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Abstract

A first-person video captured by a wearable camera provides observation from the
egocentric perspective for video understanding of human activities. In contrast,
a video captured by a fixed camera observes the same activities from the third-
person perspective, i.e., outside views. Since first and third person videos provide
complementary information, jointly using such videos may contribute to better un-
derstanding of human activities. In order to conjointly analyze first and third person
videos, learning a joint representation of both views which could describe both views
with a unified model and transfer knowledge crossing the views is necessary.
The key challenge of learning a joint representation first and third videos is how
to find correspondence of common objects appearing in both viewpoints and how
to learn a joint representation of the objects that can share information across the
views. In this paper, we propose a cross-view non-local neural network to learn joint
representation from first and third person videos. The core of our method is a non-
local model to extract and enhance the global visual feature similarity between both
views while reducing dissimilarity. We also introduce hierarchical average pooling
and zero-centered correlation matrix to the typical non-local modules which may
prove the performance of non-local block from different aspects.
Our method was evaluated on an action recognition benchmark dataset from cross-
view videos. We execute multiple experiments and the proposed model achieve
overall state-of-the-art performance both qualitatively and quantatively.
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1 Introduction

1.1 Background and Motivation

Recently, with the development of digital camera technology, a massive number of
digital videos and images are captured every day. Especially after the advent of
smartphones and high-speed mobile Internet, people may record their lives and up-
load videos or images to the Internet anytime and anywhere. These rich visual data
contain a large amount of human behavior information, which makes it possible to
analyze human behavior based on deep learning technology. Video-based human
action analysis has become an important research direction in the field of computer
vision and artificial intelligence. The analysis of human behavior has prerequisite sig-
nificance for subsequent semantic segmentation, human-computer interaction, and
augmented reality.

Videos captured from third-person viewpoint take a dominant position among all
the videos. Considering the classic way of holding a camera, whether it is handheld
or fixed shooting, it is difficult for the camera operator to perform other actions
and have a high degree of interaction with the environment or other people. The
common feature of these third-person videos is that the photographer of these videos
is a independent object with no connections with other objects or people, and the
video mainly records the interaction between other people and the environment.
The advantage of third-person videos is that they can record human behavior and
movements from a more objective and holistic perspective. This feature provides
great convenience for early video action analysis.

However, with the increasing popularity of wearable cameras, such as Google glass
1, videos captured from first-person viewpoint provide a new perspective to observe
human actions. Contrary to third-person videos, first-person videos take the cam-
era wearer as the subject and mainly record the behaviors and scene interaction of
the camera wearer. Due to the limitations of the perspective and field of view of
the wearable cameras, first-person videos cannot record the complete movement of
the camera wearer (actor), and the recording range of the scene is also narrower.
However, since the first-person video directly reflects what the actor sees, the in-
formation such as camera ego-motion which is hidden in first-person videos can
more accurately imply the actor’s attention and thought tendency, which are not

1https://www.google.com/glass/start/
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Figure 1.1: Our model learns a joint representation from the correspondence be-
tween first person and third person videos. The representation transfers informa-
tion from the bystander’s to the actor’s perspective.)

available in the third-person video. Researches on first person action understand-
ing [JG15, LGG12, LYR15, PR12, RK17, RM13] have been opened the door recent
years.

Since the first-person and third-person videos capture the same world from different
perspectives, both of them are important. Considering a scenario that an actor
is taking actions in a scene while a first and a third-person video are captured
simultaneously recording the actor’s actions, there are a part of the same objects and
human body in these two videos, and each video will also record some unique details.
By observing and matching the common parts of the two videos and combining
the complementary information, we humans can build up a more comprehensive
description of the relationship between people and scenes. This means that it is also
possible to jointly analyze videos from two perspectives through computer. In order
to conjointly analyze first and third person videos, learning a joint representation
of both views is necessary. The joint representation learning means to build up
relationship between the common entities appearing in both views and establish a
unified model describing the visual information of those entities. Through the unified
model, knowledge should be able to transfer crossing the views. (see Figure 1.1)

1.2 Challenges and Contributions

The first fundamental challenge of joint representation learning is how to find out
correspondence between first and third person views. Since the captured regions
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and perspectives from the two views are in huge difference, it is challenging to lo-
calize the common regions and then build up relationship between them. First, in
most cases, the common objects that appears in both videos may have different
relative positions, shapes and sizes (Figure 1.2(a)). In addition, due to different
light conditions, objects may also have different color and texture information. This
means that some low-level feature matching algorithms based on geometry, such as
SIFT[Low99], almost doesn’t work. We need to explore more high-level correspon-
dence, Secondly, because objects may be occluded from each other in space, some
common areas may be overlapped by images of other objects (Figure 1.2(b)). This
requires that the model not only pay attention to the visual information of objects
themselves, but also pay attention to the connection between objects and objects.

(a) differant shape, size and location (b) overlapping

Figure 1.2: Challenges of matching common regions.

