Quantization-based Optimization
of CNN Inference on a
multi-FPGA system
ETLETIVICLBERNFPGA £T
DR D EE1LE

37-196530
Hongyi Pan (& H4I=)
Supervisor: Prof. Tomohiro Kudoh (LE%17%)

Department of Electrical Engineering and Information Systems

University of Tokyo

This dissertation is submitted for the degree of

Master of Engineering

January 28, 2020

Acknowledgements

I am very grateful to have worked with many wonderful people throughout my M.Eng
study and research.

First and foremost, this work was partly supported by JST CREST Grant Number
JPMJCRI19K1, Japan. And I sincerely thank Professor Amano and students from
Amano Lab from Keio University for their guidance and assistance.

I would like to express my sincere gratitude to my advisor Professor Tomohiro
Kudoh. He gave me the chance to study at the Univ. of Tokyo and work with good
people. And I admire, appreciate, and am inspired by Kudoh’s enthusiasm, dedication,
and work ethic in his teaching and research. Inspired by him, I always keep in mind
to work hard and never forgetting to chase the latest technology trends. Kudoh has
not only introduced me to the wonderful field of engineering but has also helped me
vastly improved my research ability and communication skills. In addition, he is very
concerned about my living in Japan. I really thank him for his help.

I also would like to thank our collaborators from AIST, Akram Ben Ahmed, and
Tsutomu ITkegami. I am always amazed at their intelligence and their advice really
helped a lot to my research.

Besides, I would like to thank the following members of the Computer Network
Laboratory (CNL): k.satou, i.horikoshi, mazhaoyu, j.lu, s.kikuchi, g.koujitani, k.sugiura,
s.sugimura, k.tominaga, y.nakazawa, r.nakajima, y.hayashi, a.hirai, dingyepeng, weiyi,

for their two-year company in my master’ s life. I am always amazed by their incred-

iii

ible creativity. Music, mahjong, traveling...I will always remember these wonderful
memories as well as how gorgeous they are.
Last but not least, I would like to express my thanks to my parents for their

unconditional support. Without them, I would not achieve anything.

Abstract

With specifically designed hardware, FPGA is a promising candidate for neural net-
work inference acceleration. However, the gap between neural network model size
and FPGA on-chip resources is huge. To increase the on-chip memory, We use a
multi-FPGA system. The total amount of BRAM is proportional to the number of
boards, and the communication delay between FPGAs is negligible. However, even
for multiple FPGAs, insufficient resources and communication delays with hosts are
still problems. In this paper, we use the quantization method based on LQ-Nets pro-
posed by the Microsoft group to reduce the required storage space and communication
latency. At the same time, The tradeoff between the accuracy and resource can be
achieved by changing the bit width. Besides, We proposed methods for accelerating
convolution layers based on LQ-Nets. The synthesis results of the first two layers
of Alexnet indicate that the BRAM usage has decreased and the performance has

improved.

Table of contents

List of figures

List of tables

1 Introduction

1.1 Targeting Application Scenario

1.2 Contributions

Background

2.1 Primer on Neural Network
2.1.1 General Structure
2.1.2 Neural Network training and Inference
2.1.3 Majorlayers.o
2.1.4 Alexnet for The ImageNet Dataset

2.2 Data Quantization

Using Low-precision Binary Integer in Neural Networks

3.1 Gap Between NN Model size and FPGA Storage Size

3.2 Floating-point Arithmeticon FPGAs

3.3 FPGA Oriented Model Compression
3.3.1 BNN FPGA Accelerator Design
3.3.2 LQ-Nets FPGA Accelerator Design

vii

ix

Table of contents vi
4 System Architecture 23
4.1 Accelerator Design 23
4.1.1 Fast Convolution Method 24

4.1.2 Data Transfer and On-Chip Storage 27

4.1.3 Loop Pipeing and Unrolling 29

4.2 System Designo 32

5 Synthesis Results 35
5.1 Resource Utilization Analysis 35
5.2 Performance Analysis 37

6 Conclusion and Future Work 39
6.1 Conclusion. 39
6.2 Future worko 40
Publications 41
References 42

List of figures

2.1

2.2
24
2.5
2.6
2.7
2.8

3.1

3.2
3.3
3.4
3.5

3.6

A neural in neural network. i, w, b, g(z), a respectively refers to input
vector, weight, bias, activation function, output.
Sketch map of a simple deep neural network
Example activation functions L.
The process of the convolution operation between input and filter
[lustration of a maxpooling layer.

[Mlustration of a fully connected layer.

An illustration of the AlexNet architecture (the figure is taken from [16]) 10

The bar chart compares the register and SRAM sizes on FPGA chips in
different scales. The dotted line denotes the parameter sizes of different
NN models with 32-bit floating point parameters.
20,422,242 represented in IEEE 754 single-precision format
IEEE 32-bit floating point format
Driver function of FPU access.,
In binarized neural networks where weights and neurals are made +1 or

-1, Matrix x Vector operation can be done using xnor and population

Two types of binary neural network implementations: (a) Binary Weights

and real activations (b) both binary weights and binary activations. . .

14
15
16
16

19

19

List of figures viii

3.7 lustration of LQ-Nets’s learnable quantizer on the 2-bit (left) and 3-

bit (right) cases. For each case, the left figure shows how quantization

levels are generated by the basis vector, and the right figure illustrates

the corresponding quantization function. (The figure is taken from [38]) 21
4.1 Binary LQ-Nets implementation 24
4.2 Binary implementation by if-conditional 25
4.3 We use a look-up table to replace the multiplication function. 25
4.4 Bit operation we proposed based on LQ-Nets 27
4.5 A FIC-SW Custom FPGA board [10] 28
4.6 A diagram of the FPGA on a FIC-SW board [10] 28
4.7 Loop Pipeline 30
4.8 Pseudocode of our test code 31
4.9 Tllustration of NN layer implementation in FIC system 32
4.10 Illustration of implementation of two quantized layers 33
5.1 Utilization estimates generated by Xinlinx Vivado HLS synthesis tool 36

List of tables

4.1 Three optimization solutions we proposed

5.1 Comparison of the resource utilization

5.2 Comparison of the execution time . . .

Chapter 1

Introduction

Deep neural networks (DNNs) have gained prominence recently by producing state-
of-art results in pattern recognition, speech synthesis, customer preference elicitation,
and other machine learning tasks [6]. However, the largest CNN model for a 224 x224
image classification requires up to 39 billion floating-point operations (FLOP) and
more than 500MB model parameters [29]. CNN is extremely powerful but CNN-
based methods are computational-intensive and resource-consuming and are hard to
be realized on embedded systems. In most applications, CNNs are first trained off-line
in CPU and GPU machine clusters with strong computing power and then deployed
for inference tasks in data centers or an embedded environment, serving a large set
of end-users and applications. For example, a pre-trained neural network model that
recognizes specific thinks like dogs and cats can be deployed on thousands of servers,
making inferences for billions of image recognition tasks on websites and apps.
Recently, FPGA cluster-based accelerators for machine learning inference has be-
come a research hotspot. FPGAs (Field-programmable gate arrays) are integrated
circuits that can be configured by the end-user to implement digital circuits. With a
neural network-oriented hardware design, FPGAs are possible to achieve higher en-

ergy efficiency compared with CPU and GPU. But due to a large number of weights

1.1 Targeting Application Scenario 2

and intermediate features, most of the previous research focus on using off-chip mem-
ory which would significantly reduce efficiency by causing communication delay and

overhead.

