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Abstract *1

　コロイド懸濁液とは nm ∼ µm程度粒子が溶媒中に分散した系の総称であり、固体・
液体微粒子の懸濁液、タンパク質溶液、エマルジョンなど、ソフトマター物理学、生命
科学分野でみられる系を広く含む。コロイド懸濁液の熱平衡下における挙動は、古典
統計力学の枠組みでよく説明される [1]。具体的には、コロイドの自由度のみに注目し、
これに対して分子系と同様の手順で統計処理を行うことで、コロイド系の熱平衡挙動を
予測することが可能である。例えば、希薄なコロイド分散系の圧力 (浸透圧)や重力下
のコロイドの密度分布は、理想気体の統計力学で予測されるものと同じ形となる。一方
で、動力学については、コロイド系・分子系の間に全く異なる挙動を示す例が確認され
ている。例えば、コロイド系の臨界点近傍の密度揺らぎ [2, 3, 4]が、低分子混合系 [5]
とは異なり、非指数関数的な時間減衰を示すことが、実験的に報告されている。また、
剛体球系の結晶化頻度について、コロイドの光散乱実験によって得られた結果とシミュ
レーション結果の間に、十数桁にわたる乖離がある [6]など、ダイナミクスに関しては、
様々な未解明問題が残されている。
こういった、コロイド系・分子系の間に見られる動力学の相違は、熱平衡状態を対象

とする理論では無視されていた溶媒の自由度が、コロイド系の動力学においては重要な
役割を演じている可能性を示唆している。しかしながら、コロイド粒子・溶媒分子とい
う時空間スケールの全く異なる物質の運動がどのように結合するのかを物理的に把握す
ることは難しく、コロイド懸濁液のダイナミクスを記述する構成方程式として決定的な
ものは得られていのが現状である。
そこで、本研究では、コロイド・溶媒間の動的結合に着目し、コロイド懸濁液の相分

離動力学、剛体球コロイドの結晶化過程という、二つの基本的な自己組織化現象につい
て、実験、数値計算を用いた研究を行った。個々の事例から得られた知見をもとに、コ
ロイド・溶媒間の動的結合について明確な物理的描像を得ることを目標とした。

　我々は、実験系として PMMAコロイド系を採用し、その相分離過程を共焦点顕微鏡
により観察した。この系は、コロイドと溶媒の密度・屈折率の差を同時に最小化できる
という利点を持つ。そのため、重力の影響を抑えた３次元剛体球系の実験観察が可能と
なる。個々の粒子の運動を連続的に追跡するために、運動の遅い、直径 3μ m程度の
コロイドの合成に成功した。また、我々は、独自のセルを用い、セルへの封入時に誘起
される流れによる擾乱の影響を排除することで、コロイドの凝集過程を凝集開始時刻か
ら追跡することに成功した (第 3章)。
また、数値シミュレーション手法として流体粒子動力学 (FPD) 法 [7, 8] を用いた。

この手法は、本来固体であるコロイド粒子を、粘性の極めて高い液体粒子として近
似することにより、系全体を流体として記述する。これにより、コロイド・溶媒間に
課される移動境界問題という困難に煩わされることなく、問題をデカルト座標上で
Navier-Stokes 方程式を数値的に解くことに帰着させることができる。我々は、この手
法に fluctuating hydrodynamics という理論体系を結合させることにより、熱揺動下
でコロイド・溶媒それぞれに対して要請される統計力学上の諸法則を矛盾なく満足させ
た状態で、コロイドの熱運動をシミュレーションすることに成功した。加えて、我々
は、この手法を GPU-MPI ハイブリッド並列化により高速化することにより、大規模・

*1 The English version is below.
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長時間計算を実現した。これにより、実験結果と数値計算結果の１粒子レベルにおける
直接的な比較が可能となった (第 4章)。

　まず、コロイドの相分離動力学に関する研究結果について述べる。
我々は、実験試料として、粒子サイズは異なるが、相互作用範囲がおよそ等しい２つ

のコロイド系 (EXP1, EXP2)を用意した。これによって、コロイドの相分離動力学の
粒子サイズ依存性の有無を検証することが可能となった。実験結果を、流体力学的相互
作用 (HI)を含む FPD法、HIを完全に無視したブラウン動力学 (BD)法による計算結
果と比較したところ、時間、空間、エネルギー単位を適切にスケールすることにより、
EXP1, EXP2 および FPD による結果が極めて良い一致を見せる一方で、BDは実験
結果を再現できないことが分かった。これにより、コロイドの相分離動力学はスケール
不変であること、また、この過程において HIが極めて重要な役割を演じることが示さ
れた (第 5章)。
どのようなメカニズムで凝集体が成長するかを特徴づける量に、ドメインの成長指数

(α)という値がある。我々は、成長指数がコロイドの体積分率に応じてどのように変化
するかを、上述の PMMA系を用いて実験的に調べた。その結果、(A)十分にクエンチ
が深い条件下では、クラスター状の構造が形成される過程では成長指数が α ∼ 1/3に、
ネットワーク状の構造が形成される場合では α ∼ 1/2 となることが分かった (第 6章)。
また、この指数は、複数のコロイド分散溶液系 [9, 10]・タンパク質溶液 [11]においても
再現されることから、上記の指数は物質の詳細に依らない普遍的な指数であることを示
唆している。加えて、(B)上記の指数は HIを考慮した FPD法では再現されるが、HI
を無視した BD法では再現されないことを確認した (第 5章)。
クラスター構造の粗大化で確認された成長指数 α ∼ 1/3 は、水と油の相分離にも見

られる。この現象では、油滴 (または水滴) はブラウン運動により輸送され、衝突・合
体を繰り返すことで成長する (Smoluchowski 理論)。我々は、成長指数の類似性から、
Smoluchowski 方程式をベースとした解析をコロイド系の実験・数値計算結果に適用
し、衝突頻度 (K)と呼ばれる定数を測定した。その結果、抵抗係数を Stokes 則に設定
したK の理論予測は BDの結果を、抵抗係数を Brenner 則に従う値に設定した理論予
測は実験・FPDの結果を再現することが分かった。ここで Brenner 則とは、２つの球
が接近する場合に働く粘性抵抗に関する厳密解を指す。この抵抗係数は、２つの球の重
心間距離が粒子直径程度になると、急激に増大する。以上のことから、粒子の凝集過程
では、近接の流体力学的相互作用、つまり潤滑効果が極めて重要な役割をすると結論付
けられる (第 5章)。
ネットワーク構造の粗大化において、成長指数 α ∼ 1/2 が見られたが、その物理的

機構がなんであるかに関しては、これまでほとんど知見がなかった。我々は、上述の
(A),(B)を踏まえて、熱運揺らぎを全く無視した (温度ゼロ)状態で FPD法による大規
模シミュレーションを実行した。その結果、指数 α = 1/2 の冪状則が、１桁を超える
時空間スケールにわたって成り立つことを示すとともに、このドメインは自己相似性を
保ったまま成長することが判明した。このことは、ドメインの特徴サイズがコロイドの
サイズよりも十分に大きい場合においても、指数 α = 1/2 が保持されることを意味し
ており、このような状況下では、連続体モデルの適用が可能となる。そこで、(B)の事
実を踏まえて、コロイド・溶媒双方の自由度を扱えるモデルとして、２流体モデルに注
目した。このモデルでは、コロイド・溶媒間の運動性の非対称性を反映して、コロイド
のみに選択的な粘弾性応力 (σc)が作用する。また、(A)の事実から、コロイド・リッチ
相の粘弾性緩和速度が相分離によりもたらされる変形速度に対して十分遅いと仮定し、
σc が弾性的な挙動を示すとして、理論的な解析を進めた。その結果、指数 α = 1/2の
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導出に成功するとともに、コロイドの弾性変形に伴って、コロイド・リッチ相のドメイ
ン内部に生じる溶媒の輸送が、ドメインの粗大化を律速するという新たな物理描像を得
た (第 7章)。

　次に、剛体球コロイドの結晶化に関する研究結果について述べる。
コロイドの光散乱実験と分子シミュレーションの間に存在する何桁にもわたる結晶

核形成頻度の差が、流体起因のものか否かを明らかにすべく、FPD法を用いた数値計
算を行い BD法の結果との比較を行った。結晶核形成頻度は体積分率 ϕの変動に対し
て極めて敏感に変化することから、体積分率の値を正確に把握することが、本研究を遂
行するにあたって最低の条件となる。我々は、WCA相互作用を剛体球間に働く相互作
用の近似形として採用し、粒子直径に関する補正を適切に行うことにより、熱平衡下に
おける BD法、FPD法を用いた数値シミュレーション結果が、剛体球系に対して知ら
れる熱力学関数の理論予測をほぼ完全に再現することを確認した。次に、過冷却液体の
長時間並進拡散係数 DL を測定し、BD・FPD間で比較を行ったところ、FPDにおけ
る DL は BDにおけるそれの、およそ 1/4倍程度となることが分かった。このことは、
潤滑効果によりコロイドの拡散運動が抑制されていることを意味している。DL とコロ
イドの直径を単位に、BD、FPD間の結晶化頻度を体積分率 ϕ ∼ 54% について比較し
た。その結果、BD・FPD間に見られる相違は 10% 程度で、有意のある差は認められ
なかった。しかし、実験・分子シミュレーション間の結晶化頻度の劇的な乖離は、これ
よりも数 %低い体積分率領域で見られる。我々は、この領域を含め、今後より詳細な
研究を行う予定である (第 8章)。

　以上、本研究により得られた新たな知見は、以下のようにまとめることができる。

• コロイド分散系の相分離ダイナミクスにスケール不変性がある。
• そのダイナミクス、構造形成において溶媒の流体力学的な自由度が決定的な役割
を演じる。

• 潤滑効果により、クラスター間の衝突が抑制される。
• ネットワーク状の相分離構造の粗大化において、ドメイン成長指数 1/2 が、コロ
イド・リッチなドメイン中の溶媒の輸送に律速された弾性変形に基づく粗大化の
帰結である。　

• コロイド分散系の結晶化が起きる高体積分率領域においては、液体状態にあるコ
ロイド系の並進拡散運動が、溶媒による潤滑効果により抑制される。この並進拡
散係数の相違を結晶化頻度に繰り込んでしまえば、流体力学的相互は (少なくと
も 54% 付近の体積分率領域では)結晶化頻度にほとんど寄与しない。

　これらの成果は、溶媒の存在によりもたらされる局所的な流体力学的相互作用が、コ
ロイドの秩序化に多大な影響を与えることを強く示唆しており、コロイド分散系、ひい
てはソフトマター系の秩序化における多体的な流体力学的相互作用の重要性を明確な形
で示したものであるといえる。
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Abstract
Colloidal suspensions usually stand for liquid-saturated particles whose size ranges
from nm- to µm-scale, including a variety of complex fluids such as solid particles,
proteins, emulsions, liquid droplets, and gas bubbles. The behaviors of colloidal sus-
pensions in the equilibrium state are well-understood in the framework of classical
statistical mechanics [1]. More specifically, we can precisely predict the thermo-
dynamic behaviors by applying the statistical mechanical procedure to the degrees
of freedom of colloids as we do for molecular systems. For example, the pressure
(osmotic pressure) of a sufficiently dilute colloidal suspension and its density pro-
file under gravity obey the same statistical mechanics laws for ideal gas. On the
other hand, the dynamic behaviors of colloidal suspensions show completely differ-
ent from those of molecular systems. For example, the time correlation function
of concentration fluctuations of colloids in the vicinity of the critical point show
nonexponential decay [2, 3, 4], contrary to the general knowledge of the dynamic
critical phenomena that it should decay by a single exponential function [5]. It is
also known that the crystal nucleation rate in hard-sphere-like colloids determined
by scattering experiments is different from the numerical estimations by umbrella
sampling and molecular dynamics simulations by many orders of magnitude [6].
These examples clearly indicate that dynamic phenomena in colloidal suspensions

are intrinsically different from those in molecular systems, suggesting that dynamic
coupling between colloids and solvent molecules, which does not affect static be-
haviors, may play a crucial role in dynamic behaviors. However, it is not easy to
physically capture how the motions of colloids and solvent couple, and thus there
has been no firm physical basis established with which we can comprehensively
access to the various kinds of problems.
In this thesis, we specifically study two dynamical problems, gas-liquid phase

separation and crystallization of hard-sphere-like colloids, as important examples.
Our primary interest is how a dynamic coupling between solvent and colloids affects
the colloidal dynamics. By investigating the above two problems, we aim to provide
a new insight into the role of dynamic coupling between solvent and colloids in the
dynamic behaviors of colloidal suspensions.

We employ suspensions of PMMA colloids as an experimental system and study
the phase separation dynamics by a confocal laser scanning microscopy. In this
system, we can match the density and refractive index between colloids and solvent
at the same time, which allows us to observe the motions of hard-sphere like colloids
in three-dimensional space while suppressing the gravitational effect. To track the
trajectories of individual colloids, we synthesized rather large PMMA colloids (3 µm
in diameter), whose motions are sufficiently slow to observe by confocal microscopy.
By using our own protocol (salt injection method), we successfully observed the
phase separation process of colloids from the very beginning without perturbation
by mixing flow (Chap. 3).
We employ Fluid Particle Dynamics (FPD) method [7, 8] as a numerical simula-
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tion method. This method treats a solid colloidal particle as an undeformable fluid
particle, whose viscosity is much higher than the solvent viscosity and the viscosity
changes smoothly across the colloid-solvent boundary. These features allow us to
treat the dynamics of colloids with many-body hydrodynamic interactions simply
by solving the Navier-Stokes equation in a Cartesian coordinate system without
suffering from the solid-fluid boundary condition. By combining the FPD method
with fluctuating hydrodynamics, we successfully reproduced the Brownian motions
of colloids while satisfying the laws on statistical mechanics required both for sol-
vent and colloids. Furthermore, we accelerated FPD simulations by GPU-MPI
hybrid parallel programming and realized large-scale simulations, which allowed
us to directly compare the experimental and numerical results in a single particle
level (Chap. 4).

Firstly, we summarize the results on colloidal phase separation.
As a sample for experiments, we prepared the two different sizes of colloids

(EXP1, EXP2), by which we can examine the dependence of the phase demix-
ing process on the of size of colloids. Furthermore, we compared the experimental
results with two different simulation methods, FPD and Brownian Dynamics (BD)
method. Because the former can incorporate many-body hydrodynamic interactions
(HI) properly whereas the latter completely neglect them, we can examine the effect
of HI on phase separation dynamics. We found that the results obtained by EXP1,
EXP2 and FPD showed almost perfect agreement after scaling the space, time and
energy units, whereas BD failed to reproduce the experimental results. We also
revealed that phase separation dynamics of colloidal suspensions is scale-invariant
and HI plays a key role in the process (Chap. 5).
The growth exponent α is known to characterize the mechanism of domain coars-

ening. We experimentally studied how the exponent varies, depending on the vol-
ume fraction of colloids. As a results we found that (A) under sufficiently deep
quench, α tends to be ∼ 1/3 and 1/2 for cluster- and network-forming phase sep-
aration, respectively (Chap. 6). Such a trend has been experimentally confirmed
in colloidal suspensions [9, 10] and protein solutions [11], indicating the possibil-
ity that the above exponent is a consequence of a universal coarsening mechanism
independent of material details. Moreover, we found that (B) the above trend
was reproduced by simulation with HI but was not reproduced simulation without,
which implies that HI plays a key role in the coarsening process (Chap. 5).
The growth exponent α ∼ 1/3 seen in cluster-forming phase separation is also

seen in that of a binary liquid mixture such as water-oil mixture. In this phe-
nomenon, oil (or water) droplets transported via thermal diffusion and grow by
collision and coalescence (Smoluchowski’s Brownian coagulation theory). Focusing
on the commonality in the exponent, we adopted an analysis based on the Smolu-
chowski equation to the results of colloid suspensions obtained by our experiments
and numerical simulations, and measured the constant called “collision rate” K.
As a result, the theoretical prediction combining the Stokes and Brenner laws for
the friction constant well reproduces BD results (simulation without HI) and the
other results (EXP1, EXP2, FPD), respectively. Here the Brenner law means the
exact solution for the friction constant between two colloids approaching each other,
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and increases dramatically when the center-of-mass distance between the colloids
becomes close to the diameter of colloids due to hydrodynamic interactions. From
this, it can be concluded that the lubrication effects (or short-range HI) play a
important role in the aggregation process of clusters (Chap. 5).
We mentioned in the above that the growth exponent α ∼ 1/2 appears uni-

versally in network-forming phase separation. However, there has been no serious
study to figure out the coarsening mechanism behind the exponent. To reveal this,
we performed large-scale FPD simulations without thermal noise (or at zero tem-
perature), based on the point (A) and (B) described in the above. As a result, we
successfully reproduced the power-law growth regime of exponent 1/2 far beyond
one order of magnitude in both time and space and found that the domain grows
while retaining self-similarity. This implies that the growth exponent continues to
be 1/2 as long as the characteristic domain size is much larger than the particles
size. In this regime, we may apply a coarse-grained description. Based on the point
(B), we focused on two fluid model as a model which can deal with the degree
of freedom for both colloids and solvent. In this model, a mechanical stress σc
selectively acts on the colloids, reflecting the a huge gap in structural relaxation
time between colloids and solvent molecules. From (A), assuming that viscoelastic
relaxation in the colloid-rich domain is much slower than the characteristic time
scale related to the deformation of velocity field induced by phase separation, we
only focused on the elastic behavior of σc. Thus, we successfully derived the growth
exponent α = 1/2 and obtained a new physical description that solvent flow inside
of the colloid-rich phase induced by elastic motion of colloids limits the dynamics
of the domain coarsening in network-forming phase separation (Chap. 7).

Next we summarize the results regarding crystallization of hard-sphere colloids.
In order to examine whether HI can be the origin of the huge mismatch in the

crystal nucleation rate between experiments and molecular dynamics simulations,
we performed FPD simulation and compared the results with those obtained by
simulation without HI (BD simulation). Because the nucleation rate very sensitively
changes accompanied with the change of the volume fraction of colloids ϕ, it is
essential to precisely estimate the volume fraction in this study. We employed
Weeks-Chandler-Andersen (WCA) potential as an approximate of the hard sphere
potential and confirmed that the thermodynamic behaviors obtained by BD and
FPD simulations well reproduce the theoretical prediction for hard-sphere systems,
after making a correction for diameter of colloids. Then, we measured the long-
time diffusion constant in supercooled liquids, DL, and found that DL in FPD is
approximately four times smaller than that in BD. This means that diffusive motion
of colloids are suppressed by lubrication effects. We compared the nucleation rate
at ϕ ∼ 0.54 between BD and FPD with DL and the diameter of colloids as time and
space units respectively, but no remarkable difference was confirmed. However, a
huge mismatch in the crystal nucleation rate between experiments and simulations
has been seen more evidently in more dilute volume fractions. Thus, to obtain a
conclusive result, we need further careful study focusing on the differences in this
volume fraction range (Chap. 8).
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In short, we summarize the main findings in this thesis as follows.

• Phase separation dynamics of colloidal suspensions is scale-invariant.
• HI plays a key role in the phase separation kinetics.
• Collisions among clusters formed by phase separation are suppressed by lu-
brication effects.

• The growth exponent 1/2 seen in network-forming phase separation can be
explained by a new mechanism: Coarsening proceeds by slow elastic defor-
mation of the colloid-rich phase, which is limited by solvent transport inside
it.

• In a supercooled state of hard sphere systems, the translational diffusion of
colloids is suppressed by hydrodynamic lubrication effects. However, at least
around 54% volume fraction, the effect of HI on crystal nucleation rate is
rather minor, after normalizing the nucleation rate by the above diffusion
constant.

These results indicate that short-range hydrodynamic interactions play a signifi-
cant role in phase ordering kinetics of colloidal suspensions.
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Chapter 1

Background

1.1 Motivation
Colloidal suspensions usually stand for liquid-saturated particles whose size ranges
from nm- to µm-scale. In such an intermediate length scale, which is much smaller
than a macroscopic scale but much larger than the size of solvent molecules, thermal
fluctuations play prominent roles. Thus, colloidal suspensions have been regarded as
an ideal model system to investigate fundamental problems in statistical physics.
Colloidal suspensions are a mixture of large colloidal particles and small solvent
molecules, between which there is a huge gap in the length and time scales. This
results in spatio-temporal hierarchy, which is a characteristic feature widely seen in
soft and bio matter. Therefore, it is expected that the physical understanding of
fundamental properties of colloidal suspension will greatly contribute to the under-
standing of soft and bio matter that also have similar spatio-temporal hierarchy.
From industrial viewpoints, colloidal suspensions are also an important model sys-
tem to understand the physical properties of suspensions of solid particles, proteins,
liquid droplets, and gas bubbles. Typical examples seen in our daily life include
milk, yoghourt, paint, cement, and so on.
Despite the importance of colloidal suspensions from both fundamental and ap-

plications viewpoints, our understanding of their dynamical properties is still far
behind that of the thermodynamic properties. The examples of such dynamical
phenomena in colloidal systems include phase transition kinetics (crystallization [6]
and gelation [12, 13, 14]), nonlinear rheology (i.e., shear thinning/thickening [15]),
self-organization dynamics (collective motion in active systems [16] and formation
of biomolecular condensates [17]).
In this thesis, we specifically study two dynamical problems, gas-liquid phase

separation and crystallization of hard-sphere-like colloids, as important examples.
Our primary interest is how a dynamic coupling between solvent molecules and
colloids affects the colloidal dynamics. By answering this question, we aim to
provide a new insight into the impact of dynamic coupling between solvent and
colloids on the dynamic behaviour of colloidal supensions.
In this section we briefly review some basic knowledge of colloidal suspensions

including thermodynamics and dynamics.
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1.2 Interparticle forces among colloids
The size of colloidal particle lies in between a macroscopic scale and molecular
scale. Therefore, the motion of colloids is much slower than that of molecules,
but colloids show thermal motion by exchanging the momentum with surrounding
solvent molecules, unlike granular materials. If the size of colloids is larger than ∼
100nm, it is possible to directly observe the thermal motion of colloids in real space
with optical microscopy. Furthermore, we can artificially control the interparticle
potential between colloids. These features allow us to experimentally study the
structure and dynamics of colloidal particles at a single-particle level in real space,
which is impossible in molecular systems. Additionally, it is known that colloidal
systems in thermodynamic equilibrium behave the same as molecular systems (see
section 1.3). For these reasons, colloidal systems have been studied as a model of
atomic systems. In order to see the features of colloids as a model system, in this
section we briefly review typical interactions between colloids.

1.2.1 Van der Waals attraction

In general, attractive interactions act on molecules and it is also the case for the
molecules constituting colloidal particles. Such intermolecular attractions in a mi-
croscopic scale brings about the interparticle attraction among colloids. The in-
termolecular attraction between two equal-size solid spheres was frist derived by
Hamaker [18] based on the assumptions that the molecules constitute the parti-
cles interact with van der Waals attraction whose the functional form is r−6, in a
pairwise and additive manner.

Uvdw = −A
6
{ 2

s2 − 4
+

2

s2
+ log (

s2 − 4

s2
)}, (1.1)

where A is a constant called as the Hamaker constant and s = (2a+ h)/a. Here a
is the radius of the particles and s is the center-of-mass distance between the two
particles. According to the Lifshitz theory, the Hamaker constant is given as

A =
3

4
kBT (

ϵp − ϵs
ϵp + ϵs

)2 +
3hνe

16
√
2

(n2p − n2s )

(n2p + n2s )
3
2

, (1.2)

where ϵp (or ϵs) and np (or ns) represent the dielectric constant and the refractive
index of the particles (or the solvent), respectively.
For h/a≪ 1, Eq. (1.1) can be approximated as Uvdw ∼ −Aa/12h, meaning that

the van der Waals attractions are stronger for larger colloids.

1.2.2 Electrostatic repulsion

Colloids can have surface charges, which depend on a solvent, and in such a case
the electrostatic repulsions act between colloids. For charged colloids, charges of
opposite sign in a solvent are attracted around the colloid surfaces, which screens the
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Coulomb repulsions between colloids. Thus, we cannot use bare Coulomb repulsion
for this case. Such ion absorption effects can be treated as follows [18].
Denoting the concentration and valence of ions with type α as Cα and zα re-

spectively, the following Boltzmann distribution is to be valid under an equilibrium
condition,

Cα = C0
α exp (−

zαeψ

kBT
), (1.3)

where C0
α represents the concentration of ions with type α in bulk. ψ is the electro-

static potential which is determined by the Poisson equation, ∆ψ = −ρe/ϵ, where
ρe is the charge distribution and written as ρe =

∑
α zαeCα. Then, we obtain the

following Poisson-Boltzmann equation:

∆ψ = −
∑
α

zαeCα
ϵ

exp (−zαeψ
kBT

). (1.4)

In the case where the electrostatic potential is sufficiently small such that zαeψkBT
≪ 1,

Eq. (1.4) can be linearized as follows:

∆ψ = −
∑
α

zαeCα
ϵ

+
e2

ϵkBT
(
∑
α

z2αeC
0
α)ψ. (1.5)

The first term in the right hand side is zero if we assume the electrical neutrality.

Introducing the so-called Debye screening length κ−1 as κ−1 =
√

e2

ϵkBT

∑
α z

2
αCα,

we finally obtain
∆ψ = κ2ψ. (1.6)

Based on this equation, the electrostatic interaction between two equal-size col-
loids with radius a, including the screening effect due to ions, is expressed [19] as
the following Yukawa-type potential:

Uel =
Q2

4ϵ
(
exp (κa)

1 + κa
)2
exp (−κr)

r
. (1.7)

The theoretical framework to explain the stability of dispersion of micro-particles
such as colloids and proteins by regarding their interparticle potentials as the su-
perposition of Uvdw and Uel is widely known as the DLVO theory*1.

1.2.3 Steric repulsion

As seen in the above, the van der Waals attractions act more strongly for larger
particles. Therefore, it is not so easy to disperse the µm-size particles in a solvent.
As discussed in the DLVO theory, controlling the electrostatic repulsion between
colloids is the one of the typical ways to realize a stable dispersion. Recently the

*1 Here we note that the pairwise additivity does not hold for charged colloids and thus it is
necessary to consider many-body corrections.
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attempts to reduce the Hamaker constant by matching the refractive index between
colloids and a solvent also have been made (see Eq. (1.2)). If we add the sufficient
amount of ions into a solvent, we can also screen out the electrostatic repulsions
between the colloids. Furthermore, by chemically grafting polymer brushes on the
surface of the colloids, we sterically prevent the adhesion of colloids at a very short
distance. In such a condition, the interactions among colloids mentioned above
(Uvdw and Uel) are negligibly small compared to the thermal energy, where we
expect that colloids approximately interact with the following hard-sphere potential:

Uhs(r) = 0 for
r

σ
> 1,

= ∞ otherwise, (1.8)

where σ is the diameter of colloids. Such hard-sphere systems indeed have been
experimentally realized and used as a fundamental model system to investigate
many-body problems in statistical physics.

1.2.4 Depletion attraction

It is known that in a mixture of particles whose sizes are largely different, an
effective attractive force known as “depletion force” arises among the large particles
[20, 21]. In this section, we focus on a mixture of hard-sphere colloids and non-
absorbing ideal polymers, especially in the case where the diameter of the colloids
σ is sufficiently larger than the gyration radius of the polymers Rg. In such a case,
since the motion of the polymers are much faster that of the colloids, we can expect
that the concentration of polymers is equilibrated in the time scale of the Brownian
motion of the colloids.
We consider how the spatial distribution of the concentration of the polymers

np = Np/Vf changes depending on the relative position between two colloids, where
Np is the number of polymers and Vf is the volume that polymers can freely move.
There is a region surrounding a colloidal particle where the polymers cannot pen-
etrate due to the steric repulsion between the colloid and polymers. Such a region
is often called as a depletion zone. We can roughly estimate the outer shell of
the depletion zone for a colloid as a sphere with diameter σ + 2Rg (see the re-
gion surrounded by a dotted line in Fig. 1.1) and the depletion zone excluding the
part that the colloid occupies is often called as depletion layer. Because np differs
between the inside and outside of the depletion zone, the surface of the depletion
zone is subjective to the resulting osmotic pressure of the polymers Πp. When two
colloids approach within a certain distance, their depletion layers start to overlap
(see the yellow region in Fig. 1.1. We denote the volume of the overlapped region
as Voverlap). As a result, the osmotic pressure acts such that the distance between
the colloids decreases. Because the resulting force acting on the colloids is to be
equivalent to the sum of the osmotic pressure acting on the overlaped region, we
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Fig. 1.1 A schematic illustration of the depletion interaction. The
centre of a polymer molecule (coil) is excluded from coming closer than a certain
distance, approximately its own radius of gyration, to the surface of a colloid
(full circle) because of the high entropic cost of configurational distortion. Each
colloid is therefore surrounded by a depletion zone (dotted circle) within which
there is essentially no polymer centers of mass. If a colloid (such as C) is far
away from other particles, the osmotic pressure of the polymer on the particle
is isotropic. If, however, the surface of two colloids (such as A and B) are
closer than twice the size of a depletion zone, then there is no polymer in
the lens-shaped (shaded) region, and a net (osmotic) force presses the particles
together—the depletion attraction. This figure and the caption are reproduced
from Ref. [13].

may write the interaction potential between the two colloids Udep as [22, 21]

Udep(r) = 0 for
r

σ
> 1 + ∆,

= ∞ for
r

σ
< 1,

= −ΠpVoverlap otherwise. (1.9)

where ∆ = 2Rg/σ and the overlapped volume is written as

Voverlap =
π

6
(1 + ∆)3σ3

[
1− 3

2

r

(1 + ∆)σ
+

1

2

(
r

(1 + ∆)σ

)3
]
, (1.10)

In a special case where the thermodynamic behavior of polymers can be regarded as
ideal-gas like, we can write the osmotic pressure as Πp = npkBT . This assumption
is expected to be valid especially in a theta-solvent condition.
From the above, we find that the interaction range ∆ depends on Rg and the

‘depth’ of the interaction (for example Udep(σ)) is proportional to np. This means
that the range and depth of the depletion interaction can be controlled just by
changing the molecular weight and the concentration of polymers. The tunability
of the intercolloid potential is one of the main reasons why collodal systems have
recently attracted considerable attention as a model system. We note that a poten-
tial for depletion interaction between two colloidal spheres which takes the internal
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degree of freedom of polymers into account has also been derived [23]. However,
experimental results [24, 25, 26] report that the above functional form still works
well at least in two-body level.

1.3 Equilibrium phase behavior
In this section we briefly review the thermodynamics of colloidal suspensions. Here
we see that the thermodynamic behavior follows the classical statistical mechanics
for molecular systems, which we call as colloid-atom analogy following Ref. [21].
Here we focus on only topics relevant to this thesis. We first describe the thermo-
dynamic behavior of hard-sphere systems and then that of colloid-polymer mixture
systems. Finally, we mention a scale invariant nature of equilibrium phase behaviors
of colloids.

1.3.1 Hard-sphere system

In a hard sphere system, it is known that liquid-crystal transition takes place. The
existence of the transition has been first discovered by simulation studies [27, 28]
in 1957 and experimentally confirmed in hard-sphere-like colloidal systems [29] (see
Fig. 1.2). Although no exact theoretical description of the transition has been es-
tablished so far, some approximate theories precisely reproduce the thermodynamic
variables observed in numerical simulations.

A
B

Fig. 1.2 Experimental obervation of the phase behavior of the hard-
sphere-like colloidal supensions [29]. (A) The phase diagram of PMMA
spheres. The vertical and horizontal axes represent the volume fraction of the
crystal phase and that of colloids respectively. (B) The images of the actual
samples. The samples are denoted from left to right by 2, 3, ... , 10, which
correspond to the volume fractions indicated by the numbers in the top of
panel A.
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Carnahan-Staring equation of states is known as an accurate expression for the
equation of states for hard-sphere liquids [30],

v0Pliq

kBT
=
ϕ+ ϕ2 + ϕ3 − ϕ4

(1− ϕ)3
, (1.11)

where Pliq is the pressure, v0 = πσ3/6 is the volume of the particles, ϕ = v0N/V
is the volume fraction of the particles. By using the Gibbs-Duhem equation, the
chemical potential µliq is given as

µliq

kBT
= log (

Λ3

v0
) + log ϕ+

(8− 9ϕ+ 3ϕ2)ϕ

(1− ϕ)3
, (1.12)

where Λ is the de Broglie wavelength. By substituting Eqs. (1.11) and (1.12) to
a thermodynamic relation of the Helmholtz free energy Fliq = −PliqV + µliqN , we
obtain

Fliqv0
kBTV

= ϕ{log(ϕΛ
3

v0
)− 1}+ 4ϕ2 − 3ϕ3

(1− ϕ)2
. (1.13)

As a theory to describe the thermodynamics of the crystal state in hard-sphere
systems, we refer to Lennard-Jones-Devonshire cell model [31]. This theory con-
siders the motion of each particle in the region surrounded by its neighbors and
estimate the average volume v of the space that the center-of-mass of the particle

can access. The simplest estimation for v is given as v = 8v0{(ϕcp

ϕ )1/3 − 1} ∼
8v0
3 (

ϕcp

ϕ − 1), where ϕcp is the volume fraction at the closest packing and for the

hard-sphere crystal we can use that of the face-centered cubic (FCC) structure

(ϕcp =
√
2π/6). Writing the partition function Q as Q = v/Λ3, the Helmholtz free

energy Fcry = −kBT logQ is calculated as

Fcry = NkBT{log(
27Λ3

8v0
)− 3 log (

ϕcp
ϕ

− 1)}. (1.14)

From this expression, we can obtain the pressure Pcry and the chemical potential
µcry in the crystal state.
By applying the coexistence condition, Pliq = Pcry and µliq = µcry, on the above

results, we obtain ϕliq = 0.491, ϕliq = 0.541 and Pcoex = 6.01, which are very close
to the values observed in numerical simulation, ϕliq = 0.494, ϕcry = 0.545, and
Pcoex = 6.12 respectively [32].

1.3.2 Colloid-polymer mixture

In this section we briefly explain the phase behaviors of colloidal suspensions in
the presence of interparticle attractions. In the above section we have seen that
a hard-sphere system has liquid and crystal phases as thermodynamically stable
states. It is a well-known fact that systems generally shows at least three phases,
gas, liquid and crystal states, in the presence of interparticle attractions. However,
how the three phases are located in an equilibrium phase diagram strongly depends
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on the details of the interaction potential (e.g., the interaction range ∆ in the below
case).
As a theory relevant to our study, we refer to the free volume theroy in Ref.

