博士論文

グアニンヌクレオチド交換因子 SmgGDS による

RhoA 認識機構の構造基盤

清水 光

目次

表目次						
略語一覧						
1. 背景						
1.1. 低分	▶子量 G タンパク質について					
1.2. 低分	▶子量 G タンパク質のドメイン構成と構造9					
1.3. Rho	GEF の分類と作用機序11					
1.4. Smg	gGDS について13					
1.5. 本研	F究の目的15					
2. 方法						
2.1. Smg	gGDS-558 単体の結晶構造解析16					
2.1.1.	SmgGDS の発現系 (pGEX6P-1)16					
2.1.2.	SmgGDS の発現系 (pET-44a (+))					
2.1.3.	結晶化初期スクリーニング20					
2.1.4.	結晶化条件の最適化					
2.1.5.	X 線結晶構造解析21					
2.1.6.	MODELLER を用いた SmgGDS-607 ホモロジーモデルの作成 22					
2.2. Smg	gGDS の RhoA に対する機能解析 23					
2.2.1.	RhoA の発現系					
2.2.2.	ファルネシルトランスフェラーゼ (FTase) の発現系					
2.2.3.	<i>In vitro</i> における RhoA のファルネシル化					
2.2.4.	X線小角散乱と多波長光散乱による溶液構造解析					
2.2.5.	ゲル濾過クロマトグラフィーによる結合試験					
2.2.6.	表面プラズモン共鳴による相互作用解析 29					
2.2.7.	等温滴定型カロリメトリによる相互作用解析					
2.2.8.	GEF 活性測定試験 30					
2.2.9.	プルダウンアッセイ					
2.3. Smg	gGDS-558/ファルネシル化 RhoA 複合体の結晶構造解析					
2.3.1.	結晶化初期スクリーニング					
2.3.2.	結晶化条件の最適化					
2.3.3.	X 線結晶構造解析					
2.3.4.	AUTODOCK4 を用いたドッキングシミュレーション					
3. 結果						
3.1. Smg	gGDS-558 単体の結晶構造解析					
3.1.1.	SmgGDS 各アイソフォームの精製					
3.1.2.	結晶化					

	3.1	.3.	構造決定	. 41
	3.1	.4.	全体構造	. 43
	3.2.	Sm	gGDS の RhoA に対する相互作用・機能解析	. 47
	3.2	2.1.	RhoA の精製	. 47
	3.2	2.2.	FTase の精製	. 49
	3.2	2.3.	ファルネシル化 RhoA の調製	. 51
	3.2	2.4.	SPR による解離定数の算出	. 53
3.2.5.		2.5.	ITC による RhoA HVR ペプチド結合試験	. 56
	3.2	2.6.	X線小角散乱と多波長光散乱による溶液構造解析	. 58
	3.2	2.7.	SmgGDS 正電荷領域への変異体解析	. 63
	3.2	2.8.	SmgGDS-558の全長と 61-558 での GEF 活性比較	. 70
	3.2	2.9.	ファルネシル化 RhoA と SmgGDS との結合試験	. 72
	3.3.	Sm	gGDS-558/ファルネシル化 RhoA 複合体の結晶構造解析および変異体解析	. 74
	3.3	8.1.	結晶化	. 74
	3.3	8.2.	構造決定	. 77
	3.3	8.3.	全体構造	. 79
	3.3	8.4.	RhoA switch 領域の構造変化と固有の GEF メカニズム	. 85
	3.3	8.5.	RhoA への変異体解析	. 89
	3.3	8.6.	SmgGDS-558の cryptic pocket と変異体解析	. 94
	3.3	8.7.	SmgGDS-607 のホモロジーモデルと変異体解析	. 98
4.	考	察		102
	4.1.	Sm	gGDS による RhoA 認識機構	102
	4.2.	Sm	gGDSのGEFとしての特異性	107
	4.3.	Sm	gGDS と他ファミリーGEF との比較	109
	4.4.	Sm	gGDS と ARM タンパク質の比較	114
	4.5.	Sm	gGDS の生理学的役割についての考察	118
5.	付約	録		121
	5.1.	昆马	虫細胞発現系によるイソプレニル化 RhoA の調製・結晶化の検討	121
	5.1	.1.	方法	121
	5.1	.2.	結果	125
6.	参	考文蘭	鈬	129
7.	謝	辞		135

図目次

义	1	Ras スーパーファミリーの系統樹	8
义	2	低分子量Gタンパク質のドメインと構造	. 10
义	3	RhoGEF と低分子量 G タンパク質の複合体構造	. 12
図	4	SmgGDS のドメイン図	. 14
図	5	FTase 発現コンストラクト模式図	. 26
図	6	SmgGDS 全長体の精製過程	. 35
义	7	SmgGDS-558 (61-558) の精製過程	. 36
図	8	SmgGDS-607 (77-558) の精製過程	. 37
図	9	SmgGDS-558 (61-558) 単体結晶	. 39
図	10	SmgGDS のドメイン構成と SmgGDS-558 (61-558) 単体結晶構造	. 45
义	11	SmgGDS-558 (61-558) 単体結晶構造静電ポテンシャル図	. 46
図	12	RhoAの精製過程	. 48
図	13	FTase の精製過程	. 50
図	14	ファルネシル化 RhoA 調製後のゲル濾過カラムクロマトグラフィー	. 52
図	15	SPR 測定結果	. 54
図	16	ITC 測定結果	. 57
図	17	散乱曲線の比較	. 60
図	18	ダミーアトムモデルと SmgGDS-558 (61-558) 単体結晶構造の比較	. 61
図	19	SmgGDS-558/未修飾 RhoA の SEC-MALS プロファイル	. 62
図	20	ゲル濾過カラムクロマトグラフィーによる結合試験	. 64
図	21	GEF 活性試験プロファイル	. 66
図	22	GEF 活性試験解析結果	. 67
汊	23	ゲル濾過カラムクロマトグラフィーによる競合阻害試験	. 69

図 24	SmgGDS-558の全長と 61-558の GEF 活性比較	71
図 25	ファルネシル化 RhoA と SmgGDS との結合能試験	73
図 26	SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体結晶	75
図 27	複合体結晶構造における非対称単位中の4つのヘテロダイマー	81
図 28	SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体の全体構造	82
図 29	複合体結晶中での SmgGDS-558 表面図	83
図 30	Switch II 結合部位周辺の電子密度ステレオ図	84
図 31	RhoAの構造比較と SmgGDS との結合部位	86
図 32	SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体の相互作用	87
図 33	GEF/低分子量 G タンパク質複合体の構造比較	88
図 34	プルダウンアッセイと GEF 活性試験	91
図 35	GEF 活性試験プロファイル	92
図 36	RhoA の K187 周辺の拡大図	93
図 37	SmgGDS-558の cryptic pocket と変異体解析	95
図 38	ドッキングシミュレーション結果	96
図 39	GEF 活性試驗	97
図 40	SmgGDS-558 結晶構造と SmgGDS-607 ホモロジーモデルの比較	99
図 41	ITC 測定結果	100
図 42	SmgGDS による RhoA 認識機構	104
図 43	RhoA 単体と RhoGEF/低分子量 G タンパク質複合体の構造比較	105
図 44	イソプレニル基受容蛋白質/低分子量 G タンパク質複合体の構造比較	106
図 45	低分子量 G タンパク質のアミノ酸配列アライメント	108
図 46	SmgGDS と他ファミリーGEF の構造比較	113
図 47	SmgGDS と ARM タンパク質の構造比較	116

図 48	ARM タンパク質/リガンド複合体の構造比較	.117
図 49	SmgGDS による低分子量 G タンパク質の翻訳後修飾制御モデル	120
図 50	昆虫細胞用各タンパク質発現コンストラクト	124
図 51	昆虫細胞におけるイソプレニル基転移酵素の発現確認	126
図 52	昆虫細胞発現系におけるイソプレニル化 RhoA の精製過程	127
図 53	SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体結晶	. 128

表目次

表 1	SmgGDS の発現領域一覧
表 2	SmgGDS の精製・単体結晶化状況一覧 40
表 3	SmgGDS-558 (61-558) 単体結晶の回折強度データセット収集と構造精密化の
糸	充計値
表 4	SPR により算出された結合パラメータ55
表 5	SAXSの測定条件および測定・解析結果の統計値59
表 6	SmgGDSの精製・SmgGDS/ファルネシル化 RhoA 複合体結晶化状況一覧.76
表 7	SmgGDS-558 (77-558) /RhoA 複合体結晶の回折強度データセット収集と構造
米	青密化の統計値
表 8	ITC 測定結果 101
表 9	GEF/低分子量 G タンパク質複合体一覧110

略語一覧

A_{260}	absorbance at 260 nm
A280	absorbance at 280 nm
ARM	armadillo-repeat motif
BODYPY	boron-dipyrromethene
CBB	cooomassie brilliant blue
CV	column volume
DTT	1,4-dithiothreitol
EDTA	ethylenediaminetetraacetic acid
FPP	farnesyl pyrophosphate
GDP	guanosine diphosphate
GTP	guanosine triphosphate
GMPPNP	5'-Guanylyl imidodiphosphate
HEPES	4-(2-hydroxyethyl) -1-piperazineethanesulfonic acid
IPTG	isopropyl-6-D-thiogalactopyranoside
ITC	isothermal titration calorimetry
$K_{ m D}$	dissociation constant
MALS	multi angle light scattering
MES	2- (N-mopholino) ethanesulfonic acid
OD600	optical density at 600 nm
PAGE	poly-acrylamide gel electrophoresis
PCR	polymerase chain reaction
PEG	polyethylene glycol
PMSF	phenylmethylsulfonyl fluoride
Rg	radius of gyration
r.m.s.d.	root mean square deviation
Rho	ras homolog gene family
SAXS	small angle X-ray scattering
SDS	sodium dodecyl sulfate
SEC	size exclusion chromatography
SmgGDS	small G protein guanine-nucleotide dissociation stimulator
SPR	surface plasmon resonance
Tris	tris (hydroxymethyl) - aminomethane

1. 背景

1.1. 低分子量 G タンパク質について

低分子量 G タンパク質は GTP 結合型の活性型と GDP 結合型の不活性型とを行き来する ことで分子スイッチとして働く分子群である。1980 年に初めて同定された Ha-Ras と Ki-Ras は細胞増殖の制御を担い多くのヒト腫瘍において変異が見つかることから、癌にお けるもっとも重要な創薬標的として位置づけられてきた¹。本研究で対象とした Rho は Ras のホモログとして 1985 年に発見され、細胞骨格形成の制御を担う¹。今日では 150 種類以 上の低分子量 G タンパク質が同定されており²、構造上の特徴から Ras, Rho, Ran, Arf, Rab の 5 つに、三量体 G 蛋白質 a サブユニット (Ga) も含めれば 6 つに分類され、Ras スーパ ーファミリーと呼ばれる (図 1)。一般に、低分子量 G タンパク質の固有の活性は低く、グ アニンヌクレオチド交換因子 (GEF) や GTPase 活性化タンパク質 (GAP) によって調節 されている。

図 1 Ras スーパーファミリーの系統樹

赤、橙、緑、紫、青の網掛けは各々Ras、Rho、Arf、Rab、Ga を示した。赤色の矢印で Ran の位置を示した。本系統樹は Colicelli, 2004³を参考に MEGA を用いて作成した ⁴。

1.2. 低分子量Gタンパク質のドメイン構成と構造

アミノ酸配列の比較によると低分子量 G タンパク質は基本的な構造を保存しており、 30-55%の相同性を有している 5。低分子量 G タンパク質は GTP の加水分解を担う G-domain と分子毎に配列の多様性が見られる C 末端の Hypervariable region (HVR) から 成る (図 2A)。

全ての低分子量 G タンパク質の G-domain はコンセンサスアミノ酸配列を有しており¹、 これらが GDP と GTP に対する特異的な結合と GTP 加水分解活性に重要である。4 か所あ るコンセンサス配列と活性領域は合わせて G-box と呼ばれ、そのうち N 末端側 3 つの周辺 領域はそれぞれ P-loop、Switch I、Switch II とも呼ばれている(図 2A)。3 つのモチーフ (P-loop、Switch I、Switch II) は協調してグアニンヌクレオチドと Mg イオンの認識を行 う (図 2B)。

G-domain が低分子量 G タンパク質間で比較的よく保存されているのに対し、HVR は多 様性に富んだ領域である。多くの低分子量 G タンパク質は HVR の末尾の 4 残基すなわち C 末端の 4 残基に CaaX モチーフを持っており、この部分は翻訳後脂質修飾を受けるシステ イン残基がある。CaaX モチーフへの翻訳後修飾はシステイン残基のイソプレニル化、末端 3 残基の切断、末端カルボキシ基のメチル化の三段階で進行する 6。イソプレニル化は 2 種 類あり、炭素数 20 のゲラニルゲラニル基か炭素数 15 のファルネシル基が付加される (図 2C)。どちらの脂質が優位に付加されるかは C 末端残基 (CaaX の X 部分)のアミノ酸の種 類によって決まる。X = L では geranylgeranyltransferase (GGTase) によってゲラニルゲ ラニル基が、X = A では farnesyltransferase (FTase) によってファルネシル基が付加され る。脂質の付加は細胞質で起こるのに対し、残りの二段階の修飾は小胞体膜上にある酵素 (それぞれ Ras converting enzyme1 (RCE1)、 isoprenylcysteine carboxyl methyltransferase (ICMT))によって行われる。これらの修飾は細胞膜への局在に重要で ある。

9

図2 低分子量Gタンパク質のドメインと構造

(A) 低分子量 G タンパク質のドメイン構成。(B) GDP 結合型 RhoA の結晶構造 (PDB ID:
 1FTN)。(C) CaaX モチーフへのイソプレニル化に必要な基質。

1.3. RhoGEF の分類と作用機序

GEF のうち Rho に作用するものは RhoGEF と呼ばれる。RhoGEF は活性ドメインの違 いにより、Dbl ファミリータンパク質、Dock ファミリータンパク質、SmgGDS の 3 つの タイプが報告されている。ヒトにおいて 69 種類の Dbl ファミリーと 11 種類の Dock ファ ミリーに属するタンパク質が同定されており、SmgGDS は 1 種類しか知られていない 7。 前者 2 つのタイプの RhoGEF は Rho との複合体の結晶構造が明らかになっており、詳細な GEF メカニズムが解明されている。Dbl ファミリータンパク質は典型的な RhoGEF である とされ、その活性ドメインである DH ドメインは Rho の Switch 領域と相互作用すること で Switch 領域の再配置を行い、ヌクレオチド結合部位を壊すとともに Mg イオンの結合部 位を直接的に障害する 7。一方、Dock ファミリータンパク質は非典型 RhoGEF とされ、活 性ドメインである DHR2 ドメインは Val 残基を直接的に Rho の Mg イオン結合部位へと挿 入することで立体障害と静電反発により Mg イオンを脱離させ、結果としてグアニンヌクレ オチドの交換を促進する ^{8.9}。SmgGDS については構造解析がなされておらず、構造生物学 的知見は得られていなかった。

図 3 RhoGEF と低分子量Gタンパク質の複合体構造

Dbs/Cdc42 複合体(PDB ID: 1KZ7)(左) と Dock9/Cdc42 複合体(PDB ID: 2WM9)(右)

1.4. SmgGDS について

本研究で対象とした SmgGDS は Ras, Rho ファミリーにおける多くの低分子量 G タンパ ク質の GEF として同定された ^{10,11}。 SmgGDS は RhoA, Rac1, K-Ras4B, Rap1A, Di-Ras2 などの HVR に polybasic region (PBR) と呼ばれる塩基性残基を多く含む領域をもつ多様 な低分子量 G タンパク質と結合できるという特徴がある ¹²⁻¹⁴。近年の研究で SmgGDS は RhoA, RhoC に特異的な GEF であると改められた ¹⁵。GEF としては働くことのない低分子 量 G タンパク質に対しても広範な結合能を有することから SmgGDS は GEF 以外にも低分 子量 G タンパク質の輸送・局在制御やシャペロンとしての役割があるのではないかと考え られている ¹⁶。 SmgGDS は他の RhoGEF と異なり分子全体を通して Armadillo-repeat motif (ARM) から成ると予測されため、新たな GEF 活性発揮機序を持つと想定される。 SmgGDS には ARM 数の異なる 2 つのスプライスバリアントアイソフォームがあり、それ ぞれ SmgGDS-558、SmgGDS-607 と呼ばれる (図 4)。 SmgGDS-558 は脂質修飾をされ た RhoA を SmgGDS-607 は脂質末修飾の RhoA を強く認識すると報告されており、これら 分子は細胞内で異なる役割を持つ可能性がある ¹⁶⁻¹⁸。

SmgGDS は非小細胞性肺癌¹⁹、前立腺癌²⁰、乳癌^{21,22}、膵臓癌²²において発現の増加が 認められている。SmgGDS が過剰発現している乳癌患者は予後が悪く、SmgGDS-558 をノ ックダウンした乳癌の細胞では増殖能の低下が見られたという報告がある²¹。

SmgGDS は Rac1 の局在制御も担っている。最近の研究でスタチンにより SmgGDS の 発現が上昇することで Rac1 の核への局在とプロテアソームによる分解が促進されると分 かった²³。続く研究では SmgGDS はスタチンによる高脂血症改善作用の決定的な因子であ ると報告されている^{24 25 26}。

13

図 4 SmgGDS のドメイン図

配列から予測される SmgGDS 両アイソフォームのドメイン図。

1.5. 本研究の目的

RhoGEF の 3 つのタイプのうち Dbl ファミリー、Dock ファミリータンパク質の複合体 構造は明らかになっている一方で、SmgGDS の構造解析はなされてこなかった。SmgGDS は ARM のみで構成され明確な活性ドメインを持たないこと、RhoA の脂質修飾を認識する ということから他の RhoGEF とは異質である。また、癌や高脂血症との関わりが報告され ていることから、薬科学の面からも興味深い分子である。本研究では、SmgGDS による低 分子量 G タンパク質認識機構を構造生物学の観点から解明すべく、SmgGDS の単体と RhoA との複合体の構造解析・相互作用解析に取り組んだ。2 章、3 章、4 章でそれぞれ方 法、結果、考察を記した。この内容は、Shimizu *et al. JBC*., 2017 ²⁷ および Shimizu *et al. PNAS*., 2018 ²⁸に記載した。

2. 方法

本研究で使用したタンパク質は全てヒト由来のものである。

2.1. SmgGDS-558 単体の結晶構造解析

2.1.1. SmgGDS の発現系 (pGEX6P-1)

大腸菌発現用ベクターpGEX6P-1 (GE Healthcare)の BamHI, EcoRI サイトに SmgGDS の各遺伝子を組み込んだものを使用した。作成した発現領域を表 1 にまとめた。 また、各点変異体作成は PrimeSTAR Mutagenesis Basal Kit (TaKaRa)の方法に従って行 った。

以下に発現と精製方法を示した。作成したベクターを用いて BL21 (DE3) RIPL 大腸菌株 を形質転換した。1 L あたり polypeptone 10 g, yeast extract 5 g, NaCl 10 g, アンピシリン ナトリウム 100 mg, クロラムフェニコール 30 mg を添加した液体培地に、同培地にてプ レカルチャーした形質転換済み BL21 (DE3) RIPL を加えた。37 ℃で撹拌培養し、OD600 = 0.4-0.8 となった時点で IPTG を 0.1-1 mM となるように加え、18℃で一晩培養した。

菌体を遠沈し破砕用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT, 1 mM PMSF) に懸濁したのち超音波破砕した。破砕液を4 $^{\circ}$ C, 20000 rpm, 20 min 遠心しその上 清を Glutathione Sepharose 4B 樹脂 (GE Healthcare) へ吸着させた。洗浄用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT) を用いて 10 CV 以上洗浄した後、10 mL の樹脂に対して 10-30 mL の洗浄用緩衝液と GST を融合させたプレシジョンプロテアーゼ を添加し、4 C で一晩タグを切断し目的蛋白質を樹脂から溶出させ上清を回収した。次に陰 イオン交換カラムを用いて精製を行った。A 緩衝液 (20 mM Tris-HCl pH 7.5, 1 mM DTT) を用いて上清を 2 倍に希釈し、5 mL Hitrap Q (GE Healthcare) へ吸着させた。B 緩衝液 (20 mM Tris-HCl pH 7.5, 1 M NaCl, 1 mM DTT) を 10 CV の範囲で 0 %-50 % B 緩衝液と なるように勾配をかけ SmgGDS を溶出させた。溶出ピークが複数ある場合には最初のピー

