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1. Pathology and treatments of articular cartilage injury in dogs 

 Articular cartilage consists of chondrocytes and abundant extracellular matrix 

(ECM) such as glycosaminoglycan, proteoglycan, type II collagen, and hyaluronic acid.1 

These ECMs retain water in the tissue, which leads to the specific viscoelastic property 

of articular cartilage. Articular cartilage injury is common in both young and old dogs 

because they are often affected by joint diseases such as hip and elbow dysplasia, 

osteochondritis dissecans, and rupture of the cranial cruciate ligament.2–5 Damaged 

articular cartilage never regenerates spontaneously due to its avascular structure. Dogs 

suffering from cartilage injury show lameness caused by joint pain and swelling. The 

administration of non-steroidal anti-inflammatory drugs or analgesics is the most 

common treatment to manage these symptoms. The debridement of damaged cartilage 

to the depth of bleeding subchondral bone is one of the surgical treatments for focal 

cartilage defects. This allows stem cells in bone marrow to migrate to the defect site, but 

the defect is probably healed with fibrocartilage which is inferior to hyaline cartilage in 

lubricity and viscoelasticity. Therefore, regardless of these treatments, severely damaged 

articular cartilage never regenerates to functional cartilage resulting in secondary 

osteoarthritis and progressive joint degeneration.6 Hence, a novel therapeutic strategy 

should be required to provide radical treatment for articular cartilage injury in dogs. 
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Recently, regenerative therapy using mesenchymal stem cells (MSCs) can be a promising 

candidate for articular cartilage reconstruction.  

 

2. MSCs as a cell source for articular cartilage regeneration in dogs 

 MSCs are immature cells which can be isolated from adult somatic tissues such 

as bone marrow, fat tissue and synovium.7 In a living body, MSCs have significant roles 

in tissue repair and homeostasis. MSCs have high proliferative ability and multipotency 

for mesodermal lineages including bone and cartilage.8 Additionally, when compared 

with pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent 

stem cells (iPSCs), MSCs have less tumorgenicity and ethical problems. Lower cost for 

preparation can promote availability and versatility of MSCs in veterinary medicine. For 

these reasons, MSCs are expected to be the most useful cell source for cartilage 

regenerative therapy in dogs. 

 In the early stage of in vivo cartilage development, mesenchymal cells form cell 

aggregate called “mesenchymal condensation.” After that, cells differentiate into 

chondrocytes and rapidly proliferate to form hyaline cartilage tissue.9 During 

maturation, a portion of chondrocytes continues to produce hyaline cartilage-specific 

ECMs, which contributes to the formation of articular cartilage. Another portion of 
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chondrocytes separately undergoes hypertrophy and apoptosis, which finally leads to 

vascularization and replacement of cartilage by bone.9,10 Therefore, in vitro chondrogenic 

differentiation of MSCs has been performed in three-dimensional (3D) culture system to 

recapitulate mesenchymal condensation. In 1998, Johnstone et al. first reported that 

transforming growth factor-β1 (TGF-β1) was essential for in vitro cartilage generation 

from rabbit MSCs in a 3D pellet culture system.11 Although many studies have tried 

TGF-β1-induced chondrogenesis of canine MSCs for several decades, in vitro 

chondrogenic ability of canine MSCs have been very limited and generation of clinically 

applicable hyaline cartilage tissue consisting of abundant ECM such as proteoglycan and 

type II collagen is still challenging.12–16 Since chondrogenic differentiation of MSCs is 

modulated by a variety of growth and environmental factors. Thus, it is necessary to 

explore optimal factors to improve the chondrogenic differentiation of canine MSCs for 

articular cartilage regeneration. 

 

3. Factors affecting chondrogenesis of MSCs 

3.1. Fetal bovine serum (FBS) concentration in chondrogenic medium 

 FBS is widely used as a medium supplement to help cell growth and 

differentiation because it contains various growth factors, cytokines, and hormones. 
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Although FBS promotes proliferation and ECM production of chondrocytes, it has been 

reported that adding FBS to chondrogenic induction medium inhibits MSC 

chondrogenesis and increases apoptosis.17,18 Conversely, Diekman et al. reported that 

10% FBS promoted the chondrogenic differentiation of human adipose tissue-derived 

MSCs, while the opposite effect was observed on human BMMSCs.19 Therefore, the effect 

of FBS on chondrogenesis is expected to vary widely depending on cell types. To our 

knowledge, no study has investigated the impact of FBS in chondrogenic induction 

medium for canine MSCs, and it remains unclear at what concentration FBS should be 

added. 

 

3.2. Fibroblast growth factor-2 (FGF-2) preconditioning 

 FGF-2 is a member of the FGF family and plays an important role in 

embryogenesis, angiogenesis, wound healing and cell proliferation.20 FGF-2 has been 

reported to be necessary for self-renewing and maintenance of stemness in ESCs and 

iPSCs.20–22 It is also suggested that FGF-2 preserve the multipotency of MSCs.23,24 Many 

studies have demonstrated that FGF-2 treatment during expansion culture promotes 

cell proliferation and subsequent chondrogenesis of human MSCs.25–28 The similar effect 

on cell proliferation is observed as well as in canine bone marrow-derived MSCs 
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(BMMSCs).29 However, it is not well documented whether FGF-2 preconditioning affects 

the chondrogenic differentiation of canine MSCs. 

