ωLOt) +���������Q(t)

2
sin(2ωLOt) ∝ I(t)

Output from Q port = VS(t) sinωLOt =
Q(t)

2
−��������(t)

2
cos(2ωLOt) +��������I(t)

2
sin(2ωLOt) ∝ Q(t),

(5.27)
where the high-frequency components are cut by suitable low-pass filters. From this
calculations, we confirm that the output signals from the I and Q ports exactly correspond
to the in-phase and out-of-phase quadratures at ωLO. This is the inverse process of the
modulation in Eq. (5.15).

Here, we consider the input propagating microwave signal, described in the rotating
frame of ωLO + ωs as

S(t) = [Is(t) + iQs(t)]e
−i(ωLO+ωs)t. (5.28)

Similarly to the demodulation, we can obtain the output signals from the I and Q ports
as (

I(t)
Q(t)

)
=

(
Is(t) cosωst+Qs(t) sinωst
−Is(t) sinωst+Qs(t) cosωst

)
. (5.29)

Note that this exactly corresponds to Eq. (5.17). Thus, we obtain the inverse relation as(
Is(t)
Qs(t)

)
=

(
cosωst − sinωst
sinωst cosωst

)(
I(t)
Q(t)

)
, (5.30)

which shows that we can obtain the in-phase and out-of-phase quadratures at ωLO + ωs

from the output signals of I(t) and Q(t).
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Figure 5.11: Equivalent circuit of the demodulation at the IQ mixer.

Pulse mode measurement

Here we consider measurement of our system in a a pulse mode, which is defined as

mw(t) = fw(t)e
−i(ωLO+ωs)t = [Iw(t) + iQw(t)]e

−i(ωLO+ωs)t, (5.31)

where fw(t) = Iw(t) + iQw(t) is a normalized complex function, called a measurement
window. Then, the complex amplitude αw measured with mw(t) is given by

αw =

∫ ∞

−∞
dt m∗

w(t)S(t). (5.32)

Note that the complex amplitude in the pulse mode orthogonal to mw(t) cannot be mea-
sured here. Using Eqs. (5.28), (5.31), and (5.32), the real and imaginary parts of the
measured complex amplitude αw are obtained as

Iw = Re[αw] =

∫ ∞

−∞
dt [Iw(t)Is(t)−Qw(t)Qs(t)]

Qw = Im[αw] =

∫ ∞

−∞
dt [Iw(t)Qs(t) +Qw(t)Is(t)].

(5.33)

In this way, using the output signals I(t) and Q(t) from the I and Q ports, we can obtain
the real and imaginary parts in the pulse mode defined by mw(t).

Suppose that the demodulation window is a real-valued function as fw(t) = Iw(t),
Eq. (5.33) are described as

Iw = Re[αw] =

∫ ∞

−∞
dt fw(t)Is(t)

Qw = Im[αw] =

∫ ∞

−∞
dt fw(t)Qs(t),

(5.34)

which can be interpreted as the weighted average of the in-phase and out-of-phase com-
ponents of signals at ωLO + ωs, with the real-valued function of fw(t).

To describe Eq. (5.33) more simply, the pulse mode with carrier frequency of ωs is
defined as

m̃w(t) = fw(t)e
−iωst, (5.35)
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which is the pulse mode of mw(t) whose carrier frequency of ωLO + ωs is replaced by ωs.
Using m̃w(t), Eq.(5.33) can be described as

Iw = Re[αw] =

∫ ∞

−∞
dt Re [m̃w(t)] I(t) +

∫ ∞

−∞
dt Im[m̃w(t)]Q(t)

Qw = Im[αw] = −
∫ ∞

−∞
dt Im[m̃w(t)]I(t) +

∫ ∞

−∞
dt Re[m̃w(t)]Q(t).

(5.36)

Mode mismatch

The mode mismatch between the signal and measurement pulse modes is critical from
the viewpoint of the signal-to-noise ratio. Here, the signal and measurement pulse modes
are described as m(t) and mw(t), respectively. As explained in Sec. 2.3.5, using the beam
splitter transformation, the measurement pulse mode can be represented with the signal
pulse mode without loss of generality as

mw(t) =
√
η m(t) +

√
1− η m⊥(t), (5.37)

where η =
∣∣∣∫∞

−∞ dt m∗
w(t)m(t)

∣∣∣2 =
∣∣∣∫∞

−∞ dt f ∗
w(t)f(t)

∣∣∣2 is the mode overlap between m(t)

andmw(t), andm⊥(t) is the pulse mode orthogonal tom(t), satisfying
∫∞
−∞ dtm∗(t)m⊥(t) =

0. η is also called the measurement efficiency.
Here, the input propagating microwave signal can be written as

S(t) = αm(t) + α⊥m⊥(t) +
∑
i

αimi(t), (5.38)

where α, α⊥ and αi are the complex amplitudes of the orthogonal pulse modes. Note that
mi(t) with αi are the orthogonal pulse modes which are not related to the measurement
with mw(t). From Eq. (5.32), the complex amplitude measured with mw(t) is written as

αw =

∫ ∞

−∞
dt m∗

w(t)S(t) =
√
η α +

√
1− η α⊥. (5.39)

It shows that αw contains not only the complex amplitude from the signal pulse mode
but also that from the orthogonal pulse mode.

Usually, the orthogonal pulse mode m⊥(t) contains the same amount of noise as the
signal mode m(t), since they may be amplified in the same way. For instance, suppose
that the signal-to-noise ratio of the signal mode is SNR = S/N , where S and N are the
signal and noise powers, respectively, and ,the orthogonal pulse mode can also ocontain
the noise power of N . Here, we suppose there is no pulse mode which has a finite complex
amplitude, except for the signal pulse mode. Therefore, from Eq. (5.39), the signal and
noise powers in the measurement are calculated as

Sw = η S

Nw = η N + (1− η)N = N.
(5.40)

Then, the signal-to-noise ratio of the measurement can be calculated as

SNRm =
η S

N
= η × SNR, (5.41)

which means that the signal-to-noise ratio is η times worse than that of the signal pulse
mode due to the mode mismatch. Therefore, if the measurement pulse mode is set to
mw(t) = m(t), the measurement efficiency of η becomes unity, where the signal-to-noise
ratio of the measurement is maximized.
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Pulse mode measurement with single quadrature signal

In the scheme in Eq. (5.36), to measure the complex amplitude of the pulse mode, we
needed to use both of the in-phase and out-of-phase signals from the IQ mixer. However,
we can actually measure it by using only one of the quadrature signals.

Suppose we measure the complex amplitude obtained with mw(t) = f(t)e−i(ωLO+ωs)t

by using another measurement pulse mode, which is defined as

mwR(t) =
mw(t) +mw−(t)√

2
, (5.42)

where mw−(t) = f ∗(t)e−i(ωLO−ωs)t is defined as a pulse mode with the conjugate demodu-
lation window of f ∗(t) and the negative sideband frequency ωLO − ωs. If the bandwidth
of mw(t) is much smaller than the sideband frequency of ωs, the mode overlap between
mw(t) and mw−(t) becomes zero, which means that mw(t) and mw−(t) are orthogonal to
each other. Therefore, the measurement pulse mode of mw− satisfies the normalization
condition as ∫ ∞

−∞
dt |mwR(t)|2 =

1

2

∫ ∞

−∞
dt |mw(t)|2 +

1

2

∫ ∞

−∞
dt |mw−(t)|2 = 1. (5.43)

Thus, the measurement by mwR(t) becomes valid.
According to the definition of η in Eq. (5.37), Eq. (5.42) directly shows that the mode

overlap between mw(t) and mwR(t) gives η = 1/2. Thus, using mwR(t), we can perform a
measurement of the complex amplitude of mw(t) with a mode overlap of η = 1/2.

Now, as shown in Eq. (5.35), we can define the measurement pulse modes with sideband
frequencies of ωs as

m̃w(t) = f(t)e−iωst

m̃w−(t) = f ∗(t)e+iωst = m̃∗
w(t)

m̃wR(t) =
m̃w(t) + m̃w−(t)√

2
=
m̃w(t) + m̃∗

w(t)√
2

=
√
2Re[m̃w(t)].

(5.44)

Then, we can confirm that

Re[m̃wR(t)] =
√
2Re[m̃w(t)]

Im[m̃wR(t)] = 0.
(5.45)

Therefore, from Eq. (5.36), we can obtain the real part IwR measured by m̃wR(t) using
only the in-phase signal of I(t), as

IwR =
√
2

∫ ∞

−∞
dt Re[m̃w(t)]I(t). (5.46)

Suppose mw−(t) contains only noise, then IwR is composed of the half signal power from
the target pulse mode mw(t) and the half noise power from mw−(t). Importantly, the
carrier frequency of mw−(t) is far from that of mw(t) by twice the sideband frequency
2ωs. This frequency detuning enables us to suppress the noise in mw−(t) sufficiently with
a band-pass filter for mw(t) before the IQ mixer. Therefore, the real part measured with
mw(t) can be obtained using the single quadrature signal I(t) as

Iw =
√
2× IwR = 2

∫ ∞

−∞
dt Re[m̃w(t)]I(t). (5.47)
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In the same way, we can also measure the imaginary part of m̃w(t) by the definition
of another measurement pulse mode as

mwI(t) =
mw(t)−mw−(t)√

2

m̃wI(t) =
m̃w(t)− m̃w−(t)√

2
=
m̃w(t)− m̃∗

w(t)√
2

= i
√
2Im[m̃w(t)].

(5.48)

We confirm Re[m̃wI(t)] = 0 and Im[m̃wI(t)] =
√
2Im[m̃w(t)]. Then, from Eq. (5.36), we

obtain

QwI = −
√
2

∫ ∞

−∞
dt Im[mw(t)]I(t), (5.49)

where QwI is the imaginary part measured with m̃wI(t). By suppressing the noise in
mw−(t), we can measure the imaginary part measured with mw(t) by using only the
in-phase signal I(t), as

Qw =
√
2×QwI = −2

∫ ∞

−∞
dt Im[m̃w(t)]I(t). (5.50)

Suppose that the demodulation window is the real-valued function as fw(t) = f ∗
w(t).

Then the real part and imaginary part measured with mw(t) = fw(t)e
−i(ωLO−ωs)t in

Eqs. (5.47) and (5.50) are described as

Iw = 2

∫ ∞

−∞
dt fw(t) cosωst I(t)

Qw = 2

∫ ∞

−∞
dt fw(t) sinωst I(t).

(5.51)

In practice, the scale of Iw and Qw does not matter, because we can determine it from
the reference of the vacuum input, as explained in Chapter 8.

5.7.4 DAC system

As explained before, a microwave pulse can be generated by applying low-frequency signals
and a continuous microwave carrier signal to a IQ mixer.

We use a FPGA board with DACs to generate the low-frequency signals. The FPGA
board, which is called GHzDAC, is designed by the research group of John Martinis in UC
Santa Barbara (now in Google). The GHzDAC is a dual-channel 14-bit DAC operating
at 1-GHz sampling rate. DACs “AD9736”, which are manufactured by Analog Devices,
are used at the heart of GHzDAC. The output differential-voltage range with double 50 Ω
terminations is from 0 to 1 V. The GHzDACs are phase-locked with a 10-MHz reference
signal from the rubidium atomic clock. The GHzDAC is controlled and the waveform
data is downloaded through an Ethernet interface. The memory capacity corresponds
to the maximum pulse-sequence length of 8 µs, which is long enough to perform simple
protocols. However, it is not enough to measure the energy-relaxation or dephasing times
of a superconducting qubit. Then, such a long pulse sequence is performed by pausing
the pulse sequence at the point when we need a long interval. The GHzDACs, which
are phase-locked with the identical rubidium atomic clock, can be paused synchronously.
Note that the minimum time interval of the pausing is 360 ns.
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Figure 5.12: Total DAC system.

Total modulation system

The total modulation system is shown in Fig. 5.12. The output signals from the GHzDAC
after the low-pass filters are amplified by a differential amplifier and are applied into the I
and Q ports of the IQ mixer. The continuous microwave carrier signal from the microwave
source is applied to the LO port of the IQ mixer. We install a 3-dB attenuator to each
input port to attenuate the input signals reflected by the IQ mixer. Here, we explain the
details one by one.

From the Nyquist-Shannon sampling theorem, with a 1-GHz sampling rate, we can
generate low-frequency signals for the sideband modulation up to 500 MHz. However,
an ideally-steep low-pass filter with a cutoff frequency of 500 MHz is not easily available.
Therefore, according to the cutoff frequency of the low-pass filter, the maximum sideband
frequency is determined. Practically, we determine the sideband frequency depending
on the bandwidth needed for each purpose. Since the typical bandwidth of the control
and readout pulses for a superconducting qubit are about 30 MHz and 10 MHz, the
sideband frequencies are set to about 150 MHz and 50 MHz, respectively. Depending on
the sideband frequencies required, the Gaussian low-pass filters with a cutoff frequencies
of about 300 MHz and 75 MHz are installed at the output ports of the GHzDACs, which
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are used for control and readout pulses, respectively. The Gaussian filter is an absorption-
type filter used to minimize an reflection of the out-of-band signals.

The differential-voltage signals from the Gaussian filters are amplified by differential
amplifiers, which were also designed by the aforementioned group of John Martinis. In the
differential amplifier, there are the two output ports, which output the amplified signals
with opposite signs. One of the output signals is applied to the IQ mixer. The other is
terminated or is used for monitoring the output signals from the GHzDAC directly with
a sampling oscilloscope.

DAC calibration

The modulation in Eq.(5.14) can be interpreted as the result of the interference between
the low-frequency signals of I(t) and Q(t). However, practically, the phase shift and
the multiplications at the IQ mixer are not perfect, and the attenuations and the phase
shifts between the IQ mixer and the GHzDAC are not identical for each port. This
imperfection causes the output of spurious signals at the carrier frequency ωLO and the
image band frequency ωLO − ωs. Therefore, we correct the imperfection by modifying
the low-frequency signals from the GHzDAC. Since the imperfection is considered to be
stable in time, it is useful to modify the low-frequency signals in the frequency domain.
By measuring the continuously-modulated signals at ωLO + ωs, ωLO, and ωLO − ωs by
using a spectrum analyzer, we can determine the additional correction signals necessary
for minimizing the spurious outputs at ωLO and ωLO − ωs. Concretely, we optimize the
offset DC signal and the image sideband frequency signal to cancel the spurious outputs.
The measurement of the correction signals is performed at every carrier frequency ωLO

and every sideband frequency ωs which we are going to use. For a microwave pulse, the
corresponding low-frequency signals are Fourier transformed, corrected according to the
frequency-domain calibration results, and inverse-transformed again.

An example of the calibration results is shown in Fig. 5.13(a). The output signal from
the IQ mixer is shown as a function of the DAC amplitude in arbitrary units. Typically,
the suppression ratio of the spurious signals to the target signal is from 30 to 40 dB.
We use the results to associate the actual output power with the DAC amplitude. The
linearity of the output signal is also important. The output power as a function of the
square of the DAC amplitude is shown in Fig. 5.13(b). From this, we confirm that our
modulation system can up-convert the low-frequency signals linearly.

5.7.5 ADC system

To measure the microwave pulse, the demodulation signals from the IQ mixer are mea-
sured by an ADC.

In this thesis, we use the ADC model “Acqiris AP240”, which is manufactured by
Keysight (former Agilent). The ADC board is plugged directly into the PCI slot in the
PC “Precision T7500” from Dell. The ADC can digitize the input signal into 256 levels
(8 bits) with dual channels at 1-GHz sampling rate. The measurement range of the input
signal in full span can be set to a value from 50 mV to 5 V.

Total demodulation system

The total demodulation system is shown in Fig. 5.14. The output microwave pulse, which
is amplified by the cryogenic and room temperature amplifiers, arrives at the demodulation
system.



108 CHAPTER 5. EXPERIMENTAL SETUP

0.0 0.5 1.0 1.5
DAC amplitude (arb.unit)

−60

−50

−40

−30

−20

−10
O

ut
pu

t P
ow

er
 (

d
B

m
)

−60

−50

−40

−30

−20

−10

Carrier

Image

Signal

C
arrier &

 Im
a

ge
 isolation (dB

)

(a) (b)

0.0 0.5 1.0 1.5 2.0 2.5
Square of amplitude (arb.unit)

0

5

10

15

20

25

30

O
ut

pu
t P

ow
er

 (
n

W
)

Figure 5.13: DAC calibration results. (a) Output powers as a function of the DAC
amplitude. The blue dots are the output power at the target frequency ωLO + ωs. Here,
we set ωLO/2π = 10.6753 GHz and ωs/2π = −100 MHz. The red and green dots are the
isolation ratio of the carrier and image band frequencies to the target signal, respectively.
(b) Output powers as a function of the square of the DAC amplitude.

In this thesis, for simplicity, we only measure one of the demodulated signals from the
IQ mixer. As described in Sec. 5.7.1, the noise of the image sideband frequency is crucial
from the viewpoint of the signal-to-noise ratio. Therefore, before the IQ mixer, we install
the tunable band-pass filter model “507345 10.0-11.0 GHz”, which is manufactured by
COLEMAN MICROWAVE CO. The microwave pulse after the band-pass filter is applied
into the RF port of the IQ mixer. The continuous microwave carrier signal from the
microwave source is applied to the LO port of the IQ mixer. Importantly, in order to
cancel the slow phase noise, the microwave source for the demodulation should be identical
to that for the modulation. In this thesis, the sideband frequency to be measured is always
set to 50 MHz. Therefore, we can use the fixed narrow band-pass filter model “SIF-50+”,
which is manufactured by Mini-Circuits, Inc. The down-converted signals are amplified
by the amplifier model “ZFL-500LN+”, which is manufactured by Mini-Circuits, Inc.
Finally, the signal is amplified by the amplifier of “SR445A”, which is manufactured by
Stanford Research Systems (SRS), to match the required signal range of the ADC. Then,
the signals are applied to the input port of the ADC.

Phase lock

The phase lock between the GHzDAC and the ADC is crucial for the phase-sensitive
measurement.

The 10-MHz reference signal from the identical rubidium atomic clock is applied to
both the GHzDAC and the ADC. Therefore, the 1-GHz sampling frequency of the ADC
is phase-locked with that of the GHzDAC, which enables us to realize the phase stability
of the microwave measurements.

The trigger signal from the GHzDAC is also applied to the ADC. The ADC starts
to record the signals after it receives the trigger signal. Therefore, the relative phase
of the low frequency signal from the trigger time is also crucial for the phase-sensitive
measurement by the ADC.
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Figure 5.14: Total ADC system.

Quantization noise

In the measurement using an ADC, the quantization noise has to be evaluated in advance.
If the step of the digitization is much smaller than the signal amplitude, the quantization
noise can be considered to be uncorrelated with the signal. When the input signal with
the full-span amplitude is sinusoidal, the signal-noise-ratio can be approximated as

SNR = 1.761 +N × 6.02 dB, (5.52)

where N is the bit number of the digitizer. In the case of our 8-bit digitizer, the signal-to-
noise ratio can be calculated to be about 50 dB. Therefore, when we set the measurement
range of the ADC suitably for the maximum amplitude of the input signal, our signal-to-
noise ratio is not limited by quantization noise.

Time sampling

The ADC measures input signals at 1-GHz sampling rate. Therefore, we also need to
consider the effect of the time sampling.
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First of all, the measurement outcomes of the ADC can be modeled as the average of
the input signals as

Īn =
1

τ

∫ τ(n+1/2)

τ(n−1/2)

dt I(t) =
1

τ

∫ ∞

−∞
dt ⊓

(
t− τn

τ

)
I(t)

Q̄n =
1

τ

∫ τ(n+1/2)

τ(n−1/2)

dt Q(t) =
1

τ

∫ ∞

−∞
dt ⊓

(
t− τn

τ

)
Q(t),

(5.53)

where, ⊓(t) is the rectangle function, I(t) and Q(t) are the input signals to the ADC, τ is
the measurement time (the inverse of the sampling frequency) of the ADC, and n is the
discrete time. Using the measurement outcomes, the propagating signal can be described
with the discrete time as

S̄n = [Īn + iQ̄n]e
−iωLOτn. (5.54)

Here, we consider the measurement by the pulse mode with a carrier frequency of
ωLO + ωs, as discussed in Sec. 5.7.1. Without loss of generality, the measurement pulse
mode can be described at the rotating frame of ωLO as

mw(t) = fw(t)e
−iωLOt. (5.55)

Then, the time-discrete measurement pulse can be defined as

mw,n =
mw(τn)√∑
n |m(τn)|2

=
fw(τn)e

−iωLOτn√∑
n |f(τn)|2

. (5.56)

Then, the complex amplitude measured by mw,n can be defined as

ᾱm =
∑
n

m∗
w,nS̄n

=
∑
n

f ∗
w(τn)√∑
n |f(τn)|2

[Īn + iQ̄n].
(5.57)

Here, we will show the complex amplitude calculated from the ADC outcomes cor-
responds to that of the pulse mode measurement, which is defined in Eq.(5.32). The
complex amplitude in Eq. (5.57) can be represented as

ᾱm =

∫ ∞

−∞
dt

∑
n f

∗
w(τn) ⊓

(
t−τn
τ

)
τ
√∑

n |f(τn)|2
[I(t) + iQ(t)]

=

∫ ∞

−∞
dt f ∗

w⊓(t)[I(t) + iQ(t)]

=

∫ ∞

−∞
dt m∗

w⊓(t)S(t),

(5.58)

where fw⊓(t) =
∑

n fw(τn)⊓( t−τn
τ )

τ
√∑

n |f(τn)|2
is the time-discrete measurement window of f(t), and

mw⊓(t) = fw⊓(t)e
−iωLOt is the time-discrete measurement pulse mode of m(t). We can

confirm that mw⊓(t) satisfies the normalization condition. Therefore, we find that the
complex amplitude calculated from the ADC outcomes corresponds to that measured by
the time-discrete pulse mode of mw⊓(t).

As described in Sec. 5.7.1, the mode mismatch between the time-discrete pulse mode
mw⊓(t) and the ideal pulse mode mw(t) gives the additional noise. The mode overlap can
be calculated as

η =

∣∣∣∣∫ ∞

−∞
dt m∗(t)mw⊓(t)

∣∣∣∣2 = ∣∣∣∣∫ ∞

−∞
dt f ∗(t)fw⊓(t)

∣∣∣∣2 . (5.59)
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Then, as in Eq. (5.37), the time-discrete pulse mode is described as

mw⊓(t) =
√
η mw(t) +

√
1− η mw⊥(t), (5.60)

where mw⊥(t) is the compensating pulse mode, which has its frequency component with
the detuning of the sampling frequency from the ideal pulse mode mw(t). When the
sampling frequency is sufficiently larger than the sideband frequency, the mode overlap of
η becomes close to unity. In our measurement, the sampling frequency and the sideband
frequency are 1 GHz and 50 MHz, respectively. Moreover, the additional noise in the
compensating pulse mode mw⊥(t) can be easily suppressed by the tunable band-pass
filter before the IQ mixer. Therefore, we confirm that the time sampling of the ADC does
not affect our measurement.





Chapter 6

Characterization

Here, we explain how to characterize a three-dimensional 3D circuit quantum electro-
dynamical (QED) system. Based on the obtained system parameters, we optimize the
control and readout of a superconducting qubit. We also characterize a Josephson para-
metric amplifier (JPA). Then, we implement single-shot readout of the superconducting
qubit using the JPA. Note that the 3D circuit QED system, which we characterize here,
is also used in Chapters 8 and 9.

6.1 Frequency-domain measurement

In this section, we show results of basic experiments in the frequency domain. By mea-
suring the transmission or reflection of superconducting microwave circuits, we can char-
acterize their resonance frequencies and linewidths. The resonance frequencies tell us
not only the transition frequencies between the eigenstates of the qubit and resonator,
but also the coupling strengths between different modes, which we obtain by measuring
the frequency splittings or frequency shifts. The linewidth of the resonance indicates
the energy-relaxation rate and dephasing rate. By measuring the nonlinear effects from
Josephson junctions, we characterize the power at the sample in the dilution refriger-
ator. The basic experimental setup for the frequency-domain measurements is shown
in Fig. 6.1. A three-dimensional (3D) circuit QED system and a Josephson parametric
amplifier (JPA) are characterized by reflection measurements. Although both of the re-
flection coefficients are measured in the same output line, they can be measured without
any interference and be characterized separately if there is a sufficient frequency detuning
between them.

Note that the microwave powers arriving at the sample are represented by taking
account of the total attenuation.

6.1.1 Cavity spectroscopy

Here, we characterize the 3D cavity coupled dispersively to the transmon qubit.
Firstly, we search for the cavity resonance around the frequency range which we de-

termine by the measurement at room temperature. Note that the resonance frequency at
the base temperature is about 50 MHz higher than at room temperature due to thermal
contraction (see Sec. 4.1.1). To find the cavity resonance easily, we send as high probe
power as we can put into the dilution refrigerator since the cavity is a linear system and
the resonance frequency is not largely shifted by the high probe power. Taking into ac-
count the external coupling rate we tune at room temperature, we can roughly determine
the optimal spectral resolution of the measurement.

113
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Probe power dependence

After we find the cavity resonance, we measure its probe power dependence. The reflection
spectra as a function of the probe power are shown in Fig. 6.2. When the probe power
is getting higher, the cavity resonance jumps to a lower frequency at around −115 dBm.
The jump is due to the nonlinearity of the transmon qubit in the 3D cavity. Therefore,
the observation of the jump indicates that the transmon qubit is alive and coupled to the
cavity we are measuring. This observation is the first step of the characterization of a
circuit QED system. Note that if the Josephson junction is broken, the cavity does not
show such a strong probe power dependence.

The probe power dependence of the cavity spectra can be classified into three regimes:
(i) dispersive, (ii) critical, and (iii) bare regimes [73, 74]. When the average photon
number in the cavity is far below the critical photon number, the perturbative treatment
of the dispersive coupling is valid. In the dispersive regime (i), the cavity spectrum shows
a linear response, or no probe power dependence. It means that we can treat the cavity as
a harmonic oscillator. When the average photon number is close to and above the critical
photon number, the perturbative picture collapses. In the critical regime (ii), as the
cavity mode is largely mixed with the transmon qubit, the cavity spectrum shows strong
nonlinearity induced by the transmon qubit. The dressed system cannot be considered
as a harmonic oscillator anymore. When the larger probe power is applied to the cavity,
the cavity spectrum shows the linear response again, since the cavity is decoupled to the
transmon qubit due to its saturation. The transmon qubit is off-resonantly driven by the
cavity probe despite the large detuning. In the bare regime (iii), the bare cavity can be
considered as a harmonic oscillator.