[1], which describes an equilibrium phase behavior of a colloid-polymer mixture.
In this theory, the free energy for a colloid-polymer mixture Ftot is given as the
sum of the free energy for colloids Fc(Nc, V ) and that for polymers Fp(Np, Vf).
Then, it is assumed that Fp and Fc are given by that for an ideal gas (i.e., Fp =
NpkBT log (Np/Vf) + · · · ) and the one for a hard-sphere system (see section 1.3.1),
respectively. Here, Nc and Np represent the numbers of colloids and polymers
respectively. V and Vf are the total volume of the system and the volume in which
polymers can freely move. We denote the ratio of these volumes as “free-volume
fraction” α = Vf/V and assume that α only depends on the volume fraction of
colloids ϕ = πσ3Nc/6V and the size ratio ∆ = 2Rg/σ, where σ and Rg are the
diameter of colloids and the gyration radius of polymers respectively.
Then, Ftot/V is designated by a pair of two intensive properties, (ϕ, np), where

np = Np/V is the concentration of polymers. By differentiating Ftot by Np, we
obtain the chemical potential for polymers µp as

µp = kBT log np − kBT logα+ · · · . (1.15)

The first term represents the chemical potential in the absence of the colloids and
the second therm (W ≡ −kBT logα) corresponds to the work required to insert one
polymer to the bath of the colloids. By using the Widom’s insersion method, a spe-
cific expression of α(ϕ,∆) can be calculated as (see [21] for the detail calculation):

α = (1− ϕ) exp [−Aγ −Bγ2 − Cγ3], (1.16)

where γ = ϕ/(1− ϕ), A = 3∆+ 3∆2 +∆3, B = 9∆2/2 + 3∆3 and C = 3∆3.
In the first row of Fig. 1.3, we show the phase diagrams computed by using to

the above free energy Ftot. The third row in Fig. 1.3 shows experimental results
[33, 34], where we can see a good agreement between the theoretical prediction and
experimental results on a quantitative level. Panels (a), (b) and (c) correspond to
the phase diagrams for various size ratios, ∆ = 0.08, 0.33 and 0.57, respectively (ξ
in the figure corresponds to ∆). We can see that the topology of the phase diagram
significantly depends on ∆. For example, we can see the gas-fluid coexistence and
critical point exist in the equilibrium phase diagram for large ∆, whereas they are
hidden behind the gas-crystal coexistence region for small ∆(= 0.08). Such an
interaction-range dependence of the shape of the phase diagram is also observed
exprimentally in protein solutions [35] and by numerical simulations [36, 37].
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Fig. 1.3 (a)-(c) Theoretical phase diagrams, calculated according to the

method in [1], plotted in the (ϕ, η
(R)
p ) plane for size ratios (ξ =

0.08, 0.33, and 0.57. The horizontal axis is the colloid volume fraction ϕ and
the vertical axis is the effective polymer volume fraction in a reservoir in os-

motic equilibrium with the sample [η
(R)
p ; see Eq. (12) in the text]. In (a),

only the fluid, the fluid plus crystal, and the crystal are predicted. In (c), a
region of gas-liquid coexistence is also predicted; the critical point and triple
line are indicated. In (b), the critical point and triple line almost coincide.
The symbols denote the following: CP, critical point; TP, triple line; F, fluid;
G, gas; I, liquid; C, crystal; F+C, Fluid plus crystal. (d)-(f) Theoretical phase

diagrams, according to [1], in the (ϕ, η
(R)
p ) plane for the same size ratios: the

horizontal axis is again ϕ; the vertical axis plots the effective volume fraction
of polymers in the sample volume. Vertical axes in units of g per cm are also
given on the right of each figure to facilitate comparison with experimental
data. The symbols are the same as in (a)-(c). (g)-(i) Experimental phase
diagrams for size ratios (ξ = 0.08, 0.25, and 0.57); the vertical axes plot the
polymer concentration in g per cm. (g) is taken from [33]. All lines on (g)-(i)
are drawn in as guides to the eye, except for the triangular regions in (h) and
(i), which have been located with the aid of experimentally determined colloid
concentrations in the three coexisting phases (see text). The symbols denote
the following: circle, fluid; diamond, gas plus liquid; crass, gas plus liquid plus
crystal; plus sign, liquid plus crystal; square, gas plus crystal; triangle, gel (for
ξ = 0.08) or no visible crystallites (for ξ = 0.33 and 0.57); stars, glass. This
figure and caption are reproduced form Ref. [34].
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1.3.3 Law of corresponding states

When we say colloidal suspensions, their macroscopic properties depend on the
microscopic details such as chemical structures of materials forming colloids, the
type of molecules constituting the solvent that in which colloids are suspended,
and the intermolecular interactions among them. In the above examples, we have
seen that the static phase behaviors of colloidal suspension can be understood
by classical statistical mechanics. Here we mention that this is a very powerful
tool to comprehensively classify the colloidal systems. In the framework of the
statistical mechanics, all we need to know is the interaction among the colloids and
we may ignore all the microscopic details beside it. For example, if we express
the intercolloid potential U by a scaling function f with an energy unit ϵ and a
length unit σ as U(r) = ϵf(r/σ), we can calculate the thermodynamic functions
and determine the phase diagram only with two control parameters, the potential
depth scaled by the thermal energy, βϵ, and the volume fraction of colloids, ϕ. In
this case, the phase diagrams of colloidal systems whose interaction potentials are
scaled as above can be mapped on a single phase diagram. Roughly speaking, if
materials whose interaction potentials have a similar shape, the phase diagrams
are almost the same. This is widely known as the law of corresponding states
[38, 39, 40].
Such a scale-invariant nature of the static phase diagram has been originally found

in molecular systems whose interparticle potential can be expressed as Lennard-
Jones potential [38, 39]. In colloidal systems, whose the interaction potentials
can be artificially control, there may be various functional forms for the scaling
function of the interaction potential f . Thus, how to characterize the function f is
an important problem. As ∆ in the depletion interaction (see Eq. 1.9), f is to be
a function of at least a parameter characterizing the interaction range. A way to
quantify the effective range of attraction via the reduced second virial coefficient b2
(see section 5.2.2 for the detail) was suggested in Ref. [40] and the validity of the
method for short range attraction (∆ < 0.1) was confirmed experimentally [41, 42].

1.4 Colloidal dynamics
As explained above, the static behavior of colloids is explained in a very clear man-
ner by the same theoretical framework of classical statistical mechanics developed
for molecular systems. The problem here is whether such a colloid-atom analogy is
also valid in dynamical phenomena. In fact, some experimental studies suggested
that the colloidal systems show dynamic behaviors different from those in molecu-
lar systems. For example, for protein solutions [2, 3] and a microemulsion [4], the
time correlation function of concentration fluctuations in the vicinity of the critical
point show nonexponential decay, contrary to the general knowledge of the dynamic
critical phenomena that it should decay by a single exponential function. It is also
known that the crystal nucleation rate in hard-sphere-like colloids determined by
scattering experiments is different from the numerical estimations by umbrella sam-
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pling and molecular dynamics simulations by many orders of magnitude [6].
Here we mention that the success of the colloid-atom analogy in the thermody-

namic behavior also implies that the solvent molecules in colloidal suspensions have
almost no effect on the static behavior of colloidal particles. In dynamical phenom-
ena, it is not clear at all whether we can neglect the dynamic degrees of freedom of
solvent molecules. Indeed, the nonequilibrium phenomena where the hydrodynamic
degrees of freedom of the solvent plays a crucial role are known. For example, in the
formation process of colloidal gels, it has been shown that the hydrodynamic inter-
actions between colloids mediated by the solvent assists the percolation of colloids
[7, 43, 44, 45, 46].
These examples clearly indicate that dynamic phenomena in colloidal suspensions

are intrinsically different form those in molecular systems, suggesting that dynamic
coupling between colloids and solvent molecules, which does not affect static be-
haviors, plays a crucial role in dynamic behaviors. However, there has been no firm
physical basis established with which we can comprehensively access to the vari-
ous kinds of problems, mainly because of the difficulty associated with many-body
nature of hydrodynamic interactions .
In this section, we review some basic knowledge about colloidal motion and see

difficulties in dealing with dynamic coupling between colloids and solvent.

1.4.1 How to describe colloidal dynamics

As there is a huge gap in length and time scales between colloids and solvent
molecules it is difficult to theoretically access the dynamic problem of colloids while
describing a solvent on a molecular level. Thus, a coarse-grained description is
necessary to deal with slow colloidal dynamics. On the other hand, there has been
no reliable theoretical model that coarse-grain the degrees of freedom of both solvent
molecules and colloids. In other words, there has been no consensus about the form
of the constitutive relation of colloidal suspensions. For these reasons, models that
coarse-grain the solvent molecules and treat colloids as particles are often used.
Thus, we focus on such an approach in the following.

1.4.2 Brownian motion of a free colloid

For the thermal motion of an isolated colloid in a solvent, such a coarse-grained
description for solvent works very well. For example, as will be shown below, an
analytic solution for such motion was derived and the validity was experimentally
confirmed.

Langevin equation with a white noise
The most fundamental and well-used coarse-grained model for a free colloid is the
Langevin equation with a white noise expressed as

M
dV

dt
= −ζV + FR, (1.17)
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where M and V are the mass and the velocity of the colloid respectively. FR is a
random force exerted by collisions with surrounding molecules and is related with
the viscous drag coefficient ζ via the fluctuation-dissipation theorem as

⟨FR
i (t)FR

j (t′)⟩ = 2kBTζδijδ(t− t′), (1.18)

where the symbol ⟨A⟩ represents the ensemble average of A. As a basic quantity
characterizing the colloid dynamics, the velocity auto-correlation (VACF) function
is calculated as

⟨V (0) · V (t)⟩ = 3kBT

M
e−

t
τ , (1.19)

where we put τ = M/ζ. Another well-used quantity is the mean square displace-
ment (MSD) of a particle. Denoting the center-of-mass position of the colloid as
V (t), the MSD is given as

⟨|R(t)−R(t)|2⟩ = 6Dt{1 + τ

t
(e−

t
τ − 1)}, (1.20)

whereD is the diffusion constant of the particle and given byD = kBT/ζ. The short

time and long time behaviors of MSD are respectively approximated as ∼
√

3kBT
M t2

(t/τ ≪ 1) and 6Dt (1 ≪ t/τ), which are known as ballistic and diffusive motion
respectively. From MSD, a typical time scale of diffusive motion is evaluated, for
example, by using the radius of the colloid a, as τB = a2/6D. τB is often called
as Brownian time. If we adopt the Stokes relation for the drag coefficient, i.e.,
ζ = 6πηa (η is the viscosity of the solvent), we obtain τB = πa3η/kBT . This means
that Brownian motion is faster for a smaller particle size, higher temperature, and
lower viscosity.

Langevin equation of a free colloid including a hydrodynamic memory effect
*2 FDT in Eq. (1.18) assumes that there is no time correlation in the random force
(i.e., Markovian white noise) and the resulting VACF shows an exponential decay
as in Eq. (1.25). Such an exponential decay is also seen in molecular motion in a
dilute fluid [47]. However, it is known that a liquid medium constituting the solvent
of colloids shows collective motions in a nonlocal and non-instantenous manner.
For example, in general, VACF of a liquid show a power-law decay of ∝ t−3/2,
which is different from exponential decay as seen in Eq. (1.25). Such a power-law
decay is known as long-time tail, which became widely recognized since a seminal
molecular dynamics simulation work by Alder and Wainwright in 1970 [48] and was
theoretically confirmed later (see e.g., Refs. [30, 49]). For Brownian motion of a

*2 The hydrodynamic effects that we discuss here is about inertia effects, i.e., the dynamical
crossover of a free colloid from ballistic to diffusive motion. In real experiments of colloidal
suspensions (especially many-body problems such as phase ordering dynamics), such effects
are considered to be negligible. However, in some hydrodynamic simulation methods for
colloids, it is required to perform computations while incorporating the inertia term, which
is also the case with the method that we use in our study (FPD method). This is the main
reason why we introduce the inertia effects here, but we also believe that this is a good
example to see one aspect of complexities in the dynamics of colloidal suspensions.
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free colloid, the existence of such a hydrodynamic mode has been experimentally
observed recently [47].
As a theoretical expression for a free colloid including a hydrodynamic memory

effect, we refer to the following Langevin equation in the frequency space ω *3,

−iωMV (ω) = −ζ(ω)V (ω) + FR(ω), (1.21)

with

ζ(ω) = 6πηsa{1 + (−iω) a
2

9ν
+ (1− i)

√
a2ω

2ν
}, (1.22)

⟨FR
i (ω)FR

j (ω′)⟩ = 2kBTReζ(ω)δijδ(ω − ω′), (1.23)

where ν is the kinetic viscosity of a solvent (ν = ηs/M). The first term in Eq. (1.21)
means resistance generated by a solvent in nonsteady flow, which can be derived
from the Navier-Stokes equation for a viscous fluid [50]. This force is often called
as the Boussinesq-Basset force and separated into three terms as in the right hand
side of Eq. (1.22). The first term is the viscous force in a steady states (ω = 0),
which is consistent with the Stokes law. The second term is a force required for a
colloid to push the surrounding solvent away and can be rewritten as iωMV (ω)/2,
which is equivalent to the increase of the effective mass of colloid by M/2. The
last term represents a non-steady effect, which is responsible for a hydrodynamic
memory effect.
VACF of the above equation is known to be expressed as

⟨V (t) · V (0)⟩ = 3kBT

Meff
ψT(

t

τa
). (1.24)

Here τa = a2/ν, where a is the hydrodynamic radius of a colloid. Meff = 3M/2
is the effective colloid mass and the increment of mass originates from the second
term in the right hand side of Eq. (1.22). ψT is the memory function including
hydrodynamic effect (see Eq. (4.20) for the functional form). The asymptotic be-
havior of ψT in the large x (or, long-time) limit is given by ψT(x) ∼ 1

6
√
π
x−3/2,

which reproduces the long-time tail.
The corresponding translational mean square displacement was also derived as

⟨|R(t)−R(t)|2⟩ = 6Dt h(
t

τa
) (1.25)

where h(x) is a function characterizing the crossover behavior from ballistic to
diffusive motion and has a complicated functional form (see Eq. 4.23) and compare
it with Eq. (1.25). The asymptotic behavior of h(x) is given by h(x) → 3x/2
(x→ 0) and h(x) → 1 (x→ ∞) for the ballistic and diffusive regimes, respectively.

*3 Here we only consider the case where the mass densities of the colloid and solvent are the
same.
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DFT in Eq. (1.23) is derived [51, 52, 53] by imposing the boundary condition for
the surface of a colloid in the Navier-Stokes equation for a viscous fluid with the
thermal fluctuations [50, 54],

ρ
∂v

∂t
= −∇p+ ηs∇2v +∇ · σR, (1.26)

where v is the velocity field and p is the pressure determined such that the incom-
pressibility condition ∇ · v = 0 is to be satisfied. σR is the random stress tensor
and follows the DFT for an incompressible fluid,

⟨σR
ij(r, t)σ

R
mn(r

′, t′)⟩ = 2kBTηs(δimδjn + δinδjm)δ(r − r′)δ(t− t′).

This approach based on fluctuating hydrodynamics are also developed for other
problems such as the rotational Brownian motion [55] and the translational Brow-
nian motion of a liquid droplet [56].
We have introduced a Langevin equation with a hydrodynamic memory effect so

far, but here we note that it is unfortunately difficult to study many-body problems
of colloids with Eq. (1.21) as a starting point. In Eq. (1.23), we can clearly see that
the random force is no longer white noise and has a memory effect. This is a con-
sequence of thermal fluctuations at different points in the fluid being coupled with
each other through the Navier-Stokes equation. Thus, it is difficult to reproduce
the resulting hydrodynamic memory effects properly by applying stochastic forces
locally; more specifically, it is hard to constitute such a special random number
sequence.

1.4.3 Many-body problems

In studying colloidal dynamics based on a hydrodynamic description for solvent (see
Sec. 1.4.1), we inevitably encounter a complicated moving boundary problem, since
the non-slip solid-fluid boundary condition has to be satisfied for all the surfaces of
colloidal particles. Such a problem can be solved analytically only when the flow
profile of solvent has high symmetry. Therefore, many-body problems in a colloidal
suspension are basically to be discussed only under significant approximations.

Point-particle approximation
The simplest treatment for the boundary problems between colloids and solvent is
to regard colloids as points. Denoting the force acting on colloid n at position Rn

with velocity Vn as Fn, the Navier-Stokes equation under the Stokes approximation
can be written as

−∇p+ ηs∇2v = −
∑
n

Fnδ(r −Rn), (1.27)

where v is flow field of solvent and ηs is the viscosity of solvent. p is the pressure,
which is determined such that the imcompressibility condition ∇ · v = 0 is to be
satisfied. Equation 1.27 can be solved as [57]

v(r) =
∑
n

T (r −Rn) · Fn, (1.28)
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where T is the so-called Oseen tensor:

Tij(r) =
1

8πηsr
(δij +

rirj
r2

). (1.29)

Assuming the Stokes law between the force and the relative velocity between colloids
and solvent, i.e, Fn = 6πηsa(Vn − v(Rn)), we obtain

Vn =
∑
m

Tnm · Fm, (1.30)

where we denote Tnm = T (Rn −Rm) for n ̸= m and Tnn = 1/6πηsa. The set of
equations that incorporate the thermal noise following the fluctuation-dissipation
theorem to the above equation is know as the simplest version of Stokesian Dy-
namics [58, 59]. The above equation is correct only if the interparticle distance is
sufficiently larger than the particle diameter. In other words, lubrication effects,
or hydrodynamic interactions at short distance is not properly incorporated in the
above equation.

Hydrodynamic interaction at short distance
Here we consider the situation where two spherical equal-size colloids with radius
a approach with the same velocity V along the line connecting their center-of-mass
positions. In this problem, the exact solution for the friction coefficient is known
[60]. Denoting the distance between the surfaces of the two colloids as u and the
frictional force acting on the sphere as F = −6πηsaC2(u)V , C2 is given as

C2(u) =
4

3
sinhα

∞∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)
{
4 cosh2 ((n+ 1/2)α) + (2n+ 1)2 sinh2 α

2 sinh((2n+ 1)α)− (2n+ 1) sinh(2α)
− 1}(1.31)

where α is determined by cosh(α) = u/2 + 1. The asymptotic behavior of C2 for
u→ ∞ is 1+3/2u ∼ 1+3a/2r, which reproduces the expression for hydrodynamic
interaction by the Oseen tensor (Eq. 1.30). For a short distance (u → 0), C2 ∼
1/2u = (2(r/a− 2))−1, which is a different functional form from 1 + 3a/2r.
Based on the asymptotic behavior of C2 for small u, we may express a hydro-

dynamic force that colloid n experiences as a result of the relative motion between
n-th and m-th colloids as

Fnm = − 3πηsa

2(Rnm/a− 2)
(Vnm · R̂nm)R̂nm, (1.32)

where Rnm = Rn − Rm, Vnm is the derivative of Rnm. R̂nm is the unit vector
parallel to Rnm. Such kinds of formula are used in some hydrodynamic models
for complementing a short range hydrodynamic interaction that is missed in the
original model. However, it is hard to evaluate how precisely the superposition of
such a two-body expression can describe many-body hydrodynamic interactions.

Direct numerical simulation
It is not easy to contract the hydrodynamic degrees of freedom of a solvent into the
interaction tensor acting among colloids *4, but it is possible to numerically treat

*4 An exact expression of a high rank tensor is known. See, e.g. [61].
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A B

Fig. 1.4 Moving boundary problems in colloidal suspensions. A. Fi-
nite difference grid in bispherical coordinates [62]. B. Two-dimensional finite-
element mesh in a channel flow with 100 circular disks [63].

the time evolution of the corresponding Navier-Stokes equation. To realize direct
numerical simulation, we need to consider how to deal with the moving boundary
problems between colloids and solvent again. If we try to straightforwardly deal
with the problem, we need to generate complicated adaptive mesh for every time
steps (see Fig. 1.4), which is numerically costly.
To overcome these difficulties, a new simulation method called Fluid Particle

Dynamics (FPD) method [7] has been developed in 2000, which can perform direct
numerical simulation on the Cartesian coordinate without suffering from the moving
boundary problems (see Sec. 4.2.1 for the detail). This method approximates a solid
colloidal particle as a shape-fixed liquid droplet whose viscosity is much higher
than the solvent viscosity. This assumption allows us to treat the whole system
including colloids as fluid body. The singularity on the colloid-solvent interface is
avoided by introducing a finite thickness between liquid droplets and solvent, with
which we can sustain the numerical stability. This idea of embedding the solid-
fluid boundary conditions into the Navier-Stokes equation by smoothly connecting
the solid body and fluid body with finite-thickness interface have been adopted to
various hydrodynamic simulation methods [64, 65, 66].
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Chapter 2

Relevant theory and previous study

The subjects of our study are (1) the structural formation process of colloidal
suspensions undergoing phase separation and (2) crystallization dynamics of hard
sphere colloids. In this section, we introduce the basic theories which are relevant
to these two phenomena and review previous researches.

2.1 Phase separation in binary mixtures of simple liquids

2.1.1 Phase behavior

A mixture of two liquids, which is homogeneously mixed at a high temperature,
often phase separates upon cooling. To comprehend the thermodynamic behavior
of such a mixture, we consider the following Ginzburg-Landau-type free energy:

f(ϕ) =
1

2
rϕ2 +

1

4
uϕ4 − hϕ, (2.1)

where ϕ is the composition of the one of the components, r = r0(T − Tc)/Tc (Tc
being the critical temperature) and h is the external field. r0 and u are positive
constants. In Fig. 2.1, we show the functional form of Eq. 2.1. Here we can see
that f has a single minimum for T > Tc, whereas for T < Tc f has two minima.
From the material conservation, the average of ϕ over the whole system, ϕ0, is
constant. Under a certain condition specified by ϕ0 and T , the state where the
system is decomposed into two phases with compositions of ϕa and ϕb (shown in
the figure) can be more stable than the homogeneous state of composition ϕ0. More
specifically, the free energy at the red circle point is larger than that at the red star
point, i.e. F (ϕ0) > [(ϕb − ϕ0)F (ϕa) + (ϕ0 − ϕa)F (ϕb)]/(ϕb − ϕa). Such a situation
is realized when T < Tc and ϕa < ϕ0 < ϕb.
We can understand this behavior on the basis of the phase diagram in the ϕ− T

plane (see Fig. 2.2a). The solid line in the figure is called as “binodal line” and
the composition of the two coexisting phases are given by ϕa and ϕb. The two
phases can coexist in a thermodynamically equilibrium state. However, the phase
separation dynamics can be classified into three types (see the three colored regions
in Fig. 2.2a). The dashed line is called as “spinodal line”, which is determined by
the compositions at which the second derivative of the free energy, f ′′, is zero (see
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also the blue points in Fig. 2.1). Depending on whether f ′′ is positive or negative,
phase separation dynamics is classified into nucleation-growth (NG)-type (see the
yellow region) or spinodal-decomposition (SD)-type respectively. The former takes
place in the metastable region, and thus phase separation is initiated by overcoming
a free-energy barrier by an activated process. On the other hand, the latter proceeds
in the unstable region, and thus the initial mixed state is absolutely unstable and
phase separation starts without any free energy barrier.
Furthermore, the pattern formation of SD-type phase separation depends on the

initial composition ϕ0. Near the symmetric composition (i.e., near 50:50 mixture,
the blue region in Fig. 2.2a) a bincontinuous pattern (Fig 2.2b) is formed, whereas
in an off-symmetric composition (which corresponds to the green region) a droplet
pattern (see Fig 2.2c) is formed.

Fig. 2.1 Typical free energy curves for a binary mixture of simple liquids for
T > Tc and T < Tc (see the solid curves). The dashed line is the common
tangent for the free energy curve at T < Tc and we denote ϕ at the two
contacts as ϕa and ϕb (ϕa < ϕb).

2.1.2 Kinetic theory of phase separation of a binary mixture: Model H

Model H
Phase separation dynamics in a binary mixture of simple liquids is well-understood,
based on a coarse-grained model called “model H”. In this model, the order param-
eter ψ is chosen as the composition of the one of the components. The temporal
change of ψ is to be induced by either diffusion or hydrodynamic convection (flow
velocity v). The corresponding conservation laws for composition and momentum
are given by the following set of equations:

(
∂

∂t
+ v · ∇)ψ = Lψ∇2(βµψ) + θψ, (2.2)

ρ(
∂

∂t
+ v · ∇)v = −∇ ·Π−∇p+ η∇2v + ζ, (2.3)
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Fig. 2.2 a, Schematic figure of the phase diagram of a binary mixture. The
solid and dash curves represent binodal and spinodal lines. In the yellow region,
NG-type phase separation takes place. Inside of the spinodal line, SD-type
phase separation takes place, but the type of pattern formation depends on the
initial composition ϕ0. Near the symmetric composition (50:50 mixture: see the
green region) a bincontinuous pattern (b) is formed, and at an off-symmetric
composition (which corresponds to the blue region), a droplet pattern is formed
(c). Blue and red color in b and c represent the outer and inner sides of the
domain interfaces, respectively. This figure is reproduced from Ref. [67].

where ρ is the mass density and η is the viscosity *1. µ is the osmotic pressure
regrading ψ and given as µψ = δF/δψ. Here F is the free energy functional
expressed as

F (ψ) =

∫
dr

[
f(r) +

1

2
C|∇ψ|2

]
, (2.4)

where the second term represents the gradient term and C is a positive constant.
f is the bulk free energy for which we assume the Ginzburg-Landau type as before:

f =
1

2
rψ2 +

1

4
uψ4 − hψ. (2.5)

The last term in the right hand side of the above equation represents the change
of free energy by an external field, but we do not consider it in this section (or,
we assume h = 0). In Eq. 2.3, Π is the osmotic stress tensor, which is related
to the thermodynamic force Fψ as Fψ = −∇ · Π = −ψ∇µψ. p is the pressure
introduced such that the hydrodynamic flow satisfies the incompressible condition
∇ · v = 0. θ and ζ represent thermal fluctuations of ψ and v respectively, satis-
fying the fluctuation-dissipation relations with the transport coefficient regarding
material diffusion constant Lψ and the viscosity η respectvely: ⟨θψ(r, t)θψ(r′, t′)⟩ =
−2kBTLψ∇2δ(r − r′)δ(t− t′), ⟨ζi(r, t′)ζj(r′, t)⟩ = −2kBTη∇2δ(r − r′)δ(t− t′)δij .
Under the Stokes approximation (ρDv/Dt = 0), Eq. (2.3) with ∇ · v = 0 can be

*1 For simplicity, we assume that the mass density and viscosity are the same between the two
liquids.
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transformed as

v =

∫
drT (r − r′) · (Fψ(r′) + ζ(r′))

=

∫
drT (r − r′) · [µ(r′)∇ψ(r′) + ζ(r′)], (2.6)

where T is the Oseen tensor (see Eq. 1.29).

Early stage of spinodal decomposition
First we examine the stability of Eq. 2.2. For simplicity, here we neglect the con-
vective term and the thermal noise. We decompose the order parameter ψ into
the average concentration, ψ0, and the deviation from it, δψ. Supposing that δψ is
sufficiently small, we can linearize Eq. 2.2. Then, the time-correlation function in
the wave number space, Sq(t) = ⟨δψq(t)δψq(0)⟩ can be calculated as

Sq(t)/Sq(0) = e−2Γqt, (2.7)

where Γq = Lq2[( ∂
2f
∂ψ2 )0 + Cq2] is called “the decay rate of the order-parameter

fluctuations”. If ( ∂
2f
∂ψ2 )0 < 0, infinistimaly small fluctuations exponentially grow

with time, which is widely known as “spinodal instability”.

Late stage of spinodal decomposition
When a certain period of time has elapsed after the linear regime, the order pa-
rameters inside of the domains are almost saturated to the equilibrium values
ψ = ±ψe ≡ ±|r|/u. In such a late stage of phase separation, thus, the bulk free
energy f does not play a dominant role and the domain coarsening proceeds such
that the total interfacial energy is to be minimized. During the coarsening process,
it has been confirmed by many experimental and numerical studies that the phase-
separated structure evolves in a self-similar manner, i.e., the statistical function to
characterize the domain pattern can be scaled by the characteristic domain size, ℓ.
For example, the structure factor can be scaled as

Sq(t) = ℓ(t)dg(qℓ), (2.8)

where g is a scaling function and d is the spatial dimension. Furthermore, it has
also been established that ℓ grows with time obeying a power law as ℓ ∝ tα, which
is known as a dynamic scaling law.
The above exponent α is called “growth exponent”. The value of α depends on the

physical mechanisms of coarsening. In ordinary binary mixtures, the following three
mechanisms are widely recognized: the first is the evaporation-condensation (or,
Lifshitz-Slyozov-Wagner) mechanism [68] (Fig. 2.3C), which is observed in a mixture
with a strongly asymmetric composition (1:99 or more asymmetric mixture, for
example). In this mechanism, molecules in small droplets are transported to nearby
larger droplets by thermal diffusion, because smaller droplets have larger chemical
potential due to the larger interfacial curvature. For a more symmetric composition,
collisions among droplets due to their Brownian motions become a major coarsening
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A B C

Fig. 2.3 Illustrative diagram of coarsening mechanisms of a binary liquid mix-
ture: A. Tube hydrodynamic instability. B. Brownian coagulation mechanism.
C. Evaporation-condensation mechanism.

mechanism, which is known as Smoluchwski’s Brownian coagulation mechanism
(Fig. 2.3B). The growth exponents of the above two mechanisms are commonly
α = 1/3. As we mentioned in Sec. 2.1.1, a bicontinuous structure is formed near the
symmetric composition. In such a structure, the spatial fluctuations in the interface
curvature of a bicontinuous structure creates the gradient of Laplace pressure along
liquid tubes, leading to hydrodynamic flow inside of the tubes. For example, a tube
structure shown in Fig. 2.3A is thus unstable. This instability of a fluid tube is
known as Rayleigh instability. The fluid inside of the tube is squeezed out and then
the tube eventually breaks up and is disconnected. This coarsening mechanism
is called “Siggia’s hydrodynamic mechanism” [69]. The growth exponent of this
mechanism is α = 1.
Below, we explain how to derive the growth exponents for the latter two coars-

ening mechanisms of a binary liquid mixture, which are relevant to our study of
colloidal phase separation.

2.1.3 Coarsening mechanism of bicontinous structure

Near the symmetric composition, a bicontinuous structure is formed. The coarsen-
ing mechanism of such a structure is understood by focusing on the motion of the
interface of the bicontinuous structure [69, 5].
To consider this, let us first check an interfacial profile in the equilibrium state,

where µ = rψ + uψ3 − C∇2ψ = 0. Provided that the flat interface between the
different phases perpendicular to the x axis is located at x = 0 and ψ = ±ψe is
satisfied for x→ ±∞, we obtain the following composition profile, ψ = ψint:

ψint(x) = ψe tanh(

√
|r|
2C

x). (2.9)

The increment of the free energy per unit area resulting from the presence of inter-
face, or the interfacial tension is introduced as,

γ =

∫
dxC(

dψint

dx
)2. (2.10)

In the case in which the interface has a finite curvature, we may approximate
ψ as ψ(r) ∼ ψint(ζ). Here ζ = n(ra) · (r − ra), where ra represents the position
on the interface that is closest from r and n(ra) is the unit normal vector of the



2.1 Phase separation in binary mixtures of simple liquids 35

A B

Fig. 2.4 A. The composition profile at the interface, ψinit. B. Approximation
of the phase field ϕ by using ψinit. The dashed line in this figure represents the
position of the interface between two domains.

interface at that point. Denoting the derivative of ψint in terms of ζ as ψ′
int, we

have the following relations: ∇ψinit = ψ′
initn and ∇2ψ ∼ ψ′′

int + (∇ · n)ψ′
int. From

∇ · n = (1/R1 + 1/R2) (R1 and R2 are the principal curvatures), the chemical
potential is given by µψ ∼ −C(1/R1+1/R2)ψ

′
int. Accordingly, µψ∇ψ = −C(1/R1+

1/R2)(ψ
′
int)

2n. Since (ψ′
int)

2 has a very sharp peak at ζ = 0, it can be approximated
by a delta function. By comparing it to Eq. (2.10), we obtain (ψ′

int)
2 ∼ γδ(ζ)/C.

Substituting the above result into Eq. (2.11), we have

v(r) = −γ
∫
draT (r − ra) · n(ra)(

1

R1(ra)
+

1

R2(ra)
). (2.11)

Here we do not consider the thermal fluctuation for simplicity. Denoting ℓ(t) as
the characteristic domain size at time t, the above relation can be simplified as
ℓ/t ∝ γℓ2(1/ηℓ)(1/ℓ) ∝ γ/η. Finally we obtain the domain growth law of ℓ ∝ γt/η.
This coarsening law characterized by the growth exponent α = 1 is widely known
as Sigaa’s hydrodynamic mechanism [69] and the validity has been confirmed by
experimental [70] and simulation [71, 72] studies.

2.1.4 Smoluchwski’s Brownian coagulation theory

In a binary mixture with an off-symmetric composition, spherical droplets are
formed. These droplets move via Brownian motion due to thermal force noise
and grow wit time by collisions and coalescence among the droplets. Here let us
call a droplet containing i elements (e.g., the number of molecules) i-cluster and
denote the number of i-clusters per unit volume as ni.
The Smoluchowski’s coagulation euqation is an equation describing the time evo-

lution of ni and given by [73]

∂

∂t
ni =

1

2

i−1∑
j=1

Ki−j,jni−jnj −
∞∑
j=1

Ki,jninj , (2.12)

where Ki,j is a constant often called “coagulation rate” and describes the fre-
quency at which i-cluster coagulates with j-cluster. This equation is based on the
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assumption that the number of particles per unit volume is sufficiently small so
that collisions involving more than three clusters are negligible. Also it dose not
take the effect of break-up of clusters into account, which is valid if the interparticle
attraction of colloids is strong enough compared to the thermal energy.

Coagulation rate in the Smoluchowski theory
To evaluate the time evolution of the above coagulation equation, we need to model
the form of the coagulation rate Ki,j . Smoluchwski assumed that the transport
of clusters takes place only by their Brownian motions and considered the relative
diffusion equation for i-cluster and j-cluster. First let us denote the number density
of i-clusters around j-cluster as ni,j(r, t), where r represents the relative position
vector whose origin is at the center-of-mass position of the j-cluster. Then, we can
write the diffusion equation as ∂tni,j(r, t) = −∇ · ji,j and ji,j = −Di,j∇ni,j . Here
Di,j is the relative diffusion constant between i-clusters and j-clusters. Assuming
the isotropy with respect to the radial angle,

∂

∂t
ni,j(r, t) = r−2 ∂

∂r
[r2

∂

∂r
(Di,jni,j)]. (2.13)

Supposing that the coagulation takes place when the distance between the center-
of-mass position of i-cluster and that of j-cluster is below r = Ri,j (Ri,j is often
called “collision radius”), a natural boundary condition is ni,j = 0 at r = Ri,j and
ni,j = ni at r = ∞. With this boundary condition, we can solve Eq. (2.13) and
obtain the following result:

ni,j(r, t) = ni(t)(1−
Ri,j
r

+
2Ri,j√
πr2

∫ r−Ri,j√
4Di,jt

0

e−ξdξ). (2.14)

Ki,jninj corresponds to the number of collisions per unit time between clusters with
size i and j. Thus, we can write Ki,jninj = nj

∫
r=Ri,j

ji,j · ds. By substituting

Eq. (6.4), we obtain

Ki,j = 4πRi,jDi,j(1 +
Ri,j√
πDi,jt

). (2.15)

In a long-time regime (t ≫ R2
i,j/Di,j), in other words, in the case in which the

equilibration of ni,j toward the steady state is sufficiently fast compared to the
frequency of collisions, the above result can be simplified as

Ki,j = 4πRi,jDi,j . (2.16)

In the case in which the cluster shape can be regarded as sphere, the coagulation
radius is simply given as Ri,j = ai + aj , where ai is the radius of i-cluster. If we
write the relative diffusion constant as the sum of the free diffusion constant of
spherical solid particle, i.e., Di,j =

kBT
6πη (a

−1
i + a−1

j ), the collision rate becomes

Ki,j =
2kBT

3η
(ai + aj)(a

−1
i + a−1

j ). (2.17)
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Additionally, if the fluctuation of the distribution of cluster size is small (ai ∼ aj for
all i, j), one finds that the collision rate becomes a constant that dose not depend
on the size of clusters,

Ks ≡ Ki,j =
8kBT

3η
. (2.18)

In the presence of viscous force and interparticle attraction
The above theory assumes that the relative diffusion coefficient is written by the
sum of the free diffusion constant of spherical particles. However, it is known that
the relative diffusion motion between two particles is significantly suppressed as two
particles get close, which can be understood from the fact that the velocity field
of a solvent generated around the two particles is strongly deformed compared to
that around an isolated particle.
A modified version of the Smoluchowski theory that takes such an effect of vis-

cous force into account is known [74]. This theory considers the effect of the
interaction potential between i and j-cluster, Ui,j , as well. Because the inter-
particle force transports the number density ni,j with the relative velocity be-
tween the two clusters, ui,j , the flux ji,j has an additional term of −ni,jui,j .
Since we are focusing on the viscous regime, the interparticle force is to be bal-
anced with the viscous force generated by squeezing flow between the clusters, i.e.,

−∂Ui,j

∂r = ζ(r/Rij)ui,j , where ζ(r/Rij) is the viscous drag coefficient between two
clusters whose center-of-distance is r and given as ζ = kBT/Di,j . From the above,
we obtain ji,j = −Di,j(∇ni,j+ ni,j

kBT
∇Ui,j). Under the same condition as in the pre-

ceding section (the assumption of isotropy, a steady state, and the same boundary
condition), we obtain

ni,j(r, t) =

∫ r
Ri,j

D−1
i,j e

Ui,j/kBT r−2dr∫∞
Ri,j

D−1
i,j e

Ui,j/kBT r−2dr
e−Ui,j/kBTni. (2.19)

If we can assume that clusters are spherical and that the deviation of the distri-
bution of cluster size is small (a ∼ ai for all i), we can obtain

K

Ks
= [

∫ ∞

2

C2(s)e
U(s)/kBT

ds

s2
]−1, (2.20)

where s = r/a and C2(s) is given by the viscous drag coefficient between two
clusters divided by that of a free cluster. For the drag coefficient for two spherical
particles, an exact solution is known (see Eq. 1.31).

