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Chapter 1

Introduction

1.1 Preface
Magnetic conductors show variety of unique and versatile magnetotransport phenom-
ena. The ferromagnet / metal / ferromagnet tunnel junction system shows a giant
magnetoresistive effect (GMR), in which the resistance greatly modulated by con-
trolling the magnetic structure by an external magnetic field at room temperature.
In ferromagnetic metals, spin-polarized conduction electrons undergo spin-dependent
scattering, arising the anomalous Hall effect. Colossal magnetoresistance (CMR) ef-
fects are observed in strongly correlated Mn oxides, in which the resistivity is tuned
by several orders of magnitude due to the metal-insulator transition induced by an
external magnetic field. These phenomena have been one of the major subject in the
field of condensed matter physics for many years. Furthermore, these phenomena are
applied to magnetic memory devices, arising the field of spintronics.

Dirac materials, on the other hand, are of particular interest in recent years. The
discovery of the half-integer quantum Hall effect in graphene in 2005 triggered the
research on variety of Dirac materials. Now variety of materials, such as topological
insulator surface states, an organic conductor and 3-dimensional Dirac semimetals, are
discovered and intensively studied both theoretically and experimentally. Dirac ma-
terials have linear energy-momentum dispersion relations near the Fermi level and the
conducting carriers can be regarded as a relativistic particle of mass zero. Backscat-
tering of carriers is suppressed by the coupling of the momentum and (pseudo-)spin,
leading to exceptionally high mobilities. Furthermore, peculiar magnetic transport
phenomena such as half-integer quantum Hall effect and giant linear magnetoresis-
tance are observed due to the nontrivial Berry phase contribution and the unique
Landau level structures in the magnetic field. The mechanisms of these phenom-
ena and the topological nature of the electronic structure are of interest from the
viewpoint of basic physics. Furthermore, applications to high-speed/energy-saving
devices and spintronic devices are expected utilizing the high mobility and peculiar
magnetotransport phenomena.

In this way, both the magnetic conductors and the Dirac materials show unique
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and versatile magnetotransport phenomena. Therefore the magnetic Dirac materials
which host both magnetic orders and Dirac fermions are expected to show even more
interesting magnetotransport phenomena. In this point of view, magnetic topological
insulators are extensively studied, leading to the observation of the quantized anoma-
lous Hall effect. More recently, Weyl semimetal phases with magnetic orders are dis-
covered, exemplified by Mn3Sn and pyrochlore-type iridium oxides showing peculiar
magnetotransport properties such as the anomalous and topological Hall effects. Fur-
thermore, Field-induced Weyl phases are also sought in semimetals/semiconductors
with local magnetic moments such as GdPtBi and EuTiO3. However, only few ma-
terials are identified as magnetic Dirac materials, mainly due to the difficulty in
material development. Since the Dirac electronic structures strongly depend on the
symmetry of crystals in many systems, Dirac fermions are lost, especially in bulk
crystals, by chemical substitutions to magnetic elements. Also, the carrier mobility
of the magnetic Dirac materials known to date are relatively low compared to those
of nonmagnetic Dirac materials. Since the high carrier mobility is one of the most
important feature of Dirac materials, magnetic Dirac materials with a high carrier
mobility is desired.

From this point of view, we focused on the multilayered Dirac materials with Bi
square net. These systems has a layered crystal structure consists of an alternate stack
of a conduction layer of Bi square net hosting two-dimensional Dirac fermion and a
magnetic insulating layer hosting magnetic elements. Since quasi-two-dimensional
Dirac fermions are arising from the Bi square net, we can develop a variety of mag-
netic layers by chemical substitutions while keeping the Dirac-like band structure
responsible for the high carrier mobility in these system. In SrMnBi2, the prototyp-
ical Dirac materials with Bi square net, the transport of the Dirac fermion is hardly
affected by the Mn magnetic order. In this study, we focused on EuMnBi2 hosting
magnetic Eu2+(S = 7/2). In this system, since the magnetic Eu site is adjacent to
the Bi square net hosting Dirac fermions, the magnetic order of Eu is expected to
strongly influence the conduction of the Dirac fermions. We made detailed measure-
ments of magnetic and transport properties in this system and revealed an interesting
magnetotransport phenomena in which the quantum transport of the Dirac fermions
strongly coupled with the antiferromagnetic order of Eu. Furthermore, the carrier
mobility of EuMnBi2 reaches ∼ 14, 000 cm2/Vs, which is outstandingly high among
other magnetic Dirac materials. This research realized the novel magnetic transport
phenomenon by the coupling of the magnetic order and the quantum transport of
Dirac fermions for the first time in bulk compounds and furthermore shows a new
guideline for realizing the magnetic Dirac electron system.
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1.2 Quantum transport phenomena in Dirac materials
In this section, we overview the recent researches on the Dirac materials or Dirac
fermion systems in solids.

Dirac materials

The materials group called Dirac materials includes a wide range of materials, such as
graphene, Bi2Te3, Cd3As2, organic conductor α−(ET)2I3, correlated metal Mn3Sn.
They share a fundamental similarity in their momentum-energy dispersion near the
Fermi level and therefore exhibit a variety of interesting physical properties common
to mani Dirac materials.

The transport properties of many metals and semiconductors are governed by elec-
tron carriers formed at the bottom of the conduction band and hole carriers formed
near the top of the valence band. If the energy dispersion near the Fermi level is

approximated as En(k) ≃ Ec +
ℏ2

2m∗k
2, the motion of the carrier behave as a free

particle obeying the Schrödinger equation with a mass of m∗.
In the Dirac materials, on the other hand, the band structure near the Fermi

level show a linear energy-momentum dispersion as shown in Fig. 1.1(c), which is
approximated as E = ℏvF |k|. In this case, the conducting carriers obey the Dirac
equation for the zero-mass particle, whose Hamiltonian is given as

HD =

(
mc2I cσ · p
cσ · p −mc2I

)
(1.1)

, where σ is the Pauli matrices and I is the unit matrix. Therefore in the Dirac
materials, conducting carriers are regarded as zero-mass relativistic particles obeying
the Dirac equation with the Fermi velocity vF in the place of the speed of light c.

graphene
Graphene is the most common and simple, ideal system among the Dirac materials.
Graphene is a two-dimensional material where the carbon atoms are assembled into
a honeycomb lattice as shown in Fig. 1.1. The sp2 hybrid orbital is responsible for
the bond between carbon atoms and the state near the Fermi level is derived from
the remaining pz orbital. The honeycomb lattice hosts two equivalent sublattices
(denoted as A and B in Fig. 1.1[a]) in the unit cell, and correspondingly there are
two equivalent points in the Brillian zone, K and K ′. Taking the pz orbitals on the
sublattices A and B as the bases, the tight-binding Hamiltonian for the electrons in
graphene has the form

H =

(
0 −t

∑3
l=1 e

ik·δl

−t
∑3

l=1 e
−ik·δl 0

)
(1.2)
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(a)	 (b)	

(c)	

Fig. 1.1 (a) crystal structure, (b) Brillouin zone, and (c) band structure of
graphene[2]. A and B denote the two sublattices in the unit cell. a1,2 are the
unit cell vectors, b1,2 are the reciprocal lattice vectors and δ1,2,3 are the nearest-
neighbor vectors.

, where t is the nearest-neighbor hopping energy and δl(l = 1, 2, 3) are the nearest-
neighbor vectors (Fig. 1.1[a]). The full band structure is shown in Fig. 1.1[c]), with
a zoom in of the band structure near the K point. This energy dispersion and the
effective Hamiltonian are obtained by expanding 1.2 close to the K point as follows:

E(k) = ±vF |k| , vF =

√
3at

2ℏ
(1.3)

H = ℏvF
(

0 kx − iky
kx + iky 0

)
(1.4)

, which is equivalent to the Weyl equation in two dimension.
It should noted that the degree of freedom in Eq. 1.4 arises from the two sublattices

A and B in the unit cell, rather than the spin degree of freedom in the original Weyl
equation. This degree of freedom is called pseudospin. Also, the zero gap state arise
from the equivalence of the two sublattices.
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(d)	

Fig. 1.2 (a) The ET molecule and the I−3 molecule. (b) The crystal structure
of α− ET2I3. (c) Crystal structure of the conducting ET layer vied from the c
axis. (d) Calculated band structure in the metallic phase of α− ET2I3.[3]

Organic conductor α− (BEDT)2I3
The organic molecular crystal α− (BEDT)2I3 (abbreviated as α− ET2I3 in the fol-
lowing) Is a layered material consisting of the conducting layers composed of ET
molecules and the insulating layers composed of I−3 molecules as shown in Fig. 1.2
(a-c).[3]. This material becomes a insulator below 135 K at ambient pressure due
to the charge ordering. Under a pressure of above 1.5 GPa, the insulating phase is
suppressed and the system remain metallic at all temperatures.

The band structure in the metallic phase along the in-plane direction is shown in
Fig. 1.2(d), with a zoom in near the Fermi level showing a tilted Dirac cone. The
Dirac energy dispersion in this system arise from an accidental closing of the gap.

In α− ET2I3, the Fermi level is fairly close to the Dirac point because the natural
doping of the carriers by the chemical defect is relatively small. As a result, a relatively
weak magnetic field realizes the quantum limit where the Landau zero mode dominates
the transport properties, arising peculiar magnetotrnsport properties as described in
Sec. 1.2.

Topological insulators
The surface states of the topological insulators (TIs) are also known to host Dirac
fermion state[4, 5, 6]. Topological insulators are insulating in bulk; However, as
shown in Fig. 1.3(a,b), TIs host metallic surface states with Dirac-like linear energy
dispersions arising from the topological nature of the bulk insulating band structure.
Furthermore, the spin degeneracy is lifted in the surface Dirac state and the spin is
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(c)	 (d)	

(e)	 (f)	

(a)	

(b)	

Fig. 1.3 (a) Real-space and (b) reciprocal lattice space picture of the surface
Dirac state of 3-dimensional topological insulators[5]. (c-f) Surface Dirac states of
a 3-dimensional topological insulator Bi2Te3 as probed by ARPES measurements.

locked perpendicular to the momentum (Fig. 1.3[a,b]), as is called as ”helical spin
polarization”. This helical spin polarization suppress the back scattering, arising
high mobility of the electron. Furthermore, when a current is applied to the surface
state, a spin Hall effect is observed in which spin polarization appears in a direction
perpendicular to the surface state, which imply the spintronic applications.

Several compounds, such as (Bi,Sb)2(Te,Se)3 and Bi1−xSbx, have been experimen-
tally identified as 3-dimensional topological insulators by ARPES measurements (Fig.
1.3c-e). Recently transport properties of the surface Dirac states, such as quantum
Hall effect[7], are of particular interest. In these researches, bulk conduction is effec-
tively suppressed by finely tuning the chemical composition of the thin film samples,
enabling the surface states to dominate the transport properties.

3-dimensional Dirac semimetal
Contrary to the (quasi-) two-dimensional systems such as graphene, surface of the
topological insulators and α−ET2I3, several materials such as Cd3As2[8, 9], Na3Bi[10,
11], Ca3PbO[12, 13] are known to host three-dimensional Dirac fermion, where the
energy-momentum dispersion is linear to all the three directions.

In Cd3As2, three-dimensional Dirac fermion state is realized by the band inversion
mechanism explained as follows. Cd3 As2 crystallizes in a complex crystal structure
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(a)	 (b)	

(c)	

Cd 5s	

As 4p	

Fig. 1.4 Three-dimensional Dirac fermion state in Cd3As2. (a) Calculated band
structure and Brillouin zone of Cd3As2[8]. (b) Schemetic description of the three-
dimensional Dirac fermion state in Cd3As2[9]. Red and blue colors denote Cd
5s and As 4p characters, respectively, and the red line is the axis of the four-fold
rotational symmetry. (c) Three dimensional Dirac semimetal state observed by
ARPES.

with 32 atoms in a unit cell[14], which host four-fold rotational symmetry. This system
can be regarded as an ionic crystal and the As 4p orbital and the Cd 5s orbital form
the valence and conduction bands, respectively. However the valence and conduction
are inverted around a specific point in the Brillouin zone as depicted in Fig. 1.4(a).
The inverted bands are hybridized to open a gap; however, the band hybridization is
prohibited and the gap is closed along the axis of the four-fold rotational symmetry.
As a result, the Dirac point appears on the axis of the four-fold rotational symmetry
as depicted in Fig. 1.4(a).

The band inversion mechanism similar to that in Cd3As2 is also responsible for the
three-dimensional Dirac fermion in Na3Bi and Ca3PbO. However, the Dirac semimetal
band in Ca3PbO is slightly gapped by the spin-orbit coupling.

Weyl semimetal
Dirac fermions in graphene, α−ET2I3 and three-dimensional Dirac semimetals are
spin-degenerate. Weyl semimetals host linear energy dispersion similar to Dirac
semimetals; however, the energy bands in Weyl semimetals are spin non-degenerate[1,
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116]. One of the most striking features of Weyl semimetals is the topological stability
of the Weyl point. The Berry flux piercing any surface enclosing the Weyl point is
exactly quantized to 2πC, where C is the chirality; the Weyl points behave as the
source or sink of the Berry flux. As a result, Weyl points are stable and can be
eliminated only by the pair annihilation.

The spin degeneracy must be lifted in Weyl semimetals. Therefore the broken
space- or time-inversion symmetry is required to realize Weyl semimetals to lift up
the spin degeneracy. Several Weyl semimetal phases with broken space-inversion
symmetry have been predicted and discovered so for. TaAs and related compounds
were predicted to be Weyl semimetals[15], and ARPES signatures of the Weyl state
have been observed[16]. Recently, a few Weyl semimetals with broken time-reversal
symmetry, such as Mn3Sn and pyrochlore R2Ir2O7, are discovered.

Transport properties of Dirac materials

Dirac materials are of particular interest mainly for their unusual transport properties,
especially under magnetic field. Her, we overview the nontrivial transport phenomena
in Dirac materials.

Suppression of backscattering
Many Dirac materials are reported to show exceptionally high carrier mobility. Mo-
bility in high-quality graphene samples reach 2 × 104 cm2/Vs; Cd3As2 also shows
ultrahigh mobility up to 9 × 106 cm2/Vs[17, 18]. These high mobilities make Dirac
materials promising for future electronic applications.

One of the origin of the high mobility in Dirac materials is that the backscattering is
suppressed in Dirac fermions. In Dirac fermion systems, the momentum is coupled to
the (pseudo-)spin. Therefore back scattering of Dirac fermions require simultaneous
flip of the (pseudo-)spin. Therefore backscattering by a impurity is forbidden unless
the impurity potential conserves (pseudo-)spin.

Scattering probability of the Dirac fermion in graphene by a one-dimensional po-
tential barrier have been calculated. The result shows effective suppression of the
backscattering[19], leading to the ultrahigh mobility in graphene. In Cd3As2 the
transport scattering time τtr is approximately four orders of magnitude larger than the
quantum scattering time τQ[18], experimentally signifying the suppression of backscat-
tering.

Landau levels
Another striking feature of the Dirac fermion is the nontrivial Landau level struc-
ture. Under a strog magnetic field, two-dimensional Dirac fermion with the energy
dispersion E = ℏvF |k| is Landau quantized as

E0 = 0, E±n = ±vF
√
2eBℏn, n = 1, 2, 3, . . . (1.5)
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Fig. 1.5 (a) The energy-momentum dispersion of Dirac fermions showing the
momentum(k)-pseudospin σ coupling. (b) Forbidden back scattering of Dirac
fermions.[1]

Here, vF is the Fermi velocity and e is the elementary charge. This Landau level has
three major features:

• Landau levels are nonuniform as En ∝
√
n: Landau level spacing is larger for

small n.
• Landau level spacing is proportional to

√
B, rather than B as in the case in

normal metals. As a result, a large Landau level spacing is achieved by a
relatively weak magnetic field.

• Landau zero mode appears at the Dirac point, irrespective of the magnitude of
the magnetic field.

These feature are clearly observed in the quantum Hall effect in graphene shown in
Fig. 1.6(a) [20, 21]. The Hall conductivity in graphene is quantized into half-integer

values as σxy = 4 e2

h

(
n+ 1

2

)
. This unusual quantum Hall effect is the consequence of

the peculiar Landau levels due to the nontrivial Berry’s phase of the Dirac fermion.
Furthermore, the quantum Hall effect is observed even at room temperatures as shown
in Fig. 1.6(b)[22]. This is because the spacing between the n = 0 and n = 1 Landau

levels is exceptionally large because En ∝
√
B.

In the quasi-two-dimensional Dirac fermion system α−ET2I3, the Fermi level is
located close to the Dirac point. Under a magnetic field, n = ±1 Landau levels
rapidly leave away from the Fermi level in proportion to

√
B. As a result the quantum

limit, where only the Landau zero mode contribute to the transport, is realized by a
relatively weak magnetic field of 0.1 T. Therefore the magneto-transport properties of
α−ET2I3 is well understood in terms of the Landau zero mode. Figure 1.7 shows the
magnetic field dependence of the interlayer resistance of α−ET2I3. In the magnetic
field range from 0.5 T to 3 T the interlayer resistivity is proportional to the inverse
of the magnetic field (Rzz ∼ 1/B). This behavior can be understood by a model in
which the carriers on the conductive layer tunnel across the insulating layer.

In this model, the interlayer conductivity is proportional to the density of states
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(a)	 (b)	

Fig. 1.6 (a) Half-integer quantum Hall effect in graphene[20]. (b) Quantum
Hall effect at 300 K, 29 T[22]．

(c)	

Fig. 1.7 (a) Magnetic field dependence of the interlayer resistivity Rzz in
α−ET2I3. The red line is the theoretical result by Osada[23]. (b) Angular
dependence of Rzz for selected magnetic field. (c) Magnetic field dependence of
Rzz at high field, low temperature regime. [3]

at the Fermi level and the tunneling probability between the layers. The tunneling
probability is independent of magnetic field since the conducting direction is parallel
to the magnetic field. The density of states is proportional to the degeneracy factor
of the Landau zero mode and hence to the magnetic field B. Therefore it is expected
that the interlayer conductivity is proportional to magnetic field (σzz ∝ B) and the
interlayer resistivity Rzz is inversely proportional to magnetic field (σzz ∝ 1/B).
Based on the above model, Osada[23] calculated the magnetic field/angle dependence
of the interlayer resistivity and obtained results that agree well with the experimen-
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tal result. At higher magnetic field, the density of states decreases due to Zeeman
splitting of the zero mode and the interlayer resistivity decreases exponentially as
Rzz ∝ 1/ |B| exp (gµBB/2kBT ) (Fig. 1.7 c). More recently, unusual transport prop-
erties such as the giant Nernst effect is reported[24].

1.3 Magnetic Dirac materials
As mentioned in the previous sections, the Dirac fermion systems exhibits novel trans-
port characteristics, such as suppression of back scattering and linear magnetoresis-
tance, especially in a magnetic field. In this section, we first describe that various
and interesting magnetotransport phenomena are observed in the magnetic conduc-
tors Recent studies on magnetic topological insulators and pyrochlore type iridium
oxides are described from the viewpoint of exploring novel magnetic transport prop-
erties by combination of magnetic transport properties of Dirac electron system and
magnetic transport characteristics of magnetic materials.

