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Epidemiology and conventional treatments of cancer 

     The International Agency for Research on Cancer in World Health Organization reported 

that cancer is the leading cause of death in humans worldwide, with approximately 18.1 million 

new cases and 9.6 million deaths in 2018A. In Japan, approximately 55 % of all people are 

expected to be diagnosed as a certain kind of cancer in their lifetime and 5 years survival rate of 

all cancer patients was 62.1 % based on the data collected during 2006-2008, according to the 

data from Center for Cancer Control and Information Services, National Cancer Center JapanB. 

The conventional treatment options for cancers have been surgery, radiation therapy, 

chemotherapy, and target therapy. The tumor removal surgery was documented in ancient Egypt. 

The radiation therapy was developed in the late 19th Century and the chemotherapy and 

targeted therapy were developed in the 20th century1). Although the cancer treatments have been 

modified to increase effectiveness and survivability, still half of the cancer patients cannot be 

cured. 

Cancer immunotherapies 

      Early 21st century, cancer immunotherapies, harnessing the immune system to attack 

tumors, showed robust clinical responses in human clinical trials. The major effective cancer 
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immunotherapies include immune checkpoint inhibitors using anti-programmed cell death 

protein 1 (PD-1)/programmed cell death-ligand protein 1 (PD-L1) antibody (Ab) or 

anti-cytotoxic T lymphocyte antigen 4 (CTLA4) Ab, and adoptive cell therapies (ACT) using 

tumor-infiltrating lymphocytes (TILs) and gene-engineered T cells. As the cancer 

immunotherapy targets, not the tumor cell itself but immune system, mechanism of treatment is 

entirely different from the conventional treatments. Therefore cancer immunotherapies can 

adopt various types of cancer patients. For example, the anti-PD-1/PD-L1 Ab have 

demonstrated durable clinical responses in various solid cancers, including melanoma2, 3), lung 

cancer3, 4), renal cell carcinoma3, 5), bladder cancer6), ovarian cancer7), triple-negative breast 

cancer8), and gastric cancer9). However, the response rates of these immunotherapies in the 

cancer patients were approximately 20%10). As these immunotherapies targets and reinvigorates 

tumor antigen-specific cytotoxic T cells (CTLs), these immunotherapies exert the antitumor 

effect in only patients with highly CTLs infiltrated tumor (T cell inflamed tumor) before 

treatments11, 12). Therefore, these immunotherapies alone are thought to be not effective in most 

patients with less CTLs infiltrated tumor (T cell non-inflamed tumor) due to low immunogenic 

tumors or immunosuppressive tumors13). 
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Chimeric antigen receptor transduced T (CAR-T) cell therapies 

For the patients with T cell non-inflamed tumors, direct administration of ex vivo cultured 

tumor antigen-specific T cells would show the robust antitumor response. Recently, genetic 

engineering technologies to confer tumor specificity on irrelevant T cells has been developed 

and enabled the efficient generation of antigen-receptor gene-engineered T cells such as 

chimeric antigen receptor transduced T (CAR-T) cells (Fig1). CAR-T cells are generated by 

viral transduction of CAR gene. A versatile class of CAR genes are generated by combining 

antigen-binding domains of a single-chain variable fragment (scFv) from a monoclonal 

antibody (mAb) that recognizes tum or antigen fused with intracellular signaling motifs that are 

capable of T cell activation14).  

Many clinical trials of CD19 specific CAR-T cell therapy targeting B cell malignancies 

demonstrated objective regression of cancer in patients with acute lymphoblastic leukemia 

(ALL), chronic lymphocytic leukemia (CLL), and various other types of B cell lymphoma. 

CAR-T cell therapy of pediatric and adult patients with ALL demonstrated a complete 

remission rate of approximately 90%, with sustained remission for up to 2 years15). Although 

many patients exhibit cytokine release syndrome after T cell infusion, these adverse effects can 
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be managed with aggressive supportive care or immunosuppression including steroids and 

cytokine-specific antibodies in most cases16). As CD19 specific CAR-T cell therapy has shown a 

favorable and longer lasting clinical outcome compared with conventional radio- or 

chemotherapy, the Food and Drug Administration (FDA) in the USA has approved CD19 

specific CAR-T cell therapy for relapsed B cell malignancies since 2017 C.  