クを回収し、状況に応じて再度陰イオン交換カラムを用いて精製を行った。最後にSuperdex 200 pg (GE Healthcare) をもちいたゲル濾過カラムクロマトグラフィーを行い、溶出画分 をアミコンウルトラ (Merck) で濃縮して最終標品とした。ゲル濾過の緩衝液には HEPES 緩衝液 (20 mM HEPES-KOH pH 7.3, 110 mM CH₃COOK, 1 mM DTT) あるいは Tris 緩 衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT) を用いた。また状況に応じて イオン交換あるいはゲル濾過の過程を省略し、最終標品とした。

次に位相決定のための SmgGDS-558 (61-558) セレノメチオニン誘導体試料作製につい て記す。作成したベクターを BL21(DE3) RIPL 大腸菌株を形質転換した。大腸菌は最小培 地 (1 L あたり 7 g Na₂HPO₄, 3 g KH₂PO₄, 0.5 g NaCl, 0.4% (w/v) glucose, 20 mg Thiamine, 20 mg Biotin, 20 mg Adenosine, 20 mg Guanosine, 20 mg Cytidine, 20 mg Thymidine, 3 μ M FeCl₃, 1 mM MgSO₄, 50 μ M MnCl₂, 1 g NH₄Cl, 100 μ M CaCl₂を含む) にて培養した。OD600 = 0.3 の時、培地 1 L あたり 100 mg Lys, 100 mg Phe, 100 mg Thr, 50 mg Ile, 50 mg Leu, 50 mg Val, and 60 mg SeMet を添加した。OD600 = 0.7 となった時 点で IPTG を 0.25 mM となるように加え、18℃で一晩培養した。タンパク質の精製方法は 野生型 SmgGDS と同様であるので割愛する。

2.1.2. SmgGDS の発現系 (pET-44a (+))

大腸菌発現用ベクターpET-44a (+) (Novagen)の BamHI, EcoRI サイトに SmgGDS の各 遺伝子を組み込んだものを使用した。N 末端側に His6 タグおよびプレシジョンプロテアー ゼ認識配列を付加し His6 タグ融合タンパク質を発現させた。

以下に発現と精製方法を示す。作成したベクターを用いて BL21(DE3) 大腸菌株を形質転換した。1L あたり polypeptone 10 g, yeast extract 5 g, NaCl 10 g, アンピシリンナトリウム 100 mg を添加した液体培地に、同培地にてプレカルチャーした形質転換済み BL21 (DE3) を加えた。37 ℃で撹拌培養し、OD600 = 0.4-0.8 となった時点で IPTG を 0.1 mM となるように加え、18℃で一晩培養した。

菌体を遠沈し破砕用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT, 1 mM PMSF, 20% (w/v) glycerol) に懸濁したのち超音波破砕した。破砕液を 4 ℃, 20000 rpm, 20 min 遠心しその上清を cOmplete His-Tag Purification Resin (Merck) へ吸着させた。洗浄 用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT, 20% Glycerol, 20 mM Imidazole) を用いて 10 CV 以上洗浄した後、溶出用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT, 20% (w/v) glycerol, 40-160 mM Imidazole) で溶出させた。GST を 融合させたプレシジョンプロテアーゼを添加し、4℃で一晩タグを切断させた。Glutathione Sepharose 4B 樹脂 (GE Healthcare) を素通りさせプレシジョンプロテアーゼを除去した。 試料をアミコンウルトラ (Merck) で濃縮し1度目のSuperdex 200 pg (GE Healthcare) を 用いたゲル濾過カラムクロマトグラフィーによりモノマー画分を分取し、濃縮後 2 度目の ゲル濾過カラムクロマトグラフィーでモノマー位置にシングルピークを得た。溶出画分を 濃縮して最終標品とした。ゲル濾過の緩衝液には Tris 緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT) を用いた。

18

Na	5、18月度 発現領域		発理ベクター	Na	かいの方質	発現領域	発明ベカター
INO.	ランハジ員	N C	光現ハウター	INO.	ランハシ頁	N C	光現ハウター
1	SmgGDS-558	1 558	pGEX6P-1	63	SmgGDS-607	1 607	pGEX6P-1
2	SmgGDS-558	36 558	pGEX6P-1	64	SmgGDS-607	11 607	pGEX6P-1
3	SmgGDS-558	48 558	pGEX6P-1	65	SmgGDS-607	21 607	pGEX6P-1
4	SmgGDS-558	51 558	pGEX6P-1	66	SmgGDS-607	31 607	pGEX6P-1
5	SmgGDS-558	53 558	pGEX6P-1	67	SmgGDS-607	36 607	pGEX6P-1
6	SmgGDS-558	55 558	pGEX6P-1	68	SmgGDS-607	41 607	pGEX6P-1
7	SmgGDS-558	57 558	pGEX6P-1	69	SmgGDS-607	48 607	pGEX6P-1
8	SmgGDS-558	59 558	pGEX6P-1	70	SmgGDS-607	51 607	pGEX6P-1
9	SmgGDS-558	61 558	pGEX6P-1	71	SmgGDS-607	61 607	pGEX6P-1
10	SmgGDS-558	62 558	pGEX6P-1	72	SmgGDS-607	71 607	pGEX6P-1
11	SmgGDS-558	63 558	pGEX6P-1	73	SmgGDS-607	77 607	pGEX6P-1
12	SmgGDS-558	64 558	pGEX6P-1	74	SmgGDS-607	346 607	pGEX6P-1
13	SmgGDS-558	65 558	pGEX6P-1	75	SmgGDS-607	1 590	pGEX6P-1
14	SmgGDS-558	66 558	pGEX6P-1	76	SmgGDS-607	1 580	pGEX6P-1
15	SmgGDS-558	67 558	pGEX6P-1	77	SmgGDS-607	1 570	pGEX6P-1
16	SmgGDS-558	68 558	pGEX6P-1	78	SmgGDS-607	77 563	pGEX6P-1
17	SmgGDS-558	69 558	pGEX6P-1	79	SmgGDS-607	1 560	pGEX6P-1
18	SmgGDS-558	70 558	pGEX6P-1	80	SmgGDS-607	1 550	pGEX6P-1
19	SmgGDS-558	71 558	pGEX6P-1	81	SmgGDS-607	1 540	pGEX6P-1
20	SmgGDS-558	72 558	pGEX6P-1	82	SmgGDS-607	1 530	pGEX6P-1
21	SmgGDS-558	73 558	pGEX6P-1	83	SmgGDS-607	1 519	pGEX6P-1
22	SmgGDS-558	74 558	pGEX6P-1	84	SmgGDS-607	1 519	pGEX6P-1
23	SmgGDS-558	75 558	pGEX6P-1	85	SmgGDS-607	11 519	pGEX6P-1
24	SmgGDS-558	76 558	pGEX6P-1	86	SmgGDS-607	36 519	pGEX6P-1
25	SmgGDS-558	77 558	pGEX6P-1	87	SmgGDS-607	48 519	pGEX6P-1
26	SmgGDS-558	78 558	pGEX6P-1	88	SmgGDS-607	61 519	pGEX6P-1
27	SmgGDS-558	79 558	pGEX6P-1	89	SmgGDS-607	77 519	pGEX6P-1
28	SmgGDS-558	80 558	pGEX6P-1	90	SmgGDS-607	346 519	pGEX6P-1
29	SmgGDS-558	81 558	pGEX6P-1	91	SmgGDS-607	1 501	pGEX6P-1
30	SmgGDS-558	82 558	pGEX6P-1	92	SmgGDS-607	1 458	pGEX6P-1
31	SmgGDS-558	83 558	pGEX6P-1	93	SmgGDS-607	1 368	pGEX6P-1
32	SmgGDS-558	84 558	pGEX6P-1	94	SmgGDS-607	1 345	pGEX6P-1
33	SmgGDS-558	85 558	pGEX6P-1	95	SmgGDS-607	1 254	pGEX6P-1
34	SmgGDS-558	122 558	pGEX6P-1	96	SmgGDS-607	18 254	pGEX6P-1
35	SmgGDS-558	77 557	pGEX6P-1	97	SmgGDS-607	40 254	pGEX6P-1
36	SmgGDS-558	77 556	pGEX6P-1	98	SmgGDS-607	49 254	pGEX6P-1
37	SmgGDS-558	77 555	pGEX6P-1	99	SmgGDS-607	61 254	pGEX6P-1
38	SmgGDS-558	77 554	pGEX6P-1	100	SmgGDS-607	1 212	pGEX6P-1
39	SmgGDS-558	1 551	pGEX6P-1	101	SmgGDS-607	40 212	pGEX6P-1
40	SmgGDS-558	71 551	pGEX6P-1	102	SmgGDS-607	49 212	pGEX6P-1
41	SmgGDS-558	1 541	pGEX6P-1	103	SmgGDS-607	61 607	pETHP
42	SmgGDS-558	71 541	pGEX6P-1	104	SmgGDS-607	77 607	pETHP
43	SmgGDS-558	1 531	pGEX6P-1	105	SmgGDS-607	77 563	pETHP
44	SmgGDS-558	71 531	pGEX6P-1				
45	SmgGDS-558	1 521	pGEX6P-1				
46	SmgGDS-558	71 521	pGEX6P-1				
47	SmgGDS-558	1 511	pGEX6P-1				
48	SmgGDS-558	71 511	pGEX6P-1				
49	SmgGDS-558	1 501	pGEX6P-1				
50	SmgGDS-558	71 501	pGEX6P-1				
51	SmgGDS-558	71 491	pGEX6P-1				
52	SmgGDS-558	1 481	pGEX6P-1				
53	SmgGDS-558	11 481	pGEX6P-1				
54	SmgGDS-558	21 481	pGEX6P-1				
55	SmgGDS-558	31 481	pGEX6P-1				
56	SmgGDS-558	41 481	pGEX6P-1				
57	SmgGDS-558	51 481	pGEX6P-1				
58	SmgGDS-558	61 481	pGEX6P-1				
59	SmgGDS-558	/1 481	pGEX6P-1				
60	SmgGDS-558	1 470	pGEX6P-1				
61	SmgGDS-558	77 470	pGEX6P-1				
62	SmgGDS-558	122 470	pGEX6P-1				

表 1 SmgGDSの発現領域一覧

2.1.3. 結晶化初期スクリーニング

得られた精製標品に対して Crystal Screen, Crystal Screen 2, SaltRX, PEG/Ion2, MembFac (Hampton Research), PEGs suite, PEGs II suite, JCSG+ suite, PACT suite, ProComplex suite, Cryos suite (QIAGEN), Morpeus (Molecular Dimensions), Wizard I, Wizard II (deCODE genetics) のスクリーニングキットを用い、結晶化初期スクリーニン グを実施した。スクリーニングを実施した発現系は 3.1.2 項、表 2 にまとめた。

2.1.4. 結晶化条件の最適化

結晶化初期スクリーニングで得た条件をもとに、蛋白質発現領域、蛋白質濃度、結晶化 温度、PEG 濃度、PEG の種類、塩濃度、混合比、pH の条件を検討し、結晶化条件の最適 化を行った。

最終的に終濃度 5 mg/mL の SmgGDS-558 (61-558) を結晶化試料とした。結晶化試料と リザーバー溶液 (100 mM HEPES-NaOH pH 8.1, 100 mM MgCl2, 20 % PEG3350) を 1: 1 の割合で混合し、10 ℃でシッティングドロップ蒸気拡散法により結晶化した。

2.1.5. X線結晶構造解析

X線回折データ収集は野生型についてはSPring-8 BL44XU (兵庫) で、セレノメチオニ ン誘導体については Photon Factory BL17A (茨城) にて行った。放射光施設での実験に先 立って結晶をクライオプロテクタント溶液 (100 mM Hepes pH8.1, 100 mM MgCl₂, 20% PEG3350, 30% (w/v) glycerol) にクイックソークし、Cryo loop (Hampton Research) ある いは Litho loop (Molecular Dimensions) で拾った結晶を液体窒素で凍結しドライシッパ ーに移し、低温に保ったまま放射光施設へ輸送した。野生型結晶の回折強度データは波長 0.9000 Å, 振動角 0.5°/image, 全振動角 360°, 露光時間 0.5 sec/image, 測定温度 100K で測 定した。また、強度データ収集に際し、結晶の放射線損傷を回避して回折強度データを収 集するために、結晶への X 線照射位置をデータセット収集中に徐々に移動させる Herical Scan 法で測定をおこなった。回折強度データの処理は HKL2000 29 で行った。セレノメチ オニン誘導体結晶については波長 0.9720 Å, 振動角 0.1°/image, 全振動角 360°, 露光時間 0.1 sec/image, 測定温度 100K で測定した。同一結晶から収集した 3 つのデータセットを XDS ³⁰によってマージして解析した。位相決定は SHARP/autoSHARP ³¹を用いた単波長 異常散乱法 (SAD 法) で行った。初期モデルを Buccaneer ^{32 33} で構築し分子置換は Molrep ³⁴を用いた。Refmac5 ³⁵で構造精密化し coot ³⁶によるモデル構築を行った。最終的な立体 構造の妥当性評価を PROCHECK 37 で実施し、最終構造を蛋白質構造データベース Protein Data Bank (PDB) に登録した (PDB ID: 5XGC) 。本論文における作図は PyMOL (http://www.pymol.org) または CueMol (http://www.cuemol.org) を用いた。

21

2.1.6. MODELLER を用いた SmgGDS-607 ホモロジーモデルの作成

MODELLER 9.18 ³⁸⁻⁴¹を用いて SmgGDS-607 のホモロジーモデルを作成した。モデル の作成には SmgGDS-558 (PDB ID: 5XGC) と Beta-catenin (PDB ID: 1TH1) をテンプレ ートとして用いた。BLAST ⁴²を用いて SmgGDS-607 (aa77-607) に SmgGDS-558 (aa 122-558) と Beta-catenin (aa 145-664) をアラインした。

また作成した SmgGDS-607 ホモロジーモデルと RhoA HVR ペプチドの相互作用界面を 予測するため、CABS-dock server (<u>http://biocomp.chem.uw.edu.pl/CABSdock</u>) ^{43,44} を用い た。

2.2. SmgGDS の RhoA に対する機能解析

本節では特に表記のない場合は全長の SmgGDS を用いた。

2.2.1. RhoA の発現系

大腸菌発現用ベクターpET44a (+) の BamHI, HindIII サイトに RhoA の遺伝子を組み 込んだものを使用した。N 末端側に His6 タグおよびプレシジョンプロテアーゼ認識配列を 付加し His6 タグ融合タンパク質を発現させた。また、各点変異体作成は PrimeSTAR Mutagenesis Basal Kit (TaKaRa) の方法に従って行った。

以下に発現と精製方法を示した。作成したベクターを用いて BL21 (DE3) RIPL 大腸菌 株を形質転換した。1 L あたり polypeptone 10 g, yeast extract 5 g, NaCl 10 g, アンピシリ ンナトリウム 100 mg を添加した液体培地に、同培地にてプレカルチャーした形質転換済 み BL21 (DE3) を加えた。37 ℃で撹拌培養し、OD600 = 0.4-0.8 となった時点で IPTG を 0.1 mM となるように加え、18℃で一晩培養した。

菌体を遠沈し破砕用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 1 mM PMSF, 20% (w/v) glycerol) に懸濁したのち超音波破砕した。破砕液を 4℃, 20000 rpm, 20 min 遠心しその上清を cOmplete His-Tag Purification Resin (Merck) へ 吸着させた。洗浄用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 20% Glycerol, 20 mM Imidazole) を用いて 10 CV 以上洗浄した後、溶出用緩衝液(20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂ 1 mM DTT, 20% (w/v) glycerol, 300 mM Imidazole) で溶出させた。溶出液を A緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 20% Glycerol) で希釈したのち、5 mL Histrap (GE Healthcare) へ吸着させた。B 緩衝液 (20 mM Tris-HCl pH 7.5, 1 M NaCl, 5 mM MgCl₂, 1 mM DTT) を 10 CV の範囲で 0 %-100 % B 緩衝液となるように勾配をかけ RhoA を溶出させた。溶出 ピークを回収し GST を融合させたプレシジョンプロテアーゼを添加し、4℃で一晩タグを 切断した。Glutathione Sepharose 4B 樹脂 (GE Healthcare) を素通りさせプレシジョン

プロテアーゼを除去した。試料をアミコンウルトラ(Merck)で濃縮し Superdex 75 pg (GE Healthcare)を用いたゲル濾過カラムクロマトグラフィーを行い、溶出画分を濃縮して最終標品とした。ゲル濾過の緩衝液には Tris 緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1 mM DTT)を用いた。

2.2.2. ファルネシルトランスフェラーゼ (FTase) の発現系

RhoA へのファルネシル基の付加を行うため、FTase の発現と精製を行った。FTase は 二つのサブユニットα(遺伝子名:FNTA)とβ(遺伝子名:FNTB)からなる。まず初め に Charles A らの方法 45 に従って大腸菌発現用ベクターpGEX6P-1 (GE Healthcare)の BamHI, EcoRI サイトに図 5 のような両サブユニットを共発現させるためこれらをタンデ ムに繋いだ DNA を挿入した。発現を確認するため、作成したベクターを用いて BL21 (DE3)、 BL21 (DE3) RIPL、Rosetta2 (DE3)、DH5α 各大腸菌株を形質転換し 1 L あたり polypeptone 10 g, yeast extract 5 g, NaCl 10 g, アンピシリンナトリウム 100 mg を添加 した液体培地 10 mL で液体培養した。OD600=0.4-0.8 となった時点で IPTG を 0.1 mM と なるように加え、18℃で一晩培養した。菌体を遠沈し破砕用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl) に懸濁したのち超音波破砕し、菌破砕液を SDS-PAGE により確認した 結果、BL21 (DE3) 、DH5a 各大腸菌株において 6 サブユニットの発現が見られたが、a サ ブユニットは発現していなかった。そこで作成したベクターから PrimeSTAR Mutagenesis Basal Kit (TaKaRa)の方法に従って GST タグとプレシジョンプロテアーゼ認識配列を欠 損させたものと、pGEX6P-1 (GE Healthcare) の BamHI, EcoRI サイトに図 5 のような FNTB cDNA と FNTA cDNA をタンデムに繋いだ DNA を挿入したものを新たに作成し、 以下の方法でそれぞれ培養と精製を行った。

以下に発現と精製方法を示した。作成した各ベクターを BL21 (DE3) 大腸菌株を形質転換した。1 L あたり polypeptone 10 g, yeast extract 5 g, NaCl 10 g, アンピシリンナトリウム 100 mg を添加した液体培地に、同培地にてプレカルチャーした形質転換済み BL21

(DE3) を加えた。37 ℃で撹拌培養し、OD600=0.4-0.5 となった時点で IPTG を 0.1 mM と なるように加え、18℃で一晩培養した。

それぞれの培養液を混合して菌体を遠沈し、破砕用緩衝液(5 mM Sodium phosphate pH 7.2, 75 mM NaCl, 5 mM DTT, 1 mM PMSF)に懸濁したのち超音波破砕した。破砕液 を 4 ℃, 20000 rpm, 20 min 遠心しその上清を Glutathione Sepharose 4B 樹脂(GE Healthcare)へ吸着させた。洗浄用緩衝液(5 mM Sodium phosphate pH 7.2, 75 mM NaCl, 5 mM DTT)を用いて 10 CV 以上洗浄した後、溶出用緩衝液(5 mM Sodium phosphate pH 7.2, 75 mM NaCl, 5 mM DTT, 20 mM Glutathione (reduced form))で溶出させた。溶出 液に GST を融合させたプレシジョンプロテアーゼを添加し、4℃で一晩タグを切断させた。 反応液を A 緩衝液(20 mM Tris-HCl pH 7.5, 10 μ M Zn(OAc)²)で平衡化した 5 mL Hitrap Q (GE Healthcare) へ吸着させた。 B 緩衝液(20 mM Tris-HCl pH 7.5, 1 M NaCl, 10 μ M Zn(OAc)²)を 10 CV の範囲で 0 %-50 % B 緩衝液となるように勾配をかけ FTase を溶出さ せ、溶出画分をアミコンウルトラ(Merck)で濃縮して最終標品とした。

図 5 FTase 発現コンストラクト模式図

FTase を発現させたコンストラクトの模式図を示した。赤色の文字は FTase のサブユニット間の linker 配列。赤色の下線部はリボソーム結合部位(RBS)を表す。また PrimeSTAR Mutagenesis Basal Kit (TaKaRa)の方法により欠損させ繋いだ箇所を点線で表した。