Magnetic conductors and spintronics

Since the discovery of giant magnetoresistance (GMR) phenomena, the unique mag-
netic conduction properties exhibited by magnetic materials have been discovered one
after another and attracted attention[25, 26]．From the viewpoint of basic physics, it
became clear that the degree of freedom of spin of electrons can not only give degen-
eracy degree 2 but also play an important role in electric conduction properties. As
a result, the conduction characteristics of the system can be changed by controlling
the magnetic order by the external magnetic field, and various magnetic conduction
phenomena have been reported so far. From the application point of view, it is possi-
ble to electrically read the magnetic memory, and a new field called spintronics, such
as the GMR element being applied to the reading head of the hard disk, was opened.

The simplest and representative example of spin-dependent conduction character-
istics is the tunnel magnetoresistive effect observed in ferromagnetic / nonmagnetic
insulator / ferromagnetic tunnel junction system[26]. As shown in Fig. 1.8 (a, b),
it is possible to realize two ways, that the magnetization of the ferromagnetic layer
sandwiching the insulator layer becomes parallel and antiparallel. In the process of
electron tunneling through the insulating layer, no spin flip occurs and ↑ spin and
↓ spin are considered to shift to the same state, respectively. Spin polarization of
each layer is given as P1,2 = NM−Nm

NM+Nm
using the number of electrons of major and

minor spins NM , Nm, reflecting the density of states at the Fermi level. Therefore,
letting the resistances in the parallel state and antiparallel state be Rp and Rap, the
magnetoresistive ratio is

Rap −Rp

Rp
=

2P1P2

1− P1P2
(1.6)
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(c)	 (d)	

anti-parallel	

anti-parallel	

Fig. 1.8 Schematic diagrams of ferromagnet / insulator / ferromagnet tun-
nel junction and the density of states in (a) parallel state and (b) antiparallel
states[26]. (c) Tunneling magnetoresistance curve and (d) magnetization curve
of Fe/Al2O3/Fe junction at room temperature[27]. The region where the mag-
netization is close to zero corresponds to the antiparallel state, and the tunnel
magnetic resistance of ∼ 20% is observed. The black arrow represents a sweep di-
rection of the magnetic field and the red arrow represents a magnetic field region
where an antiparallel state is realized.
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Thus TMR is an effect reflecting a phenomenon in which the number of electrons
is biased due to spin in the ferromagnetic state. Experimentally, sharp changes in
magnetoresistance reaching ∼ 20% at room temperature have been reported (Fig.
1.8 c, d). Such a unique magnetoresistance phenomenon is made possible only by
using the spin degree of freedom of a ferromagnetic material, and is representative of
various magnetoresistance phenomena using a magnetic conductors.

Since the discovery of TMR, many unique and versatile magnetotransport phenom-
ena in magnetic materials have been reported. In ferromagnetic metal / paramagnetic
metal / ferromagnetic metal junction system giant magnetoresistive effect (GMR) is
observed at room temperature by the similar principle as in TMR. This phenomenon
is a typical example of spin-dependent conduction and applied to a reading head
of a magnetic memory, arising a new field called spintronics[25]. Anomalous Hall
effects in ferromagnets are old phenomena known for over 100 years. However the
mechanism of the Anomalous Hall effects have been extensively studied until quite
recently[28]. Some strongly correlated Mn oxides exhibit colossal magnetoresistance
effect (CMR) in which the resistivity varies over several orders of magnitude due
to the metal-insulator transition induced by an external magnetic field[29]. These
examples are only a part of the peculiar magnetotransport phenomena observed in
magnetic conductors.

Magnetic topological insulators

As mentioned in the previous sections, magnetic conductors exhibit variety of mag-
netotransport phenomena due to the magnetic order tuned by the external magnetic
field. On the other hand, as mentioned in Sec. 1.2, Dirac materials themselves show
peculiar magnetotransport phenomena. Therefore magnetic Dirac materials hosting
both magnetic order and Dirac fermions are expected to exhibit further interesting
magnetotransport phenomena. Representative of these magnetotransport phenomena
is the quantized anomalous Hall effect in magnetic topological insulators.

As mentioned in Sec. 1.2, topological insulators host Dirac fermion state localized
on the surface. Since this surface Dirac state originates from the topology of the bulk
insulating electronic structure and is protected by the time reversal symmetry, the
Dirac state is gapped when a magnetic order breaks the time reversal symmetry. Yu
et al. theoretically predicted for the topological insulator (Bi, Sb)2(Te, Se)3 doped
with transition metal elements, that this gapped state hosts quantized anomalous
Hall state[30]. The doped transition metal develops ferromagnetic order by the mech-
anism originating from van Vleck paramagnetism and arises finite anomalous Hall
conductivity even at zero magnetic field. Furthermore, the anomalous Hall conduc-
tivity is quantized due to the two-dimensional nature of the surface state Thus the
quantized Hall resistance is observed even at the zero magnetic field. The predicted
quantized anomalous Hall effect was experimentally observed in Crx(Bi, Sb)2−xTe3
(Fig. 1.9)[31, 33] and subsequently in V-doped (Bi, Sb)2−xTe3[32].
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Fig. 1.9 Experimental observation of quantized anomalous Hall effect. Magnetic
field dependence of (A) Hall resistivity ρyx and (B) longitudinal resistivity ρxx.
(C) Gate voltage dependence of Hall resistivity and longitudinal resistivity in
zero magnetic field. (D) Gate voltage dependence of hole conductivity σxy and
longitudinal conductivity σxx.

Magnetic Weyl semimetals

Magnetic order can lift the spin degeneracy of electronic bands and possibly realize
Weyl semimetal phases with broken time reversal symmetry. The Weyl semimetal
phase was first predicted for pyrochlore-type iridium oxides R2Ir2O7 (R = rare
earth atom) showing all-in-all-out type antiferromagnetic order[116]. The physical
properties vary systematically depending on the ionic radii of the R site, i.e. the
strength of electron correlation; Pr2Ir2O7 is nonmagnetic metal at all temperatures,
while (Eu, Nd)2Ir2O7 show magnetic order and become insulating at low tempera-
tures. Weyl semimetal phase is theoretically predicted depending on the strength of
correlation[34]. However, Weyl semimetal phase is not experimentally confirmed so
far, possibly because the Weyl phase is realized only in a narrow temperature range
just below the magnetic ordering temperature[116].

More recently, Mn3Sn was also shown to be a Weyl semimetal with broken time
reversal symmetry[80]. Mn3Sn shows extremely large anomalous Hall effect even at
the room temperature as shown in Fig.1.10[84]. Recently, this large anomalous Hall
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Fig. 1.10 Giant anomalous Hall effect in Mn3Sn at 300 K[84].

Fig. 1.11 The negative magnetoresistance due to the chiral anomaly[81] (left)
and Hall resistivity showing anomalous contribution at B ∼ 4 T[82] (right) in
GdPtBi.

signal was suggested to arise from the Weyl fermion state[80]. Hence, this large
anomalous Hall effect is one example of the peculiar magnetotransport phenomena
observed in magnetic Dirac materials. Unfortunately, however, the carrier mobility in
Mn3Sn is as low as ∼ 1 cm2/Vs due to the correlation of the Mn 3d orbitals forming
the Weyl semimetal states.

Furthermore, the Weyl semimetal phases induced by an external magnetic field
are sought in semimetals hosting local magnetic moments, such as GdPtBi[81, 82],
EuTiO3[83] and α−EuP3. There, the spin degeneracy of the bands near the Fermi
level is lifted by the exchange interaction with the local magnetic moments showing
net magnetization. The spin non-degenerate bands host Weyl semimetal phase at
some magnetization value, leading to peculiar magnetotransport properties such as
the negative longitudinal magnetoresistance due to the chiral anomaly[83] and the
anomalous Hall resistivity[82, 83] as shown in Figs. 1.11 and 1.12.
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Fig. 1.12 The anomalous Hall effect arising from the field-induced Weyl points
in EuTiO3 thin film[83].

1.4 Dirac materials based on the Bi square net
Recently, a layered pnictide SrMnBi2 was shown to host quasi-2-dimensional Dirac
fermion by ab initio calculations, ARPES and magnetotransport measurements. This
compound is the prototype is the materials group AMBi2 (A = alkaline earth, rare
earth metals, M = transition metals). Here we overview the recent studies on
SrMnBi2 and related compounds.

Dirac fermion in SrMnBi2

Crystal and electronic structure
The crystal structure of SrMnBi2 consists of a MnBi layer with edge-sharing MnBi4
tetrahedrons and a two-dimensional (2D) Bi square net stacked with Sr atoms as
shown in Fig. 1.13 (a)[38]. The space group belongs to I4/mmm and the lattice
constants are a = 4.58(1) Å, c = 23.13(3) Å. Sr2+ and Bi3− in the MnBi layer form
closed shell electron configuration. Mn2+ has a half filled 3d5 configuration with spin
S = 5/2, which order antiferromagnetically below TN ∼ 290 K. Bi1− (6s26p4) form
covalent-type bonding with each other, forming the Bi square net layer.

Bi1− (6s26p4) forms two covalent bonds in the usual Zintl concept, but Bi1− in
Bi square net has four nearest neighbor Bi1− site. This is understood by the idea of
hypervalent bonding[40]. For heavy elements such as Bi, the s orbital is drawn near
the center due to the strong electrostatic attraction of the nucleus, while the p orbital
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(a)	

Bi1-	

Bi3-	
Sr2+	

Mn2+	

Fig. 1.13 (a) Crystal structure of SrMnBi2. The magnetic structure of Mn site
is according to ref. [45]. The solid line represents a unit cell. (b) Temperature
dependence of in-plane resistivity and interlayer resistivity [39].

is elongated by the shielding effect of other inner nuclear electrons. This reduces the
spatial overlap between the s orbital and the p orbital, making the s−p hybridization
weaker. As a result, in the Bi1− square lattice, the s orbital and the pz orbital form
lone pairs, and the px,y orbitals form covalent-type bonding to form a semi-metallic
band.

Fig. 1.13 (b) shows the temperature dependence of in-plane resistivity and inter-
layer resistivity. The metallic behavior of the in-plane resistivity is derived from the
semi-metallic band on the Bi square net. On the other hand, the interlayer resistivity
is about 100 times larger than the in-plane resistivity and shows a nonmonotic tem-
perature dependence with high-temperature non-metallic region and low-temperature
metallic region. This temperature dependence is characteristic of quasi-2D systems
showing a crossover from high-T incoherent to low-T coherent conduction. The ex-
istence of a thick (∼ 1 nm) insulating layer made of Sr, Mn and Bi between the Bi
square net causes strong anisotropy in the electronic characteristics.

Observation of the Dirac fermion
It is revealed in 2011 that semimetallic bands on the Bi square net form quasi-two-
dimensional Dirac fermions. According to the first principle calculation, the Fermi
surface of the Dirac fermion exists in the Γ − M direction of the Brillouin zone
(Fig. 1.14 a). The Dirac band has anisotropy within the in-plane direction, with
the Fermi velocity along the Γ − M direction is about 8 times larger than that in
the perpendicular direction (Fig. 1.14 b). There are four equivalent Fermi surfaces
corresponding to the four-fold rotational symmetry of the crystal. Existence of such
Dirac fermions arising from the Bi square net was experimentally confirmed directly
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by the ARPES measurements.

(b)	

Fig. 1.14 (a) Band structure of SrMnBi2 by first principles calculation. Red
circle indicates Dirac point. (b) Schematic diagram of anisotropic Dirac electrons.
(c-e) Band structure of Dirac electrons observed by ARPES.[41]

Transport properties
Quantum transport phenomena of SrMnBi2 are studied at low temperatures and
strong magnetic fields. The in-plane resistivity linearly increases with respect to the
magnetic field along the c axis. A linear magnetoresistance is observed over a wide
temperature range of up to 50 K and is thought to originate from Dirac fermions on
the Bi square net[39]. Detailed analysis of quantum oscillation revealed the existence
of finite Berry’s phase and small cyclotron mass[41], which is consistent to the Dirac
electronic structure. Recently it has been suggested that the four-fold symmetry of
the valley is broken under the strong magnetic field of more than 15 T from the
measurement of the angle dependence of the interlayer resistivity[73].

SrMnBi2 hosts magnetic Mn atoms along with the Dirac fermion: SrMnBi2 itself
is a magnetic Dirac material, and therefore is of interest in terms of the coupling
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between the magnetic order and the Dirac fermion. Guo et al. investigated two
kinds of antiferromagnetic order of the Mn site (in-plane checkerboard type and fer-
romagnetic/antiferromagnetic interlayer coupling) by first-principle calculations, and
revealed that the Dirac electronic structure is slightly modulated by the Mn antifer-
romagnetic order[45]. However, only slight anomaly is observed in the resistivity at
the Mn antiferromagnetic ordering temperature, suggesting that the Mn magnetism
shows only slight influence on the transport properties of the Dirac fermions.

Recent researches in related compounds

Basic physical properties of EuMnBi2
After some time from the start of this research, the basic physical properties of
EuMnBi2 was reported [44]. Eu magnetic moments show antiferromagnetic order
at TN ≃ 22 K. Upon then, the in-plane resistivity shows clear anomaly, indicating
that the transport properties of the Dirac fermion is sufficiently coupled to the Eu
magnetism. Recent ARPES measurements revealed the existence of Dirac fermion in
EuMnBi2[65]. However details of the coupling between the Eu magnetic order and
the Dirac fermion is unclear.

(b)	

Fig. 1.15 (a) Temperature dependence of in-plane resistivity of EuMnBi2. The
inset is an enlarged view around TN ∼ 22 K. (b) Magnetic field dependence of
magnetoresistance MR = (ρ(H)− ρ(0))/ρ(0).

1.5 Purpose of this thesis
As we have seen, the back scattering of carriers is suppressed in the Dirac electron
system, so high mobility is realized and it is expected to be applied to high-speed
and energy-saving devices. Dirac electron systems themselves also exhibit peculiar
quantum transport phenomena under low temperature and strong magnetic fields due
to the feature that the presence of high mobility carriers and the quantum limit state
can be easily realized. On the other hand, in magnetic materials, a unique magnetic
transport phenomenon is observed due to the combination of magnetic order and
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conduction properties, and a system exhibiting giant magnetoresistance is applied to
spintronics. In a system having both Dirac electrons and magnetism, it is expected
that a new novel magnetic transport phenomenon will be developed by the coupling
of the quantum transport phenomenon and the magnetic structure of Dirac electrons,
and it is expected to be applied to future electronic devices.

However, systems that combine magnetism and Dirac electrons are very limited
at present. In topological insulator thin films doped with magnetic elements, atten-
tion has been drawn to the fact that quantum anomalous Hall effect accompanying
ferromagnetic order is reported, but the subject of experimental research is almost
(Bi,Sb)2(Te,Se)3 or thin-film multilayer structuring of the system doped with it, and
the material variation is extremely poor. In the metallic phase of the pyrochlore type
Ir oxide, the existence of Weil electrons is suggested, but no direct experimental ev-
idence exists, and since a sample excellent in crystallinity is not obtained, quantum
derived from Weil electron Transport phenomena have not been observed. In this
way, research on a system having both magnetism and Dirac electrons is very limited,
and the degree of freedom of material design is further poor.

From this viewpoint, in this research, we focused on the material group related
to layered Dirac electron system SrMnBi2. This system has Dirac electrons in the
conductive layer Bi tetragonal lattice, while it contains Mn as a magnetic element
in the insulating layer and is one of the Dirac electron systems with few magnetism.
Dirac electrons are expected to be lost by the chemical substitution of Sr and Mn
in the insulating layer, because the bismuth square lattice of the conductive layer is
responsible for Dirac electrons. As a reinforcement of this speculation, the author has
obtained results suggesting the existence of Dirac electrons in (Ba,Sr)ZnBi2 which
has the same structure in the past. From this, it is expected that by replacing Sr
and Mn with magnetic elements, it is possible to introduce magnetism into the Dirac
electron system and to explore a novel magnetic transport phenomenon.

Among them, EuMnBi2 is expected to strongly influence the conduction of Dirac
electrons, since magnetic Eu ions exist adjacent to the Bi square lattice. Abnormality
of resistivity associated with antiferromagnetic transition and spin flop transition has
been reported so far but its detailed behavior and mechanism have not been clarified
at all.

In this research, we focused on EuMnBi2 in particular, and conducted research for
the following purposes.

• Detailed measurement of magnetic properties and transport properties over
a strong magnetic field will be conducted to explore a novel magnetic trans-
port phenomenon by combining the magnetism of Eu / Mn and the quantum
transport phenomenon of Dirac electrons.

• Detailed analysis of magnetic transport phenomena, and directly track changes
in electronic structure due to coupling with Eu / Mn magnetism.

• Through analysis of magnetic structures and comparison with similar sub-
stances, we approach the microscopic mechanism of observed magnetic trans-



1.5 Purpose of this thesis 25

port phenomena.
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Chapter 2

Experimental Methods

2.1 Single crystal growth
Single crystals of AMBi2 (A=Sr, Eu, Ba, M=Mn, Zn,Cd) were grown by the Bi
self-flux method. For EuMnBi2, high-purity ingots of Eu (99.9%), Mn (99.9%), and
Bi (99.999%) were mixed in the ratio of Eu/Mn/Bi = 1:1:9 and put into an alumina
crucible in an argon-filled glove box. The ratios of the mixture for other compounds
are shown in Tab. 2.1. The crucible was sealed in an evacuated quartz tube and
heated at T1 = 1000 ◦C for 10 hours, followed by slow cooling from T2 = 650 ◦C to
T3 = 400 ◦C at the rate of ∼ 2 ◦C/hour, where the excess Bi flux was decanted using
a centrifuge as shown in Fig. 2.1(a). The values of T1, T2 and T3 for other compounds
are shown in Tab. 2.1 Plate-like single crystals with atypical size of ∼ 5× 5× 1 mm3

shown in Fig. 2.1(b) were obtained.

T1	

T2	

T3	
decanting	

slow cooling 
~2 ℃/h	

~ 20 h	

(a)	 (b)	

Time	

Temperature	

Fig. 2.1 (a) Temperature profile for the single crystal growth of AMBi2. The
values of T1,2,3 for each compounds are shown in Tab. 2.1. (b) Single crystals of
EuMnBi2 grown by the self-flux method.
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compounds ratio of the mixture T1 (C◦) T2 (C◦) T3 (C◦)

EuMnBi2 Eu/Mn/Bi = 1 : 1 : 9 1000 700 400
EuZnBi2 Eu/Zn/Bi = 1 : 5 : 10 900 800 400

(Ba,Sr)ZnBi2 (Ba,Sr)/Zn/Bi = 1 : 2 : 10 900 650 400
(Eu,Sr)CdBi2 (Eu,Sr)/Cd/Bi = 1 : 5 : 10 900 650 400

Tab. 2.1 Details of the synthesis methods of AMBi2 (A=Sr, Eu, Ba, M=Mn,
Zn, Cd). Definitions of T1, T2 and T3 are shown in Fig. 2.1(a).

2.2 Evaluation of the crystal structure and the chemical

composition
The obtained samples were characterized by the powder x-ray diffraction technique
with a Cu Kα radiation on a Bruker D8 advance diffractometer. The crystal orien-
tation was determined from x-ray Laue patterns. The chemical composition of the
single crystals were determined by the EDX technique on a Hitachi Scanning Electron
Microscope S-4300.

2.3 Magnetization measurement
Magnetization up to 7 T were measured down to 1.9 K using Magnetic Property
Measurement System (QuantumDesign).