Application of CAR-T cell therapy to solid tumors 

     As CAR-T cell therapies for hematological malignancies targeting CD19 have shown 

robust clinical outcomes, the application of CAR-T cell therapy to solid tumors is expected as a 

promising strategy. Some clinical trials of CAR-T cell therapy using several tumor antigens 

expressed on tumor cells have been performed in human patients with solid tumors. Although it 

was a rare case, CAR-T cell therapy caused lethal adverse effects due to the recognition of 

target antigen expressed on normal tissues (on-target/off-tumor lethal toxicities) in some 

patients. For example, a lethal adverse effect was reported in first in human study of 

HER2-specific CAR-T cells expressing scFv generated from the humanized mAb trastuzumab, 

which is used for various kinds of HER2 overexpressed tumors. The patient received 

HER2-specific CAR-T cells resulted in fatal respiratory failure because administered CAR-T 
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cells recognized HER2 expressed on normal lung epithelial cells17). In contrast, CAR-T cell 

therapy showed no significant clinical responses without apparent adverse effects in most cases 

because of insufficient activation of CAR-T cells in tumor tissues in those trials18). In these 

clinical trials, the major reason why CAR-T cells were not activated sufficiently in solid tumor 

tissues is suspected to be immunosuppressive tumor microenvironment (TME). The solid TME 

may strongly inhibit activation of CAR-T cells due to the presence of immunosuppressive 

molecules such as immune checkpoint molecules (e.g. PD-1/PD-L1. Lag-3/LSECtin, 

TIGIT/CD155) and immunosuppressive cells (e.g. Treg, Tumor-associated macrophage (TAM), 

cancer-associated fibroblast (CAF))14, 19, 20). 

     These two problems, severe adverse effects and insufficient activation of CAR-T cells in 

the tumor tissues, should be solved to apply the CAR-T cell therapy to the patients with the 

solid tumor safely and the immunotherapy exerts the dramatic effect as hematopoietic tumor. It 

is important to identify highly tumor-specific target antigens and to develop novel strategies for 

activation of CAR-T cells in TME. 

Glipican-1 
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     Glypican-1 (GPC1) is a cell-surface heparansulphate proteoglycan, which expresses in 

fetal and tumor tissues. The major function of GPC1 is involved in the development of the brain 

in the fetal phase. GPC1 knockout mice show the only mild reduction of brain volume without 

physiological abnormality21). It suggests that GPC1 does not have a critical function in healthy 

adult bodies. On the other hand, overexpression of GPC1 has been reported in many tumors 

including esophageal22) and pancreatic cancer23, 24), glioma25), and mesothlioma26). GPC1 

expression has also been linked with cancer malignancy such as cell-cycle promotion and 

enhanced metastatic potential27). GPC1 expression was reported to be one of the prognostic 

factors in some cancers22)23). These findings suggest that GPC1 is an attractive target for the 

novel CAR-T cell therapy for patients with GPC1 positive solid tumors. 

Immune checkpoint blockade therapies and the CAR-T cell therapy 

     As described above the immunosuppressive status in the TME is one of the major 

problems in cancer immunotherapies including the CAR-T cell therapy because it inhibits the 

antitumor effects of immunotherapies. As anti-PD-1 Ab therapy showed dramatic antitumor 

effects in some human clinical cases, one of the major inhibitory molecule in the solid TME is 

the PD-1 expressed on activated T cells, which critically inhibits T cell activation28). PD-1 
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would also be expressed on activated CAR-T cell in TME, therefore a combination therapy of 

CAR-T cell therapy with anti-PD-1 Ab may demonstrate robust antitumor responses against 

solid tumors. 

Purpose of this study 

      The purpose of this study was to develop GPC1 specific CAR-T cells and evaluate its 

efficacy and safety and evaluate the synergistic antitumor effects of combination 

immunotherapy with anti-PD-1 Ab. To evaluate efficacy and safety of GPC1 specific CAR-T 

cells therapy, human and mouse GPC1 specific CAR vectors derived from anti-GPC1 mAb 

which cross-react with human and mouse GPC1 was developed (chapter 1). GPC1 specific 

human CAR-T cells were developed and evaluated the antitumor efficacy against human GPC1 

endogenously overexpressing human tumors in vitro and in vivo using xenogeneic mouse 

models (chapter 2). Furthermore, GPC1 specific murine CAR-T cells were developed and their 

adverse effects and antitumor efficacy in vivo using syngeneic mouse models were evaluated. 