A solution under a constant coagulation rate
In the condition where the coagulation rate is constant (K ≡ Ki,j), we can get the
following analytic solution for Eq. (6.4), under the initial condition of ni(t) = np
for i = 0 and ni(t) = 0 for otherwise:

ni = np(
t

th
)i−1/(1 +

t

th
)i+1, (2.21)
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nc ≡
∑
i

ni = (1 +
t

th
)−1np, (2.22)

where ntot is the total number density of clusters and th is a half-life period for nc
that is related to the coagulation rate as th = 1/npK.
The asymptotic behavior of nc in a long-time regime is nc ∼ 1/Kt. In the case

where the shape of clusters is spherical, we may take the mean radius of cluster R(t)
as the characteristic domain size ℓ(t). Since R(t) obeys the relation of ncR(t)

d ∝
const, we obtain R(t) ∝ t1/d, indicating that the growth exponent of the Brownian
coagulation mechanism is 1/d ( 1/3 in three dimensions).

2.2 Phase separation of complex fluids
In this section, we consider the phase separation dynamics of complex fluids. In
the above, we have discussed the phase separation dynamics of a binary mixture of
simple liquids, where we have seen that the material transport by fluid flow plays
an essential role in addition to material diffusion. This implies that the degrees
of freedom of fluid flow should play a key role also in phase separation of complex
fluids. Complex fluids such as colloids, polymers, liquid crystals, etc., show com-
plex rheological behavior depending on the kinds or composition of the materials.
Therefore, it is possible that such viscoelastic behavior has a significant influence
on the pattern formation process during phase separation. However, for colloidal
systems, which is the target of our study, there has so far been no successful rheo-
logical description of colloidal suspensions and developing the constitutive equation
is actually one of the central topics of colloidal science [75]. To see the viscoelastic
effects on phase separation of complex fluids, in the following we first review phase
separation of polymer solutions, and then introduce the previous studies of colloidal
phase separation.

2.2.1 Two fluid model for a polymer solution.

Two fluid model
Before getting to the topic of the phase separation, we introduce the two fluid model
for polymer solutions [76, 77]. This model considers the time evolution of the local
volume fraction of polymer ϕ, and the average local velocity field of polymers and
solvent, vp and vs. The basic set of kinetic equations for these variables are given
by

∂ϕ

∂t
= −∇ · (ϕvp) = ∇ · ((1− ϕ)vs), (2.23)

vs − vp =
(1− ϕ)

ζR
[∇ ·Π−∇ · σp], (2.24)

ρ
∂v

∂t
= −∇ ·Π+∇ · σp −∇p+ η∇2v, (2.25)

∇ · v = 0, (2.26)
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where v is the average velocity given as v = ϕvp + (1 − ϕ)vs, ζR is the effective
friction constant related to the relative motion of polymers and the solvent after
coarse-graining, and η is the solvent viscosity. Eq. (7.5), (7.7) and (7.8) represent the
material conservation law, the momentum conservation law, and the incompressible
condition, respectively. Eq. (7.6) means that the friction force arising from the
relative velocity between polymers and solvent is to be mechanically balanced with
the osmotic force generated by the osmotic stress tensor Π and the viscoelastic
force generated by the mechanical stress tensor σp. Here we note that Π is related
to the thermodynamic force Fϕ as F ϕ = −∇ ·Π = −ϕ∇(δFϕ/δϕ), where Fϕ is the
free energy functional and we use the same functional form as in Eq. 2.1.2. In the
two fluid model, the evolution of σp is assumed to be expressed by the following
Maxwell equation with a single relaxation mode,

∂

∂t
σpij + (vp · ∇)σpij = G

[
∂vpi
∂xj

+
∂vpj
∂xi

− 2

3
(∇ · vp)

]
− 1

τ
σpij (2.27)

where G and τ are the shear modulus and the relaxation time. The above con-
stitutive equation can be derived from the equation of motion for the individual
polymers [57, 15].
The point of the model is that the mechanical stress σp selectively acts on poly-

mers and the time evolution of σp is solely determined by the deformation rate
tensor of polymers, which reflects the difference in the structural relaxation times
between solvent molecules and polymers. We note that the model without the
mechanical stress term is physically equivalent to model H.

Density fluctuation in linear regime
The above equation for mass conservation can be rewritten as

∂ϕ

∂t
= −∇ · (ϕv) +∇ ·

[
ϕ(1− ϕ)2

ζR
(∇ ·Π−∇ · σp)

]
. (2.28)

By mean-field approximation, we can obtain the following linearized equation for ϕ
and Z = ∇∇ : σp in wavenumber space,

∂

∂t

(
ϕq
Zq

)
=

(
−Γq −L

ϕ

− 4Gq2Γq

3ϕ −1+q2ξev
τ

)(
ϕq
Zq

)
, (2.29)

where L = (1−ϕ)2ϕ2/ζR(ϕ) is the transport coefficient, ξev = (4LGτ/3ϕ2)1/2 is the

length scale known as viscoelastic length and Γq = Lq2[(∂
2f
∂ϕ2 ) + Cq2] is the decay

rate in the absence of the mechanical stress. From Eq. 2.29, the time-correlation
function for ϕq, Sq(t) = ⟨ϕq(t)ϕ−q(0)⟩ can be computed as

Sq(t)/Sq(0) = Ase
−Γsqt + (1−As)e

−Γfqt, (2.30)

where Γsq and Γfq are the solution of the quadratic equation which satisfies Γsq +

Γfq = Γq + (1 + q2ξ2ev)/τ and ΓsqΓfq = Γq/τ , and As =
Γsqτ−(1+q2ξ2ev)

(Γfq−Γsq)τ
. In the case
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where the diffusive relaxation is much slower than the stress relaxation (τΓq ≪ 1),
the concentration fluctuation relaxes with the decay rate into which the viscoelastic
effect is renormalized, Γ̄q = Γq/(1 + ξ2evq

2):

Sq(t)/Sq(0) ∼ e−2Γ̄qt. (2.31)

From this, we find that the functional form of Sq(t) is crucially different form the
one for model H at a small length scale, which is due to a coupling between diffusion
and stress modes, but for a large length scale ξev ≫ q−1, Sq(t) recovers the same
q-dependence as in model H. In the opposite case (τΓq ≫ 1), the stress and diffusive
relaxations are decoupled:

Sq(t)/Sq(0) ∼ e−Γqt +
ξ2evq

2

Γqτ
e−t/τ . (2.32)

The above behavior under the linear approximation is justified by comparison with
experiments (see e.g., [78]).

2.2.2 Viscoelastic phase separation

Viscoelastic phase separation of polymer solutions
The phase separation dynamics of polymer solutions has been believed to be uni-
versally expressed by model H, although the free energy is modified by the polymer-
ization degree of polymers N [57]. However, it has been experimentally discovered
that the pattern formation processes which cannot be understood in the framework
of model H take place in a polymer solution with large N [79]. Figure 2.5 show an
example of the typical phase separation process observed in a polystyrene/diethyl
malonate mixture. The pattern evolution proceeds as follows:

Fig. 2.5 Time evolution of viscoelastic phase separation in a polystyrene/di-
ethyl malonate mixture [80].

1. Gel-like domain is formed over the space after the growth of composition
fluctuation.

2. The solvent in the polymer-rich domain is squeezed out and the volume of
polymer-rich domain shrinks.
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3. During the volume shrinking process, the polymer-rich domain coarsens while
pulling each other. In this process, rupture of the thin arms of the polymer-
rich domain is observed.

4. In the late stage, fluid-like coarsening as seen in ordinary binary mixtures
proceeds (the domain coarsens to decrease the interfacial area).

This behavior implies that rheological characteristics of the polymer-rich phase
has a significant effect on the phase separation dynamics. For this reason, this
phenomena was named as “viscoelastic phase separation” [81, 82]. In viscoelastic
phase separation, the mechanical balance dominates the pattern formation and the
self-similarity dose not hold, which is in contrast to the phase separation of ordinary
binary mixtures.

Importance of bulk stress and the physical meaning
One of the striking point of viscoelastic phase separation is that the polymer-rich
phase can form the percolating pattern even when the composition of polymer
is minority, and the phase inversion phenomena *2 became the central issue to
understand the new type of the phase separation process.
As we mentioned in the last section, one of the crucial features of polymer so-

lutions compared to ordinary binary mixtures is the huge gap in the structural
relaxation time between different components, which is expected to be a key to
approach the above problem. As examples of the studies focusing on this point, we
mention several works that examined the difference in material diffusion [83, 84]
and viscosity [85, 86, 87], and parts of the studies report that these gaps between
two phases actually enhance the percolation of the minority phase. However, since
the behavior that the polymer domain are pulling each other is experimentally
observed, one may consider that the mechanical stress in polymer-rich phase is
responsible for this phenomena.
The viscoelastic effects have been first examined by Taniguchi and Onuki [88]

by numerical simulation using two fluid model. They successfully reproduced the
formation of the network pattern and revealed an importance of viscoelastic effect
in stabilizing the network pattern. After that, Tanaka and Araki [89] reported
the simulation result by two fluid model but with a different constitutive equation.
Specifically, they described the mechanical stress as σp = σS + σB, where σS is
shear stress and follows the same time evolution as in Eq. 2.27. The point of their
formulation is additionally including bulk stress σB, which is usually neglected in
polymer physics since longitudinal deformation (extension and compression along
the polymer chain, in a microscopic viewpoint) relaxes with a much faster speed
than that of the transverse mode (shear deformation of tube in a language of rep-
tation theory) [57]. They introduce the volume-fraction dependent bulk modules
GB(ϕ) as GB = G0

BΘ(ϕ − ϕr) *3 (Θ being the step function). Under the consti-

*2 Except that, this system shows a various types of pattern formations that cannot be observed
in ordinary binary mixtures such as moving droplet phase, fracture phase separation and so
on [80]. We focus on the phase inversion here for the relevance of the topics discussed later.

*3 We also need to consider the volume fraction dependence of shear modulus and relaxation
time. See the original paper [88, 89] for this point.
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tutive equation, they demonstrated that the bulk stress has a greater impact on
the emergence of phase-inversion pattern than the shear stress. This argument has
been supported by other numerical studies afterward [90, 91].

A B

Fig. 2.6 Illustrative figure for the expression of bulk modulus GB = G0
BΘ(ϕ−

ϕr). In the early stage of phase separation, a transient gel with almost uniform
concentration is formed (A) and later it becomes inhomogeneous by volume
shrinking (B).

In [80, 89], they describe the physical origin of this term as rupture of tran-
sient gel *4. In Fig. 2.6, we show a schematic figure for a transient gel. In the
early stage of phase separation, a transient gel with almost uniform composition is
formed (Fig. 2.6A). After that, spacial heterogeneity in the composition is induced
toward the equilibrium composition. In this process, as described in the above, vol-
ume shrinking of the polymer-rich phase (by squeezing out of the solvent from the
polymer-rich phase) takes place. In order to increase the local polymer composition
at a certain position, we need to break a transient network of polymers, which is
expected to emerge as slow stress relaxation after coarse-graining. Of course, this
viscoelastic effect does not play a role in a region sufficiently dilute polymer com-
position (i.e., ϕ < ϕr, see Fig. 2.6B), where there is no connectively of polymers.
This is why the composition dependence is introduced by a step-like function. We
note that there has not been no microscopic derivation of the bulk stress, and it is
an open question how to rationalize this concept on a microscopic basis.

Dynamic asymmetry and universality of viscoelastic phase separation
In the above, we have seen that the condition that mechanical stress (especially,
bulk stress) selectively acts on one phase (i.e., stress division) is essential in vis-
coelastic phase separation. This in turn implies the possibility that viscoelastic
phase separation universally takes place as long as the above condition is satis-
fied. Such a situation is expected to be realized by just mixing the different liquids
whose structural relaxation times are drastically different. In other words, we can
expect that mixtures of liquids with large dynamic asymmetry belong to the class
of viscoelastic phase separation [81, 82].
Indeed, it has been demonstrated that two-component polymer blends under the

situation where temperature is set to be inbetween the glass transition tempera-

*4 Note that “transient gel” mentioned here means network-like topology in a microscopic scale
as in a network structure of a polymer gel (not the macroscopic network structure that we
can see in Fig. 2.6)



2.2 Phase separation of complex fluids 43

tures of the two components [92] shows the pattern formation process as Fig. 2.5.
Furthermore, the similar pattern formation is widely observed in phase separation
of various complex fluids such as emulsions [93], colloids [94, 9] and proteins [11].
Clarifying whether colloidal phase separation belongs to the same dynamical

class of viscoelastic phase separation of polymer solutions and if not, what is the
the similarity and difference between them, is one of the main aims of our study.

2.2.3 Colloidal phase separation

Colloidal suspensions can be classified into two categories depending on the inter-
action among colloids. One is the case where colloids stick each other by chemical
bonds. Aggregation kinetics under such irreversible interactions (especially in di-
lute suspensions) is rather well-understood by growth of fractal-like clusters [95, 14].
The other case is the systems where colloids aggregate by reversible (physical) in-
teractions, whose ordering dynamics is the subject of our study.
Colloidal self-assembly processes under physical interactions are triggered by

phase separation in most cases. However, in colloidal suspensions, unlike ordinary
binary mixtures and polymer solutions, there is no common consensus regarding
how the composition fluctuation grows and decays, or how the rheological behavior
is expressed. For this reason, there has been no well-established framework (or,
a coarse grained model) for colloidal phase separation. Thus, in this section, we
provide an overview of a part of recent experimental and numerical results.

Effect of attraction range
Kinetic pathway of colloidal phase separation depends on the range of intercolloid
attractions ∆. In Sec. 1.3.2, we have seen the case of colloid-polymer mixtures and
found that the topology of the equilibrium phase diagram is significantly influenced
by ∆. Such a change in thermodynamically stable states as a function of ∆ is not
limited to depletion interaction. We can find the similar ∆ dependence in systems
with other types of interactions (see, e.g., [36]).
The remarkable points for the attraction-range dependence of the phase diagram

may be the following two cases: one important value is ∆ ∼ 0.3: for ∆ ≲ 0.3, the
gas-liquid coexistence region (including the critical point) is hidden beneath the
liquid-crystal coexistence region [21]. The other is ∆ ≲ 0.1. In this region, the
phase diagram is known to be almost independent of the details of the potential
(i.e., sticky hard sphere limit) [40, 42]. As will be mentioned later, for a sufficiently
short range attraction, the attractive glass transition line also plays an important
role in determination of the stable states (including nonequilibrium states).
It has been also reported that the attraction range significantly affects the mor-

phology of aggregates. Lu, et al [96] experimentally studied how the attraction
range affects the morphology of aggregates. Figure 2.7 shows the confocal images
of colloidal clusters with different attraction ranges, where we can see the more
elongated and ramified structures for small ∆ whereas more compact and spherical
structures for large ∆. The formation of anisotropic clusters for small ∆ has been
supported by simulation studies [41, 97].
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Fig. 2.7 The attraction-range (∆) dependence of aggregates in colloid-polymer
mixtures [96]. The images are obtained by confocal microscopy. (g), (h), (i)
correspond to ∆ = 0.11, 0.04, and 0.02 respectively. The volume fraction is
commonly set as ϕ ∼ 0.04. See the original paper for the interaction strength.

Percolation
Whether colloidal aggregates have connected-network or disconnected-cluster struc-
tures has a strong impact on the macroscopic physical properties such as elastic,
transport, and surface properties [98]. Thus, revealing the mechanism of percolation
is one of the important issues.
When a suspension is dense enough (ϕ ≳ 0.2, for example), particles can form a

structure percolating transiently even in a single liquid phase [99, 100]. From this,
we can expect that it is possible to produce network-like aggregates by quenching
such a percolated liquid into the liquid-gas coexistence region. However, network
structures have been observed experimentally even in a much more dilute region
(ϕ ≳ 0.05) than the expectation from this argument (see, e.g., [42, 101]).
Regarding this, a role of hydrodynamic interactions (HI) has been pointed out

recently. Furukawa and Tanaka [43] found that colloids tend to form more elongated
aggregates upon phase separation in simulations with HI than those without (see
Fig 2.8), which further affects whether the system forms a percolated-network or a
disconnected-cluster pattern upon phase separation. This trend has been confirmed
by various simulation methods later [44, 45, 46, 102]. However, a specific role of
HI in percolation is not so clear for now. In the above work, Furukawa and Tanaka
mentioned that squeezing of a solvent accompanied by aggregation of colloids (in
other ward, many-body short-range HI) is responsible for the formation of elongated
aggregates. Later, the importance of long-range HI for percolation is also confirmed
by Varga et al. [46]. Specifically, in this work, the border between cluster and
network formations was compared between experiments and simulations with long-
range HI (Rotne-Prager-Yamakawa tensor) and a relatively good agreement was
observed [46].
Besides HI, as mentioned in the last section, the range of intercolloid attraction is

also important for the formation of elongated clusters and percolation. For example,
according to a numerical study by Griffiths et al, percolation takes places at ϕ =
0.015 in the case of very short-range attraction ∆ = 0.04.
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Fig. 2.8 The time evolution of the gyration radius Rg of 13 particles, which
are initially at vertices of a regular icosahedron with the edge length 8.08. FPD
and BD correspond to the results by simulation with HI and without [43]. The
similar test is performed in other hydrodynamic models later [103, 104].

Gelation resulting from dynamic arrest of spinodal decomposition
Network-like structures formed during phase separation process are sometimes re-
tained over an experimental time scale. This indicates that such a formation of
physical gel (or, gelation *5) results from freezing of phase separation dynamics.
Revealing the physical origins of dynamic arrest is one of the central issues.
The vitrification of the colloid-rich phase is viewed as one of the most promising

scenarios [105, 14, 42]. Slow dynamics of supercooled liquids are mostly triggered
by steric hindrance among particles and the effect of attraction is considered to play
a rather minor role in dense systems. However, it turned out by analysis based on
Mode Coupling Theory that when the attraction is sufficiently strong and short-
range another type of glassy states induced by attractive interaction appears, which
is called as attractive glass [106]. A numerical study has shown that the attractive
glass line obtained by this theory goes across the gas-liquid spinodal line [107]. From
this, we can expect that in a phase separation process, the volume fraction inside of
colloid-rich phase reaches to the glass transition point, leading to dramatic slowing
down of phase separation dynamics (see Fig. 2.9A). This mechanism is supported
by experimental [108, 42] and numerical [109, 110] studies.
The above mechanism is the case when the characteristic size of the domain ℓ

is sufficiently larger than the particle size σ, since the glass transition is a concept
in bulk [110]. On the other hand, we can find the experimental studies reporting
the gel structures with ℓ/σ = O(1). Hence it is questionable whether we can apply
the idea of glass transition to such a “thin” gel (see Fig. 2.9B). Locally Favored
Structure (LFS) is known as a scenario to explain the formation mechanism of
thin gels. LFS is the energetically most stable structures that a small number of
particles form. For example, icosahedral structure is the LFS for 13 particles. The
importance of LFS for gelation has been first pointed out by Royall et al, and LFS

*5 In this thesis, we suppose that “gel” means a network structure where coarsening is arrested.
We do NOT call a network structure still in coarsening regime as “gel”.
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Fig. 2.9 A Schematic picture of dynamic arrest due to attractive glass tran-
sition. [14]. B Colloidal gel with thin arms [101].

is now recognized as one direction to explain the physical origins of slow dynamics
in colloidal gel [111, 101].
As the other scenarios regarding gelation due to dynamic arrest, we refer to

those based on jamming transition [112] and rigidity percolation [113, 114]. We
also mention that the gels where the inner structure is crystallized are reported
[115, 116] and there is the issue of what is the difference between attractive glasses
and gels with very high volume fractions [117]. When we say physical gels, they
have a wide variety of structures and there can be different mechanisms of dynamic
arrest for different gels. Such a classification of the gelation mechanisms is still in
developing.
We finally stress again that our interest in the thesis lies not in the physical

properties of gel or mechanism of gelation, but rather in phase separation dynamics
of colloidal suspensions.

Coarsening
One of the aims of our study is to reveal the role of dynamic coupling between
colloids and solvent during a phase separation process. Therefore, investigating
the coarsening mechanism of colloidal phase separation is a central issue in this
thesis. Here, we briefly review the experimental results *6 on the coarsening process,
particularly focusing on what kind of growth exponents have been observed under
what circumstances.
As an early work, we first refer to a small angle light scattering (SALS) experi-

ment performed by Poon et al. [120]. They observed the spinodal decomposition of
colloids interacting with short-range attraction (∆ ∼ 0.10) under a shallow quench,

*6 In numerical studies, various values of the growth exponent have been reported depending
on simulation methods (see [118, 43, 119], for example). However, we do not dwell into this
issue here, because it requires in-depth discussion about the difference in various numerical
models, which is beyond the scope of the thesis.
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and found that the domain size increases with the growth exponent of α ∼ 1/4 and
1 for short and long time windows. The growth exponent α = 1 known for the
coarsening of a bicontinous fluid structure has also been reported by recent studies:
food colloids (casein micelles, ∆ ∼ 2) [121] and silicon-oil droplets [122] (∆ ∼ 0.5).
This coarsening law is considered to belong to Siggia’s hydrodynamic mechanism.
Verhaegh et al. also performed SALS for a colloidal suspension with long-range at-
traction ∆ ∼ 1.0 [123] and observed α ∼ 1/3 under shallow quench. From this, they
thought that the coarsening is dominated by the Brownian coagulation mechanism
*7.
On the other hand, Bailey et al. [10] studied phase separation in a deeply quenched

colloidal suspension (∆ ∼ 0.6) under microgravity and successfully observed the
coarsening of a bicontinuous structure more than 5 decades in time. The short-time
behavior determined by SALS shows α ∼ 1/2 and the long time behavior observed
by direct imaging shows α ∼ 1. The similar exponent α ∼ 1/2 in network-forming
phase separation under deep quench has been reported in polystyrene colloid [9],
protein (lysozyme) solution [11] and lyotropic liquid crystal [125]).
From the above, the coarsening process under shallow quench can be explained

by an analogy of the one in ordinary binary liquid mixtures. On the other hand, for
the coarsening process under deep quench, the growth exponent α ∼ 1/2 has been
reported and there has so far been no theoretical explanation for this coarsening
law. In such a deeply quenched case, it is expected that the rheological behavior
of colloidal suspension may play a crucial role in phase separation. This implies
the necessity of a new description of phase separation dynamics beyond model H,
focusing on viscoelastic characteristics of colloids.

2.3 Crystallization kinetics of hard-sphere colloids
To clarify the impact of a hydrodynamic degree of freedom of solvent on the crys-
tallization kinetic of colloids is the second subject of this thesis. In this section,
we provide a brief overview of this phenomenon. We first explain the Classical
Nucleation Theory (CNT), which is one of the most fundamental phenomenological
theory to generally describe a homogenous nucleation process. Then we introduce a
kinetic equation for a nucleation process called as the Becker-Döring equation. Fi-
nally, we review recent studies regarding the microscopic kinetics of crystallization
and explain what is the central issue in this phenomenon.

2.3.1 Classical Nucleation Theory

The energy cost to form a nucleus consisting of n particles in the metastable bulk
phase, whose pressure and chemical potential are p and µ respectively, is given as

*7 In this paper, it is also reported that the growth rate observed in a linear regime shows the
completely different functional from one predicted in binary mixture of simple liquid (see
Eq. 2.7). Later Tanaka revealed that the data can be fitted by the growth rate of a two fluid
model (see Eq. 2.31) [124].
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[126],
∆F = γA+ (p− p′)V ′ + n[µ′(T, p′)− µ(T, p)], (2.33)

where A is the interfacial area between the bulk phase and the nucleus, V ′ is the
nucleus’s volume, p′ and µ′ are the pressure and the chemical potential inside the
nucleus, and γ is the surface tension. By expanding µ′ by p′ − p

µ′(T, p′)− µ′(T, p) ≃
(
∂µ′

∂p′

)
T

(p′ − p) = v′(p′ − p) (2.34)

where v′ = V ′/n. This is a good approximation when the nucleus is incompressible
(or, when v′ is hardly dependent on the change of p′). As a result, we obtain

∆F = γA+ n∆µ, (2.35)

where ∆µ = µ′(T, p) − µ(T, p) < 0 is the difference in the chemical potential
between the stable and the metastable states. Since the interfacial area should be
proportional to n2/3 we denote A = a(nv′)2/3 (a is a constant which depends on
the morphology of the nucleus) and then we can rewrite the above relation as

∆F = |∆µ|n2/3(3
2
n1/3c − n1/3), (2.36)

where nc = (2av′2/3γ/3|∆µ|)3 is the critical nucleus size and ∆F takes a maximum
value at n = nc. When this energy barrier ∆F (nc) is sufficiently larger than the
thermal energy kBT , the metastable phase is retained for a long time, but once n
exceeds nc the nucleus spontaneously starts to grow and the stable phase eventually
covers the whole system. Denoting the rate to form such a nucleus larger than the
critical size as I and assuming that the critical-size dependence of I is determined
by the Boltzmann weight, we can obtain the following formula for the nucleation
rate:

I = I0 exp [−β∆F (nc)], (2.37)

where I0 is a constant, which can be determined by the kinetic theory.
In the case where the nucleus has a spherical shape, choosing the radius of the

droplet R as the key parameter instead of n, we can rewrite Eq 2.35 as

∆F = 4πR2γ − 4π

3
R3ρ′|∆µ|, (2.38)

where ρ′ = 1/v′. Then the radius of the critical nucleus is expressed as Rc =
2γ/ρ′|∆µ|.

2.3.2 Derivation of nucleation rate from a kinetic theory

In this section, we explain how the kinetic factor of the nucleation rate (I0 in
Eq. 2.37) can be determined. There are several ways for the derivation [5], but here
we employ an approach based on the Becker-Döring equation.
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metastable phase
in bulk

stable nucleus

Fig. 2.10 A. The functional profile of the free energy in the Classical Nucle-
ation Theory. B. Formation of a stable nucleus in the bulk of the metasbale
phase.

First we denote the density of nucleus with n particles as ρ(n, t) and assume that
the time evolution of ρ(n, t) obeys the following master equation:

∂

∂t
ρ(n, t) = f+(n− 1)ρ(n− 1, t)− f−(n)ρ(n, t)− f+(n)ρ(n, t)+ f−(n+1)ρ(n+1, t),

(2.39)
where f+(n) and f−(n) are the transition rates that a nucleus of n particles gains
or loses a particle, respectively. For this process, we assume the detailed balance:

f+(n− 1)ρ0(n− 1) = f−(n)ρ0(n), (2.40)

where ρ0(n) is the density of nucleus of n particles in the vicinity of metastable
state and determined by the Boltzmann weight, i.e., ρ0(n) = ρ0(1) exp (−β∆F (n)).
ρ0(1) is equivalent to the density of metastable liquid ρ′. f− in Eq. 2.39 can be
erased by using Eq. 2.40. By serializing n for the resulting equation, we obtain the
following Fokker-Plank equation:

∂

∂t
ρ(n, t) =

∂

∂n

[
f+(n)ρ0(n)

(
∂

∂n

ρ(n, t)

ρ0(n)

)]
. (2.41)

Denoting the density in a steady state as ρs(n), the steady flux of the above equation
is I ≡ −f+(n)ρ0∂n[ρs(n)/ρ0(n)] (= const.). Then, the formal solution of ρs is

ρs(n) = Iρ0(n)

∫ ∞

n′

dn′

f+(n′)ρ0(n′)
. (2.42)

Since ρs(n) → ρ0(n) for n→ 0, the above relation becomes

I =

[∫ ∞

0

dn

f+(n)ρ0(n)

]−1

. (2.43)
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Since ∆F has a sharp peak around n ∼ nc, we can use the saddle point analysis
for the above integral, and the result is

I = Zf+(nc)ρ
′ exp [−β∆F (nc)], (2.44)

where Z =
√
β|∆F ′′(nc)|/2π is the so-called Zeldovich constant (∆F ′′ being the

second derivative of ∆F ).
To compute the nucleation rate, we need to know ∆F (nc), ∆F

′′(nc) and f+(nc).
In numerical simulations, ∆F (n) can be determined by the Umbrella Sampling
method. On the other hand, f+(nc) can be measured as follows. First we introduce
the Langevin equation corresponding to Eq. 2.41,

∂

∂t
n(t) = −f+(n)

∂

∂n
(β∆F ) + θ(n, t), (2.45)

where θ is the thermal noise satisfying ⟨θ(n, t)θ(n, t′)⟩ = 2f+(n)δ(t − t′). Here,
considering the time evolution of nuclei whose size is initially n(0) = nc, n(t) for a
short time follows ∂tn ∼ θ(nc, t) since ∂n(β∆F ) ∼ 0 for n ∼ nc. Thus, the mean
square displacement of n satisfies the following relation [127, 128]:

⟨|n(t)− nc|2⟩ ∼ 2f+(nc)t, (2.46)

From this relation. we can measure f+(nc) by tracking the microscopic change of a
nucleus near the critical size. This procedure allow us to determine the nucleation
rate without any adjustable parameters [127, 128].

2.3.3 Crystallization of hard-sphere colloids

Characterization of the nucleation frequency is one of the most important issues in
material sciences ranging from metallic materials, pharmaceuticals, to foods. How-
ever, although one may say that phenomenological theory such as CNT qualitatively
captures the trend of crystallizations, no common consensus regarding the general
understanding of this phenomenon has yet been reached [6, 129]. To develop a bet-
ter understanding, the studies based on the microscopic pathway of particles in the
crystallization process have been actively performed recently. Colloidal suspensions
have aroused great interest in this context, since it is an experimental system that
shows the same thermodynamical behavior as atomic systems but can be observed
with optical microscopy in a single-particle resolution, which is impossible in atomic
systems [130]. Among them, hard-sphere colloids have been intensively studied as
one of the most fundamental systems which show a liquid-crystal transition. In
2001, Auer and Frenkel pointed out [127] a huge mismatch in the crystal nucle-
ation rate between light scattering experiments and numerical prediction based on
Umbrella Sampling method (see Fig. 2.10). Revealing what is the physical origin
behind this huge discrepancy is one of the central issues in this field [6, 129].
The huge discrepancy in the nucleation rate between experiments and simulations

implies the possibility that there exist any unexpected nucleation pathway that
efficiently form large nucleus. For example, unlike the assumption of CNT, a three-
dimensional observation by confocal microscopy reports that nucleus with critical
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Fig. 2.11 Comparison of the crystal nucleation rate in hard-sphere colloids
between experiments and simulations [131]. Here we can see in both experi-
ments and simulations that the nucleation rate dramatically decreases as the
volume fraction of colloids ϕ decreases. However, the decreasing tendency is
much stronger in simulations. For example, at ϕ = 52%, we can see that the
degree of the mismatch between experiments and simulations reaches more
than 8 orders of magnitude.

size have nonspherical shape on average [132]. Also a simulation study [133] claims
that it is important to consider the morphology of the crystal nucleus and the type
of crystal structures in the nucleus.
Furthermore, the emergence of dense precursors has been pointed out by light-

scattering experiment [134] and interpreted as the indication of translational or-
dering (or, density increase), which was claimed to be confirmed by numerical
simulation of a hard-sphere system [135]. However, this scenario was challenged by
numerical simulations of the same hard sphere system [136, 137]. The issue here is
whether precursors have translational order signalled by an increase in density [135]
or have only orientational order without any density change [136, 137]. The latter
scenario emerges from the structural formation in a metastable supercooled state
of a glass-forming system [138, 139], for which it is natural to assume that there
is no development of translational order. Later this scenario was confirmed for
hard spheres [140] and soft spheres [141]. Furthermore, these studies showed that
crystalline polymorphs are also selected by the symmetry of precursors (see also a
review [129]). It has recently confirmed also by experiments of charged colloidal sys-
tems [142, 143] that particles with high orientational order rather than translational
order (or density) act as precursors of crystal nucleus by charged colloids.
Besides that, the effects of the non-ideal features in experiments such as polydis-

persity of size of colloids [144], gravity (or, density mismatch between colloids and
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a solvent) [145, 146] have been pointed out.
On the other hand, there is a potentially important effect that most of the

simulation methods have neglected: hydrodynamic degrees of solvent. Indeed, as
far as we know, simulation studies that take the hydrodynamic interactions (HI)
among colloids are limited to the following two cases. One is a work by Radu and
Schilling [147], where they examined the effect of HI by Multiple Particle Collision
Dynamics. They obtained the result that simulations with larger viscosity shows
a larger nucleation rate and concluded that HI may speed up nucleation. The
other is a numerical study on crystal growth by Roehm, et al., using Fluctuating
Lattice Boltzmann method, where they reported that HI slows down the speed of
crystallization [148]. These results seem conflicting and further investigations are
necessary. We note that examining such an effect is crucial not only for crystalliza-
tion of hard-sphere systems but also for fundamental understanding of the kinetics
of the systems where crystallization proceeds in a liquid such as protein solutions.
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Chapter 3

Experimental method

3.1 Experimental method

3.1.1 Three-dimensional observation by confocal microscopy

To capture the precise positions of colloids in three-dimensional (3D) space, we
use a confocal laser scanning microscopy (Leica SP5). This method allows us to
measure the intensity of a specific fluoresce light only from a point only on a focal
plane, which is realized by rejecting off-focal lights from other locations by a spatial
optical pinhole. The sample stage can be scanned along the z(optical)-axis by a
piezo device and the focus point can be scanned on the xy plane by a mirror.
Thus, we can obtain a stack of two-dimensional images on the xy planes along
z-axis in a rather short time. So, if we use rather large-size colloidal particles,
we are able to take a 3D image of a colloidal suspension before colloidal particles
move via Brownian motion. This method also allows to follow dynamical evolution
of 3D structures of colloidal suspensions with a particle-level resolution, typically
with a time resolution less than ∼ 30 s. From a confocal microscopy image, we
can reconstruct the three-dimensional structures of the samples with a microscopic
resolution by extracting the center-of-mass positions of all colloidal particles. We
used the algorism in Ref. [149] to make such 3D reconstruction from a confocal
microscopy image.

3.1.2 Samples

In our experiments, we prepared two different sizes of poly methyl methacrylate
(PMMA) colloids sterically stabilized with polyhydroxyl steric acids and labelled
with fluorescent dye (rhodamine). See Appendix A for synthesis method for PMMA
paritlces. The average diameter of colloids are σ = 1.9 µm (EXP1) and 2.9 µm
(EXP2), and both have approximately 3% size polydispersity.
To closely match the density and refractive index of colloids with those of a

solvent, we used a mixture of cis-decalin and cyclohexyl bromide (CHB) as the
solvent. Because of the nearly perfect refractive index matching, the van der Waals
interaction between colloids can be safely neglected. We regarded the samples as
density matched when we cannot see sediment or float of colloids after 10 min of
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A B

Fig. 3.1 A. Schematic figure of the principle of confocal microscopy
(http://www.nhm.ac.uk). B. 3D reconstruction from a confocal image

centrifuge with 10,000 rpm. In the matching point, the weight fraction of CHB was
roughly 74%. It is known that CHB absorbs moisture as an impurity in contact
with air, which is expected to lead to the loss of stability of the ion concentration
in CHB. In order to avoid this effect, we purified CHB by mixing calcium chloride
for 1 hour and then filtering it out. We also cleaned cis-decalin with aluminium
oxide. Preparation of samples and sealing them into the cells were performed in a
glove box filled with dry nitrogen. The Debye screening length in the mixture was
approximately 2 µm. We determined it by first measuring the radial distribution
function g(r) of a dilute colloidal suspension (0.5% volume fraction) by confocal
microscopy, and then by comparing the interaction potential u(r) obtained from the
relation u(r) ∼ kBT log g(r) with the Yukawa potenital [26]. PMMA has charges
in the mixture of CHB and cis-decalin, which were determined as 210 e for EXP1
and 350 e for EXP2, by performing electrophoresis following Ref. [150, 151]. We
controlled the Debye screening length of the electric repulsion by adding a salt
(tetra-butylammonium bromide: TBAB).
In order to induce short-range attractive interactions between colloids (depletion

interactions [20, 21]), we dissolved polystyrene with a molecular weight of 8.4× 106

Da for EXP1 and 2.0×107 Da for EXP2. The gyration radius of the polymer in the
solvent is estimated as Rg

∼= 120 nm in EXP1 and Rg = 180 nm in EXP2. Thus,
the characteristic range of the depletion interaction, ∆ = 2Rg/σ, is approximately
0.13 for both EXP1 and EXP2, which can be regarded to be short-range. The
concentration of the polymer, Cp, is used as a control parameter to change the
strength of the attraction between colloids, or the depth of the potential, βϵ. The
polymer concentration, Cp, also changes the viscosity of the solvent, which affects
the Brownian time of colloids. Thus, we measured the viscosity of the solution of
the polymer in the closely matched solvent at T = 26 ◦C by rheometer and obtained
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the relation: η = 2.25+2.7Cp for EXP1 and 2.25+4.8Cp for EXP2 (here the units
of η and Cp are g/L and mPa.s respectively).
We set different scanned box sizes depending on samples, which are summarize

in Table 3.1.

