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Abstract

Large events with many attendees cause surge of population in the traffic network

around the gathering places. To avoid accidents or delays due to this kind of

unexpected behavior of public gatherings, it is important to predict the level of

population change in advance of the event. Thus, this study aims to forecast

population at general gathering places.

However, our preliminary experiment showed that historical population informa-

tion alone is insufficient to forecast population at general gathering places when

non-recurrent events are held there. Although a simple solution to this problem is

to utilize the event schedules published by venue managers or event organizers, this

approach cannot be scaled to many events or places for the following two reasons:

(1) the number of places for which event schedules are published is limited and (2)

some public gatherings (e.g., hanami, mass demonstration, etc.) cannot be found

in such schedules.

To address this problem, we utilize microblog posts referring to future events as

an indicator of event attendance. On the basis of this idea, we propose regression

models that is trained with microblog posts and historical population information

to accurately forecast population at gathering places.

Experiments on next 24-hour population forecasting using real-world traffic and

Twitter data demonstrated that these two heterogeneous data sources have a com-

plementary role in reducing the prediction errors over those of the baseline models

(autoregressive and long short term memory) by 20% – 50%. Furthermore, our

analysis on feature importances and attention weights suggested that our approach

of using microblog posts had an advantage of explainability of forecast results,

which are practically useful when users take measures against population surges.
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Chapter 1

Introduction

1.1 Background

Large events such as baseball games or concerts attract huge crowds of people.

They cause surges of people around their venues. Such unexpected behavior of

people has various negative impacts not only on the event attendees themselves,

but also on passers-by. For example, if a train is more crowded than usual when it

is packed with people returning from a concert, passengers may feel physically and

mentally stressed, and the increased time spent aboard the train results in economic

losses. Similar problems happen around general gathering places: If tourists are

not informed in advance about population surges at sightseeing spots, they may be

dissatisfied with the trip if their plans are disrupted by the congestion. In addition,

such unusual gatherings of people can even cause fatal accidents. On 2014 New

Year’s Eve celebration event in Shanghai, the crowd became uncontrollable and 35

people died in a stampede [1].

Population forecasting plays a key role in solving these problems. For instance, if

the time, place, and degree of future population can be predicted, train passengers

can take a different line where trains are less crowded, and tourists can make plans

so that they can avoid congestion. Against this background, previous studies [2,3]

have proposed frameworks that utilize data collected from location-based services

and predict population on the city scale. However, the predictions of these methods

are limited to a few hours in advance because the longer the forecast horizon is, the
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1.2 Challenges

greater the effect of external factors (e.g., large events) becomes [4]. Another study

has utilized railway route-search logs to make a prediction seven days in advance

of events [5]. This method, however, is only applicable to stations. To give people

a time to take measures against population surges at general gathering places, the

forecasting should be over a long enough period and applicable to various places.

1.2 Challenges

In this study, we tackle the problem of longer-term population forecasting at

general gathering places. However, as we show later (Chapter 4), it is difficult to

forecast population in the vicinity of gathering places where non-recurrent events

are held. This is mainly because a prediction model cannot capture the surge of

people caused by non-recurrent events without any prior information about them.

To address this, we focus on the fact that some microblog posts refer to future

events. Such posts are valuable for automatically extracting the time, place, and

type of the target events. For example, if there is a post saying “Protest in front of

the National Diet Building on April 14!” indicates that a mass demonstration will

take place in front of the National Diet Building on April 14. On the basis of this

idea, we propose to predict population in the future from both historical population

information and microblog posts referring to future events (Chapter 5). We demon-

strated the superiority of our models relative to baseline models in experiments on

real-world traffic and Twitter data (Chapter 6).

1.3 Contributions

Our contributions are as follows.

• We established the unprecedented and general problem setting of population

forecasting at gathering places. We empirically showed that the traditional

approach of population forecasting (i.e., the approach based on the historical

population information alone) does not work in that problem setting.

2



1.4 Thesis Structure

• We proposed a method of population forecasting at gathering places utilizing

microblog posts referring to future events. Since this method does not require

event schedules, it can cover many types of gathering places.

• With our prediction method, we reduced the prediction errors of the baseline

methods that only utilized historical time series of population by 20% – 50%.

We showed through post-hoc analyses that our method captured important

clues in microblog posts, suggesting that our approach has potential for

explaining the prediction results, which leads to practical applications.

1.4 Thesis Structure

The structure of this thesis is outlined as follows.

Chapter 2 The problem we study in this thesis is defined and basic knowledge about

our NN-based model is introduced.

Chapter 3 Related studies of this thesis are presented. By discussing their contribu-

tions and limitations, the relation between them and this thesis is clarified.

Chapter 4 Our preliminary experiment that showed historical population informa-

tion alone is insufficient to forecast population at gathering places is detailed.

Chapter 5 A method for forecasting population at gathering places with microblog

posts referring to future events is proposed. The two models of its imple-

mentation are also described.

Chapter 6 The experiments to demonstrate the superiority of our method in various

task settings and their results are presented and discussed.

Chapter 7 The overall contribution of this thesis is summarized.

Chapter 8 The possible future directions of this thesis are discussed.

3



Chapter 2

Preliminary Knowledge

In this section, we firstly formulate the population forecasting problem and then

introduce the Transformer [6] and the Set Transformer [7], which are the main

components of one of our proposed models.

2.1 Problem Definition

In this section, we formulate the problem of population forecasting at gathering

places.

Definition 1 (Sequence of population at a gathering place on the target

day). Sequence of population yv,d at a gathering place v on the target day d is

a subset of corresponding spatio-temporal population data. It is a time series for

the day d:

yv,d = {yv,1, yv,2, · · · , yv,n} .

Definition 2 (Available resources for the forecasting). The resources used

to forecast the population on the day d must be the information available as of d−1.

We refer to such information as Xd−1. For example, a model that utilizes the histor-

ical population information alone is the case of Xd−1 = {yv,d−l, · · · ,yv,d−2,yv,d−1}.
Problem. Given Xd−1, predict yv,d.
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2.2 Transformer

2.2 Transformer

In this section, we explain the concept of the Transformer, which constitutes the

basis of one of our proposed models. The Transformer is applied to the state-of-

the-art neural machine translation systems. Typically, it takes an input sentence

and outputs the translated one through its encoder-decoder architecture. Our

proposed model, however, only utilizes the encoder part to obtain context-aware

token embeddings. Thus, in what follows, we focus on the two key ideas regarding

the encoder: the self attention and the positional encoding.

2.2.1 Self Attention

The motivation for introducing the self attention is to highlight a small but

important part of an input text. As described later in Chapter 5, our proposed

model takes event-related microblog posts and outputs the number of people at

the corresponding place. For example, an input post looks like the following:

8/20（日）14時 巨人対横浜 DeNA 東京ドーム スカイシート 5 タオル引換券付は売
切れ、余ったチケットの買取受付中。

In this post, only the words “巨人” and “14時” are necessary for prediction, and the

others are less important. Here, the self attention tells which words are important

to the successive components.

Specifically, an input sentence is processed as a sequence of word embeddings X

and then it is linearly transformed as:

Q = WQX, K = WKX, V = WV X .

Here, WQ, WK , WV are learnable parameters. On the basis of this transforma-

tion, the context-aware representation of X is obtained as the weighted sum of

V :

Attention(Q,K, V ) = softmax(
QKT

√
d

)V .