2.4 Electrical resistivity, Hall resistivity, Magnetoresistance
In-plane resistivity ρxx and Hall resistivity ρyx were measured by a conventional five-
terminal method with electrodes formed by room temperature curing silver paste as
shown in Fig. 2.2(a). The typical sample dimension is ∼2.0 mm (length) × 0.5
mm (width) × 0.1 mm (thickness). The voltage terminals were needed to cover the
whole thickness of the sample side to avoid the admixture of the interlayer resistance.
Interlayer resistivity ρzz was measured by a four-terminal method on bar-shaped
samples with a typical dimension of ∼1.5 mm in length along the c axis and ∼0.4 ×
0.4 mm2 in cross section as shown in Fig. 2.2(b). Current terminals were formed so
as to completely short out the in-plane current.

2.5 High-field mesurements
Measurements using the pulsed magnet
The magnetization and resistivity up to 55 T were measured using the nondestructive
pulsed magnet with a pulse duration of 36 ms at the International MegaGauss Science
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sample #ab1 (ρxx, ρyx) sample #c1 (ρzz) 

1 mm	 1 mm	

(a)	 (b)	

Fig. 2.2 Geometry of the samples and electrodes for the resistivity measurements.

Laboratory at the Institute for Solid State Physics. The measurement temperature
range was 1.9 to 150 K. The magnetization was measured by the induction method,
using coaxial pickup coils. The resistivity (ρxx, ρyx, and ρzz) was measured by a
lock-in technique at 100 kHz with ac excitation of 1 to 10 mA.

Measurement using the hybrid magnet
The resistivity measurement up to 28 T at ∼50 mK was performed with a lock-in am-
plifier at 17Hz with ac excitation of 100 mA by using a dilution refrigerator embedded
in the cryogen-free hybrid magnet at High Field Laboratory for Superconducting Ma-
terials in the Institute of Materials Research, Tohoku University[42].

2.6 Resonant x-ray magnetic scattering
Resonant x-ray magnetic diffraction measurements on EuMnBi2 and EuZnBi2 were
performed at BL-3A, Photon Factory, KEK, Japan, by utilizing the horizontally po-
larized x-ray in resonance with Eu L3 absorption edge (∼6.975 keV). We used a
relatively thick sample with the (0 0 1) and (1 0 L) natural facets (L ∼ 1 - 2) with a
dimension of ∼3 × 2 × 1.5 mm3. The (0 0 L) and (1 0 L) reflections were measured on
the (0 0 1) natural facet at the temperatures of 5 to 300 K by attaching the sample to
the cold finger of a He closed-cycle refrigerator on a four-circle diffractometer. The (4
0 1) and (3 0 0) reflections were measured on the (1 0 L) natural facet at the tempera-
tures from 5 K to 40 K in the magnetic field along the c axis using a superconducting
magnet equipped on a two-cycle diffractometer. For selected magnetic reflections, we
performed polarization rotation measurements, where the polarization of scattered
x-rays was analyzed by utilizing a Cu(110) single crystal. Unless otherwise stated,
the scattered x-rays were detected without analyzing polarization and hence include
both the σ′- and π′-polarization components. For all the measurements, we used a
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silicon drift detector.

2.7 Single crystal neutron diffraction
Single crystal neutron diffraction experiments on EuMnBi2 were carried out using
the time-of-flight single-crystal neutron diffractometer SENJU at the Materials and
Life Science Experimental Facility (MLF) of the Japan Proton Accelerator Research
Complex (J-PARC). The wave-length range of incident neutrons was selected to be 0.4
- 4.4 Å. A plate-like single crystal sample of EuMnBi2 with a dimension of 3× 3.5× 1
mm3 was chosen for the experiments. The neutron diffraction patterns in the magnetic
field along the c axis were measured using a vertical-field superconducting magnet
for the AFM phase (2 K, 6 T), SF phase (2 K, 6 T) and PM phase (25 K, 6 T),
respectively.

2.8 Electronic structure calculation
We performed first-principles band structure calculations using the density functional
theory with the generalized gradient approximation [100] and the projector augmented
wave method [101] as implemented in the Vienna ab initio simulation package [102,
103, 104, 105]. The spin-orbit coupling and the +U correction [106, 107] with Ueff

≡ U － J =2 eV for Eu-f electrons were included. Note here we did not include
the +U correction for Mn-d electrons, because the positions of the Mn-d bands in
SrMnBi2 are known to be well reproduced without the +U correction[39, 108]. For
all the calculations, a tetragonal unit cell containing four formula units was chosen in
order to represent the AFM orders of the Mn and Eu spins. The plane-wave cutoff
energy of 350 eV and a 16 × 16 × 4 k-mesh were used. Lattice parameters and
atomic coordinates were taken from experiment[44]. To see the dependence of spin
splitting on Ueff≡ U － J for Eu-f electrons, we also performed the calculations with
Ueff = 4 and 6 eV.
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Exploration of the AMBi2 phases

3.1 Characterization and the lattice parameters in AMBi2

phases
Fig. 3.1(a-c) show the powder x-ray diffraction profiles of EuMnBi2, SrMnBi2 and
EuZnBi2 at room temperature. All of these materials crystallizes in a tetragonal unit
cell with a space group of I4/mmm. The lattice constants estimated from the Le Bail
fitting of the measured profiles are shown in Tab. 3.1.

a (Å) c (Å)

EuMnBi2 4.5416(4) 22.526(2)
SrMnBi2 4.5609(4) 23.104(2)
EuMnBi2 4.6170(3) 21.354(2)

Tab. 3.1 Lattice parameters of AMBi2 (A=Sr, Eu, M=Mn, Zn) evaluated by
the powder x-ray diffraction profiles.

3.2 Coupling between the magnetic order and resistivity
FIg. 3.2 (a-c) show the temperature dependence of the magnetic susceptibility M/H
under the magnetic field along the c axis, the interlayer resistivity ρzz and the in-plane
resistivity ρxx, respectively, for EuMnBi2, SrMnBi2 and EuZnBi2.

For SrMnBi2, the antiferromagnetic order of the Mn sublattice is observed in the
magnetic susceptibility at TN (Mn)∼ 300 K as shown in Fig. 3.2(a). EuMnBi2 also
show the Mn antiferromagnetic order for below TN (Mn)∼ 315 K[44]. However, almost
no anomaly is observed in the interlayer and in-plane resistivity ρzz, ρxx at TN (Mn)
as shown in Fig. 3.2(b, c). This indicates that the Mn magnetic order barely affects
the transport properties of the Dirac fermion.

For Eu(Mn,Zn)Bi2, the antiferromagnetic order of the Eu sublattice is clearly ob-
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Fig. 3.1 Profiles of the 2θ− θ powder x-ray diffraction for EuMnBi2, SrMnBi2,
and (C) EuZnBi2 measured by Cu-Kα radiation at room temperature. The
numbers in each panel are Miller indices based on the space group I4/mmm. *
denotes the reflections from the Bi flux stuck to the crystal surfaces.

served in the magnetic susceptibility at TN (Eu)∼ 22 K as shown in Fig. 3.2(a). The
difference in M/H below TN (Eu) in Eu(Mn,Zn)Bi2 indicates the different orienta-
tions of the Eu moments in two compounds. Interestingly, both Eu(Mn, Zn)Bi2 show
clear cusp-like anomaly in ρxx and sharp increase in ρzz at TN (Eu). This evidences
that the magnetic order of the Eu sublattice strongly influences the conduction in
the adjacent Bi tetragonal lattice layer. On the other hand, it can be seen from
Fig. 3.2(c) that the ρzz value of (Sr, Eu)MnBi2 is larger than that of EuZnBi2 by
more than one order of magnitude in the entire temperature range. Furthermore,
broad maximum appears in ρzz of (Sr, Eu)MnBi2 at around 200 K, which signifies
the crossover from the high-temperature incoherent regime to the low-temperature
coherent interlayer conduction regime, typical of quasi-two-dimensional metals. ρxx,
on the other hand, shows metallic temperature dependence at all temperatures for all
the compounds. This indicates that the Mn layer increases ρzz and makes the system
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more two-dimensional.
Hence, in AMBi2, by tuning the magnetism in the insulating layer by chemical sub-

stitution, we can develop variety of magnetic Dirac materials with different strength
of the coupling between the magnetism and the transport or different two dimen-
sionalities. In the following chapters, we focus on EuMnBi2, which hosts strong two-
dimensionality and strong magnetism-transport coupling, and show that the quantum
transport properties of the Dirac fermion is strongly coupled to the Eu magnetic order.
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Fig. 3.2 Temperature dependence of the (a) magnetic susceptibility M/H
(0.1 T, H||c), (b) interlayer resistivity ρzz, and (c) in-plane resistivity ρxx for
SrMnBi2, EuMnBi2 and EuZnBi2. TN (Eu) and TN (Mn) are the antiferro-
magnetic transition temperatures for the Eu (EuMnBi2 and EuZnBi2) and Mn
(SrMnBi2 and EuMnBi2) sublattices, respectively.
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Chapter 4

Discovery of novel magnetic Dirac

material EuMnBi2

Here, By applying fields up to 55 T that enable complete control of the magnetic order
of Eu sublattice, we demonstrate its strong impact on interlayer hopping of quasi-2D
Dirac fermions on the Bi layer, which gives rise to the bulk multilayer quantum Hall
state.

4.1 Dirac fermions state coupled to the magnetic order
As shown in Fig. 4.1A, the magnetic susceptibility M/H parallel to the c axis for
EuMnBi2 steeply decreases below the antiferromagnetic (AFM) transition tempera-
ture TN ∼ 22 K, indicating that the Eu moments are aligned parallel to the c axis[44].
To reveal the AFM arrangement of the Eu sublattice, we have measured the resonant
x-ray scattering spectra near the Eu L3 absorption edge. At 5 K, we found the (0 0 11)
reflection at E = 6.975 keV that is forbidden in the present space group (I4/mmm)
(inset to Fig. 4.1B). Considering the evolution of the reflection intensity below TN

(Fig. 4.1B) and the observation of polarization rotation as well as a sharp resonance
at the Eu L3 edge (Fig. 4.7), it can be assigned to resonant magnetic scattering from
the Eu sublattice. In Sec. 4.3, we derive the most probable magnetic structure as
shown in Fig. 4.1E. The Eu moments order ferromagnetically in the ab plane and
align along the c axis in the sequence of up-up-down-down, where the Bi square net in-
tervenes between the Eu layers with magnetic moments up and down. This magnetic
arrangement can be regarded as a natural spin valve-like superstructure.
Figure 4.1 (C and D) shows the temperature profiles of in-plane (ρxx) and interlayer

(ρzz) resistivity for EuMnBi2, respectively. At 0 T below 120 K, both the ρxx and
ρzz curves show metallic behavior down to TN , but the anisotropy is fairly large
(for example, ρzz/ρxx ∼ 480 at 50 K at 0 T). At TN , we observed a small drop (or
cusp-like anomaly) in ρxx and a steep jump in ρzz toward the lowest temperature.
These transport properties seem to be consistent with the AFM order of the Eu layer;
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Fig. 4.1 Transport coupled with the magnetic order of Eu sublattice. (A to D)
Temperature dependence of magnetic and transport properties near the AFM
transition temperature (TN ) for EuMnBi2. (A) Magnetic susceptibility M/H
for the field parallel to the c axis (H||c) at 0.1 T (blue) and 7 T (red). Open
symbols are the data for the field perpendicular to the c axis (H ⊥ c) at 0.1 T. (B)
Intensity of resonant magnetic reflection (0 0 11) at 6.975 keV at 0 T. The inset
shows the profile of the (0 0 11) reflection along [001] at 6.975 keV (resonant)
and 7.00 keV (nonresonant). In-plane resistivity ρxx (C) and interlayer resistivity
ρzz (D) at 0 and 9 T (H||c). Schematic sample configuration for the resistivity
measurement is shown in each panel. emu/mol, electromagnetic unit per mole;
a.u., arbitrary unit. (E) Schematic illustration of the plausible magnetic structure
for EuMnBi2 at zero field, together with the formal valence of each ion. The
arrangement of the Mn sublattice is assumed to be the same as in SrMnBi2[45].
(F) Magnetic phase diagram for the Eu sublattice as functions of field (H||c)
and temperature. PM and AFM denote the paramagnetic and antiferromagnetic
states, respectively. Hf and Hc correspond to the transition fields to the spin-
flop AFM and PM (forced ferromagnetic) phases, respectively. Black arrows are
schematic illustration of the Eu moments sandwiching the Bi−1 layer. Note the
Mn sublattice orders at ∼ 315 K (> TN ).
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the interlayer conduction should be suppressed by the staggered Eu moments along
the c axis, whereas the ferromagnetic order within the plane may promote the in-
plane one. The application of the field parallel to the c axis has a strong impact on
the temperature profiles of ρxx and ρzz (red curves in Fig. 4.1, C and D). At 9 T,
ρxx(T ) exhibits marked positive magnetoresistance effects that evolve with decreasing
temperature down to ∼ 40 K, followed by a steep drop at TN . On the other hand,
ρzz(T ) at 9 T shows minimal (longitudinal) magnetoresistance effects above TN , but
shows a much larger jump on cooling at TN than that at 0 T. These suggest that
the increase of anisotropy in resistivity below TN is further enhanced at 9 T; the
increase in ρzz/ρxx with decreasing temperature from 25 K (just above TN ) to 2 K
exceeds 1000% at 9 T, whereas it is approximately 180% at 0 T. Judging from the
temperature profile of M/H at 7 T for H||c in Fig. 4.1A (and also magnetic phase
diagram in Fig. 4.1F), the Eu moments are oriented perpendicular to the c axis in
the AFM phase at 9 T, which appears to strongly suppress the interlayer conduction
between the Bi layers. We will again discuss the effect of the Eu spin flop on the
resistivity in terms of its field profile (vide infra).

The magnetotransport properties enriched by the Eu magnetic order are further
highlighted by the magnetization and resistivity measured in the magnetic field up
to 55 T applied along the c axis (Fig. 4.2). The magnetization at 1.4 K exhibits a
clear metamagnetic (spin-flop) transition at H = Hf (∼ 5.3 T), corresponding to the
reorientation of the Eu moments to be perpendicular to the field (Fig. 4.2A). In the
forced ferromagnetic state above Hc (∼ 22 T), the magnetization is saturated close
to 7 µB , reflecting the full moment of localized Eu 4f electrons. The temperature
variation of Hf and Hc is plotted in Fig. 4.1F , which forms a typical phase diagram
for an anisotropic antiferromagnet in the field parallel to the magnetization-easy axis.

The interlayer resistivity is markedly dependent on the AFM states of the Eu
sublattice (Fig. 4.2B). Above TN (at 27 and 50 K), ρzz is almost independent of
field, except for clear Shubnikov-de Haas (SdH) oscillations at 27 K. At 1.4 K, on
the other hand, ρzz exhibits a large jump at Hf , followed by giant SdH oscillations
that reach ∆ρosc/ρ ∼ 50%. This high-ρzz state is terminated at Hc, above which
the ρzz value is substantially reduced. The origin of such ρzz enhancement (that is,
suppression of interlayer coupling) in the spin-flop phase remains as an open question
at present: the interlayer charge transfer caused by the electron’s hopping on the local
Eu moments would not change, if Eu moments were simply reoriented perpendicular
to the c axis while keeping the same AFM pattern. We should note here that the
Mn sublattice that antiferromagnetically orders at ∼ 315 K[44] as well as the Eu
one play a vital role in achieving the high-ρzz state. As shown in the inset in Fig.
4.2B, the ρzz value at 0 T for EuZnBi2 is reduced to ∼ 1/25 of that for EuMnBi2,
although the plausible AFM order of Eu sublattice at 0 T for EuZnBi2 is analogous
to that in the spin-flop phase for EuMnBi2 (that is, the Eu moments are aligned in
the ab plane with staggered stacking along the c axis; see fig. 4.10E). For SrMnBi2,
on the other hand, the ρzz value at 0 T is comparable to that for EuMnBi2 but shows
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Fig. 4.2 Magnetic field dependence of magnetic and transport properties at
high fields. (A to D) M (A), ρzz (sample #3) (B), ρxx (C), and Hall resistivity
ρyx (sample #1) (D) for EuMnBi2 at selected temperatures for the field parallel
to the c axis up to ∼ 55 T. Schematic illustration of the Eu2+ moments adjacent
to the Bi layer for H < Hf , Hf < H < Hc, and Hc < H is presented in (A). The
inset in (B) shows the field profile of ρzz (below 9 T) for EuMnBi2, EuZnBi2,
and SrMnBi2. f.u., formula unit.
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Fig. 4.3 Field profile of (A) derivative of magnetization dM/d(µ0H), (B) in-
plane resistivity ρxx and (C) interlayer resistivity ρzz at 1.4 K between 14 T and
26 T. Red and blue lines denote the field-increasing and -decreasing runs, respec-
tively. The magnetization (or field derivative of magnetization) curve shows no
anomaly at 1.4 K around 20 T, where clear hysteretic anomaly is discerned in
the ρxx and ρzz curves.

a minimal magnetoresistance effect up to 9 T. The magnetic order in both the Eu
and Mn sublattices is thus essential for enhancing ρzz. As a possible model based on
these facts, the magnetic order of the Mn sublattice might be significantly modulated
upon the Eu spin flop due to the f − d coupling. It is also likely that we need to
take into consideration the anisotropy of Eu2+ 4f orbital induced by the crystal field
splitting[46], which might reduce wave function overlap with the Mn sites along the
c axis when the Eu moment and orbital rotate. Revealing the detailed mechanism
would, however, be an issue for future experimental and theoretical works.

Another important feature is that the ρzz peak around 20 T shows a sizable hys-
teresis between the field-increasing and field-decreasing runs. [Correspondingly, a
hysteretic anomaly also manifests itself in ρxx (Fig. 4.2C).] Because no clear anomaly
is discerned in the magnetization curve around 20 T (Fig. 4.3), the Eu moments play
a minor role; instead, a possible transition between the Landau levels with different
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spin orientation might be responsible for this hysteresis, as discussed below.
The in-plane resistivity exhibits a large positive (transverse) magnetoresistance ef-

fect, irrespective of the Eu magnetic order (Fig. 4.2C). At 50 K, the ρxx(H) profile is
strikingly H-linear without saturation up to 35 T, resulting in the magnetoresistance
ratio of ρ(H = 35T )/ρ(0) ∼ 2000%. Such large H-linear magnetoresistance is occa-
sionally observed in Dirac semimetals [47, 48, 49, 50, 51]. At lower temperatures, the
SdH oscillations are superimposed; at 1.4 K, in particular, the magnitude of oscilla-
tion is largely enhanced in the spin-flop AFM phase between Hf and Hc, similarly to
ρzz. The enhanced SdH oscillations in the spin-flop phase are also noticeable for the
Hall resistivity ρyx (Fig. 4.2D), which show plateau-like structures at 1.4 K. In the
following, we will analyze the details of ρyx plateaus in terms of the multilayer QHE
in the stacking 2D Bi layers.