2.2.3. In vitro における RhoA のファルネシル化

2.2.1 項の方法に従って調製した RhoA (L193A) に対して *In vitro* におけるファルネシ ル化を行った。ファルネシル化は Kuhlmann らの方法 ⁴⁶に従って行い、均質にファルネシ ル化された RhoA を取得した ⁴⁶。以下ではその方法を示した。6 µM FTase, 200 µM RhoA (L193A), 300 µM Farnesyl pyrophosphate ammonium salt (SIGMA-ALDRICH) を反応 緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 10 µM Zn(OAc)₂) 中で混合し 30°C, 1 時間インキュベート後、氷上でさらに 1 時間反応させた。 反応は反応溶液を静置して行った。反応後沈殿物を遠沈して除去し、Superdex 75 pg (GE Healthcare) を用いたゲル濾過カラムクロマトグラフィーを行い、溶出画分を濃縮して最終 標品とした。ゲル濾過の緩衝液には Tris 緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1 mM DTT) を用いた。

以下ではこの項の方法でファルネシル化した RhoA (L193A) を単にファルネシル化 RhoA と表記する。また、脂質修飾をしていない RhoA (WT) を単に未修飾 RhoA と表記す る。

2.2.4. X線小角散乱と多波長光散乱による溶液構造解析

X線小角散乱 (small angle X-ray scattering, SAXS) による溶液構造の解析を行った。本 研究では SEC (size exclusion chromatography) -SAXS と呼ばれるゲル濾過カラムクロマ トグラフィーからの溶出画分を直接 SAXS により測定する方法を用いた。また SEC-SAXS に先立ってゲル濾過カラムクロマトグラフィーを連結した多波長光散乱 SEC-MALS (multi angle light scattering) により試料の分子量と溶出位置の見積もりを行った。 SmgGDS の両アイソフォームの単体と RhoA との複合体の SEC-SAXS データを Photon Factory BL10C (茨城) にて収集した。ゲル濾過カラムクロマトグラフィーには Superdex 200 increase (GE Healthcare) を用いた。ゲル濾過の緩衝液には Tris 緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM DTT) を用いた。SEC-SAXS では試 料がゲル濾過カラムから溶出し始めた時点で流速を 0.5 mL/min から 0.05 mL/min に変え て SAXS の測定を行った。溶出プロファイルは非放射位置で初期化された UV-Vis によって 算出した。タンパク質濃度は A₂₈₀ の値から計算した。SAXS におけるバックグラウンドデ ータ (緩衝液のみの散乱プロファイル)は試料溶出前の位置で収集した。10 枚のイメージ を収集しその平均をバックグラウンドデータとした。測定温度 293 K、検出器の距離 2.0 m で測定を行った。200 枚以上のイメージを 1 つの実験から収集し、そのすべてに対して測定 のデータ処理と慣性半径 (Radius of gyration, Rg)の計算を行った。これらの計算には SAngler 47を用いた。SAXS の測定条件は 3.2.6 項、表 5 にまとめた。

以下に溶液構造の決定方法を示した。溶液構造の解析にはゲル濾過カラムクロマトグラフィーにおけるトップピークに対する回折データを用いた。PRIMUS ⁴⁸を使いギニエプロットから慣性半径を求めた。また、GNOM ⁴⁹を使い P(r) 関数を求めた。P(r) 関数は分子径の最大値(Dmax)と DAMMIN ⁵⁰によりダミーアトムモデルを構築する際に用いた。それぞれの試料に対し DAMMIN を 10 回行い 10 個の独立したモデルを作成後、DAMAVER ⁵¹によりそれらを平均化したモデルを初期モデルとして二度目の DAMMIN により最終的な溶液構造を決定した。

2.2.5. ゲル濾過クロマトグラフィーによる結合試験

SmgGDS と RhoA との結合能を調べることを目的として、ゲル濾過クロマトグラフィー を行った。カラムは Superdex 200 Increase (CV = 3 mL, GE Healthcare) あるいは Superdex 200 pg (CV = 24 mL, GE Healthcare) を用い、それぞれ 1 nmol, 2.5 nmol のタ ンパク質試料を注入した。ゲル濾過の緩衝液には Tris 緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM DTT) を用いた。RhoA HVR ペプチド (¹⁸¹ARRGKKKSGCLVL¹⁹³, 数字は残基番号) を用いた競合結合実験では、1 mM のペプチ ドをタンパク質試料に添加した。

2.2.6. 表面プラズモン共鳴による相互作用解析

SmgGDS と RhoA との結合能を調べることを目的として、表面プラズモン共鳴(Surface plasmon resonance, SPR)による相互作用解析を行った。SPR アッセイには Biacore T100 instrument (GE Healthcare)を使用し、データ解析には T100 Evaluation software 2.0.4 (GE Healthcare)を用いた。およそ 500 R.U.の SmgGDS を CM5 センサーチップ上に固定 化し、single-cycle kinetics アッセイを緩衝液(10 mM HEPES-NaOH pH7.5, 150 mM NaCl, 5 mM EDTA, 0.005% Tween 20)、測定温度 25°Cにて行った。流速 30 μ L/min にて RhoA を 240 秒間注入し、その後 600 秒間緩衝液を注入することで解離させた。Single-cycle kinetics アッセイでは 5 点の濃度系列の RhoA をチップの再生なしに連続的に注入した。野 生型 RhoA の濃度系列は SmgGDS-558 に対し 10, 50, 100, 200, 400 nM、SmgGDS-607 に 対し 0.4, 2, 10, 50, 100 nM、またファルネシル化 RhoA (L193A)の濃度系列は SmgGDS-558 に対し 2, 10, 50, 100, 200 nM、SmgGDS-607 に対し 0.4, 2, 10, 50, 100 nM とした。1:1結合モデルを用いて結合速度定数(*k*on)、解離速度定数(*k*off)、解離定数(*K*o) を求めた。

2.2.7. 等温滴定型カロリメトリによる相互作用解析

SmgGDS と RhoA HVR ペプチドとの結合能を調べることを目的として、等温滴定型カ ロリメトリ (Isothermal Titration Calorimetry, ITC) による相互作用解析を行った。ITC 実験は MicroCal iTC200 (GE Healthcare) を用い、緩衝液 (20 mM HEPES-NaOH pH 7.5 and 150 mM NaCl)、測定温度 25℃にて行った。セル側に SmgGDS を入れ、RhoA HVR ペプチド (¹⁸¹ARRGKKKSGCLVL¹⁹³, 数字は残基番号)を滴定した。ペプチドを 0.4 µL, 1 回滴定後、2 µL, 18 回滴定した。

2.2.8. GEF 活性測定試験

本研究では GEF 活性測定試験として蛍光標識 GDP である BODIPY FL GDP (Thermo Fisher Scientific) を予め付加した RhoA に SmgGDS を添加することで RhoA から BODIPY FL GDP が解離することによる蛍光強度変化を測定した。以下にその方法を示した。

まず、大腸菌から調製した 10 μ M の未修飾またはファルネシル化 RhoA に対して 100 μ M BODIPY FL GDP を反応緩衝液 (20 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM EDTA, 1 mM DTT) 中で混合し 4°C, 一晩インキュベートした。反応液をゲル濾過カラムクロマト グラフィーあるいはアミコンウルトラ(Merck) による緩衝液の交換により過剰な BODIPY FL GDP を除去するとともに緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2.5 mM MgCl₂, 0.5 mM DTT) に置換した。ゲル濾過カラムクロマトグラフィーには Sephadex G-25 gel filtration column (GE Healthcare) あるいは Superdex 200 increase (GE Healthcare) を用いた。

GEF 活性試験は FLUOstar OPTIMA (BMG LABTECH) によって行った。測定条件は SmgGDS の正電荷領域の変異体解析をした際と、RhoA および SmgGDS-558 の隠された ポケットへの変異体解析の際で異なる。どちらの測定も 37℃で行い、各試料 n = 3 で測定 した。

SmgGDS の正電荷領域の変異体解析をした際には、終濃度 0.2 μ M の BODYPY-GDP を付加した RhoA、終濃度 0.02 μ M の SmgGDS を 220 μ L の緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2.5 mM MgCl₂, 0.5 mM DTT, 2.5 mM GDP)中で混合し反応を開始した。 励起波長 λ ex = 480 nm, 蛍光波長 λ em = 510 nm にて測定を行った。

RhoA および SmgGDS-558 の隠されたポケットへの変異体解析の際には、終濃度 0.2 μM の BODYPY-GDP を付加した RhoA、終濃度 0.04 μM の SmgGDS を 220 μL の緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 5 mM GMPPNP)中で混 合し反応を開始した。励起波長 hex = 485 nm, 蛍光波長 hem = 520 nm にて測定を行った。

結果は GraFit ver7 によって解析した。未修飾 RhoA に対しては全測定点を解析に用いた。ファルネシル化 RhoA では測定点のうち最初の 10 点を解析に用いた。SmgGDS 未添加時の GDP リリース速度をコントロールとして添加時の相対速度を算出した。

2.2.9. プルダウンアッセイ

GST-SmgGDS および His6-RhoA をプルダウンアッセイに用いた。この試験は EDTA 含 有緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM DTT) を用いて行 った。3 nmol の各タンパク質試料を 100 µL の cOmplete His-Tag Purification Resin (Merck) と混合し 4℃で 1 時間振盪した。EDTA 含有緩衝液で洗浄後、溶出用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM DTT, 300 mM Imidazole) で溶 出させた。溶出した試料を sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) により電気泳動し、各ゲルを Coomassie Brilliant Blue (CBB) 染色した。

2.3. SmgGDS-558/ファルネシル化 RhoA 複合体の結晶構造解析

2.3.1. 結晶化初期スクリーニング

2.1.1項で得られた SmgGDS-558 (77-558) と 2.2.3 項で得られたファルネシル化 RhoA をモル比1:1で混合し、SaltRX, PEG/Ion2, MembFac (Hampton Research), PEGs II suite, JCSG+ suite, PACT suite, ProComplex suite (QIAGEN), Morpeus (Molecular Dimensions) のスクリーニングキットを用い、結晶化初期スクリーニングを実施した。

2.3.2. 結晶化条件の最適化

結晶化初期スクリーニングで得た条件をもとに、蛋白質発現領域、蛋白質濃度、結晶化 温度、PEG 濃度、PEG の種類、混合比、pH、ミクロシーディング、マクロシーディング の条件を検討し、結晶化条件の最適化を行った。

最終的に終濃度 5 mg/mL の SmgGDS-558 (77-558) /ファルネシル化 RhoA を結晶化試料とした。結晶化試料とリザーバー溶液 (0.2 M sodium malonate pH 6.0, 20% (w/v) PEG3350 あるいは 0.2 M tri-potassium citrate, 20% (w/v) PEG3350) を 1:1 の割合で混合し、10 $^{\circ}$ でシッティングドロップ蒸気拡散法により結晶化した。結晶を再現良く大量に作成するため、析出した結晶を Seed Bead Kits (Hampton Research) を用いて粉砕したものをミクロシーディングの結晶核としてリザーバー液に少量混合し、結晶の再現に用いた。

2.3.3. X線結晶構造解析

X線回折データ収集は SPring-8 BL44XU (兵庫) にて行った。放射光施設での実験に 先立って結晶をクライオプロテクタント溶液(各リザーバー溶液に終濃度 30% (w/v) glycerol を添加したもの) にクイックソークし、Cryo loop (Hampton Research) あるいは Litho loop (Molecular Dimensions) で拾った結晶を液体窒素で凍結しドライシッパーに移

して低温に保ったまま放射光施設へ輸送した。結晶によって脂質基の電子密度図(脂質の占 有率)が異なったため、多数の回折像データから脂質基の占有率の高いデータの組み合わせ を選択した。その方法を以下に示した。回折データセットは KAMO 52 によって自動で処理 された。回折像チェックのためのデータも含め 246 個のファイルが KAMO に読み込まれ、 そのうち同一の格子定数を持つ126個に対して XDS ³⁰による指数付けと積分計算がなされ た。積分されたデータはデータ間の共相関に基づくヒエラルキークラスタリングにより組 分けされ、各クラスター内のデータは XSCALE によってスケーリングされマージされた。 またこの際に外れ値となる回折像は KAMO によって除去された。全てのクラスターに対し て脂質基の mFo-DFc マップが計算された。我々はこの中から脂質基の電子密度が最も良好 であった 2 つの結晶から得た 6 つのデータセットから成るクラスターを選択し、以降の精 密化に用いた。分子置換には Molrep ³⁴を用い、Refmac5 ³⁵と Phenix ⁵³で構造精密化し coot ³⁶によるモデル構築を行った。最終的な立体構造の妥当性評価をPROCHECK³⁷で実施し、 最終構造を蛋白質構造データベース Protein Data Bank (PDB) に登録した (PDB ID: 。全ての回折 像は 5ZHX) Zenodo data depository (<u>https://doi.org/10.5281/zenodo.1134209</u>) に登録した。本論文における作図は PyMOL (http://www.pymol.org) または CueMol (http://www.cuemol.org) を用いた。ファルネシル システインと相互作用のある残基の描画には LIGPLOT (+) 54 を用いた。

2.3.4. AUTODOCK4 を用いたドッキングシミュレーション

SmgGDS-558の隠されたポケットに対するゲラニルゲラニル化システインのドッキング シミュレーションを行った。シミュレーションには AUTODOCK4 ^{55,56}を用いた。 SmgGDS-558の complex II を剛体モデルとして用いた。シミュレーションは 1000 回実施 し、最も結合エネルギーの小さいものを結果とした。

3. 結果

3.1. SmgGDS-558 単体の結晶構造解析

3.1.1. SmgGDS 各アイソフォームの精製

本項における SmgGDS の pGEX6P-1 ベクターを用いた発現系についての結果は多くが 博士前期課程での研究結果に基づく。各発現領域における精製および結晶化結果の一覧は 表 2 にまとめた。ここでは全長体と結晶化初期スクリーニングに用いた SmgGDS-558 (61-558) の精製過程のみ示した (図 6, 7)。

SmgGDS 全長体では両アイソフォームともにイオン交換カラムクロマトグラフィーを行ったところシングルピークとして溶出した。また、ゲル濾過カラムクロマトグラフィーではモノマーの位置に溶出し、高純度単分散試料を調製できた。

SmgGDS-558(61-558)をはじめとする SmgGDS-558のN末端側トランケーション体で はイオン交換カラムクロマトグラフィーにおいてダブルピークとなる場合がしばしば見ら れ前のピークを回収した。また、場合によってはもう一度イオン交換カラムクロマトグラ フィーを行った。続くゲル濾過カラムクロマトグラフィーでは全長体同様モノマーの位置 に溶出し、高純度単分散試料を調製できた。

トランケーション領域によって、菌体破砕後上清に来ないもの、上清に来るがゲル濾過 クロマトグラフィーにおいて多量体の位置に溶出してくるものが見られた。結果の一覧は 表2にまとめた。

pGEX6P-1 ベクターを用いた発現系で SmgGDS-607 の N 末端トランケーション体は SmgGDS-607 (11-607 と 346-607) を除いて菌体破砕後上清に来なかった。そのため、 SmgGDS-607 のN末端トランケーション体の調製にはpET44a (+) ベクターを用いた発現 系を用いた。ここでは SmgGDS-607 (77-607) の精製過程のみ図示した (図 8)。

図 6 SmgGDS 全長体の精製過程

SmgGDS 全長体の精製過程のうちイオン交換カラム(上)とゲル濾過カラム(下)による 精製の様子を示した。ゲル濾過カラムクロマトグラフィーにおいて、トップピークの溶出 位置をラベルし、青色線部分の溶出画分を SDS-PAGE し CBB 染色したものを示した。

図 7 SmgGDS-558 (61-558) の精製過程

SmgGDS-558 (61-558) の精製過程のうちイオン交換カラム(上)とゲル濾過カラム(下) による精製の様子を示した。イオン交換カラムクロマトグラフィーにおいて回収した領域 を青線で示した。また精製標品の SDS-PAGE を示した。

図 8 SmgGDS-607 (77-558) の精製過程

SmgGDS-607 (77-607)の精製過程のうちゲル濾過カラム(下)による精製の様子と cOmplete His-Tag Purification Resin (Merck) 溶出後の精製過程の SDS-PAGE を示した。 ゲル濾過カラムクロマトグラフィーにおいて回収した領域を青線で示した。

3.1.2. 結晶化

3.1.1 項で得た各精製試料を用いて SmgGDS 単体の結晶化スクリーニングを実施した。 結晶化スクリーニングを実施した発現領域は表 2 にまとめた。SmgGDS・558 (77・558) 単体 の結晶化スクリーニングの結果、Protein Complex suite (QIAGEN) の No.24 (100 mM HEPES-NaOH pH 7, 100 mM MgCl₂, 15% PEG4000) で針状の微結晶が析出した (図 9) 。 この結晶化条件を最適化したところ 100 mM HEPES-NaOH pH 8.1, 100 mM MgCl₂, 20% PEG3350 をリザーバー液として 5 mg/mL のタンパク質溶液と 1:1 で混合し、sitting drop 蒸気拡散法、10[°]Cでインキュベートするのが最良であった (図 9) 。タンパク質溶液は Tris 緩衝液、HEPES 緩衝液どちらでも結晶を析出できた。また SmgGDS・558 の発現領域をス クリーニングしたところ、55・558, 57・558, 59・558, 61・558 でも結晶が析出した。最終的な 構造解析には最も反射の良い 61・558 の発現領域を用いた。

初期スクリーニング結晶

最適化後の結晶

図 9 SmgGDS-558 (61-558) 単体結晶

SmgGDS-558の初期スクリーニング結晶(左)と最適化後の結晶(右)。初期スクリーニング結晶は小さいので矢印で示した。

表 2 SmgGDS の精製・単体結晶化状況一覧

精製列において、○は性状が良好だったもの、△は調製できるがゲル濾過カラムクロマト グラフィーにて多量体化の傾向が見られたもの、×は精製を試みたが破砕後上清に来なか ったもの、-は調製を試みていないものを表した。また赤字で示した発現領域は結晶化ス クリーニングを実施した。結晶列において○は結晶が析出したもの、×は結晶が析出しな かったもの、-は結晶化を試みていないものを表した。また、No. 95, 100 に関しては GST タグをつけたまま結晶化スクリーニングを実施した。