 

3.3 Other growth factors 

 All the process of in vivo cartilage development is known to be strictly controlled 

by many types of growth factors30, such as morphogenetic protein-2 (BMP-2) and growth 

differentiation factor-5 (GDF-5) which are the member of TGF-β superfamily. BMP-2 

activates the expression of SOX9, which is a master regulator essential for 

chondrogenesis and stimulates the proliferation and ECM production of 

chondroprogenitors.31,32 However, it also strongly stimulates hypertrophic 

differentiation and osteogenesis.33 GDF-5, also known as cartilage-derived 

morphogenetic protein-1, induces the formation of mesenchymal condensation. In later 

development stages, GDF-5 is reported to be expressed in the joint interzone and control 

joint formation.34 Insulin-like growth factor-1 (IGF-1) is a regulator of proliferation and 

differentiation in many types of cells and is known to promote cell division of 

chondrocytes at various stages.35 These three growth factors are also reported to improve 

in vitro human MSC chondrogenesis in combination with TGF-β1. 31,36–39 Since similar 

chondrogenic effects can be expected in canine MSCs, more effective chondrogenic 
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conditions can be established to generate ECM-rich hyaline cartilage tissue. 

 

3.4 Oxygen concentration 

 Generally, cells are cultured under normoxic condition (20%), however, it is 

known that physiological oxygen level is lower than 20%, even in lung or blood (up to 

14%).40 In particular, oxygen level in articular cartilage is much lower (1-6%) compared 

with other organs due to avascularity.6,41,42 Under hypoxic condition, hypoxia-inducible 

factor-1α (HIF-1α) transfers into the nucleus and activates the transcription of genes 

involved in cell proliferation, viability, and differentiation.43,44 It has been demonstrated 

that hypoxia induces upregulation of SOX9, which is a critical chondrogenic gene, 

through HIF-1α translocation into nucleus.45–48 Additionally, Amarilio et al. 

demonstrated that HIF-1α knockout during skeletogenesis induced cartilage 

deformation.49 Therefore, oxygen tension is considered to be one of the most crucial 

environmental factors to determine the chondrogenic fate of MSCs. Previous studies 

have demonstrated that exposure to hypoxia during expansion or differentiation phase 

results in enhancing chondrogenesis of human MSCs.50–54 Considering these reports, 

chondrogenic differentiation of canine MSCs is also expected to be improved by hypoxic 

conditions. 
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4. Strategy of regenerative therapy for articular cartilage 

To date, regenerative approaches for canine articular cartilage injury have been 

exclusively focused on intra-articular injection of MSCs. Many researchers have 

performed intra-articular injection of MSCs on experimentally-induced osteoarthritis 

model or dogs suffering from spontaneous osteoarthritis. However, some studies have 

shown no difference between experimental and control joint,55,56 and others have proved 

only short-term effects such as delayed progression of osteoarthritis, relieved lameness, 

and pain.57–63 One of the reasons for few effects is probably that injected cells do not 

engraft in injured cartilage, but in synovium and meniscus.57,59,64 Therefore, intra-

articular injection of MSCs seems to be a symptomatic treatment and thus other radical 

approaches are necessary. 

Tissue engineering approach for tissue regeneration has made rapid progress 

from the 1990s.65 In 1997, Cao et al. have suggested that appropriate combination of 

cells, growth factors, and scaffolds can possibly provide a variety of 3D tissue or organs 

for transplantation.66 Thereafter, many researchers have focused on the development of 

a novel tissue engineering technology to fabricate large and functional 3D tissue in vitro. 

The general approach for tissue engineering is seeding cells onto 3D shaped scaffolds, 

such as natural or artificially synthetic polymers, ceramics, and decellularized matrix. 
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In addition, bioprinting has emerged as a useful scaffold-based strategy for fabrication 

of 3D tissue with more precisely arranged structure.67–70 In particular, many researchers 

have focused on cartilage tissue engineering because the 3D environment is very 

important for chondrogenesis as mentioned above. A number of studies have proved the 

effectiveness of cartilage tissue using scaffolds on human chondral defects.71 However, 

the scaffolds used for 3D tissue construction contain foreign materials which have been 

reported to have a possibility to induce foreign body reaction after implantation.72–77 To 

solve this problem, it is expected to develop a novel tissue engineering technology which 

can fabricate 3D tissue constructs without foreign materials. 

Recently, a bio 3D printer, which enables to fabricate 3D tissue constructs 

without any artificial scaffolds by stabbing spheroids with fine needle arrays according 

to pre-designed form, has been developed.78 After spheroid fusion is achieved, the 

construct can be pulled out from the needles as a self-sustained scaffold-free tissue in 

the desired form. This platform technology has been already applied for regeneration of 

blood vessels, liver, trachea, peripheral nerve and urinary bladder.79–84 Thus, it is 

expected that this technology is applicable to ex vivo cartilage fabrication for canine 

articular cartilage regeneration. 
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5. Purpose of the study 

 From mentioned above, I set a goal of this study to establish a culture method 

for inducing hyaline cartilage from canine MSCs and fabricate 3D hyaline cartilage 

constructs with a novel bio 3D printer. In Chapter 1, I explored the optimal medium 

condition for chondrogenic differentiation of canine MSCs. Firstly, I investigated the 

effect of FBS concentration in chondrogenic induction medium and FGF-2 

preconditioning on canine MSC chondrogenesis. Next, I explored the optimal growth 

factor that further enhances chondrogenesis of canine MSCs. In Chapter 2, I investigated 

how hypoxic condition regulates the hyaline cartilage differentiation of canine MSCs. 

