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Abstract

Dielectric laser accelerator (DLA) is an advanced acceleration technique that has demon-

strated high accelerating gradients at the GV/m level, 1 to 2 orders of magnitude above

the ultimate gradient limit of conventional radio-frequency accelerators. Leveraging

the well-developed industrial nanofabrication technology and commercial ultrafast laser

technique, DLAs may enable more compact and more affordable accelerators. For these

reasons, a DLA-based electron source has been proposed to study the damage effect of

low radiation doses on the living cell. This thesis focuses on the development of DLA

structures for such an electron source.

First, we describe a method to design a double-grating resonator for subrelativistic elec-

tron acceleration and present the development of a test station. We begin with the

theory behind particle acceleration using single or double diffraction gratings. We show

that a uniform accelerating mode can be obtained in a resonant double-grating struc-

ture. We present simulated examples of double-grating resonators for 50 keV electrons

with different channel widths. We show that the dependence of reflectivity and phase

on the SWG dimensions provides flexibility in controlling the enhancement factor and

filling time, thus enabling high gradient acceleration driven by ultrashort low-power

laser pulses. An appendix is included to describe the rigorous coupled-wave analysis as

a method for grating field simulation. We estimate the parameters of a 1 MeV DLA

electron source. In addition, we show the design of the experiments, in particular, the

magnets for electron beam focusing and energy measurement. All the components for

the experiment have been fabricated.

We also discuss a planar DLA waveguide which can accelerate electrons of different

energies, using subwavelength gratings as reflectors. We show that an accelerating mode

with a specified field distribution can be confined in the core by designing a matching

layer. We present several examples of DLA waveguides with gratings for relativistic

electron acceleration. We then discuss the waveguide performance regarding accelerating

gradient and efficiency.

The DLA structures described in this work can support high-gradient acceleration with

ultrafast laser pulses. They may enable a compact monolithically-integrated electron

source, which is useful not only for radiobiology research, but also for a variety of other

applications such as radiotherapy, material science, and high-energy physics.
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Chapter 1

Introduction

In the past decades, radio-frequency linear accelerators, which is commonly abbreviated

as RF linacs, have been essential tools to address many of the challenges in human life.

RF linacs can be used, for instance, in huge electron-positron colliders, which serve for

discovery across a wide variety of science. Light sources based on RF linacs, either

incoherent (synchrotron radiation) or coherent (free-electron laser), enable advances in

physics, chemistry, biology, medicine, and material science. Radiotherapy using RF

linacs has become an efficient way for cancer treatment. RF linacs can also be used as

an alternative for producing radioisotopes currently produced by nuclear reactors, some

of which have been or will have to be decommissioned.

In the past decades, physicists have been developing more cost-effective accelerators

because of their great potential to make greater contributions to human life. To this end,

several advanced accelerator concepts are under development, including plasma-based

acceleration and direct laser acceleration. Besides high gradients, these schemes also

promise temporal and spectral control at scales well beyond those currently achievable

with RF linacs.

In this chapter, RF linac structures are briefly reviewed from a historical perspective.

A simple comparison between RF linacs and those advanced acceleration schemes are

presented. Particularly, the current status of the direct laser acceleration is shown. In

addition, the work in this dissertation is introduced.

1



Chapter 1. Introduction 2

1.1 Conventional RF linacs

1.1.1 The wideroe linac

The history of RF linacs starts from 1924 when Gustav Ising proposed the first ac-

celerator of a sequence of metallic hollow-core drift tubes, where the particles could be

accelerated in the gaps between them[1]. Wideroe conceived and experimentally demon-

strated the first RF linac in 1927. Figure 1.1 depicted the Wideroe linac concept. The

drift tubes of length βeλ/2, with βe being the ratio of particle’s velocity to the speed of

light, λ being the RF wavelength, are used to shield the beam during the decelerating

half period of the RF. In Wideroe’s experiment, an ion beam was accelerated to an en-

ergy of 50 keV with an RF voltage of 25 kV at a frequency of 1 MHz. The revolutionary

device is the foregoer of all modern RF accelerators[2]. However, the Wideroe scheme

is not suitable for the acceleration of high-energy particles. The large particle velocity

requires an impractically long drift tube unless the frequency is increased to a gigahertz

level. However, at high frequency, the Wideroe linac becomes lossy as a result of the

electromagnetic radiation.

Particles

Drift tubeGap

Figure 1.1: Schematic of the Wideroe linac.

1.1.2 Modern RF linacs

The high-power microwave sources, e.g., klystrons, developed for radar applications

during World War II set the stage for the modern RF linacs which could overcome

this problem. Alvarez proposed a linac in 1946[3], by including the Wideroe structure

in a cavity where the electromagnetic fields could be confined, and realized a proton

linac in 1955[4, 5]. Figure 1.2 illustrates the Alvarez linac concept. Unlike the Wideroe

linac, in the Alvarez linac the length of the drift tubes is βeλ. The high frequency of the

microwave results in a reduction of the lengths of drift tubes, making the Alvarez scheme

practical. In Alvarez’s experiment, a linac length of 12 m at a resonant frequency of

200 MHz accelerated protons from 4 to 32 MeV. The Alvarez linacs are still widely used

today to accelerate ions from a few hundred keV to a few hundred MeV. The Alvarez
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linac is considered as a standing-wave structure because the accelerating field along the

drift tubes oscillates in time, but its peak amplitude profile does not move in space.

Particles

Drift tubeGap

Cavity

Figure 1.2: Schematic of the Alvarez linac.

At about the same time as the Alvarez scheme was demonstrated, Stanford University

designed and experimentally tested a structure that is suitable for high-energy electrons.

This structure, referred as a disk-loaded waveguide, consisted of an array of electromag-

netically coupled cellschodorow1955stanford. In the experiment, with 21 klystrons with

an average output power of about 9 MW at a frequency of 2.856 GHz, the maximum en-

ergy achieved is 630 MeV. The disk-loaded waveguide is considered as a traveling-wave

structure because the accelerating mode propagates synchronously with particles along

the waveguide. Compared with the standing-wave structures, traveling-wave structures

usually need shorter filling times that is preferable for higher accelerating gradient, be-

cause the maximum sustainable RF field decreases with increasing pulse duration.

RF in RF out

Particles

Traveling waveDisk

Figure 1.3: Schematic of a disk-loaded waveguide.

Since the invention of the first modern proton (Alvarez structure) and electron (disk-

loaded waveguide) linacs, many linear accelerator structures have been proposed and

constructed. Independent-cavity linacs have been constructed for acceleration of heavy

ions and superconducting proton linacs. Coupled-cavity linacs, for instance, have been

used for acceleration of electrons and protons in velocity rang 0.4 < βe < 1. They use

multi-cavity accelerating structures formed by coupling an array of cavities, also referred

as cells, together. Figure 1.4 illustrates a side-coupled structure in π/2 mode as an

example of a coupled-cavity linac. Some other structures, e.g., independent-cavity linac

and radio frequency quadrupole structures, have also been built for different purposes.
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Figure 1.4: Schematics of a side-coupled linac structure.

1.1.3 Current status of RF linacs

RF linacs can operate with short pulse (microsecond), long pulse (> 10 µs) and contin-

uous wave (CW). For short-pulse applications, cavities made of copper are commonly

used. Due to the electrical breakdown at the metal surface in the presence of strong

electric fields, short-pulse RF linacs typically operate with accelerating gradients of 10 to

50 MV/m level, leading to a large size and high cost that severely limit their availability.

Great efforts have been made to enhance the capability of existing accelerating technolo-

gies. Recent X-band accelerator structures have demonstrated accelerating gradient over

100 MV/m[6].

For applications requiring long-pulse or CW accelerating field, copper cavities are limited

to gradients near 1 MV/m and become uneconomical because the ohmic power loss over

the cavity walls increases as the square of the accelerating voltage[7, 8]. The use of

superconducting RF (SRF) cavities made of niobium is a successful approach to solve this

problem. The SRF niobium cavity has a surface resistance many orders of magnitude

lower than the copper cavity, leading to a much higher quality factor in the 109 −
1010 range and in turn an overall power saving factor of several hundred. Accelerating

gradients around 50 MV/m have been achieved with superconducting structures.

1.2 Advanced accelerator concepts

1.2.1 Plasma-based accelerator

Plasma-based accelerators using plasma waves for particle acceleration are attracting

more and more attention due to their ability to reduce the size and cost of accelerators.

Plasma waves in such kind of accelerators can be driven by high-power laser pulses or

energetic particle beams[9, 10], as shown in Fig. 1.5(a) and (b), respectively.

Ionized plasmas can sustain electric fields for acceleration of charged particles in excess

of E0 = cmeωp/e or E0 ' 96
√
n0(cm−3), with ωp = (4πn0e

2/me)
1/2 being the electron
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plasma frequency, n0 being the ambient electron number density, e and me being the

electron charge and mass, respectively. It shows that, with a typical plasma density

n0 = 1018 cm−3, an electric field E0 ' 96 GV/m is sustainable. Experiments have

demonstrated accelerating gradients > 100 GV/m[11], which is about three orders of

magnitude greater than that obtained in conventional RF linacs. Because of the high

gradients, plasma-based accelerators can achieve a given electron energy in a shorter

distance than RF linacs.

(a) (b)

Figure 1.5: Examples of an electron density wake driven by an electron beam (a) and a
laser pulse (b). (a) The electron beam is moving toward the right with its center located at
kpz = 62.5. Plasma density n0 = 5×1017 cm−3, electron energy 0.5 GeV, peak density nb = 5n0.
(b) The laser is movign toward the right with its center located at kpz = 7. Plasma density
n0 = 1.2× 1016 cm−3, laser length 68 µm, spot size r0 = 10 µm. Taken from [10].

In addition to the high accelerating gradient, plasma-based accelerators can also pro-

duce an electron bunch with a short pulse duration, which depends on the plasma wave-

length λp = 2πc/ωp, or λp ' 3.3 × 1010/
√
n0(cm−3). For examples, n0 = 1018 cm−3

yields λp ' 33 µm, resulting in an electron bunch duration τp < 100 ps. An electron

bunch length of ∼ 1 fs has been demonstrated by using a near-single-cycle laser pulse

of 3.4 fs duration[12]. The short electron bunches, for instance, can be used in the

next-generation free electron lasers.

The up-to-date plasma-based acceleration experiments aim to generate multi-GeV elec-

tron bunches, optimize beam quality and better control plasma waves. A milestone is

the demonstration of ∼ 100 MeV electron bunch production with energy spreads of a

few percent in 2004[13–15]. In 2014, an electron bunch of energy 4.25 GeV has been pro-

duced by a laser-driven plasma wakefield accelerator[16]. In 2015, particle-beam-driven

plasma wakefield acceleration of initial 20.35-GeV positron bunch to around 25 GeV has

also been demonstrated[17]. In 2016, staged acceleration has been realized to overcome

the limitation to energy gain by laser depletion[18]. Production of electron bunch with

higher energies is expected in the near future.
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Although plasma-based accelerators have made great progress in the past two decades

and are the most mature advanced acceleration scheme, so far, RF linacs still have supe-

rior performance for most accelerating beam properties than plasma-based accelerators,

e.g., the beam quality and stability. Laser-driven wakefield plasma accelerators driven

by large and expensive petawatt lasers can only operate with a low repetition rate.

1.2.2 Dielectric laser accelerator

Another advanced acceleration concept, referred as dielectric laser accelerator (DLA),

are garnering increasing interest in recent years since their potential to miniaturize the

accelerators[19]. Unlike the plasma-based accelerators, DLAs accelerate particles in the

vacuum with laser-induced near fields. Due to the high power loss and low breakdown

threshold of metallic materials at optical frequencies, as well as the difficulty in the

fabrication of nano-scale metallic structures, it is more practical to use dielectrics in op-

tical acceleration. The measurement of damage thresholds for dielectric materials (for

example in Fig. 1.6), indicates that these materials can sustain a field at the GeV/m

level in the optical to near-infrared regime. By leveraging the high damage thresholds

of dielectrics, DLA can achieve accelerating gradients of one to two orders of magnitude

higher than the typical gradients in RF linacs. The rapid progress in industrial fabri-

cation capabilities and commercially available high-power lasers in recent years leads to

the demonstration of dielectric laser acceleration in 2013[20, 21].
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approximately 0.5 p, m in diameter, an area 10 smaller
than the laser spot size and nearly impossible to observe
by other methods (e.g. , degradation of transmission, scat-
tered light, etc.). To avoid the complications of spatial
and temporal distortion caused by self-focusing, group ve-
locity dispersion, and self-phase modulation when propa-
gating pulses through optical materials, we considered only
front-surface damage. When it occurred, we were careful
not to let rear-surface damage propagate to the front sur-
face. Initial damage, at threshold, may have many forms:
ablation of a few atomic layers; formation of a color center,
shallow traps, or lattice defects; or melting of a very small
volume. These weak effects are very difficult to detect.
In order the "amplify" this damage to an easily observable
size, and to minimize statistical uncertainty, we conducted
our damage testing with multiple pulses of a given fluence
on each site. This is in contrast to single-shot measure-
ments reported by Du et al. [10],which required detection
of a decrease in transmission or plasma emission caused
by the single pulse. Many Iluence levels (15—30) were ex-
amined above and below the damage threshold for a given
pulsewidth in order to establish the threshold value.

Our measurements of the threshold damage fluence
of fused silica and CaF2 at 1053 nm as a function of
laser pulse length (FWHM) are shown in Fig. 1. In
the long-pulse regime (~ ) 20 ps), the data fit well

by a ~'~ dependence, characteristic of the transfer of
electron kinetic energy to the lattice and diffusion during
the laser pulse. The damage is thermal in nature and
characterized by the melting and boiling of the surface
[Fig. 2(a)]. The damage occurs over the entire area
irradiated. For long pulses, heating of the lattice and
subsequent thermal damage can occur without significant
collisional ionization [13]. For pulses shorter than 20 ps,

the damage fluence no longer follows the ~'~ dependence
and exhibits a morphology dramatically different from
that observed with long pulses. The damage appears as
a shallow fractured and pitted crater characteristic of a
thin layer of material removed by ablation [Fig. 2(b)].
Furthermore, short-pulse damage is confined to a small
region at the peak of the Gaussian irradiance distribution,
where the intensity is sufficient to produce multiphoton
ionization. With insufficient time for lattice coupling,
there is no collateral damage. As a result, the damaged
area can be many orders of magnitude smaller with short
(r ~ 10 ps) pulses than with long pulses. For the case of
fused silica shown in Fig. 2, the damage area produced by
the 500 fs pulse was 2 orders of magnitude smaller than
that produced by the 900 ps pulse.

Although the absolute damage fluence varies from ma-
terial to material, all pure dielectrics (e.g. , fluorides) and
even multilayer mirrors we tested show a similar depen-
dence on pulse width as observed for Si02. This behavior
is to be expected, since all transparent dielectrics share the
same general properties of slow thermal diffusion, rapid
Joule heating, and fast electron-phonon scattering.

The theoretical description of damage with short pulses
is simplified relative to that of long-pulse physics by two
factors. First, the high intensities involved mean there is
no need to invoke some arbitrary number of initial "seed"
electrons [1—5, 10,11,13]. Field-induced multiphoton ion-
ization produces free electrons which are then heated
rapidly by the pulse, resulting in further ionization due to
collisions. Second, for these very short, intense pulses,
conduction-band electrons gain energy from the laser field
much faster than they transfer energy to the lattice. The
actual damage occurs after the pulse has passed, when this
electron energy is coupled into the lattice.

50 I 1 I I 1 I I li I I I I I I II I I I I I I III I I I I I I I I
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FIG. 1. Observed values of damage threshold at 1053 nm for
fused silica (~) and CaF2 (+). Solid lines are r'i~2 fits to
long pulse results. Estimated uncertainty in the absolute fluence
is ~15%.

FIG. 2. Scanning electron micrograph of front-surface dam-
age of fused silica produced by 1053 nm pulses of duration
(a) 900 ps, showing melting, and (b) 500 fs, showing ablation
and fracture.

2249

Figure 1.6: Damage threshold of a sused silica and CaF2. Solid lines are τ1/2 fits to long pulse
results. Taken from [22].

Although DLAs are still in an early stage of development, they have obvious character-

istics. Their principal advantage over the RF linacs is the GV/m-level gradients, which

lead to a reduction in the size of accelerators. Compared with plasma-based acceleration,

DLA has a lower accelerating gradient, but has the advantage of supporting a better
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beam quality. A significant challenge for DLAs in a number of applications is the low

bunch charge at the fC level, as a result of the operation in the near fields. However,

DLAs driven by moderate-power lasers can operate at a GHz-level repetition rate, which

is much higher than that of the plasma-based accelerator and can compensate for the

problem.

To accelerate electrons in a DLA, an accelerating mode with a longitudinal electric com-

ponent and a phase velocity equals the speed of electron must be provided. Structures

proposed to this end can roughly fall into three categories, i.e., diffraction gratings,

waveguides, and total-reflection structures.

1.2.2.1 Diffraction gratings

Takeda and Matsui proposed a laser linac with a grating in 1968, using the near field of

a single grating to accelerate electrons[23]. The mechanism is known as inverse Smith-

Purcell effect, which was demonstrated in the 1980’s with kV/m-level gradients by using

THz radiation and metallic gratings[24]. About twenty years later, the well-developed

industrial fabrication capability led to the demonstration of high-gradient acceleration

with dielectric grating structures.

A fused-silica single grating was used in the first demonstration of dielectric laser accel-

eration of subrelativistic electrons in 2013[20]. The structure used in the experiment is

shown in Fig. 1.7(a). Upon the incidence of a laser on the grating, the diffraction effect

generated an evanescent mode that travels synchronously with and efficiently accelerates

electrons. In the experiment, 28 keV electrons were accelerated by the 3rd diffraction

order with a maximum accelerating gradient of 25 MV/m. In 2015, the 4th and 5th

diffraction orders of the grating were utilized to accelerate electrons with energies of 15.2

and 9.6 keV, leading to the possibility of a novel compact electron source[25]. In 2015, a

silicon single grating was fabricated, as shown by Fig. 1.7(b), and demonstrated acceler-

ating gradients in excess of 200 MeV/m for 96.3 keV electrons[26]. In 2016, a gradient of

210 MV/m was measured using a single silicon grating to accelerate 30.7 keV electrons

with a 20 fs laser pulse[27]. Besides, single gratings were also used in the demonstration

of multi-stage acceleration, chirped-geometry acceleration to overcome the dephasing

limit, and transverse focusing[28]. However, the evanescent accelerating fields provided

by the single gratings distort the electron beam and result in large energy spread. In

addition, they cannot generate an accelerating mode for speed-of-light electrons.

Plettner and coworkers conceived the laser-driven double-grating accelerating structure

in 2006. By using such a double-grating structure, in 2013, efficient dielectric laser

acceleration of relativistic electrons was demonstrated. The structure used in experiment
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(a) (b)

Figure 1.7: Fused-silica and silicon single-grating structures for subrelativistic electron accel-
eration. (a) Fused-silica single grating used for 28 keV electron acceleration, taken from [20].
(b) Silicon single grating used for 96.3 keV electron acceleration, taken from [26].

is shown in Fig. 1.8. In the experiment, 60 MeV electrons are energy modulated with a

gradient beyond 250 MV/m, driven by a 800 nm, 1.24 ± 0.12 ps, Ti:sapphire laser. In

2016, by employing femtosecond-duration laser pulses, an accelerating gradient around

690 MV/m was measured.

(a) (b)

Figure 1.8: Fused-silica double-grating structure for relativistic electron acceleration. (a)
Picture of a double-grating structure on a fingertip. (b) Scanning electron microscope image of
the cross-section of a double-grating structure. Taken from [21].

Double-grating structures were also used for subrelativistic electron acceleration. In

2015, by using a silicon double-grating structure, also called dual-pillar structure as

shown in Fig. 1.9(a), sub-100 keV electrons were accelerated with an accelerating gra-

dient of 370 MV/m, driven by a Ti:sapphire laser. In 2018, phase-dependent laser

acceleration and deflection of electrons with a symmetric silicon dual-pillar structure as

shown in Fig. 1.9(b) were demonstrated, with an accelerating gradient of 200 MV/m,

driven by 40 nJ, 300 fs, 1940 nm laser pulses.

Due to the easy coupling with a surface-normal laser, the capability to eliminate the

pulse-slippage problem, and the compatibility for on-chip integration, research with

diffraction structures points towards a promising future.



Chapter 1. Introduction 9

(a) (b)

Figure 1.9: Scanning electron microscope images of the silicon double-grating structures for
subrelativistic electron acceleration. (a) A double grating with a single-sided illumination, taken
from [29]. (b) A double grating with dual-sided illumination, taken from [30].

1.2.2.2 Waveguide structures

Hollow-core waveguides have emerged as a promising candidate for a future DLA in the

past two decades. They are considered as traveling-wave structures. Optical acceleration

in the core requires a waveguide that is constructed out of dielectric materials and can

confine the accelerating mode propagating along its core. Photonic crystals (PhCs),

which are regular arrays or lattices of dielectric elements, are widely used to confine

the accelerating wave to the core due to the photonic band gap (PBG) arising from

constructive interference of distributed reflections from each periodic layer. Waveguide

structures based on 1D, 2D, and 3D variations in dielectric constant have been proposed,

some of which are shown in Fig. 1.10. However, so far, because of the difficulties in power

coupling to the confined accelerating mode and the challenging fabrication, no successful

experimental demonstration with waveguides has been reported.

1.2.2.3 Total-reflection structures

Total-reflection structures utilize the evanescent fields generated on the planar dielectric

surface by total internal reflection for particle acceleration. Their accelerating fields

represent properties similar to the grating structures. This approach requires simpler

fabrication and can sustain high accelerating gradient due to the lack of field enhance-

ment. In 2017, the acceleration of subrelativistic 28.4 keV electrons was experimentally

demonstrated, with an accelerating gradient around 19 MV/m[36]. The experimental

setup is shown in Fig. 1.11(a). This effect was also verified by directly measuring the

longitudinally-polarized electric fields at the surface of a dielectric material driven by a

terahertz source[37]. The interaction length can be extended with a waveguide structure,

or a ring resonators as shown in Fig. 1.11(b)[38].
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Figure 1.10: Examples of photonic-crystal accelerating waveguides. (a) transverse PBG struc-
ture, taken from [31]. (b) Planar Bragg structure, taken from [32, 33]. (c) Cylindrical Bragg
structure, taken from [32, 33]. (d) Longitudinal PBG, taken from [34]. (e) Woodpile structure,
taken from [31]. A double grating with dual-sided illumination, taken from [35]. Electrons travel
in the z direction.

(a) (b)

Figure 1.11: Microstructures for the production of evanescent accelerating fields with total
reflection. (a) Scanning electron microscope image of the silicon structure for the excitation of
an evanescent field using two subsequent refractions of the laser beam. Laser ray path indicated
by the red overlay and the black arrows. Taken from [36]. (b) Schematic of a racetrack ring
resonator accelerator. Taken from [38].
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1.3 DLA for radiobiology research

DLAs could be used for a wide variety of applications. A single-stage DLA struc-

ture could be used for attosecond-bunch steering for ultrafast electron diffraction and

microscopy[39]. Multi-stage DLA structures could be used for radiobiology research,

radiotherapy, light sources, and colliders[19]. Here, we briefly introduce the application

of DLAs for radiobiology research.

1.3.1 Radiobiology research with microbeams

The damage effect of low radiation doses (≤ 50 mSv) on a living cell is important for

a variety of issues, e.g., the cancer radiation treatment, nuclear accident, and radiobi-

ological terrorism. One approach to evaluating the effect is to study the damage and

repair processes of DNA. To this end, well-defined microbeams of ions, x-rays, lasers, and

electrons have been widely used to irradiate a living cell for radiobiology research[40].

To clarify how radiobiology research can be conducted with microbeams, we introduce,

for instance, an experiment for studying the function of WRN protein in the repairing

process of a living cell with laser irradiation[41].