5



2.3 Set Transformer

2.2.2 Positional Encoding

The formulation above ignores the order of words. Since the word order plays a

key role in solving NLP tasks, the Transformer encodes it by adding the positional

encoding to the input. The i-th dimension of a positional encoding is defined by

the following:

PE(pos,2i) = sin(pos/100002i/d) ,

PE(pos,2i+1) = cos(pos/100002i/d) .

Here, pos is the position of a token and d is the dimension of tokens. This is a sine

wave and it injects information about positions of tokens to the model.

2.3 Set Transformer

In this section, we introduce the Set Transformer, which is an extended version

of the Transformer. The Set Transformer is proposed to solve set-input problems.

As mentioned later in Chapter 5, the problem of population forecasting at gath-

ering places using microblog posts is an instance of set-input problems. In what

follows, we show the definition of set-input problems and the architecture of the

Set Transformer.

2.3.1 Set-Input Problem

Many existing problems addressed by deep learning are instance-based problems,

that is, a fixed-dimensional input tensor is mapped to its target value. For some

applications, however, an input takes the form of set-structured data. For example,

representation learning of a recipe from a set of its ingredients [8] is an instance of

set-input problems, where a set of input tensors is mapped to its target label for

the set.

There are two requirements that a model for set-input problems should satisfy:

1. It should be permutation invariant.

6



2.3 Set Transformer

2. It should process sets of any number of elements in them.

Taking the problem of retrieving the max value from a set of numbers as the

simplest form of set-input problems, we can exemplify these requirements as follows:

1. max({1, 2, 3}) = max({3, 2, 1}) = 3

2. max({1}), max({1, 2, 3}), max({1, · · · , 100})

2.3.2 Architecture of Set Transformer

Zaheer et al [9] proposed the DeepSet, which is a neural network architecture

that satisfies these requirements. It embeds each element in an input set into an

instance space by a feed-forward neural network, and then it aggregates the embed-

dings by a pooling operation, such as mean, sum, max, etc. The Set Transformer

further improved the DeepSet by introducing the attention mechanism to capture

the highly-order interaction between elements in a input set.

The overall architecture of the Set Transformer is an encoder-decoder architec-

ture, as illustrated in 1. In what follows, we briefly explain each component of the

Set Transformer (SAB, ISAB, and PMA).

2.3.3 Set Attention Block (SAB)

Given matrices X,Y ∈ Rn×d of two sets of d-dimensional vectors, the Multihead

Attention Block (MAB) is defined as follows:

MAB(X,Y ) = LayerNorm(H + rFF(H)) ,

where

H = LayerNorm(X +Multihead(X,Y, Y )) .

Here, rFF is a row-wise feed-forward layer and LayerNorm is layer normaliza-

tion [10]. The MAB is the same as the encoder part of the Transformer, which

is introduced in the previous section, without the positional encoding. It turns a

7



2.3 Set Transformer

rFF

PMA

SAB

SAB or ISAB

SAB or ISAB

X

Figure 1 Overview of the Set Transformer.

disadvantage of the Transformer’s order-insensitive property into an advantage for

realizing a permutation-invariant module. Based on this formulation, we define the

Set Attention Block (SAB) as follows:

SAB(X) = MAB(X,X) .

An SAB applies self-attention between the items in an input set and outputs a

set of equal size. It naturally follows that the SABs are insensitive to the order of

elements in an input set, since they are equivalent to the Transformer’s encoder

without the positional encoding.

2.3.4 Induced Set Attention Block (ISAB)

The time complexity of processing SABs is O(n2), resulting in poor performance

for large sets (n ≫ 1). To mitigate this problem, the Induced Set Attention Block

(ISAB) is introduced. An ISAB with m inducing points I is defined as follows:

ISABm(X) = MAB(X,H) ∈ Rn×d ,

8



2.3 Set Transformer

where

H = MAB(I,X) ∈ Rm×d .

Here, inducing points I are trainable parameters. By introducing I, the time

complexity of ISABs is reduced to O(mn), where m is a small hyperparameter.

2.3.5 Pooling by Multihead Attention (PMA)

The Pooling by Multihead Attention (PMA) is proposed as a pooling operation

of feature vectors. Let Z ∈ Rn×d be the set of feature vectors fed by an encoder,

PMA with k seed vectors is defined as follows:

PMAk(Z) = MAB(S, rFF(Z)) ,

where S ∈ Rk×d is a trainable set of k seed vectors.

9



Chapter 3

Related Work

3.1 Congestion Prediction Using Location Data

Location data collected from GPS-equipped mobile phones or cars are widely

used as means of congestion prediction at gathering places. A typical approach to

forecasting congestion is to exploit the spatio-temporal dependencies in such loca-

tion data. For example, a traffic congestion occurring at 8 AM in Region X will

affect the traffic state at 9 AM in Region Y when the congestion propagates through

the road networks between X and Y. To automatically capture such dependencies

in city-scale congestion data, Zhang et al. [11] proposed CNN-based architecture

to predict crowd flows in an analogous manner to the video next-frame generation

task. They released the code and data for the improved version of their method [4],

enabling many researchers to compare their results of congestion prediction. Fan et

al. [2] pointed out that the previous studies on congestion prediction treated con-

gestion triggered by large events as outliers. To tackle this problem, they proposed

an online version of the Markov chain model trained with GPS-based short-term

human movement data to forecast city-scale human movements during large events.

A more direct approach to forecasting future human movements is to use query

logs from transit or map apps. These query logs reflect individuals’ intentions re-

garding their future movements and some works collectively utilized them. Konishi

et al. [5] utilized the route-search query logs from a transit app as users’ future

schedules. Since route-search queries contain the future target time specified by

10



3.2 Event Extraction from Microblog Posts

users, they were able to forecast population surges at railway stations triggered by

large events such as fireworks up to seven days in advance of them. However, due

to their dependence on railway route-search queries, this method is only applica-

ble to population forecasting at stations. Liao et al. [3] proposed a deep learning

method based on the fact that the number of the search queries for a gathering

place on map apps increases just before the event. This method does not depend

on railway route-search queries and can cover not only stations but also general

gathering places. However, their forecast horizon was limited to two hours since

map search queries do not contain the target time information, in contrast to rail-

way route-search queries. Another direction of forecasting congestion triggered by

such events is to explicitly utilize the event schedules published by venue managers

or event organizers. Rodrigues et al. [12] collected the event schedule of a venue

from its official website. They utilized the textual information in it as an additional

feature and showed that utilizing event schedules significantly reduced the predic-

tion errors of the number of taxi pickups near the venue. However, this approach

is limited for venues with their event schedules available and events that do not

appear on any official schedules (e.g., mass demonstrations) are totally ignored.

The existing methods directly associate these location data with spatio-temporal

points in a city. In contrast, our models can combine these spatio-temporal data

with the microblog posts that are only weakly associated with gathering places.

These posts are easily available for many places from earlier days prior to events.

3.2 Event Extraction from Microblog Posts

Microblog services such as Twitter have been widely used as social sensors for

capturing information on real-world events.

Many researchers are interested in the real-time property of microblog posts for

detecting ongoing events. Sakaki et al. [13] trained a classifier that classified a given

post is related to an earthquake. They incorporated it into a system that issued

an earthquake alert when the number of earthquake-related posts burst. Zhang et

11



3.3 Congestion Estimation and Prediction Using Microblog Posts

al. [14] tackled the problem of extracting local events from massive geotagged posts.