Lastly, in Chapter 3, I tried to fabricate hyaline cartilage constructs using canine MSC 

spheroids using a bio 3D printer and evaluate its effects on cartilage regeneration in a 

canine chondral defect model. 
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Introduction 

Articular cartilage consists of water, chondrocytes and abundant extracellular 

matrix (ECM) including proteoglycan, type II collagen and hyaluronic acid.85 Once 

articular cartilage is severely damaged, it has little self-repair or regenerative capacity 

due to its avascular structure, causing persistent joint pain. Autologous chondrocyte 

transplantation is one solution for cartilage defects in humans.86 However, there are 

some complications with this treatment, including donor site morbidity and hypertrophy 

of the transplant.87,88 Moreover, harvested chondrocytes have limited proliferation 

ability and undergo dedifferentiation which results in the loss of their original phenotype, 

transforming into fibrocartilage.89–91 Therefore, a new cell source is required to 

regenerate articular cartilage. 

 Mesenchymal stem cells (MSCs) are easily isolated from adult somatic tissues 

such as bone marrow and fat with minimally invasive procedures and low cost. MSCs 

show high proliferative ability and can differentiate into several mesenchymal lineages 

including adipocytes, osteoblasts, and chondrocytes. Therefore, MSCs are expected to be 

a clinically useful cell source for cartilage regeneration in veterinary medicine. Many 

researchers have tried to isolate and chondrogenically differentiate canine MSCs. 

Unfortunately, most reports have shown that canine MSCs have a poor chondrogenic 
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capacity and produce only small amounts of glycosaminoglycan in a pellet culture.12–16 

Thus, further studies should be conducted to verify the critical factors for the optimal 

chondrogenic condition of canine MSCs.  

 Fetal bovine serum (FBS) is widely used as a medium supplement to aid cell 

proliferation and differentiation because it contains several types of growth factors, 

including both cytokines and hormones. Previous evidence suggests that adding FBS to 

chondrogenic induction medium inhibits MSC chondrogenesis and increases 

apoptosis.17,18 Conversely, Diekman et al. reported that 10% FBS promoted the 

chondrogenic differentiation of human adipose tissue-derived MSCs, whilst the opposite 

was observed for human bone marrow MSCs (BMMSCs).19 To our knowledge, no study 

has investigated the impact of FBS in chondrogenic induction medium for canine MSCs, 

and it remains unclear at what concentration FBS should be added. 

Fibroblast growth factor-2 (FGF-2), also known as basic FGF, is a member of the 

FGF family and is a strong mitogen for several cell types. FGF-2 also plays an important 

role in embryogenesis, cell differentiation, and maintenance of stemness in pluripotent 

stem cells.20 Previous studies have indicated that FGF-2 promoted the proliferation of 

human MSCs in monolayer culture and subsequent chondrogenic differentiation.25–28 

However, it is not understood if FGF-2 preconditioning affects the chondrogenic 
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differentiation of canine MSCs. 

 Novel canine MSCs, known as bone marrow peri-adipocyte cells (BM-PACs), 

derived from cells adhering to adipocytes in bone marrow have previously developed.92 

Since BM-PACs showed superior proliferation and differentiation ability compared to 

that of BMMSCs derived from bone marrow mononuclear cells, the higher chondrogenic 

potential could be expected under optimal conditions. In this study, we aimed to establish 

the optimal conditions for canine BM-PAC chondrogenesis for two approaches: FGF-2 

preconditioning and FBS concentration in a chondrogenic medium. First, canine BM-

PACs were expanded with or without FGF-2 and their proliferation ability and 

undifferentiated state were evaluated. Subsequently, these cells were cultured in 

chondrogenic medium containing 0%, 1%, and 10% FBS to determine the effect of FBS 

concentration on chondrogenic differentiation of canine MSCs. 
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Materials & Methods 

Animals 

Six healthy young beagles, (four male and two female), were used in this study 

to obtain bone marrow. Bone marrow samples were harvested under general anesthesia. 

Anesthesia was induced with propofol and maintained with isoflurane (2.0%) in oxygen. 

All animal experiments were approved by the Animal Care Committee of the Graduate 

School of Agricultural and Life Sciences at the University of Tokyo (the approval number 

P15-30). 

 

Culture of canine BM-PACs 

Canine BM-PACs were isolated according to our previously published method.92 

Briefly, bone marrow was aspirated from the proximal humerus using a sterilized 15-

gauge bone marrow biopsy needle (Angiotech Pharmaceuticals, Inc., Vancouver, Canada). 

After density gradient centrifugation with Ficoll-Paque (GE Healthcare, Little Chalfont, 

UK), the top adipose layer containing mature adipocytes was collected and washed with 

Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA, USA), 

supplemented with 10% fetal bovine serum (FBS; Lot No. 1526235, Gibco/Invitrogen) 

and 1% penicillin-streptomycin/amphotericin-B (Wako). Following a second wash, the 
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adipose layer was placed in 25 cm2 flasks filled with DMEM supplemented with 20% 

FBS and 1% antibiotics. Cells were then subjected to ceiling culture at 37 °C in a 

humidified atmosphere containing 5% CO2 for seven days. If cells did not grow to 80% 

confluence within 7 days, the flask was inverted and the culture was maintained with 

medium containing 10% FBS.  

 

Cell proliferation assay 

 Passage 0 BM-PACs were plated at a density of 1 × 104 cells/cm2 and expanded 

in growth medium supplemented with or without 10 ng/mL of human recombinant FGF-

2 (Peprotech, Rocky Hill, NJ). The confluent cells were detached with 0.25% trypsin/1 

mM EDTA solution (Wako) and the number of viable cells was counted using a trypan 

blue exclusion test. Doubling time (DT) was calculated according to the following 

formula: DT = T * log2 / (log Nt – log N0), where T is the incubation period (days), and 

N0 and Nt indicate the initial seeding cell number and final harvesting cell number, 

respectively. 