Cavity probe
Qubit drive

VNA

Dilution refrigerator

JPA pump

f  2f

D
ouble

r

C
ouple

r

Current
bias

3D transmon

JPA

Figure 6.1: Simplified measurement setup for the reflection measurement of the circuit
QED system and the JPA in the frequency domain.
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Figure 6.2: Probe power dependence of the cavity spectrum. (a) Normalized amplitude
and (b) phase of the reflection coefficients as a function of the probe frequency and power.
The white dashed lines separate three regimes: (i) dispersive, (ii) critical, and (iii) bare
regimes. The magenta lines depict the probe power for the dispersive cavity and the bare
cavity.
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Figure 6.3: Cavity spectroscopy at the single-photon power level (−136 dBm). (a) Re-
flection coefficient in the complex plane. (b) Normalized amplitude and (c) phase as a
function of the probe frequency. The blue dots and the red lines are the experimental
results and the fitting results, respectively.
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Figure 6.4: Cavity spectroscopy at the high-power level (−90 dBm). (a) Reflection
coefficient in the complex plane. (b) Normalized amplitude and (c) phase as a function
of the probe frequency. The blue dots and the red lines are the experimental results and
the fitting results, respectively.

Single photon power level

In the dispersive regime, the Hamiltonian of the circuit QED system is described as

H = (ωc − χσ̂z) â
†â+

ωq

2
σ̂z, (6.1)

where ωc is the cavity resonance frequency, ωq is the qubit resonance frequency, and χ is
the dispersive shift. From the Hamiltonian, the dispersive interaction can be understood
as state-dependent frequency shifts. Now, we assume that the transmon qubit inside the
cavity is well cooled down to be in the ground state. The resonance frequency corresponds
to that of the cavity with the qubit in the ground state ωc + χ. The cavity spectrum,
which is measured with the probe power of −136 dBm, is shown in Fig. 6.3. By fitting the
cavity spectrum, we obtain the cavity parameters: the resonance frequency ωr = ωc + χ,
the external coupling rate κex and the internal loss rate κin. The fitting results are shown
in Fig. 6.3. The reflection coefficient is obtained in Sec. 2.4.2. Note that these parameters
may not be so reliable for the following reasons. First, there is a frequency dependent
background signal due to the impedance mismatching in the measurement line. Next,
the obtained spectrum can be a probabilistic mixtures of the two cavity spectra for the
qubit in the ground and excited states due to the finite thermal excitation. Typically, the
thermal excitation population is about 10 percent in our experimental setup.
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It is known that the internal loss of the cavity can be power dependent [75]. When
the cavity is coupled to a nonlinear bath, such as a finite number of two-level systems
in a dielectric material, many photons in the cavity cannot be linearly absorbed due to
the saturation of the bath. Then, the internal loss rate of the cavity may be decreased at
the higher probe power. Therefore, it is very important to characterize the cavity with
a probe power at the single-photon level. Using the cavity parameters obtained in the
dispersive regime, we estimate the average photon number excited by the resonant cavity
probe as

⟨â†â⟩ = κex(
κex+κin

2

)2 ⟨â†i âi⟩, (6.2)

where ⟨â†â⟩ is the average photon number in the cavity, ⟨â†i âi⟩ = P/ℏωp is the average
photon number per unit time of the probe microwave signal, P is the probe power, and
ωp is the probe frequency. The average photon number in the cavity with the resonant
coherent probe is obtained in Sec. 2.4.2. From this, the probe power at the single-photon
level, the probe power which corresponds to a single photon in the cavity, is calculated as

P (@single photon level) =
(κex + κin)

2

4κex
ℏωp = −134 (dBm). (6.3)

Therefore, we confirm that the cavity spectrum in Fig. 6.3 is measured at the single
photon level.

High power level

In the bare regime, the cavity spectrum can be considered as that of a harmonic oscillator.
The cavity spectrum, which is obtained with a high probe power of −90 dBm is shown
in Fig. 6.4. By fitting the spectrum, the cavity parameters are obtained, as shown in
Fig. 6.4.

6.1.2 Qubit spectroscopy

Here we explain how to characterize the transmon qubit by using frequency-domain mea-
surements. Here, the qubit excitation spectrum, which is the excitation probability of the
qubit as a function of the qubit drive frequency, is measured.

In the dispersive circuit QED system, the qubit excitation spectrum can be obtained
by measuring the cavity probe with fixed frequency while sweeping the qubit drive fre-
quency. This is called a two-tone spectroscopy measurement [76]. From the Hamiltonian
in Eq. (6.1), the cavity frequency is shifted depending on the qubit state. Therefore,
the cavity reflection coefficients at the fixed probe frequency are varied depending on the
qubit states. Note that the cavity probe power should be set to much below the critical
photon number in the cavity not to break the perturbation of the dispersive interaction.
Usually, the measurement bandwidth in the frequency domain is much smaller than the
energy relaxation and dephasing rates of the qubit. Thus, the measurement outcome of
the VNA is the average value of the reflection coefficients for the qubit in the ground and
excited states, reflecting the occupation probability in the steady states. By projecting
the reflection coefficients in the quadrature plane onto one axis, we evaluate the occupa-
tion probability of the excited state of the qubit. The projected amplitude as a function
of the qubit drive frequency corresponds to the qubit excitation spectrum. Note that the
determination of the projection axis is not critical. Nevertheless, it is important from
the viewpoint of the signal-to-noise ratio. To maximize the signal-to-noise ratio of the
spectrum, the projection axis should be chosen such that it is parallel with the straight
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Figure 6.5: Qubit excitation spectrum. (a) Cavity reflection coefficient as a function of
the qubit drive frequency in the complex plane. The black, red, green and yellow dots are
experimental results. The colors correspond to those in the qubit spectrum in (b). The
blue dots are the reflection coefficients of the cavity as a function of the probe frequency.
The black arrow depicts the projection axis to obtain the qubit excitation spectrum.
(b) Projected amplitude as a function of the drive frequency, which corresponds to the
qubit excitation spectrum. The dots are the experimental results. The blue line is the
fit of the data to the multiple Lorentzian functions. The color-shaded peaks show the
Lorentzian components corresponding to the different transitions.

line connecting the reflection coefficients for the qubit in the ground and excited states
(or any other higher excited state you are interested in).

Before searching for the qubit resonance peak, we determine several experimental pa-
rameters. First, we choose the qubit drive power and frequency sweep interval. Since
we know the order of magnitude of the qubit external coupling rate from the simulation
in Sec. 4.3.2, we can roughly estimate the Rabi frequency of the qubit for a given qubit
drive power. In the high power limit of the qubit drive, the Rabi frequency determines
the linewidth of the qubit excitation spectrum. The qubit resonance peak broadened
by the larger drive power can be easily detected. Moreover, we determine the optimal
frequency sweep interval by taking into account the linewidth. Note that the Rabi fre-
quency should not exceed the anharmonicity of the transmon qubit. Typically, the Rabi
frequency is set to ten times smaller than the anharmonicity in order to avoid additional
complexity. Second, we should consider the cavity probe power. In the dispersive circuit
QED Hamiltonian in Eq. (6.1), the qubit resonance frequency is shifted depending on the
photon number in the readout cavity. Therefore, to observe the qubit excitation spectrum
without the photon-number dependent shift, we need to set the cavity probe power to
be at or below the single-photon power level. However, due to the small signal-to-noise
ratio, it is time-consuming to search for the qubit excitation peak with such a small probe
power. Thus, at first, we find the qubit resonance peak using the probe power tens of
times larger than the single-photon power level, and then decrease the probe power to
obtain the zero-photon qubit frequency.

In Fig. 6.5(a), we show the cavity reflection coefficients as a function of the qubit drive
frequency. The probe power is set to −136 dBm, which is below the single-photon power
level. The qubit excitation spectrum, which corresponds to the projected amplitude along
the black arrow as a function of the qubit drive frequency, is shown in Fig. 6.5(b). There
are three peaks observed around the drive frequency of 7.8 GHz. The experimental result
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Figure 6.6: Qubit drive power dependence of the qubit excitation spectrum.

is well fitted by the multiple Lorentzian functions. As shown in Fig. 6.5(a), these peaks
are derived from the different signal directions in the complex plane, which indicates that
each peak corresponds to a different excited state giving a different frequency shift to the
readout cavity. Actually, the highest resonance frequency corresponds to the transition
frequency between the ground state and the first excited state ωeg. The center peak is
associated with the second excited state, which is excited by the two-photon process from
the ground state, as explained in Sec. 2.5.3. Thus, the resonance frequency corresponds
to half the transition frequency between the ground state and the second excited state
ωfg/2. Since the two-photon transition is derived by the higher order perturbation, the
Rabi frequency (the linewidth) is smaller than that of the first excited state. The lowest
frequency peak corresponds to the three-photon excitation of the third excited state,
which gives the resonance frequency ωhg/3.

As discussed in the previous paragraph, the three peaks are associated with the tran-
sitions between the states of the transmon qubit. Nevertheless, the experimental result is
not direct evidence of detecting the qubit. For example, if harmonic oscillators are disper-
sively coupled to the probed cavity, we will obtain the same results as shown in Fig. 6.5.
However, there is a stark difference between the qubit excitation spectrum and that of the
harmonic oscillator. As explained before, the linewidth of the qubit excitation spectrum
is broadened as the qubit drive power is increasing. This is called a power broadening of
the qubit resonance [77]. The qubit excitation spectrum as a function of the qubit drive
power are show in Fig. 6.6. As we expected, the linewidths are broader as the qubit drive
power is increased. Therefore, we can confirm that these three peaks correspond to the
transitions of the transmon qubit.

First excited state

Here, we focus on the resonance peak corresponding to the transition between the ground
state and the first excited state. The qubit excitation spectrum is shown in Fig 6.7. The
probe power is set to −136 dBm, which is below the single-photon power level. The
experimental results are well fitted by a Lorentzian. Although the resonance frequency of
an ideal qubit is not shifted by the qubit drive, the resonance frequency of the transmon
qubit can be shifted due to the presence of the second excited state. To obtain the
qubit frequency without the qubit-drive induced shift, the qubit drive power should be
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Figure 6.7: Qubit excitation spectra around the transition frequency between the ground
and first excited state of the transmon qubit. The dots are the experimental results. The
lines are the results of the Lorentzian fits. The blue and red data are measured with the
drive powers of −116 dBm and −89 dBm, respectively. The qubit resonance frequency
without any microwave-induced shift can be obtained by the qubit excitation spectrum
with the lower drive power (blue). The qubit drive power needed for the applicable Rabi
frequency of 32 MHz is about −89 dBm.

so low that the corresponding Rabi frequency is much smaller than the anharmonicity
of the transmon qubit. The linewidth of the qubit excitation spectrum with the low
drive power (blue) is about 3 MHz, which is about one hundred times smaller than the
anharmonicity of 342 MHz, as we will obtain. Furthermore, since the cavity probe power
is also smaller than the single-photon level, the obtained resonance frequency is close
to the qubit frequency without any microwave-induced shift. The transition frequency
between the ground state and the first excited state is obtained as ωeg/2π = 7.86988 GHz

By measuring the Rabi frequency, we estimate the qubit drive power which is needed
for high-fidelity qubit control. The applicable Rabi frequency should be much smaller
than the anharmonicity [48, 49]. In Fig. 6.7, we show the qubit excitation spectrum
whose Rabi frequency is about ten times smaller than the anharmonicity of 342 MHz.
From this measurement, we find the necessary qubit drive power of −89 dBm.

The frequency difference between the qubit resonance frequencies obtained with the
lower and higher qubit drive power can be calculated as 7.86988 GHz − 7.8716 GHz =
1.7 MHz. This is consistent within the fitting errors with the theoretical frequency shift
due to the second exited state, which is calculated in Sec. 2.5.2 as

|Ωd|2

2α
/2π = 1.5 MHz. (6.4)

Second excited state

Here, we focus on the resonance peak corresponding to the two-photon transition between
the ground state and the second excited state. As explained in Sec. 2.5.3, the two photon
transition is attributed to the transmon qubit. Then, the resonance frequency between
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Figure 6.8: Qubit excitation spectra around the transition frequency between the ground
and second excited state of the transmon qubit. The dots are the experimental results.
The line are the results of the Lorentzian fits. The blue and red data are measured
with drive powers of −116 dBm and −87 dBm, respectively. The two-photon resonance
frequency without any microwave-induced shift can be obtained from the qubit excitation
spectrum (red).

the ground and second excited states are measured, which can be used to characterize the
anharmonicity.

The peak at around 7.7 GHz in Fig. 6.8 shows the two photon resonance peak. The
spectrum was obtained with a qubit drive power of −87 dBm and a cavity probe power of
−116 dBm. Since the two-photon Rabi frequency is about 3 MHz, which is much smaller
than the anharmonicity, we obtain the transition frequency ωfg/2/2π = 7.8694 GHz with
negligible microwave-induced shift. From this, we can calculate the anharmonicity as

α/2π = (ωfe − ωeg)/2π = 2
(ωfg

2
− ωeg

)
/2π = −342 MHz. (6.5)

Qubit characterization

Now, we know the qubit resonance frequency and the anharmonicity. Therefore, we
can characterize the qubit parameters as in Sec. 2.6. The capacitive energy quantum is
calculated in frequency units as

ωC/2π = −8α/2π = 2.736 GHz. (6.6)

Thus, the linearized qubit frequency with the Lamb shift is obtained as

ωl
q/2π = ωq + ωC/8/2π = 8.212 GHz. (6.7)

Then, the tunneling energy of the Josephson junction is calculated as

ωJ/2π =
ωl
q
2

ωC

/2π = 24.648 GHz. (6.8)

Finally, the ratio of the capacitance energy quantum to the tunneling energy can be
obtained as

ωC

ωJ

= 0.111. (6.9)
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We confirm that the ratio is small enough for the realization of a transmon qubit.

6.1.3 JPA spectroscopy

Here we will show how to characterize the flux-driven JPA in the frequency domain.
In this thesis, the JPA plays an essential role as a microwave amplifier for single-shot
readout of the transmon qubit and efficient measurement of the quadrature amplitude of
itinerant microwave photons. Although the JPA works in the near-quantum limit, its gain
bandwidth is much smaller than that of commercial cryogenic microwave amplifiers such
as a HEMT amplifier. Therefore, the resonance frequency of the JPA should be set to
match the signal frequency. Since the tunable inductance from the SQUID participates in
the JPA, the JPA frequency can be varied by applying the magnetic flux into the SQUID
loop. Here, we explain how to optimize the current for the JPA frequency and how to
obtain the gain parameters at the operation point, such as the gain, gain bandwidth,
and 1-dB compression point. As shown in Fig 6.1, the JPA is characterized by reflection
measurement.

Current dependence

First of all, we need to optimize the probe power. Once we find the JPA resonance
frequency, we measure its probe power dependence. The JPA frequency becomes lower
due to the self-Kerr effect as the probe power is increased. We set the probe power to
−136 dBm which is small enough to ignore the self-Kerr frequency shift.

Next, the JPA spectrum as a function of the current is measured, as shown in Figs. 6.9(c)
and (d). The current flowing through the coil in the sample holder applies a global mag-
netic field to the JPA chip. The magnetic flux penetrating into the SQUID loop is
supposed to be proportional to the applied current. However, the magnetic flux strongly
depends on the screening effect of the surrounding superconductors, and thus the coef-
ficient is not easily simulated. In the experiment, since the SQUID inductance shows
periodic behavior in terms of the magnetic flux, the actual magnetic flux can be well cal-
ibrated. From the current dependence measurement, we find the magnetic flux quantum
corresponds to about a current of 16 µA. At the current of 7.68 µA, the maximum JPA
frequency is obtained as 11.1103 GHz. Normally, a maximum JPA frequency should be
obtained at the zero current bias point. In the experimental results, nevertheless, the
maximum JPA frequency was shifted by about half the magnetic flux quantum. It is due
to the trapped magnetic flux in the surrounding superconducting electrode. However, the
static magnetic flux offset is not critical for our measurement.

Typically, the linewidth of a JPA is larger compared to that of a readout cavity.
Therefore, the baseline of the JPA spectrum easily shows the frequency dependence,
which prevents us from fitting the spectrum with the ideal reflection coefficient of a
harmonic oscillator. Moreover, in a typical situation where the JPA is on resonance with
the readout cavity, the probe microwave interacts with both of them, as the blue dots show
in Figs. 6.9 (a) and (b). However, since the JPA frequency is tunable, we can measure
the frequency-dependent baseline separately by placing the JPA resonance far from the
measurement range. Around the reduced magnetic flux of π, the SQUID inductance
increases drastically, and the JPA resonance falls out of the measurement range, as the
experimental results at the current of −0.4 µA indicate in Figs. 6.9(c) and (d). At this
flux bias point, we obtain the baseline of our measurement configuration as the black dots
in Figs. 6.9(a) and (b). Therefore, we can correct the frequency-dependent baseline by
dividing the complex amplitude of the raw JPA spectrum by that of the baseline．The
JPA spectra with the correction of the baseline as a function of the current are shown in
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Figure 6.9: Frequency-dependent baseline and current dependence of JPA spectrum.
(a) Amplitude and (b) phase as a function of the probe frequency. The black and blue
dots are the experimental results measured at the current of −0.4 µA and 7.68 µA, re-
spectively. The phase shift from both the JPA and the readout cavity (black arrows)
are observed at 7.68 µA. (c) Current dependence of the amplitude of the JPA spectrum.
(d) Current dependence of the phase of the JPA spectrum. The maximum JPA frequency
of 11.1103 GHz is observed at 7.68 µA. From the periodicity of the JPA frequency, the
magnetic flux quantum penetrating into the SQUID loop corresponds to the current of
about 16 µA.

Figs 6.9(c) and (d). By fitting the experimental reflection coefficients with the analytical
ones, we obtain the JPA parameters, as shown in Figs. 6.10(a), (b) and (c).

Here, our purpose is to tune the current so that the JPA frequency is on resonance
with the signal frequency. In the flux-driven JPA, since the pump microwave does not
cause a frequency shift for the JPA, we optimize the current independently of the pump
microwave. This is a stark difference from the current-driven JPA whose resonance fre-
quency depends on the pump power [78]. In Fig. 6.10(d), we show the JPA frequency
as a function of the applied current. From the linear fitting, the slope is obtained as
−0.309 MHz/nA. Since our current resolution is 10 nA, we can set the JPA frequency
with a resolution of about 3 MHz, which is much smaller than the linewidth of the JPA.
The current which most closely sets the JPA to the target frequency of 10.6253 GHz is de-
termined to be 1.97 µA. The current is fixed for the amplification of the target frequency
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signal. The JPA spectrum at the optimal current of 1.97 µA is shown in Figs. 6.10(a),
(b) and (c).
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Figure 6.11: Pump power dependence of the gain spectrum. (a) Gain spectrum at
the pump powers of −51.27 dBm (blue), −50.75 dBm (green), and −50.37 dBm (red).
The dots and the lines are the experimental results and the Lorentzian fits, respectively.
The probe power is set to −136 dBm. (b) Root gain bandwidth product, (c) gain, and
(d) gain bandwidth as a function of the pump power. The dots are the experimental
results measured with the probe powers of −146 dBm (blue), −141 dBm (green), and
−136 dBm (red). The root gain product is close to the linewidth of the JPA, κJex, for
smaller pump powers.

Pump power dependence

We study the gain properties by measuring the reflection coefficient of the JPA as a
function of the probe frequency while pumping it at twice the JPA frequency. Here,
we characterize the JPA gain and the bandwidth by measuring the phase-insensitively
amplified probe signal. Thus, we set the pump frequency so that the detuning from all
the probe frequencies can be more than the IF bandwidth of the VNA.

In our experiment, the pump tone is generated as an output of the doubler. Since
the optimal power at the output is fixed by the supplier, it is better to change the pump
power by using continuously variable attenuators. However, we change the output power
by adjusting the input power, although it deviates a little from the optimal power.

With different pump powers, the gain spectrum, or the gain as a function of the probe
frequency, is shown in Fig. 6.11(a). To obtain the gain, the raw amplified amplitude signal
is divided by that of the frequency-dependent baseline and is squared. The baseline is
obtained as in Fig. 6.9 with a probe power of −136 dBm. By fitting the gain spectrum
with a Lorentzian, we determine the gain and the gain bandwidth. With the lower pump
power of −51.27 dBm and −50.75 dBm, the spectrum is well-fitted by a Lorentzian.
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Figure 6.12: Probe power dependence of the gain spectrum. (a) Gain spectrum
at the probe powers of −156 dBm (blue), −146 dBm (green), −136 dBm (yellow),
−126 dBm (magenta), and −116 dBm (red). The dots and the lines are the experi-
mental results and the Lorentzian fits. The pump power is set to −51.27 dBm. (b) Root
gain bandwidth product, (c) gain, and (d) gain bandwidth as a function of the probe
power. The dots are the experimental results measured with the pump powers of
−52.57 dBm (blue), −51.90 dBm (green), −51.27 dBm (yellow), and −50.70 dBm (red).
The root gain bandwidth product is close to the linewidth of the JPA at the small probe
power. The gray lines in (c) depict the 1-dB threshold to determine the 1-dB compression
point. The top of the gray lines match the gain of the smallest probe power, and the
width of the gray lines is 1 dB. Thus, the cross point of the bottom of the gray lines and
the gain curve gives the 1-dB compression point (arrow).

However, with the higher pump power of − 50.27 dBm, the spectrum deviates from the
Lorentzian and shows the asymmetry due to the saturation by the self-Kerr effect. The
asymmetric gain spectrum indicates that the pump or probe power which we use is too
large to support the linearity of the gain. We will study the detail of the probe power
dependence in Fig. 6.12.

With different probe powers, the gain and the gain bandwidth as a function of the
pump power are shown in Figs. 6.11(c) and (d). As the pump power is increased, the
gain increases while the bandwidth decreases. The smaller probe powers of −146 dBm
and −141 dBm show almost the same gain property.

The larger the gain is, the better it is from the viewpoint of the signal-noise ratio.
However, there is a trade-off between the gain and the bandwidth. The bandwidth is
crucial for the amplification of qubit readout pulses and itinerant microwave photons
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with finite bandwidths. The trade-off is described by the root gain bandwidth product,
which is defined as

√
Gain× Bandwidth. The trade-off as a function of the pump power

is shown in Fig. 6.11(b). We find that the product is approaching about 52.5 MHz in
the small power limit of the pump power. Theoretically, the product corresponds to
the linewidth of the JPA κJex/2π = 60 MHz, which almost agrees with our experimental
results [79]. Finally, we determine the pump power according to the bandwidth of the
pulse mode to be amplified.

Probe power dependence

We study the saturation of the JPA gain in terms of the probe power. The average photon
number which can be stored in the JPA is limited by the strength of the self-Kerr effect.
Therefore, there is an upper bound on the input probe power which can be amplified
linearly.

We plot the gain spectrum with the different probe powers in Fig. 6.12(a). With the
probe power lower than −136 dBm, the spectra look the same. At the larger probe power,
we cannot obtain the same gain due to the saturation. The gain, the bandwidth and the
root gain bandwidth product are shown in Figs. 6.12(c), (d), and (b), respectively. As
the probe power is increased, the gain is decreased at some point. The gain saturation
can be characterized by the 1-dB compression point, which is defined as the probe power
at which the gain is 1-dB less than the gain at the small probe power. For instance, from
Fig. 6.12(c), the 1 dB compression point is determined as −132 dBm at the pump power
of −52.27 dBm.

6.2 Time-domain measurement

Here, we explain the time-domain measurements which are used for characterization of the
transmon qubit. As explained before, in the frequency-domain measurement, the probe
and drive microwaves are applied to the system simultaneously. Thus, the linewidth of
the qubit excitation spectrum is broader than the dephasing rate of the qubit since it
includes the measurement-induced dephasing and the power broadening. Furthermore,
the energy-relaxation rate of the qubit cannot be derived from the linewidth of the qubit
excitation spectrum. Therefore, to measure the natural dephasing rate and the energy
relaxation rate of the qubit, the time-domain measurement is indispensable. In Fig. 6.13,
we show the simplified time-domain measurement setup for control and readout of the
transmon qubit in the 3D cavity. Not that except for single-shot readout of the qubit,
the JPA is not operated. For average measurements, the down-converted signals are
measured and averaged in the ADC, and then they are sent to the control PC. For single-
shot measurements, every signal is stored in the ADC until the memory is fully occupied,
then it is sent to the PC.

6.2.1 Readout pulse

First of all, the readout pulse is optimized. As in the frequency-domain measurement,
the dispersive shift of the cavity frequency is used for the readout of the qubit state. The
parameters of the readout pulse can be optimized from the cavity parameters obtained in
the frequency-domain measurement. First, the power of the readout pulse is determined
to be about tens of times larger than the single photon power level. Here, unlike in the
frequency-domain measurement, the readout power can be larger than the single-photon
power level, since the timing of the readout can be separated from that of the qubit
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Figure 6.13: Simplified time-domain measurement setup for control and readout of the
transmon qubit in the 3D cavity.

dynamics with which we are concerned. Nevertheless, the readout power should be set to
below the critical photon number in order to avoid the qubit-state mixing. Second, the
carrier frequency of the readout pulse should be determined to maximize the visibility
taking into account the cavity linewidth and the dispersive shift. Last, the readout pulse
length is optimized with respect to the energy-relaxation times of the readout cavity and
the qubit. The pulse length should be longer than the energy-relaxation time of the
readout cavity, which corresponds to the inverse of the external coupling rate. However,
the longer readout pulse makes the visibility lower due to the state jump of the qubit
during the readout, although the signal-noise ratio becomes better. Typically, the qubit
jump during the readout is mainly due to the energy relaxation, which is justified by the
following reasons. First, the thermal excitation rate is much smaller than the energy-
relaxation rate since the qubit environment is well cooled. Second, the qubit-state mixing
rate is also much smaller than the energy-relaxation rate since the readout power is set
to be weaker than that corresponding to the critical photon number. From the above
discussions, the readout pulse length should be set to be longer than the energy-relaxation
time of the readout cavity and much shorter than the energy-relaxation time of the qubit.

Here, the readout power is set to −132 dBm or −127 dBm, which corresponds to twice
or three times larger than the single-photon power level. The carrier frequency is set to
10.6253 GHz, which maximizes the visibility. The pulse length is 500 ns, which is about
ten times longer than the cavity energy-relaxation time and is about sixty times shorter
than the qubit energy-relaxation time, which we will observe later (see Sec. 6.2.7).