Figure 1.12(a) illustrates a UV micro-laser irradiation system for the experiment. It

consisted of two laser sources and a confocal microscope. The left column shows a

365 nm laser source whose output pulse energy could be controlled by passing the laser

through either an F20 or an F25 filter. Before irradiating the cells, the laser pulses were

focused by a ×40 objective lens to obtain a spot size of 1 µm[42]. We will show how the

365 nm laser microbeam was used in the experiment.

First, irradiating the cells with different laser dose revealed the relationship between the

types of DNA damage with the irradiation dose, as shown in Figure 1.12(b). In the

experiment, single-strand DNA breaks and double-strand DNA breaks were detected

by antibody against poly-ADP-ribose and γH2AX, respectively, and base damage was

detected by accumulated GFP-OGG1 for 8-oxoGuanine. It is shown that using a laser

pulse energy of 0.75 µJ led to single-strand DLA breaks while using a laser pulse energy

of 2.5 µJ led to double-strand breaks and base damage in addition to the single-strand

DLA breaks.

To analyze the accumulation of WRN in response to DNA damage, GFP-tagged WRN

was used. Irradiating the cells with high-dose irradiation, revealed a time-dependent

accumulation of WRN at the radiation cite, as shown in Fig. 1.12(c). About three

minutes after the irradiation, the accumulation of WRN reached its maximum.
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(a) (b)

(d)

(c)

Figure 1.12: Laser microbeam irradiation systems and experiment results. (a) Laser mi-
crobeam irradiation system. The laser pulse energy was regulated by the filter. The laser spot
size was compressed by a ×40 objective lens before irradiating the cells. (b) Three types of
damage induced by low dose or high dose of 365 nm laser irradiation in HeLa cells. The HeLa
cells were stained with anti-poly (ADP) ribose for single-strand breaks, or γH2AX antibody for
double-strand breaks, or accumulation of GFP-tagged OGG1 at irradiated sites for base dam-
age. (c) The dependence of accumulation of GFP-tagged WRN after higher dose irradiation with
the 365 nm laser on time in HeLa cells. (d) Accumulation of GFP-tagged WRN, GFP-tagged
XRCC1, and LIGIIIα after lower dose irradiation with the 365 nm laser in HeLa cells. Taken
from [41].

To find the substrate for the accumulation of WRN, the cells were also irradiated with

low-dose laser pulses, which induce only single-strand breaks. As shown in Fig. 1.12(d),

after irradiation, XRCC1, and LIGIIIα, which were involved in the repair of single-

strand breaks, efficiently accumulated, while WRN did not accumulate at all, indicating

that the substrate for the accumulation of WRN was not single-strand breaks.

1.3.2 DLA-based electron source

The microbeams of ions, X-rays, electrons are essential tools to study the influence of ion-

ization radiation on a living cell. Facilities have been built to produce those microbeams.

For examples, cyclotrons were built to deliver MeV-class ion beams, and synchrotrons

were built to generate X-rays with energies up to a few tens of keV. However, their

availability is greatly limited because of their large size and high cost.
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DLA is very suitable for radiobiology research due to its small size, low price and the

capacity of delivering nanometer-sized beams with attosecond pulse durations[43]. Fig-

ure 1.13 shows a schematic of such an electron source based on DLA. Diffraction gratings,

which have been experimentally demonstrated high accelerating gradient, can be used

as accelerating structures. A photocathode using a thin gold film that has a diameter

less than 100 nm as emitter can generate an electron beam that can be collimated to

a size of less than 100 nm[44, 45]. Electrons generated by an emitter are accelerated

between the anodes and then accelerated by a multi-stage DLA driven by a fiber laser.

The phase of each laser pulse should be tuned for multi-stage acceleration.

DLA structures

laser
fibers

cell

cathode anode

50 keV 1 MeV

Figure 1.13: A conceptual drawing of a DLA-based electron source for radiobiology research.

The output electron parameters of the electron source are determined by the process of

the energy absorption and electron beam blur via multiple Coulomb scattering in a cell.

In order to locate the interaction area prior to the irradiation for a typical human cell

with a size of 10 µm, an electron blur of 1 µm or less, which is nearly the resolution

of an optical microscope, must be provided, requiring an electron beam with a radius

< 0.5 µm and angular distribution < 0.05 rad[43]. Consequently, the electron energy

must be at least 0.5 MeV to restrict the expansion of the electron beam. Considering

the radiation safety regulations, we choose to use 1 MeV electrons. Energy loss in a

Si3N4 vacuum window with a thickness of 100 nm is 50 eV at 1 MeV, which can be

neglected. Since the collision stopping power of protons in water are ∼ 160 times that

of electrons, to generate the same energy deposition in the cell by electrons with that

by a 1 MeV proton, one bunch should have ∼ 160 electrons. The absorption dose D

of these electrons can be measured by D = dE/dm, where dE is deposited energy and

dm is the areal mass element. Energy deposition in the tissue is 180 eV/µm at 1 MeV.

Since the cell thickness is 10 µm, the energy deposition will be 1800 eV/electron. For an

electron beam with a size around 1 µm, we can roughly consider an irradiation volume

of 10 µm−3, corresponding to ∼ 10−14 kg. Then the absorption dose can be evaluated

to be 4.7 Gy/bunch. Operation in a high repetition rate can drastically increase the

absorption dose, depending on the number of electron bunches. Important parameters

of the electron source are summarized in Table 1.1.
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Table 1.1: Electron source parameters required for radiobiology research.

Electron source parameters

Electron energy (MeV) 1

Beam size (µm) ∼ 0.5

Bunch length (attosec) 50

Bunch charge (fC) 0.026

Absorption dose (Gy/bunch) 4.7

Based on the above requirement, K.Koyama and coworkers have performed a param-

eter study for a DLA-based electron source using SiO2 double grating with dual-sided

illumination[43]. The 1030 nm laser pulse was assumed to have a flat-top pulse shape

and intensity profile for simplicity, with a peak incident field of 2 GV/m. The double

grating is shown in Fig. 1.14(a). The field distribution in the structure at the initial

stage and steady stage are shown by Fig. 1.14(b) and Fig. 1.14(c), respectively. With a

grating period of 1030 nm, the optimum pillar height and pillar width were calculated

to be Hp/λ ≈ 1 and Lp/LG ≈ 0.5, respectively. To accelerate electrons from a few tens

(a)

(c)

(b)

(d) (e)

Figure 1.14: Parameter study of DLA electron source for radiobiology research. (a) Schematic
of a double grating. (b) The wavefront in the structure at the initial stage. (c) The wavefront in
the structure at the steady stage. (d)The accelerating gradient versus the grating pillar height
Hp/λ and pillar width Lp/LG, with LG being the grating period. (e) The accelerating gradient
versus the electron energy. Taken from [43].



Chapter 1. Introduction 15

of keV to 1 MeV, the grating period was changed to match the synchronicity condition

for different electron energies. Figure 1.14(d) shows the resulting accelerating gradient

as a function of grating period. The accelerating gradient drastically decreased when

the grating period was reduced. The accelerating gradients were 20 MV/m for 20 keV

electrons and 600 MV/m for relativistic electrons. Figure 1.14(e) shows the energy evo-

lution of the electrons along the longitudinal direction at various initial electron energies.

To accelerate electrons to an energy of 1 MeV, the interaction lengths were 4 mm and

3 mm for 20 keV electrons and 80 keV electrons, respectively.

To make a compact and reliable system, a fiber laser was used to pump the dielectric

accelerator, as shown in Fig. 1.15. The width of the irradiation area was assume to

be 5 µm. If only one pair of laser pulses were used to illuminate the entire structure,

the required peak power and pulse energy were 200 MW and 10 mJ. By using N se-

quential laser pulses, the laser peak power and energy were reduced to 1/N and 1/N2,

respectively. Table 1.2 shows the laser and accelerator parameters using 10 pairs of laser

pulses.

Figure 1.15: A conceptual drawing of the DLA-based electron source for radiobiology research.
A fiber laser was used to drive the DLA, with the phase of each pulse properly tuned. Taken
from [43].
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Table 1.2: Parameters of a DLA-based electron source for radiobiology research.

Accelerator parameters

Initial electron energy (keV) 20

Final electron energy (MeV) 1

Acceleration length (mm) 4

Acceleration time (ps) 50

Laser parameters

Irradiation area (cm2) 4× 10−4

Number of pulse pairs 10

Pulse duration (ps) 5

Peak power of each pulse (MW) 20

Pulse energy (µJ) 50

Total laser energy (mJ) 1

1.4 About the thesis

To realize a practical electron source for radiobiology research, a few technical challenges

must be resolved, including (but not limited to): first, an emitter that can produce an

electron beam with a transverse size < 100 nm must be developed; second, a DLA

structure that can produce a uniform accelerating mode must be provided; third, to

accelerate electrons to the target energy, a multi-stage accelerator structures as well as

focusing components should be integrated on a chip with a laser power delivery system

to extend the interaction length to millimeter scale.

In this work, we focus on the development of DLA structures that can facilitate the

realization of an electron source. It has been suggested that a double-grating structure

could support phase-dependent acceleration and deflection by controlling the relative

phase of the drive lasers illuminating each side[30]. In contrast, we proposed a resonant

double-grating structure with a single-sided illumination by merging diffraction gratings

with resonating Fabry-Perot cavities. In this way, a laser-power efficient way of electron

acceleration may be enabled, and the complexity of an on-chip DLA system could be

reduced. Moreover, we designed a planar waveguide structure with highly-reflective

gratings as mirrors. Compared with the waveguides with PhCs, this structure needs only

one layer of periodic structures to confine the mode, which may simplify the fabrication

and enable easier integration. Additionally, we also designed a test station for diffraction

gratings, all the components have been fabricated.

The thesis is organized as follows:
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In Chapter 2 we present the physics of single-grating DLA structures. We also show the

simulation results of particle acceleration at a single grating structure.

In Chapter 3 we show our design of a resonant double-grating structure with a single-

sided illumination. We further discuss the performance of such a structure with the

simulation results of particle acceleration.

In Chapter 4 we propose a planar waveguide with subwavelength gratings as reflectors.

We further discuss the accelerator parameters with several examples of such waveguides.

In Chapter 5 we introduce the progress of developing a test station for DLA structures.

In Chapter 6 we conclude and briefly discuss the future work.





Chapter 2

Single grating structures

In this chapter, we consider a single grating structure for particle acceleration. We dis-

cuss the physics behind particle acceleration with a single-grating structure. We further

numerically investigated the dependence of accelerator performance on the grating di-

mensions with CST Microwave Studio (MWS). In addition, we perform particle tracking

of subrelativistic electrons which interact with the accelerating mode.

2.1 Accelerating mode of a single grating

A grating is a periodic structure widely used in optics, as shown in Fig. 2.1. Based on

diffraction effect, it can split one light into several beams at different angles. Therefore,

grating structures have been important components for monochromators and spectrome-

ters. The major concern in these applications is the diffracted beams that can propagate.

z

x

y

Figure 2.1: Schematic of a generic single grating structure.

In contrast, to accelerate electrons in the vacuum, we focus on a diffraction order, or

a spatial harmonic, that is evanescent. For acceleration purpose, an accelerating mode

with a longitudinal electric field and a phase velocity that matches the electron speed

should be provided. In the following, we will show that an evanescent mode generated

19



Chapter 2. Single grating structures 20

by diffraction at a single grating can be used for dielectric laser acceleration by designing

the grating period.

In an isotropic and source-free media, the Maxwell’s equations of electrodynamics is

given by

∇ · D̂ = 0, ∇× Ê = −∂B̂

∂t
,

∇ · B̂ = 0, ∇× Ĥ =
∂D̂

∂t
,

(2.1)

where D̂, Ê, B̂, Ĥ represent the vectors of the displacement field, electric field, induction

field and magnetic field, respectively.

For time-harmonic case, with ω being the angular frequency, any instantaneous field

Â(x, y, z, t) can be described in terms of a vector A(x, y, z) that depends on the space

coordinates,

Â(x, y, z, t) = A(x, y, z)e−iωt. (2.2)

For a grating as shown in Fig. 2.2, the magnetic permeability µ is considered homo-

geneous, µ = µ0, where µ0 is the magnetic permeability in vacuum, while the electric

permittivity ε is considered space dependent, ε = ε0εr, with ε0 being the permittivity in

vacuum and εr being the relative permittivity. Taking the curl of the last two equations

in Eq. 2.1 yields

∇2E = −ω2εµE−∇
(

E · ∇ε
ε

)
, (2.3)

∇2H = −ω2εµH + iω∇ε×E. (2.4)

In the case of a perfect dielectric that has no conductivity at all, the conductivity σ = 0

and the permittivity ε = ε0εr is real. In the case of a lossy media that has a non-

negligible conductivity σ, the permittivity ε = ε0εr = ε′ + iε′′ becomes complex, with

the imaginary part ε′′ = σ/ω. In the rest of this text, we assume for simplicity that the

dielectric materials in region I and II are lossless, i.e., σI = σII = 0.

The grating is assumed to be infinite in the y direction, i.e., the space-dependent vector

A ≡ A(x, z). Due to the one-dimensional nature, the grating structure can be treated

as a stack of layers in which the permittivity depends only on the position z, i.e., the

permittivity ε ≡ ε(z).

For TM or TE polarization, the electric field of the incident light is perpendicular to or

along the grating bars, respectively. The general case can be treated as the combination
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Figure 2.2: Cross section of a single grating and the wave vectors outside the grating. It
consists of a periodic array of silicon bars with refractive index nb, surrounded by materials with
a refractive index nI in the reflection region and nII in the transmission region. The grating is
assumed to be infinite in the y direction and infinitely periodic in the z direction. A TM wave
is incident from above, with the electric field (red arrow) in the incidence plane. Λ, grating
period; s, bar length; b, bar width, θ, incident angle. Electrons travel along the longitudinal (z)
direction in the channel. Outside the grating, there are a number of diffraction orders.

of TE and TM polarization. Here, our discussion is limited to TM polarization which is

required for particle acceleration. Fig. 2.2 shows the cross-section of the single grating

structure.

In the case of TM polarization, H = [0, Hy, 0]. The gradient of a vector H can be

calculated by ∇H =
[
∂
∂x ,

∂
∂y ,

∂
∂z

]T
[Hx, Hy, Hz]. Therefore, Eq. 2.4 can be rewritten as

∇2Hy =
1

εr(z)

dεr(z)

dz

∂Hy

∂z
− k2

0(z)Hy, (2.5)

or, in the form
∂2Hy

∂x2
= −εr(z)

{
∂

∂z

[
1

εr(z)

∂Hy

∂z

]
+ k2

0Hy

}
. (2.6)

From Eq. 2.1, the relation between the field components can be derived

[Ex, 0, Ez] =
1

iωε

[
∂Hy

∂z
, 0,−∂Hy

∂x

]
. (2.7)

The incident field can be described by its magnetic y component

H inc
y = H0einIk0(x cos θ+z sin θ). (2.8)

where nI is the refractive index in region I.

The grating structure is periodic in the z direction with a period of Λ. The linear

transformation of the incident field Einc
y into the total field Ey suggest that, in any

region,

Hy(x, z + Λ) = einIk0Λ sin θHy(x, z), (2.9)
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so the function F (x, z) = e−ikIz sin θHy(x, z) is periodic in z direction with a period of Λ.

The Fourier expansion of F (x, z) yields

F (x, z) =
+∞∑

n=−∞
fn(x)ein 2π

Λ
z. (2.10)

Therefore, the field Hy(x, z) can be given by

Hy(x, z) =
+∞∑

n=−∞
fn(x)eikz,nz, (2.11)

where

kz,n = kI sin θ + n
2π

Λ
= k0

(
nI sin θ + n

λ

Λ

)
, (2.12)

with n = 0,±1,±2, . . . being the diffraction order, kz,n being the z wavenumber, k0

and kI = nIk0 being the wavenumbers corresponding to the free space and material

in region I, respectively. Eq. 2.12 is known as the diffraction law. The x-dependent

coefficients fn(x) remain to be determined.

In region I, the constant electric permittivity εI indicates that Eq. 2.5 takes the form of

the Helmholtz equation

∇2HI
y = −εIk

2
0H

I
y. (2.13)

Substituting for HI
y the Fourier expansion (Eq. 2.11) yields

(
d2

dx2
+ k2

I,x,n

)
f I
n(x) = 0, (2.14)

where kI,x,n = (k2
I − k2

z,n)1/2 is the x-wavenumber of the nth diffraction order in the

region I. Since the dielectric materials in the region I is lossless, the x-wavenumber kI,n

is real when kI ≥ kz,n, and imaginary when kI < kz,n; in the latter case, we assume that

the imaginary part is positive. Therefore, the general solution of Eq. 2.14 is given by

f I
n(x) = AneikI,x,nx +Bne−ikI,x,nx, (2.15)

where An and Bn are the coefficients of the forward (+x) and backward (−x) propagating

components, respectively.
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With a single incident plane wave from x = −∞, the total fields in region I can be

expressed as the sum of the incident field and the reflected diffraction modes:

HI
y = H0eikI(x cos θ+z sin θ) +

∞∑
n=−∞

rnH0ei(−kI,x,nx+kz,nz), (2.16)

EI
z = −cos θ

nI

√
µ0

ε0
H0eikI(x cos θ+z sin θ) +

∞∑
n=−∞

kI,x,nrn
k0εI,r

√
µ0

ε0
H0ei(−kI,x,nx+kz,nz), (2.17)

EI
x =

sin θ

nI

√
µ0

ε0
H0eikI(x cos θ+z sin θ) +

∞∑
n=−∞

kz,nrn
k0εI,r

√
µ0

ε0
H0ei(−kI,x,nx+kz,nz), (2.18)

where kI cos θ = kI,x,0 is the x wavenumber of the incident field , kI sin θ = kz,0 is the

z wavenumber, and rn = |rn|exp(iψR,n) is a complex known as the reflection coefficient

of the nth diffraction order, with ψR,n being the reflection phase and |rn|2 being the

reflectivity.

In region II, by following the same procedures for region I, with kII,x,n = (εIIk
2
0−k2

z,n)1/2

being the x-wavenumber, the fields can also be derived and are expressed as the sum of

the transmitted diffraction modes:

HII
y =

∞∑
n=−∞

tnH0ei(kII,x,n(x−s)+kz,nz), (2.19)

EII
z = −

∞∑
n=−∞

kII,x,ntn
k0εII,r

√
µ0

ε0
H0ei(kII,x,n(x−s)+kz,nz), (2.20)

EII
x =

∞∑
n=−∞

kz,ntn
k0εII,r

√
µ0

ε0
H0ei(kII,x,n(x−s)+kz,nz), (2.21)

where tn is the transmission coefficient of the mode.

To accelerate electrons, there should be a vacuum channel in which the electrons travel.

In the following, we assume that the media in both region I and region II have a refractive

index of 1, i.e., region I and region II are vacuum. In region I, the z wavenumber of the

nth diffraction order as shown in Eq. 2.12 can be rewritten as

kz,n = k0

(
sin θ + n

λ

Λ

)
. (2.22)

In the longitudinal direction, the phase velocity of these diffraction modes can be ex-

pressed in term of the z wavenumber as

vph,n =
ω

kz,n
. (2.23)
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For continuous acceleration of the electrons, the synchronicity condition that requires the

phase velocity of one diffraction mode to be equal to the electron velocity (ve) needs to be

satisfied. This diffraction order is known as the accelerating mode, or synchronous mode.

Using m as the order number of the synchronous mode, the synchronicity condition can

be written as

vph,m = ve = βec, (2.24)

with βe being the electron velocity ve normalized to the speed of light c.

For the grating period, this result in

Λ =
mλ

1/βe − sin θ
. (2.25)

Obviously, given the electron velocity (βe), the required grating period (Λ) is determined

by the order number of the synchronous mode (m) and the incident angle (θ). Using

a higher order or larger incident angle requires a larger grating period, which may

simplify the fabrication. However, the first order is preferable since it usually has a

higher amplitude than the higher orders.

To explore the property of the accelerating mode, we consider to use a surface-normal

incident laser for acceleration, consistent with how experiments with such structures have

been typically conducted[20, 21, 26, 27, 29, 30]. In this case, using the first diffraction

order requires a grating period that is not longer than the light wavelength,

Λ = βeλ. (2.26)

For the accelerating mode, Eq. 2.26 results in

kz,m = k0/βe, (2.27)

kx,m = ik0/(βeγe). (2.28)

with γe =
√

1− β2
e being the Lorentz factor. The imaginary value of kx,m indicates that

all the diffraction orders other than zeroth order are evanescent and fall off exponentially

with an increasing distance from the grating surface in x direction. The decay constant

that defines this near wave existing at the surface of the grating is given by

Γ =
i

kx,m
=
βeγeλ

2π
. (2.29)
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Later, it is convenient to rewrite the accelerating mode profiles in region I in terms of

the electron parameters,

Hy,m(x, z) = rmH0ex/Γeikz,mz, (2.30)

Ex,m(x, z) =
1

βe

√
µ0

ε0
Hy,m(x, z), (2.31)

Ez,m(x, z) =
i

βeγe

√
µ0

ε0
Hy,m(x, z). (2.32)

The accelerating mode profiles in region II can be rewritten as

HII
y,m(x, z) = tmH0e−(x−l)/Γei(kz,mz), (2.33)

EII
x,m(x, z) =

1

βe

√
µ0

ε0
HII
y,m(x, z), (2.34)

EII
z,m(x, z) = − i

βeγe

√
µ0

ε0
HII
y,m(x, z). (2.35)

In the accelerating mode, the Lorentz forces experienced by an electron in region I and

region II can be given by Eq. 2.36 and Eq. 2.37, respectively, where φ0 is the start phase

of electron in the optical cycle. From the perspective of the accelerating field, a larger

start phase φ0 corresponds to a later start time of the electron.

F (x, z, t) =


Fx

Fy

Fz

 =


rmq
βeγ2

e

√
µ0

ε0
H0ex/Γei(kz,mz−ωt−φ0)

0
irmq
βeγe

√
µ0

ε0
H0ex/Γei(kz,mz−ωt−φ0)

 , (2.36)

F (x, z, t) =


Fx

Fy

Fz

 =


tmq
βeγ2

e

√
µ0

ε0
H0e−(x−l)/Γei(kz,mz−ωt−φ0)

0

− itmq
βeγe

√
µ0

ε0
H0e−(x−l)/Γei(kz,mz−ωt−φ0)

 . (2.37)

The Lorentz forces described in Eq. 2.36 and Eq. 2.37, in which the longitudinal and

transverse components serve for acceleration and deflection of particles, respectively,

are illustrated in Fig. 2.3. The accelerating force (i.e., longitudinal force) is exerted by

the z component of the electric field while the deflecting force (i.e., transverse force)

is the combined force exerted by the transverse electric field in the x direction and the

transverse magnetic field in the y direction. It is shown that the force experienced by the

electrons depends on the start phase and the distance to the grating. The characteristics

of the accelerating mode generated by a single grating structure can be seen, e.g., the

accelerating mode is a non-radiative wave which exists only close to the grating surface,

the acceleration and the deflection are π/2 out of phase. It shows that an accelerating
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scheme using a single grating only allows a small distance between the electron beam

and the grating.
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Figure 2.3: Illustration of the Lorentz force experienced by an electron in the accelerating mode.
The phase velocity of the accelerating mode is matched to the electron velocity. The fields of
the accelerating mode decay exponentially away from the grating. The force experienced by the
electron can be decelerating (1), accelerating (2), and deflecting (3).

2.2 Field simulation

A crucial advantage of the DLAs compared to the conventional accelerator based on

metallic cavities is the high gradient which may enable a compact accelerator. To maxi-

mize the accelerating gradient which is limited by the damage threshold of the dielectric

material is the primary target for optimization.