After determining the correspondence between first and third person views, The
second challenge comes to how to extract a cooperative model that can share infor-
mation crossing views. As mentioned above, because the appearance of an object
changes significantly according to the perspective, feature extraction models based
on limited perceptual fields such as traditional CNN cannot effectively describe
cross-view features. We need a model that can effectively perform feature matching
and joint feature presentation over all features equally.
Faced with mentioned challenges, a model called non-local network [WGGH18]
shows superiority compared to other feature extraction structure. Convolutional and
recurrent operations depends on a local perception window, therefore the long-range
dependencies can only be detected by propagating signals iteratively in network. In
this case, the weight will be gradually diluted with the process of propagation.
Instead, non-local networks take all inputs as equal status and capture global de-
pendencies directly by computing interactions between any two positions of inputs,
regardless of their positional distance (See in Figure 1.3). However, original non-
local network wasn’t designed to deal with objects in different size, which will be
briefly explained in the following chapter. In order to solve this problem, we propose
a hierarchical structure inside non-local block which may handle the issues of object
size difference on the basis of ensuring the original functions of non-local networks.
Overall, in this paper, our main contributions are summarized as follows:
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In-view dependencies Cross-view dependencies

Figure 1.3: The arrows in the figure intuitively show what long-range dependencies
refers to. Red arrows refer to in-view dependencies and blue arrows refer to cross-
view dependencies.

• Firstly, We propose a novel method based on non-local networks for learning
joint representation between first and third-person videos. To our best knowl-
edge, our model is the first work to introduce non-local operations in this area.
Our model addresses the challenges that are mentioned: 1) difficulties of es-
tablishing connections between obviously different object projections; 2) weak
ability of traditional network to deal with long-range dependencies.

• Secondly, We make two improvements on the structure of non-local module. 1)
We introduce hierarchical average pooling to the correlation matrix computing.
This allows the non-local model to deal with multiple sizes of perception fields
and thus solving the problem that objects may show totally different size;
2) We introduce the zero-centered correlation matrix to guarantee that the
features are normalized and zero-centered . The two novel change improve the
performance of non-local block from different aspects.

• Thirdly, we evaluate our model on public dataset with multiple tasks. The
proposed model outperforms the state-of-the-art both qualitatively and quan-
titatively on the joint representation learning task.

1.3 Thesis Outlines

The rest of this thesis is organized as follows. In Chapter 2, we first provide an
overview of recent related works on cross-view representation learning and non-local
neural networks. After that, three closely related methods are described in detail.
We then propose our method in Chapter 3, our method includes the base model
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for joint representation learning, and details of improved of non-local model. In
Chapter 4, we design multiple experiments to evaluate our method and show its
superiority over other baseline methods. In Chapter 5, how non-local operations
actually work is qualitatively analyzed. Current limitations are also presented and
possible solutions and other modifications are discussed. Finally, in Chapter 6, we
summarizes this thesis.
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2 Related Work

The main goal of our paper is to realize joint representation between first and third-
person view videos, therefore papers relating to cross-view representation learning
[RB18, RB19, YKS15, AB16, FLX+17, SGS+18a, YCLL19] are highly related to our
task. Besides, in our model, the kernel method serving the goal is based on non-local
neural networks, thus papers about non-local neural networks [WGGH18, BCM11],
their improved version and extended applications[ZXB+19, YYC+20, MFZ+20] are
also related to our work.

2.1 Cross-view Representation Learning

Cross-view representation learning is a general expression for a large class of research.
It is committed to establishing a unified model for videos or pictures from two
or more perspectives that are related in reality, and uses the model to transfer
information between perspectives. It is apparent that our task is a specific case.
In this field of researches, two types of structures are currently widely used. One
structure is based on encoder-decoder structure to encode visual information, and
attempts to reconstruct the image of other views by using the encoded features of one
view, in order to obtain a compressed encoded model applied to multiple views. The
other type of method is based on the self-supervised learning model of the siamese
structure. The methods artificially introduce non-correlated negative samples in the
correlated multi-view image sample pairs. By designing loss functions, models are
constrained to strengthen the similarity between correlated samples and amplify the
differences between non-correlated samples, and finally enable the model to describe
the commonalities between pairs of corresponding samples.

The encoder-decoder model is widely used in cross-view synthesis task. The task is
defined as generating the simulated image of one view from the other view which
picture the same scene. Regmi et al. [RB18] took two images of aerial view and
street view showing the same scenery as input, and applied a two-step Generative
Adversarial Networks (GANs) [GPAM+14], which is a typical encoder-decoder based
image synthesizing structure. [RB19] further introduced attention mechanism based
on previous work which was able to extract information more efficiently.

