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Abstract

In this modern society, due to the highly advanced engineering technologies such as in-
formation, communication, sensing, and measurement technologies and the widespread
mobile computing environments such as laptops, smart phones, and tablets as well as cloud
computing, a wide variety of data are being increasingly generated and accumulated every
moment, everywhere. Rapid advances of computer architectures and computer science have
enabled us to perform more and more various computation tasks, which had never been
realized before, in a shorter time, on a larger scale.

Motivated by such demands and opportunities, machine learning, the methodology of
converting information extracted from data to useful knowledge automatically and efficiently
using computers, has been increasing its importance and attracting great attention, being
subject to extensive and active studies today.

Machine learning has been achieving remarkable success in a wide range of applications.
Its highly flexible problem-solving ability has enabled automation, acceleration, and sophis-
tication on complex tasks that computers had not ever been able to solve satisfactorily.
Recent significant milestones in this area include an image recognition system whose accuracy
surpassing that of humans and game playing systems beating professional human players on
Go and poker.

Such great success of machine learning so far has been relying on the use of high-quality,
abundant data. However, it is not always possible to collect a large amount of data with
sufficient quality in every application domain. In order to expand the applicability of machine
learning, development of methodologies for accurately learning only from limited information
is of particular importance.

This dissertation discusses machine learning under the situation where training data
have only limited information. We consider two types of limitations of information: 1)
quantitative limitation and 2) qualitative limitation. Learning from quantitatively limited
information refers to the situation where we are required to solve a learning task with a
relatively small amount of training data while the learning target could be estimated at
a satisfactory level provided that there are a sufficient amount of training data available.
On the other hand, learning from qualitatively limited information refers to the situation
where a learning target cannot be fully identified due to some missing information about it
in training data no matter how many training data are given, unless further assumptions
are provided.

Quantitative limitation is a commonly encountered issue in various real-world applications

of machine learning. We focus on investigating two specific machine learning problems under
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this setting and discuss how we can alleviate the issue. The first one is multi-dimensional log-
density gradient estimation, and the second one is multi-task principal component analysis.
As we will argue later, information sharing approaches based on multi-task learning is
expected to be effective for these problems.

It seems impossible to perform learning from qualitatively limited information judging
from its definition. However, when we have another source of information, the situation
may be overcome by incorporating the additional information to fill the missing piece for
identification of the target. We show that this is in fact the case in uplift modeling from
separate labels. We will see that our uplift modeling method can effectively solve the task
by sharing information between two training data sets obtained from slightly different
populations.

In this dissertation, we present approaches based on information sharing to several
problems of learning from limited information. More specifically, the main contributions of
this dissertation are as follows.

1) We propose a method for multi-dimensional log-density gradient estimation from
quantitatively limited information. Our method encourages information sharing between
the outputs of the log-density gradient based on a multi-task learning technique regarding
each output dimension as a task. In the application of the multi-task learning technique, the
design of the way of information sharing is a crucial factor for better performance. In our
method, we use models designed based on the general fact that all the output dimensions are
derived as partial derivatives of a common primitive function. This enables a distribution-free
information sharing method that does not require strong prior knowledge about the task
relationship unlike many other multi-task learning methods.

2) We propose a method for solving multiple principal component analysis tasks each of
which has only quantitatively limited information for training. In our method, the tasks are
solved simultaneously while sharing information among them via a regularizer that makes
their solutions close to each other. In principal component analysis, the learning target is a
projection matrix, and the space of projection matrices forms a Riemannian manifold whose
geometric structure is different from that of the Euclidean space. Hence, the traditional
regularizer based on the Euclidean geometry might fail to capture the similarity between
projection matrices represented by different bases. Our method uses a regularizer based
on the intrinsic geometry of the non-Euclidean manifold, which enables the application of
a recently developed optimization technique for directly optimizing the matrices on the
manifold. We confirm the usefulness of our method through experiments on synthetic and
brain-computer interface data sets.

3) We propose a method for uplift modeling from qualitatively limited information.
Roughly speaking, uplift modeling is the problem of analysing the causal relationship
between two variables, a treatment variable and an outcome variable. In the standard uplift
modeling setup, we are given training samples labeled by both of those two variables, the
treatment and the outcome. In our setup, uplift modeling from separate labels, we consider

qualitatively limited information: We only have one of the two labels for each training
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sample, i.e., no training sample has both labels at the same time. It is not in general possible
to perform uplift modeling under this setting. However, we show that this problem becomes
feasible by sharing information between two populations that are slightly different from
each other. Furthermore, our method directly estimates the learning target to overcome the
instability of a naive approach based on multi-stage estimation. We show the effectiveness of
our method through experiments and also give a theoretical guarantee for its performance.

In summary, this dissertation shows the effectiveness of information sharing approaches
to learning from limited information. We demonstrate the performance of our methods
designed based on those approaches for three problems. The results confirm that information

sharing is an effective approach to learning from limited information.






xi

Acknowledgements

First of all, I would like to express my deepest gratitude to my adviser, Prof. Masashi
Sugiyama, for his patient and uncompromising guidance for my studies. He went out of
his way to offer us great research opportunities and environment to make sure that we can
intensively challenge ourselves, while he always gave me a hand when things turned out to
be beyond my capability. I sincerely appreciate the constructive and important comments
from Prof. Noboru Kunihiro, Prof. Taiji Suzuki, Prof. Yasutoshi Makino, and Prof. Junya
Honda on this dissertation. Suggestions from Prof. Taiji Suzuki on theoretical analyses were
especially helpful. I am very grateful to Prof. Issei Sato, Prof. Junya Honda, Dr. Gang Niu,
Dr. Voot Tangkaratt, and Futoshi Futami for their helpful advice, thoughts, and experiences
that they have shared with me. I cannot express my appreciation enough to Prof. Florian
Yger and Prof. Hiroaki Sasaki for their great help and suggestions. Many of the key ideas
included in this dissertation were conceived out of discussions with them, and it would have
been very difficult to complete the dissertation without their help. I would like to make a
special mention of Prof. Florian Yger’s assistance for my research visits to Paris-Dauphine
University. I would like to thank Prof. Jamal Atif and Prof. Maxime Berar for the great
collaborations and the valuable discussions. I owe an very important debt to Dr. Marthinus
Christoffel du Plessis, Dr. Tomoya Sakai, Takashi Ishida, and Takeshi Teshima. Discussions
and conversations with them have been always inspiring and insightful. In particular, I have
been influenced greatly by the conversations and thoughts that Dr. Marthinus Christoffel
du Plessis has shared with me. I would like to give special thanks to Dr. Tomoya Sakai,
Kento Nozawa, Soma Yokoi, and other computer administrators for their efforts to maintain
the simulation computers in best conditions. I was able to conduct simulation studies
efficiently thanks to them. I would like to show my appreciation to Ms. Etsuko Yoshida,
Ms. Yuko Kawashima, and Ms. Kumiko Nakano for advising and helping me with my
administrative work as well as to all of my friends and all members of our laboratory for
their encouragements. Finally, I deeply thank my parents for their tremendous support,
without which I could not have even started my studies.

I was supported by the Japan Society for the Promotion of Science (JSPS) Fellowship
Program (the grant number 16J07970) since April, 2016 to March, 2018.






Chapter 1

Introduction

This chapter explains the background, the motivation, the challenges, and the contributions
of this thesis. We also give a brief introduction to machine learning and explain issues of
learning from limited information and countermeasure approaches based on information

sharing.

1.1 Machine Learning

Machine learning has attracted much attention and indeed playing significantly important
roles in industry and scientific research today (Friedman et al., [2001; [He et al., 2015; Mnih
et al., [2013; Simonyan and Zisserman, [2015)).

Since it is a central subject of this dissertation, we devote this first section to introduction
to machine learning with focus on what machine learning can do, why we study it, and how

it has been advanced.

1.1.1 Learning

Learning can be informally defined as any intellectual process of discovering or extracting
useful knowledge from concrete examples or observations that contain information about
what we are interested in (Murphy), |2012; |Shalev-Shwartz and Ben-David} [2014)). “Useful
knowledge” here includes general laws that explain what have been observed and rules for
predicting what will be observed (Friedman et al., |2001; Mohri et al., |2012).

As is suggested by how far humans develop their intelligence from their babyhood to
their adulthood, the ability of learning is one of the essential characteristics that make the

humanity as intelligent as it is.

1.1.2 Machine Learning

Today, we are facing an exploding amount and variety of data to be analyzed due to the
highly developed hardware and software technologies such as mobile computing, cloud
computing, telecommunications, and the Internet.

However, data themselves do not serve us much. It is often the case that we do not know

how to use, understand, or interpret data in order to draw meaningful knowledge from them
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although we do know if they have some information. Data carry information, but it is not
knowledge in itself. Data are only a source of knowledge. Data need to be processed in
order for their information to turn into knowledge. How can we accomplish this? Machine
learning has been shown to be a promising answer to this question.

Machine learning is a field of science and engineering for endowing machines (i.e.,
computers) with the ability of learning from examples and observations fed to them in the
form of electronic data (Bishop et al., [2006; |Goodfellow et al., [2016; [Mitchell, [1997; Mohri
et al.l [2012; Murphy, [2012; |Shalev-Shwartz and Ben-David| 2014)). In other words, it aims
to make computers autonomously extract useful knowledge from data. By doing so, we
benefit from their computational power and scalability to process a lot of computational
tasks efficiently and automatically. More importantly, computers have a potential to perform
learning tasks more accurately than we do because of their precise computation and the
capability of handling complex and large data that humans cannot even perceive or memorize.
Moreover, machine learning may find new problems that humans have never even attempted

to solve.

1.1.3 Machine Learning as Indirect Computer Programming

Let us think a little more about why machine learning should be studied and how it can
help us. One of many possible answers is that machine learning provides an easy way of
programming computers (Goodfellow et al., 2014; [Shalev-Shwartz and Ben-David}, 2014]).

Since their birth in the middle of the 20th century, general-purpose programmable
computers have kept their rapid development (Burks and Burks| [1981). The successive
growth of their information processing capability has enabled themselves to perform more
and more complex and computationally demanding tasks (Moore, [1998).

However, considerable efforts must be made in order to use computers effectively: We
need to program computers to perform what we want them to do. This is not always
straightforward if we take a hard-coding strategy. By “hard-coding,” we mean programing a
computer by telling it exactly what to do step by step. This approach often requires strong
expertise about algorithm designs and the task itself to appropriately break down the task
into small, simple pieces so that computers can understand how to do without slightest
ambiguity. In addition, this approach can lack the capability of adaptation to different tasks.
This means that we may need to write as many different programs as the number of tasks.

On the other hand, machine learning does not require us to figure out how exactly for
a computer to perform a specific task, but we only have to tell it how to learn to do so
from examples (Mohri et al., [2012; Shalev-Shwartz and Ben-David, 2014). An important
difference between the two strategies, task-specific hard-coding and programming a computer
to learn, is that the latter is a more abstract process. This brings several advantages into

the latter strategy:

e We need not necessarily have domain knowledge about the specific task.
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e A learning program potentially adapts to many other tasks only by changing input

examples.
e Improvement of the learning program implies improvement on all the tasks it solves.

From this viewpoint, machine learning can be seen as another, possibly easy way of pro-
gramming computers.

Although we have seen the good side of machine learning, it is not a silver bullet; it also
has a shortcoming. Machine learning needs examples to feed to a computer. Fortunately, it
is often easier for us to show what we want to achieve by examples compared to showing how
to do (Goodfellow et al., 2016} Shalev-Shwartz and Ben-David, |2014). From this viewpoint,
machine learning can be seen as an easy way for us to communicate with computers. What
is better, we may not even need to produce examples ourselves if there are some alternative
data collected or observed by other means, e.g., data available on the Internet.

Although we have motivated machine learning from an engineering viewpoint so far,
it is natural to ask questions about the nature of learning process from a more scientific
viewpoint: What makes learning possible? How can we make computers learn exactly
like humans? What are the differences between human and machine learning? Attempts
to answer such questions have been actively made in the neuroscience and the artificial
intelligence communities (Hebb et al., [1949; Minskyl [1961). However, the focus of this thesis
is more on the engineering side, and we are interested in developing concrete, practical

machine learning methods that accurately and efficiently solve real-world problems.

1.2 Learning from Limited Information

The remarkable success of machine learning in the past decades has been built on the use
of high quality, ample data (He et al.l [2015; |Simonyan and Zisserman, 2015). However, it
is not always the case that we have access to such rich data both in quality and quantity.
Investigation and development of machine learning methods that can learn from limited
information should be promoted in order to further expand the applicability of machine
learning to cover a wider range of real world problems.

With this view in mind, this thesis tackles challenges that appear in learning from limited

information, where information provided by training dat is limited in several ways.

1.2.1 Two Types of Limitations of Information

We consider the following two types of limitations of information: quantitative limitation

and qualitative limitation.

e Quantitative limitation: This corresponds to situations where we are required to

perform a learning task with a relatively small number of training samples while the

*1 Training refers to the process of learning as opposed to test evaluation, and training data refers to data
that we are allowed to use for training.
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task can be easily solved provided that we have abundant training samples. Similar
situations can happen when training data are so noisy that we need a larger number
of samples than those needed in a standard setup in order to achieve a result with

comparable quality.

Learning from quantitatively limited information is a ubiquitous challenge that we
commonly encounter in various real-world problems. In Chapter [3] and Chapter [
we will discuss how we can overcome such challenges that arise in multi-dimensional
log-density gradient estimation and multi-task principal component analysis under
situations of learning from quantitatively limited information. As will be explained
later, information sharing approaches base on multi-task learning are promising for

these specific problems.

e Qualitative limitation: When we say training data are qualitatively limited, we mean
that training data have some essential deficiency of information about the learning
target so that it would be impossible to fully identify the target no matter how many

samples are given, without any additional assumptions or prior knowledge provided.

Learning from qualitatively limited information is infeasible without assumptions.
However, it may be feasible when appropriate conditions are given. In fact, as we
will see in Chapter [5], uplift modeling from separate labels is an instance of learning
from qualitatively limited information that we can indeed solve under some reasonable
assumptions. An approach based on information sharing will play an important role

again to design an efficient and effective algorithm for this problem.

1.2.2 Information Sharing Approaches

)

Even if sufficient information is not provided for a learning task, we may still “borrow’
information from other tasks to compensate the deficit. This is the basic idea of information
sharing. We will see that the issues of limited information described in Section [I.2.1] can
be overcome when information can be shared between multiple outputs, learning tasks, or
training data sources. More specifically, we will present the following approaches based on

information sharing to tackling these issues.

e Information is shared across multiple outputs of the target function in learning a vector-
valued function (Micchelli and Pontil, |2005a) from quantitatively limited information.
This is expected to be especially useful when the outputs of the target function are
related to each other. Multi-dimensional log-density gradient estimation is an important

instance of this situation, on which we will investigate more closely in Chapter

e Sharing information across multiple learning tasks (Caruanal |1997) can be useful when
they are similar to each other but each task has only quantitatively limited information.
We investigate multi-task principal component analysis from quantitatively limited

information as a particular case in Chapter [4
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e We share information across multiple training data sources when each data source
only has incomplete information, but one can complement their missing information
by appropriately combining their information to identify the learning target. This is
a situation of learning from qualitatively limited information, which occurs in uplift

modeling from separate labels studied in Chapter [f]

1.2.3 Information Sharing via Multi-Task Learning

Multi-task learning is a problem setting where we have multiple related learning tasks to
solve (Ando and Zhang} [2005; |Argyriou et al., 2008a; Baxter} |2000; |Caruanal (1998; Evgeniou
and Pontill 20044} |Jacob et al., |2009aj; [Lozano and Swirszczl, [2012; |(Obozinski and Taskar],
2006; Thrun, [1996; |Zhang, 2013; Zhou et al., [2011). Multi-task learning methods are intended
to improve overall learning performance by simultaneously solving the tasks while sharing
information between related ones.

This idea can be seen as the analogy of the flexible, and dynamic knowledge transfer

observed in human learning in our daily life:

e Students at school often study many subjects such as mathematics, computer science,
physics, linguistics, economics, history, and politics, at the same time. These subjects
are not totally irrelevant but often very related to each other. Mathematics is a strong
tool for computer science, physics, and economics. Linguistics can be related to the
historical and the political backgrounds of the place where the language was born and
has been developed. By finding connections between multiple subjects, students may

be able to acquire better understandings and deep knowledge efficiently.

e Researchers with similar interests often gather as a community to share their ideas,
knowledge, techniques, and other research experiences with each other for better
understanding their own research topics. Although different researchers seldom work
on exactly the same topic, such exchange of information may encourage the progress

of each individual work.

Multi-task learning aims to incorporate such a knowledge transfer mechanism into
machine learning.

However, there is a critical difference between multi-task learning performed by humans
and that performed by computers. The multi-tasking capability of humans may be fairly
limited due to the bounded cognitive/physical functions and tolerance to mental burden.
Computers, on the other hand, may have much more suitable architectures for multi-tasking
in terms of memory capacity, computation speed, and scalability. For this reason, multi-task
learning has a great potential for enabling machines to achieve intelligence beyond that
humans posses.

Multi-task learning is particularly useful when there are many related learning tasks
while each task does not have abundant training data, which is often the case in many

real-world problems.
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e Take a face authentication system as an example (Gangwar and Joshi, [2016; Menotti
et al.l 2015 [Patel et al., |2016). A face authentication system can be built by learning
a classifier for discriminating a user who is supposed to pass the authentication from
any other individuals. In an ideal world, such a system could be best calibrated to
the specific user by training it on face image data of the user. However, collecting
sufficiently many face images from a single user would be time-consuming and can be

heavy burden and unpleasant experience for the user.

e Another example is speech recognition (Graves et al., 2013; Hinton et al.,2012). As in
the face authentication example, we may want to train a speech recognition system so
as to adapt it specifically to the voice of each individual user because different speakers
have different voices and accents. Collecting many samples from each single user may
be costly, but it may be reasonable to collect a small number of samples for each of

many users.

In both examples, separately learning for each individual would suffer from limited infor-
mation, but we may improve the performance by jointly solving the tasks while sharing

information.

1.2.4 Learning Vector-Valued Functions

Many machine learning tasks are aimed at learning real-valued (i.e., scaler-valued) functions.
However, we sometimes encounter slightly more complex learning targets, vector-valued
functions (Micchelli and Pontil, |2005b)). Learning a vector-valued function generalizes
learning a real-valued function since real numbers form a one-dimensional vector space.

On the other hand, the former can be reduced to the latter by dividing it into the
sub-problems of estimating each output dimension of the target vector-valued function. Each
of the sub-problems can be solved as a standard real-valued function learning problem if it
is solved independently of the others.

However, this does not mean that it is the best way to solve it. When the output dimen-
sions of the vector-valued function are related to each other, it may be possible to estimate
them more accurately by jointly learning them in light of multi-task learning (Micchelli and
Pontil, 2005b). Treating the sub-problems as independent tasks and separately solving them
means giving up on the possibility of improvement and throwing away information that they
could share.

As a concrete example, we will demonstrate that multi-dimensional log-density gradient

estimation can be improved by the information sharing approach in Chapter

1.3 Contributions of This Thesis

This thesis is devoted to investigation of the effectiveness of information sharing approaches
to learning from limited information. In particular, we study three types of information

sharing approaches to different instances of learning from limited information.
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1.3.1 Approaches Based on Information Sharing

Sharing information between output dimensions of a vector-valued function.

We investigate the problem of log-density gradient estimation (Beran) [1976} Coxl (1985}

[Sasaki et all, [2014)) in multi-dimensional cases, where the log-density gradient refers to the

derivative of the logarithm of the underlying data density function. When data have multiple
dimensions, the log-density gradient will be a vector-valued function.

We propose a method for multi-dimensional log-density gradient estimation based on the
idea of multi-task learning [1998). Our proposed method jointly estimates all the
dimensions while sharing information across them.

A critical piece of multi-task learning algorithm design in general is how to device the
way of information sharing (Ando and Zhang} [2005; |Argyriou et al.l 2008a; Baxter, (2000}
[Caruanal, [1998} [Evgeniou and Pontil| [2004a}; [Jacob et all, [2009a} [Lozano and Swirszczl 2012}
|Obozinski and Taskar), 2006; Thrun, |1996; |Zhang), 2013} Zhou et al., 2011). Our method

uses models reflecting the fact that all output dimensions are obtained by taking partial

derivatives of a common function, which generally holds in this problem regardless of the
data distribution. This enables information sharing across the tasks in a distribution-free

fashion. This result is presented in Chapter [3]

Sharing information based on a non-Euclidean metric. We propose a method for
solving multiple tasks of Principal Component Analysis (PCA) (Hotelling), 1933} |Joliffe,

[1986; [Pearson), [1901)) that are similar to each other, where each task has a limited amount

of training data. Our proposed method jointly solves the tasks while sharing information
among the tasks via a multi-task learning regularizer that makes solutions closer to each

other.

In each PCA task, the learning target is a projection matrix (Hotelling), (1933} [Joliffel

[1986% [Pearson, [1901)). The traditional Euclidean-geometry-based multi-task regularizer might

impose unexpected dynamics during the training since the space of projection matrices has
a special geometric structure that is different from that of the Euclidean space (Hotelling
(1933} |Joliffe, 1986} [Pearson) [1901)). We propose a multi-task PCA method with a regularizer

promoting information sharing designed based on the intrinsic geometry of the space of

projection matrices. Our formulation enables the proposed method to enjoy a recent but

theoretically well-founded optimization technique (Absil et all [2009) for efficiently solving

the problem. We confirm the usefulness of our method through experiments. We explain
the details in Chapter [

Information sharing to overcome qualitative limitation of information. We pro-
pose a method for uplift modeling from qualitatively limited information. Briefly speaking,

uplift modeling is the problem of estimating the impact of some variable called a treatment on

another variable called an outcome (Gutierrez and Gérardy, [2017; |Jaskowski and Jaroszewicz,
2012; [Radcliffe and Surry], [1999] 2011} [Rzepakowski and Jaroszewicz), [2012a} [Shalit et al.
2017).
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In the standard setup of uplift modeling, we assume that each training sample has two
types of labels (Gutierrez and Gérardyl, 2017} |Jaskowski and Jaroszewicz, |2012; Radcliffe
and Surryl 1999, [2011} |Rzepakowski and Jaroszewiczl 2012a; |Shalit et al, 2017): 1) One
represents the conducted treatment, and 2) the other represents its outcome.

On the other hand, we consider the situation where every training sample lacks one of
the two labels, i.e., no training sample has both labels in which it is not generally possible
to perform uplift modeling. We show that uplift modeling becomes feasible even under this
situation of qualitatively limited information, if there are two such tasks whose distributions
satisfy reasonable assumptions, by sharing information between them.

Furthermore, our method directly produces an estimate of the learning target to overcome
the instability of a naive approach based on multi-stage estimation (Imbens,|2014). We show
the effectiveness of our method through experiments and also give a theoretical guarantee
for its performance. The details are presented in Chapter [f]

The following sub-sections describe our contributions more in detail problem by problem

including technical challenges.

1.3.2 Multi-Dimensional Log-Density Gradient Estimation

In Chapter [3] we discuss the problem of multi-dimensional log-density gradient estima-
tion. Log-density gradient estimation is the problem of estimating log-density gradient, the
derivative of the logarithm of the underlying probability density function of given data. It
is an important, fundamental problem whose applications include mode-seeking cluster-
ing (Fukunaga and Hostetler, 1975} [Sasaki et al., |2014)), measuring non-Gaussianity of a
distribution (Huber} [1985), and other topics in statistics (Singh, [1977)).

When data are multi-dimensional, the log-density gradient, is a multi-dimensional vector-
valued function. Regarding estimation of its output dimensions (i.e., partial derivatives) as
independent tasks, we may apply existing methods (Beran, [1976; |Cox| (1985} [Sasaki et al.,
2014)) to separately estimate them.

However, these output dimensions are related to each other in that they are obtained by
applying partial derivative operators to a common primitive function, which is the log-density.
It is expected that the result of estimation of one output dimension contains information
that is useful for estimation of other dimensions.

In this research, we propose a multi-task approach to multi-dimensional log-density
gradient estimation that simultaneously estimates all the output dimensions while sharing
information across them regarding estimation of each output dimension as a task.

More specifically, we design a regularizer that encourages information sharing among the
tasks with no strong assumption required on the task relationships in a distribution-free
fashion. What makes it possible is that we design models based on the general fact that all
output dimensions are partial derivatives of a common primitive function.

We demonstrate that our proposed method is able to estimate the log-density gradient

accurately through experiments on synthetic and real data sets. We also show that a
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mode-seeking clustering method based on the proposed estimator performs well on clustering

tasks on synthetic and real data sets.

1.3.3 Multi-Task Principal Component Analysis

Principal Component Analysis (PCA) is a popular method for unsupervised linear dimen-
sionality reduction (Hotelling], {1933; [Joliffel |1986; |Pearson, [1901)). It is used for visualization,
feature extraction for classification and regression, and other pre-processing purposes. PCA
tries to find the optimal orthogonal projection of a fixed rank with which projected data
points have the largest variance so that the they will have small overlaps with each other
and different points can be easily discriminated.