 

Chondrogenic induction in spheroid culture 

 Cells expanded with or without FGF-2 were plated in low-adhesive 96-multiwell 
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plates (Sumitomo Bakelite, Tokyo) to achieve spheroid formation at a density of 3 × 104 

cells per well. For chondrogenic differentiation, spheroids were cultured in chondrogenic 

induction medium consisting of DMEM, 4.5 mg/mL D-(+)-glucose (Sigma, St. Louis, MO, 

USA), 1% ITS liquid media supplement (Sigma), 1% linoleic acid-albumin from bovine 

serum albumin (Sigma), 50 μg/mL ascorbic acid-2-phosphate (Sigma), 0.1 μM 

dexamethasone (Sigma), 40 μg/mL L-proline (Peptide Institute Inc., Osaka, Japan) and 

10 ng/mL recombinant human transforming growth factor-β1 (Peprotech). To evaluate 

the effect of serum on chondrogenesis, 0%, 1% or 10% FBS was added to chondrogenic 

induction medium. Chondrogenic induction was maintained for 14 days at 37 °C under 

5% CO2, and the medium was changed twice a week. The diameter of two spheroids was 

measured in each individual case by repeated microscopic observations at day 7 and 14, 

and their mean diameter was calculated. An experimental scheme is shown in Fig. 1-1. 

 

DNA and glycosaminoglycan contents 

 After 7 and 14 days of chondrogenic induction, four spheroids in each group were 

digested with 100 μg/mL papain at 65 ºC for 4 hours. Total spheroid DNA content was 

determined with Hoechst 33258 dye (Dojindo Molecular Technologies, Kumamoto, 

Japan). Fluorescence intensity was measured using the multilabel counter ARVO MX 
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(Perkin Elmer, Waltham, MA) at an excitation wavelength of 355 nm and an emission of 

460 nm. A standard curve was generated by serial dilution of calf thymus DNA (Sigma). 

Total spheroid glycosaminoglycan (GAG) was then quantified using a Blyscan Kit 

(Biocolor, Westbury, NY) according to the manufacturer’s instructions. The optical 

density at 630 nm was read using a microplate reader (BioRad, Hercules, CA) and total 

GAG content was normalized to total DNA content. Each experiment was done in 

duplicate. 

 

Histological staining and immunohistochemistry 

 After 14 days of chondrogenic induction, spheroids were fixed with 10% formalin 

neutral buffer solution (Wako) and embedded in paraffin. Specimens were cut into 4-μm 

sections. To detect proteoglycan, sections were stained with Safranin O/Fast Green. 

Immunohistochemistry was done to assess the expression of collagen type II, I and X. 

Antigen retrieval was carried out with 50 μg/mL proteinase K (Promega, Madison, WI) 

for 10 min at room temperature. For collagen type II, the additional antigen retrieval 

step was done using 25 mg/mL hyaluronidase (Sigma) for 2 hours at 37 °C. The sections 

were then incubated with 0.3% hydrogen peroxide in methanol for 30 min to inhibit 

endogenous peroxidase activity and washed with Tris-buffered saline with 0.1% Tween-
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20 (TBS-T). After blocking with TBS-T containing 10% normal goat serum (NGS, Sigma) 

for 30 min at room temperature, the sections were incubated with rabbit anti-bovine type 

II collagen antibody (1:200, LB-1297; LSL, Tokyo, Japan), mouse anti-bovine type I 

collagen antibody (1:1000, ab6308; Abcam, Cambridge, UK) and mouse anti-porcine type 

X collagen antibody (1:1000, C7974; Sigma) at 4 °C overnight. Slides were washed with 

TBS-T three times for 5 min each and incubated with HRP labeled polymer (K4001 and 

K4003, Dako, Tokyo) for 1 hour at room temperature. Finally, sections were washed with 

TBS-T three times for 5 min each and DAB substrate (Dako) was applied. All slides were 

counterstained with hematoxylin. 

 

Quantitative real-time RT-PCR 

 Total RNA was extracted with TRI Reagent (Cosmo Bio, Tokyo, Japan) from cells 

treated with or without FGF-2 for two days, and spheroids after 14 days of chondrogenic 

induction. Complementary DNA was synthesized with ReverTra Ace qPCR RT Master 

Mix with gDNA Remover (Toyobo, Osaka, Japan). Real-time quantitative PCR was done 

using real-time monitoring of SYBR Green dye (Thunderbird SYBR qPCR Mix, Toyobo) 

fluorescence increase on the Step One Plus Real-Time PCR system (Applied Biosystems, 

Foster City, CA). The mRNA expression of the chondrogenic marker gene (SOX9) and 
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pluripotent marker genes (SOX2 and Oct4) was evaluated in cells treated with or without 

FGF-2. The expression levels of mRNA were normalized to the level of glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) expression. The mRNA expression of SOX9, 

ACAN, COL2, COL1, COL10, and HPRT1 was evaluated in chondrogenic spheroids. 

HPRT1 was used as an endogenous control gene. The primers used for PCR are listed in 

Table 1-1. The PCR cycling conditions used were 1 cycle at 95 °C for 10 min, 40 cycles at 

95 °C for 15 s and 60 °C for 1 min. Each experiment was done in triplicate. 

