
博士論文

Enhancing Security of Efficient Advanced Cryptosystems

via Reduction to Reliable Assumptions

（高効率な高機能暗号方式の安全性強化手法に関する研究）

勝又秀一

Copyright c⃝ Shuichi Katsumata, 2019.

Abstract

The introduction of public-key cryptography by Diffie and Hellman (IEEE TIT, 1976) has had
an enormous influence on the current information society. Starting with the most fundamental
primitive of public-key encryption schemes, the field of public-key cryptography has been enriched
with many alluring advanced primitives. In cryptography, when we say a scheme is “secure”, we
implicitly have in mind the concept of provable security — a notion introduced by Glodwasser
and Micalli (STOC, 1982). Informally, we have a set of hardness assumptions which we rely
on to build provably secure cryptographic primitives. As one can imagine, as the cryptographic
primitives become more advanced, it is generally the case that we require a stronger hardness
assumptions to construct them. However, proving a cryptographic primitive secure under a strong
hardness assumption is undesirable since the security guarantee for the primitive we achieve will
be weaker, and moreover, often times we would have to compensate for the security loss by making
the concrete instantiation less efficient.

This Ph.D. thesis is a study of different approaches to make advanced cryptosystems more se-
cure by constructing them from weaker, hence more reliable, hardness assumptions. We broadly
prepare three measures which we can use to assess the hardness of a problem: whether it is
a search problem or a decision problem, whether it is a static-problem or a non-static prob-
lem, and whether it is post-quantum or not. Following these three measures, we enhance the
security guarantees (and in some cases its concrete efficiency) of advanced cryptographic primi-
tives. The main contributions are contained in the five papers included in this thesis and cover
the following primitives: identity-based encryption (IBE) schemes, verifiable random functions
(VRF), predicate encryption (PE) schemes, non-zero inner product encryption (NIPE) schemes,
and attribute-based signature (ABS) schemes.

Concretely, the first two papers concern IBE schemes. In the first paper, we show an alternative
security proof for a state-of-the-art post-quantum IBE scheme and show that we can enhance
its security without modifying the original scheme. In the second paper, we provide a general
framework for proving IBE schemes by implicitly embedding non-linear polynomial functions in
the public parameters and obtain two IBE schemes with better security guarantees and more
compact public parameters compared to previous schemes. The third paper concerns VRFs and
PE schemes. We show how to encode predicates by shallow arithmetic circuits and how to combine
them with VRFs and PEs to obtain schemes with better security guarantees. The forth paper
concerns NIPE schemes. We provide two different methods for obtaining NIPE schemes from
various assumptions. The final paper concerns ABS schemes. We provide a generic construction
of ABS schemes for unbounded circuits and instantiate it with post-quantum tools to obtain the
first such scheme based on a post-quantum assumption.

Keywords: Provable Security, Weaker Assumptions, Identity-Based Encryption, Verifiable Ran-
dom Functions, Predicate Encryption, Non-Zero Inner-Product Encryption, Attribute-Based Sig-
natures

Acknowledgment

First and foremost, I wish to thank Noboru Kunihiro, my advisor. He was my advisor back when I
was a bachelor studying cryptography and he was also the one who invited me back to the alluring
world of cryptography for my Ph.D., after I briefly left cryptography to study optimization and
machine learning during my masters — which I also enjoyed very much. Although the topics I
studied never overlapped with Noboru’s, I could not have asked for a more perfect advisor. I
cannot thank him enough for all the support he has provide me over the past years. No matter
what kind of action I took or decision I made, he was always supportive and helpful all the way
through, and his trust in me undoubtedly nourished my confidence as a researcher.

Shota Yamada was my first co-author during my Ph.D and was an excellent mentor to me. I
am very grateful for his patience and for the long hours he spent listening to my half-baked ideas.
His precise comments and clear view always helped me organize my utterly confused thoughts,
and his way of thinking taught me how to be formal, logical, and precise, all of which form the
backbone of how I do research today. I can say without a doubt that without having been able
to work with him, I would have not understood cryptography in a way that I do now.

Takahiro Matsuda was always available to answer any technical question I had and taught me
much about formality. He provided me with many valuable comments on the draft of my first
single-authored paper and opened up a new world for me. This was one of the turning points
during my Ph.D. as I began to see and understand much better the deep theoretical world of
cryptography. I am grateful for this.

One of the first researcher I visited abroad was Ali El Kafaarani at Oxford. He opened up his
house for me, and helped me both as a researcher and as a friend, and I have been visiting him
occasionally ever since. He has a great positive attitude with an unbelievable amount of energy,
and often times I was saved by it when I was feeling down. It was always fulfilling to work with
him and I am very grateful for this.

I am very grateful to Atsushi Takayasu for always making time for me whenever I was stressed
from my studies. The short breaks which we often took on campus in between research always
refreshed my mind and allowed me to get back to my research more motivated than before. Tasuku
Soma and Yuji Nakatsukasa, whom I known from my former lab during masters, were always open
for discussion even if cryptography were not their expertise. Often times conversations with them
led me to find connections between seemingly unrelated phenomena. I am very grateful for them.

During my Ph.D., I had the pleasure of doing research at the National Institute of Advanced
Industrial Science and Technology (AIST). Goichiro Hanaoka, the head of the cryptography group
at AIST, has always been extremely generous and sincere to me, and the research environment he
prepared for me at AIST has had a great positive influence on my research. Other researchers at
AIST that have deeply influenced my research include Jacob Schuldt, Yusuke Sakai, and Takao
Murakami. I am very grateful for all of them.

During my short internship at Mitsubishi Electronic around the end of my masters, I had the

fortune of interacting with Katsuyuki Takashima. Even though he was not my direct host, he
looked after me throughout my stay and engaged in long hours of discussion. In the early stage
of my research, I did not know anything better about cryptography, and as such, he must have
suffered from my disorganized and illogical thoughts. I am grateful for his patience. I am also
very happy to still be in in touch with him after all this long.

I am also grateful for Phong Nguyen, Takashi Yamakawa, Kazumasa Shinagawa, and Yohei
Watanabe. I am especially grateful to Phong for always encouraging me to go abroad and to
open up the small world that I was living in. It was always inspiring and thrilling to work with
Takashi. Observing his rapid thought process, unusual association and amazing ability to put
together seemingly unconnected ideas have always motivated me to strive for more.

Finally, my parents Keiko Katsumata and Kenichi Katsumata and my sister Yuko Katsumata.

Please forgive me any omissions.

5

List of Publications

This Ph.D. thesis comprises a collection of five publications devoted to enhance the security of
advanced cryptosystems through reductions to more reliable assumptions. The concrete cryp-
tographic primitives that we consider in this thesis are: identity-based encryption schemes (in
Chapters 3 and 4), verifiable random functions and predicate encryption schemes (in Chapter 5),
non-zero inner-product encryption schemes (in Chapter 6), and attribute-based signature schemes
(in Chapter 7). The details of the publications which are comprised in each chapter are listed
below.

Chapter 3 [KYY18] Tighter Security Proofs for GPV-IBE in the Quantum Random Oracle
Model. Shuichi Katsumata, Shota Yamada, and Takashi Yamakawa. In the 24nd Inter-
national Conference on the Theory and Application of Cryptology and Information Security
(ASIACRYPT), 2018.

Chapter 4 [KY16] Partitioning via Non-Linear Polynomial Functions: More Compact IBEs
from Ideal Lattices and Bilinear Maps. Shuichi Katsumata and Shota Yamada. In the 22nd
International Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT), 2016.

Chapter 5 [Kat17] On the Untapped Potential of Encoding Predicates by Arithmetic Circuits
and Their Applications. Shuichi Katsumata. In the 23nd International Conference on the
Theory and Application of Cryptology and Information Security (ASIACRYPT), 2017.

Chapter 6 [KY19b] Non-Zero Inner Product Encryption Schemes from Various Assumptions:
LWE, DDH and DCR. Shuichi Katsumata and Shota Yamada. In the 22st International
Conference on Practice and Theory of Public-Key Cryptography (PKC), 2019.

Chapter 7 [EK18] Attribute-Based Signatures for Unbounded Circuits in the ROM and Efficient
Instantiations from Lattices. Ali El Kaafarani and Shuichi Katsumata. In the 21st Interna-
tional Conference on Practice and Theory of Public-Key Cryptography (PKC), 2018.

Other articles written during my Ph.D., but not included in this thesis, are:

[EKS17] Anonymous Reputation Systems Achieving Full Dynamicity from Lattices. Ali El Kaafa-
nari, Shuichi Katsumata, and Ravital Solomon. In the 22nd International Conference on
Financial Cryptography and Data Security (FC), 2017.

[SKAH18] Attribute-Based Signatures for Unbounded Languages from Standard Assumptions Yusuke
Sakai, Shuichi Katsumata, Nuttapong Attrapadung, and Goichiro Hanaoka. In the 24nd
International Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT), 2018.

[KMT19] Lattice-based Revocable (Hierarchical) IBE with Decryption Key Exposure Resistance.
Shuichi Katsumata, Takahiro Matsuda, and Atsushi Takayasu. In the 22st International
Conference on Practice and Theory of Public-Key Cryptography (PKC), 2019.

[DKNY18] Constrained PRFs for Bit-fixing from OWFs with Constant Collusion Resistance.
Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, and Shota Yamada. Cryptology ePrint
Archive, Report 2018/982, 2018.

[KY19a] Group Signatures without NIZK: From Lattices in the Standard Model. Shuichi Kat-
sumata and Shota Yamada. (Manuscript.)

[KNYY19] Designated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assump-
tions. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. (Manuscript.)

8

Contents

1 Introduction 12
1.1 Background . 12
1.2 Reliable Assumptions . 15
1.3 Our Contribution . 17

2 Preliminary 21
2.1 Notation . 21
2.2 Lattices and Gaussian Distributions . 22
2.3 Rings and Ideal Lattices . 27
2.4 Cryptographic Primitives . 31
2.5 Supplementary Materials for Rings and Ideal Lattices 32

3 Tighter Security Proofs for GPV-IBE in the Quantum ROM 40
3.1 Introduction . 40
3.2 Technical Overview . 42
3.3 Preparation . 47
3.4 Tightly Secure Single Challenge GPV-IBE . 50
3.5 (Almost) Tightly Secure Multi-Challenge IBE . 57

4 Partitioning via Non-Linear Polynomial Functions 69
4.1 Introduction . 69
4.2 Technical Overview . 71
4.3 Preparation . 76
4.4 Construction from RLWE . 81
4.5 Construction from Bilinear Maps . 91
4.6 Comparisons and Discussions . 102

5 Encoding Predicates by Arithmetic Circuits and Their Applications 104
5.1 Introduction . 104
5.2 Technical Overview . 108
5.3 Preparation . 113
5.4 Encoding Predicates with Arithmetic Circuits . 117
5.5 Verifiable Random Functions . 124
5.6 Predicate Encryption for MultD-Eq Predicates . 135
5.7 Other Applications: Improving [Yam17] IBE . 142

9

6 Non-Zero Inner Product Encryption Schemes from Various Assumptions 146
6.1 Introduction . 146
6.2 Technical Overview . 148
6.3 Preparation . 150
6.4 Construction from Lattices with Inner Product over Z 153
6.5 Constructions from Lattices with Inner Product over Zp 160
6.6 A Generic Construction of NIPE from LinFE . 170
6.7 Formal Treatment on Multi-Dimensional Lattices 175

7 Attribute-based Signatures for Unbounded Circuits in the ROM 180
7.1 Introduction . 180
7.2 Technical Overview . 182
7.3 Preparation . 184
7.4 Gap-Σ-Protocols and Non-Interactive Zero-Knowledge Proofs 190
7.5 Generic Construction of Attribute-based Signatures 193
7.6 ABS for Unbounded Circuits from Lattices . 201
7.7 Gap-Σ-Protocol for the Relation REqTo⋆ . 206

10

Chapter 1

Introduction

1.1 Background

In 1976, Diffie and Hellman published a paper with the title “New Directions in Cryptography”
[DH76]. In contrast to the rather simplistic title, the paper introduced the foundation of modern
public-key cryptography and has had an enormous influence on the current information society.
It is not an exaggeration to say that the privacy and security of all the communications we
make in our everyday lives through unauthenticated public networks are ensured by public-key
cryptography. Though [DH76] introduced the notion of public-key cryptography, they did not
provide any candidate constructions. It was Rivest, Shamir, and Adleman in 1978 [RSA78] that
introduced the first construction of public-key encryption scheme — by now the famous RSA
encryption scheme. The variants of the RSA encryption scheme are still the most widely used
today. Soon after, Goldwasser and Micalli [GM82, GM84] provided a more rigorous treatment on
the security notion of public-key cryptography and inspired the subsequent works to the concept
of provable security. However, before diving into the alluring world of provable security, we would
like to continue on with the brief history after the introduction of public-key cryptography and
see what kind of other fascinating primitives have emerged since then.

Although public-key encryption schemes were a far more advanced and flexible primitive com-
pared to secret-key encryption schemes (which can only be used if a secret-key has been established
between the parties), researchers were eager to find more advanced primitives. One such promi-
nent cryptographic primitive is the identity-based encryption (IBE) scheme. The concept of IBE
schemes were introduced by Shamir in 1985 [Sha85] soon after the introduction of public-key
encryption schemes. An IBE scheme is a public-key cryptographic system where any string, e.g.,
a user identifier such as an email address or phone number, can be a valid public key. Therefore,
a sender can encrypt a message by simply using the receiver’s identifier and does not require the
receiver to actively setup a public key prior to the communication. In some systems where the
identifier of the users are already known, IBE schemes offer a much cleaner and flexible solution
to secure communication compared to using standard public-key encryption schemes. To come
up with a concrete construction of IBE schemes however took time. It was not until a decade
later that Boneh and Franklin [BF01] and Cocks [Coc01] independently constructed the first
IBE schemes. The ideas and new mathematical tools (i.e., pairing or bilinear maps) presented
in the former construction have found countless new applications and was awarded the Gödel
prize in 2013 for its contribution to modern cryptography. Other compelling advanced public-key
cryptographic primitives after the emergence of public-key encryption schemes include, but not
limited to, are broadcast encryption schemes [FN93], proxy encryption schemes [BBS98], threshold

12

encryption schemes [DF89], attribute-based encryption schemes [SW05, GPSW06], functional en-
cryption schemes [O’N10, BSW11], and fully-homomorphic encryption schemes [RAD78, Gen09].
Furthermore, we would like to point out that advanced cryptographic primitives in the secret-key
setting have also shown significant progress: such primitives include group signatures [CVH91],
ring signatures [RST01], attribute-based signatures [MPR11], and secret-key counterparts of the
above advanced public-key cryptographic primitives.1

We now return back to the concept of provable security introduced by Goldwasser and Micalli
[GM82, GM84], which is considered as now the defacto standard of modern cryptography. To
appreciate this concept, we must be aware of the fact that when we state that a certain crypto-
graphic primitive is “secure”, the term is quite ambiguous. First of all, what does it even mean
for a cryptographic primitive to be secure. Second, once we have a vague meaning of the term
“secure”, how should we formalize it in a strict mathematical language without ambiguity. Fi-
nally, how do we theoretically prove that a cryptographic primitive is secure. Formally treating
these questions leads us to the concept of provable security.

The first two questions can be answered by formally laying out the security requirements a
certain primitive should have. For instance, let us consider public-key encryption schemes. Our
intuition tells us that a ciphertext ct should not leak any information of the message M which
it encrypts. To capture this in a more formal manner, Goldwasser and Micali [GM82, GM84]
introduced the notion of semantic-security for public-key encryption schemes. Informally, a se-
mantically secure public-key encryption scheme demands that any information on the message M
that can be efficiently computed from its encryption ct can also be efficiently computed without
access to ct. In other words, any information that can be extracted from the ciphertext ct could
have been simulated without knowledge of ct, hence, ct does not leak any information on the
message M. However, we should note here that the definition of “security” is somewhat objec-
tive and in some cases there can be several incomparable security notions for one cryptographic
primitive. For example, other security notions capturing what a “secure” public-key encryp-
tion scheme should be have been considered, e.g., security against indistinguishable from chosen
plaintext attacks (IND-CPA) [GM82], IND-chosen ciphertext attacks (IND-CCA) [RS91], and
non-malleability [DDN91]. In some cases these independently introduced security notions turn
out to be equivalent, e.g., semantic security implies IND-CPA for public-key encryption schemes
and vice-versa, however, in some other cases one notion is stronger than the other, e.g., IND-CPA
is not known to imply IND-CCA.