The readout pulse reflected by the cavity is measured as shown in Fig. 6.14(a). Here,
the in-phase quadrature I(t) is shown. The nominal input readout pulse with an arbitrary
amplitude and a phase is also drawn for reference. We can understand the distortion of
the reflected readout pulse in three regions. The first one (i) is the time region when
the cavity photon number is increasing and approaching a steady state. In this region,
the cavity cannot respond to the rising of the pulse which has a large bandwidth, and
most of the signal is reflected without entering the cavity. Therefore, the signal in this
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Figure 6.14: (a) Reflected readout pulse. The blue dots are the recorded data in the
ADC. The black line depicts the nominal input readout pulse. The reflected pulse mode
is divided into three regions: (i) rise-up, (ii) steady-state, and (iii) ring-down. The blue-
shaded exponential curve is the theoretical amplitude-decay calculated from the linewidth
of the readout cavity in the frequency domain. (b) The same data as in (a) with the
demodulation window. The demodulation window is set between 200 ns and 700 ns. The
green and red lines depict the cosine and sine functions with the demodulation window
to obtain the real and imaginary parts of the readout pulse.

region contains little information on the qubit state. The second one (ii) is the time
region when the cavity is in the steady state. Here, the reflected signal originates from
the interference of the reflected input signal and the leak-out signal from the cavity in
the steady state. The important point is that as long as the qubit does not jump to
the other state, the reflected signal exactly corresponds to the cavity reflection coefficient
in the frequency-domain measurement. This measurement is useful for characterization
of the cavity with the qubit in the ground or excited state. The third one (iii) is the
time region when the cavity is ringing down. Since the input signal is now turned off,
the output signal corresponds to the decaying cavity state. The signal is called a ring
down. As the blue-shaded exponential decay curve shows, the amplitude decay rate of the
ring down corresponds to the cavity linewidth which is obtained in the frequency-domain
measurement.

Next, we define the measurement pulse mode. As discussed in Sec. 5.7.1, the mismatch
between the signal and measurement pulse modes decreases the signal-to-noise ratio. For

simplicity, we use a real-valued rectangle function fw(t) = 1√
tf−ti

⊓
(

t−(ti+tf )/2

tf−ti

)
as the

demodulation window. Note that the sideband frequency of the demodulation should be
the same as that of the modulation. From Eq. (5.51), we obtain the real and imaginary
parts of the pulse mode mw(t) = fw(t)e

−i(ωLO+ωs)t as

Iw ∝
∫ ∞

−∞
dt fw(t) cosωst I(t) ∝

∫ tf

ti

dt cosωst I(t)

Qw ∝
∫ ∞

−∞
dt fw(t) sinωst I(t) ∝

∫ tf

ti

dt sinωst I(t).

(6.10)

As shown in Fig. 6.14(b), the demodulation window is set between ti = 200 ns and
tf = 700 ns.
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Figure 6.15: (a) Readout signal in the complex plane as a function of the DAC amplitude.
The occupation probability of the qubit states can be obtained by projecting the complex
amplitude into the projection axis (black arrow). (b) The projected amplitude as a
function of the DAC amplitude. The pulse sequence is shown above. The control and
readout pulse lengths are 20 ns and 500 ns, respectively. The time interval between the
control and the readout is 80 ns. The occupation probability of the qubit states is obtained
as the internally dividing point between the horizontal lines corresponding to the ground
and excited states (see the vertical axis on the right side). The DAC amplitude of 1.5
corresponds to the control power of about −86 dBm at the sample.

6.2.2 Rabi oscillation

A Rabi oscillation is used for quantum control of the superconducting qubit.

First of all, the control frequency is set to the qubit resonance frequency of ωeg/2π =
7.86988 GHz from the frequency-domain measurement in Fig. 6.7. Then, the control
frequency is set such that ωLO + ωs = ωeg. The sideband frequency of the modulation
should be set to negative so that the image band leakage at ωLO − ωs does not influence
the transition between the first and second excited states at ωfe = ωeg + α. The sideband
frequency is set to −100 MHz. The applicable maximum power of the control pulse can
be estimated from the linewidth, or the Rabi frequency, of the qubit excitation spectrum.
Typically, the Rabi frequency is set to about ten times smaller than the anharmonicity
of −340 MHz. From the qubit excitation spectrum in Fig. 6.7, the Rabi frequency of
Ωd/2π = 32 MHz corresponds to the control power of −89 dBm. The maximum control
power is set to about −86 dBm. The length of a π pulse is calculated as π/Ωd ≈ 16 ns
with the Rabi frequency of 32 MHz. Thus, we use a Gaussian pulse with a full width of
the half maximum amplitude of 20 ns.

The real and imaginary parts of the demodulated signal as a function of the control
amplitude are shown in Fig. 6.15. As shown in Fig. 6.15(a), the complex amplitude is
oscillating between two points in the complex plane. The start point corresponds to the
ground state, while the farthest point from that of the ground state corresponds to the
excited state. However, these complex amplitudes may deviate from the actual ones due
to the thermal excitation of the qubit and the imperfect π pulse. This deviation affects
the visibility, or the distance between the complex amplitudes in average measurements.
However, the decrease of the visibility is not critical for optimization of the qubit gates
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and the characterization of the qubit coherence, as long as the signal-to-noise ratio is
enough. The important point here is that the actual complex amplitudes are located on
the same straight line observed in Fig. 6.15(a). Therefore, by projecting the measured
complex amplitude onto the line, we obtain the amplitude which gives the qubit occupa-
tion probability with the maximized signal-to-noise ratio. More precisely, the projected
amplitude corresponds to the occupation probability in the excited state of the qubit.
This is valid as long as the qubit is not driven to the second excited state. In this the-
sis, we will use the projected amplitude to show the occupation probability of the first
excited state. The projected amplitude as a function of the control amplitude is shown
in Fig. 6.15(b). The experimental results are well fitted with a sinusoidal function, which
indicates that we observe the Rabi oscillation of the qubit. From the fitting, we determine
the control amplitudes corresponding to the π/2 and π pulses. The Rabi frequency for
the π pulse is roughly evaluated as Ωd/2π = 1/(2× 20 ns) = 25 MHz.

6.2.3 Gate optimization

So far, we have generated the qubit gates with the qubit frequency obtained from the
frequency-domain measurement. If there is a frequency detuning, the rotation axis in the
Bloch sphere deviates from the xy plane. Although the finite frequency detuning will be
negligible in the limit of a fast Rabi pulse, the detuning between the control and qubit
frequencies means that the free time evolution of the qubit is governed by the continuous
z rotation. Of course, such an unitary error can be corrected by additional qubit control
or frame change. However, the phase correction is cumbersome in most cases. Thus, the
control frequency should match the qubit frequency within the detuning much smaller
the dephasing rate of the qubit.

Here, we use a Ramsey sequence to measure the detuning more precisely. As the
pulse sequence is shown in Fig. 6.16, the qubit prepared in the superposition state in
the x axis by Ŷ /2 is measured in the X basis after the varying time intervals. Here,
we assume that the Rabi frequency is much larger than the detuning and that the gate
fidelity of the π/2 pulse is not too small. This assumption is valid if the qubit frequency
is obtained with the weak cavity-probe and qubit-drive powers in the frequency-domain
measurement (see Fig. 6.7). When there is the detuning between the qubit and control
frequencies, the qubit state is rotated about the z axis by ∆τ , where ∆ is the detuning and
τ is the time interval. Therefore, by measuring the occupation probability of the qubit as
a function of the time interval, we obtain the damped oscillations, as shown in Fig 6.16.
The results are well fitted by the exponentially-damped sinusoid. From the fitting, we
obtain the detuning and the dephasing time of the qubit. Note that the detuning can be
obtained more precisely with a longer time interval, although the maximum time interval
is limited by the qubit dephasing time. Furthermore, note that we can measure only
the absolute value of the detuning by the single Ramsey sequence. To determine the
sign of the detuning, we should perform another Ramsey sequence with a different qubit
measurement axis or with a different value of detuning. The fitting error of the detuning
is about 200 Hz, which is about tens of times smaller than the qubit dephasing rate of
γϕ/2/π = 1/T ∗

2 /2/π = 6 kHz.

Once the control frequency is optimized from the Ramsey sequence, the Rabi sequence
as a function of the control amplitude is performed to reset the control amplitude, as shown
in Fig 6.15(b). Through this procedure, we can optimize the π/2 and π pulses with the
precise qubit frequency.

As we discussed in Sec. 2.5.2, the transmon qubit is not a pure two-level system.
Therefore, the qubit frequency is shifted by the second excited state driven off-resonantly
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Figure 6.16: Ramsey measurement for the determination of the qubit control frequency.
The pulse sequence is shown above. The projected amplitude is converted to the occu-
pation probability in the excited state. The blue dots and red line are the experimental
results and the fit to an exponentially-damped sinusoid, respectively.

by the control pulse. If the frequency shift cannot be negligible, the DRAG pulse [48, 49],
which can cancel the effect of the second excited state in the perturbation, is useful. Here,

the frequency shift induced by our π pulse is ∆/2π = (
√
2Ωd)

2

4α
/2π = 0.9 MHz. Therefore,

the error probability, which is characterized as the squared ratio of the frequency shift to
the Rabi frequency, can be calculated as (∆/Ωd)

2 = (Ωd/2α)
2 =0.001, which is negligible

at this stage. From this calculation, in this thesis, we do not use the DRAG pulse.

Note that other gates about different rotation axis on the xy plane in the Bloch sphere
are easily realized by choosing the corresponding control phase. Typically, the stability
and accuracy of the control phase with our measurement setup is much better than the
qubit coherence. Therefore, we do not need to optimize each gate, and we only have to
choose the corresponding phase for the optimized gates at one phase.

6.2.4 Readout optimization

To decrease the measurement time, we should optimize the readout pulse. In Sec. 6.2.1,
we optimized them by measuring the readout pulse reflected by the cavity with the qubit
in the ground state. Here, we can optimize them to maximize the visibility between the
ground and excited states.

As described in Sec. 6.2.1, the readout error is mainly due to the energy relaxation
of the qubit during readout. Therefore, the pulse length for the readout should be much
shorter than the energy relaxation time. First of all, we measure the energy-relaxation
time by using the sequence shown in Fig. 6.18(a). The qubit which is prepared in the
excited state by applying the π pulse is measured after the varying time interval. The
occupation probability in the excited state as a function of the time interval is shown
in Fig. 6.18(a). The results are well fitted by an exponential curve. From the fitting,
the energy-relaxation time of the qubit is found to be 32 µs. Therefore, we confirm that
the pulse length of 500 ns is much shorter than the relaxation time of the qubit. Here,
we roughly estimate the readout error for the excited state as the ratio of the readout
time to the relaxation time: 0.5 µs/32 µs=0.016. In Sec. 6.2.6, we will confirm that this
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Figure 6.17: (a) Amplitude and (b) phase of the readout signal for the qubit in the ground
and excited state as a function of the readout frequency. The dots are the experimental
results. (c) Visibility as a function of the readout frequency. The green region shows the
optimal readout condition. (d) Pulse sequence to obtain the readout signals depending
on the qubit states.

estimation is consistent with the readout-error probability which is obtained from the
single-shot readout of the qubit.

Next, we optimize the readout frequency. As explained in Sec. 6.2.1, we use the rect-
angle demodulation window so that it can cover the reflected pulse almost completely.
After the qubit initialization for the ground and excited states, we measure the readout
signal which is reflected by the cavity with the qubit in the ground and excited states,
as shown in Fig. 6.17(d). The amplitude and the phase of the readout pulse as a func-
tion of the readout frequency are shown respectively in Figs. 6.17(a) and (b). We find
that the cavity frequency is shifted depending on the qubit state. Note that the com-
plex amplitudes do not exactly correspond to the reflection coefficients of the cavity in
the frequency-domain measurement. The visibility or the distance between the complex
amplitudes corresponding to the ground and excited states as a function of the readout
pulse is shown in Fig. 6.17(c). From this plot, the readout frequency is determined as
the frequency which gives us the maximum visibility [green region in Fig. 6.17(c)]. We
confirm that the readout frequency which we have used is in the optimized frequency
region.
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Figure 6.18: (a) Energy-relaxation time measurement. (b) Ramsey measurement.
(c) Echo measurement. A corresponding pulse sequence is shown above each plot. The
blue dots and red lines are the experimental and fitting results, respectively.

6.2.5 Qubit coherence times

Using the optimized control and readout pulses, we characterize the qubit coherence.
We use the energy relaxation measurement, Ramsey and Echo sequences, here. These
sequences can be implemented using the π/2 and π pulses. The pulse sequence for each
measurement is shown in Figs. 6.18(a), (b), and (c).

In the energy relaxation sequence in Fig. 6.18(a), by fitting the results with a expo-
nential curve, we obtain an energy-relaxation time of T1 = 32 µs.

In the Ramsey sequence in Fig 6.18(b), by fitting the results with an exponentially-
decaying sinusoid, we obtain a dephasing time of T ∗

2 = 25 µs and a detuning of |δ|/2π =
99.7 kHz. Here, we set the control frequency with a detuning of 100 kHz.

In the Echo sequence, we add another π pulse at the middle between the two π/2
pulses in the Ramsey sequence. Here, we set the control frequency to the qubit frequency
and we apply the π/2 and π pulses with identical control phases so that the qubit comes
back to the ground state if there is no dephasing. The π pulse can cancel the frequency
fluctuation slower than the time scale of the single sequence. In Fig. 6.18(c), by fitting
the results with an exponential curve, we obtain a dephasing time with the Echo pulse of
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qubit resonance frequency measured by the Ramsey sequence. The total measurement
time is about 5 hours.

TE
2 = 30 µs. Typically, TE

2 is longer than T ∗
2

Finally, the qubit coherence times and the detuning, which are obtained by repeating
these sequences, are shown in Fig 6.19. The total measurement time is about 5 hours.
In this time scale, the coherence times do not fluctuate too much, while the detuning is
shifted on the order of a few kHz. However, the slow frequency drift can be corrected by
calculating the control frequency between experiments.

6.2.6 Single-shot readout of qubit

Here, we explain how to realize a single-shot readout of the qubit. As discussed in
Sec. 5.4.2, a JPA is indispensable since the thermal photons from the HEMT ampli-
fier exceed the average photon number of a readout pulse, which is limited by the critical
photon number of the readout cavity. Now, the JPA frequency is set to match the readout
frequency, as explained in Sec. 6.1.3.

As seen in the frequency-domain measurements, the gain properties of the JPA are
very sensitive to the pump power. Therefore, we need to calibrate the pump power again
for the time-domain setup. First, we measure the vacuum noise which is amplified in
a phase sensitive manner by the JPA. In other words, we pump the JPA at twice the
readout frequency without any readout signal and measure the quadratures in a single
shot. The demodulation window is set to be the same as for the readout pulse. Note
that the vacuum noise, which is amplified in a phase-sensitive manner, can be a squeezed
vacuum state. The quadratures, which are measured in a single shot with different DAC
amplitudes for the pump, are shown in the complex plane in Fig. 6.20. With the smallest
pump amplitude of 0.5, the measured noise is governed by the classical noise, or the HEMT
noise. As the DAC amplitude is increased, the shape of the noise distribution becomes
more elliptic, which indicates that the amplified (anti-squeezed) vacuum noise exceeds the
HEMT noise. At this point, the signal-to-noise ratio in the amplified axis can be limited by
the JPA. With a larger pump amplitude, the amplified noise starts to oscillate coherently,
which is called a parametric oscillation [80]. From the symmetry breaking, the coherent
phase is randomly chosen to 0 or π relative to the pump phase. Therefore, the measured
quadrature distribution has two local maxima, as shown in Fig. 6.20(f). Here, the pump
amplitude should be set to be below the one which causes the parametric oscillation.
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Figure 6.20: Pump amplitude dependence of the quadratures of the vacuum noise,
which are measured in a single shot. The pump amplitudes are represented as the DAC
amplitudes in arbitrary units. The DAC amplitudes are set to be (a) 0.5, (b) 0.54, (c) 0.62,
(e) 0.66, and (f) 0.7, respectively. The DAC amplitude of 0.6 roughly corresponds to −52
dBm at the JPA.

Quantitatively, we determine the upper limit of the pump amplitude by checking if the
noise distribution deviates from a Gaussian profile.

Next, we apply a readout pulse together with the pump pulse. The pump pulse with
a rectangle shape is applied to cover the readout pulse. Here, we use the same readout
pulse which is optimized in the previous section. The averaged demodulated readout
signal amplitudes in time with and without the pump pulse are shown in different scale in
Fig. 6.21(a). Note that the relative phase between the readout and pump pulses are set
to have the maximum gain, as shown in Fig. 6.21(a). We optimize the pump amplitude
so that the readout pulse is maximally amplified while roughly maintaining the original
pulse form. Here, the small pulse distortion is not a problem for the single-shot readout.
Therefore, we just confirm that the readout pulse is not so largely delayed compared to
the pulse length. The DAC amplitude for the pump is set to be 0.6. The gain, the square
of the ratio of the amplitudes with and without the pump, can be calculated as 24 dB.
The gain of the phase-sensitive amplifier corresponds to 18 dB in the phase-insensitive
amplifier. From the root gain bandwidth product in Fig. 6.11, the gain bandwidth is
calculated as about 6.6 MHz. Thus, we confirm that the bandwidth is much broader
than that of the readout pulse. Once the pump amplitude is determined, the visibility,
which is discussed in Fig. 6.17, is measured as a function of the relative phase, and then
the relative phase is optimized. In our setup, the optimal relative phase corresponds to
that which the maximum gain for the readout pulse with the qubit in the ground state
[Fig. 6.21(b)].

Then, single-shot readouts for the qubit in the ground and excited states are per-
formed. The excited state is prepared by applying a π pulse before the readout. The
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Figure 6.21: Single-shot readout of the qubit. (a) Pulse amplitude of the demodulated
readout signal in time. The blue and red dots depict the readout pulse with and without
the pump in different scales. The starting time corresponds to the start of the readout
pulse. The pump pulse is applied from 0.0 µs to 0.6 µs. The demodulation window is set
to be 0.1 µs to 0.6 µs. (b) Amplitude of the readout pulse as a function of the relative
pump phase. The relative phase is set to have a maximum gain, as shown in the green
line. (c) Complex amplitudes of the readout pulses in a single shot. The blue and red
dots correspond to the complex amplitudes for the qubit which is nominally prepared in
the ground and excited states, respectively. The complex amplitudes are projected on to
the straight line which maximizes the visibility. (d) Probability density of the projected
amplitudes. The blue and red bars correspond to the probability densities for the qubit
which is nominally prepared in the ground and excited states, respectively. The middle
point between the centers of mass of the two distributions is used for the discrimination.

complex amplitudes of the readout pulse, which are measured in a single shot, are plotted
in Fig. 6.21(c). The complex amplitudes corresponding to the ground and excited states
are well-separated, which enables us to realize single shot readout of the qubit. To assign
the qubit state from the measurement outcome, the complex amplitude of the readout
pulse is projected onto the line which passes through the centers of mass of the distri-
butions corresponding to each of the qubit states. Then, the middle point between the
corresponding peaks is used for the discrimination of the qubit states. The probability
densities of the projected amplitudes for the qubit prepared in the ground and excited
states are shown in Fig. 6.21(d). The projected amplitudes corresponding to each qubit
state are well separated. Nevertheless, the qubit which may be prepared in the ground or
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Figure 6.22: Characterization of the single-shot readout of the qubit. The conditional
probability P (p|q) in the two successive qubit readouts (p, q = g,e) are shown. The
blue dots and the red lines are the experimental results and the linear fits, respectively.
(a) Dependence of P (g|g) on the delay time between the two readouts. (b) The same for
P (e|e). (c) Assignment fidelity [P (g|g)+P (e|e)]/2 as a function of the delay time between
the two readouts. (d) Dependence of P (e|g) on the delay time of the Ramsey sequence
from the first readout. The error bars on the data points are the standard deviations from
the mean.

excited state is measured in the opposite state. This can be explained by the fact that the
qubit is in thermal equilibrium to some extent. The excitation probability of the qubit is
found to be about 0.067, which corresponds to an effective temperature of 143 mK. The
temperature is much higher than the base temperature of the dilution refrigerator, which
indicates that the qubit is coupled to the environment at higher temperature.

To initialize the qubit, we read out the qubit and perform postselection according
to the readout outcome. Therefore, a correlation of two successive readout outcomes
should be characterized. In Figs. 6.22(a) and (b), we show the correlation between the
first and second readout outcomes as a function of the delay time between the two. As
the delay time increases the correlations decreases due to the thermal excitation and
energy relaxation of the qubit. By fitting the slope, the thermal-excitation and energy-
relaxation rates can be determined as γ↑/2π = 0.35 kHz and γ↓/2π = 5.7 kHz, respectively.
The rates may roughly correspond to the state-mixing rates during readout since the
readout errors is considered to be limited by the qubit decay. The thermal excitation
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probability is calculated as γ↑/(γ↑+γ↓) = 0.057, which slightly deviates from the measured
one. This can be explained by the readout errors and the state mixing induced by the
readout. At a delay time of 150 ns (the end time of the first pump pulse), we evaluate an
assignment fidelity [81] of [P (g|g)+P (e|e)]/2 = 0.988±0.001. The assignment fidelity as a
function of the delay time is shown in Fig. 6.22(c). Since the assignment fidelity includes
both the readout errors and the initialization errors based on the postselection, it is
useful for the characterization of qubit readout. In other words, we can optimize readout
parameters, such as the amplitude and length of the readout, so that the assignment
fidelity is maximized.

Furthermore, the conditional probabilities can be modeled as

P (g|g) = (1− εgi ) (1− εgr ) + εgi ε
e
r

P (e|e) = (1− εei ) (1− εer) + εei ε
g
r ,

(6.11)

where εgr and ε
e
r are the readout errors for the ground and excited states, and εgi and ε

e
i are

the initialization errors for the ground and excited states with the postselections according
to the first readout outcomes. Then, we can determine the upper bound of the readout
error of the qubit in the ground state (excited state) to be εgr ≤ 1 − P (g|g) = 0.0016
[εer ≤ 1− P (e|e) = 0.022].

Next, we study the effect of the residual cavity photons after the readout. In Fig. 6.22(d),
we plot the conditional probability P (e|g) as a function of the delay time of the Ramsey
pulses, whose interval is fixed to 500 ns. The qubit is initialized in the ground state by
postselection on the first outcome. For a delay time shorter than the cavity relaxation
time 1/κtot ≈ 50 ns, the photons excited by the readout pulse stay inside the cavity,
causing dephasing of the qubit. Therefore, the probability of finding the qubit in the
excited state, resulting from the dephasing, is larger. The probability takes its minimum
at the delay time of 400 ns, when both of the qubit and the cavity are initialized to the
ground state. For longer delay times than 400 ns, the excitation probability becomes
larger because the initialization infidelity increases due to the thermalization as shown in
Fig. 6.22(a). At the delay time of 400 ns, the qubit is initialized to the ground state with
a fidelity of 0.998 [Fig. 6.22(a)] and the cavity state is also initialized to the vacuum state
to the extent that the residual photons cannot affect the qubit dephasing.

6.2.7 Cavity spectrum depending on qubit states

Here, the cavity spectrum with the qubit initialized in the ground and excited states is
measured. As shown in Fig. 6.23, after the first readout, the cavity probe pulse is applied,
and then the qubit is read out again. When both of the first and second outcomes of the
qubit readouts give the same results, the qubit may remain in the corresponding state
with a high probability during the cavity probe. Therefore, the cavity spectra, which are
conditionally obtained, correspond to the cavity with the qubit in the ground and excited
states. This is different from the average measurement, which is affected by the finite ther-
mal excitation probability of the qubit. A rectangle pulse with a pulse length of 700 ns
is used for the cavity probe. The steady-state time region of the cavity probe, which is
discussed in Sec. , is demodulated to obtain the amplitude and phase. The sideband fre-
quency of the cavity probe is varied while maintaining the readout and pump frequencies.
The amplitude and phase of the cavity probe as a function of the probe frequency is shown
in Figs. 6.23(b) and (c). The baseline may be frequency-dependent, which prevents us
from analyzing the experimental data with the ideal reflection coefficients of a harmonic
oscillator.
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Figure 6.23: Extraction of the frequency-dependent baseline. (a) Pulse sequences for the
measurements of the cavity spectra with the qubit in the ground and the excited states.
The excited state is prepared by applying a π pulse. The qubit state during the cavity
probe is conditioned with postselection according to the outcomes of the two readouts
before and after. (b), (c) Raw data of the amplitude and phase of the cavity probe
as a function of the probe frequency. The blue and red dots depict the data with the
qubit conditioned in the ground and excited states, respectively. The black lines are the
baselines, which are obtained from the fitting in (d) and (e). (d), (e) Relative amplitude
and phase of the complex amplitude with the qubit in the ground state to that in the
excited state. The dots are the experimental results and the lines are the theoretical fits.

Here, we explain how to extract the frequency-dependent baseline. First, the complex
amplitudes with the qubit in the ground state are divided by those of the excited state.
The amplitude and phase of the divided complex amplitudes as a function of the probe
frequency are shown in Figs. 6.23(d) and (e). The experimental results of the divided
amplitudes are well fitted by ideal reflection coefficients divided by reflection coefficients
with a different resonance frequency since the frequency-dependent baseline are canceled
out. Then, we extract the baseline by dividing the raw data of the complex amplitudes
with the ideal reflection coefficients obtained from the fitting. The baseline [black line
in Figs. 6.23(b) and (c)] is obtained by fitting the extracted baseline with a polynomial
function to suppress the noise.
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Figure 6.24: Cavity spectra with the qubit in the ground (blue) and excited (red) states.
(a) Ampitude and (b) phase as a function of the probe frequency. The dots and lines are
the experimental and fitting results, respectively.

The reflection coefficients, which are divided by the baseline, as a function of the probe
frequency are shown in Figs. 6.24(a) and (b). The experimental results are well fitted with
ideal reflection coefficients of a harmonic oscillator. From this fitting, we obtain the cavity
parameters and the dispersive shift without being affected by the frequency-dependent
baseline and the thermal excitation probability of the qubit. These parameters are shown
in Figs. 6.24(a).

6.3 System parameters

Here, the system parameters, which have been obtained in this chapter, are listed in
Table. 6.1. The 3D circuit QED system and the JPA are used in the experiments in
Chapters 8 and 9.

Table 6.1: System parameters.

Cavity resonant frequency ωc/2π 10.62524 GHz
Cavity external coupling rate κex/2π 3.32 MHz
Cavity internal loss rate κin/2π 0.25 MHz
Qubit resonant frequency ωq/2π 7.8693 GHz
Qubit anharmonicity α/2π −0.342 GHz
Qubit relaxation time T1 32 µs
Qubit dephasing time T ∗

2 26 µs
Qubit dephasing time (Echo) T2E 33 µs
Qubit thermal population pth 0.067
Dispersive shift χ/2π 1.50 MHz
JPA external coupling rate κJex/2π 60 MHz
JPA internal loss rate κJin/2π 0.7 MHz
JPA gain G 24 dB
JPA gain bandwidth B/2π 6.6 MHz





Chapter 7

Nonclassical photon-number
distribution

7.1 Introduction

The advancement of the superconducting quantum circuit technologies [30] and the advent
of circuit quantum electrodynamics (QED) [12] have led to the emergence of the field of
microwave quantum optics, enabling us to generate and characterize nonclassical states
of electromagnetic fields in the microwave domain.