In cross-view matching tasks, the siamese structure is widely considered as backbone
of models. Yonetani et al. [YKS15] proposed a novel face detection algorithm which
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was based on motion correlations between actor (first-person) and observer (third-
person) videos. Ardeshir et al. [AB16] studied a human-human matching task which
matched humans appearing in two third-person view videos. Fan et al. [FLX+17]
studied a similar task that matched multiple actors (first-person camera wearers)
appearing in a single third-person video to multiple first-person videos. Both [AB16]
and [FLX+17] were based on an improved version of siemese structure and depended
on the groundtruth of human bounding box. Sigurdsson et al. [SGS+18a] firstly
studied frame-frame matching problem, which entirely depended on self-supervision
and didn’t need any kinds of object level groundtruth. While [SGS+18a] proposed
a pure CNN siemese structure, [YCLL19] noticed the limitations of CNN structure
and tried to resolve them by introducing attention module. Our work is mostly
related to [YCLL19] and reached better performance on dealing with cross-view
representation than it.

In the following subsection, we introduce the most important related study with us.
This work cared about similar challenges we faced and proposed an attention-based
solution.

2.1.1 Joint Attention Guided Representation Learning

Yu et al. [YCLL19] studied a frame-frame matching task. The task is defined as
follows: There are three video frames taken as input, two of which are first-person
view frames and the other is third-person. One of the first-person frame is taken
simultaneously with the third-person frame (i.e. corresponding frame pairs), while
the other one is non-corresponding. The task is to determine which first-person
frame is corresponding to the third person frame. They noticed that the common
area between corresponding image pairs was generally salient area that the actor
paid more attention to and fixed gaze on. Therefore, They applied a attention-
based module to focus on those salient areas.

As a result, they proposed a Joint Attention Guided Representation Learning Net-
work. In their model, they took Cbam [WPLK18] model as the attention fea-
ture extraction module. After extracting deep visual features separately from three
frames, the Cbam module generated three channel weight vectors for feature maps,
which weighted the importance of different high-level features represented by dif-
ferent channels. After that, the loss function forced the channel weight vectors of
corresponding frames to tend the same, and also forced the feature maps weighted
by vectors of corresponding frames to tend the same.

In experiment section, they evaluated their model with frame alignment experiment.
The baselines were pure CNN backbones and AONet [SGS+18a]. Comparing to the
baselines, their method achieved to the best both quantitatively and qualitatively.
However, their attention module assumes that each features extracted from differ-
ent objects must appear in different channels of feature maps so that they can be
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weighted by channel vectors. The assumption wasn’t convincing enough when the
layers of deep network wasn’t deep enough.

2.2 Non-local Neural Networks

The key idea in our paper of resolving the cross-view feature dependencies is the
non-local neural networks. The concept of non-local neural networks was firstly
proposed by Wang et al. [WGGH18]. They were inspired by a traditional denoising
algorithm called non-local means [BCM11]. As the name suggests, non-local means
is a non-local average algorithm. Different from local average filtering algorithms
that smoothly average the area around a target pixel, non-local mean filtering means
that it uses all pixels in the image for filtering, and these pixels are weighted and
averaged according to a certain degree of similarity. The key idea should be that
more areas with the similar properties contribute more robust denoising effect.

[WGGH18] borrowed the idea of non-local means and expands it to deep networks.
They pointed out that both convolution and recurrent are operations performed
on a local area, so that they are typical local operations. Instead, they proposed a
non-local operation to capture long-range dependencies, that is, how to establish the
connection between two pixels with a certain distance in the image, how to establish
the connection between two frames in the video, how to establish the connection
between different words in a paragraph, and so on (See in Figure 1.3). Similar
to non-local means, non-local operations take the weighting of all spatiotemporal
features as account when computing the feature of each single pixel. They evaluated
the non-local network on video action classification tasks.

Given that non-local neural networks demonstrate excellent performance on dealing
with comprehensive correlations, it was quickly applied in other computer vision
tasks. [ZXB+19, YYC+20] applied non-local operations in semantic segmentation.
non-local module was used to deal with the encoded features in encoder-decoder
structure. Zhu et al. [ZXB+19] noticed that the non-local operations are time-
expensive when taking large-size feature maps as input. They solved the problem
by down-sampling the input. Yin et al. [YYC+20] further improved the model
by decoupling the constant component and normalized local component in non-
local correlation matrix. Mei et al. [MFZ+20] applied non-local blocks on image
super resolution. We observe that the application of non-local networks focused on
problems that have needs for transferring knowledge spatially or temporally, which
is highly related to our task.

In the following subsection, we will briefly introduce the structure of non-local mod-
ules for convenience of introducing our proposed method in Chapter 3.
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2.2.1 Non-Local Modules

Let us start from a non-local means filter. Given a noisy image v = v(i)|i ∈ I, the
estimated value of pixel i, v̂(i) is computed as :

v̂(i) = 1
Z(i)

∑
j∈I

w(i, j)v(j), (2.1)

where the w worked as weight and Z(i) is the normalization factor.The weights are
measured by the Gaussian similarity between the neighbourhood pixel sets of i and
j, i.e.:

w(i, j) = e−
‖v(Ni)−v(Nj )‖2

h2 , (2.2)

where v(Nk) refers to a vector containing all pixel values of a square neighborhood
of fixed size which centered at pixel k and h acts as degree factor.

Figure 2.1: The overall structure of non-local block.