The third question of how to theoretically prove security of a cryptographic primitive can be
answered by using the technique known as reductions. A reduction works as follows: We first
must make an assumption that there exists a hard problem X such that no algorithm can solve.2

For example, in the seminal work of Diffie and Hellman [DH76], they assumed the hardness of
the discrete logarithm (DL) problem, which states that given a group generator g ∈ G and some
random group element h ∈ G, it is difficult to find a ∈ Z|G| such that h = ga. We then prove by
contradiction that there exists no algorithm A breaking the security of the cryptographic primitive
assuming the hardness of the problem X. Specifically, we reduce the problem of breaking the
security of the cryptographic primitive to solving the hard problem X; we construct an algorithm
B solving problem X by using the algorithm A which breaks the security of the cryptographic

1 The names “public” and “secret” may be misleading. We follow the convention of Impagliazzo and Rudich
[IR89] and call any primitives implied from one-way functions as “secret-key primitives” and those that are not as
“public-key primitives”.

2 During the introduction, we leave the terms “hard” and “no algorithms” informal for the sake of clarity and
readability.

13

primitive. In other words, unless the hard problem X cannot be solved by any algorithm (which
is an assumption), then we can conclude that there exists no algorithm A that breaks the security
of the cryptographic primitive.

To sum up so far, provable security is the concept of formally defining the correct notion of
security for a cryptographic primitive and proving its security via a reduction from a hard prob-
lem. Therefore, once the correct notion of security is fixed, the problem boils down to what kind
of hard problem, hence, what kind of hardness assumption, can be used to show a reduction to
the security of the cryptographic primitive in question.3 We should note that there exist cryp-
tographic primitives with appropriate security definitions that are known to be provably secure
without relying on any hardness assumptions such as Shamir’s secret sharing scheme [Sha79],
non-interactive zero-knowledge for NP languages in the hidden-bit model [FLS99], and garbled
circuits for NC1 [IK02]; in particular, they only rely on information theoretical (or statistical) ar-
guments to be proven secure and they are secure against any unbounded probabilistic algorithms.
However, in this thesis, we will only be considering primitives that require some type of hardness
assumption to prove secure.

Thus far, all provably secure public-key cryptographic schemes (and many secret-key crypto-
graphic schemes) have relied on some type of hardness assumption. The first public-key encryption
scheme of Rivest, Shamir, and Adleman [RSA78] relies on the hardness of the RSA problem and
the public-key encryption scheme of El Gamal [ElG84] relies on the hardness of the decisional
Diffie-Hellman (DDH) problem. However, as one can imagine, when we move to more advanced
cryptographic primitives, it becomes more and more difficult to construct them from simple/easy
hard problems (or equivalently simple/weak hardness assumptions). Here we say a problem X is
easier than a problem Y if there exists a reduction from problem X to Y . Namely, problem X is
easy in the sense that an algorithm solving Y can be converted to an algorithm solving X but not
the other way around. For example, we all know by definition that the DL problem is harder than
the DDH problem and that the DDH problem is harder than the decisional bilinear Diffie-Hellman
(DBDH) problem. Here, we emphasize that we are not stating that the DBDH problem is an easy
to solve problem. One possible way to interpret this ordering of the hardness of the problems
would be as follows: even though the DBDH problem may be easier to solve compared to the DL
or DDH problems, i.e., the DBDH problem is a stronger hardness assumption, solving the DBDH
problem is nonetheless believed to be difficult, and moreover, due the gap between the hardness,
the DBDH problem may potentially have a more flexible algebraic structure which we can exploit
to construct more advanced and complex cryptographic primitives. Indeed, we do not know how
to construct public-key encryption schemes from the DL problem, but we know how to construct
them from the easier DDH problem [ElG84]. Furthermore, the first IBE construction of Boneh
and Franklin [BF01] relied on the hardness of the DBDH problem (in the random oracle model),
but it took more than a decade and a half till Döttling and Garg solved the long standing open
problem of constructing IBE schemes from the weaker DDH assumption [DG17]. This captures
our intuition that IBE schemes are more advanced primitives compared to public-key encryption
schemes. Even though all problems we use to build cryptographic primitives are believed to be
hard, there may exist an implicit gap between the hardness. For instance, it may turn out that
it is impossible to construct public-key encryption schemes from the DL problem and there may
be a fundamental gap between the DL problem and the DDH problem.

As we have seen so far, although there are some exceptions, in general, we require more
complex and structured (resp. stronger) hard problems (resp. hardness assumptions) to construct

3 We will be using the terms “hard problems” and “hardness assumptions” interchangeably whenever the meaning
is clear.

14

advanced cryptographic primitives. However, one thing we must always keep in mind — and
as a matter of fact is the main theme of this thesis — is that a hardness of a problem is no
more than an assumption. Put differently, even if we are able to construct appealing advanced
cryptographic primitives, if the construction comes at the cost of an extremely strong assumption,
then we must take great precaution and check that the assumption really holds. Indeed, there are
situations where some assumed hard problems have been shown to be easily solvable soon after
their proposal. A famous example may be the public-key encryption scheme based on the variant of
the knapsack problem proposed by Merkle and Hellman [MH78]. A few years after their proposal,
Shamir proposed an efficient algorithm for the problem [Sha82] and the Merkle-Hellman knapsack
problem has not been used ever since. Therefore, although constructing advanced cryptographic
primitives are certainly of great importance, we must also always keep in mind of the credibility
of the hardness assumption being made as it is the foundation of provable security.

In the next section, we see what kind of assumptions are believed to more reliable than others,
hence, more suitable for constructing cryptographic primitives from a security stand point. Then,
in the main body of our thesis, we will explore various advanced cryptographic primitives that
are provably secure under such reliable assumptions.

1.2 Reliable Assumptions

When constructing cryptographic primitives, it is important to ask ourselves under what type of
hard problems can we obtain provable security. Broadly speaking, there are three measures which
we can use to assess the hardness of the problems: whether it is a search problem or a decision
problem, whether it is a static-problem or a non-static problem, and whether it is post-quantum
or not.

The first measure is perhaps easiest to explain through a concrete example. Let us consider
the search variant of the famous factorization problem: Given a number N ∈ N, find an integer
d with 1 < d < N that divides N . Although this problem is believed not to be NP-complete,
it is widely suspected to be outside of P. Many have tried to come up with a polynomial time
algorithm for solving the problem but history has shown that it may be more difficult than
the innocent impression casted by the problem. On the other hand, the decision variant of the
factorization problem, which states that given a number N ∈ N, decide whether N is a prime or
not, is surprisingly known to be inP [AKS04]. In general, search problems are harder than decision
problems. A more relative problem to cryptography that lets us appreciate the difference between
search and decision problems may be the computational Diffie-Hellman (CDH) problem and the
decisional Diffie-Hellman (DDH) problem [DH76]. While the CDH problem asks to compute, i.e.,
search for, gab ∈ G given a random tuple (g, ga, gb) ∈ G3, the DDH problem asks to decide whether
Z ∈ G is equal to gab or a uniformly random element given a random tuple (g, ga, gb) ∈ G3. It is
easy to verify that the DDH problem is easier than the CDH problem. Notably, if there exists an
algorithm solving the CDH problem, it can be trivially used to solve the DDH problem, however,
the converse does not seem to be hold. Furthermore, unlike the decision variant of the factorization
problem, the DDH problem is believed to be outside of P for certain groups G; it can be used
as a hardness assumption to construct meaningful cryptographic primitives. Therefore, when one
wants to construct a cryptographic scheme, they are given the choice of using either the weaker
CDH assumption or the stronger DDH assumption. In general, in case a problem can be casted
as both a search and decision problems and both problems are assumed to be hard, then it is
preferable from a security point of view to construct a provably secure cryptographic primitive
under the search problem, since it provides stronger security guarantees. Specifically, even if at

15

some point the decision problem (and not the search problem) turns out to be an easy problem
to solve, the security of a cryptographic scheme based on the search problem will still be intact.
We note that these unfortunate situations may truly happen taking into account that there are
some groups known as the gap Diffie-Hellman groups [BLS01, OP01] where the CDH problem is
assumed to be intractable but the DDH problem has practical solutions.

It is worth pointing out that for some special problems, it is known that the search problem
reduces to the decision problem; the decision problem is as hard as the search problem. One
notable example is the learning with errors (LWE) problem [Reg05, Reg10]. Informally, the
search variant of the LWE problem asks to find a vector s ∈ Zn

q , given a matrix-vector pair

(A,b) ∈ Zn×m
q × Zm

q , where b = A⊤s + e for some short vector e sampled from a specific

distribution. The decision variant of the LWE problem asks to distinguish whether b = A⊤s+ e
for some vector s and short vector e or b a uniformly random vector over Zm

q given the pair
(A,b). Although at first glance, the decisional version of the LWE problem seems much easier
than the search variant, Regev [Reg05] provided a reduction of the search LWE to the decision
LWE. Hence, for some problems, it does not make a significant difference whether the search or
decision version is used.

The second measure of static or non-static problem is mainly relevant to specific types of
problems where the hardness assumption grow dynamically. One of the earliest problems that
has the non-static feature is the q-generalized Diffie-Hellman (q-GDH) problem [STW96, NR97].
This problem is an extension of the original DDH problem and asks the following: for a random
generator g ∈ G, given ga1 , · · · , gaq ∈ G and given all the subset products gΠi∈Sai ∈ G for any strict
subset S ⊂ {1, · · · , q}, compute ga1···aq ∈ G. Here q is some external parameter which is chosen
dynamically, hence, the terminology non-static assumption. It is easy to see that the 2-GDH
problem is equivalent to the CDH problem and for any q ≥ 1, the (q + 1)-GDH problem is easier
than the q-GDH problem. Since most non-static assumptions are parameterized by a value q, non-
static assumptions are also often times referred to as q-type assumptions. As we mentioned earlier,
the growth in the complexity of cryptographic primitives has been accompanied by an analogous
growth in the complexity of the assumptions required to prove security; q-type assumptions are no
exception. Different types of q-type assumptions have been created in exchange for constructing
advanced cryptosystems. Some examples are the q-strong Diffie-Hellman (q-SDH) assumption
[MSK02], the q-bilinear Diffie-Hellman inversion (q-BDHI) assumption [BB04b], and the q-bilinear
Diffie-Hellman exponent assumption [BBG05, BGW05]. Often times, in a reduction, the value of q
is tied to the number of queries that the adversary makes to some oracle. For example, in the IBE
scheme of [BB04b], q in the q-BDHI assumption must be at least as large as the number of parties
the adversary is able to corrupt, which can (in theory) be an arbitrary large polynomial. Since
q-type assumptions are stronger for larger values of q, this means that the assumption we require
gets stronger as the adversary is able to corrupt more parties. Therefore, if we were to prove a
cryptographic scheme secure under a q-type assumption, we want the value of q to be as small as
possible. This is not only of a theoretical concern, since for example Cheon [Che06] showed an
attack that recovers the exponent of the q-SDH assumption in time that scales inversely with q.
This suggests that cryptographic schemes relying on larger values of q must compensate for using
a stronger q-type assumption by setting the parameters large enough to maintain a constant level
of security.

The last measure concerns whether a problem is post-quantum or not. Here we say a problem
X is post-quantum if it cannot be solved even if quantum algorithms are used. Above we men-
tioned that the factorization problem is believed to be outside of P. For a quantum computer,
however, Shor [Sho94a] presented an algorithm that solves the problem in polynomial time. While

16

quantum computation in not yet viable, the emergence of quantum computers will have a signifi-
cant impact on cryptography. For instance the RSA encryption scheme will completely be broken
since its security relies (roughly) on the hardness of the factorization problem. Moreover, Shor
also showed in the same paper that the DL problem can be solved in quantum polynomial time.
This in particular implies that all group-based and paring-based assumptions such as the CDH,
DDH, DBDH problem, and so on, can be solved efficiently using quantum algorithms. There-
fore, when quantum computers are fully realized, most of the cryptosystems used today will be
completely insecure. This has provoked the cryptographic community in a search for (classical)
cryptographic systems that are secure even in front of quantum algorithms. Recently in 2016,
the National Institute of Standards and Technology (NIST) initiated the Post-Quantum Cryp-
tography Standardization, and post-quantum cryptography has been gathering increasingly more
attention. From a provable security point of view, a cryptographic scheme is quantumly-secure
if the security of the scheme can be based on a hard problem that is post-quantum. One of the
promising set of problems that are believed to be post-quantum are those based on lattices. In
a seminal work, Ajtai [Ajt96] introduced the short integer solutions (SIS) problem and proved
that solving it (on average) is at least as hard as approximating various lattice problems that are
presumably post-quantum in the worst case. The aforementioned LWE problem introduced by
Regev [Reg05] is another very important post-quantum problem. Similarly to the SIS problem
it enjoys a worst-case to average-case reduction to approximating lattice problems that are pre-
sumably post-quantum. Originally, lattice-based cryptography, i.e., cryptographic schemes based
on the SIS and LWE problems, were most acclaimed for its post-quantum feature and strong
security guarantees from worst-case hardness, however, over the past few decades it has proven
to be much more. For example, fully-homomorphic encryption (FHE) schemes — the holy grail
of cryptography — first envisioned by Rivest et al. [RAD78], were finally given a candidate con-
struction by Gentry [Gen09] based on lattices three decades later. Since then FHE has shown
significant improvement both on the practical and theoretical front [BV11, GSW13, CGGI16],
and all schemes so far are based on lattices. Other than FHE, lattices have provided the only
known realizations of other advanced and powerful cryptographic primitives, such as attribute-
based encryption schemes with arbitrary access policies [GVW13, BGG+14a], fully-homomorphic
signatures [GVW15b], and indistinguishable obfuscation [GGH+13]. It may seem that lattice-
based cryptography is all powerful, however, there are certain cryptographic primitives that we
know how to construct from non-post-quantum problems but not from lattice-based problems.
Some long standing open problems are constructing lattice-based non-interactive zero-knowledge
proofs [BFM88] and broadcast encryption schemes [FN93]. Therefore, it is important to keep in
mind what we can construct from lattices and how efficiently we can construct them compared
to the non-post-quantum counterparts.

1.3 Our Contribution

In this thesis, our goal is to construct advanced cryptographic primitives efficiently while bas-
ing their securities on more reliable assumptions: search problems, static-assumptions or post-
quantum assumptions. Below, we provide a brief summary of the contributions made in each
subsequent chapters.

17

1.3.1 Summary of Chapter 3

In 2008, Gentry, Peikert, and Vaikuntanathan [GPV08] proposed the first identity-based encryp-
tion (GPV-IBE) scheme based on a post-quantum assumption, namely, the LWE assumption.
Since their proof was only made in the random oracle model (ROM) instead of the quantum ran-
dom oracle model (QROM), it remained unclear whether the scheme was truly post-quantum or
not. In 2012, Zhandry [Zha12b] developed new techniques to be used in the QROM and proved
security of GPV-IBE in the QROM, hence answering in the affirmative that GPV-IBE is indeed
post-quantum. However, since the general technique developed by Zhandry incurred a large re-
duction loss, there was a wide gap between the concrete efficiency and security level provided
by GPV-IBE in the ROM and QROM. Furthermore, regardless of being in the ROM or QROM,
GPV-IBE is not known to have a tight reduction in the multi-challenge setting. Considering that
in the real-world an adversary can obtain many ciphertexts, it is desirable to have a security proof
that does not degrade with the number of challenge ciphertext.

