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Summary

The literature of claims-based algorithm (CBA) has two features to be refined: the use of a

chart review as a source of the gold standard; the procedure of searching for a fine-tuned CBA

based on existing knowledge regarding target conditions. The first feature limits the population

to which the CBA can be applied and the second makes the CBA construction procedure to

be an overly complicated and cumbersome matter. Moreover, the burden of reviewing charts

and searching for a fine-tuned CBA lead to a slow establishment of acceptable CBAs because it

discourages researchers from CBA studies. The sluggish establishment of usable CBAs can be

a big issue as the codes recorded in the claims for transmitting information about patients are

supposed to change periodically. The dissertation focuses on CBAs for identifying patients with

three common chronic medical conditions, hypertension, diabetes, and dyslipidemia, and (1)

demonstrated the usefulness of health screening results as the source of gold standard (2) showed

the power of statistical learning methods to develop an e�cient CBA construction procedure; (3)

proposed a course of action for an e�cient CBA research. I believe that the series of techniques

evaluated in the study should become essential in future CBA research.
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Chapter 1

Introduction

1.1 Claims-based algorithm (CBA)

A growing body of research using medical and pharmacy claims data has been conducted in

various fields including epidemiology, health service research, and health economics (Iizuka

2012; Einav, Finkelstein, and Schrimpf 2015; Schermerhorn et al. 2015; Abaluck and Gruber

2016; McWilliams et al. 2016; Nuti et al. 2016; Layton et al. 2017). Among them, a notable

amount of research has used the claims data to assess medical conditions (Iizuka 2012; Einav,

Finkelstein, and Schrimpf 2015; Nuti et al. 2016). Compared to other secondary data like

electronic health records (EHRs), disease registries, and health screening results that are used

to evaluate medical conditions, claims data occupies an important position in these research

areas because of its completeness of the population coverage and relative easiness of long-term

follow-up (Mitchell et al. 1994).

Nevertheless, claims data is subject to limitations due to potential imprecision in the identi-

fication of medical conditions (Virnig and McBean 2001; Taylor, Fillenbaum, and Ezell 2002;

Rector et al. 2004; Kern et al. 2006; Klabunde, Harlan, and Warren 2006; Østbye et al. 2008).

Because the claims are issued primarily for reimbursement to health care institutions, (1) infor-

mation that is unnecessary for processing payments may not be collected or registered precisely

in the claims forms; and (2) the diagnosis registered on claims may be relevant to testing for dis-

ease rather than to confirmed disease. The resulting misclassification of diagnosis can engender

a substantial bias and undermine the credibility of the findings (Abrahamowicz et al. 2007). To
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CHAPTER 1. INTRODUCTION

address these concerns, plenty of studies have proposed a claims-based algorithm (CBA) for

identifying patients with their target condition and computed association measures to assess the

usability of the algorithm (Quam et al. 1993; Hebert et al. 1999; Katz et al. 1997; Muhajarine

et al. 1997; Robinson et al. 1997; Sands et al. 1999; Freeman et al. 2000; Andrade et al. 2002;

Taylor, Fillenbaum, and Ezell 2002; Losina et al. 2003; Nattinger et al. 2004; Rector et al. 2004;

Wilchesky, Tamblyn, and Huang 2004; Bullano et al. 2006; Gold and Do 2007; Nordstrom

et al. 2007; Quan et al. 2009; Taylor et al. 2009; Cheng et al. 2011; Gorina and Kramarow

2011; Kawasumi et al. 2011; Scholes et al. 2011; Tu et al. 2011; Tessier-Sherman et al. 2013;

Cheng et al. 2014; Chan et al. 2016; Walraven and Colman 2016; Yamana et al. 2016; Yamana

et al. 2017; Hara et al. 2018). With the association measures attached to CBAs, researchers

can assess the degree of uncertainty regarding their estimates of the e�ectiveness of their target

treatments due to the potential imprecision of claims data. The information of the degree of

uncertainty is particularly important when policymakers (or physicians) consider whether to

adopt a policy (or treatment) which is evaluated using claims data because it leads to appropriate

policy (or treatment) evaluation and application.

Since these CBA studies are predominantly coming from North American countries, research

using diagnosis derived from North American countries’ claims data can be largely backed by

a corresponding CBA study. In contrast, despite the rapid increase of research using diagnosis

derived from claims data in Japan, CBAs are not established for most of the medical conditions

thus far. It is notable that the lack of confirmed CBA not only degrades the quality of research

but also makes the research extremely di�cult to be accepted by journals with high impact

factors (Van Walraven, Bennett, and Forster 2011). For this reason, researchers who are using

claims data in Japan are facing an urgent need to establish CBAs for various medical conditions.

However, the literature of CBA still has two features to be refined: one regarding the source

of the gold standard; another regarding the construction procedure of the CBA. In this study,

I clarified obstacles in advancing research on CBA concerning these two features. I reviewed

existing methods in the literature of CBA and made proposals on a better possible method

that has not received much attention in the literature. I examined and discussed cases of three

common chronic medical conditions, hypertension, diabetes, and dyslipidemia, about how these
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CHAPTER 1. INTRODUCTION

proposals are considered superior in comparison with existing methods.

First, most previous studies reviewed medical charts to construct the gold standard for

computing association measures of their CBA (Quam et al. 1993; Katz et al. 1997; Sands

et al. 1999; Andrade et al. 2002; Losina et al. 2003; Wilchesky, Tamblyn, and Huang 2004;

Bullano et al. 2006; Nordstrom et al. 2007; Quan et al. 2009; Cheng et al. 2011; Gorina and

Kramarow 2011; Scholes et al. 2011; Tu et al. 2011; Cheng et al. 2014). Their results only apply

to limited populations because the use of medical charts inevitably restricts the target population

to those who visited clinics and hospitals on the review list. Therefore, it remains unclear if the

CBA applies to a wider range of population and to what extent the claims data can gauge the

number of patients with the target disease at the population level.

Routine health screening results can be a good substitute for medical charts especially for

common chronic conditions which can be diagnosed with usual physical and laboratory exam-

inations, e.g., hypertension, diabetes, and dyslipidemia. In Japan, under its universal health

insurance system, some health insurance programs have established a system that collects med-

ical and pharmacy claims data as well as annual health screening results regularly. This system

provides us with the opportunity to assess the usability of CBAs to identify persons’ medical

conditions across a large and wide range of populations. Hara et al. (2018) demonstrated the

usefulness of health screening results as the source of gold standard. There, they systemati-

cally and e�ciently constructed an acceptable gold standard using health screening results and

successfully assessed the usability of CBAs for hypertension, diabetes, and dyslipidemia with

a large and wide range of populations. Here, I confirmed the results of Hara et al. (2018) with

new data.

Second, previous studies have engaged in a knowledge-based condition-specific CBA con-

struction procedure. When researchers have sought to find out a satisfactory CBA that identifies

patients with their target medical condition, they needed to select input variables and decide how

to incorporate variables in the CBA based on their experience or existing knowledge regarding

the target condition.

For example, if one tries to obtain an acceptable CBA for identifying patients with hyper-

tension, one may ask oneself the following questions: Which of using only the diagnostic codes
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CHAPTER 1. INTRODUCTION

corresponding to hypertension, using only the medication codes corresponding to hyperten-

sion, or using both of them in the CBA is better?; Which codes of International Classification

of Diseases and Related Health Problems, tenth revision (ICD-10)/World Health Organization-

anatomical therapeutic chemical (WHO-ATC) should be designated as the diagnostic/medication

codes corresponding to hypertension?; How many times should the diagnostic/medication codes

appear in claims to consider a patient “test-positive” for hypertension? Researchers have as-

sessed a large collection of knowledge-based candidate CBAs to select a fine-tuned CBA and

iterated the procedure if there are multiple target conditions. I illustrated how complicated

and cumbersome the procedure of knowledge-based condition-specific CBA construction is in

the dissertation (subsection 2.5.1). A method that fine-tunes CBAs regardless of the level of

knowledge for the target condition and without condition-specific modifications of the procedure

can refine the procedure to be smarter and more convenient. Nonetheless, such a method has

not yet been established.

To this end, it is natural to think of the usage of regression methods as in some previous

CBA research (Muhajarine et al. 1997; Freeman et al. 2000; Taylor, Fillenbaum, and Ezell 2002;

Nattinger et al. 2004; Gold and Do 2007; Østbye et al. 2008; Quan et al. 2009; Kawasumi

et al. 2011). Since it is known that regression methods often work poorly in the accuracy of

prediction when the number of input variables is large relative to the sample size (Zou and

Hastie 2005), input variables may need to be selected before implementing a regression method

to obtain a satisfactory CBA. Besides, if researchers expect nonlinear or interactive e�ects of the

input variables, they have to specify those terms a priori as a functional form of the regression

model.

Statistical learning methods, which are overviewed in the next section, are promising tech-

nologies to overcome the problem of regression methods. In the dissertation, I define statistical

learning methods as the methods that aim to minimize the estimator of the risk functional via

the hyperparameter tuning and regard them as a subset of machine learning methods. Ma-

chine learning methods can be broadly defined as the computational methods that use existing

knowledge to improve the performance of their prediction (Mohri, Rostamizadeh, and Talwalkar

2012). They can rely on investigated facts and known features specific to the subject to which

9



CHAPTER 1. INTRODUCTION

the method will be applied besides the risk functional criterion. Statistical learning methods are

more mathematically and statistically tractable compared to the other groups of machine learning

methods, and this tractability is the reason why I focused on statistical learning methods. Note

that, in general, there seems to be only a vague boundary of the statistical learning domain in

the machine learning world as it evolves according to the times.

A few researchers have attempted to use statistical learning methods in the context of CBA

(Sands et al. 1999; Nordstrom et al. 2007; Scholes et al. 2011; Chan et al. 2016; Walraven

and Colman 2016). However, they did not try to circumvent the knowledge-based condition-

specific CBA construction procedure. I applied statistical learning methods to a dataset that

input variables were chosen to be common to all target conditions; the dataset consists of age,

gender, and all ICD-10/WHO-ATC codes with a letter followed by two digits as input variables.

This simple device renders the procedure to be condition-invariant.

Additionally, previous studies only used a specific statistical learning method without su�-

cient support. Because a statistical learning method that suits the context is yet unknown, it is

important to explore which statistical learning method suits for the CBA setting. As a starting

point for the development of CBA construction procedure using statistical learning methods, I

investigated popular statistical learning methods with the theories behind them to examine the

outline of what kind of method seems to work in the context of CBA. Although one can think

of a method aiming at the further improvement of prediction accuracy than the methods used in

this study according to the context of machine learning, I believe that the findings obtained from

this study are still valuable as a place to begin the discussion on the development of e�cient

CBA construction procedure.

Third, the burden of reviewing charts and searching for a fine-tuned CBA lead to a slow

establishment of acceptable CBAs because it discourages researchers from CBA studies. The

slow establishment can be a big issue when the codes recorded in the claims for transmitting

information about patients are supposed to change periodically. As a result of a coding scheme

change, re-construction and re-assessment of CBAs may be necessary, and if CBA studies only

proceed gradually, the scheme change should cause a huge challenge in the continuous usage

of administrative data. This is imposing challenges to the use of administrative data in the
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transition from the ICD-9 to the ICD-10 coding scheme in the United States (Khera, Dorsey,

and Krumholz 2018).

The methods discussed in this study can sidestep these obstacles and may boost the imple-

mentation of CBA research. Chart reviewing can be avoided by the use of regularly collected data

like annual health screening results. EHRs and disease registries are other possible candidates

in this direction. Fine-tuned CBAs can be e�ciently searched by the use of a condition-invariant

procedure in the CBA construction. Researchers can uniformly apply the procedure to construct

a CBA for each of their target conditions and compare it against their gold standard that is

constructed from the regularly collected data. This course of action should greatly reduce the

burden of CBA research, and thereby strongly supports the seamless usage of administrative

data in an environment of a periodic coding scheme change.

CBA research has a closely related research area called “phenotyping” (Newton et al. 2013).

Phenotyping algorithms aim to identify medical conditions (or phenomic traits) like CBA but

with EHRs besides claims data. Regardless of the similarity, there are two large di�erences

between these research areas: (1) phenotyping algorithms are developed assuming that they

will be mostly applied to genomics studies that require more stringent accuracy than the fields

to which CBAs are assumed to be applied; (2) phenotyping algorithms are based on much

more comprehensive and complicated information than the information on which CBAs are

based. Because of these di�erences, it will be very di�cult to adapt the concepts implied in this

study. Nevertheless, as phenotyping algorithms can be satisfactorily accurate to be used in gold

standard construction of CBA research, they can aid the implementation of CBA research when

EHRs are available.

To recapitulate, the dissertation focuses on CBAs for identifying patients with three common

chronic medical conditions, hypertension, diabetes, and dyslipidemia, and (1) demonstrated the

usefulness of health screening results as the source of gold standard following Hara et al. (2018);

(2) showed the power of statistical learning methods to develop an e�cient CBA construction

procedure; (3) proposed a course of action for an e�cient CBA research.

11
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1.2 An overview of statistical learning methods

Statistical learning methods aim to predict the outcome for new observation using the data

at hand. To understand the relationship between regression methods (e.g., linear regression,

logistic regression, and alike) and statistical learning methods, I state the learning problem

summarized in Vapnik (1999).

Some generic notations are necessary to be defined before the explanation. Denote f as

a generic notation for a probability density function, e.g., fX(X = x0). When f indicates the

whole distribution like fX(X), and the subscript of f and the object in the parenthesis are the

same, I omit the subscript, i.e., fX(X) = f (X). The expectation of a function g(X) taken over a

distribution f (X) is defined as

E f (X)[g(X)] ⌘
π

g(X) f (X)dX .

I use EX[g(X)] (the expectation of g(X) taken over a distribution of X) or E[g(X)] (the expectation

of g(X) taken over a distribution) when the distribution taking over the expectation is clear from

the context. Similarly, let Var f (X)[·] indicate that the expectation in the variance formula is taken

over a distribution f (X), and VarX[·] and Var[·] be the short form of it.