When it comes to non-local neural networks, similarly, the operation is defined as:

y(i) = 1
Z(x)

∑
∀j

f(xi, xj)g(xj) (2.3)

where x is input feature map and y is output map. Z(x = ∑
∀j f(xi, xj works as

normalizing factor. g is a 1 × 1 convolutional layer. f(xi, xj) works as similarity

14



function between features xi and xj. Multiple available functions were given in the
paper and the most practical of all is given as:

f(xi, xj) = exi
T xj , (2.4)

After turning the equations into matrix formula and introducing residual connections
[HZRS16], the overall structure is shown as Figure 2.1.
They attached the non-local blocks inside the traditional CNN networks and evalu-
ated their performance on video action recognition tasks. They analysed the results
and observed that only several non-local layers significantly improved the overall
performance of the network.
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3 Proposed Method

3.1 Model Architecture

We propose a self-supervised joint representation learning model based on non-local
operations. The overview architecture of the model is presented as Figure 3.1.
The framework is composed by a multi-branch neural network and takes a triplet
of frames (x, y, z) as input. x, y, z refer to corresponding first-person, third-person,
non-corresponding first-person frames separately. It consists of two modules: feature
extraction and cross-view non-local module.

3.1.1 Feature Extraction

The function of this module is to first extract regional basic deep visual features
from the triplet inputs. These features will contain the semantic, visual texture and
other information hidden in the images. There is a backbone CNN model which
extracts feature maps (Fx, Fy, Fz) for each input branch. These visual features
will be utilized to calculate the global correlations between features by non-local
operations in the next module.

3.1.2 Cross-view Non-local Module

The typical non-local blocks take a single feature map x as input. Each estimated
output yi is computed as the weighted average of all input features from x, shown
as:

yi = 1
Z(x)

∑
∀j

f(xi, xj)g(xj). (3.1)

where x is input feature map and y is output map. Z(x = ∑
∀j f(xi, xj works as

normalizing factor. g is a 1× 1 convolutional layer. The similarity function f is the
same as 2.4. In this case, each feature vector xi ∈ x actually acted as two roles:
1) when yi is computed, xi acts as a target feature, which is anchored to compute
similarities with all other features; 2) when (yj, j 6= i) is computed, xi acts as a key
value, constituting a part for computing the weighted mean. Therefore, the input of
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Figure 3.1: Overview of our proposed model. The network takes a triplet input
(x, y, z). The deep feature maps (Fx, Fy, Fz) are extracted by three independent
branches of convolutional networks. The three feature maps work as key features
and are fed to non-local blocks as input, used for building up correlation matrix
with third-person feature matrix. With the assumption that there are higher
similarities between corresponding pairs, the correlation matrix built by (Fx, Fy)
and Fy itself should also have higher similarities than that between (Fz, Fy) and
Fy itself.
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non-local blocks can also be considered as two branches: target feature input x and
key feature input x. The function of non-local block can be described as: the output
feature y is estimated as the weighted mean of all key feature x, while the weight is
computed by the similarity between all key features and each specific target feature.
Through the above understanding, we discover that the typical non-local block actu-
ally works as a spatial autocorrelation estimator. Therefore, if we change the target
feature and key feature to two different inputs from different images, we may get the
cross correlation estimator, which we call cross-view non-local module. The formula
of cross-view non-local module is defined as Cross-NL:

y(i) =
[
Cross-NL(xt, xk)

]
(i) = 1

Z(xt)
∑

∀j:xk
j ∈xk

f(xt
i , xk

j )g(xk
j ), (3.2)

where xt, xk are target input and key input separately.
After extracting deep feature maps (Fx, Fy, Fz) from feature extraction module,
we feed the maps into three cross-view non-local blocks. The three blocks take
Fy as target input in common and take (Fx, Fy, Fz) as key input separately. The
formulations are presented as:

Fxy = Cross-NL(Fy, Fx)
Fyy = Cross-NL(Fy, Fy)
Fzy = Cross-NL(Fy, Fz)

The function of three blocks is to estimate the third person feature map by the key
features from feature maps extracted by three inputs. Naturally, the estimation by
third person feature map Fy itself (i.e. Fyy) should be most successful. Afterward,
since we have an assumption that there are some common regions shared by the
corresponding image pairs, there should be much more key features in Fx similar to
Fy than those in Fz. Therefore, based on our assumption, the similarity between
Fyy and Fxy should apparently higher than that between Fyy and Fzy. The loss
function is designed based on this synthesis.

3.2 Unbiased Hierarchical Non-local Module

By analyzing the typical non-local block, we find out there are drawbacks that limit
the performance of non-local operations. In following subsections, we will propose
our unbiased hierarchical non-local module. We mainly make two modifications
(Figure 3.2 (a) and (b)) which improve the performance of the non-local block from
different aspects.
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Figure 3.2: Two modifications compared to typical non-local block. (a) Hierarchi-
cal Pooling. (b) Zero-centered Correlation Matrix.