In Chapter 3, we provide a much tighter proof for the GPV-IBE in the QROM in the single-
challenge setting. In addition, we also show that a slight variant of the GPV-IBE has an almost
tight reduction in the multi-challenge setting both in the ROM and QROM, where the reduction
loss is independent of the number of challenge ciphertext. Our proof departs from the traditional
partitioning technique and resembles the approach used in the public-key encryption scheme of
Cramer and Shoup [CS98]. Our proof strategy allows the reduction algorithm to program the
random oracle the same way for all identities and naturally fits the QROM setting where an
adversary may query a superposition of all identities in one random oracle query. Notably, our
proofs are much simpler than the one by Zhandry and conceptually much easier to follow for
cryptographers not familiar with quantum computation. Although at a high level, the techniques
used for the single and multi-challenge setting are similar, the technical details are quite different.
For the multi-challenge setting, we rely on the Katz-Wang technique [KW03] to overcome some
obstacles regarding the leftover hash lemma.

1.3.2 Summary of Chapter 4

In Chapter 4, we present new adaptively secure identity-based encryption (IBE) schemes. One
of the distinguishing properties of the schemes is that it achieves shorter public parameters than
previous schemes. Both of our schemes follow the general framework presented in the recent
IBE scheme of Yamada [Yam16], employed with novel techniques tailored to meet the underlying
algebraic structure to overcome the difficulties arising in our specific setting. Specifically, we
obtain the following:

- Our first scheme is proven secure under the ring learning with errors (RLWE) assumption and
achieves the best asymptotic space efficiency among existing schemes from the same assumption.
The main technical contribution is in our new security proof that exploits the ring structure in
a crucial way. Our technique allows us to greatly weaken the underlying hardness assumption
(e.g., we assume the hardness of RLWE with a fixed polynomial approximation factor whereas
Yamada’s scheme requires a super-polynomial approximation factor) while improving the overall
efficiency.

- Our second IBE scheme is constructed on bilinear maps and is secure under the 3-computational
bilinear Diffie-Hellman exponent assumption. This is the first IBE scheme based on the hardness
of a computational/search problem, rather than a decisional problem such as DDH and DLIN
on bilinear maps with sub-linear public parameter size.

18

1.3.3 Summary of Chapter 5

Predicates are used in cryptography as a fundamental tool to control the disclosure of secrets.
However, how to embed a particular predicate into a cryptographic primitive is usually not given
much attention. In Chapter 5, we formalize the idea of encoding predicates as arithmetic circuits
and observe that choosing the right encoding of a predicate may lead to an improvement in many
aspects such as the efficiency of a scheme or the required hardness assumption. In particular,
we develop two predicate encoding schemes with different properties and construct cryptographic
primitives that benefit from these: verifiable random functions (VRFs) and predicate encryption
(PE) schemes.

- We propose two VRFs on bilinear maps. Both of our schemes are secure under a non-interactive
q-type assumption where q is only poly-logarithmic in the security parameter, and they achieve
either a poly-logarithmic verification key size or proof size. This is a significant improvement
over prior works, where all previous schemes either require a strong hardness assumption or a
large verification key and proof size.

- We propose a lattice-based PE scheme for the class of multi-dimensional equality (MultD-Eq)
predicates. This class of predicate is expressive enough to capture many of the appealing ap-
plications that motivates PE schemes. Our scheme achieves the best in terms of the required
approximation factor for LWE (we only require poly(λ)) and the decryption time. In particular,
all existing PE schemes that support the class of MultD-Eq predicates either require a subexpo-
nential LWE assumption or an exponential decryption time (in the dimension of the MultD-Eq
predicates).

1.3.4 Summary of Chapter 6

In non-zero inner product encryption (NIPE) schemes, ciphertexts and secret keys are associated
with vectors and decryption is possible whenever the inner product of these vectors does not equal
zero. So far, much effort on constructing bilinear map-based NIPE schemes have been made and
this has lead to many efficient schemes. However, the constructions of NIPE schemes without
bilinear maps are much less investigated. The only known other NIPE constructions are based
on lattices, however, they are all highly inefficient due to the need of converting inner product
operations into circuits or branching programs.

To remedy our rather poor understanding regarding NIPE schemes without bilinear maps,
we provide two methods for constructing NIPE schemes: a direct construction from lattices and
a generic construction from functional encryption schemes for inner products (LinFE). For our
first direct construction, it highly departs from the traditional lattice-based constructions and we
rely heavily on new tools concerning Gaussian measures over multi-dimensional lattices to prove
security. For our second generic construction, using the recent constructions of LinFE schemes as
building blocks, we obtain the first NIPE constructions based on the DDH and DCR assumptions.
In particular, we obtain the first NIPE schemes without bilinear maps or lattices.

1.3.5 Summary of Chapter 7

Attribute-based signature (ABS), originally introduced by Maji et al. [MPR11], represents an
essential mechanism to allow for fine-grained authentication. A user associated with an attribute
x can sign w.r.t. a given public policy C only if his attribute satisfies C, i.e., C(x) = 1. So far,

19

much effort on constructing bilinear map-based ABS schemes have been made, where the state-
of-the-art scheme of Sakai et al. [SAH16] supports the very wide class of unbounded circuits as
policies. However, construction of ABS schemes without bilinear maps are less investigated, where
it was not until recently that Tsabary [Tsa17] showed a lattice-based ABS scheme supporting
bounded circuits as policies, at the cost of weakening the security requirement.

In Chapter 7, we affirmatively close the gap between ABS schemes based on bilinear maps
and lattices by constructing the first lattice-based ABS scheme for unbounded circuits in the
random oracle model. We start our work by providing a generic construction of ABS schemes for
unbounded-circuits in the random oracle model, which in turn implies that one-way functions are
sufficient to construct ABS schemes. To prove security, we formalize and prove a generalization
of the Forking Lemma, which we call “general multi-forking lemma with oracle access”, capturing
the situation where the simulator is interacting with some algorithms he cannot rewind, and also
covering many features of the recent lattice-based ZKPs. This, in fact, was a formalization lacking
in many existing anonymous signatures from lattices so far (e.g., group signatures). Therefore, this
formalization is believed to be of independent interest. Finally, we provide a concrete instantiation
of our generic ABS construction from lattices by introducing a new Σ-protocol, that highly departs
from the previously known techniques, for proving possession of a valid signature of the lattice-
based signature scheme of Boyen [Boy10].

20

Chapter 2

Preliminary

In this chapter, we prepare notations and tools that will be used throughout the thesis.

2.1 Notation

In this section, we first provide the notations that will be used. Whenever the meaning of any
symbols become unclear when reading through the thesis, please use this section as reference.

We use non-italic bold lowercase letters (e.g., v) for vectors with entries in R and italic bold
lowercase letters (e.g., v) for vectors with entries in rings or number fields. Unless stated otherwise
we typically view vectors in their row form, however, in some special cases, e.g., Chapter 4, we
view them as column vectors for notational convenience. Matrices are denoted by uppercase
bold letters analogously. For a vector v ∈ Rn, denote ∥v∥p as the Lp-norm, where p = 2 is the
standard Euclidean norm. For a matrix R ∈ Rn×n, denote ∥R∥GS as the longest column of the
Gram-Schmidt orthogonalization of R and denote s1(R) as the largest singular value (also known
as the spectral norm). We occasionally drop the subscript of the norm when it is clear from
context. We denote [·|·] (resp. [·; ·]) as the horizontal (resp. vertical) concatenation of vectors
and matrices. Denote Im as the m×m identity matrix and 0n×m as the n×m zero matrix. We
occasionally view elements in Zp as elements in Z by its obvious embedding.

We use {·} to denote sets and use (·) to denote a finite ordered list of elements. When
we use notations such as (wi,j)(i,j)∈[n]×[m] for n,m ∈ N, we assume the elements are sorted in
the lexicographical order. For n,m ∈ N with n ≤ m, denote [n] as the set {1, · · · , n} and
[n,m] as the set {n, · · · ,m − 1,m}. For a (quotient) polynomial ring R over Z, we denote
[−n, n]R ⊆ R as the set of elements in R with all coefficients in the interval [−n, n]. For a finite
set S, we let U(S) denote the uniform distribution over S. For a distribution D and integer
k > 0, define (D)k as the distribution

∏
i∈[k]D. For a distribution or random variable X we

write x ← X to denote the operation of sampling a random x according to X. For a set S, we
write s ← S as a shorthand for s ← U(S). Let X and Y be two random variables over some
finite set SX , SY , respectively. The statistical distance ∆(X,Y) between X and Y is defined
as ∆(X,Y) = 1

2Σs∈SX∪SY
|Pr[X = s]− Pr[Y = s]|. The min-entropy of a random variable X is

defined as H∞(X) = − log(maxx Pr[X = x]), where the base of the logarithm is taken to be 2
throughout the thesis. For a bit b ∈ {0, 1}, b̄ denotes 1− b. For sets X and Y, Func(X ,Y) denotes
the set of all functions from X to Y. A function f : N→ R≥0 is said to be negligible, if for all c,
there exists λ0 such that f(λ) < 1/λc for all λ > λ0. We denote by negl(λ) a negligible function
in λ. We also denote by poly(λ) as a polynomial function in λ. We say that the two distributions
are statistically close or negligibly close when the statistical distance is negligible. Furthermore,

21

overwhelming probability is used in case the probability is negligibly close to 1. Finally, we use
the short hand PPT for probabilistic polynomial time algorithm.

2.2 Lattices and Gaussian Distributions

Lattices are one of the central tools we use through the thesis. Depending on the security notion or
efficiency one aims for, there are several types of lattices one can use. In this section we introduce
the most standard notion of lattices. Later on, we introduce the notion of ideal lattices. We
should note that ideal lattices are by now also considered a “standard” notion due to the much
effort brought into the research of lattices this past decade. However, due to its rather complex
algebraic nature, we believe providing details of standard (non-ideal) lattices in a separate section
ease the presentation.

2.2.1 Lattices

An n-dimensional (full rank) lattice Λ ⊆ Rn is the set of all integer linear combinations of some
set of n linearly independent basis vectors B = {b1, . . . ,bn} ⊆ Rn, Λ = {

∑
i∈[n] zibi|z ∈ Zn}. For

positive integers q, n,m, a matrix A ∈ Zn×m
q and a vector u ∈ Zn

q , the m-dimensional “shifted”

integer lattice is defined as Λ⊥u (A) = {z ∈ Zm|AzT = uT mod q}. We simply write Λ⊥(A) in
case u = 0.

Gaussian Measures over Lattices. For σ > 0 and c ∈ Rn, the n-dimensional Gaussian
function ρσ,c : Rn → (0, 1] is defined as ρσ,c(x) = exp(−π∥x − c∥22/σ2). We omit the subscript
c when it is taken to be 0. The (spherical) continuous Gaussian distribution Dσ over Rn is the
distribution with density function proportional to ρσ. When the dimension n is not clear from
context, we explicitly write it as Dn

s . More generally, for any matrix B ∈ Rn×m, denote DB as
the distribution of xBT where x is distributed as Dm

1 . A well known fact is that for any two
matrices B1,B2, the sum of an independent sample from DB1 and DB2 is distributed as DC

where C = (B1B
T
1 +B2B

T
2)

1/2.
For an n-dimensional lattice Λ, the discrete Gaussian distribution over Λ with center c and

parameter σ is defined asDΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ) for all x ∈ Λ, where ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x).
Furthermore, for an n-dimensional shifted lattice Λ+t, we define the Gaussian distributionDΛ+t,σ

with center c = 0 and parameter σ as the process of adding the vector t to a sample from
DΛ,σ,−t. We omit the subscripts σ and c when they are taken to be 1 and 0, respectively. We
also extend the above definition to polynomial rings as well. Specifically, we define the discrete
Gaussian distribution Dcoeff

Λ+u,r over a (quotient) polynomial ring R in X over R. The discrete

Gaussian distribution Dcoeff
Λ+u,r is the distribution of a =

∑n−1
i=0 αiX

i ∈ R where the coefficient
vector [α0, . . . , αn−1] ∈ Rn is sampled from the discrete Gaussian distribution DΛ+u,r. This
definition naturally extends to vectors a ∈ Rk in case of nk-dimensional lattices. Finally, we call
D a B-bounded distribution, if all the elements in the support of D have absolute value smaller
than B.

Below, we provide several useful lemmas we use to analyze the behavior of discrete Gaussian
distributions. The first lemma provides us with useful tools that the reduction algorithm can use
during the security proof. It may be first helpful to view the lemma in comparison with trapdoor
hash functions.

Lemma 2.1 ([GPV08], Lem. 5.2, Cor. 5.4 and Adapted from [ALS16], Lem. 9). Let q be a prime

22

or some power of a prime1 p and let n,m be positive integers such that m ≥ 2n log q. Let σ be
any positive real such that σ ≥ ω(

√
log n). Then for A← Zn×m

q and e← DZm,σ, the distribution
of u = Ae mod q is statistically close to uniform over Zn

q .
Furthermore, fix u ∈ Zn

q and let t ∈ Zm be an arbitrary solution to At = u mod q. Then the
conditional distribution of e← DZm,σ, given Ae = u mod q for a uniformly random A in Zn×m

q

is exactly DΛ⊥(A)+t,σ with all but negligible probability.

The following lemma allows us to bound the singular value of a matrix whose columns are
sampled from a Gaussian distribution.

Lemma 2.2 ([MP12], Lem. 2.8 and Lem. 2.9). Let m, k be positive integers, {σi}ki=1 a set of
positive reals and denote σmax = maxi{σi}. Let R ∈ Zm×k be a matrix where its i-th column is
sampled from DZm,σi. Then there exists a universal constant C > 0 such that we have s1(R) ≤
C · σmax(

√
m+

√
k) with all but negligible probability in m.

The following lemma shows us the importance of a basis with a small singular value. Specifi-
cally, it tells us how small a vector we can sample from the lattice Λ⊥(A).

Lemma 2.3 ([ABB10], Lem. 8). Let n,m, q be positive integers with m > n, A ∈ Zn×m
q be a

matrix, u ∈ Zn
q be a vector, TA ∈ Zm×m be a basis for Λ⊥(A), and σ > ∥TA∥GS · ω(

√
logm).

Then, if we sample a vector x← DΛ⊥
u (A),σ, we have Pr[∥x∥2 >

√
mσ] < negl(n).

In some cases, a version of the above lemma with a more concrete parameter settings is useful.
The following lemma is obtained by combining Lem. 4.4 in [MR07] and Lem. 5.3 in [GPV08].

Lemma 2.4 ([MR07, GPV08]). Let σ > 16
√
log 2m/π and u be any vector in Zn

q . Then, for all
but q−n fraction of A ∈ Zn×m

q , we have that

Pr
x←D

Λ⊥
u ,σ

(A)
[∥x∥2 >

√
mσ] < 2−(m−1).

The following lemma can be obtained by a straightforward combination of Lem. 2.6, Lem. 2.10,
and Lem. 5.3 in [GPV08] (See also [PR06, Pei07]). It tells us that a vector sampled from the
discrete Gaussian distribution has high min-entropy.

Lemma 2.5 ([PR06, Pei07, GPV08]). Let σ > 16
√

log 2m/π and u be any vector in Zn
q . Then,

for all but q−n fraction of A ∈ Zn×m
q , we have

H∞(DΛ⊥
u (A),σ) ≥ m− 1.

The following lemma is a part of the contribution of the work presented in Chapter 4. Since
this lemma is also used in many of the other chapters, we believe it to be better to provide the
details in the preliminaries. The following noise rerandomization lemma is typically used by the
reduction algorithm during the security proof; the reduction algorithm runs algorithm ReRand
to create a challenge ciphertext that is distributed statistically close to the real word. Although,
there are techniques such as “noise flooding” (e.g., [GKPV10, DGK+10]) that achieves the same
effect, the following lemma achieves the same effect with the minimal amount of noise addition
and hence leads to a more efficient scheme.

1Note that for the case q = pk for some k ∈ N, we set the statistical distance to be n−ω(1) rather than 2−Ω(n) as
in [ALS16], Lem. 9.

