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bp base pair 

CalS callose synthase 

CAPS cleaved amplified polymorphic sequence 

cDNA complementary DNA 

Col-0 Columbia-0 

dCAPS derived cleaved amplified polymorphic sequence 

DDG 2-deoxy-D-glucose 
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EMS ethyl methanesulfonate 

FKS FK506 sensitive 

GFP green fluorecent protein 
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RNA ribonucleic acid 
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T-DNA transferred DNA  
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Abstract of thesis 

 

 

 

 

 

 

 

 

 

Molecular mechanisms of adaptation to low calcium conditions in Arabidopsis thaliana 

 

 

 

Plants are basis of existence of humanity. In a historical view, improvement of agriculture has preceded 

economic growth. Understanding of plant physiology and genetics is essential to make the agriculture 

further efficient in the future, thus, I believe that accumulation of knowledge on plant contribute to 

promotion of human welfare. 

 Plant growth depends on absorption of essential elements from soils and photosynthesis in 

leaves. Insufficient supply of essential elements causes deficiency symptoms negatively affecting 

agriculture. Seventeen essential elements including calcium (Ca) are described in plants. In plants, Ca is 

mainly transported from roots to shoots through xylem along transpiration stream. Transpiration rate per 

leaf is higher in old leaves and lower in new and small leaves, and also in organs where no or little 

stomata is, such as fruits. In addition, Ca is difficult to be translocated through phloem because of strong 

binding to pectin in cell wall. Due to these characteristics, even when Ca in soil is sufficient, Ca deficient 

symptoms often appear in new tissues accompanying necrosis: blossom-end rot in tomato; tip burn in 

Chinese cabbage. These deficiency symptoms reduce their commercial values. Breeding of low-Ca 

tolerant crops is a possible and promising solution for this problem, however, knowledge on low-Ca 

adaptation mechanisms in plants required for efficient molecular breeding is still limited.  

 In my thesis, I clarified a molecular mechanism of low-Ca adaptation in plants through 

genetical and physiological analyses of low-Ca sensitive mutants in Arabidopsis thaliana. In Chapter 1, I 

revealed that synthesis of callose, one of the cell wall polysaccharide, prevented cell death under low-Ca 

in A. thaliana. I found that the wild-type plants accumulated callose in response to low-Ca condition, 

depending on Glucan synthase like (GSL) 10. I also demonstrated that the inhibition of callose synthesis 

enhanced cell death lesion. From these results, I established that callose synthesis is indispensable process 
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to prevent cell death for low-Ca adaptation. In Chapter 2, I clarified that redundant contributions of 

several GSL genes were required for the suppression of cell death and adaptation to low-Ca. I found that 

gsl1-5 and gsl8-11 mutants also exhibited the reduced callose accumulation under low-Ca. Further, I 

demonstrated that the GSL1 and GSL10 additively contributed to suppression of cell death under low-Ca. 

These results established that several GSL genes contribute to the ectopic callose accumulation, 

suppression of cell death, and low-Ca adaptation in A. thaliana. In Chapter 3, I demonstrated a potential 

involvement of defense responses in the development of cell death under low Ca. 

 

Chapter 1: Callose synthesis suppresses cell death induced by low calcium condition in 

Arabidopsis thaliana 

 

Necrosis in new leaves is one of the characteristics of Ca deficiency symptoms in plants. Mechanisms of 

necrosis induced by low-Ca condition or adaptation remains unclear. 

 A low-Ca sensitive mutant, lcs3, cannot develop true leaf under low-Ca. Before my study in 

Ph.D., it had been demonstrated in the laboratory of Plant Nutrition and Fertilizers at the University of 

Tokyo that the causal gene of lcs3 (hereafter referred to as gsl10-5) is GSL10. In my master thesis, I have 

demonstrated that A. thaliana GSL10 complemented a yeast -1,3 glucan (callose) synthase mutant, 

establishing that GSL10 encodes callose synthase. 

 In this Ph.D. study, I performed detailed physiological characterization and transcriptome 

analysis of gsl10-5. Observation of cell death by trypan blue staining revealed that gsl10-5 developed cell 

death in new leaves under a low-Ca condition and the introduction of GSL10 alleviated cell death 

phenotype in gsl10-5, showing that GSL10 has a function of prevention of cell death under low-Ca 

conditions. Callose staining with aniline blue revealed that the wild-type plants accumulated ectopic 

callose in response to low Ca and that gsl10-5 accumulated less callose than the wild-type plants. Callose 

accumulation in gsl10-5 was recovered by introduction of the wild-type gene, showing that GSL10 is a 

responsible gene of the ectopic callose accumulation induced by low Ca. These results suggest that 

callose synthesis is required for the adaptation to low Ca and prevention of cell death. To test this, the 

wild-type plants were grown under low-Ca condition in the presence of callose synthase inhibitors, 