3.2.1 Hierarchical Pooling

Motivation. By inspecting the correlation computation process in non-local blocks,
one may clear find that even if the computation of correlation matrix does treat all
global dependencies equally, the perception field of each feature, no matter key fea-
ture or target feature, is still fixed. This means we may only compute the similarity
of features which represent the same size of regions in input images. It is still a
challenge for block to deal with the different sizes of common objects appearing in
first and third-person view.
Therefore, our proposed solution is to apply average pooling operation with multiple
window sizes, practically 1 × 1, 2 × 2, 4 × 4, 8 × 8. With larger window size, the
output vectors of pooling may perceive a larger region. After pooling operation, all
the output over the pooling layers are reshaped linearly and concatenated together.

3.2.2 Zero-centered Correlation Matrix

Due to the convenience of implementation, the most generic correlation function
applied in typical non-local blocks is the simplified Gaussian kernel function:

f(xi, xj) = exi
T xj , (3.3)
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However, if we concern the original similarity function applied in non-local Means,
the function is presented as standard Gaussian kernel function:

w(i, j) = e−
‖v(Ni)−v(Nj )‖2

h2

= e−
‖v(Ni)‖2+‖v(Ni)‖2−2v(Ni)T v(Nj )

h2

= e
2v(Ni)T v(Nj )

h2 −
‖v(Ni)‖2+‖v(Nj )‖2

h2

We may find that the standard Gaussian kernel function is zero-centered with the
module of two vectors are subtracted, which is not implemented in typical non-local
block. The bias of input features may lead to inaccurate estimation of the similarity
between two features. In order to eliminate this bias, given target feature matrix
X t ∈ RNt×C and key feature matrix Xk ∈ RNk×C , where N t, Nk, C means the
number of target feature vectors, target feature vectors and vector dimensions, we
derive the function to zero-centered correlation matrix as follows:

F[Xt, Xk] = exp
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The flow chart is shown as Figure 3.2(b).

3.3 Loss Function

Here we describe the loss function used to train our proposed network. The loss
function is a triplet loss used in siamese structure to learn shared representation
from corresponding pairs.
The triplet loss is denoted as LT L(x, y, z), which enforces similarity between cor-
responding feature representations Fxy and Fyy, and penalizes similarity between
non-corresponding feature representations Fzy and Fyy. The cost function is formu-
lated as [HHA16]:

LT L(x, y, z) = − log
(

e−‖Fxy−Fyy‖2

e−‖Fxy−Fyy‖2 + e−‖Fzy−Fyy‖2

)
(3.5)
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Good Bad

1st

3rd

Figure 3.3: Examples for Good and Bad Frames. Left two columns are examples
for informative frames. Right two columns are examples for meaningless frames

3.3.1 Frame Screening

In practice, we find that there is a huge gap in the effective information contained
between different frames in each video (seen in Figure 3.3. Some frames contain
more objects or segments with clear boundaries, or contain rich character actions,
which are conducive to feature presentation. On the contrary, there are also some
frames that have a lot of blur due to fast motion, or capture the plain background,
from which it is difficult to extract meaningful features. Therefore, we need to filter
the data according to the quality of the sample frames to minimize the impact of
low-quality frames on model training.
Here we use the same method as [SGS+18a], which introduce a selector w to give
each set of samples a weight w(x, y, z). This weight will make the model pay more
attention to informative sample triplets. The final overall loss function comes to:

L(x, y, z) = LT L(x, y, z) · w(x, y, z) (3.6)

3.4 Implementation Details

Our framework is implemented by using PyTorch [HHA16], and input frames are
cropped into 224× 224. We apply a ResNet-152 architecture [HZRS16] as the base
CNN model, which is pretrained on ImageNet dataset [SVW+16]1. The first two

1The pretrained model can be downloaded from: https://download.pytorch.org/models/resnet152-
b121ed2d.pth
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convolutional layers of ResNet-152 are used to extract feature maps. The channels
of feature maps and the dimension of channel attention vectors are both 256. The
spatial size of feature maps as well as that of attention maps is 56 × 56. The
input features of non-local blocks are based on the conv2 features of ResNet-152.
SGD[Bot12] is used to train the whole model, with the learning rate of 1e-4, exponent
learning rate decay of 0.95, and batch size of 16. The model is trained on single
V100 machine for 50 epochs.
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4 Experiments

In this chapter we evaluate our proposed model on public first and third person video
dataset. We design two basic experiments, in which we compare and analyze the
experimental results with state-of-the-arts both quantitatively and qualitatively. By
visualizing the correlation matrix calculated by non-local modules, we analyze the
actual performance of non-local operations and how they seek global dependencies.
In addition, we also designed other additional experiments to further illustrate the
applications of our model.

4.1 Experimental Settings

4.1.1 Dataset

We use the Charades-Ego dataset [SGS+18b]. This dataset contains 3930 sets of
synchronized first and third-person videos, recording a large amount of human be-
havior information. However, there are some invalid data pairs in this dataset, such
as videos pairs that are both third-person views (See in Figure 4.1). By combining
the settings in [YCLL19] and our own manual screening, 313 pairs of invalid videos
were finally eliminated from the dataset.