Sample σ τB Q L3 ∆t

EXP1 1.9 µm 2.3 s 210 e 1073µm3 24.8 s
EXP2 2.9 µm 7.1 s 350 e 1453µm3 18.2 s

Table 3.1 Properties of samples and settings of confocal observation.
σ: the diameter of colloids; τB: the Brownian time of a free colloidal particle;
Q: the average number of surface charges of colloids per particle; L3: the size of
the scanned box; ∆t: the time resolution for a 3D image acquisition. Here we
show τB in Cp = 0.50 g/L for EXP1, and that in Cp = 0.30 g/L for EXP2. The
temperature is commonly 26 ◦C in both experiments. The pixel resolutions of
images are 0.21 µm for EXP1 and 0.38 µm for EXP2.

3.1.3 Initiation of phase demixing by salt injection

In order to observe the aggregation process of colloids from the very beginning
without any perturbation by mixing flow, we used the following special protocol.
As mentioned in the main text, the control parameters of our experiment are the
volume fraction of colloids ϕ and the effective temperature βϵ. Since the tempera-
ture change results in the mismatch of the density and refractive index between the
colloids and the solvent, we need to change either ϕ or the polymer concentration
Cp to initiate phase demixing. However, it is almost impossible to change these
quantities rapidly. Thus, we used a unique method to change the Debye screen-
ing length of electrostatic repulsions of colloids by salt injection [9]. We contact
our sample cell, whose volume is roughly 8 mm×5 mm×100σ, with a reservoir
cell, whose volume is about 500 times larger than the sample cell for observation,
through a membrane filter (Fig. 3.2). Since the pore size of the membrane filter
used is roughly 0.1 µm (Wahtman Anodisc 47), we expect that components in the
sample except for colloids (solvent molecules, salt ions, and polymers) can pass
through the filter. Thus, by loading a solvent different from that in the sample, we
can quickly change the physical state of the sample since the salt diffusion takes
place much faster than colloid phase separation.
First we insert a colloidal suspension together with polymers into the sample

cell. In this condition, direct contacts between colloids are hardly observed due to
long-range Coulomb repulsions (Fig. 3.3A). Then we insert a solvent saturated with
salt (TBAB) into the reservoir cell. Just after the contact of the two cells, salt ions
are gently injected to the sample cell by diffusion and screen the electric repulsions,
which allows us to bring the sample from a stable one-phase state (Fig. 3.3A)
to an unstable two-phase state (Fig. 3.3B). Once the electrostatic interaction is
screened by salt injection, the depletion attractions by polymers become dominant
in the interactions between colloids. If the quench is deep enough, colloids start
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to aggregate due to the attractive interaction (Fig. 3.3C-E). Note that the solution
used for salt injection contains colloids and the same concentration of polymers as
in the sample cell with density and refractive index matching (in Fig. 3.2 we do not
draw colloids and polymers in the reservoir cell just for simplicity). This unique
protocol allows us to avoid harmful macroscopic perturbations on the system such
as hydrodynamic flow and mechanical vibrations, upon the initiation of demixing.

salt

colloid

polymer

membrane filter

Fig. 3.2 Schematic figure of the cell used in our experiments. The cell
is composed of the sample cell and the reservoir cell separated by a membrane
filter. In this image, we do not draw colloids and polymers in the reservoir cell
just for simplicity.

A B C D E

Fig. 3.3 A process of colloidal phase separation. Here we show examples
of 2D confocal images in EXP1 at the polymer concentration, Cp = 0.50 g/L,
and the volume fraction, ϕ ∼ 10 % at various scaled times tw/τB (τB is the
Brownian time). In this sample, a kinetically arrested network structure (gel)
is seen at the end of the observation tw/τB ∼ 500. The length of the side of
the images corresponds to 107 µm.

3.1.4 Definition of the onset of demixing

Here we explain how we separate the screening process of the electrostatic repulsion
and the aggregation process in an unambiguous manner. To evaluate the validity
of our method quantitatively, we now show in Fig. 3.4 the temporal change of the
radial distribution function g(r) (r: distance) in EXP1 for a condition ( Cp = 0.50
g/L, ϕ ∼ 10%). In the very beginning of observation, we can see that the position
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of the first peak of g(r) shifts and approaches r/σ = 1. This is the screening process
of the electric repulsion induced by the salt injection. After this process, we see
that the height of the first peak begins to grow. In this work, we define the onset
time of the aggregation of colloids, tw = 0, as the time when the first peak of the
radial distribution function starts to grow rapidly. To confirm the reproducibility
of our method, we show the results of three different runs in Fig. 3.4. We confirm
that by using the onset time defined above, the radial distribution functions of the
three independent runs can be overlapped almost perfectly. The slight mismatch
may be due to the finite time resolution of our 3D scan (∼ 10.8τB).

539

216

86.4

32.3

10.8

-10.8

0

-75.6

Fig. 3.4 Temporal change of the radial distribution function g(r, tw).
The result is for a sample in EXP1 of Cp = 0.50 g/L and ϕ ∼ 10%. Three
colors correspond to three independent observations. The agreement of the
three results show reproducibility of our measurements.

3.1.5 Analysis of the temporal growth of the scattering function during

demixing

We calculate the scattering function S(q, tw) from the 3D power spectrum of the
density correlation function as S(q, tw) = ρq(tw)ρ−q(tw)/N . Here the density field
is defined as ρ(r, tw) =

6
πσ3

∑
nΘ(σ/2−|r−Rn(tw)|), where Θ is the step function

and {Rn} is the set of the center-of-mass positions of colloids.
To analyse the temporal change of S(q, tw) during phase separation, we calcu-

late the growth rate of composition fluctuations at wave number q as R(q, tw) =
τB
2tw

log(S(q, tw)/S(q, 0)). In Fig. 3.5A, we show its temporal change. We can see

that R(q, tw) shows little change in the early stage (tw < 100τB). At tw/τB = 10.8,
R(q, tw) looks quite noisy simply because R(q, tw) at early times is sensitive to
the noise in S(q, 0). When R(q, tw) is independent of time, i.e., R(q) ≡ R(q, tw),
we can have the following relation: S(q, tw) = S(q; 0) exp (2tR(q)/τB) (R(q): the
growth rate), which is known to be valid for Cahn’s linear regime of spinodal de-
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composition [5]. Such behavior can be seen in the early stage (see Fig. 3.5A). The
presence of Cahn’s linear regime in the early stage of aggregation can also be con-
firmed from the exponential growth behavior of the peak (or integrated) intensity,
I(tw) =

∫
d(qσ/2π)S(q, tw) (see the inset in Fig. 3.5A).

The temporal change in S(q) is shown in Fig. 3.5B, where we can see the shift
of the peak wave number to a smaller value as phase separation proceeds.

A B

Fig. 3.5 A. Temporal change of the growth rate. The result is for a sample
of Cp = 0.50 g/L and ϕ ∼ 10 %. Inset: Temporal change of the intensity
of composition fluctuations at the same state point. B. Temporal change of
S(q, tw). The result is for a sample of Cp = 0.50 g/L and ϕ ∼ 10 %. The gray
line represents the form factor for a sphere whose radius is σ.
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Chapter 4

Simulation method

Here we explain numerical simulation methods that we use in our study. To see
how the hydrodynamic degrees of freedom affect colloidal dynamics, we use two
different simulation methods: Brownian Dynamics (BD) method and Fluid Particle
Dynamics (FPD) method. Since the former completely neglects the hydrodynamic
interactions (HI) among colloids and the latter can incorporate HI, we can examine
how HI affects colloidal dynamics.

4.1 Brownian dynamics method
In Brownian Dynamics (BD) simulations, we use the following Langevin equation,
which describes the relation among the center-of-mass position, Rn(t), and the
velocity, Vn(t), of particle n (n = 0, 1, .., N − 1), and the force acting on particle n,
Fn(t):

dRn(t)

dt
= Vn(t) = ζ−1(Fn + FR

n ), (4.1)

where ζ is the friction constant between colloids and the solvent. FR
n is the ran-

dom thermal force acting on particle n, which satisfies the following fluctuation-
dissipation relation:

⟨FR
n ⟩ = 0

and
⟨FR
ni(t)F

R
mj(t

′)⟩ = 2kBTζδnmδijδ(t− t′).

In this simulation, we set the space unit as the colloid diameter σ and the time
unit as τ = σ2/D where D is the free diffusion constant of an isolated colloid:
D = kBT/ζ. The Brownian time in BD simulation is defined as τB = (σ2 )

2/6D.

The time step used is ∆t = 1.0× 10−5τ .

4.2 Fluid particle dynamics method
In order to deal with the hydrodynamic degrees of freedom in colloidal suspen-
sions by numerical simulation, we need to solve the moving boundary problem for
all colloidal particles if we treat colloids as solids, since the (nonslip) solid-fluid
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boundary condition should be satisfied on the surfaces of all colloid particles. The
Fluid Particle Dynamics (FPD) method [7] treats a solid colloidal particle as an
undeformable fluid particle, whose viscosity is much higher than the solvent viscos-
ity and the viscosity changes smoothly across the colloid-solvent boundary. These
features allow us to treat the dynamics of colloids with many-body hydrodynamic
interactions simply by solving the Navier-Stokes equation in a Cartesian coordinate
system without suffering from the solid-fluid boundary condition. We explain the
detail of the simulation method here.

4.2.1 The fundamentals of FPD method

Basic set of equations
We express the center-of-mass position of particle n as Rn. By introducing a phase
field ϕn ∈ [0, 1] as below, we distinguish whether the position r is inside (ϕn ∼ 1)
or outside (ϕn ∼ 0) of the particle,

ϕn(r) =
1

2

{
tanh

[ 1
ξn

(an − |r −Rn|)
]
+ 1
}
, (4.2)

where an is a parameter to characterize the size (radius) of particle n and ξn is the
interfacial thickness. See Fig. 4.1 for the functional form. Depending on ϕ =

∑
n ϕn,

we define viscosity feild η(r) as follows,

η(r) = ηcϕ(r) + ηs(1− ϕ(r)), (4.3)

where ηc and ηs is the viscosity of the colloidal particles and the liquid in which
colloids are suspended. Here the summation is taken over all N particles.

A B

Fig. 4.1 A. The functional profile of ϕ(x) = 1
2
{tanh(a−|x|

ξ
) + 1}. B. An

example of ϕ in 2D. Here we set a ≡ an = 3.2 and ξ ≡ ξn = 1.0 for all n.

The key points of this method are that (i) the particle rigidity is approximately
sustanined by large viscosity difference, (ηc−ηs)/ηs ≫ 1, and (ii) a rigid solid-liquid
boundary is replaced by a smooth interface with thickness ξn. When there is no
other gross (or hydrodynamic) variable than the velocity field v(r), the dynamics of



4.2 Fluid particle dynamics method 61

colloidal particles with hydrodynamic interactions can be approximately described
by solving the Navier-Stokes equation with Eqs. (4.3) and (4.2). It is worth noting
that with decreasing ξn/an and increasing ηc/ηℓ the method is expected to become
asymptotically exact [152].
In FPD method, as we numerically solve the Navier-Stokes equation in a direct

manner, it is possible to rather straightforwardly incorporate the internal degree of
freedom of a solvent such as ion density [153, 154, 155] and orientational [156] field.
In this thesis, we consider the simplest case, where colloid particles are immersed
in a simple liquid. Then the equation of motion to be solved is

ρ
( ∂
∂t

+ v · ∇
)
v = f −∇ · [σ − σR] (4.4)

with
σ = pI − η(∇v† +∇v),

where I is the unit tensor. In the above, ρ is the mass density, and we assume that
the density of the liquid is the same as that of particles. v(r) is the velocity field,
and the pressure p is determined to satisfy the incompressibility condition ∇·v = 0.
σR is the random stress noise, which we will discuss in detail in Sec. 4.2.1.
In the above, f(r) is the interparticle force density, which is obtained by dis-

tributing the force Fn and torque Nn acting on the center of mass of particle n
to the lattice with the weight of ϕn. Here we decompose the force density to the
translational and rotational components: f(r) = fT(r) + fR(r). The first and
second terms of the right-hand side is the force density corresponding to Fn and
Nn respectively and expressed as

fT(r)=

N∑
n

ϕn(r)Fn/

∫
drϕn(r), (4.5)

fR(r)=
N∑
n

ϕn(r)ron×(Nn×roi)/

∫
drϕn(r)|N̂n×ron|2, (4.6)

where the rotation center of particle n is located at its center-of-mass, ron = r−Rn,
and N̂n is the unit vector along Nn.
We determine the center-of-mass velocity Vn and angular velocity Ωn from v as

Vn =

∫
drvϕn/

∫
drϕn(r) (4.7)

Ωn =

∫
drϕn(r)(ron × v)/

∫
dr|n̂× ron|2ϕn(r) (4.8)

where n̂ is a unit vector along the rotational axis.
In practical numerical calculations, the on-lattice velocity field, v(r, t + ∆t), is

evaluated from the physical quantities at time t by Eq. (B.1). Then we move the
position of particle n off-lattice as a rigid body by Rn(t+∆t) = Rn(t)+∆tVn(t+
∆t), where ∆t is the time increment of the numerical integration. We aslo update
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the orientational vectores of colloids depending on the angular velocities following
the explicit forward difference Euler scheme, but we need to take special care for
the time evolution since orientational vector is pseudovector. Sepcifically, here we
use normalized quaternion but see other documents for further details (e.g. [157]).

The correction factors originating from the finite interface thickness
By multiplying both sides of Eq. (B.1) by ϕn(r) and then performing its spatial in-
tegration, we can straightforwardly obtain an approximate equation of translational
motion of particle n:

Mn
dVn
dt

= Fn +KT
n , (4.9)

whereMn = λTnρ
∫
drϕn(r) is the mass and the velocity of particle n. Here we note

that the time derivative of the particle velocity can be approximated as

dVn/dt ∼=
∫
dr(∂/∂t+ v · ∇)vϕn/

∫
drϕn(r). (4.10)

λTn is a correction factor resulting from the introduction of the smooth interface
and given by

λTn =

∫
drϕi(r)/

∫
drϕ2i (r). (4.11)

In the sharp-interface limit ξn/an → 0, λTn tends to → 1. For the correction factor
arising from the finite interface thickness ξn, see also the discussion in Sec. 4.2.1.
The second term of the right-hand side of Eq. (4.9) is the force exerted by the fluid,
which is given by

KT
n = −λTn

∫
drϕn∇ · [σ − σR] ∼= −λTn

∫
dSnn̂n · [σ − σR]. (4.12)

Here we use the following approximate relation∫
dr∇ϕn ·Q ∼= −

∫
Sn

n̂ndSn ·Q, (4.13)

for an arbitrary tensor Q(r), where Sn is the surface of particle n and n̂n is the
unit outward normal vector to Sn.
Similarly, the equation of rotational motion of particle n can be obtained by

operating ϕn(r)ron× on the both sides of Eq. (B.1) and then performing its spatial
integration:

In
dΩn

dt
= Nn +KR

n , (4.14)

where In = λRnρ
∫
dr|n̂× ron|2ϕn(r) is the moment of inertia of particle n, respec-

tively. λRn is the correction factor regarding rotational motion and given as

λRn =

∫
dr|n̂× ron|2ϕn(r)/

∫
dr|n̂× ron|2ϕ2n(r). (4.15)
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The last term in Eq. 4.14 is the torque exerted by the fluid, which can be approxi-
mated in the same way as the case of translational motion:

KR
n = −λRn

∫
drϕnron ×∇ · [σ − σR]

∼= −λRn
∫
dSnn̂n · (ron × [σ − σR]) (4.16)

Introduction of thermal stress noise
In the FPD, there can be two ways to incorporate thermal noise. One is to introduce
the thermal force noise to the center of mass of a particle as in Brownian dynamics
simulation. Since the particle is treated as a solid particle for the motion of its center
of mass, this is certainly a candidate. However, as we have seen in Eq (1.23), the
random force has a memory effect. This is a consequence of thermal fluctuations at
different points in the fluid being coupled with each other through the Navier-Stokes
equation. Indeed, it is difficult to reproduce the resulting hydrodynamic memory
effects properly by applying stochastic forces only at certain points; more precisely,
it is hard to constitute such a random number sequence [158]. So only the part
of thermal noise acts as the noise, which leads to an obscurity in the temperature,
as mentioned in the introduction. Furthermore, the rotational Brownian motion
is not naturally introduced. The other is to introduce the thermal stress noise
directly in the fluid to satisfy the fluctuation-dissipation theorem with the nonlocal
viscosity η(r) [43]. This should properly reproduce both translational and rotational
Brownian motion with a full statistical mechanical consistency [53, 55, 56]. This
theoretical framework is widely known as fluctuating hydrodynamics. Thus, we
introduce the random stress noise, σR(r), which satisfies the fluctuation-dissipation
relation [50, 54]:

⟨σR
ij(r, t)σ

R
mn(r

′, t′)⟩ = 2kBTη(r)(δimδjn + δinδjm)δ(r − r′)δ(t− t′).

The variance of the particle velocity at equilibrium is given by

⟨|Vn|2⟩=
∫
drdr′ϕn(r)ϕn(r

′)⟨v(r)·v(r′)⟩/[
∫
drϕn(r)]

2

=2kBT/Mn.

Here we make use of the relation ⟨v(r) · v(r′)⟩ = (2kBT/ρ)δ(r − r′). The relation
⟨|V |2⟩ = 2kBT/Mn also represents the equipartition theorem for the kinetic energy
with respect to the translational motion of the particle: Meffn⟨|Vn|2⟩/2 = 3kBT/2,
whereMeffn = 3Mn/2 is the effective mass [50] (see also Eq. (1.22)). Regarding the
angular velocity, we also obtain the equipartition theorem: ⟨|Ωn|2⟩ = 3kBT/In.
Here it may be worth commenting on the correction factor introduced above. Our

basic set of kinetic equations exactly satisfy the fluctuation-dissipation relation. In
our method, however, we need to cut out a high-viscosity region represented by
our shape function ϕn and regard it as a solid particle (the transformation from
a fluid particle to a solid one). This process inevitably suffers from an artificial
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effect coming from the finite thickness of the interface. This inevitably leads to the
necessity to introduce the correction factor. However, this effect must disappear
in the sharp interface limit: ξn/an → 0. What is important is that before the
transformation from a fluid particle to a solid one our FPD method satisfies both
thermodynamic and mechanical principles in an exact manner and even after the
transformation this also holds with the correction factors (see the next section).

Setting of numerical simulations
In our simulation, the units of length ℓ and time τ are related as τ = ℓ2/(ηs/ρ),
which sets both the scaled density and viscosity of the fluid region to unity. This
τ is a time required for the fluid momentum to diffuse over a lattice size ℓ. The
units of stress and energy are σ̄ = ρ(ℓ/τ)2 and ϵ̄ = σ̄ℓ3, respectively. Furthermore,
we set ηc/ηs = 50, ∆t = 0.0025 and ξ = ℓ = 1, and a = 3.2. We solve the equation
of motion [Eq. (B.1)] by the Marker-and-Cell (MAC) method with a staggered
lattice under the periodic boundary condition. For implementation of FPD method
in more detail, see Appendix B, where we describe the detailed procedure of the
computation and the notes for parallel computing.

4.2.2 Verification of FPD method in a dilute limit

In this section, we check the validity of our simulation method incorporating thermal
fluctuation effects, by examining the Brownian motion of particles and fluid motion
at a low volume fraction of colloids Φ. Hereafter we consider a monodisperse system
and thus omit the particle intex n.
Here we put 100 of colloidal particles in the cubic simulation box whose side

length is L = 256 and apply the thermal noise such that kBT = 14.3. We assume
that colloids interact with Weeks-Chandler-Andersen (WCA) potential as,

U(r) = 4ϵ[(
r

σ
)12 − (

r

σ
)6] + ϵ for r < 21/6σ,

= 0 otherwise. (4.17)

where σ and ϵ are the paremeter to control the diameter of the colloids and the
strength of interaction. Here we set them as ϵ/kBT = 40 and σ = 7.4. The volume
fraction Φ = πσ3N/6L3 is estimated as ∼ 0.001, at which we can expect that
theoretical predictions at dilute limite is valid.

Fluid motion: Velocity correlation
We first focus on hydrodynamic motion of a fluid and measure the velocity auto-
correlation function (VAF). The translational and rotational VAF in a dilute limit
is expected to obey the following relation:

⟨V (t) · V (0)⟩ = 3kBT

Meff
ψT(

t

τa
). (4.18)

⟨Ω(t) ·Ω(0)⟩ = 3kBT

I
ψR(

t

τa
). (4.19)
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Here τa = a2h/νℓ, where ah is the hydrodynamic radius (ah = 1.04a and 1.14a for
translational and rotational motion respectively) and νℓ = ηℓ/ρ is the momentum
diffusion constant of the fluid. ψT and ψR are the memory functions including
hydrodynamic effect for translational and rotational motion respectively. An ex-
pression of ψT and ψR is given by [159, 49]

ψT(x) =
α+w(iα+

√
x)− α−w(iα−

√
x)

(α+ − α−)
,

(4.20)

ψR(x) =
(1 + z1)z1w(−iz1

√
x)

(z1 − z2)(z1 − z3)
+

(1 + z2)z2w(−iz2
√
x)

(z2 − z3)(z2 − z1)
+

(1 + z3)z3w(−iz3
√
x)

(z3 − z1)(z3 − z2)
, (4.21)

where w is the complex complementary error function, α± = 3
2 ±

√
3
2 i, and zi(i =

1, 2, 3) is the solutions of the equation x3 + 6x + 15x + 15 = 0. The asymptotic
behavior of ψT and ψR in the large x (or, long-time) limit are given by ψT(x) ∼
1

6
√
π
x−3/2 and ψR(x) ∼ 1

60
√
π
x−5/2, which are widely known as the long-time tails.

A B

Fig. 4.2 Velocity auto-correlation function (VAF) for translational (A) and ro-
tational (B) motion. Blue symbols are the VAF obtained by the FPD method
for particles undergoing thermal Brownian motion at a dilute volume fraction
(∼ 0.1%). Brown crosses are the VAF obtained by the FPD method by study-
ing the behavior after removing a external force on a particle from the steady
state. The black solid curve is the theoretical prediction (see Eq. (4.20) and
Eq. (4.21)). The gray line shows the asymptotic power-law decay function at

a long-time limit: ψT(x) ∼ (6
√
π)−1x−3/2 and ψR(x) ∼ (60

√
π)−1x−5/2.

In Figs. 4.2 A and 4.2 B, we plot the VAF’s for translational and rotational motion
calculated by the FPD method together with the above theoretical predictions,
respectively. We can see very good agreements between them for both types of
motion. In addition, we also check whether our simulation method satisfies the
fluctuation-dissipation theorem (FDT). To do so, we first put a particle in the
simulation box and externally exert a constant drag force Fdrag = 1 or a constant
torque Ndrag = 1 to drag or rotate the particle respectively. After reaching the
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steady state, we remove the external force or the torque at t = 0 and then monitor
the decay of the translational velocity of the particle Vl(t) or that of the angular
velocity Ωl(t) respectively. In this situation, the following relations should be held:

⟨V (t) · V (0)⟩ = −3kBT

Fdrag

dVl(t)

dt
,

⟨Ω(t) ·Ω(0)⟩ = − 3kBT

Ndrag

dΩl(t)

dt
,

The brown crosses Figs. 4.2 A and 4.2 B are the VAF’s measured with this pro-
cedure. The good agreements between the theoretical predictions and the VAF’s
evaluated by the two different methods indicate that our method well reproduces
the FDT including the memory effect of hydrodynamic origin.

Brownian motion of a particle
Next, we examine the thermal Brownian motion of a colloid particle. First we
focus on the translational motion of the particle. From Eq. (4.20) and the following

identity of the VAF, ⟨V (t) · V (0)⟩ = 1
2
d2

dt2 ⟨|∆R|2⟩, where ∆R(t) = R(t) − R(0)
is the displacement vector of the particle, we obtain the following expression for
the temporal evolution of the mean square displacement (MSD) of a free Brownian
particle including hydrodynamic memory effects:

⟨|∆R(t)|2⟩
a2

=
t

τB
h(

t

τa
). (4.22)

Here τB is the Brownian time τB = a2h/6D
T, where DT is the translational diffusion

constant of a free particle given by DT = kBT/(λ
T6πηlah), and the function h can

be given by [159]

h(x) = 1− 2√
π
x−1/2 +

2

3
x−1 + 3x−1α

−3
+ w(iα+

√
x)− α−3

− w(iα−
√
x)

α+ − α−
. (4.23)

The asymptotic behavior of h(x) is given by h(x) → 3x/2 (x → 0) and h(x) → 1
(x → ∞) for the ballistic and diffusive regimes, respectively. Thus, we can obtain
from Eq. (4.22) the following expressions for the short-time and long-time behavior:
⟨|∆R(t)|2⟩ = (3kBT/Meff)t

2 and ⟨|∆R(t)|2⟩ = 6DTt respectively. The argument of
h in Eq. (4.22) can be rewritten as t/τa = Sct/6τB, where Sc is called the “Schmidt
number” and defined as Sc = νℓ/D

T. Sc is the ratio between the momentum and
particle diffusion constants, and determines the relation between the time unit of
our simulation, τ , and the crossover time from the ballistic to the diffusive motion
of a particle.
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Fig. 4.3 Crossover behavior from the ballistic to diffusive motion of a Brown-
ian particle. We plot the function, h, given by Eq. (4.22). The blue solid curve
is the theoretical prediction (see Eq. (4.23)), which can be approximated as
h ∼ Sct/4τB in the short-time ballistic limit (shown by the black tilted line)
whereas as h ∼ 1 in the long-time diffusive limit (shown by the black horizontal
line). Brown symbols are the results obtained by the FPD method for particles
undergoing thermal Brownian motion at a dilute volume fraction (∼ 0.1%).

In Fig. 4.3, we plot the function h obtained by analyzing the results of FPD
simulations with the time unit as τB and compare it with Eq. (4.23). We can
see that our simulation method precisely reproduces Brownian motion covering
from the ballistic to the diffusive regime. Here we stress that in the time regime of
t/τB ≳ 1, h is close to 1. This indicates that the Brownian motion in this simulation
can be regarded to be almost in the over-damped regime. This situation is realized
by choosing the strength of thermal fluctuation such that Sc is to be larger than
1 (in this particular simulation we set Sc=8.0). This can be easily understood
from the tilted straight line in Fig. 4.3, h = Sct/4τB: This line is shifted upward
and downward with decreasing and increasing the value of Sc respectively. For
simulations with Sc ≪ 1, the ballistic motion becomes dominant even around the
time regime t/τB ∼ 1. We note that the time unit of our simulation is set to the
characteristic momentum diffusion time over ξ, and thus increasing Sc requires a
longer simulation time to reach the diffusive regime of the Brownian motion.
Next, we examine the rotational Brownian diffusion of a colloid particle. Here we

use a parameter ∆u(t) = 1
2

∑
i=1,2,3 ui(0) × ui(t) to measure the displacement of

rotational motion of the particle [160], where ui(t) (i = 1, 2, 3) are three unit vectors
fixed on the particle that are orthogonal with each other. Time evolution of ui(t) is
implemented by using normalized quaternion (see, e.g. [157]). Denoting the axis of
rotation of the particle from time 0 to t as n̂ and the right-handed rotational angle as
θ, we can obtain ∆u(t) = sin(θ)n̂. Then the “rotational mean square displacement”
(RMSD) can be written as ⟨|∆u(t)|2⟩ = ⟨sin2 θ⟩. In the diffusive regime, it can be

calculated as ⟨|∆u(t)|2⟩ =
∫ π
0
sin2 θP (θ)dθ = 1/2 − (5e−6DRt − 3e−2DRt)/4, where
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P (θ) is the probability density of θ [161]:

P (θ) = π−1
∞∑
n=0

e−n(n+1)DRt(2n+ 1){cos(nθ)− cos((n+ 1)θ)}. (4.24)

Here DR is the rotational diffusion constant: DR = kBT/(λ
R8πηℓa

3
h). In short

time, RMSD can be approximated as ⟨|∆u(t)|2⟩ ∼ ⟨|θ|2⟩ ∼ ⟨|Ω|2⟩t2 = 3kBTt
2/I,

which can be regarded as the ballistic regime. In Fig. 4.4, we plot RMSD and we
can see that our simulation method exhibits the ballistic and diffusive behavior also
for the rotational Brownian motion, following the theoretical predictions.
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Fig. 4.4 The rotational mean-square displacement (RMSD) of a Brownian
particle. Brown symbols are RMSD obtained by the FPD method for particles
undergoing thermal Brownian motion at a dilute volume fraction (∼ 0.1%).
The blue line and black curve are predictions for the short-time ballistic regime
(⟨|∆u(t)|2⟩ = 3kBT

R
p t

2/I) and for the long-time diffusive regime (⟨|∆u(t)|2⟩ =
1/2− (5e−6DRt − 3e−2DRt)/4).

4.2.3 Verification of FPD method for many-body problems

We have seen so far that FPD method successfully reproduces the diffusion motion
of colloidal particles in a dilute limit. Since the aim of our study is to gain a
better understanding for the dynamic coupling among colloids and solvent, it is
important to verify the validity of FPD method in a situation where many-body
interactions play a crucial role, and also clarify under what conditions the numerical
predictability can be achieved. We discuss this point in the ‘Results’ section later,
but here we briefly summarize the related previous studies.
In section 8.1.2, where we study the dynamics of hard-sphere-like colloidal suspen-

sions, we checked that the results by FPD method precisely follow the equation of
states for all types of equilibrium states (liquid, crystal, and the coexistent states),
indicating that our simulation method is valid in terms of thermodynamics.
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In the section 5.3.1, we show that FPD method reproduces two-body hydrody-
namic interactions, which has been checked by comparing the frictional coefficient
between FPD results and theoretical predictions. This implies that our method can
properly deal with hydrodynamic interactions at a short distance.
In section 5.4, we consider the effects of the Schmidt number Sc on the col-

loidal dynamics, which is the ratio between the key timescale of colloids and that
of solvent. We note that in order to study phase ordering dynamics of colloidal
suspensions by hydrodynamic simulations it is inevitable to apply a small Schmidt
number (Sc < 10), which is largely different from the one in real colloidal systems
(Sc ∼ 107). Despite this discrepancy, we find that FPD simulation can well repro-
duce the kinetic pathway of colloidal phase separation experimentally observed with
confocal microscopy. We have shown that this agreement should be retained as long
as Sc ≳ O(1), and provided its physical reason. From these, we may conclude that
under a proper setting of the Schmidt number, FPD simulation can reproduce out of
equilibrium dynamics of colloidal suspensions including many-body hydrodynamic
interactions.
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Chapter 5

Scale-invariant nature and numerical

predictability of colloidal phase

separation

5.1 Motivation

5.1.1 Scale-invariant nature in colloidal phase separation

There are all sorts of colloidal suspensions, and thus their macroscopic properties
differ from each other, depending on the microscopic details such as chemical struc-
tures of colloids, the type of molecules constituting the solvent that the colloids are
suspended, and the intermolecular interactions among them. In section 1.3, we have
seen that the static phase behaviors of colloidal suspension can be understood by
classical statistical mechanics. Here we emphasize that this is a very powerful tool
to comprehensively classify the colloidal systems. In the framework of the statisti-
cal mechanics, all we need to know is the interaction among colloids, and we may
forget all the microscopic information other than it. For example, if we set a scaling
function g for the intercolloid potential U as U(r) = ϵg(r/σ), we can calculate the
thermodynamic functions and determine the phase diagram only by two control
parameters, the scaled inverse temperature (βϵ) and the volume fraction (ϕ). In
this case, the phase diagrams of the colloidal systems whose interaction potential is
written as above can be mapped on a single phase diagram. Roughly speaking, if
the interaction potential has a similar shape, the phase diagram should be almost
the same. This is often called as the law of corresponding state [38, 39, 40]. Here we
note that the above macroscopic parameters βϵ and ϕ are dimensionless variables,
which include ϵ and σ respectively. In this context, we may say that the static
phase diagram is scale-invariant in terms of σ and ϵ.
The main aim of our study is to obtain a deeper understanding of dynamic

coupling among colloids and solvent. Here a naive question is whether such dynamic
coupling can be systematically understood as in the case of the thermodynamic
behavior, more specifically, out-of-equilibrium processes of colloidal suspension also
have a scale-invariant nature.
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To consider this point, in this chapter we focus on colloidal phase separation as
a prototype example of nonequilibrium phenomena. Here we consider some char-
acteristic features of colloidal phase separation, through its comparison with phase
separation in other classes of materials. For ordinary binary liquid mixtures (a dy-
namically symmetric mixture), the physics of phase separation is rather well under-
stood on the basis of the concept of dynamic scaling [5], and thus we can predict the
process theoretically and numerically. This success is a consequence of the presence
of the unique characteristic length and time scales in the problem, the correlation
length and lifetime of critical composition fluctuations respectively. For dynamically
asymmetric mixtures, on the other hand, it is not so obvious whether we can extract
such unique length and time scales controlling dynamic phenomena. For example,
in polymer solutions there is no scale invariant nature for dynamics [162, 81, 82],
although the static phase diagram can be scaled after a proper scaling [57, 5]; more
specifically, it is known that for polymer solutions the effective dynamic critical
exponent and the pattern evolution during phase separation are significantly in-
fluenced by the degree of polymerization N of polymers [162, 81, 163, 82]. This
is a consequence of a non-universal relation between the characteristic lifetime of
composition fluctuations τξ ∼ 6πηξ3/(kBT ), where ξ is the correlation length of
composition fluctuations and η is the viscosity, and the structural (or rheological)
relaxation time of the system τα: the ratio τξ/τα crucially depends on the size of
polymer (N) [162, 81, 163, 82], since the internal degrees of polymers act differently
for the two types of relaxations.
For colloidal suspensions, on the other hand, there is no internal degrees of free-

dom in a colloidal particle. This implies that any characteristic time scales corre-
sponding to collective motions of colloids should be proportional to that of single-
particle diffusion (in other words, τξ/τα is independent of the colloidal size), from
which we can expect that scale-invariant nature should hold in colloidal dynamics.

5.1.2 Numerical predictability of colloidal phase separation

Importance of precise comparison between experiments and simulations
This scale-invariant nature of colloidal dynamics is also crucial for numerical predic-
tion of dynamical phenomena since we can match the experimental and simulation
conditions by scaling arguments without complicated experimental inputs such as
the details of their rheological properties.
To study out-of-equilibrium processes of colloidal suspensions, many numerical

simulation methods have been developed over past three decades and actively ap-
plied to study nonequilibrium phenomena [164, 165, 166, 7, ?, 167, 168, 169, 62,
65, 103, 104]. For phase demixing, it was found that colloids tend to form more
elongated aggregates upon phase separation in simulations with HI than those with-
out [7, 170, 43, 44]. This feature further affects whether a structure formed has
a percolated-network or a disconnected-cluster pattern [7, 43, 45, 46]. For cluster
formation in dilute suspensions, it was shown [102] that the collision rate in the
early stage of aggregation estimated by simulations coincides relatively well with
a theoretical prediction that takes HI up to a two-body level into account [74].
Furthermore, the border between cluster and network formations was compared
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between experiments and simulations only with “long-range” HI and a good agree-
ment was reported [46].
As noted above, the importance of HI on colloidal phase separation has been

demonstrated by numerical simulations, which has contributed significantly to our
understanding of the physical mechanism. Furthermore, it has been recognized that
numerical simulation is a very useful tool to make predictions for various problems
such as aging dynamics [171], mechanical stability [172], and rhological proper-
ties [173]. However, there has so far been no parameter-free numerical prediction of
such nonequilibrium structural formation, or no direct comparison of the structural
evolution between numerical and experimental results on the basis of the particle-
level information. Such comparison is crucial for establishing a rigorous numerical
predictability of structural formation.
In this chapter, we show that such a rigorous numerical prediction of exper-

imental results without any arbitrary parameters is indeed possible for colloidal
phase separation, which may be regarded as a typical example of nonequilibrium
self-organization of colloidal matter.