2-deoxy-D-glucose (DDG) or caspofungin. Shoot growth of the wild-type plants under low Ca with DDG 

or caspofungin were inhibited comparable to that of gsl10-5 under low-Ca condition. Application of DDG 

enhanced the cell death and reduced callose accumulation in the wild type under low-Ca condition. These 

results showed that callose synthesis is required for the prevention of cell death under low-Ca. To get 

insight into the transcriptome change(s) in GSL10-mediated low-Ca adaptation, RNA-sequencing 

analysis was performed. The results showed similar expression profiles between wild-type plants treated 

with low Ca and gsl10-5 grown under normal condition. Especially, the expressions of genes related to 

cell wall and defense responses are commonly altered, suggesting the requirement of GSL10 for the 
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alleviation of both cell wall damage and defense responses caused by low Ca. These results demonstrate 

that callose synthesis is essential for the prevention of cell death and is a key part of plant strategy to 

survive under low-Ca condition. 

 

Chapter 2: Contributions of GSL family to low-Ca adaptation in A. thaliana  

 

Low-Ca sensitive mutants, lcs4, lcs5 and lcs6 cannot develop true leaves under low Ca as observed in 

gsl10-5. Before my study in Ph.D., in the laboratory, it had been revealed that the causal gene of lcs4 and 

lcs5 is GSL1 (lcs4 and lcs5 are hereafter referred to as gsl1-5 and gsl1-6, respectively) and that of lcs6 is 

GSL8 (lcs6 is hereafter referred to as gsl8-11). It had also been demonstrated that GSL1 and GSL8 

complemented a yeast -1,3 glucan synthase mutant, suggesting GSL1 and GSL8 encodes a functional 

callose synthase. 

 In my Ph.D. study, I performed detailed physiological characterization of the gsl mutants. I 

analyzed the contributions of GSL genes to the low-Ca adaptation, the ectopic callose accumulation, and 

the suppression of cell death under low-Ca condition. To test whether GSL1 and GSL8 contribute to the 

callose accumulation under low Ca, I performed callose staining. gsl1-5 and gsl8-11 mutants showed the 

reduced ectopic callose accumulation compared to the wild-type plants, showing that callose 

accumulation is positively correlated with the adaptation to low-Ca condition. Under the low-Ca 

condition, double mutant of gsl1-5 and gsl10-5 showed enhanced growth inhibition and cell death 

compared to its parental single mutant lines. In the A. thaliana genome, 12 genes are annotated as 

putative callose synthase. I checked the low-Ca sensitivity of T-DNA insertion lines of other 9 members 

of GSL genes and GSL11 T-DNA line showed sensitivity to low Ca. These results suggest that the callose 

synthesized by GSL proteins additively contributes to the tolerance and the prevention of cell death under 

low-Ca in A. thaliana. 

 

Chapter 3: Analysis of the involvement of callose in a low-Ca sensitive mutant lcs7 

 

Before my study in Ph.D., in the laboratory, it had been revealed that a low-Ca sensitive mutant lcs7 

exhibits growth inhibition under low-Ca condition similar to that of gsl mutants, and the low-Ca 

sensitivity of lcs7 is caused by a gain-of-function mutation in a transcription regulation factor. From 

microarray analysis, it had been shown that callose degrading enzyme genes were up-regulated in lcs7, 

implying the possibility that the reduction of callose is the cause of low-Ca sensitivity of lcs7. In addition, 

it had been shown that double mutants between lcs7 and gsl10-5 or gsl8-11 showed severe growth 

inhibition compared to single mutants.  

 In this Ph.D. study, I performed callose staining to test whether less callose accumulation is 

related with low-Ca tolerance in lcs7 as is observed in gsl mutants. There was no significant difference 



10 

 

between the wild-type plants and lcs7, suggesting that the low-Ca sensitivity of lcs7 is not caused by the 

reduction of callose and that the enhanced low-Ca sensitivity of double mutant between lcs7 and gsl 

mutants is caused by additive effects of different low-Ca adaptation mechanisms. To speculate the reason 

for low-Ca sensitivity of lcs7, I re-analyzed the microarray data and performed gene ontology analysis. 

The results showed that the genes related to defense response and cell wall are enriched in differentially 

expressed genes in lcs7. These results suggest that the proper transcription regulation of defense 

responses and cell wall is crucial for the prevention of cell death under low Ca. 