23

Lemma 2.6 (Noise Rerandomization, [KY16], Lem. 1). Let q, ℓ,m be positive integers and r a
positive real satisfying r > max{ω(

√
logm), ω(

√
log ℓ)}. Let b ∈ Zm

q be arbitrary and x chosen

from DZm,r. Then there exists a PPT algorithm ReRand that for any V ∈ Zm×ℓ and positive
real σ > s1(V), ReRand(V,b + x, r, σ) outputs b′⊤ = b⊤V + x′⊤ ∈ Zℓ

q where x′ is distributed
statistically close to DZℓ,2rσ.

Proof. Before beginning the main proof of Lemma 2.6 on noise rerandomization, we recall the
following two lemmas. Note that Lemma 2.8, a special case of the claim from [Reg05], is restated in
order to make the comparison between Lemma 2.7 more clear. Both lemma concerns convolution
between discrete and continuous Gaussian distributions.

Lemma 2.7 ([Pei10], Special Case of Theorem 3.1). Let n be a positive integer and r be a positive
real satisfying r ≥ ω(

√
log n). Then, if we choose x1 from the continuous Gaussian Dn

r and then
choose x2 from the discrete Gaussian DZn−x1,r, then x1 + x2 is distributed statistically close to
the discrete Gaussian DZn,

√
2r.

Lemma 2.8 ([Reg05], Special Case of Claim 3.9). Let n be a positive integer and let r a positive
real satisfying r ≥ ω(

√
log n). Then, if we choose x1 from the continuous Gaussian Dn

r and choose
x2 from the discrete Gaussian DZn,r, x1 + x2 is distributed statistically close to the continuous
Gaussian Dn√

2r
.

Now armed with the above lemmas, we begin the main proof below. The ReRand algorithm
proceeds by sampling vectors c,d and f as follows:

1. sample c from the continuous Gaussian distribution Dm
r ,

2. sample d from the continuous Gaussian distribution D√2r(σ2Iℓ−VTV)1/2 , and

3. sample f from the discrete Gaussian DZℓ−(cV+d),
√
2rσ.

Observe the distribution of d is well-defined. The ReRand algorithm outputs the following vector:

b′ = ((b+ x) + c)V + d+ f = bV + (x+ c)V + d+ f︸ ︷︷ ︸
x′:=“noise term”

∈ Zℓ
q.

We analyse the noise term and show that it is distributed as in the statement. Let x′ = (x+c)V+
d+ f . Observe that by Lemma 2.8, x+ c is distributed as the continuous Gaussian distribution
Dm√

2r
. Therefore, (x + c)V is distributed as the distribution D√2rVT . Since d is sampled from

the continuous Gaussian distribution D√2r(σ2Iℓ−VTV)1/2 , it follows that y = (x + c)V + d is

distributed as a spherical continuous Gaussian Dℓ√
2rσ

. Next, observe that since xV ∈ Zℓ, the two

distributions DZℓ−y,
√
2rσ and DZℓ−(cV+d),

√
2rσ are equivalent by definition. Therefore, by Lemma

2.7, adding f chosen from the discrete Gaussian DZℓ−(cV+d),
√
2rσ to y, which we can do without

knowledge of the unknown value x, we can discretize y. Hence x′ = y+ f is distributed according
to the discrete Gaussian DZℓ,2rσ as in the above statement.

Random Matrices. The following lemmas state the properties of random matrices. They will
be used to obtain a more precise analysis of our lattice-based scheme.

Lemma 2.9 ([LPRTJ05, ABB10]). Let m, k be positive integers such that k ≥ m. If R is sampled
uniformly in {−1, 1}m×k then s1(R) ≤ 20

√
m+ k with overwhelming probability in m.

24

Lemma 2.10. Let ℓ, n, k be positive integers and set m = nk, and let D be a B-bounded distri-
bution. Let R ← Dℓ×m and U be an arbitrary block diagonal matrix U = diag(U(1), · · ·U(n)) ∈
{0, 1}m×m where U(w) ∈ {0, 1}k×k for w ∈ [n]. Then, there exists a universal constant C > 0
such that we have s1(RU) ≤ C ·Bm

√
k = C ·Bnk3/2 with all but negligible probability in m.

Proof. We first show RU is subgaussian with parameter B
√
mk. Note that we say that a random

matrix X is subgaussian with parameter σ > 0 if all of its one-dimensional marginals u⊤Xv
for unit vectors u,v are subgaussian with parameters σ, i.e., E[exp(s · u⊤Xv)] ≤ exp(σ2s2/2).
Observe that

u⊤RUv =

ℓ∑
i=1

m∑
t=1

Ri,t

(
ui

m∑
j=1

Ut,jvj

)
,

where Ri,t is the (i, t)-th element of R. (Other terms Ut,j ,ui,vj are defined analogously.) Then,
we have

E[exp(s · u⊤RUv)] = E
[
exp

(ℓ∑
i=1

m∑
t=1

Ri,t

(
ui

m∑
j=1

Ut,jvj
))]

=
ℓ∏

i=1

m∏
t=1

E
[
exp

(
sRi,t

(
ui

m∑
j=1

Ut,jvj
))]

≤
ℓ∏

i=1

m∏
t=1

exp
(
B2s2

(
ui

m∑
j=1

Ut,jvj
)2
/2
)

(2.1)

≤
ℓ∏

i=1

m∏
t=1

exp
(
B2s2u2i

(m∑
j=1

U2
t,j

)(m∑
j=1

v2j
)
/2
)

(2.2)

≤ exp(B2s2
ℓ∑

i=1

m∑
t=1

u2i k/2) (2.3)

= exp(B2s2mk/2),

where Eq. (2.1) follows from the fact that any B-bounded symmetric random variable X (i.e.,
|X| ≤ B) is a subgaussian with parameter B, Eq. (2.2) follows from the CauchySchwarz inequality,
and Eq. (2.3) follows from the fact that v is a unit vector and that there are at most k ones in
each row of U. Hence, we have that RU is a subgaussian parameter with parameter B

√
mk.

Finally, using the Lem. 2.9 of [MP12] (See [Ver11] for further details), we obtain the statement
in the above lemma.

Lemma 2.11 (Leftover Hash Lemma). Let q > 2 be a prime, m,n, k be positive integers such
that m > (n+1) log q+ω(log n), k = poly(n) and let R← {−1, 1}m×k. Let A and B be matrices
chosen uniformly in Zn×m

q and Zn×k
q respectively. Then the distribution of (A,AR) is negligibly

close in n to the distribution of (A,B).

2.2.2 Algorithms for Sampling over Discrete Gaussian Distributions

Here, we introduce algorithms for sampling vectors according to a discrete Gaussian distribution.
First, we introduce a special matrix named the gadget matrix G ∈ Zn×m

q presented in [MP12].

25

Without loss of generality, we will always assume that n|m. Here, G is a full rank matrix such
that the lattice Λ⊥(G) has a publicly known basis TG with ∥TG∥GS ≤

√
5. With an abuse

of notation, we also define a deterministic polynomial time algorithm G−1 that given an input
U ∈ Zn×m

q outputs a matrix V ∈ {0, 1}m×m such that GV = U mod q. In particular, for any
t ∈ Zq, G

−1(t ·G) returns a block diagonal matrix with n square matrices with size m/n along
its diagonals.

Using this notion of gadget matrix, we are now ready to describe the sampling algorithms.
We note that the matrix G below does not necessary have to be the gadget matrix as long as the
trapdoor for the lattice Λ⊥(G) is known. However, due to its simple structure, the gadget matrix
is typically used as input to the algorithm.

Lemma 2.12. ([GPV08, ABB10, CHKP10, MP12, BLP+13]) Let n,m, q > 0 be integers with
m > 3n⌈log q⌉.

− TrapGen(1n, 1m, q)→ (A,TA): There exists a randomized algorithm that outputs a matrix A ∈
Zn×m
q and a full-rank matrix TA ∈ Zm×m, where TA is a basis for Λ⊥(A), A is statistically

close to uniform and ∥TA∥GS = O(
√
n log q).

− SampleLeft(A,B,u,TA, σ) → e : There exists a randomized algorithm that, given matrices
A,B ∈ Zn×m

q , a vector u ∈ Zn
q , a basis TA ∈ Zm×m for Λ⊥(A), and a Gaussian parameter

σ > ∥TA∥GS · ω(
√
logm), outputs a vector e ∈ Z2m sampled from a distribution which is

negl(n)-close to DΛ⊥
u ([A|B]),σ.

− SampleRight(A,G,R, t,u,TG, σ)→ e: There exists a randomized algorithm that, given a full-
rank matrix A,G ∈ Zn×m

q , an invertible element t ∈ Zq, a matrix R ∈ Zm×m, a vector u ∈ Zn
q ,

a basis TG for Λ⊥(G), and a Gaussian parameter σ > s1(R) · ∥TG∥GS · ω(
√
logm), outputs a

vector e ∈ Z2m sampled from a distribution which is negl(n)-close to DΛ⊥
u ([A|AR+tG]),σ.

− SampleZ(σ) : a randomized algorithm that, given a Gaussian parameter σ > 16(
√

log 2m/π),
outputs a vector e ∈ Zm sampled from a distribution 2−Ω(n)-close to DZm,σ.

2.2.3 Hardness Assumption over “Standard” Lattices

Learning With Errors. We define the Learning with Errors (LWE) problem first introduced by
Regev [Reg05], and further define a variant of LWE called the First-is-Errorless LWE (FE.LWE)
problem introduced by [BLP+13]. Both problems are shown to be as hard as approximating the
worst-case GapSVP problems. In particular, the FE.LWE problem is proven to be essentially as
hard as the LWE problem.

Definition 2.1 (LWE and FE.LWE). For integers n = n(λ),m = m(n), q = q(n) > 2, an error
distribution χ = χ(n) over Z, and a PPT algorithm A, an advantage for the learning with errors
problem LWEn,m,q,χ of A is defined as follows:

Adv
LWEn,m,q,χ

A =
∣∣∣Pr [A({ai}mi=1, {a⊤i s+ xi}mi=1

)
= 1
]
− Pr

[
A
(
{ai}mi=1, {vi}mi=1

)
= 1
]∣∣∣

where ai ← Zn
q , s ← Zn

q , xi ← χ, vi ← Zq for each i ∈ [m]. We say that the LWE assumption

holds if Adv
LWEn,m,q,χ

A is negligible for all PPT A.
In addition, we define the first-is-errorless learning with errors problem FE.LWEn,m,q,χ, which

is the LWE problem where the first sample is noise free, i.e., we have x1 = 0 instead of x1 ← χ.
The advantage for the FE.LWEn,m,q,χ problem of A is defined analogously to above.

26

The next result shows that the FE.LWE problem is as hard as the LWE problem.

Theorem 2.1 (LWE to FE.LWE. [BLP+13], Lem. 4.3). For any integer n ≥ 2,m, q ≥ 1, and error
distribution χ over Z, if there exists a PPT algorithm A that solves FE.LWEn,m,q,χ with advantage
ϵ, then it can be converted into a PPT algorithm B that solves LWEn−1,m,q,χ with advantage at
least ϵ · (1−

∑
p p
−n), with the sum going over all prime factors of q.

The (decisional) LWE problem with a prime modulus q was first shown to be as hard as ap-
proximating the worst-case GapSVP problem by [Reg05]. Several works [Pei09, ACPS09, MM11,
MP12, BLP+13, PRS17] handling the case of non-prime modulus q have appeared in the litera-
tures.

Short Integer Solution. We define the Short Integer Solution (SIS) problem introduced by
[Ajt96].

Definition 2.2 (SIS). For integers n = n(λ),m = m(n), q = q(n) > 2, a positive real β and a
PPT algorithm A, an advantage for the short integer solution problem SISn,m,q,β of A is defined
as follows:

Adv
SISn,m,q,β

A = Pr[A(A, β)→ x : Ax = 0 mod q ∧ ∥x∥∞ ≤ β ∧ x ̸= 0],

where A ← Zn×m
q . We say that the SIS assumption holds if Adv

SISn,m,q,β

A is negligible for all
PPT A.

If m,β = poly(n) and q >
√
nβ, then the SISn,m,q,β problem is at least as hard as SIVPγ for

some γ = β · Õ(
√
nm). Further details on the parameters can be found in [Ajt96, Mic04, MR07,

GPV08, MP13].

2.3 Rings and Ideal Lattices

In this section, we provide backgrounds on rings and ideal lattices. We try to provide a minimum
exposition of rings and ideal lattices to keep it self-contained. We provide more details for the
interested readers in Section 2.5.

2.3.1 Background of Rings

Preparation. Let n be a power of 2 and set m = 2n. Define the ring R = Z[X]/(Φm(X)),
where Φm(X) = Xn + 1 is the mth cyclotomic polynomial. For an integer q, denote Rq as
R/qR = Z[X]/(q,Φm(X)). By viewing the elements in R as n−1 degree polynomials in Z[X], we
can consider a natural coefficient embedding of R onto the integer lattice Zn. Namely, we define
the coefficient embedding ϕ : R → Zn that maps a =

∑n−1
i=0 αiX

i ∈ R to [α0, α1, . . . , αn−1] ∈ Zn.
We extend the coefficient embedding naturally to vectors and matrices. On the other hand, we
can also identify R as the subring of anti-circulant matrices in Zn×n by viewing each ring element
a ∈ R as a linear transformation r → a · r of R. Concretely, we define the ring homomorphism
rot : R → Zn×n that sends a ∈ R to a matrix in Zn×n such that the i-th row is ϕ(a · Xi−1

mod Φm(X)) ∈ Zn. Note that the first row of rot(a) is ϕ(a). Similarly to above, the definition of
the map rot naturally extends to vectors and matrices. We provide some useful formulas on ring
elements in the Section 2.5.1.

27

Norms in R. We define the Euclidean length for an element a ∈ R and a vector v ∈ Rk

by identifying R with Zn through the coefficient embedding.2 Therefore, when we say a vector
v in Rk is “short”, we mean that ∥ϕ(v)∥2 is small. We also define the largest singular value
of a matrix R ∈ Rs×t by identifying the ring R with Zn×n through the map rot.3 Namely,
s1(R) := max∥z∥2=1∥z · rot(R)∥2. Note that this definition allows us to consider singular values
of an element in R as well.

Properties for Elements in R. As with matrices with entries in R, we have similar singular
value bounds for matrices with elements in R. Namely, we can bound the singular value of a
random matrix chosen from [−b, b]s×tR . Recall that an element of [−b, b]R is an element in R with
all of its coefficients in the interval [−b, b].

Lemma 2.13 ([DM15], Special case of Fact 1). Let b be a positive integer and R be a s× t matrix
chosen uniformly at random from [−b, b]s×tR . Then, there exists a universal constant C(≈ 1/

√
2π)

such that

Pr[s1(R) ≥ C · b
√
n · (
√
s+
√
t+ ω(

√
log n))] = negl(n)

We note that similarly to matrices with entries in R, we have s1(R1R2) ≤ s1(R1)s1(R2) for
all R1,R2 ∈ Rk×k, which follows from the fact that rot is a ring homomorphism. Furthermore,
it also holds when R1 is replaced by an element a in R.

Regularity Lemma. The former Lemma shows that there exists a quotient ringRq = R/(q,Φm(X))
that acts roughly as a field, or in other words, Rq has exponentially many invertible elements.
The latter Lemma is a ring analogue of the standard lattice regularity lemma.

Lemma 2.14. Let q be a prime such that q ≡ 3 mod 8 and n be a power of 2. Then, Φ2n(X) =
Xn + 1 splits as Xn + 1 ≡ t1t2 mod q for two irreducible polynomials t1 = Xn/2 + uXn/4 − 1
and t2 = Xn/2 − uXn/4 − 1 in Zq[X] where u2 ≡ −2 mod q. Furthermore, all x ∈ Rq satisfying
∥ϕ(x)∥2 <

√
q are invertible, i.e., x ∈ R∗q .