They focused on a representative post in a spatio-temporal burst of event-related

geotagged posts and demonstrated the effectiveness of their method on real-life

datasets.

Another line of research is future or past event extraction by resolving temporal

expressions in posts. Ritter er al. [15] extracted structured open-domain event

data from inclusive but noisy information stream, i.e., Twitter. They adopted a

sequence-labeling approach consisting of a named entity tagger, a part-of-speech

tagger, and a time-expression resolver trained with noisy Twitter corpora, and

released an auto-generated high-precision event calendar service. Yamada et al. [16]

extracted the local event information from Twitter posts to help tourists make trip

plans. They normalized venue names to collect posts containing event information

and extracted the event name and duration from those posts. Jatowt et al. [17]

proposed a visual analytics framework for future and past events based on time-

referring expressions in microblog posts.

Inspired by these studies, we utilize microblog posts that contain both normalized

place names and time-referring expressions as an indicator of future attendance.

3.3 Congestion Estimation and Prediction Using Microblog Posts

Some studies attempt to utilize microblog posts to estimate or predict congestion

in the real world.

Onishi and Nakashima [18] analyzed the mutual interaction between population

in the real world and the number of microblog posts in the virtual world. They

tried to explain the mutual interaction between the population and the number of

microblog posts through the parameters of the model trained with real-world data.

However, their model is limited to estimating the current population by using the

number of microblog posts and cannot be applied to future population prediction,

which we study in this thesis. For human mobility estimation during unprecedented

events, Miyazawa et al. [19] applied topic modeling methods on geotagged Twitter

12



3.3 Congestion Estimation and Prediction Using Microblog Posts

data and integrated the topic features with GPS data to train a regression model.

Their experiments showed that the textual contents of geotagged posts contributed

to the improvement of human mobility estimation.

He et al. [20] pointed out that there are posts that mention traffic information and

proposed a method to predict the future traffic volume for longer periods. Their

method utilizes posts that are created within the target area of the prediction.

Terroso-Sáenz et al. [21] proposed a human mobility prediction model that consid-

ered both user- and crowd-based mobility. They built a multi-component frame-

work to collect information about users’ current activity from geotagged Twitter

posts. On the assumption that subway operators did not know the schedule of all

events around stations, Ni et al. [22] tackled the problem of forecasting passenger

flow under non-recurrent event conditions. Their proposal consists of a hashtag-

based event detection algorithm and multi-modal forecasting approach leveraging

both historical transit data and geotagged posts. These methods, however, are

not applicable to the prediction task we study in this thesis for the following two

reasons: (1) Twitter removed the function of geotagging in 2019*1 and (2) users’

current location does not always suggest information about their future location,

especially when the forecast horizon is set to 24 hours or more.

Dao et al. [23] addressed the problem of longer-term forecasting of congestion

by exploiting social networking data. They classified Twitter posts that contain

certain keywords related to road conditions (e.g., congestion, rainfall, accidents,

etc.) and adopted a data fusion technique of weighting corresponding external

factors based on the classification labels. Alkouz and Al Aghbari [24] combined

Twitter and Instagram streams to detect and predict traffic jams. They extracted

locations from the text and geotag of posts and showed that the fusion of the two

data streams improved both the detection and prediction performance.

In order to accurately predict traffic flows while handling non-recurrent traffic

events such as accidents and road closures, Essien et al. [25] focused on posts

*1 https://twitter.com/TwitterSupport/status/1141039841993355264

13
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3.3 Congestion Estimation and Prediction Using Microblog Posts

from specific Twitter accounts that provides information about road conditions and

incorporated them to their LSTM-based prediction model. Although they showed

that information from specific accounts was useful, many potential accounts remain

unused. In contrast, we do not limit the accounts from which posts are collected,

resulting in much more coverage of potential accounts as an indicator of future

traffic conditions.

These studies showed that using textual contents from microblog streams is

promising for traffic forecasting. We thus further extend these approaches and

propose a general method that does not depend on the geotagging function and

specific accounts.

14



Chapter 4

Preliminary Experiment

As we describe in Chapter 3, using historical population information is a typical

approach to population prediction. In this section, we show that forecasts based

on this information alone are far from satisfactory, especially at gathering places.

4.1 Dataset

We used “Konzatsu-Tokei®” Data.*2 It consists of the estimated numbers of

people in square (250 m × 250 m, standardized in JIS X0410 [26]) grids of Japan

that were aggregated every hour from Sep. 2015 until Nov. 2018. We used the last

three months of data for testing and the remaining for training. We focused on the

1,500 most populated grids in Tokyo as of Aug. 2018. Those grids contain large

gathering places such as baseball stadiums and concert halls, and transportation

hubs such as main terminals and arterial roads.

*2 “Konzatsu-Tokei®” Data refers to people flows data collected by individual location data
sent from mobile phone under users’ consent, through Applications* provided by NTT
DOCOMO, INC. Those data is processed collectively and statistically in order to conceal
the private information. Original location data is GPS data (latitude, longitude) sent
in about every a minimum period of 5 minutes and does not include the information to
specify individual. * Some applications such as “docomo map navi” service (map navi /
local guide).

15



4.2 Prediction Method

Figure 2 Prediction errors for the 1,500 most populated grids in Tokyo. Grids

with higher WAPEs are shown in red and those with lower WAPEs are in blue.

“Konzatsu-Tokei®” ©ZENRIN DataCom CO., LTD.

4.2 Prediction Method

We trained an autoregressive (AR) model for each grid. It makes a prediction

X̂t for a time step t by linear regression using actual values over the last week

{Xt−24×7, · · · , Xt−1}. In the rest of this thesis, the time interval is 60 minutes.

4.3 Evaluation Metric

To make the results of different grids comparable, we use the weighted absolute

percentage error (WAPE):

WAPE =
1

N

N∑
t

|X̂t −Xt

X̃
| , (1)

where Xt and X̂t are respectively the actual and predicted values at a time step t,

N is the total number of time steps evaluated, and X̃ is the mean of Xt.

4.4 Prediction Results and Discussion

The prediction results are shown in Figure 2, where grids with higher WAPEs

(i.e., difficult to predict) are shown in red and those with lower WAPEs (i.e., easy
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4.4 Prediction Results and Discussion

to predict) are in blue. The grids with lower WAPEs are distributed around main

terminals such as Tokyo Station and Shinjuku Station. On the other hand, the

grids with higher WAPEs are distributed around large gathering places such as

Tokyo Dome and Jingu Baseball Stadium.

To further investigate the prediction error variance, we focused on the two grids

that contain Shinjuku Station and Tokyo Dome. Figure 3 shows the actual and

predicted time series of each of the two grids for the week from Sep. 16, 2018. A

recurrent pattern during commuting hours is observed at Shinjuku Station. The

AR model captured this pattern, resulting in high performance. However, at Tokyo

Dome, population surge irregularly occurs due to the events held there. The AR

model failed to adapt to these surges, resulting in poor performance. The causes

of the surges were baseball games held at Tokyo Dome on Sep. 16, 17, and 19.
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4.4 Prediction Results and Discussion
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Figure 3 Predicted and actual number of people at Shinjuku Station and Tokyo

Dome for a week from Sep. 16, 2018.