1.1 Targeting Application Scenario

In recent years, mobile smart devices have become increasingly important as a tool
for entertainment, learning, news, businesses, and social networking for smarter liv-
ing [3] [30]. Corresponding to the more and more powerful mobile applications, storage
and computing capacity of edge devices remain limited because they are designed to
be portable and are only equipped with limited hardware resource. Cloud computing
is a well-accepted choice for offloading heavy computational tasks from mobile devices.
However, when it comes to scenarios in which an immediate response time is critical
to users, such as augmented reality, automatic drive and mobile multiplayer gaming
systems, cloud computing will lose its power because of the latency.

To address the above-mentioned problem, cloudlet-based offloading has been pro-
posed, where mobile devices offload computational process to a computing infrastruc-
ture (i.e., cloudlet) that is in relatively close proximity to the users [27]. In order to
solve the Wi-Fi access problem, the researchers further put forward mobile edge com-
puting system that enables mobile users to access IT and cloud computing services in
close proximity within the range of radio access networks [21] [28] [24]. Compared with
cloud system, mobile edge computing system can make the communication distance
between the user and the server greatly shortened by placing the server in the base
station close to the user, which can greatly reduce the communication delay as well
and the burden of bandwidth. Recent work has experimentally quantified the benefits
of edge computing. For instance, by placing VM-based cloudlets at the network edge
to accelerate the computational engine, one can achieve lower response time by up to

4.9x compared with cloud offloading [15].

1.2 Contributions 3

On the other side, Field Programmable Gate Array (FPGA) has been proven to
be an appealing solution to accelerate compute-intensive workloads. Because a large
majority of the electrical functionality inside the device can be reconfigured, FPGA
is possible to achieve high efficient pipeline and parallelism design and obtain higher
energy efficiency and better performance compared with CPU and GPU. Besides,
because of the FPGA’s controllable design and countable number of clocks, the pre-
dictable time delay can be achieved.

Motivated by the advantages of muti-access edge computing and FPGA-based
accelerator, we are seeking a solution to combine these two technologies to achieve
efficient responsiveness and meet the performance requirements of mobile applications.
As a case study, we chose to implement ImageNet-based CNN inference for image

recognition on FPGA-based server.

1.2 Contributions

o Implement Alexent inference on multi-FPGA system.
o Accelerate convolution layers based on LQ-Nets quantization method

o Increase the system throughput by adding HLS pragmas.

Chapter 2

Background

Before discussing our solution for CNN inference acceleration, let me first introduce

the basic concepts of neural networks and data quantization.

2.1 Primer on Neural Network

2.1.1 General Structure

Deep Neural Network is an imitation of the information-processing paradigm in bio-
logical nervous systems. The human brain has an average of around 86 billion neurons
and each neuron receives stimulus from its surrounding neurons, and when the stim-
ulus reaches a specific threshold, it will generate an output [9]. Inspired by this, the
structure of the neuron that is the basic element of CNN is shown in Fig 2.1, the
neuron sums up the products of all pairs of inputs and synaptic weights and offsets
with a bias to make the model more general. Activation function is introduced at the
neuron output to generalize or adapt with variety of data and to differentiate between
the output. There are numerous activation functions. One typical activation function

is the sigmoid function that maps the weighted sum values from (-inf, +inf) to (0, 1)

2.1 Primer on Neural Network 5

(Figure 2.3a). Another example is the Rectified Linear Unit (ReLU) that clamps all
negative values to 0 and retains all positive values (Figure 2.3b).

The robustness and functionality of the model can be enhanced by increasing the
number of neurons and layers. The layers between the input layer and the output
layer are called hidden layers since their states are usually not directly observable.
When the number of layers reaches a certain level, the network can be referred as a

deep neural network (Figure 2.2).

Iy

g(z)

1

Fig. 2.1 A neural in neural network. i, w, b, g(z), a respectively refers to input vector,
weight, bias, activation function, output.

2.1.2 Neural Network training and Inference

Training a neural network is the process of finding a set of parameters (weights and
bias) that minimize the model’s approximation error on the training dataset. The
approximation error can be calculated by a loss function, which is typically determined
based on the task [19].

Trained neural networks can apply what they have learned to applications, such
as speech recognition, computer vision and medical imaging, and so on. This process

of using trained model to predict and classify new data is referred as inference of NN.

2.1 Primer on Neural Network

Input Layer Hidden Layer Input Layer

Fig. 2.2 Sketch map of a simple deep neural network

-10 -5 0 5 10
(a) Sigmoid function, y = == (b) ReLU function: y = (x>0) ? x:0

Fig. 2.4 Example activation functions

2.1 Primer on Neural Network 7

In this paper, the training process is not discussed and we only focus on the inference

of NN.

2.1.3 Major layers
Convolution Layers

Convolution layer is composed of several convolution kernels, and the parameters
of each kernel are optimized by the back propagation algorithm. The convolution
operation is shown in the figure 2.5.

The filter acts like a sliding window that moves from top to bottom according to
the input image. When there are lines in the input image that are very similar to
that in the filter, the calculation result of this area will be large, while the calculation
result of other parts will be small. When all the calculations are done, we will get
an activation map that has high values in certain patterns and low values in other
areas. When convolution layer goes deeper, the features to be detected become more
complex. Therefore, when training a convolution layer of CNNs, a series of filters are

actually trained to achieve image classification or detection.

0o|0|o0 0 |0 |30 o|jojo 0 300
0|0o|0O |O |S50]5S0]|50 ojojo 30 |0 0
0ojo|o0 [20]|50]0 |O ojojoj30 |0 0 0
ojo|o [S0|50|0 |O * ojojoj30 |0 0 0
0]0|0 |[S0|S0|0 |O ojojoj30|o0 0 |0
0]0|0 |S0O|S0|l0 |O ojojoj30 |0 0 0
0j0|0 |[So|S0|0 |O ojojojo |0 0 |0
Visualization of the Pixel representation of the receptive Pixel representation of filter

receptive field field

Multiplication and Summation = (50+30)+(50+30)+(50«30)+(20+30)+(50+30)=6600 (A large number)

Fig. 2.5 The process of the convolution operation between input and filter

2.1 Primer on Neural Network 8

Pooling Layers

Pooling payer is another common component in CNN. It was first used in Lenet [17],
called the subsample. The pooling name is adopted after Alexnet [16]. The pooling
layer imitates the human visual system to reduce the dimension of the data and rep-
resents the image with higher level features. The purpose of pooling is to reduce the
information redundancy, keep good scale invariance and rotation invariance and to
prevent overfitting.

Maxpooling is the most common and most used pooling operation. As is shown in
Fig. 2.6, it reduces the input dimensionality by extracting the maximum value from a

set of neighbouring inputs.

I 2 4 0 Fout () = 0‘%‘2{4(&71({))
% 5 9
3 6 2 9
F in F out
j

Fig. 2.6 Hlustration of a maxpooling layer.

BatchNormalization Layer

Batch normalization (also known as batch norm) is a method used to make neural net-
works faster and more stable through normalization of the input layer by re-centering
and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015 [14].

The computation can be formulated as follows

T — Mc<x>
o.(x)

)+ 8 (2.1)

Lout = ’7(

2.1 Primer on Neural Network 9

The terms pu. and 0. are mean and variance at each channel of feature map, re-
spectively. The v and 8 are trainable parameters.

In the inference stage, u. and o, of each layer of each mini-batch training data are
retained in the model and the statistics of the whole sample are used to normalize the

test data.