Proof. The first part of the lemma is taken from Lemma 2.3 of [SSTX09]. Therefore, we only
prove the latter part of the lemma, which is implicit in [SS11]. If x ̸∈ R∗q , x ∈ ⟨t1⟩ or x ∈ ⟨t2⟩
holds over Rq. We assume that the former holds without loss of generality. Then, t ∈ ⟨t1, q⟩ holds
over R. Thus, N (x) = N (⟨x⟩) ≥ N (⟨t1, q⟩) = qn/2, where N is the (field) norm. (See [SS11]
for the definition.) Then, by using the additive geometric mean it can be seen that ∥σ(x)∥2 =√∑n

i=1 |σi(x)|2 ≥
√
n· 2n
√∏n

i=1 |σi(x)|2 =
√
n· n
√
N (x) ≥ √nq holds. Since ∥σ(x)∥2 =

√
n∥ϕ(x)∥2,

the statement follows.

Lemma 2.15 (Regularity Lemma). Let n be a power of 2, q be a prime larger than 4n such that
q ≡ 3 mod 8, and ℓ, k′, k, ρ be positive integers satisfying ℓ, k′ ≥ 1, k ≥ 2, ρ < 1

2

√
q/n. Define

the family of hash functions H = {hA(x) : [−ρ, ρ]kR → Rk′
q }, where hA(x) = Ax for A ∈ Rk′×k

q ,

x ∈ Rk×1
q . Then, H is a universal hash family. Furthermore, for A

$← Rk′×k
q and X

$← [−ρ, ρ]k×ℓR ,
we have

∆((A,AX) ; (A, U(Rk′×ℓ
q))) ≤ ℓ

2
·

√(
qk′

(2ρ+ 1)k

)n

.

2 We could have identified the Euclidean length by the canonical embedding as done in other works. However,
for our special case where n is power of 2, the lengths are equivalent up to a factor of

√
n. (See Section 2.5.4 for

further detail.)
3 For the special case where n is a power of 2, s1(R) defined by the coefficient and canonical embeddings are

both equivalent to the one defined by the map rot. (See Section 2.5.4 for further detail.)

28

Proof. We first show the former part of the lemma. Let x1 ̸= x2 ∈ Rk×1
q be arbitrary elements in

[−ρ, ρ]kR and set z = x1−x2 ∈ Rk×1
q . Then we have z ∈ [−2ρ, 2ρ]kR. Assume for some A ∈ Rk′×k

q ,
we have hA(x1) = hA(x2), i.e., hA(z) = 0. Since, x1 ̸= x2, there exists j ∈ [k] such that the jth
coefficient of x1 and x2 are different. Then, by Lemma 2.14, since ∥ϕ(zj)∥2 ≤ 2ρ

√
n <

√
q, zj

must be invertible. Therefore, aj = z−1j

∑
i̸=j ziai where ai ∈ Rk′×1

q is the ith column of A. The

probability of a random A ∈ Rk′×k
q satisfying this condition is exactly 1/qnk

′
= 1/|Rq|k

′
. Hence

H is universal. We then show the latter part of the lemma. We observe that the case of ℓ = 1
follows from the leftover hash lemma since the min-entropy of X is (1/(2ρ + 1))kn in this case.
The case of ℓ ≥ 2 immediately follows from a standard hybrid argument.

2.3.2 Trapdoors for Rings

Define the gadget matrix gb = [1|b| · · · |bk′−1|0] ∈ Rk
q , where b is a positive integer and k ≥ k′ =

⌈logb q⌉. When k = k′ and b = 2, this corresponds to the matrix representation of the gadget
matrix G ∈ Zn×nk

q often used in the literatures by properly rearranging the rows and columns of
rot(g2). The following algorithms are simple modification of traditional lattice based algorithms
(See Lemma 2.12), however, owing to the conversion to the ring setting and the fact that we view
vectors in their row form, it may seem unclear at first. We provide some discussions concerning
the TrapGen algorithm below.

Lemma 2.16. Let n be a power of 2, q be a prime larger than 4n such that q ≡ 3 mod 8, and
b, ρ be a positive integer satisfying ρ < 1

2

√
q/n. Furthermore, define log1(·) := log2(·). Then,

there exist polynomial time algorithms with the properties below:

• TrapGen(1n, 1k, q, ρ) → (a,Ta) ([MP12], Lemma 5.3): a randomized algorithm that, when
k ≥ 2 logρ q, outputs a vector a ∈ Rk

q and a matrix Ta ∈ Rk×k, where rot(aT)T ∈ Zn×nk
q

is a full-rank matrix and rot(Ta) ∈ Znk×nk is a basis for Λ⊥(rot(aT)T) such that a is
negl(n)-close to uniform and ∥rot(Ta)∥GS = O(bρ ·

√
n logρ q).

4

• SampleLeft(a, b, u,Ta, σ) → e ([CHKP10]): a randomized algorithm that, given vectors
a, b ∈ Rk

q where rot(aT)T , rot(bT)T ∈ Zn×nk
q are full-rank, an element u ∈ Rq, a matrix

Ta ∈ Rk×k such that rot(Ta) ∈ Znk×nk is a basis for Λ⊥(rot(aT)T), and a Gaussian param-
eter σ > ∥rot(Ta)∥GS · ω(

√
log nk), outputs a vector e ∈ R2k sampled from a distribution

which is negl(n)-close to Dcoeff
Λ⊥
ϕ(u)

([rot(aT)T |rot(bT)T]),σ
, i.e., [a|b]eT = u and ϕ(e) ∈ Z2nk is

distributed according to DΛ⊥
ϕ(u)

([rot(aT)T |rot(bT)T]),σ.

• SampleRight(a, gb,R, y, u,Tgb , σ) → e where b = aR + ygb ([ABB10]): a randomized
algorithm that, given vectors a, gb ∈ Rk

q such that rot(aT)T , rot(gb)
5 ∈ Zn×nk

q are full-

rank matrices, elements y ∈ R∗q , u ∈ Rq, a matrix R ∈ Rk×k, a matrix Tgb ∈ Rk×k

such that rot(Tgb) ∈ Znk×nk is a basis for Λ⊥(rot(gb)), and a Gaussian parameter σ >
s1(R) · ∥rot(Tgb)∥GS · ω(

√
lognk), outputs a vector e ∈ R2k sampled from a distribution

which is negl(n)-close to Dcoeff
Λ⊥
ϕ(u)

([rot(aT)T |rot(bT)T]),σ
, i.e., [a|b]eT = u and ϕ(e) ∈ Z2nk is

distributed according to DΛ⊥
ϕ(u)

([rot(aT)T |rot(bT)T]),σ.

4 We combine several lemmas from [MP12] and the regularity lemma (Lemma 2.15) to show correctness of
TrapGen. See below for further detail. Further, the unusual lattice Λ⊥(rot(aT)T) is used only to be consistent with
the other algorithms. Namely, we could have instead defined the trapdoor for the lattice Λ⊥(rot(a)).

5We have rot(gT
b)

T = rot(gb) since all the entries of gb are integers.

29

• ([MP12]:) Let k ≥ ⌈logb q⌉. There exists a publicly known matrix Tgb such that rot(Tgb) ∈
Znk×nk is a basis for the lattice Λ⊥(rot(gb)) and ∥rot(Tgb)∥GS ≤

√
b2 + 1. Furthermore,

there exists a deterministic polynomial time algorithm g−1b which takes input u ∈ Rk
q and

outputs R = g−1b (u) such that R ∈ [−b, b]k×kR and gbR = u.

Note that we abuse the notation g−1b by viewing it as a function rather than a vector. Namely,
for any u ∈ Rk

q there are many choices for R ∈ Rk×k such that gbR = u, and g−1b (u) is a function
that deterministically outputs a particular short matrix from the possible candidates. Since we
have s1(R) ≤ b · nk for any R ∈ [−b, b]k×kR , s1(g

−1
b (u)) ≤ bnk holds for arbitrary u ∈ Rk

q .
Although it may be straight-forward to check, since the correctness of TrapGen in Lemma 2.16

is not explicitly provided in [MP12], we include a succinct proof below for completeness.

Proof. The proof follows by combining several Lemmas from [MP12] and our Lemma 2.13 and
Lemma 2.15. First for simplicity asssume k is even, i.e., k = 2k′ for some k′ ∈ N, and assume
that k′ = ⌈logb q⌉ for some positive integer b. We first show that a = [a′|gb − a′R] is distributed

uniformly at random over Rk when a′
$← Rk′ andR

$← [−ρ, ρ]k′×k′R . This follows from Lemma 2.15,
since we have

k′

2

√(
q

(2ρ+ 1)k′

)n

≤ k′

2

(
q

(2ρ)k′

)n
2

≤ k′

2

(
1

2k′

)n
2

≤ k′

2n+1
= negl(n),

when 1 < ρ < 1
2

√
q/n, k′ ≥ logρ q and k

′ is polynomial in n. Similar result holds for the case ρ = 1.
Note that in the case of ρ = 1, we define log1 q := log2 q. Next, by the property of gb there exists a
publicly known basis Tgb ∈ Rk′×k′ such that rot(Tgb) is a basis for Λ⊥(rot(gTb)

T) (or equivallently
for Λ⊥(rot(gb))) such that ∥rot(Tgb)∥GS ≤

√
b2 + 1. We also have s1(R) ≤ O(ρ ·

√
nk′) with all

but negligible probability from Lemma 2.13. Then using the fact that rot(RT)T (resp. rot(R))
is a gb-trapdoor for rot(aT)T (resp. rot(a)) and by combining the ring version of Theorem 4.1
and Lemma 5.3 from [MP12], we obtain a basis Ta such that ∥rot(Ta)∥GS = O(bρ ·

√
n logρ q).

Note that we obtain bases for both Λ⊥(rot(aT)T) and Λ⊥(rot(a)) from Ta by properly rearanging
Ta.

2.3.3 Hardness Assumption over Ideal lattices

The ring LWE problem was introduced by Lyubashevsky et al. [LPR10]. They showed that
solving it on the average is as hard as (quantumly) solving several standard problems on ideal
lattices in the worst case.

Definition 2.3 (RLWE). For positive integers n = n(λ), k = k(n), a prime integer q = q(n) > 2,
an error distribution χ = χ(n) over Rq, and an PPT algorithm A, an advantage for the RLWE
problem RLWEn,k,q,χ of A is defined as follows:

Adv
RLWEn,k,q,χ

A = |Pr[A({(ai, vi)}ki=1)→ 1]− Pr[A({(ai, ais+ ei)}ki=1)→ 1]|

where a1, . . . , ak, v1, . . . , vk, s
$← Rq and e1, . . . , ek

$← χ. We say that RLWEn,k,q,χ assumption

holds if Adv
RLWEn,k,q,χ

A is negligible for all PPT A.
Theorem 2.2. Let α be a positive real, m be a power of 2, ℓ be an integer, Φm(X) = Xn + 1 be
the mth cyclotomic polynomial where m = 2n, and R = Z[X]/(Φm(X)). Let q ≡ 3 mod 8 be a
(polynomial size) prime such that there is another prime p ≡ 1 mod m satisfying p ≤ q ≤ 2p. Let
also αq ≥ n3/2k1/4ω(log9/4 n). Then, there is a probabilistic polynomial-time quantum reduction
from Õ(

√
n/α)-approximate SIVP (or SVP) to RLWEn,k,q,χ with χ = Dcoeff

Zn,αq.

30

Although the proof is obtained by combining many of the previous results, since we were
not able to find a proof compiled in a single paper, we include the proof in Section 2.5.2 for
completeness. Due to the Linnik’s theorem and Dirichlet’s theorem on arithmetic progressions,
we have that there are sufficiently many primes p and q satisfying the assumption of the theorem.

2.4 Cryptographic Primitives

In this section we provide a minimum exposition of cryptographic primitives. We intentionally
exclude the explanation of cryptographic primitives that only appears in limited chapters for
readability of the thesis.

2.4.1 Pseudorandom Functions

A pseudorandom function family is a pair of PPT algorithms PRF = (PRF.Gen,PRF.Eval), such
that the key generation algorithm PRF.Gen(1λ) takes as input the security parameter, and outputs
a seed r ∈ {0, 1}λ. The evaluation algorithm PRF.Eval(r,x) takes a seed r ∈ {0, 1}λ and input
x ∈ {0, 1}m and returns a bit string y ∈ {0, 1}η, where m = mλ is the input length and η = ηλ is
the output length. The security notion of an PRF is defined below:

Definition 2.4 (PRF). We say that a pair of PPT algorithms PRF = (PRF.Gen,PRF.Eval) is a
pseudorandom function if for all PPT adversaries A, the advantage defined below is negligible:

AdvPRFA (λ) :=
∣∣∣Pr [ARF

(
1λ
)
= 1
]
− Pr

[
APRF.Gen(r,·)(1λ) = 1

]∣∣∣
where RF← Func({0, 1}m, {0, 1}η) and r ← PRF.Gen(1λ).

2.4.2 Identity-based Encryption

Syntax. We use the standard syntax of IBE [BF01]. Let ID be the ID space of the scheme. If a
collision resistant hash function CRH : {0, 1}∗ → ID is available, one can use an arbitrary string
as an identity. An IBE scheme is defined by the following four algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes as input a security parameter 1λ and outputs
a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, ID)→ skID: The key generation algorithm takes as input the master public key
mpk, the master secret key msk, and an identity ID ∈ ID. It outputs a private key skID. We
assume that ID is implicitly included in skID.

Encrypt(mpk, ID,M)→ C: The encryption algorithm takes as input a master public key mpk, an
identity ID ∈ ID, and a message M. It outputs a ciphertext C.

Decrypt(mpk, skID, C)→ M or ⊥: The decryption algorithm takes as input the master public key
mpk, a private key skID, and a ciphertext C. It outputs the message M or ⊥, which means
that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, all ID ∈ ID, and all M in
the specified message space,

Pr[Decrypt(mpk, skID,Encrypt(mpk, ID,M)) = M] = 1− negl(λ)

holds, where the probability is taken over the randomness used in (mpk,msk) ← Setup(1λ),
skID ← KeyGen(mpk,msk, ID), and Encrypt(mpk, ID,M).

31

Security. We now define the security for an IBE scheme Π. This security notion is defined by the
following game between a challenger and an adversary A. Let CTSam(·) be a sampling algorithm
that takes as input a master public key of the scheme and outputs an element in the ciphertext
space.

- Setup. At the outset of the game, the challenger runs Setup(1λ) → (mpk,msk) and gives mpk
to A. The challenger also picks a random coin coin ← {0, 1} and keeps it secretly. After given
mpk, A can adaptively make the following two types of queries to the challenger. These queries
can be made in any order and arbitrarily many times.

Secret Key Queries. If A submits ID ∈ ID to the challenger, the challenger returns skID ←
KeyGen(mpk,msk, ID).

Challenge Queries. If A submits a message M∗ and an identity ID∗ ∈ ID to the challenger,
the challenger proceeds as follows. If coin = 0, it runs Encrypt(mpk, ID∗,M∗) → C∗ and gives
the challenge ciphertext C∗ to A. If coin = 1, it chooses the challenge ciphertext C∗ from the
distribution CTSam(mpk) as C∗

$← CTSam(mpk) at random and gives it to A.
We prohibit A from making a challenge query for an identity ID∗ such that it has already

made a secret key query for the same ID = ID∗ and vice versa.

- Guess. Finally, A outputs a guess ĉoin for coin. The advantage of A is defined as

AdvIBEA,Π(λ) =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ .
We say that Π is adaptively-anonymous secure, if there exists efficiently sampleable distribution
CTSam(mpk) and the advantage of any PPT A is negligible in the above game. The term anony-
mous captures the fact that the ciphertext does not reveal the identity for which it was sent to.
(Observe that CTSam(mpk) depends on neither of C∗ nor M∗.)

Security without Anonymity. We also define the standard adaptive security (without anonymity)
as in [Wat05] for Π via a similar game to the above. To define adaptive security, we change the
challenge phase as follows.

- Challenge Phase. A outputs two messages M0, M1 and an identity ID⋆ ∈ ID, on which
it wishes to be challenged. Then, the challenger picks a random coin coin

$← {0, 1}, runs
Encrypt(mpk, ID⋆,Mcoin)→ C⋆, and gives the challenge ciphertext C⋆ to A.

We say that Π is adaptively secure, if the advantage of any PPT A is negligible. We note
that adaptively-anonymous security implies adaptive security. Namely, the former is a stronger
security notion.