No	ないパク智	発現領域	発現ベクター	特制	結旦	No	ないパク智	発現領域	発現ベクター	結制	結旦
NO.	75777夏	N C	元玩 ())	111-233	까다 버버	NO.	72777頁	N C	元玩 ())	111 ax	카드버버
1	SmgGDS-558	1 558	pGEX6P-1	0	×	63	SmgGDS-607	1 607	pGEX6P-1	0	×
2	SmgGDS-558	36 558	pGEX6P-1	\triangle	-	64	SmgGDS-607	11 607	pGEX6P-1	0	×
3	SmgGDS-558	48 558	pGEX6P-1	Δ	×	65	SmgGDS-607	21 607	pGEX6P-1	×	-
4	SmgGDS-558	51 558	pGEX6P-1	0	×	66	SmgGDS-607	31 607	pGEX6P-1	×	-
5	SmgGDS-558	53 558	pGEX6P-1	0	-	67	SmgGDS-607	36 607	pGEX6P-1	×	-
6	SmgGDS-558	55 558	pGEX6P-1	0	0	68	SmgGDS-607	41 607	pGEX6P-1	×	-
7	SmgGDS-558	57 558	pGEX6P-1	0	0	69	SmgGDS-607	48 607	pGEX6P-1	×	-
8	SmgGDS-558	59 558	pGEX6P-1	0	0	70	SmgGDS-607	51 607	pGEX6P-1	×	-
9	SmgGDS-558	61 558	pGEX6P-1	0	0	71	SmgGDS-607	61 607	pGEX6P-1	×	-
10	SmgGDS-558	62 558	pGEX6P-1	-	-	72	SmgGDS-607	71 607	pGEX6P-1	×	-
11	SmgGDS-558	63 558	pGEX6P-1	-	-	73	SmgGDS-607	77 607	pGEX6P-1	×	-
12	SmgGDS-558	64 558	pGEX6P-1	-	-	74	SmgGDS-607	346 607	pGEX6P-1	0	×
13	SmgGDS-558	65 558	pGEX6P-1	0	-	75	SmgGDS-607	1 590	pGEX6P-1		-
14	SmgGDS-558	66 558	pGEX6P-1	-	-	76	SmgGDS-607	1 580	pGEX6P-1		-
15	SmgGDS-558	67 558	pGEX6P-1	-	-	77	SmgGDS-607	1 570	pGEX6P-1	×	-
16	SmgGDS-558	68 558	pGEX6P-1	-	-	78	SmgGDS-607	77 563	pGEX6P-1	×	-
17	SmgGDS-558	69 558	pGEX6P-1	0	-	79	SmgGDS-607	1 560	pGEX6P-1		-
18	SmgGDS-558	70 558	pGEX6P-1	-	-	80	SmgGDS-607	1 550	pGEX6P-1	\triangle	×
19	SmgGDS-558	71 558	pGEX6P-1	-	-	81	SmgGDS-607	1 540	pGEX6P-1		-
20	SmgGDS-558	72 558	pGEX6P-1	-	-	82	SmgGDS-607	1 530	pGEX6P-1	\triangle	-
21	SmgGDS-558	73 558	pGEX6P-1	0	-	83	SmgGDS-607	1 519	pGEX6P-1	×	-
22	SmgGDS-558	74 558	pGEX6P-1	-	-	84	SmgGDS-607	1 519	pGEX6P-1	×	-
23	SmgGDS-558	75 558	pGEX6P-1	0	-	85	SmgGDS-607	11 519	pGEX6P-1	×	-
24	SmgGDS-558	76 558	pGEX6P-1	0	-	86	SmgGDS-607	36 519	pGEX6P-1	-	-
25	SmgGDS-558	77 558	pGEX6P-1	0	0	87	SmgGDS-607	48 519	pGEX6P-1	-	-
26	SmgGDS-558	78 558	pGEX6P-1	0	-	88	SmgGDS-607	61 519	pGEX6P-1	-	-
27	SmgGDS-558	79 558	pGEX6P-1	0	-	89	SmgGDS-607	77 519	pGEX6P-1	×	-
28	SmgGDS-558	80 558	pGEX6P-1	-	-	90	SmgGDS-607	346 519	pGEX6P-1	×	-
29	SmgGDS-558	81 558	pGEX6P-1	0	-	91	SmgGDS-607	1 501	pGEX6P-1	×	-
30	SmgGDS-558	82 558	pGEX6P-1	-	-	92	SmgGDS-607	1 458	pGEX6P-1	0	-
31	SmgGDS-558	83 558	pGEX6P-1	-	-	93	SmgGDS-607	1 368	pGEX6P-1	×	-
32	SmgGDS-558	84 558	pGEX6P-1	-	-	94	SmgGDS-607	1 345	pGEX6P-1	0	-
33	SmgGDS-558	85 558	pGEX6P-1	0	×	95	SmgGDS-607	1 254	pGEX6P-1	×	×
34	SmgGDS-558	122 558	pGEX6P-1	×	-	96	SmgGDS-607	18 254	pGEX6P-1	×	-
35	SmgGDS-558	77 557	pGEX6P-1	0	-	97	SmgGDS-607	40 254	pGEX6P-1	×	-
36	SmgGDS-558	77 556	pGEX6P-1	0	-	98	SmgGDS-607	49 254	pGEX6P-1	\times	-
37	SmgGDS-558	77 555	pGEX6P-1	0	-	99	SmgGDS-607	61 254	pGEX6P-1	\times	-
38	SmgGDS-558	77 554	pGEX6P-1	0	-	100	SmgGDS-607	1 212	pGEX6P-1	×	×
39	SmgGDS-558	1 551	pGEX6P-1	Δ	×	101	SmgGDS-607	40 212	pGEX6P-1	×	-
40	SmgGDS-558	71 551	pGEX6P-1	×	-	102	SmgGDS-607	49 212	pGEX6P-1	\times	-
41	SmgGDS-558	1 541	pGEX6P-1	Δ	×	103	SmgGDS-607	61 607	pETHP	0	×
42	SmgGDS-558	71 541	pGEX6P-1	×	-	104	SmgGDS-607	77 607	pETHP	0	×
43	SmgGDS-558	1 531	pGEX6P-1	Δ	×	105	SmgGDS-607	77 563	pETHP	Δ	×
44	SmgGDS-558	71 531	pGEX6P-1	×	-						
45	SmgGDS-558	1 521	pGEX6P-1	Δ	×						
46	SmgGDS-558	71 521	pGEX6P-1	×	-						
47	SmgGDS-558	1 511	pGEX6P-1	Δ	×						
48	SmgGDS-558	71 511	pGEX6P-1	×	-						
49	SmgGDS-558	1 501	pGEX6P-1	Δ	×						
50	SmgGDS-558	71 501	pGEX6P-1	×	-						
51	SmgGDS-558	71 491	pGEX6P-1	×	-						
52	SmgGDS-558	1 481	pGEX6P-1	Δ	×						
53	SmgGDS-558	11 481	pGEX6P-1	Δ	-						
54	SmgGDS-558	21 481	pGEX6P-1	Δ	-						
55	SmgGDS-558	31 481	pGEX6P-1	×	-						
56	SmgGDS-558	41 481	pGEX6P-1	×	-						
57	SmgGDS-558	51 481	pGEX6P-1	×	-						
58	SmgGDS-558	61 481	pGEX6P-1	×	-						
59	SmgGDS-558	71 481	pGEX6P-1		-						
60	SmgGDS-558	1 470	pGEX6P-1	0	-						
61	SmgGDS-558	77 470	pGEX6P-1	×	-						
62	SmgGDS-558	122 470	pGEX6P-1	×	-						

3.1.3. 構造決定

2.1.5 項に従って構造解析を行い, 2.1 Å で構造決定した(表 3)。

表 3 SmgGDS-558 (61-558) 単体結晶の回折強度データセット収集と構造精密化の統計

値

	<i>h</i> SmgGDS-558 (61-558)			
	野生型	Se-Met 誘導体		
< Data collection >				
Space group	C2	C2		
wavelength (Å)	0.90000	0.9720		
Unit cell (<i>a</i> , <i>b</i> , <i>c</i> , β)	194.3, 51.1, 52.4,	196.3, 50.8, 52.8,		
X-ray source	Spring-8 BL44XU	PF BL17A		
Resolution (Å) (oute	er 50-2.1 (2.11-2.07)	50-2.6 (2.67-2.60)		
No. of obs. ref.	348332	216767		
No. of unique. ref.	32018	31254		
Completeness (%)	99.9 (99.9)	99.8 (99.7)		
$\mathbf{R}_{p.i.m.}$ or \mathbf{R}_{meas}	2.9(45.9)	22.0 (217.1)		
<i>I</i> /σ(<i>I</i>)	47.7 (2.4)	8.7 (1.5)		
< Refinement >				
Resolution (Å)	49.4-2.1			
Rwork (%) ^c	21.5			
R free (%) d	25.2			
RMSD				
Bond length (Å)	0.008			
Bond angles (°)	1.239			
Number of atoms				
Protein	3458			
Ligand	74			
Ramachandran plot	s			
Favored	450 (96%)			
Allowed	19 (4%)			
Outlier	0			

a 括弧内は最外殻での統計値を表す。

^b 野生型では R_{p.i.m.}を Se-Met 誘導体では R_{meas}を示した。

d 全反射の 5%を用いて計算した R 値が Rfree であり,これらの反射は精密化には用いなかった。

[。]Fo および Fc はそれぞれ実測および計算構造因子振幅であり、R= Σ |Fo - Fc |/ Σ Fo とした。

3.1.4. 全体構造

SmgGDS-558 (61-558) の結晶構造は 10 個の完全なARM (ARM D-M) と残基番号 79-87 がアンフォールドした ARM B によって構成されていた (図 10)。結晶構造において N 末 端側の 18 残基と C 末端側 1 残基は電子密度が観測されなかった。また C 末端側の 66 残基 は電子密度が貧弱であったためモデル中では側鎖を置かず全てアラニンとした。結晶化の ために欠損させた領域を含む SmgGDS-558 全長の N 末端側の 70 残基は ARM で構成され るとアミノ酸配列から予想されるため、SmgGDS-558 全長は 12 個の ARM によって成るだ ろう。またこのことから SmgGDS-607 全長は 13 個の ARM から成るものと考えられる。 SmgGDS-558 は構造既知の Dbl ファミリー、Dock ファミリーとは異なる超螺旋型構造を とることが明らかとなった。

SmgGDS-558 (61-558) の結晶構造の静電ポテンシャル図を描いてみると SmgGDS-558 には特徴的な ARM B-F にかけての負に帯電した領域(負電荷領域)と SmgGDS の凹面に あたる ARM H と I にかけての正に帯電した領域(正電荷領域)が存在すると分かった(図 11)。近年の *in silico*ドッキングスタディと変異体解析によって SmgGDS-607 の酸性残基 (D239, E242, E246, E253, D255)は Rap1 の PBR との結合に重要であることが示唆された ⁵⁷。また、SmgGDS-607 の酸性残基(E213, E217, D239, E242, E246, E253, D255)への 変異体は RhoA に対する GEF 活性を低下させると報告されている¹⁵。これらの残基をマッ ピングしてみると負電荷領域の周辺に位置していることから負電荷領域は低分子量 G タン パク質の PBR の認識に関わることが示唆された⁵⁷。

SmgGDS-558のN338残基(SmgGDS-607におけるN387残基)は低分子量Gタンパク 質との結合に不可欠であることで知られている^{14,15}。例えば、SmgGDS-558のN338A変 異体はDi-Ras2と相互作用できないことが示されている¹⁴。また、SmgGDS-607の凹面に ある保存されたN342, R345, H379, S383, N387, K395 残基への変異体は RhoA への GEF

43

活性を低下させると報告されている。これらの残基は正電荷領域の周辺に位置しており、 この領域も低分子量 G タンパク質の認識に重要であることが示唆された。

SmgGDS-558 結晶構造

図 10 SmgGDS のドメイン構成と SmgGDS-558 (61-558) 単体結晶構造

SmgGDSのドメイン構成(左)とSmgGDS-558(61-558)単体結晶構造リボン図(右)。右 図括弧内の数字は末端残基の残基番号を表す。

図 11 SmgGDS-558 (61-558) 単体結晶構造静電ポテンシャル図

SmgGDS-558 (61-558) 単体結晶構造静電ポテンシャル図(上)と正電荷領域、負電荷領域の拡大図(下)を示した。正電荷領域拡大図では先行研究で低分子量Gタンパク質の認識あるいはGEF活性に重要であることが示唆された残基と本研究で変異体解析を行った残基を ラベルした。負電荷領域拡大図では負に帯電した残基をすべてラベルした。括弧内は SmgGDS-607の残基番号を表した。赤字で示された残基は先行研究において低分子量Gタンパク質の認識あるいはGEF活性に重要であることが示唆された残基を表す。

3.2. SmgGDS の RhoA に対する相互作用・機能解析

3.2.1. RhoA の精製

本研究において野生型および変異体 RhoA は全て同様の調製方法により調製できた。 本項における RhoA の調製結果は L193A 変異体のものを示した。Histrap (GE Healthcare) において RhoA はシングルピークとして溶出した。また、ゲル濾過カラムクロマトグラフ ィーではモノマーの位置に溶出し、高純度単分散試料を調製できた(図 12)。

図 12 RhoA の精製過程

RhoA (L193A) の精製過程のうち Histrap カラム(左) とゲル濾過カラム(右) による精製の様子を示した。青色線部分の溶出画分を SDS-PAGE し CBB 染色したものを示した。

3.2.2. FTase の精製

2.2.2 項の方法に従って FTase を調製した。本項では Hitrap Q (GE Healthcare) による 精製過程を示した (図 13)。

図 13 FTase の精製過程

FTase 調製過程におけるのゲル濾過カラムクロマトグラフィーの様子を示した。青色線部分の溶出画分を SDS-PAGE し CBB 染色したものを示した。

3.2.3. ファルネシル化 RhoA の調製

In vitro におけるファルネシル化処理後の試料をゲル濾過カラムクロマトグラフィー により精製したところ、FTase と FPP を分離することが出来た。ファルネシル化 RhoA は モノマーの位置に溶出し、高純度単分散試料を調製できた(図 14)。

図 14 ファルネシル化 RhoA 調製後のゲル濾過カラムクロマトグラフィー ファルネシル化 RhoA 調製後のゲル濾過カラムクロマトグラフィーの様子を示した。青色 線部分の溶出画分を SDS-PAGE し CBB 染色したものを示した。

3.2.4. SPR による解離定数の算出

調製した SmgGDS、RhoA 試料を用いて SPR による解離定数の測定を行った。その結果、 SmgGDS-558 では未修飾 RhoA よりもファルネシル化 RhoA をより強く結合した(K_D はそ れぞれ 51.3 nM, 2.3 nM)。その一方で SmgGDS-607 ではファルネシル化 RhoA よりも未 修飾 RhoA をより強く結合した(K_D はそれぞれ 3.1 nM, 0.8 nM)。測定プロファイルと算 出された結合パラメータを図 15 と表 4 にまとめた。

SmgGDS-558	$k_{\rm on} ({ m M}^{-1}{ m s}^{-1})$	$k_{ m off}({ m s}^{-1})$	$K_{\rm D}({ m nM})$	
未修飾 RhoA	1.9×10^{4}	9.9×10^{-4}	51.3	
ファルネシル化 RhoA	7.2×10^{4}	1.7×10^{-4}	2.3	
SmgGDS-607	$k_{\rm on} ({ m M}^{-1}{ m s}^{-1})$	$k_{ m off}$ (s ⁻¹)	K _D (nM)	
未修飾 RhoA	2.6×10^{5}	2.2×10^{-4}	0.8	
ファルネシル化 RhoA	1.3×10^{5}	3.9×10^{-4}	3.1	

表 4 SPR により算出された結合パラメータ

3.2.5. ITC による RhoA HVR ペプチド結合試験

SmgGDS は低分子量 G タンパク質のうち、HVR に PBR を持つものと結合する。また、 SmgGDS-558 (61-558) 単体結晶構造の ARM B-F にかけて負電荷領域が存在していたこと からこの領域が PBR と相互作用すると予想された。そこで RhoA の HVR に相当するペプ チド (181 ARRGKKKSGCLVL 193 ,数字は残基番号) に対する SmgGDS 両アイソフォーム の結合能を、ITC を用いて評価した。その結果、SmgGDS-607 では強い親和性 ($K_D = 104$ nM) を示したのに対して、SmgGDS-558 では結合が見られなかった (図 16)。

3.2.6. X線小角散乱と多波長光散乱による溶液構造解析

2.2.4 項に従って SmgGDS 全長体の両アイソフォームの単体および RhoA との複合体の SEC-SAXS 測定を行った。SAXS の測定条件および測定・解析結果の統計値を表 5 に示し た。各測定における散乱曲線と解析により得られたダミーアトムモデルを図 17, 18 に示し た。ダミーアトムモデルは SmgGDS-558 (61-558) 単体結晶構造との比較を表した。また、 SmgGDS-558/未修飾 RhoA 複合体について SEC-MALS を行った(図 19)。分子量は 74.0 kDa と見積もられた。SmgGDS-558 と RhoA の理論分子量はそれぞれ 61 kDa, 22 kDa で あり、モル比 1:1 で結合していることが示された。

Data-collection parameters	SmgGDS-558	SmgGDS-558 + 未修飾 RhoA	SmgGDS-558 + ファルネシル化 RhoA	SmgGDS-607	SmgGDS-607 + 未修飾 RhoA	SmgGDS-607 + ファルネシル化 RhoA
Instrument	BL10C-SEC-SAXS	BL10C-SEC-SAXS	BL10C-SEC-SAXS	BL10C-SEC-SAXS	BL10C-SEC-SAXS	BL10C-SEC-SAXS
Wavelength (Å)	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
q range (Å ⁻¹) a	0.0124 - 0.2218	0.0145 - 0.2404	0.0124- 0.2631	0.0161 - 0.2250	0.0140- 0.2298	0.0134 - 0.2121
Exposure time (sec.)	20×1 frame	20×1 frame	20×1 frame	20×1 frame	20×1 frame	20×1 frame
Temperature (K)	293	293	293	293	293	293
Structural parameters						
$I(0) \ (\text{cm}^{-1}) \ [\text{from } P(\mathbf{r}) \]$	0.06 ± 0.00	0.06 ± 0.00	0.07 ± 0.00	0.09 ± 0.00	0.12 ± 0.00	0.07 ± 0.00
Rg (Å) [from P(r)]	35.0 ± 0.30	33.2 ± 0.26	33.0 ± 0.12	36.9 ± 0.24	34.2 ± 0.16	35.6 ± 0.28
I(0) (cm ⁻¹) [from Guinier]	0.06 ± 0.00	0.06 ± 0.00	0.07 ± 0.00	0.08 ± 0.00	0.13 ± 0.00	0.07 ± 0.00
Rg (Å) [from Guinier]	34.0 ± 1.91	32.3 ± 1.53	32.8 ± 1.64	35.7 ± 1.46	33.7 ± 0.64	34.68 ± 2.43
Dmax (Å)	120	111	100	120	116	126
Porod volume estimate (Å ³)	65438	105220	105815	77651	118137	113490
${\rm M.W}$ calculated with porod volume $^{\rm b}$	40898.8	65762.5	66134.4	48531.9	73835.6	70931.3
Dry volume calculated from sequence $^{\rm c}$	73848	100164	100113	80235	106551	106501
Mean value of NSD	0.618 ± 0.014	0.653 ± 0.061	0.613 ± 0.004	0.654 ± 0.020	0.618 ± 0.021	0.636 ± 0.006
Software employed						
Primary data reduction	SAngler	SAngler	SAngler	SAngler	SAngler	SAngler
Data processing	PRIMUSQT	PRIMUSQT	PRIMUSQT	PRIMUSQT	PRIMUSQT	PRIMUSQT
Ab initio analysis	DAMMIN	DAMMIN	DAMMIN	DAMMIN	DAMMIN	DAMMIN
Validation and averaging	DAMAVER	DAMAVER	DAMAVER	DAMAVER	DAMAVER	DAMAVER
Three-dimentional graphics representation	PyMOL	PyMOL	PyMOL	PyMOL	PyMOL	PyMOL

表 5 SAXSの測定条件および測定・解析結果の統計値

^a 溶液構造決定に用いた q の範囲を表す。 q = 4 す。用いた nt。

^b Moleculaer weight = 0.625 * Porod volume

^e Peptide Property Calculator (<u>http://biotools.nubic.northwestern.edu/proteincalc.html</u>) にて計算した Approximate Volume を表示した。ファルネシル基の体積は考慮していない。

SEC-SAXS における散乱曲線を示した。ただし、横軸の q は q = 4 π sin θ /λ を表す。

図 18 ダミーアトムモデルと SmgGDS-558 (61-558) 単体結晶構造の比較

ダミーアトムモデルは白色のダミー原子で、SmgGDS-558(61-558)単体結晶構造を緑色の リボン図で表示した。RhoAと考えられる溶液構造を矢印で示した。

図 19 SmgGDS-558/未修飾 RhoA の SEC-MALS プロファイル

トップピークでの MALS からの計算分子量を図中に表示した。

3.2.7. SmgGDS 正電荷領域への変異体解析

3.2.7.1. 未修飾 RhoA との結合試験

SEC-SAXS によって SmgGDS の凹面に RhoA が結合するということが示唆された。こ のため SmgGDS の凹面にある正電荷領域への変異体を作成し、ゲル濾過カラムクロマトグ ラフィーによる結合試験を行った(図 20)。本号では未修飾 RhoA を用いた。SmgGDS-607 では結合力の低下はほとんど見られなかったが、SmgGDS-558 では H330A, R337A, N338A, K372A 変異体において結合の解離が見られた。

図 20 ゲル濾過カラムクロマトグラフィーによる結合試験

RhoA と SmgGDS 単体のプロファイルを破線で、混合物のプロファイルを実線で表示した。 SmgGDS 単体は代表として野生型のものを表示した。野生型に比べて結合力の低下が見ら れたものを星印で表した。

3.2.7.2. GEF 活性試験

SmgGDS の凹面にある正電荷領域への変異体を用いて GEF 活性試験を行った(図 21, 22)。野生型 SmgGDS-558 はファルネシル化 RhoA にのみ GEF 活性を示した一方で、 SmgGDS-607 では未修飾の RhoA に対しより強い活性を持っていた。この傾向は SPR の 結果と一貫するものであった。また、野生型と変異体の GEF 活性を比較すると、 SmgGDS-607 の 5 つの変異体 (H379A, R386A, K421A, R427A, N387A) で顕著な活性の 低下が見られた。この傾向は SmgGDS-558 でも同様であった。このことから正電荷領域は 両アイソフォームに共通の GEF 活性に重要な領域であることが示唆された。

図 21 GEF 活性試験プロファイル

GEF活性試験のプロファイルを示した。全ての測定は n = 3 で行われ、標準誤差をエラー バーとして表示した。

図 22 GEF 活性試験解析結果

SmgGDS 未添加時の GDP 解離速度を1としたときの相対的な GDP 解離速度を示した。全 ての測定は n = 3 で行われ、標準誤差をエラーバーとして表示した。***は p < 0.001 を表 す。