 

Statistical analysis 

All data were expressed as mean ± standard deviation. Comparisons were made 

using the Student’s t-test between two unpaired groups. One-way analysis of variance 

followed by Tukey’s multiple comparisons test was used to detect any statistical 

differences between multiple unpaired groups. Statistical significance was accepted at p 

< 0.05. All statistical analyses were performed with EZR (Saitama Medical Center, Jichi 

Medical University, Saitama, Japan), which is a graphical user interface for R (The R 

Foundation for Statistical Computing, Vienna, Austria).93 
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Results 

The effect of FGF-2 on BM-PACs in monolayer expansion 

 BM-PACs expanded with FGF-2 for two days became smaller and more spindle-

shaped than those expanded without FGF-2 (Fig. 1-2A). Additionally, BM-PACs 

expanded with FGF-2 reached confluent in a shorter time than cells expanded without 

FGF-2. The doubling time of BM-PACs expanded with FGF-2 was significantly shorter 

(p < 0.0001) than that of cells expanded without FGF-2 (Fig. 1-2B). The expression of 

chondrogenic and immature markers was compared after two days of FGF-2 stimulation. 

There was no significant difference in the mRNA expression of SOX9 and Oct4 between 

the two groups (Fig. 1-2C). However, significantly higher expression of SOX2 mRNA was 

observed in BM-PACs expanded with FGF-2. (p < 0.05) 

 

Spheroid diameter  

 After 7 and 14 days of chondrogenic induction, there was no significant 

difference in the diameter of spheroids amongst the FGF-2(-) groups (Fig. 1-3). However, 

the diameter of spheroids in FGF-2(+) groups became larger depending on the FBS 

concentration in the chondrogenic induction medium. Additionally, a higher 

concentration of FBS increased the diameter of spheroids in FGF-2(+) groups from day 
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7 to day 14. 

 

Biochemical analysis 

The DNA content of spheroids in FGF-2(-) groups was stable throughout 

chondrogenic differentiation regardless of FBS concentration. In contrast, DNA content 

in FGF-2(+) groups increased in an FBS concentration-dependent manner (Fig. 1-4A). 

Spheroids in FGF-2(+) groups showed significantly higher GAG deposition (p < 0.05) 

than those in FGF-2(-) groups after 7 and 14 days of chondrogenic differentiation (Fig. 

1-4B). To evaluate the efficiency of GAG production, total GAG content was normalized 

to total DNA content (GAG/DNA). Lower FBS concentration in chondrogenic medium 

tended to increase GAG/DNA ratio and the highest mean value was observed in the FGF-

2(+)-0% FBS group (Fig. 1-4C). 

 

Histology 

 Safranin O staining was done to evaluate the deposition of proteoglycan in 

chondrogenic spheroids (Fig. 1-5). In FGF-2(-) groups, spheroids showed stronger 

staining when cultured in lower concentrations of FBS. However, all spheroids in FGF-

2(+) groups were strongly stained with Safranin O, even when cultured with 10% FBS. 
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The central region of spheroids showed stronger staining compared to the peripheral 

region. Higher concentrations of FBS formed a thicker Safranin O-negative layer 

consisting of fibroblast-like cells on the outer surface of spheroids. 

Immunohistochemistry results after 14 days of chondrogenic induction are shown in Fig. 

1-6. The expression of type II collagen was detected in all culture conditions and there 

was a tendency toward greater type II collagen expression in spheroids cultured with 

lower concentrations of FBS. Additionally, the central region of spheroids tended to 

express more type II collagen compared to the peripheral region. In FGF-2(-) groups, 

type I collagen, a marker expressed by fibrocartilage, was homogenously detected over 

the entire spheroid. In FGF-2(+) groups, type I collagen distribution was significant in 

the middle to the outer surface of the spheroid, and type I collagen accumulation was not 

apparent in the center of spheroids. The expression of type X collagen, a marker for 

hypertrophic cartilage, was not observed for any conditions.  

 

Quantitative RT-PCR 

 Spheroids cultured in chondrogenic induction medium containing 0, 1 or 10% 

FBS were collected at day 14 to do quantitative RT-PCR. These results are shown in Fig. 

1-7. The expression of the chondrogenic genes, SOX9, ACAN and COL2, was significantly 
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upregulated in the FGF-2(+)-0% FBS group (p < 0.05). Lower FBS concentration in 

chondrogenic medium tended to increase the expression of chondrogenic genes. There 

were no remarkable changes in the expression of COL1 and COL10 amongst the groups. 
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Discussion 

In this study, BM-PACs became smaller and proliferated rapidly when treated 

with FGF-2 during monolayer expansion. This result is consistent with those in a 

previous study, which showed that FGF-2 enhanced the mitotic potential of human and 

canine BMMSCs.28,29 Following treatment with FGF-2, there was no change in the 

expression of chondrogenic genes, suggesting that the stimulation with FGF-2 did not 

lead to cell differentiation into a chondrogenic lineage at this point. Additionally, I 

showed that the mRNA expression of SOX2 was significantly higher in cells treated with 

FGF-2. SOX2 is one of the transcription factors essential for the maintenance of the 

undifferentiated state of embryonic stem cells and induced pluripotent stem cells. Yoon 

et al. demonstrated that SOX2 was also important for the maintenance of proliferation 

and multipotency in human BMMSCs.94 Moreover, it has been reported that FGF-2 

upregulated the expression of SOX2 in human apical papilla-derived MSCs, resulting in 

enhanced proliferation ability and differentiation potential.95 However, the expression of 

Oct4 was not changed by treatment with FGF-2. SOX2 and Oct4 are generally thought 

to work together to sustain an undifferentiated state. However, a previous report has 

indicated that Oct4 is not required for self-renewal and multipotency in mouse 

BMMSCs.96 As mentioned above, it is suggested that FGF-2 stimulation plays an 
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important role in SOX2-dependent enhancement of canine BM-PAC proliferation while 

maintaining an undifferentiated state.  