To characterize the performance of an accelerating structure, the figure of merit is the

accelerating gradient, Ga, which is the average longitudinal electric field experienced by

the electrons in an optical cycle. The ratio of the accelerating gradient Ga to the incident

electric field E0, i.e., Ga/E0, notes the grating’s ability to convert the incident field into

accelerating field. The ratio of accelerating gradient Ga to the maximum field Emax in

vacuum at the grating surface, i.e., Ga/Emax, notes the fraction of the maximum electric

field that can be converted into accelerating field. When an accelerator works with a low

input laser power that causes no damage, the highest value of Ga/E0 should be chosen

to maximize the accelerating gradient. When the accelerator works close to the damage

threshold, which can be expressed as the maximum sustainable field in the vacuum at
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the dielectric surface, the highest ratio of Ga/Emax should be chosen to maximize the

sustainable accelerating gradient.

In this section, we calculate the accelerating gradient with CST MWS. In addition, the

dependence of accelerating gradient on the grating geometries and materials is investi-

gated.

2.2.1 Simulation with CST MWS

CST MWS is commercial software for three-dimensional high-frequency electromagnetic

simulation[46]. It can provide a precise calculation for many applications including

photonic crystals, cavities, and antennas.

Considering the possibility to conduct the acceleration experiment using a laser system

and an electron gun which are being developed at KEK, the grating structure is designed

based on the target parameters of those systems, as shown in Table 2.1.

Table 2.1: Simulation parameters for electron and laser pulse.

Electron energy (keV) 50

Laser wavelength (µm) 1030

Laser pulse duration (ps) 30

Laser pulse energy (µJ) > 10

Laser repetition rate (Hz) 20

To utilize the first spatial harmonic to accelerate electrons, a grating period Λ = 425 nm

is required to achieve the phase synchronicity as shown in Eq. 2.26. In this section, we

will use fused silica, which has been widely used in previous experiments[20, 21, 47],

as the grating material. It has a refractive index of 1.45 and a damage threshold of

3.5 J/cm2. In Sec. 2.2.2, we will discuss the choice of materials.

To make a single grating structure, the easiest way would probably be to pattern a

one-dimensional grating on a wafer with electron-beam lithography and then etch the

grating pattern, yielding a periodic structure on the top of a slab, or substrate. Such

a structure, namely the slab grating, can be driven by either a laser from the vacuum

side or a laser from the slab side, as shown by Figs. 2.4[(a) and (b)], respectively. Using

the transmission mode, an anti-reflection layer will be required at the interface between

the slab and air. Besides, our simulation shows that sustainable accelerating gradients

for transmission mode and reflection mode are almost the same. As such, the incidence

of laser from the vacuum side is considered as a better solution and will be studied in

this section. The rectangular pillar grating in Fig. 2.4(c) and elliptical pillar grating in
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Fig. 2.4(d) require extra efforts for fabrication due to their three-dimensional nature, so

they will not be considered in the simulation of single-grating structures. However, in

Chapter 3, such structures will be considered for double gratings.

In Fig. 2.5(a), the setup in the simulation is shown. Only one period of the grating

is needed in the field simulation, with periodic boundary conditions in the z direction,

open boundary conditions in the x direction, and magnetic boundary conditions in the y

direction. Grating dimensions: pillar height s, pillar width b, grating period Λ. A TM-

polarized plane wave with a wavelength of λ is incident from above at normal incidence

to the grating surface, with the electric field along the z direction. The electrons of

velocity ve = βec are assumed to propagate in z direction. The mesh coarseness is λ/80.

As an example to illustrate the simulation method, we use a grating thickness s = 288 nm

and a pillar width b = 225 nm. In the simulation, CST time domain solver calculate

the electromagnetic fields at a steady state on a Cartesian grid. Extracting the fields,

we can obtain the field amplitude A(x, y, z) and phase ϕ0(x, y, z) on the grid. Since

the grating structure is two-dimensional, the field is constant in the y direction. The

instantaneous field oscillating with time can be given by

Â(x, z, t) = A(x, z)ei(ϕ0(x,z)−ωt). (2.38)

(a)

Laser

z

x

Laser

electron

(c)

(b)

(d)

Laser

Laser

electron

electron electron

Figure 2.4: Different designs of single grating structures. (a) Slab grating driven by a laser
from the vacuum side[26, 27]. (b) Slab grating driven by a laser from the substrate side[20, 47].
(c) Rectangular pillar grating. (b) Elliptical pillar grating.
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Figure 2.5: Field simulation of a single grating with CST MWS. (a) Simulation setup showing
the boundary conditions. Grating pillar height s, pillar width b, grating period Λ, laser wave-
length λ, electron velocity ve = βec. (b) Snapshots of the longitudinal field at every half optical
cycle Ez(t = 0, λ/2c, λ/c). The instantaneous longitudinal field Ez experienced by the electron
launched at t = 0 from the left is shown by the purple curve, while the red dashed line represents
Ez = 0. x = 0 is located at the pillar upper surface of the grating. Simulation parameters:
λ = 1030 nm, βe = 0.41, Λ = 425 nm, s = 288 nm, b = 225 nm.

The accelerating gradient Ga and deflection gradient Gd can be calculated by Eq. 2.39

and Eq. 2.40, respectively, where φ0 is the phase of electron in the optical cycle at z = 0,

namely start phase. For convenience, in the simulation we can assume an incident

wave with a peak field E0 = 1, so the calculated gradients can be treated as the value

normalized to the incident field E0. Since the energy gain of electrons in a grating period

is rather small, we can neglect the energy variation and assume z(t) = vet.

Ga(x0, φ0) =
1

Λ

∫ Λ

0
Ez[x0, z(t, φ0), t(z)]dz, (2.39)

Gd(x0, φ0) =
1

Λ

∫ Λ

0
(Ex[x0, z(t, φ0), t]− veBy[z(t), t])dz. (2.40)

In Fig. 2.5(b), we show the snapshots of the calculated electric field at every half optical

cycle, which is comprised of a series of diffraction modes. The maximum longitudinal

electric field is located around the corner of the pillar. Above the grating, the fields closer

to the grating are modulated more significantly due to the evanescent fields existing close

to the grating surface. For an electron launched t = 0, the electric field experienced by

the electron, Ez[x0, z(t, φ0), t], is shown by the purple curve. The red dashed line at
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the center represents Ez = 0. The average longitudinal electric field experienced by the

electron is above zero, so the electron can experience net energy gain over every optical

cycle and be accelerated.

Once the gradient Ga, field ratios Ga/E0, and Ga/Emax are obtained, the performance

of the single grating structure can be estimated based on the laser parameters as shown

in Table 2.1. The laser pulse duration τp = 30 ps corresponds to a damage threshold

Fth = 7 J/cm2 for fused-silica bulk[22]. The dependence of peak electric field on the

fluence Fin of a Gaussian laser pulse can be given by

E0 =

√
0.94

2Fin

cε0τp
. (2.41)

Therefore, the acceleration gradient at the damage threshold can be given by

Ga =

(
Ga
Emax

)√
0.94

2Fth
cε0τp

= 1.29

(
Ga

Emax

)
(GV/m), (2.42)

where Ga/Emax is the ratio of the accelerating gradient to the maximum in-vacuum field

at the grating surface calculated in the simulation.

Figure 2.6(a) shows the maximum sustainable accelerating gradient Ga and deflecting

gradient Gd in the vicinity of the grating as shown in Fig. 2.5(b), with a start phase that

can maximize the gradient. Figure 2.6(b) shows the maximum sustainable gradients as

a function of the start phase φ0, at a distance of 50 nm. The characteristics of the

accelerating mode at a single grating shown here are in agreement with those shown

in Fig. 2.3, e.g., the fields decay exponentially with the distance, the acceleration and

deflection are 90 degrees out of phase. For one electron starting at a distance of 50 nm

to the grating, the maximum accelerating gradient is about 60 MV/m.

Figure 2.6: Sustainable gradients in the vicinity of the grating. (a) Accelerating gradient
Ga and delecting gradient Gd versus distance d to the grating, with an optimum start phase.
(b) Gradients as a function of start phase φ0, at a distance of 50 nm to the grating. Refer to
Fig. 2.5(b) for simulation parameters.
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2.2.2 Optimization of grating dimensions and materials

The maximum sustainable gradient of a single grating structure depends on the field

ratio Ga/Emax and the damage threshold of the material. First, we will show how to

maximize Ga/Emax by optimizing the grating dimensions, including the pillar width b

and pillar height s.

In the simulation, as shown in Sec. 2.2.1, both the accelerating and deflecting gradients

depend on the start phase and the distance to the grating. Therefore, when we optimize

the structure dimensions and materials, we always set the start phase as the one that

can maximize the gradients and assume a distance of 50 nm.

The grating dimensions can be optimized with a parameter scan. In Fig. 2.7(a) and

Fig. 2.7(b), we show the s− b maps of the field ratio Ga/E0 and Ga/Emax, respectively.

Comparison between Fig. 2.7(a) and Fig. 2.7(b) shows that the optimum dimensions for

Ga/E0 and Ga/Emax are very close. As a result, the optimized grating are chosen to have

a pillar height s = 288 nm and a pillar width b = 225 nm, with Ga/Emax = 0.047 and

Ga/E0 = 0.065. Please note that the optimized grating dimensions correspond to the

structure which has been studied in the Sec. 2.2.1, as shown in Fig. 2.5(b). Since later

in this chapter, the optimized fused-silica grating will be frequently used, we summarize

its parameters in Table 2.2.

Figure 2.7: Maps of ratio Ga/E0 (a) and Ga/Emax (b) resulting from a parameter scan of
grating pillar height s and pillar width b for a fused-silica grating.

The capability of dielectrics to sustain high electric field is one of the most important

reasons that make DLA attractive. Many dielectric materials can be used in DLA,

whose damage thresholds are shown in Fig. 2.8, with a laser pulse duration of 1 ps and

wavelength of 800 nm. However, to utilize the well-developed fabrication technique in

semiconductor industry, here we will consider only fused silica and silicon. The threshold
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Table 2.2: Parameters of the optimized fused-silica single grating.

Grating period Λ 425 nm

Pillar width b 225 nm

Pillar height s 288 nm

Field ratio Ga/E0 (d = 50 nm) 0.065

Field ratio Ga/Emax (d = 50 nm) 0.047

fluence is 2.02 J/cm2 for SiO2, and 0.18 J/cm2 for Si. With Eq. 2.41, the sustainable

in-vacuum fields Eth are calculated to be 3.79 GV/m for SiO2 and 1.13 GV/m for Si,

and consequently Eth(SiO2)/Eth(Si) = 3.35.

laser: 800 nm, 1 ps.
measurement done in vacuum.

Figure 2.8: Damage threshold of a variety of materials. Measurements were conducted with a
1 ps, 800 nm, 600 Hz Ti:Sapphire laser. Taken from [48].

To compare these materials, we need to estimate their highest sustainable gradients. In

Fig. 2.7, the gradients of fused-silica grating have been presented. Although they were

obtained by assuming a laser wavelength of 1030 nm, because Maxwell’s equations are

linear and scalable in both space and time, the normalized values of pillar width b and

pillar height s also apply to a wavelength of 800 nm, neglecting the small change in

permittivity.

In Fig. 2.9 we show the field ratios Ga/E0 and Ga/Emax resulting from a parameter scan

of grating pillar height s and pillar width b for a silicon grating, with a laser wavelength
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of 1030 nm. The maximum Ga/Emax = 0.086, and the maximum Ga/Emax = 0.29.

Figure 2.9: Maps of ratio Ga/E0 (a) and Ga/Emax (b) resulting from a parameter scan of
grating pillar height s and pillar width b for a silicon grating.

Based on Fig. 2.7 and Fig. 2.9, the performance of fused-silica grating and silicon grating

can be compared. On one hand, the silicon grating has a four-fold larger ratio Ga/E0

than the fused-silica grating. To excite a given accelerating gradient without damage,

fused-silica grating needs a four-fold higher incident field than silicon grating. On the

other hand, assuming a laser pulse length of 1 ps, by using the damage threshold as shown

in Fig. 2.8, the sustainable accelerating gradient at a distance of 50 nm is 177 MV/m for

the fused-silica grating and 97 MV/m for the silicon grating. Currently, the commercial

laser system can deliver laser pulses with a power higher than that required by DLA.

Considering this, fused-silica is a better material to enable high-gradient acceleration of

50 keV electrons.

It is worth noting that, in the DLA, the electrical conductivity of materials is another

factor that might need to be considered in the experiment. Semiconductor materials,

e.g., silicon material, don’t any special treatment to handle the charging problem, which

is severe in subrelativistic electron acceleration due to the deflection. By comparison,

insulating materials, e.g., fused silica, need a conductive coating or the laser illumination

to dissipate charge buildup[47, 48].

Furthermore, the fabrication and integration capabilities for materials should also be

considered. In this respect, silicon is superior to the others due to its wide application

in the semiconductor industry. Lithography and etching techniques can ensure the high-

resolution fabrication of silicon structures. Silicon also provides an excellent platform

for monolithically integrating the accelerator structures and the laser-power-delivery

system.
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For these reasons, fused-silica and silicon are considered to have their advantages and

can be applied to actual design according to different requirements. In Chapter 3 and

4, we will design two silicon DLA structures by making use of a unique characteristic of

high-contrast subwavelength gratings.

2.3 Particle tracking simulation

To study the electron acceleration above a single grating, a particle tracking simulation

is needed. CST Particle Studio is widely used for this purpose. However, it is time-

consuming and requires a large memory. Therefore, we develop a particle tracking

program based on motion equations to evaluate the energy gain of electrons. We will

show that the deflecting fields cause severe electron loss and the dephasing effect limit

the energy gain.

2.3.1 Particle tracking method

In the calculation, we assume ∆βe/βe � 1 over one grating period, which is true when

the electron’s energy gain over one wavelength of the incident field is well below the

electron’s rest energy m0c
2, i.e., Ga � m0c

2/λ ≈ 496 GV/m. In a DLA driven by an

infrared laser, the general acceleration gradient Ga < 10 GV/m, so that the assumption

is valid.

A Gaussian laser beam is used to drive many periods of grating. Since the effect of asyn-

chronous modes is averaged to zero over time, they can be neglected in the simulation[49].

To begin with, the acceleration gradient for the synchronous electron is rewritten as

Ga(x, z, t) =
c

βeγe
By(z, t)e

−x/Γ. (2.43)

In Sec. 2.2.1, we have already obtained with CST MWS the field ratio Ga/E0 as a

function of start phase at a distance x0 = 50 nm. With Ga,0 denoting the maximum

accelerating gradient at a distance of 50 nm to the grating, the longitudinal field of the

accelerating mode can be rewritten as

Ez(x, z, t) =

(
Ga,0

E0

)
Eine

−(x−x0)/Γ sin(kzz − ωt+ ψR,1). (2.44)
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The x electric field and y magnetic field of the accelerating mode are also rewritten in

terms of Ez.

Ex(x, z, t) = γeEz(x, z, t), , (2.45)

By(x, z, t) =
γeβe

c
Ez(x, z, t).. (2.46)

As a Gaussian beam, the incident laser pulse has a field profile that can be described as

Ein = E0e
−(

z−z0
w0

)2−2 ln(2)(
t−t0
τp

)2

cos(−k0x− ωt). (2.47)

Based on Eqs. 2.44-2.47, the instantaneous fields of the accelerating mode can be ob-

tained,

Ea(x, z, t) =

(
Ga,0

E0

)
e−(x−x0)/ΓE0e

−(
z−z0
w0

)2−2 ln(2)(
t−t0
τp

)2

sin(kzz − ωt+ ψR,1). (2.48)

Next, we need to calculate the electron’s energy and x position after interaction with

the accelerating mode. For clarity, β and γ without subscript are used to represent the

instantaneous parameters for the electrons traversing the grating, while βe and γe are

used to represent the initial parameters of those electrons that satisfy the synchronicity

condition. Note that in the calculation, we assume the charge of the electron to be

e = 1.6× 10−19 C, ignoring the minus sign. We use φ0 = ωt0−ψR,1 to denote the start

phase of electron, φ = kzz − ωt + ψR,1 = kzz − ω(t − t0) − φ0 to denote the phase of

the electron in the optical cycle, with t0 being the time when the electron is launched

at z = 0. Since the electrons’ transverse velocity is much smaller than the longitudinal

velocity, so we can neglect the contribution of the transverse velocity to the total kinetic

energy. From the theorem of kinetic energy, we obtain the longitudinal motion equation

dγm0c
2

dz
= e

(
Ga,0

E0

)
e−(x−x0)/ΓE0e

−(
z−z0
w0

)2−2 ln(2)(
t−t0
τp

)2

sinφ, (2.49)

dφ

dz
= k0

(
1

βe
− γ√

γ2 − 1

)
. (2.50)

From the theorem of momentum, the transverse motion equation can be given by

dγem0vx
dt

= eγe (1− βeβ)

(
Ga,0

E0

)
e−(x−x0)/ΓE0e

−(
z−z0
w0

)2−2 ln(2)(
t−t0
τp

)2

cosφ (2.51)

dx

dt
= vx (2.52)
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By using d
dt = βc d

dz , equation (2.51) and (2.52) can rewritten as

dγm0vx
dz

= e
γe (1− βeβ)

βc

(
Ga,0

E0

)
e−(x−x0)/ΓE0e

−(
z−z0
w0

)2−2 ln(2)(
t−t0
τp

)2

cosφ (2.53)

dx

dz
=
vx
βc

(2.54)

Based on the motion equations (Eqs. 2.49, 2.50, 2.53 and 2.54), we could track the

particle powered by a gaussian laser pulse.

To verify the method, a code was developed accordingly. It the following, the code will

be verified by comparing the results obtained with it with those obtained with CST.

In the simulation, we assume a laser pulse with wavelength λ = 1030 nm, beam waist

radius w0 = 1 µm and pulse duration τp = 50 fs. We use the optimized fused-silica single

grating calculated in Sec. 2.2.1 as the accelerator structure. The grating is 11 periods

long, with a grating period Λ = 425 nm, a pillar height s = 288 nm and a pillar width

Figure 2.10: Comparison of electron parameters at the exit from the code and CST particle
tracking solver. The curves show the energy gain ∆E [(a) and (c)] and the x displacement [(b)
and (d)] as a function of start phase φ0 at an initial distance 50 nm (red) and 100 nm (blue),
respectively. The peak field E0 = 1 GV/m [(a) and (b)], E0 = 10 GV/m [(c) and (d)]. The
electrons with an energy of 50 keV are launched at different start phases and distances from
the grating surface. The structure has 11 periods of grating, with grating period Λ = 425 nm,
pillar height s = 288 nm and pillar width b = 225 nm, is illuminated by a laser with wavelength
λ = 1030 nm, beam waist radius w0 = 1 µm, and pulse duration τp = 50 fs.
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b = 225 nm. In Fig. 2.10, we show the final electron parameters obtained from the code

and CST particle tracking solver. The curves show the energy gain ∆E [Fig. 2.10(a)

and Fig. 2.10(c)] and the displacement in the x direction [Fig. 2.10(b) and Fig. 2.10(d)]

as a function of start phase φ0 at an initial electron-grating distance of 50 nm (red) and

100 nm (blue), respectively. The laser has a peak field of E0 = 1 GV/m in Fig. 2.10(a)

and Fig. 2.10(b), and E0 = 10 GV/m in Fig. 2.10(c) and Fig. 2.10(d). It can be seen

that the results obtained from the code are in agreement with the results obtained with

CST.

In Fig. 2.11, we show the instantaneous electron parameters, including electron energy

and distance to the grating surface, as a function of z position obtained from the code

(red) and CST particle tracking solver (blue). The parameters correspond to the second

left red dot in Figs. 2.10[(c) and (d)]. An electron with an initial energy of 50 keV are

launched at a start phase φ0 = 1.91 rad and an initial distance d = 50 nm to the grating

surface, powered by a laser pulse with a peak electric field E0 = 10 GV/m. It can

be seen that at the end of the grating, the electron energy and displacement obtained

by the code are in agreement with the results obtained with CST. However, there are

significant differences in the electron energy before it arrives at the end, which is because

in the code the spatial harmonics other than the accelerating mode are neglected. The

oscillation of the curve obtained by CST is mainly caused by the zeroth diffraction mode.
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Figure 2.11: Comparison of instantaneous electron parameters as a function of z position
obtained with the code and CST particle tracking solver. The curves show the energy gain ∆E
(a) and the lateral displacement in the x direction (b) as a function of z position. Identical
parameters for the second left red dot in Figs. 2.10[(c) and (d)] are used. The electrons with
an initial energy of 50 keV are launched at a start phase φ0 = 1.91 rad and initial distances
d = 50 nm from the grating surface, powered by a laser pulse with a peak electric field E0 =
10 GV/m. The structure has 11 periods of grating, with a grating period Λ = 425 nm, pillar
height s = 288 nm, and pillar width Wp = 225 nm. The laser pulse is with a wavelength
λ = 1030 nm, a beam waist radius w0 = 1 µm, and a pulse duration τp = 50 fs.

2.3.2 Particle tracking of electrons above a single grating

Using this code, we can evaluate the energy gain and x displacement of electrons above

a grating structure powered by a Gaussian laser pulse. We will show that the relative
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phase of the electron with respect to the accelerating mode changes as the electron gains

energy, known as the dephasing process. This effect which may lead to the reduction of

the acceleration gradient, or even result in deceleration. In this case, the energy gain

depends not only on the field ratio Ga/E0 but also on the variation of the phase of an

electron in the optical cycle.

Figure 2.12: Particle tracking results for a double grating structure. The electrons with an
initial energy of 50 keV are launched at different start phases and initial distances from the
grating surface. The colored maps show the energy gain ∆E [(a), (d) and (g)], the deflected
lateral displacement dx [(b), (e), and (h)] and the phase slip of the electrons in the accelerating
mode ∆φ [(c), (f), and (i)]. The white areas represents those electrons crashed into the grating
structures. The structures with a grating period Λ = 1030 nm and total widths W = 30 µm [(a)–
(c)], W = 60 µm [(d)–(f)] are illuminated by a laser with a wavelength λ = 1550 nm, laser beam
waist radiuses w0 = 10 µm [(a)–(f)], w0 = 20 µm [(g)–(i)], a peak fluence Fin = 3.62 J/cm2 and
a pulse duration τp = 20 ps.

In Fig. 2.12 we show the particle tracking results for 50 keV electrons in the vicinity of

the optimized fused-silica grating. The laser parameters are shown in Table 2.1, and the

grating parameters are show in Table 2.2. The electrons with an initial energy of 50 keV

are launched at different start phases and initial distances from the grating surface.

Here, the start time for a zero start phase is set that those electrons can experience
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the maximum peak electric field around the grating center. The white areas represent

those electrons crashed into the grating structures, or lost electrons. We change the

total number of grating periods and the waist radius w0 of the laser beam. As suggested

in Sec.2.2.1, we use a peak incident electric field E0 = 0.92 GV/m, corresponding to

a maximum fluence Fin = 3.62 J/cm2 below the damage threshold[22], considering the

field enhancement.

Figures 2.12[(a), (d) and (g)] show the energy gain of electrons with different initial

distances and start phases. Comparison between Fig. 2.12(a) and Fig. 2.12(d) shows that

with a given laser pulse, increasing the total grating length does not lead to an increase

in energy gain. A total grating width of 30 µm is long enough to cover the effective

interaction length with a laser beam waist of 5 µm. Comparison between Fig. 2.12(d)

and Fig. 2.12(g) shows that for a given total grating width, increasing the laser waist

may not necessarily lead to higher energy gain. This is caused by the dephasing effect

during the interaction, as shown in Figs. 2.12[(d), (f) and (i)]. The phase of an electron

in the optical cycle changes as the electron gains energy. For example, one electron

starting at an optimum start phase φ0 = 3π/2 and a distance of 50 nm experience a

phase slip around -2 rad during the interaction. In this case, the electron moves from

the accelerating phase to the decelerating phase, leading to a decreasing of the energy

gain. The maximum energy gain is expected to be ∼ 1 keV in the experiment.