In some real-world applications of PCA such as Brain Computer Interfaces (BCI) (Lotte
et al., [2007; [Yger et al., [2015), we are only given a limited amount of training data due to
expensive data collection cost. When we have multiple, similar tasks for each of which we
only have a limited amount of data, this situation can be alleviated by sharing information
between them within the multi-task learning framework (Caruana), [1998). Here, by the
similarity of tasks, we mean that the types of their target functions and training data are
the same while they have independent observations of data following similar but possibly
different data distributions. To take the heterogeneity into account, sharing models in a
soft manner, i.e. making learning results close to each other rather than sharing a common
model among the tasks, is expected to be effective (Evgeniou et al., |2005; |Evgeniou and
Pontil, |2004b)).

A challenge here is that the learning target of each PCA task is a projection matrix, and
projection matrices form a non-Euclidean manifold (Absil et al., 2009). The traditional soft
model-sharing scheme based on the Euclidean geometry might impose unnatural dynamics
in the training of the models or fail to correctly measure the similarity between projection
matrices. Moreover, the manifold of the projection matrices has a much lower dimensionality
than that of their superficial matrix representations (Absil et al., [2009). Naive treatment
of those matrices in the Euclidean space ignoring their structure ends up working with an
unnecessarily higher-dimensional problem.

To mitigate this issue, we propose a multi-task PCA method based on the metric defined
on the manifold of the projection matrices, allowing direct optimization on the manifold
by applying a recently developed, theoretically well-founded optimization technique for
efficiently solving the problem (Absil et al., [2009).

We demonstrate the effectiveness of our method through synthetic and BCI data sets.
This work is presented in Chapter 4.

1.3.4 Uplift Modeling from Separate Labels

In Chapter 5, we consider uplift modeling from separate labels. In uplift modeling, a central

task is to estimate the impact of a treatment (e.g., medical treatment, an advertisement
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campaign) on the change of its outcome (e.g., the rate of recovery from a disease, the amount
of purchases). We call the impact of a treatment the treatment effect.

In many real-world applications, we are particularly interested in knowing for what kind
of individual a treatment is effective and how much it is so in order to decide whether
to give the treatment on the individual level. In such cases, it is useful to estimate the
individual treatment effect (ITE), the average treatment effect conditioned on the features of
an individual (Shalit et al., |2017)). We refer to this estimation problem as uplift modeling in
what follows.

Conventional methods of uplift modeling require every sample of an individual to be
jointly equipped with two types of labels: 1) the treatment given to the individual and
2) its outcome (Gutierrez and Gérardy, 2017 |Jaskowski and Jaroszewicz, [2012; Radcliffe
and Surryl, [1999] 2011} Rzepakowski and Jaroszewiczl, 2012a; [Shalit et al.l [2017). However,
obtaining these two labels for each instance at the same time is difficult or expensive in some
cases. For example, suppose that we want to know the effect of an E-mail advertisement.
We would know to whom we deliver the advertisement as a sender, but it would be difficult
to know how much purchases each recipient eventually makes unless we track the individual
with a malware or by other unethical means. On the other hand, we may know the amount
of purchases when they are actually made. In this case, however, it is often difficult to
precisely know whether the purchasers have received the advertisement.

In Chapter we consider a more practical setting of uplift modeling (Gutierrez
and Gérardyl, 2017 |Jaskowski and Jaroszewicz, 2012 |Radcliffe and Surryl (1999, 2011}
Rzepakowski and Jaroszewicz, |2012a; [Shalit et al., [2017)), called uplift modeling from separate
labels, where only one of the two types of labels is available for each sample.

Estimation of the ITE in this setting is not in general feasible when training data are
collected from a single population. However, we will show that it becomes possible when
we have two kinds of training data sampled from two different populations under some
reasonable assumptions.

In this case, the ITE is characterized by four functions each of which can be estimated by
simply performing regression on a relevant subset of the training data set. However, a naive
approach of separately estimating these four functions and combining them to construct an
estimate of the ITE in a post-processing manner is often unstable, Furthermore, improving
on the regression tasks does not guarantees a higher-quality estimate of the ITE.

We propose a method that avoids the intermediate sub-tasks of learning the four functions
but directly estimates the target function. Our proposed method uses all training data to
estimate the target function at once unlike the naive method. This can be seen as another
form of information sharing, and it is expected to bring performance improvement to the
proposed method.

We show the effectiveness of the proposed approach theoretically and empirically. This
topic is covered in Chapter [f]
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1.4 Organization of this Dissertation

This dissertation is organized as follows. In Chapter 2, we briefly introduce basic notions and
overview some machine learning problems related to our work. From Chapter [3]to Chapter
we present our work with detailed explanations about the motivation, our approaches, and
experiments, subject by subject. In Chapter [3| we introduce multi-dimensional log-density
gradient estimation and our method with application to clustering. Chapter [] focuses
on multi-task principal component analysis and proposes our method for this problem.
Chapter [5]is on the problem of uplift modeling from separate labels. We present our method
for accurately and efficiently solving it. Finally, we conclude our work with some future

prospectives of this line of research in Chapter [0}
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Chapter 2

Basics of Machine Learning

In this chapter, we introduce basics of machine learning in order to give an overview of topics
related to our work in a broader scope of the field. We also define some notion, terminology,

and notation that will be important in the subsequent chapters.

2.1 Notation and Assumptions

R denotes the set of all real numbers. N, denotes the set of all positive natural numbers:
Ny :={1,2,...}. Forany n € Ny, [n] :={1,...,n}.

When it helps avoid confusion, we use different fonts and styles for mathematical symbols
depending on what they represent as follows. Vectors and vector-valued random variables
are denoted by lowercase, bold Roman letters (e.g., @, «). For matrices and matrix-valued
random variables, we use uppercase, bold Roman letters (e.g., X, U). We use underlined
letters for realizations of random variables and constants (e.g., z, y). Sets are denoted by
uppercase calligraphic letters (e.g., X', V). However, we do not necessarily follow these rules
strictly and there may be some exceptions.

For any random variables z1,...,z, with n € Ny, we define the following symbols.
Dy, ...z, denotes their joint probability distribution. For any m € [n], Dy, . 20 jwmi1,zn
denotes the conditional distribution of (z1,...,z,,) conditioned on (Zmm41,...,Zn). Ep[]
denotes the expectation of the variable in the argument, and Prp[-] denotes the probability
of the statement in the argument, over the distribution D. We may omit those subscripts
when it is clear what are omitted from the context.

We assume that the probability density function exists for any random variable whenever
the following symbols are used. py, .., denotes joint probability density function (if they
are continuous) or their joint probability mass function (if they are discrete). For any

m € [n], Py, .. z, denotes the conditional probability density/mass function of

-7xw1‘$7n+17“-7
(z1,...,2y) conditioned on (Tpi1,...,2n).

For any matrix M, rank(M) denotes the rank of M and M T denotes its transpose.
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2.2 Machine Learning as Risk Minimization

In this section, we introduce a general way of formalizing the goal of a machine learning
problem in terms of mathematical optimization and the widely employed learning framework,

empirical risk minimization (Vapnik, [1995)).

2.2.1 Basic Terminologies

Suppose that we want to predict the value of a }-valued random variable y that (possibly)
depends on another X-valued random variable x, where X and ) are some measurable
spaces. We call y the output variable and x the input variable as the task is essentially about
learning the input-output relationship between these variables.

Machine learning is aimed at solving such a prediction task, but a machine learning algo-
rithm itself does not directly make predictions. Instead, by processing available information
from data, it produces another function mapping from X to ) whose outputs correspond to
predictions. Such a function used for prediction is called a hypothesis function, and the set
of possible hypothesis functions a learning algorithm may produce is called its hypothesis
class. Data that a learning algorithm is allowed to use in order to produce a hypothesis, are

called training data, and data used for test evaluation are called test data.

2.2.2 Formulation with Mathematical Optimization

Many machine learning problems are formulated in the form of mathematical optimization
problems, i.e., problems of finding a hypothesis function that minimizes/maximizes some

objective functional under some constraints. There are several advantages with this approach.

e We can explicitly and objectively quantify the goodness of hypotheses by the objective
functional of the optimization problem. This also enables us to mathematically write
down the learning target as the optimal solution to the optimization problem even

when it is not explicitly defined.

e We can ensure conditions that hypotheses must satisfy by specifying them as constraints.
This is more reliable than enforcing the conditions by post-processing a hypothesis
function in an ad-hoc fashion since it will be guaranteed that the optimal solution will

be not worse than any other eligible ones in terms of the objective.

e Statistical properties of a learning algorithm can be studied in a rigorous way by

analyzing the behaviours of an optimization problem and its solutions.

e A lot of useful results from the optimization theory can be readily employed to design

efficient learning algorithms.

e Algorithm designs can be broken down into statistical and computational aspects
in a modular way. The optimization problem can be designed so that the resulting

statistical properties of the solution will be what we want without paying too much
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attention to computational issues. Once the optimization problem is defined, we only

have to find an optimization algorithm to solve it

Below, we will briefly explain some more details about this general approach to machine

learning and various examples of concrete methods based on risk minimization.

2.2.3 Loss Function and Risk

Design of a learning algorithm can be divided into two factors: choosing a hypothesis class
and establishing a way to find a good hypothesis from the hypothesis class with the help of
training data.

For finding a “good” hypothesis, we need to define what is good and what is bad. For this
purpose, we use a loss function. A loss function is a function for measuring the badnes of
a hypothesis function in a point-wise manner: It evaluates the performance of a hypothesis
function at any data point in terms of how poorly it predicts or explains the data point. We
refer to an output of a loss function as the loss. In a very general form, a loss function ¢ can
have the following form: (:HXxXxY >R, Then, the loss of a hypothesis h at any data
point (z,y) € X x ) can be measured by Z(hﬂgy) € R. The smaller Z(hﬂgy) is, the better
h is.

Now, we can assesses a hypothesis locally at each point by a loss function, but how can
we evaluate its overall performance? This can be done by averaging the loss evaluations over

all data points. More formally, we define the risk of h associated with { as the expected loss:

Ry(h):= B [((h,,y)], (2.1)
(z,y)~D
where D is the underlying joint distribution of (z,y), and we assume that the expectation

exists and ranges in (—o0, 00].

Remark 2.2.1. We may use different loss functions for training and test evaluation. A
reason is that the type of data may be different between the training and the test phases
in unsupervised learning and weakly supervised learning. Another reason is a performance
concerning issue. Training tends to involve heavy computation and a lot of repeated
evaluations of a loss function for optimization while it suffices to evaluate the loss only once
at each test data point for testing. Approximations or other alternatives to the original loss

function are often used for efficient training (Bartlett et al., [20006).

Remark 2.2.2. As we will introduce later, learning problems can be roughly categorized
into (at least) two types depending on the form of data points. One is supervised learning,
where samples of the output variable y are given along with samples of the input variable x
both in training data. The other is unsupervised learning, where output samples are not

available in the training phase, or even in the test evaluation phase. In the supervised case,

“IIn some cases, we need to make a non-trivial modification to the optimization problem itself to
make it feasible. For instance, we often make an approximation to the objective functional used in
classification (Bartlett et al., |2006).

*2The negative of the output of a loss function defines the goodness of a hypothesis.
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we usually use a simpler form of a loss function: 4(h,z,y) := ¢(h(z),y) with some function
¢:Y? = R. Note that ¢ only evaluates h through its outputs. On the other hand, in the
unsupervised case where we cannot access output samples, the loss function should not use
output samples either, and thus a training loss function typically takes another simpler form

as follows: £(h,xz,y) := £(h,z) with some function ¢ : H x X — R.

2.3 Supervised Learning

The goal of supervised learning, in general, is to learn a function for accurately predicting
the value of the output variable y given the input variable x under direct supervision. Here,
the direct supervision refers to the presence of samples of the output variable y labeling

each instance x which directly tells the (noisy) ground truth of the prediction task.

2.3.1 Performance Evaluation

In a typical supervised learning task, the loss function ¢ takes any y € Y and the prediction of
a hypothesis h at x as input, and outputs the loss £(h(x),y) that measures their discrepancy,
or the prediction error of h at x against . The goal is to find a hypothesis that minimizes

the following risk:
Ry(h):= E [((h(z),y)], (2.2)

where D is the underlying joint distribution of x and y.
For test evaluation in practice, D is often unknown, and we cannot access the exact value
of the expectation in Eq. (2.2]). However, it can be approximated by the following sample

average using test data:

R Sie) = = S hlal), o), (23)

i€[n’]

where Sie := {(2},4})}/"_, is a set of test data consisting of samples of 2 and y, independently

79

and identically distributed (i.i.d.) by D.

2.3.2 Training Data in Supervised Learning

Supervised learning problems are described as supervised because there is direct supervision
about the output variable provided to the learning algorithm through training data. More
specifically, in supervised learning, a training dataset is a set of i.i.d. sample pairs of x and
v (@, y0) 1y "X D, where D is the same joint distribution as that of the test data. Each
instance z; is annotated by its corresponding output y;, directly telling us what can be a

potential value of y when z = xi

*3The observation y; might not be the best prediction for z; unless y is not deterministically dependent
on z. This is a reason why memorizing training data and using their exact values as predictions may not be
optimal. Statistical inference techniques are used to deal with this uncertainty.
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2.3.3 Classification

Classification is a typical supervised learning problem, whose goal is to learn a function
assigning a categorical label y to any test data instance x. By y being categorical, we mean
that the set of its possible values ) is a finite set without algebraic, geometric, or any other
kind of structure presumably equipped. In classification, elements of )} are often called
classes or class labels.

We usually use a loss function £qs : Y x YV defined by fos(y,y') = 1]y # ¢'], which
measures the disagreement of the two arguments. The risk of a hypothesis i associated with

L5 is expressed as
Rais(h) := Eltas(h(z),y)] = E[lly # y']] = Prly # ¢].

We call it the classification risk or classification error rate.

Surprisingly, in spite of their discrete nature, it has been shown that classification
problems can be approximately solved with high probability via continuous optimization with
remarkable success (Bartlett et al., 2006; |[Friedman et al., |2001; [He et al., 2015; |Simonyan
and Zisserman, 2015; [Vapnikl |1995]).

This is one of the areas where machine learning methods can perform as well as or even
better than humans do (He et al., |2015).

2.3.3.1 Bayes Optimal Classifier

Once we have the criterion for performance evaluation defined by the classification risk
R.s, we can define a best possible hypothesis h* as one that achieves the smallest risk:
h* € infrer, , Ras(h) = infrer, , Prlh(z) # y], where Fyx y is the set of all measurable
functions mapping from X to ). Any hypothesis of Fx y that achieves BErr; is called a

Bayes optimal classifier.

2.3.3.2 Binary Classification

Binary classification is a special case of classification where only two classes exist. For
notational convenience, we encode the two classes by labels: Y := {—1, 1} and we allow
hypothesis functions to output real values, whose signs predict class labels. In the standard
binary classification, we consider the zero-one loss function fy.; as the loss function, defined
by

lo1(z,y) == 1[sign(z) # y] = 1[z -y = 0],

for any z € R and any y € {—1,1}, where 1[] is the indicator function that outputs 1 if its
argument is true and 0 otherwise, and sign[-] is 1 if the sign of its argument is non-negative,

and —1 otherwise. When z is the output of a hypothesis A on x, and y is the corresponding

*4Note that this is always possible and does not lose generality.
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true class label, the zero-one loss £o_1(2,y) = £o.1(h(x),y) penalizes the hypothesis h by unit
loss 1 if and only if its prediction is different from the true class label .

The risk in this case is referred to as the zero-one risk and given by

Ro1(h)= E [lo.1(h(x), = E [lly-h(z) >0]|= Pr -h(x) > 0].
w1 = B (@)= B [ily-h@)20] = Pr fy-h()=0
We can see that the risk coincides with the probability of & making a wrong prediction. It

can be shown that a hypothesis A minimizes the zero-one risk if

sign[h(z)] = sign[p(y =1 | z) —p(y = -1 | 2)],

where p(y | z) is the conditional probability mass function.
Since the distribution D is usually unknown and the risk above cannot be exactly

calculated, we use the following sample average on the training data:

Roa(hSu) = = 5™ e(h(as), o)- 2.4
0-1(h; Str) "iez[n] (h(z4), i) (2.4)
We refer to the approximated risk as the empirical risk, and the exact risk as the population
risk as opposed to the empirical risk. This framework of learning a function by minimizing
the empirical risk is called empirical risk minimization (Vapnikl, {1995).

Minimizing ]fzo_l(h; Sir) involves a discrete objective function, making the optimization
hard. In fact, it was proven that there is a simple problem instance where it is NP-hard to
find a hypothesis function that makes the empirical zero-one risk greater than 1/2 (Feldman
et al., 2012).

Fortunately, what we want to minimize is not the empirical risk but the population
risk, and the exact minimization of the empirical risk is not much of our interest here
since E(h; Sir) is already an approximation to the population risk. We use a continuous
approximation to the zero-one loss function to overcome the computational issue. Such
approximate loss functions used for this purpose are called surrogate loss functions. This
approximation is justified as long as the learning result yields a consistent estimator to the
minimizer of the population risk, and many surrogate loss functions are guaranteed satisfy
this property (Bartlett et al., [2006). By introducing surrogate loss functions, continuous
optimization techniques such as gradient-based methods will be applicable to solve the
problem. Several surrogate loss functions have been proposed in the literature depending on

the purposes. We will give a few examples below.

e Logistic loss: fiogi(2,y) := —log(1 + exp(—=z - y)). This is a convex upper-bound of
the zero-one loss. The logistic loss of a hypothesis h, foqi(h(x),y), can be seen as

the log-likelihood of the following probabilistic model for the conditional probability
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density p(y | x):

exp (y - h(x)/2)
exp (h(z)/2) + exp (—h(z)/2)
1
" I+exp(—y - h())

q(y | x5 h) =

An intuitive explanation of this model is that h controls the magnitude of the probability
through its exponential as a proxy so that the output will be always non-negative.
Then, we normalize it over y to make sure that the resulting output values sum up to
1.

Since the logistic loss function is differentiable, the empirical risk minimization can be
performed by gradient-based methods. Furthermore, for linear-in-parameter models,
the problem will be convex and the global minimizer can be obtained efficiently by

convex optimization solvers.

e Hinge loss: fhinge(2,y) := max{l — z - y,0}. It is another convex upper-bound of
the zero-one loss. The resulting empirical risk minimization with a ¢s-regularizer

corresponds to the soft-margin support vector machines (Vapnikl [1995)).

The hinge loss function is sub-differentiable, and the empirical risk can be minimized
performed by sub-gradient-based methods. It is also convex, and the problem can be

solved by convex optimization methods for linear-in-parameter models.

e Squared loss: flsq(2,y) := (1 — 2z - y)2. The squared loss function is also convex
and upper-bounds the zero-one loss function. Another expression of this function is
lsq(2,y) = (2 — y)?, where we can see that the loss encourages the prediction z to be
close to the true label y. We can obtain an analytic solution when a linear-in-parameter

model is used.

o Sigmoid loss: lgig(2,y) :=1/[1 4+ exp(—=z - y))]. This is a differentiable approximations
to the zero-one loss which has relatively less approximation errors compared to the
loss functions above. It is differentiable at every point, and we can minimize the
corresponding empirical risk by the gradient descent approach as long as the model
is also differentiable. On drawback is that the problem will be non-convex even for

linear-in-parameter models.

Remark 2.3.1. Note that a choice of the surrogate loss function is a part of a learning
algorithm design, not of the problem. Hence, a surrogate loss function should be used only
for training purposes but not for evaluation purposes. Once we decided to use the zero-one
loss function as the performance measure, we should use it in the ultimate performance

evaluation. Otherwise, the evaluation will be unfairly in favor of the algorithm.
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2.3.3.3 Multi-Class Classification

A more general setting where there are more than one classes (i.e., |Y| > 2) as opposed to
binary classification is called multi-class classification. Without loss of generality, assume
that Y = {1,..., K}, where K € N,.

Although as a problem setting, it is a natural extension of binary classification, surrogate
loss functions used for binary classification may not be easily generalized to the multi-class
case since the classes can no longer be simply encoded as signs of real numbers. We only
introduce the soft-max cross entropy loss since it is a poplar multi-class surrogate loss

function although there are other useful loss functions.

Soft-Max Cross Entropy Loss: We suppose that the hypothesis class H is a subset of
the following set of functions {h : X — RX} and that a hypothesis h € H predicts the
output y on x by argmax,cx) h (:I:) where hy(z) is the k-th element of the vector h(z).

The soft-max cross entropy loss {yscE : RE x X x Y — R is a multi-class extension of

the logistic loss, defined by

tasce(h,y, ) == —log ( exp (hy () > '

Zke[K] exp (he(x))

This can be seen as the negative log-likelihood of the following probabilistic model for the

conditional probability density p(y | x):

q(y |z h) = D owex) exp (hi(x))”

The logistic loss is the special case of the soft-max cross entropy loss when k£ = 2 and

the hypothesis class H is restricted by hy = —h; for every h € H.

2.3.4 Regression

Regression refers to estimation of a function for predicting a real-valued output variable
y given an input variable . In our notation, ) = R. There are several loss functions for

regression including the following ones.

e Squared loss function: fyq(z,y) = (2 — y)zﬁ In particular, the empirical risk mini-
mization under the squared loss function and a linear model is called least-squares, and
ridge regression when solved with the fo-regularizer. When we allow a hypothesis to
be any function in Lo, a minimizer of the risk with this loss function is the conditional

expectation of y conditioned on z: Ely | z] € arginf ;. E[lsq(f(z),y)].

e /q-loss function: ¢1(z,y) := |z — y|. The squared loss function is sensitive to outliers,

i.e., abnormal data points distant from normal ones, since errors on those points are

*5We take the smallest one if the maximizer is not unique.
*6This coincides with the squared loss function for binary classification when the second argument is
restricted to {—1,1}.
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penalized by large loss that quadratically increases with respect to the errors. As a
more robust loss function, we may use ¢1-loss defined above. This loss only penalize

errors linearly, and the result will be less affected by outliers.

2.4 Unsupervised Learning

In unsupervised learning problems, output labels are absent in training data unlike supervised
ones. In some cases, they are not available even in test data or not defined.

We will give a few examples that will be also important in the subsequent chapters.

2.4.1 Data and Distribution

Typically, a training dataset in an unsupervised problem only consists of input samples:
Sir = {zi}, L p. Unsupervised problem are called unsupervised because direct

supervision about the output is absent as opposed to supervised learning.

2.4.2 Principal Component Analysis

Principal component analysis (PCA) (Hotelling, (1933; Joliffe, (1986} Pearsonl, |1901) is a
widely used unsupervised method to reduce data dimensionality for visualization and data
preprocessing purposes.

PCA finds an orthogonal projection of data points onto a lower-dimensional linear
subspace on which the data points have the largest variance, hoping that the data points
will be widely spread after the projection and easily distinguished from each other.

Suppose that we have i.i.d. R%-valued training data {;}?_, following some distribution
D,. We assume that the data have mean zero. If this does not hold, we can center

them, i.e., subtract the sample mean from the data: x; < x; — T for every i € [n], where

n

P:={P:R? -5 R?| P2 = P,P" = P,rank(P) = k}, where rank(-) is the rank of the

matrix in the argument. Note that P2 = P is the condition for P to be a projection, and

z=1 Zie[n] x;. Let P denote the set of orthogonal projection matrices of rank & on R%:

PT = P is for its orthogonality. We define the reconstruction error of P € P on a point x
as « — Px. Then, PCA seeks the orthogonal projection matrix that minimizes the mean

squared reconstruction error as follows:
argmin E[||x — Px||3], (2.5)
PcP

where || - ||2 is the £ norm, and the expectation is taken over x ~ P.
Using the conditions P2 = P and P" = P, we have

E ||z — Px|3] =E [|=|3 - x'P'x— a2 Px+ :cTPTPm]
=E [[|lz] — | Px3]
= Var[z] — Var[Pz],
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where Var[-] denotes the covariance matrix of the variable in the argument, and the last
equation follows since & has mean zero. Note that Var[x] is a constant with respect to P and
irrelevant to the optimization. Hence, Eq. is equivalent to maximizing the variance of the
projected data Pz. Since Var[Pz] = E[Tr(z" P" Pz)] = E[P Tr(zz")] = Tr(P Var[z]),
Eq. is equivalent to

argmax Tr(PC), (2.6)
Pell

where C = Var|z].
If the dimensionality of the projected space is k, the projection matrix P can be written
as P =U U, where U € R** is an skinny orthonormal matrix that satisfies UTU = I.