The model of learning or estimating the underlying function of an outcome from a sample

dataset, which is drawn from the target population, is described by five components. At first, a

set of random vectors X 2 X ⇢ Rp which are drawn independently from the p-dimensional input

distribution of the target population, f (X). I implicitly include a constant as the first element of

X for notational simplicity.

Second, a supervisor that returns an output Y 2 Y ⇢ R for every input vector X according

to the conditional distribution of the output of the target population f (Y |X). Whether the output

type is continuous or discrete a�ects the representation of the function which we seek to learn.

This distinction in output type has led to a naming convention for the prediction tasks: regression

when we predict continuous outputs, and classification when we predict discrete outputs. For

K-class classification (K � 2), I use a set {0, 1, . . . , k, . . . ,K � 1} as a notation for K classes

except when stated otherwise.
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Third, a sample dataset T ⌘ {(x1, y1), . . . , (xN, yN )} which is assumed to be N independent

identically distributed random observations drawn from the joint distribution of X and Y ,

f (X,Y ) = f (X) f (Y |X).

Fourth, a learning machine which is capable of implementing a set of candidate functions.

Here, it is convenient to consider regression and classification separately. For regression, we

want to find a function a : X ! Y such that a(X) approximates Y . Thus, a set of candidate

functions suitable for regression is {a(X; ✓) : ✓ 2 ⇥}, where functions are characterized by

a vector of parameters ✓ in a parameter space ⇥. For instance, candidate functions can be

specified as a simple linear in parameters model with an arbitrary p-dimensional parameter

space: {X
T✓ : ✓ 2 ⇥ ⇢ Rp}.

By contrast, for K-class classification, although a(X) is an interest as well, frequently, a

function b : X ! RK such that b(X) = (b0(X), b1(X), . . . , bk(X), . . . , bK�1(X))T is a vector of

scores of the propensity for the assignment to classes attracts more attention than it. The domain

of the function is typically a subset of RK . For example, researchers often seek b : X ! [0, 1]K

such that
Õ

K�1
k=0 bk(X) = 1 and bk(X) approximates the conditional probability of the assignment

to class k, Pr(Y = k |X), because it is convenient for the interpretation of the results.

Another particular example is a prediction function for two-class classification. With only

two classes, a score of the propensity for the assignment to either of the classes is su�cient for

the prediction purpose. Consequently, one of the elements of b(X), say, b1 : X ! R such that

b1(X) is a score of the propensity for the assignment to class 1, is often a primary interest of

researchers.

Therefore, a set of candidate functions suitable for classification can be either of {a(X; ✓) :

✓ 2 ⇥} or {b(X; ✓) : ✓ 2 ⇥}. Note that even when the objective of classification is to find a(X),

this is usually carried out taking

a(X) = arg max
k

bk(X)

after the estimation of b(X). For brevity of explanation, the response functions a(X; ✓) and

b(X; ✓) will be collectively referred to as  ✓(X) when the distinction between them is unneces-

sary.
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The final component is a measure of the loss or discrepancy, a loss function L(Y, ✓(X)),

between the response Y of the supervisor and the response  ✓(X) provided by the learning

machine for a given X .

The problem of learning is that of choosing the function  ✓(X) which is the best available

approximation to the supervisor’s response in terms of the loss function L(Y, ✓(X)) from the

given set of functions { ✓; ✓ 2 ⇥} based on the sample dataset T . Consider the expected value

of the loss, given by the risk functional (Vapnik 1999):

R(✓) ⌘ EX,Y [L(Y, ✓(X))].

The popular loss function is a squared error loss for regression and a negative log-likelihood or

log-loss for classification. For sample (xi, yi), the squared error loss is defined as

L(yi, a(xi; ✓)) = {yi � a(xi; ✓)}2,

and the log-loss as

L(yi, b(xi; ✓)) = � log byi (xi; ✓),

where the log-loss implicitly assumes
Õ

K�1
k=0 bk(X) = 1. The risk functional with the squared

error loss is called expected prediction error (EPE):

EPE(✓) ⌘ EX,Y [{Y � a(X; ✓)}2].

Now, the goal of the statistical learning can be summarized as to find the function  ✓0, ✓0 2 ⇥

which minimizes the risk functional R(✓) over the class of functions { ✓ : ✓ 2 ⇥} when the

only available information is the sample dataset T .

Regression methods can be interpreted as methods of finding ✓ that minimize the empirical

risk functional R(✓):

argmin
✓

1
N

N’
i=1

L(yi, ✓(xi)).

Linear regression or ordinary least squares (OLS) specifies the output function a(X; ✓) as linear
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in parameters and the loss function as squared error loss:

argmin
✓

1
N

N’
i=1

(yi � x
T

i
✓)2.

Binary logistic regression specifies the output function b(X; ✓) in the logit form and the loss

function as the log-loss:

argmin
✓

1
N

N’
i=1

{� log byi (xi; ✓)},

where

byi (xi; ✓) =
yi exp x

T

i
✓

1 + exp x
T

i
✓
+

1 � yi

1 + exp x
T

i
✓
.

Regression methods are known to provide
p

N-consistent estimators under certain regularity

conditions. There are many admirable textbook treatments with regard to regression methods

and asymmptotic analysis of them (e.g., Wooldridge (2010) and Greene (2012)).

In the case of a fixed number of inputs p with sample size N ! 1 or su�ciently large

relative to p, regression methods work perfectly. Regression methods provide a consistent

estimator with a reasonable sampling variance, and consequently, provide a useful predictive

value at target value X = x0 by just plugging in the values in the estimated function. However,

when p is large relative to N including the case of p > N , it is well known that regression

methods often work poorly in the interpretation of the estimated parameters and the accuracy of

prediction on future data (Zou and Hastie 2005). Since the regularity condition no longer holds

when p > N , regression methods fail to maintain the consistency, and hence, any interpretation

is left on the estimator. Moreover, even if p  N , one can hardly acquire an adequately small

sampling variance to gain some meaningful insights from the results when p is large relative to

N .

In contrast to regression methods, statistical learning methods pursue to minimize the risk

functional R(✓) more directly using the hyperparameter rather than relying on the sample

analogue of the risk functional. The hyperparameter aids the model to attain the minimum

risk functional in the following way. Statistical learning methods randomly divide the sample

dataset into two parts: a training set and a validation set. For each candidate value of the

hyperparameter, an estimation of the parameter of the model is conducted with the training set,
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and an estimator for the risk functional of the estimated model is computed by the average loss

of the model in the validation set. The hyperparameter is subsequently tuned to be the value

that minimizes the estimator of the risk functional.

A method called cross-validation (CV) is also used to estimate the risk functional. Although

CV is computationally much harder than the calculation of the average loss in the validation set,

CV is a more e�cient way of estimating the risk functional.

For two-class classification, Bradley (1997) proposed a method based on one minus the

area under the receiver operating characteristic curve (AUC) instead of the risk functional

for the hyperparameter tuning. As the calculation of the AUC only requires a ranked list of

samples of their propensity for the assignment to classes, the method is robust to the monotonic

transformation of the functional form of the prediction function. Although the one minus AUC

approach is not covered by the risk functional approach of Vapnik (1999), the notion of the risk

functional approach is later refined to include such approach (Chen et al. 2009). There, the risk

functional approach of Vapnik (1999) is subsumed as the pointwise approach, and the one minus

AUC approach is categorized as the listwise approach. However, I continue to assume the word

“risk functional” to mean the risk functional of Vapnik (1999) because the formal definition

of the refinement involves complicated and confusing notions regarding the distribution of the

expected value of the loss to be taken. All of the following statement regarding the risk functional

can be extended to the one minus AUC approach without any modification.

A typical hyperparameter of statistical learning methods is the coe�cient for the regulariza-

tion term. Suppose there are a dataset generated from an underlying function with some form of

error and a set of functions that are candidates for the best underlying function approximation.

The regularization principle, which is first introduced by Tikhonov (1963), imposes some form

of smoothness constraints on the candidate functions to find the best approximating function

given the dataset. Adapting the regularization technique to the statistical learning setting yields

a general class of regularization problems:

min
✓

(
N’

i=1
L(yi, ✓(xi)) + �J(✓)

)
, (1.1)

where � � 0 is a regularization coe�cient and J(·) is the regularization term. Commonly used
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regularization term is an L2-penalty

J(✓) = k✓k2
2 =

p’
j=1
✓2

j
,

and an L1-penalty

J(✓) = k✓k1 =

p’
j=1

|✓ j |.

This formulation emcompasses most of statistical learning methods covered here.

Although it is better to tune the hyperparameter to minimize the estimator of the risk

functional, it is often prespecified based on existing knowledge to avoid high computational

burden. As which of the whole sample dataset and the training set should be used for estimation

of parameters depends on whether the hyperparameter is prespecified or not, I do not distinguish

between the sample dataset and the training set in the following exposition of the estimation

detail of statistical learning methods. There, I use the word “dataset” with a standard sample

size notation N .

The distinction between the regression and the statistical learning is further clarified through

the following example. Suppose the sample dataset T arises from a linear model

Y = X
T✓0 + ✏ (1.2)

with ✓0 2 ⇥ ⇢ Rp, E(✏ |X) = 0, and Var(✏ |X) = �2 < 1. Let the estimator from a linear

regression be ✓̂. Then, the EPE at the target input x0 can be decomposed into three elements:

EPE(✓ |X = x0) = ET
⇥
EY |X=x0[{Y � x

T

0 ✓̂}2 |X = x0]
⇤

= EY |X=x0[{Y � x
T

0 ✓0}2 |X = x0]

+{x
T

0 ✓0 � ET [xT

0 ✓̂]}2

+ET [{ET [xT

0 ✓̂] � x
T

0 ✓̂}2]

= �2 + Bias2[xT

0 ✓̂] + VarT [xT

0 ✓̂],

where ET [·] indicates that the expectation is taken over the sampling distribution of the sample
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dataset T . Since the first term �2 cannot be reduced by devising the estimation method,

minimizing the EPE is the same as minimizing the sum of squared bias and the sampling

variance. Under the linear model (1.2), the unbiasedness of OLS assures the unbiasedness of

the resulting prediction as well:

ET [xT

0 ✓̂] = x
T

0 ET [✓̂] = x
T

0 ✓0 , Bias[xT

0 ✓̂] = 0.

Thus, we now know that the linear regression produces a least bias estimator for the prediction.

But still, some methods may achieve their better prediction performance through a bias-variance

trade-o�. Statistical learning methods are such methods that aim to minimize EPE by the

reduction of sampling variance along with paying the cost of some bias.

The remaining of this section is largely based on Hastie, Tibshirani, and Friedman (2009)

and overviews popular statistical learning methods: (1) Discriminant analysis; (2) Generalized

additive model; (3) k-nearest neighbor; (4) Support vector machine; (5) Penalized regression;

(6) Tree-based model; (7) Neural network.

1.2.1 Discriminant analysis

The linear discriminant analysis (LDA), which is originally proposed by Fisher (1936), aims to

discriminate between two or more classes with a linear discriminant function that maximizes

the ratio of the between-class variance to the within-class variance. This subsection only deals

with K-class classification, on which the discriminant analysis mainly focuses.

Denote the between-class variance covariance matrix (VCM) of the input vector X as B =

VarY (E[X |Y ]) and the class k’s within-class VCM of X as Wk = Var(X |Y = k). Now, consider

a linear discriminant function Z = ⌫T X , ⌫ 2 Rp. The between-class variance of Z is

VarY (E[Z |Y ]) = VarY (⌫T E[X |Y ]) = ⌫TVarY (E[X |Y ])⌫ = ⌫T B⌫,

and the class k’s within-class VCM of Z is

Var(Z |Y = k) = ⌫TVar(X |Y = k)⌫ = ⌫TVar(X |Y = k)⌫ = ⌫TWk⌫.
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The LDA assumes a common VCM, W , for all classes, 8k, Wk = W .

Then, the Fisher’s problem amounts to finding ⌫ that maximizes the ratio of the between-class

variance of Z to the within-class variance of Z:

arg max
⌫

⌫T B⌫

⌫TW⌫
.

The solution, ⌫1, is shown to be W
�1/2 multiplied by the eigenvector of the largest eigenvalue

of W
�1/2

BW
�1/2. Similarly one can find the second best linear discriminant function ⌫T2 X by

finding ⌫ orthogonal to ⌫1 that maximizes ⌫T B⌫/⌫TW⌫: the solution ⌫2 is W
�1/2 multiplied by

the eigenvector of the second largest eigenvalue of W
�1/2

BW
�1/2. And this procedure can be

continued L times to find a sequence of discriminant coordinates {⌫l}L

l=1. As we need at most

K � 1 discriminant functions to separate input space into K classes, L  K � 1. In practice,

discriminant coordinates are estimated using the estimator of B and W , e.g.,

B̂ =
1
N

K�1’
k=0

|Sk |(x̄k � x̄)(x̄k � x̄)T and Ŵ =
1
N

K�1’
k=0

’
i2Sk

(xi � x̄k)(xi � x̄k)T,

where Sk = {i : yi = k}, |Sk | is the cardinality of Sk , x̄k =
Õ

i2Sk
xi/|Sk |, and x̄ =

Õ
N

i=1 xi/N .

As L is at most K�1, the LDA usually achieves a considerable dimension reduction compared

to the p-dimensional input space and may help us to understand informative attributes of the

data. Besides, the discriminant functions can be interpreted as a score of the propensity for a

certain class assignment and this interpretation leads to a further generalization of the LDA.