4.1.2 Tasks and Evaluation

The first basic experiment is to discriminate the corresponding frame. The exper-
imental design and model structure are basically the same, and each data sample
comes from the same pair of videos. First, select two frames at the same time point
from the first-person and third-person videos to form a positive sample, and then
randomly select one frame as a negative sample from the first-person video. In
order to prevent the positive sample and the negative sample from getting closer
and increasing the difficulty of the experiment, we artificially set the time difference
between the positive and negative samples to be more than 5s (120 frames). The
result is evaluated by the discrimination accuracy (in %).
The second experiment is to quantitatively evaluate the matching time. We send
all frames in the first person and a certain frame in the third person into the model,
calculate their feature distances and sort them. The frame with the smallest feature
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Figure 4.1: Invalid data pairs (first row) and valid data pairs (second row).

distance is regarded as the prediction result and the time difference is calculated with
groundtruth. The result is evaluated by the average time difference (in seconds).

During the experiment, we select AONet [SGS+18a] and Joint Attention Network
[YCLL19] as state-of-the-arts. The both models are re-trained with same hyperpa-
rameter settings as our proposed method.

Also, considering that we make two modifications on the non-local blocks, We will
conduct multiple sets of controlled experiments by controlling the variables to verify
the effects of each of them on the performance of the model when they are introduced
separately and the two are introduced together: (a) pure non-local blocks (Abbrevi-
ated as NL); (b) non-local blocks with hierarchical pooling (NL+Pool); (c) non-local
block with zero-centered correlation matrix (NL+Center); (d) non-local blocks, with
both hierarchical pooling and zero-centered correlation matrix (NL+Both).

4.2 Quantitative Analysis

The quantitative results of different models in the cross view discrimination task
and best matching time task are shown in the table 4.1. It can be seen that the dis-
tribution accuracy and the time error show a relatively obvious negative correlation.
This is reasonable because the process of image changing frame by frame over time
is smooth and continuous, and the result proves that the model’s perception of fea-
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Method Discrimination accuracy (%) Average time error (s)
AONet[SGS+18a] 50.9 7.0
Attention[YCLL19] 86.2 5.0
NL 85.7 5.9
NL+Pool 88.1 4.6
NL+Center 87.8 5.7
NL+Both 89.0 4.5

Table 4.1: Quantitative Comparisons on Discrimination Task and Time
Error Task.

ture changes is also smooth. It can be seen that AONet [SGS+18a] is significantly
behind AttentionNet [YCLL19] and our model in both tasks. AONet [SGS+18a]
simply extracts the features from images and calculates the distances, and does not
adopt a mechanism to evaluate the importance of features, which means the model
is easy to be disturbed by redundant information. Therefore, it cannot obtain a
good performance on joint feature presentation.

Our pure non-local model performs similarly to the AttentionNet [YCLL19]. How-
ever, after introducing the two improvements of hierarchical pooling and zero-
centered matrix, the discrimination accuracy rate has been significantly improved
(2.4% and 2.1%), which proves that the two improvements bring improvement to
model from different perspectives. Compared with the AttentionNet [YCLL19],
the overall models has achieved a larger accuracy rate improvement (2.8%), which
proves that the joint presentation learnt based on the assumption of global similarity
of common regions is more suitable for cross-perspective discrimination tasks than
that based on attention and saliency detection.

4.3 Qualitative Analysis

4.3.1 Visualization of Feature Activation

We first conduct quantitative analysis by visualizing the visual features extracted
by CNN from the image. The visualized result is shown in the figure 4.2. The
visualization method is to average the output of the Resnet152 conv2 layer along
channel axis and then apply upsampling to the feature maps upon the size of the
original image. Since non-local blocks calculates the similarity between features and
backpropagates, those vectors with more similar features will have greater weight in
backpropagation, thereby activating the convolution kernel related to the generation
of these features in the CNN. In the visualization, the activation value corresponding
to this part of the feature will be higher.
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Figure 4.2: Visualization of feature activation. the activation values are visualized
with heatmaps on input images. The colour ranges from red to blue referring to
high to low activation.
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3rd person 1st person correlation map 3rd person 1st person correlation map

Figure 4.3: Visualization of correlation maps. The target feature pixel is marked as
red point in third person view input. The correlation maps are shown as grayscale
images, ranging from black to white representing low to high correlation.

By comparing the heat maps of activation features, we can find that compared
to AONet [SGS+18a], the activated features in our model are more concentrated.
Moreover, in the corresponding first-person and third-person images, the main ac-
tivated features of the two are generally distributed in similar visual features, such
as color, texture, etc., and these features are often the common area between the
two perspective images. For example, in the example above in the first column, we
can clearly see that the red area in the heat map, which are the main activated
features from CNN, is concentrated on the floor in both images, and the floor is
the common area of both images. In the example above in the third column, the
activated features are concentrated on the pattern of the bed sheet. These examples
fully prove that our model will pay attention to areas with similar visual features
crossing the views.