Hence, our problem can be expressed as

argmax Tre(UU ' C) s.t. U'U = I.
UeRdxk

All the stationary solutions of the problem satisfy the following Karush-Kuhn-Tucker
(KKT) conditions:

VuLl(U,A) =0, VAL(U,A)=0, (2.7)

where L(U,A) := Tr(UU"C) — Tr(A(U U — I)) is the Lagrangian of the problems, and

A € RF¥* is the matrix consisting of the Lagrange multipliers. Equivalently, we have
CU=UA, U'U=I,. (2.8)

We observe A = U CU. Since C is symmetric and positive semi-definite, so is A. Hence,
it has an eigenvalue decomposition: A = UTXU, where U € R¥* s a skinny orthogonal
matrix, and ¥ € R¥** is a diagonal matrix whose elements are all non-negative. Let
V :=UU. Then, we can see that can be equivalently expressed as

CV=VYE VVv=I

Also, we have Te(VTCV) = Te(UTUTCUU) = Tr(UTCU). Thus, we can safely restrict
the search space to the set of the solutions satisfying Eq. (2.9), we can see that Eq. (2.7))

reduces to

argmax Tr(X)
(V,X)€eEigPair(C)
where EigPair(C) := {(V,X) € RZkxRFF | CV = VE, VTV = I, 3 is a diagonal matrix}
is the set of all matrices satisfying Eq. (2.9). This means that the maximum is attained

when V is the concatenation of the eigenvectors corresponding to the k largest eigenvalues
of C, and U = VU maximizes Eq. (2.7), where U € R™* is an unidentified orthogonal
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matrix, but the optimal projection P = UU " = V'V T does not depend on U and can be

calculated.

2.4.3 Density Estimation

Density estimation is the fundamental problem of estimating the probability density function
py from i.i.d. data following it: {z;}, i pz- It is an unsupervised problem in that the
actual density values are not given along with training data but have to be inferred from
the unlabeled data.

Kernel Density Estimator (KDE) (Loftsgaarden and Quesenberry, (1965; Rosenblatt),
1956) is a well-known nonparametric density estimation method. It predicts the density at
an arbitrary test point by averaging the weights given by normalized kernel functions each

centered at a training point. More formally, the KDE is the following estimator:

Pu(z) = % > k(x, ),

1€[n]

where k : R — R is a positive-definite kernel function that is positive and normalized:
[ k(z,2")dz = 1.

Since the probability density function tells a lot about the population, numerous problems
can be reduced to this fundamental problem. However, due to its generality, density
estimation tends to be hard compared to more task-specific problems especially in high-
dimensional cases, and practitioners are advised to rather avoid solving this problem, if

possible.

2.4.4 Clustering

Clustering is an unsupervised learning problem of grouping data points so that similar points
will be assigned to the same group and dissimilar ones will not belong to different ones. It is
often used to visualize and interpret data as well as for classification when no supervised

label is available in a training data set.

2.4.4.1 K-Means Clustering

The K-means clusterin is a popular clustering method used when the number of the
clusters K is known in advance. It literally maintains the means of K clusters and assigns
each data point to the closest mean.

More specifically, the K-means clustering tries to find the minimizer of the following

optimization problem:

argmin E [||lxz — Mc(a:)HQL (2.9)
c:RI—[K] 2~D

*THans-Hermann| (2008) mentions the origin of K-means as follows: “When tracing back this algorithm
to its origins, we see that it has been proposed by several scientists in different forms and under different
assumptions.”
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where pp = 1,..., K be index of the clusters, ¢ is a function that assigns every data point
to one of the K clusters, and pp = E[x | ¢(x) = k.
We are often interested in solving a transductive version of this problem where the

expectation is taken over the empirical distribution on the training data:
min  © @i = Tegan 12 (2.10)
S — KN ! cl@)ll ’
i1€[n]

Here, ¢ can be restricted on S, and Zj, := s%c ZweSk x with Sy := {x € S, : c(x) = k}.
We can find many extensions of the method (Arthur and Vassilvitskii, |2007; Hans{

Fersans, 200S).

2.4.5 Mode-Seeking Clustering

A drawback of K-means clustering is that we need to know the number of clusters as
prior knowledge, which may not be the case in some applications. In contrast, methods
based on the mode-seeking clustering approach do not require us to specify the number of
clusters (Cheng, 1995} [Comaniciu and Meer}, 2002} [Fukunaga and Hostetler| 1975} [Sasakil
. Mode-seeking clustering methods seek a mode close to each data point by

iteratively moving the data point in the direction of the gradient of the data density.

In this approach, accurate estimation of the gradient direction is a critical task for the
clustering result. [Cheng| (1995)); [Comaniciu and Meer| (2002)); [Fukunaga and Hostetler| (1975)
estimate the density function by the KDE first, and then calculate the gradient of the

estimate.

[Sasaki et al.| (2014) proposed a clustering method based on estimation of the log-density

gradient, i.e., the gradient of the logarithm of the density, where the estimation is directly
targeted at the gradient unlike the two-stage, KDE-based approach, leading to empirically
promising performance. Estimation of the log-density gradient was also studied in
(1976)); |Cox] (1985)).

2.5 Semi-Supervised Learning

In a few words, semi-supervised learning is supervised learning with additional unlabeled
data. For example, in a typical semi-supervised classification problem, we are given unlabeled
data {x;};"Y; additionally to labeled data {(x;,v;)}i~; (Chapelle et all [2006; Sakai et al.,

2017, 2018).

Semi-supervised learning methods are often used to alleviate the situation where we only

have a limited amount of labeled data that are often expensive to collect, by exploiting

information from cheap unlabeled data.
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2.6 Weakly-Supervised Learning

Weakly-supervised learning is an intermediate scenario between supervised learning and
unsupervised learning. In weakly-supervised learning, only part of data points are labeled by
the output variable, or no output label is available but another kind of labels are given in the
training phase. There is no direct supervision about the output variable unlike supervised
learning, but there is limited supervision unlike unsupervised learning. As we will see below,

the indirect supervision can be given in variety of forms depending on the problem.

2.6.1 Positive-Unlabeled Learning

Positive-Unlabeled (PU) learning is a binary classification problem where we are given positive
data {«F}7'T, R D,jy=+1 and unlabeled data {z{}1"Y, "X D, but none of negative data
z|ly=—1 is available, where D denotes the distribution of (z, y) This setting has
been actively studied recently (Blanchard et al. 2010 |du Plessis et al., |2014], 2015} |[Elkan

and Notol 2008} Kiryo et al., 2017, |Niu et al., [2016).

following D

2.6.2 Unlabeled-Unlabeled Learning

Another interesting binary classification problem is Unlabeled- Unlabeled (UU) learning (du Plessis
et al., [2013; [Lu et al., |2018)). In this problem, we only have unlabeled data, but they are

given as two data sets {x}}/2, 4 DU and {x2}12,
D' and D? differ only in their class prior distributions: D; #* Dg, but Dily = Dily

du Plessis et al.| (2013)) showed that under the assumption that the test distribution D* has

i.i.d.
~

D? whose respective distributions

the balanced class prior distribution, i.e., Prpte[y = +1] = Prpt.[y = —1], the classification
boundary {x | Prpte[y = +1 | ] = Prpee[y = —1 | @]} can be learned although the label,
i.e., the sign of Prpt|y = +1 | ] — Prpte[y = —1 | x]} cannot be identified. |Lu et al.| (2018)
relaxed these limitations and showed that the classifier (the predictor for the boundary and
the sign) can be estimated for any test distribution D if we know the training class priors
D, and D?.

2.6.3 Comparison of Supervised, Semi-Supervised, Unsupervised,

and Weakly Supervised Learning

Table shows a brief comparison of forms of training and test data in supervised, semi-
supervised, unsupervised, and weakly supervised learning. In supervised learning, we have
output samples y; and y; both in training and test data sets. In semi-supervised learning,
we have additional unlabeled data z¥ in a training data set. In unsupervised learning, no
output sample is given as training data although a test data set may or may not have output
samples. In weakly supervised learning, there is no output sample available in a training
data set, but we are given another type of weak labels [; that has information about the

output instead. For example, PU learning can be seen as a weakly supervised learning

*8Refer to Section for our notational convention.
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Table 2.1: Comparison of the settings of supervised, unsupervised, and weakly-supervised
learning from the aspect of information provided as training data as well as test data.

‘ Training Data ‘ Test Data

Swervised leamning | {@ouby | {@Ludhl

Semi-supervised learning ‘ {(zs,yi) }iey and {x;}%, ‘ {(, y) e,
Unsupervised learning | {zi}i, | {@hyp) i or {a}

Weakly Supervised learning ‘ {(zi, 1)}, ‘ {(, Yy},

with I; € {4+1,0}, where [; = +1 indicates that instance z; is from the positive class, and 0
indicates that x; can be a positive or a negative instance. For UU learning, we can define

l; € {1,2} indicating that instance ; is drawn from the distribution D':.

2.7 Transfer Learning

Transfer learning, in a broad sense, refers to the special case of learning from limited
information where all or most, depending on the specific setting, of training data are
qualitatively different from those used in the test environment for performance evaluation.
Here, information is limited in the sense that there are few or none of data available for
training that are directly generated from the test environment. In such cases, naively
minimizing the empirical risk on the training data would result in poor performance in the
test environment. A challenge is to devise a way to fill the gap by transferring knowledge
from the training domain to the test domain so that the learner can perform well in the
latter domain.

An extensive survey on transfer learning can be found in [Pan and Yang (2010).

2.7.1 Domain Adaptation

Domain adaptation is learning under the presence of distribution shift between the training
and the test domain although the types of the training and the test data are the same.
When a model is pre-trained on data from the training domain and then slightly calibrated
to the test domain, the calibration part is called fine tuning in the deep learning community,

which can be seen as an instance of domain adaptation.

2.7.2 Covariate Shift Adaptation

Covariate shift is a domain adaptation setting where the covariate (or input) distribution
changes in the training and the test phase: p # p'¢, where p'* is the probability density
function for the training, and p*® is that for the test. The goal is to estimate a function

characterized by p'¢ (y | =) (e.g., regression function) from data following the training

ylz
r

distribution, {(z;,y:)}{=1 ~ pg,(2,y), under the assumption that pji (y | ) = pyi,(y |
z) (Shimodairaj, 2000} |[Sugiyama and Kawanabe, 2012).



2.7. 'Transfer Learning 27

It has been shown that in many cases, learning performance improves by weighting the
loss by the ratio of the test density to the training density: pt¢(z)/pt(x) in empirical risk
minimization. (Shimodairal 2000} Sugiyama and Kawanabel, [2012; |Sugiyama et al.; [2012).

2.7.2.1 Owutput Distribution Shift Adaptation

This is another domain adaptation setting where the marginal distribution of the output
variable differs for training and test: pi,(y) # pre(y), but we assume that p;rly = pij The
goal is to estimate a function characterized by pi(y | ) (e.g., a classifier, a regression
function) from data following the training distribution, {(x;,y;)}"_; ~ pu(x,y) (du Plessis

and Sugiyamay, 2014; [Kawakubo et al.| [2016).

2.7.3 Multi-Task Learning

In multi-task learning, we are given multiple learning tasks to be solved. Those tasks have
their respective datasets and learning targets that are (in general) different from each other.
When the learning targets are related to each other, jointly solving the tasks while sharing
information across the tasks may lead to better learning results than those when solved
separately.

For this reason, empirical and theoretical studies on multi-task learning have been actively
conducted (Ando and Zhang, [2005; [Baxter} |2000; |Caruana;, [1998; [Evgeniou and Pontil, [2004al;
Thrun, [1996; |Zhang, 2013)).

Caruana/ (1998) proposed a neural network architecture for multi-task learning whose
lower-layers are shared by multiple tasks while higher-level layers being task-specific and
independent. This approach of explicitly sharing part of learning parameters among tasks
is called hard parameter-sharing. It is one of the oldest multi-task method in the machine
learning literature.

Evgeniou and Pontil (2004a) proposed a simple yet practical approach called regularized
multi-task learning, which uses a regularizer that encourage the solutions of similar tasks to
be close to each other. This approach of mildly imposing task relatedness by regularizers,
without explicitly sharing learning parameters is called soft parameter-sharing as opposed to

hard parameter-sharing. In this approach, the optimization problem usually looks as follows:

T

flmir} Z[/Jt(ft) + Qe (f)] + Qf1,-- -, f1),
end T t=1

where f; is the model, £; is the loss, and §2; is the regularizer for the ¢-th task. €2 is the
regularizer for incorporating the task relationship. The hard parameter-sharing approach
can be too restrictive in some cases where the tasks are similar but not to the extent where
they share identical parameters. The soft weight sharing approach relaxes the hard weight
sharing by penalizing the discrepancy between parameters across tasks instead of enforcing

them to be exactly the same.
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Thrun| (1996) proposed the lifelong learning framework, where the learning task to be
solved changes over time, and the knowledge obtained from the past tasks is transfered to
subsequent tasks, whose applications include image recognition.

Baxter| (2000) defined a theoretical framework called inductive bias learning, and gave
a theoretical analysis for a generalization error bound for a class of multi-task learning
methods.

The semi-supervised multi-task learning method proposed by [Ando and Zhang (2005))
generates many auxiliary learning tasks from unlabeled data and seeks a good feature mapping
for the target learning task within a similar framework of inductive bias learning (Baxter,
2000)).

2.8 Causal Inference and Uplift Modeling

This section introduces some basics on causal inference. Although there are several frame-
works for formal treatment of causality, we only cover the potential outcome framework
introduced in [Rubin| (2005). Many other interesting and advanced topics on causal inference
can be found in [Hernan and Robins| (2018); Pearl| (2009).

2.8.1 Potential Outcomes

In the potential outcome framework, we have two real-valued random variables y(—1) and
y(1) that are not observed at the same time, but only one of them can be observedE We call
these variables potential outcomes. When one of the two variables is observed, the observed
one is called the factual outcome, and the other one is called the counter-factual outcome.
For example, in a medical treatment application, the argument of y(-) may represent whether
the medical treatment has been given to a patient (1 meaning that it has been, and —1
otherwise), and the observation of y(-) may represent how much the health condition is
improved. The two actions of treating (1) and not treating (—1) cannot be taken at the
same time, and only the potential outcome corresponding to the chosen action can ever be

observed.

2.8.2 Treatment Variable

Let ¢t be another variable called treatment variable taking its value on {—1,1}. Suppose
that ¢ represents a stochastic decision about whether to treat (t = 1) or not (¢t = —1) and
thus decides which outcome, y(1) or y(—1) respectively, to be observed. In other words, we
observe y(t) but never y(—t) when the treatment assignment is ¢t = ¢ for t € {—1,1}. Then,
the factual outcome under the treatment assignment by ¢ can be written as y(t), and the

counter-factual one as y(—t).

*9We consider real-valued variables for simplicity.
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2.8.3 Treatment Effect

Knowing the treatment effect, or causal effect, defined as y(1) — y(—1), would be often of
interest in real-world applications since it directly tells which action, treating (1) or not
treating (—1), results in the better outcome as well as how better it is. However, without
any further assumption, it is impossible to know this quantity due to the exclusive nature in
observation of the potential outcomes. This issue is referred to as the fundamental problem
of causal inference (Holland, [1986).

Instead of the treatment effect defined above, we may be interested in estimating the
average treatment effect defined as E[y(1)] — E[y(—1)], where the expectation is taken over
all possibilities of y(1) and y(—1). Intuitively, it seems possible to estimate the expectations
by collecting many samples that are given the treatment 1 and —1 respectively. This is
true under some conditions, but not always. Below, we will consider when and how the

estimation is possible.

2.8.4 Difference between Causation and Statistical Association

Causal notions and statistical notions are related to but different from each other. In partic-
ular, causal relationships and statistical association between variables can be confusing, and
analyzing data without understanding their difference can critically mislead interpretations
and conclusions.

To see this in a simple example, we show the following paradoxical mathematical fact

about the average treatment effect that can be shown under the potential outcome framework.

Example 2.8.1. Consider the following medical treatment example: a patient receives the
medical treatment determined by the variable ¢, and we observe the counter factual outcome
y(t) as a consequence. Suppose that there are only four patient in the world, and we have
observed ¢ and y(t) for all of them. The variables take values for each patient as in Table
Note that neither y(1) nor y(—1) are directly observed although either could be indirectly
observed through y(t).

Now, we want to know the effect of the medical treatment. It might be tempting to
say that it can be calculated the difference of the conditional expectation E[y(t) | ¢t =
1] — E[y(t) | t = —1], which is, however, incorrect. If we calculate it, it gives E[y(t) | t =
1] - E[y(t) |t = -1] = 2/2 —-1/2 = 1/2. On the other hand, the true average treatment
effect is E[y(1)] — E[y(—1)] = 2/4 — 2/4 = 0, i.e., there is no treatment effect on average.

The reason why this counter-intuitive phenomenon occurs is because ¢ has statistical
dependency on y(1). In the example above, ¢ is correlated with y(1): ¢t = 1 if y(1) =1
and —1 otherwise, which biases the conditional expectation E[y(¢) | ¢ = 1]. From the table,
we can also see that ¢ is statistically independent of y(1), and E[y(¢) | y = —1] is equal to

E[y(—1)]. As we will see later, this is not a coincidence.
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Table 2.2: The population for Example t and y(t) are observed. Numbers in parentheses
are not directly observed.

‘ Patient 1 ‘ Patient 2 ‘ Patient 3 ‘ Patient 4 ‘ Average
v | o | @ | o @ ] e
y(=1) | (0 (1) (1) (2/4)

| | | |

I S S NS SN M S B S

vy | o [ o v | v
y(t)y[t=1 | 1 1] 2/2
yt)|[t=—=1| 0 | | 1 | | 1/2

Example 2.8.1] illustrates that the average treatment cannot be always estimated by
conditional expectations. In other words, we cannot safely make causal inference using
statistical techniques without any assumption. Are there any conditions for validating the
average treatment effect estimation by based on the conditional expectations? In the next

subsection, we introduce some sufficient conditions for this.

2.8.5 Condition for Statistical Average Treatment Effect Estima-

tion

In Example 2.8.1] E[y(1) | t = 1] failed to estimate E[y(1)]. This was because ¢ and y(1)

had some statistical dependency. A natural question is, what if it was not the case?

Definition 2.8.1 (Exchangeability). When y(s) L ¢ for all s € {—1,1}, where (-) L (+)
indicates the independence of variables, we say that they satisfy ezchangeability

In other words, the exchangeability states that the treatment variable ¢ is (statistically)

dependent on neither of the two potential outcomes y(1) nor y(—1).

Proposition 2.8.1. When the exchangeability holds, we have

fors=—-1,1.

2.8.6 Controlled Randomized Trials and Observational Studies

Experiments or trials with a completely randomized treatment variable (with no dependence
on any other variables) under a controlled environment are called Controlled Randomized

Trials (CRTs). CRTs are useful and often conducted since samples collected from a CRT

*19Pe¢arll (2009) explains the nuance of the term ’exchangeability’ as follows: “the investigator is instructed
to imagine a hypothetical ezchange of the two groups (the treated group becomes untreated, and vice versa)
and then to judge whether the observed data under the swap would be distinguishable from the actual data.”
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satisfy the exchangeability, and thus the average treatment effect can be estimated as
explained above.

While causal inference using CRT samples is a simple and solid approach, it is not
always feasible. A reason is that the treatment subject to an investigation cannot always
be controlled or randomized due to technical, ethical, or economical reasons. In a medical
treatment example, some patients may be unwilling to take well-tested medical treatments
just because they are randomly chosen.

For this reason, methodologies for causal inference using data collected from observations
without controlling treatment assignments are practically important and have been actively
explored (Gutierrez and Gérardy, 2017; [Rosenbaum) [2010; [Shalit et al.l 2017). Investigations

and analyses from such data are called observational studies.

2.8.7 Conditional Average Treatment Effect

When we have access to some covariate = that may potentially affect the causal relationship
between y and ¢, finer analyses may be possible by knowing the conditional average treatment
effect. We define the conditional average treatment effect (CATE) as follows:

u(z) :==E[y(1) |z =2] - E[y(-1) |z = z].

In this dissertation, we also use individual treatment effect (ITE) and individual uplift for
referring to conditional average treatment effect.
In parallel to the case of the average treatment effect, we have the following sufficient

condition for the identifiability of the conditional average treatment effect:

Definition 2.8.2 (Conditional Exchangeability). Suppose that y(¢) L ¢ | + = z for all
te{-1,1} and all x € X, where (-) L () | (-) indicates the independence of the first two
variables conditioned on the third variable, and X is the range of x. Then, we say that ¢ is

exchangeable with respect to y conditioned on x.

Proposition 2.8.2 (Wasserman| (2013)). When t is exchangeable with respect to y condi-

tioned on x, we have

forallt € {-1,1} and all z € X.

Corollary 2.8.1. Under the assumptions of Proposition we have
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2.8.8 Uplift Modeling

In many real-world problems, we are required to optimize an action or a treatment so
as to maximize some profit. Uplift modeling is the field studying such decision making
problems based on machine learning approaches (Gutierrez and Gérardy, 2017 |Jaskowski
and Jaroszewicz, 2012 |Radcliffe and Surryl [1999, 2011; |Rzepakowski and Jaroszewicz, 2012aj
Shalit et al., |2017]).

In uplift modeling, the individual uplift u(z) plays a very important role, and thus uplift
modeling is closely related to treatment effect estimation. We can see that once we estimate
u(x), it provides several useful hints about our decision making as follows.

We define a treatment policy 7(t | ) by a conditional probability density of ¢ given z,
which represents our stochastic decision making rule about the treatment assignment after
observing x. The average of the outcome y when the treatment ¢ follows the treatment

policy 7 (t | x) is
= [[ X uply 2. 0m(¢ ] a)pla)dyds

= /U(Z‘)ﬂ'(t =1] J;)p(x)dx—i—// Z yp(y | z, )1t = —1]p(z)dydz .

t=—1,1

=:U(m)

Constant w.r.t. 7

If we want to maximize this quantity with respect to m, we only have to maximize the first
term U(w). Hence, an optimal solution is given by (¢t = 1 | z) = 1[0 < u(z)]. Note that
m(t =11 x) € [0,1]. This means that the optimal treatment policy maximizing the average
outcome can be easily obtained if we know wu(z).

Furthermore, u(x) can be used for ranking individuals to decide what individuals should
be prioritized to be treated. This is especially useful when the treatment incurs some cost
and we have a limited budgets for paying the cost. In this case, we need to select a limited
number of individuals to be treated.

Suppose that we rank individuals according to some scoring function f(z) and take the
ones whose scores are more than or equal to some threshold o € R. This corresponds to
using the treatment policy 77 o(t =1 | x) := 1ja < f(x)]. Similarly we define m, g(t =
1] z):=1[8 < u(zr)]. If we compare the average outcome of mf,(t = 1 | ) and that

of m, 3(t = 1 | x) under the condition that they treat the same portion of individual:
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Prla < f(z)] = Pr[f8 < u(x)], their difference is

Umup) ~ Ulnga) = [ o) x 18 < ulallp(o)de — [ ulz) x 1la < f@)lpla)ds
> [ 105 < u@lpta)de ~ [ u(e) x 1la < [z
= 5Pr(3 < u(e)] - [ u(e) x 1la < f@)lp)ds
= 3Prla < f@)) - [ ulz) x 1l < f@)pla)ds
= [ Bx1la < f@lpla)ds ~ [ ulz) x 1l < f@)pla)ds
— [ 1~ u@) x 1fa < F@)lpl)da

>0,

where the lower bound 0 is attained when 5 < u(z) <= «a < f(x). This means that m, g
maximizes the average outcome under the constraint on the proportion of treated individuals.
This holds for any threshold 5. In this sense, u(x) yields the optimal ranking scores.

This is related to the fact that u(x) maximizes Area Under the Uplift Curve (AUUC),
which is a standard performance measure for uplift modeling methods (Jaskowski and
Jaroszewicz, 2012; Radcliffe] |2007; Radcliffe and Surry, 2011; |Rzepakowski and Jaroszewiczl,
2012al). We discuss this topic in detail in Chapter

Related Areas Uplift modeling has a close connection to causal effect/treatment effect
estimation that has been studied in the causal inference literature, and the mathematical
formulation of problems and the methodologies in the both domains have considerable
overlaps. The focus of uplift modeling is more on the prediction about the outcome of the
unseen or future situations and the optimization of our actions. On the other hand, the
causal inference literature often focuses more on analysis, reasoning, or discovery of past
events in the aspect of the causation mechanisms behind them.

It is also related to off-line batch multi-armed bandit problems (Li et al.l 2010, [2011]).
In the standard multi-armed bandit problem, the agent or the player is allowed to actively
interacts with the environment in an online manner. The agent chooses an action from
multiple candidates and receives a reward that depends on the action from the environment.
The goal is to take good actions in the long run, i.e., maximizing the cumulative reward. The
agent must care about the efficiency in the whole course of the learning process including
the learning process since actions of the agent are evaluated and rewarded even during the
learning phase. In off-line batch multi-armed bandit problems, on the other hand, the agent
does not interact with the environment in an online manner. Training is performed using
data observed in games played by other agents with policies different from the policy being

trained. In this case, we only care about the quality of the learning result. The overall
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objective is common with uplift modeling: It is to obtain a good policy using data in an

off-line manner.
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Chapter 3

Regularized Multi-Task Learning
for Multi-Dimensional

Log-Density Gradient Estimation

Log-density gradient estimation is a fundamental statistical problem and possesses various
practical applications such as clustering and measuring non-Gaussianity. A naive two-step
approach of first estimating the density and then taking its log-gradient is unreliable because
an accurate density estimate does not necessarily lead to an accurate log-density gradient
estimate. To cope with this problem, a method to directly estimate the log-density gradient
without density estimation has been explored, and demonstrated to work much better than
the two-step method. The objective of this work is to further improve the performance of this
direct method in multi-dimensional cases. Our idea is to regard the problem of log-density
gradient estimation in each dimension as a task, and apply regularized multi-task learning to
the direct log-density gradient estimator. We experimentally demonstrate the usefulness
of the proposed multi-task method in log-density gradient estimation and mode-seeking

clustering.