4.2 Observation of the bulk multilayer quantum Hall effect in

the spin-flop phase
In Fig. 4.4A, we plot the inverse of ρyx at 1.4 K (spin-flop phase) as a function of
BF /B, where BF is the frequency of SdH oscillation and B is the magnetic induction.
BF /B is the normalized filling factor [corresponding to

(
n+ 1

2－γ
)
in Eq. 4.1[57],

which is used to compare the 2 samples with different BF (Table 4.1). The inverse of
ρyx also exhibits clear plateaus at regular intervals of BF /B, the positions of which
nicely correspond to deep minima in ρxx (Fig. 4.4B) and pronounced peaks in ρzz
(Fig. 4.4C). All these features signify the multilayer QHE, as previously observed
for the GaAs/AlGaAs superlattice[52, 53]. Although the ρxx minima do not reach
zero, ωcτ estimated from ρyx/ρxx is much larger than unity (for example, ∼ 5 at
around BF /B = 1.5 ;see fig. 4.5A), where ωc is the cyclotron frequency and τ is the
scattering time. What is prominent in the present compound is that the values of
1/ρyx are quantized to half-integer multiples, when scaled by 1/ρ0yx, the step size of
successive plateaus (see fig. 4.5B for definition). Given the conventional view of QHE,
this quantization of ρ0yx = ρyx leads to the normalized filling factor of n+ 1

2 , where n
is a nonnegative integer. This is consistent with the plateaus occurring at half-integer
multiples of BF /B (vertical dotted lines in Fig. 4.4A, where a small shift corresponds
to the phase factor as explained below). Such a half-integer (normalized) filling factor
is known to stem from the nontrivial π Berry’s phase of Dirac fermions [20, 21], which
in two dimensions leads to the Hall resistance quantized as follows[54, 55]

1

Ryx
= ±s

(
n+

1

2
− γ

)
e2

h
(4.1)

where e is the electronic charge, h is the Planck’s constant, s is the spin and valley
degeneracy factor, and γ is the phase factor expressed as γ = 1

2 − ϕB

2π , with ϕB

as the Berry’s phase[56]. The observed half-integer filling factor thus corresponds
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Fig. 4.4 Quantized Hall plateaus and SdH oscillations. (A) Normalized inverse
Hall resistivity ρ0yx/ρyx versus BF /B measured at 1.4 K for samples #1 and #2,
where BF is the frequency of SdH oscillation and B = µ0(H+M) is the magnetic
induction. 1/ρ0yx is the step size between the consecutive plateaus in 1/ρyx (see

fig. 4.5B). (B and C) ρxx, second field derivative － d2ρxx/dB
2 for sample #1

(B) and ρzz for sample #3 (C) versus BF /B measured at 1.4 K. Vertical dotted
lines denote half-integer multiples shifted by －γ, where γ ∼ － 0.1 is a phase
factor estimated from the fan plot. (Inset) Landau fan plot (1/B versus N) for
#1, #2, and #3. The slope and intercept with the N axis give BF and γ − δ,
respectively (Table 4.1). A phase shift δ should be negligibly small for a quasi-
2D Fermi surface, as discussed in the main text.
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Fig. 4.5 (A) Hall angle ρyx/ρxx (corresponding to ωcτ) The value of ρyx/ρxx =
ωcτ is larger than unity in the entire field range of the spin-flop phase and reaches
∼ 5 at around BF /B = 1.5. (B) Inverse Hall resistivity 1/ρyx versus BF /B at
1.4 K for sample #1, where BF is the frequency of SdH oscillation and B =
µ0(H + M) the magnetic induction. The data were taken in a field-decreasing
run. Horizontal lines in (B) denote the positions of 1/ρyx plateau, from which we
have estimated 1/ρ0yx, the step size between the consecutive plateaus. For sample

#1, for instance, the value of 1/ρ0yx is estimated to be ∼ 1.9× 103 Ω−1cm−1 (i.e.

1/ρ0yx ∼ 5.3× 10−4 Ωcm).

to γ ∼ 0, that is, nontrivial π Berry’s phase in the present QHE. Furthermore,
following standard analyses on the SdH oscillations using fan diagram, we plot the
values of 1/B at the ρxx minima [or ρzz maxima[52, 53]] against half-integers (Fig.
4.4, inset). On the basis of a semiclassical expression of oscillating part in ρxx[21, 57],
∆ρxx ∝ cos[2π(BF /B －γ+ δ)], a linear fitting yields γ－δ close to 0 (∼ － 0.1) for all
the samples (Table 4.1), where a phase shift δ is determined by the dimensionality of
the Fermi surface, varying from 0 (for 2D) to ±1/8 (for 3D). Because the value of δ
tends to be negligibly small for quasi-2D Fermi surfaces even in bulk materials[57, 58],
the fitted results indicate γ ∼ － 0.1, which again verifies the nonzero Berry’s phase
in this compound.

The quantization of ρ0yx/ρyx to half-integer multiples is well reproduced for two
samples (#1 and #2 in Fig. 4.4A). The thickness of sample #2 is 60% of that of
#1. Nevertheless, their difference in ρ0yx is only ∼ 10 %. This fact ensures that the
observed Hall plateaus are of bulk origin, which should be attributed to the parallel
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Sample
No.

ρij BF (T) γ (phase
factor)

Sample
thickness
(µm)

ρ0yx
(µΩcm)

s (de-
generacy
factor)

1 ρxx, ρyx 26.1(2) -0.12(4) 130 525 5.5
2 ρxx, ρyx 23.1(2) -0.12(2) 78 578 5.0
3 ρzz 19.5(1) -0.08(2) - -

Tab. 4.1 Parameters related to the SdH oscillations and quantized Hall plateaus
in the spin-flop phase (at 1.4 K and 5.3 to 22 T). BF and γ are the results of
linear fit to the Landau fan plot.

transport of the 2D Bi layers stacking along the c axis, as is the case for multi-
layer quantum Hall systems, including semiconductor superlattice[52, 59], Bechgaard
salts[60, 61], Mo4O11[62, 63], and Bi2Se3[64]. The inverse Hall resistivity is hence
expressed as 1/ρyx = Z∗/Ryx, where Z∗ = 1/(c/2) ∼ 8.9× 106

(
cm−1

)
is the number

of the Bi layers per unit thickness and c is the c axis length. This gives the step
size between the successive 1/ρyx plateaus as 1/ρ0yx = sZ∗ (e2/h), from which we
have estimated the degeneracy factor s to be ∼ 5 to 6, as shown in Table 4.1 (see
also fig. 4.5B).Provided that there exist four valleys in EuMnBi2[126] as is the case
of SrMnBi2[41, 66], s should be 8 (including double spin degeneracy). Even having
taken into account errors in sample thickness (±10 to 20%), the s value of 8 is some-
what larger than the estimated one, which may be attributable to the inhomogeneous
transport arising from dead layers and/or the imperfect contacts.

From the SdH frequencies in the spin-flop phase, we are capable of estimating the
2D carrier density per Bi layer at 1.4 K to be n2D = seBF /h ∼ 4.9 × 1012cm−2

assuming s = 8, which results in 3D density n3D = n2DZ∗ ∼ 4.4×1019 cm−3 (sample
#1). This is comparable to that estimated from ρyx at ∼ 20 T: nH = B/eρyx ∼
2.9 ± 0.2 × 1019cm－ 3, where errors arise from the oscillatory component. From the
value of residual resistivity ρ0, we have obtained the mobility µ = n3D/eρ0 ∼ 14, 000
cm2/Vs at ∼ 2 K, which attains a markedly high value despite the transport coupled
with the Eu magnetic order.

As shown in Fig. 4.4B, the N = 2 Landau level clearly splits into two peaks in
the second derivative of resistivity － d2ρxx/dB

2, whereas the splitting for N = 3
is barely discernible. This Landau level splitting is likely to be more pronounced
for N = 1 (at higher fields), supposedly forming a dip structure in ρxx as well as
－ d2ρxx/dB

2 around BF /B = 1. Unfortunately, only one of the split Landau levels
is accessible for N = 1, because the spin-flop phase is terminated at Hc (a spiky peak
in － d2ρxx/dB

2; see also Fig. 4.6). With further decreasing temperature down to
50mK, another Landau level splitting appears to evolve (thick arrow in Fig. 4.6).
Although the origin of these splittings is unclear at present, it should be relevant to
the spin and valley degrees of freedom, as is often the case in the conventional QHE
in semiconductor heterostructures [67]. It is surprising that such lifting of spin and
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Fig. 4.6 Hysteresis and split of the Landau level. ρxx as a function of 1/B at 50
mK and 1.4 K. The curve at 50 mK is shifted downward for clarity. The arrow
denotes the ρxx valley noticeable at 50 mK. Long solid and dashed lines indicate
the integer and half-integer multiple of BF /B －γ, respectively. Short solid line
denotes the position corresponding to the field H = Hc.

valley degeneracy is clearly observed at moderately high fields (∼ 20 T) even in the
bulk system. This may be indicative of a large Landé g factor and/or strong electron
correlations, characteristic of Dirac fermions formed on the Bi layer[73, 74, 75].

Finally, we mention the hysteretic anomalies in ρxx and ρzz around 20 T (Fig. 4.2).
It should be noted here that similar hysteretic phenomena of resistivity have been
discovered in many 2D electron gas systems in both the regimes of the integer[68, 69]
and fractional QHE[70, 71]. Their physical origin is considered to be relevant to
the crossing of Landau levels for electrons (or for composite fermions in the fractional
QHE) with different spin polarization[72], where magnetic domains are likely to form.
In the present compound, because the resistivity shows substantial hysteresis near
the transition between the split Landau levels (in the N = 1 state as shown in
Fig. 4.6), it might originate from the dissipative conduction along such domain walls.
Although detailed discussions about its mechanism are beyond the scope of the present
study, the observed distinct hysteresis may suggest the possible importance of the spin
polarization of Landau level for Dirac fermions.

4.3 Antiferromagnetic structure in the AFM phase
Figures 4.7A-C show resonant x-ray magnetic scattering profiles for EuMnBi2 mea-
sured at 5 K at zero magnetic field. In order to study the origin of the (0 0 11)
reflection shown in Fig. 4.1B, we performed energy scans near the Eu L3 absorption
edge (Fig. 4.7A). A single peak, suggesting the resonant nature of the reflection, was
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Fig. 4.7 Resonant x-ray magnetic scattering for EuMnBi2 near the Eu L3 ab-
sorption edge. (A) Energy scans at the (0 0 10) Bragg reflection and (0 0 11)
magnetic reflection with σ-incident polarization. (B), (C) Polarization analysis
of the (0 0 11) and (4 0 1) magnetic reflections at 5 K at 6.975 keV. The broad
peak denoted by × arises from an unknown powder line. Experimental setup is
shown schematically in each inset.

found at 6.975 keV, which arises from dipole resonant scattering involving transitions
from the core 2p state to the empty 5d one[76]. The 5d state should be polarized via
the onsite 4f − 5d mixing due to the locally broken inversion symmetry by crystal
field at the Eu site.

Additionally, the magnetic origin of the (0 0 11) reflection was evidenced by polar-
ization analysis (Fig. 4.7B). The magnetic form factor (fmag

i ) of the ith Eu magnetic
moment in the electric-dipole transition is described as

fmag
i ∝ (e× e′) ·Mi , (4.2)

where e and e′ denote unit vectors of the incident and scattered polarization, re-
spectively, and Mi denotes the direction of the ith Eu magnetic moment[77]. In
the current experimental configuration, magnetic scattering contributes only to the
rotated σ − π′ channel, while charge scattering contributes to the unrotated σ − σ′

channel. As shown in Fig. 4.7B, the (0 0 11) reflection was observed in the σ − π′

channel but not in the σ − σ′ channel, which suggests the magnetic origin of this
reflection.

In order to determine the orientation of the Eu magnetic moments, we performed
polarization analysis for the (4 0 1) magnetic reflection. Since the π-incident polariza-
tion is nearly parallel to the ab plane in measuring this reflection (Inset to Fig. 4.7C),
the magnetic scattering by the c (ab) component of the magnetic moments should be
observed in the π − π′ (π − σ′) channel. As shown in Fig. 4.7C, magnetic reflection
was detected in the π − π′ channel but not in the π − σ′ channel, which suggests
that the Eu magnetic moments are aligned along the c axis at 5 K at zero magnetic
field. This result is consistent with the magnetization data for the AFM the phase
(see Figs. 4.1A and 4.2A in the main text).

Next, we discuss the magnetic structure of EuMnBi2. From the observation of
the (0 0 11) and (4 0 1) magnetic reflections, the magnetic order of Eu sublattice
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Fig. 4.8 (A) Three types of Eu moment arrangement at 5 K. (B) Extinction rule
obtained by calculating Icalc for each magnetic structure. Allowed and forbidden
reflections are denoted by ◦ and ×, respectively.

is characterized by a (001) reciprocal vector, which indicates that the Eu magnetic
moments order ferromagnetically within the ab plane and antiferromagnetically along
the c axis. However, there remain three types of stacking sequences of ferromagnetic
layers along the c axis, as depicted in Fig. 4.2A. In the following, we show that type 2
in Fig. 4.1A is the most plausible, based on the comparison between the calculations
and experimental data. The intensity of magnetic scattering Icalc is expressed as

Icalc =

∣∣∣∣∣∑
i

eiq·rifmag
i

∣∣∣∣∣
2

=

∣∣∣∣∣(e× e′) ·
∑
i

eiq·riMi

∣∣∣∣∣
2

, (4.3)

where ri is the position of the ith Eu site taken from Ref. [44] and fmag
i is the magnetic

form factor of the ith Eu moment given in Eq. 4.3. Considering the extinction rules
obtained by calculating Icalc for the three types of magnetic order (Fig. 4.8B), the
observation of (0 0 11) magnetic reflection suggests that the structures type 2 and
type 3 remain as possible candidates. On the other hand, no signal was observed at
around (3 0 0) (Fig. 4.9B), which suggests that only the structure type 2 satisfies the
extinction rules. In addition, we have measured the intensities (Iobs) of several (0 0 L)
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Fig. 4.9 Determination of magnetic structure of Eu sublattice for EuMnBi2.
(A, B) Scans around the (4 0 1) and (3 0 0) reflections at 5 K at 6.975 keV
with π-incident polarization. (C) Comparison between the observed (Iobs) and
calculated (Icalc) intensities of the (0 0 L = odd) and (1 0 L = even) magnetic
reflections at 5 K.

(L = odd) and (1 0 L) (L = even) magnetic reflections and compared them with the
calculated intensities Icalc for type 2 and type 3 (Fig. 4.9C). Measured intensities are
in excellent agreement with the calculation results for type 2, which again supports
type 2 as the most probable Eu moment arrangement.

4.4 Magnetic properties of EuZnBi2
As shown in Fig. 4.10A, the magnetic susceptibility (M/H) for EuZnBi2 steeply
drops below TN (∼ 20 K) for H|| [100], whereas it is almost constant below TN for
H|| [001]. This indicates that the Eu moments are oriented perpendicular to the c axis
in the AFM phase at 0 T for EuZnBi2, in contrast to EuMnBi2. The magnetization
almost linearly increases with increasing field for both H|| [100] and H|| [001], whereas
we observed a weak anomaly around 1 T in the profile for H|| [110] (Fig. 4.10B),
which suggests the Eu moments tend to be oriented parallel to the [110] direction in
the AFM phase due to a weak anisotropy within the ab plane. To study the AFM
arrangement for EuZnBi2, we have measured the resonant x-ray magnetic scattering
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Fig. 4.10 Magnetization and resonant x-ray magnetic scattering near the Eu L3

absorption edge for EuZnBi2. (A) Temperature profile of magnetic susceptibility
along [001] (red symbols) and [100] (blue) measured at 0.1 T. (B) Field profiles
of magnetization for along [001] (red), [100] (blue) and [110] (green) at 1.9 K.
(C) Profile of the (0 0 7) magnetic reflection along [001] at 6.975 keV at 5 K
(below TN ) and 30 K (above TN ). The inset shows schematic illustration of the
measurement configuration. (D) Energy profile of the (0 0 7) magnetic reflection
at 5 K. (E) Schematic illustration of the plausible magnetic structure for EuZnBi2
at 0 T.

at E = 6.975 keV (near the Eu L3 absorption edge). We clearly observed the (0 0
L) (L = odd) magnetic reflections below TN , in analogy with EuMnBi2. As a typical
example, Figs. 4.10C and 4.10D present the profiles of the (0 0 7) reflection along
[001] at 5 K (below TN ) and 30 K (above TN ), and its energy scan at 5 K, respectively.
The overall features are quite similar to those observed in EuMnBi2. Based on these
data, we can naturally assume that EuZnBi2 hosts the same AFM stacking sequence
along the c axis as EuMnBi2 (type 2 in Fig. 4.8), which results in the AFM order
shown in Fig. 4.10E as a plausible model at 0 T. There the magnetic structure of the
Eu sublattice is analogous to those in the spin-flop AFM phase for EuMnBi2.

4.5 Summary for Chap.4
In this chapter,, we have presented a marked tuning of magnitude in inter-layer con-
duction of quasi-2D Dirac fermions, utilizing the AFM order of Eu moments. In
addition to the staggered moment alignment along the c axis, the field-induced flop of
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the Eu moment direction appears to further reduce the interlayer coupling and hence
confine the Dirac fermions within the constituent 2D Bi layer well enough to quantize
the Hall conductivity in a bulk form. Such a magnetically active Dirac fermion system
would form a promising class of spintronic materials with very high mobility.
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Chapter 5

Investigation of the coupling between

Dirac fermion and magnetism in

EuMnBi2

5.1 Magnetic structure of EuMnBi2
Among the magnetic Dirac materials, EuMnBi2 is a rare compound that exhibits
quantum transport of Dirac fermions coupled with the field-tunable magnetic
order[43]. EuMnBi2 has a layered structure consists of Bi square nets hosting
two-dimensional Dirac fermion and the insulating layers hosting magnetic Eu2+ and
Mn2+ ions as shown in Fig. 5.1(a, b). In this system, the magnetic order of the Eu
sublattice is modulated by the temperature and the external magnetic field (H||c)
as shown in Fig. 5.1(c). The magnetic order highly enriches the quantum transport
properties of the Dirac fermion. Namely, the interlayer conduction is dramatically
suppressed in the field-induced spin-flop AFM (SF) phase, leading to the giant
magnetoresistance effect in the interlayer resistivity ρzz. Furthermore, the enhanced
two-dimensionality leads to the multilayer quantum Hall effect in a bulk crystal,
which is signified by the giant SdH oscillations and the plateau-like structures in the
Hall resistivity. However, detailed mechanisms of the coupling between the magnetic
order and the Dirac fermion remain unclear.