Consider an optimal scoring problem that transforms class labels to scores which are op-

timally predicted by linear regression on X . Suppose s : Y ! RL is a function that assigns

L  K � 1 scores to the classes. Then the optimal scoring problem solves the following

minimization problem:

argmin
s,{�l}Ll=1

L’
l=1

N’
i=1

{sl(yi) � x
T

i
�l}2,

where sl is the lth component of s. It can be shown that the sequence of discriminant coordinates

{⌫l}L

l=1 derived from the Fisher’s problem is identical to the sequence {�l}L

l=1 up to a constant

(Mardia, Kent, and Bibby 1979).
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From this re-formalization of the LDA, one can think of a basis expansion and an application

of regularization principle to generalize the LDA:

argmin
s,{�l}Ll=1

L’
l=1

"
N’

i=1
{sl(yi) � h(xi)T �l}2 + �J(�l)

#
,

where h(·) is a flexible transformation function. This generalization of the LDA is proposed by

Hastie, Tibshirani, and Buja (1994) as the flexible discriminant analysis (FDA), and by Hastie,

Buja, and Tibshirani (1995) as the penalized discriminant analysis (PDA). The FDA and PDA

successfully incorporate nonlinearity while maintaining the dimension reduction aspect of the

LDA.

Although the discriminant analysis is good at classification in a moderate number of inputs,

they are poor at dealing with sparse high-dimensional inputs (i.e., most of the entries of the

inputs are zero for each observation, and the number of the inputs is large relative to the sample

size). Because the model underlying the discriminant analysis assumes that the within-class

distribution of every class is nondegenerate for all inputs, inputs which have the same value for

all samples in some class do not fit for the model. Consequently, computer programs that execute

the discriminant analysis usually refuse a dataset with such inputs, and we need to discard those

inputs before the analysis if we seek to apply the discriminant analysis to the dataset. One can

think of an unsupervised learning method that extracts essential components of the inputs, e.g.,

principal component analysis (Mardia, Kent, and Bibby 1979), before the analysis to alleviate

the problem. Nevertheless, there is no standard way of an input pre-processing in this direction

for the discriminant analysis yet.

1.2.2 Generalized additive model

A linear model fails to capture nonlinear e�ects, and this fact distorts the ability to predict

outcomes by it. Although one can think of adding nonlinear terms to the linear model by hand,

one never knows whether the additional terms are su�cient for the model or not. Hastie and

Tibshirani (1986) proposed the generalized additive model (GAM), in which flexible nonlinear

e�ects can be incorporated automatically.
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For regression, a candidate function a(X; ✓) in the GAM is specified as

link[a(X; ✓)] =
p’

j=1
↵ j(Xj ; ✓ j),

where link[·] is a link function, Xj is the jth input, and ✓ j is the jth set of parameters. When the

link is the identity link, i.e., link[a] = a, and the loss function is the squared error loss, the model

is an extension of the linear regression, and it is called the additive linear regression model.

For two-class classification, candidate functions b(X; ✓) in the GAM are specified as

link[b1(X; ✓)] =
p’

j=1
↵ j(Xj ; ✓ j).

This concept can be extended to K-class classification. When the link is the logit link, link[b] =

logit(b), and the loss function is the log-loss, the model is an extension of the logistic regression,

and it is called the additive logistic regression model.

Each function ↵ j(Xj ; ✓ j) is fitted by a scatterplot smoother (e.g., a cubic smoothing spline or

kernel smoother) using the backfitting algorithm, where the degrees of freedom for the smoothers

is a hyperparameter of the model. A detailed description of estimation methods is covered in

Hastie and Tibshirani (1990).

The additive linear regression model with a cubic smoothing spline is shown to be the

minimizer of
N’

i=1
{yi �

p’
j=1
↵ j(xi j ; ✓ j)}2 +

p’
j=1
� j

π
{↵00

j
(t j)}2

dtj,

where xi j is the jth input of the ith sample (Hastie, Tibshirani, and Friedman 2009). Thus,

the GAM can be interpreted as a regularization problem (1.1). The GAM is highly flexible

in incorporating nonlinearity of a moderate number of inputs, however, the di�culty in the

hyperparameter tuning and the need of input pre-processing if the number of inputs is large

narrow the area of suitable application of the model. Although a progress has been made in the

smoothing parameter tuning and the automatic variable selection in a sparse high-dimensional

setting recently (Lin and Zhang 2006; Ravikumar et al. 2009), these potentially innovative

methods are still computationally prohibitive for large scale data.
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1.2.3 k-nearest neighbor

The k-nearest neighbor (kNN) classifier appears as a natural estimator for the nonparametric

discriminatory analysis (Fix and Hodges 1951). As the kNN is mainly applied to classification,

this subsection concentrates on classification. To avoid a notational confusion caused by the

usage of the same letter ‘k’ in K-class classification and the k-nearest neighbor, let K-class be

J-class instead in this subsection: Y = {0, 1, . . . , j, . . . , J � 1}. k is a hyperparameter of the

model.

Let the distance of a query point x0 and a sample input xi can be measured by a designated

distance metric D(x0, xi). In the kNN, we first find a set of indices of k training samples,

Sk(x0) ⇢ {1, 2, . . . , N}, which are the k closest neighbors to the query point. Then, we predict a

class probability of the query point from the frequency of the class of the k-nearest neighbors

(voting estimator, Fix and Hodges (1951)),

bj(x0; ✓) = 1
k

’
i2Sk(x0)

I(yi = j),

or the inverse distance weighted frequency of the class of the k-nearest neighbors (inverse

distance weighting (IDW) estimator, Shepard (1968)),

bj(x0; ✓) =
Õ

i2Sk(x0)
w(x0, xi)I(yi = j)Õ

i2Sk(x0)
w(x0, xi)

, where w(x0, xi) =
1

D(x0, xi)
.

Typically, the Euclidean (L2) distance is used as the distance metric, i.e., D(x0, xi) = kx0 �

xik2. Besides, inputs may be better to be standardized to have mean zero and variance one

when units of the inputs are di�erent from each other. The distance metric can be a more

general distance measure like the Lp-distance or the Mahalanobis distance, and in the case of

categorical inputs, a distance measure like the Hamming distance may be more suitable for a

distance metric. Designing the distance metric in the kNN is di�cult as an appropriate distance

metric depends on the setting.

Although the kNN creates a highly flexible nonparametric estimator for classification, the

lack of the interpretability of the method discourages the use of the method in biomedical and
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clinical research except research related to the field of image recognition, where the kNN had

established an era by the invention of the tangent distance (Simard, LeCun, and Denker 1992).

1.2.4 Support vector machine

The support vector machine (SVM) is developed as an extension of the optimal separating

hyperplane (Boser, Guyon, and Vapnik 1992; Cortes and Vapnik 1995). The idea is to map the

inputs into a high-dimensional input space through some prespecified nonlinear mapping and

to construct an optimal separating hyperplane in the enlarged space. Although the SVM can

be extended to K-class classification or regression, the main focus of the model is on two-class

classification, with which I deal here. In the SVM literature, output space is usually defined as

Y = {�1, 1}, and I follow this convention.

First, consider an optimal separating hyperplane between two perfectly separable classes

(Rosenblatt 1958). Define a hyperplane L by {X : X
T✓ = 0, k✓k2 = 1}, where k✓k2 = 1 is for a

normalization, and a classification rule by

a(X; ✓) = sign[XT✓].

As the signed distance from a point X to the hyperplane L is X
T✓, the optimal separating

hyperplane that creates the biggest margin between the training points for two classes satisfies

arg max
{✓:k✓k2=1}

M s.t. 8i, yi(xT

i
✓) � M,

which is equivalent to

argmin
✓

k✓k2 s.t. 8i, yi(xT

i
✓) � 1.

The latter formulation is more convenient to solve as the norm constraint on ✓ is dropped and

M is eliminated. Now, the margin is formally defined as the area that satisfies |yi(xT

i
✓)|  M

under the normalization constraint k✓k2 = 1 and |yi(xT

i
✓)|  1 otherwise.

Next, suppose that the classes are linearly nonseparable. The optimal separating hyperplane

is redefined as the hyperplane that maximizes the margin, but allows for some points to be on the
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wrong side of the boundary of the margin subject to a given upper bound of the total proportional

amount of the slack, C:

arg max
{✓:k✓k2=1}

M s.t.

8>>>><
>>>>:
8i, yi(xT

i
✓) � M(1 � ⇠i) and ⇠i � 0,

Õ
N

i=1 ⇠i  C

,

which is equivalent to

argmin
✓

k✓k2 s.t.

8>>>><
>>>>:
8i, yi(xT

i
✓) � 1 � ⇠i and ⇠i � 0,

Õ
N

i=1 ⇠i  C

. (1.3)

Moreover, the solution of (1.3) can be shown to be equivalent to that of

argmin
✓

N’
i=1

max(1 � yi(xT

i
✓), 0) + �k✓k2

2,

where � is the hyperparameter reflecting the cost of the slack. The loss function L(Y, XT✓) =

max(1 �Y (XT✓), 0) is known as the hinge loss. It is clear that the problem also forms a class of

regularization problems (1.1). Given the hyperparameter �, the solution is

✓̂� =
1
2�

N’
i=1
↵̂iyi xi,

where

↵̂i =

8>>>>>>>><
>>>>>>>>:

0 if yi(xT

i
✓̂�) > 1 (samples correctly classified and outside the margin),

[0, 1] if yi(xT

i
✓̂�) = 1 (samples sitting on the boundary of the margin),

1 if yi(xT

i
✓̂�) < 1 (samples inside the margin or wrongly classified).
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Therefore, the estimated optimal separating hyperplane at � can be written as

X
T ✓̂� = 0

, 1
2�

N’
i=1
↵̂iyi X

T
xi = 0.

From the formula, you can see that the samples correctly classified and outside the margin do

not contribute to the prediction rule.

Finally, to enlarge the input space, substitute the transformed input vectors h(xi) for the raw

input vectors xi:

argmin
✓

N’
i=1

max(1 � yi(h(xi)T✓), 0) + �k✓k2
2 .

Then, the estimated generalized hyperplane at � is

h(X)T ✓̂� = 0

, 1
2�

N’
i=1
↵̂iyi h(X)T h(xi) = 0

, 1
2�

N’
i=1
↵̂iyiK(X, xi) = 0,

where K(X, X0) ⌘ h(X)T h(X0) is a type of function known as the kernel function, and the

resulting classification rule is

a(X; ✓̂�) = sign[ 1
2�

N’
i=1
↵̂iyiK(X, xi)].

It is known that the su�cient knowledge for the estimation of the SVM is the kernel function,

and the input transforming function h(X) is not necessarily required. The popular choices for
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the kernel function in the SVM literature are

Linear: K(X, X0) = X
T

X
0,

dth-degree polynomial: K(X, X0) = (1 + X
T

X
0)d,

Radial basis: K(X, X0) = exp(��kX � X
0k2

2),

Sigmoid: K(X, X0) = tanh(1X
T

X
0 + 2).

There are two features of the hinge loss that make the SVM robust to outliers. First, under

the hinge loss, samples correctly classified and outside the margin do not contribute to the

prediction rule. Second, the hinge loss gives a linear penalty rather than a quadratic penalty to

samples inside the margin or wrongly classified. Nonetheless, a squared hinge loss that gives a

quadratic penalty to the samples may improve the performance when the e�ect of the outliers is

negligible.

The SVM is extremely computationally intensive for the large sample size. Researchers

have developed an e�cient algorithm that is computationally feasible for the linear kernel SVM

(Rong-En et al. 2008). However, it is still challenging to employ other kernel functions in the

large sample size setting.

1.2.5 Penalized regression

As a natural consequence of the development of regularization techniques, researchers have

applied the regularization principle to the linear regression and created a penalized least squares

estimator:

argmin
✓

(
N’

i=1
(yi � x

T

i
✓)2 + �J(✓)

)
.

Penalized least squares methods using the L2-penalty and the L1-penalty as the regularization

term are called ridge regression (Hoerl and Kennard 1970) and the lasso (Tibshirani 1996),

respectively.

When the inputs are mutually independent and standardized to have mean zero and variance

one, the estimator of the coe�cient of the jth input of the ridge ✓̂Ridge

j
and that of the lasso ✓̂Lasso

j
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can be expressed by the corresponding OLS estimator ✓̂OLS

j
and the regularization coe�cient �:

8>>>><
>>>>:
✓̂Ridge

j
=
✓̂OLS

j

1+� ;

✓̂Lasso

j
= sign(✓̂OLS

j
){max(|✓̂OLS

j
| � �, 0)}.

The ridge regression does a proportional shrinkage, while the lasso shifts each OLS estimator by a

constant factor �, truncating at zero. The ridge regression cannot produce a parsimonious model

as it keeps all inputs in the model in the same way as the linear regression. On the other hand, the

lasso does both continuous shrinkage and automatic variable selection to obtain a parsimonious

model. The automatic variable selection is an attractive feature because researchers prefer a

simpler model which puts more light on the relationship between the output and inputs.

Although the estimator from the lasso appears to be interpretable like the linear regression,

the estimator is neither unbiased nor consistent, and it is not possible to interpret it as the OLS

estimator. Therefore, while the regression can make a valid inference for the e�ect of an input,

such inference is not possible in the standard penalized regression framework. Recently, some

researchers are pursuing valid inference methods for the e�ect of input in large p setting based

on the penalized regression framework (Belloni, Chernozhukov, and Hansen 2011; Belloni and

Chernozhukov 2013; Belloni, Chernozhukov, and Hansen 2014; Raskutti, Wainwright, and Yu

2011).

Zou and Hastie (2005) proposed a compromise between the ridge and the lasso, so called

elastic-net. The elastic-net uses a linear combination of the L2-penalty and the L1-penalty as

the regularization term:

J(✓) = ↵k✓k2
2 + (1 � ↵)k✓k1,

where↵ 2 [0, 1] is an additional hyperparameter which determines the degree of the compromise.

They argue that the prediction performance of the elastic-net is expected to be better than that

of the lasso if there is a group of variables among which the pairwise correlations are very high.

A penalized logistic regression estimator arises as an extension of penalized least squares
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methods to the logistic regression framework:

argmin
✓

"
N’

i=1
{� log byi (xi; ✓)} + �J(✓)

#
,

where

byi (xi; ✓) =
yi exp x

T

i
✓

1 + exp x
T

i
✓
+

1 � yi

1 + exp x
T

i
✓
.

The regularization term J(·) can be either of the L2-penalty (Zhu and Hastie 2004), the L1-penalty

(Shevade and Keerthi 2003), or the elastic-net penalty (Waldron et al. 2011).