Finally, the feasibility of novel combination immunotherapy combined with CAR-T cells and 

anti-PD-1 Ab was evaluated (chapter 3).  
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------------------------------ 

A https://www.who.int/cancer/PRGlobocanFinal.pdf 

B https://ganjoho.jp/reg_stat/statistics/stat/summary.html 

C 

https://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProduct

s 

/ucm573706.htm 
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Fig. Concepts of CAR-T cell therapy 

A) CAR-T cells specifically secreted cytokines and killed tumor cells in the target 

antigen-dependent manner. B) Therapy procedure of CAR-T cell therapy. After CAR genes 

were transduced into patients derived PBMC, expanded CAR-T cells were intravenously 

injected in the patients.  
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Introduction 

      Adoptive transfer of CAR-T cells specific for a tumor cell surface antigen has emerged 

as a promising new approach for the cancer immunotherapy. Success in patients with advanced 

B cell malignancies treated with CD19-specific CAR-T cells has been leading to optimism that 

this approach will be useful for treating common solid tumors15). However, CAR-T cells for 

patients with solid tumors have faced some problems and CAR-T cells have not demonstrated 

expected clinical responses14). One of the major problems is the lethal on-target/off-tumor 

adverse effects caused by attacking normal tissues by CAR-T cells, although it is rare case17).  

     Overexpression of glypican-1 (GPC1), a cell-surface heparansulphate proteoglycan, have 

been reported in various solid cancers including glioma, mesothlioma, several squamous cell 

carcinoma such as esophagus29) and cervical cancers30), and several adenocarcinoma such as 

breast27) and pancreatic cancer23). It has been demonstrated that GPC1 was overexpressed in 

98.8 % of patients with esophageal squamous cell carcinoma (n= 175) and 48 % of patients with 

cervical cancer (n=110)22). The major function of GPC1 is reported to be the development of 

nervous systems in the fetal phase. GPC1 knockout mice showed 10 % reduction of brain 

volume in adults, however the slight brain hypoplasia does not cause physiological problems. In 
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addition, the adult GPC1 knockout mice show no abnormalities in morphology, behavior, or life 

span21). Thus, GPC1 would not have a critical function in the healthy adult body. Therefore, 

GPC1 is one of an attractive target antigen for the development of CAR-T cell therapy in 

patients with GPC1 positive solid tumors.  

     Although primate model would have more homogenous protein expression in human, 

primate cannot be inoculated syngeneic tumor due to the ethical problem. To evaluate the 

antitumor efficacy and adverse effects of CAR-T cells simultaneously in preclinical models, 

usage of a syngeneic mouse model is thought to be a promising alternative31). To evaluate 

antitumor efficacy and adverse effects of GPC1 specific CAR-T cells in both a human tumor 

xenografted immunodeficient mouse model and an immunocompetent syngeneic mouse model, 

it is necessary to generate GPC1 specific human and murine CAR-T cells from anti-GPC1 mAb 

which cross-react with human and mouse GPC1. It is difficult to generate Ab recognizing an 

evolutionally conserved epitope among mammals by using mammal hosts because of 

immunotolerance against self-antigens. Recently, chicken is used as a host for generation of 

monoclonal Ab instead of mammal hosts32). Specific epitope immunization in chicken can make 

high-affinity Ab against the evolutionally conserved epitope among mammals to evaluate the 
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feasibility of GPC1 specific CAR-T cells for human patients using xenogeneic and syngeneic 

mouse models. 

     The purpose of this chapter is to generate anti-GPC1 mAb which cross-react human and 

mouse GPC1 by chicken immunization and generate GPC1-specific CAR vectors.  

 本章の以降の内容は、学術論文として出版する計画があるため公表できない。 5 年

以内に公表予定。 
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Evaluation of antitumor efficacy of GPC1 specific  

human CAR-T cells in a xenogeneic mouse model 
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Evaluation of the safety and antitumor effect of GPC1 specific  

murine CAR-T cells and the combination therapy  
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