 

In this Ph.D. thesis, I concluded that A. thaliana adapts to low-Ca conditions by synthesizing callose, and 

that redundant contributions of GSL family are required for the suppression of the cell death. In addition, I 

suggested the involvement of defense response in cell death under low Ca. I believe this knowledge will 

contribute to the breeding of Ca deficiency tolerant crops and the improvement of agricultural 

productivity in the future. 

  



11 

 

Preface 

 

Significance of plant research for humankind 

I believe it is necessary for the improvement of agricultural productivity to take in depth 

considerations about the physiologies and properties of crops. Reinforcement of knowledge on the 

physiologies of crops/plants have contributed to the efficient cultivation of crops, the improvement 

of agricultural productivity and economic growth, and the pursuit of happiness of each person. In 

addition, it is my view that the reinforcement of knowledge itself, independent of its contents, is 

essential to deepen self-recognition of humanity. In other words, the reinforcement of knowledge is 

essential to understand how human lives and/or what human is. Thus, the significance of plant 

research is supported by both agricultural and scientific contexts.  

 

Target of the study of plant nutrition-my view 

Plants directly support humanity as a source of food. Thus, it is an important issue to cultivate plants 

appropriately, which directly influences the survival of human. In human history, cultivation 

methods have long been improved through experience and in 19
th
 century such knowledge is 

systemized and form several scientific fields (Liebig, 1855). Plant nutrition is among them.  

Seventeen essential elements have been recognized for plants (Marschner, 2011). In other 

words, if any one of these essential elements was absent from the earth, plant would not continue to 

live on the earth and consequently we human could not live. Human body is composed of many 

different elements, most of which are originally from plants absorbed from soil. Plants is an interface 

enabling human and other lives to be connected to the earth and the universe. Plant nutrition is a 

pursuit for revealing how plants live on the earth by absorbing and utilizing the elements - fragments 

of this planet and this universe. 
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The purpose and features of this thesis and difference from previous studies 

 

The title of my thesis is “Molecular mechanisms of adaptation to low calcium conditions in 

Arabidopsis thaliana”. However, as described in the following sections, several genes have been 

already identified to be essential for low-Ca tolerance. Thus, it is required to clarify the difference 

between present studies and previous studies. 

 First, my thesis focuses on the mechanisms of prevention of cell death under low-Ca 

conditions in Arabidopsis by using mutant which cannot expand true leaves under low-Ca. My thesis 

pays attention to the mechanisms to low-Ca tolerance originally equipped in Arabidopsis. A lot of 

previous studies employed reverse genetic approach to identify the genes in Ca homeostasis, 

however, these research are not sufficient due to its technique fault: only Ca related genes, such as 

Ca transporter and pectin related genes, have been tested. On the other hand, my thesis is using 

forward genetics and explore the hidden side of Ca homeostasis without a priori knowledge.

 Second, my study focuses on one of the essential cell wall polymer, callose. Callose is 

consisted of -1,3 glucan and has many biological functions. However, no report had been shown its 

relationship to the low-Ca tolerance in plants. 

 These two points differentiate my thesis from previous studies. To facilitate the 

understanding of the contents of the thesis, I described Ca in plants and plant cell wall in the 

following sections. 
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General introduction 

 

Calcium in plant nutrition 

There are 17 essential elements in plants (H, B, C, N, O, Mg, P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Mo 

and Ni) (Marschner, 2011). Ca is one of the macronutrients in plants, and a pile of knowledge on Ca 

have been accumulated so far. In the following sections, the functions, current knowledge on 

transportation and deficiency symptom of Ca in plants are discussed. 

 

Functions of Ca in plants 

In plants, Ca is required for many biological processes including the stabilization of cell wall, second 

messenger in signal transduction, and the stabilization of plasma membrane. In the following 

subsections, the involvement of Ca in each function is described. 

 

1) Stabilization of cell wall  

Ca contribute to the mechanical strength in plant cell wall by crosslinking pectin. Pectin is one of the 

cell wall matrix, a polysaccharide composed of homogalacturonan (HG), rhamnogalacturonan I 

(RGI) and rhamnogalacturonan II (RGII) (Mohnen, 2008, for review). HG is a polymer of 

galacturonic acid linked with -1,4 linkage. Galacturonic acid in HG has carboxyl group with both 

methylated and de-methylated forms. Ca
2+

 binds to de-methylated carboxyl groups of HG, and 

stabilize and gelate pectin (Powell et al., 1982). The gelation of pectin is important for the plant 

structural strength and developmental morphology. For example, the flower stem of pectin methyl 

esterase 35 mutants cannot stand straightly (Hongo et al., 2012). This phenotype is correlated with 

the reduction of fluorescence from antibody against de-methylesterified pectin. In addition, it has 

been known that foliar application of Ca contributes to the prevention of infections by pathogens, 

seemingly by reinforcing cell wall with pectin-Ca
2+

 crosslink (Toivonen and Bowen, 1999). 