1.2.6 Tree-based model

Morgan and Sonquist (1963) proposed a simple tree-based model that tries to automatically

select inputs that are crucial to predict an outcome and flexibly incorporate nonlinearity and

interactions of them. The idea is to split the input space into subgroups that can be expressed as

a leaf of a decision tree, and then assign a simple predictive value to each subgroup. Subgroups

are called leaves and nodes in the context of the tree-based model.

Classification and regression tree

A popular estimation method for a simple tree-based model called classification and regression

tree (CART) is introduced by Breiman et al. (1984). Consider the case of regression first. The

input space is split into M subgroups {Rm}M

m=1 and a constant response cm is assigned to each

subgroup as a predictive value for the subgroup inputs:

a(X; ✓) =
M’

m=1
cmI(X 2 Rm),

where ✓ =
�
{cm}M

m=1, {Rm}M

m=1
 
, M is a hyperparameter, and each subgroup Rm is defined by

a combination of simple decision rules. For example, a subgroup Rm can be defined as a set

of inputs that the jth input Xj is over s and the j
0th input Xj 0 is over s

0: Rm = {X : Xj >

s and Xj 0 > s
0}.

The estimation proceeds as follows. Define a pair of half-spaces into which the input space
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is divided by a hyperplane Xj = s:

R1( j, s) = {X |Xj  s} and R2( j, s) = {X |Xj > s}.

Then we seek a best splitting hyperplane that minimizes the total loss of the dataset given the

constant response rule:

argmin
j,s

8>><
>>:

min
c1

’
xi2R1( j,s)

L(yi, c1) +min
c2

’
xi2R2( j,s)

L(yi, c2)
9>>=
>>;
.

A typical loss function is the squared error loss for regression. Having found the hyperplane,

we partition the dataset into two regions by the hyperplane and repeat this splitting process on

each of the two regions. The process is repeated on all of the resulting regions to grow a tree. A

tree is stopped to grow when a designated minimum node size (e.g., ten) is reached. The final

tree ⌧0 is pruned using a cost-complexity criterion to find an optimal tree.

To state the cost-complexity criterion of the pruning procedure, some notations need to be

defined: a subtree ⌧ is defined to be any tree that can be obtained by pruning ⌧0; let |⌧ | denote

the number of leaves in the subtree ⌧; let ĉm be the solution that minimizes the loss in the mth

node:

argmin
cm

’
xi2Rm

L(yi, cm).

The cost-complexity criterion is defined using these notations with the regularization prin-

ciple (1.1):

C�(⌧) =
|⌧ |’

m=1

’
xi2Rm

L(yi, ĉm) + � |⌧ |,

where � is a hyperparameter reflecting the number of subgroups M . Though the loss function

in the criterion can be a di�erent loss function from that in the tree growing procedure, usually

it is the squared error loss as well. For a given value of �, one can show that there is a unique

subtree ⌧� that minimizes the criterion. In practice, we use the weakest link pruning to produce

a sequence of subtrees. In the weakest link pruning, we successively collapse the internal node

that produces the smallest per-leaf increase in a total loss until a single-node tree is produced.
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The subtree that minimizes the criterion in the sequence is known to be the optimal subtree ⌧�.

For K-class classification, the form of candidate functions becomes to

b(X; ✓) =
M’

m=1
pmI(X 2 Rm),

where ✓ =
�
{pm}M

m=1, {Rm}M

m=1
 

and pm = (pm0, pm1, . . . , pmk, . . . , pmK�1)T is a vector of the

conditional probability of the assignment to the K classes in node m. Practically, the estimator

of pmk , p̂mk , is the proportion of the class k observations in node m. We succesively seek

a hyperplane that minimizes the total loss of the dataset given the estimator of pm, p̂m =

(p̂m0, p̂m1, . . . , p̂mk, . . . , p̂mK�1)T , in the tree growing procedure. For example, the objective

function in the first splitting process is

argmin
j,s

8>><
>>:

’
xi2R1( j,s)

L(yi, p̂1) +
’

xi2R2( j,s)
L(yi, p̂2)

9>>=
>>;
.

A typical loss function is the log-loss for classification. The pruning procedure is conducted

with a loss function that suits classification as well: typically the log-loss again. Consequently,

the cost-complexity criterion is slightly changed from that of the procedure for regression,

C�(⌧) =
|⌧ |’

m=1

’
xi2Rm

L(yi, p̂m) + � |⌧ |,

but the remaining part of the procedure is the same.

Random forest

A problem with the simple tree-based model is their high variance of the estimated prediction

function. The hierarchical nature of the procedure (i.e., the e�ect of an error in the top split is

propagated down to all of the splits below it) and the lack of smoothness of the prediction surface

cause the high variance. Bootstrap aggregation or bagging (Breiman 1996) is a technique that

reduces the variance of an estimated prediction function. Bagging averages predictions that are

estimated over a collection of bootstrap samples which are generated from the dataset. If the

correlation of pairs of bagged predictions is not perfect, the variance of the bagging estimate is
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guaranteed to be smaller than that of the initial estimate. Bagging introduces randomness to the

predictions by the use of bootstrap samples and creates a set of predictions that are not perfectly

correlated with each other. As bagging works especially well for high-variance and low-bias

estimation methods, the power of the tree-based model is highly enhanced by using it.

The larger the correlation of pairs of bagged trees is, the more the benefit of the aggregation is

limited. The random forest (Breiman 2001) aims to improve the variance reduction property of

bagging by lowering the correlation between the trees. The random forest augments randomness

of the trees by randomly selecting ⇠  p of the inputs as candidates for splitting inputs for

each split in the tree growing procedure. The number of inputs selected for each split ⇠ is a

hyperparameter for the random forest. Breiman (2001) recommends the default value of bp/3c

for regression and bppc for classification for the choice of ⇠.

Although the hyperparameter for the tree size was the number of leaves in the CART, the

minimum node size or the depth of the tree is commonly used in the random forest. The hyper-

parameter is usually not tuned via the risk functional estimation to avoid a high computational

burden, and it is preset based on existing knowledge. The results are known to be fairly in-

sensitive to particular choices of the hyperparameter (Segal 2004), and Hastie, Tibshirani, and

Friedman (2009) evaluates that tuning it does not worth the cost.

Importance sampled learning ensemble

The idea in the gradient boosting machine (GBM, Friedman (2001)) and the stochastic gradient

boosting machine (SGBM, Friedman (2002)) is to de-correlate the trees more e�ciently than

bagging. As these methods are subsumed under the framework of the importance sampled

learning ensemble (ISLE, Friedman and Popescu (2003)), I introduce the framework here.

Regression and classification are explained together.

The procedure of the ISLE is two folds: a preparation of a finite dictionary of trees on which

the subsequent aggregation is based using the ISLE generator; an aggregation of the trees in

light of the regularization principle. Denote a prediction function of a tree with parameter � as

 ⌧�(X). The generator is designed to create trees that have a small correlation with each other.
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First, let

⇣0(X) =

8>>>><
>>>>:

argmin
c

Õ
N

i=1 L(yi, c) if regression,

1
N

Õ
N

i=1(I(yi = 0), I(yi = 1), . . . , I(yi = K � 1))T if K-class classification.

Then, iterate the next procedure for d = 1, . . . ,D. Draw a subsample of N⌘ (⌘ 2 (0, 1]) of

the dataset, typically with replacement if ⌘ = 1 and without replacement otherwise. Given

⇣d�1(X) and the subsample, we estimate a parameter �d of a tree  ⌧�d (X) that predicts an output

Y � ⇣d�1(X) from inputs X . The tree is appended to the dictionary as the dth basis function. At

the end of the round, update ⇣d(X) in the following manner:

⇣d(X) = ⇣d�1(X) + ⌫ ⌧�d (X),

where ⌫ is a hyperparameter for the learning rate of the ISLE generator.

ISLE generator e�ciently assembles su�ciently di�erent or de-correlated basis trees via the

randomness of subsampling and the learning of ⇣d(X). The more the subsamples are di�erent

from each other, the more the correlation among simple trees is reduced, and the larger the

learning rate, the more the procedure avoids a tree similar to those found before.

The aggregation of the trees in the dictionary is accomplished by the regularization technique

(1.1):

min
{�d}Dd=0

N’
i=1

L[yi, �0 +
D’

d=1
�d 

⌧
�d (X)] + �J(�).

The aggregation technique is called the post-processing, and Friedman and Popescu (2003)

recommends the use of the L1-penalty in it. Finally, we get a prediction function  ✓(X) in the

following form:

 ✓(X) = �0 +
D’

d=1
�d 

⌧
�d (X),

where ✓ = {{�d}D

d=0, {�d}D

d=1}.

There are five hyperparameters in the ISLE: a hyperparameter for the tree size, the number

of trees to be bagged D, the subsampling ratio for each tree ⌘, the learning rate ⌫, and the

regularization coe�cient for the post-processing �. The tree size is often calibrated by the depth
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of the tree. Hastie, Tibshirani, and Friedman (2009) suggests the depth to be six and states

that the tuning of the hyperparameter for the depth seldom provides a significant improvement

over just using six as the value of it. The number of trees to be bagged D is usually chosen to

minimize the estimator of the risk functional.

The basis function generating process of the ISLE is identical to that of the GBM and that of

the SGBM if the subsampling ratio ⌘ is one and otherwise, respectively. The di�erence between

the ISLE and the boosting machines are in the way that they assemble the basis functions. The

ISLE uses the regularization principle more directly than the boosting machines to overcome the

disadvantage that they overfit with a growing number of trees to be bagged. Friedman (2002)

recommends to set the subsampling ratio to be no more than a half and to be smaller for large

sample size: ⌘  1/2 and ⌘ ⇠ 1/
p

N .

The learning rate smaller than one provides regularization through shrinkage, and the rec-

ommended value is 0.05 and 0.1 for the GBM and the SGBM, respectively (Friedman 2001,

2002). Lastly, the regularization coe�cient for the post-processing � is chosen to minimize the

estimator of the risk functional.

1.2.7 Neural network

The neural network was first developed as a model for the human brain (McCulloch and Pitts

1943) and became famous as the basis of deep learning (Hinton, Osindero, and Teh 2006). The

modern formulation of a neural network with a back-propagation algorithm made the neural

network to be a computationally feasible method (Rumelhart, Hinton, and Williams 1986a,

1986b). The neural network attempts to capture nonlinear and interactive e�ects of inputs on

output through the hidden layer. As the parameter and the hyperparameter of the model become

highly complicated with multiple hidden layers, I concentrate on a single hidden layer neural

network here.

A hidden layer consists of derived features or hidden units Z = (Z1, Z2, . . . , ZM), where M

is a hyperparameter of the model. A derived feature is created from a linear combination of the

inputs and then the target function  ✓(X) is modeled as a function of a linear combination of
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the derived features: for regression, the model is represented as

8>>>><
>>>>:

a(X; ✓) = ⇢(ZT �);

Zm = �(XT↵m) for m = 1, . . . ,M,

where ✓ = {{↵m}M

m=1, �}, ⇢(·) is an output function, and�(·) is an activation function; for K-class

classification,

8>>>>>>>><
>>>>>>>>:

bk(X; ✓) = ⇢k(V0,V1, . . . ,VK�1) for k = 0, . . . ,K � 1;

Vk = Z
T �k for k = 0, . . . ,K � 1;

Zm = �(XT↵m) for m = 1, . . . ,M,

where ✓ = {{↵m}M

m=1, {�k}K�1
k=0 }, and {⇢k(·)}K�1

k=0 are output functions.

The output function is usually the identity function for regression, ⇢(ZT �) = Z
T �; and the

softmax function for classification, ⇢k(V) = e
Vk/ÕK�1

l=0 e
Vl . The activation function is usually

chosen to be the sigmoid, �(XT↵m) = 1/(1 + e
�X

T↵m).

The parameter ✓ is called weights in the context of the neural network, and we seek values

for them that make the model fit the dataset well. Generally, neural networks have too many

weights and overfit the data at the minimum of the empirical risk functional. Therefore, we apply

regularization principle to the weight estimation problem as well. The objective function for

the estimation of weights is in the form of the regularization problem (1.1). Typically, the loss

function is the squared error loss and the log-loss for regression and classification, respectively,

and the regularization is achieved via the L2-penalty. The regularization technique of using the

L2-penalty in the weight estimation is called weight decay.

The number of hidden units M is typically in the range of [5, 100], and the number tends

to be large if the number of inputs and the sample size is large. Although one can search for

the optimal number to minimize the estimator of the risk functional, it is most common to set a

reasonably large number of hidden units and shrink weights with an appropriate regularization

technique.

Note that as the neural network model is generally overparameterized, the identification of
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the weights is poor. This feature hampers the interpretability of the model and makes the model

di�cult to apply to biomedical and clinical research except research related to image recognition.

Therefore, the neural network is predominantly used for image recognition problems and mostly

developing as a method of image recognition (e.g., deep learning models). Using multi-hidden

layers with constraints such as local connectivity and weight sharing on the network, which

allow for more complex connectivity but fewer weights, improved the performance of the neural

network dramatically in the field of image recognition (LeCun 1989; LeCun et al. 1998).

Nevertheless, a multiple hidden layer neural network that suits the situation other than image

recognition is not yet sophisticated enough.
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Methods

This chapter is largely based on Hara et al. (2018) except for the section regarding statistical

methods.

2.1 Setting

The Japanese government provides a universal health insurance program for all registered

inhabitants. In addition, each employer is obliged by law to provide annual health screening to

its employees. In Japan, the examination rate of annual health screening provided by a company

is very high, 89% on average in 2012, especially with employees’ increasing age (Ministry of

Health Labour and Welfare 2012). Indeed, in the data I used, more than 80% of employees over

40 years old have undergone the health screening.

2.2 Data

Medical and pharmacy claims data combined with annual health screening results were obtained

from Japan Medical Data Center (JMDC). JMDC is a for-profit company that collects data from

contracting corporate health insurance programs, which mainly cover employees of large firms.