A squeezed vacuum is one of the most widely studied nonclassical states, and is com-
monly used as a resource in quantum technologies, such as computation, communication
and metrology [82]. In microwave quantum optics, a squeezed vacuum is conveniently
generated by degenerated parametric down conversion in a Josephson parametric ampli-
fier (JPA), a device based on the nonlinearity of Josephson junctions and the tunability
of SQUIDs [50, 51, 52]. Characterizations of such states propagating in a waveguide have
been realized by measuring quadrature amplitudes of reflected signals by using a homo-
dyne technique with the aid of a JPA [83] or a cryogenic HEMT amplifier [59, 84]. JPAs
and related circuits are also used to generate and characterize two-mode squeezing in
spatially or spectrally separated propagating modes [85, 86, 87, 88, 53]. More recently, it
has been shown that a squeezed vacuum injected into a cavity induces nontrivial effects
to the relaxations of a qubit [89, 90] and a spin ensemble [91]. In the Fock basis, on the
other hand, a squeezed vacuum displays another feature of nonclassicality, i.e., a photon-
number distribution composed of only even photon numbers [92]. In the optical domain,
direct observations of the photon-number distributions using a photon-number-resolving
detector have been previously reported [93, 94]. In the microwave domain, however, due to
the much smaller single photon energy compared to the optical domain, photon counting
in a propagating mode is still a challenging task. Nonetheless, a few realizations of mi-
crowave single-photon detectors have been reported [38, 39, 95]. Note that generation and
detection of a photon-number distribution of a microwave squeezed state are theoretically
proposed using a circuit QED system [96].

Here, we report the measurement of the photon-number distribution of a squeezed
vacuum continuously injected into a cavity containing a superconducting qubit. In the
strong dispersive regime of the circuit-QED architecture, the spectrum of a supercon-
ducting qubit is split into multiple peaks, with each peak corresponding to a different
photon number in the cavity [18, 97]. Furthermore, it is known that the area ratio of the
peaks obeys the photon-number distribution in the cavity [17]. In practice, however, we
find that the effect of the finite power of the qubit drive field gives rise to a discrepancy
between the observed peak area ratio and the actual photon-number distribution. At the
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Figure 7.1: (a) Schematic of the experimental setup with squeezed vacuum injection. A
squeezed vacuum generated by a flux-driven Josephson parametric amplifier (JPA), as a
cavity drive field at ωs, is injected into the cavity from port 2. The cavity probe field at
ωp and the qubit drive field at ωd are input from port 1, and the transmission of the cavity
probe field is measured. For the thermal- and coherent-state injections, the connection to
the JPA is switched to a heavily attenuated microwave line connected to their respective
sources at room temperature. (b) Energy levels of a dispersively coupled qubit-cavity
system. |g⟩ and |e⟩ label the ground and the first exited states of the transmon qubit, and
|n⟩ (n = 0, 1, 2, · · · ) indicates the photon number states of the cavity. The cavity drive
field generates the steady-state photon-number distribution in the cavity (red dots).

same time, it turns out that the qubit drive actually enhances the signal-to-noise ratio of
the photon number peaks in the qubit spectrum. By fitting the obtained spectrum with
a model which takes into account this effect, we determine the actual photon-number
distribution.

The photon-number distribution confirms its nonclassicality by Klyshko’s criterion,
quantitatively indicating an even-odd photon number oscillation [98]. This is a steady-
state realization and characterization of a nonclassical photon-number distribution in a
cavity which is continuously driven by a squeezed vacuum. Owing to the input-output
relation [47], the photon-number distribution in the cavity can be interpreted as that of
the injected microwave state in a propagating mode. This is in stark contrast with the
dynamical generations and characterizations of nonclassical states (e.g., cat states) in a
cavity [19, 21].
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7.2 Measurement scheme

We use a circuit-QED system operating in the strong dispersive regime, where a trans-
mon qubit is mounted at the center of a three-dimensional superconducting cavity as
shown schematically in Fig. 7.1(a). The qubit-cavity coupled system is described by the
Hamiltonian

Ĥ/ℏ = ωcâ
†â+

ωq

2
σ̂z − χâ†âσ̂z, (7.1)

where â†(â) is the creation (annihilation) operator of the cavity mode, σ̂z is the Pauli
operator of the transmon qubit, ωc/2π = 10.4005 GHz is the cavity resonance frequency,
ωq/2π = 8.7941 GHz is the qubit resonance frequency, and χ/2π = 3.9 MHz is the
dispersive shift. Note that the Hamiltonian is truncated to the subspace of the ground
state |g⟩ and the first excited state |e⟩ of the transmon qubit; the higher excited states
of the qubit are not populated in the experiment below. The total energy-relaxation rate
of the cavity is κ/2π = 0.5 MHz, the relaxation time of the qubit is T1 = 5.5 µs, and
the dephasing time of the qubit is T ∗

2 = 4.5 µs, determined independently from separate
measurements (see Sec. 7.7). As shown in Fig. 7.1(b), the dispersive interaction produces
both the qubit-state-dependent shift of the cavity resonance frequency and the photon-
number-dependent shift of the qubit resonance frequency (discrete ac Stark shift).

In our experiment, three inputs of continuous microwaves are used: a cavity drive, a
qubit drive and a cavity probe (see Fig. 7.1). The cavity drive field, whose frequency ωs is
fixed at the cavity resonance frequency for the qubit in the ground state, ωc+χ, is injected
into the cavity to generate a steady-state photon-number distribution. The qubit drive
field is applied to the qubit whose excitation probability depends on the photon-number
distribution in the cavity. The cavity probe field, whose frequency ωp is fixed around the
cavity resonance frequency, is used to probe the transmission of the cavity depending on
the qubit excitation probability. By measuring the cavity transmission as a function of
the qubit drive frequency ωd, we can observe a qubit spectra reflecting the photon-number
distribution in the cavity. Note that the cavity is designed to have asymmetric external
coupling rates of κ2 ≈ 100× κ1 so that the photon-number distribution in the cavity can
be determined mainly by the cavity drive field from Port 2.

In the cavity drive field, we use different kinds of states, such as thermal states,
coherent states, and squeezed vacuum states. Thermal states are generated by amplifying
the thermal noise at room temperature, and coherent states are generated by a microwave
source at room temperature. They are led to the cavity through a series of attenuators
to suppress the background noise. Squeezed vacuum states are generated by pumping a
flux-driven JPA [52] at twice the JPA resonance frequency as shown in Fig. 7.1(a). The
correlated photon pairs, generated from individual pump photons, result in an even-odd
photon number oscillation in the photon-number distribution. Note that the squeezed
vacuum field propagating through the waveguide has a bandwidth broader than that of
the cavity, and the photon pairs are generated symmetrically in frequency with respect
to the center frequency of the squeezed vacuum in order to conserve energy.

7.3 Probe frequency dependence

Here we study the effect of the cavity probe field on qubit spectra. In Fig. 7.2(a), we plot
the cavity transmission as a function of the cavity probe frequency ωp and the qubit drive
frequency ωd. The red (blue) dots in Fig. 7.2(b) depict the cross-section at ωp = ωc + χ
(ωp = ωc − χ) in Fig. 7.2(a). Despite the absence of the cavity drive field at ωs, we
observe unexpected dips and peaks corresponding to single or double photon numbers in
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Figure 7.2: (a) Cavity transmission as a function of the qubit drive frequency ωd and the
cavity probe frequency ωp. The transmission is normalized by the maximum peak value.
White dashed lines indicate ωp = ωc ± χ. (b) Cross sections of (a) at ωp = ωc ± χ (red
and blue dots, respectively). Green lines represent the rigorous numerical results in which
the finite cavity probe power is fully incorporated, whereas the black lines represent the
numerical results within the linear response to the cavity probe field, which corresponds
to the weak power limit of the cavity probe field. The splitting of the single-photon peak,
which is observed for ωp = ωc−χ (blue arrow), is understood as the Autler-Townes effect
of the qubit, driven strongly at ωd = ωq − 2χ.

the cavity. Numerical simulations obtained via the Lindblad master equation, taking into
account the finite qubit drive and cavity probe power, do nevertheless reproduce these
spectra very well (green lines). The details of the Lindblad master equation are explained
in Sec. 7.7. The excess dips in the spectrum at ωp = ωc+χ (cavity resonance frequency for
the qubit in the ground state) are induced by the back-action of the cavity probe field on
the cavity transmission which is described in Sec. 7.7. On the other hand, for ωp = ωc−χ
(cavity resonance frequency for the qubit in the excited state), the back-action is minimal.
Note that the small single-photon peak still remains due to the thermal background noise,
corresponding to an average photon number nth = 0.04 in the cavity.

The black solid lines in Fig. 7.2(b) represent the numerical results for the linear re-
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sponse to the cavity probe field, which corresponds to the weak power limit of the probe B.
The deviation of the linear response from the observed spectrum is smaller at ωp = ωc−χ
than at ωp = ωc + χ. For the measurements below, we fix the cavity probe frequency at
ωp = ωc − χ which does not influence the qubit spectra significantly and apply linear-
response analysis.

Note the splitting at the single-photon peak for ωp = ωc − χ as the blue arrow shows
in Fig. 7.2. This can be understood as the Autler-Townes effect of the qubit due to the
strong qubit drive at ωd = ωq − 2χ, which is explained in Sec. 7.7.

7.4 Photon number distribution

Qubit spectra obtained in the cavity driven by different states of microwave fields are
shown in Figs. 7.3(a)-(c). We find that each of the qubit spectra apparently reflects the
corresponding photon-number distribution. The qubit spectrum induced by the thermal
state shows the peaks with their heights monotonically decreasing, which is consistent
with the Boltzmann distribution. The qubit spectrum with the coherent drive shows
that the peak heights have a single local maximum, which is consistent with the Poisson
distribution. More importantly, the qubit spectrum with the squeezed drive shows an
even-odd photon number oscillation. We can naively say that the nonclassical feature
from a squeezed vacuum is captured in the qubit spectrum.

We determine the actual photon-number distribution in the cavity by fitting the ob-
served qubit spectrum with the corresponding numerical calculations. The details of the
theoretical description will be explained in Appendix. B. In the numerical calculations,
we use several system parameters which are not associated with the cavity drive field.
These system parameters, such as the cavity bandwidth and the qubit drive power, can
be independently determined as explained in Sec. 7.7. Then, the characteristic parameters
of each cavity drive field are determined as the fitting parameters for the qubit spectrum,
as follows. When the cavity is driven by the thermal state, the thermal average photon
number in the cavity is used as the fitting parameter. In the case of the coherent input,
the coherent amplitude for the cavity is used as the fitting parameter. For the squeezed
drive, the pump amplitude and internal loss of the JPA are used as the fitting parameters.
As shown in Fig. 7.3, the fitted numerical calculations (black solid lines) agree well with
the experimental results (blue dots). Then, using the characteristic parameters obtained
from the fitting, the actual photon-number distributions are calculated from the numer-
ical calculations in the absence of the qubit drive and cavity probe fields. The obtained
photon-number distributions are shown as dots in Figs. 7.3(d)-(f).

Here, we will discuss what quantum state each photon-number distribution corre-
sponds to. Although we may calculate the corresponding quantum state from the ob-
tained characteristic parameters, it will be complicated due to our redundant model in
Appendix. B. Therefore, we compare the obtained photon-number distributions with the
expectations based on simple models. The red line in Fig. 7.3(d) is the distribution of the
thermal state with an average photon number nth = 0.20, which is described as

ρ̂th =
1

nth + 1

∞∑
n=0

(
nth

nth + 1

)n

|n⟩⟨n|. (7.2)

The green line in Fig. 7.3(e) is the distribution of a thermal coherent state with nth = 0.04
and a displacement amplitude |α| = 0.49, which is described as

ρ̂th,α = D̂(α)ρ̂thD̂
†(α), (7.3)
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Figure 7.3: (a)-(c) Qubit spectra reflecting the photon-number distributions in the cavity.
The cavity drive fields at frequency ωs are in (a) thermal, (b) coherent, and (c) squeezed
vacuum states, respectively. The average photon number in each state is set to about
0.2. Blue dots are the experimental data, and the black solid lines are the numerically
calculated linear responses. (d)-(f) Photon number distributions determined from the
fittings (dots). Solid lines are the photon-number distributions calculated from their
corresponding models. The error bars are calculated by the fitting errors.

where D̂(α) = exp
(
α â† − α∗ â

)
is the displacement operator. Note that the thermal

average photon number corresponds to the thermal background noise in the cavity. The
blue line in Fig. 7.3(f) is the distribution of a squeezed vacuum state with a squeezing
parameter r = 0.54 and a transmittance η = 0.58, which is described as

ρ̂r,η = Trâ′
[
ÛBS(Θ) ρr ⊗ |0⟩⟨0| Û †

BS(Θ)
]
, (7.4)

where ρr = Ŝ(r)|0⟩⟨0|Ŝ†(r) is a squeezed vacuum state of the cavity mode â with a squeez-
ing parameter r, |0⟩⟨0| is a vacuum state of an ancilla mode â′, ÛBS(θ) = exp

[
−Θ

(
â†â′ + ââ′†

)]
is a unitary operator describing a beam splitter with a transmittance of η = cos2Θ, and
Trâ′ is a partial trace for the ancilla mode â′. Remember that Ŝ(r) = exp

(
r
2
(â2 − â†2)

)
is the squeezing operator. The squeezed vacuum state with finite loss corresponds to a
2.1-dB squeezed state.

Note that the obtained photon-number distributions have much lower weights for
larger n than the apparent peak area ratio in the qubit spectra. This is because the qubit
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Figure 7.4: Klyshko’s figure of merit Kn evaluated for each state of the cavity drive.

excitation rate and the cavity energy-relaxation rate are larger than the qubit energy-
relaxation rate. In the steady-state measurement, once the qubit is excited in the presence
of the cavity photons (n ≥ 1), the photons leave the cavity rapidly and the population
accumulates in the state |e, 0⟩. Therefore, the cavity transmission signal conditioned on
the qubit excited state is enhanced. The detail of the enhancement effect of the finite
qubit drive is discussed in Sec. 7.7.

7.5 Klyshko’s figure of merit

To verify the nonclassicality of the photon-number distribution under the squeezed drive,
we evaluate Klyshko’s figure of merit [98], which is described as

Kn =
(n+ 1)Pn−1Pn+1

nPn
2 (n = 1, 2, · · · ). (7.5)

A set of Kn gives a nonclassicality criterion which can be calculated with the photon-
number distribution alone. If any of Kn is less than unity, the state is determined to be
nonclassical. For instance, the Kn of coherent and thermal states can be described as

Kn = 1 (coherent),

Kn =
n+ 1

n
≥ 1 (thermal),

(7.6)

respectively. As expected, these states are considered as classical states by Klyshko’s
figure of merit. Moreover, a coherent state represents a boundary between classical and
nonclassical.

The Klyshko’s figure of merit is calculated from the photon number distributions,
obtained from the fitting in Fig. 7.3. The resulting values are shown in Fig. 7.4. Kn

is below unity for n = 2 and 4 under the squeezed drive. Thus, the photon-number
distribution fulfills Klyshko’s criterion for nonclassicality. In contrast, all the values of
Kn up to 4 are found to be larger than unity for the coherent and the thermal drives.
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Figure 7.5: (a)-(d) Squeezed-drive-frequency dependence of the qubit spectrum. δ =
ωs − (ωc + χ) is the detuning between the center frequency ωs of the squeezed vacuum
field and the cavity resonance frequency ωc + χ. Blue dots are the experimental results,
and black solid lines are the numerical calculations. (e)-(h) Photon number distributions
determined from the fittings (dots and dashed lines). Solid lines in (e) and (h) are the
photon-number distributions calculated from their corresponding models.

7.6 Squeezed-drive-frequency dependence

We study the squeezed-drive-frequency dependence of the qubit spectrum as shown in
Figs. 7.5(a)-(d). When the detuning δ between the center frequency ωs of the broadband
squeezed vacuum and the cavity resonance frequency ωc + χ is zero, both photons in a
pair are injected into the cavity with a high and identical probability, so that the even-
odd photon number oscillation is conserved. When the detuning is increased, however,
the injection probabilities of the photon pairs are asymmetrically biased, and the photon
number oscillation is weakened. In the large detuning limit, the cavity state becomes a
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Figure 7.6: Klyshko’s figure of merit Kn evaluated for each detuning δ.

thermal state. This can be understood from the fact that a two-mode squeezed vacuum
state is reduced to a thermal state after tracing out one of the modes. The qubit spec-
tra with the detuning are calculated using the fitting parameters which are obtained in
Fig. 7.3(c). The numerical calculations (black solid lines) agree well with the experimen-
tal results (blue dots) once again. Then, the photon-number distributions are determined
from the numerical results. In Fig. 7.5, we observe that the photon number oscillation
is diminished as the detuning is increased. Eventually, the photon-number distribution
approaches the Boltzmann distribution of a thermal state with an average photon number
nth = 0.27 [red solid line in Fig. 7.5(h)]. These observations indicate that a broadband
squeezed vacuum has correlated photon pairs in frequency space. Klyshko’s figures of
merit plotted in Fig. 7.6 show that the nonclassicality is reduced as the detuning is in-
creased and that the cavity state becomes a classical state, i.e., Kn > 1 for any photon
number n.

7.7 Characterization

The actual photon-number distributions are determined by fitting the qubit spectrum
with the rigorous numerical calculations. Therefore, our results on the photon-number
distributions strongly depend on the system parameters. Thus, here, we explain how the
parameters used in the previous sections were determined. Furthermore, we also describe
the origins of the unexpected effects in the qubit spectrum, such as the discrepancy
between the area ratio of the peaks and the actual photon number states.

System parameters

First of all, the system parameters to be calibrated are shown in a simplified Lindblad
master equation without a cavity drive.

Since the cavity drive field at ωs is absent here, we can take a rotating frame determined
by ĤA0/ℏ = ωpâ

†â+ ωd

2
σ̂z. Then, the Hamiltonian Eq. (B.1) is rewritten as

ĤA/ℏ = (ωc − ωp)â
†â+

(ωq − ωd)

2
σ̂z − χâ†â σ̂z +

Ωd

2
(σ̂+ + σ̂−) +

Ωp

2
(â† + â). (7.7)
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Figure 7.7: Cavity transmission as a function of the cavity probe frequency ωp. The
amplitude is normalized by the maximum peak value. This normalization factor is used
throughout this chapter. The main peak at ωp = ωc + χ corresponds to the cavity
resonance with the qubit in the ground state. The small cavity peak at ωp = ωc − χ
(arrow), corresponding to the qubit excited state, is also observed due to the thermal
excitation of the qubit. Red solid line represents the numerical result.

By using Eq. (B.12) with SB = 1̂ and κJex = 0, we calculate the time-evolutions and the
steady-state solutions of System A. They correspond to the solution of the conventional
system-bath master equation of System A as

˙̂ρA =
1

iℏ
[
ˆ̂
HA, ρ̂A] +D[

√
κ(nth + 1) â]ρ̂A +D[

√
κnth â

†]ρ̂A

+D[
√
γ(pth + 1) σ̂−]ρ̂A +D[

√
γpth σ̂+]ρ̂A,

(7.8)

where ρ̂A is th density matrix of System A and D[Ô]ρ̂A = Ôρ̂AÔ
† − 1

2
(Ô†Ôρ̂A + ρ̂AÔ

†Ô)
is the Lindblad superoperator. Note that since the time-derivative equation of Eq. (7.8)
is described in the Schrödinger picture, we replace i with −i in Eq. (B.12). The steady
state of ρ̂A can be obtained with the condition of ˙̂ρA = 0 in Eq. (7.8).

The cavity transmission amplitude, measured as a function of the cavity probe fre-
quency ωp in the absence of any drive field, is shown in Fig. 7.7. The cavity resonance is
observed at the probe power corresponding to the single photon level. The main peak at
ωp = ωc + χ is the cavity resonance with the qubit in the ground state. In addition, the
small peak corresponding to the cavity resonance with the qubit in the excited state is
also observed at ωp = ωc−χ due to the finite thermal excitation probability of the qubit,
pth. The red solid line is calculated from the steady-state solution of ⟨â⟩ in Eq. (7.8).
From this, we find pth = 0.01.

Next, time-domain measurements are conducted to evaluate the coherence of the
qubit. The results of the qubit energy relaxation and Ramsey measurements are shown in
Figs. 7.8(a) and (b). We obtain T1 = 5.5 µs and T ∗

2 = 4.5 µs by fitting the data. The total

dephasing rate of the qubit 1/T ∗
2 is described by γ/2 + γϕ,n + γth, where γth = 4κχ2

κ2+χ2 nth

is the dephasing rate due to the thermal photon fluctuation in the cavity [68]. Assuming
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Figure 7.8: Time-domain measurements of the qubit coherence. (a) Relaxation of the
qubit. Red solid line is a fit to a exponential curve with T1 = 5.5 µs. (b) Dephasing of
the qubit. T ∗

2 is 4.5 µs. Red solid line is the numerical result with nth = 0.04.
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Figure 7.9: Cavity transmission as a function of the cavity probe frequency ωp and the
qubit drive power (Ωd). White dashed lines depict the analytically calculated cavity
resonances.

γϕ,n = 0, the thermal average photon number nth in the cavity is determined to be 0.04 by
using the simple formula. The red solid line in Fig. 7.8(b) is the time-evolution solution
of ⟨(σ̂z +1)/2⟩ in Eq. (7.8), where (ωq−ωd)/2π = 0.9 MHz, Ωd = Ωp = 0, and nth = 0.04
are used. The calculation agrees well with the experimental result.

In order to calibrate the qubit drive power, the cavity transmission is measured as
a function of the cavity probe frequency ωp and the qubit drive amplitude Ωd, which is
shown in Fig. 7.9. The qubit drive frequency ωd is in resonance with the qubit resonance
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Figure 7.10: Cavity transmission as a function of the qubit drive frequency ωd and the
cavity probe frequency ωp. (a) Experimental data. (b) Steady-state solutions of ⟨â⟩ in
Eq. (7.8). Diagonal dashed line corresponds to the resonance condition for the two-photon
transition, ωp + ωd = ωc + ωq − χ. (c) Magnified plot of the region in the yellow dashed
rectangle in (b) at around ωp = ωc − χ and ωd = ωq − 2χ. White dashed lines depict
the calculated transition frequencies between |e, 0⟩ and the hybridized states composed
of |e, 1⟩ and |g, 1⟩. Black solid line indicates ωd = ωq − 2χ, corresponding to the qubit
transition frequency with the single photon state in the cavity. (d) Energy levels of the
dispersively coupled qubit-cavity system with the qubit drive field. |e, 1⟩ and |g, 1⟩ are
hybridized by the qubit drive.

frequency ωq. As the qubit drive power increases, the cavity peak corresponding to
the qubit in the excited state appears, and each peak splits in two due to the Rabi
splitting of the qubit. In this experiment, the cavity probe power is weak enough to
excite at most the single photon state in the cavity. Therefore, the four resonances in
Fig. 7.9 correspond to the transitions between the lowest eigenfrequencies: ω0± = ±Ωd

2

and ω1± = ωc ±
√
χ2 +

(
Ωd

2

)2
, which are calculated from the Hamiltonian Eq. (7.7) with

ωd = ωq and ωp = Ωp = 0. The white dashed lines in Fig. 7.9 depict these transition
frequencies and agree with the observed resonance peaks. With this plot, we performed
the calibration between the actual qubit drive power and the qubit drive amplitude Ωd.
The qubit drive power of −97 dBm at the sample, which is used for the qubit spectroscopy
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Table 7.1: System parameters.

Cavity resonance frequency ωc/2π 10.4005 GHz
Cavity external coupling rate κex/2π 0.490 MHz
Cavity total energy-relaxation rate κ/2π 0.494 MHz
Cavity thermal average photon number nth 0.04
Cavity probe amplitude Ωp/2π 0.16 MHz
Qubit resonance frequency ωq/2π 8.7941 GHz
Qubit energy-relaxation rate γ = 1/T1 1/5.5 µs−1

Qubit natural dephasing rate γϕ,n 0
Qubit thermal excitation probability pth 0.01
Qubit drive amplitude Ωd/2π 0.46 MHz
Effective dispersive shift χ/2π 3.9 MHz
JPA external (total) coupling rate κJex/2π 40 MHz

measurement, corresponds to Ωd/2π = 0.46 MHz.

In order to calibrate the cavity probe power, we use the qubit spectra at ωp = ωc ±χ,
as shown in Fig. 7.2(b). The red (blue) dots plot the cavity transmission as a function of
the qubit drive frequency ωd, fixing the cavity probe frequency ωp = ωc+χ (ωp = ωc−χ).
The qubit spectra strongly reflect the cavity probe power Ωp and the average thermal
photon number nth in the cavity. The green solid lines are the steady-state solutions of
⟨â⟩ in Eq. (7.8). From the simulations, we find the cavity probe power of −125 dBm
at sample, that we use for the qubit spectroscopy, corresponds to Ωp/2π = 0.16 MHz.
The average thermal photon number nth, which is determined from the T ∗

2 measurement,
agrees well with the qubit spectra.

To sum up, the obtained system parameters are lisetd in Table 7.1.

Autler-Townes effect

Using the parameters, listed in Table 7.1, the cavity transmission as a function of the qubit
drive frequency ωd and the cavity probe frequency ωp are numerically calculated from the
steady-state solution of ⟨â⟩ in Eq. (7.8), as shown in Fig. 7.10. The calculation results
agree well with the experimental results, which ensures accuracy in the determination of
the parameters.

In the qubit spectrum for ωp = ωc − χ [Fig. 7.2(a)], we find a splitting in the peak
corresponding to the single photon occupancy. The splitting is understood as the Autler-
Townes effect involving the three states: |e, 0⟩, |e, 1⟩ and |g, 1⟩ [99]. In the cavity probe
frequency ωp dependence of the qubit spectra, an anti-crossing like splitting is observed
at around ωp = ωc−χ and ωd = ωq− 2χ, as shown in the yellow rectangle in Fig. 7.10(b)
and in Fig. 7.10(c). Due to the thermal photon excitation in the cavity, the population
of |g, 1⟩ is finite. In the steady state, the qubit drive field at ωd = ωq − 2χ transfers
the population of |g, 1⟩ to |e, 0⟩, because the qubit drive amplitude Ωd and the cavity
energy-relaxation rate κ are larger than the qubit energy-relaxation rate γ. Therefore,
the cavity probe field around ωp = ωc−χ can excite the photons in the cavity from |e, 0⟩.
The qubit drive field couples |e, 1⟩ to |g, 1⟩ and splits the spectrum into the two peaks
with the separation of Ωd [see fig. 7.10(d)]. The white dashed lines in Fig. 7.10(c) depict
the transition frequencies from |e, 0⟩ to the hybridized states composed of |g, 1⟩ and |e, 1⟩,
which is calculated from the Hamiltonian Eq. (7.7) with ωp = Ωp = 0.
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Figure 7.11: (a) Qubit spectrum for each qubit drive amplitude Ωd. The spectra are
offset vertically by 0.5 each. Blue solid lines are the numerical results and red solid lines
are the multi-Lorentzian fits. The average photon number in the cavity under a coherent
drive is fixed to 0.2. (b) Ratio of the apparent average photon number ⟨ñ⟩ to the actual
average photon number ⟨n⟩ as a function of the qubit drive amplitude Ωd. Red solid line
indicates the qubit drive amplitude we used in the qubit spectroscopy.