Difficulty in numerical prediction
In order to precisely predict the kinetics of colloidal suspensions, we need a model
with which we can perform simulation within a realistic computational time while
retaining the essential physical laws governing the phenomena. Here, the main
difficulty arises from how to deal with the motion of colloids and solvent, whose time
and length scales are extremely different. This immediately implies that we have to
cover extremely large length and time ranges. This has been overcome by a coarse-
grained description of the solvent. For example, Brownian dynamics simulations
(more specifically, overdamped Langevin equation with white noise) are one of the
most commonly used coarse-grained methods. However, BD simulations ignore the
momentum conservation law, which should be satisfied for both colloids and solvent,
and the resulting many-body hydrodynamic interactions between colloids, which
have recently been shown to play crucial roles in structural formation in colloidal
phase separation [7, 43, 44, 45, 102, 46]. For fluid dynamics, we have a very reliable
equation describing the momentum conservation, i.e. the Navier-Stokes equation.
Thus, we can dynamically integrate out the molecular degrees of freedom while
retaining the essential feature coming from the momentum conservation.
However, even after integrating out the microscopic degrees of freedom of solvent

molecules, there is a huge gap between the time scale of momentum diffusion of
a solvent and colloid diffusion. The momentum diffusion constant of a solvent is
given by the kinetic viscosity ν = η/ρ, where η is the fluid viscosity and ρ is the
density, whereas the diffusion coefficient of an isolated colloidal particle of diameter
σ is given by D = kBT/(3πησ). The ratio Sc = ν/D is known as the Schmidt
number. In typical colloidal systems, these two diffusion coefficients differ by many
orders of magnitude (for example, Sc ∼ 106 for µm-size colloids suspended in wa-
ter at room temperature), and this condition (Sc ≫ 1) is widely assumed in the
physical laws associated with the dynamics of colloids, such as the Stokes-Einstein
relation. In other words, the equilibration of the momentum degrees of freedom is
a necessary condition to have the scale invariance of the phenomena in the diffu-
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sive regime. For such a large Schmidt number, however, numerically accessing the
diffusive time regime, in which structural ordering of colloids takes place, starting
from the ballistic regime, is almost impossible with current computational power.
Indeed, in most of simulation studies, the Schmidt number has been set to modest
values (Sc < 10) [174]. Thus, it might look almost hopeless to realize numerical
simulations with a predictive power, or to retain the scale invariance, while incor-
porating full hydrodynamic interactions and thermal noise (see Fig. 5.7A). In this
chapter we show that it is actually possible.

5.2 Method
To verify numerical predictability of our simulation scheme, the experimental data
that we can precisely compare with the simulation results on a quantitative level is
essential. To this end, we experimentally study the kinetic pathway of phase demix-
ing of colloids interacting with reversible and short-range attractions at semi-dilute
volume fractions (ϕ = 2% ∼ 10%) by three-dimensional (3D) confocal microscopy
observation. To confirm the scalability of the phenomena experimentally, we com-
pare experimental results for two types of colloids with different particle diameters
but with almost the same interaction range with respect to the colloid size (see
below). Then we compare the experimental results with those of two types of sim-
ulations, BD and FPD [7, 8]. The system size of our simulations are commonly set
as (L/σ)3 = 34.63. The intensity of thermal noise, as far as not mentioned, is set as
kBT = 14.3 and the corresponding Schmidt number is Sc = 8.0. See section 4.2.1
for the other setting parameters in FPD method.

5.2.1 Samples

In our experiments, we use PMMA colloids. The average diameter of colloids are
σ = 1.9 µm(EXP1) and 2.9 µm (EXP2), and both have approximately 3% size
polydispersity (see section 3.1.2 in more detail). Then, a short-range attractive
depletion interaction [21] was induced by dissolving polystyrene with a molecular
weight of 8.4×106 Da (the gyration radius Rg = 120 nm) for EXP1 and 2.0×107 Da
(Rg = 180 nm) for EXP2. Thus, the interaction range parameter ∆ = 2Rg/σ ∼ 0.13
is almost the same for both experiments. The concentration of the polymer, Cp,
is used as the control parameter to change the strength of the attraction βϵ. In
order to observe the aggregation process of colloids from the very beginning without
perturbation by mixing flow, we used a salt-injection method (see section 3.1.3).
The definition of the onset time of phase demixing (tw = 0) and the validity of this
salt injection method are described in section 3.1.4.

5.2.2 Matching of the thermodynamic condition between experiments

and simulations

In order to compare experiments (EXP) and simulations (SIM) in a rigorous man-
ner, we need to precisely match the interaction potentials between them with a
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reliable method. In our simulations we used the Morse potential. We determine
the interaction range by the method based on the second Virial coefficient and the
relation between Cp and βϵ by matching the composition fluctuation of an equi-
librium fluid between EXP and SIM. By the precise matching of the interaction
potential between EXP and SIM, we successfully predict the equilibrium phase
diagram precisely. In this section, we explain the detailed procedure.

The interaction potential used in our simulations
First we explain how we match the interaction potential between experiments and
simulations. More specifically, we explain how to determine the interaction poten-
tial and its parameters used in our simulations to approximate the real intercolloid
potential due to depletion attraction. In our simulations, we assume that the inter-
particle interaction is pairwise additive and approximated by the Morse potential:

U(r) = ϵ exp{ρM(σM − r)}(exp{ρM(σM − r)} − 2),

where ϵ is the depth of the attractive potential, σM is the length at which U(σM) = ϵ,
and ρM is a parameter controlling the interaction range. This potential is useful
in the sense that it does not have any singularity and we can control its depth
and range independently. The validity of this potential to represent the depletion
interaction has been examined in Ref. [41]. We determined σM and ρM so that the
reduced second birial coefficient [41, 40, 42],

b2 =
3

σ3

∫ ∞

0

dr r2{1− exp(−βU(r))},

and the effective hard sphere parameter,

σ =

∫
U(r)>0

dr{1− exp (βU(r))}

are to be the same between the Morse potential and the following Asakura-Osawa
potential [21]:

= ∞ for
r

σ
< 1,

U(r) = 0 for 1 + ∆ <
r

σ
,

= −ϵ
2(1 + ∆)3 − 3(1 + ∆)2( rσ ) + ( rσ )

3

2(1 + ∆)3 − 3(1 + ∆)2 + 1
otherwise.

Here we set ∆ = 0.13 to match this potential with the one in the experiments. The
result is shown in Fig. 5.1.
The force acting on particle n is then obtained from the interparticle interaction

potential as

Fn =
∑
m(̸=n)

Fmn,

where Fmn = −(∂/∂Rn)U(|Rm − Rn|) is the force acting on particle n, which
interacts with particle m.
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Fig. 5.1 Comparison of the two interparticle potentials: Morse (black)
and Asakura-Osawa (brown). Here the range and depth of the AO potential
are ∆ = 0.13 and βϵ = 7 respectively. The controlling parameters of the
Morse potential, σM and ρM, are determined such that the reduced second
virial coefficient and the effective hard sphere parameter are to be the same
between the Morse and AO potentials.

Determination of the potential depth parameter and estimation of equilibrium phase
diagram
We determine the interaction range to employ the method based on the second
Virial coefficient, as described above. We also need to know the relation between Cp

and βϵ. The easiest way is to directly estimate the form of the interaction potential
from the information of polymers added into samples (through Cp or Rg). However,
it is known that this method is not accurate enough to match the locations of the
binodal and the spinodal lines between EXP and SIM since the depletion attraction
is not pairwise additive and involves many-body interactions [21, 175, 176, 42].
To overcome this problem, we measure the density fluctuation of an equilibrium
fluid both in EXP and SIM and compare them directly. Figure 5.2A shows the
integral of the scattering function S(q) (see section 3.1.5 for the definition), I =∫
d(qσ/2π)S(q), for various conditions (see above): (ϕ, βϵ) for SIM and (ϕ,Cp) for

EXP. Here the integration was made over the same q-range, qσ/2π ∈ [1/10, 10], for
EXP and SIM. Under the constraint that the ratio ϵβ/Cp is to be a constant, we
obtain ϵβ/Cp = 11.8 for EXP1 and 22.7 for EXP2, for which we have the excellent
agreement of the I behavior between EXP and SIM. If we see a monotonic increase
in I with time when we increase βϵ by a small amount, we can judge that state
point to enter inside the spinodal line, or in the unstable state. The state points
investigated in this manner are summarized in Fig. 5.2B, where black and blue
symbols indicate state points in the stable one-phase equilibrium region and in the
coexisting region respectively. In this way we have succeeded in precisely matching
the interaction potential between EXP and SIM.
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Fig. 5.2 Estimation of equilibrium phase diagram. A, The intensity
of density fluctuation in equilibrium fluids for various strengths of the attrac-
tion (Cp in EXP, βϵ in SIM) at two volume fractions, ϕ ∼ 4% (brown) and
10% (green). B, The state diagram. Black and blue symbols indicate ther-
modynamically stable and unstable state points respectively. Closed and open
square symbols represent the results of two experiments, EXP1 and EXP2,
respectively. Cross and circle symbols represent the results of BD and FPD
simulations respectively. At point A (ϕ ∼= 2%, βϵ ∼= 7) and point B (ϕ ∼= 10%,
βϵ ∼= 6), we observed disconnected isolated clusters and interconnected network
structures as the final states (tw ≳ 300τB) respectively.

5.3 Results
Now we turn our attention to the dynamics of phase separation taking place at
two state points, point A (ϕ ∼= 2%, βϵ ∼= 7) (see Fig. 5.3) and point B (ϕ ∼= 10%,
βϵ ∼= 6) (see Fig. 5.5), where we observe respectively the formation of isolated
aggregates (clusters) and percolated network structures (gels) at the end of the
phase-separation processes. In the following analysis results, we take an average
over three independent phase demixing processes in both EXP and SIM for gaining
high statistical accuracy.

5.3.1 Cluster formation in a dilute suspension

First we discuss cluster-forming phase separation in a dilute suspension at point
A (ϕ ∼= 2%, βϵ ∼= 7). To quantitatively characterize the coarsening dynamics
during phase separation, we calculate the temporal change of the characteris-
tic wavenumber of the structure factor S(q, tw) as its first moment: ⟨q(tw)⟩ =∫
dq qS(q, tw)/

∫
dq S(q, tw). The results are shown in Fig. 5.4A. First we can

see that the two sets of experimental results with different sizes of colloids (EXP1
and EXP2) exhibit almost identical coarsening behaviour after scaling the length
and time by σ and τB respectively, implying that colloidal phase separation with
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Fig. 5.3 Cluster-forming phase separation at state point A (ϕ ∼= 2%,
ϵβ ∼= 7). We compare the time development of 3D structures obtained from BD
and FPD simulations and confocal microscopy observation in EXP2 at tw/τB ≃
0, 50.4, 100.8, 201.6. The particle colour represents the size of the clusters (see
the colour bars on the top right side); for example, clusters involving more
than 10 particles appear red. The box sizes are commonly set as L/σ = 34.6.

a short-range attraction is scale-invariant for the same set of (ϕ, βϵ,∆), for which
the equilibrium phase diagrams can also be scaled [21]. This result is a direct
experimental support for the scale invariance of the phenomena.
Next we can see clearly that FPD almost perfectly reproduces the experimental

data, but BD fails even qualitatively (see Fig. 5.3). This strongly indicates not only
the numerical predictability of our FPD simulation but also the crucial role of the
hydrodynamic degrees of freedom of the solvent, or hydrodynamic interactions, in
the kinetic process of phase demixing of a colloidal suspension and the resulting
colloidal aggregation. We can also see that ⟨q⟩ decreases with time tw as ⟨q⟩ ∝ t−αw

(α: the domain growth exponent) with α ∼= 0.33 for ϕ ∼= 2% for both EXP and FPD,
but the exponent is smaller for BD. The growth exponent α ∼ 1/3 seen at ϕ ∼= 2%
is characteristic of Smoluchowski’s Brownian coagulation mechanism [74, 102] (see
the gray line in Fig. 5.4), indicating that the phase demixing observed belongs to
spinodal decomposition with droplet morphology.
In the above, we see the significance of hydrodynamic interactions in the macro-

scale coarsening process of colloidal phase separation. Next we focus on the micro-
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A B C

Fig. 5.4 Analysis of cluster-forming phase separation. A The temporal
change of the characteristic wave number estimated from the structure factor,
⟨q⟩. B The temporal change of the fraction of clusters of size i, ni/np. Gray
curves are the theoretical predictions of Eq. (5.1) [74]. Five curves and different
symbols correspond to i = 1 ∼ 5 from top to bottom. In both panels a
and b, we compare experiments and simulations: EXP1 (black cross), EXP2
(black square), BD (blue curve) and FPD (brown curve). C The dependence
of the viscous drag coefficient for two particles approaching with each other,
normalized by that of a free isolated particle, C2, on the interparticle distance
r scaled by σ. Brown cross symbols are the results calculated by FPD method.
The gray curve is the theoretical prediction [60]. Here r is chosen as r = rs+σH,
where rs is the distance between the surfaces of the two colloids and σH is the
hydrodynamic radius of the colloids (σH = 1.1σ). In the BD simulation, C2 = 1
(blue line) since hydrodynamic interactions are ignored.

scopic process of aggregation to make a more rigorous comparison between exper-
iments, simulations, and theory. We identify clusters by regarding particles to be
connected and belong to the same cluster if the inter-particle distance is less than
(1 +∆)σ. According to Smoluchowski’s Brownian coagulation theory [74, 102](see
Sec. 2.1.4 on the details), the number of clusters with size i at time t per unit
volume, ni(t), can be given by

ni(t)/np = (npKt)
i−1(1 + npKt)

−i−1, (5.1)

where np (= n1(0)) is the total number of particles per unit volume and K is
the so-called coagulation rate. Here we employ K as a fitting parameter to the
experimental data. In Fig. 5.3B, we plot ni(t)/np for different i(= 1 ∼ 5) for EXP
and SIM. We can see that FPD again well reproduces the experimental data of each
type of cluster. By fitting Eq. (5.1) to the experimental data, we obtain K/Ks =
0.50, 0.93, 1.2, 1.4, 1.7 respectively for i = 1, 2, 3, 4, 5 (gray lines in Fig. 5.3B). Here
we use Ks = 4kBT/3η, which is the collision rate derived by Smoluchowski, as a
value to normalize K. Note that ni(t)/np ∼ (npKt)

−2 for a long-time limit and the
height of the asymptotic behaviour is proportional to K−2. The rate of collision
between two equal-size spherical particles, which interact with the potential U(r),
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in a viscous liquid is given by [74] (see Eq. 2.20 on the details)

K

Ks
= {
∫ ∞

σ

dr
σ

r2
C2(r)e

βU(r)}−1, (5.2)

where C2(r) = ζ2(r)/ζ2(∞) is the ratio between the viscous drag coefficient for two
particles at the center-of-mass distance z approaching each other (ζ2(r)) to the one
for a single spherical particle (ζ2(∞)). Estimating the collision rate with relation
(5.2), we obtain K/Ks = 0.56, which is reasonably close to the experimental result
for i = 1 (K/Ks = 0.50 (see above)). Collision rates for i ≥ 2 are higher than
this value, likely reflecting the aspherical shape of clusters of i ≥ 2. Such details
of cluster morphology and the resulting modification of hydrodynamic interactions
make theoretical predictions of the collision rate extremely challenging.
Figure 5.3C also shows that there is a huge mismatch between BD and EXP and

the aggregation speed is much faster for BD than for EXP. In BD, the collision
rate for i = 1 is K/Ks ∼ 1, which is almost equivalent to the one for the case
where hydrodynamic interactions are completely neglected (if we assume C2(r) = 1
in Eq. (5.2), we get K/Ks = 1.1). These results clearly indicate that collisions
between colloids are strongly hindered by hydrodynamic interactions. In Fig. 5.3C,
we plot the functional form of C2(r) obtained by FPD together with the theoreti-
cal prediction [60], which show an excellent agreement. We can see that there is a
steep increase in the friction coefficient between the two particles (or, the “strength”
of hydrodynamic interactions between them) for r/σ ≲ 2. This tells us that hy-
drodynamic effects at such a “short-range” distance, or “lubrication effects”, are
responsible for the significant suppression of the collision rate. We note that the re-
sults of BD can never be mapped on those of EXP (FPD) by rescaling time by other
time units, which is obvious from the difference in the growth exponent between
BD and EXP (FPD).

5.3.2 Gel formation via spinodal decomposition in a semi-dilute suspen-

sion

As the volume fraction of colloids increases, it is expected that the many-body
nature of hydrodynamic interactions plays a more important role. Now we focus
on network-forming phase separation in a semi-dilute suspension (see Fig. 5.5).
To check how precisely FPD can capture such effects, we make detailed compar-
ison between EXP and SIM at the volume fraction ϕ ∼= 10% (point B), where
space-spanning network structures were formed. This formation of space-spanning
network structures of the minority colloid-rich phase in phase separation is charac-
teristic of viscoelastic phase separation [81, 82]. It is worth stressing here that all
the quantities we measured (see Fig. 5.6A-D) are almost the same between EXP1
and EXP2, which is a direct experimental support of the scale invariance of the
phenomena.
Considering the hierarchical nature of network structures, we perform structural

analysis at various length scales. First we examine the temporal change in the
characteristic wave number ⟨q⟩ during phase separation. The results are shown
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0 30.0 60.0 120.0

Fig. 5.5 Network-forming phase separation at state point B (ϕ ∼=
10%, ϵβ ∼= 6). We compare the time development of 3D structures obtained
from BD and FPD simulations and confocal microscopy observation in EXP2 at
tw/τB ≃ 0, 30, 60, 120. A clear network structure is already formed at tw/τB =
30 for BD, but not for EXP2 and FPD. Particles are coloured to distinguish
front particles from back ones.

in Fig. 5.6A. We can see that FPD almost perfectly reproduces the experimental
data, but BD fails even qualitatively. This strongly indicates again the numerical
predictability of our FPD method and the crucial role of the hydrodynamic degrees
of freedom of the solvent and the resulting many-body hydrodynamic interactions
in the kinetic process of phase demixing of a colloidal suspension.
We discuss the coarsening dynamics observed in the wave-number apace in more

detail.
In Sec. 3.1.5, Fig. 3.5B, we analyze the early stage of phase separation in an

experiment and confirm that in the initial stage the scattering intensity grows ex-
ponentially with time for every wave number, which are characteristic of the Cahn’s
linear regime of spinodal decomposition in a thermodynamically unstable state [5].
In Sec. 3.1.5, Fig. 3.5A, we also show the time evolution of S(q, tw) in the exper-
iment, where we can see that the scattering peak appears in the very early stage,
then its position continuously shifts towards a lower wave number with time. Con-
sistently, we can see in Fig. 5.6A that for both EXP and FPD, after the initial
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Fig. 5.6 Structural analysis for network-forming phase separation.
We compare the time evolution of structures between experiments and simu-
lations, EXP1 (black cross), EXP2 (black square), BD (blue curve) and FPD
(brown curve): the characteristic wave number (A), the number of bonds per
particle (B), the total length of the skeleton l (C), and the Genus number of
the skeleton (D). We made network analyses for the box whose side length is
L/σ = 34.6 in common for experiments and simulations.

stage, where ⟨q⟩ is almost constant with time, ⟨q⟩ starts to decrease by obeying
a power law ⟨q⟩ ∝ t−αW (α ∼= 0.46). This domain growth exponent α is different
from the well-known exponents for ordinary spinodal decomposition in a binary
critical mixture, α = 1/3 for the Brownian coagulation mechanism and α = 1 for
Siggia’s hydrodynamic coarsening mechanism [5]. The physical meaning of α ∼ 0.5
is unclear at this moment, which we examine in Chap. 7. Here we emphasize that
network formation at ϕ ∼= 10 % clearly indicates that phase separation of colloidal
suspensions does not belong the dynamical universality class of binary mixtures of
simple liquids (model H [5]). We also note that ⟨q⟩ deviates from the power law in
the late stage. This behaviour may reflect the dynamic arrest due to gelation, but
we do not focus on this trend here since it is out of scope of this work *1.
Next we study the aggregation process at the particle scale. Figure 5.6B shows

the temporal change of the number of interparticle bonds per particle, nb, where
the bond definition is the same as the one for clusters. The time development of nb

*1 In Appendix D, we show experimental results regarding this phenomenon.
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is almost identical between EXP and FPD, but again shows much faster increase,
or faster contraction, for BD (see Fig. 5.6). We can also see that in the entire
time range of the observation nb < 7 (note that nb ∼ 12 for a compact structure
in 3D), indicating that most particles are located in the domain interface. This
lack of separation between the domain size and the interface thickness makes a
coarse-grained theoretical description of phase separation quite difficult.
Now we turn our attention to the topological characteristics of network structures

in real space. For further characterization of the network structures, we coarse-grain
a phase-separated structure by operating Gaussian blurring of each particle, extract
the network domain by binarization, and then extract the skeleton of the network
structure by applying a skeletonization procedure (see Appendix C on the details).
For skeleton structures obtained by this protocol, we first calculated the total length
of the skeleton, l. Figure 5.6C shows the temporal change of l normalized by
the size of the box L. To capture the topological feature of a network, we also
calculated the Genus number G (Fig. 5.6D), which is equivalent to the total number
of holes (or pores) existing in the network structure, by analyzing the connectivity
of the skeleton (see Appendix C on the details). All these results show excellent
agreements between EXP and FPD. On the other hand, the results of BD exhibits
much faster changes than EXP and FPD, again reflecting the lack of hydrodynamic
ubrication effects as in the dilute system (at point A). In the late stage of the inset
of Fig. 5.6D, we can see that the G value of BD is approximately half of EXP
and FPD. This clearly indicates that the presence and absence of hydrodynamic
interactions have a significant influence on the kinetic pathway and the resulting
topological characteristics of the final network structures. We stress that it is these
topological features that control the physical properties of network materials, such
as elastic, transport, and surface properties.

5.4 Validation of FPD method with a moderate Schmidt

number
In the above, we have found excellent agreements of dynamical pattern evolution
between EXP and FPD by carefully matching the intercolloid potential and point on
the phase diagram. Here we consider the physics behind this excellent predictability
of FPD in more detail. In the FPD simulation, we deal with the time revolution
of the Navier-Stokes equation, and the time unit is set to be the time scale of
the momentum diffusion of the solvent over a lattice size. To access a time scale
over which colloid-rich domains coarsen within an accessible simulation time, it is
inevitable to apply rather strong thermal stress noise. Accordingly, the Schmidt
number Sc = ν/D = 3πη2σH/ρkBT , which is the ratio of the momentum diffusivity
of the solvent to the colloid diffusivity, is smaller by many orders of magnitude in
FPD than in EXP: Sc = 8.0 for our typical FPD simulations and Sc ∼ 107 for
EXP. This means that we effectively deal with a much higher temperature, a lower
viscosity of the solvent, and/or a smaller diameter of colloids in FPD than in EXP.
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5.4.1 A free particle diffusion

In order to validate the setting employed in FPD carefully, we first examine the
diffusive behavior of a free particle by using the mean square displacement (MSD):

⟨|R(t)−R(0)|2⟩ = 6Dt h(
Sc

6

t

τB
). (5.3)

Here R is the center-of-mass position vector of a free particle and h is the scaling
function of MSD including hydrodynamic memory (see Eq. 4.23 for the functional
form). In section 4.2.2, we have checked that under the current setting of Sc(= 8.0)
FPD method reproduces the theoretical prediction almost completely. In Fig. 5.7B,
we show the behavior of h(Sc

6
t
τB

) as a function of t/τB for Sc = 107 (EXP) and

8.0 (FPD). The gray shaded region in Fig. 5.7A indicates the time span over which
we compare the coarsening behavior between EXP and FPD. In this time region,
needless to say, h in EXP shows the diffusive behavior (h = 1). On the other
hand, although we may claim that h in FPD is close to 1, it is not easy to make
a rigorous justification that our simulation completely reaches the diffusive regime.
This means that the Brownian time determined in the parameter setting of FPD
we employed in this study is not large enough compared to the time scale over
which the velocity profile surrounding a particle fully reaches the steady state via
momentum diffusion. This is a typical problem of colloid simulations [174].

5.4.2 Colloidal diffusion at a finite volume fraction

Here we introduce a characteristic time required for the momentum of the solvent to
dissipate over a distance lc, which can be given by τν = 24(lc/σ)

2S−1
c τB. We obtain

lc/σ ∼ 1 for τν/τB ∼ 1 and Sc ∼ 10. Thus, many-body hydrodynamic interactions
at short-range distance are properly incorporated in our simulation method (see
Fig. 5.7B).
To justify the above argument, we examine how the velocity profile is equilibrated

for two particles whose center-of-mass distance is given by r. To do so, we applied
small constant forces on two particles along the directions for them to approach with
each other, and measured the resulting drag coefficient ζ2(r, t). For this two-body
problem, the exact solution of the velocity field in a steady state is known [60]. In

Fig. 5.8A, we plot the time evolution of the normalized diffusion constant D̃2(r, t) =
D2(r, t)/D, where D2(r, t) is obtained by D2(r, t) = kBT/ζ2(r, t). Here we can see

that, for r/σ ≲ 1.4, D̃2(r, t) becomes almost constant around t ∼ τB, which is
roughly consistent with the above estimation.
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A B

Fig. 5.7 Difference in the Schmidt number Sc between experiments
and simulations. A The scaling functions of the mean square displacement
of a free particle, h for experiments (EXP) (Sc ∼ 107: brown curve) and
FPD simulations (FPD) (Sc = 8.0: blue curve). The blue and brown arrows
represent the time scales covered by EXP and FPD respectively. The gray
shaded region is the time span over which we compare the coarsening behavior
between EXP and FPD. In this time region, needless to say, h in EXP shows
the diffusive behavior (h = 1). On the other hand, although we may claim
that h in FPD is close to 1, it is not easy to make a rigorous justification that
our simulation completely reaches the diffusive regime. B An estimation of the
characteristic length lc over which the momentum diffusion of a solvent takes
place within τB . For Sc ∼ 10, which is a typical value in FPD method, we
obtain lc/σ ∼ 1.

Fig. 5.8 A, The ratio of the viscous drag coefficient between the case of two
particles approaching with each other to that of a free isolated particle by FPD
at Sc = 8.0. B Flow profile in the situation where two equal-size spheres are
approaching. Panels B1 and B2 are the results of FPD method with Sc = 8.0
for different time, tw/τB = 0.1 and 1, respectively. The arrows represent the
velocity vector fields. The color represents the ratio of the result of FPD
simulation to the exact solution in the steady state [60].
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In Fig. 5.8B, we show the flow vector field (see arrows), v(r, t), at t = 0.1τB for
r/σ = 1.4 together with the relative amplitude of v(r, t) to the exact solution [60]
(see color), both of which are obtained by the FPD method for Sc = 8.0. There we
can see from the color that v(r, t) is far from the steady state one even at positions
close to the particles, obviously implying that hydrodynamic interactions are not
properly introduced in such a short time scale. In Fig. 5.8C, on the other hand, we
also show the flow field (see arrows), v(r, t), at t = τB for r/σ = 1.4. We can see
from the color that the velocity profile of the FPD method is almost fully relaxed
near the particles already around τB, i.e. the FPD method properly reproduces the
velocity profile in a viscous liquid.

5.4.3 Breakdown of the scale invariance of phase separation dynamics at

small Sc

Fig. 5.9 The temporal change of the characteristic wave number ⟨q⟩ for four
different Schmidt numbers during phase separation at point B in the phase
diagram. Here we perform simulations with a smaller system size ((L/σ)3 =
17.33) than the one used in the other FPD simulations ((L/σ)3 = 34.63), to
access a large Schmidt number (Sc = 80).

It is also interesting to check under what condition the agreement in the time
development of ⟨q⟩ during phase separation between EXP and FPD breaks down.
In Fig.5.9, we show the temporal change of the characteristic wave number ⟨q⟩ at
state point B (ϕ ∼= 10%, βϵ = 6) for different Schmidt numbers: Sc = 0.08, 0.8, 8, 80.
We can clearly see that ⟨q⟩ is almost identical when the Schmidt number satisfies
Sc > 1. Figure 5.8B also provides a physical insight into the above break down of
the scaling of ⟨q⟩. Given that the typical time scale of momentum diffusion of the
solvent is written as τν(r) = 24(r/σc)

2S−1
c τB, the velocity profile at t/τB = 0.1 for

Sc = 8 can be translated as that at t/τB = 1 for Sc = 0.8. In other words, under
the condition where Sc is set as 0.8, the effect of hydrodynamic interactions do not
reach the steady state at least in a two-body problem, which should result in the
mismatch in ⟨q⟩ for Sc ≲ 1. In short, the successful prediction of colloidal phase
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separation processes (both structure and kinetics) by FPD is possible at least if
the momentum degree of freedom is equilibrated in the time scale of the relevant
elementary process of structure formation. We note that this condition is nothing
but a requirement to retain the scale invariance of the phenomena.

5.5 Summary
To summarize, we systematically study the phase-separation process of colloidal
suspensions by comparing single-particle-level time-resolved 3D confocal microscopy
observation, BD simulations without hydrodynamic degrees of freedom and FPD
simulations with many-body hydrodynamic interactions. We find that the coarsen-
ing dynamics of cluster-forming and network-forming phase separation in the ex-
periments using colloids with two different sizes can be almost perfectly reproduced
by FPD simulations without any adjustable parameters after careful matching of
the intercolloid potential and the temperature (or, thermal noise), but cannot at
all by BD simulations. This finding demonstrates the fundamental importance of
many-body hydrodynamic interactions in the dynamical structural formation of col-
loidal suspensions. More importantly, it indicates that simulation methods based
on direct computation of the Navier-Stokes equation including FPD simulation has
a high predictive power for nonequilibrium processes in colloidal suspensions, which
may significantly contribute to not only the basic physical understanding of these
phenomena but also the computer-aided design of colloidal materials.



87

Chapter 6

Volume fraction dependence of

coarsening behavior

As we see in Chap. 2, in phase separation of an ordinary binary mixture close to
the symmetric composition, where network (or bicontinous) structures are formed,
the growth of domain is governed by Siggia’s hydrodynamic mechanism, whereas in
an off-symmetric mixture, where cluster (or droplet) domain is formed. Brownian
coagulation mechanism plays a major role in the coarsening process *1. In this
section, we aim to clarify how the coarsening behavior in colloidal phase separation
depends on the volume fraction.

6.1 Two types of percolation mechanisms
In this section, we study phase separation dynamics of colloids interacting with
short-range attraction by using the same experimental setup described in Sec. 5.2.1
(EXP1) and simulation methods (BD and FPD). In Sec. 5.3.1 and 5.3.2, we observed
growth exponent α ∼ 1/3 and 1/2 for cluster-forming (ϕ ∼ 2%) and network-
forming phase separation (ϕ ∼ 10%), respectively. Here we fix the strength of
attraction as βϵ ∼ 6 and examine the volume-fraction dependence on the coarsening
behavior in more details.

6.1.1 Percolation in the early stage of spinodal decomposition

We first examine the volume fraction dependence of the time when percolation
happens, tp, since the connectivity of domains is expected to have a great influ-
ence on the coarsening mechanism. We define tp as the time when 2Rmax

g /L first
becomes larger than 1, where Rmax

g is the largest gyration radius the clusters (see
Sec. 5.3.1 for identification of the clusters) and L is the size length of the scanned

*1 As a coarsening mechanism in a mixture whose composition is strongly asymmetric (ϕ ≲
0.01, for example), the evaporation-condensation (or Lifshitz-Slyozov-Wagner) mechanism
[68] is widely known. In the region of the phase diagram where we studied colloidal phase
separation, we do not observe such a mechanism involving detachment of colloidal particles
from the colloid-rich clusters. Thus, we do not discuss the mechanism in this thesis.
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Fig. 6.1 A. Volume fraction dependence of the time when percolation takes
place, tp. We observe connected network structures in ϕ ≳ ϕp := 0.05 and
disconnected cluster structures in the other ϕ region. Note that this percolation
boundary ϕ ∼ ϕp (see the dotted line in the figure) depends on the time window
of the observation (tw/τB ≲ 1000 in this experiment). The red shaded region
corresponds to the time region before which we can see a power law decay
in the temporal change of the characteristic wave number. We refer the ϕ
region where percolation takes place within the red time regime to “network
region”, and define its lower composition bound as ϕ = ϕn. B. Volume fraction
dependence of the growth exponent α. C. Phase diagram. Black and blue
symbols mean that these are located at the outside and inside of the spinodal
line, respectively. We show the phase points, where we can see connected
structure, as cross symbols and those of disconnected structures as triangle
symbols.

box. Figure 6.1A shows tp as a function of ϕ. There we can see that tp dramatically
increases as the volume fraction approaches to ϕ ∼ 0.05, whereas for ϕ ≳ 0.08 there
is no strong ϕ dependence. From this trend, one may determine the percolation
boundary volume fraction as ϕp ∼ 0.05, but we should mention that there is a
possibility that ϕp highly depends on the time window of observation (t < 1000τB
in this experiment). We discuss the dependence of percolation on the time window
of observation later. Here we note the coarsening regime starts around tw/τB ≲ 50
(see the red shaded region in Fig. 6.1A) and this means that in the latter case
mentioned in the above (ϕ ≳ 0.08) percolation takes place in the early stage of
demixing, or before the coarsening starts. We determine this boundary value as
ϕn ≡ ϕ ∼ 0.08 as a key volume fraction to classify the coarsening mechanism.
Next, in Fig. 6.1B, we show the ϕ dependence of the growth exponent α (which

is determined in the same way as in Secs. 5.3.1 and 5.3.2). Here we can see that
crossover behavior of the growth exponent from α ∼ 1/3 to 1/2 with an increase in
ϕ. For ϕ > ϕn, we can commonly see α ∼ 1/2. We call the ϕ region where we can
see α ∼ 1/3 and 1/2 as “cluster region” and “network region”, respectively, and the
region between them as “intermediate region”. As discussed in Sec. 5.3.1 α ∼ 1/3 in
the cluster region can be understood in terms of the Brownian coagulation theory,
which is the same as the coarsening mechanism of liquid droplets in ordinary binary
mixtures. On the other hand, the exponent 1/2 seen in the network region is
different from what has been known in the coarsening of bincontinous structures
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(Siggia’s hydrodynamic mechanism; α = 1). We discuss the physical meaning
behind the exponent 1/2 in Chap. 7 and in this Chapter we focus on the case of
ϕ < ϕn. The presence of the intermediate region in colloidal systems is also quite
different from the case of ordinary binary mixtures, where the growth exponent
sharply changes from α = 1/3 to α = 1 in a discontinuous manner as the volume
fraction ϕ increases.

6.1.2 Percolation via Brownian diffusion of anisotropic clusters

A

B C

Fig. 6.2 A. 3D structures of aggregates at the end of experiment (tw/τB ∼
1000) for various volume fractions ϕ = 0.021, 0.030, 0.043, 0.057. The particles
are colored just to distinguish different clusters. B. Mapping of the gyration
radius of clusters, Rg, and the size N (the number of particles involved in a

cluster). We determine “fractal dimension” df by fitting N ∝ R
df
g to the data,

where we take statistics for clusters whose size are larger than 5 (the data
above the gray line). In this figure, we show an example at ϕ = 0.030, where
black, gray and blue symbols represent the results at tw/τB ∼ 100, 300 and 900,
respectively. Red line shows the slope with df = 2. C. The temporal change
of the fractal dimension for various volume fractions.

To clarify a key difference in the coarsening behavior between binary mixtures
and colloidal suspensions, in Fig. 6.2A we show the 3D structures of aggre-
gates at the end of experiment (tw/τB ∼ 1000) for various volume fractions
(ϕ = 0.021, 0.030, 0.043, 0.057), where we can clearly see that the aggregates have
elongated shape which is in contrast to spherical droplets seen in phase separation
of binary liquid mixtures. To characterize the shape of clusters in a qualitative
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way, we compute the temporal change of “fractal dimension” df . We obtain df
from the dependence of the number of particles in i-th cluster, N (i), on its radius

of gyration, R
(i)
g , by using the relation N ∝ Rdfg (see Fig. 6.2B). We define R

(i)
g

as R
(i)
g = 3(σ2 )

2/5 +
∑N(i)

j,k=1(R
(i)
j − R

(i)
k )2/2N (i)2, where {R(i)

j } is the set of the

center-of-mass positions of colloids belonging to i-th cluster *2. Figure 6.2C shows
the temporal change of df for various ϕ’s, where we can see that df grows in the
early stage but asymptotically approaches the value of approximately 2, which is
significantly smaller than the value of spherical aggregates (df = 3).
Based on the morphological information, we reconsider a link between the perco-

lation time and the time window of the experiment. In phase separation of binary
liquid mixtures, the self-similarity of the domain morphology is retained in the
coarsening regime. Thus, in the systems where no percolated structure is observed
at a certain time in the coarsening regime, percolation will never happen in the sub-
sequent time region. In our experiment of colloidal suspensions, on the other hand,
percolation takes place even in the coarsening regime. This implies that percolation
takes place via Brownian diffusion of clusters with anisotropic shapes. In this pro-
cess, the ratio between the average intercluster distance lrel and the average value
for the gyration radius of clusters Rg, r = lrel/2Rg is independent of time. Denoting
the number of colloidal particles and clusters per unit volume as np and nc, we can
relate these to lrel and Rg as πl3relnc/6 = 1 and np/nc = c(2Rg/σ)

df , where c is a
dimensionless value independent of time. With these relations we obtain,

r = n−1/3+1/df
c (

c

ϕ
)1/3, (6.1)

where we use ϕ = πσ3np/6. In the case of self-similar coarsening df = 3, the above
relation reduces r =const. Here we assume that nc decays obeying a power law,
which we confirm from the long-time behavior of Nc shown in Fig. 6.3A; thus, we
has the relation of nc ∝ t−b. Figure 6.3B shows the volume fraction dependence of
the exponent b, where we can see b ∼ 1 for the dilute systems which is consistent
with the prediction of Smoluchowski’s Brownian coagulation theory (see Sec. 2.1.4).
For larger volume fractions, we can see that the crossover behavior from b ∼ 1 to
∼ 2. At the percolation time t = tp, we may assume that r ∼ 1. By substituting
these relations into Eq. 6.1, we obtain,

tp ∝ ϕ
− df

b(3−df ) . (6.2)

When df = 2 and b = 1, the above relation becomes tp ∝ ϕ−2. Figure 6.3C shows
again the ϕ dependence of tp but in a log-log plot, where we can see that the
data in low volume fractions follow the power-law function with the exponent of
−2 (see the red line in the figure), which supports our discussion in the above.
From this, we can expect that percolation takes place even in an extremely dilute
solvent (e.g., less than 1% in volume fraction) as long as the fractal dimension keeps

*2 We include the moment of inertia for spherical rigid body with diameter σ in the definition
of the gyration radius because we regard a cluster as not a set of mass points but a domain.
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the same value. To satisfy this condition, the characteristic time required for the
morphological relaxation should be slow enough compared to that for intercluster
collisions.