Fully Connected(FC) Layers

Fully Connected (FC) Layers plays the role of "classifier” in the neural network. If the
operations of convolution layer, pooling layer are to map the original data to the hidden
feature space, the full connection layer is to map the distributed feature representation
learned to the sample tag space. In practice, the full connection layer can be realized
by the convolution operation. As is shown in Fig.2.7, in a fully-connected layer, every

neuron is connected to all the neurons in its previous layer.

Previous Fully-connected Classification
layer layer

Duck

a5
—

Chicken

Fig. 2.7 Ilustration of a fully connected layer.

2.1 Primer on Neural Network 10

2.1.4 Alexnet for The ImageNet Dataset

ImageNet is a large image dataset organized primarily by the Standford Vision Lab [2].
The dataset contains more than 14 miliion images that have been hand-annotated be-
longing to aroung 22000 categories. This dataset has become an invaluable resource
for computer vision and machine learning researchers and has become the benchmark
for testing algorithm performance in the field of machine learning. The ImageNet
Large-Scale Visual Recongnition Challenge (ILSVRC) is the most influential compe-
tition for image classification and target detection that had been held annually for six
years. It uses a subset of ImageNet, containing 12 million training images and 50
thousand validation images. In the 2012 competition, Krizhevsky et al. proposed a
novel convolutional neural network architecture called AlexNet and make a significant
breakthrough by decreasing the error rate of topl and top5 from 47.1% and 28.2%
to 37.5% and 17% [16]. From then on, Alexnet has been widely used as a reference

model in many research papers. Fig. 2.8 illustrates the architecture of Alexnet.

3
N
5|

192 128 204
7

128

13 SV 10 s dense| |dense

3]\ 1000

w 192 192 128 Max || ||
) 2048 2048

228\ Stride Max 128 Max pooling

“of 4 pooling pooling

3 48

Fig. 2.8 An illustration of the AlexNet architecture (the figure is taken from [16])

AlexNet requires 60 million parameters and 1.5 billion FLOPS [32].

2.2 Data Quantization 11

2.2 Data Quantization

As introduced in section 2.1, CNN models have a tremendous number of parameters
and require huge computing power, it is a very challenging task to implement CNN
on embedded systems that are resource-restricted. Researchers have proposed many
possible solutions. More efficient network are designed from AlexNet [16] to ResNet [8],
SqueezeNet [13], MobileNet [11], and NASNet [41]. Latest work tries to directly
optimize the processing latency by searching a good network structure [31] or skip
some layers at run-time to save computation [34]. But these schemes are designed to
change the size of the layers or the way they are connected, the basic operations are
the same and the differences hardly affect the hardware design. To make better use of
the advantages of FPGA, we chose data quantization to lower down the computation
and storage complexity. Data quantization refers to reduce the precision of the weights
and /or activations from single precision which is usually 32-bits floating-point to lower
bit representations.

Data quantization methods can be generally divided into two types: “Linear” and
“Non-linear” .

Linear quantization uses symmetric thresholds to quantize high precision values.
Every increment in the sampled value has a fixed size. Binary quantization, which
binarizes weights and /or activations to -1 and 41, proposed by Hubara et al. [12] and
Rastegari et al. [25] is a typical example. However, binary quantization generates
a sizeable accuracy gap between the quantized model and their full-precision coun-
terparts. Zhou et at. [40] proposed a higher precision model called DoReFa-Net to
map floating-point numbers to their nearest fixed-point integers with arbitrary K bits
quantization basis.

However, the problem with linear quantization is that each layer of CNN data is
not evenly distributed, causing most of the weights and activations to suffer overflow

or underflow. Non-linear quantization methods can help with these problems, in which

2.2 Data Quantization 12

the increment for small sample values is much smaller than the increment for large
sample values. The step size is roughly proportional to the sample size. As an example
of non-linear quantization, Li and Liu [18] proposed TWN (Ternary weight networks),
which uses two symmetric thresholds +Al and a scaling factor W, for each layer [to
quantize weights into —W;, 0, +W,. Layer-wise values W, and +Al are optimized
during the training process. Zhu et al. further refined their scheme by assining two
independent values W}/ and W}* for positive and negative weights in each layer .
According to their paper, they even obtained better results than the full precision
model using Alexnet on ILSVRC12 [26]. Furthermore, Zhang et al. [38] proposed a bit-
operation-compatible CNN model called LQ-Nets based on arbitrary bit-width binary
vector and trainable basis, which achieves a validation accuracy that is very close to
TTQ proposed by Zhu et al. using 1-bit weights and 2-bit activations, while TTQ
uses 2-bit weights and full precision activations. LQ-Net is a suitable quantization
strategy for low-bit implementation on FPGA with acceptable accuracy loss. We
adopt LQ-Nets to quantize both the weights and activations of CNN inference and
apply the quantized inference to a multi-FPGA system. I will go into more detail
about LQ-Nets and discuss why it is bit-operation compatible in section 3.2.2 of next

chapter.

Chapter 3

Using Low-precision Binary Integer

in Neural Networks

In this chapter, I will first introduce why it is not a good choice to implement tradi-
tional full-precision NN on FPGA from two aspects, data size and data calculation. In
Sec.3.3, I will introduce two methods of implementing quantized NN on FPGA, BNN
and LQ-Nets.

3.1 Gap Between NN Model size and FPGA Stor-
age Size

Neural network computations are usually performed with 32 or 64 floating-point be-
cause they are easy to use on general processing platforms (CPUs or GPUs). And
because of the large range of values that can be represented, the floating-point opera-
tion can achieve good results in model accuracy. However, high precision also means
a large storage requirement.

On the other hand, the size of CNN has become larger and larger. For example,

one of the fully connected layers in Alexnet and VGG uses a 4K x 4K weight matrix.

3.2 Floating-point Arithmetic on FPGAs 14

When each weight is represented as a 32-bit number, storing the weight matrix would
require 64MB of storage [22]. Besides, according to the investigation of [7], the model
size of VGG-11, ResNet-152, ResNet-34, SqueezeNet are 531MB, 229MB, 86MB, 5MB,
respectively. In contrast, on-chip RAMs of FPGA is relatively limited. As is shown
in Fig. 3.1, common models implement 100-1000MB parameters while the largest
available FPGA chip implements j50MB on-chip SRAM. The gap between the NN

model size and the storage unit size on FPGAs is huge.

1GB| wREG mSRAM| VG611 (531MB)

——————————————————————————————————— ResNet-152 (229MB)
----------------------------------- ResNet-34 (86MB)

.................... - ==~ - -~ -1 - SqueezeNet (5MB)
IMB ‘ I ‘

XC72020 5CEA7 ZU9EG 55GXA7 10AX115 VU9P

On-chip storage unit size

Fig. 3.1 The bar chart compares the register and SRAM sizes on FPGA chips in
different scales. The dotted line denotes the parameter sizes of different NN models
with 32-bit floating point parameters.

3.2 Floating-point Arithmetic on FPGAs

Inside microprocessors, numbers are presented as integers-one or several bytes stringed
together. Numerical operations are usually performed in 32 bits, The 32 bits or four-
byte can represent the numbers 0 to 4,294,967,295 or, alternatively, -2,147,483,648
to +2,147,483,647. A scientific representation of 20,422,242 is 2.0422242 x 107, while
1.001 can be represented as 1.001 x 10°.

3.2 Floating-point Arithmetic on FPGAs 15

The 32-bit floating-point representation defined in IEEE standard 754 has 1 sign
bit, 8 exponent bits and 23 mantissa bits. In the first example, 2.0422242 is the
mantissa, 10 the exponent base, and 7 the exponent.