Single Challenge Security. We can also consider a variant of the above security definition
where we restrict the adversary to make the challenge query only once during the game. We
call this security notion “single challenge adaptive anonymity”, and call the notion without the
restriction “multi challenge security”. By a simple hybrid argument, we can show that these
definitions are in fact equivalent in the sense that one implies another. However, the proof that
the former implies the latter incurs a huge security reduction loss that is linear in the number of
challenge queries. Therefore, in some cases when we want to focus on tight security reductions,
we typically differentiate these two notions.

2.5 Supplementary Materials for Rings and Ideal Lattices

In this section, we provide supplementary materials for rings and ideal lattices, which we believe
to be useful for understanding them in more depth. However, since the thesis is readable without

32

these details, this section may be safely skipped on first read.

2.5.1 Supplementary Note on Ring Elements

Useful Formulas. In hope of making the thesis more accessible, we provide some formulas
on ring elements when viewed as vectors/matrices over Z. Let R denote the polynomial ring
Z[X]/(Φm(X)) for m a power of 2 and recall that we can view elements of R as Zn through the
coefficient embedding ϕ(·) and as the subring of anti-circulant marices in Zn×n through the ring
homomorphism rot(·). In addition, vectors are viewed in their row forms. All of the following
statement holds when we view the polynomial ring Rq = Z[X]/(q,Φm(X)) as Zq.

First of all, for any element s ∈ R, vectors a, e ∈ Rk and matrix R ∈ Rk×ℓ recall that we have
the following:

ϕ(s) ∈ Zn, ϕ(a) ∈ Znk,

rot(s) ∈ Zn×n, rot(a) ∈ Zn×nk, rot(R) ∈ Znk×nℓ.

Then, we obtain the following formulas through simple calculation:

1. ϕ(sa) = ϕ(s)rot(a) ∈ Znk

2. ϕ(aeT) = ϕ(a)rot(eT) ∈ Zn

3. ϕ(aR) = ϕ(a)rot(R) ∈ Znℓ

4. rot(aR) = rot(a)rot(R) ∈ Zn×nℓ

Gaussian Sampling. The second formula above is mainly used to bridge the gap between the
Gaussian sampling algorithms for normal lattices and for ideal lattices (see Sec. 2.3 Lem. 2.16).
Suppose we wish to sample a short vector e ∈ Rk (from a certain distribution we discuss later)
such that aeT = u, where a ∈ Rk and u ∈ R. Note that this comes up during the KeyGen
procedure in our lattice-based construction. Applying the second formula in slightly a different
order, we obtain the following:

ϕ(u) = ϕ(aeT) = ϕ(e)rot(aT) =

(
rot(aT)Tϕ(e)T

)T

⇔ rot(aT)Tϕ(e)T = ϕ(u)T ∈ Zn
q .

Note that in general rot(a) ̸= rot(aT)T . Therefore, we only have to sample a vector e ∈ Znk from
the coset Λ⊥ϕ(u)(rot(a

T)T) and map it back to its ring representation e = ϕ−1(e) ∈ Rk to obtain

a short sample e such that aeT = u. This can be done easily by using a basis rot(Ta) for the
lattice Λ⊥(rot(aT)T).

2.5.2 Proof of Theorem 2.2

Here, we prove Theorem 2.2. Note that the proof is obtained by the straightforward combination
of previous results (in particular, those of [LPR10] and [LS15]). However, to the best of our
knowledge, there are no papers explicitly proving the theorem. This section is included for the
purpose of completeness.

33

2.5.3 Gaussians over Ideal Lattices

We give a brief overview of Gaussians over ideal lattices and introduce the notations we will be
using. We refer the general definitions of rings and ideal lattices to the works of [LPR10, LPR13].
In what follows, ζm is the primitive mth root of unity for m > 2, Φm(X) is the mth cyclotomic
polynomial, K = Q(ζm) is the mth cyclotomic number field of degree n = φ(m), R = Z[ζm] ∼=
Z[X]/(Φm(X)) is the ring of integers of K6 , R∨ ⊆ K is the dual ring and KR = K ⊗Q R is the
field tensor product. Furthermore, the number field K has exactly n ring embeddings σi : K → C
that maps ζm to each of the complex roots of the cyclotomic polynomial Φm(X). The canonical
embedding σ : K → Cn is then defined as σ(a)→ (σi(a))i∈Z∗

m
.

The Space H. Recall that when working with K (or KR) under the canonical embedding σ, it
is convenient to use the following subspace H ⊆ Cn,

H = {(xj)j∈Z∗
m
| ∀j ∈ Z∗m, xj = xm−j ∈ C}.

The space H is isomorphic as a real vector space to KR via σ. Furthermore, the space H is a R
vector space generated by the columns of the following basis matrix T,

T =
1√
2

[
In/2 iJn/2

Jn/2 −iIn/2

]
∈ Cn×n,

where I is the identity matrix and J is the matrix with ones on the anti-diagonal. Let hj denote
the jth column of T. Then, for any a ∈ K, there is a unique v = (v1, . . . , vn) ∈ Rn such that
σ(a) = TvT =

∑
j∈[n] vjhj , where σ denotes the canonical embedding.

Gaussians over H. For r > 0, the Gaussian function ρr : H → (0, 1] over H is defined as,
ρr(x) = exp(−π∥x∥22/r2) for all x ∈ H. By appropriately normalizing the Gaussian function ρr,
we obtain the continuous spherical Gaussian distribution Dr over H. We use the basis {hj}j∈n
to define the continuous elliptical Gaussian distribution as in [LPR10]. Let r = [r1, . . . , rn] ∈ Rn

>0

be a vector of positive real numbers such that rj = rn+1−j for all j ∈ [n]. Then a sample x from
the elliptical Gaussian distribution Dr over H is given by

∑
j∈[n] vjhj , where each vj are chosen

independently from the one-dimensional Gaussian distribution Drj over R. One can check that in
case all rj are the same, this distribution coincides with the above spherical Gaussian distribution,
since we have xj = xn+1−j for x ∈ H. In case we want to explicitly express the domain in which
the Gaussian distribution is defined over, we use a superscript to denote it, e.g., DH

r .
The discrete (spherical) Gaussian is defined similarly to the standard lattices in Rn. Namely,

for a lattice in Λ ⊂ H, a vector u ∈ H and a real r > 0, the discrete Gaussian distribution over
the coset Λ + u is defined as DΛ+u,r(x) = ρr(x)/ρr(Λ + u) for all x ∈ Λ + u.

Gaussians over KR. Using the canonical embedding σ : KR → H (which is an isomorphism),
we can consider a continuous Gaussian distribution DKR

r over KR induced by DH
r . Recall we can

uniquely express any a ∈ KR as a R-linear combination of the power basis {ζim}n−1i=0 . Namely, if
we denote ζ as the ordered power basis, then a = ϕ(a)ζT for all a ∈ KR, where ϕ denotes the
coefficient embedding. Next, let ∆m (or CRTm) denote the matrix corresponding with evaluating
a polynomial at all the primitive mth root of unity, i.e., σ(a) = ∆mϕ(a)

T ∈ H for all a ∈ KR.
Then, using this expression a sample a ∈ KR from DKR

r is given by ϕ(a)ζT , where x ∈ H is
sampled from the continuous Gaussian distribution DH

r and ϕ(a) is set as ∆−1m xT . By definition,
we have DKR

r (a) = DH
r (σ(a)). Furthermore, recalling the definition of DH

r , we can also view DKR
r

6 Note that in our main body, we view R as Z[X]/(Xn + 1) w.l.o.g .

34

being induced by DRn

r = Dr1 × · · · × Drn . Concretely, a sample a ∈ KR of DKR
r can also be

obtained by first sampling v ∈ Rn from DRn

r and then setting a to satisfy ϕ(a) = ∆−1m TvT .

Gaussians over Fractional Ideals I in K. Recall that a fractional ideal I in K is a set such
that dI ⊆ R is an integral ideal for some d ∈ R and that has a Z-basis U = {u1, . . . , un} ⊆ K.
Therefore, under the canonical embedding σ, the ideal yields a rank n lattice σ(I) in H having
basis {σ(u1), . . . , σ(un)} ⊂ H. We call this lattice σ(I) created by the fractional ideal I as an
ideal lattice. As in the case of KR, we can consider a discrete Gaussian distribution over the ideal
I. For a fractional ideal I ⊂ K, element t ∈ K, and real r > 0, the discrete Gaussian distribution
over I + t is defined as DI+t,r(a) = Dσ(I)+σ(t),r(σ(a)) for all a ∈ I + t.

Discretization over Ideal Lattices. Theorem 3.1 of [Pei10] holds for lattices in H. Therefore,
we can use it to discretize the contiunous Gaussian distribution DKR

r to the discrete Gaussian
distribution DI+t,r′ as follows. Note that ηϵ(I) denotes the smoothing parameter for the ideal
lattice σ(I).

Lemma 2.17. Let s, s1, s2 be positive reals such that s2 ≥ s21 + s22. Let I be a fractional ideal in
K and t an element in KR. Further assume that s1 ≥ ηϵ(I) for some positive ϵ ≤ 1/2.Then, if
we choose a2 from the continuous Gaussian DKR

s2 over KR and then choose a1 from the discrete
Gaussian DI+t−a2,s1, then a1+a2 is within statistical distance 8ϵ of the discrete Gaussian DI+t,s.

Proof. The statement is a direct result of [Pei10], Theorem 3.1 by noticing the following facts:
DKR

s2 (a) = DH
s2(σ(a)) for all a ∈ KR, DI+t,s1(a) = Dσ(I)+σ(t),s1(σ(a)) for all a ∈ I + t, t ∈ KR, and

that σ(I) embeds as a lattice in H.

2.5.4 Power of 2 Polynomial Rings

Here, we discuss the power of 2 polynomial rings and its properties. For the special case whenm is
a power of 2, themth cyclotomic polynomial is given as Φm(X) = Xn+1 where n = φ(m) = m/2.
Therefore, R ∼= Z[X]/(Xn + 1). For this special case, all the columns of ∆m are orthogonal to
each other and we have ∆−1m = 1

n∆
∗
m, where ∆∗m is the conjugate transpose. In other words,

1√
n
∆m is a unitary matrix. Using the properties σ(a) = ∆mϕ(a)

T and ϕ(bR) = ϕ(b)rot(R) for

any element a ∈ KR, vector b ∈ Ks
R and matrix R ∈ Ks×t

R , we obtain the following facts:

• ∥σ(a)∥2 =
√
n∥ϕ(a)∥2,

• s1(R) = max
x∈Rt\{0}

∥σ(xR)∥2
∥σ(x)∥2

= max
x∈Rt\{0}

∥ϕ(xR)∥2
∥ϕ(x)∥2

= max
z∈Rtn\{0}

∥z · rot(R)∥2
∥z∥2

.

Recalling the definition of the continuous Gaussian distribution DKR
r and the fact that the space

H has matrix T as its basis, DKR
r can be described by the procedure of first sampling v

$← Dm
r ,

then outputting a = ϕ(a)ζT where ϕ(a) is set as 1√
n
(1√

n
∆∗m)TvT . Therefore, since 1√

n
∆∗m and T

are both unitary matrices, a sample from DKR
r is simply an element with its coefficients sampled

from Dm√
nr
. Finally, for the special power of 2 polynomial ring, we have R∨ = 1

nR.

2.5.5 Ring LWE on Number Fields

We start with recalling the definition of RLWE assumption on number fields (more precisely, on
KR), whose hardness is shown directly in previous works.

35

Definition 2.5 (RLWE on KR). For integers n = n(λ), k = k(n), a prime integer q = q(n) > 2,
a family of error distribution Ψ = Ψ(n) over KR, and an PPT algorithm A, an advantage for the
RLWE problem RLWEKR

n,k,q,Ψ of A is defined as follows:

Adv
RLWE

KR
n,k,q,Ψ

A = |Pr[AOs,χ(1λ, n, k, q) → 1]− Pr[AO$(1λ, n, k, q)→ 1]|

where s
$← R∨q , χ

$← Ψ. The oracles O$ and Os,χ are specified as follows.

Os,χ : When called, it picks a
$← Rq, e

$← χ and returns (a, as/q + e).

O$: When called, it returns (a, v)
$← Rq ×KR/R

∨.

Both oracles can be called at most k times. If there is no bound on the number of calls, we denote
k = ∞. In case Ψ consists of a single distribution χ we simply treat the set Ψ as a distribution
and write RLWEKR

n,k,q,χ, and for this particular case A further receives as input the distribution χ

used by the oracle. We say that RLWEKR
n,k,q,Ψ assumption holds if Adv

RLWE
KR
n,k,q,Ψ

A is negligible for
all PPT A.

In [LPR10], it is shown that solving RLWEKR
n,∞,p,Ψ with prime p such that p ≡ 1 mod m

and certain Ψ is as hard as quantumly approximating SIVP (or SVP) on ideal lattices in the
worst case. In the subsequent work [LS15], it is shown that the former can be further reduced to
RLWEKR

n,∞,q,Ψ′ with any q and a certain Ψ′. In what follows, Ψ≤α denotes the family of all elliptical

Gaussian distributions DKR
r where each parameter ri ≤ α. Furthermore, Υβ is a certain family of

distribution that is parametrized by β ∈ R. Since the precise definition is not necessary for our
purpose, we omit this and refer to [LPR10, LS15]. Then, we have the following results.

Lemma 2.18 ([LPR10], Theorem 3.6). Let β > 0 and let p ≥ 2, p ≡ 1 mod m be a polynomially
bounded prime such that βp ≥ ω(

√
log n). Then there is a probabilistic polynomial-time quantum

reduction from Õ(
√
n/β)-approximate SIVP (or SVP) to RLWEKR

n,∞,p,Υβ
.

Lemma 2.19 ([LS15], From Lemma 4.22, 4.24, and 4.26). Let p, q ≥ 2 be polynomially bounded
primes and α, β ∈ (0, 1) such that α ≥ β · max{1, p/q} · n3/4ω(log2 n) and βp ≥ ω(

√
log n/n).

There exists a polynomial reduction from RLWEKR
n,∞,p,Υβ

to RLWEKR
n,∞,q,Ψ≤α

.

By combining the above Lemmas, we obtain the hardness of the RLWE with arbitrary modulus
q for a skewed Gaussian. In the next step (Lemma 2.22), we further reduce it to the RLWE with
spherical Gaussian. To prepare for the proof, we define Réniy Divergence (of order 2) and review
its properties following [LPR10, BLL+15].

Definition 2.6 (Rényi Divergence). Let us consider two density functions P,Q : Rn → R≥0
where P (x) = 0 whenever Q(x) = 0. We define the Rényi divergence RD(P∥Q) as

RD(P∥Q) =

∫
Rn

P (x)2

Q(x)
dx.

For Rényi Divergence, the following properties hold. For any distribution P and Q, we have
RD(P∥P) = 1 and RD(P∥Q) ≥ 1. Let us assume that P (resp. Q) is a direct product of
independent distributions P1 and P2 (resp. Q1 and Q2). Then, we have RD(P∥Q) = RD(P1 ×
P2∥Q1 ×Q2) = RD(P1∥Q1) ·RD(P2∥Q2).

36

Lemma 2.20 ([LPR10], Claim 5.15). Let r1, . . . rn ∈ R+ and s1, . . . , sn ∈ R+ be such that
for all i, |si/ri − 1| <

√
log n/n. Then, there exists an polynomial fRD : N → R such that

RD(Dr1 × · · · ×Drn∥Ds1 × · · · ×Dsn) = fRD(n).

Lemma 2.21 (Implicit in [LPR10]). Let P and Q denote distributions with Supp(P) ⊆ Supp(Q).
Let A ⊆ Supp(Q) be any set. Then, we have Q(A) ≥ P (A)2/RD(P∥Q) where P (A) and Q(A)
are measure of A under P and Q, respectively.

Here, we review the proof of [LPR10] that converts the error distribution from the skewed
Gaussian to the spherical Gaussian.