3.1 Introduction

Multi-task learning is a paradigm of machine learning for solving multiple related learning
tasks simultaneously with the expectation that information brought by other related tasks
can be mutually exploited to improve the accuracy (Caruanal, (1997). Multi-task learning is
particularly useful when one has many related learning tasks to solve but only few training
samples are available for each task, which is often the case in many real-world problems
such as therapy screening (Bickel et al.l |2008) and face verification (Wang et al., 2009).
Multi-task learning has been gathering a great deal of attention, and extensive studies
have been conducted both theoretically and experimentally (Ando and Zhang) |2005; Baxter,
2000; [Evgeniou and Pontil, 2004a} | Thrun, {1996} |Zhang, 2013). [Thrun| (1996]) proposed
the lifelong learning framework, which transfers the knowledge obtained from the tasks

experienced in the past to a newly given task, and it was demonstrated to improve the
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performance of image recognition. Baxter| (2000) defined a multi-task learning framework
called inductive bias learning, and derived a generalization error bound. The semi-supervised
multi-task learning method proposed by |Ando and Zhang| (2005)) generates many auxiliary
learning tasks from unlabeled data and seeks a good feature mapping for the target learning
task. Among various methods of multi-task learning, one of the simplest and most practical
approaches would be reqularized multi-task learning (Evgeniou et al.l 2005; [Evgeniou and
Pontil, |20044a)), which uses a regularizer that imposes the solutions of related tasks to be
close to each other. Thanks to its generic and simple formulation, regularized multi-task
learning has been applied to various types of learning problems such as regression and
classification (Evgeniou et al.l |2005; Evgeniou and Pontil, 2004a). In this chapter, we explore
a novel application of regularized multi-task learning to the problem of log-density gradient
estimation (Beran, (1976} |Cox, [1985; |Sasaki et al., |2014).

The goal of log-density gradient estimation is to estimate the gradient of the logarithm
of an unknown probability density function using samples following it. Log-density gradient
estimation has various applications such as clustering (Cheng, (1995 (Comaniciu and Meer],
2002; [Fukunaga and Hostetler, |1975; Sasaki et al., [2014), measuring non-Gaussianity (Huber,
1985) and other fundamental statistical topics (Singh, [1977).

Beran| (1976) proposed a method for directly estimating gradients without going through
density estimation, to which we refer as least-squares log-density gradients (LSLDG). This
direct method was experimentally shown to outperform the naive one consisting of density
estimation followed by log-gradient computation, and was demonstrated to be useful in
clustering (Sasaki et al.| 2014).

The objective of this work is to estimate log-density gradients further accurately in
multi-dimensional cases, which is still a challenging topic even using LSLDG. It is important
to note that since the output dimensionality of the log-density gradient V log p(x) is the
same as its input dimensionality d, multi-dimensional log-density gradient estimation can be
regarded as having multiple learning tasks if we regard estimation of each output dimension
as a task. Based on this view, in this work, we propose to apply regularized multi-task
learning to LSLDG. We also provide a practically useful design of parametric models for
successfully applying regularized multi-task learning to log-density gradient estimation. We
experimentally demonstrate that the accuracy of LSLDG can be significantly improved by
the proposed multi-task method in multi-dimensional log-density estimation problems and
that a mode-seeking clustering method based on the proposed method outperforms other
methods.

The organization of this chapter is as follows: In Section [3.2] we formulate the problem
of log-density gradient estimation and review LSLDG. Section [3.3] reviews the core idea
of regularized multi-task learning. Section presents our proposed log-density gradient
estimator and algorithms for computing the solution. In Section [3.5] we experimentally
demonstrate that the proposed method performs well on both artificial and benchmark data.
Application to mode-seeking clustering is given in Section Section concludes this

chapter with potential extensions of our work.
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Figure 3.1: A comparison of two log-density gradient estimates based on density estimation.
In (a), P2 is a better estimate to the true density p than py, while in (b), Vlogp; is a better
estimate to the true log-density gradient V logp than V log ps.

3.2 Log-density gradient estimation

In this section, we formulate the problem of log-density gradient estimation, and then review
LSLDG.

3.2.1 Problem formulation and a naive method

Suppose that we are given a set of samples, {z;}" ;, which are independent and identically
distributed from a probability distribution with unknown density p(z) on R%. The problem
is to estimate the gradient of the logarithm of the density p(x) from {x;}} ;:

.
Viogp(x) = (011logp(x), ..., 04 1ogp(:1r:))T = (8;1()9('3:;) e, 6;;](3:(;;)) ,

where 0; denotes the partial derivative operator 9/0z\) for & = (1), ... x(@)T.
A naive method for estimating the log-density gradient is to first estimate the probability
density, which is performed by, e.g., kernel density estimation (KDE) as

N 1 & 1 |z — ;]|
pla) =~ > ———exp (10T,
i (2mo?)?
where o > 0 denotes the Gaussian bandwidth, then to take the gradient of the logarithm of
plx) as

9;log p(x) = a%i(;;) -

However, this two-step method does not work well because an accurate density estimate
does not necessarily provide an accurate log-density gradient estimate. For example, Fig-
ure illustrates that a worse (or better) density estimate can produce a better (or worse)

gradient estimate.
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To overcome this problem, LSLDG, a single-step method which directly estimates the
gradient without going through density estimation, was proposed (Beranl 1976} |Cox, [1985;
Sasaki et al.l [2014]), and has been demonstrated to experimentally work well. Next, we
review LSLDG.

3.2.2 Direct estimation of log-density gradients

The basic idea of LSLDG is to directly fit a model g;(x) to the true log-density gradient
0;log p(x) under the squared loss:

Ri(9:) = [ (93(@) - 9 logp(@))* p(@)da
_ v 9p(x) ? e
= /gj(w)zp(w)dx—2/gj(oc)6jp(:c)dx+cj
= / 9;(@)*p(@)dr —2 / [g5(@)p(@)]7 ) = da\) 4 2 / 9;9;(®)p(z)dz + C;

= / 9;(2)?p(z)dz + 2 / d;g;(x)p(z)dz + C;,

where C; := [ %dx is a constant that does not depend on g;, [(-)dz(\V) denotes
integration except for z(7), and the last deformation comes from integration by parts under
the mild condition that g;(z)p(z) — 0 as |2)| — occ.

Then, the LSLDG score J;(g;) is given as an empirical approximation to the risk R,;(g;)
subtracted by Cj:

1< 2 o
Ji(g;) = Ezgj(ﬂti)Q + Ezajgj(xi)~ (3.1)
i=1 i=1
As g;(x), a linear-in-parameter model is used:

b
gi(x) = o) (@) =Y ol (@), (3.2)
k=1

where agk) is a parameter, w;k) (x) is a differentiable basis function, and b is the number of

the basis functions. By substituting (3.2)) into (3.1) and adding an ¢5-regularizer, we can

analytically obtain the optimal solution &; as

a; = argn&in [a;—rGjaj + Qh;raj + )\jHajHﬂ
y

=—(G; + )\ij)ilhj,
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where \; > 0 is the regularization parameter, I is the b x b identity matrix, and

Z’l,b] ZT; 1/’](331 s Za 1/’] 331
Finally, an estimator of the log-density gradient is obtained by

9;(@) = &; 9;(x).

It was experimentally shown that LSLDG produces much more accurate estimates of
log-density gradients than the KDE-based gradient estimator and that the clustering method
based on LSLDG performs well (Sasaki et al., [2014]).

3.3 Regularized multi-task learning

In this section, we review a multi-task learning framework called reqularized multi-task
learning (Evgeniou et al.| |2005; |Evgeniou and Pontil, [2004a)), which is powerful and widely
applicable to many machine learning methods.

Consider that we have T tasks of supervised learning as follows. The task ¢ is to learn

an unknown function f;(x) from samples of input-output pairs {( ; ,yl(t)) ., where

yl@ is the output f;"(x) with noise at the input = = CBE ). When fi (x) is modeled by a
parameterized function fi(x; o), learning is performed by finding the parameter o which

minimizes the empirical risk associated with some loss function I(y,y’):

Nt

1
& = argmin — E Uy ,ft( (t) ay)) = argmin Jy (o),
Ot

oy Nt < -

where Jy () = S0 1Y, fi(al; ar)).
In regularized multi-task learning, the objective function has regularization terms which

impose every pair of parameters to be close to each other while J;(a;) are jointly minimized:

ZJt o) + ’Y Z Ve,

t=1,t'=1

o — a|?,

where v > 0 is the regularization parameter and 7; > 0 are the similarity parameters
between the tasks ¢ and .

It was experimentally demonstrated that the multi-task support vector regression (Ev-
geniou et al., [2005; [Evgeniou and Pontil, 2004al), performs better than the single-task
counterpart (Vapnik et al., (1997 especially when the tasks are highly related each other.

3.4 Proposed method

In this section, we present our proposed method and algorithms.
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3.4.1 Basic idea

Our goal in this chapter is to improve the performance of LSLDG in multi-dimensional
cases. For multi-dimensional input @, the log-density gradient V log p(«) has multiple output
dimensions, meaning that its estimation actually consists of multiple learning tasks. Our
basic idea is to apply regularized multi-task learning to solve these tasks simultaneously
instead of learning them independently.

This idea is supported by the fact that the target functions of these tasks, d; logp(x),
..., Oqlogp(x), are all derived from the same log-density log p(x), and thus they must be
strongly related to each other. Under such strong relatedness, jointly learning them with
sharing information with each other would improve estimation accuracy as has been observed

in other existing multi-task learning work.

3.4.2 Regularized multi-task learning for least-squares log-density
gradients (MT-LSLDG)

Here, we propose a method called regularized multi-task learning for least-squares log-density
gradients (MT-LSLDG).
Our method MT-LSLDG is given by applying regularized multi-task learning to LSLDG.

More specifically, we consider the problem of minimizing the following objective function:

d d d
1
T, aa) =Y Jilg;(505) + Y Allay]* + 37 > villeg =y
= i=1 J=1
d 1 d
=D (o) Gjoy+20]hy + Alegl”) + 57 D vrlley — ey’ (3:3)

J,3'=1

.
—

=

<.

where the last term is the multi-task regularizer which imposes the parameters to be close
to each other.

Denoting the minimizers of by @1, . .., g, the estimator g(z) = (g1(x), ..., ga(x)) "
is given by, for j =1,...,d,

gj(@) = g;(w;0;) = a; (). (3.4)

We call this method regularized multi-task learning for least-squares log-density gradients
(MT-LSLDG).

3.4.3 The design of the basis functions

The design of the basis functions 1;(x) in MT-LSLDG is crucial to enjoy the advantage
of regularized multi-task learning. A simple design would be to use a common function
o) = (¢ (x),...,60 (x)) for all ;(x), that is, ¥ (x) = --- = Pa(x) = ¢(z). From
and , in this design, the multi-task regularizer promotes g;(x; &;) to be more close
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to each other so that

~ ~

91(33;011) ~ee = 9d($;ad)~

However, it is inappropriate that all g;(x; &) are similar because the different true partial
derivatives, say 0, log p(x) and 9 log p(x) for j # j’, show different profiles in general.

To avoid this problem, we propose to use the partial derivatives of ¢(x) as basis functions:

Yj(x) = 0;p(x). (3.5)

Assuming that log p(x) is sufficiently smooth, a necessary condition of g;(x) approximating

0;log p(x) for all j and all @ is that

0;:9;(x) =~ 0j:0;log p(x)
= 0;:0;log p(x) ~ 0,g; (x),

ie., 0;;g;(x) — 0;g; () ~ 0. For the basis functions given by Eq. (3.5]), this implies that

Q

b

i.e. (c’ij — aj/)Taj/aj¢($) ~ 0. (36)

The necessary condition Eq. (3.6) can be ensured by forcing the condition a; — ;s ~ 0 as
long as ||0;:0;¢(x)|| is bounded. Thus, it would be reasonable to encourage &; — &;s to be
close to zero by minimizing the multi-task regularizer in addition to the LSLDG objective

function. Moreover, if
/8j8j/¢(m)8jaj/¢(a:)—rdw (3.7

is a positive semi-definite matrix, &; — ajs ~ 0 itself is a necessary condition for every
gj(x) to be close to the respective target 0;logp(x). This means that it is always safe and
desirable for the parameters of every task pair to be close to each other.

As a specific choice of ¢(*)(z), we use a Gaussian basis functions:

o190 e L 0)

202

) —a® |z — e
i G

where ¢, are the centers of the kernels, and o > 0 is the Gaussian bandwidth parameter. In
the case of the Gaussian basis functions, we can show that the corresponding matrix Eq will

be positive semi-definite.
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Algorithm 1 Similarity parameter tuning.
v, < Lforevery j=1,...,d;j'=1,...,d.
repeat
With the current values of «; -, calculate the estimates as
(@1,...,04) < arg min  J(aq,...,aq).
(al,...,ad
for j=1,...,d;5’=1,...,ddo
~ o~ 22
Vig < exp(—lley — ay[|7/a”). (3.8)
end for
until v, ; converges for every j,=1,...,d;j' =1,...,d.

3.4.4 Hyper-parameter tuning

As in LSLDG, the hyper-parameters, which are the fo-regularization parameters \;, the
Gaussian bandwidth o, and the multi-task parameters v,~; -, can be cross-validated in
MT-LSLDG. The procedure of the K-fold cross-validation is as follows: First, we randomly
partition the set of training samples S, into K folds F1, ..., Fx. Next, foreach k =1,..., K,
we estimate the log-density gradient using the samples in S, \ F}, , which is denoted by Q;k),

and then calculate the LSLDG scores for the samples in Fj, as Jé@:

~(k)
1 2 dg; "’ (x)
JB = LS gmgpy 2oy % @)
x€Fy, xEFy,

We average these LSLDG scores to obtain the K-fold cross-validated LSLDG score:

L ZK (k)
k
JCV - ?kil JCV'

Finally, we choose the hyper-parameters that minimize Jcoy. Throughout this chapter, we
set K = 5.

When the number of similarity parameters ~; ;; is large (i.e. the data dimensionality
is high), cross-validation may be computationally inefficient. In this case, we may use
the heuristic procedure which alternatingly updates the estimates &; and the similarity
parameters 7; ;s as described in Algorithm |I|, where « is a hyper-parameter to be selected
by cross-validation. In the update formula 7 the procedure determines the similarity
parameter 7; ;v to be used in the next iteration depending on how close the estimated

parameters &; and o/ are.

3.4.5 Optimization algorithms in MT-LSLDG

Here, we develop two algorithms for minimizing (3.3)). One algorithm is to directly evaluate

the analytic solution and the other is an iterative method based on block coordinate
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descent (Warga, (1963).

3.4.5.1 Analytic solution

For simplicity, we assume the similarity parameters are symmetric: ~;; = </ ;. Then,
the objective function J(ay,...,ay) can be expressed as a quadratic function in terms of
a=(a,...,a))" as

Ja)=a (G+C @ I)a+2a"h,

where
G = diag(G4,...,Gq), h=(h{,....,h))7,
d d
C = diag(A1, ..., A\g) +ydiag Z%J’ ce Z’yd,j —AT,
j=1 j=1
L], = 7, diag(-,...,-) is the block-diagonal matrix whose diagonal blocks are its

arguments, and ® denotes the Kronecker product. The minimizer & of J(a) is analytically

computed by
a=argminJ(a)=—(G+C®I,) 'h. (3.9

3.4.5.2 Block coordinate descent (BCD) method

Direct computation of the analytic solution involves inversion of a db x db matrix. This
may be not only expensive in terms of computation time but also infeasible in terms of
memory space when the dimensionality d is very large.

Alternatively, we propose an algorithm based on block coordinate descent (BCD) (Warga,
1963). It is an iterative algorithm which only needs manipulation of a relatively small b X b
matrix at each iteration. This alleviates the memory size requirement and hopefully reduces
computation time if the number of iterations is not large.

A pseudo code of the algorithm is shown in Algorithm [2| At each update in the
algorithm, only one vector ¢; is optimized in a closed-form while fixing the other parameters
a; (7' # j). The update only requires computing the inverse of a b x b matrix, which
seems to be computationally advantageous over evaluating the analytic solution in terms of
the computation cost and memory size requirement.

Another important technique to reduce the overall computation time is to use warm
start initialization: when the optimal value of v is searched for by cross-validation, we may

use the solutions @y, ..., &y obtained with ~ as initial values for another ~.
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Algorithm 2 Block coordinate descent (BCD) algorithm.
Initialize v, .. ., ag.
repeat
for j=1,...,ddo
a; « argminJ(a,..., 051,05, 041, ...,0q)
a;
-1
= |G+ NI +2v Y vl —hj+2y > | (3.10)
J#5’ J'#3
end for
until ay, ..., ay converge.

3.5 Experiments on log-density gradient estimation

In this section, we illustrate the behavior of the proposed method and experimentally

investigate its performance.

3.5.1 Experimental setting

In each experiment, training samples {z;}?_, and test samples {2/, }%_, are drawn indepen-
dently from an unknown density p(x). We estimate V logp(x) from the training samples,

and then evaluate the estimation performance by the test score
d 1 n’
Jie(g z; n—z (z}) +—Z:18]gjw,) ,
= =1

where g(x) = (Gi(x),...,94(x))" is an estimated log-density gradient. This score is an
empirical approximation of the expected squared loss of g(a) over the test samples without
the constant C; (see Section [3.2.2)), and a smaller score means a better estimate.

We compare the following three methods:
e The multi-task LSLDG (MT-LSLDG): our method proposed in Section

e The single-task LSLDG (S-LSLDG): the existing method (Beranl 1976} [Cox| |1985])
reviewed in Section This method agrees with MT-LSLDG at « = 0.

e The common-parameter LSLDG (C-LSLDG): LSLDG with common parameters o’ =

oy = -+ = g learned simultaneously. The solution is given as
d d
o/ = argmin |a'" E Gjo' +2 g hjo' + /|
« i=1 i=1

-1
d d
S G+ AL | > hy,
j=1 j=1
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where A > 0 is the fs-regularization parameter. This method agrees with MT-LSLDG
at the limit v — oo.

In all the methods, we set the number of basis functions as b = min{50,n}, and
randomly choose the kernel centers ¢y, ..., ¢, uniformly from training samples {z;}7
without replacement. For hyper-parameters, we use the common #o-regularization parameter
A and bandwidth parameter ¢ among all the dimensions, i.e., Ay = --- = Ay = X and
o1 = =04 = 0. We also set all the similarity parameters as 7y; ;; = 1, which assumes
that all dimensions are equally related to each other.

In order to examine whether this assumption is reasonable, we experimentally com-

pare MT-LSLDG with this assumption and that with the similarity parameter tuning

(Algorithhm [1)) in Section

3.5.2 Artificial data

We conduct numerical experiments on artificial data to investigate the basic behavior of

MT-LSLDG. As data density p(x), we consider the following two cases:

e Single Gaussian: The d-dimensional Gaussian density whose mean is 0 and whose
covariance matrix is the diagonal matrix with the first half of the diagonal elements

are 1 and the others are 5.

e Double Gaussian: A mixture of two d-dimensional Gaussian densities with mean zero

and (5,0,...,0)" and identity covariance matrix. The mixing coefficients are 1/2.

The dimensionality d and sample size n are specified later. First, we investigate whether
MT-LSLDG improves the estimation accuracy of LSLDG at appropriate v. We prepare
datasets with different dimensionalities d = 2,10, 20 and sample sizes n = 10, 30, 50. MT-
LSLDG is applied to the datasets at each v € {0,0.1,0.25,0.5,1,2.5,5,10,00}. The Gaussian
bandwidth ¢ and the ¢;-regularization parameter A\ are chosen by 5-fold cross-validation
as described in Section from the candidate lists {107*,107°%-25,10%-% 102 102} and
{1073,1072,107 1}, respectively. The solution of MT-LSLDG is computed analytically as in
3-9)-

The results are plotted in Figure In the figure, the relative test score is defined as
the test score from which the test score of S-LSLDG is subtracted, and thus negative relative
scores indicate that MT-LSLDG improved the performance of S-LSLDG. When d = 2,
MT-LSLDG does not improve the performance for any «y values (Figure [3.2(a)|and [3.2(b)).

However, for higher-dimensional data, the performance is improved at appropriate ~y values

(e.g., v = 0.5 for d = 20 in Figure|3.2(a)land v = 2.5 for d = 20 in Figure [3.2(b)|). Similar
improvement is observed also for smaller sample size (e.g., n = 10 and n = 30) in Figure

and Figure [3.2(d)]

These results confirm that MT-LSLDG improves the performance of S-LSLDG at an
appropriate v value when data is relatively high-dimensional and the sample size is small.

Since such 7 is usually unknown in advance, we need to find a reasonable value in practice.
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Figure 3.2: Average (and standard errors) of relative test scores over 100 runs. The relative
test scores refer to test scores from which the test score of S-LSLDG is subtracted. The
black dotted lines indicate the relative score zero.

Next, we investigate whether an appropriate -y value can be chosen by cross-validation. In
this experiment, the cross-validation method in Section [3.4.4]is performed to choose 7 as well.
The candidates of v is {0,0.1,0.25,0.5,1,2.5,5,10,00}. The other experimental settings
such as the data generation and all the LSLDGs are the same as in the last experiment
except that we also run MT-LSLDG with similarity parameter tuning by Algorithm [1| with
cross-validated .. The candidate list for o is {107, 10~1/4,10%/4,105/4,10?}.

Table [3.1] shows that MT-LSLDG improves the performance especially when the dimen-
sionality of data is relatively high and the sample size is small. These results indicate that
the proposed cross-validation method allows us to choose a reasonable - value.

In most cases of the experiments, MT-LSLDG with v, ;s = 1 gives estimation accuracy
comparable to that with the similarity parameter tuning procedure. In the remaining

experiments, we use cross-validated v and the fixed v; ;» = 1.

3.5.3 Benchmark data

In this section, we demonstrate the usefulness of MT-LSLDG in gradient estimation on
various benchmark datasets. This experiment uses some IDA benchmark datasets (Rétsch|
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Table 3.1: Averages (and standard errors) of test scores on the artificial data with cross-
validation over 100 runs. MT-LSLDG-T in the table refers to MT-LSLDG with similarity
parameter tuning by Algorithm [Il In each row, the best and comparable to the best scores
in terms of paired t-test with significance level 5% are emphasized in bold face.

Density n MT-LSLDLG MT-LSLDG-T S-LSLDG C-LSLDG

Single 10 —287(022) 233 (037) 037 (03) —2.58 (0.07)
GBS 30 —5.34(0.04) —5.38(0.02) —4.97 (0.08) —3.29 (0.03)
50 —5.63 (0.02) —5.64 (0.01) —555(0.02) —4.13 (0.04)
Double 10 —6.83(0.14) —6.80 (0.17) 1.01 (0.54) —5.02 (0.12)
Goussian 0 —8:45(0.03)  —8.45 (0.07)  —7.63 (0.10)  —7.84 (0.04)
50  —8.67(0.02) —8.71(0.03) —8.29 (0.10) —8.48 (0.02)
Density d  MT-LSLDG  MT-LSLDG-T SILSLDG CLSLDG
Single > 0.20 (0.19) 0.21 (0.15) —0.11 (0.15) _ 0.09 (0.15)
Gaussian 10 —5:34(0.04)  —5.38 (0.02)  —4.97(0.08)  —3.29 (0.03)
20 —10.77 (0.03) —10.76 (0.04) —9.98 (0.13)  —6.39 (0.01)
Double 2 0-54(022) 0.51 (0.25)  0.50 (0.27)  0.19 (0.22)
Coeos 10 —8.45(0.03)  —8.45 (0.07)  —7.63 (0.10)  —7.84 (0.04)
20 —16.88 (0.14) —17.06 (0.125) —14.90 (0.10) —15.26 (0.06)

et al 12001) and UCI benchmark datasets (Catlett} 1991} |Kaya et al.; [2012; [Lichman| 2013}
Lucas et all 2013; [Tufekci, [2014). All the datasets are standardized in advance.

For MT-LSLDG, the hyper-parameters o, A and -y are chosen by cross-validation. The
candidate lists are ¢ € {0.1,0.25,0.5,1,2.5,5,10}, A € {107°,107%,...,107} and v €
{0,107°,107%,...,10%, 102, 0o}, respectively. For S-LSLDG and C-LSLDG, the candidate
lists of o and A are the same as MT-LSLDG. The solution of MT-LSLDG is computed by
the BCD algorithm described in Section

The results are presented in Table MT-LSLDG significantly improves the performance
of either S-LSLDG or C-LSLDG on most of the datasets.