The sign bit simply defines the polarity of the number. A value zero means that
the number is positive, whereas a 1 denotes a negative number. The exponent can
not only represent positive values but also negative values. Such as 0.0014006 can
be represented as 1.4006 x 1073. Thus the stored exponent is the sum of the actual
exponent and a bias value. In the case of the single precision, the bias is 127. This
means that the stored value of 130 indicates the actual exponent of 3. The exponent
base is 2 by default.

Following the previous example of 20,422,242, the 32-bit representation of this
value will be like:

The binary integer representation of 20,422,242 is 1 0011 0111 1001 1110 0110
0010. This can be written as 1.001101111001111001100010 x 224, The leading digit is
omitted, and the fraction-the string of the digits following the radix point is 0011 0111
1001 1110 0110 0010. The sign is positive. Adding the bias of 127 to get the exponent
value 151 and converting to binary yields an IEEE 754 exponent of 1001 0111.

Putting all of the pieces together, the single precision representation for 20,422,242

is shown in the Fig.3.2.

1100 1011 1011 0111 1001 1110 0110 0010

Fig. 3.2 20,422,242 represented in IEEE 754 single-precision format

A floating-point number representations on a computer uses something similar to

a scientific notation with a base and an exponent.

3.2 Floating-point Arithmetic on FPGAs 16

1 bit f—--- 8 bits - = e — 23 bits -

5 Exp. [30-23] Fraction [22-0]

f

32 bits

Fig. 3.3 IEEE 32-bit floating point format

But most embedded processor cores ALUs(arithmetic logic units) only support
integer operations, so the circuits would simulate floating-point arithmetic in software.
This severely affects processor performance. In a 32-bit CPU, adding two 32-bit
integers only needs one machine code instruction, while in embedded system, a library
routine including bit manipulations and multiple arithmetic operations is needed to
add two [EEE single-precision floating-point values. With the increase of the number
of multiplication and division, the performance gap just becomes bigger. Therefore,
for many applications, software floating-point emulation is not practical.

With the MicroBlaze 4.00 processor, Xilinx makes an optional single precision
FPU(floating-point coprocessor unit) available. But achieving real floating-point per-
formance will cost extra logic. If we were to connect an FPU to the processor bus,
FPU access would occur through specifically designed driver routines. For example,

if to do the operation z = x*y, the driver function would be like Fig.3.4:

void user fmul (float *x, float *y, float *z)

{

FPU operandl=*x; // write operand a to FPU

FPU operandZz=*y; [/ write operand b to FPU

FPU operation=MUL; // tell FPU to multiply
while (! (FPU stat & FPUready)); // wait for FPU
*z = FEU mognlle S ocbhhan aesull

}

OB P

oy

-1

Fig. 3.4 Driver function of FPU access.

For small and simple operations, this may work reasonably well, but for complex

operations like convolution operations in CNN, this approach has three major draw-

3.3 FPGA Oriented Model Compression 17

backs: 1) The code will be hard to write, maintain and debug. 2) The overhead will
greatly affect the performance. 3) Each operations will involves at least five bus trans-
actions; as the bus is likely to be shared with other resources, this not only affects the
performance, but may also increases the latency.

In conclusion, although 32-bit floating-point operation can hold relatively high pre-
cision, the implementation of 32-bit floating-point operation on embedded systems will
consume additional resources and cause performance decline. Thus, even at the ex-
pense of losing some precision, with the integer-based implementation, we can benefit

not only from ease-of-use but vast performance improvements as well.

3.3 FPGA Oriented Model Compression

As described in Sec.3.1, traditional neural networks are difficult to be implemented on
FPGA. Many research works have proposed methods using external memory like DDR
SDRAM. But DRAM accesses are significantly more energy consuming than on-chip
operations and the bandwidth and the communication latency between internal and
external memory will significantly limit the system performance.

Many works that reduce the size of CNN and computation complexity by quan-
tizing the weights and activations have been proposed to address the issue. The imple-
mentation results show that the accuracy can be sufficient for inference [22] [23] [5] [33] [39].
In Sec.3.3.1, T will introduce some related works about implementing Binary Neural
Network on FPGA. And in Sec.3.3.2, the LQ-Nets based FPGA Accelerator Design

that we proposed will be stated.

3.3.1 BNN FPGA Accelerator Design

Binarized neural networks (BNNs) are widely used in FPGA implementation. As is

described in Sec. 2.2, BNNs constraint weights and/or activations of CNN to either +1

3.3 FPGA Oriented Model Compression 18

or -1. Therefore, storage need can be dramatically reduced since the weights can be
stored in a single bit(i.e, +1 stored as 1, and -1 as 0). Furthermore, multiply operations
can be replaced by bit-wise exclusive NOR (XNOR) instead, thereby greatly reduce
the computational complexity.

The convolution of CNN performed as an XNOR dot-product operation can be

expressed as

FwW-1FH-1FD-1

Y[n] [w][W]= > > Wn][w][h][d]® Fmap [w’ +w] [k + k] [d].

w=0 k=0 d=0

In which, w, h, d, n represent the width, height, depth, channel respectively. The
output Y is obtained by the XOR operation between input feature map and the filters.

Figure 3.5 illustrates the detailed process of how a matrix x vector operation of
+1 and -1 values can be binarized and computed using xnor and pent.

It is noteworthy that in practice, there are two types of BNN implementations: (a)
binarized weights and full precision activations and (b) binarized weights and binarized
activations. The two types of binarisation have been illustrated in Figure 3.6. Bina-
rized weights and full precision activations generally reduce the storage requirements
of the weight matrix by 32x and replace multiplication with a conditional negation.
When performing the dot product within the neuron, the sign (+ for 1 and - for 0)
of the binarized weights is applied to the activations, and the results are accumu-
lated as normal. In the case of binarized weights and binarized activations, both the
weights and activation matrices are reduced down to a single bit representation, and

the standard multiply-accumulates are replaced by XNOR and a signed bit count.

3.3.2 LQ-Nets FPGA Accelerator Design

In this section, we introduce the quantization method of LQ-Nets.

3.3 FPGA Oriented Model Compression 19

Matrix x Vector, with +1 or -1

fmap W Y
1 1| +1(+1 (- 1%-1)+(1%1)+(1+1)

+1 X -1(-1 (-1 = | (-1*-1)+(1*-1)+(1*-1) | = | -1
+1 o2 [l | el (-1*1)+(1*1)+(1*-1) =

Binarized Matrix x Vector

fmap W Y
0 0 (1 (1 pcnt(xnor(011,011))
1 X 0 |0 |0 = | pent(xnor(011,000)) = [-1
1 1 |1 |0 pcnt(xnor(011,110)) -1

Fig. 3.5 In binarized neural networks where weights and neurals are made +1 or -1,
Matrix x Vector operation can be done using xnor and population count.

-1 | +1 | +1 0.3 -1.3 -1 | +1 | +1 1 -1
-1|-11[-1|x|11|=| 0.7 1 -1 -1 1 |7 1
+1|+1(-1 -21 35 +1|+1(-1 -1 3

(a) Binary Weights and Real Activations (b) Binary Weights and Activations

Fig. 3.6 Two types of binary neural network implementations: (a) Binary Weights and
real activations (b) both binary weights and binary activations.