 

2) Second messenger in signal transduction 

It has been known that Ca
2+

 concentration in cytosol is maintained at a submicromolar level. On the 

other hand, Ca
2+

 concentration in apoplast is estimated to be about 1-10 mM. In other words, Ca
2+

 

concentration in apoplast is approximately 10,000-fold higher than that in cytosol (White and 

Broadley, 2003, Conns et al., 2011). The difference of Ca
2+

 concentration between inside and outside 

of cell enables plant cells to use Ca
2+

 as a signal. This function of Ca
2+

 is often called as a second 

messenger. For example, when a physical stimulus is applied to the plasma membrane, Ca
2+

 

channels on the plasma membrane open in response to stretching stress and allow apoplastic Ca
2+

 to 

flow into cytosol (Nakagawa et al., 2007). Elevation of cytosolic Ca
2+

 concentrations lead to the 

activation of downstream responses such as mitogen associated protein kinase (MAPK) cascade 



14 

 

and/or the activation of a number of enzymes (Lecourieux et al., 2006, for review).  

 Ca
2+

 is also a second messenger to induce cell death (Kurusu et al., 2005). For example, in 

the process of pathogen infection, recognition of pathogen-associated molecular patterns (PAMPs) 

causes influx of Ca
2+

 into cytosol through cytosolic-nucleotide gated channel (CNGC). It has been 

demonstrated that this Ca
2+

 influx leads to the activation of the MAPK cascade. The production of 

nitric oxide (NO) and reactive oxygen species (ROS) induced by the activation of MAPK 

subsequently lead to cell death (Overmyer et al., 2003, for review).  

 

3) Stabilization of plasma membrane 

Ca is one of the components of plasma membrane. It has been known that Ca
2+

 stabilizes plasma 

membrane by binding to the phosphate groups of phospholipids, a component of plasma membrane. 

In Arabidopsis thaliana, it has been reported that a low-Ca condition causes electrolyte leakage, an 

indicator of damages in plasma membrane (Schapire et al., 2008). In addition, a mutation on 

synaptotagmin 1, a protein considered to be involved in repairing the damage of plasma membrane, 

further enhances electrolyte leakage induced by low-Ca (Schapire et al., 2008). The 

above-mentioned evidence suggests the importance of Ca
2+

 in alleviation of plasma membrane 

damages caused by low-Ca. 

It has been known that, under low-Ca condition, Ca deprivation from the phospholids of 

plasma membrane precede the deprivation from Ca pectate (Mostafa and Ulrich, 1976; Marschner, 

2011), suggesting that low-Ca condition negatively affects stability of plasma membrane. 

 

Transport of Ca
2+

 in plants 

Plants absorb nutrients from soil via roots and transport them to shoots. Nutrients in soil solution 

enter into xylem via symplastic and/or apoplastic pathway. The symplastic pathway is route via 

cytosol connected with plasmodesmata, and apoplastic pathway is route via apoplastic space 

including cell wall matrix. There is a barrier in apoplastic routes in endodermis. This barrier consists 

of lignin and called Casparian strip. Casparian strip is formed from elongation zone and fill the gap 

between endodermal cells preventing solutes entering into stele. Therefore, nutrients must enter into 

symplastic pathway in the region where Casparian strip is formed. On the other hand, in the root tip 

region, Casparian strip is not formed and it has been considered that nutrients and other components 

can enter into stele through apoplastic pathway (White 2001). 

Ca
2+

 functions as a second messenger by transient increase of its concentration in cytosol, 

therefore, Ca
2+

 concentration in cytosol is kept in the level of submicromolar in basal state. Ca
2+

 is 

mainly transported to shoot via the apoplastic pathway. It has been considered that Ca
2+

 is hardly 

transported via symplastic pathway. In other words, Ca
2+

 is absorbed from the root tip where 

Casparian strip is not formed, and is transported by transpiration stream to shoots through xylem, 
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hardly on phloem, because Ca
2+

 binds to pectin in cell wall and becomes almost immobile (Clarkson 

et al., 1984; White and Broadley., 2003). Consequently, Ca
2+

 tends to accumulate much in older 

leaves and less in new leaves with lower transpiration rate.  

The absorption of Ca
2+

 from soil is competitive with that of other nutrients such as Mg
2+

, 

K
+
 and NH4

+ 
(Walker et al., 1955; Overstreet et al., 1952; Kirkby and Mengel, 1967). It has been 

reported that plants grown on serpentine soil which has higher Mg concentration showed the low Ca 

concentrations  (Proctor, 1971). Thus, transport of Ca can be restricted when concentrations of 

other cations are high in soil. 