“Konzatsu-Tokei®” ©ZENRIN DataCom CO., LTD.
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Chapter 5

Proposed Method

As we showed in the previous section, historical population information alone is

insufficient to forecast population in the vicinity of large gathering places. This is

because the model is not aware of the days when events with many attendees (e.g.,

baseball games and concerts) are held.

A simple solution to this problem is to use the event schedules published by venue

managers or event organizers. However, the number of gathering places for which

official schedules are published is limited. To make predictions for various types

of places and events, it is desirable to be able to automatically collect information

about future events without relying on such schedules.

In this study, we focus on the fact that information about future events is posted

on microblogs. To be specific, we propose a method that utilizes heterogeneous data

consisting of microblog posts about events and historical population information on

gathering places (Section 5.1). There are various kinds of gathering places, which

we study in this thesis, from sports venues to sightseeing spots. This difference

sets up the various forecasting situation for each place. For example, population

at sports venues drastically influenced by sports games, which cause the surge of

thousands of people. In contrast, population at sightseeing spots changes gradually

due to moderate factors such as seasonal events. In addition to these differences,

these gathering places have various key properties regarding forecast: the amount

of available posts, the frequency of events, etc. To handle these different forecasting

situations, we propose two models: one is a tree-based model (Section 5.2) and the
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5.1 Microblog Posts as an Event Indicator

other is an NN-based model (Section 5.3).

5.1 Microblog Posts as an Event Indicator

As an indicator of future population at large gathering places, we utilize mi-

croblog posts that contain time-referring expressions and a place name. We con-

sider that a post which is useful for predicting population on a future date d at a

gathering place v should meet all of the following conditions:

• It contains a time-referring expression to d

• It contains the place name v

• It was created before d

To increase the coverage of event-related posts that meet these conditions, we

expanded the search query to cover variations of time-referring expressions and

place names. See Section 6.1.2 for detail.

When we have these posts, a naive approach to population forecasting at gath-

ering places is to train a regression model with the number of these matched posts

and the population on the corresponding date. However, this approach is far from

satisfactory since there is no clear correlation between the number of posts and

the population (Figure 4). We investigated the contents of matched posts and

concluded that this variance of population can be explained in two ways: (1) Posts

that do not relate to the actual population (e.g., announcement of a concert DVD’s

release) meet the conditions or (2) the event attracts less attention on microblogs

due to the attributes of its attendees, etc. Therefore, it naturally follows that we

have to focus on the contents of these matched posts to fully exploit them as an

event indicator.

However, the sets of posts collected for each target day have two difficult prop-

erties to handle: (1) the numbers of posts are different for each target day and (2)

the order of input posts are not related to the population on the target day. This is
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5.2 Forecasting with Gradient Boosting Regressor
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Figure 4 Number of matched posts and peak population at Tokyo Dome.

“Konzatsu-Tokei®” ©ZENRIN DataCom CO., LTD.

an instance of set-input problems. In the rest of this section, we explain the details

of these two models and how they address this set-input property.

5.2 Forecasting with Gradient Boosting Regressor

For a tree-based model, we adopt the gradient boosting regressor (GBR) [27].

The motivation for adopting GBR is as follows:

• It can handle data of mixed type. Thanks to this property, we can mix

the features from microblog posts and time series of historical population

without considering their difference in scale.

• It can be trained with small data. This is preferable since some gather-

ing places are mentioned in few microblog posts, as described later in Sec-

tion 6.1.2.
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5.2 Forecasting with Gradient Boosting Regressor
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Figure 5 Overview of our tree-based model.

Figure 5 shows the overview of our tree-based model. Since GBR alone cannot be

applied to set-input problems, we adopt the aggregated representation of posts. To

be specific, we concatenate the unique posts into a single document and use the

bag-of-words representation of it. The bag-of-words representation can handle any

number of posts and it is invariant to the permutation of posts. To capture the

short-term trend in the time series, we simply concatenate the bag-of-words vector

with hourly data on the number of people for 24 × n time steps. We further con-

catenate the bag-of-hours vector with them to leverage hour-referring expressions

that take various forms. The bag-of-hours vector is an analogy of the bag-of-words

vector. It is a 24-dimensional vector and its i-th dimension is the number of ex-

pressions referring to the hour i that appear in the posts set. We covered several

variations of hour-referring expressions. See Section 6.1.2 for detail. We then

feed the concatenated vector into a regression model. Our model makes a predic-

tion by regression for each hour, taking as input the concatenated bag-of-words,

time-series, and bag-of-hours vector, and outputting the number of people at the

corresponding hour.

For this method, we set the hyperparameters of GBR to the best values from the
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5.3 Forecasting with Set Transformer
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Figure 6 Overview of our NN-based model.

grid search results on the validation set.

5.3 Forecasting with Set Transformer

For an NN-based model, we adopt the Set Transformer (ST) [7]. The motivation

for adopting ST is as follows:

• It can process each post separately. In contrast to the bag-of-words approach

that transforms a set of posts into a single vector, this approach is expected

to be able to consider the complex interactions between posts in the set.

• We can design an encoder for each data source. Although the tree-based

model processes the different types of inputs equally, an NN-based model can

be customized for fusing the heterogeneous data efficiently. Recent studies

on traffic forecasting using NN-based data fusion technique have reported its

effectiveness [3, 12].

• For places mentioned in many posts, an NN-based model is expected to

perform better because of their large training data.

Figure 6 shows the overview of our NN-based model. ST is an attention-based

permutation-invariant module and can be applied to set-input problems. The
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5.3 Forecasting with Set Transformer

model consists of the posts encoder, the time-series encoder, and the time-

expressions encoder. In the posts encoder, ST encodes a set of post vectors into

a single vector. Here, each post is encoded with Transformer [6]. We prepend

a <CLS> token to each post, and use the Transformer’s embedding of the <CLS>

token as the post vector. In the time-series encoder, to capture the short-term

trend in the time series, the hourly-based data on the number of people for

24 × n time steps are fed into a dense layer. Here, n is a hyperparameter

that determines the number of days for which the historical time series is used.

In the time-expressions encoder, to explicitly focus on the valuable parts of

text, i.e., hour-referring expressions, the bag-of-hours vector is fed into a dense

layer. Following the existing data fusion approach to traffic forecasting [3], we

concatenated the embedded representations of the three data source (i.e., posts,

counts of time expressions, and time series) and fed them to the succeeding dense

layers. Figure 7 shows the overall network architecture of our NN-based model.

As we show later in Section 6.2.2, some of target places we study did not have

enough training samples to train the textual encoder (i.e., the number of posts for

each target day was small for those places). To reduce the forecast errors for such

places, we also tested the fine-tuned version of this model. Specifically, we first

trained a model with the concatenated dataset of all places, and then fine-tuned it

for each target place with its dataset.
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5.3 Forecasting with Set Transformer
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Figure 7 Architecture of our NN-based model. The input splits into three parts:

microblog posts (left), historical time series (center), and a time-expressions vector

(right).
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Chapter 6

Experiments

We examined the effectiveness of our models in experiments with real-world data.

Our experiments were designed to answer the following questions:

Q1 Can our models identify event days? (Section 6.3)

Q2 How accurately can our models forecast the population in different settings?

(Section 6.4)

Q3 What are the important features? (Section 6.5)

6.1 Preprocessing

Our dataset consisted of two heterogeneous parts: spatio-temporal population

data and microblog posting data. In what follows, we detail the preprocessing steps

to build the dataset.