3.2.7.3. ゲル濾過カラムクロマトグラフィーによる競合阻害試験

3.2.7.1 号において SmgGDS-607 (N387A) 変異体は未修飾 RhoA との結合能を保ってい たのに対し、3.2.7.2 号では GEF 活性を完全に失うということが明らかとなった。このこと から筆者は SmgGDS には GEF 活性を担う凹面とは別に RhoA の HVR を結合する相互作 用部位が存在すると仮説を立てた。これを検証するため、ゲル濾過カラムクロマトグラフ ィーによる SmgGDS-607 (N387A) と RhoA の複合体化競合阻害試験を実施した(図 23)。 SmgGDS-607 (N387A) と RhoA の複合体溶液に終濃度 1 mM となるように RhoA の HVR ペプチドを混合すると複合体のピークの高さが減少した。このことから SmgGDS-607 (N387A) はその凹面による RhoA との結合力は失っているものの、HVR 認識部位を用いて RhoA の HVR と結合できるということが示唆された。

図 23 ゲル濾過カラムクロマトグラフィーによる競合阻害試験

各単体のプロファイルを破線で、混合物のプロファイルを実線で表示した。

3.2.8. SmgGDS-558の全長と61-558でのGEF活性比較

SmgGDS-558 単体の構造解析では N 末端を 60 残基削った領域を結晶化に用いた。結晶化領域が GEF 活性を保持しているかどうか調べるため、全長との活性の比較を行った(図 24)。その結果どちらもファルネシル化 RhoA に対して同等の活性を持っていた。

図 24 SmgGDS-558の全長と 61-558の GEF 活性比較

GEF 活性試験のプロファイルを示した。全ての測定は n = 3 で行われ、標準誤差をエラー バーとして表示した。
3.2.9. ファルネシル化 RhoA と SmgGDS との結合試験

ファルネシル化 RhoA と SmgGDS との結合能をゲル濾過カラムクロマトグラフィーに より評価した(図 25)。SmgGDS には各アイソフォーム野生型と SmgGDS-558 (N338A)、 SmgGDS-607 (N387A)変異体を用いた。結果、どの組み合わせでも複合体を形成しており、 ファルネシル化により RhoA は SmgGDS-558 (N338A)に対する結合能を高めていること、 SmgGDS-607 (N387A)とも結合できるということが明らかとなった。

図 25 ファルネシル化 RhoA と SmgGDS との結合能試験

RhoAと SmgGDS 単体のプロファイルを破線で、混合物のプロファイルを実線で表示した。

3.3. SmgGDS-558/ファルネシル化 RhoA 複合体の結晶構造解析および変異体解析

3.3.1. 結晶化

SmgGDS-558 (61-558) 単体結晶中では SmgGDS-558 のN 末端 18 残基はディスオー ダーしており 79 番目のアミノ酸からしか電子密度が観測されなかった。そこで複合体の結 晶化では SmgGDS-558 (77-558) と SmgGDS-607 (77-607) を用いてファルネシル化RhoA との結晶化スクリーニングを実施した。結晶化スクリーニングの結果 SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体について JCSG+ suite (QIAGEN) の No.24 (0.2 M tri-potassium citrate, 20% PEG3350) および PEG/Ion2 (Hampton Research) の No.6 (0.2 M Sodium malonate pH 6.0, 20% PEG3350) の条件で板状の微結晶が析出した (図 26) 。結晶化条件を最適化したところ、終濃度 5 mg/mL の SmgGDS-558 (77-558) /ファル ネシル化 RhoA を結晶化試料とし、結晶化試料とリザーバー溶液 (0.2 M sodium malonate pH 6.0, 20% (w/v) PEG3350 あるいは 0.2 M tri-potassium citrate, 20% (w/v) PEG3350) を1:1 の割合で混合し、10 ℃でシッティングドロップ蒸気拡散法により結晶化するのが 最良であった (図 26) 。また SmgGDS-558 の発現領域をスクリーニングしたところ、 55-558, 57-558, 59-558, 61-558 でも結晶が析出した。65-558, 69-558, 73-558, 79-558 でも 結晶が析出した。最終的な構造解析には最も反射の良い 77-558 の発現領域を用いた。結晶 化の状況を表 6 にまとめた。

74

最適化した結晶の例

図 26 SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体結晶

SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体の結晶化スクリーニングで得られた 結晶(上)と最適化した結晶の例(下)。 表 6 SmgGDS の精製・SmgGDS/ファルネシル化 RhoA 複合体結晶化状況一覧 精製列において、○は性状が良好だったもの、△は調製できるがゲル濾過カラムクロマト グラフィーにて多量体化の傾向が見られたもの、×は精製を試みたが破砕後上清に来なか ったもの、--は調製を試みていないものを表した。また赤字で示した発現領域は結晶化ス クリーニングを実施した。結晶列において○は結晶が析出したもの、×は結晶が析出しな かったもの、--は結晶化を試みていないものを表した。

No.	タンパク質	<u>発現領域</u> N C	発現ベクター	精製	結晶	No.	タンパク質	<u>発現領域</u> N C	発現ベクター	精製	結晶
1	SmgGDS-558	1 558	pGEX6P-1	0	-	63	SmgGDS-607	1 607	pGEX6P-1	0	-
2	SmgGDS-558	36 558	pGEX6P-1		-	64	SmgGDS-607	11 607	pGEX6P-1	0	-
3	SmgGDS-558	48 558	pGEX6P-1		-	65	SmgGDS-607	21 607	pGEX6P-1	×	-
4	SmgGDS-558	51 558	pGEX6P-1	ō	-	66	SmgGDS-607	31 607	pGEX6P-1	×	-
5	SmgGDS-558	53 558	pGEX6P-1	0	-	67	SmgGDS-607	36 607	pGEX6P-1	×	-
6	SmgGDS-558	55 558	pGEX6P-1	0	-	68	SmgGDS-607	41 607	pGEX6P-1	×	-
7	SmgGDS-558	57 558	pGEX6P-1	0	-	69	SmgGDS-607	48 607	pGEX6P-1	×	-
8	SmgGDS-558	59 558	pGEX6P-1	0	-	70	SmgGDS-607	51 607	pGEX6P-1	×	-
9	SmgGDS-558	61 558	pGEX6P-1	0	×	71	SmgGDS-607	61 607	pGEX6P-1	×	-
10	SmgGDS-558	62 558	pGEX6P-1	-	-	72	SmgGDS-607	71 607	pGEX6P-1	×	-
11	SmgGDS-558	63 558	pGEX6P-1	-	-	73	SmgGDS-607	77 607	pGEX6P-1	×	-
12	SmgGDS-558	04 558	pGEA0P-1	-	-	74	SmgGDS-607	340 007	pGEA0P-1		-
14	SmgGDS-558	66 558	pGEX6P-1	0	0	75	SmgGDS-607	1 590	pGEX0P-1		_
14	SmgGDS-558	67 558	pGEX6P-1	_	_	70	SmgGDS-607	1 570	pGEX6P-1		_
16	SmeGDS-558	68 558	pGEX6P-1	_	_	78	SmgGDS-607	77 563	pGEX6P-1	Ŷ	_
17	SmgGDS-558	69 558	pGEX6P-1	0	0	79	SmgGDS-607	1 560	pGEX6P-1		_
18	SmgGDS-558	70 558	pGEX6P-1	-	-	80	SmgGDS-607	1 550	pGEX6P-1		-
19	SmgGDS-558	71 558	pGEX6P-1	-	-	81	SmgGDS-607	1 540	pGEX6P-1		-
20	SmgGDS-558	72 558	pGEX6P-1	-	-	82	SmgGDS-607	1 530	pGEX6P-1		-
21	SmgGDS-558	73 558	pGEX6P-1	0	0	83	SmgGDS-607	1 519	pGEX6P-1	×	-
22	SmgGDS-558	74 558	pGEX6P-1	-	-	84	SmgGDS-607	1 519	pGEX6P-1	×	-
23	SmgGDS-558	75 558	pGEX6P-1	0	×	85	SmgGDS-607	11 519	pGEX6P-1	×	-
24	SmgGDS-558	76 558	pGEX6P-1	0	×	86	SmgGDS-607	36 519	pGEX6P-1	-	-
25	SmgGDS-558	77 558	pGEX6P-1	0	0	87	SmgGDS-607	48 519	pGEX6P-1	-	-
26	SmgGDS-558	78 558	pGEX6P-1	0	×	88	SmgGDS-607	61 519	pGEX6P-1	-	-
27	SmgGDS-558	79 558	pGEX6P-1	0	0	89	SmgGDS-607	77 519	pGEX6P-1	×	-
28	SmgGDS-558	80 558	pGEX6P-1	-	-	90	SmgGDS-607	346 519	pGEX6P-1	\times	-
29	SmgGDS-558	81 558	pGEX6P-1	0	×	91	SmgGDS-607	1 501	pGEX6P-1	×	-
30	SmgGDS-558	82 558	pGEX6P-1	-	-	92	SmgGDS-607	1 458	pGEX6P-1	0	-
31	SmgGDS-558	83 558	pGEX6P-1	-	-	93	SmgGDS-607	1 368	pGEX6P-1	×	-
32	SmgGDS-558	84 558	pGEX6P-1	-	-	94	SmgGDS-607	1 345	pGEX6P-1	0	-
33	SmgGDS-558	85 558	pGEX6P-1	Ŭ,	×	95	SmgGDS-607	1 254	pGEX6P-1	×	-
34	SingODS-558	77 557	POEAOF-1	â	-	90	SingODS-007	10 254	POEAOF-1	\odot	-
30	SmgGDS-558	77 556	pGEX6P-1		_	97	SmgGDS-607	40 254	pGEX6P-1	$\hat{}$	_
30	SmcGDS-558	77 555	pGEX6P-1		_	90	SmgGDS-607	61 254	pGEX6P-1	Ŷ	_
38	SmgGDS-558	77 554	pGEX6P-1	õ	_	100	SmgGDS-607	1 212	pGEX6P-1	×	-
39	SmgGDS-558	1 551	pGEX6P-1	Ň	_	101	SmgGDS-607	40 212	pGEX6P-1	×	-
40	SmgGDS-558	71 551	pGEX6P-1	×	-	102	SmgGDS-607	49 212	pGEX6P-1	×	-
41	SmgGDS-558	1 541	pGEX6P-1	\triangle	-	103	SmgGDS-607	61 607	pETHP	0	-
42	SmgGDS-558	71 541	pGEX6P-1	×	-	104	SmgGDS-607	77 607	pETHP	0	×
43	SmgGDS-558	1 531	pGEX6P-1	\triangle	-	105	SmgGDS-607	77 563	pETHP	Δ	-
44	SmgGDS-558	71 531	pGEX6P-1	×	-						
45	SmgGDS-558	1 521	pGEX6P-1	\triangle	-						
46	SmgGDS-558	71 521	pGEX6P-1	×	-						
47	SmgGDS-558	1 511	pGEX6P-1	\triangle	-						
48	SmgGDS-558	71 511	pGEX6P-1	×	-						
49	SmgGDS-558	1 501	pGEX6P-1	\triangle	-						
50	SmgGDS-558	71 501	pGEX6P-1	×	-						
51	SmgGDS-558	71 491	pGEX6P-1	×	-						
52	SmgGDS-558	1 481	pGEX6P-1		-						
53	SmgGDS-558	21 481	pGEX6P-1		-						
54	SingGDS-558	21 481	pGEX6P 1		-						
55	SmgGDS-558	31 461 41 491	pGEX6P 1	$\hat{}$	_						
50	SmgGDS-558	51 /81	pGEX6P-1	$\hat{}$	_						
58	SmgGDS-558	61 481	pGEX6P-1	Ŷ	_						
59	SmgGDS-558	71 481	pGEX6P-1		-						
60	SmgGDS-558	1 470	pGEX6P-1	0	-						
61	SmgGDS-558	77 470	pGEX6P-1	×	-						
62	SmgGDS-558	122 470	pGEX6P-1	×	-						

3.3.2. 構造決定

2.3.3 項に従って構造解析を行い, 3.5 Å で構造決定した(表 7)。

表 7	SmgGDS-558 (77-558) /RhoA	へ 複合体結晶の回折強度データセッ	ット収集と構造精密

	SmgGDS-558/ファルネシル化 RhoA				
Space group	$P2_{1}2_{1}2_{1}$				
Wavelength (Å)	0.90000				
No. of crystals	2				
Unit cell (<i>a</i> , <i>b</i> , <i>c</i>)	93.3, 181.8, 205.3				
X-ray source	SPring-8 BL44XU				
Resolution (Å) (outer shell)	136.1-3.5 (3.71-3.50) ^a				
No. of obs. ref.	1967740				
No. of unique. ref.	44892				
Completeness (%)	99.9 (100.0)				
R _{meas}	0.565 (4.100)				
<i>I</i> /o(<i>I</i>)	10.4 (1.2)				
<i>CC1/2</i>	0.997 (0.623)				
< Refinement >					
Resolution (Å)	136.1-3.5				
$R_{ m work}$ (%) b	25.0				
$R_{ m free}$ (%) c	30.6				
RMSD					
Bond length (Å)	0.009				
Bond angles (°)	1.420				
Number of atoms per asymmetric					
Protein	18728				
Ligand	0				
Ramachandran plots					
Favored	2322 (94%)				
Allowed	149 (6%)				
Outlier	5 (0%)				

a 括弧内は最外殻での統計値を表す。

化の統計値

^b Fo および Fc はそれぞれ実測および計算構造因子振幅であり、R= Σ |Fo - Fc|/ Σ Fo とした。

。全反射の 5%を用いて計算した R 値が Rfree であり,これらの反射は精密化には用いなかった。

3.3.3. 全体構造

最終構造では非対称単位中に4つのSmgGDS-558/ファルネシル化RhoAへテロダイマー が存在していた(図27)。これらを complex I - IV と呼ぶことにする。SmgGDS-558 と ファルネシル化RhoAは1:1のダイマーを形成することが SAXS および MALS の結果か ら明らかとなっているため、この4つのヘテロダイマーは結晶のパッキングによるものだ と考えられる。

SmgGDS-558 について N 末端側の 10 残基(残基番号 77-86) と C 末端側 3 残基(残基番号 556-558)はディスオーダーしていた。SmgGDS-558 の C 末端側 63 残基は電子密度が貧弱であったためモデル中では側鎖を置かず全てアラニンとした。

RhoAに関してはまずすべての complex に対しN末端側の2残基(残基番号1-2)、switch I 領域(残基番号28-39)、switch II 領域の一部(残基番号59-64)、C 末端側2残基(残基 番号192-193)はディスオーダーしていた。Complex II, III については RhoAの PBR にあ たる部分(残基番号181-189)の電子密度が観測されたものの貧弱であったため側鎖はおか ず全てアラニンとした。また、P-loop とその周辺領域(残基番号13-27)はディスオーダー していた。Complex I, IV については RhoAの PBR にあたる部分(残基番号181-189)の電 子密度が観測されなかったものの、P-loop とその周辺領域(残基番号13-27)については電 子密度が見られたためモデルを置いた。グアニンヌクレオチドと Mg イオンは観察されなか ったため、SmgGDS-558 との結合によりこれらが解離したものと考えられる。

SmgGDS-558 による RhoA 結合部位は主に二か所であった(図 28, 29, 30)。一つは RhoA の Switch II 領域を結合する SmgGDS-558 の凹面であり、SmgGDS-558 の正電荷領 域とその近傍に位置していた。また、もう一つの結合部位は ARM B と D の間に位置する ポケットであった。RhoA の PBR は SmgGDS-558 の N 末端側に広がる負電荷領域へと伸 びており、CaaX モチーフのファルネシル化システインはポケットに結合していた。PBR の電子密度は貧弱であったため負電荷領域との原子レベルでの相互作用は見られなかった が、負電荷領域と PBR の位置関係から、これらの領域は静電的に引き合っていることが強く示唆された (図 28, 29)。

図 27 複合体結晶構造における非対称単位中の4つのヘテロダイマー

非対称単位の全体構造(左)と各 complex における RhoA の構造比較(右)。ディスオーダ 一領域は破線で示した。

図 28 SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体の全体構造

各タンパク質のドメイン図(上)と SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体 (complex II)の全体構造(下)を示した。

図 29 複合体結晶中での SmgGDS-558 表面図

SmgGDS-558の静電ポテンシャル図(上)と switch II 結合部位を黄色で塗り分けた表面図(下)。

*mF*o-*DF*c = 1.0 σ

図 30 Switch II 結合部位周辺の電子密度ステレオ図

3.3.4. RhoA switch 領域の構造変化と固有の GEF メカニズム

SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体の結晶構造において最も特筆すべ きは switch 領域の構造変化にある。Swicth I 領域は完全にディスオーダーしており、ヌク レオチドの結合に関与できない状態となっていた(図 31)。SmgGDS-558 は RhoA の switch II を自身の凹面へと引き寄せ、それによって $a2 \sim$ リックスの破壊を伴う switch II の大きな構造変化が引き起こされる。この構造変化は RhoA とリガンドである Mg イオン およびグアニンヌクレオチドの重要な相互作用を壊し、グアニンヌクレオチドの解離を促 進すると考えられる。PISA ⁵⁸によって解析した相互作用面を見てみると switch II だけで なく N 末端、C 末端側を含む広い相互作用面を形成していた(埋没表面積 1816.8 Å²) (図 32)。他の GEF 複合体中における相互作用残基と比較してみると SmgGDS-558 だけが switch I を認識しておらず、一般的には GEF は switch I と II の両方を認識していた(図 33)。

2018年8月までに35個以上のRhoAの構造がProtein Data Bank (PDB) に登録されて おり、そのうち7個 (PDB ID: 1LB1, 1X86, 1XCG, 3T06, 4XH9, 5JHG, 5JHH) は Mg イ オンおよびグアニンヌクレオチドが解離したものである。しかしながらこれらのいずれも SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体の結晶構造にみられるような switch 領域のディスオーダーを伴う大きな構造変化はしておらず、SmgGDS は固有の GEF メカ ニズムを持つものと考えられる。

85

図 31 RhoA の構造比較と SmgGDS との結合部位

単体 (PDBID: 1FTN) と SmgGDS-558 との複合体における RhoA の構造を比較した
(上)。SmgGDS-558 との複合体における RhoA の相互作用残基とディスオーダー領域をマ ッピングした(下)。G1-5 は各 G box を表す。

図 32 SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体の相互作用

RhoA switch II 領域の拡大図(左)と相互作用残基一覧(右)。右図青色で示した残基は先行研究において RhoA との結合あるいは GEF 活性に重要と報告された残基。

図 33 GEF/低分子量Gタンパク質複合体の構造比較

4つのGEF/低分子量Gタンパク質複合体結晶構造の比較(上)と複合体中の低分子量Gタンパク質のGEFとの相互作用部位の比較(下)。

3.3.5. RhoA への変異体解析

複合体構造によって明らかとなった SmgGDS-558/RhoA 間の相互作用面は先行研究の変 異体解析とよく一致していた(図 32)。SmgGDS-558のN338 残基は RhoA への GEF 活 性に決定的であると示唆されていたが、結晶構造では RhoA の D67 と水素結合を形成して いた。Switch II 領域と他のいくつかの残基(A3, R5, K6, K98, E102)が SmgGDS-558 と の相互作用ネットワークを形成していた。3.2.7 項で SmgGDS-558 の正電荷領域にある 4 つの残基(H330, R337, N338, K372)は RhoA への GEF 活性に重要と示唆されていたが、 結晶構造ではこのうちの 3 つ(R337, N338, K372)が RhoA の switch II と相互作用してい た。

結晶構造の妥当性をさらに強固なものとするため、筆者らは結晶構造をもとに RhoA の 変異体を作成し、プルダウンアッセイと GEF 活性試験を実施した(図 34, 35)。野生型と 12 種類の点変異体 (R5E, K6E, Q52A, Y66A, D67R, R68E, L69A, R70E, L72A, S73A, K98E, E102R)、1 つの 3 点変異体 (D67R + R68E + L69A)を用意した。プルダウンアッ セイは未修飾 RhoA を用い、GEF 活性試験は未修飾 RhoA、ファルネシル化 RhoA の両者 を用いた。

プルダウンアッセイにおいて Y66A, R70E, S73A および 3 点変異体 (D67R + R68E + L69A) は SmgGDS-558 に対する親和性が野生型と比べ顕著に低下した。さらに R68E と L72A 変異体も結合を弱めていたことから、RhoA の switch II は SmgGDS-558 との結合の カギとなる箇所であることが示唆された。N 末端側や C 末端側のいくつかの点変異体では 結合力の低下が見られなかった。S73A 変異体では結合力の低下が見られたことから SmgGDS-558 の D245 は RhoA の認識に重要と考えられる。SmgGDS-558 とは対称的に、 SmgGDS-607 では 3 点変異体を除いて結合力の低下は見られなかった。このことは SmgGDS-607 が未修飾 RhoA と強い相互作用を持つという 3.2.4 項に置ける SPR の結果を 支持した。