Fig. 6.3 A. The temporal change of the number of clusters nc for various vol-
ume fractions. Here we can see a power law decay at large tw and then we write
this trend as nc ∝ t−b

w . Panel B represents the volume fraction dependence
of the exponent b. C. Log-log plot of the volume fraction dependence of the
percolation time tp. The red line is a power-law function with the exponent of
−2.

6.1.3 Effect of attraction range: Competition between Brownian coagu-

lation and morphological relaxation

We have so far seen that Brownian coagulation among elongated clusters can bring
about percolation in the coarsening regime. Here an important question in this
context is: Why are such anisotropic clusters formed and how are the shapes re-
tained? Formation of elongated clusters in colloidal suspensions have been pointed
out by many experimental and simulation studies. There are at least two physical
factors to enhance the formation of anisotropic clusters. One is the hydrodynamic
effect [43, 44, 102, 177, 103, 104], and the other is the contribution of attractive
interaction [96, 97]. *3

In this section, we examine the effect of the range of intercolloid attraction on the
structural formation process of colloidal suspensions. For this purpose, we perform
FPD simulations for colloidal particles interacting with short-range and long-range
attractions. In the former case (SIM-S), we use Morse potential and adjust the
interaction range ∆ to be the same as in that of the experiment (∆ ∼ 0.12). We
also perform FPD simulations with Lennard-Jones potential (SIM-L), which can
be regard as long-range attraction compared to ∆ ∼ 0.12. The volume fraction
and the inverse temperature are commonly set as ϕ ∼ 0.04 and βϵ ∼ 6 for both
experiments and simulations.

*3 It is also known that the presence of electrostatic repulsion also enhances the formation
of elongated clusters (see. e.g., [178, 179, 180]), although this may not be relevant in our
study.
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A

B
266.60 88.829.6

0 178.659.519.8

Fig. 6.4 The time evolution of 3D structure of aggregates for the case of short-
range attraction (A) and long-range attraction (B). The particles are colored
to distinguish different clusters.

In Fig. 6.4A and B, we show the time evolution of 3D structures for SIM-S and
SIM-L, respectively, where we can clearly see that the aggregates seen in SIM-L
have more compact structures than those in SIM-S. To see this trend in a quali-
tative manner, we calculate the temporal change of the fractal dimension for both
experiments and simulations (Fig. 6.5A), from which we can confirm the asymp-
totic behavior at a long time to be df ∼ 2 for short-range attraction and df ∼ 3
for long-range attraction. Here we mention again that there is a good agreement
between the experimental and FPD simulation results, supporting the numerical
predictability of FPD method for the structural formation process of colloidal sus-
pensions that we argued in Chap. 5. In Fig. 6.5B, we show the time evolution
of the gyration radius of the largest clusters Rmax

g , where we can see that Rmax
g

discontinuously increases at a certain point and decrease after that, reflecting the
collision among clusters and the morphological relaxation of clusters, respectively.
In the very early stage of SIM-L, we can see the sharp increase of Rmax

g , but this
is due to the formation of sting-like aggregates (see Fig. 6.5C). We do not focus on
this particular shape of aggregates here, but we expect that many-body lubrication
forces play a key role in the formation process of these aggregates.
From the above, we may conclude that as the attraction range is longer, the

morphological relaxation is more likely to take place, leading to the formation of
compact clusters. In the case where df ∼ 3, it is expected that the percolation
mechanism discussed in Sec. 6.1.2 is no longer operative since the coarsening pro-
ceeds while retaining self similarity of the phase-separation structure (Eq. (6.1)
becomes r =const., in this case). Such a situation is the case when the morpho-
logical relaxation is fast compared to the characteristic time of collisions among
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clusters. In other words, in the case where the viscoelastic relaxation time inside
the colloid-rich domain is comparable with or longer than the intercluster collision
time, such a percolation in the late stage can happen *4.

Fig. 6.5 A. The temporal change of the fractal dimension. B. The time evo-
lution of the gyration radius of the largest cluster. The black cross symbols
represent the experimental results of colloids interacting with short-range at-
traction (the interaction range ∆ ∼ 0.12). The brown and blue curves are the
results obtained by FPD simulations, and correspond to the case where the
intercolloid attractions are Morse potential and Lennard-Jones potential re-
spectively. The volume fraction and inverse temperature are set commonly as
ϕ ∼ 0.04 and βϵ ∼ 6. In the Morse potential, we set the parameters such that
the interaction range ∆ is the same as that in the experiments. C. String-like
aggregates seen in the early stage of demixing (tw/τB = 5) in the case of long-
range attraction. Here only the clusters which include more than 10 particles
are shown. The particles are colored are to distinguish different clusters.

6.2 Crossover behavior of growth exponent
We have mainly discussed phase separation dynamics of colloids interacting with
short-range attraction (∆ ∼ 0.12) so far, and revealed that there are at least the two
types of dynamic path ways to form connected network structure (percolation): one
is the case where the connected structure is formed in the early stage of demixing,
and the other is where percolation takes place via the diffusion of anisotropic clusters
in the coarsening regime. In Fig. 6.1B, we have seen a crossover behavior of the
growth exponent with an increase in the volume fraction, which corresponds to
the volume fraction region where we can observe the latter percolation mechanism.
Furthermore, in Sec. 6.1.3, we argued that in the case where the morphological
relaxation of colloidal clusters is fast enough compared to the frequency of cluster-
cluster collisions, percolation in the coarsening regime does not take place and there
should be no crossover behavior in the growth exponent.

*4 We may also regard the coarsening of droplets (size R) in ordinary binary mixtures by
Brownian coagulation mechanism as the extreme case where the viscoelastic relaxation time
(∼ Rη/γ) is much faster than the collision time (∼ 6πηR3/kBT ). The ratio of the former
to the latter is the order of (ξ/R)2 (ξ: interface thickness), which is much less than 1.
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From the above, we may expect that there may be a link between the crossover
behavior of the growth exponent and the formation of clusters of anisotropic shape,
which is the main issue that we focus on in this section. More specifically, we
examine the following two questions:

(Q1) Why can we still see the growth exponent close to 1/3 even for clusters of
anisotropic shape?

(Q2) Is there any link between the crossover behavior of the growth exponent and
the formation of clusters of anisotropic shape? If so, how are they related to
each other?

6.2.1 Reconsideration of growth exponent 1/3

To examine the above question, we reconsider how the growth exponent 1/3 can be
derived from the Smoluchowski equation. In Sec. 2.1.4, we have already introduced
a way to derive it under the assumption of the constant collision rate, but here we
employ a different approach based on the assumption of a self-similar solution.
In Sec. 2.1.4, we considered the time evolution of the number of clusters of size

i per unit volume as ni(t) by following the Smoluchwski equation (Eq. 6.4). Here
we consider the continuous version of the equation for convenience, and denote the
number of clusters whose size are between x and x+dx as n(x, t)dx. Then, Eq. 6.4
becomes,

∂

∂t
n(x, t) =

1

2

∫ x

0

K(x− y, y)n(x− y, t)n(y, t)dy −
∫ ∞

0

K(x, y)n(x, t)n(y, t)dy,

(6.3)
where K is the collision rate. Assuming that the collision radius and the diffusion
constant of cluster of size x, Rx and Dx are given by x ∝ Rdfx and Dx ∝ R−λ

x , we
may write K in the following form:

K(x, y) ∝ (x−λ/df + y−λ/df )(x1/df + y1/df ), (6.4)

where df can be regard as the fractal dimension of the clusters, and λ is an exponent
that relates the collision radius of clusters to the diffusion constant. In the case
where the clusters have spherical shape, df = d and λ = 1. If we assume a self-
similar solution *5 n(x, t) = f(t)F (x/x(t)) for Eq. 6.4, we can find the following
relation: [181],

f(t) = x(t)−2, (6.5)

dx

dt
∝ x

1−λ
df , (6.6)

where x(t) is the characteristic size of clusters at time t. The first relation is
easily obtained from the conservation of mass (

∫
xn(x, t)dx = const.). The second

*5 We note that the assumption of self-similar solution for n(x, t) does not necessarily require
the self-similarity in the domain morphology.
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relation is obtained by substituting the self-similar solution into Eq. 6.4. Eq. 6.6
can be rewritten as

x(t) ∝ t
df

df+λ−1 . (6.7)

When the Stokes law is valid (λ = 1), the above relation becomes x(t) ∝ t. Since the
total number of clusters per unit volume, nc, satisfies nc(t) =

∫
n(x, t)dx ∝ x(t)−1,

we obtain nc ∝ t−1, which coincides with the solution of the Smoluchwski equation
under the assumption of the constant collision rate (see Sec, 2.1.4). In the case of
Brownian coagulation of spherical clusters, we may choose the characteristic length
ℓ(t) of the domain as the mean radius of the clusters, and we obtain ℓ ∝ x(t)1/df .
In the case of df = 3, the growth exponent becomes 1/3.
In the above, we derive the growth exponent 1/df based on the assumption of

a self-similar solution. Here we summarize important points for considering the
correspondence of the aggregation process of colloidal suspensions to this Brownian
coagulation mechanism:

(P1) A power law dependence between massM and collision radius Rc: M ∝ Rdfc .

(P2) A linear dependence between hydrodynamic radius Rh and collision radius
Rc.

(P3) A linear dependence between characteristic length ℓ and mean value of Rc.

The first point (P1) is considered to be the case since fractal dimension approaches
to a constant value in a long time: df ∼ 2 (see Fig. 6.1C). Hereafter we examine
validity of P2 and P3.

6.2.2 Relation between hydrodynamic radius and collision radius

To examine P2, we consider a simple problem: diffusive motion of the following
ellipsoids: (xa )

2 + ( ypa )
2 + ( zpa )

2 = 1, where p is the aspect ratio and we consider

the case of “rod-like” body (p ≤ 1) rather than “disk-like” body (p ≥ 1). This
simplification seems not to be irrelevant as long as looking at the 3D structures
of clusters in Fig 6.4, but it is expected that for further long time beyond our
experimental time window the above treatment becomes invalid since the more
complicating shape (ramified shape, for example) of cluster can be formed.
The exact expression for the translational diffusion of coefficient of the above

ellipsoids is known as

D =
kBT

6πηa
G(p)

where G(p) = log [(1 +
√
1− p2)/p]/

√
1− p2, thus the hydrodynamic radius of

the body can be expressed as Rh = aG(p)−1. We use the gyration radius Rg =√
(1 + 2p2)/5a instead of collision radius Rc, since Rc is expected to be proportional

to Rg. Then, if the ratio g(p) ≡ Rg/Rh is constant without depending on the
aspect ratio p we may conclude that point P3 is valid. The result is shown in
Fig 6.6A, where we can see that g(p) dose not strongly depend on aspect ratio
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p. For example, the difference between spherical body p = 1 and a ellipsoid with
p = 1/3 is approximately 20%.
From the above, we may conclude that center-of-mass diffusion of elongated body

as we observed in current experiments is not crucially affected by the anisotropy
of the body. In other word, we may regard that the point P2 is satisfied in our
experiment.
We note that the above discussion is based on diffusion motion of a isolated

body and is valid only when the suspension is sufficiently dilute. When the clusters
are located within a short distance (such that the distance between center-of-mass
positions of clusters are comparable with the gyration radius of clusters), the rela-
tive diffusion motions of clusters are significantly influenced by the morphology or
orientation of clusters due to short-range HI.

B1

B2

Fig. 6.6 A. Aspect ratio dependence of the ratio between hydrodynamic ra-
dius and gyration radius Rg. The function g in the graph is defined by
g(p) = Rg/Rh. B. The turnover of the characteristic length ℓ between the
intercluster distance (lrel) and gyration radius (Rg). In a sufficiently dilute
suspension as in B1, we may regard ℓ as lrel. In a more dense suspension where
lrel ∼ 2Rg, we need to consider the effect of morphology of clusters on ℓ.

6.2.3 What is the length that the characteristic length represents?

Given that P1 and P2 are valid in aggregation kinetics observed in our experiments,
we may assume Rg ∝ t1/df . If we straightforwardly adopt the point P3 (i.e., ℓ ∝ Rg)
to the above, we immediately obtain α ∼ 1/2 since df ∼ 2 is observed. On the other
side, we have observed α ∼ 1/3 at sufficiently dilute volume fractions (ϕ ≲ 0.03,
see Fig 6.1B). These two seem conflicting, which is the motivation of the question
Q1.
To consider this question, we examine the meaning of point P3 in a careful

manner: specifically, here we consider what is the physical quantity that the char-
acteristic length ℓ detects. Since we evaluate ℓ by the first moment of the structure
factor, ℓ is considered to reflect the periodicity of the density fluctuation of colloids.
Thus, ℓ dose not necessary correspond one-to-one with the characteristic size of the
clusters (the mean value of the gyration radius Rg of the clusters in the above dis-
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cussion). To see this, we reconsider a link between the average intercluster distance
lrel and the average value for the gyration radius of clusters Rg. In a sufficiently
dilute suspension such that lrel ≫ 2Rg, as we can see in Fig 6.6B1, the anisotropy
of clusters dose not strongly affect the density fluctuation and the average intercol-
loid distance characterizes the periodicity of domain pattern. Since πlrelnc/6 = 1
and nc ∝ t−1, ℓ ∝ lrel ∝ t−1/3. Thus, α ∼ 1/3. This can be the answer for Q1.
However, in a more dense suspension where lrel ∼ 2Rg, the gyration radius becomes
the substitute for lrel. In other word, P3 is the case in this situation and thus we
obtain α ∼ 1/2. The turnover of the characteristic length between lrel and Rg can
be a part of answer for the question Q2: the crossover behavior of growth exponent
from α ∼ 1/3 to 1/2. However, it is questionable whether P2 is valid or not in such
intermediate volume fractions.

6.3 Summary
We study the volume fraction dependence of phase separation dynamics of colloids
interacting with short-range attraction (∆ ∼ 0.12). We find that there are at least
the two types of dynamic pathways to form connected network structure (percola-
tion): one is the case where the connected structure is formed in the early stage
of demixing, and the other is where percolation takes place via the diffusion of
anisotropic clusters in the coarsening regime. We also observe that growth expo-
nent α keeps an almost constant value α = 1/2 in the former case. In the latter
case, on the other hand, α shows crossover behavior from ∼ 1/2 to ∼ 1/3 with a
decrease in volume fraction, and we confirm that the exponent 1/3 continues up
to the dilute suspensions where we cannot observe the percolated aggregates. By
comparing the results with the phase separation dynamics interacting with long-
range attractions (LJ potential), we show that the condition that the morphological
relaxation time of colloidal clusters is comparable with (or much slower than) the
frequency of cluster-cluster collisions is a key in the emergence of the latter case
of percolation. We also mention a link between the latter case of percolation and
the crossover behavior of growth exponents. These trends confirmed in our study,
which is significantly different from those in ordinary binary mixtures, imply the
importance of rheological characteristics of colloidal suspensions in phase separation
dynamics. To obtain a systematic understanding for this phenomenon, a theoretical
framework taking the viscoelastic effects of colloids into account is desirable.
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Chapter 7

A universal growth exponent of

network-forming phase separation

7.1 Motivation
Background
Phase separation phenomena of soft and bio matter containing liquids such as self-
assembly of proteins have been attracting considerable attention from both funda-
mental and technological viewpoints. For example, quite recently, the formation
of membraneless organelles by liquid-liquid phase separation has been a topic of
intensive research in biology [182, 183, 184, 185, 17]. In general, phase separation
starts from a small scale and then the characteristic size of phase-separated do-
mains grows with time to a macroscopic scale. Thus, it is crucial to understand
how phase-separation structures are selected and coarsen with time. This is impor-
tant not only from a fundamental scientific viewpoint, but also from an applications
viewpoint, e.g., the industrial processing of soft materials such as food, cosmetics,
and paint industries [186].
Phase separation of liquid mixtures has been studied intensively in 20th century

and the power-law growth of the characteristic domain size in the form of ℓ ∼ tα

(α = 1 for a symmetric 50:50 mixture, and α = 1/3 for an off-symmetric mix-
ture) has been established on the basis of the self-simirality and scaling concept
of phase-separation pattern [187, 5] (see Sec. 2.1.1). Later, unconventional phase
separation, which is now known as viscoelastic phase separation, was discovered for
dynamically asymmetric mixtures such as polymer solutions, whose components
have very different dynamics. In this phase separation, the material specific dy-
namics plays a crucial role and leads to the breakdown of the self-similar growth
[81, 82](see Sec. 2.2.2). Thus, after Siggia’s seminal work [187] in 1979, there has
been no discovery on a new coarsening law of self-similar nature. First we briefly re-
view what we already knew about phase separation of simple fluid mixtures. Phase
separation dynamics of a binary mixture of simple liquids with the same viscos-
ity η is now well-understood. The relevant order parameter is the composition, ϕ.
The temporal change in ϕ at a certain location r can be caused by both compo-
sition diffusion and hydrodynamic flow v under the constraint of the conservation
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of the composition and the momentum. In this type of dynamically symmetric
mixtures, network-forming phase separation is observed only in a symmetric com-
position region, where the two phases occupy similar volume. The coarsening of
such a bicontinuous structure proceeds with the so-called Siggia’s hydrodynamic
pumping mechanism: There is the force due to a pressure gradient from a narrow
part to a wider part of a tube forming a network structure of the characteristic
size of ℓ, ∇p ∼ σ/ℓ2, (σ: interface tension). This force is to be balanced with the
viscous force η∇2v ∼ η/ℓ2dℓ/dt (η: viscosity), where v is the fluid velocity. Thus
we obtain the above domain coarsening law of ℓ ∼ (σ/η)t.
However, this mechanism may not work if the slower phase cannot easily flow

and shows an elastic response. Such a situation can generally be realized for dy-
namically asymmetric mixtures [81, 82]. In polymer solutions the slow rheological
relaxational time of polymers plays a crucial role in phase separation in addition to
the composition diffusion time, leading to the breakdown of self-similar growth. In
this case, we can expect neither a simple scaling relation nor a power-law growth of
domain size. Such non-universal behavior was indeed observed in both experiments
and simulations [81, 82]. The lack of the self-similar growth is a direct consequence
of the volume shrinking of the polymer-rich phase even after the formation of the
sharp interface between the two phases. This non-universal nature comes from the
fact that the slow relaxation of polymer involves complex topological entanglements
(see Chap. 2.2.2 for more detail).

Unusual coarsening behavior of network structures in two apparently different types of
systems
However, viscoelastic phase separation in colloidal suspensions may be much sim-
pler than that in polymer solutions. This is because the dynamics of colloids can
be scaled by the particle radius a alone since it is the only characteristic length
of the system, implying a possible self-similar growth of phase-separation pattern.
Indeed, we recently noticed that unusual coarsening behavior of network structures
has been reported in two apparently different types of systems, (i) gas-liquid phase
separation in a single-component system (molecular systems [188, 64, 188, 189]) and
(ii) phase separation in soft matter (colloidal suspensions [9, 190, 43, 191], protein
solutions[11] and lyotropic liquid crystal [125]). Interestingly, we have recently re-
alized that in these systems phase separation structures with network morphology
commonly grow their characteristic network size ℓ as ℓ ∝ t1/2 while retaining their
connectivity, although the time range of the power law behavior was rather limited.
We note that there are at least two features that these systems have in common,
besides the spontaneous formation of a network structure and its preservation dur-
ing the growth: The first feature is that phase separation dynamics is driven by
gas-liquid spinodal instability for both cases. The other is that this exponent is ob-
served only for a sufficiently deep quench. Finally, these systems are very simple in
the sense that the dynamics can be related to the unique length scale, i.e., particle
size a. These facts imply that there is some universal physical mechanism behind
this power-law growth of the particular growth exponent 1/2.
This motivates us to perform extensive simulations to cover a wider time range

and confirm the power-law growth of domains. From the theoretical viewpoint,
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on the other hand, the key to understand the unusual coarsening behavior is to
recognize that for such a mixture under a deep quench the rate of deformation
induced by phase separation rather easily exceeds the characteristic rheological time
of the slow-component-rich phase. This is because the slow-component-rich phase
approaches a glass transition under a deep quench, leading to slow glassy dynamics.
If the slow-component-rich phase forms a network structure, a tube of the network
structure made of this phase should respond as an elastic body rather than as a
fluid to the mechanical force due to a pressure gradient generated by the interface
tension. In this chapter, we consider the impact of such elastic response on the
coarsening of a network structure during phase separation. We both numerically
and theoretically find a new domain coarsening law of ℓ ∼ t1/2. We argue that such
coarsening behavior should be generally relevant to colloidal suspensions, protein
solutions, and liquid phase separation coupled with glassiness. Understanding the
formation process of network-like aggregated structures is significantly important
not only fundamentally, but also for materials science, since the nature of network
and porous structures drastically affects the functions of soft- and bio- materials
such as elastic, surface, and transport properties [98].

7.2 Method
To reveal the mechanism responsible for the unconventional power-law growth,
we performed numerical simulations of phase separation in two types of systems.
One is phase demixing of a colloidal suspension, and the other is gas-liquid phase
separation of a single-component fluid. For the former, we used a hydrodynamic
simulation model, fluid particle dynamics (FPD) method [7]. For the latter, we
used molecular dynamics simulations.

Simulations of colloidal phase separation
To study colloidal phase separation numerically, we consider a suspension of col-
loids interacting with a Lennard-Jones (LJ) potential, U(r) = 4ϵLJ[(r/σLJ)

−12 −
(r/σLJ)

−6]. We define the volume fraction of colloids ϕ as ϕ = πσ3N/6L3, where
N and L are the number of the colloids and the side length of our simulation box
(cubic), and set ϕ = 0.1, which is a volume fraction dense enough to from network
structures upon phase separation. In the data analysis, we use the length unit σ
as σ = σLJ and the time unit τd as τd = 3πησ3/ϵLJ, where η is the viscosity of the
solvent. τd corresponds to the time during which a free colloid under an external
constant force of amplitude ϵLJ/σ moves by its diameter σ. The depth of the LJ
potential ϵLJ is set such that the “Reynolds number” Re = ρσ2/ητd = 0.8 (ρ being
the density of the solvent).
Here we check whether our simulation reproduce a Stokes flow under this pa-

rameter setting. First we consider the motion of a free colloid. Assuming that a
constant force Fd is applied to the particle at time t = 0, the velocity of the particle
V can be written as

Meff
dV

dt
= Fdψ

T(
t

τa
) (7.1)
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where Meff = 3
2M is the effective mass of the colloid. Then, ψT( tτa ) is the memory

function for translational motion that takes hydrodynamic effects into account (see
Eq. 4.23 for the functioal form). τa is the time required for solvent to diffuse over
the radius of the colloid and given as τa = (σ2 )

2/α, which relates to τd by τa = Re
τd/4.
At the timescale t ∼ τd, ψ

T can be estimated as ψT(4Re−1) = ψT(5) ∼ 0.0076.
The ratio between the amplidute of momentum of the particle and that of the force
is given by

M

Fd

dV

dt
=

2

3
ψT, (7.2)

which is estimated as ∼ 0.0051, allowing us to assume that the force acting on the
particle is almost perfectly balanced with the viscous drag force, i.e. the inertia
term can be neglected.

Simulations of phase separation of a single-component fluid
To study gas-liquid phase separation of molecular systems, we use a single-
component Lennard-Jones system and employ the usual Lennard-Jones units (i.e.,

σLJ, τLJ =
√
σ2
LJm/ϵLJ, ϵLJ for length, time and energy units). We perform

molecular dynamics simulation with NV T ensemble by utilizing LAMMPS. We
control temperature Nose-Hoover thermostat. We set the number density of
particles as ρ = 0.33 where we can see the formation of the network structure.
The scaled energy is set as ϵLJβ = 0.1, which can bring the system to an elastic
regime. We apply the same simulation box size as in the above FPD simulation
(L/σ = 69.2).

7.3 Results

7.3.1 Self-similar coarsening

First we focus on network-forming phase separation in colloidal suspensions. In our
previous studies (see Chap. 5), we experimentally observed the growth exponent
1/2 in network-forming phase separations of colloids interacting with short-range
depletion attractions, and also found that the dynamic network coarsening process
can be almost perfectly reproduced by FPD simulations without any adjustable
parameter, thanks to the scale-invariant nature of the phenomena. We also showed
that the phase separation kinetics cannot be reproduced by Brownian Dynamics
simulations without hydrodynamic interactions. This indicates the crucial role of
momentum conservation in this growth mechanism. Here we perform numerical sim-
ulations of phase separation of colloidal suspensions by the FPD method without
thermal noise, which corresponds to an extreme deep quench to zero temperature.
As mentioned above, we note that the growth exponent 1/2 was observed in col-
loidal suspensions and protein solutions, whose large-size components interact with
different types of attractive potentials. Here we consider as an example colloids
interacting with a Lennard-Jones (LJ) potential, whose interaction range is longer
than the depletion potential.
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A

B C D

Fig. 7.1 Coarsening behavior of network-forming phase separation
of colloidal suspensions. A, Time evolution of 3D phase-separation struc-
tures. Particles are coloured to distinguish front particles from back ones. B,
Temporal change of the characteristic wave number ⟨q⟩ for three different sim-
ulation box sizes L/σ = 17.3, 34.6, 69.2. The gray line represents a power-law
decay with exponent 1/2. The inset shows the temporal change of the inte-
grated intensity I(t) of the structure factor S(q, t). C, The chord distribution
functions P (ℓch) at various times, after scaling the length by the characteris-
tic length ℓ = 2π/⟨q⟩). D, Scaled structure factors, (⟨q⟩σ)dS(q, t), for various
times. The gray line shows a theoretical prediction [192] for the master curve
Ax2/(γ/2 + x2+γ), where x = q/⟨q⟩, γ = d + 1, and A is a constant. All the
figures except the main graph of panel a is the results for the largest simulation
box (L/σ = 69.2).

We show in Fig. 7.1A the time evolution of phase-separation structures in the col-
loidal suspension. There we can clearly see that a space-spanning network structure
is spontaneously formed in the early stage and its characteristic length scale grows
afterward. On noting that the absence of thermal noise at zero temperature, the
coarsening cannot be due to thermal activation, but should be of purely mechanical
nature [190]. In order to quantitatively characterize the coarsening behavior, we
computed the temporal change of the characteristic wave number, ⟨q(t)⟩, defined as
the first moment of the structure factor S(q, t): ⟨q(t)⟩ =

∫
dq qS(q, t)/

∫
dq S(q, t)

(see Sec. 3.1.5 for how to compute S(q, t)). This characteristic wave number is
inversely proportional to the typical size of the network, ℓ(t) = 2π/⟨q(t)⟩. To check
whether our simulation box is large enough to study the coarsening behavior without
suffering from a finite-size effect, here we performed the data analysis for simula-
tion results for three different sizes of the simulation box, L/σ = 17.3, 34.6, 69.2 (σ:
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particle size). We see in Fig. 7.1B that all results show almost identical coarsening
behavior in the late stage: ⟨q⟩ ∼ t−0.5. At the same time, however, we see that
the results for L/σ = 17.3, 34.6 deviate from the power-law decay at certain times.
In contrast, the one for L/σ = 69.2 continue to coarsen, obeying the power law
over the entire time range of the simulation. This tells us that the deviation from
the power law decay is a consequence of the finite size effects. Unlike previous
reports [188, 64, 189, 9, 43, 191, 11], this is the first observation of the power-law
growth far more than a decade. Hereafter, we focus only on the simulation results
with the largest simulation box.
To reveal which length scale of real structures corresponds to ℓ, we also perform

the structural analysis in real space by using the chord length distribution function
P (ℓch) [98]. Organizing the results based on the dynamic scaling law, we find
that the distribution functions characterizing the phase-separation structures are
collapsed onto a single master curve after scaling with the growth exponent of
1/2 (see Fig. 7.1c), i.e., ℓ(t)P (ℓch) = f(ℓch/ℓ(t)), where f(·) is some function.
These results clearly indicates the self-similar nature of the coarsening, showing
the presence of a unique physical mechanism behind this coarsening process. In
Fig. 7.1c, we can also see that ℓch/ℓ(t) ∼ 1, meaning that the length ℓ(t) obtained
by the structure factor corresponds to the characteristic pore size of the network
structure. In Fig. 7.1d, we show that S(q, t) is also scaled as ⟨q⟩dS(q, t) = g(q/⟨q⟩)
(d: the spatial dimension; g(·): some function), also supporting the presence of the
self-similarity in pattern evolution. Moreover, denoting q-integral of S(q, t) as I(t),
we can directly confirm the following relation, which should hold for self-similarity
growth: I(t) ∝ ℓd−1 = ℓ2. In the inset of Fig. 7.1b, we show that I(t) indeed
linearly increases with time, suggesting that ℓ ∝ t1/2 as expected.

7.3.2 Dynamic scaling for elastic motion in colloid-rich phase

As shown above, the network coarsening process has self-similarity, indicating that
this growth exponent 1/2 continues as long as the condition ℓ ≫ σ is satisfied.
This allows us to make a coarse-grained description of the coarsening process. We
consider this problem by focusing on the similarity and difference between our
problem and the well-known coarsening process of phase separation of an ordinary
binary fluid mixture. The fact that in the cluster forming phase separation in a
colloidal suspension the growth exponent is about 1/3 rather than 1/2 and the
relevant mechanism is the Brownian coagulation mechanism [187, 5] suggests that
the connectivity of the network must play a key role in the emergence of the growth
exponent of 1/2. As mentioned in Introduction, in a network morphology, the
interfacial tension generates a mechanical force on a tube reflecting the spatial
variation of its thickness. For the case of a binary liquid mixture, this force is
a pressure gradient force, producing hydrodynamic flow along a tube. Thus, the
crucial question here is what is the key transport process under such a mechanical
force for network coarsening in a colloidal suspension.
To address this problem, we should pay a special attention to slow dynamics of

dense colloidal aggregates, which exhibits an elastic response to deformation faster
than the rheological relaxation time. First we analyze the strain field ϵij(r, t) by
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A

B C

Fig. 7.2 Bulk strain in the colloid-rich domain. A, Real-space mapping
of the bulk strain around the particles. Colour labelled on the particles repre-
sent the value of the scaled bulk strain t′ϵ/t0. The reference time of strain is
chosen as t0 = 63.0. Here we show only particles which are located one quarter
on the top side to make the details of structures more visible. B, The time
evolution of the distribution of bulk strain P (ϵ). Here t′ represents the dura-
tion of time from the reference time t0 = 62.0 to measure the strain. C, P (ϵ)
after scaling ϵ by t′/t0. The data are sampled from the data whose reference
time is t0 = 31.0 (blue), 46.5 (green), 62.0 (grown symbols). Cross, triangle
and square symbols represent the data at t′/t0 = 0.001, 0.01, 0.02, respectively.

coarse-graining the displacements of colloidal particles. We compute the strain field
ϵαβ following Ref. [193]. Denoting the displacement of i-th particle from time t = 0
to t = t as ui(t) = Ri(t) − Ri(0), a coarse-grained displacement field u(r, t) can
be written as,

u(r, t) =

∑
i ui(t)g(r −Ri(t))∑

i g(r −Ri(t))
, (7.3)

where g(r) is a coarse-grain function and we employ the following Gaussian form:
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g(r) = exp(−r2/σ2)/(πσ2)
3/2

. The strain feild ϵαβ is defined as

ϵαβ(r, t) =
1

2
(
∂uα(r, t)

∂rβ
+
∂uβ(r, t)

∂rα
). (7.4)

We sample the strain at the center-of-mass positions of particles which have more
than 9 neighbouring particles, and compute the distribution of the strain P (ϵαβ).
Here we regard two particles as neighbouring ones if the distance of the two particles
are less than 1.2σ.
We show in Fig. 7.2b the time evolution of the distribution function P (ϵ) of bulk

(or, volume) strain with respect to the reference time t0(= 62.0), ϵ = ϵkk(t0 →
t0 + t′). We can see that the distribution broadens with the increase of t′. Here
we stress that the self-similarity and dynamic scalability hold for the phenomena.
Thus, if the elastic response of the colloid-rich phase plays an important role, we
expect that the dynamical scaling holds for the distribution function of P (ϵ, t0, t

′).

Indeed, we find that it can be scaled as t′

t0
P (ϵ, t0, t

′) = f(t′ϵ/t0) (see Fig. 7.2c).
From this scaling, we may conclude at least two things: Firstly, ϵ is proportional to
t′ for a certain t0. This can be understood form the nature of Stokes flow: in a short-
time scale in which relative displacements between the center-of-mass positions of
colloidal particles are negligible comparing to the particle size, the velocities of
colloidal particles should be constant. Therefore, the displacements of particles
are to be proportional to the time duration, resulting in the proportionality of the
strain to the time duration. Secondly, since t0 ∝ ℓ2 and ϵ is a dimensionless and
infinitesimal quantity, t′ should also be proportional to ℓ2. This clearly means that
the growth exponent α = 1/2 reflects the elastic response inside the colloid-rich
phase, and the coarse-grained equation governing the elastic behaviour should be
the equation in which τe and length scale ℓe satisfy τe ∝ ℓ2e .