Higher concentrations of FBS in the chondrogenic medium significantly 

decreased GAG/DNA ratio in FGF-2(-) groups. FBS is known to contain several growth 

factors including transforming growth factor beta (TGF-β), epidermal growth factor 

(EGF) and vascular endothelial growth factor (VEGF).97 Amongst these, EGF and VEGF 

have been reported to inhibit chondrogenesis of MSCs.98,99 Based on these reports, it is 

assumed that these FBS growth factors had an inhibitory effect on chondrogenic 

differentiation of canine BM-PACs in this study. Although FBS has lot-to-lot variations, 

there is a possibility that some lots of FBS contain a small amount of growth factors 

which inhibit chondrogenesis. Therefore, FBS should not be added to the induction 

medium in chondrogenesis of canine MSCs. In contrast, the GAG/DNA ratio of spheroids 

in FGF-2(+) groups was not significantly decreased by FBS addition. Therefore, I 

hypothesize that FGF-2 preconditioning makes spheroids impervious to the inhibitory 

effect of FBS during chondrogenic differentiation. Moreover, spheroids in FGF-2(+) 

groups became larger and contained more GAG and DNA than those in FGF-2(-) groups. 

These findings indicate that cells treated with FGF-2 proliferated in spheroids while 

maintaining chondrogenic capacity, resulting in increased spheroid size.  
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Consistent with biochemical analysis, spheroids in FGF-2(-) groups had 

stronger Safranin O staining at lower concentrations of FBS, and all spheroids had 

strong Safranin O staining in FGF-2(+) groups. However, fibroblast-like cells were 

observed on the outer surface of spheroids and a thicker Safranin O-negative layer was 

formed in an FBS concentration-dependent manner. Generally, chondrogenically induced 

MSC pellets form a superficial cell layer consisting of fibroblast-like cells expressing type 

I collagen, even under the absence of FBS.100 Similarly, the fibroblastic layer which 

showed slight type I collagen expression and no cartilage matrix was also observed in 

0% FBS groups. It is thought that cells on the outer surface of spheroids are prevented 

from differentiating into chondrocytes due to direct exposure to inhibitory factors in FBS. 

Histological staining showed that FGF-2(+) groups produced more proteoglycan and less 

type I collagen compared with that in FGF-2(-) groups. A previous study on human 

BMMSCs also demonstrated that FGF-2 preconditioning enhanced GAG production and 

suppressed the expression of type I collagen.101 Ito et al. also reported that FGF-2 

preconditioning inactivated both insulin-like growth factor-I and TGF-β pathways that 

were spontaneously upregulated by long-term culture, and enhanced the chondrogenic 

potential of human MSCs.102 Although the underlying mechanism remains unknown, 

FGF-2 treatment is considered useful for the production of hyaline-like cartilage tissue 
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using MSCs. Consistent with the previous studies,103–105 the central region of spheroids 

tended to express more cartilaginous ECMs. This is probably because spheroids have the 

gradient of oxygen concentration in their microenvironment and cells in the center are 

exposed to a hypoxic condition which enhances chondrogenesis.54,106–108 Immunostaining 

detected no expression of type X collagen. Hypertrophic chondrocytes are known to 

contribute to the formation of bone tissue in vitro and in vivo.109 Therefore, avoiding the 

hypertrophy of cartilage tissue is an important issue for cartilage regeneration. However, 

the expression of COL10 mRNA was observed in all groups. Sekiya et al. have shown 

that the mRNA expression of COL10 is present before the findings of significant 

hypertrophy and increased over time during in vitro chondrogenic differentiation of 

human MSCs.110 Since there is a possibility that immunostaining failed to detect slight 

expression of type X collagen, further study will be needed to observe the long-term 

outcome. Finally, we did quantitative real-time PCR after chondrogenic induction for 14 

days. The mRNA expression of chondrogenic genes was significantly upregulated in the 

FGF-2(+)-0% FBS group. These results are consistent with biochemical analysis and 

histological evaluation. In summary, the combination of FGF-2 preconditioning and 

serum-free chondrogenic induction medium is an efficient method for chondrogenesis in 

canine BM-PACs. 
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To our knowledge, this is the first report that has allowed efficient chondrogenic 

differentiation of canine MSCs and the generation of ECM-rich cartilage tissue with 

strong Safranin O staining. Reich et al. reported the chondrogenic induction of canine 

adipose-derived MSCs using a chondrogenic medium containing 1% FBS, however down-

regulation of SOX9 expression and poor GAG deposition was observed.111 In the context 

of our results, this was probably due to the addition of FBS into the chondrogenic 

medium. Further, it was reported that chondrogenesis of canine fat, synovium, and bone 

marrow-derived MSCs was unsuccessful even after induction with serum-free 

chondrogenic medium.12,16 It is thought that FGF-2 preconditioning may improve 

chondrogenesis of these types of canine MSCs. Even though the results of our study may 

be applicable only to BM-PACs, further studies should be designed to elucidate whether 

FBS and FGF-2 affect the chondrogenic differentiation of canine MSCs derived from 

other tissues. Nevertheless, BM-PACs could be a promising cell source for canine 

cartilage regenerative medicine. 

 In conclusion, FGF-2 enhanced the proliferative ability and mRNA expression 

of SOX2 in canine BM-PACs. During chondrogenic induction, cells preconditioned with 

FGF-2 could produce abundant cartilage matrix with low type I collagen expression. 