3.3 FPGA Oriented Model Compression 20

LQ-Nets is originally proposed by Microsoft research group and like most of the
data quantization methods, LQ-Nets finds the nearest fixed-point representation of
each weight and activation. Specifically, a full precision number “q” represented by
a K-bit binary encoding is actually the inner product between a basis vector and the

binary coding vector b = by, bs, ..., br ! while b; € 0, 1,

b1 [basis;]
b, basis,

q=(’ T)

| basisy,

Figure 3.7 illustrates the quantizer with the 2-bit and 3-bit cases.
Both the binary encoding and the basis vector are jointly trained during training
process based on minimal quantization error criteria. The quantization error can be

formulated as follows
Q*(x) = argmin||BTV — X||§, st. Be{-1,1}""

where B = [by,...by] € {—1,1}""" is the encoding vector and v € R¥ is the quan-
tizer basis. The way to optimize the quatizers is through the forward passes during
training. According the paper, this algorithm leads to much better performance in the
experiments.

Similar to BCNN, LQ-Nets is capable of bit-wise operation. Let a weight vector
w € RN be encoded by the vector b¥ € {—1,1}", i=1,...K,, where K,, is the bit-width
for weights and b0} consists of the encoding of the i-th bit for all the values in w.
Similarly, activation vector a € RY is encoded by a b¢ € {—1,1}", where j=1,....K,.

It can be readily derived like

Q(w,v")TQ(a,v") Zw: av 10 ©)
1

=1 i=

3.3 FPGA Oriented Model Compression 21

where v¥ € REv and v* € R¥ are the learned basis vectors for the weight and
activation quantizers respectively, and ® denotes the inner product with bitwise op-

erations xnor and popcnt.

2 bits: basis v = [v{, v,]T 3 bits: basis v = [v, v,, v5]"
vty
|' - _B'_ | v, t+v
it-1 i -
1 1 | © 1=1 [-vvymvs vyvo-
rT VitV B
1 =
-1 -v,- N
| E: 1™Va2| V1=V, Vi-V, | : 1 [vpvd vy,
| L’ r | 1 -
| 1 | S
1 |-v,Fv,| vty R TRE -
I : 17V ViV V-V, Bk } L
—_ &

Fig. 3.7 lllustration of LQ-Nets’s learnable quantizer on the 2-bit (left) and 3-bit (right)
cases. For each case, the left figure shows how quantization levels are generated by the
basis vector, and the right figure illustrates the corresponding quantization function.
(The figure is taken from [38])

In our study, we use the source code of LQ-Nets and train Alexnet with 2-bit
quantized weights and also quantize activations by 2 bits based on ImageNet dataset.
According the paper, under the same circumstances(weights and activations are both
2 bit-width), the accuracy of Top-1 and Top-5 will reach up to 57.4% and 80.1%,
respectively. Theoretically, the same accuracy can be achieved by deploying the same
inference on FPGA.

The binary vector and quantizer basis and other required parameters are extracted
from the model saved by Tensorflow. All of the parameters are numerically saved in
text files. All these works were accomplished on a PC.

We adopt high-level synthesis(HLS) to generate the Neural Network form a high-
level description in standard software language, C, and then apply the parameters
aforementioned. The difficulty of building a neural network on HLS lies in that the
mainstream neural network frameworks such as Tensorflow and Caffe are not supported
with HLS, and all operations must be implemented in a basic way. Not only that, there

are some differences in network construction between conventional Alexnet and LQ-

3.3 FPGA Oriented Model Compression 22

Nets’ Alexnet. Besides, conventional Alexnet uses Local Response Normalization to
scale variables, while LQ-nets adopts Batch Normalization instead.
In the next chapter, I will introduce our proposal to accelerate the convolution

operation by taking advantage of LQ-Nets quantization method.

Chapter 4

System Architecture

This chapter introduces the system architecture developed for accelerating the in-
ference of neural networks on FPGAs. Section 4.1 discusses our proposals of the
accelerator design from a software level and hardware level. Section 4.2 describes the

whole system design.

4.1 Accelerator Design

There are many previous studies on accelerating neural networks in FPGAs with hard-
ware level techniques. The design in [36] targets increasing the working frequency
of the computation units. The design in [4] fuses two neighboring layers together to
eliminate the intermediate result transfer between the two layers. Zhang et al. [37]
propose a 2D DFT (Discrete Fourier Transformation) based hardware design for ef-
ficient CONV layer execution. [5] [20] [35] use the systolic array structure in which
the shared data are transferred from one computational unit to the next in a chain
mode,thus only local connections between different computation units are needed. In
this paper, we also adopt several techniques to improve the system performance. In

the next sections, we will introduce them respectively.

4.1 Accelerator Design 24

4.1.1 Fast Convolution Method

As is mentioned in Sec. 3.3.2, we use the LQ-Nets quantization method to represent
both the weights and activations into 2 bit-width level. There are total 4 combinations,
00, 01, 10 and 11. For example, let an actual value of weight be 0.7 and the trained
basis be 1.1 and 0.5. The nearest quantization level to 0.7 will be 0.6 among -1.6, -0.6,
0.6, and 1.6. Thus it will be quantized as {1, -1} and stored as 10. However, different
from the weights, the activation value is always greater than 0 due to the presence of
the ReLlU layer. Therefore, the binary code 0 of the activation value represents the
actual value of 0. This means that a binary coding vector 10 will not represent the
quantization level of basis; x 1+ basisy X (—1) but basis; X 1+ basise x 0. The logic

table is shown in the Fig. 4.1.

Activ(a,b) W(c,d)

00
00 0
00 bx(-c-d)
01 bx(-c+d)
01
10 bx(c-d)
11 bx(c+d)

Fig. 4.1 Binary LQ-Nets implementation

Based on this table, we hypothesize three methods to accelerate the convolution
layer. The first method that came to our mind is as shown in Fig. 4.2: multiplications

can be replaced by if conditionals. But using too many if conditionals in HLS is a

4.1 Accelerator Design 25

kind of low power technique. We ended up adopting a lookup table, by translating the
binary code to its corresponding value. The calculated lookup table will be written to
memory in advance, and referenced by an index. Fig. 4.3 shows the working mechanism
of the look-up table with 2-2-bit inputs. This method helps remove the floating-point
level operation in CONV layers and synthesis results show that quicker operations can

be achieved.

Activ W B Bl i {0,0}{#{ by, by} ={0,0} =0

basis |[vy,v;]| X | basis |[vs,v4]|— if{ by, b} ={0,1}

if{ by, b} = (1,0}
B |[buby] B |obal| |if{ by, by} = {1,1}{”: {bg ey =10,0F < myms =vive

Fig. 4.2 Binary implementation by if-conditional

2-bit factor V

Lviva 007
~vi+v2 o1 ‘\3:.
RN Look-up Table
+v1-v2 - NV X FP32
+vl+v2 11 ,::- 00 00 (-v1-v2)*(-x1-x2)
A 00 01 (-v1+v2)(-x1+x2)

2-bit factor X .7

X2 00,
x1+x2 01
+x1-x2 10
+x1+x2 11

Fig. 4.3 We use a look-up table to replace the multiplication function.

The implementation is shown in the pseudo code in listing 4.1.1, in which window
and filter are both binary numbers of 2bits. The table holds the corresponding 4-bit

to 32-bit floating point results were read in advance.