7.3.3 Dynamic couping between elastic motion of colloids and solvent

flow: poroelasticity

Now the problem is to elucidate the underlying physical mechanism resposible for
this coarsening law. Regarding this, we can get some important insights by recall-
ing the results of our previous work (see Chap. 5). We found that for network-
forming colloidal phase separation simulated by FPD, which properly incorporates
many-body hydrodynamic interaction between colloids, domains coarsen as ℓ ∼ t0.5,
whereas for the one simulated by Brownian Dynamics (BD) method without hy-
drodynamic degrees of freedom domains coarsen as ℓ ∼ t0.25 even at the same state
point as in FPD. Thus, it seems natural to think that the constitutive equation
must include some dynamic coupling between colloids and the solvent. This clearly
indicates that the coexistence of elasticity and fluidity, or poroelasticity, is the key
to this novel coarsening process. Thus, we consider the domain coarsening kinetics
under poroelastic effects in two fluid model [76, 77], which can deal with the degree
of freedom of both colloids and solvent (see also Sec. 2.2.1).
Denoting the local volume fraction of colloids as ϕ and the velocity field of colloids

and solvent as vc and vs, a basic set of kinetic equations of the viscoelastic model of
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colloidal phase separation, whose free energy density Fϕ scaled by thermal energy
is given by Fϕ(ϕ) =

∫
dr
[
f(r) + 1

2C|∇ϕ|
2
]
, are described as follows:

∂ϕ

∂t
= −∇ · (ϕvc) = ∇ · ((1− ϕ)vs), (7.5)

vs − vc =
(1− ϕ)

ζR
[∇ ·Π−∇ · σc], (7.6)

ρ
∂v

∂t
= −∇ ·Π+∇ · σc −∇p+ η∇2v, (7.7)

∇ · v = 0. (7.8)

where v is the average velocity given as v = ϕvc+(1−ϕ)vs, ζR is the effective friction
constant between colloids and the solvent after coarse-graining and η is the solvent
viscosity. Equations (7.5), (7.7) and (7.8) represents the material conservation law,
the momentum conservation law, and the incompressible condition, respectively. In
the above, Π is the osmotic stress tensor, which is related to the thermodynamic
force Fϕ as F ϕ = −∇·Π = −ϕ∇(δFϕ/δϕ). Then, σc is the mechanical stress tensor
acting on colloids. Equation (7.6) represents the mechanical balance between these
forces and the viscous force resulting from the relative motion between colloids and
the solvent.
In order to close the set of the equations described above, we need a constitutive

equation describing the temporal change of σc, but there is no consensus on the
form of the constitutive equation for a colloidal system. Fortunately, however, the
self-similar network coarsening takes place in an elastic regime and thus we need
not to consider the relaxation of σc. However, since the volume fraction ϕ in the
late stage (∼ ϕ0) reaches its value in the glassy state, or is affected by mechanical
rigidity, we need a special care: the elastic properties of the colloid-rich phase cannot
be described by the compressibility alone, which is of thermodynamic origin, and
we need to consider additional elasticity of purely mechanical origin. We assume the
additivity of the thermodynamic and mechanical moduli on the basis of a parallel
spring model. As we are interested in only small deformation in the elastic regime,
we assume that the stress mechanically generated on a colloid network is written in
the linear order as

σc,ij = GB(ϕ)ϵδij +GS(ϕ)(ϵij + ϵji −
2

3
ϵδij), (7.9)

where GB and GS are the elastic moduli for bulk and shear deformation respectively.
In such a regime, elastic deformation of the network structure is realized by slow

fluid transport through the dense colloid-rich phase, which is the limiting process
of the deformation [194]. Such deformation is accompanied by a small local com-
position change δϕ around its average value ϕ0. We consider this process of elastic
deformation controlled by the solvent transport inside the colloid-rich domains. To
do so, we set the reference time to t0 and then consider small deviations of physical
quantities such as the local colloid volume fraction δϕ and volume deformation ϵ,
from the reference state at t0. Within a linear regime, the osmotic stress can be
written as, ∇·Π ∼ −κOS(ϕ0)ϵ, where κOS = ϕ2∂2f(ϕ)∂ϕ2 is the osmotic bulk mod-
ulus of the colloid-rich phase. Here we use a relation δϕ ∼ −ϕ0ϵ, which is obtained
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from the material conservation law in Eq. (7.5). In the elastic regime, the time and
spatial gradient of the average velocity filed is expected to be negligible. Thus, we
obtain the following relations:

vs − vc = k∇p, (7.10)

0 = ∂j [(κOS +GB)ϵδij +GS(ϵij + ϵji −
2

3
ϵδij)− pδij ], (7.11)

where k = (1−ϕ0)2/ζR(ϕ0) is the permeability of colloid-rich phase. Eqs. (7.10) and
(7.11) has mathematically the same form as the that of the well-known constitutive
equation in Biot’s poroelastic theory [194], which is often used for describing fluid-
saturated elastic materials.
As we are interested in volumetric elastic response of the colloid-rich domain, we

consider the bulk part of Eq. (7.11): 0 = ∇[(κOS+GB)ϵ−p]. By substituting these
relations into Eqs. (7.5), (7.6) and (7.11), we obtain the following diffusion-type
equation for ϵ:

∂

∂t
ϵ ∼= DP∇2ϵ, (7.12)

where
DP = k [κOS(ϕ0) +GB(ϕ0)] (7.13)

is the poroelastic diffusibility. Here we find that Dp is deterimend by the perme-
ability of sovlent for colloid-rich phase and the elastic moduli of the colloid-rich
phase.
This diffusion-type equation describes the temporal change of the local colloid

composition upon structural evolution driven by the interfacial force: this process
proceeds, under the elastic force balance, via fluid transport through densely packed
colloids driven by local pressure gradient. Although the average colloid composition
in the colloid-rich phase is ϕ0 and does not change in time, the local composition
change is necessary for elastic deformation to take place. Its temporal change
obeys the above diffusion-type equation. In Fig. 7.3, we show that the volume
fraction of the colloid-rich domain is indeed almost constant in the scaling regime as
ϕ0 = 0.54±0.03. In Fig. 7.2a, we show the 3D structures of the colloid-rich network
together with real-space mapping of bulk strain ϵ. Here we can clearly see that the
locations where compression or dilation takes place are not randomly distributed,
but distributed with the characteristic length scale of the network structures ℓ. This
together with the self-similar nature of the domain growth justifies the choice of
the length scale ℓ as the space unit of the Laplacian in front of δϕ in Eq. (7.12).
Thus, we obtain the following domain coarsening law:

ℓ2 ∼= DPt, (7.14)

which reproduces growth exponent α = 1/2.
In Fig. 7.2C, we show that the distributions of the bulk strain at different times

can be mapped on a master curve. However, for large deformation at t′/t0 ≳ 0.05,
the scaling relation starts to break. This means that the linear elastic description
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A B

Fig. 7.3 A, The distribution of local volume fraction ϕvor = πσ3/6Vvor where
Vvor is the volume of Voronoi cell. In the early stage, since the most of par-
ticles are located at the interface of the colloid-rich phase, or having only a
few neighbouring particles (∼ 6) than in bulk (∼ 12), the distribution is very
flat. But in the late stage (t ≳31.0), we can see a rather sharp peak. The
local volume fraction in the colloid-rich phase in the late stage is estimated
approximately as ϕvor = 0.54± 0.03. B, A schematic illustration of the poroe-
lastic and thermoelastic deformation. Elastic volumetric deformation of dense
colloidal domain involves solvent transport inside of the domain. For example,
in the case of bending deformation of rod-like domain as shown in the figure,
where the volume fraction increases/decreases in the upper/lower part of the
domain, solvent contained in the domain should transport from the upper part
to the lower part. In a single-component molecular system, heat transport
takes place in stead of solvent transport. The solvent and heat transport are
the limiting process of viscoelastic phase separation in colloidal and molecular
systems, respectively.

is no longer valid in this large deformation regime. To discuss such a large defor-
mation accompanying ruptures of the network arms and merges of the pores (see
the red or blue parts of Fig. 7.2A), we need to develop a constitutive equation fully
incorporating viscoelastic relaxation modes of dense colloidal suspension.

7.3.4 Correspondence with a single-component fluid: thermoelasticity

Next we turn our attention to network formation in a deeply quenched single-
component fluid [188, 64, 189], which also shows the domain growth exponent of
1/2. Firstly, we check whether this domain growth law really exists and there
is self-similarity during the coarsening. To this end, we performed molecular dy-
namics simulation with NV T -ensemble for gas-liquid phase separation of a single-
component Lennard-Jones fluid. In Fig. 7.4A, we show the temporal change of
characteristic wave number ⟨q⟩. We find that ⟨q⟩ indeed decays with a power-law
exponent close to 1/2 in a wide range of temperature (at least 2 ≤ βLJϵ ≤ 100). In
the very late stage of the coarsening, we observe the formation and growth of crys-
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tals in the dense liquid phase. Since such a crystallization process during gas-liquid
demixing is out of scope in this research, we only focus on the time regime where
the fraction of crystals is less than 3%.
Now we consider the physical mechanism responsible for this network coarsening

dynamics in a phase-separating single-component fluid. We have seen in the above
that the exponent 1/2 in colloidal systems can be explained by the slow transport of
a liquid component in a dense colloid-rich phase, which controls elastic deformation
of the colloid-rich network. Similarly, to colloidal suspensions, a deep quench leads
to phase separation of a fluid to dense liquid and dilute gas phases, whose charac-
teristic rheological relation times are quite different. Then, the typical deformation
rate produced by phase separation can exceed the relaxation rate of the dense liq-
uid phase. This leads to viscoelastic phase separation, or the emergence of elastic
behavior. We note that for a single-component fluid there is no two-fluid nature,
which plays a crucial role in slow elastic deformation of the dense colloid-rich phase
through its coupling to slow fluid transport, but there is a slow mode associated
with thermal transport.
To elucidate the coarsening mechanism, we consider hydrodynamic equations for

a single-component fluid [5]. A basic set of hydrodynamic equations corresponding
to mass, momentum and energy conservation can be expressed as the following
equations of time evolution for mass density ρ, velocity v and entropy density s:

∂ρ

∂t
= −∇ · (ρv) (7.15)

∂

∂t
(ρv) = −∇ ·Π+∇ · σ (7.16)

ρT
∂s

∂t
= −ρT∇ · (sv) +∇ · (λ∇T ) + Φ, (7.17)

where T and λ are the local temperature and the heat conductivity respectively.
Π is the pressure tensor, which is given by the thermal-energy-scaled free energy
functional F via ∇Π = ρ∇ δF

δρ . σ is the viscoelastic stress and Φ is the dissipation

function. In the late stage of coarsening, elastic deformation is induced by a small
local change of ρ, δρ around the average value, ρ0. ρ0 is roughly kept constant
during the scaling regime as in the case of colloidal phase separation, which is the
origin of the self-similarity. The presence of self-similarity during the phase sepa-
ration process has been demostrated in Ref. [188, 64, 189]. Focusing on such small
composition change, we only consider the volumetric deformation ϵ for viscoelastic
stress: ∇ · σ = GB(ρ0)∇ϵ, where GB(ρ) is the bulk elastic modulus of purely me-
chanical origin, which originates from the glassiness of the high density phase, as in
the case of colloidal phase separation. Such a local volumetric change is expected
to produce a deviation of the entropy density from its average value s0 in a short
timescale (i.e. in a time scale faster than thermal transport). Then, such a change
in entropy is slowly homogenized by heat transfer. The deviation of entropy δs can
be estimated as δs = (CV /T0)δT − (ακ/ρ0)δρ, where CV , κ = ρ2(∂2f/∂ρ2) and α
is the specific heat capacity at constant volume, the bulk modulus and the ther-
mal expansion constant respectively. Therefore, here we may write the free energy
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density in the elastic regime as

F = Fρ +

∫
dr
ακ

ρ0
δρδT + FT , (7.18)

where the functional form of Fρ is the same as Fϕ introduced in the above. FT

is the extra term regarding temperature. From the above, the pressure tensor

is calculated as ∇ · Π ∼ ρ0(
∂2f
∂ρ2 |ρ=ρ0)∇δρ + ακ∇T . By neglecting the viscous

dissipation (Φ) and the convective terms in Eqs. (7.16) and (7.17) and by canceling
temperature, we obtain the following diffusion equation regarding ϵ,

∂

∂t
ϵ ∼= DT∇2ϵ, (7.19)

where

DT =
λ

ρ0Cp

1 +GB/κ

1 + γ−1GB/κ
, (7.20)

is the thermal diffusion coefficient, Cp is the specific heat capacity at constant
pressure, and γ = Cp/CV are the specific heat ratio, respectively. In the above, we
use a thermodynamic relation, α2κT = Cp − CV . In the case where the relaxation
of mechanical bulk stress is sufficiently fast and we can neglect GB, DT becoms
λ/ρ0Cp, which coincides with the thermal diffusibility of ordinary single-component
fluids [5]. from which we can derive the growth exponent 1/2 as in the case of
colloidal suspensions.
To check the above mechanism based on the slow thermal transport is really a

relevant mechanism or not, we calculate the effective temperature, or the kinetic
energy of each particles, Ki(t) = 1

2m⟨V 2
i ⟩(t), where the ensemble average for the

velocity of i-th particle, Vi is taken over the time span [t − τLJ/2, t + τLJ/2]. Fig-
ure 7.4D shows an example of the real-space distribution ofKi, where we can clearly
see that the particles with high/low kinetic energy are not randomly distributed,
but heterogeneously with the characteristic length scale of the network structure ℓ.
This observation strongly supports the above proposed mechanism.

7.3.5 Importance of dynamical asymmetry and dimension dependence of

coarsening behavior

In the above, we have shown that the power-law domain of the exponent 1/2 in
network-forming gas-liquid phase separation of colloidal suspensions and atomic
(or molecular) systems is a consequence of slow elastic motion of the dense phase,
whose limiting process is liquid transport (poroelasticity) and thermal transport
(thermoelasticity) respectively. Here we examine in more detail under what condi-
tions this coarsening behavior is to be observed. We need a sufficiently deep quench
to induce strong enough dynamic asymmetry between the two phases. However,
we note that the growth exponent of 1/2 is not observed for ordinary binary liquid
mixtures. In Fig. 7.4B, we show the temperature dependence of the coarsening
behaviour for a binary liquid mixture. We can see that the growth exponent signifi-
cantly decreases with a decrease in temperature. By contrast, in a single-component
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Fig. 7.4 Comparison of coarsening behaviour among various sys-
tems. A-D, The temporal changes of characteristic wave number ⟨q⟩ in var-
ious systems: A one component molecular system in 3d (ρ = ρc, 1/βϵLJ =
0.01, 0.1, 0.5, 1.1, βcϵLJ ∼ 1.2), B 50-50 mixture of two component molecu-
lar system in 3d (ρ = 1.0, 1/βϵLJ = 0.1, 0.5, 0.7, 0.9, critical temperature is
βcϵLJ ∼ 1.4), C one component molecular system in 2d, D colloidal system
in 2d at zero temperature. E Real space mapping of kinetic energy in one
component molecular system in 3d. Here we show a snapshot at time t = 45.
The thermodynamic variables are chosen as ρ = 0.33 and 1/βϵLJ = 0.01. Color
labeled on particles represents the kinetic energy of the particle. Here we take
a time-average over [t-τLJ/2, t+τLJ/2]. F, a snapshot of colloidal system in 2d
at zero temperature (ϕ = 38%, t = 500). Here we show pressure feild of sovlent
together with the position of colloids.

fluid (Fig. 7.4A), the characteristic domain size grows more slowly at a lower tem-
perature yet with the same power law exponent (α ∼ 0.58) over a wide range of
temperature (at least 0.5 ≤ βϵ ≤ 0.01). At the lowest temperature for the binary
mixture (βϵ = 0.1), a logarithmic-like decay of ⟨q(t)⟩ is observed, implying that the
system is arrested into a nonergodic state where both phases suffer from dynamic
arrest. In single-component systems, such a situation never takes place: elastic
deformation of the dense phase can proceed without being influenced by the dilute
gas phase. This is because the relaxation time of the gas phase is much faster than
the time scale of elastic deformation of the dense liquid phase even at a low temper-
ature. A huge gap in the dynamics between the dilute gas and dense liquid phases
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is necessary. This is also the case for colloidal suspensions: although a colloidal sus-
pension should be regarded as a binary mixture, the large size difference between
colloids and solvent molecules leads to strong dynamic asymmetry between the two
phases. We may safely assume that the structural relaxation time of a solvent is
infinitely fast comparing to that of colloids.
From the above, we may conclude that the growth exponent of 1/2 observed in

network-forming phase separation originates from slow dissipative elastic motion of
the dense phase under a condition that this process is not hindered by the other
phase. This condition requires strong dynamic asymmetry between the two phases.
This conclusion is valid for 3 dimensional (3D) systems. However, it may not be
necessary the case for 2D systems. This is because there is an intrinsic topological
difference in a percolated structure: in 2D, a bicontinous network structure can
never be formed unlike in 3D. In the above, we see the limiting process of elastic
deformation is a slow transport described by a diffusion-like equation. In thermoe-
lasticity, the limiting process is heat transfer, which takes place at any dimensions in
the same manner. This is confirmed in Fig. 7.4C: The domain coarsening exponent
is 0.5 even for 2D. In poroelasticity, on the other hand, the limiting process is fluid
flow through the dense colloid-rich phase, which obeys Darcy’s law, in which the
gradient of fluid pressure induces the flow of the solvent relative to colloids. For a
network structure in 2D, the solvent-rich phase cannot have connectivity, as shown
in Fig. 7.4E. In this situation, isolated solvent-rich domains cannot change their vol-
ume easily because of the incompressible condition, which does not allow the volume
deformation of the solvent. The only way to change the volume is to exchange the
solvent between neighboring solvent-rich domains through the colloid-rich network.
In Fig. 7.4E, we show a pressure distribution in the solvent-rich domains together
with the network of the colloid-rich phase during phase separation of a 2D colloidal
suspension. We can see from the pressure distribution that the solvent transfers
from a domain to its neighboring ones. This situation imposes a strict boundary
condition on the interfaces of the colloid-rich domain, i.e., the elastic deformation
of the colloid-rich network. In Fig. 7.4D, we show the volume fraction dependence
of the temporal change of the characteristic wave number during network-forming
colloidal phase separation in 2D. We can see that the growth exponent strongly
depends on the volume fractions, as a consequence of complex coupling between
the solvent exchange between solvent-rich domains under the constraint of the in-
compressibility.

7.4 Summary
In summary, we discover a novel coarsening law for network-forming phase separa-
tion of dynamically asymmetric mixtures. The phase-separation pattern coarsens
with time in a self-similar manner and obeys the universal coarsening law of expo-
nent 1/2. We show both theoretically and numerically that this law is a consequence
of diffusional transport of mass or heat that controls elastic volume deformation.
We expect that this new mechanism is valid for any network-forming phase sepa-
ration, in which the strong dynamic asymmetry between the two phases makes the
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dynamic behaviour of the slower phase elastic, and thus this mechanism should be
valid for a wide class of materials, a mixture of any materials with largely different
glass transition temperatures, soft and bio matter containing a liquid component.
Porous structures are ubiquitous in nature and industry. From applications view-
point, our coarsening law will provide a useful guide to control pore sizes of porous
materials.



114

Chapter 8

Crystallization process of

hard-sphere suspensions

8.1 Method

8.1.1 Identification of crystal structures

We study the crystallization kinetic of hard-sphere colloidal systems based on local
bond order parameter analysis developed by Steinhart et al. [195]. Denoting the
orientation vectors that particle i at the center makes with its neighboring particles
j = 1, ..., Nb(i) as r̂ij , we can introduce the following 2l + 1 dimensional complex
vector ql by using spherical harmonics Ylm.

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(r̂ij), (8.1)

where l is a positive integer parameter and m = −l, ..., l. The average of qlm(i) over
the neighboring particles is often used as an indicator to identify crystal symmetries
accurately [196]:

q̄lm(i) =
1

Nb(i) + 1

[
Nb∑
k=1

qlm(j) + qlm(i)

]
. (8.2)

With this, local bond order parameters which satisfy the rotational invariance can
be constructed as follows:

Ql(i) =

√
4π

2l + 1
|q̄(i)|, (8.3)

Wl(i) =

l∑
m1+m2+m3=0

(
l l l
m1 m2 m3

)
q̄lm1(i)q̄lm2(i)q̄lm3(i)

|q̄(i)|3
, (8.4)

where the above bracket indicates Wigner 3j symbol.
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As thermodynamically stable crystal structures of a hard-sphere system are
closed-packed structures, we set the number of neighboring particle as Nb = 12.
We choose 12 particles in terms of the distance from particle i and regard them
as the neighboring particles. Regarding the identification of crystal structures, we
follow the methods emplyed Frenkel and his coworkers [197, 198]. We define that
particle i and j are bonded if q6(i)/|q6(i)| ·q6(j)/|q6(j)| > 0.7, and regard particle i
as crystal-like if the particle i is bonded with more than 7 particles and as fluid-like
otherwise.
We classify the type of crystal structures, following Ref. [140]. Specifically, we

define that if W6(i) > 0, particle i has body centered cubic (bcc) structure, else
if W4 > 0 i has face centered cubic (fcc) structure, and otherwise i has hexagonal
close packing (hcp) structure.

8.1.2 Mapping on the hard sphere systems

In this study, we approximate the hard-sphere potential by the Weeks-Chandler-
Andersen (WCA) potential:

U(r) = 4ϵ

[
(
σ

r
)12 − (

σ

r
)6 +

1

4

]
for

r

σ
< 21/6

= 0 otherwise, (8.5)

where ϵ is the parameter to determine the steepness of the repulsive potential and
we set βϵ = 40 following Ref. [136, 199]. σ is the parameter corresponding to the
diameter of colloids and we determine the effective hard-sphere diameter σeff by
the following relation [200, 201]:

σHS =
21/6

(1 + 1/
√
βϵ)1/6

σ. (8.6)

With this diameter, we define the volume fraction ϕ = πσ3
HSN/6V , where N and

V are the number of the particles and the volume of the system respectively.

8.1.3 The validity of our simulation: measurement of virial pressure

Some time ago, Auer & Frenkel found a huge discrepancy in the crystal nucleation
rate I of hard-sphere colloids between results of light scattering experiments and
those of the umbrella sampling method. Their study shows that the theoretical
values of I change largely by a small change in the volume fraction: for example, I
at ϕ = 52.8% differs from that at 53.4% by at least 4 orders of magnitude. Thus, in
order to study this dynamic phenomena, we need to precisely estimate the volume
fraction.
Here we are interested in studying the impact of hydrodynamic interactions on

the crystal nucleation rate by using our FPD simulation method. In FPD, we treat
a solid particle as an underformable liquid droplet, whose shape is described by a
continuous field, and distribute the interaction force acting on colloids to the lattice
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using that shape field. So it is not so clear how we should define the volume fraction
of hard-sphere-like colloids. Therefore, we first need to check how precisely FPD
method reproduces the thermodynamic behavior of this phenomena *1

To confirm the validity of our simulation method, we measured osmotic pressure
at equilibrium states via virial pressure:

p =
NkBT

V
− 1

3V

∑
i>j

rij
∂U(rij)

∂rij
. (8.7)

As explained in Sec. 1.3.1, thermodynamically stable states in a hard-shpere system
are liquid states for ϕ < ϕliq ∼ 0.494, fcc crystal states for ϕ > ϕcry ∼ 0.545 and
the coexistence state between them. We prepared the configuration of particles at
a liquid state just by randomly distributing the particles and equilibrating them in
a thermal bath, where we employ a cubic box with the side length L/σ = 17.297
and we control ϕ by changing N . For a crystal state, on the other hand, we first
made an ideal fcc crystal with N = 4000 *2 and equilibrate it in a thermal bath.
Here we employ a cubic box and we control ϕ by changing L. For a coexistence
state, we used a cuboid box with Lx = 2Ly = 2Lz to stabilize the interface between
the liquid and crystal phase to be parallel to the yz plane. Here Ly needs to be an
integer multiple of the lattice constant. Otherwise, an artificial stress due to the
finite size effect is induced on the crystal phase, leading to error in measuring the
pressure. We note that in FPD simulation we cannot perform a constant-pressure
simulation since FPD simulation imposes the imcompressibe condition to the fluid.
Here we explain how to prepare a coexistence state. We prepared the configu-

ration of particles at a coexistence state by molecular dynamics (MD) simulation.
We first make an fcc crystal with 2048(:= N1) particles in a cubic box and per-
formed a constant-pressure (NPT ensemble) MD simulation for this configuration.
We change the pressure p with 0.00125 increment (in the Lennard-Jonnes unit).
Then, we connected the configuration of the crystal state to that of a liquid state
with 1952(=: N2) particles in a cuboid box. We performed a constant-volume
MD simulation for this configuration and monitored the fraction of crystal-like
particles. Thus, we found a configuration where we can see little change in the
fraction of crystal-like particles, and determined the coexistence pressure pcoex as
the pressure of this configuration (pcoex = 0.22125 ± 0.00125). As a result, we ob-
tained Lx/σ = 13.772, and the density at the melting point and freezing point were
Nσ3/V = 0.784 and 0.711 (i.e., ϕ = 0.4889 and 0.5391 ), which are very close to
the values 0.785 and 0.712 reported by Filion et al. [199].
Following the above procedure, we made configurations in coexsistent states (see

Fig. 8.1B) at various volume fractions (which is controlled by changing N2). Fig-
ure 8.1A shows that the fraction of crystal particles as a function of the volume
fraction ϕ. Our results fall on a line, as expected from the lever rule, except when

*1 Although we have seen a good agreement in phase diagram of attractive colloids between
FPD and experiments.

*2 The number of particle should satisfy N = 4n3 (n: integer) when fcc crystal is in a cubic
box.
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A B

Fig. 8.1 Identification of liquid-crystal coexistence states. A Volume
fraction (ϕ) dependence of the fraction of crystal-like particles Ncry. The
dashed line represents lever rule, i.e., (ϕ− ϕm)/(ϕf − ϕm). B A snapshot of a
3D structure at ϕ = 0.5157. Liquid-like and crystal-like particles are colored
red and green respectively.

the system is too close to the melting and freezing points (the reason is simply be-
cause simulations cannot stabilize very thin layers of liquid or solid phases). The line
is slightly displaced from the one we estimate from the coexistence points (dashed
line), but this is likely due to the fact that the fraction of crystals depends on the
choices of the threshold of the order parameter to distinguish the crystal and liquid
states.

Fig. 8.2 Virial pressure in equilibrium states. Cross and square symbols
represent the results obtained by BD and FPD simulations, respectively. Gary
curve is the theoretical prediction for a hard sphere system.

With the configurations in coexsistence states, we measure the virial pressure in
equilibrium states. Figure 8.2 shows the volume fraction dependence of the virial
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pressure obtained by BD and FPD simulations, where we can see almost perfect
agreement between them. This matching justifies the validity of the thermodynamic
modeling based on FPD method. In Fig. 8.2, we also show theoretical predictions
(the Carnahan-Starling equation of state (see Eq. 1.11) for the liquid phase and the
Speedy equation of state for the solid phase [202, 203]).

8.1.4 Estimation of the free energy barrier

The crystal nucleation process that we study is a rare event and thus it is hard to
obtain enough configurations to precisely compute the statistical variables during
the activation process. To compute the free energy cost required for crystal nucle-
ation of hard-sphere colloids, we use Umbrella Sampling method [204]. This method
is based on Metropolis Monte Carlo simulation but perform the sampling with mul-
tiplying a bias W (q) = exp [−βw(q)] on the Boltzmann factor, where q represents
configuration and w(r) is the so-called “biasing potential”. In general, the average
of any quantity A is related to the statistical values under biased sampling as

⟨A⟩ = ⟨A/W (q)⟩bias
⟨1/W (q)⟩bias

, (8.8)

where ⟨A⟩ and ⟨A⟩bias represent ensemble average under un-biased and biased sam-
pling, respectively.
The Gibbs free energy barrier for formation of a crystal nucleus with size n,

∆G(n) can be determined by taking a statistics for the number of the nucleus Nn
through the following relation [128]:

⟨Nn⟩/N = exp [−β∆F (n)]. (8.9)

By performing Monte Carlo simulation with the above biasing and computing the
average for A = Nn by Eq. 8.8, we can obtain ∆F (n). In the study of crystal
nucleation, a harmonic potential w(q) = 1

2k(n(q)−n0)
2 is often used as the biasing

potential, where n0 is the targeted cluster size and k is a coupling parameter. To
ensure high statistical performance generating the crystal nuclei with independent
configurations is desirable. However, with the above procedure using the harmonic
potential is expected to severely constrain the rearrengement of crystal structures,
we need to run the independent simulations. To obtain the functional profile of
the free energy barrier over a wide range of n, we also need to run the simulations
for various n0. In this study, we use a variation of Umbrella Sampling method
introduced in Ref. [205]. This method (CNT-US method) uses the following biasing
potential on the basis of Classical Nucleation Theory:

w(rN ) = −|∆µ|n2/3(3
2
n1/3c − n1/3), (8.10)

where |∆µ| is the chemical potential difference between the fluid and crystal phases,
which we can determine by the thermodynamic integration. nc is the critical nucleus
size, which is the only control parameter in this simulation scheme. Given that the
real free energy in n space has a functional profile similar to Eq. 8.10, it is expected
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that, as nc approaches the real critial nucleus size, the biased free energy profile as a
function of n becomes flatter, leading to large fluctuations of n. Therefore, we may
choose nc as the one at which we can see large fluctuations in n. See Supplementary
Information of Ref. [205] for the further detail of this method.

8.1.5 Normalization of nucleation rate

In dense suspensions where liquid-crystal transition takes place, the structural re-
laxation of colloids is significantly suppressed by stric hinderance among the col-
loids, but in the presence of solvent such a slowing down of structural relaxation
is also brought about by deformation of fluid field of solvent among the colloids.
To examine the effects of hydrodynamic interaction (HI) on crystallization kinetics,
we perform BD and FPD simulations and compare the resulting nucleation rates.
To do so, we need to consider the above difference arising from the presence and
absence of HI.
In Fig 8.3A, we show the volume fraction dependence of mean square displace-

ment (MSD) obtained by FPD simulations, where we can see that the diffusive
motions of colloids are suppressed as volume fraction increases. At ϕ = 0.54, we
can see that MSD shows a non-linear dependence in early time and asymptoti-
cally approaches to linear behavior, which reflects the casing effect characteristic
in super-cooled liquids. From the long time diffusive behavior of MSD, we deter-
mined the long time diffusion coefficients DL. Fig 8.3B shows the volume fraction
dependence of DL for BD and FPD simulations. Here we can see that DL deviates
from the diffusion coefficient for a free particle D0 for large ϕ but the deviation in
FPD is stronger than that in BD, which obviously originates from the difference in
the presence or absence hydrodynamic interactions. For example, we can see that

Fig. 8.3 A. Mean square displacement for various volume fractions. The red
line is a linear line. Here we only show the results by FPD simulations. B.
Volume fraction dependence of long time diffusion constant DL scaled by that
in dilute limit D0. Cross and cricle symbols represent the results obtained by
BD and FPD simulation respectively.
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DL in BD is approximately four time larger than that in FPD at ϕ = 0.54.
The main interest of our study is whether such a effect of HI is also significant in

crystallization kinetics, and specifically we are interested in difference in nucleation
rate over several order of magnitude. Thus, we normalize the hydrodynamic effects
as in the above on a unit time, i.e., we normalize I by a time unit τL = σ2

HS/6DL

and a length unit σHS. Such a normalization of nucleation rate is widely applied in
the previous studies on crystallization of colloidal suspensions [6].

8.2 Results

8.2.1 Determination of nucleation rate via brute force simulations

We perform BD and FPD simulations for various volume fractions: 0.54 ≤ ϕ ≤
0.545. The systems size is set commonly as L/σ = 17.3 and the number of the
particle are approximately N ∼ 4000 in the above volume fractions. According to
a study using BD simulation [136], there is few finite-size effect on nucleation rate
under the above simulation scale. In FPD simulation, the Schmidt number is set
as Sc = 8.0. In Chap. 5, we have shown that phase separation dynamics of colloid
interacting with short-range interactions experimentally observed by confocal mi-
croscopy can be reproduced almost perfectly by FPD simulation under the Schmidt
number.
To determine the nucleation rate, we simulate the time evolution of colloidal

suspensions in metastable liquid state at time t = 0 and monitor the temporal
change of largest crystal nucleus, n(t). An example of formation process of crystal
nuclei is shown in Fig. 8.5. We continue simulations until n(t) exceeds the critical
nucleus size nc within our simulation resource (see Fig 8.4A). Denoting the average
time to form critical nucleus as ⟨tinc⟩, we determine the nucleation rate I by

I =
1

V ⟨tinc⟩
, (8.11)

where V is the volume. In BD and FPD simulations, we performed 16 of in-
dependent simulations for each volume fractions, ϕ = 0.540, 0.541, ..., 0.545 and
ϕ = 0.540, 0.5425, 0.545, respectively. In BD simulation, we confirmed the crystal-
lization for all the runs. On the other hand, we couldn’t continue FPD simulations
until all the runs crystallize due to computational cost *3 : specifically, 2, 9 and 16
runs crystallized for ϕ = 0.540, 0.5425 and 0.545, respectively. For the statistical
significance, hereafter we only discuss the results with ϕ = 0.5425, 54.5.
In Fig. 8.4B, we show the results of nucleation rates together with MD result

reported by Filion et al [131]. Here we cannot see a huge difference among the
different simulation methods in the rage of volume fraction.

*3 The total simulation time in Brownian time corresponds to approximately 5.0× 104τB for
each volume fractions.
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Fig. 8.4 A Time evolutions of largest cluster size for 16 independent runs at
ϕ = 0.545 in FPD simulation. B A comparison of the crystal nucleation rates
determined by BD and FPD methods. Here we also show the MD result by
Filion et al [131].

0 397203

793 1190 1587

Fig. 8.5 Formation of a crystal nuclei from metastable liquid. Here we
show an example of the time evolution of crystal nuclei at ϕ = 54.5 obtained
by FPD simulation. The large shperes represents the positions of crystalline
particles and the particle color is labeled depending on the type of crystals:
Blue, bcc; Right blue, hcp; Yellow, fcc. Black small dots are the particles
whose Q6 > 0.27.
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8.2.2 Time evolution of critical nucleus: estimation of kinetic factor

In the above, we have compared the nucleation rate at ϕ ∼ 0.54 between BD
and FPD simulations but no remarkable difference was confirmed. However, at this
volume fraction it is not so obvious how large mismatch in nucleation rates between
experiments and simulations exists. One reason is that uncertainty of experimental
results is typically huge in this phenomenon. For example, it is known that precise
determination of diameter of colloids is not so easy task in experiments [206] and
even 1% error in measurement of the diameter can produce difference in nucleation
rate over several oder of magnitudes. Furthermore, a huge mismatch in nucleation
rates between experiments and simulations over around 10 order of magnitude has
been reported in rather more dilute volume fractions (ϕ ∼ 0.52 or less, see Fig 2.11).
For the reasons, we cannot judge from current results that there is no effect of
hydrodynamic interactions on the crystallization kinetics.
However, it is impossible to access the nucleation events at the lower volume frac-

tions by FPD simulation with current computational power, from the metastable
liquid state to the birth of critical nucleus. To examine the behavior of nucleation
rates at the lower volume fractions, we employ an approach by Auer and Frankel
[127]. Specifically, we make a critical nucleus in the systems and evolve these by
BD and FPD simulations. By monitoring the growing or shrinking behavior of the
nucleus, we can determine the kinetic factor of nucleation rates (see Sec.2.3.2).

Preparation of critical nuclei
Following the strategy, we study the time evolution of the critical nucleus at ϕ =
0.5183, at which we can see a huge mismatch in nucleation rates between experi-
ments and simulations (at least 8 order of magnitude). To prepare the nucleus with
critical size we first calculate the free energy barrier by the US method. Fig. 8.6
shows the result obtained under setting the input critical size as nc = 458, where
we can see the maximum of ∆F is located near n = 458. The height of the barrier,
β∆F (nc) and the second derivative, β∆F ′′(nc) obtained by fitting are 70.6 and
−3.3 × 10−4, respectively *4 We made 10 of the independent initial configurations
including a nucleus with n = 458 and run 10 simulation for each initial conditions
(thus 100 runs in total). We then measured the number of runs to go to the crys-
talline basin and the ratio obtained was 0.40. We repeated the same procedure but
for nucleus with n = 465 and the ratio obtained was 0.52. Thus, we can regard
n = 465 as sufficiently close value to the the real value of critical nucleus size. In
the below we consider the time evolution of the nuclei of 465 particles.

Determination of kinetic factor
We performed BD and FPD simulations for 12 of independent initial conditions
with a nucleus of 465 particles. We run 4 independent simulations for each initial
conditions (thus 48 runs in total) and measure the the means square displacement

*4 We perform the same simulation at ϕ = 0.545%, and obtain the following results: nc = 29,
β∆F (nc) = 11.3, β∆F ′′(nc) = −5.8× 10−3.
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Fig. 8.6 A. Free energy barrier at ϕ = 51.83 computed by the US method. B.
The means square displacement for nucleus size ⟨|∆n(t)|2⟩ at the same volume
fraction.

(MSD) for nucleus size ⟨|∆n(t)|2⟩ where ∆n(t) = n(t)− n(0). Fig. 8.6B shows the
result where we can see that MSD increases linearly with time. As n(0) ∼ nc we
can expect ⟨|∆n(t)|2⟩ ∼ 2f+(nc)t (see Sec. 2.3.2). From the relation, we determine
the diffusion coefficient and the result obtained is f+(nc)τL ∼ 10000 and 8000 for
BD and FPD, respectively, which cannot be a reason of the huge discrepancy in
nucleation rate between experiments and simulations.