Additionally, higher FBS concentrations inhibited chondrogenic differentiation, 
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particularly at the outer surface of spheroids. The combination of FGF-2 preconditioning 

and serum-free chondrogenic induction medium efficiently promoted chondrogenesis of 

canine BM-PACs. These results will be useful for the abundant production of high-

quality cartilage tissue from canine MSCs and contribute to the development of research 

for cartilage injury or joint diseases in dogs. 
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Table 1-1. Primers used for quantitative real-time PCR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genes  Sequence (5'-3') 

SOX9 
F AAGCTCTGGAGGCTGCTGAA 

R ACTTGTAATCCGGGTGGTCTTT 

Oct4 
F GCAGTGACTATTCGCAACGA 

R ATTTGAATGCATGGGAGAGC 

SOX2 
F AGTCTCCAAGCGACGAAAAA 

R GCAAGAAGCCTCTCCTTGAA 

ACAN 
F CCTACGATGTCTACTGCTATGTGG 

R CAGGGTGGCGTTATGAGATTC 

COL2 
F CCCGAACCCACAAACAACA 

R AGCCATTCAGTGCAGAGCC 

COL1 
F GTAGACACCACCCTCAAGAGC 

R TTCCAGTCGGAGTGGCACATC 

COL10 
F TTCCAGGACAGCCAGGCATCA 

R TTCCCAGTGCCTTCTGGTCC 

GAPDH 
F TGACACCCACTCTTCCACCTTC 

R CGGTTGCTGTAGCCAAATTCA 

HPRT1 
F GCCTTCTGCAGGAGAACCTC 

R ATCACTAATCACGACGCTGGG 
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FIG. 1-1. Schematic representation of the experiment. P0 BM-PACs were passaged and 

expanded with or without FGF-2 in monolayer culture. Subsequently, cells were 

subjected to suspension culture to form spheroids in chondrogenic differentiation media 

containing 0, 1, or 10% FBS. BM-PACs, bone marrow peri-adipocyte cells; FGF-2, 

fibroblast growth factor-2; FBS, fetal bovine serum. 
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FIG. 1-2. The effect of FGF-2 on BM-PACs in monolayer expansion. (A) Cell morphology 

after two days of FGF-2 stimulation was observed using phase microscopy. Cells treated 

with FGF-2 displayed smaller and spindle-shaped morphology. Scale bars indicate 200 

μm. (B) Population doubling times were calculated when cells were confluent. 

Significantly shorter doubling time was observed in the FGF-2(+) group (**p < 0.0001). 

(C) The mRNA expression of chondrogenic and immature genes was assessed by 

quantitative PCR at day 2. The expression of SOX2 mRNA in the FGF-2(+) group was 

significantly higher than that in FGF-2(-) group (*p < 0.05). BM-PACs, bone marrow 

peri-adipocyte cells; FGF-2, fibroblast growth factor-2; NS, no significance. 
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FIG. 1-3. The diameter of spheroids after 7 and 14 days of chondrogenic differentiation. 

No significant difference was recorded for spheroid diameter amongst FGF-2(-) groups. 

Spheroids in FGF-2(+) groups became larger depending upon FBS concentration. All 

groups not sharing common letters are significantly different (p < 0.05). FGF-2, 

fibroblast growth factor-2; FBS, fetal bovine serum. 
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FIG. 1-4. Biochemical analysis of DNA and GAG at day 7 and 14. (A) DNA contents of 

spheroids were measured with Hoechst 33258 dye. The DNA contents of spheroids in 

FGF-2(+) groups increased in an FBS concentration-dependent manner, whilst the DNA 

content in FGF-2(-) groups was stable throughout chondrogenic induction regardless of 

FBS concentration. (B) Total spheroid GAG contents in FGF-2(+) groups were 

significantly higher than those in FGF-2(-) groups after 7 and 14 days of chondrogenic 

differentiation. (C) A lower FBS concentration in the chondrogenic medium tended to 

increase GAG/DNA ratio. All groups not sharing common letters are significantly 

different (p < 0.05). GAG, glycosaminoglycan; FGF-2, fibroblast growth factor-2; FBS, 

fetal bovine serum. 
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FIG. 1-5. Safranin O staining of spheroids after 14 days of chondrogenic differentiation. 

In FGF-2(-) groups, spheroids cultured with a lower concentration of FBS showed 

stronger staining than those cultured at higher concentrations. All spheroids showed 

strong staining with Safranin O in FGF-2(+) groups. Safranin O-negative outer layers 

consisted of fibroblast-like cells. Higher concentrations of FBS formed a thicker Safranin 

O-negative layer. All scale bars indicate 100 μm. FGF-2, fibroblast growth factor-2; FBS, 

fetal bovine serum. 
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FIG. 1-6. Immunohistochemistry for collagen type II, I, and X of spheroids at day 14. 