4.1 Accelerator Design 26

for row in range(31-5)
for col in range(31-5)
for i in range(5)
for j in range(5)
window [i][j] = image[row + i][col + j]
for i in range(5)
for j in range(5)
sh[i][j].range(3,2) = window[i][]]
sh[i][j] .range(1,0) = filter[i][]j]
res[i][j] = table[sh[i][j]]
Im = 0
for i in range(5)
for j in range(5)
m 4= res [i][j]
conv_out [row][col] 4= Im

Listing 4.1 Table accelerator pseudo code for convolution layer

Recently, we are also considering the third operation, the bit operation. As is
shown in Fig. 4.4, let’s assume that we have a window of size 2 by 2 doing the process
of convolution. A, B, C, D represent the basis values. With AN D operation between
binary coding vectors of window and weight, activation can be obtained. Then, let
the popcount operation calculate the sum of the number of 1 bits in each bit of the
four activation binary vector, and assume that the numbers obtained are m,n,lk,
respectively. The formula for the final result is shown on the right.

The method is still theoretical and we will implement it in the future.

4.1 Accelerator Design 27

Image (basis: a, b) W (basis: ¢, d)

01 11 5 01 11
Z (b{™*9¢ AND bY’)

00 10 o 00 10

J

Activ (ac, ad, bc, bd)
0001 1111

00 00 10 00

Theresult =ac+m +ad*n + bc* (I-2)

ﬂ Popcount * bd ~ (k-2)

The number of 1 bits in the
value of acad bc bd: m, n, |, k

Fig. 4.4 Bit operation we proposed based on LQ-Nets

4.1.2 Data Transfer and On-Chip Storage

As mentioned earlier, the section gap between NN model size and the storage unit size
on the FPGA is huge. Using external memory like DDR and SDRAM will bring extra
transfer latency and affect the system performance. Thus we chose to use only on-chip
memory. However, even though the parameters of the model are quantized and the
model size is reduced, our implementation results show that one FPGA BRAM is still
not enough for the whole model. Therefore, we chose to realize cooperative storage
and mathematical operation between multiple FPGAs with the aid of the FIC(Flow
in Cloud) system [10]. Thus, the BRAM capacity will be proportional to the number
of FPGAs within the system.

As shown in Fig. 4.5, a custom FPGA board of FIC is called FIC-SW, consisting
of a mid-range economical Xilinx Kintex Ultrascale XCKU095 or XCKU115, 16GB
DDR4-SDRAM, a Raspberry-Pi3 (RPi3), and 32 9.9Gbps serial links, has been de-

4.1 Accelerator Design 28

ey _fg

16GB DDR4 [N
SDRAM [l

S

Fig. 4.5 A FIC-SW Custom FPGA board [10]

veloped. The two FPGA boards we currently use are XCKU095, which has 59.1MB
total block RAM and 537,600 CLB LUTS, further resource list available at [1].

User Application Modules

Static Area

Xilinx
Aurora

8.5Gbps x32 (4 Lane x 8 Port) qS.SGbps x32 (4 Lane x 8 Port)
—_—
Fig. 4.6 A diagram of the FPGA on a FIC-SW board [10]

As shown in Fig 4.6, each FPGA has a zone that can be reconfigured to accom-
modate different user applications. And each board provides four 9x9 (9 inputs x 9
outputs) switches (8 channels + one port from/to internal HLS module) at the largest

configuration. In the FIC system, each FPGA is connected directly with high-speed

4.1 Accelerator Design 29

serial links that reach up to a maximum communication bandwidth of 34 Gbps per
port.

Currently, we deploy the first two CONV layers of Alexnet to the FIC system with
each layer implemented in one FPGA chip without any external memory capacity.
According to our experimental estimation, one FPGA board resource is enough for
one CONV layer(below 50% BRAM usage and below 30% logic resources usage) while
FIC system contains over 20 boards. Thus we have reason to believe the whole Alexnet

model can be deployed on FIC system.

4.1.3 Loop Pipeing and Unrolling

In this section, I will first describe some basic concepts of pipeline and unroll and
then how we use these pragma to optimize our program.

Pipelining reduces the initiation interval for a function or loop by allowing the
concurrent execution of operations. As shown in the Fig. 4.7, let us assume that there
are three operations in a FOR loop, READ, COMPUTE and WRITE, each of which
takes three clocks. As is shown is (a), if no pipeline is performed, the total elapsed
time will be 9 clocks. If the loop is pipelined like (b), the second round of READ will
run concurrently with the first round of COMPUTE and each round staggers a clock.
This reduces the final operation time to 5 clocks.

The UNROLL pragma, on the other hand, transforms loops by creating multiples
copies of the loop body in the RTL design, which allows some or all loop iterations to

occur in parallel. For example, given the following code:
for(int i=0; i < K; i++)

{

pragma HLS unroll factor=2
ali] = b[i] + c[i];

4.1 Accelerator Design 30

For (i=0:i< 3: i++)

op_Read;]
op_Compute;]
op_Write;]

}
B A I

/A RD \CMPX WR X RD {\CMPX WR ¥ RD \CMP{WR X'~

(a) Without Loop Pipeline

NEREREREREER SRR

Tz 77 77 RDXCMPXWR W /7277 7777777777777

T X RD XCMPKWIR Y 7 222777
77 X RD XCMRXWR Y 72777

(b) With Loop Pipeline

Fig. 4.7 Loop Pipeline

loop unrolling by a factor 2 will create two independent RTL design for the ai] =
bli] + c[i] operation. The total latency can be reduced by half.

Next, I will introduce our directive optimization for HLS. We mainly focused on the
CONYV layers which have the most computational burden. We designed a test program
that is similar to our actual CONV layer implementation to analyze the performance
under different compilation commands.

Figure 4.8 is the pseudocode for our test program and the red numbers from 1 to
5 represent the 5 possible places in which we add pragma. The total process can be
divide into three parts circled by the blue boxes. The first part is to put the input
image into the window, the second part is to calculate between convolution kernel and
the window with our look-up table method, and the third part is to add the calculation
results to get an activation.

As shown in the figure 4.1, we tried three different ways of adding pragma. Num-
bers below are the latency for each case. The results show that the first solution

produces the best performance, which reduces latency to less than 1%.

4.1 Accelerator Design 31

@
for row in range(31-5) :
@
for col in range(31-5):
€)
for iin range(b) :
for j in range(9) :
window(i][j] = image[row + i][col + |]

for i in range(5) :
for j in range(d) :
res[i][j] = table_op(filter[i][j], window([i][j])

Im=20
for i in range(5) :
for | in range(d) :
Im += resi][j]
conv_out[row][col] += Im

Fig. 4.8 Pseudocode of our test code

Solution 1 | Solution2 Solution3
1 Pipeline
2 Pipeline
3 Unroll Unroll
4 Unroll Unroll
5 Unroll Unroll
Latency 865 140022 | Synthesis failed
No directive 207819

Table 4.1 Three optimization solutions we proposed

4.2 System Design 32

But by our calculations, solution 3 should work best if all of these instructions are
executed correctly. In addition, solution 2 did not produce the results we anticipated.
As I set the unroll factor to 5, the total latency should be reduced to one fifth.

We consider five reasons for this result: (1) Data dependency of the array may
be a problem. (2) Xilinx Vivado HLS tool cannot know that there is no dependency
relationship. (3) The circuit scale becomes too large for current resources. (4) Un-
known reasons caused by synthesis tool. (5) The circuit becomes too complicated to
be synthesised correctly.

We are still searching for further reasons.