In order to reveal the coupling between the quantum transport of the Dirac fermion
and the magnetic order in EuMnBi2, detailed information on the magnetic structure
is indispensable. In the previous report we derived a probable antiferromagnetic
structure of the Eu sublattice for the AFM phase by the resonant x-ray magnetic
diffraction measurements[43]. The magnetic structure of the Mn sublattice, which
shows antiferromagnetic order below TN (Mn) ∼ 315 K[44], is suggested to be the
same as in isostructural SrMnBi2[45], although no direct evidence is reported so far.
The magnetic structure for the SF phase is not investigated, although the Eu moments
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Fig. 5.1 (a, b) Antiferromagnetic structures in EuMnBi2 for the AFM (3 K, 0 T)
and SF (3 K, 6 T, a−domain) phases, respectively. The magnetic structures were
obtained by the present work, while the atomic positions were reproduced from
Ref. [44]. The crystallographic unit cell is shown by the solid lines. (c) Magnetic
phase diagram of the Eu sublattice as functions of magnetic field (H||c) and
temperature. Note that the Mn moments show antiferromagnetic order below
TN (Mn) ∼ 315 K. Reproduced from Ref. [43] for readability.
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Fig. 5.2 Single-crystal neutron diffraction intensity distributions of EuMnBi2
on the (H 0 L) reciprocal lattice planes for the (a) PM (25 K, 6 T), (b) AFM
(2 K, 0 T) and (c) SF (2 K, 6 T) phases, respectively. The blue arrows in (b, c)
indicate the Eu magnetic reflections that satisfy the conditions of H +K + L =
odd, L ̸= 0. The ring-like intensities correspond to the powder lines which may
arise from aluminum in the sample holder or bismuth flux stuck to the crystal
surfaces.

are suggested to be reoriented to be perpendicular to the c axis. Furthermore, the
magnetic arrangement of the Mn sublattice is possibly modulated by the interaction
between the Eu and Mn moments in the SF phase. The focus of the present research
is to reveal the antiferromagnetic structure of both the Eu and Mn sublattices with
particular focus on the SF phase,utilizing the single crystal neutron and resonant
x-ray magnetic diffraction measurements under magnetic fields.

5.1.1 Neutron diffraction profiles

Figures 5.2(a-c) show the neutron diffraction intensity distributions on the (H 0 L)
reciprocal lattice plane in the PM (25 K, 6 T), AFM (2 K, 0 T) and SF (2 K, 6 T)
phases. The obtained lattice parameters for the AFM phase were a = 4.4988(2) Å
and c = 22.799(10) Å, which are comparable to those estimated from the powder
x-ray diffraction[43].

In the PM phase, a sufficient number of reflections were observed under the condi-
tion of H +K + L = even, which follows the extinction rule of I4/mmm symmetry
of the crystal. No superlattice reflection was observed, although the Mn moments
are ordered antiferromagnetically below TN (Mn) ≃ 315 K. This result suggests that
the magnetic reflections from the Mn moments are superposed on the nuclear Bragg
reflections and also follow the condition of H +K + L = even. Measurements at the
temperatures above TN (Mn) is not performed in the present research.

The Mn antiferromagnetic arrangement for the PM phase is derived as follows.
The integer diffraction indices HKL of the Mn magnetic reflections reveal that the
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magnetic arrangement of the Mn sublattice is described by the propagation vector
of q = (0, 0, 0). Mn magnetic reflections follow the condition of H +K + L = even,
indicating that the body-centered translation symmetry of the crystal is retained by
the Mn magnetic order. It follows that among the four Mn sites in a unit cell, two
sites related by the body-centered translation (e.g. (1/2, 0, 1/4) and (0, 1/2, 3/4);
see Fig. 5.1[a]) host Mn moments parallel to each other.

Furthermore, magnetization measurements imply the Mn antiferromagnetic order
with the Mn moments parallel to the c axis below TN (Mn)[44]. These considerations
indicate the checkerboard-type AFM order as shown in Fig. 5.1(a) with an antiferro-
magnetic arrangement for both the in-plane and out-of-plane nearest neighbors.This
magnetic arrangement is the same as that in isostructural SrMnBi2[45].

In the AFM phase (Fig. 5.2[b]), superlattice reflections from the Eu magnetic
moments were observed at the positions of H + K + L = odd, L ̸= 0. This re-
sult is consistent with the previous results of the x-ray resonant magnetic diffraction
measurements[43]. The integer diffraction indicesHKL of the Eu magnetic reflections
reveal that the magnetic arrangement of the Eu sublattice is also described by the
propagation vector of q = (0, 0, 0). The violation of the extinction rule means that
the Eu antiferromagnetic order breaks the body-centered translation of the crystal.
Therefore among the four Eu sites in a unit cell, two sites related by the body-centered
translation, e.g. (0, 0, +z0) and (1/2, 1/2, 1/2+ z0), z0 ∼ 0.11[44], host Eu moments
antiparallel to each other. Furthermore, the absence of L = 0 Eu magnetic reflections
indicate that two Eu sites facing across the Bi square net layer, e.g. (0, 0,+z0) and
(0, 0,−z0), host Eu moments antiparallel to each other. Above considerations indicate
the antiferromagnetic arrangement as shown in Fig. 5.1(a), where the Eu moments
order ferromagnetically within the ab plane and align antiferromagnetically along the
c axis in the sequence of up-up-down-down[43].

The diffraction intensity distribution for the SF phase (Fig. 5.2[c]) is qualitatively
similar to that for the AFM phase, suggesting that the magnetic arrangement for
the SF phase is similar to that for AFM phase except for the orientations of the
magnetic moments. Figures 5.3(a) and (b) show the integrated intensities of the (1
0 L) (−2 ≤ L ≤ 3) and (0 1 L) (−3 ≤ L ≤ 2) reflections, respectively, in the PM,
AFM and SF phases. Reflections of L = odd, i.e. H+K+L = even, arising from the
nuclear and Mn magnetic reflections show comparable intensities in PM, AFM and
SF phases. This result imply that the Mn moments show similar magnetic structures
in three phases, which will be discussed more quantitatively in Sec. 5.1.3. On the
other hand, intensities of the L = even Eu magnetic reflections in the SF phase are
significantly smaller than that in the AFM phase. In the AFM phase, intensities of
the (1 0 ±2) and (0 1 ±2) Eu magnetic reflections are comparable to each other,
indicating that the Eu moments are aligned parallel to the c axis and the four-fold
rotational symmetry along the c axis of the crystal is retained. In the SF phase, on
the other hand, intensities of the (1 0 ±2) Eu magnetic reflections are significantly
larger than those of the (0 1 ±2) reflections. These results are interpreted in terms



5.1 Magnetic structure of EuMnBi2 55

6

4

2

0

I  
(a

.u
.)

3210-1-2
L (r. l. u.)

-3 -2 -1 0 1 2
L (r. l. u.)

S || c  

(AFM) 

            S || b  

(SF, b-domain) 

Q = (1, 0, L) 

   S || a 

(SF, a-domain) 

S || c  

(AFM) 

            S || b  

(SF, b-domain) 

Q = (0, 1, L) 

   S || a 

(SF, a-domain) 

(a) (1 0 L) (b) (0 1 L) PM

AFM

SF

L (r. l. u.) 

Fig. 5.3 Integrated intensities of the (a) (1 0 L) (−3 ≤ L ≤ 2) and (b) (0 1 L)
(−2 ≤ L ≤ 3) reflections in the AFM (2 K, 0 T), SF (2 K, 6 T) and PM (25 K,
6 T) phases. Each inset show the schematic descriptions of the directions of the
scattering vectors Q = (0, 1, L) and (1, 0, L) (L ≃ 2), along with the directions

of the Eu moments Ŝ in the AFM and SF phases.

of the reorientation of the Eu moments to the a or b directions in the SF phase.
The neutron magnetic diffraction intensities arise from the component of the mag-

netic moments perpendicular to the scattering vectorQ. SinceQ = (1, 0,±2) is nearly
parallel to the a axis as shown in the inset of Fig. 5.3(a), the (1 0 ±2) magnetic re-
flections mainly arise from the c and b component of the Eu moments. Similarly,
the (0 1 ±2) reflections arise from the c and a component of the Eu moments (inset
to Fig. 5.3[b]). Eu moments are aligned parallel to the c axis in the AFM phase,
arising the large and comparable intensities of the (1 0 ±2) and (0 1 ±2) Eu mag-
netic reflections. In the SF phase intensities of the (1 0 ±2) magnetic reflections are
larger than those of the (0 1 ±2) reflections, indicating that the major number of
Eu moments are oriented along the b direction and the others are oriented along the
a direction. This implies that in the SF phase, 2 types of domains exist where Eu
moments are aligned parallel to the a and b axis (mentioned as a− and b−domains
in the following), and the b−domain is somewhat dominant. The b−domain is likely
favored due to the small misalignment of the magnetic field away from the c axis[].
Quantitative estimate of the domain population is given in Sec. 5.1.3.

5.1.2 Resonant x-ray magnetic diffraction

The different orientation of the Eu moments in the AFM and SF phases are also
signified by the resonant x-ray magnetic reflection measurements. (4 0 1) Eu magnetic
reflection was observed at the Eu L3 absorption edge (E = 6.975 keV) in the AFM
phase (5 K, 0 T) as shown in Fig. 5.4(a). The (4 0 1) reflection was not observed for
the non-resonant x-ray (E = 7 keV), supporting the resonant nature of the (4 0 1)



56Chapter 5 Investigation of the coupling between Dirac fermion and magnetism in EuMnBi2

1

0

2

1

0
86420

µ0H (T)

I 
(a

.u
.)

I 
(a
.u
.)

I 
(a

.u
.)

4.014.003.99
H in (H 0 1)

(b) π - π’ 

× 

× 

(c) π - σ’ 

(a) π - π’+σ’ 
(4 0 1) 
H || c 

5 K 

× 

● AFM 
● SF 
● AFM, non- 

   resonant 

AFM SF H
f 

P = 1 

P = 0 

I(
H

) 
/ 
I A

F
M

 
w

(H
) 

(1
0

-3
 r
. 
l.
 u

.)
 

(d) 

(e) 
π′ 

c 

π 
b 

σ′ 

c 

π 
b 

Fig. 5.4 (a) Peak profiles of the (4 0 1) resonant x-ray reflection along [1 0 0]
at Eu L3 edge (E = 6.975 keV) for the AFM (5 K, 0 T) and SF (5 K, 7 T)
phases[43]. Peak profile at non-resonance (E = 7 keV) for the AFM phase is
also shown. The broad peak denoted by × arises from an unknown powder line.
The inset shows the schematic configurations for the measurements. (b, c) Peak
profiles of the (4 0 1) resonant x-ray magnetic reflection in the (b) π − π′ and
(c) π−σ′ channels, respectively. Schematic configurations for the measurements
are shown in each inset. (d, e) Magnetic field dependence of the normalized
intensity and the FWHM along [1 0 0] of the (4 0 1) resonant x-ray magnetic
reflection. IAFM is the averaged intensity for the AFM phase at 5 K. The vertical
dashed line denote Hf ≃ 5.3 T, the transition field from the AFM phase to the
SF phase[43]. The horizontal lines in (d) indicate the ratio of the intensities for
the SF and AFM phases ISF/IAFM calculated using Eq. 5.2 for fully polarized
spin-flop domains (P = 0 or P = 1).
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Eu magnetic reflection. The (4 0 1) magnetic reflection was also observed in the SF
phase with a lower intensity than that in the AFM phase, indicating the reorientation
of the Eu moments.

In order to determine the orientation of the Eu moments, we performed the po-
larization analysis for the magnetic reflection. The (4 0 1) magnetic reflection was
observed in the π−π′ channel for the AFM phase, while it was observed in the π−σ′

channel for the SF phase (Fig. 5.4[b, c]). The magnetic form factor fmag of the Eu
magnetic moment M in the electric-dipole transition is given as

fmag ∝ (ê× ê′)× M̂ (5.1)

, where ê and ê′ are the unit vectors of the incident and scattered polarization re-
spectively. Eq. 5.1 shows that the resonant x-ray magnetic reflection arises from the
component of the magnetic moment M perpendicular to both ê and ê′. As seen from
the inset to Fig. 5.4(b), observation of the magnetic reflection in the π − π′ channel
for the AFM phase reveals that the Eu moments are parallel to the c axis.On the
other hand, observation of the magnetic reflection in the π − σ′ channel for the SF
phase reveals that the Eu moments are pependicular to the c axis in the SF phase
(see the inset to Fig. 5.4[c]).

Figures 5.4(d, e) show the magnetic field dependence of the intensity and the
FWHM along [1 0 0] of the (4 0 1) resonant x-ray magnetic reflection. The re-
flection intensity shows a sharp drop at Hf ∼ 5.3 T due to the spin-flop transition.
Ratio of the averaged intensities for the AFM phase (0, 2, 4, 5 T) and that for the
SF phase (5.5, 6, 6.5, 7 T) was ISF/IAFM = 0.482(19). Utilizing Eq. 5.1, this ratio is
calculated as

ISF
IAFM

≃ P

4 cos2 θ
+

1− P

4 sin2 θ
(5.2)

Here, θ ≃ 52◦ is the scattering angle, and P is the population of the a−domain. The
angle between the scattering plane and the ab plane (∼ 3◦) is neglected. Eu moments
are assumed to align parallel to the c axis in the AFM phase, a and b axis for the
a− and b−domains respectively in the SF phase. Comparing this formula and the
observed ratio, the domain ratio is evaluated as P = 0.31(8). The FWHM of the
(4 0 1) magnetic reflection slightly increases above Hf ∼ 5.3 possibly due to small
spin-flop domains in the SF phase.

5.1.3 Quantitative analysis on the neutron diffraction data

We have qualitatively discussed the results of the neutron diffraction and the resonant
x-ray diffraction. The Mn magnetic structures for the PM and AFM phases and the Eu
magnetic structures for the AFM and SF phases were revealed. Here, the quantitative
analysis on the neutron diffraction intensities is presented, with a particular focus on
the Mn magnetic structure for the SF phase.
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Fig. 5.5 Comparison between the observed and calculated ratio of the intensities
for the SF and AFM phases in EuMnBi2. Inset depicts the magnetic structure
for the SF phase, along with the definition of θEu.

The neutron diffraction intensities were corrected for several crystal orientations in
the PM, AFM and SF phases. The observed ratios of the intensities in the SF and
AFM phases ISF/IAFM are plotted against the calculated ones in Fig. 5.5. Here, the
magnetic structure for the AFM phase as shown in Fig. 5.1(a) was assumed based on
the discussions in Sec. 5.1.1. For the SF phase, Eu moments are assumed to be canted
by θEu from the a (population P ) or b (1−P ) directions to the direction of the magnetic
field (inset to Fig. 5.5). As we discussed in Sec. 5.1.1 the Mn magnetic structure for
the SF phase is not dramatically different from those for the PM and AFM phases.
Therefore the Mn magnetic structure for the SF phase was first assumed to be the
same as that for the AFM phase, and then was assumed to be slightly modulated
by the interaction with Eu moments. The crystal structure parameters were also
fixed to the literature value[44]. The amplitude of the Eu magnetic moment MEu

was fixed to 6.4 µB, the high-field saturated magnetization value of EuMnBi2 at 1.4
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Fig. 5.6 Observed neutron reflection intensities as a function of sin θ/λ, which
is proportional to the magnitude of the scattering vector |Q|. Eu magnetic
reflections under the condition of H + K + L = odd rapidly decreased their
intensities with increasing sin θ/λ and were not observed in the range of sin θ/λ >
0.5 Å−1. This behavior reflects the decrease in the magnetic form factor fEu (Q)
with increasing |Q|. Therefore the reflection intensities in the range of sin θ/λ >
0.5 Å−1 are not informative of the magnetic structure and were not used for the
qualitative analysis, where the atomic positions were fixed to the literature value.

K[43]. The amplitude of the Mn magnetic moment MMn was also fixed to 3.4 µB, the
amplitude of the Mn magnetic moment in isostructural SrMnBi2 deduced from the
neutron diffraction experiment[45]. The magnetic form factors of Eu and Mn were
assumed to be Eu2+ ⟨j0⟩ and Mn2+ ⟨j0⟩ respectively. Two parameters, P and θEu,
were refined using 126 reflections under the condition of H +K + L = even and 48
reflections under the condition of H + K + L = odd that satisfy sin θ/λ < 0.5 Å−1

and I > 3σ (see Fig. 5.6 for details).
As shown in Fig. 5.5 relatively good agreement between the observed and calculated

ISF/IAFM was obtained, with the reasonable reliable factors R1 =5.8%, wR2 =7.5%
and the goodness of fit S = 1.38. The refined domain population P = 0.304(7)
indicates sufficient dominance of the b−domain over the a− domain in the SF phase,
which is likely due to the misalignment of the magnetic field away from the c axis. The
refined canted angle of the Eu moments θEu = 9.6(9)◦ indicates the net magnetization
ofMEu sin θEu = 1.06(10) µB/Eu, which is in rough agreement with the magnetization
of 1.6 µB/f.u observed at 1.4 K, 6 T[43].

It should be noted here that the intensity ratios for the SF and AFM phases
ISF/IAFM, rather than the intensities itself, were used for the quantitative analy-
sis in order to avoid the effect of strong neutron absorption by Eu. Since the neutron
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Fig. 5.7 (a) Schematic description of the antiferromagnetic structure in the SF
phase of EuMnBi2, where the Mn moments are assumed to be canted parallel
to the adjacent Eu moments. The definitions of θEu and θMn are also shown.
(b-e) Comparison between the observed and calculated ratio of the intensities for
the SF and AFM phases in EuMnBi2. θMn is (b) fixed to 0◦ (same as Fig. 5
in the main text), (c) refined, (d) fixed to 10◦ and (e) fixed to −10◦ during the
refinement, respectively.

absorption cross section is independent of the external magnetic field or the mag-
netic structure, ISF/IAFM is in principle unaffected by the neutron absorption when
IAFM(Q) and ISF(Q) were measured in the same crystal configuration. Analysis using
the reflection intensities by applying the absorption correction is not performed due
to the limited Q−window by the superconducting magnet in the present experiment.

We further proceeded our analysis by assuming the magnetic structure for the
SF phase, where the Mn moments are canted to the in-plane direction due to the
interaction between the Eu and Mn moments (Fig. 5.7[a]).

Here, the magnetic structure of the Mn moments for the SF phase is examined in
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detail. It is likely that some interaction exist between the Eu moments and the Mn
moments in EuMnBi2. Due to this interaction, the reorientation of the Eu moments
may have some influence on the Mn magnetic structure for the SF phase. In Fig. 5.5,
we assumed that the Mn magnetic structure for the SF phase is the same as that for
the AFM phase and obtained a relatively good agreement between the observed and
calculated intensity ratio ISF/IAFM. Although this suggests that the Mn magnetic
structure for the SF phase is not dramatically changed from that for the AFM phase,
the possibility exists that there is a slight change. Here, we first consider how the
interaction between the Eu and Mn moments can influence the Mn magnetic struc-
ture, based on the crystal structure and the magnetic structure of the Eu and Mn
moments. Based on that consideration, we create a magnetic structure model for the
SF phase and perform the quantitative analysis of the neutron diffraction intensity
ratio ISF/IAFM.

Each Mn site has four nearest neighbor Eu sites, and the Eu moments of those
sites are all oriented in the same direction in the AFM and SF phases (see Fig. 1
in the main text). Therefore, as a result of the interaction with the Eu moments,
Mn moments are considered to be under a mean field parallel or antiparallel to the
surrounding Eu moments. Especially in the SF phase, since this mean field is parallel
to the a or b direction, it is expected that the Mn moments will be slightly canted
in that direction. As a result, is is expected that the magnetic structure shown in
Fig. 5.7(a) is realized in the SF phase, where the Mn moments are canted parallel
or antiparallel to the surrounding Eu moments. Here, θMn is the cant angle of the
Mn moments, and θMn = 0◦ correspond to the case where the Eu-Mn interaction is
neglected (same as the inset to Fig. 5 in the main text). θMn > 0◦ and θMn < 0◦

should be realized when the Eu-Mn interaction is ferromagnetic or antiferromagetic,
respectively.