 It has been reported that several genes encode Ca
2+

 transporters in Arabidopsis, such as 

Ca
2+

/H
+
 antiporter (CAX), MCA (Ca

2+
-permeable mechanosensitive channel), ECA (ER-type 

Ca
2+

-ATPase), CNGC and ACA (autoinhibited Ca
2+

-ATPase). Although Ca
2+

 transport from root to 

shoot is mainly mediated by transpiration stream through xylem, several transporters have been 

shown to be involved in Ca
2+

 concentration or uptake in shoot. CAX1 and 3 are reported as 

vacuole-localized Ca
2+

/H
+
 antiporter and the Ca

2+
 concentration in shoots of cax1 cax3 double 

mutant is reduced to about 20% compared to that of wild-type plants (Cheng et al., 2005). It has 

been reported that the double mutant of plasma membrane localized MCA1 and 2 showed the 

reduced Ca
2+

 uptake activity (Yamanaka et al., 2010). It has been also known that ECA1 is involved 

in the Ca
2+

 concentration in shoot (Wu et al., 2002). A plasma membrane localized CNGC2 has been 

suggested to be involved in influx of Ca
2+

 from apoplast into cytosol and responsible for Ca
2+

 

concentration in shoot under excess- Ca
2+

 condition (Wang et al., 2017). 

 Besides the involvement of the transporters in Ca
2+

 accumulation in shoot, Ca
2+

 

transporters also have important roles in signal transduction. For example, a vacuole-localized ACA4 

and ACA11 have been shown to be involved in cellular signal transduction including salicylic acid 

(SA) signaling pathway, suggesting the importance of compartmentation of cytosolic Ca
2+

 in vacuole 

for proper cellular process (Boursiac et al., 2010). 
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Ca deficiency symptoms in crops and its molecular mechanisms 

In agriculture, Ca deficiency symptom is one of the often-occurring physiological disorder which is 

observed as blossom end rot (BER) in fruits, tip burn in younger leaves, or core rot in enclosed 

younger leaves. Ca has a tendency to be accumulated much in the old and large tissues with high 

transpiration rate and less in the new and small tissues with low transpiration rate. Ca is almost 

immobile because of the binding to pectin in cell wall with egg-box structure (Powell et al., 1982). 

Due to these characteristics of Ca, Ca tends to be deficient in new tissues. Furthermore, newly 

developing tissues require a large amount of Ca for the component of cell wall. Thus, Ca deficiency 

symptoms can occur in new tissues even if Ca concentration in soil is sufficient. 

 One of most well-known Ca deficiency symptoms in crops is BER. BER is a phenomenon 

of development of necrotic lesions in the tip of fruits such as tomato and green pepper. It has been 

considered that the local shortage of Ca causes the necrosis in these tissues. de Freitas et al (2012) 

generated RNAi lines of pectin metylestrase (PME) genes in tomato. The generated RNAi lines 

showed lower de-metylesterified rate of HG, which decreased the region of HG required for the 

binding to Ca
2+

. In these lines, the concentration of apoplastic free Ca
2+

 increased and the plasma 

membrane stability was increased. They observed the inverse correlation between the plasma 

membrane stability and the rate of incident of BER. They also generated transgenic tomato 

overexpressing CAX1, a vacuole Ca
2+

/H
+
 antiporter, and these transgenic tomatoes showed the 

lower concentration of apoplastic free Ca
2+

 and increased the rate of incident of BER (de Freitas et 

al., 2011). From these results, they propose that the development of BER is associated with the 

reduced plasma membrane stability probably caused by the lower concentration of apoplastic free 

Ca
2+

. 

 Wu et al (2012) showed that overexpression of Calreticulin 1 (CRT1), encoding ER 

localized Ca
2+

 binding protein, alleviate the BER induced by overexpression of CAX1. They 

speculate that the increased Ca
2+

 capacity in ER could realize proper Ca
2+

 distribution in cellular 

levels in spite of enhanced intake of Ca
2+

 into vacuole by overexpression of CAX1.  

 Tip burn or core rot in foliar vegetables is also one of the well-known Ca deficiency 

symptoms in plants. Tip burn appears necrotic lesions in the tip of leaves, such as cabbage or 

Chinese cabbage. In Chinese cabbage, it has been known that the rate of incident of tip burn 

increased when the plants were grown under low Ca (Kuo et al., 1981). In addition, in new leaves, 

the concentration of water soluble Ca
2+

 in edges of leaves is lower than that in leaf blade or midrib. 