4.2 System Design

As is shown in figure 4.9, in our current experiment, we deploy each layer on one
FPGA board of the FIC system. The FPGAs can communicate with each other over
the STDM switch. After the operations in one layer are completed, the processed data
will be submitted to the next FPGA. After going through all the FPGAs, the final

results will be obtained.

ficl |Resoil | [fico [Reso2 || [fic3 | fic4 | Respia
FPGA FPGA FPGA FPGA
STDM switch .
FPGA FPGA / / FPGA ! FPGA
fich ‘_"" Raspi5 ‘IJ fic6 J;"‘ Raspi6 I‘_J fic7 Raspi7 ‘. ‘ fic8 ‘_:"I Raspi8 ‘.J

Fig. 4.9 Tllustration of NN layer implementation in FIC system

4.2 System Design 33

Fig. 4.10 shows the implementation of two quantized layers in the FIC system.
Weights and activations in layer2 are quantized into 2 bits, while only activations are
quantized into 2 bits in layerl. Raspi, as host, passes parameters to the FPGA BRAM,
including weights and bias and parameters required for BN layers. Since Raspi only
supports 4-bit parallel transmission, the rx32 module is used to transform the 4-bit
data into 32-bit data for FPGA inputs. FPGAs perform the calculations. The STDM
switch is for the data transmission between the two FPGAs, which allows the speed
to reach up to 34Gbps. It is worth noting that at the second layer, we divide the
inputs into two parts: the 32-bit values and the 4-bit values. The former is for the
lookup table and BN layer and the latter are merged from 2-bit binary weights. The
mergence is for Raspbi to ship data easily. Similarly, the output of the layer2 will be

merged from 2 bits to 4 bits.

A-hit paraliel signal 4-bit parallel srgna 4-bit output
B ;7 e
Rx32 Rx32
module module
32-bit input 32-bit input e
FPGA network b e
sSw

Fig. 4.10 Nlustration of implementation of two quantized layers

4.2 System Design 34

Currently, we have only finished the implementation of the first layer, and the
implementation of the two layers is still in progress. In addition, implementing one
layer in one FPGA is obviously not an optimized solution. In the future, we will
look for more efficient solutions to allocate resources. For example, let two layers be
executed in one FPGA, or divide the computation operations in one layer into several

parts and deploy each part in different FPGA to realize parallel computing.

Chapter 5

Synthesis Results

In this chapter, I present our synthesis results on resource consumption and total
execution time of our proposed method and FP32 method, generated by the Xilinx
Vivado HLS synthesis tool.

Figure 5.1 shows the Utilization estimates obtained by Xinlinx Vivado HLS syn-
thesis tool. The logic modules and multiply-and-add modules are generated and au-
tomatically mapped to DSP/FF/LUT by Vivado. Our following discussion will base

on these tables.

5.1 Resource Utilization Analysis

I summarize the total logical resource utilization into the table 5.1. “trad_1/2” de-
notes using FP32 parameters and traditional convolution operation for the first and
the second layer. "pps_1/2” denotes using quantized parameters and our proposed
convolution method.

About layerl, there is a small reduction in the layerl BRAM usage using our
method. Even though the calculation operations in both methods are performed with
FP32 parameters, the output activation value of the proposal is two binary bits. This

may be the reason for the layerl result.

5.1 Resource Utilization Analysis

36

Utilization Estimates

8 Summary

Utilization Estimates

Name BRAM _18K | DSP48E FF LUT
DSP - 26 - -
Expression - 12 0 6639
FIFO - - - -
Instance 9 20 15266 | 26416
Memory 1528 - 192 27
Multiplexer - - - 14747
Register 0 - 96679 1696
Total 1537 58 | 112137 49525
Available 3360 768 | 1075200 | 537600
Utilization (%) 45 7 10 9

= Summary
Name BRAM_18K | DSP48E FF LUT

DSP - 25 - -

Expression - 12 0 6669
FIFO - - - -

Instance 9 20 14528 | 12770
Memory 1390 - 192 27
Multiplexer - - - 15526
Register 0 - 83010 1696
Total 1399 57 97730 36688
Available 3360 768 | 1075200 | 537600
Utilization (%) 41 7 9 6

(a) Layerl with traditional method

Utilization Estimates

(b) Layerl with

Utilization Estimates

proposal method

= Summary
Name BRAM 18K | DSP48E FF LUT

DSP - 25 - -

Expression - 1 0 5020
FIFO - - - -

Instance 9 15 12585 | 13148
Memory 1858 - 1728 378
Multiplexer N = = 41886
Register 0 - 180711 1624
Total 1867 41| 195024 62056
Available 3360 768 | 1075200 | 537600
Utilization (%) 55 5 18 11

(c) Layer2 with traditional method

= Summary
Name BRAM 18K | DSP48E FF LuT
DSP - 25 - -
Expression - 2 0 5576
FIFO - - - -
Instance 9 15 12585 | 44898
Memory 618 - 2448 1978
Multiplexer - - - 48167
Register 0 - 221047 1528
Total 627 42 | 236080 | 102147
Available 3360 768 | 1075200 | 537600
Utilization (%) 18 5 21 19
(d) Layer2 with proposal method

Fig. 5.1 Utilization estimates generated by Xinlinx Vivado HLS synthesis tool

5.2 Performance Analysis 37

Methods BRAM 18K DSP48E FF LUT

trad 1 1537 58 112137 49525
pps_ 1 1399 57 97730 36688
trad 2 1867 41 195024 62056
pps_ 2 627 42 236080 101247

Table 5.1 Comparison of the resource utilization

Methods Lat'ency(clock cycles) ‘
min max
trad 1 261367581 262756056
pps_1 261367581 262756056
trad 2 2393524791 2393697847
pps_2 1739580726 1739753782

Table 5.2 Comparison of the execution time

As for layer2, the required BRAM for our method is scaled down to 1/3 compared
with the traditional method, showing the validation of our design. Though the use
of FF and LUT has increased as compensation, the current situation is more likely
resource-bounded and the BRAM has the priority over FF and LUT, since the uti-
lization of FF and LUT of both methods are less than 20% while the utilization of

BRAM with the traditional method reaches up to 50%.

5.2 Performance Analysis

The latency of each method is summarized in table 5.2. It shows that the latency
of trad 1 and pps_1 are the same, and that the layer2 with our proposed method
reduces nearly 30% of the latency compared with trad_ 2.

In LQ-Nets, the first-layer convolution operation is no different from the previous
method, which is to multiply the image of FP32 and the convolution kernel of FP32
to get the activation. We create the same network architecture to be consistent with
LQ-Nets, so there is no difference in latency between the two methods of the first

layer.

5.2 Performance Analysis 38

However, in layer2, we use a look-up table to replace the complex multiplica-
tion,thus our proposal has a good effect in reducing the total execution time.

It is worth noting that operations in layer3 and layer4 and the other layers after
will be similar to operations in layer2 instead of layerl. Therefore, with the increase

of the layer numbers, the decrease of BRAM usage and latency will be more obvious.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this research, we proposed a design for accelerating CNN inference in a multiple
FPGA system with the LQ-Nets quantization method.

The difference between LQ-Nets and the previous quantization methods is that
LQ-Nets has a basis vector that can be optimized by the training iterations. LQ-Nets
improves the accuracy while retaining the support of bit operation. The multi-FPGA
system we use is a pre-existing system called Flow in Cloud(FIC) system. In the FIC
system, each FPGA is directly linked with high-speed serial links. Communication
latency between FPGAs can be ignored.

A highly optimized FPGA implementation can be generated by Vivado HLS tools
without involving any RTL programming. We added a pipeline pragma to the ¢ code,
which automatically generates efficient streaming hardware designs.

The innovation of our scheme is that we only use the on-chip memory of FPGA
to store the parameters and use a look-up table to accelerate the convolution layer by

taking advantage of narrow bit-width representations.