JMDC applies strict policies to protect the privacy of enrollees and medical providers, and all

private information that could identify enrollees and medical providers have been removed from

the data (Kimura et al. 2010).
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Claims data contain information on patients, including gender, birth month, and their di-

agnostic code, medical institutions, pharmacies, and medical treatments provided. Diagnostic

codes and medication codes are classified by the 2003 version of the International Classification

of Diseases and Related Health Problems, tenth revision (ICD-10) (WHO 2018a) and the 2016

version of the World Health Organization-anatomical therapeutic chemical (WHO-ATC) code

(WHO 2018b), respectively. Enrollees’ age was defined as their age in March 2018. Annual

health screening results include information on the results of the physical examination and the

blood test, whether fasting blood samples were collected, and the answer to a health-related ques-

tionnaire including questions for the usage of medications. The study protocol was approved by

the Institutional Review Board of the University of Tokyo (application number: 18-40).

2.3 Study population

The baseline study population for condition X (hypertension, diabetes, or dyslipidemia) was

defined as beneficiaries (1) who were enrolled in the claims database from 1 April 2016 to 31

March 2018 and whose health screening were sequentially conducted for fiscal year (FY) 2016

and FY2017 (n = 1,040,351), (2) with complete data on self-reported use of blood pressure-

lowering drugs, hypoglycemic drugs, and lipid-lowering drugs for FY2016 and FY2017 (n =

944,717), (3) who in FY2017 visited a clinic/hospital that mainly specializes in internal medicine

(n = 631,731), and (4) with complete data on examination results required for the gold standard

of condition X mentioned later for FY2016 and FY2017 (hypertension, n = 631,289; diabetes,

n = 152,368; dyslipidemia, n = 614,434) (Fig. 1).

Employees at high-risk workplace environments (e.g., late-night work, frequent exposure to

hazardous substances) are required to undergo a special health screening every six months in

addition to the regular annual screening. For enrollees who received screening more than once

a year (about 2.9% of observations), I adopted the results of the regular health screening.

In similar studies to date, chart review has often been the source of the gold standard, with

the population to calculate association measures constrained to those who visited primary care

hospitals (Wilchesky, Tamblyn, and Huang 2004; Bullano et al. 2006; Quan et al. 2009). To

make the present study comparable to past research, I restricted the baseline study population to
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those who at least once in the FY had visited a clinic/hospital that mainly specializes in internal

medicine. Such medical institutions have the function of primary care hospitals in Japan.

2.4 Gold standard

I constructed a gold standard from the results of the annual health screening and discussed

algorithms to identify patients’ with hypertension, diabetes, and dyslipidemia from medical

and pharmacy claims data. I consulted with experts and decided to use two distinct medical

examination reports to construct diagnostic criteria for these three conditions. Thus, I used two

consecutive FYs (FY2016 and FY2017) of the health screening results to construct the gold

standard.

I consulted with experts and defined a gold standard to diagnose each condition in compli-

ance with Japanese guidelines (The Japanese Society of Hypertension (Eds.) 2014; The Japan

Diabetes Society (Eds.) 2016; Japan Atherosclerosis Society (Eds.) 2013): for hypertension (1)

systolic blood pressure (sBP) � 140 mmHg and/or diastolic blood pressure (dBP) � 90 mmHg

for two straight years, and/or (2) self-report of taking blood pressure-lowering drugs in at least

one of the two years; for diabetes, (1) hemoglobin A1c (HbA1c) � 6.5% in at least one of the

two years and fasting blood glucose (FBG) � 126 mg/dL in at least one of the two years, (2) FBG

� 126 mg/dL for two straight years, and/or (3) self-report of taking hypoglycemic drugs in at

least one of the two years; and for dyslipidemia, (1) low-density lipoprotein cholesterol (LDL-C)

� 140 mg/dL for two straight years, (2) high-density lipoprotein cholesterol (HDL-C)  40

mg/dL for two straight years, (3) triglyceride (TG) � 150 mg/dL for two straight years, and/or

(4) self-report of taking lipid-lowering drugs in at least one of the two years. Hara et al. (2018)

compared the self-report of medication usage with the pharmacy claims-based drug usage and

demonstrated that the reliability of the self-report was satisfactorily high.

2.5 Claims-based algorithm

The claims-based algorithm (CBA) was compared with the gold standard. When one thinks of

a study focusing on one’s target condition, it is often convenient to tabulate the data with an
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individual/year in one row and prepare a variable which indicates that the individual has the

condition in the year. Thus, for practical purposes, CBAs were based on 1-year medical and

pharmacy claims data. I used FY2017 claims data as the source of the CBA and compared it

with the diagnosis derived from the gold standard based on health screening results of FY2016-

FY2017. Utilization of claims data corresponding to the latter health screening year allows the

capture of individuals with new onset of disease. However, considering that the primary focus

of this study is chronic diseases, the incidence rate is deemed to be considerably lower than the

prevalence, with a subsequent minimal decrease in sensitivity when the former health screening

year is used instead. Hara et al. (2018) conducted analyses with changing the year of claims

data, which was the basis of the CBAs, and found that the sensitivity decreased with the usage

of the data corresponding to the former health screening year as expected. Although there was a

small sensitivity improvement by using 2-year claims, use of 2-year claims is a trade-o� with the

sensitivity increase and the convenience of the variable which indicates the individual’s yearly

medical condition. Considering these aspects, I concluded that one could practically use 1-year

claims data corresponding to the latter health screening year for developing CBAs.

2.5.1 Conventional methods

The CBA research so far has required a knowledge-based condition-specific CBA construction

procedure. Typically, researchers selected input variables that are likely to be associated with

their target condition and decided how to construct the CBA with the selected variables based

on their experience or existing knowledge. They needed to assess a large collection of candidate

CBAs to find out a fine-tuned one and iterate the procedure for each target condition. I define

conventional methods as methods that select input variables and decide how to incorporate

variables into the CBA by hand.

I first developed three case-finding algorithms for each condition. Patients meeting the

following selection rule were classified as “test-positive” for condition X (hypertension, diabetes,

or dyslipidemia): (1) the diagnostic code corresponding to condition X is found in the claims

at least once (diagnostic code-based CBA); (2) the medication code corresponding to condition

X is found in the claims at least once (medication code-based CBA), and (3) the diagnostic
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code and the medication code corresponding to condition X are both found in the claims data

at least once (combined CBA). The diagnostic codes corresponding to hypertension, diabetes,

and dyslipidemia were, respectively, defined as ICD-10 codes I10-I15, E10-E14, and E78. The

medication codes corresponding to hypertension, diabetes, and dyslipidemia were, respectively,

defined as WHO-ATC codes C08 (calcium channel blockers) and C09 (agents acting on the

renin-angiotensin system), A10 (drugs used in diabetes), and C10 (lipid-modifying agents). I

designate these algorithms as baseline CBAs in the conventional methods.

Next, I examined the e�ects of slightly modifying the baseline selection rule. I changed the

threshold for each algorithm by requiring the presence of two or three diagnostic and/or medi-

cation codes to consider a patient positive. I counted observations of diagnostic or medication

codes on claims as one occurrence when information was accrued from the same month. Thus,

the presence of two or three codes indicates the existence of the codes in two or three distinct

months. In addition, I broadened the definition of medication codes for hypertension to include

C02 (antihypertensive drugs), C03 (diuretic drugs), and C07 (beta-blocking agents) as some

physicians may prescribe these drugs for blood-pressure lowering as well.

2.5.2 Statistical methods

Statistical methods such as regression and statistical learning methods can foster the development

of CBAs. However, regression and some statistical learning methods are poor at dealing with

sparse high-dimensional input variables. Consequently, they require a variable selection before

the implementation. I applied (1) regression model, (2) discriminant analysis, and (3) generalized

additive model (GAM) to a dataset that input variables were selected according to each condition.

To bypass a somewhat cumbersome task of selecting variables that are likely to be associated

with each target condition and constructing a satisfactory CBA from the selected variables, I

devised methods by which a CBA is fine-tuned regardless of the level of knowledge and without

modification of the CBA construction procedure across di�erent conditions.

I applied (1) logistic regression, (2) k-nearest neighbor (kNN), (3) support vector machine

(SVM), (4) penalized regression, (5) tree-based model, and (6) neural network to a dataset that

input variables were chosen to be common to all target conditions. Although regression methods
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can be used when the number of the input variables is smaller than the sample size and the input

variables with perfect colinearity were trimmed in advance, their predictive property is expected

to be poor. To examine this point, I included a logistic regression to the models. The statistical

learning methods elected are capable of handling the sparse high-dimensional input variables.

2.6 Statistical analysis

I quantified the goodness of CBAs by association measures, sensitivity, specificity, positive

predictive value (PPV), negative predictive value (NPV), receiver operating characteristic (ROC)

curve, and area under the ROC curve (AUC). I defined sensitivity, specificity, PPV, and NPV, as

follows: sensitivity was defined as the proportion of enrollees who were identified as having a

disease by the CBA among those who were assessed as having that disease by the gold standard;

specificity was defined as the proportion of enrollees who were identified as not having a disease

by the CBA among those who were assessed as not having that disease by the gold standard;

PPV was defined as the proportion of enrollees who were assessed as having a disease by the

gold standard among those who were identified as having that disease by the CBA; and NPV

was defined as the proportion of enrollees who were assessed as not having a disease by the gold

standard among those who were identified as not having that disease by the CBA.

Before the analysis, the dataset was randomly divided into three parts: a test set (25%), a

training set (50%), and a validation set (25%). Association measures of the CBA were assessed

using the test set. Note that the test set was never used for the parameter or the hyperparameter

estimation.

As the computational burden of some statistical methods without a condition-specific variable

selection was prohibitive for large sample size, I randomly drew 25% of the enrollees for the

analysis of hypertension and dyslipidemia except for conventional methods. Although the

analysis with a condition-specific variable selection can be accomplished by the full sample

size, it is also conducted using the same 25% random sample to make the results comparable to

the analysis without it.

All statistical analysis was conducted using R version 3.5.1 (R Core Team 2018). R code

will be available at https://github.com/harakonan/research-public/tree/master/cba after the pub-
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lication of the study.

2.6.1 Conventional methods

The sensitivity, specificity, PPV, and NPV were estimated for the CBA derived from the con-

ventional methods, and 95% confidence intervals (CIs) for them were calculated using exact

binomial confidence limits (Collet 1999). I calculated the association measures and 95% CIs

for the association measures using the epiR package (Stevenson et al. 2018).

Sensitivity analysis for conventional methods

In order to evaluate to what extent baseline CBAs in conventional methods is applicable to a wide

range of populations, I implemented a multipronged strategy for sensitivity analysis with respect

to the underlying study population. At first, the following study populations were considered:

(1) enrollees who had visited any clinic/hospital at least once in FY2017; and (2) all enrollees

including those who had not visited any clinic/hospital in FY2017. An individual’s health

condition cannot be identified from the claims data unless they have visited a clinic/hospital.

Moreover, those who had not visited a clinic/hospital which is primarily providing internal

medicine seem to have a low possibility of being diagnosed with hypertension, diabetes, and/or

dyslipidemia. Consequently, I predict that the sensitivity will decrease by this study population

expansion. Next, I examined the change in association measures by focusing on a high-prevalence

population: enrollees aged 50 years or older in the baseline study population.

Additionally, to take into account the possibility of underdiagnoses of our elected gold stan-

dard, sensitivity analysis regarding the gold standard was conducted as well. As hypertension,

diabetes, and dyslipidemia can be diagnosed by a single physical or laboratory examination,

there is a possibility that enrollees were underdiagnosed with the gold standard. I relaxed the

criteria of the gold standard accordingly: the criterion of the physical examination part of hyper-

tension was modified to sBP � 140 mmHg or dBP � 90 mmHg in at least one of the two years;

the criterion of the laboratory examination part of diabetes was modified to HbA1c � 6.5% in at

least one of the two years; and the criterion of the laboratory examination part of dyslipidemia

was modified to LDL-C � 140 mg/dL, HDL-C  40 mg/dL, or TG � 150 mg/dL in at least one
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of the two years. A more extensive collection of sensitivity analysis than this dissertation was

analyzed and discussed elsewhere (e.g., the paper used claims-based medication data instead of

self-reports in the gold standard) (Hara et al. 2018).

2.6.2 Statistical methods

All association measures were calculated for the CBA derived from statistical methods. A

prediction function needs to be derived from the statistical model to calculate association

measures. As the current problem is a two-class classification problem, I estimated a prediction

function that outputs the score of the propensity for having a disease given a set of input variables.

The outcome variable in hand is a binary indicator of having a disease that is assessed by the

gold standard.

If the model involves a hyperparameter to be tuned, the training set and the validation set

were used for the tuning. For each candidate value of the hyperparameter, an estimation of the

parameter of the model is conducted with the training set. Given the estimated parameter, the

AUC of the model is computed using the validation set. Then, the hyperparameter is chosen to

be the value that maximizes the AUC. If computationally feasible, tenfold cross-validation with

a combined set of training and validation set (simply “combined training set” in what follows)

was used to estimate the expected value of the AUC. After the hyperparameter determination,

the combined training set was used to estimate parameters for the prediction function. When no

hyperparameter tuning is required, the combined training set was used to estimate parameters

in the prediction function from the beginning.

Provided an estimated prediction function from the model, an ROC curve was drawn from

the scores and the matched observed outcome values as the threshold of considering a patient

positive is moved over the range of all possible scores. The AUC was calculated from the

resulting ROC curve, and 95% CI for the AUC was calculated with Delong’s method (DeLong,

DeLong, and Clarke-Pearson 1988).

In the end, a representative point of sensitivity and specificity on the ROC curve is chosen

based on the Youden index (Youden 1950). The Youden index reflects the intention of minimizing

misclassification rates and is considered to be more clinically meaningful compared to the other
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common method in which the point on the ROC curve closest to the upper left corner is

chosen (Perkins and Schisterman 2006). The PPV and NPV were calculated according to

the representative point. I calculated 95% CIs for the sensitivity, specificity, PPV, and NPV

were calculated with 200 bootstrap resampling and the averaging methods described by Fawcett

(2006). I drew the ROC curve and calculated the association measures and 95% CIs for the

association measures using the pROC package (Robin et al. 2011).