Effect of qubit drive field

As shown in Figs. 7.3 and 7.5, the peak area ratio in the qubit spectrum does not coincide
exactly with the actual photon-number distribution in the cavity due to the finite qubit
drive field. This discrepancy can be explained by the accumulation of the population in
the state |e, 0⟩ in the relation between the excitation and energy-relaxation rate of the
system.

To be more quantitative, we study the effect of the qubit drive amplitude Ωd on the
qubit spectrum. For simplicity, the steady state solutions of ⟨(σ̂z + 1)/2⟩ are calculated
using Eq. (7.8). Note that the cavity probe power is so weak that the excitation prob-
ability of the qubit is proportional to the cavity transmission, which is measured in the
experiment. As an example, the cavity is driven by a coherent state to have a steady-state
with an average photon number of 0.2. Therefore, to simulate the coherent drive for the
cavity, we can simply replace the cavity probe with ωp and Ωp with a cavity drive with
ωs = ωc + χ and Ωs in Eq. (7.8), respectively.

In Fig. 7.11(a), we plot the qubit excitation probability ⟨(σ̂z + 1)/2⟩ as a function of
the qubit drive frequency ωd for each drive amplitude Ωd (blue solid lines). As the drive
amplitude Ωd is increased, the peaks in the qubit spectrum are enhanced, which allows us
to observe the peaks with a higher signal-to-noise ratio in the experiment. Specifically, this
effect makes it easier to characterize a microwave quantum state whose average photon
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number is small. The red solid lines are multi-Lorentzian fits to deduce the apparent
average photon numbers ⟨ñ⟩ from the peak area ratios. In Fig. 7.11(b), we plot the ratio
of ⟨ñ⟩ to the actual average photon number ⟨n⟩ as a function of the drive amplitude Ωd.
In the small amplitude limit of the qubit drive, ⟨ñ⟩ is identical to ⟨n⟩. However, as Ωd

increases, the ratio ⟨ñ⟩/⟨n⟩ increases, meaning that the populations of the larger photon
number states are effectively enhanced.





Chapter 8

Wigner quantum state tomography

8.1 Introduction

The availability of experiments on microwave quantum optics is highly dependent on con-
trollability and measurability of superconducting qubits [100]. A circuit QED system,
where microwave photons confined in a cavity strongly interact with a superconducting
qubit [12, 13], is known as a powerful tool to control and measure microwave photons. For
example, an arbitrary superposition state of the photon number states and a Schrödinger
cat state with large-amplitude coherent states are generated and characterized using a
superconducting qubit in a cavity [19, 21]. Furthermore, the superconducting qubit can
generate a quantum state not only in the cavity mode but also in a propagating mode.
Itinerant microwave photons, which can be carriers of quantum information, have been
well studied toward a quantum network between localized quantum processors [31]. So
far, the generation of a single photon state and a Schrödinger cat state are demonstrated
by using a circuit QED system with the cavity mode over-coupled to the output waveg-
uide [101, 32, 102, 33, 34]. Recently, quantum state transfers have also been demonstrated
between two localized circuit QED systems [35, 36, 37]. Nevertheless, the characterization
of itinerant microwave photons is still a challenging task, since photon detectors, which are
commonly applied for optical photons, are not available in the microwave frequency do-
main [38, 39, 40]. Moreover, the superconducting qubit, which can be a powerful probe for
the cavity photons, cannot be easily applicable for the detection of itinerant microwave
photons, since it has been difficult to be coupled to the propagating mode efficiently.
Thus, in contrast to that of optical photons [57], the characterization of the itinerant
microwave photons is normally realized by using linear amplifiers, such as a HEMT am-
plifier and a Josephson parametric amplifier (JPA) [83, 59, 32, 33, 34]. Moreover, high
efficient measurement of quadratures of itinerant microwave photon based on JPAs en-
ables to demonstrate continuous monitoring and feedback control of a superconducting
qubit [103, 104]. However, in the microwave domain, the measurement efficiency of the
itinerant microwave photons is largely limited by the amplifier noises or the propagation
loss. Therefore, the low measurement efficiency need to be corrected based on a calibrated
thermal noise. However, the validity of the loss correction is not always guaranteed. For
instance, the cable loss is may be uncertain in some experiments. Furthermore, a vacuum
state in the propagating mode, which often determines the scale of the quadratures, is
sometimes assumed simply from the base temperature.

Here, we demonstrate a Wigner quantum state tomography of itinerant microwave
pulse modes using a phase-sensitive amplifier, or a flux-driven JPA [52]. The quadratures
of th microwave pulses are efficiently measured and used to reconstruct the density matrix
of the quantum state using the iterative maximum likelihood method with correction of

159
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Figure 8.1: Measurement chain for the quadrature. The details are explained in Chapter
4.

the inefficiency in the quadrature measurement [105]. Importantly, the measurement
inefficiency is reliably determined by a coherent state which is well-calibrated by the
cavity-drive-induced dephasing of the transmon qubit in the cavity [17]. Furthermore,
the vacuum state in the propagating mode is guaranteed by the thermal-photon-induced
dephasing of the transmon qubit in the cavity [68, 7].

8.2 Quadrature measurement

In the microwave domain, the quadrature of itinerant microwave photons can be measured
by using linear amplifiers and a digitizer together with a demodulation system. A pre-
amplifier is most important for high-efficiency measurement of the quadratures since it
can effectively suppress the latter inefficiencies. As discussed in Sec. 3.4.7, adding half a
vacuum noise is inevitable with a phase-insensitive amplifier. Therefore, phase-sensitive
amplification, which can be realized by a flux-driven JPA, is applied to the pre-amplifier
in this thesis.

Here, the Wigner quantum state tomography is applied to itinerant microwave pulse
modes emitted from a circuit QED system in the dispersive regime. This can be a typical
setup to generate a quantum state in the propagating mode [32, 102, 33, 34]. The mi-
crowave pulses are guided to a JPA through several circulators and are amplified at the
JPA. Then, the microwave photons are amplified again by the classical amplifiers and are
demodulated to the low frequency signal at the IQ mixer and are digitized by the ADC.
The schematic of the measurement chain for quadrature is shown in Fig. 8.1.

Measurement efficiency

In the Wigner quantum state tomography, the probabilistic distributions of the measured
quadratures are used to reconstruct the density matrix of the microwave photons. There-
fore, we need to consider how the quadrature distributions are transformed in the compli-
cated measurement chain. As discussed in Sec. 3.5, the transformation of the quadrature
distribution Pθ(x) to be measured is characterized by the scaling and the added noise.
The typical parameters in the measurement chain are listed in Table. 8.1.Note that the
thermal noise added by the demodulation and the heterodyne detection are not listed since
we can assume that the noises are well suppressed by the total gains of about 100 dB.

From Eq. (3.129) in Sec. 3.5, the input quadrature distribution Pθ(x) is cascade-
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transformed with the scaling c1, c2, c3, · · · and the added noises n1, n2, n3 · · · as,

Pθ,tot(x) =
1

√
ctot

Pθ∗N

(
x

√
ctot

, n = ntot

)
=

1
√
ctot

∫ ∞

−∞
dxa Pθ (xa) N

(
x

√
ctot

− xa, n = ntot

)
,

(8.1)

where
ctot = c1c2c3 · · ·

ntot = n1 +
n2

c1
+

n3

c1c2
+ · · · , (8.2)

where N(x, n) = 1/
√
2πn exp(−x2/2n) is the noise distribution which describes the added

noise. The transformed quadrature distribution Pθ,tot(x) corresponds to the measured one.
The added noise is the sum of the modified noises, which are defined as each noise divided
by the gain up to that point. The total gain, the total added noise, and the modified noise
at each step are also listed in Table 8.1.We find that the added noises in the photon loss
and in the HEMT noise can be dominant in the total added noise. From this analysis, the
measurement chain with the JPA as a preamplifier enables us to measure the quadrature
of microwave photons in the nearly-quantum limit.

Here, we explain how to determine the scaling of the quadrature distribution for the
quantum state tomography without knowledge of the actual total scaling ctot. Suppose
the input state is a vacuum state. Then, the measured quadrature distribution is obtained
as

P0,tot(x) =
1

√
ctot

∫ ∞

−∞
dxa P0 (xa) N

(
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√
ctot

− xa, n = ntot

)
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)
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)
=

1
√
ctot

N

(
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√
ctot

, n =
1

2
+ ntot

)
= N

(
x, n = ctot

(
1

2
+ ntot

))
,

(8.3)

where P0 = N(x, n = 1/2) is the quadrature distribution of the vacuum state. The
variance is found to be ctot (1/2 + ntot).

Then, we rescale the quadrature distribution so that the variance becomes that of the
vacuum state 1/2. In other words, the quadrature distribution is rescaled by

√
1/2/

√
ctot (1/2 + ntot) =

Table 8.1: Typical parameters of the scaling and the added noise in the measurement
chain. From these parameters, the total scaling and the total added noise, and the
measurement efficiency of the measurement chain can be calculated. Here, the added
noise in the JPA is assumed to be negligible.

Scaling Added noise Modified noise
Photon loss to JPA 0 – −3 dB 0 – 0.5 (10 mK@10 GHz) 0 – 0.5
JPA 25 dB 0 0
HEMT 40 dB 10 (5 K@10 GHz) 0.03 – 0.06
Miteq 35 dB 150 (70 K@10 GHz) 5 – 9×10−5

Total 100 dB – 97 dB 0.03 – 0.56 (ηmeas = 0.94 – 0.47) -
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1/
√

2ctot (1/2 + ntot) as

P̄0,out(x) = N

(
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1

2

)
= P0(x),

(8.4)

which corresponds to that of the vacuum state.
Using the rescaling factor of 1/

√
2ctot (1/2 + ntot), the quadrature distribution to be

concerned in Eq. (8.1) is also rescaled as
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(8.5)

where the measurement efficiency is defined as

ηmeas =
1/2

(ntot + 1/2)
. (8.6)

Finally, we find that the rescaled quadrature distribution exactly corresponds to the
quadrature distribution which is obtained by an ideal quadrature detector after a beam
splitter with the transmittance ηmeas. This enables us to characterize the complicated
measurement chain as a single parameter of the measurement efficiency ηmeas. From
the definition of the measurement efficiency, it can be understood as the occupancy of
the vacuum noise in the input mode in the total measured noise. By using the typical
parameters in the measurement chain, the measurement efficiency is calculated to be
between ηmeas = 0.94 and ηmeas = 0.56. This shows that we are in a parameter region for
quantum measurement of the quadrature of microwave photons. In addition, we find the
measurement efficiency is mostly limited by the propagation loss between the quantum
state emitter and the JPA.

8.3 Iterative maximum likelihood method

As explained in Sec. 3.3, the Wigner function can be reconstructed from the set of the
quadrature distributions via the inverse Radon transformation. However, the statistical
errors may cause unphysical results [57]. One of the good solutions is to use the maximum
likelihood method. Since we confirmed that the set of the quadrature distributions contain
the necessary information, the density matrix can be reliably reconstructed via the max-
imum likelihood method. Here, we adopt the iterative maximum likelihood method for
the density matrix of a photonic mode [105]. Note that the maximum likelihood method
always gives physical results, which prevents us from getting an artifact.

First of all, we explain the basic algorithms for the iterative maximum likelihood
method. Suppose the density matrix ρ̂ will be reconstructed from a set of the measurement
outcomes xi. The corresponding projection operator of xi is defined as Π̂xi

. N and fi are
the total number of measurements and the frequency of occurrences for xi, respectively.
Since the measurement probability of xi with a density matrix ρ̂k can be obtained as
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Pρ̂k(xi) = Tr
[
Π̂xi

ρ̂k

]
, the likelihood function is defined as

L(ρ̂k) =
∏
i

Pρ̂(xi)
fi =

∏
i

Tr
[
Π̂xi

ρ̂k

]fi
. (8.7)

Then, the density matrix which maximizes the likelihood function will be determined.
Given a density matrix of ρ̂k, a semi-positive definite matrix is defined as

R̂(ρ̂k) =
1

N

∑
i

fi
Pρ̂k(xi)

Π̂xi
. (8.8)

It is known that the density matrix ρ̂m which maximizes the likelihood function fulfills

R̂(ρ̂m) ρ̂m R̂(ρ̂m) ≈ ρ̂m. (8.9)

This is because ρ̂m gives the closest measurement probability as Pρ̂m(xi) ≈ fi/N , and then

R̂(ρ̂m) ≈
∑

i Π̂xi
= 1̂.

Based on this, the density matrix ρ̂m can be obtained as follows.

1. The maximally mixed state ρ̂k = N
[
1̂
]
is prepared as an initial guess (k = 0).

2. The semi-positive definite matrix Rk(ρ̂k) is calculated using the measurement out-
comes and ρ̂k.

3. ρ̂k+1 is determined as ρ̂k+1 = N
[
R̂(ρ̂k) ρ̂k R̂(ρ̂k)

]
, where N describes the normal-

ization.

4. Repeat the steps 2 and 3 until ρ̂k converges to ρ̂m.

In this way, we can obtain the density matrix which maximizes the likelihood function.
Here, the quadratures are measured for quantum state tomography of the microwave

pulse modes. Although the projection operator can also be defined in the continuous
variable basis, it is defined in the Fock basis for simplicity. Note that the cutoff photon
number nc should be set to be large enough to describe the quantum state. Then, the
quantum state can be described in the Fock basis as

ρ̂ =
nc∑
n,m

⟨n|ρ̂|m⟩ |n⟩⟨m| =
nc∑
n,m

ρ̂nm |n⟩⟨m|, (8.10)

where |n⟩ is the Fock state and ρnm = ⟨n|ρ̂|m⟩ is the element of the density matrix. The
measurement outcomes of the quadrature can be labeled with the measured amplitude x
and the measurement phase θ as (x, θ). The projection operator Π̂(x, θ) = |x, θ⟩⟨x, θ| is
described in the Fock basis as

Π̂(x, θ) =
nc∑
n,m

⟨n|x, θ⟩⟨x, θ|m⟩ |n⟩⟨m|

=
nc∑
n,m

ei(n−m)θ

√
2n+mn!m!π

Hn(x)Hm(x)e
−x2 |n⟩⟨m|

=
nc∑
n,m

Πnm(x, θ) |n⟩⟨m|,

(8.11)
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where we use ⟨x, θ|m⟩ = ⟨x|R̂(θ)|m⟩ =
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) 1
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the projection operator is defined as Πnm(x, θ) =
ei(n−m)θ

√
2n+mn!m!π

Hn(x)Hm(x)e
−x2

. Thus, R̂(ρ̂)
is simply obtained as

R̂(ρ̂) =
1

N

∑
(x, θ)

1

Pρ̂k(x, θ)
Π̂(x, θ), (8.12)

where Pρ̂k(x, θ) = Tr[Π̂(x, θ) ρ̂k]. Thus, we can perform the iterative algorithm in the
Fock basis.

Furthermore, we can apply the maximum likelihood method for a quantum state in the
presence of photon loss. As explained in Sec. 3.4.4, the photon loss can be characterized
by the transmittance η of the beam splitter transformation. When the transmittance η is
reliably determined, we can estimate the quantum state before the photon loss. According
to the reference [106], the quantum state ρ̂ is transformed by the photon loss as

ρ̂′ =
nc∑
k=0

Âk ρ̂ Â
†
k, (8.13)

where the Kraus operators describing the photon loss are defined as

Âk =
nc∑
n=k

√(
n
k

)
√
η n−k

√
1− η

k
|n− k⟩⟨n|. (8.14)

Then, the measurement probability of x is described as

P ′
ρ̂(x, θ) = Tr

[
Π̂(x, θ)ρ̂′

]
= Tr

[
Π̂(x, θ)

(
nc∑
k=0

Âk ρ̂ Â
†
k

)]

= Tr

[(
nc∑
k=0

Â†
k Π̂(x, θ) Âk

)
ρ̂

]
= Tr

[
Π̂′(x, θ) ρ̂

]
,

(8.15)

where a projection operator of x for the density matrix with photon loss is defined as

Π̂′(x, θ) =
nc∑
k=0

Â†
k Π̂(x, θ) Âk. (8.16)

Then, we can apply the maximum likelihood method in the presence of photon loss just
by replacing Π̂(x, θ) by Π̂′(x, θ) in the iterative algorithm. As explained in Sec. 8.2, the
measurement inefficiency can be modeled as photon loss. Therefore, using the iterative
maximum likelihood method taking into account the photon loss, we can determine the
density matrix with the correction of the measurement inefficiency.

8.4 Phase-sensitive linear amplification

Here, we explain how to measure quadratures of a pulse mode in the nearly quantum
limit using a phase-sensitive amplifier, or, the JPA. The simplified measurement setup is
shown in Fig. 8.2, and the sample is identical to that characterized in Chapter 6. Basically,
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Figure 8.2: Simplified measurement setup for the quantum state tomography.

the way to amplify the pulse mode is the same as for the readout pulse, as explained in
Sec. 6.2.1. However, we need to treat the amplification for the quadrature measurement
more seriously. Note that the pulse distortion and the linearity of the gain are not critical
for discrimination of the qubit state. Here, we focus on the amplification of a pulse mode
of a Gaussian with a full width at half maximum amplitude of 500 ns.

First of all, we characterize the phase-sensitive amplifier using a coherent state as the
input. A coherent state in a pulse mode can be generated by heavily attenuating a classical
microwave pulse in the same temporal mode. After the optimization of the relative phase
between the input coherent pulse and the pump pulse, the amplified coherent pulse is
measured in time, as shown in Fig. 8.3(a). The pump amplitude is maximized to the
extent that pulse distortion does not occur. We will confirm if the gain bandwidth is
large enough to amplify the input pulse mode, later.

As explained in Sec. 5.7.1, the mode matching between the target pulse mode and a
measurement pulse mode is critical. We use an identical pulse mode with the input as
the measurement pulse mode. Now, since we have confirmed that the amplification does
not cause the pulse distortion, the mode matching should be perfect. However, the pulse
delay may be difficult to estimate from the experimental setup, thus, we optimize the
relative time of the measurement pulse mode to maximize the measured amplitude, as
shown in Fig. 8.3(b).

Next, we check the linearity of the phase-sensitive gain. We use a coherent state as the
input again. We plot the measured amplitude of the pulse mode without the pump, as a
function of the square root of the average photon number in the input pulse mode. Here,
the average photon number is well calibrated from the cavity-drive-induced dephasing as
discussed in Sec. 8.6.2. Note that the calibration is not so critical when the input average
photon number is roughly within the range of that of the target state. Then, the signal
which is amplified in a phase-sensitive manner is shown as a function of the relative pump
phase, as shown in Fig. 8.4(b). The relative pump phase is chosen so that the signal
can be amplified maximally. With the optimal pump phase, the amplified signal as a
function of the square root of the average photon number is shown in Fig. 8.4(c). The
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Figure 8.3: Amplified coherent pulse. (a) Amplified amplitude of a coherent pulse in time.
The blue dots are the experimental results and the red line is the input pulse mode of a
Gaussian with a full width at half maximum amplitude of 500 ns. (b) Amplitude as a
function of the relative time between the signal and the measurement pulse mode. The
blue dots and the red line are the experimental results and the polynomial function fit.
The measurement pulse mode is set to be the same as the input.

magenta line is the linear fit in the weak amplitude limit. From this plot, we confirm that
the JPA can linearly amplify the quadratures in this range. By calculating the square
of the ratio of the amplitude with and without the pump, we obtain a gain of about
25 dB, as shown in Fig. 8.4(d). The gain of the phase-sensitive amplifier corresponds to
19 dB in the phase-insensitive amplifier. From the square root gain bandwidth product
in Fig. 6.11 in Sec. 6.1.3, the gain bandwidth is calculated as about 5.9 MHz. On the
other hand, the bandwidth of the input Gaussian pulse mode with a full width at half
maximum amplitude of 500 ns is calculated as 1.25 MHz. Therefore, we confirm that the
gain bandwidth is much broader than that of the input pulse mode.

Finally, we measure a vacuum noise to determine the scale of the quadratures. Here,
the input state is set to be a vacuum, or no input of a coherent pulse. The complex
amplitudes of the amplified vacuum noise, which are measured in a single shot with the
identical gain and measurement pulse mode to be used for the Wigner tomography, are
plotted in Fig. 8.5(a). The amplitude which is projected onto the axis of the phase-
sensitive amplification corresponds to the quadrature of the pulse mode. The projection
axis is determined so that the variance of the projected amplitudes is maximized. The
projected amplitudes with the different pump phase are shown in Fig. 8.5(b). The complex
amplitudes are measured 104 times for each pump phase, which is swept from −π to π,
divided into 101 points. The probability density of the projected amplitudes with a pump
phase of 0, shown in the right side of Fig. 8.5(b), is well fitted by a Gaussian, which shows
that the vacuum noise is linearly amplified by the JPA. Therefore, we can determine the
scale of the quadratures so that the variance can be the vacuum noise of 1/2, as explained
in Sec. 8.2.

The average and variance of the projected amplitudes as a function of the pump phase
are shown in Figs. 8.5(c) and (d). There is a finite offset in the average, which may be due
to the leakage of a coherent tone. Moreover, the variance is drifting in time. This may
be explained by the fact that the pump amplitude is varied in time due to a temperature
drift. Therefore, we can correct the offset and the scaling of the quadrature by measuring
the average and variance of the vacuum input as a reference at each pump phase of the
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Figure 8.4: Linearity of the phase-sensitive gain by the JPA. (a) Signal without the pump
as a function of the square root of the average photon number. The blue dots and the
green line are the experimental results and the linear fit, respectively. (b) Amplified signal
as a function of the relative pump phase. The black dotted line depicts the relative phase
which gives the maximum gain. (c) Amplified signal as a function of the square root of
the average photon number. The JPA amplifies the coherent pulse in a phase-sensitive
manner. The blue and red dots are the experimental results with and without the pump,
respectively. The lines are their corresponding linear fits. (d) Gain as a function of the
square root of the average photon number. The horizontal line dipict the average of the
gain.

quadrature measurement.

8.5 Wigner tomography

Here, we show a result of the iterative maximum-likelihood method based on the quadra-
ture measurements. For the input state, we use a coherent state in a Gaussian pulse
mode with a full width at half maximum amplitude of 500 ns. In our setup, shown in
Fig. 8.2, the coherent state is reflected by the 3D cavity dispersively coupled to the trans-
mon qubit. As a result, the coherent state can suffer dephasing due to thermal excitation
of the qubit. Therefore, the qubit is initialized in the ground state by the non-destructive
readout and the postselection, as explained in Sec. 6.2.6. The complex amplitudes of the
target state and the vacuum state are measured in a single shot at each pump phase. The
data of the vacuum state is used as the reference to obtain the quadrature of the target
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Figure 8.5: Phase-sensitively amplified vacuum noise. (a) Complex amplitudes of the
vacuum noise which are amplified in a phase-sensitive manner by the JPA and are mea-
sured in a single shot. The complex amplitudes are projected onto the axis (arrow) of
the phase-sensitive amplification. (b) Projected amplitudes measured at the various pump
phases. The right plot shows the probability density of the projected amplitudes obtained
with a pump phase of 0. The distribution is well fitted by a Gaussian (blue line). The
variance is used to determine the scaling of the quadrature. (c) Average and (d) variance
of the projected amplitude as a function of the pump phase. The average has an offset
from zero and the variance is drifting in time. By measuring the average and the variance
for each pump phase, the offset and the drifting variance are corrected for the quadrature
measurement.

state as follows: The quadratures of the target pulse mode are obtained by projecting
the corresponding complex amplitude onto the axis of the phase-sensitive amplification,
subtracting the reference offset, and normalizing by the square root of the reference vari-
ance. The obtained quadratures are shown as a function of the pump phase in Fig. 8.6(a).
The results can be intuitively interpreted as a coherent state or a vacuum state with a
coherent displacement.

Using the quadratures at the various pump phases, the iterative maximum likelihood
method to reconstruct a Wigner function is performed as explained in Sec. 8.3. The
iterative algorithm is repeated 105 times. There, we confirm that the density matrix in the
iteration converged. The reconstructed Wigner function and photon-number distribution
are shown in Figs. 8.6(b) and (c). The determined quantum state is found to be a coherent
state with the average photon number of 0.058, with the fidelity of 0.998.
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Figure 8.6: Wigner tomography of a coherent state. (a) Quadratures which are measured
at each pump phase in a single shot. The blue dots are the experimental results. The red
line is the average of the quadratures as a function of the pump phase. The blue bars in
the right side shows a probability density of the quadrature at a pump phase of 0. The
red line is the probability density of a vacuum state. The measured distribution is found
to be a vacuum state with a displacement. (b) Wigner function which is reconstructed
from the quadratures using the iterative maximum-likelihood method. (c) Photon number
distribution of the reconstructed quantum state.

8.6 Calibration

As we will see later, the reconstructed quantum state undergoes photon loss in the mea-
surement chain. When we intend to characterize the quantum state unaffected by the
photon loss in the measurement chain, the maximum likelihood method with the cor-
rection of the measurement infidelity is useful. However, to determine the measurement
inefficiency is very crucial to avoid the unfaithful estimation of a quantum state.

8.6.1 Validity of vacuum

If we suppose that the propagating mode in a thermal state is in the vacuum state by
mistake, the maximum likelihood method with correction of the measurement inefficiency
gives a wrong estimation of the quantum state. Therefore, it is crucial to confirm if the
propagating mode is a vacuum state. Assuming that the propagating mode is in thermal
equilibrium with the base temperature of the dilution refrigerator, it gives a vacuum state.
However, it is not necessarily the case in the experimental setup since the propagating
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mode is connected to devices at room temperature. Therefore, we experimentally de-
termine the thermal average photon number in the propagating mode by measuring the
thermal-photon-induced dephasing of the qubit.

The thermal photons in the cavity, which are coupled to the qubit dispersively, cause
qubit dephasing. The thermal-photon-induced qubit depahsing rate can be described as

γϕ,th =
4χ2κ

κ2 + 4χ2
nth, (8.17)

where χ is the dispersive shift, κ = κex + κin is the total relaxation rate of the cavity, κex
is the external coupling rate to the propagating mode which we are concerned with, κin is
the internal loss rate, and nth is the thermal average photon number in the cavity [68, 7].
The cavity parameters, which are experimentally obtained as in Sec. 6.2.6, are shown in
Table 8.2.Furthermore, the thermal average photon number can be calculated as

nth =
κex nth,ex + κin nth,in

κex + κin
, (8.18)

where nth,ex and nth,in are the thermal average photon number in the propagating mode
and the internal loss mode, respectively.

Then, the total qubit dephasing rate can be represented as

γϕ =
γ

2
+ γϕ,n + γϕ,th (8.19)

where γϕ,n is the natural dephasing rate, and γ is the energy-relaxation rate. The total
dephasing rate and the energy-relaxation rate can be experimentally obtained and are
displayed in Table 8.2.Here, we obtain the total dephasing rate using the echo sequence,
which enables us to minimize the natural dephasing rate γϕ,n.