6.2 Future work 40

We achieved better resource utilization and execution time performance according

to our synthesis results.

6.2 Future work

One future direction is to understand the underlying principles of HLS pragma. We
tried to use the UNROLL pragma but it did not produce the expected effect. We
summarize some reasons for this in section 4.1.3 based on the existing cognition. In
the future, we will make more test programs or look at the Verilog code generated
by HLS to figure out the mechanism. We are seeking a more efficient optimization
scheme.

The other direction is to continue to implement on the physical FPGA boards.
Presently, we finished implementing one layer on one FPGA board. In the next stage,
we will work on implementing two layers on two FPGA boards. We will implement

the whole Alexnet in the future.

Publication

EAMRER

e Hongyi Pan, Ben Ahmed Akram, Tkegami Tsutomu, Tominaga Kazuki, Kudoh
Tomohiro. Quantization-based Optimization of CNN Inference. IEICE Techni-
cal report, vol. 120, no. 339, RECONF2020-69, pp. 63-68, Jan. 2021

References

1]

[6]

[10]

Ultrascale fpga product tables. https://www.xilinx.com /support/
documentation /selection-guides/ultrascale-fpga-product-selection-guide.pdf.

Standford vision lab. http://vision.stanford.edu.

Ejaz Ahmed, Abdullah Gani, Mehdi Sookhak, Siti Hafizah Ab Hamid, and Feng
Xia. Application optimization in mobile cloud computing: Motivation, tax-
onomies, and open challenges. Journal of Network and Computer Applications,
52:52-68, 2015.

Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer cnn
accelerators. In 2016 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 1-12. IEEE, 2016.

Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C Ling, and Gordon R
Chiu. An opencl™ deep learning accelerator on arria 10. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 55—64, 2017.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review
and new perspectives. [EFE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798-1828, 2013. doi: 10.1109/TPAMI.2013.50.

Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. [dl] a
survey of fpga-based neural network inference accelerators. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 12(1):1-26, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Suzana Herculano-Houzel. The human brain in numbers: a linearly scaled-up
primate brain. Frontiers in human neuroscience, 3:31, 2009.

K. Hironaka, K. lizuka, A. Ben Ahmed, M. M. I. Ullah, Y. Yamauchi, Y. Sun,
M. Yamakura, A. Hiruma, and H. Amano. Demonstration of flow-in-cloud: A
multi-fpga system. In 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), pages 417-418, 2019. doi: 10.1109/FPL.2019.
00074.

https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
http://vision.stanford.edu.

References 43

[11]

[12]

[13]

[14]

[15]

[20]

[21]

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 29, pages 4107-4115. Curran As-
sociates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016 /file/
d8330f857a17c¢53d217014ee776bfd50-Paper.pdf.

Forrest N Tandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07560, 2016.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiw:1502.03167, 2015.

S. Jiang, D. He, C. Yang, C. Xu, G. Luo, Y. Chen, Y. Liu, and J. Jiang. Accelerat-
ing mobile applications at the network edge with software-programmable fpgas.
In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications,
pages 5562, 2018. doi: 10.1109/INFOCOM.2018.8485850.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Communications of the ACM, 60(6):
84-90, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278—
2324, 1998.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint
arXiw:1605.04711, 2016.

Ruo Long Lian. A framework for FPGA-based acceleration of neural network
inference with limited numerical precision via high-level synthesis with streaming
functionality. PhD thesis.

Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing loop oper-
ation and dataflow in fpga acceleration of deep convolutional neural networks.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 45-54, 2017.

Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architecture
and computation offloading. IEEE Communications Surveys & Tutorials, 19(3):
1628-1656, 2017.

https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf

References 44

22]

23]

[24]

[25]

[26]

Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh
Venkatesh, and Debbie Marr. Accelerating binarized neural networks: Com-

parison of fpga, cpu, gpu, and asic. In 2016 International Conference on Field-
Programmable Technology (FPT), pages 77-84. IEEE, 2016.

Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy
Huang, Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss,
Suchit Subhaschandra, et al. Can fpgas beat gpus in accelerating next-generation
deep neural networks? In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 5-14, 2017.

Milan Patel, Brian Naughton, Caroline Chan, Nurit Sprecher, Sadayuki Abeta,
Adrian Neal, et al. Mobile-edge computing introductory technical white paper.
White paper, mobile-edge computing (MEC) industry initiative, pages 10897801,
2014.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In Fu-
ropean conference on computer vision, pages 525—542. Springer, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of com-
puter vision, 115(3):211-252, 2015.

Mahadev Satyanarayanan, Paramvir Bahl, Ramén Caceres, and Nigel Davies.
The case for vim-based cloudlets in mobile computing. IEEE pervasive Computing,
8(4):14-23, 20009.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE internet of things journal, 3(5):637-646, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Tarik Taleb, Sunny Dutta, Adlen Ksentini, Muddesar Igbal, and Hannu Flinck.
Mobile edge computing potential in making cities smarter. IEEE Communications
Magazine, 55(3):38-43, 2017.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture search for
mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 28202828, 2019.

Danai Triantafyllidou and A. Tefas. A fast deep convolutional neural network for
face detection in big visual data. In INNS Conference on Big Data, 2016.

Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable
binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 65-74, 2017.

References 45

[34]

[35]

[36]

[37]

[38]

[39]

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skip-
net: Learning dynamic routing in convolutional networks. In Proceedings of the
FEuropean Conference on Computer Vision (ECCV), pages 409-424, 2018.

Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu,
Yun Liang, and Jason Cong. Automated systolic array architecture synthesis for
high throughput cnn inference on fpgas. In Proceedings of the 54th Annual Design
Automation Conference 2017, pages 1-6, 2017.

Ephrem Wu, Xiaogian Zhang, David Berman, and Inkeun Cho. A high-
throughput reconfigurable processing array for neural networks. In 2017 27th
International Conference on Field Programmable Logic and Applications (FPL),
pages 1-4. IEEE, 2017.

Chi Zhang and Viktor Prasanna. Frequency domain acceleration of convolu-
tional neural networks on cpu-fpga shared memory system. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 35-44, 2017.

Dongqing Zhang, Jiaolong Yang, Donggiangzi Ye, and Gang Hua. Lg-nets:
Learned quantization for highly accurate and compact deep neural networks.
In Proceedings of the European conference on computer vision (ECCV), pages
365-382, 2018.

Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani
Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating binarized convolu-
tional neural networks with software-programmable fpgas. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, pages 15-24, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng
Zou. Dorefa-net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning trans-
ferable architectures for scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8697-8710, 2018.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Targeting Application Scenario
	1.2 Contributions

	2 Background
	2.1 Primer on Neural Network
	2.1.1 General Structure
	2.1.2 Neural Network training and Inference
	2.1.3 Major layers
	2.1.4 Alexnet for The ImageNet Dataset

	2.2 Data Quantization

	3 Using Low-precision Binary Integer in Neural Networks
	3.1 Gap Between NN Model size and FPGA Storage Size
	3.2 Floating-point Arithmetic on FPGAs
	3.3 FPGA Oriented Model Compression
	3.3.1 BNN FPGA Accelerator Design
	3.3.2 LQ-Nets FPGA Accelerator Design

	4 System Architecture
	4.1 Accelerator Design
	4.1.1 Fast Convolution Method
	4.1.2 Data Transfer and On-Chip Storage
	4.1.3 Loop Pipeing and Unrolling

	4.2 System Design

	5 Synthesis Results
	5.1 Resource Utilization Analysis
	5.2 Performance Analysis

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future work

	Publications
	References