6.1.1 Spatio-Temporal Population Data

For the spatio-temporal population data, we used “Konzatsu-Tokei®” Data,

which is described in Chapter 4, collected from Dec. 2014 to Nov. 2018. We

used the first two years for training (Dec. 2014 – Nov. 2016), the last one year

for testing (Dec. 2017 – Nov. 2018), and the remaining one year for developing

(Dec. 2016 – Nov. 2017). We chose 15 gathering places in Tokyo and Kanagawa,

Japan, from six different event categories (i.e., sports venues, concert halls, exhibi-
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6.1 Preprocessing

Table 1 Description of gathering places.

Type Place Capacity

Sports venue

Nissan Stadium 72,327

Tokyo Dome 55,000

Ajinomoto Stadium 50,000

Jingu Baseball Stadium 35,133

Yokohama Stadium 30,000

Chichibunomiya Rugby Stadium 24,871

Concert hall
Pacifico Yokohama 18,000

Yokohama Arena 17,000

Nippon Budokan 14,471

Exhibition Hall Tokyo Big Sight -

Park
Ueno Park -

Yoyogi Park -

Protest venue National Diet Building -

Sightseeing spot
Motohakone -

Hakone-Yumoto Station -

tion halls, parks, protest venues, and sightseeing spots) as shown in Table 1. The

sports venues and concert halls were the nine largest venues by capacity as of Dec.

2014. Similarly, the exhibition hall was the largest hall by floor space. The parks

were the main parks in Tokyo where events were regularly held. For each place, we

chose a grid that covers the place and considered the number of people in the grid

as the population around the place. Since parks were too wide to be covered by a

gird, we chose a grid that covers the area in the park where events were held. For

the famous sightseeing area, Hakone, we chose two grids that covers the main spot

(Motohakone) and the gateway station (Hakone-Yumoto Station), respectively.

There are cyclic trends in the time series data. They result from daily or weekly
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6.1 Preprocessing

Table 2 Variation of time-referring expressions.

Type Expression

Absolute reference 平成 Y 年M 月 D日，20Y 年M 月 D日

Relative reference
M/D，M 月 D日
来月 D日，今月 D日
明日，明後日

commuting and interfere with the population prediction. Thus, it is important

to remove these trends from the time-series data analysis [28]. We removed them

from both the input and target time series data by simply subtracting the mean

time series of non-event days. To obtain the mean time series, we performed

k-means clustering on the daily time series in the training data. Since most of

the training data consisted of non-event days, we can regard the center of the

largest-sized cluster as the representative time series of non-event days. Based

on the observations of clustering results with the number of clusters k changed,

we set k to three, which usually yielded clear clustering results of two event-day

clusters and one large non-event-day cluster. Since the time series of population

varies greatly between weekdays and holidays, this clustering-based detrending was

applied separately to weekdays and holidays.

6.1.2 Microblog Posting Data

For the microblog posting data, we used posts that were extracted from our Twit-

ter archive.*3 To expand the coverage of event-related posts meeting the matching

conditions (Section 5.1), we handled variations of both time-referring expressions

and place names. For time-referring expressions, as shown in Table 2, we assumed

*3 Our archive has been maintained since Mar. 2011 by continuously crawling with the Twit-
ter API. It consists of timelines from about 2.5 million public users. Our crawling started
with 30 famous Japanese users, and the set of users has been repeatedly extended by
following retweets and mentions in their timelines.
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6.1 Preprocessing

Table 3 Variation of place names.

Place Place name

Nissan Stadium 日産スタジアム，横浜国際総合競技場，
横浜国際競技場

Tokyo Dome 東京ドーム，ビッグエッグ
Ajinomoto Stadium 東京スタジアム，味の素スタジアム，味スタ
Jingu Baseball Stadium 明治神宮野球場，神宮球場，神宮スタジアム
Yokohama Stadium ハマスタ，浜スタ，横浜球場
Chichibunomiya Rugby Stadium 秩父宮ラグビー場
Pacifico Yokohama 横浜国際平和会議場，パシフィコ横浜
Yokohama Arena 横浜アリーナ，横アリ
Nippon Budokan 日本武道館
Tokyo Big Sight 東京国際展示場，ビッグサイト
Yoyogi Park 代々木公園
Ueno Park 上野恩賜公園
National Diet Building 国会議事堂
Motohakone 箱根
Hakone-Yumoto Station 箱根

that there were two patterns by which microblog users referred to a specific date:

absolute reference and relative reference. Absolute references (i.e., a full combina-

tion of a year, a month, and a day) can resolve themselves to specific dates. In

contrast, relative references (e.g., tomorrow) are resolved to specific dates along

with the dates when the posts including them were posted. Some relative refer-

ences that contained a month and a day but missed a year were resolved to the

nearest date of the month and the day. For place names, we created a dictionary of

synonyms that maps variants of place names to a formal name using Wikipedia’s

redirect data (Table 3). This dictionary contains places’ official names, popular

names, old names, and their abbreviations.
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6.1 Preprocessing

After eliminating duplicates (e.g., auto-generated posts by bots) from the

matched posts, we followed the preprocessing steps of hottoSNS-w2v.*4 Specifi-

cally, we removed URLs from these posts and normalized texts by the neologdn

package.*5 We then tokenized them by JUMAN.*6 We further removed Japanese

stop words*7 and tags.*8

The position of keywords (a time-referring expression and a place name) that

meet the matching conditions suggests valuable information for forecasting. How-

ever, that information is lost when only the original textual contents of posts are

simply fed to a prediction model without any annotation. In fact, some of the posts

we collected cannot be fully utilized without that information. For example, the

following post contains multiple place names and time-referring expressions and the

model cannot distinguish the target date corresponding to the target place from

other dates:

【速報】嵐が 5大ドームツアーを行うことが決定しました！【11月 6日のナゴヤドー
ムを皮切りに 12月 27日の東京ドーム公演まで全 17公演】

This post is useful to predict the population on Dec. 27 at Tokyo Dome, but

suggests no information about the population on Nov. 6 at Tokyo Dome. To

handle this kind of posts, the model should focus on the relative position of the

target place name and the target date. Thus, we mask the target place name

and the target date with special tokens (<TARGET_PLACE> and <TARGET_DATE>,

respectively) as follows:

【速報】嵐が 5大ドームツアーを行うことが決定しました！【11月 6日のナゴヤドー
ムを皮切りに<TARGET_DATE>の<TARGET_PLACE>公演まで全 17公演】

*4 https://github.com/hottolink/hottoSNS-w2v
*5 https://github.com/ikegami-yukino/neologdn
*6 http://nlp.ist.i.kyoto-u.ac.jp/?JUMAN
*7 https://github.com/apache/lucene-solr/blob/master/lucene/analysis/kuromoji/

src/resources/org/apache/lucene/analysis/ja/stopwords.txt
*8 https://github.com/apache/lucene-solr/blob/master/lucene/analysis/kuromoji/

src/resources/org/apache/lucene/analysis/ja/stoptags.txt
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6.2 Experimental Settings

By masking these keywords, we expect the model to identify useful posts.

To explicitly input the hour when an event will start, we created the bag-of-hours

vectors (Section 5.2) for each date. We covered Japanese and English expressions of

hours (e.g., 午後 6時, 18時, and PM 6) along with colon-separated notations (e.g.,

18:00). To stabilize training, we normalized each bag-of-hours vector by dividing

itself by its maximum element.