Despite the dephasing effect, the characteristics of the single-grating DLA for non-

relativistic electrons can be seen in Figs. 2.12, e.g., the accelerating mode is a non-

radiative wave and can only accelerate electrons close to the grating surface, the strong

deflection force could result in electron loss, and the acceleration and the deflection are

π/2 out of phase. By comparing Figs. 2.12[(a)–(c)] and Figs. 2.12[(d)–(f)], one can see

that with fixed laser parameters, the maximum energy gain of electron is affected by

the total width of the grating which determines the number of grating periods. Due

to the dephasing effect and the deflection, one may obtain a smaller energy gain with

more grating periods. By comparing Figs. 2.12[(d)–(f)] and Figs. 2.12[(g)–(i)], we can

see that, given a grating structure, higher laser energy may lead to a lower energy gain

as a result of the dephasing problem.

Figure 2.13 shows the simulated electron parameters along z direction. We show the

instantaneous kinetic energy Ek, the acceleration gradient Ga, the distance between

electron and grating surface d, the deflection gradient Gd, the laser electric field am-

plitude experienced by the electron Ein and the phase of electron in the optical cycle

φ. The 50 keV electrons at an initial distance of d = 50 nm from the grating surface

are launched at the optimal start phases that enable the maximum energy gain without

crashing into the grating. It is shown that the dephasing effect could be so severe that
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Figure 2.13: Instantaneous electron parameters as a function of z position. We show the
instantaneous kinetic energy Ek [blue curves in (a), (d), and (g)], the acceleration gradient Ga

[green curves in (a), (d), and (g)], the distance between electron and grating surface d [blue
curves in (b), (e), and (h)]), the deflection gradient Gd [green curves in (b), (e), and (h)], the
laser electric field amplitude experienced by the electron Ein [blue curves in (c), (f), and (i)] and
the phase of electron in the optical cycle φ [green curves in (c), (f), and (i)]. The 50 keV electrons
at an initial distance of d = 50 nm from the grating surface are launched at the optimal start
phases enabling the maximum energy gain without crashing into the grating. (a)–(c) Identical
parameters in Figs. 2.12[(a)–(c)] are used, with start phase φ0 = 4.83 rad. (d)–(f) Identical
parameters in Figs. 2.12[(d)–(f)] are used, with start phase φ0 = 4.92 rad. (g)–(i) Identical
parameters in Figs. 2.12[(g)–(i)] are used, with start phase φ0 = 5.48 rad.

the electron may be decelerated after initial acceleration, i.e., the electron moves from

the acceleration phase to the deceleration phase. To mitigate the dephasing problem,

we can change the grating period in accordance with electron energy. In this case, a

higher energy gain could be obtained.

2.3.3 The limitations of a single grating

As is shown in Section 2.3.2, the accelerating field at a single grating is evanescent and

fall off exponentially with an increasing distance from the grating surface in x direction.

The skew profile is not desirable for a practical accelerator since it results in a large

energy spread.

To clarify this point, in the particle tracking simulation as shown in Fig. 2.12(a), we

assume a Gaussian electron beam profile in the x direction, with a beam waist of 20 nm
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Figure 2.14: Charge density map as a function of x position and energy E after interaction.
The electron beam has a Gaussian profile in the x direction, with a beam waist of 20 nm and
the beam center being x0 = 75 nm. The other simulation parameters are identical with those in
Figs. 2.12[(a)–(c)].

and the beam center being x0 = 75 nm. This beam configuration can be treated as

the acceleration of a longitudinally uniform electron beam with a pulse duration of one

optical cycle and a Gaussian profile in the x direction. In Fig. 2.14, the charge density as

a function of x position and energy E after interaction is shown. As those electrons with

litter energy gain experience a high deflecting gradient, they are pushed away from the

electron beam axis. Those electrons which experience a large deflecting force in minus

x direction crash into the grating structures and cannot survive after the interaction.
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Figure 2.15: Charge density versus x position (a) and energy E (b) before (black) and after
(red) the interaction at a single grating. The electron beam has a Gaussian profile in the x
direction, with a beam waist of 20 nm and the beam center being x0 = 75 nm. The other
simulation parameters are identical with those in Figs. 2.12[(a)–(c)].

Figure. 2.15(a) shows the normalized charge density before and after the interaction.

About 78% of the electrons can survive after the interaction, but most of these survived

electrons have moved away from the original electron beam axis. Figure. 2.15(b) shows

the energy of the electrons before and after the interaction. It is shown that, during the
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interaction, some of the electrons are accelerated while some are decelerated, depending

on the start phase.

Since a single grating can only provide an accelerating mode which causes a large energy

spread, an accelerating structure that provides a better field profile should be developed.

In the next chapter, we will discuss the double gating structure that enables a more

uniform accelerating field.



Chapter 3

Resonant double grating

structures

In an accelerator, the beam quality is a figure of merit to characterize its performance.

In a single grating structure, as discussed in Chapter 2, the evanescent accelerating field

leads to a large energy spread, which severely limits its usefulness. In this chapter, we

present a method to generate a uniform accelerating mode by using a double-grating

resonator with single-sided illumination. We further discuss its performance based on

the field simulation and particle tracking simulation results. Additionally, we discuss

the accelerator parameters of a 1 MeV electron source for radiobiology research. Part

of the content of this chapter follows [50].

3.1 Theory of a resonant double grating

In this section, we will show that, by introducing a second grating, a more uniform

synchronous field can be produced in the channel. We discuss the mechanism of forming

a symmetric mode with a double grating. A method to design a double grating that

can provide a quasi-symmetric accelerating mode with single-sided illumination will be

introduced.

3.1.1 Accelerating mode of a double grating

In this part, we focus on the theory of how a symmetric accelerating field is formed in

a double grating, leaving alone the excitation of the mode. Figure 3.1 shows a general

double-grating structure consisting of a vacuum channel surrounded by two grating

structures.

43
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𝑧

𝑥

𝑦

Figure 3.1: Schematic of a double grating for particle acceleration. Electrons travel in the
channel between the two gratings. The channel width is d. x = 0 is located at the channel
center.

We assume that, in a double grating, synchronous modes at the single gratings on either

side of the channel have been excited. The profile of an accelerating mode from above

can be given by

Hy,s(x, z) = −Huex/Γei(kzz), , (3.1)

Ex,s(x, z) = − 1

βe

√
µ0

ε0
Huex/Γei(kzz), , (3.2)

Ez,s(x, z) = − i

βeγe

√
µ0

ε0
Huex/Γei(kzz), (3.3)

where Hu is the amplitude of the magnetic field of the synchronous mode at a distance

of d/2 from the grating surface, or at the channel center. The profile of the accelerating

mode from below can be given by

Hy,s(x, z) = +Hde−x/Γei(kzz+δ), (3.4)

Ex,s(x, z) = +
1

βe

√
µ0

ε0
Hde−x/Γei(kzz+δ), (3.5)

Ez,s(x, z) = − i

βeγe

√
µ0

ε0
Hde−x/Γei(kzz+δ), (3.6)

where Hd is the amplitude of the magnetic field of the synchronous mode at a distance of

d/2 from the grating surface, or at the channel center, δ is the phase difference between

the mode from above and from below.

In the channel, the superposition of evanescent modes from either side can form different

field patterns, depending on the relative phase difference of δ. If δ = 0, the longitudinal

electric field in the channel formed by the superposition of two evanescent fields take
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the form of a cosh mode,

Hy(x, z) = −2
√
HuHd sinh

[
x

Γ
+ ln(

Hu

Hd
)

]
ei(kzz), (3.7)

Ex(x, z) = −2
√
HuHd

βe

√
µ0

ε0
sinh

[
x

Γ
+ ln(

Hu

Hd
)

]
eikzz, (3.8)

Ez(x, z) = − i2
√
HuHd

βeγe

√
µ0

ε0
cosh

[
x

Γ
+ ln(

Hu

Hd
)

]
eikzz. (3.9)

The Lorentz force experienced by the synchronous particle in the channel can be given

by

F (x, z, t) =


Fx

Fy

Fz

 =


−2e

√
HuHdq
βeγ2

e

√
µ0

ε0
sinh

[
x
Γ + ln(Hu

Hd
)
]

ei(kzz−ωt),

0

− i2e
√
HuHd

βeγe

√
µ0

ε0
cosh

[
x
Γ + ln(Hu

Hd
)
]

ei(kzz−ωt)

 . (3.10)

It is apparent that only when the two evanescent modes are excited equally strong, i.e.,

Hu = Hd = H0, the accelerating mode would be symmetric with respect to the channel

center (x = 0). In this case, the Lorentz force could be rewritten as

F (x, z, t) =


Fx

Fy

Fz

 =


−2eH0
βeγ2

e

√
µ0

ε0
sinh

(
x
Γ

)
ei(kzz−ωt)

0

− i2eH0
βeγe

√
µ0

ε0
cosh

(
x
Γ

)
ei(kzz−ωt)

 (3.11)

The Lorentz force experienced by a particle in the double-grating structure is illustrated

by Fig. 3.2. It can be seen that the accelerating field is rather uniform at the channel

center, which is desirable for particle acceleration. On the axis where the acceleration

reaches its minimum, the mode has vanishing deflection. There is a focusing or defo-

cusing force towards the axis, depending on the phase of a particle in the optical cycle.

It can also be seen that the acceleration and deflection are π/2 out of phase, indicating

that longitudinal focusing of the beam results in transverse defocusing, and vice versa,

which is in agreement with Earnshaw’s theorem.

3.1.2 Resonant enhancement of accelerating mode

In this part, we discuss how to use a single laser to excite equally strong synchronous

modes on either side of the channel, with their phase matched with each other.

As is discussed in Chapter 2, upon the incidence of a plane wave, a series of diffraction

modes are excited at a single grating. The longitudinal electric field of the reflected nth
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Figure 3.2: Illustration of the Lorentz force on the particle in a double grating.

diffraction order is given by:

Ez,n = |rn|E0e
i(kz,nz+kx,nx−ωt+ψR,n), x > 0, (3.12)

where E0 is the peak incident field, ω is the angular frequency, and kx,n, rn, and ψR,n

are the x wavenumber, reflection coefficient, and reflection phase of the nth order, re-

spectively.

Among these modes, the synchronous mode and higher orders are evanescent modes,

which can only exist close to the single grating. However, the zeroth diffraction order,

which is a plane wave with a real x wavenumber, can propagate and carry energy. In

a double grating with one-sided illumination, if not all of the optical power is reflected

back at the first grating, in the transmission region there exists a propagating zeroth

diffraction order. The arrival of this zeroth diffraction order at the opposite grating

causes diffraction effect again, leading to the generation of a synchronous mode at the

opposite grating.

In 2015, a double grating with a single-sided illumination was experimentally demonstrated[29].

To produce a cosh mode, a single grating, or a row of pillars, with low reflectivity was

designed so that the incident laser can transmit to the second grating. An off-center

cosh accelerating mode was produced because the excitation of the synchronous modes

from each side was unequal.

The accelerating modes can also be excited by using two lasers from each side. In

2018, by using a symmetrically driven silicon dual pillar grating structure, the phase-

dependent laser acceleration and deflection of electrons was demonstrated by controlling

the relative phase of the laser at each sides[30]. Highly-reflective single grating was used

to make sure the excitation of the synchronous mode on each side of the channel is

governed by the incident laser from that respective side.
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It is apparent that using dual-sided illumination increases the system complexity. Thus,

we propose a method to produce a symmetric cosh mode in the channel with a single-

sided illumination. The idea behind this method is to merge diffraction gratings with

resonating Fabry-Perot cavities. To realize such a resonator, we make use of the high

reflectivity feature of subwavelength gratings (SWGs) to resonant with the zeroth diffrac-

tion order (plane wave) in the channel, where the circulating plane wave in the channel

serves to excite phase-matched synchronous modes on both sides. It not only simpli-

fies the power delivery system but also enables a laser efficient acceleration due to the

resonant enhancement of accelerating mode in the channel.

The high reflectivity feature of SWGs was discovered in 2004[51, 52]. After that, high-

reflectivity SWGs have been applied as mirrors in a number of applications such as

vertical-cavity surface-emitting lasers (VCSELs)[53, 54], Fabry-Perot resonators[55–57],
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Figure 3.3: Different designs of double-grating structures. (a) High-contrast slab grating. (b)
Asymmetric high-contrast grating. (c) Hybrid slab grating. (d) Inversed hybrid slab grating.
(e) High-contrast rectangular pillar grating. (f) High-contrast elliptical pillar grating.
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and hollow-core waveguides [58, 59]. To provide high reflectivity, we can use a high-

contrast SWG that consists of an array of high-index bars with low-index materials[60],

or a hybrid grating reflector or zero-contrast grating that consists of a sub-wavelength

grating layer and an unpatterned layer[61]. In Fig. 3.3, we show several possible shapes

of double-grating resonators. Among those structures, the difficulty in aligning the two

pieces of single gratings in a double slab grating makes the fabrication rather difficult[62].

In contrast, the double pillar grating of silicon can be etched directly out of a wafer[48].

Besides, the pillar structure on a slab can be easily integrated with a laser delivery

system[63]. Therefore, from the perspective of fabrication and integration, pillar grating

structure would probably be a better choice.

In this work, we use the high-contrast rectangular pillar grating as an example to show

how to design a double-grating resonator. The method can be generalized to other

structures. Referring to [29, 30], we choose silicon material, which can provide a perfect

platform for integration. As is apparent, It would be better if the silicon is transparent

for the laser. Hence, we choose to use a laser wavelength of 1550 nm in the simulation.

However, it is also possible to use the 1030 nm laser which is being developed at KEK

for the experiment, since the absorption length of silicon at 1030 nm is much longer than

the x dimension of the double pillar grating.

In the simulation, the laser is focused on the pillars so that we will neglect the effect of

the substrate. Figure 3.4 shows the cross-section of the pillar structure. Electrons travel

in the channel between two gratings. For simplicity, we use identical gratings on either

side of the channel.
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a

Λ

b
s nb
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Figure 3.4: Cross section of the pillars in a high-contrast rectangular pillar grating. A periodic
array of silicon bars with a high refractive index nb surrounded by vacuum, compose a high-
reflectivity mirror. Dimensions: d channel width; ∆, longitudinal offset between the two SWGs.
x = 0 is located at the channel center.
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When using high-reflectivity gratings as mirrors in a dual-grating resonator, the channel

width d is determined by the round-trip phase condition for a plane wave:

ϕ = 2ψR,0 + 2k0d = 2pπ, with p being an integer, (3.13)

where ϕ is the round-trip phase of the zeroth order. A circulating-field approach in the

steady state is illustrated in Fig. 3.5[64], showing the fields for a plane wave incident on

a Fabry-Perot cavity with mirror reflectivity R and reflection phase ψR,0. In Fig. 3.5,

indicated are the electric fields (black) and phase shifts (red): incident field, Ei; prop-

agating backward, Er; transmitted through the cavity, Et; circulating downward and

upward between the mirrors, Ec and Eb, respectively; phase accumulated through the

channel, k0d.

𝐸c𝐸b

𝐸i𝐸r

𝐸t

𝜓R,0

𝑘0𝑑

𝜓R,0

𝑘0𝑑

𝑅

𝑅

Figure 3.5: The field approach of a plane wave in a Fabry-Perot cavity with mirror reflectivity R
and reflection phase ψR,0. The electric fields (black) and phase shifts (red) are indicated,incident
field Ei, Er propagating backward, Et transmitted through the cavity, Ec and Eb circulating
downward and upward between the mirrors, respectively, and phase k0d accumulated through
the channel.

At the resonant angular frequency ω, the enhancement factor Ac is defined as the ratio

of the circulating field Ec propagating downward inside the channel to the incident field

Ei,

Ac =
Ec

Ei
=

1√
1−R

. (3.14)

In such a resonator, the circulating field propagating upward Eb is related to Ec by

Eb = REc. With a high reflectivity, R ≈ 1, we have Eb ≈ Ec. Inside the channel,

besides the evanescent modes excited by Ei, there are evanescent modes excited by Ec

and Eb on either side of the channel. If the enhancement factor Ac is high, the evanescent

fields excited by Ec and Eb will be much stronger than that by Ei. In this case, the

accelerating mode is governed by a cosh accelerating mode formed by the superposition

of evanescent modes excited by Ec and Eb, as shown by Eq. 3.9. The Lorentz force
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experienced by an electron is given by

F =


Fx

Fy

Fz

 ≈

−2Acr1/γeeE0e−d/(2Γ) sinh(x/Γ) cosφ

0

2Acr1eE0e
−d/(2Γ) cosh(x/Γ) sinφ

 . (3.15)

Here, γe = (1 − β2
e )−1/2 is the Lorentz factor of electrons, Γ = βeγeλ/(2π) is the decay

constant of the evanescent mode, and φ = kz,1z − ω(t− t0)− φ0 is the phase of electron

in the optical cycle.

The relative phase of the synchronous modes on either side of the channel is determined

by the round-trip phase ϕ. When p = 0,±2,±4, . . . , the evanescent fields are in phase,

forming a cosh mode in the channel. When p = ±1,±3, . . . , the evanescent fields are

π out of phase, forming a sinh mode in the channel. In the latter case, the evanescent

fields on each side can be synchronized to form a cosh mode by applying a longitudinal

offset ∆ = Λ/2 to the lower grating (see Fig. 3.4). As discussed in Sec. 3.1.1, this mode

has a net accelerating force at the channel center and phase-dependent focusing force

directed towards the channel center.

When the reflectivity of the grating is not high enough, the enhancement factor Ac

becomes low such that the synchronous mode excited at the upper grating by the incident

field Ei cannot be neglected, an off-center cosh mode is produced.

When the grating has a high reflectivity but the round-trip phase condition is not sat-

isfied, only the upper grating can be excited, the field in the channel resembles that of

a single grating.

3.2 Simulation of a resonant double grating

In this section, we use several examples to show how to design a resonant double grating

for dielectric laser acceleration. We investigate the reflectivity of a single grating and

use it as mirrors in the resonator. We show how the performance of the resonator can

be controlled.

3.2.1 High-reflectivity grating design

To begin with, we will explore the dependence of reflectivity and reflection phase on the

SWG dimensions to show the extraordinary characteristics provided by the resonator.
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The reflection of a plane wave at an SWG can be intuitively understood by using

the waveguide-array (WGA) modes formalism published by Chang-Hasnain and co-

workers[60, 65]. Figure 3.6 shows the cross-section of a generic pillar single-grating

structure. Along the x-direction, we treat an SWG as a periodic array of waveguides.

One or more WGA modes that are excited by the incident plane wave can propagate

inside the grating. Here we will derive the dispersion relation for the WGA modes. To

get a generic solution which can also be applied for the other structures in Fig. 3.3, we

assume the refractive indices for the grating gap, the grating pillar, and the incident

media are na, nb and nI, respectively, as shown in Fig. 2.2.

𝑏 𝑎

k−1
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𝑘+1

𝑘−1
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𝑘+1
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Λ

𝛽
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𝑧

𝑥
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Figure 3.6: Cross section of a single grating and the wavenumbers. It consists a periodic array
of silicon bars with refractive index nb, surrounded by materials with refractive index na in the
grating gaps, n1 in the reflection region, and n2 in the transmission region, comprise a phase
mask. The grating is assumed to be infinite in y direction and infinitely periodic in z direction.

With k0 being the wavenumber in free space and ε(z) being the profile of permittivity

in the grating, the eigenvalue equation is given by

d2Hy

dz2
+ [k2

0ε(z)− k2
x]Hy = 0. (3.16)

The solution of the field Hy,m(z) can be written as

Hy(z) = A+eikaz +A−e−ikaz, 0 < z < a, (3.17)

Hy(z) = B+eikbz +B−e−ikbz, a < z < Λ, (3.18)

where the z wavenumber ka for the gap and and the z wavenumber kb for the bar are

determined by

k2
a = n2

ak
2
0 − k2

x, 0 < z < a, (3.19)

k2
b = n2

bk
2
0 − k2

x, a < z < Λ. (3.20)
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Enforcing the continuity of tangential electric and magnetic field at the bar-gap interfaces

Hy(a
−) = Hy(a

+), (3.21)

Ex(a−) = Ex(a+), (3.22)

Hy(Λ
−) = Hy(Λ

+), (3.23)

Ex(Λ−) = Ex(Λ+), (3.24)

and the Bloch periodic boundary condition

Hy(z + Λ) = Hy(z)e
inIk0 sin(θ)Λ, (3.25)

yields

A+eikaa +A−e−ikaa = B+eikba +B−e−ikba, (3.26)

ka

n2
a

(
A+eikaa −A−e−ikaa

)
=
kb

n2
b

(
B+eikba −B−e−ikba

)
, (3.27)

einIk0 sin(θ)Λ(A+ +A−) = B+eikbΛ +B−e−ikbΛ, (3.28)

ka

n2
a

einIk0 sin(θ)Λ(A+ −A−) =
kb

n2
b

(
B+eikbΛ −B−e−ikbΛ

)
. (3.29)

Based on Eqs, [3.26-3.29], the dispersion relations for the WGA modes of an SWG can

be obtained,

2n2
an

2
bkakb[cos(kaa) cos(kbb)− cos(nIk0 sin(θ)Λ)]

= (n4
bk

2
a + n4

ak
2
b) sin(kaa) sin(kbb). (3.30)

For the pillar single-grating and wave vectors as shown in Fig. 3.6, na = nI = 1, and the

dispersion relationship can be rewritten as

kb tan(kbb/2) = −n2
bka tan(kaa/2). (3.31)

In Fig. 3.7, we show the dispersion curves of WGA modes in SWGs with different duty

cycle b/Λ. With a surface-normal incidence, we cannot excite the odd modes (TM1,3,5,...)

since the incident plane wave has a constant profile in the z direction. In the figure,

we show the cutoff frequency ωcn of the nth-order WGA mode with a duty cycle of

b/Λ = 0.6. It is shown that the WGA mode dispersion curves shift in response to the

variation of b/Λ.
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Figure 3.7: Dispersion curves of WGA modes in an SWG with duty cycles of 0.3, 0.45 and 0.6.
Silicon is used as the bar material.

In a single grating with finite thickness s, the WGA modes are confined in the grating

by the grating boundaries in the x direction and thus forms a cavity with coupling

to the diffraction modes outside the grating. The interference of the WGA modes at

the grating boundaries, which depends on the phases accumulated by the WGA modes

through the waveguide array, determines the reflection of an SWG. In Fig. 3.8(a) and

Fig. 3.8(b), we visualize the effect of the grating thickness t on the reflection using the

t−Λ/λ (i.e., ω in units of 2πc/Λ) maps of the reflectivity and phase, with b/Λ = 0.6. The

different reflectivity patterns in different wavelength regions reveal a strong dependence

of the dispersion relation on the wavelength, as shown in Fig. 3.7. In the dual-mode

region (ωc2 < ω < ωc4), an ordered checkerboard pattern was formed as the result

of the interference of two WGA modes at the grating boundaries. When there is a

destructive interference at the exit boundary x = −t, high reflectivity is obtained, e.g.,

the regions marked by the white circles in Fig. 3.8(a). On the other hand, when there

is a constructive interference at both the input and exit boundaries, a high-Q resonator

with strong fields in the dielectric is formed, which is undesirable for our purpose, e.g.,

the regions marked by the black circles.

Significant shifts of the reflectivity and phase patterns in the t/Λ−Λ/λ maps is caused by

the shifts of the mode dispersion due to the variation in duty cycle as shown in Fig. 3.7,

enabling the resonator scalability to different values of Λ/λ, or different electron energies.

Figs. 3.8[(c)–(d)] show the reflectivity and reflection phase with b/Λ = 0.3, respectively.

Comparing with Fig. 3.8[(a)–(b)] with b/Λ = 0.6, a smaller duty cycle corresponds to

shifting the high-reflectivity regions towards larger Λ/λ, which is consistent with the shift

of the cutoff frequencies in Fig. 3.7. For electrons with lower energies (e.g., 10 keV), the
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Figure 3.8: t/Λ−Λ/λ maps of the reflectivity [(a) and (c)] and reflection phase [(b) and (d)],
with duty cycles of b/Λ = 0.6 [(a) and (b)] and b/Λ = 0.3 [(c) and (d)]. The cutoff frequencies
of the WGA modes obtained in Fig. 3.7 are shown by the black dashed lines. Some of the high-
reflectivity regions useful for DLA are marked by the white circles. Some of the unfavorable
high-Q resonant points are marked by the black circles.

grating period required by the synchronicity condition becomes too small. In this case,

higher diffraction orders (n > 1) that requires a larger grating period can be used for

acceleration [20, 25].