4.3.2 Visualization of the Correlation Maps

Next, we visualize the internal layers of non-local network to get a more intuitive
experience of how non-local network works. The core structure used in non-local
network to represent the dependency between features is the correlation matrix.
However, the correlation matrix expresses the correlation pixel-pixel in the feature
map, thus the size of its horizontal and vertical coordinates is the total number
of feature vectors. That is to say, if the feature matrix is converted into the size
of the input feature map, it is actually a four-dimensional tensor, which is very
inconvenient for visualization. But we can target a certain feature in the third-
person feature map, and specifically visualize and target the first-person correlation
map with this feature. This visualized structure is shown in the Figure 4.3.
As we analyzed above, the correlation map for the target pixel does reflect the
similarity with the target pixel. It can be seen that areas with similar colors to the
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target point have higher correlation. This nature does help the model identify the
common area. But when we look at the example in the lower right, the target point
is near the light, and the color is close to white. The corresponding first-person
picture is a book, and the subject is also in white. Although the two are completely
different objects, the feature vector corresponding to the book in the correlation
map still has a high correlation. This shows that in this example, non local network
does not explore the deep visual features very well, but is disturbed by the shallow
color information. We will discuss this issue further in Chapter 5.

4.4 Experiments on Downstream Tasks

Through the above experiment, we use the non-local based model to obtain a joint
presentation of the first and third person images. This joint presentation proved its
effectiveness in the discrimination experiment. However, by the analysis of some spe-
cific samples, we also find its limitations. In this section, we hope to further test the
model through some other simple experiments to evaluate the model’s performance
of extracting visual features and transferring knowledge crossing the perspectives.

4.4.1 Video Action Recognition

In this part, we show that joint representation learnt from first and third-person
videos could be exploited to apply action recognition. CharadesEgo dataset provides
action annotations for the behavior of actors in the video, which makes it possible
for us to conduct the experiment of action recognition. Traditional video action
recognition work [SZ14, CZ17, FPZ16] is mainly for a single video, and we want to
see whether the feature extraction network learned through the cross-view model
could help improve the performance of action recognition. We pretrain the model in
the discrimination task, and then connect the CNN branch of third-person view to
a fully connected layer for action classification. AONet also has motion recognition
experiments, so we chose AONet as the baseline. The results are shown in the table.

The results show that our model performs better than AONet.

AONet Ours
Accuracy 23.1 25.8

Table 4.2: The results of action recognition task. The accuracy is measured by
mAP (%). Higher is better.
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AttentionNet Ours
Pridiction error 0.22 0.30

Table 4.3: The results of gaze prediction task. The accuracy is measured by L2
distance. Lower is better.

4.4.2 Gaze Prediction

Gaze prediction is also a typical task to evaluate the feature extraction of a model.
Firstly, the actors’ head coordinates are estimated based on the existed method
[CSWS17]. Secondly, we compute the mean of values in correlation map of each
target feature. Finally the coordinate of the target feature in third person feature
map which has the largest mean is considered as prediction. In this experiment we
take AttentionNet as baseline.
We do the experiment on gaze prediction dataset GazeFollow[RKVT15]. The pre-
diction accuracy is measured by average Euclidean distance (We assume each image
is of size 1× 1) between predictions and annotations. The result is shown in table:
Our result doesn’t perform as good as AttentionNet. We observe that the center of
common area and human attention area are not the same in most conditions. The
possible reason should be our model focus on common region instead of saliency and
attention, while the latter factors mainly affects the gaze prediction.
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5 Discussion

5.1 The Dependencies that Non-local Modules
Concern about

In the experimental part of the above chapter, we qualitatively and quantitatively
proved the feasibility of applying the non-local network to the common feature ex-
traction problem of cross-view images through multiple experiments. By visualizing
the internal matrix of non-local network, we do observe that non-local network shows
higher sensitivity to similar colors, shapes and textures in the two viewing angles.
But are these all the feature dependencies that non-local network focuses on? In
this chapter, I would like to further discuss the specific characteristics of global
dependencies that non-local network is concerned about.

Since in non-local network, the dependence between features is achieved by calcu-
lating the distance between two feature vectors, the features that non-local network
tends to pay attention to must also have a relationship with the attributes of the
feature itself. Several works committed to the interpretability of deep learning mod-
els [EBCV09, MV15, SCD+17] have pointed out that as the number of model layers
deepens, the features extracted by the model gradually shift from low level knowl-
edge such as color, edge, and texture to high-level knowledge such as overall shape
and even semantics, interaction, and logic.

In this paper, the vision features utilized in non-local blocks are primarily low-
level knowledge. That’s the reason why two totally distinct objects are decided
as high dependencies only if they share similar color. Nonetheless, When Wang et
al.[WGGH18] applied non-local blocks to the video action recognition task, the result
showed that high-level dependencies such as the relationship between a football and
people’s body when one bounds the ball can also be detected (See in Figure 5.1),
which means it is also possible for us to build up joint representation between first
and third-person view videos based on more high-level features. In this scenario,
high-level features could refer to spatial relative positions between objects, human-
object interaction, and so on.
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Figure 5.1: High-level dependencies can be detected by non-local networks even if
there is no visual similarity.