GEF 活性試験の結果はプルダウンアッセイの結果とよく一致していた。SmgGDS-558 のプルダウンアッセイにおいて低い結合能を示した変異体では、低い GEF 活性を示した。 これらの変異体は SmgGDS-607 の GEF 活性をも低下させており、両アイソフォームが共 通の swtich II を介した GEF 活性メカニズムを持つことを示唆した。

先行研究において SmgGDS-607 の D239K+E242K+E246K 変異体 (SmgGDS-558 にお ける D190, E193, E197 の変異体) は RhoA への GEF 活性を低下させることが報告されて いる ¹⁵。これらの残基は負電荷領域に位置しており、複合体結晶構造中では RhoA PBR の K187 残基が近接していた (図 36)。このことから負電荷残基の変異により静電的な相互作 用が弱められたと考えられる。また、SmgGDS-607 の M356A 変異体 (SmgGDS-558 にお ける M307 の変異体) も RhoA への GEF 活性を低下させることが報告されている ¹⁵が、こ の残基は複合体結晶構造中で RhoA との相互作用を持っていなかった。M307 は SmgGDS-558 時人の残基と疎水コアを形成していたため、ここへの変異が何らかの形で RhoA との結合に影響したものと考えられる。筆者らの得た複合体結晶構造は先行研究や 我々の得た実験データの殆どを説明できるものであった。

図 34 プルダウンアッセイと GEF 活性試験

プルダウンアッセイ(上)と GEF 活性試験(下)。GEF 活性試験では SmgGDS 未添加時の GDP 解離速度を1としたときの相対的な GDP 解離速度を示した。全ての測定は n = 3 で行われ、標準誤差をエラーバーとして表示した。

図 35 GEF 活性試験プロファイル

GEF 活性試験のプロファイルを示した。全ての測定は n = 3 で行われ、標準誤差をエラー バーとして表示した。

図 36 RhoAの K187 周辺の拡大図

RhoAの K187 残基は電子密度が貧弱であったため側鎖を置かずアラニンとしてある。

3.3.6. SmgGDS-558の cryptic pocket と変異体解析

複合体結晶構造において、RhoA の CaaX モチーフにあるファルネシル化システインは SmgGDS-558 の ARM B と D の間にあるポケットに結合していた(図 37)。このポケット は SmgGDS-558 の単体結晶構造では観察されなかった。アルマジロリピートを形成する 3 つのヘリックスを H1-3 と呼ぶことにすると、ファルネシル化 RhoA との結合により ARM B の H2, H3 および ARM D の H1 が構造変化することで、ファルネシル基を受容する新たな ポケットを形成していた。このポケットを cryptic pocket と呼ぶことにする。 cryptic pocket の形成に関与しない SmgGDS-558 の他の部分に関しては単体構造と複合体構造で殆ど違い は見られず、root mean square deviation (r.m.s.d.) 値は 1.2 Å だった。

cryptic pocket は主として SmgGDS-558 の疎水的な残基によって構成されており(G110, L113, G114, Y118, Q124, L136, L139, L149, M152, C153, V155, A156, N159, L160)、炭 素数 15 のファルネシル基を受容するのに適していた。RhoA は生体内では炭素数 20 のゲ ラニルゲラニル化される。筆者らは AUTODOCK4 を用いたドッキングシュミレーション を行い、ゲラニルゲラニル化システインをドッキングした(図 38)。その結果、ゲラニル ゲラニル化システインは立体障害を起こすことなく cryptic pocket に収まり、このポケット はどちらの脂質修飾を受容するのにも十分な深さと大きさを持つことが示唆された。

さらに cryptic pocket の機能の重要性を確かめるため、その表面残基に 3 つの Arg 変異 体を作成(G110R, G114R, A156R,)し、GEF 活性試験を行った(図 39)。これらの変異体 はポケットへのファルネシル基の結合を阻害することを目的としたものであり、予想通り、 変異体では GEF 活性が低下した。このことから CaaX モチーフの脂質修飾がポケットに結 合することは SmgGDS-558の GEF 活性に必要なことと分かった。G-domain と SmgGDS の脂質結合部位に直接の相互作用は見られないということから、ポケットへのプレニル基 の結合により G-domain が SmgGDS-558の凹面の近くに近接することが SmgGDS-558の GEF 活性を促進していると考えられる。

図 37 SmgGDS-558の cryptic pocket と変異体解析

単体構造と複合体構造における SmgGDS-558の構造比較(上)。 cryptic pocket の位置、 表面残基と Ligprot (+) による相互作用残基一覧(下)。

図 38 ドッキングシミュレーション結果

SmgGDS 未添加時の GDP 解離速度を1としたときの相対的な GDP 解離速度を示した。全ての測定はn=3で行われ、標準誤差をエラーバーとして表示した。

3.3.7. SmgGDS-607 のホモロジーモデルと変異体解析

スプライスバリアントである SmgGDS-607 は RhoA に対して SmgGDS-558 とは異なる 結合能と GEF 活性を示した。これらバリアントの違いを原子レベルの視点から理解するた め、SmgGDS-607のホモロジーモデルを作成した(図40)。このモデル上では E168 と D170 が ARM C と D の間にあり、負電荷領域を拡張していた。また、ARM C は ARM B と D の 間に挿入されており SmgGDS-558 と同じ cryptic pocket を形成することはできない。

実験的に SmgGDS-607 と RhoA HVR との結合面を決定するため、変異体解析を実施し た。ARM C の H3 に対する 8 つの点変異体 (T156A, V157A, G160R, M163A, N164A, N167A, E168R, D170R) と 2 つの 2 点変異体 (G160R + N164A, E168R + D170R) を作成 し、ITC によって RhoA の HVR に相当するペプチド (181ARRGKKKSGCLVL193, 数字 は残基番号) に対する SmgGDS 両アイソフォームの結合能を評価した (図 41、表 8)。野 生型の Ko値 (0.20 μ M) と比較して、G160 と N164 への変異体では顕著に結合能が低下し、 それぞれ 5.5 μ M と 12.8 μ M だった。また G160R + N164A では 18.9 μ M とさらに低下し た。E168R と D170R の変異体ではわずかに結合能の低下が見られた (それぞれ 0.83 μ M と 0.48 μ M)。このことから ARM C の H3 は RhoA の HVR を結合する新たな分子表面を 作り出しているが、静電的な相互作用による寄与は少ないものと考えられる。PBR との結 合よりも CaaX モチーフの相互作用が重要なのかもしれない。

50 μM SmgGDS-607 (WT) Titrated by 500 μM RhoA^{PBR-CaaX} peptic

0.20 µM /

50 μM SmgGDS-607 (M163A) Titrated by 500 μM RhoA^{PBR-CaaX} peptide

0.32 µM

· · · · · · ·

.0.36

-0.40

•

-0.30

kcal mol

kcal mol' of injectant

peptide

.....

0.5

50 µM SmgGDS-607 (T156A) Titrated by

0.24 µM

50 μM SmgGDS-607 (N164A) Titrated by 2000 μM RhoA^{PBR-CasX} peptide

peptide

500 µM RhoAPBR-Cast

B.

-0.40

tcal mol

0.2

0.0

-0.6

l'injectant

0.0

-0.0

0.0

of injectant

-0.6

.0.1

10

ITC のプロファイルと各測定における Kn 値を示した。

ļ kcal mol

pcal/sec

18.9 µM

図 41

1.2 µM

1.5 2.0 2.5 3.0 Molar Ratio

2

10

ITC 測定結果

50 μM SmgGDS-607 (N167A) Titrated by 500 μM RhoA^{PBR-CaaX} peptide

50 µM SmgGDS-607 (V157A) Titrated by 500 µM RhoAPBR-Casx peptide

50 µM SmgGDS-607 (E168R) Titrated by 500 µM RhoA^{PBR-Cast} peptide

0.83 µM

-0.1

pcalitec

-0.40

0

Cell (SmgGDS-607)		Titrant (RhoA ^{PBR-CaaX} peptide)						
Туре	Conc.	Conc.	<i>K</i> d	ΔH	ΔS	Ν		
	(µM)	(µM)	(µM)	(kcal/M)	(cal/mol/deg)			
WT	50	500	0.20	-3.4	19.2	1.31		
T156A	50	500	0.24	-3.4	18.9	1.36		
V157A	50	500	0.70	-2.6	19.3	1.42		
G160R	50	2000	5.5	-2.5	15.8	1.52		
M163A	50	500	0.32	-2.6	20.7	1.36		
N164A	50	2000	12.8	-1.7	16.5	1.19		
N167A	50	500	0.28	-2.7	20.9	1.36		
E168R	50	500	0.83	-3.6	15.7	1.35		
D170R	50	500	0.48	-3.1	18.6	1.34		
G160R, N164A	50	2000	18.9	-1.1	17.7	1.33		
E168R, D170R	50	1000	1.2	-5.4	8.9	1.11		

表 8 ITC 測定結果

4. 考察

4.1. SmgGDS による RhoA 認識機構

本研究では SmgGDS-558 の単体および脂質修飾された RhoA との複合体構造を決定し、 SmgGDS は RhoA の大きな構造変化を誘起すること、プレニル基を収容するポケットを形 成することを明らかにした。これらの発見は GEF 活性作用機序とプレニル基収容機構の両 面から新しいと言えるものであった。

SmgGDS には ARM の異なる 2 つのスプライスバリアントアイソフォーム (SmgGDS-558, SmgGDS-607) があり、両者が異なる方法で RhoA の HVR を認識する (図 42)。SmgGDS-558 は ARM B と D の間に存在する cryptic pocket によって脂質修飾され た RhoA HVR のイソプレニル基を結合する。一方で SmgGDS-607 では SmgGDS-558 に は存在しない ARM C によって異なる分子表面を形成し、脂質未修飾の RhoA HVR を結合 する。それと同時あるいは逐次的に各 SmgGDS の凹面は RhoA の switch II を引き寄せ構 造変化させることで G-domain を不安定化し、GDP と Mg イオンの解離を促進する。これ が SmgGDS の GEF メカニズムであると考えられる。

ヒトにおいて Rho に対するものだけでも 80 種類以上の GEF が知られている ^{7,59}。これ らの RhoGEF は Dbl ファミリー、Dock ファミリー、SmgGDS に分けられる。前者 2 つの GEF の活性ドメインの構造は既に知られており、switch 領域の再編成と Mg イオンに対す る静電反発によって GDP のリリースを促進する。一方で SmgGDS はどちらのファミリー にも該当せず異なる GEF 作用機序を持つ。SmgGDS-558 はその凹面に RhoA の switch II を引き寄せることで RhoA のグアニンヌクレオチド結合モチーフ (P-loop, switch I, switch II) をディスオーダーさせる。この RhoA の構造変化は非常にユニークで RhoGEF との複 合体構造を比較してみると全く異なる形をとっていることが分かる (図 43)。RhoGEF と の複合体に限らず、現在のところ蛋白質構造データベースである Protein Data Bank に類 似の Rho の構造は見当たらない。

Rhoのイソプレニル基収容蛋白質としては RhoGDI と PDE8 というシャペロン分子の構 造が報告されている^{46,60,61}。これらの分子はプレニル基を遮蔽することで低分子量 G 蛋白 質を凝集や分解から保護し、細胞内での拡散を促進すると考えられている^{46,61,62}。 SmgGDS-558 も RhoA のイソプレニル基をポケットに収容することが本研究により明らか となったことから SmgGDS-558 も同様の機能を持つシャペロンとして働くことが強く示唆 された。しかしながら構造的には SmgGDS-558 はこれら既知のタンパク質とは全く異なる。 RhoGDI と PDE8 はどちらも二つの逆平行 8-sheet からなる immunoglobulin-like fold に よってイソプレニル基を収容するが、SmgGDS-558 は α-helix から成るポケットにより RhoA のイソプレニル基を収容する(図 44)。さらにこのポケットは SmgGDS-558 単体で は観察されず, RhoA が結合する際にはじめて形成され、別のアイソフォームである SmgGDS-607 では ARM C の挿入によりポケットは存在しないと考えられる。ARM 数 1 つの違いによって SmgGDS 両アイソフォームは巧に RhoA の脂質修飾状態を見分け、GEF 活性を発揮しているのだろう。

SmgGDS の RhoA への結合能と GEF 活性は RhoA の HVR を欠損させると低下すると いうことが知られており¹⁵、SmgGDS の GEF 活性発揮には RhoA の HVR を結合すること が不可欠である。また、本研究における構造解析の結果から SmgGDS-558 の switch II 結 合領域 (ARM E-I) と HVR 捕捉領域 (ARM B, D) は独立の部位であることが明らかとな った。このことから、HVR 捕捉による近接効果が RhoA の switch II を構造変化させ、 SmgGDS 凹面に引き寄せる駆動力となっていることが想定される。HVR の認識はシャペ ロンとしての機能としてだけではなく GEF 活性にも重要である。

103

図 42 SmgGDS による RhoA 認識機構

(Dock9/Cdc42 複合体、PDBID: 2WM9)

図 43 RhoA 単体と RhoGEF/低分子量 G タンパク質複合体の構造比較

RhoGEF は表面図、低分子量 G タンパク質はリボン図で示した。低分子量 G タンパク質 を同じ方向に揃えた。低分子量 G タンパク質の P-loop, switch I, switch II はそれぞれ緑、 赤、青で表示した。ディスオーダーした領域を破線で結んだ。

図 44 イソプレニル基受容蛋白質/低分子量Gタンパク質複合体の構造比較

左から RhoGDI (黄) /RhoA (橙) 複合体 (PDB ID:4F38)、PDE8 (水) /KRas4B (橙) 複合
体 (PDB ID: 5TAR)、 SmgGDS-558 (緑) /RhoA (橙) 複合体 (PDB ID: 5ZHX)。イソプ
レニル基を赤、Mg およびグアニンヌクレオチドを黒色で示した。

4.2. SmgGDSのGEFとしての特異性

SmgGDS の GEF 活性は RhoA および RhoC に特異的であることが報告されている¹⁵。 この報告で Hamel らは大腸菌より調製した未修飾の Cdc42, Rac1, Rac2, RhoA, RhoB, RhoC, K-Ras, Rap1A, Rap1B について SmgGDS-607 の GEF 活性を調べた。SmgGDS-558 については RhoA に対して SmgGDS-607 と同程度の GEF 活性を持っていたと記されてい るが、これは本研究における我々の実験結果とは一致しない。我々の研究では SmgGDS-558 は未修飾 RhoA に対して GEF 活性を持たなかった。測定条件による違いが影響したのかも しれないが、原因は不明である。

GEFとしての特異性について本研究で得られた構造情報と低分子量 G タンパク質のアミ ノ酸配列アライメントからある程度の考察を行うことが出来る(図 45)。まず、RhoB は HVR に PBR を有していないため、SmgGDS との相互作用が弱く GEF として機能できな いことが予想される。また、Ras ファミリーに属する K-Ras, Rap1A, Rap1B は switch II の配列が異なるため、GEF 活性を持たないのではないかと考えられる。Cdc42, Rac1, Rac2 については switch II の配列は RhoA と全く同じである。図 45 に示したすべての低分子量 G タンパク質が PBR を有しているがそのアミノ酸配列は異なっており、HVR の配列の違 いによる SmgGDS との親和性の差異が GEF 活性の有無に表れているのかもしれない。

DiRas は低分子量 G タンパク質の中で唯一 HVR を欠損させても SmgGDS と強い相互作 用を持つことで知られている¹⁴。また、Mg イオン存在下でも SmgGDS との強い結合を保 つことができる。DiRas の switch II は RhoA とは異なる配列であるため、これにより switch II がより強く結合するかあるいは DiRas の別の部位が全く異なる結合様式をとる可能性も あり現段階では結合様式は解明できていない。DiRas は単独での GDP/GTP の解離が非常 に速いということが分かっているため、DiRas の G-domain は構造変化を引き起こしやす く、switch II が柔軟で SmgGDS と容易に結合できるのかもしれない ⁶³。SmgGDS の DiRas に対する GEF 活性は測定報告がなく明らかでない。
RHOA RHOC RHOB CDC42 RAC1 RAC2 KRAS RAP1A RAP1B DIRAS1 DIRAS2	P-loop MAAIRKKLVIVGDGACGKTC MAAIRKKLVIVGDGACGKTC MAAIRKKLVVVGDGAVGKTC MQAIKCVVVGDGAVGKTC MQAIKCVVVGDGAVGKTC 	Switch I LLIVFSKDQFPEVYVPTVFE LLIVFSKDQFPEVYVPTVFE LLIVFSKDEFPEVYVPTVFE LLISYTTNKFPSEYVPTVFC LLISYTTNAFPGEYIPTVFC LLISYTTNAFPGEYIPTVFC LTIQLIQNHFVDEYDPTIEC LTVQFVQGIFVEKYDPTIEC LVQFVQGIFVEKYDPTIEC LVLRFVKGTFRDTYIPTIEC	INYVADIEVDGKQVELALW 58 INYIADIEVDGKQVELALW 58 INYVADIEVDGKQVELALW 58 INYAVTVMIGGEPYTLGLF 56 INYSANVMVDGKPVNLGLW 56 INYSANVMVDSKPVNLGLW 56 INYSANVVDSKPVNLGLW 56 INYSANVSTRAVVDSKPVNLGLW 56 INYSANVVDSKPVNLGLW 56 INYSANVVDSKPVNLGLW 56 INYSANVSTRAVVDSKPVNLGLW 56 INYSANVSKPVNLGLW 56 INYSANVVDSKPVNLGLW 56 INYSANVSTRAVVDSKPVNLGLW 56 INYSANVSKPVNLGLW 56 INYSANVSTRAVVDSKPVNLGLW 56 INYSANVSTRAVVSTRAVVSTRAVVSTRAVVSTRAVVSTRAVVSTRAVVSTRAVSTRA
RHOA RHOC RHOB CDC42 RAC1 RAC2 KRAS RAP1A RAP1B DIRAS1 DIRAS2	Switch II DTAGQEDYDRLRPLSYPDTDV I DTAGQEDYDRLRPLSYPDTDV I DTAGQEDYDRLRPLSYPDTDV I DTAGQEDYDRLRPLSYPQTDVF DTAGQEDYDRLRPLSYPQTDVF DTAGQEDYDRLRPLSYPQTDVF DTAGQEEYSAMRDQYMRTGEGF DTAGTEQFTAMRDLYMKNGQGF DTAGTEQFTAMRDLYMKNGQGF DTGSHQFPAMQRLSISKGHAF	LMCFSIDSPDSLENIPEKW- LMCFSIDSPDSLENIPEKW- LMCFSVDSPDSLENIPEKW- LVCFSVVSPSSFENVKEKW- LICFSLVSPASFENVRAKW- LICFSLVSPASYENVRAKW- LCVFAINNTKSFEDIHHYRE FALVYSITAQSTFNDLQDLRE FALVYSITAQSTFNDLQDLRE FILVFSVTSKQSLEELGPIYK FILVYSITSRQSLEELKPIYE	TPEVKHFCPNVPIILVG 116 TPEVKHFCPNVPIILVG 116 VPEVKHFCPNVPIILVA 116 VPEITHHCPKTPFLLVG 114 YPEVRHHCPNTPIILVG 114 FPEVRHHCPSTPIILVG 114 QIKRVK-DSEDVPMVLVG 115 QILRVK-DTEDVPMILVG 115 QILRVK-DTDDVPMILVG 120 QICEIKGDVESIPIMLVG 200
RHOA RHOC RHOB CDC42 RAC1 RAC2 KRAS RAP1A RAP1B DIRAS1 DIRAS2	NKKDLRNDEHTRRELAKMKQEF NKKDLRQDEHTRRELAKMKQEF NKKDLRSDEHVRTELARMKQEF TQIDLRDDPSTIEKLAKNKQKF TKLDLRDDKDTIEKLKEKKLTF TKLDLRDDKDTIEKLKEKKLAF NKCDLPSRT	PVKPEEGRDMANRIGAFGYME PVRSEEGRDMANRISAFGYLE PVRTDDGRAMAVRIQAYDYLE PITPPTAEKLARDLKAVKYVE PITYPQGLAMAKEIGAVKYLE PITYPQGLALAKEIDSVKYLE VOTKQAQDLARSY-GIPFIE VVGKEQGQNLARQWNNCAFLE EVDTREAQAVAQEW-KCAFME EVQSSEAEALARTW-KCAFME	CSAKTKDGVREVFEMATR 176 CSAKTKEGVREVFEMATR 176 CSAKTKEGVREVFETATR 176 CSALTQKGLKNVFDEAIL 174 CSALTQRGLKTVFDEAIR 174 CSALTQRGLKTVFDEAIR 174 TSAKTRQRVEDAFYTLVR 161 SSAKSKINVNEIFYDLVR 163 SSAKSKINVNEIFYDLVR 163 TSAKMNYNVKELFQELLT 166 TSAKLNHNVKELFQELLN 167
RHOA RHOC RHOB CDC42 RAC1 RAC2 KRAS RAP1A RAP1B DIRAS1 DIRAS2	HVR AALQAR AGLQVR AALQKR AALQKR AALEPP AVLCPP AVLCPQ EIRQYRLKK QINRKTPVE QINRKTPVE GINRKTPVP CIN	RGKK-KSGCLVL (NKR-RRGCPIL (GSQ-N-GCINCCKVL PKK-SRRCVLL VKKRKRKCLLL PRQKRACSLL PGCVKIKKCIIM KSSCQLL C-DRVKGKCTLM (-EKLKGKCVIM	193 193 196 191 192 192 189 184 184 184 198