6.2 Experimental Settings

6.2.1 Baselines

We compared our method with two baselines: AR (same as in our preliminary

experiment in Chapter 4) and long short term memory (LSTM) [29]. For LSTM,

we followed the default hyperparameters of PyTorch’s implementation [30]. Note

that these baselines did not use the microblog posts. They predicted the pop-

ulation for the next 24 hours in an autoregressive manner (taking the previous

output as input). To capture the weekly patterns of the historical time series, the

hyperparameter n (Section 5.2) was set to n = 7, unless otherwise mentioned.

6.2.2 Evaluation Metrics

We evaluated the effectiveness of our models in two scenarios: a coarse-grained

one and a fine-grained one.

The coarse-grained evaluation determined whether a given model can identify

event days. As mentioned in Chapter 5, however, the official event schedule is not

always available for many gathering places. Thus, we performed k-means clustering

on the daily time series for each place and regarded the date as an event day if

the daily time series belonged to the largest cluster and a non-event day otherwise.

Here, the number of clusters k was set to k = 3, based on the observation on the

training data: When k was set to k = 3, there were typically two smaller clusters

that represented event days, and one large cluster that represented non-event days.
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6.2 Experimental Settings

Table 4 Number of event days in test data determined by the clustering and

number of posts in training data.

Place # of event days # of posts

Nissan Stadium 15 6,229

Tokyo Dome 131 82,629

Ajinomoto Stadium 29 15,842

Jingu Baseball Stadium 87 7,842

Yokohama Stadium 72 20,892

Chichibunomiya Rugby Stadium 114 2,489

Pacifico Yokohama 53 21,310

Yokohama Arena 106 52,115

Nippon Budokan 114 41,507

Tokyo Big Sight 80 79,237

Yoyogi Park 21 27,129

Ueno Park 196 3,500

National Diet Building 111 3,081

Motohakone 100 26,319

Hakone-Yumoto Station 203 26,319

“Konzatsu-Tokei®” ©ZENRIN DataCom CO., LTD.

Table 4 shows the threshold and the number of event days in the test data for each

place. Based on this criterion, we evaluated the results with precision and recall

as a binary classification problem.

The fine-grained evaluation assessed the degree of predicted population. For this

scenario, we used the weighted absolute percentage error (WAPE), same as the

preliminary experiment (Chapter 4).
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6.3 Q1: Event-or-Not Prediction

Table 5 Performance (precision and recall) of event-day detection.

AR LSTM GBR ST (fine-tuned)

Place Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Nissan Stadium 0.33 0.07 0.00 0.00 0.63 0.80 0.71 0.67

Tokyo Dome 0.87 0.20 0.80 0.18 0.86 0.77 0.78 0.69

Ajinomoto Stadium 0.00 0.00 1.00 0.03 1.00 0.48 0.87 0.45

Jingu Baseball Stadium 0.68 0.31 0.87 0.15 0.77 0.76 0.75 0.69

Yokohama Stadium 0.62 0.18 0.80 0.06 0.95 0.76 0.91 0.74

Chichibunomiya Rugby
Stadium

0.68 0.40 0.64 0.62 0.89 0.68 0.56 0.74

Pacifico Yokohama 0.50 0.26 0.30 0.06 0.67 0.58 0.66 0.47

Yokohama Arena 0.40 0.25 0.50 0.19 0.51 0.51 0.52 0.41

Nippon Budokan 0.44 0.25 0.44 0.14 0.55 0.49 0.55 0.48

Tokyo Big Sight 0.48 0.56 0.56 0.29 0.44 0.76 0.56 0.62

Yoyogi Park 0.00 0.00 0.00 0.00 0.59 0.48 0.44 0.57

Ueno Park 0.76 0.67 0.83 0.56 0.74 0.77 0.73 0.56

National Diet Building 0.75 0.71 0.72 0.76 0.80 0.67 0.81 0.66

Motohakone 0.48 0.24 0.00 0.00 0.75 0.33 0.57 0.31

Hakone-Yumoto Station 0.72 0.67 0.82 0.41 0.78 0.58 0.68 0.52

“Konzatsu-Tokei®” ©ZENRIN DataCom CO., LTD.

6.3 Q1: Event-or-Not Prediction

First, we report the results of the coarse-grained evaluation. Table 5 shows the

performance of event-day detection of each method, where the event days are con-

sidered to be positive examples. The recall values of the AR model and the LSTM

model were nearly zero for many places. This implies that they failed to predict

the presence of almost all of the events. As well, the precision and recall values of

the AR / LSTM model were zero for some places. These uncommon low values are
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6.3 Q1: Event-or-Not Prediction

Table 6 Performance (precision and recall) of non-event-day detection.

AR LSTM GBR ST (fine-tuned)

Place Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Nissan Stadium 0.96 0.99 0.96 1.00 0.99 0.98 0.99 0.99

Tokyo Dome 0.69 0.98 0.68 0.97 0.88 0.93 0.84 0.89

Ajinomoto Stadium 0.92 1.00 0.92 1.00 0.96 1.00 0.95 0.99

Jingu Baseball Stadium 0.82 0.95 0.79 0.99 0.92 0.93 0.91 0.93

Yokohama Stadium 0.83 0.97 0.81 1.00 0.94 0.99 0.94 0.98

Chichibunomiya Rugby
Stadium

0.77 0.91 0.83 0.84 0.87 0.96 0.86 0.74

Pacifico Yokohama 0.88 0.96 0.86 0.98 0.93 0.95 0.91 0.96

Yokohama Arena 0.73 0.84 0.74 0.92 0.80 0.80 0.78 0.85

Nippon Budokan 0.72 0.85 0.70 0.92 0.78 0.82 0.78 0.82

Tokyo Big Sight 0.87 0.83 0.82 0.94 0.92 0.72 0.89 0.86

Yoyogi Park 0.94 0.99 0.94 0.99 0.97 0.98 0.97 0.96

Ueno Park 0.66 0.75 0.63 0.86 0.71 0.68 0.60 0.76

National Diet Building 0.88 0.89 0.89 0.87 0.86 0.93 0.86 0.93

Motohakone 0.76 0.90 0.73 1.00 0.79 0.96 0.78 0.91

Hakone-Yumoto Station 0.62 0.67 0.55 0.89 0.60 0.80 0.54 0.69

“Konzatsu-Tokei®” ©ZENRIN DataCom CO., LTD.

partly explained by the small numbers of event days at these places (Table 4). Since

few events took place at these places, the input time series of the last week was

likely to be a sequence of days when few people gathered and it did not contain any

useful clues to forecast the time series on the event days. In contrast, our models

consistently achieved much higher performance. By utilizing microblog posts re-

ferring to future events as an additional clue, our models successfully distinguished

event days from non-event days.

We also report evaluation results focusing on non-event days (Table 6) to confirm
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that our models could predict the population on non-event days that composed

the majority of the test data. Table 6 shows the detection performance of non-

event days of each method, where the non-event days are considered to be positive

examples. Our models again had high performance for most places. This shows its

practicality.