Lemma 2.22 (Adapted from [LPR10], Lemma 5.16). Let q be a polynomially bounded prime, k
a positive integer and α, β ∈ (0, 1). There exists a polynomial time reduction from RLWEKR

n,∞,q,Ψ≤α

to RLWEKR
n,k,q,χ with χ = DKR

ξ where ξ = α(nk/ log(nk))1/4.

Proof. We construct an adversary B against RLWEKR
n,∞,q,Ψ≤α

from adversaryA that solves RLWEKR
n,k,q,χ

with non-negligible advantage ϵ(λ). By assumption, there exists a constant c ∈ N such that
ϵ(λ) > 1/λc for infinitely many λ ∈ N.
Reduction. B is equipped with an oracle O and its task is to distinguish whether O = Os,χ′

or O = O$, where χ
′ = DKR

r
$← Ψ≤α. B proceeds as follows. It first obtains estimate p̂0 for the

probability

p0 := Pr[A({(ai, vi)}ki=1)→ 1|(a1, v1), . . . , (ak, vk) $← Rq ×KR/R
∨]

by running A on N := 100λ2c+1 fresh inputs. It then repeats the following M := 4λ2c+1fRD(nk)
times, where fRD is the polynomial specified in Lemma 2.20.

• It picks random s′
$← R∨q and e′1, . . . , e

′
k

$← DKR
ξ . Then it obtains estimate p̂1(s

′, e′1, . . . , e
′
k)

for the probability

p1(s
′, e′1, . . . , e

′
k) := Pr[A({(ai, vi + ais

′/q + e′i)}ki=1)→ 1|(a1, v1), . . . , (ak, vk) $← O]

by running A on N fresh inputs. This can be done by calling the oracle Nk times.

If it happens that |p̂1(s′, e′1, . . . , e′k)− p̂0| > 1/4λc at any point during the loop, it outputs 1.
Otherwise it outputs 0.
Analysis. It is clear that B is a (probabilistic) polynomial time algorithm. It suffices to show
that B has overwhelming advantage when ϵ > 1/λc. We note that by the Hoeffding bound,
|p0 − p̂0| < 1/10λc and |p1(s′, e′1, . . . , e′k)− p̂1(s′, e′1, . . . , e′k)| < 1/10λc for any (s′, e′1, . . . , e

′
k) hold

except for probability e−N ·(1/10λ
c)2 < 2−λ. In the following, we assume that these always hold.

We first observe that if the oracle O = O$, it is clear that both inputs to A follow the the uni-
form distribution over Rq×KR/R

∨. Therefore, p0 = p1(s
′, e′1, . . . , e

′
k) holds for any (s′, e′1, . . . , e

′
k).

Thus,

|p̂0 − p̂1(s′, e′1, . . . , e′k)| ≤ |p̂0 − p0|+ |p0 − p1(s′, e′1, . . . , e′k)|+ |p1(s′, e′1, . . . , e′k)− p̂1(s′, e′1, . . . , e′k)|
≤ 1/10λc + 1/10λc < 1/4λc.

Hence, B outputs 0 with all but negligible probability.
Next, let us consider the case where O = Os,χ′ . In this case, during the loop, an input to A is

of the form {(ai, ai(s+s′)/q+ei+e′i)}ki=1 where ei
$← DKR

r and e′i
$← DKR

ξ for i ∈ [k]. Let us define

37

the vector r′ with coordinates r′2j = ξ2 − r2j . We claim that the average of p1(s
′, e′1, . . . , e

′
k) over

e′1, . . . , e
′
k chosen independently from DKR

r′ (rather than DKR
ξ , which is the actual distribution)

is at least 1/λc far from p0. This can be seen by observing that the error terms ei + e′i are

distributed as DKR
r + DKR

r′ = DKR
ξ and by our assumption on A. Let us define S as the set of

all tuples (s′, e′1, . . . , e
′
k) such that |p1(s′, e′1, . . . , e′k) − p0| > 1/2λc. By the averaging argument,

we have that the measure of S over U(Rq) × (DKR
r′)k is at least 1/2λc. Now, let us consider the

measure of S over U(Rq) × (DKR
ξ)k, which is the actual distribution. By the definition of DKR

r

and since 1 ≤ ξ/
√
ξ2 − r′2i ≤ ξ/

√
ξ2 − α2 ≤ 1 +

√
log(nk)/nk, we have

RD(U(Rq)× (DKR
r′)k∥U(Rq)× (DKR

ξ)k) = RD((DKR
r′)k∥(DKR

ξ)k) = fRD(nk)

by Lemma 2.20. Hence, by Lemma 2.21, we have that the measure of S over U(Rq)×(DKR
ξ)k is at

least 1/4λ2cfRD(nk). Therefore, B picks (s′, e′1, . . . , e
′
k) in S at least once during the loop except

for probability (1− 1/4λ2cfRD(nk))
M < 2−λ. Furthermore, for (s′, e′1, . . . , e

′
k) ∈ S, we have that

|p̂1(s′, e′1, . . . , e′k)− p̂0| ≥ |p1(s′, e′1, . . . , e′k)− p0| − |p̂1(s′, e′1, . . . , e′k)− p1(s′, e′1, . . . , e′k)| − |p̂0 − p0|
> 1/2λc − 1/10λc − 1/10λc > 1/4λc

Therefore, B outputs 1 with all but negligible probability in this case.

Finally, we discretize the error distribution and get rid of R∨ by scaling it appropriately. The
following RLWEn,k,q,χ is the problem we considered in the main body of our work (cf. Definition
2.3).

Lemma 2.23. Let m be a power of 2, n = φ(m) = m/2, k be an integer, q ≡ 3 mod 8 be a
prime number, and ξ a positive real satisfying ξ ≥ ω(

√
log n/n)/q. There exists a polynomial time

reduction from RLWEKR
n,k,q,χ with χ = DKR

ξ to RLWEn,k,q,χ with χ = Dcoeff
Zn,
√
2nqξ

.

Proof. To show the theorem, it suffices to show an efficient transformation T that takes {(ai, vi)}ki=1 ∈
(Rq ×KR/R

∨)k chosen from either O$ or Os as input and has the following properties.

• If (ai, vi)
$← O$ for i ∈ [k], the output of T is uniform over (Rq ×Rq)

k.

• If (ai, vi)
$← Os for i ∈ [k], the output of T is of the form {(ai, ais′ + e′i)}ki=1 where s′

$← Rq

and e′1 . . . , e
′
k

$← Dcoeff
Zn,
√
2nqξ

.

Given {(ai, vi)}ki=1, T first discretizes vi ∈ KR/R
∨ to v̄i ∈ 1

qR
∨/R∨ while preserving the

correct error distribution by adding samples di chosen from D 1
q
R∨−v′i,ξ

to each vi where v
′
i = vi

mod 1
qR
∨. We show the validity of this procedure. The case when the input to T is from O$

is trivial. Hence, we assume the input was from Os, i.e., vi = ais + ei for ei
$← DKR

ξ . For the

special case when m is a power of 2, we have ηϵ(
1
qR
∨) = ω(

√
log n/n)/q for some negligible ϵ > 0.

Therefore, by the condition on ξ and from Lemma 2.17, ēi = ei + di is distributed negligibly
close to the discrete Gaussian distribution D 1

q
R∨,
√
2ξ when ei

$← DKR
ξ and di

$← D 1
q
R∨−ei,ξ. Since

ei = v′i mod 1
qR
∨, this di has the same distribution as the di sampled in the above procedure.

Therefore, T outputs v̄i = ais+ ēi where ēi
$← D 1

q
R∨,
√
2ξ if the input is from Os.

38

Then, T sets v′i = qnv̄i in order to move into R. We can see that {v′i}ki=1 are uniformly
distributed over Rq when the oracle is O$. This is because R∨ = 1

nR, which holds whenever m
is a power of 2. When O = Os, we have v′i = ains+ qnei. We can see that s′ := ns is uniformly
random over Rq. We can also see that the distribution of qnei follows DR,

√
2qnξ. We complete the

proof by observing that for m a power of 2, we have DR,
√
2qnξ = Dcoeff

Zn,
√
2nqξ

, which follows from

the fact that ϕ(R) = Zn and ∥σ(a)∥ =
√
n∥ϕ(a)∥ for any a ∈ KR. Recall that Dcoeff

Zn,
√
2nqξ

is the

distribution of a ∈ R where the coefficient vector of a is sampled from DZn,
√
2nqξ

39

Chapter 3

Tighter Security Proofs for GPV-IBE
in the Quantum ROM

3.1 Introduction

Shor [Sho94b] in his breakthrough result showed that if a quantum computer is realized, then al-
most all cryptosystems used in the real world will be broken. Since then, a significant amount of
studies have been done in the area of post-quantum cryptography, whose motivation is construct-
ing cryptosystems secure against quantum adversaries. Recently in 2016, the National Institute
of Standards and Technology (NIST) initiated the Post-Quantum Cryptography Standardization,
and since then post-quantum cryptography has been gathering increasingly more attention.

Random Oracles in Quantum World. In general, security proofs of practical cryptographic
schemes are given in the random oracle model (ROM) [BR93], which is an idealized model where
a hash function is modeled as a publicly accessible oracle that computes a random function.
Boneh et al. [BDF+11] pointed out that the ROM as in the classical setting is not reasonable
when considering security against quantum adversaries, since quantum adversaries may compute
hash functions over quantum superpositions of many inputs. Considering this fact, as a reasonable
model against quantum adversaries, they proposed a new model called the quantum random oracle
model (QROM), where a hash function is modeled as a quantumly accessible random oracle. As
discussed in [BDF+11], many commonly-used proof techniques in the ROM do not work in the
QROM. Therefore even if we have a security proof in the ROM, we often require new techniques
to obtain similar results in the QROM.

Identity-based Encryption in QROM. Identity-Based Encryption (IBE) is a generalization
of a public key encryption scheme where the public key of a user can be any arbitrary string
such as an e-mail address. The first IBE scheme based on a post-quantum assumption is the
one proposed by Gentry, Peikert and Vaikuntanathan (GPV-IBE) [GPV08], which is based on
the learning with errors (LWE) assumption [Reg05]. To this date, GPV-IBE is still arguably the
most efficient IBE scheme that is based on a hardness assumption that resists quantum attacks.
However, since their original security proof was made in the ROM instead of the QROM, it was
unclear if we could say the scheme is truly post-quantum. Zhandry [Zha12b] answered this in
the affirmative by proving that the GPV-IBE is indeed secure in the QROM under the LWE
assumption, hence truly post-quantum, by developing new techniques in the QROM.

0The contents of this chapter is based on the work presented at Asiacrypt 2018 under the title “Tighter Security
Proofs for GPV-IBE in the Quantum ROM”.

40

Tight Security of GPV-IBE. However, if we consider the tightness of the reduction, the
security proof of the GPV-IBE by Zhandry [Zha12b] does not provide a satisfactory security.
Specifically, GPV-IBE may be efficient in the ROM, but it is no longer efficient in the QROM. In
general, a cryptographic scheme is said to be tightly secure under some assumption if breaking
the security of the scheme is as hard as solving the assumption. More precisely, suppose that
we proved that if there exists an adversary breaking the security of the scheme with advantage
ϵ and running time T , we can break the underlying assumption with advantage ϵ′ and running
time T ′. We say that the scheme is tightly-secure if we have ϵ′/T ′ ≈ ϵ/T . By using this notation,
Zhandry gave a reduction from the security of GPV-IBE to the LWE assumption with ϵ′ ≈
ϵ2/(QH+QID)

4 and T ′ ≈ T +(QH+QID)
2 ·poly(λ) where QH denotes the number of hash queries,

QID denotes the number of secret key queries, λ denotes the security parameter, and poly denotes
some fixed polynomial. Though the reduction is theoretically interesting, the meaning of the
resulting security bound in a realistic setting is unclear. For example, if we want to obtain 128-bit
security for the resulting IBE, and say we had ϵ = 2−128, QH = 2100, QID = 220, then even if we
ignore the blowup for the running time, we would have to start from at least a 656-bit secure
LWE assumption, which incurs a significant blowup of the parameters. Indeed, Zhandry left it as
an open problem to give a tighter reduction for the GPV-IBE.

Multi-Challenge Tightness. The standard security notion of IBE considers the setting where
an adversary obtains only one challenge ciphertext. This is because security against adversaries
obtaining many challenge ciphertexts can be reduced to the security in the above simplified setting.
However, as pointed out by Hofheinz and Jager [HJ12], tightness is not preserved in the above
reduction since the security degrades by the number of ciphertexts. Therefore tightly secure IBE
in the single-challenge setting does not imply tightly secure IBE in the multi-challenge setting.
On the other hand, in the real world, it is natural to assume that an adversary obtains many
ciphertexts, and thus tight security in the multi-challenge setting is desirable. However, there is
no known security proof for the GPV-IBE or its variant that does not degrade with the number
of challenge ciphertexts even in the classical setting.

3.1.1 Our Contribution

We provide much tighter security proofs for the GPV-IBE in the QROM in the single-challenge
setting. Furthermore, we provide a multi-challenge tight variant of GPV-IBE that is secure both
in the ROM and QROM. In the following, we describe the tightness of our security proofs by
using the same notation as in the previous section.

• In the single-challenge setting, we give a reduction from the security of GPV-IBE to the
LWE assumption with ϵ′ ≈ ϵ and T ′ = T + (QH + QID)

2 · poly(λ). If we additionally
assume quantumly secure pseudorandom functions (PRFs), then we further obtain a tighter
reduction, which gives ϵ′ ≈ ϵ and T ′ = T + (QH + QID) · poly(λ). This is the first security
proof for GPV-IBE whose security bound does not degrade with QH or QID even in the
classical setting. We note that the same security bound can be achieved without assuming
PRFs in the classical ROM.

• We give a slight variant of GPV-IBE scheme whose multi-challenge security is reduced to
the LWE assumption with ϵ′ = ϵ/poly(λ) and T ′ ≈ T + (QH +QID +Qch)

2 · poly(λ) where
Qch denotes the number of challenge queries. If we additionally assume quantumly secure
PRFs, then we further obtain a tighter reduction. Namely, ϵ′ is the same as the above, and
T ′ = T +(QH+QID+Qch) ·poly(λ). This is the first variant of the GPV-IBE scheme whose

41

security bound does not degrade with Qch even in the classical setting. We note that the
same security bound can be achieved without assuming PRFs in the classical ROM.

Moreover, our security proofs are much simpler than the one by Zhandry [Zha12b]. In his work, he
introduced new techniques regarding indistinguishability of oracles against quantum adversaries.
Though his techniques are general and also useful in other settings (e.g., [Zha12a]), it involves
some arguments on quantum computation, and they are hard to follow for cryptographers who
are not familiar with quantum computation. On the other hand, our proofs involve a minimal
amount of discussions about quantum computation, and our proofs are done almost similar to
the counterparts in the classical ROM.

3.2 Technical Overview

GPV-IBE. First, we briefly describe the GPV-IBE [GPV08], which is the main target of this
chapter. A master public key is a matrix A ∈ Zn×m

q and a master secret key is its trapdoor
TA ∈ Zm×m, which enables one to compute a short vector e ∈ Zm

q such that Ae = u given an
arbitrary vector u ∈ Zn

q . A private key skID for an identity ID ∈ ID is a short vector e ∈ Zm
q

such that Ae = uID where uID = H(ID) for a hash function H : ID → Zn
q , which is modeled as

a random oracle. A ciphertext for a message M ∈ {0, 1} consists of c0 = u⊤IDs + x+M⌊q/2⌉ and
c1 = A⊤s + x. Here s is a uniformly random vector over Zn

q and x,x are small “noise” terms
where each entries are sampled from some specific Gaussian distribution χ. Decryption can be
done by computing w = c0 − c⊤1 eID ∈ Zq and deciding if w is closer to 0 or to ⌊q/2⌉ modulo q.