3.2.2 Enhanced accelerating mode of a double grating

In this part, we show how to design a double-grating resonator for given electron energy.

For electron energy of 50 keV and a laser wavelength of 1550 nm, the grating period

is determined by the synchronicity condition to be 640 nm. Figure 3.9(a) shows that

when b/Λ > 0.41, there are two propagating WGA modes. In the dual-mode region,

the interference of propagating WGA modes leads to highly ordered reflectivity and
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Figure 3.9: x wavenumber of WGA modes as a function of b/Λ (a) and s−b maps of reflectivity
R (b), reflection phase ψR,0 (c), and reflected gradient at the grating surface Ga/E0 (d). The
boundary between the single- and dual-mode regions, which correspond to the ranges of b/Λ
with one and two propagating WGA modes, respectively, is indicated by the black dashed line.
White circles indicate some of the high-reflectivity regions useful for DLA, while black circles
indicate some of the undesirable high-reflectivity regions with high-Q resonance in the grating.
Parameters: Λ = 640 nm, λ = 1550 nm.

reflection phase patterns, as shown in Fig. 3.9(b) and Fig. 3.9(c), respectively. The

s− b map of the reflection coefficient of the first diffraction mode, r1, which represents

the normalized gradient Ga/E0 at the grating surface (x = 0 in Fig. 3.6), is shown in

Fig. 3.9(d). The points with ultra-high gradients correspond to the high-Q resonances

in SWGs, which is not desirable for our purpose.

In Fig. 3.9(b), we show the s − b map of SWG reflectivity, which ranges from zero

to near unity and enables the control of the enhancement factor and filling time of the

resonator. The damage threshold of dielectric materials is higher for ultrashort exposure

times to strong fields [22]. In a Fabry-Perot resonator, the exposure time depends on the
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cavity filling time tfill = Q/ω, where the quality factor can be approximately calculated

by Q = −k0d/ ln (R)[64]. In Eq. 3.14, it is suggested that a high enhancement factor

can be obtained with high reflectivity. However, the filling time also increases with the

reflectivity, requiring a longer pulse duration. Therefore, we need a trade-off between

the enhancement factor and the achievable accelerating gradient when choosing the

reflectivity. In order to sustain a high accelerating gradient, a relatively low reflectivity

that enables a low enhancement factor but an ultrashort filling time is desirable. For a

given reflectivity, Eq. 3.13 shows that the channel width d is determined by the reflection

phase. In Eq. 3.10, it is shown that a smaller channel enables a higher gradient at channel

center (see Eq. 3.10) and a reduced filling time. Despite the association of permitted

charge with the channel width, a small channel width would be desirable for a high

gradient.

In the following, we use eight examples of SWGs, with different reflection phases but

identical reflectivities R = 0.997, as mirrors in the cavity simulation. In the simulation,

we found it took too much time to reach a steady state in CST MWS. Thus, we developed

our code using rigorous coupled-wave analysis (RCWA)[66], which is depicted in the

Appendix A. The dimensions of these SWGs are located in the vicinity of the uppermost

white circle in Figs. 3.9[(b)–(d)]. In Table 3.1, we summarize the parameters for the eight

examples of SWGs.

Table 3.1: Parameters of SWG1–8.

b (nm) t (nm) R ψR,0

SWG1 341 1318 0.997 -3.14

SWG2 288 1217 0.997 -1.59

SWG3 293 1231 0.997 -0.79

SWG4 296 1238 0.997 -0.39

SWG5 298 1243 0.997 0.00

SWG6 322 1225 0.997 1.57

SWG7 350 1208 0.997 2.36

SWG8 376 1194 0.997 2.74

For each SWG, we investigate resonators with two different round-trip phases (ϕ) which

enable Fabry-Perot resonance. We also analytically calculate the parameters with the

theory in Sec. 3.1.2. In Fig. 3.10, we compare the analytical results with the RCWA

simulation results. The channel widths calculated analytically with Eq. 3.13 are pre-

sented by the solid black lines. The enhancement factor Ac = 18.3 obtained analytically

with Eq. 3.14 is presented by the width of the shades. The crosses and widths of the

bars represent the two resonant channel widths d that enable resonance with different

round-trip phases ϕ and the corresponding enhancement factors calculated with RCWA



Chapter 3. Double grating structures 57

d
( 7

m
)

 

 

AR;0

 0  

0

0.5

1

1.5

SWG4

SWG8d

-

?=0

?=4

Ac

?=2

Ac=18.3

(a) SWG3

SWG7

SWG1

SWG5

SWG2

SWG6

𝜑 𝜑

𝜑

Figure 3.10: Comparison of resonant channel widths d and enhancement factors Ac calculated
by analytical solution and RCWA, using SWGs as show in Table 3.1 as the mirrors. The black
solid lines represent the channel widths calculated analytically with Eq. 3.13. The width of
the shades represents the enhancement factor calculated analytically with Eq. 3.14. The width
corresponding to Ac = 18.3 is indicated. For each SWG, two resonant channel widths d that
enable resonance with different round-trip phases φ calculated by RCWA and the corresponding
enhancement factors are shown by the crosses and widths of the bars, respectively. The pa-
rameters of the SWGs and SWG-SWG resonator (ϕ = 0) are listed in Table 3.1 and Table 3.2,
respectively; Λ = 640 nm, λ = 1550 nm.

Table 3.2: Parameters of SWG-SWG resonators as shown in Fig. 3.10.

φ d0 (nm) Ac,0 tfill,0 (ps) d0
′ Ac,0

′ tfill,0
′ (ps)

SWG1-SWG1
0 775 18.3 0.86 775 18.3 0.86

2π 1550 18.3 1.72 1550 18.2 1.72

SWG2-SWG2
0 392 18.3 0.43 393 16.4 0.35

2π 1167 18.3 1.30 1167 18.3 1.29

SWG3-SWG3
0 195 18.3 0.22 203 102.8 7.16

2π 970 18.3 1.08 970 18.3 1.08

SWG4-SWG4
0 96 18.3 0.11 114 23.3 0.21

2π 871 18.3 0.97 871 18.3 0.97

SWG5-SWG5
2π 774 18.3 0.86 774 18.4 0.87

4π 1549 18.3 1.72 1549 18.3 1.72

SWG6-SWG6
2π 387 18.3 0.43 388 20.8 0.56

4π 1162 18.3 1.29 1162 18.2 1.29

SWG7-SWG7
2π 193 18.3 0.21 196 13.1 0.11

4π 968 18.3 1.07 968 18.2 1.07

SWG8-SWG8
2π 98 18.3 0.11 102 11.5 0.04

4π 873 18.3 0.97 873 18.2 0.97
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for each SWG, respectively. The parameters are listed in Table 3.2, where d0, Ac,0, and

tfill,0 represent the round-trip phase, enhancement factor, and filling time calculated

analytically, respectively, and d0
′, Ac,0

′, and tfill,0
′ correspond to the results obtained

by the RCWA simulation.

Figure 3.10 shows that, when the channel is large, the simulation results are in agreement

with the analytical solution, while when the channel is small, there are differences in

both the resonant channel width and enhancement factor; the latter can be more clearly

seen. We infer that the discrepancy arises from an effect that is not considered in the

analytical solution, referred as evanescent wave coupling, or tunneling: with a small

channel, the evanescent fields at one grating could arrive at the opposite grating and

excite WGA modes before vanishing, thereby changing the resonator parameters. In

Fig. 3.10, it is shown that the variation in enhancement factor is more significant. The

reason is, a small change in reflection phase leads to a slight variation in channel width,

but a small change in reflectivity could cause a significant variation in enhancement

factor. For instance, a variation of the reflection phase by 5o leads to a variation of

the resonant channel width by only 21.5 nm, which is relatively small compared to the

large channel width in the simulation. However, a variation of the reflectivity from 0.997

to 0.999 leads to a variation of the enhancement factor from 18.3 to 31.6. When the

reflectivity approaches 1, the enhancement factor increases more dramatically, e.g., a

reflectivity of ∼ 0.9999 corresponds to an enhancement factor of ∼ 100, which is the

case for the SWG3-SWG3 cavity (φ = 0). In this case, to obtain a smaller enhancement

factor, e.g., Ac = 18.3, one could use an SWG with lower reflectivity.

In a double-grating resonator, the fields in the channel and dielectric are enhanced,

depending on the enhancement factor. In Fig. 3.12, we show the longitudinal field in

the SWG2-SWG2 cavity (φ = 0). The field modulation in the channel is a result of the

superposition of the resonant zeroth diffraction order and higher orders.

Figure 3.12(a) shows the field ratio Ga/E0 in the channels of the SWG-SWG resonators.

The resonators have an enhanced accelerating mode in the channel, leading to a high

accelerating gradient. To obtain a given accelerating gradient without damage, a higher

enhancement factor can be chosen, allowing significantly reducing the input laser power.

However, the highest sustainable accelerating gradient is limited by the damage thresh-

old; thus, the ratio Ga/Emax as shown in Fig. 3.12(d) is an important metric, with E′max

being the maximum field in the dielectric. In order to sustain a higher accelerating

gradient, a maximum ratio Ga/E
′
max should be chosen. In the case of a small channel,

the effect of the evanescent fields on the enhancement factor and channel width still

applies here, leading to higher values of Ga/E0 at the grating surface in the channel.

Note that, in Chapter 3 and Chapter 4, we calculate the damage threshold in terms of
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Figure 3.11: The ratio of the longitudinal electric field Ez to the peak incident field E0 of an
SWG2-SWG2 cavity with ϕ = 0. The parameters of the SWG2 and SWG2-SWG2 resonator
(ϕ = 0) are shown in Table 3.1 and Table 3.2, respectively; Λ = 640 nm, λ = 1550 nm.

the maximum field in the material E′max, but not the maximum in-vacuum field at the

grating surface Emax, because the maximum field may not be located in the vacuum,

e.g., for the structure as shown in Fig. 3.3(d). The procedure to calculate the sustainable

accelerating gradient is also different accordingly.

Figure 3.12: Accelerating gradients in the double-grating resonators. (a) The ratio of the
accelerating gradient Ga to the peak incident field E0 as a function of position in the channel.
(b) The ratio of the accelerating gradient Ga to the maximum field in the dielectric E′max as a
function of position in the channel. The parameters of the SWGs and SWG-SWG resonators are
shown in Table 3.1 and Table 3.2, respectively; Λ = 640 nm, λ = 1550 nm.

With these simulation results in hand, we can estimate the performance of those res-

onators, which is presented in the next section.
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3.3 Performance of a resonant double grating

As an example, we will calculate the sustainable accelerating gradient and optical-to-

beam efficiency of the SWG8-SWG8 resonator (φ = 2π), which has a channel width

d = 102 nm, enhancement factor Ac = 11.5, filling time tfill = 0.04 ps, and field ratio

Ga/E
′
max = 0.196 at the channel center.

3.3.1 Accelerating gradient and energy gain

To calculate the sustainable accelerating gradient, we consider a damage threshold flu-

ence of 0.2 J/cm2 in the material. Assuming a Gaussian pulse in the material, the peak

field E0 is related to the fluence Fin by

E0 =

√
0.94

2Fin

cε0nbτp
. (3.32)

With a full width at half maximum laser pulse length τp = 0.18 ps, the maximum electric

field in the material without damage is calculated to be 1.5 GV/m. The corresponding

highest gradient at the channel center is 0.30 GV/m. Due to the enhancement factor,

the input laser power is reduced to 0.76% of that needed in a non-resonant structure.

By using the particle tracking method presented in Section. 2.3.1, we can estimate the

energy gain of electrons launched at different start phase and x position in the channel.

In the simulation, we assume a Gaussian laser pulse with a beam waist of 5 µm, and

a grating structure with a total length W = 10 µm, corresponding to ∼ 16 periods

Figure 3.13: Particle tracking results for an SWG8-SWG8 double-grating structure. The
electrons with an initial energy of 50 keV are launched at different start phases and initial
distances from the grating surface. The colored maps show the energy gain ∆E (a), the deflected
x displacement ∆d (b), and the phase slip of the electrons in the accelerating mode ∆φ (c). The
white areas represent those electrons crashed into the grating structures. The structure with a
grating period Λ = 640 nm and total width W = 10 µm is illuminated by a laser with wavelength
λ = 1550 nm, laser beam waist radius w0 = 5 µm, in-material fluence Fth = 0.2 J/cm2 and pulse
duration τp = 0.18 ps.
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of grating. Figure 3.13 shows the particle tracking results for 50 keV electrons in the

channel as a function of the start phase φ0 and initial x position, including the energy

gain(a), the x displacement (b) and the phase slip (c). The white areas represent those

electrons crashed into the grating structures. The characteristics of cosh accelerating

field profile lead to a rather uniform energy gain around channel center, which is desirable

for our purpose. There is a phase-dependent focusing or defocusing force towards the

channel center. It can also be seen that with such an accelerating mode, operation

with a longitudinal focusing leads to a transverse defocusing, which is in agreement

with Earnshaw’s theorem [67]. To stably accelerate an electron beam, external focusing

component is needed. The maximum energy gain at the channel center is ∼ 2.1 keV.

In Fig. 3.14 we show the instantaneous parameters of one electron launched at the

channel center at an initial phase of 4.89 rad as a function of z position, including the

kinetic energy Ek, the acceleration gradient Ga and the phase of electron in the optical

cycle φ. The lateral displacement of the electron is zero due to the vanishing deflection at

channel center. It is shown that the dephasing effect could be so severe that the electron

is decelerated after initial acceleration, i.e., the electron moves from the acceleration

phase to the deceleration phase. By adjusting the grating period according to electron

energy variations, the dephasing problem could be alleviated, and a higher energy gain

could be obtained.

Figure 3.14: Instantaneous electron parameters as a function of z position. We show the
instantaneous kinetic energy Ek [blue curves in (a)], the acceleration gradient Ga [green curves
in (a)], and the phase of electron in the optical cycle (b). The structure with a grating period
Λ = 640 nm and total width W = 10 µm is illuminated by a laser with wavelength λ = 1550 nm,
laser beam waist radius w0 = 5 µm, in-material fluence Fth = 0.2 J/cm2 and pulse duration
τp = 0.18 ps. A 50 keV electron is launched at the channel center (x0 = 0), at a start phase of
1.55 rad.

To further study the performance, we assume a Gaussian electron beam profile in the

x direction, with a beam waist of 20 nm and the beam center being x0 = 0 nm. The

density in electron bunch is set to be temporally constant, and the pulse duration is one

optical cycle. The electron beam energy spread and beam divergence are neglected.
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Figure 3.15: Charge density as a function of x position and energy E after interaction in a
double grating.

In Fig. 3.15, the charge density as a function of x position and energy E after interaction

in the double grating is shown. The survived electrons exist close to the beam axis. The

double grating leads to much smaller energy spread than single grating.

In Figure. 2.15(a), the normalized charge densities as a function of x position before and

after the interaction are shown. Over 98% of the electrons can survive after the inter-

action. The acceleration around the channel center is rather uniform. In addition, the

proportion of the electrons around the channel center becomes higher after interaction,

which is the result of sinh focusing field. In Figure. 2.15(b), the charge density as a

function of energy is shown. There are two distinct charge peaks after the interaction,

with energies of 57.9 keV and 52.1 keV, respectively.

Figure 3.16: Charge density as a function of x position (a) and energy (b) before and after the
interaction in a double grating.
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3.3.2 Laser-to-electron efficiency

The laser-to-electron efficiency is another figure of merit for high energy physics. Here we

will use a simple analytical treatment based on energy balance considerations proposed

by Plettner and co-workers[68] to calculate the efficiency.

Assuming a flat-top laser beam profile with a dimension of D in the y direction, the

laser power Pl over one grating period is

Pl =
E2

0ΛD

2Z0
(3.33)

where Z0 =
√
µ0/ε0 is the vacuum impedance.

The unloaded gradient Ga is related to the laser power Pl by the structure impedance

defined as

ZS =
|GaΛ|2

Pl
=

∣∣∣∣Ga

E0

∣∣∣∣2 2ΛZ0

D
(3.34)

The effective field experienced by the electron can be expressed as the superposition

of the unloaded accelerating field produced by laser EL, the wakefield that overlaps

with the laser field EW and the nonoverlapping component of the wakefield ECH, i.e.,

E = EL +EW +ECH. Neglecting the nonoverlapping component of the wakefield which

is small in comparison to the accelerating gradient, the electron’s energy gain over one

grating period Λ and transit time τc = Λ/(βec) can be estimated by

eV1 = − A

Z0
(E2

W + ELEW)τc (3.35)

where A is the effective area. Assuming EW = −αEL and α� 1, the energy gain for a

single electron is

eV1 = − A

Z0
(α2E2

L − αE2
L)τc ≈ α

Aτc
Z0

E2
L (3.36)

By defining the shunt impedance ZS = V 2/Pl, we have

α =
eZS

2V1τc
(3.37)

For an electron bunch with an electron number N , the electron’s energy gain can rewrit-

ten as

NeVN = − A

Z0
(N2E2

W +NELEW)τc (3.38)
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where VN is the new voltage change under beam loading conditions. The energy gain

for one electron in the bunch can be given by

eVN = − A

Z0
(Nα2E2

L − αE2
L)τc = eV1(1−Nα) (3.39)

Therefore, the loaded gradient can be given by

GL =
VN
Λ

=
V1(1−Nα)

Λ
= Ga −N

eZS

2τc
= Ga −

NeZSβec

2Λ2
(3.40)

The acceleration efficiency is the ratio of the electrons’ energy gain NeVN to the elec-

tromagnetic energy from the laser of power Pl and FWHM pulse duration τp:

η(N) =
NeΛGL(N)

Plτp
=
NeΛ

Plτp

[
Ga −

NeZSβec

2Λ2

]
(3.41)

Using Eq. 3.41,the maximum optical-to-beam efficiency and the corresponding optimum

bunch charge are calculated to be 1.4% and 2.9 fC, respectively. The efficiency for

single-bunch operation can be improved by optimizing the reflectivity of SWGs in the

design[69]. With a laser pulse duration of a few hundreds of femtoseconds, multiple-

bunch operation, i.e., using multiple electron bunches per laser pulse, can be introduced

to further enhance the efficiency[70].

3.4 Parameter study of a 1 MeV electron source

In this section, we will show that, by using a number of grating stages with different

grating periods (Λ) from stage to stage, the electrons can be accelerated from 50 keV to

1 MeV within several millimeters. Another design using an identical grating period (Λ)

for a group of stages to reduce the fabrication cost will also be presented.

As is shown in Section. 3.3.1, accelerated with a single grating stage that contains tens of

grating periods driven by a single Gaussian laser pulse, the electron energy gain is limited

by the damage threshold of dielectric materials and the dephasing effect. Using pulse-

front tilted laser and changing the grating period as the electron gains energy would

increase the interaction length while keeping high accelerating gradient, so that the

single-stage energy gain can be higher. However, in an electron source for radiobiology

research which has an output electron energy of ∼ 1 MeV, multi-stage acceleration is

required. Ideally, laser power delivery would be integrated on-chip. Here, in order to

develop a 1 MeV electron source as a tool for radiobiology research, we discuss the

required accelerator parameters and laser parameters.
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Figure 3.17: Schematic of a multi-stage DLA-based electron source. Each accelerator stage
that contains tens of unit cell is pumped by a Gaussian laser pulse. The electron is accelerated
from 50 keV to 1 MeV.

As shown in Fig. 3.17, the proposed DLA-based electron source contains multiple stages

of grating structures; each stage has a number of unit cells. For simplicity, here the

pulse-front tilt method is not implemented. A low enhancement factor less than 10

and a channel width of ∼ 300 nm will be designed for each stage. As such, a required

filling time that is shorter than 0.1 ps allows using a Gaussian laser duration of 0.1 ps,

corresponding to a damage threshold field of 2 GV/m (i.e., E′max ≤ 2 GV/m) when

considering a damage threshold fluence of 0.2 J/cm2 for silicon.

As is shown in Section. 3.3.1, within a single grating stage which has a limited length,

the energy gain is not greatly affected by the dephasing effect. Therefore, the grating

periods for all the unit cells in a singe stage are set to be identical; the value of the

grating period (Λ) is set to satisfy the synchronicity condition for the electron energy

after the previous stage.

To accelerate electrons from 50 keV to 1 MeV, it is ideal to design grating stage for

discrete electron energies, which would be rather time-consuming. Therefore, as a rough

parameter study, in the following, we will design double grating structures for about

10 discrete electron energies by following the procedure as shown in Sec. 3.2 and use

the lowest value of the sustainable accelerating gradients of those structures as the

accelerating gradient of the whole accelerator.

For 60 keV electrons, the grating period is required by the synchronicity condition to

be Λ = 691 nm. The designed structure and the simulation result of the longitudinal

electric field distribution are shown in Fig. 3.18. Figures. 3.19(a) and 3.19(b) shows

the field ratios of Ga/E0 and Ga/E
′
max across the channel, respectively. The structure

has a channel width d = 302 nm and an enhancement factor Ac = 6.5. The ratio of

the accelerating gradient to the maximum field in the dielectric at the channel center

is 0.163, corresponding to a sustainable on-axis accelerating gradient Ga = 326 MV/m.

The ratio of the accelerating gradient to the peak incident field is 2.1, so the incident

field is E0 = 155 MV/m.
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Figure 3.18: The ratio of the longitudinal electric field Ez to the peak incident field E0 of a
double grating for the acceleration of 60 keV electrons. Λ = 692 nm, d = 302 nm, b/Λ = 0.819,
s/Λ = 0.658, ∆/Λ = 0.048.

Figure 3.19: Accelerating gradients in the double-grating resonator for 60 keV electrons. (a)
The ratio of the accelerating gradient Ga to the peak incident field E0 as a function of position
in the channel. (b) The ratio of the accelerating gradient Ga to the maximum field in the
dielectric E′max as a function of position in the channel. Λ = 692 nm, d = 302 nm, b/Λ = 0.819,
s/Λ = 0.658, ∆/Λ = 0.048.

For 500 keV electrons, the grating period is required by the synchronicity condition to

be Λ = 1337 nm. The designed structure and the simulation results of the longitudinal

electric field distribution are shown in Fig. 3.20. Figures. 3.21(a) and 3.21(b) shows

the field ratio Ga/E0 and Ga/E
′
max across the channel, respectively. The structure has

a channel width d = 309 nm and an enhancement factor Ac = 4.5. The ratio of the

accelerating gradient to the maximum field in the dielectric at the channel center is

0.100, corresponding to a sustainable on-axis accelerating gradient Ga = 200 MV/m.

The ratio of the on-axis accelerating gradient to the peak incident field is 1.44, so the

incident field is required to be E0 = 139 MV/m.

In Table. 3.3, we summarize the parameters of double-grating resonators designed for

different electron energies. The corresponding ratios of Ga/E0 and Ga/E
′
max across the

channel are shown in Figs. 3.22(a) and 3.22(b), respectively. The accelerating fields
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Figure 3.20: The ratio of the longitudinal electric field Ez to the peak incident field E0 of a
double grating for the acceleration of 500 keV electrons. Λ = 1337 nm, d = 309 nm, b/Λ = 0.313,
s/Λ = 0.357, ∆/Λ = 0.165.

Figure 3.21: Accelerating gradients in the double-grating resonator for 500 keV electrons. (a)
The ratio of the accelerating gradient Ga to the peak incident field E0 as a function of position
in the channel. (b) The ratio of the accelerating gradient Ga to the maximum field in the
dielectric E′max as a function of position in the channel. Λ = 1337 nm, d = 309 nm, b/Λ = 0.313,
s/Λ = 0.357, ∆/Λ = 0.165.

become more uniform across the channel for higher energies due to the increasing decay

constant Γ = βeγeλ/(2π). For different electron energies, an on-axis gradient of Ga ≥
0.1E′max is achievable.