Comparing the results for the different types of places, it can be seen that our

models achieved higher performance on baseball stadiums, namely Tokyo Dome,

Jingu Baseball Stadium, and Yokohama Stadium, while it had lower performance

on concert halls like Yokohama Arena and Nippon Budokan. A possible reason for

this difference is that different types of events are held at each place. For example,

baseball games are predominantly held at baseball stadiums. The microblog posts

that refer to the games typically contain characteristic words, such as the team

name whose home stadium is the target place. This led to our method having

higher performance at sports places. At concert halls, however, the posts that refer

to concerts contain various proper nouns, such as performer names. Consequently,

our models had poorer performance on concert halls. Later, we will present our

feature importance analysis, whose results support this explanation.

6.4 Q2: Population Prediction

Next, we report the fine-grained results. Figure 8 shows prediction performance

for population measured on all of the test data. Our models had lower errors than

the baselines did for all places. The improvement was larger for sports places than

concert halls, which is consistent with the event-or-not classification experiment

reported in Section 6.3.

To identify the situations in which our tree-based and NN-based models had

better performance respectively, we examined the relation between prediction er-

rors of these models and numbers of matched posts for the corresponding place

(Figure 9). Apart from the places mentioned in extremely few (less than 10,000)

posts, for both our tree-based (GBR) and NN-based (ST) models, the more posts
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Figure 8 Prediction error (WAPE) on the whole test data.
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Figure 9 Number of matched posts and prediction error (WAPE) on the whole

test data. Note that ST presented here was without fine-tuning.
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were collected, the lower the prediction errors became. An interesting observation

here is that our NN-based model showed comparable performance to our tree-based

model when more posts were available. Also, it had poorer performance than our

tree-based model did when the numbers of posts were relatively small (10,000 –

30,000). This result supports the initial motivation for introducing an NN-based

model (Section 5.3), and suggests that it is better to choose an NN-based model for

places mentioned in many posts. Similarly, this result also supports the motivation

for introducing a tree-based model (Section 5.2) that the better performance is

expected for places with small training data.

Comparing the results of ST without fine-tuning with those of ST with fine-

tuning, forecast errors at the places with relatively few (10,000 – 30,000) posts

(i.e., Ajinomoto Stadium and Yokohama Stadium) were reduced. At these sports

venues, the fine-tuned version of our model successfully leveraged the knowledge

from the training samples of similar sports games held at the other sports venues.

To further investigate the ability of our models, we conducted the same prediction

task under different settings.
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6.4.1 Event Day and Non-Event Day

Since most of the test data consisted of non-event days, the evaluation on the

whole test data leads to an underestimation of errors. Therefore, we evaluated the

prediction performance on event days (Figure 10) and non-event days (Figure 11)

separately. Although it was more challenging to predict the population during

event days, our models again outperformed the baseline models for all places. The

difference was smaller on non-event days. Nevertheless, our method performed the

best on all except one place.

6.4.2 Contribution of Each Data Source

To test if our approach of mixing two heterogeneous data sources was effective

in forecasting population, we designed ablation tests for each of the two proposed

models. Figure 12 shows the results for our tree-based model. We increased the

types of input in three stages: (1) BoW, (2) BoW + Texp, and (3) BoW + Texp

+ TS. Here, BoW is the bag-of-words representation of posts, Texp is a time-

expression vector of posts, and TS is the historical time series of population. For

most places, BoW + Texp + TS resulted in the lowest error. This demonstrated

that these data sources have a complementary role in reducing forecast errors.

Utilizing time expressions was particularly effective for sports venues such as Nissan

Stadium. This is probably because there were day and night games at sports venues,

for which time expressions suggested important clues. Figure 13 shows the results

for our NN-based model. Similarly, we increased the types of input in three stages:

(1) Text, (2) Text + Texp, and (3) Text + Texp + TS. Overall, the contribution

of each data source was similar to that of tree-based model’s results.

6.4.3 Forecast Horizon

To test if our model can predict population for longer forecast horizons, we

changed the amount of available information prior to prediction. Due to time

constraints, we conducted this experiment only for our tree-based model, which
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Figure 10 Prediction error (WAPE) during event days on the test data.
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Figure 11 Prediction error (WAPE) during non-event days on the test data.
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Figure 12 Prediction error (WAPE) on the test data (GBR).
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Figure 13 Prediction error (WAPE) on the test data (Set Transformer).
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Figure 14 Prediction error (WAPE) during event days on the test data with dif-

ferent forecast horizons.
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was much faster than our NN-based model. Figure 14 shows the results for different

forecast horizons. For the d-day ahead prediction, only the posts that were posted

d or more days before the target day were used. Similarly, only the historical time

series d or more days before the target day was used.

For all places, the longer forecast horizon resulted in a higher error. In particular,

the gap between one-day and two-day ahead prediction was the largest. This

suggests that the important posts that provide clues to future events tend to be

posted on the eve of the events. Another possibility is that the one-day-ahead

prediction setting was able to leverage the historical time series to identify the

increase in the number of people gathering at the place on the eve of the event

while the earlier prediction settings could not do so.

6.4.4 Number of Posts

To check if the number of posts has an impact on prediction performance, we

randomly sampled posts in the training and test data at a constant rate and trained

the model with the sampled data. Again, we conducted this experiment only for

our tree-based model. Figure 15 shows MAE with the reduced number of posts.

The experiment where 100% of the posts were used is the same as the experiment

shown in Figure 10. When 0% of the posts were used, only the historical time

series vector was fed to the model. Conversely, “Only posts” indicates when only

the bag-of-words vector was fed to the model.

It can be seen from the table that the more posts there were, the lower the errors

became. The errors were highest when the posts were not used at all, suggesting

that the microblog posts contain information that is useful for population pre-

diction. Another interesting observation is that the “100%” condition performed

better than the “Only posts” condition for most places. The results presented here

demonstrate that historical population information and event-related posts have

complementary roles in the future population prediction. Therefore, our idea of

using these two types of information is promising.
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Figure 15 Prediction error (WAPE) during event days on the test data with a

reduced number of posts.
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6.5 Q3: Feature Importance / Attention Weights

Finally, we report features useful for predicting future population around gath-

ering places.

6.5.1 GBR

Our model (GBR) is based on a decision tree, and thus, the importance of each

feature can be computed [31]. Thus, for each hour, we analyzed words in the

posts or slots of the historical time series that were significant for predicting the

population at that hour. Table 7 and Table 8 show the ten most important features

for five prediction time slots at Tokyo Dome and Nippon Budokan, respectively.

At Tokyo Dome, the word “Giants” (a professional baseball team whose home

stadium is Tokyo Dome) ranks high for most hours. This word characterizes the

baseball games, which compose the majority of events held there. The words “14”

and “18” are important for hours from 12 p.m. to 6 p.m. These words represent

the start time (e.g., “The game starts at 18:00...”) of baseball games or concerts.

At Nippon Budokan, the sports-related phrases “All Japan Championship” and

“tournament” rank high for the early hours. These sports tournaments usually start

in the morning. Thus, our model focuses on these words to identify the event type

and the start time. For the late hours, concert-related words, “concert”, “ticket”,

and “seat”, rank high. These words are used to identify concerts. However, specific

performer names (in analogy with the word “Giants” at Tokyo Dome) do not rank

high for the late hours, which means our model did not focus on such words for

concert halls. This is because there are numerous performers and it is rare that a

performer repeatedly holds concerts at the same place.

This analysis partly explains why the prediction errors at concert halls were

higher than those at baseball stadiums.
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Table 7 Ten most important features for five prediction time slots at Tokyo Dome

([h @ d day(s) ago] represents the population of the place d day(s) ago at h). Note

that these features are translated.