Thus, we can determine the upper bound on the thermal average photon number of
the propagating mode. Using Eqs. (8.17), (8.18), and (8.19), the thermal photon number
can be described as

nth,ex =
κ2 + 4χ2

4χ2κex

[(
γϕ −

γ

2

)
− γϕ,n

]
− κin
κex

nth,in ≤ κ2 + 4χ2

4χ2κex

(
γϕ −

γ

2

)
, (8.20)

where we obtain the upper bound with γϕ,n = nth,in = 0. Using the experimentally
obtained parameters, shown in Table 8.2, the upper bound of nth,ex can be calculated
as max [nth,ex] = 0.0017. Then, we confirm that the thermal average photon in the
propagating mode can be negligible compared with the error bar of the efficiency of the
quadrature measurement (ηmeas = 0.43± 0.01).

8.6.2 Calibration of coherent state

As explained in Sec. 8.2, the inefficiency of the quadrature measurement can be modeled by
a transmittance of ηmeas of a beam splitter in front of an ideal quadrature detector [54].

Table 8.2: Cavity and qubit parameters.

Cavity external coupling rate κex/2π 3.32 MHz
Cavity internal loss rate κin/2π 0.25 MHz
Cavity-qubit dispersive shift χ/2π 1.50 MHz
Qubit energy-relaxation rate γ/2π (= 1/T1 /2π) 5.0 kHz
Qubit total dephasing rate γϕ/2π (= 1/T2E /2π) 4.8 kHz
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Figure 8.7: Cavity-drive-induced dephasing of the qubit. (a) Ramsey sequence with the
cavity drive. (b) Qubit dephasing rate as a function of the flux of average photon number
in the cavity drive. The blue dots and red lines are the experimental and fitting results,
respectively. The offset is attributed to the pure dephasing of the qubit.

Suppose we have a coherent state of |α⟩ as an input for Wigner tomography. Then
the quantum state reconstructed from the inefficient quadrature measurement can be
described as |α′⟩ =

∣∣√ηmeasα
⟩
. Therefore, the measurement efficiency can be simply

obtained by calculating the ratio of the average photon number of the reconstructed
coherent state to that of the input as

ηmeas =
|α′|2

|α|2
. (8.21)

In other words, it is imperative to calibrate the coherent state in the input pulse mode in
order to determine the measurement efficiency. Here, we calibrate the flux of the average
photon number in a coherent drive for the 3D cavity by measuring the cavity-drive-induced
qubit dephasing.

A coherent drive for the cavity is characterized by a photon flux ṅd, which is defined as
the average photon number of the continuous coherent drive passing through per unit time.
To determine the photon flux ṅd reaching the cavity, we measure the dephasing rate of the
qubit in a cavity that is driven continuously with the coherent microwaves. As shown in
Fig. 8.7(a), a Ramsey sequence under the continuous cavity drive is performed to measure
the cavity-drive-induced dephasing rate of the qubit. The dephasing rate as a function
of the photon flux ṅd of the continuous coherent drive is shown in Fig. 8.7(b), where the
cavity-drive frequency ωd is fixed closely to the cavity frequency ωc. Here, we just confirm
that the dephasing rate is proportional to the square of the input amplitude, and obtain
the slope by fitting the experimental results with a linear function. Theoretically，the
cavity-drive-induced dephasing rate is described as

γϕ,d =
κ χ2

κ2/4 + χ2 +∆2
d

(n+ + n−), (8.22)

where ∆d = ωd −ωc = 0.16 MHz is the detuning, and n± = κex

κ2/4+(∆d±χ)2
ṅd is the average

photon number in the cavity with the qubit in the ground state or in the excited state [17].
By comparing the slope [red line in Fig. 8.7(b)] of the experimental results with that of
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Eq. (8.22), we calibrate the photon flux ṅd at the cavity. Then, we determine a coherent
state |α⟩ in an input pulse mode by integrating the photon flux ṅd with the temporal
mode function as

|α|2 =
∫
dt |m(t)|2 ṅd =

∫
dt |f(t)|2 ṅd, (8.23)

where m(t) = f(t)e−iωdt is a pulse mode with a carrier frequency of ωd and f(t) is the
temporal mode function.

8.6.3 Measurement efficiency

Here, we calibrate the efficiency of the quadrature measurement based on the phase-
sensitive amplification.

To calibrate ηmeas, we measure a coherent state in the pulse mode reflected by the cavity
with the qubit being in the ground state. An input coherent state |αin⟩ before the reflection
is calibrated by the qubit dephasing induced by a coherent drive (see Sec. 8.6.2). We de-
note the average photon number in the input coherent pulse as |αin|2 =

∫
dω |αinmin(ω)|2,

where min(ω) is the input pulse mode in the frequency space, or the Fourier transform of
the input pulse mode in time. Furthermore, the cavity parameters are determined from
independent measurements. Thus, the output coherent state in the reflected pulse mode
can also be characterized. Denoting the average photon number in the reflected pulse as
|αout|2, we derive from the input-output theory

|αout|2 =
∫
dω

(κex−κin)
2

4
+ [ω − (ωc + χ)]2

(κex+κin)2

4
+ [ω − (ωc + χ)]2

|αin min(ω)|2. (8.24)

In the experiment, we use an input coherent pulse with |αin|2 = 0.165 ± 0.003. Note
that the pulse mode is a Gaussian with a full width at half maximum amplitude of 500 ns.
From Eq. (8.24), we obtain |αout|2 = 0.137 ± 0.003. The well-calibrated coherent state
in the reflected pulse mode can be an input state for the quadrature measurement chain.
Therefore, we perform Wigner tomography for this input state to calibrate the efficiency
of the quadrature measurement, as explained in Sec. 8.3. The Wigner function and the
photon-number distribution of the determined quantum state are shown in Fig. 8.6. The
reflected pulse mode is in a coherent state with an average photon number |α′

out|2 =
0.058, with an fidelity of 0.998. Following Eq. 8.21, we can determine the measurement
efficiency by comparing the average photon numbers between the ideal and measured ones
as ηmeas = |α′

out|2/|αout|2 = 0.43± 0.01.

8.7 Wigner tomography with loss correction

Here, we perform the iterative maximum likelihood method with correction of measure-
ment inefficiency. For simplicity, the input state is also a coherent state with a Gaussian
pulse mode. Therefore, for the Wigner tomography with correction of the measurement
inefficiency, we use the same experimental results of the quadrature measurement, which
are shown in Fig. 8.6. Using a measurement efficiency of 0.43, a quantum state is obtained
through the procedure which is explained in Sec. 8.3, as shown in Fig. 8.8. It corresponds
to a coherent state with an average photon number of 0.137, with a fidelity of 0.995.
We confirm that the correction process is accurately performed by comparing the average
photon numbers of the coherent states reconstructed with and without the loss correction.
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inefficiency. (a) Reconstructed Wigner function. (b) Reconstructed photon-number dis-
tribution.





Chapter 9

Quantum non-demolition (QND)
detection

9.1 Introduction

Photon detectors are elementary tools used to measure electromagnetic waves at the quan-
tum limit [56, 41] and are heavily demanded in emerging quantum technologies such as
communication [31], sensing [107], and computing [108]. Of particular interest is a quan-
tum non-demolition (QND) type detector, which projects an electromagnetic wave onto
the photon-number basis [109, 110, 111, 112, 113]. This is in stark contrast to conven-
tional photon detectors [111] which absorb a photon to trigger a ‘click’. The long-sought
QND detection of a flying photon was recently demonstrated in the optical domain using
a single atom in a cavity [114, 115]. However, the counterpart for microwaves has been
elusive despite the recent progress in microwave quantum optics using superconducting
circuits [19, 21, 116, 102, 34, 117, 95]. Here, we implement a deterministic entangling
gate between a superconducting qubit and an itinerant microwave photon reflected by a
cavity containing the qubit. Using the entanglement and a high-fidelity qubit readout,
we demonstrate QND detection of a single photon with a quantum efficiency of 0.84 and
a photon survival probability of 0.87. Our scheme can be a building block for quantum
networks connecting distant qubit modules as well as a microwave photon counting device
for multiple-photon signals.

Microwave quantum optics in superconducting circuits enables us to investigate un-
precedented regimes of quantum optics. The strong nonlinearity brought by Josephson
junctions together with the strong coupling of the qubits with resonators/waveguides re-
veals rich physics not seen in the optical domain before. It has also been applied in
demonstrations of the generation and characterization of non-classical states in cavity
modes [19, 21, 116] and propagating modes [102, 34] as well as the remote entanglement
of localized superconducting qubits [117, 95]. However, single-photon detection in the
microwave domain is still a challenging task because microwave photon energy is four to
five orders of magnitude smaller than in optics. The sensitivities of conventional incoher-
ent detectors such as avalanche photodiodes, bolometers, and superconducting nanowires
are not sufficient for single microwave photons [41]. Therefore, resonant absorption of
a microwave photon with a superconducting qubit was exploited for single-photon de-
tection [38, 39, 40]. Note also that QND measurements of cavity-confined microwave
photons have been realized by using a Rydberg atom or a superconducting qubit as a
probe [118, 22]. Recently, a QND detection of an itinerant microwave photon have been
demonstrated using a circuit QED system with the same kind of interaction [119], as used
in the scheme in the optical frequency domain [114].

175
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Figure 9.1: Simplified measurement setup for the QND detection of an itinerant mi-
crowave photon. A transmon qubit is mounted in a 3D superconducting cavity that is
over-coupled to a 1D transmission line composed of a coaxial cable. An input pulse mode
is injected into the cavity through the cable, and the reflected pulse mode is guided via
circulators to a JPA and a heterodyne detector. Qubit control and readout pulses follow
the same path.

9.2 Detection scheme

For QND detection of an itinerant microwave photon, we use a circuit QED architecture
with a transmon qubit in a far detuned 3D cavity [23]. An input pulse mode through a
1D transmission line to the cavity is entangled with the qubit upon reflection [120] and
is projected to a number state by the subsequent qubit readout without destroying the
photon.

In our setup, the qubit-cavity interaction is described with the dispersive Hamiltonian

H/ℏ = ωcâ
†â+

ωq

2
σ̂z − χâ†â σ̂z, (9.1)

where â†(â) is the creation (annihilation) operator of the cavity mode, σ̂z the Pauli op-
erator of the transmon qubit, ωc the cavity resonance frequency, ωq the qubit resonance
frequency, and χ the dispersive shift due to the interaction. As explained in Chap-
ter 6, the system parameters are determined from independent measurements as follows:
the cavity resonance frequency ωc/2π = 10.62524 GHz, the qubit resonance frequency
ωq/2π = 7.8693 GHz, the dispersive shift χ/2π = 1.50 MHz, the cavity external coupling
rate κex/2π = 3.32 MHz, the cavity internal loss rate κin/2π = 0.25 MHz, the qubit
relaxation time T1 = 32 µs, the qubit dephasing time T ∗

2 = 26 µs, and the echo dephasing
time T2E = 33 µs. We control the qubit state with a Rabi oscillation driven by a resonant
pulse and read out the qubit nondestructively by observing the dispersive shift of the
cavity frequency. A readout pulse reflected by the cavity is led to a flux-driven Joseph-
son parametric amplifier (JPA) [52] and is measured in the quadrature by a heterodyne
detector. The nearly quantum-limited amplifier enables us to read out the qubit state in
a single shot. The qubit readout fidelity of the ground state (excited state) is better than
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Figure 9.2: Cavity spectrum depending on the qubit state. (a) Reflectance (squared
amplitude) and (b) phase shift of the cavity reflection coefficient as a function of the
probe frequency, with the qubit being in the ground state (blue) or the excited state
(red). The qubit is prepared in each state by postselection according to the outcomes of
the single-shot readouts before and after the cavity probe. (c) Phase difference between
the cavity with the qubit in the ground and excited states. The phase difference at the
cavity frequency ωc/2π = 10.62524 GHz is found to be close to π. The dots are the
experimental results and the lines are the theoretical fits.

0.998 (0.978). The assignment fidelity of 0.988± 0.001 is calculated as the average of the
two [81]. Since there is a finite excitation probability of the qubit of 0.067 in thermal
equilibrium, the qubit is initialized via the qubit readout and postselection with a fidelity
better than 0.998.

The interaction between an itinerant microwave field and the superconducting qubit
through the cavity is first characterized by the cavity reflection of weak continuous mi-
crowaves. Figure 9.2(a) shows the cavity spectra, with the qubit being in the ground state
|g⟩ (blue) or the excited state |e⟩ (red). The cavity spectrum is measured by condition-
ing the qubit state with postselection according to the outcomes of the qubit readouts
before and after the cavity probe pulse (see Sec. 6.2.6). The dispersive shift of the cavity
frequency is observed in accordance with Eq. (9.1). The reflected field obtains a phase
shift depending on the qubit state. The conditional phase shift is described as the phase
difference of the reflection coefficients, as shown in Fig. 9.2(c). This interaction has been
conventionally used for nondestructive readout of a transmon qubit.

The phase-shift condition also holds for a pulse mode as long as its spectral bandwidth
fits inside the cavity bandwidth. In other words, when the phase difference within the
spectral bandwidth of the pulse mode can be constant, the pulse mode can obtain the
qubit-dependent phase shift without pulse distortion. Here, we are interested in the
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Figure 9.3: Interaction between the qubit and an itinerant microwave photon.
(a) Schematic of the circuit QED system which is connected to a one-dimensional trans-
mission line mode. (b) Phase flip (no flip) of the reflected single photon caused by the
qubit in the excited state (ground state). (c) Phase flip (no flip) of the qubit caused by
the reflection of the single photon (zero photon). Here, |g⟩ and |e⟩ label the ground and
exited states of the qubit, and |±⟩ is the superposition state 1√

2
(|g⟩ ± |e⟩). |0⟩ and |1⟩

indicate the photon-number states in the pulse mode.

conditional phase shift of π with as an interaction bandwidth as large as possible. With
the optimal configuration where the external coupling rate of the cavity κex is adjusted
to twice the dispersive shift, 2χ, the qubit-dependent phase shift [phase difference in
Fig. 9.2(c)] of the reflected field is close to π within the larger bandwidth centered at
the cavity frequency ωc (green region in Fig. 9.2). We achieve the optimal condition
by adjusting the external coupling rate of the 3D cavity at room temperature to twice
the dispersive shift, which has been measured at the base temperature of the dilution
refrigerator.

Next, we explain how an itinerant photon interacts with the qubit through the cavity
mode. The circuit QED system connected to a 1D transmission line is schematically
shown in Fig. 9.3(a). A single photon in the reflected pulse mode acquires a π-phase
shift conditioned on the excited state of the qubit [Fig. 9.3(b)], while maintaining the
temporal and spatial mode shapes. It corresponds to a controlled-Z gate between the
superconducting qubit and the pulse mode. Because of the symmetry between the control
and target qubits in a controlled-Z gate, the interaction can also be interpreted as a phase-
flip gate of the qubit induced by the reflection of the single photon [Fig. 9.3(c)]. There is
a trade-off between the quantum efficiency of the single-photon detection (the fidelity of
the controlled-Z gate) and the detection (interaction) bandwidth. A longer single-photon
pulse acquires a more ideal phase flip at the cost of increased qubit decoherence. We
optimize the input pulse length in terms of the quantum efficiency (see Sec. 9.3).

The protocol for the QND detection of an itinerant photon is shown in Figs. 9.4(a)
and (b).

(i) The qubit is initialized to the ground state |g⟩ via nondestructive readout and
postselection. The input state of the microwave pulse mode is a coherent state in
the weak power limit with the single-photon occupancy p1, which well approximates
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Figure 9.4: QND detection of an itinerant microwave photon. (a) Quantum circuit
diagram of the protocol. The qubit is first read out for the initialization with postselection.
Then, a Ramsey sequence, consisting of Y/2 and −Y/2 rotations and a Z-basis readout, is
applied to detect the phase flip of the qubit induced by a single photon. For the quantum
state tomography of the pulse mode, the quadrature αθ of the reflected pulse mode is
measured with various phases θ. (b) Corresponding pulse sequences at the qubit, cavity,
and JPA pump frequencies, ωq, ωc, and ωp, respectively. The pulse lengths for the qubit
control and readout are 25 ns and 500 ns, respectively. The length of the JPA pump pulse
accompanying the qubit readout pulse is 650 ns. The amplitude envelope of the input
pulse mode is defined to be a Gaussian with a full width at half maximum of 500 ns. The
gate intervals of the Ramsey sequence are set to 800 ns for the evaluation of the quantum
efficiency, and to 1100 ns for the quantum state tomography of the reflected pulse mode
in order to avoid overlap with the readout pulse.

a superposition of the vacuum and single-photon states,
√
p0|0⟩+

√
p1|1⟩.

(ii) The qubit state is rotated by π/2 about the Y -axis and the composite system
becomes |+⟩(√p0|0⟩+

√
p1|1⟩).

(iii) The pulse mode is reflected by the cavity, and the state after the controlled-Z gate
becomes entangled,

√
p0|+⟩|0⟩+√

p1|−⟩|1⟩.

(iv) The qubit is rotated by −π/2 about the Y -axis to obtain
√
p0|g⟩|0⟩+

√
p1|e⟩|1⟩ and

is then measured in the Z basis. The presence of a single photon in the pulse mode
is correlated with the excited state of the qubit and is detectable.
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Figure 9.5: Phase-flip probability of the qubit as a function of the average photon
number |αin|2 in the input pulse. The blue dots represent the experimental data, while the
blue solid line is the numerical calculation using independently obtained parameters (see
Appendix. C). The red dashed line is the linear fit in the weak power limit. The error
bars on the data points are the standard deviations from the mean.

To achieve a high quantum efficiency for the QND detection, there are two required
conditions. First, the cavity should be over-coupled to the 1D transmission line, or the
internal loss rate of the cavity should be much smaller than the external coupling rate
as κin ≪ κex. In the optimal condition, the itinerant photon reflected by the cavity can
obtain the maximum conditional phase shift π, while the photon absorbed in the cavity
aquires a different conditional phase shift smaller than π, which causes an incomplete
phase-flip of the qubit. In our sample, κin/κex = 0.075 is achieved. Second, the qubit
dephasing rate should be much smaller than the detection bandwidth as γϕ ≪ κex = 2χ.
For QND detection, the qubit should keep its coherence during the interaction with the
itinerant photon. The qubit dephasing causes dark counts, as well as a drop in the
quantum efficiency because of the reduced visibility. We achieve γϕ/κex = 0.0018.

9.3 Quantum efficiency of QND detection

The calibration of the average photon number in the input pulse mode reaching the detec-
tor or the circuit QED system is crucial to evaluate the quantum efficiency. We calibrate
the photon flux of a continuous cavity drive by measuring the cavity-drive-induced de-
phasing rate of the qubit [17], from which we calculate the average photon number |αin|2
by integrating the photon flux within the input temporal mode (see Sec. 8.6.2).

The phase-flip probability of the qubit as a function of the average photon number
|αin|2 in the input pulse is shown in Fig. 9.5. To obtain the probability, the sequence is
repeated 105 times for each input average photon number. The phase-flip probability is
increased as the input average photon number increases, which apparently shows that the
qubit detects itinerant photons. The slight deviation from the linear relationship is due to
the two-photon occupation in the pulse mode since a coherent state is used for the input.
Since the quantum efficiency corresponds to the slope in the weak average photon number
limit, it is determined by fitting the experimental results with a quadratic function and
evaluating the differential coefficient at |αin|2 = 0. Then, the quantum efficiency is found
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Figure 9.6: Dependence of gate interval and input pulse length on QND detection.
(a) Gate interval dependence of the quantum efficiency and (b) the dark-count probability.
(c) Pulse length (FWHM in amplitude) dependence of the quantum efficiency and (d) the
dark-count probability. The blue dots are the experimental results and the red lines are
the numerical calculations without free parameters. The error bars on the data points
include the fitting error and the uncertainty of the input average photon number. We
determine the qubit natural dephasing rate γϕ,n by fitting the dark-count probability. The
value of γϕ,n slowly fluctuates by ∼ 10% on the time scale of a few days.

to be 0.84± 0.02.

The reduction of the efficiency from unity is attributed to a few mechanisms. The
quantum efficiencies reduced by each factor, which are obtained from the numerical cal-
culations, are listed in Table 9.1. First, an input photon is probabilistically absorbed in
the cavity due to the finite internal loss rate, which gives rise to an incomplete phase
flip. Second, the qubit dephasing during the gate interval results in an erroneous phase

Table 9.1: Quantum efficiencies decreased by each factor.

Internal loss of the cavity 0.93
Qubit dephasing 0.96
Initialization and readout errors 0.98
Mismatch of κex and 2χ 0.99
Detection bandwidth 0.99
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flip of the qubit. Third, the initialization and readout errors also result in a state flip
of the qubit. Fourth, the external coupling rate is not perfectly adjusted to twice the
dispersive shift (κex/2χ = 1.1), which causes the incomplete phase flip of the qubit. Last,
the finite bandwidth of the detection results in the incomplete phase flip of the qubit. In
our sample, the internal loss of the cavity limits the quantum efficiency dominantly.

Furthermore, the dark count is also one of the characteristic parameters for photon
detection. Here, the dark-count probability corresponds to the phase-flip probability in
the absence of any input signal, which is found to be 0.0147± 0.0005. The dark count is
caused by the qubit dephasing during the detection.

Here, we study the dependencies of the gate interval and the input pulse length on
the quantum efficiency and the dark-count probability of QND detection.

First, the π/2-gate interval is varied as shown in Figs. 9.6(a) and (b), where a coherent
Gaussian pulse with a pulse length (a full width at half maximum amplitude) of 500 ns
is used as an input. The bandwidth of the input pulse is set to be narrow enough to
be reflected by the cavity without noticeable temporal/spectral mode distortion. When
the gate interval is shorter than the input-pulse length, the quantum efficiency is reduced
since the qubit can interact with the itinerant photons only when it is in the superposition
state. The quantum efficiency increases up to the gate interval comparable with the pulse
length, and then decreases for a gate interval longer than the pulse length. The longer
the gate interval, the more phase-flip errors due to the dephasing occur, resulting in a
decrease of the quantum efficiency. From the experiment, we determine an optimized gate
interval of 800 ns for the input-pulse length of 500 ns. Namely, the gate interval should
be set to be 8/5 times longer than the input pulse length.

Next, we study the input-pulse length dependence on the quantum efficiency and the
dark-count probability, as shown in Figs. 9.6(c) and (d). The gate interval is set to be
8/5 times longer than the input pulse length, as discussed in Figs. 9.6(a) and (b). Since
the bandwidth in which the reflected pulse mode acquires the phase flip without pulse
distortion corresponds to that of the cavity, the qubit cannot efficiently detect a single
photon with a larger bandwidth. The quantum efficiency rises up at about 50 ns, which
corresponds to the cavity relaxation time of 1/κ. A single photon with a narrow bandwidth
interacts with the qubit ideally, while the longer gate interval causes the dephasing of
the qubit, resulting in a decrease of the quantum efficiency again. To sum up, the QND
detection can detect an itinerant photon regardless of pulse form, as long as the bandwidth
is smaller than the cavity bandwidth.

9.4 Wigner tomography of reflected pulse mode

To verify the QND property of the photon detector, we analyze the reflected pulse mode
by using Wigner tomography via quadrature measurements. We measure the quadrature
αθ of the reflected pulse mode, which is amplified by the phase-sensitive amplifier (JPA)
with various pump phases θ. The large gain and small added noise by the JPA in the
quadrature measurement suppress the effect of the imperfections in the measurement chain
following the JPA [33], which enables us to realize the quadrature measurement in the near
quantum limit. As explained in Chapter 8, the remaining propagation loss and Gaussian
noise can be modeled with the insertion of a beam splitter with a transmittance ηmeas

in front of an ideal quadrature detector [54]. From the calibration with a weak coherent
pulse (see Sec. 8.6.2), the measurement efficiency is found to be ηmeas = 0.43 ± 0.01.
Using the outcomes of the quadrature measurement, we reconstruct the quantum state
with the iterative maximum likelihood method [105]. Here, we show the quantum states
which are reconstructed without or with correction for the inefficiency of the quadrature
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Figure 9.7: Wigner tomography of the pulse mode, which is reflected by the cavity with
the qubit in the ground state. (a) Quadratures which are measured with the various pump
phases. The red line depicts the average of the quadratures. The blue bars and red line
in the right plot are the probability density of the measured quadratures at a pump phase
of 0 and the theoretical one of a vacuum state, respectively. (b) Reconstructed Wigner
function and (c) photon-number distribution without the loss correction. (d), (e) The
same with the correction of the measurement inefficiency. Note that the data is the same
as in Figs. 8.6 and 8.8.

measurements. For the input signal, we use a coherent pulse with an average photon
number of |αin|2 = 0.165± 0.003.

First of all, we characterize a coherent state for the input, as shown in Fig. 9.7. The
quadratures of the coherent state, which is reflected by the cavity with the qubit initialized
in the ground state, are measured with the various pump phases in a single shot. The



184 CHAPTER 9. QUANTUM NON-DEMOLITION (QND) DETECTION

pump phase is swept from 0 to 2π with a step of π/101. The sequence is repeated 104 times
for each phase. As shown in Fig. 9.7(a), the outcomes of the quadrature measurement give
the pump phase dependence, which intuitively indicates the reflected pulse mode retains
the coherence. In other words, the preservation of the coherence shows the reflected pulse
mode is not entangled with the qubit and is not measured in the Fock basis by the qubit.
We find that the reconstructed quantum states without and with the correction of the
measurement inefficiency correspond to coherent states with average photon numbers of
0.058 and 0.137, respectively. Note that the reflected coherent state undergoes the internal
loss of the cavity.

Next, the quadratures of the pulse mode, which is reflected by the cavity with the qubit
prepared in the superposition state |+⟩, are measured with the various pump phases. The
pump phase is swept from 0 to π with a step of π/101. The sequence is repeated 104 times
for each phase. An input state is set to be the same as in Fig. 9.7. The unconditional
quadratures are shown in Fig. 9.8(a). The important point, here, is that the quadratures
do not give the pump phase dependence, which intuitively shows the coherent pulse may
be entangled with the qubit, resulting in the dephasing. The quadratures conditioned
on the absence and presence of the qubit phase flip are shown in Figs. 9.8(b) and (c),
respectively. We find that the quadratures are apparently correlated with the qubit phase
flip.

Then, using each set of the quadratures, we reconstruct each Wigner function and
photon-number distribution of the reflected pulse mode. The results, which are recon-
structed without or with the correction of the inefficiency of the quadrature measurement,
are shown in Figs. 9.9 and 9.10, respectively. Even when we do not use the correction,
we clearly see the correlation between the photon number in the reflected pulse mode and
the presence of the qubit phase flip.