Furthermore, the concentration of water soluble Ca in leaves with tip burn is lower than that in 

leaves without tip burn (Kuo et al., 1981). Contrary, another study reported that there is no 

correlation between Ca
2+

 concentration in leaves and the rate of tip burn among a double haploid 

population of Chinese cabbage: the authors presented positive correlation between tip burn and SA 

signaling induced by low-Ca condition (Su et al., 2016). 
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About the gene involved into tip burn, it has been shown that the overexpression of CAX1 

can increase the tip burn in tobacco (Hirschi 1999), consistent with the case of transgenic tomato 

overexpressing CAX1 which exhibits BER (de Freitas et al., 2011).  
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Genes involved in low-Ca tolerance in Arabidopsis 

Other than the above mentioned genes (PME, CAX1, CRT1) in the subsection “Ca deficiency 

symptom in plants”, several genes have been shown to be involved in low-Ca tolerance in 

Arabidopsis. A T-DNA insertion line of ECA1 has been shown to exhibit poor growth under low-Ca 

condition (Wu et al., 2002). Considering the case of CRT1, these results may suggest the importance 

of ER pool of Ca
2+

. In addition, Yamaguchi et al (2006) showed that a spermine deficient double 

mutant, acl5/spms, showed poor growth on low-Ca condition, suggesting the involvement of 

polycation including spermine in low-Ca adaptation.  

 So far, also in our laboratory, several genes has been identifiedas genes involved in the 

low-Ca tolerance in Arabidopsis. I and co-authors have revealed the involvement of pleiotropic 

regulatory locus 1 (PRL1) in the low-Ca tolerance (Shikanai et al., 2015). It has been reported that 

PRL1 is a regulatory protein of sugar metabolism (Németh et al, 1998). This data suggests a close 

relationship between energy metabolism and the low-Ca tolerance in Arabidopsis. Oda and Kamiya 

et al (2016) identified a magnesium transporter gene, MRS2-4, as an essential gene for the low-Mg, 

high-Mg and low-Ca tolerance, suggesting the relationship between Mg and Ca homeostasis. Li and 

Kamiya et al (2017) identified a novel gene affecting Casparian strip, suberin accumulation, Ca
2+

 

concentration in shoot and low-Ca tolerance. This study revealed suberin has a function as apoplastic 

barrier and affecting Ca concentration in shoot.  
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Cell wall and callose in plants 

One of the most significant differences between plant cells and animal cells is the existence of cell 

wall. Cell wall in plants is mainly composed of polysaccharide, such as cellulose, pectin, xyloglucan, 

and xylan or phenolic compounds such as lignin. In addition, it has been known that one of minor 

polysaccharides, callose is essential for plant growth. In the following subsections, the function of 

cellulose, pectin and callose are described for proper understanding of this present thesis.  

 

Cellulose 

Cellulose is one of the polysaccharide of -1,4 glucan with -1,4 linkage of glucose. -1,4 glucan is 

synthesized by plants and some kind of microbes (Siró and Plackett, 2010). It is estimated that 

cellulose is the most abundant carbohydrate on the earth (Siró and Plackett, 2010). Cellulose is one 

of the essential component of plant cell wall and it has been known that the complete disruption of 

celloluse synthase leads to lethality (Persson et al., 2007). 

 It has been known that cellulose deficient mutants often showed increased pectin or 

ectopic callose deposition (Lukowitz et al., 2001), suggesting the interaction between cellulose and 

other cell wall polysaccharide (Robert et al., 2004). 

 

Pectin 

Pectin is one of the cell wall matrix polysaccharide (Mohnen, 2008, for review). Pectin is composed 

of homogalacturonan (HG, as shown in page 13), rhamnogalacturonan I (RG I, as shown in page 13) 

and rhamnogalacturonan II (RG II, as shown in page 13) (Mohnen, 2008). HG comprise about 65% 

of pectin and is consisted of polymer of galacturonic acid with -1,4 linkage (Mohnen, 2008, for 

review). It has been known that pectin is synthesized in Golgi and secreted to the outside of plasma 

membrane, subsequently de-esterified by PME (Pelloux et al, 2007, for review). De-esterified HG 

can bind to Ca
2+

 with its carboxyl groups, then forms Ca
2+

-pectin crosslinks, which is called as 

egg-box structure (Powell et al., 1982). As I mentioned in page 12, the gelation of pectin is essential 

for many biological processes: for examples, a mutant of pectin methylesterase 35 showed a pendant 

stem, which is associated with the reduced de-methylesterification of the homogalacturonan of 

cortex of basal part of stem (Hongo et al., 2012). In addition, overexpression of pectin 

methylesterase inhibitor gene inhibited the formation of inflorescence (Peaucelle et al., 2008).  