In the parameter study of a 1 MeV electron source, we assume for each single grat-

ing stage a peak on-axis gradient of 200 MV/m, which corresponds to Ga = 0.1E′max.

Figure 3.23 shows the electron energy as a function of position z. The grating period

remains the same in a single stage but varies form stage to stage. With a total accel-

eration length of 7.3 mm, which corresponds to 609 stages of gratings, electrons can be

accelerated from 50 keV to 1 MeV. The average accelerating gradient is 130 MV/m.

It is clear that in Fig. 3.23 the grating period changes less from stage to stage as the

electron energy increases. Considering that multiple stages using an identical grating
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Figure 3.22: Accelerating gradients of double-grating resonators for different electron energies.
(a) The ratio of the accelerating gradient Ga to the peak incident field E0 as a function of
position in the channel. (b) The ratio of the accelerating gradient Ga to the maximum field in
the dielectric E′max as a function of position in the channel. The structural parameters are shown
in Table. 3.3.
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Figure 3.23: Multi-stage acceleration of electrons from 50 keV to 1 MeV: the electron energy
versus position z. The insets show the energy Ek as a function of position z (above) and the
grating period Λ as a function of stage id (below) for 3 stages when the energy is around 60 keV
(left) and 800 keV (right). The peak accelerating gradient for each single stage is 200 MV/m.
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Table 3.3: Parameters of double-grating resonators for different electron energies.

Energy (keV) Λ (nm) b/Λ s/Λ ∆/Λ d (nm) Ac

60 692 0.819 0.658 0.048 302 6.5

100 850 0.682 0.525 -0.058 326 9.5

500 1337 0.313 0.357 0.165 309 4.5

600 1376 0.281 0.983 0.210 307 3.9

700 1405 0.279 0.912 0.170 310 3.6

800 1427 0.280 0.891 0.170 309 3.7

900 1445 0.281 0.874 0.150 311 3.4

1000 1459 0.280 0.327 0.215 270 4.3

period may allow reducing the fabrication cost, we design a stage-graded DLA, i.e., the

stages are graded into many groups, as shown in Fig. 3.24. Figure 3.24(a) shows the

energy as a function of position z. The total acceleration length is around 7.6 mm,

corresponding to an average accelerating gradient of 125 MV/m. Figure 3.24(b) shows

the grating period as a function of the stage id. Figure 3.24(c) shows how we divided

those grating stages into groups. In the design, the average gradient for each stage in

one group is required to be no less than 85% of the average gradient for the group. For

a low electron energy, e.g., 50 keV, if two stages use the same grating period, the energy

gain for the second stage becomes rather small, or even negative, due to the dephasing

effect. As a result, one group for low electron energies contains only one stage, while one

group for high electron energies may contain a number of stages, e.g., group 51 contains

99 stages, group 52 contains 135 stages. In the accelerator, there are 633 grating stages

in total, which are divided into 52 groups.
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Figure 3.24: Stage-graded acceleration of electrons from 50 keV to 1 MeV. (a) The electron
energy versus position z. (b) The grating period as a function of the stage id. (c) The division
of stages into groups. The peak accelerating gradient for the first single stage in each group is
200 MV/m.



Chapter 4

Waveguides with subwavelength

gratings

In this chapter, we describe a compact one-dimensional planar waveguide where the

traveling accelerating wave propagates between two subwavelength gratings (SWGs).

We show that by designing a matching layer, a symmetric accelerating mode with a

specified field distribution can be confined in the core. We also show that the dependence

of SWG reflection on its dimensions and materials can enable substantial tuning of the

waveguide performance, including efficiency and sustainable gradient.

4.1 Theory for a planar waveguide

To accelerate electrons in a DLA, an accelerating mode with a longitudinal electric

component and a phase velocity equals the speed of electron must be provided. To this

end, hollow-core waveguides have emerged as a promising candidate for a future DLA

in the past two decades. Photonic crystals (PhCs), which are regular arrays or lattices

of dielectric elements, are widely used to confine the accelerating wave to the core due

to the photonic band gap (PBG) arising from constructive interference of distributed

reflections from each periodic layer. In PhC waveguide, the fields decay exponentially

transversely away from the core; thus, good confinement of an accelerating mode requires

a large number of lattice layers. Therefore, structures that can improve confinement and

reduce the transverse size of waveguide structures are desirable[71, 72].

As is discussed in Chapter 3, SWGs can be used as an alternative solution for the re-

flectors with many desirable characteristics such as the high reflectivity, smaller volume,

and polarization selection. In this section, we use an SWG as the accelerating waveguide

71
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cladding, leading to a reduced transverse size. It may enable a compact monolithically-

integrated DLA, which is useful for many applications.

A schematic of the proposed SWG-SWG waveguide structure is shown in Fig. 4.1. It

consists of two gratings followed by matching layers on either side of a hollow core.

Waveguide parameters include: Λ, grating period; 2d, hollow core width; h−d, matching

layer thickness; t, grating thickness; b, grating bar width; a, grating gap width. We will

use a high-contrast reflector, so the surrounding materials should have lower refractive

indices than the bar. The gratings here can also be arranged similarly as shown in

Fig. 3.3.
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Figure 4.1: Schematic of an accelerating waveguide consisting of two gratings followed by
matching layers on either side of a hollow core. Waveguide parameters include: Λ, grating
period; 2d, hollow core width; h− d, matching layer thickness; s, grating pillar height; b, grating
pillar width; a, grating gap width. na, nb, nm, ns are the refractive indices of the grating gap,
grating pillar, matching layer, and substrate.

To accelerate electrons traveling in the hollow core, a special symmetric mode should

be supported, as shown in Table 4.1. In Table 4.1, E0 is the accelerating field at the

channel center, kz is the longitudinal wavenumber, kx = (k2
0−k2

z)
1/2 is the x wavenumber,

η0 =
√
µ0/ε0 is the free-space impedance. This accelerating mode is the same as the

cosh accelerating mode in a dual-grating structure. The phase velocity of the mode,

vph = ω/kz, with ω being the angular frequency. The mode for a speed-of-light (SOL)

electrons is specialized, which has a zero x wavenumber and thus a uniform profile across

the core.

Table 4.1: Accelerating mode in a planar waveguide structure.

General case,vph < c Speed-of-light case, vph = c

Ez = E0 cos(kxx)eikzz Ez = E0eik0z

Ex = −i(kz/kx)E0 sin(kxx)eikzz Ex = −i(k0x)E0eik0z

Hy = −i[k0/(η0kx)]E0 sin(kxx)eikzz Hy = −i(k0x/η0)E0eik0z
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The field components in the matching layer, which has a dielectric coefficient εm, can

be written as a superposition of modes propagating up and down.

Ez =
(
C+eikm,xx + C−e−ikm,xx

)
eikzz, (4.1)

Ex =
kz
km,x

(
−C+eikm,xx + C−e−ikm,xx

)
eikzz, (4.2)

Hy =
k0εm

η0km,x

(
−C+eikm,xx + C−e−ikm,xx

)
eikzz, (4.3)

where km,x =
√
εmk2

0 − k2
z is the x wavenumber in the matching layer.

Imposing the boundary conditions at x = d yields

C+ = (C−)∗ =
1

2
e−ikm,xdE0

[
cos (kxd) + i

km,x

εmkx
sin (kxd)

]
, vph < c (4.4)

C+ = (C−)∗ =
1

2
e−ikm,xdE0

(
1 + i

km,xd

εm

)
, vph = c. (4.5)

The boundary conditions at the interface between the matching layer and the grating

layer is determined by reflection coefficient |r0| and reflection phase ψR,0.

E−z (h) = |r0|eiψR,0E+
z (h). (4.6)

When a near-unity reflectivity provided by the grating, i.e., |r0| ≈ 1, Eq. 4.6 can be

rewritten as

C−e−ikm,xh = eiψR,0C+eikm,xh. (4.7)

Based on Eq. 4.4, 4.5 and 4.7, a transcendental relation which determines the thickness

of the matching layer can be written as

tan

[
km,x(h− d) +

ψR,0
2

]
= − km,x

εmkx
tan(kxd), vph < c, (4.8)

tan

[
km,x(h− d) +

ψR,0
2

]
= −km,xd

εm
, vph = c. (4.9)

When the reflection phase ψR,0 = π, the grating works as if a metallic wall is placed at

x = h. In this case, Eq. 4.8 and 4.9 can be rewritten as

tan [km,x(h− d)] =
εmkx
km,x

cot(kxd), (4.10)

tan [km,x(h− d)] =
εm

km,xd
. (4.11)
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When the reflection phase ψR,0 = 0, the grating works as if a magnetic wall is placed at

x = h. In this case, Eq. 4.8 and 4.9 can be rewritten as

tan [km,x(h− d)] = − km,x

εmkx
tan(kxd), (4.12)

tan [km,x(h− d)] = −km,xd

εm
. (4.13)

Equations. 4.10-4.13 are in agreement with the relationships for planar optical Bragg

accelerator described in [32, 33].

4.2 High-reflectivity gratings for waveguides

In Chapter 3, we have shown that SWGs can provide high reflectivity for a surface-

normal plane wave. In this section, we will show that SWGs can also be used as a reflector

in a waveguide, where they serve as high-reflectivity mirrors at oblique incidence.

At the interface between the matching layer and grating, the incidence angle of the wave

can be understood with a simple ray-optics model, as shown in Fig. 4.2. The relationship

between the incidence angle and the electron velocity ve = βec can be given by

θ = arcsin
1

βenm
(4.14)
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Figure 4.2: Ray-optics model for the field in the matching layer.

From the perspective of the waveguide, the accelerating mode described in Table 4.1

is always a TM mode. However, from the perspective of the grating, when the wave

propagates along the y direction, the light polarization is TM; when the wave propagates

along the z direction, the light polarization is TE. We will show that, for both TE and

TM polarizations, the grating can provide high reflectivity. For simplicity, here we only

consider the acceleration of SOL electrons, ve = c, corresponding to an incidence angle

θ = arcsin(1/nm).
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4.2.1 High-reflectivity gratings for TM polarization

For a SWG reflector in the waveguide, in order to obtain a high reflectivity, the require-

ment that the grating period should be designed to make sure all the diffraction modes

except the zeroth are evanescent yields

Λ <
λ

nm + 1/βe
. (4.15)

In the design, high-index contrast between the grating pillar and the gap is required. We

use silicon as the pillar material and silicon dioxide as the material for the matching layer

and substrate, i.e., nb = 3.48, nm = ns = 1.53. As the material should be transparent,

we choose 1550 nm as the drive laser wavelength.

Figure 4.3: s − b maps of the reflectivity [(a) and (c)] and reflection phase [(b) and (d)] of a
grating with silicon dioxide gaps [(a) and (b), na = 1.53, Λ = 0.338λ] and vacuum gaps [(c) and
(d), na = 1, Λ = 0.36λ] for TM polarization. λ = 1550 nm, nb = 3.48, nm = ns = 1.53.
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Using the RCWA code, the reflectivity and reflection phase of a single grating can be

calculated. First, we use silicon dioxide as the grating gap material, i.e., na = 1.53. In

Fig. 4.3[(a) and (b)], the s − b maps of the reflectivity and reflection phase are shown,

with a grating period Λ/λ = 0.338. It can be seen that a high reflectivity can be obtained

by designing the pillar width (b) and height (s).

Besides the grating dimensions, the materials of the grating also affect the reflectivity

pattern. Using vacuum instead of silicon dioxide as the material of the grating gap, i.e.,

na = 1, the s−b maps of the reflectivity and reflection phase are shown in Fig. 4.3[(c) and

(d)], respectively, with a grating period Λ/λ = 0.36. Comparison between Fig. 4.3(a) and

Fig. 4.3(c) shows that the vacuum grating gap enables a larger area of high reflectivity

in the pattern, allowing more freedom of structure design.

4.2.2 High-reflectivity gratings for TE polarization

For TE-polarization, the incident light comes in xz plane, but the diffraction occurs in

y direction. To make sure the diffracted modes except the zeroth are evanescent, the

grating period needs to be smaller than the laser wavelength,

Λ < λ/
√
n2

m − 1. (4.16)

Compared with the required grating period for TM-polarization, the required grating

period for TE-polarization can be larger, leading to a reduced fabrication difficulty.

As an example, we use silicon as the pillar material and silicon dioxide as the material

for the grating gap, matching layer, and substrate, i.e., nb = 3.48, na = nm = ns = 1.53.

The s−b maps of the reflectivity and reflection phase of a grating are show in Fig. 4.4(a)

and Fig. 4.4(b), respectively, with Λ/λ = 0.7. It is shown that, for TE-polarized light at

an oblique angle, the subwavelength gratings can also provide a high reflectivity. When

the grating period is changed from Λ = 0.7λ to Λ = 0.6λ, the results are shown in

Fig. 4.4[(c) and (d)], where the highly-ordered checkerboard pattern shifts towards a

larger dutycycle (b/Λ).

4.3 Field simulation of waveguides with gratings

By using the method introduced in Sec. 4.1, given the reflection phase of a grating with

near-unity reflectivity, we can design a waveguide structure with different core widths.

In this section, the MIT Photonic-Bands (MPB) software, an open-source package for
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Figure 4.4: s − b maps of the reflectivity [(a) and (c)] and reflection phase [(b) and (d)]
of a grating with Λ/λ = 0.7 [(a) and (b)] and Λ/λ = 0.6 [(c) and (d)] for TE polarization.
λ = 1550 nm, nb = 3.48, na = nm = ns = 1.53.

computing electromagnetic modes of periodic dielectric structures[73], is used for simu-

lation. We will show that high-reflectivity subwavelength gratings, for either TE or TM

polarization, can efficiently confine the accelerating mode in the structure.

In the simulation, all the gratings used as reflectors are designed to have a near-unity

reflectivity. All the radiation loss is assumed to be low enough to be neglected. Silicon

is used as the material of the grating pillar, and silicon dioxide is used as the material

for the matching layer and substrate, i.e., nb = 3.48, and nm = ns = 1.53. The material

of the grating gap is determined in the simulation.
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4.3.1 Fields in the waveguides for TM polarization

For gratings with TM polarization, the accelerating mode in the waveguide propagates

perpendicularly to the pillar direction. In this case, the structure has no variation in z

direction, neither do the fields. Therefore, in the following discussion, we will treat the

waveguide as a 2D structure in the xy plane.

To begin with, we study the effect of the reflection phase on the field profile in the

structure. Assuming a core width of 0.6λ, two subwavelength gratings, referred as

SWG11 and SWG12, which have different reflection phases, are applied as reflectors for

waveguides. The gratings have vacuum gaps, and the other parameters are shown in

Table 4.2. In Fig. 4.5, we compare the longitudinal electric fields of the accelerating

modes. In both structures, a uniform accelerating mode across the core is provided,

which is as indicated by Table 4.1. With a reflection phase of ∼ π, the boundary

Table 4.2: Waveguide parameters in Fig. 4.5.

Polarization Λ (nm) b (nm) t (nm) ψR (rad) 2d/λ h− d (nm)

SWG11 TM 465 288 446 3.02 0.6 187

SWG12 TM 465 307 614 0.09 0.6 501

(a)

(b)

x

z

decel accel

Ez

Ez

Figure 4.5: Longitudinal electric fields in the waveguides using SWG11 (a) and SWG12 (b).
Waveguide parameters are listed in Table 4.2.
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condition Eq. 4.6 indicates that in the x direction the field should vanish around the

interface between the grating layer and the matching layer. This case is illustrated by

Fig. 4.5(a). However, it is also shown that the effect of the evanescent modes in the

vicinity of the grating, which have non-zero y wavenumbers, leads to a field modulation

in the y direction close to the grating. With a reflection phase of ∼ 0, the boundary

condition Eq. 4.6 indicates that the fields should reach its maximum at the interface

between the grating layer and the matching layer. This case is illustrated in Fig. 4.5(b),

where the electric field close to the grating surface is rather intense.

(a)

(b)

x

y

decel accel

x

z

SWG12

SWG12

Ez

Ez

Figure 4.6: Longitudinal electric fields in the waveguides using SWG12 with channel widths
2d/λ = 0.2 (a) and 2d/λ = 1 (b). Waveguide parameters are listed in Table 4.3.

Table 4.3: Waveguide parameters in Fig. 4.6.

Polarization Λ (nm) b (nm) t (nm) ψR (rad) 2d/λ h− d (nm)

SWG12 TM 465 307 614 0.09 0.2 597

SWG12 TM 465 307 614 0.09 1.0 448

In planar waveguide design, different core widths (2d) may be chosen for different pur-

poses. As indicated by Eq. 4.8, the thickness of the matching layer depends on the core

width. By designing the matching layer thickness with SWG12 as reflectors, an accel-

erating mode with a speed-of-light phase velocity is supported for different core widths.

Figure 4.6 shows the longitudinal fields of the accelerating modes for a core with of 0.2λ
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(a) and λ (b). The parameters used in the simulation are shown in Table 4.3. In MPB,

the electric fields are normalized so that their energy densities have unit integral. For

this reason, a comparison between Fig. 4.6(a) and Fig. 4.6(b) shows that a waveguide

with a smaller core width has a more intense accelerating field in the channel, for a given

laser power. This effect will be discussed later in the form of interaction impedance.

4.3.2 Fields in the waveguides for TE polarization

(a)

(b)

decel accel

x

y

x

y

x

z

x

z

(c)

(d)

plane of (c)

plane of (d)

plane of (c)

plane of (d)

plane of (a)

plane of (a)

SWG13

Ez

Ez

Ez

Figure 4.7: Longitudinal electric fields in the waveguides using SWG13. (a) Ez field in the xy
plane. (b) Cross section in the xy plane. (c) Ez field in the xz plane at the grating gap center.
(d) Ez field in the xz plane at the grating pillar center. Waveguide parameters are listed in
Table 4.4.

Table 4.4: Waveguide parameters in Fig. 4.7.

Polarization Λ (nm) b (nm) t (nm) ψR (rad) 2d/λ h− d (nm)

SWG13 TE 1085 416 231 0.00 0.6 512

Using gratings for TE polarization, the accelerating mode propagates parallel to the

pillar direction (z direction). To begin with, a three-dimensional model is used to study

the field profile of the accelerating mode in the structure. A subwavelength grating,

referred as SWG13, which has a reflection phase of 0.0 rad, is applied as the reflectors.

Table 4.4 shows the parameters of this waveguide, which has a core width of 0.6λ.
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Figure 4.7(a) and Fig. 4.7(b) show the longitudinal electric field Ez and the cross-

section of the waveguide in the xy plane, while Fig. 4.7(c) and Fig. 4.7(d) show the

longitudinal electric field Ez in the xz plane at the centers of grating gap and pillar,

respectively. Across the core, the longitudinal electric field is uniform, which is consistent

with the field profile described in Table 4.1. Figure 4.7(a) shows that, in the structure,

the diffraction effect generates a series of spatial harmonics with real y wavenumbers

close to the grating, leading to a modulated pattern in the matching layer. When the

matching layer is thin, the uniformity of the field in the channel may be affected. In

the xz plane, the accelerating mode has a well-behaved pattern. In the region outside

grating, because of the long grating period which leads to a large decay constant, the

fields vanish slowly. Figure 4.7 shows that the xy distribution of the electric field can

be used to characterize the longitudinal electric field in the waveguide with gratings for

TE polarization.

(a)

(b)

x

y

decel accel

SWG15

SWG14

Ez

Ez

Figure 4.8: Longitudinal electric fields in the waveguides using SWG14 (a) and SWG15 (b).
Waveguide parameters are listed in Table 4.5.

Table 4.5: Waveguide parameters in Fig. 4.8.

Polarization Λ (nm) b (nm) t (nm) ψR (rad) 2d/λ h− d (nm)

SWG14 TE 1085 298 184 -1.60 0.6 682

SWG15 TE 775 465 463 -3.13 0.6 174
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Figure 4.8 shows the longitudinal electric fields of the waveguides consisting of gratings

with different reflection phases. These two subwavelength gratings, referred as SWG14

and SWG15, have a reflection phase of -1.6 rad and -3.1 rad, respectively. Table 4.5 shows

the parameters of the waveguides, with a core width of 0.6λ. As discussed previously,

the fields close to the grating are modulated due to the evanescent fields. In particular,

in the case of Fig. 4.5(b), the thickness of the matching layer is so thin that there is a

slight modulation of the fields in the core because of the unvanished evanescent fields.

Figure 4.9 shows the longitudinal fields of the accelerating mode for a core with of 0.2λ

and λ, using SWG14 as reflectors. As discussed previously, a larger core width leads in

a less intense accelerating field in the core with a given total energy.

(a)

(b)

x

y

decel accel

SWG12

SWG14

SWG14

Ez

Ez

Figure 4.9: Longitudinal electric fields in the waveguides using SWG14 with channel widths
2d/λ = 0.2 (a) and 2d/λ = 1 (b). Waveguide parameters are listed in Table 4.6.

Table 4.6: Waveguide parameters in Fig. 4.9.

Polarization Λ (nm) b (nm) t (nm) ψR (rad) 2d/λ h− d (nm)

SWG14 TE 1085 298 184 -1.60 0.2 778

SWG14 TE 1085 298 184 -1.60 1.0 629
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4.3.3 Performance of waveguides with subwavelength gratings

As an accelerating structure, there are several figures of merit that characterize the struc-

ture’s performance, including the group velocity (vg = βgc), the interaction impedance

(Zint), the sustainable gradient (Ga,max), and the maximum acceleration efficiency (ηmax).

In order to study the waveguide performance, five examples of high-reflectivity SWGs,

with their parameters listed in Table 4.7, are applied as mirrors. Among these SWGs,

the SWG14 for TE polarization has been introduced in Sec. 4.3.2 to study the field

profile of the accelerating mode.

Table 4.7: Parameters of SWGs used in the performance estimation.

Polarization εa Λ (nm) b (nm) t (nm) ψR (rad)

SWG14 TE 2.38 1085 298 184 -1.60

SWG16 TE 2.38 930 481 214 -0.80

SWG17 TE 1 775 512 420 2.60

SWG18 TM 1 558 374 625 1.66

SWG19 TM 1 558 288 737 1.57

The group velocity is the velocity with which the envelope of a laser pulse propagates

through the waveguide. For a specified waveguide length (L), the group velocity de-

termines the minimum pulse length (τp), which is the time lag of a laser pulse with

respect to an electron bunch, τp = L(1 − βg)/(βgc). To make use of the desired scal-

ing of damage thresholds for ultrashort pulses, a high group velocity which requires a

shorter laser pulse is desirable. Figure 4.10 shows the group velocity of the accelerating

mode in the waveguides with using gratings as shown in Table 4.7 as mirrors. It shows

that the waveguide dimensions and materials can enable substantial tuning of the group

velocity. For waveguides with a given high-reflectivity grating as mirrors, a larger core

width enables a higher group velocity.

The interaction impedance (Zint) is a measure of the relation between the accelerating

gradient Ga and the power (Pl) flowing in the accelerating mode, assuming a thickness

of one wavelength in the y direction. It can be given by

Zint =
G2

aλ
2

Pl
. (4.17)

A higher impedance corresponds to providing a higher accelerating gradient with given

laser power, allowing more laser-efficient acceleration, which is desired in the accelerator

design. Figure 4.11 shows the interaction impedance as a function of channel width for

the waveguides with gratings as shown in Table 4.7. The comparison shows that, among
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Figure 4.10: Group velocity of the accelerating mode in the waveguides with different gratings
as mirrors. The matching layer thickness is determined by Eq. 4.9. Grating parameters are listed
in Table 4.7.

these gratings, SWG18 and SWG19 that have TM polarization form waveguides with

higher impedances than these gratings for TE polarization. For each waveguide, the

interaction impedance decreases with an increasing core width.
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Figure 4.11: Interaction impedance of the accelerating mode in the waveguides with differ-
ent gratings as mirrors. The matching layer thickness is determined by Eq. 4.9. Waveguide
parameters are listed in Table 4.7.