From now on, to characterize the QND detection more quantitatively, we focus on the
quantum states which are reconstructed through the maximum likelihood method with
the correction of the measurement inefficiency.

Without being conditioned on the outcome of the qubit readout, the obtained state
is an incoherent mixture of the coherent states which are reflected by the cavity with
the qubit in the ground and excited states. Importantly, the interaction for the photon
detection retains the photon-number distribution with a survival probability of 0.87±0.03,
which is calculated from the ratio of the average photon number of the reflected pulse
mode to that of the input. From the results of Figs. 9.5 and 9.10(b), we confirm that the
qubit detects an itinerant microwave photon without destroying the photon. Nevertheless,
we also need to confirm the correlation beween the itinerant photon and the presence of
the qubit phase flip, since a QND detection is characterized by successive correlation
measurements, such as an assignment fidelity [81].

Figures 9.10(c)–(f) show the conditioned results. In the case without a qubit phase flip,
the reflected pulse mode is in the vacuum state with a fidelity of 0.9844± 0.0002 (theory:
0.9894), as shown in Figs. 9.10(c) and (d). The weak squeezing seen in the Wigner
function is due to the finite probability of two-photon occupation (∼ 0.007) in the pulse
mode and the coherence between the vacuum and the two-photon state. On the other
hand, for the case with a qubit phase flip [Figs. 9.10(e) and (f)], the reflected pulse mode
is in the single-photon state with a fidelity of 0.84 ± 0.02 (theory: 0.82). The infidelity
is mainly due to the internal loss of the cavity and dark counts. The small anisotropy
in the observed Wigner function is attributed to the incomplete phase flip of the qubit,
which does not erase the coherence completely. Those results prove that the outcome
of the qubit readout is strongly correlated to the photon-number state of the reflected
pulse mode and constitutes a QND single-photon detection. The system also works as a
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heralded single-photon generator. Since the QND detection maintains the pulse mode as
long as the pulse bandwidth is within the cavity bandwidth, we can control the temporal
mode shape of the heralded single photon by tuning the envelope of the input coherent
pulse.
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Figure 9.8: Quadratures of the pulse mode, which is reflected by the cavity with the qubit
prepared in the superposition state |+⟩. (a) Unconditional quadratures of the reflected
pulse mode as a function of the pump phase. (b) The same conditioned on the absence
of the qubit phase flip. (c) The same conditioned on the detection of the qubit phase
flip. The middle plots are the probability densities of the quadratures measured with the
pump phase of 0. The right plots are the probability densities of the quadratures with all
the pump phases. The red lines depict the theoretical ones of a vacuum state.
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Figure 9.9: Quantum state tomography of the reflected pulse mode without loss correction.
(a) Unconditional Wigner function and (b) photon-number distribution after interaction
with the qubit prepared in the state |+⟩. The blue bars in (b) show the distribution in the
reflected pulse, while the thin black frames depict that in the input pulse. (c), (d) The
same conditioned on the absence of the qubit phase flip. (e), (f) The same conditioned
on the detection of the qubit phase flip.
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Figure 9.10: Quantum state tomography of the reflected pulse mode with loss correction.
(a) Unconditional Wigner function and (b) photon-number distribution in the pulse mode
reflected by the cavity with the qubit in the state |+⟩. The blue bars in (b) show the
distribution in the reflected pulse, while the thin black frames depict that in the input
pulse. (c), (d) The same conditioned on the absence of the qubit phase flip. (e), (f) The
same conditioned on the detection of the qubit phase flip.
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9.5 Qubit-photon entanglement

Here, we study the entanglement between the qubit and the reflected pulse mode. As
explained before, the qubit can be entangled with the itinerant photon upon reflection as
|Ψ⟩ = √

p0|+⟩|0⟩+√
p1|−⟩|1⟩.

One of the interesting features of an entangled state is that a composite system in an
entanglement gives a correlation in the readout outcomes regardless of the measurements
basis. For example, when the qubit in the entangled state |Ψ⟩ is projected onto the x
basis, the composite system is projected in N|+⟩⟨+|Ψ⟩ = |+⟩|0⟩ or N|−⟩⟨−|Ψ⟩ = |−⟩|1⟩,
depending on the qubit readout outcome, whereN describes the normalization. Moreover,
when the qubit is projected in the y basis, the system is projected onto N|+ i⟩⟨+i|Ψ⟩ =
| + i⟩(√p0|0⟩ + i

√
p1|1⟩) or N| − i⟩⟨−i|Ψ⟩ = | − i⟩(√p0|0⟩ − i

√
p1|1⟩), where | ± i⟩ =

1√
2
(|g⟩±i|e⟩). Then, when the qubit is projected in the z basis, the system is projected onto

N|g⟩⟨g|Ψ⟩ = |g⟩(√p0|0⟩+
√
p1|1⟩) or N|e⟩⟨e|Ψ⟩ = |e⟩(√p0|0⟩−

√
p1|1⟩). To observe these

correlations, we characterize the quantum states in the reflected pulse mode, together
with the qubit readouts in the three orthogonal bases. The conditional Wigner functions,
reconstructed without and with the correction of the measurement inefficiency, are shown
in Figs. 9.11 and 9.12, respectively. In both cases, the outcomes of the qubit readout in the
x basis shows the correlation in the Fock basis of the reflected pulse mode. Furthermore,
the outcomes of the qubit readout in the y and z bases shows the correlations in the p
and x axes in the quadrature space, respectively. These results qualitatively indicate that
the composite system of the qubit and the reflected pulse mode are entangled.

Then, to verify the entanglement quantitatively, we perform a full quantum state to-
mography of the composite system of the qubit and the reflected pulse mode. Generally
speaking, to perform quantum state tomography of a composite system, we need to mea-
sure the system with the tensor product of the complete orthogonal measurement basis
of each subspace. Here, we should measure the qubit-photon system in the three Pauli
bases of the qubit and in the quadrature basis of the photonic mode. Thus, the experi-
mental data which are used in Figs. 9.11 and 9.12 include the necessary information for
the quantum state tomography of the composite system.

Furthermore, we apply the iterative maximum likelihood method to the composite
system. Now, the projection operator of the quadrature Π̂(x, ϕ) is replaced by the tensor
product of the projection operators as

Π̂(±, σ̂ : x, ϕ) = |±, σ̂⟩⟨±, σ̂| ⊗ Π̂(x, ϕ), (9.2)

where ± depicts the readout outcome of the qubit, σ̂ depicts the Pauli basis of σ̂x, σ̂y,
and σ̂z, |±, σ̂⟩ is an eigenstate with the eigenvalue of ± in the basis of σ̂. In other words,
|±, σ̂x⟩ = |±⟩, |±, σ̂y⟩ = | ± i⟩, and |±, σ̂z⟩ = |g⟩ or |e⟩. When the inefficiency of the
quadrature measurement of the photonic mode is corrected, the projection operator can
be rewrriten as

Π̂′(±, σ̂ : x, ϕ) = |±, σ̂⟩⟨±, σ̂| ⊗ Π̂′(x, ϕ), (9.3)

where Π̂′(x, ϕ) =
∑nc

k=0 Â
†
k Π̂(x, ϕ) Âk and Âk is the Kraus operator describing the photon

loss, and nc is a cutoff photon number (see Sec. 8.3). Here, nc is set to 2.
The density matrix of the composite system, which is reconstructed without or with

the loss correction, is shown in Fig. 9.13 (a) or (b), respectively. The correlation in
the diagonal elements enables the QND detection of an itinerant photon. Moreover, the
off-diagonal elements indicate the presence of entanglement. Here, we are interested in
the quantum state without the photon loss in the quadrature measurement, and then
quantitatively evaluate the entanglement of the density matrix reconstructed with the
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Figure 9.11: Conditional Wigner tomography of the reflected pulse mode with the qubit
projected onto the three orthogonal measurement bases, without loss correction. (a),
(b) Wigner function conditioned on the qubit readout outcomes in the x measurement
basis. (c), (d) The same with the qubit readout in the y measurement basis. (e), (f) The
same with the qubit readout the z measurement basis.

correction of the measurement inefficiency. We calculate the negativity N (ρ) of the com-
posite system from the density matrix and obtain N (ρ) = 0.296± 0.005 > 0, quantifying
the entanglement [121]. Note that for the given value of the average photon number |αin|2,
the maximum possible value of the negativity in the composite system is 0.346. The fi-
delity of the experimentally obtained density matrix to the one with the ideal controls
and measurements is found to be 0.957± 0.003. The high state fidelity indicates that the
interaction between the qubit and the itinerant microwave photon can be used as a two
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Figure 9.12: Conditional Wigner tomography of the reflected pulse mode with the
qubit projected onto the three orthogonal measurement bases, with loss correction. (a),
(b) Wigner function conditioned on the qubit readout outcomes in the x measurement
basis. (c), (d) The same with the qubit readout in the y measurement basis. (e), (f) The
same with the qubit readout the z measurement basis.

qubit gate.
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Figure 9.13: Qubit-photon entanglement. (a) The density matrix of the system consisting
of the qubit and the reflected pulse mode, which is reconstructed without the correction of
the inefficiency in the quadrature measurement of the pulse mode. (b) The same with the
loss correction. The blue and red bars respectively show the real and imaginary parts of
the experimentally obtained density matrix. The black wireframes are the density matrix
in the ideal case. The qubit state is represented in the X basis (|+⟩, |−⟩), and the state
in the reflected pulse mode is represented in the photon-number basis (|n⟩; n=0,1,2).



Chapter 10

Conclusion and prospects

10.1 Nonclassical photon-number distribution

We developed a circuit-QED scheme to characterize a microwave squeezed vacuum in the
Fock basis. By analyzing the qubit excitation spectrum in a cavity driven continuously
by the squeezed vacuum, we determined the photon-number distribution, which is asso-
ciated with the squeezed vacuum in a propagating mode according to the input-output
relation. Most importantly, the distribution fulfilled Klyshko’s criterion for nonclassicality.
It shows that the qubit excitation spectrum with photon-number splitting can distinguish
a nonclassical state from classical states, such as a thermal state and a coherent state.

We adopted the weak probe power not to disturb the cavity state. However, the finite
qubit drive power not only improved the signal-to-noise ratio but also distorted the peak
ratio in the qubit excitation spectrum from the actual photon-number distribution in the
cavity. This distortion forced us to fit the experimental data with a numerical simulation
to obtain the actual photon-number distribution. However, we also confirmed that the
peak ratio corresponds to the actual photon-number distribution in the weak qubit drive
limit. It shows that the actual photon-number distribution can be obtained from the qubit
spectrum by improving the signal-to-noise ratio of the cavity probe with amplification by
a JPA.

Our scheme can apply to various other quantum states propagating through a waveg-
uide. Moreover, in combination with displacement operations, it allows acquiring the
necessary information about an arbitrary quantum state in a propagating mode, i.e., to
implement quantum-state tomography [19].

10.2 Wigner quantum state tomography

We demonstrated Wigner quantum state tomography for itinerant microwave photons.
We measured the quadratures of the microwave photons in the nearly-quantum limit using
a JPA as a phase-sensitive amplifier. A coherent state in a pulse mode was reconstructed
from the quadrature measurements using an iterative maximum likelihood method.

Then, we also performed Wigner tomography with loss correction. To avoid underes-
timation or overestimation of a quantum state, we verified a vacuum state in the propa-
gating mode in which a target quantum state was generated. Using the thermal-photon-
induced qubit dephasing, we confirmed that the thermal photon in the propagating mode
was well suppressed within the error of the measurement efficiency. Moreover, the ef-
ficiency of the quadrature measurement was also calibrated to be 0.43 ± 0.01 using a
coherent state which was calibrated by the cavity-drive-induced qubit dephasing.

193



194 CHAPTER 10. CONCLUSION AND PROSPECTS

For simplicity, we performed the Wigner quantum state tomography for a coherent
state in a pulse mode. However, this scheme can be applied to an arbitrary quantum state
from a circuit QED system in the dispersive regime, which can be a basic component for
a quantum state emitter [32, 102, 33, 34]. Note that the average photon number of the
input state should be small enough not to saturate the JPA gain.

High-efficiency Wigner quantum state tomography without loss correction can be a
more reliable tool for characterizing microwave itinerant photons. Furthermore, for exper-
iments on continuous monitoring and real-time feedback, the improvement of the quadra-
ture measurement efficiency is indispensable [104, 103]. In our current experimental setup,
the measurement efficiency can be limited by the propagation loss between the circuit
QED system and the JPA. The propagation loss is mostly due to the circulators, which
are necessary for reflection-type interactions. To improve the measurement efficiency, we
need to use transmission-type interactions, such as a device based on chiral quantum
optics [122] and directional amplifiers [53, 123].

10.3 QND detection

We demonstrated a QND detection of an itinerant microwave photon by utilizing an
entangling gate with a transmon qubit in a far-detuned three-dimensional cavity. We
experimentally confirmed that the input single photon induced a phase-flip of the qubit
upon reflection by the cavity. By using a well-calibrated coherent pulse as an input, the
quantum efficiency and the dark-count probability were found to be 0.84 and 0.0147,
respectively. Then, the quantum state in the reflected pulse mode was reconstructed
using the iterative maximum likelihood method with correction of the inefficiency of the
quadrature measurement. We found a strong correlation between the presence of the single
photon and the qubit phase flip, indicating that we have achieved high-efficiency QND
detection of an itinerant microwave photon. Finally, we also confirm that the composite
system of the qubit and the reflected pulse mode was an entangled state, which shows
the interaction between the qubit and the itinerant photon via the cavity mode can be
applied as a two-qubit gate between them.

The quantum efficiency or the fidelity of the entangling gate was mainly limited by
the internal loss of the cavity. If a state-of-the-art microwave cavity [24] were used in
our scheme, the fidelity could reach almost unity. The high-efficiency entangling gate
between a localized qubit and a flying qubit can stimulate a new architecture in a quantum
network [124]. In this direction, the insertion loss of circulators is critical. Thus, we need
to consider implementing a lossless superconducting circulator [125, 126] or to realize a
chiral or directional interaction between an itinerant photon and a localized mode [122].

Here, we applied the QND detection for a single-photon state in a pulse mode. How-
ever, the detection scheme can be readily applied to many-photon states, where the qubit
detects the even/odd parity of the photon number in the pulse mode. This can be applied
to Wigner quantum state tomography of multi-photon states [21] as well as to heralded
generation of a Schrödinger cat state in an itinerant mode [127, 128]. Moreover, by cascad-
ing the QND detectors with different conditional phases, we can realize a number-resolved
photon counter for a microwave pulse mode [11].
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Appendix A

Quantization of circuits

Here, we explain how to quantize superconducting circuits. In this thesis, we consider
two-terminal electrical elements, such as capacitors, inductors, and Josephson junctions.

Before proceeding to an explanation of each element, a generalized magnetic flux and
electric charge of a two-terminal element are defined as

Φ =

∫ t

−∞
dt V, (A.1)

Q =

∫ t

−∞
dt I, (A.2)

where V is the relative voltage between the nodes and I is the current through the
branch. As we will see later, each electrical element is characterized by a relation between
the generalized magnetic flux Φ and the generalized electric charge Q.

A.1 Capacitor

A capacitor is an element which can store an electric charge om the two electrodes. The
accumulation of charges of opposite sign on the electrodes creates an electric field in the
capacitor, in a direction from the positive to the negative electrodes. With the line integral
of the electric field, we can derive the relative voltage between the two electrodes:

V =

∫ end

beginning

d⃗l · E⃗. (A.3)

From Gauss’s law, the electric field which the electrodes generates is proportional to the
total electric charge. From this, we can obtain a linear relationship between the relative
voltage V and the electric charge Q:

Q = CV, (A.4)

where C is a capacitance, a coefficient which relates the electric charge stored in a capacitor
to the voltage produced across it. With the generalized magnetic flux expressed as an
integral over time with respect to the voltage, we obtain a relationship between the time
derivative of the magnetic flux and the electric charge:

Q = CΦ̇. (A.5)
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Figure A.1: Relation of the generalized magnetic flux and electric charge of a capacitor.

Consider an electric charge Q stored by a capacitor at time t. Then the energy stored
inside the capacitor is calculated by

EK =

∫ t

−∞
dt IV

=

∫ t

−∞
dQ

dt

dQ
IV

=

∫ t

−∞
dQ

Q

C

=
Q2

2C

=
CΦ̇2

2
,

(A.6)

where the energy is represented in terms of the magnetic flux. When we proceed to the
node flux representation, we will find that this energy corresponds to the kinetic energy.

A.2 Inductor

An inductor is an element which can store a magnetic flux around a wire. The current I
flowing in the inductor is associated with the magnetic field B⃗ from Ampère’s law:

I =
1

µ0

∮
around

d⃗l · B⃗, (A.7)

where µ0 is the vacuum permeability. With the surface integral of the magnetic field, we
can calculate the magnetic flux Φ and then obtain the linear relationship between Φ and
the current I as

Φ = LI, (A.8)

where L is the inductance, a coefficient which relates the current flowing in an inductor
to the magnetic flux stored in it. From Lenz’s law, we obtain

V =
dΦ

dt
, (A.9)

where V is the relative voltage between the two ends of the inductor. In comparison with
the definition of the generalized magnetic flux as written in Eq. (A.1), we confirm that the
generalized magnetic flux exactly corresponds to the magnetic flux stored in the inductor.
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Figure A.2: Relation of the generalized magnetic flux and electric charge of an inductor.

Finally, we can derive the relationship between the magnetic flux and the electric charge
from Eqs. (A.2), (A.8) as

Q̇ =
Φ

L
. (A.10)

If a magnetic flux Φ is stored at time t, the stored energy in the inductor is calculated
as

EU =

∫ t

−∞
dt IV

=

∫ Φ

0

dΦ
dt

dΦ
IV

=

∫ Φ

0

dΦ
Φ

L

=
Φ2

2L
,

(A.11)

where the energy is represented in terms of the magnetic flux. When we proceed to the
node flux representation, we will find that this energy corresponds to the potential energy.

A.3 Josephson junction

A Josephson junction is an element which is made by a thin insulator sandwiched be-
tween two superconductors. In a Josephson junction, a Cooper pair can tunnel quantum-
mechanically through the insulating barrier, producing a Josephson current. Here, we
explain how to treat the Josephson current in a circuit.

From the dc Josephson effect, we have

I = Ic sinϕ, (A.12)

where Ic is the critical current of the Josephson junction, and ϕ is the gauge-invariant
phase difference between the two superconductors.

From the ac Josephson effect, we have

V =
ℏ
2e

dϕ

dt
, (A.13)

where ℏ = h/2π is the reduced Planck constant, and e is the elementary electric charge.
Here, we can associate the phase difference across the junction with the generalized

magnetic flux:
Φ = ϕ0ϕ, (A.14)
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Figure A.3: Relation of the generalized magnetic flux and electric charge of a Josephson
junction.

where ϕ0 = ℏ
2e

is the reduced magnetic flux quantum. We confirm that Φ in the ac
Josephson effect in Eq. (A.13) satisfies the definition of the generalized magnetic flux in
Eq. (A.1):

V =
dΦ

dt
. (A.15)

The ac Josephson effect is therefore analogous to Lenz’s law. The dc Josephson effect can
be rewritten with the generalized magnetic flux as

I = Ic sin

(
Φ

ϕ0

)
. (A.16)

From the above relation between the current and magnetic flux, together with the electric
charge of Eq. (A.2), we derive the relation between the magnetic flux and the electric
charge:

Q̇ = Ic sin

(
Φ

ϕ0

)
. (A.17)

Comparing this with Eq. (A.10), we may find that the only difference is whether the
relation between Q̇ and Φ is linear or not. Therefore, we can understand the behavior
of a Josephson junction as a kind of nonlinear inductor to some extent. However, a
Josephson junction does not exactly correspond to a nonlinear inductor due to the periodic
condition of the generalized magnetic flux Φ, given that the magnetic flux is defined by
the phase difference which is itself of a periodic nature. As we will discuss later in
the quantization procedure of the transmon qubit, when the potential energy (tunneling
energy of the Josephson junction) is much larger than the corresponding Kinetic energy
(capacitive energy), the dynamic range of the magnetic flux is limited around the potential
minimum, which makes the periodic condition irrelevant. In that case, we can consider
the generalized magnetic flux in a Josephson junction to be the same as in linear elements,
such as a capacitor and an inductor.

If the generalized magnetic flux Φ is stored at time t, the stored energy in the Josephson
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Figure A.4: (a) Example of a closed loop circuit. (b) Schematic of Kirchhoff’s law
described in Eq. (A.20). (c) Schematic of Kirchhoff’s law described in Eq. (A.21).

junction EU is calculated as

EU =

∫ t

−∞
dt IV

=

∫ Φ

0

dΦ
dt

dΦ
IV

=

∫ Φ

0

dΦ Ic sin

(
Φ

ϕ0

)
= EJ

[
1− cos

(
Φ

ϕ0

)]
,

(A.18)

where we define the tunneling (Josephson) energy as EJ = Icϕ0. Neglecting the constant
energy term since it does not affect the dynamics of our system, we set

EU = −EJ cos

(
Φ

ϕ0

)
. (A.19)

We will find that this energy corresponds to the potential energy in the node flux repre-
sentation

From the structure of the separated electrodes in the Josephson junction, a capacitor
is formed in parallel. However, when the Josephson junction is used for a transmon qubit
or a Josephson parametric amplifier, the junction capacitance is relatively small and is
sometimes neglected. Or, the capacitance can be included in a capacitance which is placed
in parallel with the Josephson junction.
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A.4 Equations of motion

As shown in Fig. A.4(a), for the closed-loop circuit, we have twice as many degrees of
freedom as the number of elements (Φi, Qi for i = a, b, · · · ), where i is the label for each
element, and Φi, Qi are the generalized magnetic flux and electric charge of element i,
respectively. However, the degrees of freedom are not independent due to two types of
constraints. The first one is the relation between Φi and Qi, as previously discussed. The
second constraint is imposed by Kirchhoff’s laws, written as∑

all i in loop l

Φi = Φ̃l (A.20)

∑
all i arriving at node n

Qi = Q̃n, (A.21)

where Φ̃l, Q̃n are the constant magnetic flux in the loop l and the constant electric
charge at the node n, respectively. As schematically shown in Fig. A.4(b), Kirchhoff’s
law of Eq. (A.20) gives the path-independent uniqueness condition of the electric potential
energy. As schematically represented in Fig. A.4(c), Kirchhoff’s law of Eq. (A.21) means
the conservation of electric charge.

Therefore, we can derive the equations of motion for the circuit from these two kinds of
constraints. However, by taking into account only one of the equations in Kirchhoff laws,
we can still sufficiently define the degrees of freedom and derive the equations of motion
of the circuit. If we proceed with only Eq. (A.20), we enter “node flux representation”
and if we proceed with only Eq. (A.21), we find “loop charge representation”.

A.4.1 Node flux representation

As shown in Fig. A.5(a), in the node flux representation, the absolute generalized magnetic
flux Φn assigned at each node n is the independent degree of freedom describing the
equations of motion. Note that the absolute generalized magnetic flux is defined by the
time integral of the relative voltage from the ground. In this representation, one can
easily confirm that Eq. (A.20) is automatically satisfied. For simplicity, we can determine
the ground at one of the nodes as Φg = 0, as shown in Fig. A.5(a). Then, the final
task is to satisfy the Kirchhoff law of Eq. (A.21) by considering the relation between the
magnetic flux and the electric charge. Here, we use the time derivative of Eq. (A.21) for
convenience.

To satisfy the constraint of Eq. (A.21), we need to calculate the total electric charge

at node n. The electric charge Q
(n)
i at node n through element i can be calculated by

using the absolute magnetic fluxes at nodes n and m according to the element i, where
node m is the node on the opposite side of element i, with respect to node n.

When element i is a capacitor of capacitance Ci, the electric charge Q
(n)
i arriving at

node n from node m is characterized by

Q̇
(n)
i = Ci(Φ̈n − Φ̈m), (A.22)

which is determined from the time derivative of Eq. (A.5).

When element i is an inductor of inductance Li, the electric charge Q
(n)
i arriving at

node n from node m is characterized by

Q̇
(n)
i =

Φn − Φm

Li

, (A.23)
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Figure A.5: (a) Example of the node flux representation. (b) Example of the loop charge
representation.

which is directly derived from Eq. (A.10).

When element i is a Josephson junction of critical current Ic,i, the electric charge Q
(n)
i

arriving at node n from node m is characterized by

Q̇
(n)
i = Ic,i sin

(
Φn − Φm

ϕ0

)
, (A.24)

which is directly derived from Eq. (A.17).
The time derivative of Eq. (A.21) is used to satisfy the constraints of Eq. (A.21) and

to obtain the equations of motion: ∑
i at n

Q̇
(n)
i = 0, (A.25)

where i labels the element which is connected to node n. Furthermore, we can derive as
many equations of motion as the number of nodes which have an independent degree of
freedom Φn. Now, the number of the degrees of freedom corresponds to the number of
independent equations of motion we have. Therefore, the equations of motion for the set
of Φn can be solved. Note that the equations are second-order differential equations for
Φn.

A.4.2 Loop charge representation

In the loop charge representation, each independent loop has a degree of freedom; an
electric charge Ql which flows in the loop. Note that Eq. (A.21) is automatically satisfied
in this representation. As shown in Fig. A.5(b), from the definition of Ql, we can calculate
the total electric charge at each element using the principle of superposition, and then
calculate the relative magnetic flux from the relation between the magnetic flux and the
electric charge. The equations of motion are obtained from the time derivative of the
constraints imposed by Eq. (A.20): ∑

i in l

Φ̇
(l)
i = 0, (A.26)
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where i labels the element in loop l. Since the equations of motion can be derived from
the constraint for each independent loop, we can obtain as many equations of motion as
the number of the degrees of freedom Ql in the loop. Then, the equations of motion for
the set of Ql can be solved. Note that the equations are also second-order differential
equations for Ql.

However, the definition of the independent loop is not unique. Moreover, the relation
between the generalized magnetic flux and electric charge in a Josephson junction is
not linear, and the relative magnetic flux which is calculated from the electric charge
is nontrivial [See Eq. (A.17)]. Therefore, the loop charge representation is considered
to be more complicated than the node flux representation. In this thesis, the node flux
representation will be used hereinafter.

A.5 Lagrangian formalism

Now, we understand how to describe a closed-loop circuit and how to derive its equations
of motion. Here, we study the Lagrangian formalism as a preparation for the quantization
of circuits.

Using the absolute generalized magnetic fluxes, the equation of motion Eq. (A.25) is
represented more specifically as∑

i at n

[
Ci(Φ̇n − Φ̇m) or

Φn − Φm

Li

or Ic,i sin

(
Φn − Φm

ϕ0

)]
= 0, (A.27)

where i labels the capacitor, the inductor or the Josephson junction which is connected
to node n. To make Eq. (A.27) consistent with the Euler-Lagrange equation

d

dt

∂Ln

∂Φ̇n

− ∂Ln

∂Φn

= 0, (A.28)

we can define the Lagrangian Ln at node n as

Ln =
∑
i at n

[
Ci

2
(Φ̇n − Φ̇m)

2 or − 1

2Li

(Φn − Φm)
2 or EJ,i cos

(
Φn − Φm

ϕ0

)]
, (A.29)

where EJ,i = Ic,iϕ0 is the Josephson energy in Josephson junction i. Note that the
Lagrangian has dimensions of energy.