Utilizing this magnetic structure model, we performed the quantitative analysis of
the neutron diffraction intensity ratio ISF/IAFM (Fig. 5.7[c]). The obtained θMn =
−0.8(6)◦ is small and the agreement between the observed and calculated ISF/IAFM

did not show significant improvement compared to that obtained when θMn is fixed
to 0◦ (Fig. 5 in the main text; reproduced in Fig. 5.7[b]). Furthermore, when θMn

is fixed to ±10◦, the agreement between the observed and calculated ISF/IAFM was
significantly worsened (Fig. 5.7[d, e]). These result reveal that θMn is equal to 0◦ and
the Mn magnetic structure in the SF phase is the same as that in the AFM phase
within the experimental accuracy. This is probably because the interaction between
the Eu moments and the Mn moments is much weaker than that between the Mn
moments.

5.1.4 Summary for Chap. 5.1

In summary, we have presented an investigation of the magnetic structure in EuMnBi2
by the single crystal neutron diffraction and the resonant x-ray magnetic diffraction
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Fig. 5.8 (a) Interlayer resistivity ρzz as a function of inverse magnetic field
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for the AFM phase (H < Hf ) at selected temperatures. The shadowed region in
(a) correspond to the PM (paramagnetic) phase (H < Hc).

measurements. Mn moments show checkerboard-type AFM order with an antiferro-
magnetic arrangement for both the in-plane and out-of-plane nearest neighbors, with
moments parallel to the c axis. Eu moments show antiferromagnetic order where
ferromagnetic layers within the ab plane are stacked antiferromagnetically along the
c axis in the sequence of up-up-down-down. Eu moments are aligned parallel to the
c axis in the AFM phase, while they are reoriented parallel to the a or b axis with
spin-flop domains. Mn magnetic structure is unaffected by the reorientation of the
Eu moments within the experimental accuracy. These results offer a concrete basis to
reveal the coupling between the Dirac fermion and the magnetic order in EuMnBi2
in future studies.

5.2 Impact of the antiferromagnetic order on the Dirac

electronic structure

5.2.1 SdH oscillations in the AFM and SF phases

Figure 5.8 shows ∆ρzz, the SdH oscillatory components of the interlayer resistivity
ρzz for the magnetic field along the c axis (H||c) for the AFM and SF phases at
selected temperatures. As seen from Fig. 5.8, the SdH periods are comparable for
the AFM and SF phases. In Fig. 5.9 we show the Fourier transform of ∆ρzz for
two phases. The FFT spectrum shows a peak at F ∼ 20 T both for the AFM and
SF phases as summarized in Tab.5.1, indicating that the Fermi surface cross sections
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Lifshitz-Kosevich formula(Eq. 5.3).
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SF AFM

SF (nm−2) 0.191 0.190
0.132

mc/m0 0.122(2) 0.097(2)
τ (ps) 0.29(16) 0.20(3)

Tab. 5.1 SdH parameters for the SF and AFM phases. SF = 2πeF/ℏ is the
extremal cross section of the Fermi surface obtained from the SdH frequency F .
mc/m0 is the cyclotron mass in unit of the bare electron mass m0. τ is the
scattering time.

are similar for the two phases. This suggest that the Fermi surface volume (i.e.
carrier number) is comparable for the two phases, which is consistent with the Hall
resistivity ρyx showing almost no anomaly at the transition from the AFM to the SF
phase (H = Hf ). Also, The FFT spectrum shows two SdH frequencies (F1 = 13.3
T, F2 = 19.7 T), indicating that the Fermi surfaces for the AFM phase have two
extremal cross sections. Later, we clarify that the origin of the two cross sections are
the warping of the quasi-two dimensional Fermi surface.

Figure 5.10 shows the temperature dependence of the normalized SdH amplitude
∆ρzz/ρ0 for the AFM and SF phases. The SdH amplitude decreases with increasing
temperature. In order to evaluate the cyclotron mass, we analyzed the temperature
dependence of the SdH amplitude based on the temperature-dependent part of the
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Lifshits-Kosevich (LK) formula

∆ρzz
ρ0

∝ λ

sinhλ
, λ = 2π2kBT/EC (5.3)

, where kB is the Boltzmann constant and EC = eℏµ0H/mc is the cyclotron energy
and mc is the cyclotron mass. The temperature dependence of ∆ρzz/ρ0 was fitted
by Eq. 5.3, which yields mc/m0 = 0.122(2) for the SF phase and mc/m0 = 0.097
for the AFM phase, respectively, as summarized in Tab. 5.1. The obtained cyclotron
masses are sufficiently small, consistent to the Dirac electronic structure in this sys-
tem. Furthermore, the obtained cyclotron masses are comparable for the AFM and
SF phases. Since the magnetic field is applied along the c axis and the cyclotron mass
reflects the Fermi velocity within the ab plane, this results suggests that the in-plane
dispersion is similar for the AFM and SF phases, which is consistent with the in-plane
resistivity ρxx showing only weak anomaly at the transition from the AFM to the SF
phase (H = Hf ).

Figure 5.11 shows the inverse-field (1/µ0H) dependence of the normalized SdH
amplitude ∆ρzz/ρ0 for the AFM and SF phases. In order to evaluate the mean
scattering time τ , we analyzed the 1/µ0H dependence of ∆ρzz/ρ0 for the AFM phase
based on the field-dependent part of the LK formula

∆ρzz
ρ0

∝ 1√
H

exp

(
−2π2kBTD

EC

)
λ

sinhλ
(5.4)

, where TD = h/kBτ is the Dingle temperature and τ is the mean scattering time. The
1/µ0H dependence of ∆ρzz/ρ0 for the AFM phase shown in Fig. 5.11(b) was fitted
to Eq. 5.4, yielding the Dingle temperature of TD = 6.1(9) K and the scattering
time of τ = 0.20(3) ps for the AFM phase. For the SF phase, we analyzed the
1/µ0H dependence of ∆ρzz/ρ0 for the AFM phase based on the Dingle formula for
2-dimensional electron system:

∆ρzz
ρ0

∝ exp

(
−2π2kBTD

EC

)
λ

sinhλ
(5.5)

Here, the Dingle formula was used instead of the LK formula for 3D systems, consid-
ering the highly two-dimensional electronic structure as clarified by the observation
of the bulk multilayer quantum Hall effect. The 1/µ0H dependence of ∆ρzz/ρ0 for
the SF phase shown in Fig. 5.11(a) was fitted to Eq. 5.5, yielding the scattering time
of τ = 0.29(16) ps for the SF phase, which is comparable to that for the AFM phase.

Table 5.1 summarizes the SdH parameters for the AFM and SF phases. The ob-
tained SdH parameters are comparable for the AFM and SF phases, indicating that
the Fermi surface size and the in-plane dispersion are similar for the two phases. This
result is consistent to ρxx and ρyx showing only weak anomalies at the transition from
the AFM to the SF phase (H = Hf ).
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Fig. 5.12 (a) Calculated band structure of EuMnBi2 for the AFM phase in the
vicinity of the Dirac point. Only the hole Dirac bands are shown. k|| is the wave
vector along the [110] (Γ − M) direction. The Fermi energy EF is specified by
the black line. (b) Calculated band structure for the AFM phase as functions of
k|| and kz.

5.2.2 First-principles calculations

As we mentioned before, two SdH frequencies are observed for the AFM phase, indi-
cating that the Fermi surfaces for the AFM phase have two extremal cross sections.
In order to clarify the origin of the two extremal Fermi surface cross sections, we per-
formed the first-principles calculation of EuMnBi2 for the AFM phase. Figure 5.12(a)
shows the calculated band structure for the AFM phase in the vicinity of the Dirac
point. Here, two sets of the Dirac hole bands arises from the unit cell doubling due to
the AFM order of the Eu moments. In the PM phase, the crystal structure belongs
to the body-centered tetragonal lattice and each unit cell contains one Bi square net
layer; in the AFM and SF phases, on the other hand, the Eu magnetic order breaks
down the body-centered translational symmetry and the magnetic unit cell contains
two Bi square net layers. This lead to the unit cell doubling and the folding of the
Dirac band, arising the two sets of the Dirac band. Two Dirac bands are weakly
dispersing along the kz direction as shown in Fig. 5.12(b).

In order to specify the Fermi level, we calculated the Fermi surface cross sections
for several Fermi energies and compared them with the experimental SdH frequency.
As a result, EF ≃ −20 meV measured from the Dirac hole band top was suggested
(see Fig. 5.12). Here, the Fermi energy crosses only the higher Dirac hole band to
form a quasi-two-dimensional Fermi surface as shown in Fig. 5.12(b). The warped
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quasi-two-dimensional Fermi surface has two extremal cross sections along the in-
plane direction, which correspond to the two SdH frequencies (F1, F2) for the AFM
phase (Fig. 5.9). From the two SdH frequencies, the bandwidth W along the kz
direction can be evaluated as:

F2 − F1 =
ℏ

2πe
(SF2 − SF1) =

ℏ
2πe

∂SF

∂E
W =

mcW

eℏ
(5.6)

Here, SF is the Fermi surface cross section and mc = ℏ2

2π
∂SF

∂E

∣∣
EF

is the cyclotron

mass. Substituting SdH parameters for the AFM phase (Tab. 5.1) into this formula,
we obtain W = 7.2(2) meV for the AFM phase. This value is comparable to W = 11
meV obtained from the first-principles calculation, supporting our specification of the
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Fermi level.
We also performed the first-principles calculation for the SF phase. In Fig. 5.13

we compare the calculated band structures for the AFM and SF phases. The higher
Dirac hole band is more weakly kz−dispersing for the SF phase as seen from Figs.
5.13(a-b) and the E − kz curve at the Dirac hole band top shown in Fig. 5.13. The
bandwidth W along the kz direction at the Dirac hole band top is about one-third
smaller in the SF phase ( WSF

WAFM
≃ 1

3 ). This result is consistent to the enhancement in
ρzz for the SF phase by about 5 to 10 times, considering that ρzz is proportional to
the inverse square of W (ρzz ∝ W−2). Due to the suppression of the kz−dispersion,
i.e. W , in the SF phase, the Fermi surface is more cylindrical in the SF phase than
in the AFM phase, which is consistent to the single SdH frequency for the SF phase
(Fig.5.9).
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5.2.3 Mechanism of the bulk multilayer quantum Hall effect in the SF phase

Now, we discuss the mechanism of the bulk multilayer quantum Hall effect in the SF
phase in terms of the Landau subband structures. When the magnetic field is applied
along the c axis, the electron motion within the ab plane is Landau-quantized, while
the motion along the c axis is retained. Therefore the band structures shown in Fig.
5.13(a,b) are quantized to form one dimensional Landau subbands dispersing along
the kz direction with the bandwidth W . The Landau subbands line up at intervals
of the cyclotron energy EC as shown in Fig. 5.14(a). In Fig. 5.14(c) we plot the
magnetic field dependence of the Landau subband width W and the cyclotron energy
EC . Here, EC and W was calculated from the SdH parameters in Tab. 5.1 and
W was estimated from the first-principles calculation results. For the AFM phase
(H < Hf ) the Landau subband width W is larger than the Landau subband spacing
EC (W > EC). The corresponding Landau subband structure and the density of
states (DOS) is depicted in Fig. 5.14(a). There, since W > EC , the DOSs form
each Landau subbands overlap with each other and the total DOS remain finite for
any energy or magnetic field. In this case, standard SdH oscillations of quasi-two-
dimensional or three-dimensional metals are observed: the SdH amplitude is relatively
small and ρxx remain finite for any magnetic field, in consistent with the experimental
results. Furthermore, the Hall resistivity ρyx is not quantized, although the show finite
SdH oscillations. For the SF phase (H > Hf ), on the other hand, EC is larger than
W due to the decrease in W as seen from Fig. 5.14(c). The corresponding Landau
subband structure and the density of states (DOS) is depicted in Fig. 5.14(b). There,
since W < EC , the Landau subbands are separated by the quantum Hall gap where
the DOS is zero. In this case, the DOS converge to zero when the Fermi energy is
located in the quantum Hall gap, resulting in the in-plane resistivity ρxx converging
to zero, ρyx quantized into plateaus and ρzz showing giant SdH oscillations. Thus, the
bulk multilayer quantum Hall effect is induced in the SF phase because the Landau
subband width W along the kz direction is suppressed and become smaller than EC ,
inducing the finite quantum Hall gap.

5.2.4 Mechanism of the enhanced two-dimensionality in the SF phase

Finally, we discuss the mechanism of the enhanced two-dimensionality (i.e. suppressed
W ) in the SF phase. Fig. 5.15 shows the schematic magnetic and electronic structures
for the PM, AFM and SF phases. For the PM phase, the crystal structure belongs to
the body-centered tetragonal lattice with one Bi square net layer per unit cell. The
corresponding band structure shown in Fig. 5.15(d) disperses almost linearly along
the in-plane direction k|| and weakly disperses along the kz direction. The bandwidth
along the kz direction is 4t, where t is the transfer energy between the adjacent Bi
layers (Fig. 5.15[a]). In the AFM and SF phases, Eu antiferromagnetic order breaks
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is the interlayer transfer energy between the Bi square net layers. (d-e) Schematic
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the body-centering translational symmetry, and the magnetic unit cell contains two
Bi layers as shown in Fig. 5.15(b, c). As a result, the band structure in the PM
phase is folded in the kz direction to form two sets of the Dirac hole band as shown
in Fig. 5.15(e, f). The Fermi energy cross only the higher Dirac hole band to form a
quasi-two-dimensional Fermi surface. Here, we desire to clarify the mechanism of the
suppressed W in the SF phase. From the first-principles calculation results in Fig.
5.13, it is seen that W is decreased and the gap ∆ between the two Dirac hole bands
is increased in the SF phase. This result indicates that the increase in ∆ is the origin
of the suppressed W in the SF phase. We propose that the origin of the enhanced ∆
in the SF phase is the additional hybridization via the Eu moment between the Bi p
orbitals on the adjacent Bi layers. The Dirac fermion on the Bi layer arises from the
Bi px and py orbitals. Therefore we speculate that the Bi px orbital on a Bi layer can
hybridize with the Bi py orbital on the adjacent layer via the Eu moments directed
along the a or b direction in the SF phase, leading to the enhancement in ∆.
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5.2.5 Summary for Chap. 5.2

Here, we investigated the Dirac electronic structure and the Landau subband struc-
ture for the AFM and SF phases by means of the quantitative analysis of the SdH
oscillations and the first-principles calculation. SdH oscillations and first-principles
calculations together revealed the similar in-plane dispersion and Fermi surface vol-
ume in the AFM and SF phases. In the AFM phase, the antiferromagnetic order of
the Eu moments doubles the unit cell and fold the Dirac band in the kz directions to
form two sets of the Dirac bands weakly dispersing along the kz direction, and only
the higher Dirac hole band crosses the Fermi level to form a quasi-two-dimensional
Femi surface. In the SF phase, the higher Dirac hole band becomes more weakly
dispersing along the kz direction to induce the enhanced interlayer resistivity ρzz.
Furthermore, this induces the quantum Hall gap between the Landau subbands, lead-
ing to the bulk multilayer quantum Hall state in the SF phase. The origin of the
weak kz dispersion was sought in the enhancement in the gap between two sets of
the Dirac bands, which may due to the additional hybridization between the Bi px
and py orbitals on the adjacent Bi layers forming the Dirac band via the Eu moments
directed along the in-plane direction.
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Chapter 6

Landau level splitting modulated by

the AFM order in EuMnBi2

AMnX2 (A: alkaline-earth and rare-earth ions, X: Bi and Sb)[41, 39, 121, 122,
123, 124, 44, 43, 126, 125, 127, 128, 129] is also promising as a fertile ground for
magnetic Dirac materials, since the crystal structure consists of an alternate stack
of a two-dimensional (2D) Dirac fermion conduction layer (X− square net)[66, 130]
and a magnetic insulating layer (A2+-Mn2+-X3−) [see Fig. 6.1(a)]. Among them,
EuMnBi2 is a rare compound that exhibits quantum transport of Dirac fermions
coupled with the field-tunable magnetic order. In this compound, the interlayer cou-
pling between each Dirac fermion (Bi) layer is dramatically suppressed by the flop
of the antiferromagnetically-ordered Eu moments [Fig. 6.1(a)]. The enhanced two
dimensionality leads to the giant magnetoresistance effects[44, 43] and the quantum
oscillation phenomena[43] that strongly depend on the magnetic order of the Eu sub-
lattice. However, in spite of such a marked impact of magnetism on the transport
properties, it remains elusive how and to what extent the Dirac-like band dispersion
is affected.

To reveal the coupling between the band structure and magnetic order, the Landau
level quantization in a magnetic field can be a powerful probe, since it exhibits the
energy splitting due to Zeeman and exchange coupling as well as electron-electron
interaction. As demonstrated in the conventional 2D electron gas in semiconductor
heterostructures[67] and semimagnetic quantum wells[131], the detailed analyses on
the splitting provide lots of information on the band parameters and magnetism of
the system, which have been recently performed for graphene[132, 133] and several
Dirac semimetals[134, 135, 136]. Also for EuMnBi2, clear Landau level splitting was
observed in the SdH oscillation in resistivity[43], the origin of which has not been
clarified so far. In this Letter, we clarify that the Landau level splitting in EuMnBi2
is primarily of spin origin, on the basis of the systematic measurements of the SdH
oscillations in tilted magnetic fields. The field-angle dependence of SdH oscillations
have revealed the effective g factors for the Dirac fermions, which strongly depends on
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Fig. 6.1 (Color online) (a) Schematic illustration of the crystal and magnetic
structure at 0 T for EuMnBi2 [43, 45]. (b) Geometry of the interlayer transport
measurement in a tilted magnetic field in the a-c plane, where θ is an angle
between the field and the c axis. (c) Field profile of ρzz at 1.4 K for selected
values of θ. For clarity, the curves are shifted vertically by 20 mΩcm. For θ<64◦,
the closed triangle denotes Hf while the open triangle denotes Hc. The positions
of Hf and Hc are determined as the fields where ρzz shows a jump and drop in the
field-increasing run, respectively. For details, see supplementary Fig. S**. The
magnetic order of the Eu sublattice for each antiferromagnetic phase is shown
schematically in the inset.

the antiferromagnetic (AFM) order of the Eu sublattice. As a plausible explanation,
we discuss the exchange coupling between Dirac fermions and local Eu moments by
considering the results of the first-principles calculations.

6.1 Observation of the spin-split Landau levels
For investigating the fine structures of Landau levels, we have here adopted the mea-
surements of interlayer resistivity ρzz. This is because the high-resistive ρzz has a
much better S/N ratio than that achieved in the in-plane resistivity ρxx. A rotation
of magnetic field is also important in the present study. In 2D systems, the ratio of the
cyclotron energy Ec to the Zeeman energy EZ can be tuned by changing the tilt angle
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of the field from the normal to the 2D plane (θ); Ec is proportional to H⊥ = H cos θ
[the field component perpendicular to the 2D plane, see Fig. 6.1(b)], while EZ is
proportional to H (the total field). The combination of these techniques allow us
to elucidate the mechanism of the Landau level splitting and hence the microscopic
nature of the Dirac fermions in EuMnBi2, as described below.