The acceleration efficiency is an important parameter that characterize the laser-to-

electron coupling. The maximum acceleration efficiency (ηmax) is determined by both
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the interaction impedance and the group velocity[74, 75],

ηmax =
βg

1− βg

Zint

η0

d

λ
. (4.18)

Figure 4.11 shows the maximum acceleration efficiency as a function of channel width for

the waveguides with gratings as shown in Table 4.7. The different trends between group

velocity and interaction impedance for an increasing core width lead to an optimum value

for the maximum efficiency. Among these examples of the waveguides, the waveguide

with SWG19 has the highest efficiency of ∼ 10.8%.
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Figure 4.12: Efficiency of the accelerating mode in the waveguides with different gratings as
mirrors. The matching layer thickness is determined by Eq. 4.9. Waveguide parameters are
listed in Table 4.7.

As introduced in Chapter 3 for grating structure, the highest accelerating gradient in

double-grating structures is limited by the damage threshold of the dielectric material.

The field ratio Ga/E
′
max, referred as damage factor, can be used to estimate the max-

imum sustainable accelerating gradient. Figure 4.13 illustrates the damage factor as

a function of channel width for the waveguides with gratings as shown in Table 4.7.

It shows that, among these examples of waveguides, SWG18 and SWG19 for TM po-

larization have a higher damage factor. The results are in agreement with the field

distribution as shown in Sec. 4.3, i.e., the waveguides using gratings for TM polarization

have a less intense field in the dielectrics compared with the waveguides with gratings

for TE polarization.
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Figure 4.13: Damage factor of the accelerating mode in the waveguides with different gratings
as mirrors. The matching layer thickness is determined by Eq. 4.9. Waveguide parameters are
listed in Table 4.7.
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A test station for DLA structures

in development

In this chapter, we present the progress in developing a test station for DLA structures,

based on a laser system being developed at KEK. We describe our design of the experi-

ment, particularly the magnets. All the components have been fabricated to date. We

estimate the sustainable gradient of a fabricated single-grating structure.

5.1 System design

Considering the difficult coupling scheme for waveguide structures and the complex

fabrication process for double grating structures, as a first step, a test station for mea-

suring the acceleration and deflection of electrons at a single grating is designed. The

schematic is shown in Fig. 5.1. A photocathode, driven by a laser with a wavelength

of 515 nm, is used to produce a 50 keV electron beam. The beam is then focused by

a magnetic quadrupole doublet onto a grating sample. Meanwhile, another laser beam

with a wavelength of 1030 nm is focused onto the grating at surface-normal incidence.

The accelerating mode generated upon the incidence interacts with the electrons, re-

sulting in an energy modulation of the beam. After the interaction, the electron beam

is deflected by a bending magnet spectrometer and detected by a micro-channel-plate

(MCP) so that the energy gain and transverse displacement can be measured.

A vacuum chamber, as shown in Fig. 5.2, is designed to accommodate those components

for the experiment. A ceramic insulator tube is used to support the high-voltage electron

gun. A vent is placed close to the electron gun to ensure a high vacuum condition. The

87
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Figure 5.1: Schematic of the test station setup for DLA structures.

electron beam travels along the axis of the chamber. Several vacuum windows are used

for the incident laser beams and the camera.
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Figure 5.2: Technical drawing of the chamber for the test station.

As the diffraction gratings can only accelerate electrons close to their surface, a transla-

tion stage as shown in Fig. 5.3 is used to precisely align the grating to the electron beam

traveling along the chamber axis. In addition, temporal alignment is to be realized by

using a translation stage outside the chamber to adjust the optical path length of the

incident laser.

In the following, several components for the experiment are introduced, including the

grating, the electron gun, and the magnets.
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2ω

Figure 5.3: Schematic of the translation stage for the test station. The inset shows the sample
holder. Courtesy of K. Koyama at KEK.

5.2 Fabricated single gratings

Based on the optimization of fused-silica single grating in Sec. 2, dozens of single-grating

samples have been fabricated with electron-beam lithography and dry-etching technolo-

gies at NIMS[76], as shown in Fig. 5.4. The slab is with dimensions 0.36 mm×10 mm×
5 mm (x×y×z). The mesas sitting above the slab from northwest to southeast are with

dimensions 0.02 mm×1 mm× l mm (x×y×z), where Lm = 0.15 mm, 0.12 mm, 0.09 mm

are the widths of the mesas. The mesas are designed to elevate the grating surface above
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Figure 5.4: Fabricated sample and its dimensions.
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the slab so that more electrons can pass the slab without beam loss. The distance from

those mesas to the slab edge is 1 mm. The interval between adjacent mesas is 0.5 mm.

Grating structures with a period of 425 nm are located on the top of three mesas, with

210, 140 and 90 periods (from northwest to southeast), corresponding to a total width of

W = 0.09 mm, 0.06 mm, 0.03 mm, respectively. The pillar deviates from the optimized

rectilinear geometry, with a pillar height of 250 nm, a pillar width 263 nm at the bottom

and 206 nm at the top.

(a)

Figure 5.5: Field distribution (a) and gradients (b) of the fabricated sample obtained by CST.

To evaluate the effects of the deviation of the fabricated structure from the optimized

design, we incorporated the grating profile extracted from the cross-section SEM im-

age into the CST model. Figure 5.5 shows the electric field in the structure and the

accelerating gradient and deflecting gradient as a function of electron-grating distance.

The maximum ratio of the accelerating gradient to the maximum in-vacuum field at the

grating surface is Ga/Emax = 0.043, corresponding to a ratio of the accelerating gradi-

ent to the incident field Ga/E0 = 0.061 at a distance of 50 nm from the pillar’s upper

surface. The field enhancement factor ηmax = Emax/E0 = 1.41. In comparison with the

optimized rectangular grating whose parameters are listed in Table 2.2, the fabricated

sample has a performance close to the optimized structure. Hence, the corresponding

energy gain based on the laser system being developed at KEK, whose parameters are

shown in Table 2.1, can be roughly estimated with the simulation results in Sec. 2.3.2.

The maximum energy gain is expected to be ∼ 1 keV in the experiment.
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5.3 Magnets design

Figure 5.6 illustrates the focusing of electrons in the bending plane of the experiment

system. The grating sample is located at the focus of quadrupole doublet and also

the focus of the bending magnet. The magnets are designed with the capability of a

symmetric double focusing, i.e., the focal lengths in the bending plane and transverse

plane are identical. In the following, we will describe the working principle, transfer

matrix calculation, CST simulation, and dissipated power estimation for the magnets.

laser
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-50kV Ground

Anode
(pinhole)

Ground

Filter
(pinhole)

Grating

CCD

MCP and Screen

Magnetic 
lenses

Bending 
magnet

Figure 5.6: Focusing of electrons in the experiment.

5.3.1 Qradrupole Design

Given a single grating structure, only those electrons close to it can efficiently inter-

act with the accelerating mode. However, the electron beam from the injector has a

diameter, which is determined by the laser spot, much larger than the decay constant

of the accelerating mode. Without focusing, only a tiny fraction of the electrons can

interact with the accelerating mode efficiently, making the detection rather difficult. In

order to focus the beam or compress it to the smallest possible radius at the grating, a

quadrupole doublet is designed.

The magnetic quadrupole is illustrated in Fig. 5.7. The pole surfaces of hyperbolic profile

have the same magnetic potential. Coils are winded in such a way that every other pole

has a magnetic flux into the beam and every other out of the beam. The magnetic field

in such a system is given by[77]

B =
B0

a
yi +

B0

a
xj (5.1)



Chapter 5. Toward a dielectric laser accelerator 92

Hyperbolic 

surface

S

N S

N

y

x
Coil

Yoke

path 3

Path 2Path 1

Figure 5.7: Schematic of a quadrupole magnet.

where x = 0 and y = 0 are located at the magnet center, B0 is the magnetic field density

at the pole surface, a is the distance from the axis to the pole tip. Charged particles

with velocity v = vzk experience a force F = qB0vz(xi + yj)/a, which focuses in the

x direction and defocuses in the y direction. Since the transverse magnetic forces are

perpendicular to the field components, motions in the transverse directions (x and y)

are independent and can be analyzed separately. The particle orbit equations in the

magnetic field are

d2x/dz2 = −(eB0/γm0avz)x (5.2)

d2y/dz2 = (eB0/γm0avz)y (5.3)

The solutions in the x direction can be written by matrix notation as

uf = AFui (5.4)

where the subscript F represents the focusing effect, the orbit vector ui = [xi, x
′
i] is

converted by the magnet to the vector uf = [xf , x
′
f ]. AF is the transfer matrix which

contains all the parameters of lens properties,

AF =

[
cos(
√
kl) sin(

√
kl)/
√
k

−
√
k sin(

√
kl) cos(

√
kl)

]
. (5.5)

with k = eB0/γm0avz, and l =
∫
Bdz/Bcenter being the effective lens length.
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In the other transverse direction (y direction), the beam is defocused. The transfer

matrix can be given by

AD =

[
cosh(

√
kl) sinh(

√
kl)/
√
k

√
k sinh(

√
kl) cosh(

√
kl)

]
. (5.6)

With one quadrupole lens, the beam cannot be focused in both transverse directions (x

and y). In order to realize two-dimensional focusing, two (doublet) or three (triplet)

quadrupole lenses should be used.

Here, for the sake of simplicity, we use a doublet for focusing. A magnetic doublet

consists of a quadrupole, a drift space of length d, and another quadrupole. In the

x direction, which is called FD channel, the first quadrupole focuses and the second

defocuses. In the y direction, which is called DF channel, the first quadrupole defocuses

and the second focuses. For the drift space between the quadrupoles, the transfer matrix

along the z direction can be written as

A =

[
1 d

0 1

]
. (5.7)

To focus equally in both transverse directions so that the minimum electron beam di-

ameters in both transverse directions appear at the same point, two quadrupoles are of

the same dimensions but with different magnetic fields at the pole tip. Based on Eq. 5.5,

5.6, and 5.7, the transfer matrices for the doublet can be written as

CFD = AD(k1, l)A(d)AF(k2, l), (5.8)

CDF = AF(k1, l)A(d)AD(k2, l), (5.9)

where k1 = eB1/γm0avz and k2 = eB2/γm0avz depend on the magnetic fields of the

first and second quadrupoles, respectively.

The total current required for the coils can be calculated by∮
H · dl =

∫
path1

B

µ0
· dl +

∫
path2

B

µrµ0
· dl +

∫
path3

B

µ0
· dl =

∫
S
JdS = NI, (5.10)

where the integration paths are illustrated in Fig. 5.7.

In the design, first, we design a quadrupole with CST. Since the doublet is far away

from the electron gun, the incident electron beam can be treated as an initially parallel

beam. Considering the small beam radius in the experiment, the distance between the

optical axis to the pole tip is chosen to be a = 1.95 mm. The longitudinal length of each
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quadrupole structure is 5 mm. In Fig. 5.8(a) we show the amplitude of the magnetic field

|H| in the quadrupole magnet. The effective length is l = 7.5 mm. Second, since the

matrix method takes much less time, it is used to roughly determine the magnetic fields

of two quadrupoles. Placing the first quadrupole at z = 0 and the second at z = 20 mm,

we expect to focus the beam at z = 80 mm. With the transfer matrix method, the

estimation requires the first quadrupole to have a magnetic field of 0.0054 T at the

pole tip, and the second quadrupole 0.0074 T. Ultimately, the precise parameters of the

doublet are determined with CST software. To equally focus the beam z = 80 mm,

20 turns of wires in total are used for each quadrupole, including 4 coils with 5 turns

of wires. The coil current for the first quadrupole is I1 = 0.87 A, and for the second

I2 = 1.15 A. The first quadrupole has a magnetic field of 0.0051 T at the pole tip

and the second quadrupole 0.0068 T. The simulated magnetic field in the transverse

plane (xy) of the first quadrupole and xz plane of the doublet are shown in Fig. 5.8.

The differences between the required magnetic fields obtained with the transfer matrix

method and CST are small, which result from the approximations used in the transfer

matrix method.

(a)

y

x

Quadrupole 1 Quadrupole 2

z = 0 mm z = 20 mm

z

x

(b)

Figure 5.8: The magnetic field |H| of the first quadrupole (a) and the magnetic field Hy of the
doublet (b).

The resulting particle orbits of the electrons are shown in Fig. 5.9. It shows that the

orbits calculated with matrix method are in agreement with that calculated with CST.

In the xz plane, the electrons are focused by the first quadrupole but defocused by the

second. In the yz plane, the electrons are defocused by the first quadrupole but focused

by the second. In both xz and yz planes, the total effect of the doublet focuses the beam

at z = 80 mm.

In the following, we will estimate the dissipated power of the doublet. The wire used

for the coil has a diameter of 2 mm, with a corresponding cross-sectional area of awire =

3.1 mm2. For each quadrupole, the total length of the wire can be estimated to be



Chapter 5. Toward a dielectric laser accelerator 95

-2 0 2 4 6 8 10 12

-1

-0.5

0

0.5

1

z (cm)

 x
  o

rb
it 

(μ
m

)

-2 0 2 4 6 8 10 12

-1

0

1

 y
  o

rb
it 

(μ
m

)

x, Matrix
y, Matrix

x, CST
y, CST

Figure 5.9: The focusing of electrons calculated with matrix method and CST.

Lwire = 608 mm. The resistance of wire in each quadrupole is

Rcoil =
ρLwire

awire
= 3.3× 10−5 Ω. (5.11)

where ρ is the resistivity (for copper, ρ ≈ 1.68× 10−8 Ωm at 40 ◦C ). Thus, the power

dissipated by the first quadrupole is given by

P1 = I2
1Rcoil = 0.021 mW, (5.12)

and the power dissipated by the second quadrupole is given by

P2 = I2
2Rcoil = 0.037 mW. (5.13)

Therefore, the overall dissipated power can be calculated by

P = P1 + P2 = 0.058 mW. (5.14)

5.3.2 Spectrometer design

A sector bending magnet spectrometer is designed to analyze the electrons after the

interaction. As shown in Fig. 5.2, the spectrometer is put in the vacuum. Considering

the low repetition rate (∼ 20 Hz) in our experiment, the thermal issue can be neglected.

As the name suggests, the heart of the bending magnet spectrometer is a magnetic

sector, which provides a nearly constant magnetic field in the magnetic gap. It serves to

produce an energy dispersion and a direction focusing for the electrons traveling through

the field[78]. The electrons entering the field with different kinetic energy follow different

circular trajectories through the field, known as energy dispersion. A spectrometer is

designed in such a way that particles with a kinetic energy of Ek,0 travel along the
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optical axis. These particles are called the reference particles. The radius of the optical

axis can be given by

R =
γeβem0c

Be
. (5.15)

The dipole elements have focusing/defocusing properties in the bending plane because

the path lengths of the outer trajectories are longer than the path lengths of the inner

trajectories for electrons with the same energy[79]. It is less obvious, but also true

that the fringing fields at the entrance and emergence boundaries of the sector provide

an axial focusing action. In Fig. 5.10, we illustrate the trajectories of electrons with

different energies in a magnetic sector, where Ek,0 = 50 keV. The deflection radius of

the reference particles is denoted by R, the object distance by L1, the image distance

by L2, the incidence angle by αin, the emergence angle by αout, the deflection angle α0

and the angle of the focal plane with a plane normal to the reference trajectory by ϕ.

The energy separation and direction focusing in the bending plane of a magnetic sector

is shown.

𝛼0

𝑅

object image

𝜑

51 keV

50 keV

49 keV

Figure 5.10: Illustration of the trajectories of electrons with different energies.

In a magnetic sector, the focusing in the bending plane can be traded for focusing in the

other transverse plane, if the incidence angle αin and the emergence angle αout as shown

in Fig. 5.10 deviate from 0◦. The dependence of the focal lengths from the magnet edge

on the incidence angle and emergence angle are given by

fx =
R

tan(α0/2)− tanαin,out
(5.16)

fy =
R

tanαin,out
(5.17)

In a symmetric double-focusing dipole, the edge angles can be calculated by 2 tanαin,out =

tan(α0/2), and the focus distances by L1 = L2 = 2R/ tan(α0/2).
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In practice, the electron beam in question contains particles with kinetic energy deviating

from E0. The emergence angles at the exit for those electrons deviate from αout, so those

electrons are not focused at the same distance as the reference particles. The slope of

the focal plane tanϕ, with ϕ being the angle between the focal plane and a plane normal

to the reference trajectory, can be calculated by[80, 81]

tanϕ =
b

2D0

{
1 +

sinα0

b
+ 2 sinα0 tanαout + 2 tan2 αout(1− cosα0)

+
b[1 + (b−1 + tanαout)

2]

a[1 + (a−1 + tanαin)2]

} (5.18)

with D0 = {1− cosφ+ b[sinα0 + (1− cosα0) tanαout]}/2, a = L1/R, b = L2/R.

The total current of the coil for exciting the required magnetic field can be estimated

by using∮
H · dl =

∫
path1

B

µ0
· dl +

∫
path2

B

µrµ0
· dl +

∫
path3

B

µ0
· dl = NI, (5.19)

where the paths are described in Fig. 5.11.
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Figure 5.11: Cross-section showing the H-frame of the yoke.

In our case, the bending magnet is designed as a symmetric double-focusing dipole. We

use an H-Frame coil magnet made of two solid pieces of SUS304 steel. The internal field

gap is Hgap = 5 mm, with a bend radius R = 50 mm. The deflection angle is α0 = 90◦,

with edge angles being αin = αout = 26.6◦ and the focal distances L1 = L2 = 2R.

Field clamps with a thickness of 4 mm made by the same steel are used to terminate
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the fringing fields of the spectrometer, and also serve to accommodate the spectrometer

entrance aperture with a size of 30 mm × 5 mm. The corresponding magnetic field in

the gap is B = 0.0154 T.

We design a good field region of width Wtube = 6 mm between the poles, which can be

ensured by adding excess pole overhang[82]. The width of the pole is estimated to be

30 mm, by using

Wpole = Wtube +Hgap ∗ (0.75− 0.36 ln 100
∆B

B
) = 30 mm,with∆B/B = 0.01%, (5.20)

where ∆B/B is a measure of the field uniformity.

In the simulation, the total current of the coil is precisely calculated to be 52.6 ampere-

turns. For each coil, we use N = 25 turns of wires, consisting of 5 layers with 5 turns

in each. The current of the wire is I = 1.05 A. Figure 5.12(a) shows the magnetic

field in the bending magnet calculated with CST. A rather uniform magnetic field is

generated at the center of the gap. Figure 5.12(b) shows the particle tracking result in

the magnetic field. The electrons of different energies are focused to different positions,

enabling the energy measurement. The energy dispersion is evaluated to be 2 mm/keV.

(a)

𝐿1 = 100 mm
𝐿
2
=
1
0
0
m
m

48 keV

50 keV

52 keV
Image

(b)

Figure 5.12: Magnetic field (a) and particle tracking result (b) in the bending magnet.

In the future experiment, the screen will be put at the focal point of the spectrom-

eter, imaged by an ALLIED prosilica GC650 CCD monochrome camera with a 1/3”

659(H)× 493(V) resolution sensor and 7.4 µm(H)× 7.4 µm(V) pixel size. To roughly

measure the electron energy, the screen is put normal to the reference trajectory at the

focus.

In the following, we will estimate the dissipated power. The wire for the coil has a

diameter of 2 mm, with a corresponding cross-sectional area of awire = 3.1 mm2. The

cross-sectional width and height of each coil are Wcoil = Hcoil = 10 mm. The average
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circumference of the coil is estimated to be

Ccoil = π(R+Wcoil) + 2(Wpole +Wcoil) = 268.5 mm. (5.21)

The power dissipated by two coils is given by

P = 2I2Rcoil = 0.79 mW, with Rcoil =
ρNCcoil

awire
= 3.6× 10−4 Ω. (5.22)

To summarize the magnet design, in Fig. 5.13, we show the focusing of particles with

Ek = 50 keV by using the doublet and bending magnet. It can be seen that a parallel

electron beam with an initial diameter of 2 µm can be focused along the optical axis,

which is the trajectory of the reference particles.
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Figure 5.13: Focusing of particles with the doublet and bending magnet.

5.4 Current status

All the components for the experiment have been fabricated. Figure 5.14 shows sev-

eral photos of the fabricated components, including a high-voltage insulator, vacuum

chamber, anodes for the electron gun, doublet and magnetic sector on a base plate.

A Yb laser system which provides laser pulses for the experiment is almost done. It will

drive both the photocathode and DLA structure. The system mainly consists of a Yb-

doped fiber oscillator, three Yb-doped fiber pre-amplifiers, and three Yb:YAG thin-disk

amplifiers. Figure 5.15(a) shows the flow diagram of the laser system. Figure 5.15(b)

shows a photograph of the Yb fiber laser. The output beam of the last Yb:YAG thin-

disk amplifier is shown in Fig. 5.15(c), with a pulse duration of ∼ 50 ps, a pulse energy

of 15 mJ, and a repetition rate of 20 Hz. A grating compressor is being developed to

realize a shorter pulse duration, which is necessary for high-gradient acceleration. The
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(a) (b)

(c) (d)

Figure 5.14: Fabricated components for the experiment. (a) High-voltage insulator. (b)
Vacuum chamber. (c) Anodes. (d) Quadrupole doublet and magnetic sector on a base plate.

compressed beam will be split into two; one is used to drive the DLA structure, the

other is used to drive the photocathode after frequency doubling. A translation stage

is used to adjust the optical path length to the DLA structure to ensure the temporal

alignment of the electron beam and the laser for DLA structure.

In order to produce an electron beam of high quality, a one-dimensional nano-scale

photocathode with back-illumination was provided by KEK. It consists of a gold thin

film, as the emitter, on a glass substrate with a titanium adhesion layer. Figure 5.16(a)

shows a photograph of the photocathode. Figure 5.16(b) shows the current density as a

function of laser intensity measured by T. Shibuya.

To summarize, a test station for DLA structures has been designed and fabricated. The

expected experiment parameters based on the design are listed in Table 5.1. A Yb laser

system is being developed to provide laser pulses. Once the laser is ready, experiments,

including the damage test of the dielectric material, electron beam production, dielectric

laser acceleration, will be conducted.
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Figure 5.15: Flow diagram (a), photograph(b), and output beam profile (c) of the Yb laser
system. The profile is measured after the last Yb:YAG thin-disk amplifier by a CCD camera
beam profiler (Thorlabs BC106N-VIS).

(a) (b)

Figure 5.16: Photograph of the photocathode (a) and the measured current density as a
function of the laser intensity (b). The cathode is measured with a ultraviolet laser with a beam
diameter of 13 µm. Figure (b) is taken from [83].



Chapter 5. Toward a dielectric laser accelerator 102

Table 5.1: Expected experiment parameters.

Electron beam

Electron energy Ek,0 50 keV

Energy spread δE < 0.1%

Emittance εx/εy < 10× 10−3 mm ·mrad

Laser pulse

Wavelength λ 1030 nm

Pulse energy El 5.7 µJ

Pulse duration τp 30 ps

Spot size σx/σy 10 µm

Peak intensity E0 1.2× 1011 W/cm2

Peak field I0 0.92 GV/m

Acceleration

Max acc. gradient Ga ∼ 60 MV/m

Max energy gain δE ∼ 1 keV/m



Chapter 6

Conclusion and outlook

Dielectric laser accelerator has a great potential to make particle accelerators more com-

pact and more affordable by utilizing the high damage threshold of dielectrics at optical

frequencies. Its capability of delivering a nanometer-sized beam with attosecond pulse

duration makes it a perfect platform for radiobiology research. After the recent success

of DLA experiments in Stanford University and Max Planck Institute of Quantum Op-

tics/Friedrich Alexander University Erlangen-Nuremberg using diffraction gratings, the

question remains of how to optimize the DLA structures to more efficiently accelerate a

particle beam.