Moreover, by considering all the nodes in the circuit, we obtain the total Lagrangian
of the circuit:

L =
∑
all i

[
Ci

2
(Φ̇n − Φ̇m)

2 or − 1

2Li

(Φn − Φm)
2 or EJ,i cos

(
Φn − Φm

ϕ0

)]
, (A.30)

where i labels all the elements, and n, m label both of the nodes adjacent to the element.
We confirm that the total Lagrangian also gives the equation of motion Eq. (A.27) by the
Euler-Lagrange equation:

d

dt

∂L
∂Φ̇n

− ∂L
∂Φn

= 0. (A.31)

We can understand the total Lagrangian as the subtraction of the total potential
energy for the generalized magnetic fluxes EU from the total kinetic energy EK. In electrical
circuits, the kinetic energy corresponds to a capacitive energy and the potential energy
corresponds to an inductive or Josephson energy.
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In summary, we define the absolute magnetic flux Φn at each node with the ground
at one of the nodes. We construct the Lagrangian which is defined by the subtraction of
the potential energy from the kinetic energy:

L = EK − EU, (A.32)

where

EK =
∑
all i

Ci

2
(Φ̇n − Φ̇m)

2, (A.33)

and

EU =
∑
all i

[
1

2Li

(Φn − Φm)
2 or − EJ,i cos

(
Φn − Φm

ϕ0

)]
, (A.34)

where i labels all the capacitors, inductors and Josephson junctions in the closed-loop cir-
cuit. Then, the equations of motion are derived for each magnetic flux Φn from Eq. (A.31).

A.6 Hamiltonian formalism

While the Lagrangian is described by Φn and Φ̇n, the Hamiltonian is described by Φn and
Qn, where Qn is the conjugate momentum of Φn and is calculated by

Qn =
∂L
∂Φ̇n

. (A.35)

Note that Qn does not exactly correspond to the electric charge at the element i, although
Qn has units of electric charge. Rather, the electric charge in element i can be calculated
from the difference of the absolute magnetic fluxes Φn in the Hamiltonian formalism and
by the relation between the relative magnetic flux and the electric charge in the element
i.

Then, we obtain the Hamiltonian through a Legendre transformation:

H =
∑
n

QnΦ̇n − L. (A.36)

Note that the Hamiltonian should be represented by Φn and Qn without including any
Φ̇n. To represent the Hamiltonian with the set of Φn and Qn, we need to describe Φ̇n

with Qn from Eq. (A.35). At this point, it is useful to describe the relation between Φ̇n

and Qn using linear algebra. First, we define the magnetic flux vector as

Φ =


Φ0

Φ1

...
Φn

...

 , (A.37)

which is a one-dimensional column vector. The capacitive energy in the Lagrangian of
Eq. (A.33) can be described by the magnetic flux vector Φ and the capacitance matrix
C since the Lagrangian is in the quadratic form of Φ̇ = dΦ

dt
:

EK =
1

2
Φ̇TCΦ̇. (A.38)

Then, the Lagrangian can be written as

L =
1

2
Φ̇TCΦ̇− EU. (A.39)
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Note that the capacitance matrix is a symmetric matrix since the Lagrangian is symmetric
under the exchange of magnetic flux at the nodes of each capacitor: C = CT. We can
also write a conjugate momentum vector Q as

Q =


Q0

Q1

...
Qn

...



=


∂L
∂Φ̇0
∂L
∂Φ̇1

...
∂L
∂Φ̇n

...


=
∂L
∂Φ̇

= CΦ̇.

(A.40)

This corresponds to Eq. (A.35). Then, we obtain

Φ̇ = C−1Q, (A.41)

where C−1 is the inverse matrix of C and is also a symmetric matrix. We represent EK
and QTΦ̇ using the following formula:

EK =
1

2
Φ̇TCΦ̇

=
1

2
QTC−1TCC−1Q

=
1

2
QTC−1Q,

(A.42)

and
QTΦ̇ = QTC−1Q̇, (A.43)

where we use C−1T = C−1. The Hamiltonian is described with the set of Φn and Qn:

H =
∑
n

QnΦ̇n − L

= QTΦ̇− EK + EU

= QTC−1Q− 1

2
QTC−1Q+ EU

=
1

2
QTC−1Q+ EU.

(A.44)

Finally, the equations of motion for the set of Φn and Qn are calculated by

Φ̇n =
∂H
∂Qn

Q̇n = − ∂H
∂Φn

,

(A.45)

which correspond to the Euler-Lagrange equations in the Lagrangian formalism.
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A.7 Quantization

In quantum mechanics, classical variables are replaced by their corresponding operators:

Φn → Φ̂n

Qn → Q̂n

H → Ĥ.
(A.46)

Furthermore, the canonical commutation relations are imposed on the pairs of conjugate
operators:

[Φ̂n, Q̂n] = iℏ. (A.47)

In the Schrödinger picture, the dynamics of the state of the circuit are described by
the wave function |Ψ⟩ which evolves in time as

iℏ
∂

∂t
|Ψ⟩ = Ĥ|Ψ⟩. (A.48)

The time evolution of the expectation value of an observable is calculated by the corre-
sponding operator and the wave function.

In the Heisenberg picture, the observable Ô evolves according to

d

dt
Ô =

1

iℏ

[
Ô, Ĥ

]
. (A.49)

The time evolution of the expectation value of the observable is calculated by the operator
and the initial wave function.





Appendix B

Simulation on nonclassical
photon-number distribution

In this section, we present the formula used in the numerical calculations.

B.1 Hamiltonian

In the setup considered (Fig. B.1), a qubit-cavity system (System A) is subject to a
continuous squeezed vacuum field generated by a JPA (System B). The Hamiltonian of
System A, including the qubit drive and the cavity probe fields, is described by

ĤA/ℏ = ωcâ
†â+

ωq

2
σ̂z −χâ†â σ̂z +

Ωd

2
(e−iωdtσ̂+ + eiωdtσ̂−) +

Ωp

2
(e−iωptâ† + eiωptâ), (B.1)

where â and σ̂− respectively denote the annihilation operators of the cavity mode and
the qubit, σ̂z = σ̂+σ̂− − σ̂−σ̂+, ωc is the cavity resonance frequency, ωq is the qubit
resonance frequency, ωd is the qibit drive frequency, ωp is the cavity probe frequency, χ is
the dispersive shift, and Ωd and Ωp are the amplitudes of the qubit drive and the cavity
probe, respectively. The Hamiltonian of System B is given by

ĤB/ℏ = ωsb̂
†b̂+

Ωs

2
(e−2iωstb̂†2 + e2iωstb̂2), (B.2)

where b̂ is the annihilation operator of the JPA mode, and ωs is its frequency. We apply
a pump field with frequency 2ωs and amplitude Ωs to the JPA to generate a squeezed
vacuum.

By taking the free Hamiltonian ĤA0/ℏ = ωs(â
†â+b̂†b̂)+ ωd

2
σ̂z, we switch to the rotating

frame. In this frame, ĤA and ĤB are rewritten as

ĤA/ℏ = (ωc−ωs)â
†â+

(ωq − ωd)

2
σ̂z−χâ†âσ̂z+

Ωd

2
(σ̂++σ̂−)+

Ωp

2
(e−i(ωp−ωs)tâ†+ei(ωp−ωs)tâ),

(B.3)

ĤB/ℏ =
Ωs

2
(b̂†2 + b̂2). (B.4)

The squeezed vacuum field generated by System B is guided to System A through a
waveguide. We define a spatial coordinate r along the direction of propagation of the
waveguide field (see Fig. B.1). The waveguide field interacts with System A at ra and
System B at rb. Setting the microwave velocity in the waveguide to unity, the overall
Hamiltonian is written as

Ĥtotal/ℏ = ĤA/ℏ+ĤB/ℏ+
∫
dk kĉ†kĉk+

√
κJex

(
b̂†c̃rb + c̃†rb b̂

)
+
√
κex
(
â†c̃ra + c̃†ra â

)
, (B.5)
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JPA
Qubit
+ CavitySystem B System A

Cavity probe

Qubit drive

Cavity drive
(Squeezed vacuum)

Pump

Figure B.1: Schematic of the model. The output field from System B (JPA) is used
as the input for System A (qubit and cavity). The coordinate r is defined along the
propagation direction of the waveguide field.

where ĉk is the waveguide-field operator with wave number k, and κex (κ
J
ex) represents the

external coupling of System A (B) to the waveguide field. c̃r is the spatial representation
of the waveguide-field operator, as given by c̃r = (2π)−1/2

∫
dkeikrĉk. Note that the photon

frequency should be measured relative to ωs, since we are in the rotating frame.

B.2 Time evolution

We denote an arbitrary operator belonging to System A (B) by SA (SB) and investigate its
time evolution at t (t− l), where l = ra−rb(> 0) is the distance between the two systems.
Note that SA(t) and SB(t− l) are on the same light cone and are therefore relativistically
simultaneous. From Eq. (B.5), we can derive the following Heisenberg equations,

d

dt
SA =

i

ℏ
[ĤA, SA] + i

√
κex [â

†, SA]c̃ra(t) + i
√
κex c̃

†
ra(t)[â, SA], (B.6)

d

dt
SB =

i

ℏ
[ĤB, SB] + i

√
κJex [b̂

†, SB]c̃rb(t− l) + i
√
κJex c̃

†
rb
(t− l)[b̂, SB], (B.7)

and the input-output relation,

c̃r(t) = c̃r−t(0)− i
√
κJex θ(r − rb)θ(t− r + rb)b̂(t− r + rb)

− i
√
κex θ(r − ra)θ(t− r + ra)â(t− r + ra), (B.8)

where θ(t) is the step function. Since we analyze the stationary response, we assume that
t is sufficiently large. Therefore, c̃rb(t − l) = c̃ra−t(0) − i

√
κJex b̂(t − l)/2 and c̃ra(t) =

c̃ra−t(0)− i
√
κex â(t)/2− i

√
κJex b̂(t− l). From these equations, Eqs. (B.6) and (B.7) are
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rewritten as

d

dt
SA =

i

ℏ
[ĤA, SA] +

κex
2
La[SA]

+
√
κexκJex [â

†, SA]b̂+
√
κexκJex b̂

†[SA, â]

+ i
√
κex [â

†, SA]c̃ra−t(0) + i
√
κex c̃

†
ra−t(0)[â, SA],

(B.9)

d

dt
SB =

i

ℏ
[ĤB, SB] +

κJex
2
Lb[SB]

+ i
√
κJex [b̂

†, SB]c̃ra−t(0) + i
√
κJex c̃

†
ra−t(0)[b̂, SB],

(B.10)

where La[SA] = [â†, SA]â + â†[SA, â]. The Heisenberg equation for the product oper-
ator SBSA can be derived from Eqs. (B.9) and (B.10). Care should be taken that
[c̃ra−t(0), SB(t−l)] = i

√
κJex[b̂(t−l), SB(t−l)]/2 and [c̃ra−t(0), SA(t)] = i

√
κex[â(t), SA(t)]/2,

both of which result from Eq. (B.8).

In the considered setup, we do not apply an input field to System A through the
waveguide. Therefore, denoting the initial state vector of the overall system by |ψi⟩, we
can rigorously take c̃r(0)|ψi⟩ = 0. Then, the equation of motion for ⟨SASB⟩ = ⟨ψi|SASB|ψi⟩
is written as

d

dt
⟨SASB⟩ =

i

ℏ
⟨[ĤA, SA]SB⟩+

i

ℏ
⟨SA[ĤB, SB]⟩

+
√
κexκJex ⟨[SA, â]b̂

†SB⟩+
√
κexκJex ⟨[â†, SA]SBb̂⟩

+
κex
2
⟨La[SA]SB⟩+

κJex
2
⟨SALb[SB]⟩. (B.11)

Up to here, we assumed for simplicity that Systems A and B damp only through the
radiative coupling to waveguide field. Here, we include other dissipation channels, such
as the energy relaxation of cavities A and B into other environments, and the energy
relaxation and pure dephasing of the qubit in System A. Furthermore, we take account of
the thermal excitation of the systems through the environment. Then, Eq. (B.11) should
be replaced with the following one,

d

dt
⟨SASB⟩ =

i

ℏ
⟨[ĤA, SA]SB⟩+

i

ℏ
⟨SA[ĤB, SB]⟩

+
√
κexκJex ⟨[SA, â]b̂

†SB⟩+
√
κexκJex ⟨[â†, SA]SBb̂⟩

+
κJex
2
⟨SALb[SB]⟩+

κ(1 + nth)

2
⟨La[SA]SB⟩

+
κnth

2
⟨La† [SA]SB⟩+

γ(1 + pth)

2
⟨Lσ[SA]SB⟩

+
γpth
2

⟨Lσ† [SA]SB⟩+
γϕ
2
⟨Lσ†σ[SA]SB⟩.

(B.12)

where κ is the total cavity energy-relaxation rate, nth is the average thermal photon
number in the cavity, γ = 1/T1 is the qubit energy-relaxation rate, pth is the thermal
excitation probability of the qubit, and γϕ is the qubit pure dephasing rate. Note that
the internal loss and the thermal photon excitation of the JPA mode are neglected in
Eq. (B.12).
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B.3 Linear response

In the Fock-state basis, an arbitrary state of the composite system is written as a su-
perposition of |q, n,m⟩, where q(= g, e) denotes the qubit state in System A, and n and
m(= 0, 1, · · · ) denote the cavity photon numbers in Systems A and B, respectively. The
density matrix of the composite system is obtained by setting SASB = Sqnm,q′n′m′ =
|q, n,m⟩⟨q′, n′,m′| in Eq. (B.12). Since the probe field is weak, we solve this equation
perturbatively in Ωp. For this purpose, we first determine the steady-state solution
⟨Sqnm,q′n′m′⟩(0) by setting Ωp = 0 in Eq. (B.12). Then, we determine the linear response
⟨Sqnm,q′n′m′⟩(1), which is proportional to Ωpe

−i(ωp−ωd)t. Since the output probe field is
measured at a different port (Port 2 in Fig. 7.1) from the input probe field (Port 1 in
Fig. 7.1), the probe transmission coefficient is proportional to the cavity amplitude of
System A, ⟨â⟩(1) =

∑
q,n,m

√
n+ 1⟨Sqnm,q(n+1)m⟩(1). The parameters used in the numerical

calculations, which are independently determined in Sec. 7.7, are shown in Table 7.1.
The parameters characterizing the cavity drive fields (thermal, coherent, and squeezed

vacuum states) are determined by fitting the qubit spectrum with numerical results from
Eq. (B.12). Then, the photon-number distribution is determined from Eq. (B.12) in the
absence of the qubit drive and cavity probe fields (Ωd = Ωp = 0). When a thermal state
is applied as the cavity drive field, the thermal average photon number nth is used as the
fitting parameter. When a coherent state is used as the cavity drive, the Hamiltonian of
System B is replaced with

ĤB/ℏ =
Ωs

2
(b̂† + b̂). (B.13)

Then, the output field from System B becomes a coherent state. The amplitude Ωs,
corresponding to the strength of the coherent drive to the cavity, is used as an additional
fitting parameter. For the case of a squeezed vacuum drive, we need to incorporate the
loss of the waveguide between the JPA and the cavity, since the squeezed vacuum state is
degraded considerably by the loss in the waveguide. Theoretically, such waveguide loss is
taken into account by decreasing the coupling κex between the waveguide and the cavity
of System A while keeping its total energy-relaxation rate κ. Accordingly, the pump
amplitude for the JPA, Ωs, and the external coupling rate of the cavity, κex, are used as
the fitting parameters.

In the numerical simulations in Fig. 7.3, we employed the following parameters: nth =
0.20 in Fig. 7.3(a), Ωs/2π = 1.3 MHz in Fig. 7.3(b), and Ωs/2π = 4.0 MHz and κex/2π =
0.42 MHz in Fig. 7.3(c).



Appendix C

Simulation on QND detection

We explain a theoretical description of the QND detection of an itinerant photon based
on the circuit QED system in the dispersive regime.

C.1 Hamiltonian

The Hamiltonian describing the considered setup consists of three parts as

Ĥ = Ĥsys + Ĥfield + Ĥenv, (C.1)

where Ĥsys, Ĥfield, and Ĥenv respectively describe the qubit-cavity system, the interaction
between the system and the pulse mode in the 1D transmission line, and the environmental
degrees of freedom. Using the qubit operator σ̂pq = |p⟩⟨q| (p, q = g,e), Ĥsys is given by

Ĥsys/ℏ = (ωc + χ)â†âσ̂gg + [ωq + (ωc − χ)â†â]σ̂ee, (C.2)

which is identical to Eq. (9.1). The input/output port of the photon field is a semi-
infinite transmission line field interacting with the cavity in reflection geometry. Setting
the microwave velocity in the transmission line to unity, Ĥfield is given by

Ĥfield/ℏ =

∫
dk
[
kâ†kâk +

√
κex/2π(â

†
kâ+ â†âk)

]
, (C.3)

where âk is the field annihilation operator with wave number k and κex is the cavity
external coupling rate to this port. The field operator in the real-space representation is
defined by ãr = (2π)−1/2

∫
dkeikrâk. The environmental Hamiltonian Henv involves other

relaxation channels of the qubit and the cavity. The relevant parameters are κin (cavity
internal loss rate), nB = pth

1+2pth
(average thermal quantum number of the qubit bath),

γ = 1
(1+2nB)T1

(qubit relaxation rate), and γϕ,n = 1
T ∗
2
− 1

2T1
(qubit pure dephasing rate).

We model these dampings by the interaction with fictitious continuous fields similar
to Eq. (C.3). We omit their explicit forms here.

C.2 Initial state

The input pulse mode has a Gaussian envelope with pulse length (full width at half
maximum in amplitude) l and carrier frequency ωc. Its mode function fin(r) is given, in
the real-space representation, by

fin(r) =

(
8 ln 2

πl2

)1/4

2−(2r/l)2e−iωcr, (C.4)
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which is normalized as
∫
dr|fin(r)|2 = 1. We write the mode function in the time repre-

sentation as fin(−t), by setting the speed of light c = 1. The origin of the time coordinate
t is chosen so that the photon amplitude entering the cavity reaches a maximum at t = 0.
Since the quantum state in the input pulse mode is a weak coherent state, its state vector
|ψi⟩ at the initial moment t = ti is written as

|ψi⟩ = N exp

(
αin

∫
drf ∗

in(r − ti)ã
†
r

)
|vac⟩, (C.5)

where αin is the amplitude of the input coherent state (average photon number = |αin|2),
|vac⟩ is the vacuum state of the waveguide field, and N = e−|αin|2/2 is a normalization
factor. The initial state of the qubit-cavity system at the initial moment t = ti is |g, 0⟩.
The initialization error of the qubit state is taken into account as a part of the readout
errors (εgr , ε

e
r). Therefore, the initial density matrix of the overall system is written as

ρ(ti) = |g, 0⟩⟨g, 0| ⊗ |ψi⟩⟨ψi|. (C.6)

C.3 Time evolution

Throughout this study, we analyze the interaction between the input pulse mode and the
qubit-cavity system in the Heisenberg picture. The Heisenberg equations for the system
operators are obtained from Eq. (C.1). For example, a, σge and σee evolve as

d

dt
â = [−i(ωc + χ)− κ/2]â+ 2iχâσ̂ee − i

√
κex ã−t+ti(ti) + · · · , (C.7)

d

dt
σ̂ge = (−iωq − γϕ)σ̂ge + 2iχâ†âσ̂ge + · · · , (C.8)

d

dt
σ̂ee = −γ1σ̂ee + γ2σ̂gg + · · · , (C.9)

where κ = κex + κin, γ1 = γ(1 + nB), γ2 = γnB, γϕ = γϕ,n + (γ1 + γ2)/2, and the dots
represent the contributions from the environmental vacuum fluctuations. We denote the
expectation value of an operator A(t) by ⟨A⟩ = Tr{A(t)ρ(ti)}, where the initial density
matrix is defined in Eq. (C.6). From the property that a coherent state is an eigenstate
of a field operator, we can rigorously replace ãr(ti) with αinf

∗
in(r− ti). Then, the operator

equations (C.7)–(C.9) are recast into the following c -number ones,

d

dt
⟨â⟩ = [−i(ωc + χ)− κ/2]⟨â⟩+ 2iχ⟨âσ̂ee⟩ − i

√
κex αinf

∗
in(−t), (C.10)

d

dt
⟨σ̂ge⟩ = (−iωq − γϕ)⟨σ̂ge⟩+ 2iχ⟨â†âσ̂ge⟩, (C.11)

d

dt
⟨σ̂ee⟩ = −γ1⟨σ̂ee⟩+ γ2⟨σ̂gg⟩. (C.12)

Besides the above time evolution, the Y/2 and −Y/2 gates are applied to the qubit. We
treat these gates simply as instantaneous unitary transformations on the qubit operators.
The Y/2 gate at t = ti is written as(

σgg σge
σeg σee

)
→ 1

2

(
σgg + σeg + σge + σee −σgg − σeg + σge + σee
−σgg + σeg − σge + σee σgg − σeg − σge + σee

)
, (C.13)

and the −Y/2 gate at t = tg is written as(
σgg σge
σeg σee

)
→ 1

2

(
σgg − σeg − σge + σee σgg − σeg + σge − σee
σgg + σeg − σge − σee σgg + σeg + σge + σee

)
. (C.14)

At the final moment t = tf , the qubit state is measured in the Z axis with readout
errors (εgr , ε

e
r).
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Figure C.1: Pulse sequence for the QND detection of an itinerant single photon. The
interval between the π/2-gates are 800 ns for the evaluation of the quantum efficiency
and 1100 ns for the quantum state tomography of the reflected pulse mode. ti is the
initial time, tg is the second gate time, and tf is the measurement time in the numerical
calculation.

C.4 Quantum efficiency

By solving Eqs. (C.10)–(C.12) and similar equations for the terms such as ⟨aσee⟩ and
⟨a†aσge⟩, together with the qubit rotations of Eqs. (C.13) and (C.14), we calculate Pe =
⟨σee(tf)⟩ at the final moment tf . Taking account of the readout errors, we obtain the qubit

excitation probability as P̃e = εgr + ⟨σee(tf)⟩(1 − εgr − εer). In Fig. C.1, we set l = 500 ns,
ti = −400 ns, tg = 400 ns, and tf = 500 ns.

The quantum efficiency of the single-photon detection and the dark-count probability
are accessible by varying the average photon number |αin|2 in the input pulse mode.
(Theoretically, this is automatically done by solving the evolution equations perturbatively
in αin and calculating the components of P̃e proportional to |αin|0 and |αin|2.)

In Fig. C.2, we show the dependence of the quantum efficiency on the system param-
eters, κex, κin, γ, and γϕ. The following parameters are fixed here: χ/2π = 1.5 MHz,
nB = 0, l = 500 ns, and εgr = εer = 0. Considering the experimentally achieved values of
κex/2χ = 1.1, κin/2χ = 0.083, γ/2χ = 0.0014, and γϕ,n/2χ = 0.0012, we conclude that
the quantum efficiency in the experiment is limited by the internal loss of the cavity.

C.5 Density matrix of reflected pulse mode

Here, we outline the theoretical evaluation of the conditional/unconditional density matrix
of the reflected pulse mode. We first introduce the mode function fout(r) of the reflected
pulse mode. For a long input pulse (l ≫ κ−1

ex ), the pulse envelope is almost unchanged
after reflection except for the slight delay due to absorption and re-emission by the cavity.
We therefore set fout(r) = fin(r + τd), where τd is the delay time of the order of κ−1

ex .
Using this wavepacket, we define the creation operator Â† of the output photon (in the
Heisenberg picture at time t) by

Â†(t) =

∫ t−ti

0

dr f ∗
out(r − t)ã†r(t). (C.15)



216 APPENDIX C. SIMULATION ON QND DETECTION

Internal loss rate

E
xt

er
na

l c
ou

pl
in

g
 r

at
e

Relaxation rate

D
ep

ha
si

ng
 r

at
e

,n

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.2

0.4

0.6

0.8

1.0
(a) (b)

0.00 0.01 0.02 0.03 0.04
0.00

0.01

0.02

0.03

0.04

0.0

0.2

0.4

0.6

0.8

1.0

Q
uantum

 efficiency

Q
uantum

 efficiency

Figure C.2: Dependence of the quantum efficiency on the system parameters. (a) Quan-
tum efficiency as a function of κex and κin. An ideal qubit (γ = γϕ,n = 0) is assumed
here. (b) Quantum efficiency as a function of γ and γϕ,n. The optimal cavity parameters
κex = 2χ and κin = 0 are used in accordance with the result in (a).

This operator satisfies the bosonic commutation relation of [Â, Â†] = 1.
For concreteness, we hereafter focus on the density matrix conditioned on the outcome

of the qubit state (q = g,e) at the final moment tf . This density matrix is determined
from the moments of the field operators, ⟨σqq(tf)Â†m(tf)Â

n(tf)⟩ (m,n = 0, 1, · · · ) [129].
In particular, when the reflected pulse mode contains up to one photon as in the current
case, we need only three quantities, Pq = ⟨σ̂qq⟩, Aq = ⟨σ̂qqÂ⟩, and Nq = ⟨σ̂qqÂ†Â⟩. Pq

can be calculated with the prescription presented in Section C.3. For calculation of Aq

and Nq, which contain the output field operator (ãr with r > 0), we use the input-output
relation,

ãr(t) = ãr−t+ti(ti)− i
√
κexâ(t− r)θ(r)θ(t− ti − r), (C.16)

where θ is the Heaviside step function. Aq is recast into the following form,

Aq = ⟨σ̂qq(t)⟩ × α

∫ tf

ti

dt fout(−t)f ∗
in(−t)− i

√
κex

∫ tf

ti

dt fout(−t)⟨σ̂qq(tf)â(t)⟩. (C.17)

Similarly, up to the three-time correlation function is required for calculation of Nq. The
elements of the conditional density matrix ρq are determined from Pq, Aq, and Nq by

ρq00 =
Pq −Nq

Pq

, (C.18)

ρq01 =
Aq

Pq

, (C.19)

ρq11 =
Nq

Pq

. (C.20)

Taking account of the readout errors, the conditional density matrices ρ̃q are deter-
mined by

ρ̃g =
Pe(1− εer) ρ

e + Pgε
g
r ρ

g

Pe(1− εer) + Pgε
g
r

, (C.21)

ρ̃e =
Pg(1− εgr ) ρ

g + Peε
e
r ρ

e

Pg(1− εgr ) + Peεer
. (C.22)
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We confirm that the numerical results well reproduce the experimental results.
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