I did not take into account the uncertainty of the initial prediction function estimation

procedure in the 95% CIs for the association measures. As the final product of this study is a

particular algorithm to find out individuals with a target disease, the algorithm or the prediction

function estimated in this study is assumed to be as it is, and the uncertainty of the prediction

function estimation procedure is not a concern. If a future study begins from the prediction

function estimation instead of just using the prediction function provided in this study, the 95%

CIs may be biased.

Statistical methods with a condition-specific variable selection

I selected two set of input variables for the regression model: one that mimics the input variables

used in the conventional methods, the number of observations of each of the diagnostic code and

the medication code (model 1); another that examines the e�ect of incorporating demographics,

age and gender besides the input variables selected in model 1 (model 2).

Note that the maximum possible number of the variable regarding the diagnostic/medication

code is twelve as I derived CBAs based on 1-year medical and pharmacy claims data. I refer to the

dataset used for model 2 as a “condition-specific dataset” in what follows. The condition-specific

dataset was used for the discriminant analysis and the GAM.

Regression model

The outcome variable was regressed on the selected input variables to generate a prediction

function. Linear and logistic regressions were performed for model 1 and model 2. The analysis

of the logistic regression was implemented by the mnlogit package (Hasan, Wang, and Mahani

2016).
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Discriminant analysis

Three types of discriminant analysis were conducted: linear discriminant analysis (LDA, Fisher

(1936)); flexible discriminant analysis (FDA, Hastie, Tibshirani, and Buja (1994)); and penal-

ized discriminant analysis (PDA, Hastie, Buja, and Tibshirani (1995)). Multivariate adaptive

regression splines of Friedman (1991) with the second degree of interaction were used as the

basis function in the FDA. In the PDA, a linear basis with the L2-penalty was used, and the regu-

larization coe�cient was determined by cross-validation. Posterior class probabilities based on

a Gaussian assumption described by Hastie, Tibshirani, and Buja (1994) were used to generate

a prediction function. The discriminant analysis was conducted by the mda package (Hastie

et al. 2017).

Generalized additive model

The additive logistic regression model with a cubic smoothing spline for each input variable

except gender was used in the generalized additive model (GAM) (Hastie and Tibshirani 1986,

1990). The hyperparameter, the degrees of freedom for each smoothing spline, was set to the

same value for all splines. I selected three values for the degrees of freedom, four, six, and eight,

to generate three GAM prediction functions. The analysis of the GAM was implemented by the

gam package (Hastie 2018).

Statistical methods without a condition-specific variable selection

A dataset that consists of age, gender, and all ICD-10/WHO-ATC codes with a letter followed

by two digits as input variables was set up. This dataset can be constructed without prior

knowledge about the relationship between diagnostic/medication codes and the target condition

and can be used regardless of the target condition. I refer to the dataset as a “general dataset” in

the following.

Logistic regression

A logistic regression model was fitted to the dataset that was trimmed properly. The trimming

was applied to the combined training set of the general dataset as it was used for the parameter
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estimation of the logistic regression model.

At first, input variables that provide no information, i.e., the value of the input variable was the

same for all observations, were removed. Then, the input variables that can be written as a linear

combination of other input variables were removed. Theoretically, the dataset after these two

trimming practices can be used to generate a prediction function. Nevertheless, the convergence

of the estimation procedure can be very slow if the correlation between an input variable and

some linear combination of other input variables is too high. Hence, I also removed the input

variables that were highly correlated with some linear combination of other input variables to

sidestep an excessively long computational time. Although this additional trimming practice

is frequently used to deal with the model that is di�cult to estimate, the practice can render

a better predictive property to the model through a variance reduction of the estimator of the

remaining parameters. Consequently, the resulting association measures can be overestimated.

The following statistical learning methods internally achieve a sort of dimension reduction in

the input space and proficiently get around these issues.

k-nearest neighbor

The Euclidean distance with raw or standardized (i.e., re-scaled to have mean zero and vari-

ance one) input variables was adopted as a distance metric for the kNN. The number of the

nearest neighbors to be counted, k, was optimized using the validation set. The predicted class

probabilities that were computed from (1) the frequency of the class of the k-nearest neighbors

(vote, Fix and Hodges (1951)) and (2) the inverse distance weighted frequency of the class of

the k-nearest neighbors (IDW, Shepard (1968)) composed a prediction function. The analysis

of the kNN was implemented by the fastknn package (Pinto 2018).

Support vector machine

A linear basis function with a hinge or squared hinge loss was adopted in the SVM (Cristianini

and Shawe-Taylor 2000). The cost parameter was optimized using the validation set. Decision

values (i.e., the distance of the point from the hyperplane) made up a prediction function. The

analysis of the SVM was implemented by the LiblineaR package (Helleputte 2017).
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Penalized regression

From the penalized regression, logistic regressions with the L2-penalty (logistic ridge, Zhu and

Hastie (2004)), the L1-penalty (logistic lasso, Shevade and Keerthi (2003)), and the elastic-net

penalty (logistic elastic-net, Waldron et al. (2011)) were applied. The regularization coe�cient

and the elastic-net mixing parameter were determined by cross-validation. The analysis of the

penalized regression model was implemented by the glmnet package (Friedman, Hastie, and

Tibshirani 2010).

Tree-based model

Two types of tree-based models were applied: the random forest (Breiman 2001) and the

importance sampled learning ensemble (ISLE, Friedman and Popescu (2003)). The minimum

node size was set to ten for each tree, and two-hundred trees were bagged in the random forest.

The number of variables selected for each split was first set to the value recommended by

Breiman (2001), bppc, where p is the number of input variables, and then tuned using the

validation set. I grew a probability forest as in Malley et al. (2012) to generate a prediction

function. The analysis of the random forest was implemented by the ranger package (Wright

and Ziegler 2017).

There are five hyperparameters in the ISLE: a hyperparameter for the tree size, the subsam-

pling ratio for each tree, the learning rate, the number of trees to be bagged, and the regularization

coe�cient for the post-processing. I adopted the depth of the tree as the hyperparameter for the

tree size and fixed it to be six as is recommended by Hastie, Tibshirani, and Friedman (2009).

The ISLE can be primarily divided into two according to the subsampling ratio for each tree:

the basis function generating process of the ISLE is identical to that of the gradient boosting

machine (GBM, Friedman (2001)) and that of the stochastic gradient boosting machine (SGBM,

Friedman (2002)) if the subsampling ratio is one and otherwise, respectively. Denote the ISLE

with the subsampling ratio equals to one and less than one by ISLE-GBM and ISLE-SGBM,

respectively.

For the ISLE-GBM, I selected the learning rate to be 1 (i.e., no shrinkage in the learning

process of the ISLE generator) and 0.05 (the value recommended for the GBM by Friedman
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(2001)). For the ISLE-SGBM, I fixed the learning rate to be 0.1, the value recommended for the

SGBM by Friedman (2002), and selected the subsampling ratio to be 0.5 and 0.1.

The remaining two hyperparameters, the number of trees to be bagged and the regularization

coe�cient, were determined by cross-validation. In particular, for a given value of the regular-

ization coe�cient, the basis function generating process was stopped if the cross-validation AUC

did not improve for three basis function generating rounds, and the value with the maximum

cross-validation AUC was chosen as the regularization coe�cient for the prediction function.

The L1-penalty was adopted in the post-processing as is recommended by Friedman and Popescu

(2003). The analysis of the ISLE was implemented by the xgboost package (Chen and Guestrin

2016).

Neural network

A single hidden layer neural network was applied with a di�erent number of hidden units: five,

ten, and twenty. All hidden units were fully connected with the nodes in the input and output

layer. Weight decay was employed for the regularization of parameters, and the regularization

coe�cient of it was tuned using the validation set. The analysis of the neural network was

implemented by the nnet package (Venables and Ripley 2002).
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Results

3.1 Summary statistics

Table 1 tabulates summary statistics of 944,717 enrollees’ characteristics and health screening

results for each fiscal year. The mean age was 48.0 years (standard deviation ± 10.4 years).

More than 80% of people received fasting blood tests. The proportion of enrollees visiting

clinics/hospitals during the year was 85% for any clinics/hospitals and 67% for the primary care

clinics/hospitals. Blood pressure, FBG, HbA1c, LDL-C, and TG values have increased from

FY2016 to FY2017.

To summarize the input variables regarding diagnostic/medication codes in the condition-

specific dataset, I drew a probability mass function of the number of observations of diagnos-

tic/medication code corresponding to hypertension, diabetes, and dyslipidemia for the baseline

study population (Figure 2). The proportion of enrollees whose claims contain a diagnos-

tic/medication code corresponding to hypertension, diabetes, and dyslipidemia was 24%/21%,

14%/7%, and 25%/15%, respectively.

Next, I summarized the input variables regarding diagnostic/medication codes in the general

dataset. For each two-digit ICD-10/WHO-ATC code, the proportion of enrollees whose claims

contain the code at least once was computed for the baseline study population. Cumulative

distribution of the computed proportion was tabulated separately for ICD-10 codes and WHO-

ATC codes (Table 2). The count (percentile) column tabulates the number (fraction) of two-digit

ICD-10/WHO-ATC codes that the proportion of enrollees whose claims contain the code at least
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once is below the value in the proportion column.

The numbers of ICD-10 codes and WHO-ATC codes appeared in the general dataset for

the baseline study population were 1333 and 92, respectively. Nearly 90% of ICD-10 codes

appeared in the dataset were only observed for less than 1% of enrollees, and more than half

of WHO-ATC codes appeared in the dataset were observed for less than 5% of enrollees. As

a whole, the input variables in the general dataset were sparse and high-dimensional: a small

fraction of the entries of the input variables was non-zero, and the number of the input variables

were over 1400.

3.2 Conventional methods

Table 3A to 3C report the association measures and their 95% CIs for the CBAs derived

from the conventional methods according to hypertension (Table 3A), diabetes (Table 3B), and

dyslipidemia (Table 3C). As the test set (25% of the baseline study population of each condition)

was used in the calculation of the association measures, the sample size was 157,822, 38,092,

and 153,608 for hypertension, diabetes, and dyslipidemia, respectively. For them, the prevalence

which was determined by the gold standard for each condition was 25.4%, 8.3%, and 38.7% for

hypertension, diabetes, and dyslipidemia, respectively.

In the baseline diagnostic code-based (combined) CBA, the sensitivity, the specificity, PPV,

and NPV were 80.4%, 95.1%, 84.9%, and 93.4% (74.4%, 98.1%, 93.1%, and 91.8%) for

hypertension, 91.1%, 92.8%, 53.4%, and 99.1% (79.2%, 99.6%, 94.7%, and 98.2%) for diabetes,

and 49.2%, 90.1%, 75.8%, and 73.7% (35.8%, 97.0%, 88.2%, and 70.5%) for dyslipidemia.

When increasing the threshold of the number of observations of diagnostic and/or medication

codes required to consider a patient positive, the sensitivity and NPV decreased, whereas the

specificity and PPV increased. The direction of the change of the association measures was the

same if alternative medication codes were used for hypertension.
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Sensitivity analysis for conventional methods

Table 4A to 4C present the sample size, the prevalence, the association measures, and their 95%

CIs of each sensitivity analysis for the baseline CBA according to hypertension (Table 4A),

diabetes (Table 4B), and dyslipidemia (Table 4C). The sensitivity decreased when the study

population was expanded to include all people (hypertension, 66%-71%; diabetes, 74%-85%;

dyslipidemia, 28%-38%) and increased when the study population was constrained to enrollees

aged 50 years or older (79%-84%; 80%-92%; 45%-58%). The sensitivity decreased when the

criteria in the gold standard for each condition were relaxed (58%-64%; 73%-87%; 26%-38%).

3.3 Statistical methods

Statistical methods with a condition-specific variable selection

Table 5A to 5C show the association measures and their 95% CIs for the CBAs derived from

the statistical methods with a condition-specific variable selection according to hypertension

(Table 5A), diabetes (Table 5B), and dyslipidemia (Table 5C). Figure 3A to 3C display the ROC

curve for the corresponding prediction functions (hypertension, Figure 3A; diabetes, Figure 3B;

dyslipidemia, Figure 3C).

The AUC of the regression model increased by adding the demographics to the input

variables: hypertension, the AUC of model 1 (model 2), .895-.897 (.924-.925); diabetes, .946-

.947 (.958-.962);dyslipidemia, .709-.710 (.738-.739). The AUC of the discriminant analysis

was .928-.929 for hypertension, .963 for diabetes, and .758 for dyslipidemia. The AUC of the

GAM was .925 for hypertension, .962 for diabetes, and .739-.746 for dyslipidemia.

The model with the highest AUC, the GAM with eight (six) degrees of freedom for hy-

pertension and diabetes (dyslipidemia), achieved the following association measures at the rep-

resentative coordinate on the ROC curve: hypertension, sensitivity 81.4%, specificity 95.1%,

PPV 85.0%, NPV 93.7%; diabetes, 90.8%, 93.5%, 55.7%, 99.1%; dyslipidemia, 49.6%, 90.6%,

77.0%, 73.9%.
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Statistical methods without a condition-specific variable selection

Table 6A to 6C show the association measures and their 95% CIs for the CBAs derived from

the statistical methods without a condition-specific variable selection according to hypertension

(Table 6A), diabetes (Table 6B), and dyslipidemia (Table 6C). Figure 4A to 4C display the ROC

curve for the corresponding prediction functions (hypertension, Figure 4A; diabetes, Figure 4B;

dyslipidemia, Figure 4C).

The AUC of the logistic regression was .915 for hypertension, .936 for diabetes, and .743 for

dyslipidemia. The AUC of the kNN with raw (standardized) input variables was .914-.915 (.855-

.856) for hypertension, .942 (.888-.889) for diabetes, and .739 (.677-.680) for dyslipidemia. The

AUC of the SVM was .914-.919 for hypertension, .944-.950 for diabetes, and .724-.749 for

dyslipidemia.