 Moreover, oligogalacturonan, a fragment of pectin, has been known to induce immune 

response and ectopic callose deposition in Arabidopsis (Denoux et al., 2008). 

 

Callose 

Callose is one of the cell wall polymers whose main chain is consisted of -1,3 glucan, a linear 



20 

 

polymer of glucose with -1,3 linkage. -1,3 glucan widely spreads in plant, algae, fungi, yeast and 

bacteria (Cui et al., 2001; Stone and Clarke., 1992, for review).  

 Callose is essential for plants, especially for cell plate and pollen. In Arabidopsis, it has 

been suggested that there are 12 callose synthase (GSL) (Hong et al., 2001). It has been reported that 

gsl8 showed decreased accumulation of callose in cell plate and seedling lethality in homozygous 

plants (Thiele et al., 2009). GSL6 is also suggested to contribute to callose accumulation in cell plate 

(Hong et al., 2001). Pollen maturation also requires callose, and gsl1gsl5 double mutant and gsl10 

mutant are known as gametophytic lethality (Enns et al., 2005; Töller et al., 2008). GSL2 has been 

also shown to be involved in callose synthesis in pollen and contribute to fertility (Dong et al., 

2005). 

 It has been suggested that callose synthesized by GSL7 in sieve plate is required for 

efficient transport of sugar through phloem tissue (Barratt et al., 2011). GSL8 and GSL12 have been 

shown to be involved in the callose accumulation required for regulation of permeability of 

plasmodesmata (Vatén et al., 2011; Han et al., 2014). gsl8 mutant showed the reduced plasmadesmal 

callose and increased plasmodesmata permeability (Han et al., 2014). The gain of function alleles of 

GSL12 showed the increased calllose accumulation in plasmodesmata and reduced plasmodesmata 

permeability. These studies showed the significant role of callose in the symplastic trafficking. 

 One of the well-known characteristics of callose is its accumulation during pathogen 

infection, and this characteristic is used for the quantification of the activity of plant immunity (Luna 

et al., 2011). It has been known that plants accumulate callose, called papilla, at the site of pathogen 

infection, and this callose deposition is considered to protect the subsequent invasion of pathogen. 

Contrary to this understanding, Nishimura et al (2003) showed the enhanced tolerance of gsl5 to 

pathogen which lacked callose deposition during infection. This enhancement of tolerance to 

pathogen of gsl5 is caused by the enhanced salicylic acid (SA) signaling pathway in defense 

response (Nishimura et al., 2003). Ellinger et al (2013) had shown that the overexpression of GSL5 

increased the tolerance to pathogen because of elevated callose deposition rather than SA signaling. 

Overexpression of GSL5 resulted in the suppression of SA signaling pathway, consistent with the 

result of Nishimura et al (2003) showing that disruption of GSL5 resulted in the enhanced SA 

signaling pathway (Ellinger et al., 2013). From these evidence, it has been considered that there is 

feedback regulation between callose deposition and SA signaling pathway, and both of them 

contribute to defense against pathogen. 
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Chapter 1: Callose synthesis suppresses cell death induced by low calcium 

condition in Arabidopsis thaliana 

 

Contents of this chapter cannot be published here because there is a plan to publish contents included 

in this chapter in 5 years. 
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Chapter 2: Contributions of GSL family to low-Ca tolerance in Arabidopsis 

thaliana 

 

Contents of this chapter cannot be published here because there is a plan to publish contents included 

in this chapter in 5 years.  
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Chapter 3: Analysis of the involvement of callose in a low-Ca sensitive mutant, lcs7 

 

Contents of this chapter cannot be published here because there is a plan to publish contents included 

in this chapter in 5 years. 
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General discussion 

 

In this thesis, I clarified the mechanisms of the low-Ca adaptation and the development of Ca 

deficiency symptom in Arabidopsis thaliana. 

 

Previous studies on Ca deficiency symptoms in plants 

As I described in Introduction, several studies have been performed on the molecular mechanism of 

the development of Ca deficiency symptoms in plants. For examples, it has been demonstrated that 

the overexpression of vacuolar-localized Ca
2+

/H
+
 antiporter leads to Ca deficiency symptoms 

(Hirschi., 1999): the disruption of ER-localized Ca
2+

 pump makes A. thaliana sensitive to low Ca 

(Wu et al., 2002); the overexpression of ER-localized Ca
2+

 binding proteins (CRT1) confers plants 

tolerance to Ca deficiency (Wu et al., 2012); down-regulation of pectin metylestrase (PME) 

decreases the incidence of Ca deficiency symptom possibly due to the increase of Ca
2+

 in apoplastic 

space (de Freitas et al., 2012). These reports suggest the importance of Ca distribution in tissue 

and/or cell in the development of Ca deficiency symptoms. Although several studies have shown that 

disruption of gene (s) enhance low-Ca sensitivity in plants, to my knowledge, no report identified the 

molecular mechanism (s) of adaptation in response to low-Ca condition in plants.  