図 45 低分子量 G タンパク質のアミノ酸配列アライメント

SmgGDS と結合能のある低分子量 G タンパク質のアミノ酸配列アライメント。アライメ

ント計算は Clustal Omega ⁶⁴を用いて行った。

4.3. SmgGDS と他ファミリーGEF との比較

SmgGDS は RhoGEF に分類されるが、RhoGEF の中には同様の GEF 活性発揮機序を持 つ分子は存在しなかった。SmgGDS による GEF 活性発揮機序は RhoA のグアニンヌクレ オチド結合モチーフ (P-loop, switch I, switch II) をディスオーダーさせるものであった。 そこで我々は PDB 上のすべての GEF-低分子量 G タンパク質複合体構造を検索し、低分子 量 G タンパク質をディスオーターあるいは大きく構造変化させている GEF を探索した(表 9)。

表を見ると分かるように SmgGDS と同じくすべてのモチーフをディスオーダーさせるような GEF は存在しなかった。また表には記していないが HVR を認識するような GEF は存在しなかった。GEF との結合によってディスオーダーを伴う場合、多くの場合で Switch I がディスオーダーするということが分かった。Switch II をディスオーダーさせる GEF は MSS4/Rab8 複合体 (No.79) と SidM-Drr4/Rab1 複合体 (No.74) だけあった。両構造を比較してみると、Switch I を大きく外側に構造変化させていることが分かる (図 46)。Switch II のディスオーダーは Switch I の構造変化に誘起されて起こるものと考えられるので、 SmgGDS とは対象とする Switch モチーフが逆といえる。これらの比較から SmgGDS は既存のどの GEF とも異なる新しい作用機序を持つ GEF であると考えられた。

表 9 GEF/低分子量Gタンパク質複合体一覧

2018年5月時点でPDBに登録されているGEFと低分子量Gタンパク質の複合体構造 を一覧表にした。最右列にP-loop, switch I (sw1), switch II (sw2)の順にディスオーダー と特徴的な構造変化を記した。ディスオーダーしていない場合には n,している場合は yes と表した。一部だけディスオーダーしている場合には残基数を括弧内に表示した。

No	PDB	GEF	低分子量 G		分 解	ディスオーダー
110	ID	GLI	タンパク質		能	(p-loop,sw1,sw2)
0	5ZHX	\mathbf{SmgGDS}	RhoA	RhoGEF	3.50	mol f,g (yes, yes, yes) ,
1	1LB1	Dbl-PH Dbs	RhoA	RhoGEF	2.80	n,n,n
2	1X86	DH/PH	RhoA	RhoGEF	3.22	n,n,n
3	1XCG	PDZRHOGEF	RhoA	RhoGEF	2.50	n,n,n
4	2RGN	p63RhoGEF	RhoA	RhoGEF	3.50	n,n,n
5	3KZ1	DH/PH	RhoA	RhoGEF	2.70	n,n,n
6	3LW8	IpgB2	RhoA	RhoGEF	1.85	n,n,n
7	3LWN	IpgB2	RhoA	RhoGEF	2.28	n,n,n
8	3LXR	IpgB2	RhoA	RhoGEF	1.68	n,n,n
9	3T06	PDZThoGEF	RhoA	RhoGEF	2.84	n,n,n
10	4D0N	AKAP13	RhoA	RhoGEF	2.10	n,n,n
11	4XH9	NET1(DH/PH)	RhoA	RhoGEF	2.00	n, yes, n
12	6BC0	PH domain of	RhoA	RhoGEF	2.20	n,n,n
13	5JHG	DH/PH	RhoA	RhoGEF	2.50	n,n,n
14	6BCA	LbcRHOGEF	RhoA	RhoGEF	2.00	n,n,n
15	6BCB	p114RhoGEF	RhoA	RhoGEF	1.40	n,n,n
16	5JHH	DH/PH	RhoA	RhoGEF	2.30	n,n,n
17	1FOE	TIAM	Rac1	RhoGEF	2.80	n,n.n
18	2NZ8	DHPH Trio	Rac1	RhoGEF	2.00	n,n,n
19	2VRW	Vav1	Rac1	RhoGEF	1.85	n,n,n
20	2YIN	Dock1	Rac1	RhoGEF	2.70	n,n,n, sw1,sw2 open
21	3B13	DHR-2	Rac1(T17N)	RhoGEF	3.01	n,n,n, sw1,sw2 open
22	3BJI	vav1	Rac1	RhoGEF	2.60	n,n,n
23	4YON	P-Rex1	Rac1	RhoGEF	1.95	n,n,n
24	$5 \mathrm{FI0}$	DH/PH	Rac1	RhoGEF	3.28	n,n,n
25	5033	Kalirin DH1	Rac1	RhoGEF	1.64	n,n,n
26	6BC1	PH Domain of	Rac1	RhoGEF	2.90	n,n,n
27	1KZ7	DH/PH	Cdc42	RhoGEF	2.40	n,n,n sw1close

28	1GZS	SOPE	Cdc42	RhoGEF	2.30	n,n,n sw1close
29	1KI1	Dbl	Cdc42	RhoGEF	2.30	n,n,n sw1close
30	1KZG	DBS	Cdc42	RhoGEF	2.60	n,n,n sw1close
31	2DFK	Collybistin II,	Cdc42	RhoGEF	2.15	n,n,n sw1close
32	2WM9	DOCK9	Cdc42	RhoGEF	2.20	n sw1 open (slightly)
33	2WMN	DOCK9	Cdc42	RhoGEF	2.39	sw1 open (slightly)
34	2WMO	DOCK9	Cdc42	RhoGEF	2.20	sw1 open (slightly)
35	3GCG	L0028	Cdc42	RhoGEF	2.30	n, yes, n: sw1(4aa) ,
36	3QBV	ITSN1	Cdc42	RhoGEF	2.65	n, yes, n:
37	3VHL	DHR-2 Dock8	Cdc42	RhoGEF	2.09	n,n,n sw1 open
38	3CX6	PDZRhoGEF	Galpha-13	RhoGEF	2.50	n,n,n sw1 has long
39	3CX7	PDZRhoGEF	Galpha-13	RhoGEF	2.25	n,n,n sw1 has long
40	3CX8	PDZRhoGEF	Galpha-13	RhoGEF	2.50	n,n,n sw1 has long
41	1SHZ	p115RhoGEF	Gnai1	RhoGEF	2.85	n,n,n sw1 has long
42	2NTY	ROPGEF8	ROP4	RopGEF	3.10	n, yes, n∶sw1(3aa)
43	2WBL	ROPGEF8	ROP7	RopGEF	2.90	n, yes, n: sw1(8aa)
44	1LFD	RALGDS	H-Ras	RasGEF	2.10	n,n,n sw1, sw2 moving
45	1BKD	SOS-1	H-Ras	RasGEF	2.80	n,n,n
46	1NVU	SOS-1	H-Ras	RasGEF	2.20	n,n,n
47	1NVV	SOS-1	H-Ras	RasGEF	2.18	n,n,n
48	1NVW	SOS-1	H-Ras	RasGEF	2.70	n,n,n
49	1NVX	SOS-1	H-Ras	RasGEF	3.20	n,n,n
50	1XD2	SOS-1	H-Ras	RasGEF	2.70	n,n,n
51	4NYJ	SOS-1	H-Ras	RasGEF	2.85	n,n,n
52	4NYM	SOS-1	H-Ras	RasGEF	3.55	n,n,n p-loop moving
53	4URU	SOS-1	H-Ras	RasGEF	2.83	n,n,n
54	4URV	SOS-1	H-Ras	RasGEF	2.58	n,n,n
55	4URW	SOS-1	H-Ras	RasGEF	2.76	n,n,n
56	4URX	SOS-1	H-Ras	RasGEF	2.49	n,n,n
57	4URY	SOS-1	H-Ras	RasGEF	2.47	n,n,n $:$ sw2 bound RV1
58	4URZ	SOS-1	H-Ras	RasGEF	2.24	n,n,n
59	4USO	SOS-1	H-Ras	RasGEF	2.17	n,n,n
60	4US1	SOS-1	H-Ras	RasGEF	2.65	n,n,n
61	4US2	SOS-1	H-Ras	RasGEF	2.48	n,n,n
62	5CM 8	RalGDS	RalA	RalGEF	2.60	n,n,n
63	3CF6	Epac2	Rap1B	RapGEF	2.20	n,n,n
64	4MGI	Epac1 and	Rap1b	RapGEF	2.80	n,n,n
65	4MGK	Epac1 and	Rap1b	RapGEF	2.70	n,n,n

66	4MGY	Epac1 and	Rap1b	RapGEF	2.60	n,n,n
67	4MGZ	Epac1 and	Rap1b	RapGEF	3.00	n,n,n
68	4MH0	Epac1 and	Rap1b	RapGEF	2.40	n,n,n
69	6AXG	RasGRP4	Rap1b	RasGEF	3.30	n,yes,n: sw1(6aa)
70	6AXF	RasGRP	Rap1B	RapGEF	3.10	n,n,n
71	2WWX	SidM-DrrA	Rab1	RabGEF	1.50	n,n,n sw1,2 moving
72	3L0I	SidM-DrrA	Rab1	RabGEF	2.85	n,n,n sw1,2 moving
73	3JZA	SidM-DrrA	Rab1b	RabGEF	1.80	n,n,n sw1,2 moving
74	5074	SidM-DrrA	Rab1b	RabGEF	2.50	molF, (n,yes, yes:sw1
75	2OT3	RABEX	Rab21	RabGEF	2.10	n,yes,n :sw1(9aa)
76	3TW8	DENND	Rab35	RabGEF	2.10	n,yes,n∶sw1(2~4aa)
77	1TU3	RABEP1	Rab5A	RabGEF	2.31	mol A,B,C E n,n,n,
78	4Q9U	RABGEF1	Rab5A	RabGEF	4.62	molB
79	2FU5	MSS4	Rab8	RabGEF	2.00	molC (n,yes,yes) , molD
80	4LHX	Rabin8	Rab8	RabGEF	3.05	n,n,n
81	4LHY	Rabin8	Rab8	RabGEF	3.10	n,n,n
82	4LHZ	Rabin8	Rab8	RabGEF	3.20	n,n,n
83	4LI0	Rabin8	Rab8	RabGEF	3.30	n,n,n
84	2EFD	AtVps9a	Ara7	RabGEF	3.00	n,yes,n :sw1(14aa)
85	2EFE	AtVps9a	Ara7	RabGEF	2.08	n,n,n
86	2EFH	AtVps9a	Ara7	RabGEF	2.10	n,yes,n :sw1(14aa)
87	2EFC	AtVps9a	Ara7	RabGEF	2.10	n,n,n
88	4G01	Vps9a	Ara7	RabGEF	2.20	n,n,n sw1 moving
89	20CY	Sec2p	Sec4p	RabGEF	3.30	n,n,n
90	2EQB	Sec2p	Sec4p	RabGEF	2.70	n,n,n
91	4ZDW	Sec2p	Sec4p	RabGEF	2.90	n,n,n
92	3CUE	TRAPPI	Ypt1p	RabGEF	3.70	n,yes,n :sw1(5aa)
93	5LDD	Mon1-Ccz1	Ypt7	RabGEF	2.50	n,n,n
94	1RE0	GEA1	ARF1	ArfGEF	2.40	n,n,n
95	1R8Q	Arno	ARF1	ArfGEF	1.86	n,n,n
96	1R8S	Arno	ARF1	ArfGEF	1.46	n,n,n
97	1S9D	Arno	ARF1	ArfGEF	1.80	n,yes,n :sw1(6aa)
98	4C0A	IQSEC1	ARF1	ArfGEF	3.30	n,n,n
99	6FAE	IQSEC2	ARF1	ArfGEF	2.30	n,yes,n :sw1(6aa)
100	4KAX	Cytohesin-3	ARF6	ArfGEF	1.85	n,n,n
101	$5 \mathrm{EE5}$	ARFGEF1	ARL1	ArfGEF	2.28	n,n,n
102	5J5C	ARFGEF1	ARL1	ArfGEF	3.40	n,n,n
103	1I2M	RCC1	RAN	RanGEF	1.76	n,yes,n: s1(5aa)

図 46 SmgGDS と他ファミリーGEF の構造比較

上段では GEF を表面図、低分子量 G タンパク質をリボン図で示した。下段では低分子量 G タンパク質のみを表示した。低分子量 G タンパク質を同じ方向に揃えた。低分子量 G タンパク質の P-loop, switch I, switch II はそれぞれ緑、赤、青で表示した。ディスオーダー した領域を破線で結んだ。

4.4. SmgGDS と ARM タンパク質の比較

SmgGDS は既知の GEF とは全く異なり全体を通して ARM で構成されていた。PDB に 登録されている既知構造に対して DALI⁶⁵を用いて類似構造を探索したところ、ARM タン パク質である OR497 (PDB ID:4RV1), インポーチン α サブユニット (PDB ID: 4BQK), 6 カテニン (PDB ID:1TH1) が最も類似していた (図 47)。OR497 は人工的に設計されたタ ンパク質であるので本議論から除外する。インポーチン α サブユニットは核移行シグナル 配列 (NLS) をもつ積荷タンパク質と結合し、インポーチン β サブユニットと複合体を形成 することで積荷を核内に運搬する輸送蛋白質である。β カテニンは Wnt シグナルの下流で カギとなる分子であり、ARM 部分はリガンドタンパク質と結合する。

各分子のリガンド認識部位を比較してみると、どのタンパク質もARMの表面にリガンド タンパク質のペプチド鎖を結合していた(図48)。インポーチンαサブユニットは SmgGDS同様にN末端側に負領域を持ち、塩基性残基に富んだNLS配列を認識していた。 また凹面に正領域を持つ傾向も見られた。

一般にARM タンパク質は超螺旋構造によって、多くのタンパク質パートナーと相互作用 し多目的なプラットフォームとして働く ⁶⁶。ARM タンパク質はシグナル伝達、細胞骨格、 鞭毛の構成成分、タンパク質分解、フォールディング(シャペロン)という広範な機能を持 っことが知られており、その機能は分子によって様々である ⁶⁶。構造比較により類似すると 分かったインポーチン α サブユニットと β カテニンは細胞内でそれぞれ独立の機能を持っ ており、SmgGDS との r.m.s.d.は 3 Å 以上である。また、SmgGDS との配列相同性はどち らも 15%以下と高くないことから SmgGDS とこれら分子は独立の役割を持つものと考え られる。

ARM タンパク質で低分子量 G タンパク質と関係する分子に p120 catenine がある ^{66,67}。 この分子は RhoA の活性を阻害することが報告されているものの、ARM が直接結合するわ けではなく、ARM に挿入されたループが RhoA を認識すると考えられており SmgGDS と は異なる。また、RhoGEF である Dock ファミリーも ARM ドメインを有している⁹。しか しながらこのドメインの役割については明らかでない。よって今までのところ ARM タンパ ク質で GEF としての働きを持つのは SmgGDS のみである。

SmgGDSはGEFとしての機能研究が進んでいるが、GEFとして働かない低分子量Gタンパク質とも結合能を有すことやARMタンパク質の機能多様性を鑑みるとGEF以外の役割も持つことは十分に考えられ、さらなる研究が必要である。

Engineered protein OR497Importin subunit alpha-1ABeta-cateninPDBID: 4RV1PDBID: 4BQKPDBID: 1TH1r.m.s.d.: 3.31 År.m.s.d.: 4.42 År.m.s.d.: 2.96 Å

図 47 SmgGDS と ARM タンパク質の構造比較

SmgGDS-558 単体構造 (PDB ID:5XGC) を緑、橙は DALI⁶⁵ により選ばれた各 ARM タンパク質を橙色で示した。重ね合わせと r.m.s.d.値の算出は CCP4 プログラムパッケージにあ

る Lsqkab の Secondary Structure Matching method を利用した 68 。

図 48 ARM タンパク質/リガンド複合体の構造比較

各 ARM タンパク質の静電ポテンシャル図とリガンドタンパク質(橙)の構造を示した。

4.5. SmgGDS の生理学的役割についての考察

本研究で得られた結晶構造により SmgGDS-558 は直接的に RhoA の脂質修飾を受容し、 GEF として機能することが明らかとなった。SmgGDS-607 は構造が得られていないが、 ARM C の存在により未修飾の HVR を優位に認識するということが強く示唆された。とこ ろが、一般に翻訳後修飾を完了した RhoA は HVR を介して細胞膜上に繋がれ機能する。 SmgGDS が細胞膜上の RhoA に対して GEF として機能するためには一度膜から RhoA を 引き抜く必要がある。これが可能なのかどうかは現段階では明らかでない。細胞膜へ局在 する前に RhoA を活性化することで RhoA のシグナルをオンにすることも考えられる。

Williams らのグループは長年 SmgGDS の研究を行ってきた。このグループは近年にな り SmgGDS は低分子量 G タンパク質の翻訳後修飾の過程をリクルートするシャペロン様 の役割を持つということを提唱した(図 49)。SmgGDS-607 は未修飾 HVR を認識しプレ ニル基転移過程の入り口を制御する。一方で SmgGDS-558 はプレニル化を受けた低分子量 G タンパク質の膜への輸送を支援する。低分子量 G タンパク質の脂質修飾と細胞内局在の 制御過程はこれまでよくわかっていなかったが、SmgGDS がこの役割を担っている可能性 がある。本研究で明らかとなった SmgGDS-558 の構造は SmgGDS-558 が SmgGDS-607 には存在しないポケットを使い、脂質修飾を認識するというものだった。この結果は Williams らが提唱した SmgGDS による脂質修飾制御機構を補助するものであると考える。 SmgGDS-558 は RhoA の脂質修飾部位を保護することでシャペロンとして働き、凝集や細 胞内での異常な局在を防ぎ、翻訳後修飾を円滑にする役割があるのではないだろうか。

また、本研究では *in vitro* にてファルネシル化を施した RhoA を用いた。しかしながら本 来 CaaX モチーフへの翻訳後修飾はシステイン残基のイソプレニル化、末端 3 残基の切断、 末端カルボキシ基のメチル化の三段階で進行する ⁶。本研究では 1 段階目の処理が進行した 状態の RhoA と SmgGDS-558 との複合体構造を明らかにしたものと考えられる。残りの 2 段階の翻訳後修飾は脂質修飾を細胞質で受けたあと、小胞体膜上の酵素 RCE1 と ICMT に よってなされる。これらのすべての段階で SmgGDS-558 が RhoA をリクルートするのか、 あるいは途中で役割を終え、低分子量 G タンパク質から解離するのかについては明らかに なっていない。複合体構造では CaaX モチーフ部分は Cys 残基とそれに隣接する Leu のみ が観測された。RCE1 によるプロセシングによって aaX 部分が切断され、ICMT によるメ チル化を受けると SmgGDS-558 との親和性がどのように変化するのかについては、非常に 興味があるところであるが、プロセシング途中の試料を調製する困難さから現在のところ 研究が進んでいない。

本研究ではSmgGDS-558はRhoAに対してユニークな相互作用様式をとることを明らか にした。我々の発見はSmgGDSや低分子量G蛋白質を標的とした創薬研究に役立つもの と考えられる。また、SmgGDSの生理学的意義や構造変化の駆動力などの詳細な分子機構 などいまだ分からない点も多く残っている。今後はX線結晶構造解析だけではなく多様な 実験手法や観点からの研究が求められることになるだろう。

図 49 SmgGDS による低分子量Gタンパク質の翻訳後修飾制御モデル

低分子量 G タンパク質の三段階の翻訳後修飾とそれに対する SmgGDS の作用を図示した。 SmgGDS-607 は新しく合成された未修飾低分子量 G タンパク質と複合体を形成し低分子量 G タンパク質を貯蓄する役割を持つと提唱されている。また、SmgGDS-558 は脂質修飾さ れた低分子量 G タンパク質を認識し、小胞体膜上でのさらなるプロセシングと細胞膜への 局在をリクルートするかもしれない。