In this dissertation, we have presented a general method to design a double-grating res-

onator for subrelativistic electron acceleration. The underlying idea is to merge diffrac-

tion gratings with resonating Fabry-Perot cavities. We described how to generate a

hyperbolic cosine accelerating mode by exciting the first diffraction order on either side

of a double-grating structure. We introduced how to produce an enhanced accelerating

mode with a single-sided illumination by designing highly-reflective gratings to form a

Fabry-Perot cavity for the zeroth diffraction order. Thus, a laser-power efficient way

of electron acceleration may be enabled. Using this method, a mm-scale DLA can ac-

celerate electrons from 50 keV to 1 MeV. This method considers the optimization of

double-grating structures in a more rigorous analytical and computational form than

prior works. Additionally, it helps to bridge a gap between the theory and experiments

by considering a single-sided illumination of a double grating, in contrast with prior

analytical treatments that assumed symmetric dual-sided illumination of the gratings.

We have also described a general procedure to design a planar accelerating waveguide

using highly-reflective gratings as mirrors. We found the solution to support an acceler-

ating mode with a given phase velocity by designing a matching layer. Compared with

the waveguides using photonic crystals, using a single-layer grating to confine the mode

103
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could drastically reduce the transverse size. It could also enable more straightforward

fabrication and easier integration.

We have also shown the progress in developing a test station for DLA structures. We

described our design of the experiment, particularly the magnets. We estimated the

sustainable gradient of the fabricated single-grating structure. All the components have

been fabricated to date.

To realize a DLA-based electron source for radiobiology research, there are many bridges

to cross. One important step is to develop a DLA-compatible emitter, which could

produce an electron beam with small spot size. The realization of optical microbunching

represents another important next step, in which multi-stage subrelativistic electron

acceleration could be a challenge. Following that, net acceleration of bunched electrons

should be realized, where focusing elements will be needed to control the beam size.

All these steps could lead to a millimeter-scale DLA electron source that can accelerate

electrons to the target MeV energy.



Appendix A

Appendix Rigorous coupled-wave

analysis for simulation

Rigorous coupled wave analysis (RCWA) is a widely used differential method to calculate

scattering from gratings[84]. This approach is to obtain an exact solution of Maxwell’s

equations by implementing the Fourier expansions of the fields and grating permittivity

along the directions of the periodicities; thus, it allows one to treat a wide class of gratings

(planar gratings[84–87], surface-relief gratings[88, 89], crossed-grating structures[90]) in

a unified way. The accuracy of the solution depends solely on the number of spatial

harmonics retained in the expansion after truncation. In the following, we will implement

the RCWA method for DLA double-grating structure as shown in Fig. A.1.
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Figure A.1: Schematic of a dual-grating structure for dielectric laser acceleration.
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A.0.1 Fourier expansion of the fields

To begin with, we describe the fields outside the grating as the superposition of a series

of diffraction orders. The fields in region I can be written as

HI
y = eikI(x cos θ+z sin θ) +

∞∑
n=−∞

rnei(−kI,x,nx+kz,nz), (A.1)

EI
z = −cos θ

nI

√
µ0

ε0
eikI(x cos θ+z sin θ) +

∞∑
n=−∞

kI,x,nrn
k0εI,r

√
µ0

ε0
ei(−kI,x,nx+kz,nz), (A.2)

EI
x =

sin θ

nI

√
µ0

ε0
eikI(x cos θ+z sin θ) +

∞∑
n=−∞

kz,nrn
k0εI,r

√
µ0

ε0
ei(−kI,x,nx+kz,nz). (A.3)

The fields in region II can be written as

HII
y =

∞∑
n=−∞

tnei(kII,x,n(x−DL)+kz,nz), DL =

L∑
p=1

dp (A.4)

EII
z = −

∞∑
n=−∞

kII,x,ntn
k0εII,r

√
µ0

ε0
ei(kII,x,n(x−Dl)+kz,nz), (A.5)

EII
x =

∞∑
n=−∞

kz,ntn
k0εII,r

√
µ0

ε0
ei(kII,x,n(x−Dl)+kz,nz), (A.6)

where dl represents the thickness of the lth layer as shown in Fig. A.1, L represents the

number of the last layer, or the total number of the layers.

The grating is treated as a stack of layers which consists of alternating regions of relative

permittivity εl,p (pillar) and εl,g (groove). By using the Fourier expansion method which

is introduced in Sec. 2.1, the magnetic field in the lth layer (Dl−dl < x < Dl =
∑l

p=1 dp)

can be written as

HG
y,l(x, z) =

+∞∑
n=−∞

fG
l,n(x)eikz,nz. (A.7)

Based on the relation described in Eq. 2.7, the electric fields can be given by Eq. A.8

and A.9.

EG
z,l(x, z) = i

1

k0

√
µ0

ε0

1

εl(z)

∂HG
y,l(x, z)

∂x

= i
1

k0

√
µ0

ε0

+∞∑
h=−∞

αl,heih 2π
Λ
z

+∞∑
n=−∞

∂fG
l,n(x)

∂x
eikz,nz (A.8)

= i
1

k0

√
µ0

ε0

+∞∑
h=−∞

[
+∞∑

n=−∞
αl,h−n

∂fG
l,n(x)

∂x

]
eikz,hz,
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EG
x,l(x, z) = −i

1

k0

√
µ0

ε0

1

εl(z)

∂HG
y,l(x, z)

∂z

=
1

k0

√
µ0

ε0

+∞∑
h=−∞

αl,heih 2π
Λ
z

+∞∑
n=−∞

kz,nf
G
l,n(x)eikz,nz (A.9)

=
1

k0

√
µ0

ε0

+∞∑
h=−∞

[
+∞∑

n=−∞
αl,h−nkz,nf

G
l,n(x)

]
eikz,hz.

In this case, the permittivity in each layer depends only on the position z, i.e., the

relative permittivity εr ≡ εl(z). In the lth layer of thicknes dl, the periodic εl(z) is

expandable in a Fourier series as

εl(z) =

+∞∑
h=−∞

ε̂l,heih 2π
Λ

(z−zl,0), Dl − dl < x < Dl =

l∑
p=1

dp, (A.10)

where ε̂l,h is the hth Fourier component of the relative permittivity in the lth layer,

ε̂l,h(h = 0) = εl,g + (εl,p − εl,g)ηl, ε̂l,h(h 6= 0) = (εl,p − εl,g)
sin(πhηl)

πh
. (A.11)

Here, zl,0 is used to shift the grating in the z-direction, e.g., zl,0 = 0 represents that

the groove is located at the center, while zl,0 = Λ/2 represents that the pillar is located

at the center. Throughout the report, we use zl,0 = Λ/2. ηl is the duty cycle, i.e., the

fraction of the grating period occupied by the pillar of permittivity εl,p. For simplicity,

we consider the following scaling

εl(z) =
+∞∑

h=−∞
εl,heih 2π

Λ
z, Dl − dl < x < Dl =

l∑
p=1

dp, (A.12)

where

εl,h(h = 0) = ε̂l,he−ih 2π
Λ
zl,0 = εl,g + (εl,p − εl,g)ηl, (A.13)

εl,h(h 6= 0) = ε̂l,he−ih 2π
Λ
zl,0 = (εl,p − εl,g)

sin(πhηl)

πh
e−ih 2π

Λ
zl,0 . (A.14)

Similarly, 1/εl(z) can also be expressed in a Fourier series as

1

εl(z)
=

+∞∑
h=−∞

αl,heih 2π
Λ
z, Dl − dl < x < Dl =

l∑
p=1

dp, (A.15)
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where αl,h is the hth Fourier component of 1/εl(z) in the lth layer,

αl,h(h = 0) =
1

εl,g
+ (

1

εl,p
− 1

εl,g
)ηl, αl,h(h 6= 0) = (

1

εl,p
− 1

εl,g
)
sin(πhηl)

πh
e−ih 2π

Λ
zl,0 .

(A.16)

Based on Eq. A.12 and Eq. A.15, Eq. 2.6 can be rewritten as

d2

dx2

+∞∑
m=−∞

fG
l,m(x)eikz,mz

=

+∞∑
m=−∞

 +∞∑
j=−∞

εl,m−jkz,j

(
+∞∑

n=−∞
αl,j−nkz,nf

G
l,n(x)

) eikz,mz (A.17)

− k2
0

+∞∑
m=−∞

(
+∞∑

n=−∞
εl,m−nf

G
l,n(x)

)
eikz,mz.

Equating for the mth component yields

d2fG
l,m(x)

dx2
=

+∞∑
j=−∞

εl,m−jkz,j

(
+∞∑

n=−∞
αl,j−nkz,nf

G
l,n(x)

)
− k2

0

(
+∞∑

n=−∞
εl,m−nf

G
l,n(x)

)
(A.18)

With the scaling x′ = k0x, Eq. A.18 can be rewritten as

d2fG
l,m(x′)

d(x′)2
=

+∞∑
j=−∞

εl,m−j
kz,j
k0

(
+∞∑

n=−∞
αl,j−n

kz,n
k0

fG
l,n(x′)

)
−

+∞∑
n=−∞

εl,m−nf
G
l,n(x′) (A.19)

A.0.2 Truncation of the Fourier expansion

In numerical analysis, the infinite Fourier expansion needs to be truncated. In the rest

of the text, we will calculate the fields with a truncation order of N .

After truncation, the truncated Fourier expansions of the fields in region I are given by

HI
y = eikI(x cos θ+z sin θ) +

N∑
n=−N

rnei(−kI,x,nx+kz,nz), (A.20)

EI
z = −cos θ

nI

√
µ0

ε0
eikI(x cos θ+z sin θ) +

N∑
n=−N

kI,x,nrn
k0εI,r

√
µ0

ε0
ei(−kI,x,nx+kz,nz), (A.21)

EI
x =

sin θ

nI

√
µ0

ε0
eikI(x cos θ+z sin θ) +

N∑
n=−N

kz,nrn
k0εI,r

√
µ0

ε0
ei(−kI,x,nx+kz,nz), (A.22)
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or, in matrix form,

HI
y = eikzz

{
diag

[
diag

(
eiKI,xx

′
)]

Γ0 + diag
[
diag

(
e−iKI,xx

′
)]

R
}
, (A.23)

EI
z =

√
µ0

ε0
eikzz

{
−cos θ

nI
diag

[
diag

(
eiKI,xx

′
)]

Γ0 +
1

εI,r
KI,xdiag

[
diag

(
e−iKI,xx

′
)]

R

}
=

1

εI,r

√
µ0

ε0
eikzz

{
−KI,xdiag

[
diag

(
eiKI,xx

′
)]

Γ0 + KI,xdiag
[
diag

(
e−iKI,xx

′
)]

R
}
,

(A.24)

EI
x =

√
µ0

ε0
eikzz

{
sin θ

nI
diag

[
diag

(
eiKI,xx

′
)]

Γ0 +
1

εI,r
Kzdiag

[
diag

(
e−iKI,xx

′
))

R

}
=

1

εI,r

√
µ0

ε0
eikzz

(
Kzdiag

[
diag

(
eiKI,xx

′
)]

Γ0 + Kzdiag
[
diag

(
e−iKI,xx

′
)]

R
)
.

(A.25)

where

kz = [kz,−N , · · · , kz,−N ] ∈ C1×(2N+1), (A.26)

Kz = diag(kz,n/k0) ∈ C(2N+1)×(2N+1), (A.27)

KI,x = diag(kI,x,n/k0) ∈ C(2N+1)×(2N+1), (A.28)

Γ0 = [0, · · · , 0, 1, 0, · · · , 0]T ∈ C(2N+1)×1, (A.29)

R = [r−N , · · · , r0, · · · , rN ]T ∈ C(2N+1)×1. (A.30)

The truncated Fourier expansions of the fields in region II are given by

HII
y =

N∑
n=−N

tnei(kII,x,n(x−DL)+kz,nz), (A.31)

EII
z = −

N∑
n=−N

kII,x,ntn
k0εII,r

√
µ0

ε0
ei(kII,x,n(x−DL)+kz,nz), (A.32)

EII
x =

N∑
n=−N

kz,ntn
k0εII,r

√
µ0

ε0
ei(kII,x,n(x−DL)+kz,nz), (A.33)

or, in the matrix form,

HII
y = eikzzdiag

[
diag

(
eiKII,x(x′−k0DL)

)]
T, (A.34)

EII
z = − 1

εII,r

√
µ0

ε0
eikzzKII,xdiag

[
diag

(
eiKII,x(x′−k0DL)

)]
T, (A.35)

EII
x =

1

εII,r

√
µ0

ε0
eikzzKzdiag

[
diag

(
eiKII,x(x′−k0DL)

)]
T, (A.36)
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where

KII,x = diag(kI,x,n/k0) ∈ C(2N+1)×(2N+1), (A.37)

T = [t−N , · · · , t0, · · · , tN ]T ∈ C(2N+1)×1. (A.38)

Based on Eqs. A.7–A.9, the truncated Fourier expansions of the fields in the lth layer

of region G can be given by

HG
y,l(x, z) =

N∑
n=−N

fG
l,n(x′)eikz,nz, (A.39)

EG
z,l(x, z) = i

√
µ0

ε0

N∑
h=−N

[
N∑

n=−N
αl,h−n

∂fG
l,n(x′)

∂(x′)

]
eikz,hz, (A.40)

EG
x,l(x, z) =

1

k0

√
µ0

ε0

N∑
h=−N

[
N∑

n=−N
αl,h−nkz,nf

G
l,n(x)

]
eikz,hz, (A.41)

or, in the matrix form,

HG
y,l(x, z) = eikzzUl(x), (A.42)

EG
z,l(x, z) = i

√
µ0

ε0
eikzzSl(x), (A.43)

EG
x,l(x, z) =

√
µ0

ε0
eikzzΥlKzUl(x), (A.44)

where

Ul(x) =
[
fG
l,−N (x), · · · , fG

l,0(x), · · · , fG
l,N (x)

]T ∈ C(2N+1)×1, (A.45)

Sl(x) =
[
sG
l,−N (x), · · · , sG

l,0(x), · · · , sG
l,N (x)

]T ∈ C(2N+1)×1. (A.46)

Υl =

s
1

εl

{(N)

∈ C(2N+1)×(2N+1),

s
1

εl

{(N)

mn

= αl,m−n. (A.47)

Here, the relation between the tangential magnetic field and the tangential electric field

can be given by

Sl(x) = Υl
∂Ul(x)

∂(x′)
. (A.48)

The truncated form of Eq. A.19 is given by

d2fG
l,m(x′)

d(x′)2
=

N∑
j=−N

εl,m−j
kz,j
k0

(
N∑

n=−N
αl,j−n

kz,n
k0

fG
l,n(x′)

)
−

N∑
n=−N

εl,m−nf
G
l,n(x′), (A.49)
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or, in the matrix form,

[
d2Ul(x)/d(x′)2

]
= E [KzΥKz − I] Ul(x) = EGUl(x), (A.50)

where I is the unit matrix, G = KzΥKz − I, and

El = JεlK(N) ∈ C(2N+1)×(2N+1), JεlK(N)
mn = εl,m−n. (A.51)

A general solution of Eq. A.50 is given by

fG
l,m =

N∑
n=−N

wl,m,n

{
c+
l,nek0ql,n[x−Dl] + c−l,ne−k0ql,n[x−(Dl−dl)]

}
, (A.52)

sG
l,m =

N∑
j=−N

{
αl,m−j

N∑
n=−N

wl,j,n

{
ql,nc

+
l,nek0ql,n[x−Dl] − ql,nc−l,ne−k0ql,n[x−(Dl−dl)]

}}
,

(A.53)

or, in the matrix form,

Ul(x) = Wl

[
Y+
l (x)C+

l + Y−l (x)C−l
]
, (A.54)

Sl(x) = ΥlWlQl

[
Y+
l (x)C+

l −Yl
−(x)C−l

]
= Vl

[
Y+
l (x)C+

l −Y−l (x)C−l
]
, (A.55)

where, wl,m,n = (Wl)mn, with Wl ∈ C(2N+1)×(2N+1) is the eigenvector matrix of

the matrix EG, Ql = diag(ql,m) ∈ C(2N+1)×(2N+1), with ql,m being the square root

of the eigenvalues of the matrix EG, Y+
l (x) = diag(ek0ql,n[x−Dl]) ∈ C(2N+1)×(2N+1),

Y−l (x) = diag(e−k0ql,n[x−(Dl−dl)]) ∈ C(2N+1)×(2N+1), C+
l =

[
c+
l,−N , · · · , c

+
l,0, · · · , c

+
l,N

]T
∈

C(2N+1)×1, C−l =
[
c−l,−N , · · · , c

−
l,0, · · · , c

−
l,N

]T
∈ C(2N+1)×1, and Vl = ΥlWlQl.

Here, C+
l and C−l remain to be determined by matching the tangential electromagnetic

fields at the boundaries of the layer, which is treated as a single layer. Denoting

ZI,x = KI,x/εI,r = diag [kI,x,n/(εI,rk0)] ∈ C(2N+1)×(2N+1), (A.56)

ZII,x = KII,x/εII,r = diag [kII,x,n/(εII,rk0)] ∈ C(2N+1)×(2N+1), (A.57)

Xl = diag(e−k0ql,ndl) ∈ C(2N+1)×(2N+1), (A.58)

the boundary condition between the regions I and G, at x = 0, can be written as[
Γ0

iΓ0 cos θ/nI

]
+

[
I

−iZI,x

]
R =

[
W1X1 W1

V1X1 −V1

][
C+

1

C−1

]
. (A.59)
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The boundary condition between the lth layer and the (l + 1)th layer, at x = Dl, can

be written as [
Wl WlXl

Vl −VlXl

][
C+
l

C−l

]
=

[
Wl+1Xl+1 Wl+1

Vl+1Xl+1 −Vl+1

][
C+
l+1

C−l+1

]
. (A.60)

The boundary condition between the regions G and II, at x = DL, can be written as[
WL WLXL

VL −VLXL

][
C+
L

C−L

]
=

[
I

iZII,x

]
T. (A.61)

Combining Eqs. A.59, A.60 and A.61, we obtain

[
Γ0

iΓ0 cos θ/nI

]
+

[
I

−iZI,x

]
R =

L∏
l=1

[
WlXl Wl

VlXl −Vl

][
Wl WlXl

Vl −VlXl

]−1 [
I

iZII,x

]
T. (A.62)

Denoting

gL+1 = I, (A.63)

hL+1 = iZII,x, (A.64)

TL+1 = T, (A.65)

then, Eq. A.62 can be rewritten as

[
Γ0

iΓ0 cos θ/nI

]
+

[
I

−iZI,x

]
R =

L∏
l=1

[
WlXl Wl

VlXl −Vl

][
Wl WlXl

Vl −VlXl

]−1 [
gL+1

hL+1

]
TL+1.

(A.66)

The Lth factor in the right-hand side of Eq. A.66 can be rewritten as

[
WLXL WL

VLXL −VL

][
WL WLXL

VL −VLXL

]−1 [
gL+1

hL+1

]
TL+1

=

[
WLXL WL

VLXL −VL

][
I 0

0 XL

]−1 [
WL WL

VL −VL

]−1 [
gL+1

hL+1

]
TL+1.

(A.67)

Introducing matrices

[
aL

bL

]
=

[
WL WL

VL −VL

]−1 [
gL+1

hL+1

]
, (A.68)
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and TL+1 = b−1
L XLTL, the Lth factor in the right-hand side of Eq. A.66 reduces to

[
WLXL WL

VLXL −VL

][
I 0

0 XL

]−1 [
aL

bL

]
TL+1

=

[
WL

(
XLaLb−1

L XL + I
)

VL

(
XLaLb−1

L XL − I
) ]TL

=

[
gL

hL

]
TL,

(A.69)

where [
gL

hL

]
=

[
WL

(
XLaLb−1

L XL + I
)

VL

(
XLaLb−1

L XL − I
) ] . (A.70)

We can then rewritten Eq. A.66 as

[
Γ0

iΓ0 cos θ/nI

]
+

[
I

−iZI,x

]
R =

L−1∏
l=1

[
WlXl Wl

VlXl −Vl

][
Wl WlXl

Vl −VlXl

]−1 [
gL

hL

]
TL. (A.71)

Repeating the process [Eqs. A.67–A.73] for the other layers (l = L−1, . . . , 1), we obtain

the metrics Tl, al, bl, gl, hl, equations[
Γ0

iΓ0 cos θ/nI

]
+

[
I

−iZI,x

]
R =

[
g1

h1

]
T1, (A.72)

and [
gl

hl

]
Tl =

[
WlXl Wl

VlXl −Vl

][
Wl WlXl

Vl −VlXl

]−1 [
gl+1

hl+1

]
Tl+1 (A.73)

=

L∏
d=l

[
WlXl Wl

VlXl −Vl

][
Wl WlXl

Vl −VlXl

]−1 [
gL+1

hL+1

]
TL+1. (A.74)

The solution for R and T1 can be given by

R = g1 [iZI,xg1 + h1]−1

[
iZI,x + i

cos θ

nI

]
Γ0 − Γ0, (A.75)

T1 = [iZI,xg1 + h1]−1

[
iZI,x + i

cos θ

nI

]
Γ0. (A.76)

The matrix of transmission coefficients T can be given by

T = TL+1 = b−1
L XL · · ·b−1

1 X1T1. (A.77)
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Based on Eq. A.60, and A.69, the matrices C+
l and C−l can be expressed as

[
C+
l

C−l

]
=

[
Wl WlXl

Vl −VlXl

]−1 [
gl+1

hl+1

]
Tl+1

=

[
I 0

0 Xl

]−1 [
Wl Wl

Vl −Vl

]−1 [
gl+1

hl+1

]
Tl+1

=

[
I 0

0 Xl

]−1 [
al

bl

]
Tl+1

=

[
alb
−1
l Xl

I

]
Tl.

(A.78)

As a result, all the fields can be calculated with Eqs. A.42– A.44, A.54–A.55.

In the simulation of single-grating structure, the electrons interact with the fields in the

region I or II. In the region I, the amplitudes of the spatial harmonics can be given in

matrix form

HI
y(x) = diag

[
diag

(
e−iKI,xx

′
)]

R, (A.79)

EI
z(x) =

1

εI,r

√
µ0

ε0
KI,xdiag

[
diag

(
e−iKI,xx

′
)]

R, (A.80)

EI
x(x) =

1

εI,r

√
µ0

ε0
Kzdiag

[
diag

(
e−iKI,xx

′
)]

R. (A.81)

In region II, the amplitudes of the spatial harmonics can be given in matrix form

HII
y (x) = diag

[
diag

(
eiKII,x(x′−k0D)

)]
T, (A.82)

EII
z (x) = − 1

εII,r

√
µ0

ε0
KII,xdiag

[
diag

(
eiKII,x(x′−k0D)

)]
T, (A.83)

EII
x (x) =

1

εII,r

√
µ0

ε0
Kzdiag

[
diag

(
eiKII,x(x′−k0D)

)]
T. (A.84)

In the simulation of dual-grating structure, the electrons interact with the fields in the

vacuum channel. Assuming the vacuum channel is the sth layer, the electric amplitudes

of the spatial harmonics in the vacuum channel can be given in the form

HG
y,s(x) = Us(x) = Ws

[
Y+
s (x)C+

s + Y−s (x)C−s
]
, (A.85)

EG
z,s(x) = i

√
µ0

ε0

1

εs(z)
WsQs

[
Y+
s (x)C+

s + Y−s (x)C−s
]
, (A.86)

EG
x,s(x) =

√
µ0

ε0

1

εs(z)
KzWs

[
Y+
s (x)C+

s + Y−s (x)C−s
]
. (A.87)
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In Fig. A.2, we compare the accelerating gradient (the amplitude of the first diffraction

order) at a distance of 50 nm, calculated by RCWA method and CST. It shows that the

results obtained with RCWA method are in agreement with the results obtained with

CST.

Figure A.2: s− b maps of the accelerating gradient obtained from CST (a) and RCWA (b). s
is the grating pillar height, b the pillar width, Λ the grating period, and λ the laser wavelength.
Figure (a) is identical to Fig. 2.7.
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