Issues that I clarified in my thesis 

Before my Ph.D. study, it had been clarified that callose synthase genes GSL1, 8 and 10 are essential 

for low-Ca tolerance in A. thaliana. In addition, it had been revealed that the low-Ca sensitivity of a 

transcription regulation factor mutant, lcs7, is enhanced by gsl mutations. 

 In my thesis, I demonstrated that the wild-type plants accumulate ectopic callose in 

response to low-Ca condition, and that the callose accumulation in gsl mutants are reduced (Fig. 

1-4C, 1-7, 2-7A, B). Cell death under the low-Ca condition is enhanced in gsl mutants and wild-type 

plants treated with callose synthase inhibitor (Fig. 1-1C, D, 1-8B, C, 2-9A, B). These results showed 

that callose synthesis is required for the prevention of cell death and the low-Ca adaptation. In 

addition, I revealed that the low-Ca sensitivity of lcs7 is not associated with the reduction of ectopic 

callose accumulation (Fig. 3-4, 3-5) and associated with the differential expressions of defense 

response genes (Fig. 3-6, 3-7). This result suggests the involvement of defense responses in 

development of Ca deficiency symptoms in plants. 

 

Novelty of my thesis over previous studies 

I found that the ectopic callose accumulation in response to low Ca is responsible for the prevention 

of Ca deficiency symptoms. I believe that this is a brand-new knowledge on the behavior of plants 

against low-Ca condition. Moreover this is the first description of plants’ strategy to overcome 

low-Ca conditions by preventing cell death through callose synthesis. My thesis differs from the 
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previous reports in that I described the molecular mechanisms for the adaptation to low-Ca 

condition. 

 In the research field of plant immunity, it has been widely accepted that ectopic callose 

accumulation is to reinforce cell wall to prevent invasion of pathogens (Ellinger et al., 2013). My 

thesis suggests that, irrespective of pathogen invasion, the ectopic callose accumulation is required 

for the prevention of cell death. My finding lead us to re-interpret the significance of ectopic callose 

accumulation during pathogen invasion, in terms of prevention of cell death.  

 

Common characteristics between low-Ca response and defense response 

Through my thesis, I found at least two common characteristics between low-Ca response and 

defense response. One is, as I mentioned in the above paragraph, the accumulation of ectopic callose 

accumulation (Fig. 1-4C, 1-7, 2-7A, B). Another is the transcriptome pattern. Defense response 

genes are altered in Col-0 under low-Ca condition, gsl10-5, and lcs7 (Fig. 1-S9, Fig. 3-6). 

It is probable that these common characteristics between low-Ca response and defense 

response are caused by the cell wall damage. During pathogen infection, cell wall of plants is 

damaged by pathogens. Pathogen infection is recognized by host plants by receptors for 

pathogen-associated molecular patterns (PAMPs) and/or damage associated molecular patterns 

(DAMPs) (Denoux et al., 2008). The fragment of pectin, oligogalacturonic acid (OG), is known as 

one of the DAMPs (Denoux et al., 2008). Considering that pectin-Ca
2+

 crosslink is required for cell 

wall, low-Ca condition may de-stabilize pectin in cell wall and de-stabilized pectin may be 

fragmented into OG, leading to trigger defense responses. These possible physical phenomena under 

low-Ca or pathogen infection may cause similar physiological and transcriptional responses. 

 

Toward application to breeding of low-Ca tolerant crops 

Breeding for enhancing callose synthesis is one of the promising ways for low-Ca tolerant crops, 

because the enhancement of callose synthesis should also contribute to plant immunity (Ellinger et 

al., 2013).  

On the other hand, it seems to be difficult to use the down-regulation of defense responses 

for the prevention of necrosis under low-Ca condition because the down-regulation of defense 

responses may lead to the enhancement susceptibility to pathogen and subsequent loss of products. 

Further clarification of the relationship between low-Ca response and defense response are needed 

for the utilization of defense response genes for breeding of low-Ca tolerant crops. 

 

Conclusion 

Plants are the basis of survival of humanity. Thus, the question how plants adapt to surrounding 

environments consists of the question how human exist in the world. Furthermore, I believe that 
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breeding of crops is one of the promising solution to the problems, such as global population growth 

and economic growth in rural area. I pray that my thesis can consist of the answer to the above 

questions and contribute to the solutions to the problems.  
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