8.3 Summary
In summary, to examine the influence of hydrodynamic interactions (HI) on crystal-
lization kinetics of hard-sphere colloids we performed numerical simulation with HI
(FPD method) and without (BD method). We simulated the crystallization kinetics
of colloids from metastable liquid to formation of critical nucleus at ϕ ∼ 0.54, and
no remarkable difference in nucleation rate between BD and FPD was confirmed.
We also compared the kinetic factor by monitoring the growing or shrinking behav-
iors of critical nucleus at more dilute volume fraction ϕ ∼ 0.52, but we could not see
a significant difference between BD and FPD results. However, this analysis based
on the assumption that the morphology of critical nucleus dose not influenced by
HI. To make a rigorous conclusion, we need to conduct further study including the
above point.
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Chapter 9

Appendix

A Synthesis of PMMA collloid
We synthesized monodisperse poly-methyl methacrylate (PMMA) colloids, combin-
ing the methods in Ref. [207, 208, 209]. We dissolve monomers (methyl methacry-
late:MMA and Methacrylic acid:MA) into reaction solvent (a mixture of hexane and
dodecane). We also mix Azo-bis-isobutyronitrile (AIBN) and octanethiol as initial-
izer and inhibiter of polymerization. We use rhodamin as a fluorescent dye. We
functionalize rhodamin to make a chemical bond with PMMA by reacting aminosy-
lene and rhodamine B isothiocyanate in dimethylsrhooxyside (DMSO) at a ratio of
50:50 in number of molecules for two days. In order to avoid addhision between
surface of colloids, we add dimethylpolysiloxane (PDMS: specifically, we use one
with functional group equivalent weight 3,900 g/mol) as a steric stabilizier. The
wight of the above chemicals are summerized in Fig. 1. The above mixture is placed
in a flask and heated to 80 ◦C with a magnetic stirrer. The reaction is completed
within 2 hours. After synthesis, PMMA colloids are rinsed with petroleum ether
for multiple (roughly 10) times.
The diameter of colloids obtained with the recipe in Fig. 1 was σ ∼ 2µm. The size

of colloids can be controlled by changing the ratio of monomer to reaction solvent.
Specifically, we can synthesize larger colloids by increasing the ratio of MA, MMA

Material Weight (g) Role
MMA 19.6 monomer
MA 0.04 monomer
PDMS 1 steric stablizer
AIBN 0.2 initializer
Octanethiol 0.12 inhibiter
RAS 0.1 dey
DMSO 1 solvent
Hexane 14 solvent
Dodecane 7 solvent

Fig. 1 Recipe of PMMA colloid Fig. 2 An image of PMMA colloid
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and PDMS (while keeping their mass ratio constant) to the total amount of mixture.
For example, the mass ratio of MA, MMA and PDMS in Table 1 is approximately
50%, but if we increase it to 56% we can get colloids with σ ∼ 3µm.

Synthesis of core-shell type PMMA collloid
In the situation where colloids are closely packed, fluorescent signals of different
particles can overlap, which can cause tracking error of particles. For example,
the image of multiple particles can be detected as a single particle. Furthermore,
confocal image tends to be elongated along z-axis (direction orthogonal to focal
plane), and thus the image corresponding to a single particle is sometimes detected
as multiple particles. Such a tracking error is a troublesome problem especially
when we need to track the trajectories of particles.
To overcome the above problem, we synthesize core-shell type PMMA colloids

(particles with a fluorescent core and nonfluorescent shell) [210, 211]. Since only
center part of particles fluoresces, the particles are easily distinguished even in
close-packing arrangements.
A recipe for core-shell type PMMA colloids is listed in Table 1. We first redisperse

PMMA colloids labeled with RAS which is prepared by the above protocol in a
mixture mainly composed of Hexane and Dodecane (see FLASK), and heat the
mixture to 80◦C in a flask with a magnetic stirrer. Then, we add a solvent including
monomers (see DROP) into the flask. Here we drop the solvent slowly over 90 min
with a syringe pump. After finishing the drop, we wait for the reaction for extra 1
hour. We rinse the colloids obtained in the same way as in the above. The diameter
of colloids that we obtained with the recipe in Table A was σ ∼ 2.6µm (see Fig. 3).
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A B

Fig. 3 A An image of core-shell type PMMA colloid and B one that we show
only core part. One may see that the center of the core part and shell part
are slightly misaligned, but this is probably due to optical aberration resulting
from difference excitation wavelengths.

Table 1 Recipe of core-shell type PMMA colloid

Material Weight (g) Role

FLASK
PMMA colloid (σ ≃ 1.9µm) 6.0 core
AIBN 0.2 initializer
Octanethiol 0.12 inhibiter
Hexane 64 solvent
Dodecane 32 solvent

DROP
MMA 14.7 monomer
MA 0.3 monomer
PDMS 1.5 steric stablizer
CAS 0.02 dey
DMSO 1.5 solvent
Octanethiol 0.12 inhibiter
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B Implementation of FPD method
In Chap. 4, we have mentioned a concept, modeling and physical fundation of
Fluid Particle Dynamics (FPD) method. Here we provide detailed information
about how to implement this simulation method. In the below, firstly, we explain
how to normalize and discretize the basic set of euqations in FPD simulation. Next
we explain in what order the calculation is performed. Finally, we mention some
important points to improve the computational efficiency.

B.1 Normalization and discretization

We normalize the time and length by τ ≡ ρl2/ηs and l ≡ ξ as t = τ t̃, r = lr̃, which
means that we use the interfacial length of ϕ as a length unit and the time requried
for momentum of solvnet to diffuses over the length as a time unit. We also choose
ρl3(l/τ)2 as a every unit. As a result, Navier-Stokes euqation (Eq. B.1) rewriten
into the following equation:

(
∂

∂t̃
+ ṽ · ∇̃)ṽ = f̃ + ∇̃ · (σ̃ + σ̃R), (1)

with
∇̃ṽ = 0. (2)

Corresponding to the units described in the above, the other physical quantities are

normalized in the following way: ρ = ρρ̃ (i.e., ρ̃ = 1), v = l
τ ṽ, f = ρl

τ2 f̃ , σ = ρl
τ2 σ̃,

p = ρl2

τ2 p̃, η = ηsη̃, kBT = ρl3(l/τ)2k̃BT Hereafter, we neglect the normalization
symbol ∗̃ just for simplification. We employ the following temporal discretization
for Eq. and : *1

R(m+1)
n = R(m)

n + V (m+1)
n ∆t, (3)

and

v(m+1) = v(m)+∆t {∇ · (−v(m)v(m)+σ(m))+f (m)}+∇· (
√
2ηkBT∆ts

(m)), (4)

where ∆t is the time step and the symbol ∗(m) means that quantity ∗ is one at
m-th time step. The last term in the right-hand side is the sum of ∇ · σR over

m∆t < t < (m+ 1)∆t and satisfies ⟨sα⟩ = 0, ⟨s(m)
ij,αs

(n)
kl,β⟩ = (δikδjl + δilδjk)δαβδmn

where α, β are the index to specify the spatial lattice *2. Due to the difference in
viscosity between solvent and colloid, we need to set a sufficienty small time step to
maintain numrical stability. In this thesis, we set ∆t = 2.5×10−3. The length step

*1 We use first-order explicit discretization here, which is valid when viscous dissipation plays
a prominent role. We cannot find a way to compute with implicit discretization for now,
which is expected to significantly accelate the computational speed.

*2 Specifically, we generate gassuain noise with mean 0 and variance
√
2 for i = j, and mean

0 and variance 1 for i ̸= j, respectively.
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is set as ∆x = 1 and spatial difference is performed on staggered lattice (see Fig 4).
We empoly periodic boundary condition and use Marker-and-Cell (MAC) method
for computation of simultaneous equations 1 and 2 (see Block e in the next section).
For parameters regarding phase field ϕ, we set as a = 3.2, ξ = 1.0, ηc/ηs = 50.0.

i i+1i+1/2

j

j+1/2

j+1

Fig. 4 An illustrative figure of staggered lattice. We define scalar feilds on
regular mesh (cross symobol), vector feilds on the mesh which shifts by half lat-
tice size (allow symbol), and diagonal and non-diagonal components of second
rank tensor fields on cross symobols and circle symbols, respectively.

B.2 Flowchart of computation

We explain the detail of computation in the below. Fig. 5 schematically describes
the procedure of the computation at m-th time step. The blocks of computation
aligning horizontally can be performed independently. The quantities written on
the left top side of the blockes represent those required to perfrom the computation,
and those on the right top side what we obtain by the computation. The flowchart

starts with the center-of-mass positions of colloids {R(m)
n } and the velocity field

v(r)(m), and finish when those at the next time step m + 1 are obtained. In the
below, we explain what kind of computation are performed in each blocks.

a. Computation of the order parameters: Compute the order parameters

{ϕn(r)(m)} from the center-of-mass position of colloids {R(m)
n } following Eq. 4.2.

b. Computation of the forces acting on colloids: Compute the forces acting

on colloids {F (m)
n } from {R(m)

n }. {F (m)
n } are given by the sum of into intercolloid

force {F int(m)
n } and external force {F ext(m)

n } as F
(m)
n = F

int(m)
n +F

ext(m)
n , and the

former is expressed by the interaction potential U via,

F int(m)
n = −

∑
n′ (̸=n)

(∂/∂R(m)
n )U(|R(m)

n′ −R(m)
n |). (5)

We use Cell linked list method for the calculation of interparticle forces.
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Fig. 5 The flowchart of computation of FPD method

c. Computation of the viscosity feild: Compute η(r)(m) from {ϕn(r)(m)}
following Eq. 4.3.

d. Computation of the body force acting on fluid: Compute f(r)(m) from

{F (m)
n } following Eq. 4.5.

e. Time evolution of Navier-Stokes equation: Compute v(r)(m+1) from
v(r)(m), η(r)(m) and f(r)(m). To do so, we need to solve the simultaneous equations
1 and 2. Under periodic boundary conditions, we can employ the Marker-and-Cell
(MAC) method: operating ∇· for the both side of Eq. 4, ∇ · v(r)(m+1) is dropped
due to incompressibility condition and we obtain the following Poisson equation,

∇2p(m) = c(m), (6)

where *3

c(m) = ∇·[v
(m)

∆t
+∇·{−v(m)v(m)+η(m){∇v(m)+(∇v(m))T}+

√
2ηkBT

∆t
s(m)}+f (m)].

(7)
Here we denote p(m), c(m) on the spatial latice (i, j, k) ∈ [0, Nx − 1]× [0, Ny − 1]×
[0, Nz−1] as p

(m)
ijk , c

(m)
ijk , and the descrite Fourier components as P

(m)
IJK , C

(m)
IJK . Under

periodic boundary condition, Eq 6 can be transformed in

P
(m)
IJK =

C
(m)
IJK

−4[sin2(2πI/Nx) + sin2(2πJ/Ny) + sin2(2πK/Nz)]
(8)

*3 Here ∇ · v(m) is expected to be zero, but we leave it to suppress numerical error.



Appendix 130

We obtain C
(m)
IJK by performing the Fast Fourier Transform for c

(m)
ijk , and compute

P
(m)
IJK following the above relation. By performing inverse Fourier transform for

P
(m)
IJK , we obtain p

(m)
ijk at time t = m∆t. By substituting the pressure p(m), f (m)

and v(m) in Eq. 1, we finally obtain the velocity field v(m+1).

f. Computation of the velocities of colloids: Compute the center-of-mass

velocities of colloids {V (m+1)
n } from velocity field v(m+1) following Eq. 3.

g. Time evolution of the positions of colloids: Compute {R(m+1)
n } from

{R(m)
n } and {V (m+1)

n } following Eq. 3.

B.3 Important points for implementation

Here we mention important points for speeding up FPD method.

Cutoff for the computational range of order parameter

A B

C D

Fig. 6 Relation between the coordinate of n-th support On and the reference
coordinate O. A, Let the integer part of the center-of-mass position (Rn:
cross symbol) of n-th particle be (in, jn). B, C, We take the coordinate of n-th
support On such that Rn is to be approximately in the center. D, Let a point
(i, j) on On and denote the vector Rn to (i, j) as (dx, dy) and the point seen
from O as (ir, jr).

As we can see from Fig. 4.1A, ϕn is sufficiently close to zero at a point roughly
diameter away from the center-of-mass position of n-th particle. Then, for numerical
efficiency, we compute ϕn only for the points whose distance from Rn is less than
the diameter. We call the spatial region as “suport” of n-th particle. Practically,
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we implement the cut off for the order parameter in the following way.
Denoting the integer part of 2(a+ξ) as range and 2×range as Nrange, we allocate

memory of 3-dimensional arrays with size Nrange3 for every particles, n = 0, 1, ..., N
(let the array be phi[n][i][j][k])). We store the values in the array such that the index
(i, j, k) for the arrays correspond to the reference coordinate O in the following way:
first we define the integer part of Rn as (in, jn, kn) (Fig. 6A). 　 Next we set a
coordinate On whose origin is to be (in-range+1, jn-range+1, kn-range+1) and
call the coordinate for the support of n-th particle (Fig. 6B, C). Denoting arbitray
latice point of On as (i, j, k), we define the spatial region within (i, j, k)∈ [0,
Nrange-1]3 as the support of n-th particle. The above means that we take the
supports such that Rn is to be approximately in the center of n-th support (Fig.
6C). Letting the vector from Rn to an arbitrary point A: (i, j, k) on On be (dx,
dy, dz), we compute the value of order parameter ϕn at (i, j, k) by phi[n][i][j][k]
= [tanh{(a− dx ∗ dx+ dy ∗ dy + dz ∗ dz)/ξ}+ 1]/2.

Treatment of supports in MPI-parallel programming
In MPI-parallelization, we divide the total lattice (denoting the lattice size as (Nxg,
Nyg, Nzg)) along x axis into nump equal parts, where nump is the number of process
*4. Denoting the size of divided lattice as (Nx, Ny, Nz) ≡ (Nxg/nump, Nyg, Nzg),
we let process myid (=0, ... , nump-1) deal with the lattice located in [myid*Nx,
(myid+1)*Nx-1]×[0, Ny-1]×[0, Nz-1] (where we take the reference coordinate O).
When we compute the order parameters or refer to their values, we only need to
consider the overlapped region between the supports of the particles and the lattice
that process myid deal with. Fig. 7 schematically shows this, where gray, light blue
and dark blue represent the region that process myid deal with, the region that
the supports occupy and the overlapped region between them, respectively. Cross
symbols represent the center-of-mass positions of particles. As we can see from the
figure, the particles that process nump deal with are those whose x coordinates (on
O) are in (-range+myid*Nx, range+(myid+1)*Nx-1].

Fig. 7 Relation between the region that process myid deal with and supports.

*4 We consider the case where Nxg is divisible by nump.
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Treatment of supports in GPU-parallel programming
In calculation related to order parameter ϕn, we need to perform multi-loop cal-
culation for n and (i, j, k), where n is the index of particles and (i, j, k) is the
coordinate on supports. For example, in the case of Block c (or, computation of
η(r) from ϕn(r)), a corresponding program in C language can be written as follows:

for(int n=0;n<N;n++){
double Rnx = R[n].x; double Rny = R[n].y; double Rnz = R[n].z;
int in = (int)Rnx; int jn = (int)Rny; int kn = (int)Rnz;

#pragma acc parallel loop collapse(3)

for(int i=0;i<N_range;i++){
int ir = i+in-range_m1; int irP = (ir+Nx)%Nx; double dx = ir - Rnx;
for(int j=0;j<N_range;j++){
int jr = j+jn-range_m1; int jrP = (jr+Ny)%Ny; double dy = jr - Rny;
for(int k=0;k<N_range;k++){
int kr = k+kn-range_m1; int krP = (kr+Nz)%Nz; double dz = kr - Rnz;
if(range2<dx*dx+dy*dy+dz*dz) continue;
eta[irP][jrP][krP] += (eta_c - eta_s)*phi[n][i][j][k];

}

}

}

}

where range2=2×range, range m1=range-1, and eta s and eta c are the viscosity of
a solvent and colloids, respectively. eta is viscosity field and initialized as eta[i][j][k]
= eta s for all (i, j, k). See the above for the other notations. The number of
iteration of this multi-loop calculation is N×N range3. For example, in Chap. 8, we
typically set N∼4000 and N range3 = 163 ∼4000. In this case, N×N range3 ∼ 107.
To take advantage of GPU, it is desirable to parallelize the whole of the multi-loop
calculation, but we need to be careful upon implementation: Specifically, there is
the possibility that the lattice points which the different supports shares can be
refereed at the same time (see Fig. 8A2), which is not thread-safe *5. The simplest
way to avoid this problem may be to parallelize only the inside of the loop for n (see
the line where a OpenACC directive is inserted). However, with this parallelization,
we cannot expect a sufficiently efficient computation since the parallel number is
not large enough (N range3 ∼4000).
To solve this problem, we split support into 8 equal-size parts as described

in Fig. 8B1, and perform a parallel computation with the parallel number
N×N range3/8 for each parts. Specifically, we modify the above program as in the
below:

for(int b=0;b<8;b++){
int ib = b/4; int jb = (b%4)/2; int kb = b%2;

#pragma acc parallel loop collapse(4)

for(int n=0;n<N;n++){
//the same as the above

*5 This problem is also the case for Block d.
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for(int i=ib*range;i<(ib+1)*range;i++){
//the same as the above
for(int j=jb*range;j<(jb+1)*range;j++){
//the same as the above
for(int k=kb*range;k<(kb+1)*range;k++){
//the same as the above
}

}

}

}

}

where b is a label to specify the 8 divided parts. For example, in the case of b=2, the
right blue region in the figure 8C1 is the region refereed during parallel computation.
As described in Fig. 8C2, the calculation regions which belong to different supports
do not overlap because of repulsive interactions among the colloids, which allows
us to perform a thread-safe parallel computation.

range

Fig. 8 A1 shows an illustrative figure of a support. The region where the
dashed line surrounds represents the part which the colloid occupies (σ being
the diameter of colloids). If we parallelize the whole of the multi-loop calcu-
lation, there is the possibility that lattice points can be refereed at the same
time from the different supports (A2), which is not thread-safe. To avoid this,
we divide support into 8 equal-size parts as in B1, and we label the 8 divided
regions by b=0,1, ..., 7. The right blue region in C1 represents the calculation
region of b=2. As seen in C2, the calculation regions which belong to different
supports do not overlap because of the repulsive interactions among colloids.
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C Analysis of network structures based on a skeletonization

method

A B C

Fig. 9 A 3D reconstruction of confocal images in EXP1 at state point B (ϕ ∼=
10%, ϵβ ∼= 6) at time tw/τB = 108. The image shows the positions of colloids
together with the surface of coarse-grained network structures at various times.
We also show an image of the coarse-grained network structure together with
the skelton (B), and an image of only the skelton (C).

One of the distinct features of a colloidal gel is the space-spanning nature of its
network structure. In order to capture the topological characteristics of the network,
we performed its analysis based on a skeletonization method, as follows. Since our
interest is not in the particle-scale structure, we first coarse-grain a phase-separated
structure composed of discrete colloidal particles into a continuous field by making
Gaussian blurring operation of the particles with the standard deviation of σ/2.
Then we binarized the field by setting the half of the maximum value of the Gaussian
function as the threshold and obtained the continuous network domain structure
that is occupied by colloidal particles (see Fig. 9A). Next we extract the skeleton
of the network structure by applying a skeletonization algorism on the domain (see
Fig. 9B, C). Here we utilized a module in python’s package (skeletonize 3d in scikit-
image [212]) and the analysis was performed in the square lattice with 2563 pixels.
The ratio of the diameter of colloids to the pixel size was set as σ = 7.4 pixels for all
the data (for both experiments and simulations). Denoting the set of the positions
of the skeleton as V , we define the total length of the skeleton ℓ as the total number
of the elements ℓ =

∑
i∈V 1.

If the distance between two different elements i, j ∈ V is within
√
3× pixel, we

regard them as being connected. We denote the number of the connected compo-
nents as Nc. Finally, we define the connectivity of i-th element, ci, as the number
of elements connected to element i. Then the “Genus number”, G, which is the
number of holes in the network structure, can be obtained from ci and Nc as:

G =
∑
i∈V

ci − 2

2
+Nc. (9)
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D Direct observation of dynamic arrest due to colloidal

gelation
This section describes experimental results regarding mechanism of colloidal gela-
tion, which I obtained in my master’s research. I show the result here since it is
highly related to one of the subject of my phD study: phase separation dynamics
of colloidal suspensions.

D.1 Motivation

A gel is generally composed of a percolated network structure and a fluid, which
is the origin of the coexistence of elasticity and fluidity. The resulting mechanical
and transport properties play a crucial role in various applications, including foods,
tissues, inks, and cosmetics. However, the gelation mechanism has not fully un-
derstood yet despite intensive researches in the past. Colloid-polymer mixtures are
often used as a model system to study this type of gelation, in which we can precisely
control the phase behavior in terms of the colloid volume fraction ϕ and the polymer
concentration, which determines the strength of the attractive interaction between
colloids, ϵ [13, 14, 21]. In the mixture, polymers are a hidden valuable controlling
the interaction potential between colloids via the depletion effect [21, 12]. When
ϵ is much larger than the thermal energy kBT , gels are formed by cluster-growth
percolation [95] and the ratio between the microscpoic structre and the mechani-
cal properties are rather well understood especially for a dilute system (ϕ < 1%)
[213, 214, 215]. On the other hand, when ϵ is the order of several times of kBT , gels
are formed by an out-of-equilibrium process, i.e., arrested spinodal decomposition
and thus the resulting gels are in a non-equilibrium state [42].
Since the pioneering work on the phase demixing dynamics of colloid-polymer

mixtures [216, 12], many experimental studies have been performed: For example,
the important roles of collective dynamics in the colloid-rich domain has recently
been pointed out [217, 218, 122]. A recent development of confocal microscopy ob-
servation and its applications to colloidal systems allow to observe the gel network
structure and dynamics at a single-particle level. For example, microscopic details
such as dynamic heterogenities [219] and locally favored structures [101] were suc-
cessfully accessed. Furthermore, the precise comparison with confocal microscopy
observation, theory, and simulations has established that colloidal gelation indeed
happened in an unstable state via spinodal decomposition and the volume fraction
of the dynamic arrested phase directly measured exceeds ϕg. Thus, colloidal gel
is now a widely recognized as an out-of-equilibrium state resulting from interplay
between spinodal decomposition and vitrification: [14, 105, 42]. The most strong
evidence for the relevance of glass transition comes from the fact that ϕ > ϕg for
the arrested colloid-rich phase and the absence of crystalline order.
However, this is not the end of story since there still remains a few very funda-

mental questions: First of all, it is not clear how the colloid-rich liquid phase can
increase its volume fraction ϕ to reach ϕg. Furthermore, the concept of a glass is
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basically for a bulk system, but the network structure formed in colloidal gels are
often thin. Thus, it is not clear whether such a thin network structure can be simply
regarded as a glass or not. In this section, we study these problems experimentally
by confocal microscopy observation.

D.2 Method

Experimental method
To address the above issues experimentally, we need to follow the phase-demixing
process at a single particle level while tracking the trajectories of all particles from
the very beginning of demixing to the final dynamic arrest. This is quite challenging
experimentally: Firstly it is difficult to follow the phase demixing process just after
its initiation since this means that we must initiate the demixing without strong
perturbation to the system. Secondly, to follow the trajectories of all particles as a
function of time, we need very high spatial and time resolutions.
We have overcome these difficulties as follows. Firstly, we synthesize and use

core-shell colloidal particles only whose cores have fluorescent dyes to avoid mis-
tracking due to the overlap of fluorescent images (Fig. 3). We also used rather
large colloids with a diameter of σ = 2.56µm (the size polydispersity of 3 %)
and thus the Brownian time τB = a2/6D0, where D0 is the free-particle diffusion
constant and a = σ/2 is the radius of the particle, was estimated to be ∼ 5.1 sec
*6. The region observed by confocal microscopy was 53.5 µm3 (2563 pixel), and
the time required for scanning this region was 8.08 sec (∼ 1.6τB). This allows us
to track the trajectories of all particles continuously without mis-tracking while
simultaneously observing the change of the overall network structure. In order
to induce controllable attractive interaction (depletion interaction[20, 21]), we mix
colloidal suspension with polystyrene with a molecular weight of 8.4 × 106 Da.
The the range of the depletion interaction to the colloid diameter, ∆ ≡ 2Rg/σ, is
approximately ∆ ∼ 0.08. We mix colloids, polymers, and a mixture of cis-decalin
and cyclohexyl bromide, whose density and refractive index are simultaneously
matched with those of colloids. Thus the effects of gravity and the van der Waals
interaction between colloids can be ignored.
Secondly, we have employed a salt injection method to initiate phase separation.

This protocol allows us to initiate phase demixing almost instantaneously and gently
at time zero, without harmful perturbation such as hydrodynamic flow induced by
mixing of samples. See Sec. 3.1.3 for the detail of this method and the definition of
the onset time of demixing tw = 0.
The results shown below are obtained for colloidal suspensions with the volume

fraction of 10% ≲ ϕ ≲ 20% and the polymer concentration Cp = 0.5 g/L.
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Fig. 10 The temporal change of “diffusion constant”. A. The mean
square displacement (MSD) for different reference time tw. The red line in
the figure is MSD of a free particle. Here we show the experimental result
at ϕ = 11.1%. Panel B shows the temporal change of “diffusion constant”
D, obtained by linear fitting for short time behavior of MSD (specifically,
∆t/τB < 10). Here D is scaled by diffusion constant of a free particle, D0.

Particle tracking and mobility of the system
As we mentioned in the above, we set the time window of the observation as
∆tscan = 8.08 sec, which is around the free diffusion time of the colloid (∆tscan/τB ∼
1.6). Thus, we can track the trajectories of the colloids throughout the phase-
demixing process. We reconstruct the trajectory of the i-th particle by linking
the position at time t, Ri(t) with the positions of the particles at the next time
step, {Rj(t+∆tscan)}j : Specifically, we identify the j-th particle which minimizes
|Rj(t+∆tscan)−Ri(t)| with i-th particle.
With the above method, we can obtain the displacements of particles for time

interval ∆t = n∆tscan (n being an integer), ∆Ri(t) = Ri(t+∆t)−Ri(t). Here we
consider the case of aggregation kinetics at ϕ = 11.1% as an example. Fig. 10A,
shows the mean square displacement (MSD) ⟨|Ri(tw +∆t)−Ri(tw)|2⟩ for various
reference time tw. Here we can see that MSD shows a linear behavior for small ∆t,
and the perfactor decreases as the reference time increases, which reflects slowing
down of the diffusion motions due to aggregation of the particles. For large ∆t,
we can see that MSD deviates from linear behavior, but this is just because the
slow motions of the colloids at late stage are statistically significant in this time
regime. From the above, as far as focusing on a relatively short time region such
as n < 10, we may regard that MSD is proportional to time. Thus, we may use
the corresponding diffusion constant, D(tw) as a physical value to characterize the
mobility of the system. Fig. 10B shows the time evolution of D(tw). At early time

*6 More precisely, it corresponds to the Brownian time at temperature T = 26◦C and the
polymer concentration Cp = 0.5 g/L. Because we fix T and Cp at these values in this
chapter, we may regard τB as constant.
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of observation (tw < 0), we can see the behavior that D inceases suddenly from
a almost constant value, which corresponds to a screening process of electrostatic
repulsion (see Sec. 3.1.3). After that D reaches maximum at around tw ∼ 0 and
decreases with time, from which we can confirm that the definition of the onset
time of aggregation discussed in the above works well.

D.3 Results

Three time regimes and introduction of “arrest time”

Fig. 11 Temporal change of the characteristic wavenumber at various
volume fractions. The red line represents a slope with 1/2.

To identify the time when dynamic arrest takes place during the phase demixing
process, we first calculate the characteristic wave number ⟨q(t)⟩ (see Sec. 5.3.1 and
3.1.5 on the definition of ⟨q(t)⟩), which is roughly the inverse of the characteristic
size of the phase-separated structure. We show in Fig. 11 the temporal change in
⟨q(t)⟩ for various ϕ’s. We can see that there are three time regimes: (1) the early
stage where ⟨q(t)⟩ is almost constant with time. This is characteristic of the early
stage of spinodal decomposition known as the Cahn’s linear regime [20], supporting
the claim that colloidal gelation is initiated by spinodal decomposition. (2) the
domain growth (or, coarsening) regime, where ⟨q(t)⟩ decreases with time as t−1/2.
(3) the final arrest regime, where the coarsening slows down and tends to stop and
⟨q(t)⟩ approaches a plateau value. The departure from the power-law growth of
domains or networks indicates that the coarsening is arrested by some mechanism.
Here we define the onset of the dynamical arrest as ta and refer the time region
tw > ta to the aging regime.

Visualization of network structure
Now we show the time evolution of the 3D structure of the colloid-rich liquid
phase in Fig. 12. To visualize the network structure of colloidal gel, we show the
surface of coarse-grained network structure (colloid-rich phase: the blue translu-



D Direct observation of dynamic arrest due to colloidal gelation 139

tw=0 54.3 115 431

Fig. 12 The time evolution of 3D structure. The blue translucent part in
the image represents the surface of coarse-grained network structure (colloid-
rich phase). The particles which constitute tetrahedral structure are displayed
as black spheres (the others being labeled in white).

cent part) together with the positions of colloids (spheres). Here we display the
strongly packed particles in black and the others in white. See the later section
“Structural analysis” for the detailed definition of labeling of the colors. We con-
stract the colloid-rich phase in the following way: First we replace discrete colloidal
particles at positions {Ri}i by continuous Gaussian fields and represent the spa-
tial distribution of colloids by a continuous field Φ. Specifically, we constract Φ
as Φ(r) =

∑
i exp(−|r − Ri|2/2λ2). Then, we define “colloid-rich phase” Γ as

Γ = {r ∈ V |Φ(r) > Φ0} (V being the whole space of the scanned box). Here we
set Φ0 = exp(−λ2/2λ2) = e−1/2 and λ = 1.23σ, which corresponds to the location
of first minima of radial distribution function observed in late stage (ta < tw).
In Fig. 12, we can see that space-spanning network structure is formed at the

very beginning of phase demixing, and coarsens with time. From the particle color
(or, fraction of the black particles), we can also find that densification in network
structure progresses with time *7.

Cooperativity in particle motion
We can expect that the densification leads to the increase in the cooperativity in
particle motion. This we confirm from a snapshot of particle motion. An example is
shown in Fig. 13A. To quantify this, we calculate a correlation length ξ related with
directions of motion of particles in the following way. We first define “velocities” of
particles as Vi(tw) = ∆Ri(tw)/∆t. Here we set ∆t = ∆tscan (or, n = 1) *8. For a
set of {(i, j)} satisfied with r < |Ri(tw)−Rj(tw)| < r+∆r, we take an average on

cos θij = V̂i(tw) · V̂j(tw), and just wrote the average as ⟨cos θ⟩(r, tw) where where

V̂i is unit vector of Vi. As an example, we show ⟨cos θ⟩ for ϕ = 11.1% in Fig. 13D,

*7 The densification process can be confirmed from the time evolution in the fraction of the
volume of colloid-rich phase |Γ|/|V |, where we observe that |Γ|/|V | monotonically decreases
with time. We don’t show the corresponding graph here since Γ is very sensitive to parameter
setting (Φ0 and λ).

*8 We perform the same analysis for n = 1, ..., 5, but no significant difference in ξ has not
been confirmed for tw < ta. However, we find that behavior of ξ after arrest time (ta < tw)
strongly depends on the choice of n.
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D E

Fig. 13 Cooperativity in particle motion. A. An example of 3d structure
of colloids (tw/τB = 388). The red arrows shown on each particles represent
displacement vectors, ∆Ri(tw). For visualization, the length of the arrows is
normalized by an arbitrary value. Panel C is an enlarged image of the part
surrounded by a dashed line in panel A, where we can see that particles are
moving cooperatively. For comparison, we show the same image at tw = 0 in
panel B, where we can see that particles are moving randomly. D. Spatial
correlation of the direction of particle motions. Here we show the result at
ϕ = 11.1%. E. The time evolution of correlation length ξ for various volume
fractions.

where we can see that ⟨cos θ⟩ decays approximately exponentially with respective
to r. We determine ξ(tw) by fitting ⟨cos θ⟩(r, tw) with exp(−r/ξ(tw)).
We show the temporal change in ξ in Fig. 13E, where we can see that ξ grows

rapidly in the early stage but stops growing rather abruptly around the arrest time
tw ∼ ta (indicated by the star symbols). This crossover behavior can be regarded
as a manifestation of the freezing of particle motion in the network structure and
the resulting emergence of the rigidity.
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Structural analysis
To explore the structural origin of the rigidity, we study the local structural ar-
rangement of the network microscopically. Firstly, we show the temporal change
of interparticle bonds per particle, nb. Here we regard that two particles have a
bond if the center-of-mass distance is smaller than 1.23σ. The result is shown in
Fig. 14A, where we can see that nb grows before arrest time and the speed of the
growth slows down after arrest time. We can also see that in the entire time range

Fig. 14 Analysis of local structure. A. The temporal change of interparti-
cle bonds per particle, nb. B. The temporal change of the fraction of particles
with tetrahedral structures. The star symbols correspond to arrest time.

Fig. 15 Correlation between local packing and mobility of particles.
A. By performing Delaunay tessellation for the center-of-mass positions of
particles, we can relate a Delaunay cell to four particles in the corners of the
cell (blue spheres). To see link between local packing and mobility of particles
in a qualitative way, we consider a solid angle Ω (light green part) which the
displacement vectors of four particles (red arrows) constitute, and examine
correlation between Ω and the volume of the corresponding cell, v. B represents
the average of Ω for a constant v at various time. Here v is normalized by the
volume of regular tetrahedron with length σ on one side. In this figure, we
only show the result at ϕ = 11.1%. The arrest time at this volume fraction is
ta/τB ∼ 100.



Appendix 142

Fig. 16 Relation between local structure and particle mobility. The
brown and blue line represent the effective diffusion constant D of particles
for involved and not involved in tetrahedral structures, respectively. The black
line is D for all particles. Here we show the result at ϕ = 11.1% and the
corresponding arrest time is ta/τB ∼ 100.

of the observation, nb < 7, indicating that most particles are located in the domain
interface. This means that analysis methods developed for bulk systems such as
the local bond order parameter analysis cannot be applied to our results. Then,
we focus on a compact tetrahedral structure made of four mutually bound parti-
cles, since it has a smallest rigid structural unit. We show the fraction of particles
involved in tetrahedral structures in Fig. 14B. During the process of network coars-
ening, the fraction of particles in tetrahedral structures grows dramatically, but it
is saturated around the arrest time and finally reaches the plateau. This implies
that the formation of local structures of mechanical stability plays an important
role in the slowing down of macroscopic structural change.
To see this link between structure and dynamics in more detail, we analyze the

correlation between the local packing and the mobility of particles. Figure 15B
shows the relation between the volume of a Delaunay cell and the coherence of
the motion of particles contained in the cell. Here Ω is the solid angle made by
the displacement vectors of four particles in the corners of the cell (see Fig. 15A).
Thus, the smaller Ω means the higher coherency of the directions of particle motion.
The results clearly show that particles packed more densely exhibit more coherent
motion. After the arrest time, there is little change in this relationship, indicating
that that highly packed dense local structures tend to be retained for a long time,
or stable.

Dynamics in aging regime
In the above, we have seen that slowing down of phase separation dynamics is
triggered by the formation of locally stable densely-packed structures in colloid-
rich phase. Here we mention roles of locally stable structures after the dynamics
arrest, i.e., in the aging regime. In Fig. 14B, we can see that the number of
particles not in tetrahedral structures decreases with time, but very slowly, in the
aging regime. As shown in Fig. 12, the characteristic wave number slowly deceases
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tw=152 165 214

Fig. 17 Rupture of network arm observed in aging regime.

in the aging regime, implying that the slow increase in locally stable structures may
be related to macroscopic structural change of the network in aging regime.
To see this, we calculate the effective diffusion constant of particles for both

involved and not involved in tetrahedral structures. As shown in Fig. 16, particles
not in tetrahedral structures are more mobile than the ones in them even after the
dynamic arrest. We examine where these highly mobile particles are located in
the network and find that a part of them are located in network strands that are
under tension and going to be ruptured (see Fig. 17). This rupture is considered
to be induced by mechanical tension acting on network arms as a consequence of
densification in colloid-rich domain. This suggests that the topological structure
of the network is selected mechanically to satisfy the mechanical force balance
condition. However, such structural changes in network structure is rare events for
our observation window. To gain better understanding of the above mechanism,
we need large scale experiments to evaluate these rupture events with statistical
significance.

D.4 Summary

To summarize, we have succeeded in following the gas-liquid phase separation and
the resulting gelation process of colloidal suspensions interacting with short-range
attraction (interaction range: ∆ = 0.08) while tracking the trajectories of all par-
ticles from the beginning to the final arrested state. We find that there are three
regimes: the early linear regime, the coarsening regime characterized by the growth
exponent of 1/2, and the aging regime, and successfully identify “arrest time” ta,
at which phase separation dynamics significantly slows down. Concerning the final
dynamic arrest, we observe that the fraction of locally stable densely packed struc-
tures rapidly increases towards arrest time, and the trend slows down after arrest
time. This indicates that the dynamic arrest is a consequence of phase separation
dynamics hindered by the formation of locally stable rigid structures.
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