We also run MT-LSLDG for three different samples sizes n for each of the datasets with
changing ~ from 0 to co. Figure |3.3| summarizes the results of the experiments. The plots
show that performance highly depends on -, and that the best ~ differs from one dataset to
another, which means that it is very important to select a good «y by cross-validation. Also,
we can see that the blue plot, which is that for the smallest n, shows the largest improvement
over S-LSLDG in most of the datasets. This implies that MT-LSLDG is advantageous

especially when the sample size is small.

3.6 Application to mode-seeking clustering

In this section, we apply MT-LSLDG to mode-seeking clustering and experimentally demon-

strate its usefulness.
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Table 3.2: Averages (and standard errors) of the test scores on the benchmark datasets.
In each dataset, the best and comparable to the best scores in terms of paired t-test with
significance level 5% are emphasized in bold face. The number of trials is 20 for the image
and splice dataset, and is 100 for the other datasets.

Dataset (d, n) MT-LSLDG S-LSLDG C-LSLDG
thyroid (5, 140) —1.076 x 102 —1.083 x 102 —5.149 x 10
(0.066 x 10%)  (0.065 x 10?) (0.012 x 10)

CCPP (5, 200) —3.661 x 10 —3.585 x 10 —3.232 x 10
(0.120 x 10) (0.125 x 10) (0.187 x 10)

diabetes (8, 468) —2.240 x 10  —2.211 x 10 —1.510 x 10
(0.029 x 10) (0.034 x 10) (0.008 x 10)

flare-solar (9, 666) —1.341 x 107 6.626 x 10° —1.342 x 107
(0.021 x 107) (3.251 x 108) (0.021 x 107)

breast-cancer (9, 200) —2.535 x 103 —2.169 x 102 —2.535 x 103
(0.195 x 10%)  (0.294 x 10%)  (0.195 x 103)

shuttle (9, 1000) —2.664 x 102 —2.974 x 103  —1.063 x 10°
(0.321 x 10%)  (0.109 x 10%)  (0.038 x 10?)

image (18, 1300) —2.993 x 103 1.020 x 10* —3.289 x 103
(0.541 x 10%) (1.246 x 10%) (0.027 x 103)

popfailures (18, 50) —2.110 x 102 —2.067 x 102 —2.108 x 10
(0.002 x 10%)  (0.003 x 10%)  (0.002 x 10?)

german —3.042 x 102 —2.960 x 102 —1.999 x 10
(0.140 x 10%)  (0.092 x 10?) (0.373 x 10)

twonorm (20, 400) —2.233 x 10 —2.232 x 10 —2.213 x 10
(0.001 x 10) (0.001 x 10) (0.002 x 10)

waveform (21, 400) —4.332 x 10 —4.321 x 10 —3.526 x 10
(0.003 x 10) (0.002 x 10) (0.010 x 10)

splice (60, 1000) —2.484 x 103 —6.027 x 10 —2.382 x 103
(0.379 x 10%) (0.345 x 10)  (0.393 x 10%)
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Figure 3.3: Average (and standard errors) of relative test scores on the IDA datasets and

the other real datasets. The relative test scores refer to test scores from which the test score

of S-LSLDG is subtracted. The black dotted lines indicate the relative score zero.
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Figure 3.4: Transition of data points during a mode-seeking process. Data samples are
drawn from a mixture of Gaussians, and the data points sampled from the same Gaussian
component are specified by the same color (red, green, or blue) and marker (plus symbol,
circle, or triangle). White squares indicate the points to which data points converged.

3.6.1 Mode-seeking clustering

A practical application of log-density gradient estimation is mode-secking clustering (Cheng
[1995; |Comaniciu and Meerl, [2002; [Fukunaga and Hostetler}, 1975} [Sasaki et al.| [2014). Mode-

seeking clustering methods update each data point toward a nearby mode by gradient ascent,

and assign the same clustering label to the data points which converged to the same mode
(Figure [3.4). Their notable advantage is that we need not specify the number of clusters in

advance. Mode-seeking clustering has been successfully applied to a variety of real world

problems such as object tracking (Comaniciu et al.l |2000), image segmentation (Comaniciul
land Meer}, [2002; Sasaki et al., [2014), and line edge detection in images (Bandera et al., |2006).

In mode-seeking, the essential ingredient is the gradient of the data density. To estimate
the gradients, mean shift clustering (Cheng] 1995 |[Comaniciu and Meer} [2002; [Fukunaga and)

Hostetler} |1975)), which is one of the most popular mode-seeking clustering methods, employs
the two-step method of first estimating the data density by kernel density estimation and

then taking its gradient. However, as we mentioned earlier, this two-step method does not
work well since accurately estimating the density does not necessarily lead to an accurate
estimate of the gradient.

In order to overcome this problem, LSLDG clustering (Sasaki et all [2014) adopted
LSLDG instead of the two-step method. [Sasaki et al.| (2014) also provided a practically
useful fixed-point algorithm for mode-seeking as in mean shift clustering :

When the partial derivative of a vector of Gaussian kernels v;(x) = 0;¢(x) is used as the
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It has been experimentally shown that LSLDG clustering performs significantly better than
mean-shift clustering (Sasaki et al., [2014)).
Here, we apply MT-LSLDG to LSLDG clustering and investigate if the performance is

improved in mode-seeking clustering as well for relatively high-dimensional data.

3.6.2 Experiments

Next, we conduct numerical experiments for mode-seeking clustering.

3.6.2.1 Experimental setting

We apply the following four clustering methods to various datasets:
e MT-LSLDGC: LSLDG clustering with MT-LSLDG.
e S-LSLDGC: LSLDG clustering with S-LSLDG (Sasaki et al., [2014)).
e C-LSLDGC: LSLDG clustering with C-LSLDG (Sasaki et al. [2014).
e Mean-shift: mean shift clustering (Comaniciu and Meer} 2002)).

For MTL-, S-, and C-LSLDG, all the hyper-parameters are cross-validated as described in
Section [3.4.4] and for mean-shift, log-likelihood cross-validation is used.

We evaluate the clustering performance by the adjusted Rand index (ARI) (Hubert and
Arabiel |1985). ARI gives one to the perfect clustering assignment and zero on average to a

random clustering assignment. A larger ARI value means a better clustering result.

3.6.2.2 Artificial data

First, we conduct experiments on artificial data. The density of the artificial data is a mixture

of three d-dimensional Gaussian densities with means (0,2,0,...,0), (—=2,-2,0,...,0), and
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Table 3.3: Averages (and standard errors) of ARIs on artificial data. In each row, the best
and comparable to the best ARI in terms of unpaired t-test with significance level 5% is
emphasized in bold face. The number of trials is 100.

d MT-LSLDGC  S-LSLDGC C-LSLDGC Mean-shift
2 0.992 (0.035) 0.973 (0.125) 0.992 (0.036) 0.984 (0.044)
)

10 0.993 (0.004) 0.994 (0.003) 0.994 (0.004)  0.042 (0.022)
15 0.983 (0.023) 0.982 (0.054) 0.877 (0.217)  0.000 (0.000)
20 0.827 (0.190) 0.586 (0.208)  0.716 (0.352)  0.036 (0.037)

(2,-2,0,...,0), covariance matrices \/%Id, and mixing coefficients 0.4,0.3,0.3. The candidate
lists of the hyper-parameters are the following: o € {10~,10-7/9,10=%/9 ... 10°/9,107/°,10'},
A€ {107°,107%,1072,1072,10~ !} and, v € {0,107°,107%,1073,1072, 107, 10°, 10%, 102, 00 }.

The results are shown in Table[3.3] We can see that MT-LSLDGC performs well especially
for the largest dimensionality d = 20.

3.6.2.3 Real data
Next, we perform clustering on real data. The following three datasets are used:

e Accelerometry data: 5-dimensional data used in (Hachiya et al., 2012]) for human
activity recognition extracted from mobile sensing data available from http://alkan.
mns . kyutech.ac.jp/web/data. The number of classes is 3. In each run of experiment,
we use randomly chosen 100 samples from each class. The total number of samples is
300.

e Vowel data: 10-dimensional data of recorded British English vowel sounds available from
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Vowel+Recdgnition+
++Deterding+Data). The number of classes is 11 In each run of experiment, we use

randomly chosen 500.

e Sat-image data: 36-dimensional multi-spectral satellite image available from https://
archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite). The number

of classes is 6. In each run of experiment, we use randomly chosen 2000 samples.

e Speech data: 50-dimensional voice data by two French speakers (Sugiyama et al.l | 2014]).
The number of classes is 2. In each run of experiment, we use randomly chosen 200

samples from each class. The total number of samples is 400.

For MT-LSLDG, the hyper-parameters are cross-validated using the candidates, o €
{10~1,1075/9,10=3/9 ... | 102/9,10%5/9 10%}, X\ € {107°,107%,1073,1072,107*,10°} and
v € {1075,1074,...,10%,10%}, except that we use relatively small candidate lists o €
{0.5,1,2.5,5,10}, A € {0.003,0.01,0.1,1} and v € {0.1,1, 10} for the speech data since it has
large dimensionality and optimization is computationally expensive. For S- and C-LSLDG,
we used the same candidates of MT-LSLDG for ¢ and A. For mean shift clustering, the

Gaussian kernel is employed in KDE, and the bandwidth parameter in the kernel is selected
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Table 3.4: Averages (and standard errors) of ARIs on real data. In each row, the best and
comparable to the best ARI in terms of paired t-test with significance level 5% is emphasized
in bold face. The number of trials is 100 for the accelerometry data and the sat-image data,
and is 20 for the speech data.

MT-LSLDGC S-LSLDGC C-LSLDGC  Mean-shift

accelerometry (5, 300 0.40 (0.01) 0.53 (0.02) 0.24 (0.01) 0.26 (0.04)

dataset (d, n)
)

vowel (10, 500)  0.15
)
)

(0.00)  0.15 (0.00) 0.15 (0.00) 0.04 (0.00)
sat-image (36, 2000)  0.48 (0.00)  0.43 (0.01)  0.35 (0.00)  0.00 (0.00)
speech (50, 400)  0.17 (0.02)  0.00 (0.00)  0.15 (0.01)  0.00 (0.00)

by 5-fold cross-validation with respect to the log-likelihood of the density estimate from the
same candidates of MT-LSLDG for o.

The results are shown in Table For the accelerometry data whose dimensionality is
only five, S-LSLDGC gives the best performance and MT-LSLDGC does not improve the
performance, although MT-LSLDGC performs better than C-LSLDGC.

On the other hand, for the higher-dimensional dataset, the vowel data, the sat-image
data, and the speech data, the performance of MT-LSLDGC is the best or comparable to
the best. These results indicate that MT-LSLDG is a promising method in mode-seeking

clustering especially when the dimensionality of data is relatively large.

3.7 Conclusion

We proposed a multi-task log-density gradient estimator in order to improve the existing
estimator in higher-dimensional cases. Our fundamental idea is to exploit the relatedness
inhering in the partial derivatives through regularized multi-task learning. As a result, we
experimentally confirmed that our method significantly improves the accuracy of log-density
gradient estimation. Finally, we demonstrated its usefulness of the proposed log-density
gradient estimator in mode-seeking clustering.

Although fixing the similarity parameters v; ;; to be 1 worked reasonably well in our
experiments, carefully tuning them may further improve the estimation accuracy. A good
practice may be to use the heuristic procedure given in Algorithm [I} whose properties have
yet to be analyzed. Another way is to use Bayesian optimization techniques such as the
Gaussian process approaches studied in [Bergstra et al.| (2011)) and |[Snoek et al.| (2012), which
have been experimentally shown to be reasonably fast even in large-scale hyper-parameter
tuning tasks.

As log-density gradient is a vector-valued function learning problem, one may consider
applying kernel-based methods for such problems (Caponnetto et al. |2008} |[Micchelli and
Pontil| [2005a). [Micchelli and Pontil (2005al) showed a representer theorem for a wide class
of optimizations in a reproducing kernel Hilbert space of vector-valued functions whose
objective functional depends only on outputs of the function to be optimized. However, it

may not be possible to directly employ those methods in the LSLDG framework since the
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LSLDG objective functional also depends on the gradients besides outputs of the function.
It is an important open question whether LSLDG also admits a similar representer theorem
or not.

Log-density gradient estimation would be useful in a measure for non-Gaussianity (Huber,
1985) and other further fundamental statistical topics (Singhl [1977). In the future work, we

will investigate the performance of our proposed method in these topics.
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Chapter 4

Multi-Task Principal Component
Analysis

Principal Component Analysis (PCA) is a canonical and well-studied tool for unsupervised
dimensionality reduction. However, when only a limited amount of data are available, the
poor quality of the covariance estimate at its core may compromise its performance. We
mitigate this issue when there are multiple similar PCA tasks to be solved at hand by casting
the PCA tasks into a multi-task framework. We propose a formulation of the multi-task PCA
problem using a novel multi-task regularization. This regularization is based on a distance
between projection matrices, and the whole problem is solved as an optimization problem
defined on the Riemannian manifold consisting of projection matrices. We experimentally

demonstrate the usefulness of our approach as pre-processing for EEG signals.

4.1 Introduction

Principal Component Analysis (PCA) (Hotelling, [1933; |Joliffe, |1986; Pearson, [1901) is a data
preprocessing technique widely used in data processing and is a prominent dimensionality
reduction technique in machine learning.

In a few words, PCA seeks an accurate low-dimensional approximation to high-dimensional
data. To do so, PCA finds an orthogonal projection of the data to a low-dimensional sub-
space while preserving as much variance as possible, or equivalently while minimizing the
projection error (see Bishop| (2006a, Chap 12)).

In practice, this boils down to a simple eigenvalue problem involving the empirical
covariance of the input training samples. Its simplicity and efficiency allowed the extensions to
several variants of PCA over the course of time, ranging from non-linear extensions (Scholkopf
et al.l 1997 Vincent et al.,[2010) to sparse (Zou et al., 2006) or supervised extensions (De Bie
et al., 2005). PCA has been studied also from the point of view of subspace tracking in
order to efficiently cope with non-stationary data streams (Badeau et al., [2008; |Balzano
et al., [2010), where the emphasis is put on efficiently updating the principal subspace while

maintaining the orthonormality constraint. In a related setup, it has also been studied from
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the online learning point of view (Warmuth and Kuzminl 2007)) in order to derive bounds
on the projection error.

When we want to project data onto a one-dimensional subspace, the PCA can be solved
by extracting the dominant eigenvector of the sample covariance matrix of the input data.
Multi-dimensional PCA can be performed by iteratively solving one-dimensional problems
in a deflation scheme. However, this problem can also be solved at once by optimizing a
generalization of the one-dimensional cost under orthonormality constraints or by optimizing
on a Riemannian manifol involving orthogonal matrices (Absil et al., |2009; [Edelman
et al., [1998)). When such a cost is optimized, the solution may not exactly diagonalize the
covariance matrix but will have the same span as the leading eigenvectors.

As any machine learning method, the quality of the solution obtained by the PCA is
greatly affected in practice by the quality of the input, which in this case is the sample
covariance. Being based on the minimization of a least-squares cost, the quality of the
covariance estimator is particularly affected by outliers. Hence, in order to overcome this
situation, several robust versions of the PCA have been proposed for dealing with noisy data
and outliers. Those approaches either rely on multivariate trimming of the samples (Devlin
et al.l |1981)) or on a cost function giving less influence to outliers (Candés et al.|, [2011)).

However, in a context where only a limited amount of data are available, the covariance
matrix may not be accurately estimated, nor the robust approaches are not adapted. If such
a situation happens to several related PCA tasks, one straightforward approach consists of
finding a common principal subspace to all the tasks. As studied in|Wang et al.| (2011)), it boils
down to applying a single PCA over all the data or to finding a subspace approximating all
the covariance matrices. This latter formulation makes the problem close to the Approximate
Joint Diagonalization (AJD) encountered in the Signal Processing community (Cardoso and
Souloumiac, {1996} [Flury and Gautschi, |1986). However, these approaches do not take into
account the heterogeneity of the tasks.

On the other hand, in this context of data scarcity, as the covariance estimator is not
reliable, independently solving a PCA task for every dataset would fail. Hence, we need
a trade-off between 1) the flexible approach of independently and separately solving the
PCA tasks and 2) the restrictive approach of finding the single, common subspace for all
the data from the tasks at once. To do so, we propose to cast the PCA tasks into the
Multi-task Learning (MTL) framework (Argyriou et al.,|2008b; |Caruana, (1998} [Evgeniou
and Pontil, |2004b} Zhang and Yeung} [2011). In this setup, every task corresponds to finding
a low-rank orthogonal projection of each dataset (maximizing the retained information). We
solve those tasks simultaneously with a multi-task regularization term that makes those
projections similar to each other. As we focus on the multi-dimensional case, we formulate
our problem as an optimization problem over a Riemannian matrix manifold. Our multi-task

regularization is designed based on a distance metric intrinsic to the geometry of this space.

*L A Riemannian manifold is a smoothly curved non-Euclidean space with additional structures such as a
set of linear local approximations, i.e. the tangent spaces, that are equipped with an inner product (Absil
et al.} 2009).
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Eigenvalue problems being a classical tool of machine learning (De Bie et al.l [2005), their
study in the multi-task framework has naturally been proposed. Recently, such an approach
has been developed in |Wang et al.| (2016). This approach studied the generalized eigenvalue
problems and only extracted the leading eigenvector by casting the problem into a multi-task
dictionary learning problem. In essence, our contribution in our work is different from this
previous work. While they focused on one-dimensional generalized eigenvalue problems, our
focus is on standard PCA problems, but our method is able to extract directly a dominant
subspace (i.e. the span of a set of leading eigenvectors) without having to resort to any
multi-stage deflation scheme. As exposed in this chapter, we propose a simple and elegant
MTL formulation relying on a novel regularization.

The use of a multi-task methodology has been advocated in challenging applications
such as Brain Computer Interfaces (BCI) where it is difficult to collect data from each task
but the tasks are related to each other (Devlaminck et al., 2011; [Samek et al.l 2013). In this
chapter, we provide some promising results in this difficult application. In order to analyze
the behavior of our approach, we also apply it on synthetic data.

To summarize, the key contributions of our work are twofold: First and foremost, we
formulate the problem of dominant subspace extraction for multi-task variance maximization
on a matrix manifold. As a result, it makes it possible to solve at once several related PCA
problems of fixed dimensionality. Secondly, we propose a relevant regularization (having an
interpretation from the viewpoint of the Riemannian geometry) for this multi-task problem.
Then, the problem is naturally formulated as an optimization problem over a Riemannian
matrix manifold. Through experiments on synthetic data and a signal processing application,

we demonstrate the efficacy of our proposed dimensionality reduction method.

4.2 Multi-task Variance Maximization

In this section, we define the problem of multi-task variance maximization and then present

our proposed method.

4.2.1 Problem Setup

This problem being defined as a collection of instances of single-task variance maximization,
we first start by introducing the single-task version of variance maximization.

For any random data variable € R? following some unknown probability density p(z),
the goal of variance maximization is to estimate the k-dimensional subspace (k < d; we
assume k is known and fixed) on which the projected point of & has the maximum variance,
from i.i.d. samples {z;}? ; drawn from p(x).

Rdxk

For any matrix M € , we denote the span of the columns of M by Span(M). For

any k-dimensional subspace S and any orthogonal matrix U € R***

, we say that U is an
orthogonal basis matriz of S if Span(U) = S. Any d-by-k orthogonal matrix determines a

unique subspace as an orthogonal basis matrix while there are infinitely many orthogonal
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basis matrices for any given subspace with dimensionality d > 2. Since the orthogonal
projection onto any subspace S is given as R? 3 &+ UU "z € S using any basis matrix U
of S, an orthogonal basis matrix U* of the optimal subspace S* is obtained as a solution to

the following problem:

U= argmax E [||UUT3: - UUTMHQ] (4.1)
UcRdxk, UTU=I, z~p(T)
= argmax ~ Tr(U'CU), (4.2)

UeRdxk: UTU=I,

where p = Eg () [®] is the population mean of €, C = Ey ) [(x — p)(x — p) ] is the
population covariance of x, and Iy is the k-by-k identity matrix. Again, U™ is not uniquely
determined because the objective function is invariant under orthogonal transformations
since Tr(UO)TC(UO)) = Tr(UTCUOOT) = Tr(U'TCU) for any orthogonal matrix
O < R¥** As made clear later in this chapter, in order to deal with the orthogonality
constraint as well as with this invariance to rotations, we will use Grassmann manifolds for
the formulation of the problem (Edelman et al., [1998]).

In multi-task variance mazimization, which is the main subject of this chapter, we
have multiple different instances of variance maximization. We call such instances as tasks.

More specifically, given T sets of i.i.d. samples {z¢;};t;, t =1,...,T, following underlying

probability densities p;(x1), ..., pr(xT) respectively, we are required to estimate the optimal
k-dimensional subspaces, whose basis matrices U}, t = 1,...,T, are given by
U = argmax (U, C.U,), (4.3)

U eRdxk: UT U =1

where My = Emt’\’pt(mt)[mt]7 and Ct = Ethpt(mt)[(xt — Nt)(xt — Mt)T].

4.2.2 Principal Component Analysis

In many applications, the population covariance matrix C; is often unknown, and the
objective function of Eq. cannot be directly evaluated. A common way to alleviate this
is to resort to the sample covariance matriz defined by ét = ﬁ Z?;l(:c“ — ) (@ —
m) " with g, = n% >t @ to approximate the objective function as (U, C,U;) ~
T (U, C,Uy).

In the case of the single task learning setup (i.e. T = 1), the method of solving such an
approximated problem is widely known as Principal Component Analysis (PCA) (see, e.g.,
Joliffe| (1986)) and can be solved by taking the leading k orthonormal eigenvectors of C,.
PCA and its variants have been proven to be useful in many applications such as model
reduction in control theory (Moorel [1981) and denoising for image processing (Zhang et al.,
2010). In our multi-task setting, we refer to the method of applying PCA to every task
independently as Independent PCA (I-PCA) and the method of applying it to the union of

the datasets from all the tasks as Common PCA (C-PCA). The notable difference between
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these two methods is that C-PCA gives the same subspace for all the tasks whereas I-PCA
could give completely different subspaces for different tasks.

[-PCA may provide good estimates of the optimal subspaces when sufficiently many data
samples are available, but when we have only scarce data samples, the solutions ﬁt to the
problem in Eq. may be badly affected by unreliable covariance estimation resulting in
poor performance on unseen data. In fact, the solution is undetermined when the sample
size n; is less than the dimensionality k& of the subspace.

A straightforward countermeasure to this data-scarcity problem is to adopt C-PCA in
order to simply increase the sample size. However, this corresponds to assuming that all the
tasks share the identical optimal solution, which may be unreasonable when the tasks have
considerable heterogeneity.

The objective of this work is to improve the performance over both I-PCA and C-PCA
when the tasks are different but related to each other in the sense that their optimal subspaces
are similar to each other. In such a case, solving all the tasks simultaneously while sharing
information with each other may improve performance. This strategy of jointly learning
multiple tasks with taking the advantage of their relatedness is called multi-task learning and
has been shown to work well in many other applications (Argyriou et al., |2008b; |Caruana,
1998; |[Evgeniou and Pontil, |2004b; [Jacob et al., |2009b; |Zhang and Yeung), 2011)).

4.2.3 Regularized Multi-task PCA

One of the most successful approaches to multi-task learning is the regularization ap-
proach (Argyriou et al., |2008bj; [Evgeniou and Pontil, [2004b} [Jacob et al., |2009b). In this
approach, the tasks maintain different learning parameters but they are simultaneously opti-
mized with an appropriately designed regularization term which, e.g., makes the parameters
close to each other or imposes similar sparsity patterns on them.

In this chapter, we propose a method based on this approach for solving multi-task
variance maximization. In the proposed method, we directly search the space of subspaces
instead of searching the space of orthogonal skinny matrices. More specifically, we solve the

following optimization problem:

1 ~ A
(Si,...,S7) = argmax 3 Z (U, C,U,) + 1 Z T(UUUU," )|, (4.4)

égi,(d}ct)fg% telT] s,te[T]: s#t

J(U,...,Ur)

where A\ > 0 is a regularization parameter, [T] = {1,...,T}, and Gr(d, k)®T denotes the
product manifold consisting of T" Grassmann manifolds. Fach of those manifolds consists of
all the k-dimensional linear subspaces of the d-dimensional Euclidean space R and §t is
the estimate of the optimal subspace for task ¢t. We call this method Regularized MultiTask
Principal Component Analysis (RMT-PCA). As we will see later, the objective function does

*2Note that a point X on this manifold can be represented by any orthonormal basis of R¥*4. The chosen
orthonormal basis is called a representative of its subspace Span(X).
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Figure 4.1: Tllustration of the multi-task setup for the PCA problem. Few observations are
available for every task of PCA, and we aim at extracting similar subspaces (hence being
oriented according to similar angles). In this example, each subspace S; is represented by a
basis of two vectors u;, vy and the angles between the canonical basis and the subspaces are

@, 0¢, Yy

not depend on the choice of the orthogonal basis matrices U;, t = 1,...,T, and thus the
optimization problem is well-defined on Gr(d, k)®7T.