Figure 6.1(c) shows the field dependence of interlayer resistivity ρzz for EuMnBi2
up to 35 T at selected tilt angles of the field. We first review the transport features
for the field parallel to the c axis (at θ = 1◦). With increasing the field, ρzz exhibits
a steep jump at the spin-flop transition of the Eu sublattice (Hf ∼ 5.3 T), followed
by large SdH oscillations. In the forced ferromagnetic (FM) phase above Hc ∼ 22
T, however, the value of ρzz significantly decreases, indicating that ρzz is specifically
enhanced in the spin-flop AFM phase. There, the Dirac fermions in the Bi layer are
strongly confined in two dimension, resulting in the signature of multilayer half-integer
quantum Hall effect in the in-plane conductions[43].

Similar enhancement in ρzz in the spin-flop AFM phase was observed at θ up to
∼65◦, which is gradually reduced with increasing θ. Concomitantly, the spin-flop
transition at Hf is less sharp at high θ, which is still discernible up to θ = 64◦ as
denoted by closed triangles in Fig. 6.1(c) (for the determination of Hf , see Fig. 6.2).
The manner of the SdH oscillation is also strongly dependent on θ, whereas the values
of Hf and Hc are almost independent of θ. Note here that, in addition to the SdH
oscillation, a hysteretic resistivity anomaly is discernible around 20 T at θ=1◦, which
immediately disappears when θ increases up to 18◦. At present, the origin of this
highly-θ-sensitive anomaly remains unclear, the study of which is beyond the scope of
this paper. In the following, we shall focus on the θ dependence of the SdH oscillations
in ρzz.

We first show in Fig. 6.3(a) the features of the Landau levels in the spin-flop
AFM phase (Hf < H < Hc) by presenting the θ dependence of interlayer conduc-
tivity σzz = 1/ρzz.The horizontal axis of Fig. 6.3(a) denotes H0

F /H⊥, the normal-
ized filling factor for a 2D system[57, 43], where H0

F (=19.3 T) is the SdH frequency
for the field parallel to the c axis (Fig. 6.4). At θ=1◦, σzz shows the minima at
H0

F /H⊥ ≃ 1.5, 2.5, 3.5, which coincides with the oscillations in σxx and ρxx[43]. Since
the deep minima in σzz and σxx indicate the quantum Hall states[137, 53, 138], the
corresponding H0

F /H⊥ should be given by H0
F /H⊥ =N + 1/2 − γ, where N is the

Landau index and γ is the phase factor expressed as γ = 1/2 − ϕB/2π with ϕB the
Berry’s phase[56]. The σzz minima occurring at half-integer multiples of H0

F /H⊥ thus
lead to γ∼0, i.e., the nontrivial π Berry’s phase in EuMnBi2. In multilayer quantum
Hall systems, it was reported that a chiral surface state contributes partly to the
interlayer transport in the quantum Hall states (i.e., σzz minima)[137, 53, 138], which
does not affect the frequency or phase of the SdH oscillation discussed below. When
θ increases, the frequency of the SdH oscillation increases in proportion to 1/ cos θ
[Fig. 6.4(c)], indicating highly 2D nature of the Fermi surface. This results in the
almost θ-independent oscillation period when plotted as a function of H0

F /H⊥, as
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Fig. 6.2 Magnetic field dependence of (a) the interlayer resistivity ρzz and
(b) the field derivative dρzz/dH for various tilt angles. The curves are shifted
vertically for clarity. The triangles indicate Hf , the transition field to the spin-
flop AFM phase. Solid curves are the non-oscillatory part of dρzz/dH for 25◦ ≤
θ ≤ 65◦. For θ ≤ 20◦ a steep jump in ρzz (i.e. sharp peak in dρzz/dH) was clearly
observed at Hf ∼ 5.3 T, corresponding to the spin-flop transition. Although the
ρzz jump becomes less sharp as θ is increased, it is barely discernible up to
θ = 65◦ as seen in Fig. 6.2 (a). For 25◦ ≤ θ ≤ 65◦, Hf was determined from
the maxima of the non-oscillatory component of the dρzz/dH [denoted by solid
curves in (b)].

highlighted by the vertical dotted lines up to θ ∼ 50◦ in Fig. 6.3(a). For θ ≥ 55◦,
however, the frequency gradually deviates from the 1/ cos θ scaling presumably due
to a weak warping of the Fermi surface caused by the non-zero interlayer coupling.

The most salient feature of the SdH oscillation is that the amplitude significantly
varies with θ. With increasing θ up to 35◦-40◦, the amplitude progressively decreases
to nearly zero. Above θ = 40◦, the amplitude again increases but with an inverted
phase. The observed θ dependence of the SdH amplitude is well explained by consid-
ering the spin splitting of the Landau levels due to EZ as follows[95, 96, 97]. When
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Fig. 6.3 (Color online) (a) σzz versus H0
F /H⊥ at θ=1◦-65◦ in the spin-flop AFM

phase (Hf < H < Hc), where H
0
F denotes the SdH frequency for the field parallel

to the c axis. The curves at θ ≥ 18◦ are shifted upward for clarity. At the bottom
of the panel, the second field derivative d2ρzz/dH

2 at θ=1◦ is shown. Vertical
dotted lines are guides to the eye showing the positions of the maxima and minima
of the SdH oscillation, where N denotes the Landau index. Inset: Schematic of
the density of states for spin-split Landau levels for a 2D massless Dirac fermion
as a function of energy E for H0

F /H⊥ = 2, where EF is set negative corresponding
to the hole carrier system. The value of EZ/Ec can be tuned by tilting the field,
where EZ= g∗µBB is the Zeeman energy, Ec≡ eℏB⊥/mc the effective cyclotron
energy, and mc the cyclotron mass mc = EF/v

2
F. EZ/Ec = 0.2 (left) and 0.5

(right). For details of the calculation, see the main text and supplementary Fig.
S3. (b) Color plot of σzz as functions of H0

F /H⊥ and θ. θinv indicated by the
triangle corresponds to θ where the phase of the SdH oscillation is inverted and
EZ/Ec is nearly 0.5.
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Fig. 6.4 (a) Second field derivative − d2ρzz
dH2 for various tilt angles. Markers

shows the fields of (half-)integer SdH indices. (b) Fan diagram. For θ = 0◦,
we plot the values of 1/µ0H at the ρzz (or −d2ρzz/dH

2) maxima against half-
integer Landau indices[43]. The SdH frequency µ0H

0
F = 19.3 T and the phase

factor γ ∼ −0.04 for θ = 0◦ are consistent with the previous report[43]. We
adopted the similar procedure for all θ. However, for θ ≳ 35◦ we assumed that
the peaks in −d2ρzz/dH

2, which arise from the gaps between spin-split Landau
levels, should correspond to the integer Landau indices. See also Fig. 6.11. (c)
SdH frequency HF cos θ and (d) phase factor γ as a function of θ. The SdH
frequency HF shows the typical 2-dimensional θ dependence HF (θ) ≃ H0

F / cos θ
with a small discrepancy of up to ∼ 15%.

EZ/Ec is smaller than unity [e.g., EZ/Ec = 0.2 in the inset (left) to Fig. 6.3(a)],
the Landau level exhibits a weak spin splitting, which is barely discernible at θ∼ 1◦

when plotted in the form of d2ρzz/dH
2 [Fig. 6.3(a)][43] . With increasing EZ/Ec

by tilting the field, the magnitude of the spin splitting increases, resulting in the re-
duction in amplitude of the SdH oscillation. Around θ=40◦, the amplitude reaches
the minimum, which corresponds to EZ/Ec = 0.5 [the inset (right) to Fig. 6.3(a)].
A further increase in EZ/Ec leads to crossing of the neighboring Landau levels with
opposite spins, which results in the enhanced SdH oscillation with an inverted phase,
as observed at θ>50◦. Note here, since the energy spacing of Landau levels for a 2D
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Fig. 6.5 (a) ρzz as a function of 1/µ0H in spin-flop AFM phase at selected tem-
peratures at θ = 0◦. ∆ρzz and ρ0 denote the SdH amplitude and the background
resistivity at 1.9 K respectively. The amplitude of the SdH oscillations are grad-
ually suppressed as the temperature increases. ∆ρzz and ρ0 are estimated from
the ρzz values at N = 3 (1/µ0H = 0.16 T−1), N = 2.5 (1/µ0H = 0.13 T−1) and
N = 2 (1/µ0H = 0.11 T−1) as depicted in Fig. 6.5(a). Note here that for the
present analysis we adopted the SdH oscillation at the lowest fields within the
spin-flop AFM phase in order to avoid the prominent spin splitting at high fields
influencing the estimate of mc. (b) Temperature dependence of ∆ρzz/ρ0. The
solid curve is the fit to the data by the Lifshits-Kosevich (LK) formula, which
yields mc = 0.122m0 for the spin-flop AFM phase.

Dirac fermion is not uniform (i.e., Ec is dependent on N), we need to effectively define
Ec≡eℏB⊥/mc by using a semiclassical expression of the cyclotron mass mc=EF/v

2
F

with vF and EF being the Fermi velocity and Fermi energy, respectively[20, 21]. In
this scheme, the Landau level crossing in the SdH oscillation occurs when EZ/Ec=1
irrespective of N , as in the case for a normal 2D electron gas [for details, see Fig.
6.11 and related discussions].

To highlight the θ dependence of the SdH oscillations, we present a contour plot
of σzz as functions of H0

F /H⊥ and θ in Fig. 6.3(b). It is clear that the phase of
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the SdH oscillation is inverted around θinv ∼ 40◦, accompanied by the minimum
amplitude. As shown in Fig. 6.11(c), this plot is nicely reproduced by calculating
the density of states of spin-split Landau levels, where EZ/Ec = 0.5 corresponds to
θ= θinv.Noting that EZ/Ec= g∗mc/2m0 cos θ, this relation gives cos θinv= g∗mc/m0,
where g∗ is the effective g factor and m0 is the bare electron mass. By substituting
the experimental value (θinv =40◦±5◦), we obtain g∗mc/m0=0.77(6). The value of
mc/m0 is independently estimated to be 0.122(2) from the temperature dependence
of the SdH oscillations at θ=0◦ based on the standard Lifshitz-Kosevich formula (Fig.
6.5), which results in g∗ =6.6(6). The obtained g∗ is much larger than 2, reflecting
strong spin-orbit coupling inherent to Bi atom. Additionally, it is presumable that
the exchange interaction with the local Eu moments plays a significant role, since net
magnetization is non-zero in the spin-flop AFM phase, as discussed later.

6.2 Magnetic structure dependence of the Landau level

splitting
Next, we shall show the Landau level splitting in the AFM phase (H<Hf ), where the
amplitude of SdH oscillation is largely reduced as compared with the spin-flop AFM
phase. Nonetheless, the oscillation is discernible above ∼1.3 T, as shown in Fig. 6.6(b)
where d2ρzz/dH

2 is plotted for clarity. The weakly beating amplitude presumably
signifies the superposition of maximum and minimum cyclotron orbits arising from
a slightly warped cylindrical Fermi surface. To summarize the θ dependence of SdH
oscillation, we show in Fig. 6.6(a) the color contour plots of d2ρzz/dH

2 and σzz

for the AFM and spin-flop AFM phases, respectively, as functions of H0
F /H⊥ and

θ. The SdH oscillation in the AFM phase has several common features with that in
the spin-flop AFM phase; the period of the SdH oscillation is nearly independent of
θ when plotted versus 1/H⊥, reflecting a quasi-2D Fermi surface. In addition, the
spin splitting of the Landau levels makes the oscillation amplitude dependent on θ,
leading to the phase inversion at θinv (a horizontal line). However, the value of θinv is
substantially different in the two phases; θinv∼18◦ for the AFM phase while θinv∼40◦

for the spin-flop AFM phase. This results in g∗mc/m0 = cos θinv = 0.95(1) for the
AFM phase (θinv = 18◦ ± 2◦), which is approximately 25% larger than that for the
spin-flop AFM phase.

In Table 6.1, we compare the band parameters estimated from the SdH oscillation
for each AFM phase. The cross section of quasi-2D Fermi surface SF deduced from
the SdH frequency (H0

F ) is almost the same for both AFM phases, whereas the values
of mc and g∗ significantly depend on the AFM order. Since the AFM phase hosts
larger g∗mc/m0 and smaller mc/m0 than the spin-flop AFM phase, the resultant g∗

value for the former phase is approximately 50% larger than that for the latter phase.
These facts indicate that the Dirac-like band for EuMnBi2 is largely modulated by
the AFM order of Eu sublattice.
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Fig. 6.6 (Color online) (a) Color plot of d2ρzz/dH
2 as functions of H0

F /H⊥ and
θ in the AFM phase (for H<Hf ). To compare the θ dependence, the σzz data
in the spin-flop AFM phase (for H >Hf ) are plotted together. The position of
Hf at each θ is denoted by a closed circle, which is determined as the field where
ρzz shows a steep increase (see Fig. 6.2). The horizontal line denotes θinv for
each phase. (b) Profile of d2ρzz/dH

2 versus H0
F /H⊥ for θ=0◦ (H<Hf ).
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Tab. 6.1 Experimentally determined band parameters for the AFM and spin-
flop AFM phases. For the estimation of SF and mc, see supplementary Figs. 6.5,
6.7, 6.8

SF (nm−2) g∗mc/m0 mc/m0 g∗

AFM 0.186 0.95(1) 0.097(2) 9.8(4)
spin-flop 0.191 0.77(1) 0.122(2) 6.6(4)
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Fig. 6.9 Calculated Dirac-like band structures along the Γ-M line for various
magnetic states in EuMnBi2. (a) AFM, (b, c) spin-flop AFM, and (d) forced FM
states. In (b), the Eu moment is along the a axis, while in (c) it is inclined at an
angle of ∼47◦ to the c axis on the ac plane. The spin polarization ⟨sz⟩ of each
band is represented by red (up) and blue (down) colors. Schematic illustration
of the Eu moments adjacent to the Bi layer is also shown. The Fermi energy EF

estimated from the experimental SdH oscillation is denoted by the shaded area
in (a). For details, see supplementary Fig. 6.10

6.3 First-principle calculation
First-principles calculations indeed reproduce such a marked dependence of the band
structure on the magnetic state, as shown in Fig. 6.9, where the Dirac-like bands
near EF are displayed.Note that two sets of bands arise from the unit cell doubling
along the c axis to represent the AFM order of Eu moments, which is adopted to the
forced FM state in common.In addition to a small change upon the spin flop of the
Eu moments [Figs. 6.9(a) and (b)], the splitting of red-colored (spin up) and blue-
colored (spin down) bands progressively evolves, as the net magnetization (i.e., the
canting of the Eu moment) increases in the spin-flop AFM phase [Figs. 6.9(b)−(d)].
Since the present calculation does not take EZ into consideration, this large spin
splitting originates from the exchange coupling of the Dirac fermion with the local
Eu moments (Eex), which can be expressed as Eex=J⟨S⟩=JχH/gJ , where J is the
exchange integral, ⟨S⟩ is the component of Eu2+ spin along the field, gJ(= 2) is the
Landé g factor for Eu2+, and χ is the magnetic susceptibility. In the AFM phase,
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since the field is parallel to the easy axis of Eu spins, χ is a small parallel susceptibility
and hence Eex is negligible. On the other hand, in the spin-flop AFM phase, where
the Eu spin axis changes to be transverse to the field, χ corresponds to a much larger
transverse susceptibility.From the magnetization data[43], we have estimated χ|| and

χ⊥ to be 5.4×10−3 and 1.4×10−1 emu/mol at 2 K, respectively. In the latter phase,
the Landau level splitting is caused by Eex as well as EZ, which renormalizes the g∗

value. From the energy splitting shown in Fig. 6.9(d), we obtain Eex = 50−80 meV
for ⟨S⟩=7/2 (i.e., J = 14−23 meV), which is comparable to (or even larger than)
EZ ∼ 13 meV at H = Hc ∼ 22 T for g∗ ∼ 10. Thus, the exchange coupling should
appreciably contribute to the observed apparent change in g∗ upon the AFM phase.
The reduction of g∗ in the spin-flop AFM phase implies that the sign of J is opposite
to that of pristine g∗, although a more quantitative estimation of these parameters is
a future subject.

Here, by comparing the experimentally determined value of SF for the AFM phase
(0.186 nm−2 in Table 1) to the first-principles calculation, we have estimated the

Fermi energy Eexpt.
F , as shown in Fig. 4(a) in the main text. We here consider two

cases: (i) the Fermi energy crosses only the highest valence band and (ii) the Fermi
energy crosses the highest and the second highest valence bands. Since the size of
the band splitting between the highest and the second highest valence bands is highly
sensitive to the calculation details [e.g., see Figs. 4(a) and 4(b) in the main text], it
is quite difficult in the present calculation to determine whether the Fermi energy
crosses the second highest valence band or not.

Because a very fine k-mesh is required for this evaluation, we employed an effective
tight-binding model. We extracted the Wannier functions [109, 110] from the cal-
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culated band structure using the wien2wannier [111] and wannier90 [112] codes.
We took the Eu-f , Mn-d, and Bi-p orbitals as the Wannier basis set. Then, we con-
structed a tight-binding model with the obtained hopping parameters among these
Wannier functions. Using this model, we estimated the values of S1,2

F (kz, E) using
a 1600 × 1600 k-mesh for the (kx, ky) plane at each kz. Here, the upper scripts 1
and 2 denote the highest and the second highest valence bands, respectively. The kz
dispersion of S1

F (kz, E) is shown in Fig. 6.10 for E=0, −3.5, and −7 meV, where the
energy origin is in common with that shown in Fig. 4(a) in the main text (see [48] in

the main text for detail). As shown in Fig.6.10, S1,2
F (kz, E) takes the maximum and

minimum values with respect to kz, which are denoted as S1,2
F,max(E) and S1,2

F,min(E),
respectively.

From these calculated SF values, we made an estimation of the experimental Fermi
energy Eexpt.

F by the following way. For the case (i), where the Fermi energy crosses
only the highest valence band, we assumed

Sexpt.
F =

S1
F,max(E

expt.
F ) + S1

F,min(E
expt.
F )

2
, (6.1)

while we assumed

Sexpt.
F =

2∑
i=1

Si
F,max(E

expt.
F ) + Si

F,min(E
expt.
F )

4
, (6.2)

for the case (ii), where the Fermi energy crosses the highest and the second highest

valence bands. The obtained Eexpt.
F values for the case (i) and (ii) are approximately

−3.5 and −13.5 meV, respectively. Since the valence-band top is located at E = +18
meV in the present band calculation, the actual Fermi energy is considered to be
approximately in the range of −20 to −30 meV when measured from the valence-band
top. This plausible range for the experimental Fermi energy is shown in Fig. 4(a) in
the main text.

6.4 Calculated spin-split Landau levels and SdH oscillations

of Dirac fermion
Due to the Dirac-like linear energy dispersion, the Landau level spacing in the present
system is not uniform and proportional to

√
H⊥.Then EZ/EC depends on the mag-

netic field and Landau indices, making the situation more complicated. In the follow-
ing, we calculate the spin-split Landau level energies and discuss the field-direction
dependence of the SdH oscillations for the present system.