In the penalized regression, the AUC of the logistic ridge (the logistic lasso and the logistic

elastic-net) was .893 (.923-.924) for hypertension, .930 (.961) for diabetes, and .725 (.748-.753)

for dyslipidemia. In the tree-based model, the AUC of the random forest (the ISLE) was .923

(.928-.930) for hypertension, .958-.960 (.963-.965) for diabetes, and .760-.761 (.767-.772) for

dyslipidemia. The AUC of the neural network was .910-.914 for hypertension, .919-.939 for

diabetes, and .739-.745 for dyslipidemia.

The model with the highest AUC, the ISLE-GBM with a shrinkage in the learning process for

all conditions, achieved the following association measures at the representative coordinate on

the ROC curve: hypertension, sensitivity 81.5%, specificity 95.0%, PPV 85.0%, NPV 93.7%;

diabetes, 90.3%, 94.1%, 58.2%, 99.1%; dyslipidemia, 50.1%, 90.6%, 77.2%, 74.1%.
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Disscusion

Using health screening results as the source of the gold standard, I focused on the CBA for

identifying patients with three common chronic medical conditions, hypertension, diabetes, and

dyslipidemia, and demonstrated (1) the association measures of the CBAs derived from the

conventional methods across a large and wide range of populations, and (2) the association

measures of the CBAs derived from statistical methods with and without a condition-specific

variable selection.

4.1 Conventional methods

I begin a discussion from the baseline CBAs in the conventional methods as a benchmark. For

hypertension, all association measures were already acceptably high in diagnostic code-based

CBA, and the specificity and PPV were boosted while maintaining the sensitivity around 75% in

combined CBA. For diabetes, combined CBA discriminated diabetic patients from nondiabetic

individuals accurately while diagnostic code-based CBA fell short of a satisfactory level of the

PPV. In contrast to the CBAs for hypertension and diabetes, I could not achieve a satisfactorily

high level of the sensitivity for dyslipidemia in any baseline CBA.

For hypertension and diabetes, the association measures obtained in this research were overall

higher than those obtained in North American studies (Rector et al. 2004; Robinson et al. 1997;

Wilchesky, Tamblyn, and Huang 2004; Bullano et al. 2006; Quan et al. 2009; Tessier-Sherman

et al. 2013). The studies all included sensitivity and specificity of hypertension, and no algorithm
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reached the sensitivity and specificity over 80% and 95% simultaneously. Likewise, no algorithm

reached the sensitivity around 80% and specificity above 95% simultaneously among the three

studies focusing on diabetes (Rector et al. 2004; Robinson et al. 1997; Wilchesky, Tamblyn,

and Huang 2004). The fact indicates that research using Japanese claims data can find out the

patients with hypertension and those with diabetes accurately, and the findings from the research

are credible.

The direction of the change of the association measures when moving from diagnostic code-

based CBA to combined CBA and when increasing the threshold in the CBA was the same: the

sensitivity and NPV decrease, and the specificity and PPV increase with the change. However,

the magnitude of the change of the threshold was small compared to the change of the code

to use in the CBA. The increase of the threshold triggered a sizable sensitivity decrease and a

specificity increase in the past study which investigated the e�ect of the change of the threshold

(Bullano et al. 2006). The relatively small change in this research is possible because, in Japan,

diagnostic codes tend to be maintained in the system once they are registered in the claims

system. Additionally, the high frequency of medical institution visits in Japan may further

attenuate the impact of the threshold change.

As I expanded the study population to include all enrollees from the baseline study population,

the sensitivity decreased. Because enrollees who had not visited any clinic/hospital in FY2017

yielded no claims in the year, there is an increase in the number of enrollees whose corresponding

condition cannot be assessed using CBAs by construction. The decrease of the sensitivity was

mild for hypertension (74%-80% to 66%-71%) and diabetes (79%-91% to 74%-85%), while the

decrease was sizable for dyslipidemia despite the low starting point (36%-49% to 28%-38%). I

thus speculate that most of those with hypertension or diabetes are visiting medical institutions,

whereas only a fraction of those with dyslipidemia is visiting medical institutions. This may

be because the consequence of dyslipidemia is less noticeable than those of hypertension and

diabetes in Japan.

Based on the considerations so far, I make a proposal for the suitable CBA among conven-

tional methods for each condition. There are largely three types of studies: (1) studies that lay

weight on the sensitivity and PPV, e.g., studies for estimating prevalence; (2) studies that require
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both high PPV and high NPV, e.g., studies that compare people with and without the target

condition; and (3) studies that attach importance only on the PPV ,e.g., studies that require an

accurate identification of patients with the target condition. In the case of hypertension, it would

be better to use diagnostic code-based CBA in the first category and combined CBA in the last

category. There is a trade-o� between the PPV and NPV in selecting diagnostic code-based

CBA or combined CBA in the second category. Next, in the case of diabetes, I recommend

the use of combined CBA in any study category as the PPV of diagnostic code-based CBA

is unsatisfactory low. Lastly, in the case of dyslipidemia, because the sensitivity and NPV is

unsatisfactory low for any CBA, the use of any CBA in the first and second categories cannot

be justified. Thus, I recommend the use of combined CBA to obtain high PPV and conduct

research in the last category. Besides, in all conditions, one can obtain even higher PPVs by

increasing the threshold of the number of observations of diagnostic and medication codes used

to consider a patient positive in the CBA.

4.2 Statistical methods

Statistical methods with a condition-specific variable selection

The AUC of the regression model with the diagnostic/medication code was augmented by adding

age and gender to the input variables. Age and gender are known to a�ect association measures

of CBAs for various conditions (Muhajarine et al. 1997; Freeman et al. 2000; Taylor, Fillenbaum,

and Ezell 2002; Nattinger et al. 2004; Gold and Do 2007; Østbye et al. 2008; Quan et al. 2009;

Kawasumi et al. 2011; Walraven and Colman 2016). As the sensitivity analysis for a high age

population implicates, age seems to be an important factor by which the association measures

are a�ected in this study as well. Thus, the rise of the AUC can be understood reasonably.

The consideration of nonlinearity and interactions within the selected input variables using

the discriminant analysis and the GAM improved the AUC for dyslipidemia but not for hyper-

tension and diabetes. Increasing the complexity of the model did not contribute to an additional

performance gain except for the FDA for dyslipidemia. It seems to be di�cult to boost an already

high level of the AUC by devising the nonlinearity and interactions of the input variables in the
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model.

Statistical methods without a condition-specific variable selection

The use of the general dataset rather than the condition-specific dataset degraded the AUC of the

logistic regression but for dyslipidemia. The inconsistency of the trend of the AUC demonstrates

the trade-o� between the accuracy and the variance of the prediction function. When the number

of the input variables of the prediction model becomes large, there is a potential accuracy gain

from the use of rich information and a possibility of a variance increase due to the variance

inflation of the parameter estimates. If the factors of being diagnosed as the target condition

are successfully captured in the condition-specific dataset (i.e., a high AUC is achieved by the

condition-specific dataset), a regression method with the general dataset su�ers from an accuracy

deterioration because the e�ect of the variance increase dominates that of the accuracy gain.

Conversely, when the factors of being diagnosed as the condition are not su�ciently covered

by the condition-specific dataset, the e�ect of the accuracy gain outweighs that of the variance

increase. Likewise, the AUC for hypertension and diabetes and the AUC for dyslipidemia

had di�erent trends for the statistical learning methods with the general dataset reflecting the

di�erence of the di�culty of catching the factors of being diagnosed as the condition.

The AUC of the kNN with raw input variables was as good as that of the logistic regression

with the general dataset, but that of the kNN with standardized input variables was lower than

it. As is implicated by the di�erence of the AUC of the kNN with raw and standardized

input variables, designing the distance metric in the kNN is di�cult. If the input variables are

standardized, the model is coerced to attach less importance on the input variables with high

mean or low standard deviation such as age and gender than otherwise. Although the kNN

had established an era in the field of image recognition by the invention of the tangent distance

(Simard, LeCun, and Denker 1992), there is no such versatile distance measure yet in the field

of CBA or studies using administrative data. It may be possible to improve the performance

of the kNN by applying an unsupervised learning method that extracts essential components of

the input variables, e.g., principal component analysis (Mardia, Kent, and Bibby 1979), before

measuring the distance. Though I do not probe further in this study, this is one direction of
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future research.

Among the logistic regression, the SVM, and the penalized regression, the logistic lasso

and the logistic elastic-net achieved superior AUC to the others. In the remaining, the logistic

regression tended to rank first, the SVM second, and the logistic ridge third. They are all

linear in parameters model with di�erent loss and penalty functions. The logistic regression

and the penalized regression use the log-loss, while the SVM uses the (squared) hinge loss.

Four di�erent penalty functions are used: the logistic regression, zero penalties; the SVM and

the logistic ridge, the L2-penalty; the logistic lasso, the L1-penalty; the logistic elastic-net, the

elastic-net penalty.

The methods using the L1-penalty is better suited to sparse and high-dimensional situations

than the methods using zero penalties or the L2-penalty because of the selection of the e�ective

input variables. These results are backed by theoretical results that support the superiority of

the estimation methods that use the L1-penalty in sparse and high-dimensional settings (Donoho

and Elad 2003; Donoho 2006; Candes and Tao 2007). Despite the fact that the prediction

performance of the lasso is expected to be improved by the elastic-net if there is a group of

variables among which the pairwise correlations are very high (Zou and Hastie 2005), and

usually the diagnostic codes and the medication codes corresponding to the target disease are

highly correlated, I could not boost the AUC by the elastic-net compared to the lasso.

While the hinge losses give zero penalties to points correctly classified and outside the

margin, the log-loss gives continuously decreasing penalty as the correctly classified points get

farther from the boundary of the margin. This feature of the hinge losses makes the SVM more

robust to outliers than the other methods that are using the log-loss. Since most of the enrollees

were far from the margin or outliers (i.e., most of them could be easily labeled as disease or

non-disease by the CBA), the SVM is achieving a higher performance by better-discriminating

enrollees with and without the target disease near the boundary than the other methods.

The use of the hinge losses with the L1-penalty may further boost the performance in my

setting. However, as the hinge losses and the L1-penalty are computationally much harder to deal

with than the log-loss and the L2-penalty, respectively, handling both of them simultaneously

with high-dimensional data is very di�cult especially for large sample size. Devising a method
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that can overcome this computational obstacle is another direction of future research.

The tree-based model and the neural network automatically select the input variables that are

crucial to the discrimination and flexibly incorporate nonlinearity and interactions of them. The

tree-based model largely attained superior AUC to any and was at least as good as the logistic

regression with the condition-specific variable selection. Among the tree-based model, the

ISLE performed better than the random forest. Past Monte Carlo simulation studies have shown

the superior performance of the ISLE to the random forest that uses the lasso post-processing

in the aggregation process, and the superior performance of the latter to the usual random

forest (Friedman and Popescu 2003; Hastie, Tibshirani, and Friedman 2009). Therefore, two

components of the ISLE are contributing to the superior performance of it to that of the random

forest: the learning term in the basis function generating process; the lasso post-processing. The

di�erence of the hyperparameter within the ISLE was not so much a�ecting the results.

In contrast to the tree-based model, the AUC of the neural network was not that high but

comparable to that of the logistic regression with the general dataset. The performance of

the neural network was much lower in the preliminary investigation that used smaller sample

size (e.g., the sample size of 10,000 and 50,000 for each condition before dividing the dataset

into three parts). The number of parameters in the neural network is nearly 7500, 15,000, and

30,000 for five, ten, and twenty hidden units, respectively. Though the use of weight decay

should alleviate the overfitting of the parameters to some extent, the sample size of 150,000

may be still insu�cient for the neural network to demonstrate its true predictive power. As

using multiple hidden layers with constraints such as local connectivity and weight sharing on

the network, which allow for more complex connectivity but fewer parameters, improved the

performance of the neural network dramatically in the field of image recognition (LeCun 1989;

LeCun et al. 1998), it may also improve the performance of the neural network in the current

subject. Increasing the sample size of data and devising more complex connectivity that suits

the situation are fruitful directions for future research.

There are potentially various ways of refining the AUC obtained in this study drawing on the

context of machine learning. Although the objective of this study is not to seek high AUC or

prediction accuracy but to outline the prospect of the development of e�cient CBA construction
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procedure, I briefly introduce the concepts that are expected to become important in the future

accuracy pursuit of CBAs. The first one is more complicated and sophisticated learning models

flourished in the field of machine learning including deep learning models (Hinton, Osindero,

and Teh 2006). Secondly, pre-processing techniques that transform datasets ex-ante to utilize

the power of learning machines more e�ciently. There are largely two approaches for pre-

processing: methods that deal with imbalanced datasets (Chawla et al. 2002) and methods that

perform variable and feature selection (Guyon and Elissee� 2003). Lastly, error analysis in the

performance analysis and debugging step of model building (Amershi et al. 2015). How one

can successfully use these methods in CBA or, more broadly, claims data situation should be a

worthwhile subject to be pursued.

In sum, the penalized regressions other than ridge and the tree-based models, which are the

leading statistical learning methods, achieved AUCs comparable to the logistic regression with a

knowledge-based condition-specific variable selection, and the level of the AUC was satisfactory

for hypertension and diabetes.

4.3 An e�cient CBA study

From the considerations so far, I propose a two-step course of action for an e�cient CBA

research. The first step is to prepare an e�cient gold standard construction environment to

sidestep chart reviewing. This can be achieved by the use of regularly collected data like annual

health screening results, which are used in this study. EHRs and disease registries are possible

candidates along this line. For example, an increasing number of phenotyping algorithms may

well function as gold standards for CBA research when EHRs are available. Besides, cancer

registries can be used to conduct comprehensive CBA research for various cancers. In fact, some

CBA research is using health screening results (Tessier-Sherman et al. 2013; Hara et al. 2018),

blood test results from EHRs (Gorina and Kramarow 2011; Yamana et al. 2016), and disease

registries (Freeman et al. 2000; Taylor, Fillenbaum, and Ezell 2002; Nattinger et al. 2004; Gold

and Do 2007; Kawasumi et al. 2011; Chan et al. 2016).