Intuitively, we try to maximize the PCA objective function Tr(UtT(AZ'Ut) for every
task ¢ simultaneously while maximizing the similarity between the subspaces Span(Uy) and
Span(U;) quantified by Tr(U U, U,U,") for every task pair (s,t) at the same time.

Figure illustrates the idea of our multi-task PCA approach. In this example, three
datasets of three-dimensional examples are observed. Those three datasets share similar
(but slightly different) behaviors as their two-dimensional principal subspaces are close to be
parallel. Hence, the overall objective is to find similar subspaces (i.e. having similar angles)
expressing most of the variance of each dataset. This example shows the flexibility of our
approach as it is immune to the choice of bases representing the subspaces.

Maximizing the term Tr(U,U, U,U,") in the regularization can be interpreted as min-
imizing the projection F-norm distance which is defined and denoted for any subspaces
S and S’ by §,r(S,S') = |[UUT —U'U'" ||p, where | M||p = /Tt(MTM), and U and
U’ are d-by-k orthogonal basis matrices of S and S’ respectively. This follows from the
equality 625.(S,5") = 2d—2Te(UU TU'U'T). 6,p(S, '), and thus the regularization term in
Eq. , are invariant to the choice of Ug and U;. A nice property of the projection F-norm
distance is that for subspaces with small geodesic distance, it is asymptotically equivalent to
other several important measures including that induced by the intrinsic geometry of the
Grassmann manifold (Chevallier et al., [2013; |Edelman et al., [1998)).

As already mentioned, the multidimensional PCA loss function is invariant under the
group action U — UO for all orthogonal matrices O of size k x k. Hence, optimizing on the

space of orthogonal skinny matrices (i.e. the Stiefel manifold) without taking into account
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task 1 task 2

Figure 4.2: Tllustration of the invariance of subspaces to the choice of basis. In this 3-
dimensional example, the two tasks are generated from the same distribution, but due to
sampling, the order of the two main eigenvectors is changed (even though the subspaces are
the same). Hence, if we are interested in comparing subspaces, our regularizer should be
immune to the choice of bases.

this invariance would be inefficient as the critical points of the cost function are not isolated
on the Stiefel manifold. Then, such a property should be taken into account for defining
a multi-task regularization. It can be easily shown that this is the case for the proposed

regularization of our work since for any orthogonal matrices O and O’ of size k x k, we have

Tr(UQQ_T/UTU’QQf/U’T) =T (UU'U'U').
Iy I

It would have been tempting to use a simpler regularization such as the matrix scalar
product Tr(U TU’). However, this regularizer is not invariant under the group action over
the product of Grassmann manifolds and this may have some bad consequences. In cases
where the top k eigenvalues of a covariance matrix are close, it can happen that the value of
those eigenvalues are different (and hence their order changed) for the estimated covariance.
Such a situation in two dimensions is illustrated in Figure In this case, the subspaces
S and S’ are identical and respectively represented by the basis matrices U = [ u ‘ v }
and U’ = [ v ‘ u }, with u,v € R? such that uTu =1, v'v =1 and u'v = 0. Then, it
naturally follows that: Tr(U'U’) =0 and Tr(UU'U'U'T) = 2.

When dealing with covariance matrices estimated from few samples, it can happen that
the order of the principal eigenvectors is changed compared to the principal eigenvectors
of the population covariance. Compared to the naive regularization, our regularization is

robust to such a practical problem.

4.2.4 Optimization on Product of Grassmann Manifolds

The Grassmann manifold is a powerful mathematical tool for modeling low-rank transforma-

tions, and as noted in [Edelman et al.| (1998]), it is usually involved for solving eigenvalue
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problems. As it directly models fixed dimensionality subspaces, it is independent of the bases
chosen to represent the subspaces. Hence, as described in |Absil et al.| (2009, Section 3.4.4),
a Grassmann manifold is a quotient manifold and the group structure enables us to encode
the invariance properties. In few words, if two representations have the same span, they are
said to be equivalent. For a comprehensive tour on this topic, the reader is suggested to
refer to |Absil et al.| (2009)); Edelman et al.| (1998]).

In this work, instead of modeling our dimensionality reduction problem as an optimiza-
tion problem under a set of orthonormality constraints, we write it as an unconstrained
optimization on Grassmann manifolds. Hence, our approach consists in finding several lower-
dimensional subspaces by optimizing several transformations (parameterized by Uy, ..., Ur)
that maximize the variance on each dataset meanwhile being similar. As each parameter U,
lies in a Grassmann manifold Gr(d, k) (Absil et al., [2009; [Edelman et al.), [1998), we solve
the optimization problem on the product of these manifolds.

In Ma et al.|(2001), the authors proved that the geodesics in the product manifold are
the products of the geodesics in the factor manifolds. This helpful property enables us to
compute the gradients on each of the factor manifolds separately and hence to apply easily
the machinery of the field of optimization on Riemannian manifolds.

Optimization on Riemannian matrix manifolds is a mature field and by now most of the
classical optimization algorithms have been extended to this setting (Absil et all 2009)). In
this setting, descent directions are not straight lines but rather curves on the manifold. For
a function f(U), applying a Riemannian gradient descent can be expressed by the following

steps:

1. At any iteration, at the point U, transform a Euclidean gradient Dy f into a Rieman-
nian gradient Vy f. In our case, Vy f = Dy f — UU " Dy f (Absil et all 2009).

2. Perform a line search along geodesics at U in the direction H = V f. In our case, on
the geodesic going from a point U in direction H (with a step-size t), a new iterate is
obtained as U(t) = UV cos(Zt)V T + Wsin(Zt)V' T, where WXV T is the compact

singular value decomposition of H.

Our cost function being defined in Eq. (4.4)), its Euclidean gradient (w.r.t. a given task t)

can be written as:

Dy,J=CU+Xx Y UU/U. (4.5)
selT\{1}

In practice, we employ a more sophisticated second-order algorithm called Riemannian
trust-region method described in |Absil et al.| (2009)) and efficiently implemented in [Boumal
et al.| (2014)).
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4.3 Experiments

In this section, we present numerical experiments on synthetic and real-life data in order to
study the effect of the proposed regularization. We run the proposed method with various
regularization parameter values and in various conditions to understand how the performance
of the proposed method shifts as the regularization level changes. In this experiment, we
compare the performance of the proposed method to the performances of independently
applying the PCA to each task (noted as I-PCA and corresponding to the case of A = 0)
and applying a single PCA over all the datasets (noted as C-PCA and corresponding to the
case of A = oo

In our scarce setup, every task has only scarce data, and the goal is to estimate the

optimal subspaces accurately for all the tasks.

4.3.1 Setup

In the scarce setup, we estimate the optimal subspaces with the proposed method using a
small number of training samples under several configurations, and then evaluate the quality
of the obtained estimates using a large number of test samples. The specific numbers of
training and test samples differ from dataset to dataset. We will provide the information in
Section

In the evaluation phase, we measure how much ratio of the variance is preserved when
the test sample points are projected onto the estimated subspaces. We refer to this ratio as
the retained variance ratio (RVR). We calculate the RVR for every subject ¢t by

r, = U OO, (4.6)
Tr(CY)

where ﬁt denotes an arbitrary basis matrix of the estimated subspace, 6’2 is the sample
covariance matrix calculated using test samples. Then, we average r, ..., to obtain the
overall score: r = + Z;l T

In regularization parameter selection by cross-validation, we also use this score but
calculated with hold-out samples in place of the test samples.

For statistically reliable evaluation, we run several trials of this experiment with different
data realization The specific numbers of trials will be provided in Section m

4.3.2 Data

We tested the method on the following synthetic data and BCI data.

*3Note that the method of [Wang et al.| (2016) being fundamentally a rank-1 method, and as it relies on
several hyper-parameters (the number of dictionary atoms and the sparsity level). For these reasons, we
decided not to include it in our comparisons.

*4By “data realization”, we indicate data instances generated with a pseudo random generator in the case
of the synthetic dataset, and re-sampled data points from the dataset in the case of the BCI data.
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Synthetic Data Sample points for each task ¢ are drawn from the 6-dimensional Gaussian
distribution with mean zero and covariance matrix C; generated in the following way. First,

R%*4 i a random

we prepare the ‘core’ covariance matrix Cy as Cy = OOZOO(—)r , where Og €
orthogonal matrix, and X is the diagonal matrix whose diagonal elements are 1,1,2,2,3, 3.
Second, for each task ¢, we slightly ‘tilt’ C in order to obtain the task specific covariance C:
C; = 0,C,0, , where O; € R?*9 is an orthogonal matrix nearly equal to I;. We generate
O; as the projected point of I; + IN onto the space of orthogonal matrice where NN is
the noise matrix whose elements are i.i.d. samples drawn from the Gaussian distribution
with mean zero and variance 0.3.

We conduct the experiment for £ = 1,...,5 on this dataset. In the scarce setup, the

training sample size is 10 for every task. The test sample size is 10000.

BCI Data This dataset consists of electroencephalogram (EEG) signals made available in
the context of the BCI competition IV dataset Ila (Naeem et all 2006). This data set is
made of EEG signals (recorded from 22 electrodes) from 9 subjects who performed left-hand,
right-hand, foot and tongue imaginary movements. As in|Yger et al.| (2015)), we focus on
the hand signals (72 trials for each class). This classical paradigm of motor imagination is
used for building BCI so that a patient can send commands to a computer by performing
imaginary actions.

Then the challenge remains for the computer to accurately detect the correct signal
pattern. Nowadays, covariance matrices of EEG signals are commonly used as features for
training BCIs (Yger} |2013)). In this area, it is time consuming to gather data for a given
subject but the data of several subjects are available.

Hence, in this context, our first task will be to investigate the performance of the proposed
method in principal subspace extraction of the signals of all the subjects given only the
covariance matrix of 1 epoch per subject (Section .

Furthermore, we tackle the second task, regularization parameter selection by 2-fold
cross-validation, under the setup where two covariance matrices are available (Section.

We conduct these experiments for k = 1,4, 7,10. We sequentially pick one/two epoch(s)
(as described above) for each task for subspace estimation, and then the rest of the epochs are
used for evaluation of the estimates. We run 72 iterations in the experiment in Section [1.3.31]

and 36 iterations in the experiment in Section. [1.3.3.2]

4.3.3 Results

We show the results of the experiments below.

4.3.3.1 Performance Transition under Regularization-Level Shift

First, we investigate the performance transition of the proposed method when the regular-

ization level is varied.

*5The projection on the space of orthogonal matrices is defined by X +— argming egdxd, 00T =1, | X—-O|lg.
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Figure 4.3: The transition of the RVR score over the level of regularization on synthetic
data. Each plot corresponds to a different dimensionality k, and each curve corresponds to
a different number of tasks T'. ‘Inf’ denotes infinity. The error bars show the mean scores
and their standard errors over 100 trials of the experiment.

The results on the synthetic data in the scarce setup are summarized in Figure [{.3]
Figure [4.3| shows that the best A\ value is somewhere in the middle between 0 and Inf
(which denotes infinity) for all of k = 1,...,5, meaning that the proposed method with an
appropriate A value outperforms I-PCA and C-PCA. We can also see the tendency that the
performance improves more when we have more tasks.

The results on the BCI data in the scarce setup are shown in Figure [£.4] Similarly to
the case of the synthetic data, the performance was improved for all k£ with appropriate A
values.

The BCI data have most of their variance in a few principal components; the test RVR
score for k = 4 was more than 96% in all the trials of our experiments, which means that
the largest possible RVR gain is less than 4%. Hence, there is less room for improvement for
larger k. Nevertheless, the proposed method significantly improved the performance even in
such challenging cases.

These results show that the proposed method is useful as long as the regularization level

is in a moderate range.
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Figure 4.4: The transition of the RVR score of the proposed method divided by the score of
I-PCA over the the level of regularization on BCI data (‘Inf’ denotes infinity). Each plot
corresponds to a different class, and each curve corresponds to a different dimensionality k.
The black dotted lines indicate ratio of 1. The error bars show the mean scores and their
standard errors over 72 trials.

Table 4.1: Averages and standard errors of the RVRs on BCI data. The best and comparable
to the best scores by the paired t-test (5% significance level) are shown in bold face.
CV-MTL Independent Common
(Class1) k=1 0.7997(0.0001) 0.7985(0.0002) 0.7987(0.0001)
k=4 0.9670(0.0001) 0.9666(0.0001)  0.9662(0.0001
k= 0.9877(0.0000) 0.9876(0.0000)  0.9866(0.0000
k=10 0.9945(0.0000) 0.9945(0.0000) 0.9941(0.0000

( )

( )

( )

(Class 2) k=1 0.7857(0.0001)  0.7844(0.0003) 0.7844(0.0001)
k= 0.9655(0.0001)  0.9651(0.0001)  0.9646(0.0000)

k= 0.9872(0.0000)  0.9871(0.0000)  0.9859(0.0000)

k=10 0.9943(0.0000) 0.9943(0.0000) 0.9938(0.0000)

4.3.3.2 Regularization Parameter Selection by Cross-Validation

In Section[4.3.3.1] the experiments in the scarce setup showed that there exists a regularization
parameter such that our method achieves better results than those of the baseline methods.
In order to select such a parameter, we apply a cross-validation method and provide some
experimental results on BCI data. On the BCI data, the proposed method outperformed
the other two methods for all of k = 1,4,7,10 on average (see Table . The box plots
in Figure detail the results, showing that RMT-PCA scored larger RVRs compared to
I-PCA and C-PCA in most of the trials in every setting.

From these experiments, it is demonstrated that the proposed method with a regulariza-
tion parameter automatically selected by cross-validation performs significantly better than
I-PCA and C-PCA.
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Figure 4.5: The RVR of the proposed method using a cross-validated regularization parameter
substracted by the RVRs of its competitors (I-PCA and C-PCA) on BCI data. The samples
between the 25% and the 75% quantiles are summarized as a blue box and the rest are
shown as red + symbols in each plot.
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4.4 Conclusion

In this chapter, we introduced a novel regularization term for orthogonal skinny matrices.
Based on this regularization term, we provided a novel and elegant formulation of the
multi-task PCA problem. Using tools from the field of optimization on manifolds, we solved
this problem, applied our method to synthetic and real-world data, and demonstrated its
usefulness.

We only considered multi-task learning in the scarce setting, but the proposed regular-
ization can be applied to transfer learning and adaptation problems, whose goals are to
improve the performance for a single target task utilizing the information from other similar
tasks. Real-world examples where multi-task principal component analysis plays important
roles include analysis of multi-country government bond returns (Pérignon et al., |2007))
and preprocessing for learning biometric verification systems (Delac and Grgic, [2004). The
particular usefulness of principal component analysis in face image processing with scarce
samples is argued in |Jafri and Arabniaj (2009)).

In future work, we consider several extensions of our method. We may cast our multi-task
dimensionality reduction to a supervised setup. Such an approach may be particularly useful
for BCI applications.

Other subspace methods such as locality preserving projections (He and Niyogil 2004),
Fisher’s discriminant analysis (Fisher} [1936)), and canonical correlation analysis (Hotelling
1936) can be extended to multi-task scenarios using the proposed regularization by replacing
the sample covariance C, in Eq. (4) with appropriate symmetric matrices.

In addition, it would be interesting to use our approach with different criteria in the
spirit of [Harandi et al.| (2014)); [Horev et al.| (2015), leading to a multi-task Riemannian

dimensionality reduction.



69

Chapter 5

Uplift Modeling from Separate
Labels

Uplift modeling is aimed at estimating the incremental impact of an action on an individ-
ual’s behavior, which is useful in various application domains such as targeted marketing
(advertisement campaigns) and personalized medicine (medical treatments). Conventional
methods of uplift modeling require every instance to be jointly equipped with two types of
labels: the taken action and its outcome. However, obtaining two labels for each instance
at the same time is difficult or expensive in many real-world problems. In this chapter, we
propose a novel method of uplift modeling that is applicable to a more practical setting
where only one type of labels is available for each instance. We show a mean squared error

bound for the proposed estimator and demonstrate its effectiveness through experiments.

5.1 Introduction

In many real-world problems, a central objective is to optimally choose a right action to
maximize the profit of interest. For example, in marketing, an advertising campaign is
designed to promote people to purchase a product (Renaultl |2015). A marketer can choose
whether to deliver an advertisement to each individual or not, and the outcome is the number
of purchases of the product. Another example is personalized medicine, where a treatment
is chosen depending on each patient to maximize the medical effect and minimize the risk of
adverse events or harmful side effects (Abrahams and Silver} 2009; [Katsanis et al., [2008]). In
this case, giving or not giving a medical treatment to each individual are the possible actions
to choose, and the outcome is the rate of recovery or survival from the disease. Hereafter, we
use the word treatment for taking an action, following the personalized medicine example.

A/B testing (Kohavi et al., 2009)) is a standard method for such tasks, where two groups
of people, A and B, are randomly chosen. The outcomes are measured separately from the
two groups after treating all the members of Group A but none of Group B. By comparing
the outcomes between the two groups by a statistical test, one can examine whether the
treatment positively or negatively affected the outcome. However, A /B testing only compares

the two extreme options: treating everyone or no one. These two options can be both far
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from optimal when the treatment has positive effect on some individuals but negative effect
on others.

To overcome the drawback of A/B testing, uplift modeling has been investigated re-
cently (Jaskowski and Jaroszewiczl 2012; Radcliffe and Surryl [2011}; [Rzepakowski and
Jaroszewicz, [2012a). Uplift modeling is the problem of estimating the individual uplift, the
incremental profit brought by the treatment conditioned on features of each individual.
Uplift modeling enables us to design a refined decision rule for optimally determining whether
to treat each individual or not, depending on his/her features. Such a treatment rule allows
us to only target those who positively respond to the treatment and avoid treating negative
responders.

In the standard uplift modeling setup, there are two types of labels (Jaskowski and
Jaroszewicz, [2012; [Radcliffe and Surry| [2011; Rzepakowski and Jaroszewicz, [2012a)): One is
whether the treatment has been given to the individual and the other is its outcome. Existing
uplift modeling methods require each individual to be jointly given these two labels for
analyzing the association between outcomes and the treatment (Jaskowski and Jaroszewicz,
2012; [Radcliffe and Surry}, |2011; Rzepakowski and Jaroszewicz, [2012a)). However, joint labels
are expensive or hard (or even impossible) to obtain in many real-world problems. For
example, when distributing an advertisement by email, we can easily record to whom the
advertisement has been sent. However, for technical or privacy reasons, it is difficult to keep
track of those people until we observe the outcomes on whether they buy the product or
not. Alternatively, we can easily obtain information about purchasers of the product at the
moment when the purchases are actually made. However, we cannot know whether those
who are buying the product have been exposed to the advertisement or not. Thus, every
individual always has one missing label. We term such samples separately labeled samples.

In this work, we consider a more practical uplift modeling setup where no jointly labeled
samples are available, but only separately labeled samples are given. Theoretically, we first
show that the individual uplift is identifiable when we have two sets of separately labeled
samples collected under different treatment policies. We then propose a novel method that
directly estimates the individual uplift only from separately labeled samples. Finally, we

demonstrate the effectiveness of the proposed method through experiments.

5.2 Problem Setting

This work focuses on estimation of the individual uplift u(x), often called individual treatment
effect (ITE) in the causal inference literature (Rubin| [2005), defined as u(x) := E[Y7 |
x] — E[Y_; | ], where E[ - | - | denotes the conditional expectation, and « is a X-valued
random variable (X C RY) representing features of an individual, and Y, Y_; are Y-valued
potential outcome variables (Rubin, |2005) (¥ C R) representing outcomes that would be
observed if the individual was treated and not treated, respectively. Note that only one of
either Y7 or Y_; can be observed for each individual. We denote the {1, —1}-valued random

variable of the treatment assignment by ¢, where ¢ = 1 means that the individual has been



5.2. Problem Setting 71

treated and ¢t = —1 not treated. We refer to the population for which we want to evaluate
u(x) as the test population, and denote the density of the test population by p(Y1,Y_1, x, ).

We assume that t is unconfounde with either of Y7 and Y_; conditioned on «, i.e.
p(Y1 | x,t) =p(Y1 | x) and p(Y_1 | z,t) = p(Y_1 | ). Unconfoundedness is an assumption
commonly made in observational studies (Gutierrez and Gérardyl, {2017} [Shalit et al.l 2017).
For notational convenience, we denote by y := Y; the outcome of the treatment assignment
t. Furthermore, we refer to any conditional density of ¢ given x as a treatment policy.

In addition to the test population, we suppose that there are two training populations

k = 1,2, whose joint probability density pg(Y1,Y_1,x,t) satisfy

(Yo =vo |z =20) =p(Yy, = w0 | x =xo) (for k=1,2), (5.1)

pi(t =to | x ==x0) # p2(t =to | * = x0), (5.2)

for all possible realizations ¢y € X, tg € {—1, 1}, and yo € V. Intuitively, Eq. means
that potential outcomes depend on x in the same way as those in the test population, and
Eq. states that those two policies give a treatment with different probabilities for every
T = xy.

We suppose that the following four training data sets, which we call separately labeled
samples, are given:

(@ e ™ pelay), (@0 R p(a ) (for k=1,2),

where ny and ng, k = 1,2, are positive integers. Under Assumptions , , and the
unconfoundedness, we have pi(Y; | ,t =to) = p(Ys, | @, t =to) = p(Ys, | @) for tg € {—1,1}
and k € {1,2}. Note that we can safely denote p(y | @,t) := pr(y | @,t). Moreover, we have
EY;, | x| = Ely | @,t = to] for to = 1, —1, and thus our goal boils down to the estimation of

u(z) =E[y|z,t =1 —E[y| z,t = —1] (5.3)

from the separately labeled samples, where the conditional expectation is taken over p(y |
x,t).

Estimation of the individual uplift is important for the following reasons.

It enables the estimation of the average uplift. The average uplift U(r) of the
treatment policy 7 (¢ | ) is the average outcome of 7, subtracted by that of the policy 7_,

which constantly assigns the treatment as ¢t = —1, i.e., 7_(t =7 | @) := 1|t = —1], where

*1This condition is also referred to as exchangeability.
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1[-] denotes the indicator function:

// Zypy\mt w(t|x)p dydw*// Zypyla:t _(t] x)p(x)dyde

t=—1,1 t=—1,1

= /u(a:)w(t =1|x)p(x)de. (5.4)
This quantity can be estimated from samples of & once we obtain an estimate of u(x).

It provides the optimal treatment policy. The treatment policy given by 7(t =1 |
x) = 1[0 < u(x)] is the optimal treatment that maximizes the average uplift U(7) and equiva-

lently the average outcome [ 37, |, yp(y | =, t)7(t | x)p(x)dydzx (see Eq. (5.4)) (Rzepakowski

land Jaroszewicz, 2012a)).

It is the optimal ranking scoring function. From a practical viewpoint, it may be
useful to prioritize individuals to be treated according to some ranking scores especially when
the treatment is costly and only a limited number of individuals can be treated due to some
budget constraint. In fact, u(x) serves as the optimal ranking scores for this purpose
. More specifically, we define a family of treatment policies {7 ¢ o }acr associated with
scoring function f by mpo(t =1| ) = 1ja < f(x)]. Then, under some technical condition,

f = w maximizes the area under the uplift curve (AUUC) defined as

avve(f) = | Ulnpa)dC,

/ / 1o < f(2)]p(e)dzdC,

) < f(@)u(a')],
where C, := Pr[f(z) < o], z, o’ N p(x), and E denotes the expectation with respect
to these variables. AUUC is a standard performance measure for uplift modeling meth-
ods (Jaskowski and Jaroszewicz, 2012} [Radcliffe, 2007} [Radcliffe and Surry}, 2011} |[Rzepakowski|
land Jaroszewicz, [2012al). For more details, see Appendix

Remark on the problem setting: Uplift modeling is often referred to as individual

treatment effect estimation or heterogeneous treatment effect estimation and has been

extensively studied especially in the causal inference literature (Gutierrez and Gérardyl

2017; 2011} fmai and Ratkovid, 2013} [Johansson et all [2016} [Kiinzel et al.l 2017} [Pearll
[2009; [Rubin| [2005; Wager and Athey} |2015). In particular, recent research has investigated

the problem under the setting of observational studies, inference using data obtained from

uncontrolled experiments because of its practical importance (Shalit et al., [2017). Here,

experiments are said to be uncontrolled when some of treatment variables are not controlled

to have designed values.
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Given that treatment policies are unknown, our problem setting is also of observational
studies but poses an additional challenge that stems from missing labels. What makes our
problem feasible is that we have two kinds of data sets following different treatment policies.

It is also important to note that our setting generalizes the standard setting for observa-
tional studies since the former is reduced to the latter when one of the treatment policies
always assigns individuals to the treatment group, and the other to the control group.