Spheroids cultured with a lower concentration of FBS tended to express more type II 

collagen. Type I collagen was uniformly detected over the spheroid in FGF-2(-) groups, 

while in FGF-2(+) groups, its distribution was more pronounced in the middle to the 

outer surface. Type X collagen was not detected under any conditions. All scale bars 

indicate 200 μm. FGF-2, fibroblast growth factor-2; FBS, fetal bovine serum. 
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FIG. 1-7. Quantitative RT-PCR was done to assess mRNA expression levels in 

chondrogenic spheroids. The expression of SOX9, ACAN and COL2 were significantly 

upregulated in FGF-2(+)-0% FBS group. There were no remarkable expression changes 

observed for COL1 or COL10. All groups not sharing common letters are significantly 

different (p < 0.05). FGF-2, fibroblast growth factor-2; FBS, fetal bovine serum; NS, no 

significance. 
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Chapter 1-2 

 

Comparison of the effect of growth factors on 

chondrogenesis of canine MSCs 
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本章の内容は、学術雑誌論文として出版する計画があるため公表できない。3年以内に出版
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Chapter 2 

 

Role of hypoxic conditions in hyaline cartilage 

differentiation of canine MSCs  
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Chapter 3 

 

Fabrication of canine hyaline cartilage construct 

and its therapeutic effect on cartilage defect model 
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Summary and conclusion 
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 Although articular cartilage injury is common pathology in dogs, severely 

injured articular cartilage never regenerates spontaneously due to its avascularity. The 

conventional treatments lead to the formation of fibrocartilage instead of hyaline 

cartilage finally resulting in secondary osteoarthritis (OA) progression. Therefore, a 

radical treatment such as regenerative medicine is necessary for articular cartilage 

injury in dogs. Mesenchymal stem cells (MSCs) are the promising cell source for articular 

cartilage regeneration because they have a multipotency for mesodermal cells including 

chondrocytes with lower cost. However, the generation of three-dimensional (3D) tissue 

with pure hyaline cartilage from canine MSCs has been still challenging. Recently, a 

novel bio 3D printer using spheroids of cells as a building block has been developed. 

Therefore, it is expected that canine hyaline cartilage constructs can be fabricated with 

this technology if canine MSCs could differentiate into hyaline cartilage. The objective 

of this study was to establish a culture method of hyaline cartilage differentiation of 

canine MSCs and to fabricate hyaline cartilage constructs with a bio 3D printer. 

 In Chapter 1, the optimal cell culture condition for chondrogenic differentiation 

of canine bone marrow peri-adipocyte cells (BM-PACs), which is a novel canine MSCs 

isolated from bone marrow, was explored. Since fetal bovine serum (FBS) concentration 

in chondrogenic medium and fibroblast growth factor-2 (FGF-2) preconditioning have 
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been reported to affect chondrogenesis of human MSCs, I firstly evaluated their effects 

on chondrogenesis of BM-PACs. When serum-free chondrogenic medium and FGF-2 

preconditioning were combined, BM-PACs efficiently underwent chondrogenic 

differentiation to produce hyaline cartilage extracellular matrices (ECMs) with low 

expression of type I collagen which is a fibrocartilage marker. Then, I compared the effect 

of bone morphogenetic protein-2 (BMP-2), growth differentiation factor-5 (GDF-5), and 

insulin-like growth factor-1 (IGF-1) on chondrogenesis of BM-PACs because these growth 

factors control in vivo cartilage development. I demonstrated that GDF-5 increased the 

deposition of hyaline cartilage ECMs without inducing hypertrophic differentiation 

while BMP-2 enhanced the expression of the hypertrophic gene. Based on the results 

obtained in Chapter 1, I could establish the optimal medium condition for 

chondrogenesis of canine MSCs, but there remained slight fibrocartilage mixture in the 

generated cartilage. 

 To overcome this problem, I focused on hypoxic conditions. Hypoxic conditions 

have been reported to play a pivotal role in chondrogenic fate determination of MSCs via 

nuclear translocation of hypoxia-inducible factor-1α (HIF-1α). Therefore, in Chapter 2, I 

investigated how hypoxic condition regulates the hyaline cartilage differentiation of 

canine BM-PACs. The results showed that HIF-1α translocated into the nucleus and BM-
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PACs differentiated into hyaline cartilage consisting of abundant hyaline cartilage 

matrix and little type I collagen when cultured under hypoxic condition during the 

chondrogenic phase. Moreover, I successfully demonstrated that BM-PACs exposed to 

hypoxic condition only in early chondrogenic phase retained hyaline cartilaginous 

phenotypes even after the culture was switched to normoxia; that is, the cells were 

committed to differentiate into hyaline cartilage at the early stage of chondrogenesis. 

These results indicated that hyaline-fated cartilage could be generated from canine 

MSCs under the hypoxic condition and expected to retain ECM components even after 

transplantation. 

 Lastly, in Chapter 3, I aimed to fabricate canine hyaline cartilage construct with 

a spheroid-based bio 3D printer and evaluated its therapeutic effects on canine chondral 

defect model. I presented that spheroid-spheroid contact promoted chondrogenesis of 

BM-PACs and 3D hyaline cartilage constructs could be fabricated under hypoxic 

condition. Then, autologously fabricated constructs were transplanted into chondral 

defects created in the weight-bearing area of canine medial femoral condyles. Although 

individual differences were observed, this pilot study suggested that canine cartilage 

defects could be repaired with hyaline cartilage instead of fibrocartilage by the 

transplantation of hyaline cartilage constructs. 
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 In conclusion, I established the optimal medium condition to allow robust 

generation of hyaline-like cartilage from canine MSCs which have been reported to have 

limited chondrogenic potential. Moreover, I found that canine MSCs could be committed 

to differentiate into more pure hyaline cartilage by hypoxic culture during early 

chondrogenesis. Combining these culture methods and 3D bioprinting technology, I 

fabricated canine hyaline cartilage constructs successfully from canine MSCs. These 

results provide a potential to accelerate the development of novel cartilage regenerative 

therapies and ex vivo model of cartilage diseases in dogs. Finally, I designed a pilot study 

with a small sample size to assess the feasibility of hyaline cartilage constructs in canine 

chondral defects. Although further modifications are required, the transplantation of 

hyaline cartilage constructs was expected to be a radical therapeutic strategy for canine 

cartilage injury. 
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