The second step is to use a condition-invariant procedure in the CBA construction. From this

study, I recommend using the penalized regressions other than ridge or the tree-based models
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with input variables as age, gender, and all ICD-10/WHO-ATC codes with a letter followed by

two digits to generate a prediction function that outputs the score of the propensity for having a

disease. This procedure is expected to yield an AUC that is comparable to the AUC of the logistic

regression with a knowledge-based condition-specific variable selection. Although the suitable

statistical learning method may change depending on the selected input variables, one can also

include additional enrollee characteristics, ICD-10/WHO-ATC codes with three or more digits,

and procedure codes to enhance one’s AUC further.

Once a broad set of input variables are selected, researchers can uniformly apply the proce-

dure to construct a prediction function for each of their target conditions and compare it against

their gold standard that is constructed from the regularly collected data. All coordinates on the

ROC curve can be realized by the CBA induced by the prediction function. The course of action

should considerably encourage the implementation of CBA research.

4.4 Strength and weakness

The use of regularly collected data such as the routine health screening results as the source of

the gold standard is a novel approach in the literature of CBA. There are advantages of adopting

health screening results over the standard of chart review. First, once the gold standard for

the target condition is defined, one can systematically acquire the gold standard diagnosis of

enrollees without relying on chart reviewers’ decision on diagnosis. Second, it takes much less

time to run a computer program on health screening results than review charts to obtain the gold

standard diagnosis. Third, while the chart review disregards the relevant information which is

included in the charts of other medical institutions that is not on the review list, health screening

captures the required information for the present three conditions.

The use of statistical learning methods in the CBA construction procedure is an innovative

strategy in the literature. Researchers needed to select input variables and decide how to

incorporate variables in the CBA with existing knowledge on a case-by-case basis. They

may not be so confident about whether the resulting CBA is su�ciently capturing features

of the target condition, especially if they failed to attain a satisfactory performance by the

CBA. Consequently, it is necessary to conduct a tedious comparison of a large collection of
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knowledge-based candidate CBAs to alleviate the uneasiness. An appropriate statistical learning

method overcomes these issues proficiently: researchers only need to select variables that can

be uniformly applied to all conditions and the variables that are crucially related to the target

condition will be incorporated in the model automatically.

Several caveats are in order. At first, the diagnostic accuracy of the gold standard is a concern.

Hara et al. (2018) conducted sensitivity analysis to allow for the possibility of underdiagnosis of

the target condition resulting from the elected gold standard and quantified the extent to which

the association measures are robust to the ways of constructing the gold standard. Besides,

the selection of health screening results over medical charts do not necessarily compromise the

accuracy of the diagnosis as the enrollees’ physical examination results, their blood test results,

and their medication use are a key to diagnosing the patient with the present three conditions.

For diabetes, this conjecture is backed by the factors included in the phenotyping algorithm for

the identification of patients with diabetes (Upadhyaya et al. 2017). One can think of obtaining

a more accurate diagnosis with a cohort in which participants are screened and confirmed their

medical conditions periodically. Though this may be an ideal way of dealing with the gold

standard problem, launching such a cohort of an adequate size from the very beginning is

unrealistic for most of the researchers as it demands an innumerable amount of resources.

Second, there is a two-dimensional generalizability issue: the study population only covers

regular employees; the research only dealt with three conditions, hypertension, diabetes, and

dyslipidemia. Besides the problem on the generalizability of the value of association measures

computed in this research, researchers need to think of the following three questions when they

try to use the series of techniques evaluated here in a di�erent setting: (1) Is it possible to

construct a gold standard e�ciently?; (2) Are input variables selected for the condition-invariant

procedure su�cient?; (3) What kind of learning method should be used? Although I already

discussed the elements to consider in answering these questions, I hope that similar studies will

be conducted on situations other than those that were investigated in the present research to gain

a deeper understanding regarding the development of e�cient CBA research.
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Conclusion

The dissertation showed that one can (1) construct fine-tuned CBAs using a statistical learning

method without knowledge for target conditions and condition-specific modifications of the

CBA construction procedure and (2) make an assessment of the usability of CBAs in a large

population e�ciently when regularly collected data as a source of the gold standard is available.

I believe that the series of techniques evaluated in the study should become essential in future

CBA research.
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FIGURES

1,040,351 Enrolled in the claims database from 1 April 2016 to 31 March 2018 and
health screening were sequentially conducted for FY2016 and FY2017

944,717 Had information on self-report of taking medicine of hypertension,
diabetes, and dyslipidemia for FY2016 and FY2017

631,731 Visited a clinic/hospital that mainly specializes in internal medicine in FY2017

Baseline study population

631,289

Had physical examination
results on sBP and dBP

Hypertension

152,368

Had “Fasting time � 10hr”
and laboratory results on
HbA1c and FBG

Diabetes

614,434

Had laboratory results on
LDL-C, HDL-C and TG

Dyslipidemia

Figure 1. Flowchart of inclusion and exclusion of study participants

Abbreviations: dBP, diastolic blood pressure; FBG, fasting blood glucose; FY, fiscal year; HbA1c, hemoglobin
A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; sBP, systolic blood
pressure; TG, triglyceride.
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Figure 2. Probability mass function of the number of observations of diagnostic/medication code
corresponding to hypertension, diabetes, and dyslipidemia for the baseline study population

The horizontal axis is the number of observations of diagnostic/medication code corresponding to hypertension,
diabetes, or dyslipidemia. Observations of diagnostic or medication codes on claims were counted as one occurrence
when information was accrued from the same month. The vertical axis shows the proportion of enrollees whose
claims contain the designated number of observations of diagnostic/medication code corresponding to hypertension,
diabetes, or dyslipidemia in FY2017.

The diagnostic codes corresponding to hypertension, diabetes, and dyslipidemia were, respectively, defined
as the International Classification of Diseases and Related Health Problems, tenth revision (ICD-10) code I10-
I15, E10-E14, and E78. The medication codes corresponding to hypertension, diabetes, and dyslipidemia were,
respectively, defined as the World Health Organization-anatomical therapeutic chemical (WHO-ATC) code C08
(calcium channel blockers) and C09 (agents acting on the renin-angiotensin system), A10 (drugs used in diabetes),
and C10 (lipid-modifying agents).
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Figure 3A. Receiver operating characteristic curve for claims-based algorithms derived from
statistical methods with a condition-specific variable selection according to hypertension
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Figure 3B. Receiver operating characteristic curve for claims-based algorithms derived from
statistical methods with a condition-specific variable selection according to diabetes
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Figure 3C. Receiver operating characteristic curve for claims-based algorithms derived from
statistical methods with a condition-specific variable selection according to dyslipidemia

Abbreviations: FDA, flexible discriminant analysis; GAM, generalized additive model; LDA, linear discrimi-
nant analysis; PDA, penalized discriminant analysis.

The number of observations of each of the diagnostic code and the medication code was used as input variables
for model 1 in regression. Age and gender were added to these input variables for the other models.

Three types of discriminant analysis were conducted: linear discriminant analysis (LDA); flexible discriminant
analysis (FDA); and penalized discriminant analysis (PDA). Multivariate adaptive regression splines with the second
degree of interaction were used as the basis function in the FDA. In the PDA, a linear basis with the L2-penalty was
used, and the regularization coe�cient was determined by cross-validation.

The additive logistic regression model with a cubic smoothing spline for each input variable except gender was
used in the generalized additive model (GAM). The hyperparameter, the degrees of freedom for each smoothing
spline, was set to the same value for all splines. I selected three values for the degrees of freedom, four, six, and
eight, to generate three GAM prediction functions.
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Figure 4A. Receiver operating characteristic curve for claims-based algorithms derived from
statistical methods without a condition-specific variable selection according to hypertension
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Figure 4B. Receiver operating characteristic curve for claims-based algorithms derived from
statistical methods without a condition-specific variable selection according to diabetes
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Figure 4C. Receiver operating characteristic curve for claims-based algorithms derived from
statistical methods without a condition-specific variable selection according to dyslipidemia
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FIGURES

Abbreviations: AUC, area under the receiver operating characteristic curve; GBM, gradient boosting machine;
IDW, inverse distance weighting; ISLE, importance sampled learning ensemble; kNN, k-nearest neighbor; SGBM,
stochastic gradient boosting machine; Std., standardized; SVM, support vector machine; RF, random forest.

Age, gender, and all International Classification of Diseases and Related Health Problems, tenth revision (ICD-
10)/World Health Organization-anatomical therapeutic chemical (WHO-ATC) codes with a letter followed by two
digits were used as input variables for all models but condition-specific in the logistic regression. Condition-specific
in the logistic regression is the same as model 2 of the logistic regression. General in the logistic regression fitted
a logistic regression model to the dataset that was trimmed properly.

The Euclidean distance with raw or standardized (i.e., re-scaled to have mean zero and variance one) input
variables was adopted as a distance metric for the k-nearest neighbor (kNN). The number of the nearest neighbors
to be counted, k, was optimized using the validation set. The predicted class probabilities that were computed from
(1) the frequency of the class of the k-nearest neighbors (vote) and (2) the inverse distance weighted frequency of
the class of the k-nearest neighbors (IDW) composed a prediction function.

A linear basis function with a hinge or squared hinge loss was adopted in the support vector machine (SVM).
The cost parameter was optimized using the validation set. Decision values (i.e., the distance of the point from the
hyperplane) made up a prediction function.

From the penalized regression, logistic regression with the L2-penalty (logistic ridge), the L1-penalty (logistic
lasso), and the elastic-net penalty (logistic elastic-net) were applied. The regularization coe�cient and the elastic-
net mixing parameter were determined by cross-validation.

Two types of tree-based models were applied: the random forest and the importance sampled learning ensemble
(ISLE). The minimum node size was set to ten for each tree, and two-hundred trees were bagged in the random
forest. The number of variables selected for each split was first set to the value recommended by Breiman, bppc,
where p is the number of input variables, and then tuned using the validation set next. Denote the ISLE with the
subsampling ratio equals to one and less than one by ISLE-gradient boosting machine (GBM) and ISLE-stochastic
gradient boosting machine (SGBM), respectively. I fixed the depth to be six for all ISLEs. For the ISLE-GBM, I
selected the learning rate to be 1 and 0.05. For the ISLE-SGBM, I fixed the learning rate to be 0.1 and selected
the subsampling ratio to be 0.5 and 0.1. The number of trees and the regularization coe�cient were determined by
cross-validation. The L1-penalty was adopted in the post-processing.

A single hidden layer neural network was applied with a di�erent number of hidden units: five, ten, and twenty.
All hidden units were fully connected with the nodes in the input and output layer. Weight decay was employed for
the regularization of the parameters, and the regularization coe�cient of it was tuned using the validation set.
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Table 1. Summary statistics of enrollees’ characteristics and health screening results for
each fiscal year

FY2016 FY2017
Variables Mean SD Mean SD

Demographics
Male � � 0.80 �
Age⇤ (year) � � 48.0 10.4

Visited clinic/hospital
Any clinic/hospital† 0.85 � 0.85 �
Primary care clinic/hospital‡ 0.67 � 0.67 �

Health screening results
Fasting time � 10 hours§ 0.81 � 0.81 �
Systolic blood pressure (mmHg) 121.5 15.8 122.1 15.9
Diastolic blood pressure (mmHg) 75.5 11.7 75.9 11.8
Fasting blood glucose (mg/dL) 96.7 18.5 97.3 19.0
Hemoglobin A1c (%) 5.56 0.64 5.59 0.64
Low-density lipoprotein cholesterol (mg/dL) 121.1 30.8 121.3 30.6
High-density lipoprotein cholesterol (mg/dL) 60.6 15.9 60.9 16.1
Triglyceride (mg/dL) 117.1 94.0 118.3 94.5

Self-report of taking drug¶

Blood-pressure-lowering drugs 0.12 � 0.13 �
Hypoglycemic drugs 0.04 � 0.04 �
Lipid-lowering drugs 0.07 � 0.08 �

Abbreviations: FY, fiscal year; SD, standard deviation.
Only mean (or proportion) is stated for a categorical variable. Because the variables “Male” and

“Age” do not change with the year, we only tabulated them in column FY2017.
⇤ Age is defined as the age in March 2018.
† Any clinic/hospital indicates that a person visited any kind of clinic/hospital in the corresponding

FY.
‡ Primary care clinic/hospital indicates that a person visited a clinic/hospital that mainly provides

internal medicine in the corresponding FY.
§ Fasting time � 10 hours indicates if more than 10 hours have passed since the last meal when

blood samples were collected.
¶ Self-report of taking drugs are extracted from the answer to a health-related questionnaire.
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Table 2. Cumulative distribution of the proportion of en-
rollees whose claims contain the ICD-10/WHO-ATC code
at least once in the baseline study population

ICD-10 code WHO-ATC code
Proportion Count Percentile Count Percentile

 0.01% 485 36.4% 5 5.4%
 0.1% 879 65.9% 12 13.0%
 1% 1195 89.6% 32 34.8%
 2% 1254 94.1% 39 42.4%
 3% 1277 95.8% 45 48.9%
 5% 1302 97.7% 49 53.3%
 10% 1318 98.9% 69 75.0%
 20% 1326 99.5% 80 87.0%
 30% 1331 99.8% 86 93.5%
 50% 1333 100.0% 91 98.9%
 100% 1333 100.0% 92 100.0%

Abbreviations: ICD-10, International Classification of Dis-
eases and Related Health Problems, tenth revision; WHO-ATC, World
Health Organization-anatomical therapeutic chemical.

For each two-digit ICD-10/WHO-ATC code, the proportion of
enrollees whose claims contain the code at least once was com-
puted for the baseline study population. Cumulative distribution of
the computed proportion was tabulated separately for ICD-10 codes
and WHO-ATC codes. The count (percentile) column tabulates the
number (fraction) of two-digit ICD-10/WHO-ATC codes that the pro-
portion of enrollees whose claims contain the code at least once is
below the value in the proportion column.
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