Our problem is also closely related to individual treatment effect estimation via instru-
mental variables (Athey et al.l 2016} Hartford et al.l 2017; Imbens, |2014; |Lewis and Syrgkanis,

2018)[7]

5.3 Naive Estimators

A naive approach is first estimating the conditional density px(y | ) and pi(¢ | ) from
training samples by some conditional density estimator (Bishop, 2006b; [Sugiyama et al.,

2010), and then solving the following linear system for p(y | @,t = 1) and p(y | &, t = —1):

pr(y | ) = > plylzt) p(t | ) (for k =1,2).
k k)\yo t=-1,1 ~(k k)\q 7
Estimated from {(x{"), y{*)}}_, Estimated from {(&*,t("))}7_
(5.5)
After that, the conditional expectations of y over p(y | ,t = 1) and p(y | x,t = —1)

are calculated by numerical integration, and finally their difference is calculated to obtain
another estimate of u(x).

However, this may not yield a good estimate due to the difficulty of conditional density
estimation and the instability of numerical integration. This issue may be alleviated by
working on the following linear system implied by Eq. instead: Egly | ] = Zt:—l,l Ely |
x,tlpr(t | ©), k = 1,2, where Eg[y | ] and pi(¢t | ) can be estimated from our samples.
Solving this new system for E[y | «,t = 1] and E[y | «,t = —1] and taking their difference
gives an estimate of u(x). A method called two-stage least-squares for instrumental variable
regression takes such an approach (Imbens, [2014]).

The second approach of estimation Ej[y|x] and pg(t|z) avoids both conditional density
estimation and numerical integration, but it still involves post processing of solving the

linear system and subtraction, being a potential cause of performance deterioration.

5.4 Proposed Method

In this section, we develop a method that can overcome the aforementioned problems by

directly estimating the individual uplift.

*2 Among the related papers mentioned above, the most relevant one is |Lewis and Syrgkanis| (2018)), which
is concurrent work with ours.
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5.4.1 Direct Least-Square Estimation of the Individual Uplift

First, we will show an important lemma that directly relates the marginal distributions of

separately labeled samples to the individual uplift u(x).

Lemma 5.4.1. For every x such that p1(x) # p2(x), u(x) can be expressed as
Eypr i) Y] — Bypa(yla) W] (5.6)

u(x) =2 x
Etpi(tle) 1] = Etnpatla 1]

For a proof, refer to Appendix [A-3]

Using Eq. (5.6), we can re-interpret the naive methods described in Section as
estimating the conditional expectations on the right-hand side by separately performing
regression on {(x{", y!")}1,, {(@, y*)}iz,, (@, 61, and {(@P), 1))}, This
approach may result in unreliable performance when the denominator is close to zero, i.e.,
Pt @) = pa(t | ).

Lemma can be simplified by introducing auxiliary variables z and w, which are
Z-valued and {—1, 1}-valued random variables whose conditional probability density and

mass are defined by

plz=z0 | @) =ipi(y=20| @)+ 3p2(y = —20 | @),
plw=wg | x) = %pl(t =wp | @)+ %pg(t = —wp | ),

for any zg € Z and any wg € {—1,1}, where Z := {soyo | o € ¥, 50 € {1,—1}}.

Lemma 5.4.2. For every x such that p1(x) # pa(x), u(x) can be expressed as

E[z | z]
Ew | z]’

u(x) =2 X

where E[z | ] and E[w | ] are the conditional expectations of z given x over p(z | ) and

w given & over p(w | €), respectively.

A proof can be found in Appendix [A4]

Let wgk) = (—1)’“’1tz(-k) and zi(k) = (=1)k~ 1y (k). Assuming that p1(x) = p2(x) =: p(x),
ny = ng, and n; = Ny for simplicity, {(Z;, w;) = {( Ek))}k:m; i=1,...7, and
{(xi,zi) Yy = {(wgk),zl(k))}k:m; i=1,...n; Can be seen as samples drawn from p(z, z) :=
p(z | ®)p(x) and p(z, w) := p(w | 2)p(z),

The more general cases where py(x) # pa(x), n1 # ng, or Ny # ne are discussed in

Appendix

Theorem 5.4.1. Assume that ji,, i, € L(p) and p,(x) # 0 for every x such that p(x) > 0,
where L?(p) := {f : X = R | Egup@m)[f(x)?] < o0}. The individual uplift u(x) equals the

solution to the following least-squares problem:

respectively, where n = ny + no and n = 1y + ns.

u(z) = argmin E[(p, () f (z) — 2u.(2))?], (5.7)
feL2(p)
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where E denotes the expectation over p(x), p,(x) := Elw | ], and p.(x) := E[z | x].

Theorem follows from Lemma Note that p;(x) # p2(x) in Eq. (5.2)) implies
() £ 0.

In what follows, we develop a method that directly estimates u(x) by solving Eq. (5.7]).
A challenge here is that it is not straightforward to evaluate the objective functional since it

involves unknown functions, pu,, and p,.

5.4.2 Disentanglement of z and w

Our idea is to transform the objective functional in Eq. into another form in which
1w () and p,(x) appear separately and linearly inside the expectation operator so that we
can approximate them using our separately labeled samples.

For any function g € L?(p) and any & € X, expanding the left-hand side of the inequality
Bl (@) f (@) - 2412(%) — g())?] > 0, we have

E[(pw () f(x) = 242 (2))*] > 2B[(o () f () — 2p:(2))g(2)] — Elg(x)*] =: I (f,9). (5.8)

The equality is attained when g(x) = () f(x) — p.(x) for any fixed f. This means that
the objective functional of Eq. (5.7) can be calculated by maximizing J(f,g) with respect

to g. Hence,

u(x) = argmin max J(f,g). (5.9)
feL2(p) 9€L?(p)
Furthermore, p,, and p, are separately and linearly included in J(f, g), which makes it

possible to write it in terms of z and w as

J(f.9) = 2E[wf(x)g(x)] — 4 E[zg(x)] — Elg(z)’]. (5.10)

Unlike the original objective functional in Eq. (5.7)), J(f,¢) can be easily estimated using

sample averages by

n n

T.0) = 2 3 wif @)gl@) - =3 gl = 5o gw)? - o= Yg@ P (1)

i=1 i=1
In practice, we solve the following regularized empirical optimization problem:

~

min max J(f,9) + (/. ), (5.12)

where F', G are models for f, g respectively, and Q(f, g) is some regularizer. An advantage
of the proposed framework is that it is model-independent, and any models can be trained
by optimizing the above objective.

The function g can be interpreted as a critic of f as follows. Minimizing Eq.
with respect to f is equivalent to minimizing J(f, g) = Elg(z){pw(x)f(x) — 21, (x)}]. g(x)
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serves as a good critic of f(x) when it makes the cost g(x){pw(x)f(x) — 2u.(x)} larger for
@ at which f makes a larger error |, (x)f(x) — 2p.(x)|. In particular, g maximizes the
objective above when g(x) = py, () f(x) — 2u.(x) for any f, and the maximum coincides
with the least-squares objective in Eq. .

Suppose that F' and G are linear-in-parameter models: F = {fo 1z — a' ¢(z) | a €
R} and G = {gg : ¢ — BT(z) | B € R%}, where ¢ and 1 are by-dimensional and bg-
dimensional vectors of basis functions in L?(p). Then, f(fa, g) =2 AB—4b"B-BTCpB,

where

A= 2 @)@ b= > s,
i=1 i=1

n 1 5 ) )
i=1 %;’d)(azl)d)(wl)T

i
| —
<
8
<
8
=,
+

Using fp-regularizers, Q(f,g) = raTax — )\gﬁ—rﬁ with some positive constants Ay and A,
the solution to the inner maximization problem can be obtained in the following analytical

form:

,@a = argmax j(fa,gg) = CN'*I(ATa —2b),
B

where C = C + Agly, and I, is the bg-by-b, identity matrix. Then, we can obtain the
solution to Eq. (5.12]) analytically as

& := argmin J(fa, g5, ) = 2(ACT' AT + XcI,) L AC b,

Finally, from Eq. (5.7), our estimate of u(x) is given as &' ¢ ().

Remark on model selection: Model selection for F and G is not straightforward
since the test performance measure cannot be directly evaluated with (held out) training
data of our problem. Instead, we may evaluate the value of J (f, g), where (f, g)€EFxGis
the optimal solution pair to minyecr maxyeq J (f,g). However, it is still nontrivial to tell if
the objective value is small because the solution is good in terms of the outer minimization,

or because it is poor in terms of the inner maximization. We leave this issue as future work.

5.5 Theoretical Analysis

A theoretically appealing property of the proposed method is that its objective consists of
simple sample averages. This enables us to establish a generalization error bound in terms
of the Rademacher complexity (Koltchinskii, 2001; [Mohri et al., |2012]).

Denote eq(f) = supgerz(p) J(f,9) — supgeq J(f,9). Also, let E)%f]V(H) denote the

Rademacher complexity of a set of functions H over N random variables following probability
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density ¢ (refer to Appendix for the definition). Proofs of the following theorems and
corollary can be found in Appendix [A75] Appendix [AZ6] and Appendix [A7]

Theorem 5.5.1. Assume that ny = ng, N1 = na, p1(x) = pa(x), W = infcx |pw(x)] > 0,
Mz :=sup,cz 2| < oo, Mp :=sup;cp ex |f(7)] <00, and Mg := sup g per [9(7)] < 00.
Then, the following holds with probability at least 1 — & for every f € F':

1 n,n M 2
LB (@)~ ) < i [sup T+ R + (= + ) \/ngsg(f)] ,

where M, := 4MyMg+Mg3/2, M,, = 2MzMg+M3 /2, and R?HG = 2(]\/-"F+4]\/"'Z)mg(aw)(G)jL
2(2Mp + MG)m;l(m,w)(F) +2(Mp + MG)mﬁ(m,w)(G)'

In particular, the following bound holds for the linear-in-parameter models.

Corollary 5.5.1. Let F = {z — o' ¢(z) | |al2 < Ar}, G={z— BT¥(x) | [|B]l2 < Ac}
Assume that rp = sup,cy ||@(x)]] < 00 and rg 1= sup ey || ()| < 0o, where || - ||2 is the
Lo-norm. Under the assumptions of Theorem it holds with probability at least 1 — ¢
that for every f € F,

) 1 ~ C.\/log2+ D, Cyy/log2+ D,
E x) —u(x < — |sup J(f,g9) + +
LB 0@ —u@)) < 35 sup TS e —

+ea(f)]

where C, = r3A% + 4T(;AgMy, Cw = 2r2A% + 2rprgApAg + r3A%, D, = r2A%/2 +
4rgAgMy, and Dy, :==r4A% /2 + 4rprgAFAG

Theorem and Corollary imply that minimizing sup ¢ J (f,9), as the proposed
method does, amounts to minimizing an upper bound of the mean squared error. In fact, for

the linear-in-parameter models, it can be shown that the mean squared error of the proposed
estimator is upper bounded by O(1/yn + 1/v#) plus some model mis-specification error with

high probability as follows.

Theorem 5.5.2 (Informal). Let ]?6 F be any approzimate solution to inf e sup,cq j(f, 9)
with sufficient precision. Under the assumptions of Corollary it holds with probability
at least 1 — § that

LB (F@-u@) <o ((=+ = )gs) + ZEE ey

where & = supsepec(f) and ep :=infrep J(f).

A more formal version of Theorem [5.5.2] can be found in Appendix [A7]

Note that the rate of convergence derived here may not be optimal and could be
improved. Traditional asymptotic analyses show that of the mazimum-Ilikelihood estimator
and the M-estimators converge to their estimands at rate of O,(1/1/n) under some regularity

conditions (Vaart, 1998), and thus the mean squared error of a linear regressor of this
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type typically tends to zero at O,(1/n), where n is the sample size, and O,(-) denotes the
rate of convergence in probability. More recent work has shown non-asymptotic excess
risk bounds for the linear regression (Hsu et al., [2014]) and for the general empirical risk
minimization framework under various assumptions such as the low-noise condition for
classification problems (Mammen and Tsybakovl [1999) and the strong convexity of the loss
function (Bartlett et al.l [2005; Koltchinskii, |2006]).

However, our problem does not fit into those frameworks due to its min-max form.

Further investigation in this direction is left as future work.

5.6 More General Loss Functions

Our framework can be extended to more general loss functions:

o Bl (@) (@), 2p-(@). (514)

where ¢ : R x R — R is a loss function that is lower semi-continuous and convex with
respect to both the first and the second arguments, where a function ¢ : R — R is lower
semi-continuous if iminf,_,, ¢(y) = ¢(yo) for every yo € R (Rockafellar, 197()) As with
the squared loss, a major difficulty in solving this optimization problem is that the operand
of the expectation has nonlinear dependency on both ., () and p,(x) at the same time.
Below, we will show a way to transform the objective functional into a form that can be
easily approximated using separately labeled samples.

From the assumptions on ¢, we have {(y,y’) = sup,cryz — £*(2,y’), where £*(-,¢/) is
the convex conjugate of the function y — £(y,y’) defined for any 3y’ € R as z — £*(2,y') =
sup,eg[yz — £(y,y')] (see Rockafellar| (1970)). Hence,

E[(pw () f (), 2 (2))] = . )E[Mw(w)f(iv)g(w) — *(g(x), 20 (2))]-

Simﬂarly7 we obtain E[E*(g($)72ﬂz(w))] = SUPper2(p) 2E[,U,Z($)h($)] - E[Ei(g(:c),h(a:))],
where £%(y,-) is the convex conjugate of the function ¢’ — £*(y,y’) defined for any y,z’ € R
by li(y,2") = sup, cgly'z — £*(y,9')]. Thus, Eq. (5.14) can be rewritten as

inf su inf K(f,g,h),

fEL?(p) gELQIzp) heL?(p) (f>9.h)
where K(f,g,h) := E[py(2) f(x)g(x)] — 2E[u. (x)h(x)] + E[¢;(g(x), h(x))]. Since u,, and
1, appear separately and linearly, K (f, g, h) can be approximated by sample averages using

separately labeled samples.

"Blim infy sy, o(y) = limg~ 0 inf|, _y0 <5 P (Y)-
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5.7 Experiments

In this section, we test the proposed method and compare it with baselines.

5.7.1 Data Sets

We use the following data sets for experiments.

Synthetic data: Features x are drawn from the two-dimensional Gaussian distribution
with mean zero and covariance 10I5. We set p(y | ,t) as the following logistic models:
p(y | z,t) = 1/(1 — exp(—ya/ z)), where a_; = (10,10)" and a; = (10,-10)T. We
also use the logistic models for pi(t | ): pi(t | ) = 1/(1 — exp(—tz2)) and p2(t | ) =
1/(1 — exp(—t{z2 + b}), where b is varied over 25 equally spaced points in [0,10]. We
investigate how the performance changes when the difference between py (¢ | ) and pa(t | @)
varies.

Email data: This data set consists of data collected in an email advertisement campaign
for promoting customers to visit a website of a store (Hillstrom, [2008; [Radcliffe, |2008)).
Outcomes are whether customers visited the website or not. We use 4 x 5000 and 2000
randomly sub-sampled data points for training and evaluation, respectively.

Jobs data: This data set consists of randomized experimental data obtained from
a job training program called the National Supported Work Demonstration (LaLonde,
1986)), available at http://users.nber.org/ rdehejia/data/nswdata2.html. There are
9 features, and outcomes are income levels after the training program. The sample sizes
are 297 for the treatment group and 425 for the control group. We use 4 x 50 randomly
sub-sampled data points for training and 100 for evaluation.

Criteo data: This data set consists of banner advertisement log data collected by
Criteo (Lefortier et al., [2016) available at http://www.cs.cornell.edu/"adith/Criteo/.
The task is to select a product to be displayed in a given banner so that the click rate will be
maximized. We only use records for banners with only one advertisement slot. Each display
banner has 10 features, and each product has 35 features. We take the 12th feature of a
product as a treatment variable merely because it is a well-balanced binary variable. The
outcome is whether the displayed advertisement was clicked. We treat the data set as the
population although it is biased from the actual population since non-clicked impressions
were randomly sub-sampled down to 10% to reduce the data set size. We made two subsets
with different treatment policies by appropriately sub-sampling according to the predefined
treatment policies (see Appendix . We set py(t | x) as p1(t | &) = 1/(1 + exp(—t1lTx))
and po(t | ) = 1/(1 + exp(t1 ' x)), where 1 := (1,...,1)".

5.7.2 Experimental Settings

We conduct experiments under the following settings.
Methods compared: We compare the proposed method with baselines that separately
estimate the four conditional expectations in Eq. (5.6). In the case of binary outcomes,


http://users.nber.org/~rdehejia/data/nswdata2.html
http://www.cs.cornell.edu/~adith/Criteo/
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we use the logistic-regression-based (denoted by FourLogistic) and a neural-network-based
method trained with the soft-max cross-entropy loss (denoted by FourNNC). In the case
of real-valued outcomes, the ridge-regression-based (denoted by FourRidge) and a neural-
network-based method trained with the squared loss (denoted by FourNNR). The neural
networks are fully connected ones with two hidden layers each with 10 hidden units. For
the proposed method, we use the linear-in-parameter models with Gaussian basis functions
centered at randomly sub-sampled training data points (see Appendix for more details).

Performance evaluation: We evaluate trained uplift models by the area under the
uplift curve (AUUC) estimated on test samples with joint labels as well as uplift curves (Rad-
cliffe and Surry, [1999). The uplift curve of an estimated individual uplift is the trajectory
of the average uplift when individuals are gradually moved from the control group to the
treated group in the descending order according to the ranking given by the estimated
individual uplift. These quantities can be estimated when data are randomized experiment
ones. The Criteo data are not randomized experiment data unlike other data sets, but there
are accurately logged propensity scores available. In this case, uplift curves and the AUUCs
can be estimated using the inverse propensity scoring (Austinl 2011} |Li et al., 2012). We

conduct 50 trials of each experiment with different random seeds.

5.7.3 Results

The results on the synthetic data are summarized in Figure From the plots, we can see
that all methods perform relatively well in terms of AUUCs when the policies are distant from
each other (i.e., b is larger). However, the performance of the baseline methods immediately
declines as the treatment policies get closer to each other (i.e., b is Smaller) In contrast, the
proposed method maintains its performance relatively longer until b reaches the point around
2. Note that the two policies would be identical when b = 0, which makes it impossible to
identify the individual uplift from their samples by any method since the system in Eq.
degenerates. Figure highlights their typical performances in terms of the squared error.
For FourLogistic (Figure and FourNNC (Figure , test points with small
difference between the treatment probabilities, |p1(t = 1| @) — p2(t = 1 | )|, tend to have
very large estimation errors. On the other hand, the proposed method (Figure makes
much small errors even for such points. More detailed plots including spatial information of
test points are shown in Figure [5.3] Figure shows results on real data sets. The proposed
method and the baseline method with logistic regressors both performed better than the
baseline method with neural nets on the Email data set (Figure . On the Jobs data
set, the proposed method again performed better than the baseline methods with neural
networks. For the Criteo data set, the proposed method outperformed the baseline methods
(Figure . Overall, we confirmed the superiority of the proposed both on synthetic and

real data sets.

*4The instability of performance of FourLogistic can be explained as follows. FourLogistic uses linear
models, whose expressive power is limited. The resulting estimator has small variance with potentially large
bias. Since different b induces different u(«), the bias depends on b. For this reason, the method works well
for some b but poorly for other b.
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The Synthetic Data
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Figure 5.1: Results on the synthetic data. The plot shows the average AUUCs obtained by

the proposed method and the baseline methods for different b. p; (¢ | ) and pa(t | x) are
closer to each other when b is smaller.
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Figure 5.2: The scatter plots show the prediction errors of the estimated individual uplifts
for the synthetic data with b = 1. Each point corresponds to a random test data point x,
whose vertical coordinate is |p1(t = 1| &) — p2(t =1 | )|, and the horizontal coordinate is
the squared error of the prediction on @. The errors are clipped down to 50 if they exceed it
since some points are too large errors to be shown in the plots.

5.8 Conclusion

We proposed the first theoretically guaranteed method for a causal inference problem known as
uplift modeling or individual treatment effect, and tested its performance through experiments
on both synthetic and real datasets. The proposed objective is model-independent: we
could use any models to approximate the individual uplift including ones tailored for specific
problems and complex models such as neural networks. On the other hand, selecting the
best models from candidates may be a challenging problem. This is because it may not be
appropriate to select the one minimizing the proposed objective function since the objective
value may be small just because the solution is poor in terms of the inner maximization.
We proposed a theoretically guaranteed and practically useful method for uplift modeling or
individual treatment effect estimation under the presence of systematic missing labels. The

proposed method showed promising results in our experiments on synthetic and real data
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Figure 5.3: The plots show the squared errors of the estimated individual uplifts on the
synthetic data with b = 1. Each point is darker-colored when |p1(t =1 | x) —p2(t =1 | @)]
is smaller, and lighter-colored otherwise. The errors are clipped down to 25 if they exceed it
since some points are too large errors to be shown in the plots.
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Figure 5.4: Average uplifts as well as their standard errors on real-world data sets.

sets. The proposed framework is model-independent: any models can be used to approximate
the individual uplift including ones tailored for specific problems and complex models such
as neural networks. On the other hand, model selection may be a challenging problem due
to the min-max structure. Our work considered the case of a binary treatment. However,
there are many real-world problems where we have more than two kinds of treatments. The
extension to multiple treatments is important future work. Addressing these issues would
be important research directions to further improve the applicability and the performance of

the proposed method.
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Chapter 6

Conclusions and Future Work

This chapter concludes the thesis and discuss potential future research directions.

6.1 Conclusions

This thesis is devoted to investigation of learning from limited information. We categorized
limitation of information into two types: quantitative limitation and qualitative limitation. As
specific instances of learning from quantitatively limited information, we investigated multi-
dimensional log-density gradient estimation and multi-task principal component analysis.
As an instance of learning from qualitatively limited information, we studied uplift modeling
from separate labels.

We proposed several approaches based on information sharing to these problems and
developed practically useful learning algorithms. We demonstrated the effectiveness of the
approaches through various experiments.

We summarize the contributions of this thesis below.

e Information sharing between the output dimensions for multi-dimensional
log-density gradient estimation from quantitatively limited information. In
Chapter[3] we proposed a method for multi-dimensional log-density gradient estimation
from a limited amount of training data. Regarding each output dimension of the
log-density gradient as a task, our method solves them simultaneously with a multi-task
learning regularizer. For carefully designed models, the regularizer imposes the task
relationships that generally hold in log-density gradient estimation regardless of the

distribution, without strong assumptions.

e Information sharing between projection matrices for multi-task principal
component analysis from quantitatively limited information. In Chapter [4]
we proposed a method for solving multiple tasks of principal component analysis when
each task has only a limited amount of training data. Our method uses a regularizer
that makes projection matrices for different tasks close to each other to promote
information sharing among them. The geometry-aware design of the regularizer based

on the metric intrinsic with the manifold of projection matrices enables us to apply a
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recent technique (Absil et al., 2009)) for directory optimizing the projection matrices

on the manifold.

e Information sharing between slightly different populations for uplift model-
ing from qualitatively limited information. In Chapter[5] we proposed a method
for uplift modeling only from systematic missing labels called separate labels. We
overcome the challenge that stems from this qualitatively limitation of supervision by
sharing information between two different populations satisfying reasonable assump-
tions. Our proposed method uses all available information at once to directly estimate

the learning target, leading to stable performance.

From these results, we conclude that information sharing is an important direction of

research to pursue in order to realize machine learning from limited information.

6.2 Future Work

We discuss further extensions, investigations, and other future work of the thesis.

6.2.1 Application of the Regularizer of MT-LSLDG to Other Gradient-
Related Problems

Although we focused on log-density gradient estimation in this thesis, the general idea of
sharing information between partial derivatives could be applied to other problems involving
estimation of gradients of functions.

For example, Fukumizu and Leng| (2012); [Suzuki and Sugiyama| (2013)); [Tangkaratt et al.
(2017) use estimated gradients of some statistical dependency measures for finding a subset
or a combination of input features with best dependent on output variables by gradient
methods. The estimation of the gradients is critical part of those algorithms, and our

regularizer may be able to improve their performance.

6.2.2 Extension of MT-LSLDG to Estimation of Higher-Order Deriva-

tives

Log-density gradient is the first-order derivative of the log-density. We could consider
higher-order derivatives as its extensions. [Sasaki et al.| (2016} [2015) investigated estimation
of the k-th order derivative of a density function for an arbitrary k£ € N1. In this case the
target function outputs a tensor of £k modes. The design of our regularizer would naturally
extend to such general cases by using higher-order derivatives of a common function as basis
functions of linear-in-parameter models. However, we would have additional computational

challenges to address because there would be more number of parameters.
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6.2.3 Extension of MTLPCA to Multi-Task PCA with Other Task-

Relatedness

We considered multi-task principal component analysis under the assumption that the
optimal subspaces are similar to each other. Other types of relatedness between tasks may
be considered as in previous work on multi-task learning. For example, [Argyriou et al.
(20082) assumes that parameters for different tasks share a common subspace, |[Jacob et al.
(2009a)); |Zhou et al.| (2011)) assumes that tasks are similar only within some clusters, and
Lozano and Swirszcz| (2012); [Obozinski and Taskar| (2006]) considers situations where tasks
share some sparsity structures These all consider unconstrained problems, where parameters
are defined on the Euclidean space. Extensions of such work to a non-Euclidean space may

not be straightforward but interesting directions to explore.