5.2 Limitations of the Proposed Method

Even if the proposed method has proved is effectiveness on establishing joint rep-
resentation that is capable of transfer knowledge crossing the first and third-person
view videos, there are limitations of our model. The limitations can be summa-
rized as our ignorance of the actors. Among all corresponding first and third-person
videos, actors, i.e. camera wearers, are always crutial entities worth to be studied.
The actions and interactions of actors take an irreplaceable status in analysis. How-
ever, in our paper, the actors are not paid enough attention to. They only act as an
ordinary part of environment and participate in calculation of feature dependencies.
This means that the joint representation learnt in this paper is not able to repre-
sent human’s tendency when needed. This is part of reason why the model doesn’t
perform well on gaze prediction task.
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6 Conclusion and Future Work

In this thesis, we propose a novel method of joint representation learning between
corresponding first and third-person view videos. The research on cross-view joint
representation learning should contribute to further study on co-analysis between
multiple view videos, such as co-segmentation. This requires a more precise model
that may build up a pixel to pixel correspondence between first and third-person
views. The main challenges to be gotten over is how to understand the connections
between different perspectives in same scene from a higher level, just as human
beings do.

The clue idea of our approach presented in this thesis is to introduce the non-local
neural network in order to learn global dependencies from multiple viewpoints. Since
the first and third person videos are captured synchronously in single locale, there
should be some common regions shared by both viewpoints. These universal regions
could take rolls like bridges between two videos. Since non-local networks capture
global dependencies directly by computing interactions between any two positions
of inputs regardless of their positional distance, they are selected to deal with the
correspondence establishment issue. We adopt a self-supervised structure which
takes triplets of images as input, with both positive and negative samples. Deep
features are extracted separately and global dependencies is built up by non-local
modules. Since there are more in common between the corresponding pairs, more
stable dependencies should exists and the features of them should be more similar.
A triplet loss is applied to force that. The performance of model is evaluated on
open dataset. Fundamental experiments include frame discrimination tasks and
matching time error tasks. The experimental results demonstrate that the model
manages to build up clear joint representation between both views. Two additional
experiments including action recognition and gaze estimation are conducted so as
to further check out the effectiveness of model. While in action recognition task,
the model performs better than the baseline, the model seems not to be competent
in gaze prediction task.

The failure in gaze prediction task and some analysis expose the limitations of
our model. The limitations are analyzed and will be tackled in the future. Some
limitations are caused by the inner drawbacks of the non-local operations. The per-
formance of non-local operations are based on the quality of features fed into the
block. Some other limitations are caused by the overall structure which ignores the
significance of human actors in the videos. In the future, human motion and atten-
tion should be specifically considered as a influential factor of joint representation
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learning.

Based on the analysis of limitations and insights we obtained from the results, The
following directions are considered as future directions of improving the current
model.

Taking hierarchical features as non-local input As already mentioned in Sec-
tion 5.1, the current non-local model mainly take low-level features as input. In
the future, we consider to introduce multiple levels of features which are activated
in different layers of CNNs to the non-local modules. Not only are similar color,
appearance and texture considered as highly dependent, but also those features that
exist logical connections.

Human pose and gaze estimation The gaze and pose information (i.e. what
he/she is looking at and what he/she is doing) of human actors indicate actors’
insight tendencies of interaction with environment. We need to introduce a effective
human analysis model and take the relationship with actor into consideration when
computing the dependencies.

Applying graph models Another available solution to summarizing high-level de-
pendences is based on graph model. Graph model turns convolutional features into
some abstract node features and the analyze them by graph algorithms. Since graph
models are good at abstract logical correspondence, we may first extract multiple
independent semantic entities from original input and the seeking for relevance be-
tween entities by graph models.

Introducing temporal motion information Current works on joint representation
learning between first and third person view videos are almost taking single frame
and input. However, there are even more correspondence information existing in
the dynamic change of views. For instance, if the model takes a series of frames as
input, it may perceive a wider range of view for each perspective. Besides, the future
action may also predicted. Overall, those dynamic information could contribute to
joint representation learning.

3D reconstruction This may provide an alternative train of thought. Since our
goal is to learn a joint representation that may describe the both views uniformly,
the most integrated and robust presentation should of course be the precise 3d
model of scene. However, current works [IKH+11, MLD+06, GZS11] aimed to 3D
reconstruction most need camera calibration or depth sampling. This should be
very challenging.
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Further applications Also, besides considering how to improve presentation model,
study on some further applications based on the joint representation should also be
interesting. For example, video co-segmentation. If a precise pixel-wise joint
representation is available, segments from each single view could build up stable
semantic connections. In conclusions, there are a lot of interesting topic related to
the co-analysis of multiple view videos waiting for people to discover.
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