5. 付録

5.1. 昆虫細胞発現系によるイソプレニル化 RhoA の調製・結晶化の検討

5.1.1. 方法

本編では大腸菌で発現させた RhoA に対して *in vitro* にてファルネシル化を施した。それ とは別の試みとして、昆虫細胞で RhoA とイソプレニル基転移酵素を発現(共感染)させる 方法を検討した。本手法は昆虫細胞においてイソプレニル化 K-Ras4B を調製した先行研究 を参考にして行った ⁶⁹。

昆虫細胞発現用のベクターである pFastBacDual の PH プロモーター側の multi cloning site (MCS) に図 50 に表したようにプレシジョンプロテアーゼ認識配列を挟み His6 タグと MBP タグを N 末端側に付加した RhoA 全長遺伝子を組み込んだ。RhoA はファルネシル化 には L193A 変異体をゲラニルゲラニル化には野生型を用いた。

また、イソプレニル基転移酵素については FTase とゲラニルゲラニルトランスフェラー ゼ (GGTase)の両者を検討した。GGTase は FTase と同じく 2 つの subunit で構成されて おり、a-subunit は FTase と同じであり、8-subunit は異なる(遺伝子名: GGTB)。RhoA の発現系と同じく pFastBacDual ベクターを用い、図 50 に示したように N 末端側に FLAG タグを付加した各サブユニットを組み込んだ。

各発現ベクターを用い、大腸菌 DH10Bac をそれぞれ形質転換した。Bac-to-Bac Baculovirus Expression Systems (Invitrogen)のマニュアルに従ってバックミドを調製し、 Sf-9 細胞へ遺伝子導入した。P1-3 ウイルス液を作成した。

イソプレニル基転移酵素については発現確認のためウエスタンブロッティングを行った。 P1, P2 ウイルス作成時の細胞を破砕用緩衝液(20 mM Tris-HCl pH 7.5, 150 mM NaCl)に 懸濁し超音波破砕した。破砕液を SDS-PAGE し、ゲルを Nitrocellulose Membranes, 0.2 M N (BIO-RAD)に、15 V で 30 分間転写した。ブロッティング用緩衝液には、(50 mM Tris, 40 mM Glycine, 20% methanol)を使用した。転写後、Blocking One (ナカライテスク)を 5%含む洗浄用緩衝液(20 mM Tris-HCl pH 7.5, 135 mM NaCl, 0.1% Tween-20) 中で1時 間室温にて振盪しブロッキングした。染色は洗浄用緩衝液を用いて 3000 倍に希釈した rabbit anti FLAG antibody (Sigma-Aldrich)を一次抗体に、同じ緩衝液で 3000 倍に希釈し た anti rabbit IgG goat IgG, HRP (Santa Cruz Biotechnology) を二次抗体に用い、転写し たメンブレンをそれぞれ室温で1時間インキュベートした。検出は、Chemi-Lumi One (ナ カライテスク)を用い、暗室中で発光を測定した。

大量培養では終濃度 1%ペニシリン・ストレプトマイシン混合溶液 (ナカライテスク)を添加した Sf-900 II SFM (Thermo Fisher Scientific)を用い、2-3、00⁶ 個/mL の細胞に RhoA およびイソプレニル基転移酵素 P3 ウイルス液をそれぞれ 10 mL (ウイルス液)/1 L (培養液)の割合で添加し共感染させた。27 合でで 72 時間,振盪培養し,目的タンパク質を発現させた。

菌体を遠沈し破砕用緩衝液 (20 mM HEPES-NaOH pH 7.5, 300 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 1 mM PMSF, 10% (w/v) glycerol) に懸濁したのち超音波破砕した。破 砕液を 4 ℃, 20000 rpm, 20 min 遠心しその上清を cOmplete His-Tag Purification Resin (Merck) へ吸着させた。洗浄用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 10% Glycerol, 20-35 mM Imidazole) を用いて 10 CV 以上洗浄した後、 溶出用緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂ 1 mM DTT, 20% (w/v) glycerol, 300 mM Imidazole) で溶出させた。溶出液を透析用緩衝液 (20 mM MES pH 6.0, 100 mM NaCl, 5 mM MgCl₂, 10% (w/v) glycerol)を用いて 4℃で一晩透析した。 希 釈用緩衝液 (20 mM MES pH 6.0, 50 mM NaCl, 5 mM MgCl₂, 10% (w/v) glycerol) で存に希釈したのち、 A 緩衝液 (20 mM MES pH 6.0, 50 mM NaCl, 5 mM MgCl₂, 10% (w/v) glycerol) で平衡化 した 1 mL RESOURCE S (GE Healthcare) へ吸着させた。また、この際素通り画分を回 収した。B 緩衝液 (20 mM MES pH 6.0, 1 M NaCl, 5 mM MgCl₂, 10% (w/v) glycerol) を 40 CV の範囲で 0 %-100 % B 緩衝液となるように勾配をかけ RhoA を溶出し溶出面分とし

た。試料をアミコンウルトラ (Merck) で濃縮後、GST を融合させたプレシジョンプロテア ーゼを 1/100 (w/w) 量添加し、4℃で一晩タグを切断させた。cOmplete His-Tag Purification Resin (Merck) を素通りさせ切断したタグを除去した。試料をアミコンウルトラ (Merck) で濃縮後、透析用緩衝液(20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT) で透析した。 RESOURCE S 素通り画分については状況に応じて Superdex 75 pg (GE Healthcare) を用 いたゲル濾過カラムクロマトグラフィーを行い、溶出画分を濃縮して最終標品とした。ゲ ル濾過の緩衝液には Tris 緩衝液 (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT) を 用いた。RESOURCE S 溶出画分はゲル濾過カラムに吸着しやすいため、ゲル濾過カラムに よる精製は避けた。

精製試料を用いて SmgGDS-558 (77-558)との複合体結晶化スクリーニングを実施した。 SmgGDS-558 (77-558) と RhoA をモル比1:1 で混合し、PEG/Ion2, MembFac (Hampton Research)、Protein Complex suite (QIAGEN)のスクリーニングキットを用いた。また、 2.3.2 項で最適化した結晶化条件でも結晶化を試みた。

得られた結晶を用いて2.3.3 項と同様に大型放射光施設にてX線回折データの収集及び解 析を行った。

<u>RhoA発現コンストラクト</u>

FTase を発現させたコンストラクトの模式図を示した。

5.1.2. 結果

イソプレニル基転移酵素の発現確認では FTase, GGTase のどちらも発現を確認できた (図 51)。昆虫細胞でイソプレニル基転移酵素と共感染させ、発現させた RhoA は REOURCE S に吸着するものとしないものが存在した。REOURCE S に吸着した画分はより沈殿が生 じやすく、ゲル濾過カラムクロマトグラフィーでは樹脂に吸着してしまう傾向にあった。 FTase と共発現させた RhoA では RESOURCE S 素通り画分は 1-2 mg/1 L 培養液の収量で あるのに対して、吸着画分は 0.5 mg/1 L 培養液であった。GGTase と共発現させた RhoA では RESOURCE S 素通り画分は 0.1 mg/1 L 培養液の収量であるのに対して、吸着画分は 発展 2 に示した。

得られた試料を用いて結晶化を行ったところ、FTase と共発現させた RhoA の RESOURCES素通り画分でのみ結晶が得られた(図 53)。結晶が得られた条件は 2.3 節と 同じであった。放射光施設にて X線回折実験を実施したところ、2.3 節と同程度の回折能を もっていた。しかしながら、複合体結晶の分解能の改善には至らず、本篇における構造解 析に用いたデータには含めなかった。

図 51 昆虫細胞におけるイソプレニル基転移酵素の発現確認

FLAG タグに対するウエスタンブロッティングによりイソプレニル基転移酵素の発現を確認した。どちらの酵素も発現を確認できた。

図 52 昆虫細胞発現系におけるイソプレニル化 RhoA の精製過程

精製過程のうち Resource S(上)と Superdex 75pg(中)のプロファイルと各精製ステップ における SDS-PAGE(下)を示した。各プロファイルにおける青色線は回収した領域を表す。

図 53 SmgGDS-558 (77-558) /ファルネシル化 RhoA 複合体結晶

昆虫細胞発現系から調製したファルネシル化 RhoA を用いて析出した SmgGDS-558 (77-558)/ファルネシル化 RhoA 複合体結晶の例。

6. 参考文献

- 1 Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. *Physiological reviews* **81**, 153-208 (2001).
- 2 Goitre, L., Trapani, E., Trabalzini, L. & Retta, S. F. in *Ras Signaling* 1-18 (Springer, 2014).
- 3 Colicelli, J. Human RAS superfamily proteins and related GTPases. *Sci. STKE* 2004, re13-re13 (2004).
- 4 Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular biology and evolution* **33**, 1870-1874 (2016).
- 5 Valencia, A., Chardin, P., Wittinghofer, A. & Sander, C. The ras protein family: evolutionary tree and role of conserved amino acids. *Biochemistry* **30**, 4637-4648 (1991).
- 6 Wright, L. P. & Philips, M. R. Thematic review series: lipid posttranslational modifications CAAX modification and membrane targeting of Ras. *Journal of lipid research* **47**, 883-891 (2006).
- 7 Rossman, K. L., Der, C. J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. *Nature reviews Molecular cell biology* 6, 167-180 (2005).
- 8 Yang, J., Zhang, Z., Roe, S. M., Marshall, C. J. & Barford, D. Activation of Rho GTPases by DOCK exchange factors is mediated by a nucleotide sensor. *Science* 325, 1398-1402 (2009).
- 9 Kulkarni, K., Yang, J., Zhang, Z. & Barford, D. Multiple factors confer specific Cdc42 and Rac protein activation by dedicator of cytokinesis (DOCK) nucleotide exchange factors. *Journal of Biological Chemistry* 286, 25341-25351 (2011).
- 10 Mizuno, T. *et al.* A stimulatory GDP/GTP exchange protein for smg p21 is active on the post-translationally processed form of c-Ki-ras p21 and rhoA p21. *Proceedings of the National Academy of Sciences* **88**, 6442-6446 (1991).
- 11 Yamamoto, T. et al. Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins. Journal of Biological Chemistry 265, 16626-16634 (1990).
- 12 Williams, C. L. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. *Cellular signalling* **15**, 1071-1080

(2003).

- 13 Bergom, C. et al. The Tumor-suppressive Small GTPase DiRas1 Binds the Noncanonical Guanine Nucleotide Exchange Factor SmgGDS and Antagonizes SmgGDS Interactions with Oncogenic Small GTPases. Journal of Biological Chemistry 291, 6534-6545 (2016).
- Ogita, Y. *et al.* Di-Ras2 Protein Forms a Complex with SmgGDS Protein in Brain Cytosol in Order to Be in a Low Affinity State for Guanine Nucleotides. *Journal of Biological Chemistry* 290, 20245-20256 (2015).
- 15 Hamel, B. et al. SmgGDS is a guanine nucleotide exchange factor that specifically activates RhoA and RhoC. Journal of Biological Chemistry 286, 12141-12148 (2011).
- 16 Schuld, N. J. *et al.* The chaperone protein SmgGDS interacts with small GTPases entering the prenylation pathway by recognizing the last amino acid in the CAAX motif. *Journal of Biological Chemistry* **289**, 6862-6876 (2014).
- 17 Berg, T. J. *et al.* Splice variants of SmgGDS control small GTPase prenylation and membrane localization. *Journal of Biological Chemistry* **285**, 35255-35266 (2010).
- 18 Williams, C. Vol. 12 2933-2934 (Cell Cycle., 2013).
- 19 Tew, G. W. et al. SmgGDS regulates cell proliferation, migration, and NF-κB transcriptional activity in non-small cell lung carcinoma. Journal of Biological Chemistry 283, 963-976 (2008).
- 20 Zhi, H. *et al.* SmgGDS is up regulated in prostate carcinoma and promotes tumour phenotypes in prostate cancer cells. *The Journal of pathology* 217, 389-397 (2009).
- 21 Hauser, A. D. *et al.* The SmgGDS splice variant SmgGDS-558 is a key promoter of tumor growth and RhoA signaling in breast cancer. *Molecular Cancer Research* **12**, 130-142 (2014).
- 22 Schuld, N. *et al.* SmgGDS-558 regulates the cell cycle in pancreatic, non-small cell lung, and breast cancers. *Cell Cycle* **13**, 941-952 (2014).
- 23 Tanaka, S.-i. *et al.* Statins Exert the Pleiotropic Effects Through Small GTP-Binding Protein Dissociation Stimulator Upregulation With a Resultant Rac1 DegradationSignificance. *Arteriosclerosis, thrombosis, and vascular biology* 33, 1591-1600 (2013).
- 24 Kudo, S. *et al.* (Am Heart Assoc, 2015).
- 25 Minami, T. et al. Statins up-regulate SmgGDS through 81-integrin/Akt1

pathway in endothelial cells. Cardiovascular research 109, 151-161 (2016).

- 26 Nogi, M. *et al.* SmgGDS Prevents Thoracic Aortic Aneurysm Formation and Rupture by Phenotypic Preservation of Aortic Smooth Muscle Cells. *Circulation*, CIRCULATIONAHA. 118.035648 (2018).
- 27 Shimizu, H. *et al.* Structure-based analysis of the guanine nucleotide exchange factor SmgGDS reveals armadillo-repeat motifs and key regions for activity and GTPase binding. *Journal of Biological Chemistry* **292**, 13441-13448 (2017).
- 28 Shimizu, H., Toma-Fukai, S., Kontani, K., Katada, T. & Shimizu, T. GEF mechanism revealed by the structure of SmgGDS-558 and farnesylated RhoA complex and its implication for a chaperone mechanism. *Proceedings* of the National Academy of Sciences 115, 9563-9568 (2018).
- 29 Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Methods in enzymology* **276**, 307-326 (1997).
- 30 Kabsch, W. Xds. Acta Crystallographica Section D: Biological Crystallography **66**, 125-132 (2010).
- 31 Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. *Macromolecular Crystallography Protocols: Volume 2: Structure Determination*, 215-230 (2007).
- 32 Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallographica Section D: Biological Crystallography 62, 1002-1011 (2006).
- 33 Cowtan, K. Fitting molecular fragments into electron density. *Acta Crystallographica Section D: Biological Crystallography* **64**, 83-89 (2008).
- 34 Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. *Journal of applied crystallography* **30**, 1022-1025 (1997).
- 35 Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallographica Section D: Biological Crystallography* **53**, 240-255 (1997).
- Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics.
 Acta Crystallographica Section D: Biological Crystallography 60, 2126-2132 (2004).
- 37 Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. *Journal of applied crystallography* 26, 283-291 (1993).
- 38 Fiser, A. & Do, R. K. G. Modeling of loops in protein structures. Protein

science 9, 1753-1773 (2000).

- 39 Martí-Renom, M. A. *et al.* Comparative protein structure modeling of genes and genomes. *Annual review of biophysics and biomolecular structure* 29, 291-325 (2000).
- 40 Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. *Journal of molecular biology* **234**, 779-815 (1993).
- 41 Webb, B. & Sali, A. Protein structure modeling with MODELLER. *Protein* Structure Prediction, 1-15 (2014).
- 42 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *Journal of molecular biology* **215**, 403-410 (1990).
- Blaszczyk, M. *et al.* Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. *Methods* 93, 72-83 (2016).
- 44 Kurcinski, M., Jamroz, M., Blaszczyk, M., Kolinski, A. & Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. *Nucleic acids research* 43, W419-W424 (2015).
- Omer, C. A., Diehl, R. E. & Kral, A. M. in *Methods in enzymology* Vol. 250
 3-12 (Elsevier, 1995).
- 46 Kuhlmann, N. *et al.* Structural and mechanistic insights into the regulation of the fundamental Rho regulator RhoGDIa by lysine acetylation. *Journal of Biological Chemistry* 291, 5484-5499 (2016).
- 47 Shimizu, N. *et al.* in *AIP Conference Proceedings*. 050017 (AIP Publishing).
- 48 Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. *Journal of applied crystallography* **36**, 1277-1282 (2003).
- 49 Svergun, D. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. *Journal of applied crystallography* **25**, 495-503 (1992).
- 50 Svergun, D. I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. *Biophysical journal* **76**, 2879-2886 (1999).
- 51 Volkov, V. V. & Svergun, D. I. Uniqueness of ab initio shape determination in small-angle scattering. *Journal of applied crystallography* 36, 860-864 (2003).
- 52 Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data

processing for microcrystals. *Acta Crystallographica Section D: Structural Biology* **74**, 441-449 (2018).

- 53 Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D: Biological Crystallography 66, 213-221 (2010).
- 54 Laskowski, R. A. & Swindells, M. B. (ACS Publications, 2011).
- 55 Morris, G. M. *et al.* Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. *Journal of computational chemistry* **19**, 1639-1662 (1998).
- 56 Morris, G. M. *et al.* AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. *Journal of computational chemistry* **30**, 2785-2791 (2009).
- 57 Wilson, J. M., Prokop, J. W., Lorimer, E., Ntantie, E. & Williams, C. L. Differences in the Phosphorylation-Dependent Regulation of Prenylation of Rap1A and Rap1B. *Journal of Molecular Biology* **428**, 4929-4945 (2016).
- 58 Krissinel, E. & Henrick, K. Protein interfaces, surfaces and assemblies service PISA at European Bioinformatics Institute. *J Mol Biol* **372**, 774-797 (2007).
- 59 Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. *Cell* **129**, 865-877 (2007).
- 60 Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. *Cell* 100, 345-356 (2000).
- 61 Dharmaiah, S. *et al.* Structural basis of recognition of farnesylated and methylated KRAS4b by PDE8. *Proceedings of the National Academy of Sciences* **113**, E6766-E6775 (2016).
- 62 Garcia-Mata, R., Boulter, E. & Burridge, K. The invisible hand: regulation of RHO GTPases by RHOGDIs. *Nature reviews. Molecular cell biology* **12**, 493 (2011).
- 63 Gasper, R., Sot, B. & Wittinghofer, A. GTPase activity of Di-Ras proteins is stimulated by Rap1GAP proteins. *Small GTPases* **1**, 133-141 (2010).
- 64 Sievers, F. *et al.* Fast, scalable generation of high quality protein multiple sequence alignments using Clustal Omega. *Molecular systems biology* 7, 539 (2011).
- Holm, L. & Sander, C. Dali: a network tool for protein structure comparison.*Trends in biochemical sciences* 20, 478-480 (1995).

- 66 Tewari, R., Bailes, E., Bunting, K. A. & Coates, J. C. Armadillo-repeat protein functions: questions for little creatures. *Trends in cell biology* 20, 470-481 (2010).
- 67 Noren, N. K., Liu, B. P., Burridge, K. & Kreft, B. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. *The Journal of cell biology* 150, 567-580 (2000).
- 68 Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography **32**, 922-923 (1976).
- 69 Gillette, W. K. *et al.* Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. *Scientific reports* **5**, 15916 (2015).

7. 謝辞

研究室の代表であり、長年の研究経験から卓越したご指導を賜りました 東京大学 大学 院薬学系研究科 蛋白構造生物学教室 清水 敏之 教授に心から御礼申し上げます。

本研究を開始以来、一から実験のご指導、ご助言を賜りました 奈良先端科学技術大学院 大学 先端科学技術研究科 藤間 祥子 准教授に心から御礼申し上げます。

本研究の共同研究者として SmgGDS および低分子量 G タンパク質との出会いを提供してくださった 武蔵野大学 薬学部 堅田 利明 教授に心から御礼申し上げます。

本研究の共同研究者として何度も活発な議論をさせていただいた 明治薬科大学 紺谷 圏二 教授に心から御礼申し上げます。

X線回折実験において大変なご助力を賜りました 高エネルギー加速器研究機構 Photon Factory ビームラインスタッフの皆様に心から御礼申し上げます。

X 線回折実験において大変なご助力を賜りました SPring-8 ビームラインスタッフの皆様に心から御礼申し上げます。

X 線小角散乱実験において大変なご助力を賜りました 高エネルギー加速器研究機構 清水 伸隆 博士 および 西條 慎也 博士、ビームラインスタッフの皆様に心から御礼申し上 げます。 KAMO ソフトウェアの使用にあたって大変なご助力を賜りました 東京大学 大学院理 学系研究科 山下 恵太郎 博士 および SPring-8 長谷川 和也 博士に心から御礼申し上 げます。

本研究を進めるに当たり,多くのご助言を賜りました東京大学 大学院薬学系研究科蛋白 構造生物学教室 大戸 梅治 准教授に心から御礼申し上げます。

東京大学 大学院薬学系研究科 蛋白構造生物学教室の皆様には、日ごろから大変お世話 になりました。この場を借りて厚く御礼申し上げます。