For this purpose, we adopted the effective Hamiltonian of the 2D Dirac fermion
in SrMnBi2[66], which should hold for EuMnBi2 with the same crystal structure.
This is constructed for a 2-dimensional layer consisting of the Bi−1 square lattice and
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the coordinating Sr2+ (or Eu2+) ions on the basis of the DFT calculations and the
tight-binding analysis. The resultant effective Hamiltonian is given as

Heff = ℏv1k1σz + ℏv2k2σx =

(
ℏv1k1 ℏv2k2
ℏv2k2 −ℏv1k1

)
(6.3)

Here, k1,2 are the unit vectors defined locally at the Dirac point (k0, k0) as k1 =

(kx + ky) /
√
2 and k2 = (−kx + ky) /

√
2. v1,2 are the Fermi velocities along the local

unit vectors k1,2. The Pauli matrices σx,z refer to a pseudospin degree of freedom
arising from the Bi sublattices. The spin degree of freedom does not appear in Heff

because the spin-orbit coupling (SOC) has nothing to do with the formation of the
Dirac electronic structure. Heff is transformed by the standard Peierls substitution
to calculate the Landau levels in the magnetic field. By adding the Zeeman term to
Heff , the Landau level energies are obtained as follows:

ENσ = ±vF
√

2eℏNB⊥ +
1

2
σEZ (6.4)

Here, vF =
√
v1v2 is the average Fermi velocity, µ0 is the magnetic permeability, and

σ = ±1 is the spin index. The first term is the well known Landau levels from the
Dirac band and the Zeeman effect simply splits these Landau levels into two spin
levels. In addition, the SOC may play a role in the Landau levels for the present
compound, because it leads to a small energy gap (∼ 50 meV) at the Dirac point
(Fig. 4 in the main text). However, Eq. 6.4 appears to work fine as a first order
approximation for the calculation of spin-split Landau levels away from the Dirac
point, as demonstrated by the comparison with the experimental data (see the main
text).

Now we discuss the angular dependence of the Landau levels and the SdH oscilla-
tions. For this, we take the normalized form of the Landau levels energies by dividing
Eq. 6.4 by EF :

ENσ

EF
=

√
N

H⊥

H0
F

+
σ

4

EZ

EC

H⊥

H0
F

(6.5)

Here, EF is the Fermi energy (i.e. chemical potential µ at the zero field) and H0
F =

1/2µ0eℏv2F is the SdH frequency. The cyclotron mass mc = EF /v
2
F and the cyclotron

energy EC = eℏµ0H⊥/mc are defined based on the semiclassical theory and EC

characterizes the Landau level spacing near EF (see Fig. 2(a) in the main text).
The Zeeman-cyclotron ratio EZ/EC = g∗mc/2m0 cos θ characterizes the magnitude
of Zeeman splitting, which depends on the tilt angle θ. In the following, we investigate
the EZ/EC dependence of the Landau level energies to discuss the angular dependence
of the SdH oscillations.

The Landau levels for small spin splitting (EZ/EC = 0.2) are shown in Fig. 6.11
(e). The density of states at the chemical potentail D(µ), whose oscillatory part is
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proportional to the SdH oscillations in the interlayer conductivity σzz, is also shown in
Fig. 6.11 (d). In the calculation of µ and D(µ), we assumed constant carrier density,
zero temperature and Gaussian Landau level broadening of the width Γ = 0.06EF . As
the field H⊥ increases, Landau levels ENσ increase and traverse µ at the fields HNσ

to give the maxima in D(µ), where HNσ is given as HF

HNσ
=

[√
N+

√
N−σEZ/EC

2

]2
.

Figure 6.11(c) displays the color plot of the calculated D(µ) as functions of EZ/EC

and H⊥, where the values of HNσ are plotted together as solid (σ = +) and dashed
(σ = −) lines. For small spin splitting (i.e. small EZ/EC) the peaks in D(µ) from
(N,+) and (N,−) levels are overlapped with each other, whereas those from (N,+)
and (N+1,−) levels are well separated. As a result, D(µ) shows maxima from (N,+)
and (N,−) levels at the integer filling factors H0

F /H⊥ = N as shown in Fig. 6.11
(d). When EZ/EC is larger than 1/2, 1/HN+ is well separated from 1/HN,− and
rather close to 1/HN+1,−. In this case, the peaks in D(µ) from (N,+) and (N +1,−)
levels are overlapped each other to form the D(µ) maxima at the half-integer filing
factors H0

F /H⊥ = N + 1/2 (Fig. 6.11 (a,b)). Thus the maxima and minima in D(µ)
are inverted for EZ/EC < 1/2 and EZ/EC > 1/2. Interestingly, the inversion of the
oscillations described above occurs simultaneously for all N when EZ/EC exceeds
1/2 as shown in Fig. 6.11 (c), even though the energy separation between EN+ and
EN+1,+ depends on N and is proportional to

√
H⊥, not H⊥.

6.5 Summary for Chap.6
In conclusion, we observed spin-split Landau levels of quasi-two-dimensional Dirac
fermions in a bulk antiferromagnet EuMnBi2, which markedly depend on the field-
tunable magnetic order of Eu moments. In addition to Zeeman splitting relevant to
the large g factor, the Dirac-like band exhibits substantial exchange splitting due to
the coupling with the local Eu moments. Such an interplay of the spin-orbit and
exchange interactions in the present compound yields novel correlated Dirac fermion
states in a solid, offering a promising approach to emerging topological spintronics.



6.5 Summary for Chap.6 89

1

0

1

0
0.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

2

1

0

D
(µ

) (a
.u

.)

1

0

1

0

!⊥/!
!

"

(e)!

(a)!

(c)!

(b)!

(d)!

~EC!

EZ!

σ = +!

σ = -!

N = 5! 4! 3! 2!

D
(µ

) 
(a

.u
.)
!

D
(µ

) 
(a

.u
.)
!

E
 /
 E
F
!

E
Z
 /
 E
C
!

E
 /
 E
F
!

µ!

µ!
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0
F = 1/2, 1/3, . . . . (b)

Landau levels ENσ as a function of out-of-plane field H⊥ for EZ/EC = 1. The
chemical potential µ is also shown. (c) Image plot of D (µ) as functions of H⊥
and EZ/EC . Solid and dashed curves show HNσ/H

0
F , where HNσ is the fields

at which ENσ traverse EF . (d) D (µ) and (e) ENσ, µ for small spin splitting
(EZ/EC = 0.2).
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Chapter 7

General discussion

7.1 Impact of Eu magnetic order on the Dirac fermion in

EuMnBi2
In this section, we comprehensively discuss the impact of the Eu magnetic order on
the Dirac electronic structure, based on the results given in the previous sections.
Fig. 7.1 show the schematic crystal and magnetic structures of EuMnBi2 for the

(a) AFM	 (b) SF	

1/4	0	-1/4	

Δ	 ΔSF	

ΔSF >> ΔAFM 
 
WSF << WAFM	

W ~ 2t - Δ/2	

magnetic 
unit cell	

(c) SF + total 
magnetization	

f-p 
exchange	

kz  
[4π/c]	

Fig. 7.1 Schematic description of the crystal and magnetic structure, and the
corresponding Dirac band structure fro the (a) AFM and (b, c) SF phases. The
Eu moments are canted parallel to the external magnetic field H||c for (c).
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AFM and SF (spin-flop AFM) phases. In the AFM phase, the Eu magnetic order
breaks the body-centered translational symmetry of the underlying crystal as shown
in Chap. 5.1. Here, each magnetic unit cell contains two Bi square net layers. As
a result, two sets of Dirac bands appear due to the folding of the Dirac bands as
depicted in Fig. 7.1. The Fermi level crosses only the higher Dirac hole band to
form a quasi-two-dimensional Fermi surface in the AFM phase. In the SF phase, the
gap ∆ between the two Dirac bands are enhanced, leading to the suppression in the
bandwidth W of the higher Dirac hole band as we discussed in Chap. 5.2. This result
in the enhancement in the interlayer resistivity ρzz, which was described in Chap.
4. Furthermore, the suppression of W induces the quantum Hall gap between the
Landau subbands (see Fig. 5.14), leading to the bulk multilayer quantum Hall effect
described in Chap. 4. The mechanism of the enhancement in ∆ in the SF phase is
suggested to be an additional hybridization between the Bi px and py orbitals on the
adjacent layers via the Eu moments oriented along the a or b direction. The strong
spin-orbit coupling of Bi is likely playing a crucial role.

In the SF phase, the Eu moments are canted parallel to the external magnetic field
H||c to arise a finite total magnetization. Here, the Dirac fermions are subject to the
exchange field due to the exchange coupling the Dirac fermion and the Eu moments.
The exchange field induces spin splitting of the Dirac band, which was signified by
the difference in the magnitude of the spin splitting of the Landau levels in the AFM
and SF phases as revealed in Chap. 6.

7.2 EuMnBi2 compared to other magnetic Dirac materials
In this section, we compare EuMnBi2 with other magnetic Dirac materials to clarify
the characteristic of EuMnBi2 outstanding from other magnetic Dirac materials.

We compare the physical properties of several magnetic Dirac materials in Tab. 7.1
and Fig. 7.2. In Fig. 7.2 we plot the magnitude of the coupling energy between the
Dirac fermion and the magnetic order (e.g. exchange coupling energy) against the
carrier mobility.

The most outstanding feature of EuMnBi2 is the high carrier mobility of ∼ 14, 000
cm2/Vs. This mobility is extremely large among the magnetic Dirac materials show-
ing strong coupling between the Dirac electronic state and the magnetic order. Since
the high mobility is the most outstanding feature of the Dirac materials, the com-
patibility of the high mobility of the Dirac fermion and its strong coupling to the
magnetic order makes EuMnBi2 an ideal Dirac material.

There are two reasons that the Dirac fermions of EuMnBi2 show high mobility.
First, the magnetic moments are localized to the Eu site, which is separated from the
Bi−1 sites hosting the Dirac fermion. For correlated (semi-)metals such as Mn3Sn and
R2Ir2O7, on the other hand, the conducting carriers arise from the strongly correlated
orbitals (e.g. Mn 3d orbital for Mn3Sn) hosting magnetic moments. Hence the carrier
mobility is as low as ∼ 1 cm2/Vs. Second, the conducting Dirac band originates from
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Tab. 7.1

carrier- mobility conducting magnetic
material density (cm2/Vs) orbit orbit

(cm−3)
EuMnBi2 3× 1019 14,000 Bi 6p Eu 4f
Cr-(Bi,Sb)2(Te,Se)3 760 Bi 6p, Se 4p Cr 3d
Mn3Sn 4× 1022 ∼ 1 Mn 3d Mn 3d
GdPtBi ∼ 1018 ∼ 1, 500 Bi 6p Gd 4f
EuTiO3 thin film 1019 - 1021 ∼ 200 Ti 3d Eu 4f

the Bi px, py orbitals, which forms covalent-type bondings to realize a highly dispersing
bands. Therefore the Dirac fermion with a quite high Fermi velocity is realized in
EuMnBi2. For this reason, a Dirac electronic state having a very high Fermi velocity
is realized. On the other hand, in other magnetic Dirac materials such as GdPtBi,
although the conducting orbitals are different from the orbitals responsible for the
magnetism, the conducting orbitals do not form chemical bonds and the bands near
the Fermi level are relatively weakly dispersive. Hence the mobilities are about 100
to 1000 cm2/Vs, which are sufficiently smaller than hat in EuMnBi2.

Another feature of the magnetic Dirac material EuMnBi2 lies in the mechanism
of the coupling between the Dirac fermion and the magnetism. In EuMnBi2, the
unit cell doubling and the corresponding folding of the Dirac band, as well as the
exchange coupling between the Dirac fermion and the Eu moments, play crucial roles
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on the coupling of the Dirac fermion with the magnetic order. On the other hand, in
many magnetic Dirac materials such as magnetic topological insulators and GdPtBi,
the exchange coupling mechanism is the only mechanism of the coupling between the
magnetic order and the magnetism. Hence, we have proposed through a research
on EuMnBi2 a new mechanism of the coupling between the Dirac fermion and the
magnetism, which should be called as ”band folding mechanism”.
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Chapter 8

Summary and conclusion

In this thesis, we explored novel magnetotransport phenomena arising from the cou-
pling between the Dirac fermions in solids and the magnetic order. We focused on
the Dirac material with Bi square net and tried to functionalize them by chemical
substitutions. Especially, we focused on EuMnBi2 and revealed the strong coupling
between the Dirac fermion and the antiferromagnetic order of Eu.

Chapter 4: Discovery of the novel magnetic Dirac material EuMnBi2
In this study, we have focused on a layered bulk antiferromagnet EuMnBi2, where
the Bi square nets hosting quasi-2D Dirac fermion and the magnetic insulating layers
stack alternatively, and demonstrated that the quantum transport of Dirac fermions
is highly enriched by Eu antiferromagnetic(AFM) order. Below the AFM transi-
tion temperature, external magnetic field induces spin-flop transition of Eu moments,
which suppresses the interlayer coupling between the Bi layers and dramatically en-
hances interlayer resistivity ρzz. Furthermore, this high-ρzz state is accompanied by
plateau-like structures in the Hall resistivity and giant SdH oscillations, which signify
the quantum Hall effect in a bulk magnet.

Chapter 5: Magnetic structure of EuMnBi2
We have presented an investigation of the magnetic structure in EuMnBi2 by the single
crystal neutron diffraction and the resonant x-ray magnetic diffraction measurements.
Mn moments show checkerboard-type AFM order with an antiferromagnetic arrange-
ment for both the in-plane and out-of-plane nearest neighbors, with moments parallel
to the c axis. Eu moments show antiferromagnetic order where ferromagnetic layers
within the ab plane are stacked antiferromagnetically along the c axis in the sequence
of up-up-down-down. Eu moments are aligned parallel to the c axis in the AFM
phase, while they are reoriented parallel to the a or b axis with spin-flop domains.
Mn magnetic structure is unaffected by the reorientation of the Eu moments within
the experimental accuracy. These results offer a concrete basis to reveal the coupling
between the Dirac fermion and the magnetic order in EuMnBi2 in future studies.
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Chapter 6: Landau level splitting modulated by the antiferromagnetic order in EuMnBi2
We report spin-split Landau levels of quasi-two-dimensional Dirac fermions in a lay-
ered antiferromagnet EuMnBi2, as revealed by interlayer resistivity measurements in
a tilted magnetic field up to ∼35 T. The amplitude of Shubnikov-de Haas (SdH) os-
cillation in interlayer resistivity is strongly modulated by changing the tilt angle of
the field, i.e., the Zeeman-to-cyclotron energy ratio. The effective g factor estimated
from the tilt angle, where the SdH oscillation exhibits a phase inversion, differs by
approximately 50% between two antiferromagnetic phases. This observation signi-
fies a marked impact of the magnetic order of Eu sublattice on the Dirac-like band
structure. The origin may be sought in strong exchange coupling with the local Eu
moments, as verified by the first-principles calculation.

We have discovered the magnetic Dirac material EuMnBi2 and revealed that the
transport properties and electronic structures of the high-mobility Dirac fermion in
EuMnBi2 is highly modulated by the magnetic order of the Eu moments tuned by the
external magnetic field. The outstandingly high mobility of ∼ 14, 000 cm2/Vs and
the controllability of the Dirac fermion via the field-tunable magnetic order together
makes EuMnBi2 a unique system as a magnetic Dirac material. We believe that the
present study contribute to the basis of the future electronics and spintronics.
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A

Physical properties of other AMBi2
phases (A = Eu, Sr, Ba, M = Zn,

Cd)

Figure A.1 shows the XRD patterns of several AMBi2 phases (A = Sr, Ba, Eu,
M = Zn, Cd). The XRD profiles indicate that the crystal structure is tetragonal
(I4/mmm) for all the materials. The lattice parameters obtained from the Le Bail
fitting is shown in Tab. A.1.

Figure A.2 show the temperature dependence of the in-plane (ρxx) and interlayer
(ρzz) resistivity. The resistivity is metallic for all the materials. The interlayer re-
sistivity ρzz for (Sr, Eu)(Zn, Cd)Bi2 is about two orders of magnitude smaller than
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Fig. A.1 powder XRD patterns of SrZnBi2, EuZnBi2, BaZnBi2, EuCdBi2, SrCdBi2.
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Tab. A.1 Lattice constants of AMBi2 phases (A = Sr, Ba, Eu, M = Zn, Cd)

a (Å) c (Å)
SrCdBi2 4.6476(2) 22.830(1)
EuCdBi2 4.6314(2) 22.143(1)
BaZnBi2 4.8561(3) 22.0268(13)
SrZnBi2 4.6609(3) 21.824(2)
EuZnBi2 4.6170(3) 21.354(2)

that for(Sr, Eu)MnBi2, indicating that the resistive anisotropy is much smaller for
(Sr, Eu)(Zn, Cd)Bi2. For Eu(Zn, Cd)Bi2 clear anomalies are observed both in ρxx
and ρyx at TN ∼ 20 K, corresponding to the antiferromagnetic order of the Eu.

Figure A.3 (a, b) show the first-principles calculation results for SrCdBi2 and
SrZnBi2, respectively. A Dirac-like linear dispersion appears close to the Fermi
level for both systems as denoted by the red circles. Furthermore, bands other
than the Dirac band cross the Fermi level around the Γ point to form relatively
three-dimensional Fermi surfaces. These three-dimensional Fermi surfaces are likely
responsible for the weak resistive anisotropy for (Eu, Sr)(Zn, Cd)Bi2.

In order to experimentally confirm the existence of the Dirac fermion we performed
the magnetoresistance and Hall resistivity measurements (Fig. A.4). (Sr, Eu)CdBi2
show large linear magnetoresistance effect reaching ρ(9 T)/ρ(0 T) ∼ 70 at 1.9 K. This
magnetoresistance is comparable to that of EuMnBi2 and likely arises from the high
mobility of the Dirac fermion, supporting the Dirac fermion state in (Eu,Sr)CdBi2.
(Eu, Sr)ZnBi2 show much weaker magnetoresistance effect, possibly because the mo-
bility is low due to the poor crystal quality (note that RRR of (Sr, Eu)ZnBi2 is as low
as ∼ 2; see Fig. A.2). The Hall resistivity ρyx of (Eu, Sr)(Zn,Cd)Bi2 is small com-
pared to that of EuMnBi2 and shows nonlinear behavior, supporting the multi-carrier
nature of (Eu, Sr)(Zn,Cd)Bi2

Figure A.5(a) shows the SdH signature of EuCdBi2 observed in the interlayer mag-
netoresistance ρzz at 1.9 K. Utilizing the standard Fan diagram analysis (Fig. A.5[b]),
we obtained relatively small SdH frequency of F = 76 T and the phase factor of
γ ∼ 0.1. These results indicate that the observed SdH oscillations arise from the
Dirac-like carrier in EuCdBi2.

Finally, we comment on the hysteretic anomaly at T 200 K observed for SrCdBi2.
Figures A.6 (a-c) shows the temperature dependence of the resistivity ρxx, the See-
beck coefficient S and the thermal conductivity κ for SrCdBi2. All of them show
clear anomaly at T ∼ 200 K, suggesting that there occurs some phase transition.
Since SrCdBi2 do not host magnetic element, this transition can not be related to
the magnetic order. In FIg. A.6(c) we also plot the electron thermal conductivity

κel =
π2k2

B

3e2
T
ρxx

obtained using the Wiedemann-Franz law and the phonon thermal

conductivity κph = κ − κel. Interestingly, κph shows almost no anomaly around 200
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K. This result indicates that this transition does not involve any structural distor-
tion. Hence, the anomaly at ∼ 200 K arises from some transition of electronic origin
exemplified by the CDW order. However, since ρxx decreases below the transition
temperature, this transition is not explained by the simple CDW order. The origin
of the transition is to be clarified in future works.
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