12 PM 2 PM 4 PM 6 PM 8 PM

14 14 14 Tokyo

Dome

18

[10 AM @ 1

day ago]

kyojin 18 18 Giants

[3 PM @ 1

day ago]

18 probable

pitcher

Giants Tokyo

Dome

[11 AM @ 1

day ago]

Giants Giants winning 14

day probable

pitcher

kyojin Paul Mc-

Cartney

ticket

hometown [11 AM @ 1

day ago]

[4 PM @ 1

day ago]

seat Paul Mc-

Cartney

[8 PM @ 1

day ago]

[4 PM @ 1

day ago]

Tokyo

Dome

tomorrow Pasela

kyojin [10 AM @ 1

day ago]

[10 AM @ 1

day ago]

14 [8 PM @ 2

days ago]

[11 AM @ 2

days ago]

[8 PM @ 1

day ago]

tomorrow exchange winning

schedule [2 PM @ 1

day ago]

[8 PM @ 1

day ago]

kinki Southern

All Stars

“Konzatsu-Tokei®” ©ZENRIN DataCom CO., LTD.
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Table 8 Ten most important features for five prediction time slots at Nippon

Budokan ([h @ d day(s) ago] represents the population of the place d day(s) ago

at h). Note that these features are translated.

12 PM 2 PM 4 PM 6 PM 8 PM

[12 PM @ 1

day ago]

JSDF

Marching

Festival

Seiko Mat-

suda

ticket [8 PM @ 1

day ago]

August 15 [1 PM @ 1

day ago]

[8 PM @ 3

days ago]

those who ticket

[1 PM @ 1

day ago]

[12 PM @ 1

day ago]

[5 PM @ 1

day ago]

seat [7 PM @ 6

days ago]

akb48 full of Wakayama [8 PM @ 1

day ago]

piece

All Japan

Champi-

onship

tournament [6 PM @ 1

day ago]

gate [8 PM @ 6

days ago]

[10 AM @ 1

day ago]

Taemin those who [8 PM @ 6

days ago]

seat

[7 AM @ 3

days ago]

[12 PM @ 3

days ago]

very alfee eric

tournament stage hall July 9 book

[11 AM @ 2

days ago]

Seiko Mat-

suda

[7 AM @ 4

days ago]

concert [8 AM @ 4

days ago]

[11 AM @ 1

day ago]

All Japan

Champi-

onship

concert [7 PM @ 1

day ago]

adjustment

“Konzatsu-Tokei®” ©ZENRIN DataCom CO., LTD.
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6.5 Q3: Feature Importance / Attention Weights

6.5.2 Set Transformer

Our NN-based model performs self-attention between words in an input post. We

can visualize attention weights for each word to help us understand the behavior

of the model. In the rest of this section, we present the analysis on the weighted

words for several types of places.

For sports venues, where sports games compose the majority of events held there,

we observed that the start time of the games was weighted for most games. The

below is a post from an actual input for the day when a baseball match was held at

Tokyo Dome. The underlined words were weighted in the self-attention mechanism.

<CLS> <TARGET_DATE> 木 18 時 巨人 対 阪神 <TARGET_PLACE> 指定 席 2 階
3 塁 2400 円 2 連 kyojin hanshin 巨人 阪神 阪神 タイガース giants tigers タイ
ガース 8 <UNK> 発売 中

Here, the start time of the baseball match was weighted. This result coincided

with the feature importance analysis of our tree-based model. Another interesting

observation is that the team name of visitors was weighted. This suggests that the

attendance of a game partly depended on the visitor teams.

For concert halls, where many noisy posts (e.g., the advertisement of concert

DVDs) were collected, our model weighted the words that suggested the post con-

taining them was not related to the actual population. The below is a post from

an actual input for the day when no event was held at Nippon Budokan.

<CLS> ... KING SUPER LIVE 2017 <UNK> BD <TARGET_DATE> 発売 3 5

<TARGET_PLACE> 開催 れた ライブ イベント 映像 化

Here, the words that announced the release of a concert’s Blu-ray disc were

weighted. This result supports the hypothesis that our NN-based model

distinguished useful posts from noisy posts.

For parks, where non-scheduled public gatherings sometimes happen, the words

related to them were weighted. The below is a post from an actual input for the

day of hanami (public gatherings of cherry blossom viewing) season at Ueno Park.

49



6.5 Q3: Feature Importance / Attention Weights

<CLS> <UNK> 予想 東京 埼玉 桜 開花 <UNK> 迎え ました <TARGET_PLACE> 来
週 後半 <UNK> <UNK> 堂 桜 <UNK> <TARGET_DATE> 頃 花見 楽しめ そう

Here, the words related to cherry blossoms were clearly weighted. This shows

that our model was powerful enough to automatically detect future non-scheduled

events in microblog streams.
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Chapter 7

Conclusion

In this study, we tackled the problem of forecasting population at gathering

places.

Firstly, we conducted a preliminary experiment, where the traditional autoregres-

sive model was trained and tested to forecast the city-wide population at Tokyo. Its

result showed that historical population information alone is insufficient for fore-

casting, as it cannot capture the surge of people caused by non-recurrent events

held at gathering places.

Secondly, to automatically find clues about future events at general gathering

places, we leveraged microblog posts mentioning the target places and the target

days as additional features along with historical population information for training

a population forecasting model. Since our proposed approach essentially includes

a set-input problem, which is quite different from typical instance-based problems,

we introduced aggregation mechanisms of microblog posts to our models. Using

the spatio-temporal population data of Tokyo and Kanagawa, Japan and our large-

scale Twitter archive, we empirically demonstrated that our approach was effective

in reducing forecast errors of the baseline models, which only utilized historical

population information. Our ablation study on these data sources provided evi-

dence that they have a complementary role in improving population forecasting at

general gathering places.

Finally, our analysis on feature importance and attention weights suggested that

our models focused on the understandable textual features of both event and non-
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event days to predict the time and scale of the incoming population surge. Also,

the analysis showed that our models successfully detected the future non-scheduled

public gatherings in the microblog streams and forecasted the population surge

with them. This wide range of forecasting targets is clearly different from existing

approaches of population forecasting at event venues for which event schedules are

available.
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Chapter 8

Future Work

Since our proposed approach does not require event schedules, we can easily

extend it to many gathering places, without any additional labor-intensive process.

The experiments showed that, however, our models had lower performance when

few posts referred to the future events. Thus, in the future, we will consider using

knowledge acquired from the places or events mentioned in many posts to improve

the prediction of population at gathering places mentioned in few posts. There is

still room for improvement of the matching conditions of posts (Section 5.1). Some

of the posts that meet these conditions may be noisy. For example, a post that says

“The DVD of our Tokyo Dome concert will be released tomorrow!” meets these

conditions, but it does not suggest any information about the population at Tokyo

Dome tomorrow. On the other hand, posts that do not meet these conditions can

also be useful. There are many event-related posts that do not contain both dates

and place names. We thus need to devise a sophisticated method of data fusion to

pick up important information from such noisy but valuable posts. We also plan

to make the forecasting results explainable. For example, if our forecasting model

can present an actual post that suggests a population surge at a gathering place

with the forecasted time series there, users can choose whether or not they get into

the congestion in a more confident way.
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