6.2.4 Extension of Uplift Modeling from Separate Labels to Mul-
tiple Treatments

Our uplift modeling method assumes that a treatment takes a binary value. It will be useful
if we can extend it to cases where we have multiple treatments as was done in the standard
setup (Rzepakowski and Jaroszewicz, [2012b)). Although how to modify our direct estimator
is not a trivial question to answer, the naive method can be easily extended to the general
case, meaning that the general problem itself is feasible. Development of a method going
beyond the (extended) naive method is an interesting and useful extension to work on in
the future.

6.2.5 Extension of Uplift Modeling from Separate Labels to a Semi-
Supervised Setting

We saw that uplift modeling is feasible even when we only have separate labels. In some
applications, there may be standard joint labels available as well as separate labels. We may
artificially convert jointly labeled samples to separately labeled samples as follows: We make
two copies of each sample and remove the treatment label from one copy and the outcome
label from the other one. However, this may not be optimal since we break the connection
between the paired labels and throw away part of their information. It would be useful to

develop a semi-supervised method that can fully utilize both types of samples.

6.2.6 Extension to Uplift Modeling from Further Limited Informa-
tion

In binary classification, previous work has considered the situation where we only have
positive samples and unlabeled samples while we have no negative samples (Blanchard et al.|
2010; |du Plessis et al.l [2014}|2015; [Elkan and Noto}, |2008; [Kiryo et al., [2017} |Niu et al., |2016]).

We may consider the similar situation in uplift modeling where outcomes are binary

(positive and negative), and samples are labeled by the outcome only when they take the
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positive value while samples are unlabeled otherwise, which limits supervised information
in a different manner from that of separate labels. Investigating how to incorporate the
techniques from the binary classification literature to uplift modeling is an interesting

direction to proceed.

6.2.7 Deriving Fast Learning Rate for the Proposed Uplift Model-
ing Method

We showed an upper bound on the mean squared error for the proposed uplift modeling
method. Our analysis relies on the general technique of the Rademacher complexity error
bound, which does not consider specific properties of the objective function.

Our optimization problem originates from a least-squares problem, for which better upper
bounds of rate O(1/n) have been shown in the literature (Hsu et al., 2014} [Vaart|, |1998]),
n being the sample size. Similar results have been shown even for more general strongly
convex objectives (Bartlett et al 2005; Hsu et al.l 2014} Koltchinskii, [2006; Mammen and
Tsybakov,, [1999; [Vaart], 1998|).

A natural question is whether a similar faster rate of convergence can be attained in
our problem. However, it does not seem straightforward to answer this question because
our problem takes the min-max form but not the standard form of minimization problem
assumed by the techniques mentioned above. The approximation of the objective may affect
the solutions to the outer minimization problem and the inner maximization at the same
time, in a complex way. Development of analysis techniques for addressing this issue is also

our future work.
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Appendix

A Supplementary Material for Uplift Modeling from Sep-

arate Labels

This section is for supplementary materials for Chapter

A.1 Average Uplift in Terms of the Individual Uplift

// Z yply [ t,x)m(t | @ dydw—// > uply |t @)1t = —1]p(x)dyda

t=—1,1

=//yp ylt="La)r(t=1]a)—ply|t = —12)m(t = 1 | @)]p(x)dyda
= //y[p(y [t=1,z)—ply|t=—-1lz)|r(t=1|z)p(x)dyde
- /u(m)w(t = 1| 2)p(x)de. (6.1)

A.2 Area Under the Uplift Curve and Ranking
Define the following symbols:

e Co:=Prlf(2) <,

o Ulasf) = [u(@)lfa < f(a)]p(@)de,

e Rank(f) := E[1[f(z') < f(2)][u(z’) — u(=)]],

o AUUC(f) := [, U(a; f)dC,.
Then, we have

o0

AUUC(f) = Ul

U(a)p(a) (e

— 0o

= U(f

I
)

R
- / / 1[f(@) < f(a)u(e)p(a')da'p()de
— E[1[/(2)
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where y* ~p(y | ', t =1) and y~ ~p(y | ', t = —1).
Assuming Pr[f(z') = f(x)] =0, we have

Rank(f) := E[1[f(z) > f(z')][u(®) — u(z')]]
=E[l[f(z) > f(z")]u(z)]
[ [f(x) = f(a))]u(z)]
UC(f) — E[(1 = 1[f(z) < f(z')])u(=")]
Elu(z)] - 2AUUC(f).

Thus, Rank(f) = 2(AUUC(f) — AUUC(r)), where 7 : R? — R is the random ranking scoring
function that outputs 1 or —1 with probability 1/2 for any input . Rank(f) is maximized
when f(z) < f(z') <= u(x) < u(z’) for almost every pair of x € R? and = € R?. In

particular, f = u is a maximizer of the objective.

A.3 Proof of Lemma [5.4.1]

Lemma|5.4.1l For every x such that p;(x) # pa(x), u(x) can be expressed as

u(e) =2 x Ey i w12) Y] — Bynpa(ula) U] 62)
Eip, (t]a)[t] = Etopa(t]a) 1]
Proof.
E - / x, t=r1 t=717|x
B W Bl T; 1yp y | Ypu(t =7 | T)dy
/ Z yp(y |z, t =7)pa2(t = 7 | 2)dy
T=-—1,1
:/ S owplylat="1)(pit=7|@)—pa(t =7 | x))dy
T=—1,1

=3 E  [lpt=71|z)—pt=7|x))

~ t=
ro1 g yrplylet=T)

= pr(yEc,t:I)[prl(t =1 ‘ .’I}) 7p2(t =1 | :B))

+ E Yl—pt=1]z)-1+pa(t=1]x))
y~p(y|e,t=—1)

=u(@)(pi(t=1]z) = pa(t = 1] x)).

When p1(t =1 | ) # p2(t = 1| @), it holds that

u(z) = Eypi iz) W] = Byps i) Y]
pit=1]z)—pa(t=1]x)
—9x Eypi o) Y] — Eyapa(yla) Y]

Eiwpi(tl2) [t] = Etmpatla) [t]
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A.4 Proof of Lemma [5.4.2

Lemma[5.4.4 For every @ such that pi(z) # p2(z), u(x) can be expressed as

Elz | z]

u(x) =2 X Elw ]

where E[z | ] and E[w | x| are the conditional expectations of z given x over p(z | ) and

w given @ over p(w | x), respectively.

Proof. We have

Bl o] = [ ¢ [3ml=¢l2)+ goaly = ¢l )] ac

= %/gpl(y:g|m)d<+%/<p2(y:—é | &)d¢
= %/ypl(y | @)dy — %/ypz(y | @)dy

1 1
= E

T 2y 2 gyl

Similarly, we obtain

1 1
Ew| x| == -5 :
[w] ] 2 tropy (tx) 2 trps(t|z)
Thus,
2x Bel2l o Brneinl = Brmenlbl _ o)
Elw | ] Eip, () (1] = Etopo (i) [t]

A.5 Proof of Theorem [5.5.1]

We restate Theorem [£.5.1] below.
Theorem [5.5.1) Assume that ny = ng, Ny = ng, p1(x) = pa(x), W = infcx | ()] > 0,

Mz :=sup,cz |2| < oo, Mp :=sup;cp ex |f(7)] <00, and Mg := sup,eq ,ex |9(2)| < 0.
Then, the following holds with probability at least 1 — § that for every f € F,

3

1 -~ = M M, 2
E z) —u(x))? < — |sup J(, +Rn’n+(z+w)\/107+e
mp(w)[(f( ) —u(@)] < 372 sup (f.9) +Rie NN g5 +ealf)
where M, := 4My Mg + M2/2, M, = 2MzMg + M2/2, R}, = 2(Mp +4Mz)R7 (G +
202Mp + Ma)RY , ) (F) +2(Mp + Ma)R% o (G).

~

Define J(f,g) and J(f,g) as in Section 3.2 and denote

(,2)

ea(f) == sup J(f,9) —sup J(f,9).
gEL?(p) 9e€G
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Definition A.1 (Rademacher Complexity). We define the Rademacher complexity of H

over N random variables following probability distribution ¢ by

Vi,...,VN,01,...;0N heH

%g(H)* E [supZal

where o1, ...,0N are independent, {—1, 1}-valued uniform random variables.

Lemma A.1. Under the assumptions of Theorem with probability at least 1 — 6, it
holds that for every f € F,

10.0) < )+ 9+ (Mo o) g2

To prove Lemma[A1] we use the following lemma, which is a slightly modified version of
Theorem 3.1 in Mohri et al.| (2012).

Lemma A.2. Let H be a set of real-valued functions on a measurable space D. Assume
that M := supjepr pep h(v) < 0o. Then, for any h € H and any D-valued i.i.d. random
variables V, V1, ..., VN following density q, we have

N
M? 1
N [, 1

EZ i) 20, (H) + N log 5 (6.3)

Proof of Lemma[A.3 We follow the proof of Theorem 3.1 in Mohri et al. (2012) except
that we set the constant By in Eq. (6.14) to M/m when we apply McDiarmid’s inequality

(Section [A.13). O

Now, we prove Lemma [A7]]
Proof of Lemma[Ad For any f € F,ge G, '@’ € X, 2 € Z:={y,—y |y € YV}, and
w' € {—1,1}, we define h, and h,, as follows:
/ / ! / 1 N2
~ o~ 1
hw(m/a ’U_)/; fa g) = w’f(:c’)g(w’) - ig(wl)z

Denoting H, := {(a',2') — h.(x',2';9) | g € G}, we have

1
sup |h(z,2")| <4MzMg + ~ME& =: M, < oo,
heH, @' €X 2/ €2 2

and thus, we can apply Lemma to confirm that with probability at least 1 — §/2,
2

M 2
D ha(@i zig) + 287 (H.) + = log -,
(@4,2:)ES

E h.(x,z;9)] <
<m,z>~p(z,z)[ (z,29)]

3=
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where {(z;,z;)}"_; =: S, are the samples defined in Section Similarly, it holds that
with probability at least 1 — 4/2,

_ 1 _ . M2 2
E [hw(wvw;fag)] <= n hw(wiawi;fag)+2mp(Hw)+ 710g7

(Z,w)~p(z,w) B (®,w;)eS ’

where H,, = {(Z',w') — hy(Z',w';f,9) | f € F,g € G} M, = MpM¢g + MZ/2, and
{(®;, w;)}_, =: Sy, are the samples defined in Section [5.4.1] By the union bound, we have
the following with probability at least 1 — §:

h.(x,2;9)] + E hoy (2, w; f, 6.4
(fc,Z)NP(%Z)[ ( 9) (55,10)~p(93’W)[ ( f:9)l (64)
1 1
< — Z hz(:ci,zi,g)-kﬁ Z hw(wivwiafag) (65>
(xi,2:)ES- (Z,w)
= M, M, 2
2(R7 (H, "(Hy log —, 6.6
) + W) + (T2 27 ) e (6:6)

Using some properties of the Rademacher complexity including Talagrand’s lemma, we can

show that

R (H.) < (Mp + 4Mz)R(G), (6.7)
R} (Hw) < (2Mp + M)R} (F) + (Mp + Ma)R} (G). (6.8)

Clearly,

j\(fag):% Z h(mi,Zﬁg)Jr% Z h(z;,wi; f, 9),

(a:i,zi)eSz (51',11)1')6511,
J(f,9)= E  |h(z,z9))+  E - [he(® w;f )]
(,2)~p(x,z) (@,w)~p(x,z)

From Eq. (6.6), Eq. (6.7), and Eq. (6.8)), we obtain

J(f.9) < T(fog) + R + (J‘ff 4 ]‘ff) ez (6.9)

where

Rr = 2(Mp +4Mz)R}(G) + 2(2Mp + Mg)R ) (F) + 2(Mp + Ma)R (G).

Finally, we prove Theorem [5.5.1]
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Proof of Theorem[5.5.1] From Lemma [A71] with probability at least 1 — 4, it holds that for
all feF

~ M 2
sup J(f,g) <supJ(f,g) + R G—i—( )\/log 6.10
9eG (f:9) g€ (1:9) r \F Vi (6.10)
Moreover, recalling W := infaex [t (2)] and supge 2, J(f. 9) = El(pw (2) f(2) — p2(2))?),
we have
o)\ 2
E [(f(z) — u(x) ( m)] (6.11)
——E w ()2 12
< vy Ellpw (@) f(2) = pa(2))7] (6.12)
1
_ b ‘ , 1
7 [ze) + s (1) (613)
Combining Eq. (6.10) and Eq. (6.13) yields the inequality of the theorem. O

A.6 Proof of Corollary
Corollary[5.5.1 Let F = {z +— o ¢(x) | [|all2 < Ar}, G = {z+— BT(x) | |18l < Acl,

and assume that rp := sup ey [|@(x)|2 < 00 and rg = sup,cy [|¥(2)|2 < 0o, where | - |2
is the Lo-norm. Under the assumptions of Theorem [5.5.1] it holds with probability at least
1 — 9 that for every f € F,

C.y/log % + D, Cy4/log % + D,

Ton + = +ea(f)],

1 N

B_[(/(@) ~ u@)?) < o [supJ(f.0) +
geG

where C, := riAZ + 4rgAgMy, Cy = 2r: A% + 2rprgApAg + 12A%, D, = r2 A% /2 +

drgAgMy, and D, := 1A% /2 + drprgArAc.

Proof. Under the assumptions, it is known that the Rademacher complexity of the linear-in-

parameter model F' can be upper bounded as follows (Mohri et al., |2012]):

rrAp
RN (F) < )
=N
We can bound D%év (@) similarly. Applying these bounds to Theorem we obtain the
statement of Corollary 1. O

A.7 Proof of Theorem [5.5.2]

We prove the following, formal version of Theorem [5.5.2

Theorem[5.5.4 Under the assumptions of Corollary [5.5.1] it holds with probability at least
1 -6 that E[(f(z) — u(x))?] < (dens + 2 +ep) /W2, where ef, := sup;cpea(f), and
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ep =infrep J(f), ]? € I is any approximate solution to inf e sup e f(f, g) satisfying
supyeg J(f,9) < infrepsupyeq J(f, 9) + ens, and

C,y/log % + D, Cyy/log % + Dy,
€ns ‘= + .
? V2n 2n

Proof. Let J(f) = supgep> J(f,9) = El(uw(@) f(2) — p12(2))?], Ja(f) = supyeq J(f, 9),
j@(f) '= SUPgec j(ﬁg). Let ]76 F be any approximate solution to infscr J(f) satisfying

J(f) <er+ens.

As a special case of Eq.[6.10, we can prove that with probability at least 1 — 4, it holds for
every f € F that Jg(f) < jg(f) + ep,s5. From Corollary it holds that with probability
at least 1 — 4,

ID < [0 = Ja(P)] + [JalD) = To(P] + [Ta(F) - To (D)
+ [Ta(D) = Ja(P)] + [Ja(F) = (D] + 1)
<eG+ens+ens

+ens ek +[er +ens]

<deps+ 255 +ep.

Since E[(f(x) — u(z))?] < ﬁJ(f), we obtain the bound in Theorem m O

A.8 Binary Outcomes

When outcomes y take on binary values, e.g., success or failure, without loss of generality, we
can assume that y € {—1,1}. Then, by the definition of the individual uplift, u(x) € [—2, 2]
for any « € R%. In order to incorporate this fact, we may add the following range constraints
on f: —2 < f(x) < 2 for every x € {x;}", U{Z;}1 ;.

A.9 Cases Where p(x) # po(x) or (ny,n1) # (n1,n)

So far, we have assumed that p;(x) = pa(x), m1 = ma, and ny = ny. The proposed method
can be adapted to the more general case where these assumptions may not hold.

Let ry(z) = 5, pi((mm)) and 7 (x) = % : ppk((mm)), k = 1,2, for every  with p(x) > 0.
Let k; := 1 if the sample x; originally comes from p;(x), and k; := 2 if it comes from py(x).

Similarly, define k; € {1,2} according to whether &; comes from p;(x) or pa(x). Then,
unbiased estimators of the three terms in the proposed objective Eq. (5.10]) are given as the
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following weighted sample averages using rj and 7:

n

0 (@)g(e) %Z[ wi (@) @), ()],

Q

w~p(m) =
B 0@ ~ 1 Yl (0]
— [zig(x;)r
mwp(a:) n — g ki
1 n n SIS
mwp(w) ~ o XZ: z;)] + o Z[Q(ﬂﬁi) %, (@)

i=1

The density ratios pg(x)/p(x) can be accurately estimated using i.i.d. samples from
pr(x) and p(x) (Liu et al.| [2017; Nguyen et al., 2010} |Sugiyama et al. 2012} [Yamada et al.|
2013).

A.10 Unbiasedness of the Weighted Sample Average

Below, we show that the weighted sample averages are unbiased estimates. We only prove
for E[wf(x)g(x)] since the other cases can be proven similarly. The expectation of the

weighted sample average transforms as follows:

1 n N
E;mgk)Npk(w),t( k) (k)) |:wlf(mz) (mz) k (2]31):|

~pi(t|E

== 1Y ( wip(w)
a ﬁk%;mm t~pk<t|w>[ DT @ pk(m)}
—1 —DF 1t f(@)g(x

T2 2 ettt (=Dt f(2)g()]

= [[cr X St o @@

k=1,2
//wpw|:r, z)g(x)p(x)dtde
[wf(z)g()].

w~p(w) w~p(w|w)

A.11 GGaussian Basis Functions Used in Experiments

The [-th element of ¢(x) = (¢1(x),..., ¢, (x))" is defined by

e — @2
¢i(x) :=exp <|wo;:||> ,

where ), 1 =1,. .., by, are randomly chosen training data points. We used by = 100 and

o = 25 for all experiments. 1 is defined similarly.
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A.12 Justification of the Sub-Sampling Procedure

Suppose that we want a sample subset Si following the treatment policy pi (¢ | ). For
each sample (x;,t;,y;) ~ p(x,t,y) in the original dataset, we randomly add it into Sy with
probability proportional to py(t; | ;)/p(t; | ;). Then,
p((isti,yi) € Sk | @iz i, yi)p(@i, ti, vi)
p(®i, b,y | (%4, 83, 95) € Sk) =
(@i, by | (@0, 8,32) ) nyt p((xi,ti,yi) € Sk | @i, i, ys) (x4, ti, v )da;

_ pi(ti | ®)p(yi | i, ti)p(z:)
S22y ot | 2)p(y | @i ti)p(xi)da;

xi)p(yi | Ti ti)p(i).

= pr(ti

This means that the subsamples S, preserve the original p(y | ¢,t) and p(x) but follow the
desired treatment policy pg(t | ).

A.13 McDiarmid’s Inequality

Although McDiarmid’s inequality is a well known theorem, we present the statement to

make the dissertation self-contained.

Theorem A.1 (McDiarmid’s inequality). Let ¢ : DV — R be a measurable function.

Assume that there exists a real number B, > 0 such that

[p(vi,- . on) = (], .. uy)] < By, (6.14)
for any v;,...,vN,v1,...,Vy € D where v; = v} for all but onei € {1,...,N}. Then, for
any D-valued independent random variables Vi, ..., VN and any § > 0 the following holds

with probability at least 1 —§:

B%N 1
PV, Vi) < Blp(Va, ., Vi) + ) —5~ log 5.

B Supplementary Material for Multi-Task Principal Com-

ponent Analysis

This section is for supplementary materials for Chapter [4]

B.1 Study of the proposed regularization

We highlight the behavior of the proposed regularization on a illustrative example. Let us
define the following orthogonal skinny matrices U, U’ € R?*? such that U = [ u ‘ v } and

U' = [ v ‘ u ]7With u,v € R? such that u'w=1,v'v=1and v v =0.
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Even if U and U’ span the same subspace of R?, we show that the proposed regularization
is more interesting than the naive one. Indeed, the spanned subspaces being the same, we
seek a regularization giving a high result for U and U’.

The scalar product regularization (i.e. the naive regularization) gives the followin

Tr(UTU')Tr([uv }T[uuD

T u'v u'lu
=Tr
viv vlu

On the contrary, our proposed regularization gives the following:

T(UU'U'UT) = Te(UTUUTUY)

o)

Hence, contrary naive regularization, our regularization is robust to changes in the order
of the basis vectors describing the span of subspace. This example is the simplest case as our

regularization is invariant to orthogonal transformations (which includes basis re-ordering).

B.2 Additional numerical experiments

In this section, we provide some numerical results in a slightly different setup. This
experimental setup is designed to study a practical application of MTL approaches, where
data are available for several tasks and a new related task to be solved appears. Instead of
using only the few available data for this new task, we use the MTL methodology to transfer
knowledge from the already-known tasks to the new one. We refer to this as the adaptation
setup and study it on both synthetic and BCI data.

B.2.1 Adaptation Setup

In the adaptation setup, we pick one task as the target task and draw a small number of
training samples for the task but a (relatively) large number of samples for the other tasks.
We run the proposed method to solve all the tasks as in the scarce setup, but we throw away

the obtained subspaces except that for the target task.

"I Note however that this Tr(UTU) = 2.
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Table B.1: The averages and the standard errors of the RVRs over 100 trials of experiments
on the toy dataset in the adaptation setup. The best and comparable to the best scores are

shown in bold face.
RMT-PCA I-PCA C-PCA

k=1 0.2374(0.0005) 0.2146(0.0005) 0.2499(0.0001)
k=2 0.4266(0.0010) 0.4087(0.0007)  0.4160(0.0010)
k=3 0.5938(0.0010) 0.5816(0.0009)  0.5836(0.0009)
k=4 0.7574(0.0009) 0.7353(0.0008)  0.7503(0.0009)
k=5 0.9024(0.0007) 0.8731(0.0006) 0.9166(0.0000)

For evaluation, we use RVR for evaluation as in the scarce setup, but we only evaluate
that for the target task. In other words, we assess the performance with the following score r:
y o DU GV (6.15)
Tv(Cy)
where task 7 is the target task, ﬁT denotes an arbitrary orthogonal basis matrix of the
estimated subspace, (AZ’; is the sample covariance matrix calculated using test samples. In
regularization parameter selection by cross-validation, we also use this score but calculated
with hold-out samples in place of the test samples.

As in the scarce setup, the training sample size and the test sample size differ from one
dataset to another. See Section for the specific numbers. Also, we run several trials of
this experiment with different data realizations. See Section [£:3:2] for the specific numbers of
the trials.

B.2.2 Results

We show the results for the adaptation setup below.

Performance Transition over Regularization-Level Change The results on the toy
data in the adaptation setup are summarized in Figure [B:I] We observe similar behaviors
as in the scarce setup (see Figure .

The results on the BCI data in the adaptation setup are shown in Figure Similarly
to the case of the toy data, the performance was improved for all the k& with appropriate A
values.

These results show that the proposed method is useful in both the scarce and the

adaptation setup as long as the regularization level is in a moderate range.

Regularization Parameter Selection by Cross-Validation Next, we apply a cross-
validation procedure for selecting the regularization parameter on BCI data (in the adaptation
setup). The results are summarized in Table showing that the proposed method with

the cross-validated regularization parameter significantly outperforms the competitors.
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Figure B.1: The transition of the RVR score over the level of regularization on synthetic
data. Each plot corresponds to a different dimensionality k, and each curve corresponds to
a different number of tasks T'. ‘Inf’ denotes infinity. The error bars show the mean scores
and their standard errors over 100 trials of the experiment.
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Figure B.2: Transition of the RVR score of the proposed method divided by the score of
I-PCA over the the level of regularization on BCI data (‘Inf’ denotes infinity). Each plot
corresponds to a different class, and each curve corresponds to a different dimensionality k.
The black dotted lines indicate ratio of 1. The error bars show the mean scores and their
standard errors over 72 trials.
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Table B.2: The averages and standard errors of the RVRs on BCI data in the adaptation
setup. In bold face are shown the best and comparable to the best scores by a paired t-test

(5% significance level).

(Class 1)
k=1
k=4
k=17
k=10
(Class 2)
k=1
k=4
k=17
k=10

Multitask

0.8067(0.0001)
0.9687(0.0000)
0.9884(0.0000)
0.9949(0.0000)

0.7898(0.0002)
0.9668(0.0001)
0.9877(0.0000)
0.9946(0.0000)

Independent

0.8055(0.0002
0.9682(0.0001
0.9882(0.0000
0.9948(0.0000

N —

0.7884(0.0003
0.9662(0.0001
0.9875(0.0000
0.9945(0.0000

N —

Common

0.9676(0.0000)
0.9871(0.0000)
0.9941(0.0000)

0.8053(0.0001)
(

0.7881(0.0001)
0.9654(0.0000)
0.9861(0.0000)
0.9939(0.0000)
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