Security Proof in Classical ROM. The above IBE relies its security on the LWE assumption,

which informally states the following: given a uniformly random matrix [A|u] ← Zn×(m+1)
q and

some vector b ∈ Zm+1
q , there is no PPT algorithm that can decide with non-negligible probability

whether b is of the form [A|u]⊤s + x′ for some s ← Zn
q and x′ ← χm+1, or a uniformly random

vector over Zm+1
q , i.e., b ← Zm+1

q . Below, we briefly recall the original security proof in the
classical ROM given by Gentry et al. [GPV08] and see how the random oracle is used by the
reduction algorithm. The proof relies on a key lemma which states that we can set H(ID) and e in
the “reverse order” from the real scheme. That is, we can first sample e from some distribution
and program H(ID) := Ae so that their distributions are close to uniformly random as in the real
scheme. In the security proof, a reduction algorithm guesses i ∈ [Q] such that the adversary’s i-th
hash query is the challenge identity ID∗ where Q denotes the number of hash queries made by the
adversary. Then for all but the i-th hash query, the reduction algorithm programs H(ID) in the
above manner, and for the i-th query, it programs the output of H(ID∗) to be the vector u contained
in the LWE instance that is given as the challenge. Specifically, the reduction algorithm sets the
challenge user’s identity vector uID∗ as the random vector u contained in the LWE instance. If
the guess is correct, then it can embed the LWE instance into the challenge ciphertexts c∗0 and c∗1;
in case it is a valid LWE instance, then (c∗0, c

∗
1) is properly set to (u⊤ID∗s+ x+M⌊q/2⌉,A⊤s+ x)

as in the real scheme. Therefore, the challenge ciphertext can be switched to random due to the
LWE assumption. After this switch, M is perfectly hidden and thus the security of GPV-IBE
is reduced to the LWE assumption. Since the reduction algorithm programs the random oracle
in the same way except for the challenge identity, this type of proof methodology is often times
referred to as the “all-but-one programming”.

Security Proof in QROM in [Zha12b]. Unfortunately, the above proof cannot be simply
extended to a proof in the QROM. The reason is that in the QROM, even a single hash query

42

can be a superposition of all the identities. In such a case, to proceed with the above all-but-
one programming approach, the reduction algorithm would have to guess a single identity out
of all the possible identities which he hopes that would be used as the challenge identity ID∗ by
the adversary. Obviously, the probability of the reduction algorithm being right is negligible,
since the number of possible identities is exponentially large. This is in sharp contrast with the
ROM setting, where the reduction algorithm was allowed to guess the single identity out of the
polynomially many (classical) random oracle queries made by the adversary. Therefore, the all-
but-one programming as in the classical case cannot be used in the quantum case. To overcome this
barrier, Zhandry [Zha12b] introduced a useful lemma regarding what he calls the semi-constant
distribution. The semi-constant distribution with parameter 0 < p < 1 is a distribution over
functions from X to Y such that a function chosen according to the distribution gives the same
fixed value for random p-fraction of all inputs, and behaves as a random function for the rest of
the inputs. He proved that a function according to the semi-constant distribution with parameter
p and a random function cannot be distinguished by an adversary that makes Q oracle queries
with advantage greater than 8

3Q
4p2. In the security proof, the reduction algorithm partitions the

set of identities into controlled and uncontrolled sets. The uncontrolled set consists of randomly
chosen p-fraction of all identities, and the controlled set is the complement of it. The reduction
algorithm embeds an LWE instance into the uncontrolled set, and programs the hash values for
the controlled set so that the decryption keys for identities in the controlled set can be extracted
efficiently. Then the reduction algorithm works as long as the challenge identity falls inside the
uncontrolled set and all identities for secret key queries fall inside the controlled set (otherwise
it aborts). By appropriately setting p, we can argue that the probability that the reduction
algorithm does not abort is non-negligible, and thus the security proof is completed. Though this
technique is very general and useful, a huge reduction loss is inherent as longs as we take the
above strategy because the reduction algorithm has to abort with high probability. It may be
useful to point out for readers who are familiar with IBE schemes in the standard model that the
above technique is conceptually very similar to the partitioning technique which is often used in
the context of adaptively secure IBE scheme in the standard model [Wat05, ABB10, CHKP10].
The reason why we cannot make the proof tight is exactly the same as that for the counterparts
in the standard model.

Our Tight Security Proof in QROM. As discussed above, we cannot obtain a tight reduction
as long as we use a partitioning-like technique. Therefore we take a completely different approach,
which is rather similar to that used in the public key encryption scheme of Cramer and Shoup
[CS98], which has also been applied to the pairing-based IBE construction of Gentry [Gen06].
The idea is that we simulate in a way so that we can create exactly one valid secret key for every
identity. Note that this is opposed to the partitioning technique (and the all-but-one programming
technique) where the simulator cannot create a secret key for an identity in the uncontrolled set.
To create the challenge ciphertext, we use the one secret key we know for that challenge identity.
If the adversary can not tell which secret key the ciphertext was created from and if there are
potentially many candidates for the secret key, we can take advantage of the entropy of the secret
key to statistically hide the message.

In more detail, the main observation is that the secret key e, i.e. a short vector e such that
Ae = u, retains plenty of entropy even after fixing the public values A and u. Therefore, by
programming the hash value u of an identity, we can easily create a situation where the simulator
knows exactly one secret key out of the many possible candidates. Furthermore, the simulator
knowing a secret key eID∗ such that AeID∗ = uID∗ , can simulate the challenge ciphertext by
creating c∗0 = e⊤ID∗c∗1 + M⌊q/2⌉ and c∗1 = A⊤s + x. Here, the key observation is that we no

43

longer require the LWE instance (uID∗ ,u⊤ID∗s + x) to simulate the challenge ciphertext. Though
the distribution of c∗0 simulated as above is slightly different from that of the real ciphertext due
to the difference in the noise distributions, we ignore it in this overview. In the real proof, we
overcome this problem by using the noise rerandomization technique by Katsumata and Yamada
[KY16]. Then we use the LWE assumption to switch c∗1 to random. Finally, we argue that
e⊤ID∗c∗1 is almost uniform if the min-entropy of eID∗ is high and c∗1 is uniformly random due to the
leftover hash lemma. Therefore, all information of the message M is hidden and thus the proof is
completed.

Finally, we observe that the above proof naturally fits in the QROM setting. The crucial
difference from the partitioning technique is that in our security proof we program the random
oracle in the same way for all identities. Therefore even if an adversary queries a superposition
of all identities, the simulator can simply quantumly perform the programming procedure for the
superposition. Thus the proof in the classical ROM can be almost automatically converted into
the one in the QROM in this case.

Tight Security in Multi-Challenge Setting. Unfortunately, the above idea does not extend
naturally to the tightly-secure multi-challenge setting. One can always prove security in the multi-
challenge setting starting from a scheme that is single-challenge secure via a hybrid argument,
however, as mentioned by Hofheinz and Jager [HJ12], this type of reduction does not preserve
tightness. A careful reader may think that the above programming technique can be extended
to the multi-challenge setting, hence bypassing the hybrid argument. We briefly explain why
this is not the case. Informally, in the above proof, the reduction algorithm embeds its given
LWE instance (A,A⊤s+x) into the challenge ciphertext by creating (c∗0 = e⊤ID∗c∗1+M⌊q/2⌉, c∗1 =
A⊤s+x), where eID∗ is the secret key of the challenge user uID∗ . Therefore, since the c∗1 component
of every ciphertext is an LWE instance for the same public matrixA, to simulate multiple challenge
ciphertexts in the above manner, the reduction algorithm must be able to prepare a special type of
LWE instance (A, {A⊤s(k)+x(k)}k∈[N]), where N = poly(λ) is the number of challenge ciphertext
queried by the adversary. It can be easily seen that this construction is tightly-secure in the multi-
challenge setting with the same efficiency as the single-challenge setting, if we assume that this
special type of LWE problem is provided to the reduction algorithm as the challenge. However,
unfortunately, we still end up losing a factor of N in the reduction when reducing the standard
LWE problem to this special LWE problem. In particular, we only shifted the burden of having
to go through the N hybrid arguments to the assumption rather than to the scheme. As one may
have noticed, there is a way to bypass the problem of going through the N hybrid arguments
by using conventional techniques (See [Reg05, Reg10]) of constructing an unlimited number of
fresh LWE instances given a fixed number of LWE instances. However, this techniques requires
the noise of the newly created LWE instances to grow proportionally to the number of created
instances. In particular, to create the above special LWE instance from a standard LWE instance,
we require the size of the noise x(k) to grow polynomially with N , where recall that N can be
an arbitrary polynomial. Hence, although we can show a tightly secure reduction in the multi-
challenge setting, for the concrete parameters of the scheme to be independent of N , we need to
assume the super-polynomial LWE assumption to cope with the super-polynomial noise blow up.
This is far more inefficient than in the single-challenge setting where we only require a polynomial
LWE assumption.

To overcome this problem, we use the “lossy mode” of the LWE problem. It is well known
that the secret vector s is uniquely defined given an LWE instance (A,A⊤s+x) for large enough
samples. A series of works, e.g., [GKPV10, BKPW12, AKPW13, LSSS17] have observed that if
we instead sample A from a special distribution that is computationally indistinguishable from

44

the uniform distribution, then (A,A⊤s + x) leaks almost no information of the secret s, hence
the term “lossy mode”. This idea can be leveraged to prove (almost) tight security of the above
single-challenge construction, where the reduction loss is independent of the number of challenge
ciphertext. A first attempt of using this idea is as follows: During the security proof of the GPV-
IBE, we first change the public matrix A to a lossy matrix Ã and generate the secret keys and
program the random oracle in the same way as before. To create the challenge ciphertexts, the
reduction algorithm honestly samples s(k), x(k), x(k) and sets (c∗0 = u⊤ID∗s(k)+x(k)+M(k)⌊q/2⌉, c∗1 =
A⊤s(k)+x(k)). Now, it may seem that owing to the lossy mode of LWE, we can rely on the entropy
of the secret vector s(k) to argue that c∗0 is distributed uniformly random via the leftover hash
lemma. The main difference between the previous single-challenge setting is that we can rely on
the entropy of the secret vector s(k) rather than on the entropy of the secret key eID∗ . Since each
challenge ciphertext is injected with fresh entropy and we can argue statistically that a single
challenge ciphertext is not leaking any information on the message, the reduction loss will be
independent of the number of challenge ciphertext query N .

Although the above argument may seem correct at first glance, it incurs a subtle but a fatal
flaw, thus bringing us to our proposed construction. The problem of the above argument is how
we use the leftover hash lemma. To use the lemma correctly, the vector uID∗ viewed as a hash
function is required to be universal. This is true in case uID∗ is set as AeID∗ , where A ← Zn×m

q

and eID∗ is sampled from some appropriate distribution. However, this is not true anymore once
we change A to a lossy matrix Ã, since Ã now lives in an exponentially small subset of Zn×m

q ,

hence, we can no longer rely on the entropy of s(k) to statistically hide the message. To overcome
this problem, our final idea is to use the Katz-Wang [KW03] technique. Specifically, we slightly
alter the encryption algorithm of GPV-IBE to output the following instead:

c0 = u⊤ID||0s+ x0 +M⌊q/2⌉, c1 = u⊤ID||1s+ x1 +M⌊q/2⌉, and c2 = A⊤s+ x,

where uID||b = H(ID||b) for b ∈ {0, 1}. During the security proof, the reduction algorithm sets
uID||0 and uID||1 so that one of them is uniformly random over Zn

q and the other is constructed
as AeID. Then, for the ciphertext cb corresponding to the uniformly random vector uID||b, we
can correctly use the leftover hash lemma to argue that cb statistically hides the message M. By
going through one more hybrid argument, we can change both c0, c1 into random values that are
independent of the message M. Note that instead of naively using the Katz-Wang technique, by
reusing the c2 component, the above GPV-IBE variant only requires one additional element in Zq

compared to the original GPV-IBE. Furthermore, in the actual construction, we do not require
the noise terms x0, x1 in c0, c1 since we no longer rely on the LWE assumption to change c0, c1
into random values. Our construction and security reduction does not depend on the number
of challenge ciphertext query N and in particular, can be proven under the polynomial LWE
assumption, which is only slightly worse than the single-challenge construction. In addition, due
to the same reason as the single-challenge setting, our classical ROM proof can be naturally
converted to a QROM proof.

3.2.1 Discussion.

Similar Techniques in Other Works. The idea to simulate GPV-IBE in a way so that we
can create exactly one valid secret key for every secret key query is not new. We are aware of
few works that are based on this idea. Gentry, Peikert, and Vaikuntanathan [GPV08] mentioned
that by using this technique, they can prove the security of the GPV-IBE in the standard model
based on a non-standard interactive variant of the LWE assumption. However, they only gave

45

a sketch of the proof and did not give a formal proof. Alwen et al. [ADN+10] use the idea to
construct an identity-based hash proof system (IB-HPS) based on the mechanism of GPV-IBE.
We note that they assume the modulus q to be super-polynomial. Outside the context of identity-
based primitives, Applebaum et al. [ACPS09] and Bourse [BDPMW16] provide an analysis of
rerandomizing LWE samples which can be seen as a refinement of the idea mentioned in [GPV08].
[ACPS09] constructs a KDM-secure cryptosystem based on the LWE problem and [BDPMW16]
shows a simple method for constructing circuit private fully homomorphic encryption schemes
(FHE) based on the lattice-based FHE scheme of Gentry et al. [GSW13]. Both of their analysis
only requires the modulus q to be polynomial. In summary, though similar ideas have been used,
all of the previous works are irrelevant to tight security or the security in the QROM.

On Running Time of Reductions. In the above overview, we ignore the running time of
reductions. Though it seems that the above described reductions run in almost the same time as
that of the adversaries, there is a significant blowup by the square of the number of queries due
to a subtle problem of simulating random oracles against quantum adversaries. In the classical
ROM, when we simulate a random oracle in security proofs, we usually sample a random function
in a lazy manner. That is, whenever an adversary queries a point that has not been queried before,
a reduction algorithm samples a fresh randomness and assigns it as a hash value for that point.
However, this cannot be done in the QROM because an adversary may query a superposition of
all the inputs in a single query. Therefore a reduction algorithm has to somehow commit to the
hash values of all inputs at the beginning of the simulation.

Zhandry [Zha12b] proved that an adversary that makes Q queries cannot distinguish a random
function and a 2Q-wise independent hash function via quantum oracle accesses. Therefore we can
use a 2Q-wise independent hash to simulate a random oracle. However, if we take this method,
the simulator has to evaluate a 2Q-wise independent hash function for each hash query, and this
is the reason why the running time blowups by Ω(Q2).

One possible way to avoid this huge blowup is to simulate a random oracle by a PRF secure
against quantum accessible adversaries. Since the time needed to evaluate a PRF is some fixed
polynomial in the security parameter, the blowup for the running time can be made Q · poly(λ)
which is significantly better than Ω(Q2). However, in order to use this method, we have to
additionally assume the existence of quantumly secure PRFs. Such PRFs can be constructed based
on any quantumly-secure one-way function [Zha12a], and thus they exist if the LWE assumption
holds against quantum adversaries. However, the reduction for such PRFs are non-tight and thus
we cannot rely on them in the context of tight security. Our suggestion is to use a real hash
function to implement PRFs and to assume that it is a quantumly secure PRF. We believe this
to be a natural assumption if we are willing to idealize a hash function as a random oracle. (See
also the discussion in Section 3.3.2.)

3.2.2 Related Work

Schemes in QROM. Boneh et al. [BDF+11] introduced the QROM, and gave security proofs
for the GPV-signature [GPV08] and a hybrid variant of the Bellare-Rogaway encryption [BR93] in
the QROM. We note that their security proof for the GPV-signature is tight. Zhandry [Zha12b]
proved that GPV-IBE and full-domain hash signatures are secure in the QROM. Targhi and
Unruh [TU16] proposed variants of Fujisaki-Okamoto transformation and OAEP that are secure
in the QROM. Some researchers studied the security of the Fiat-Shamir transform in the QROM
[ARU14, Unr15, Unr17]. Unruh [Unr14b] proposed a revocable quantum timed-release encryption
scheme in the QROM. Unruh [Unr14a] proposed a position verification scheme in the QROM.

46

Recently, some researchers studied tight securities in the QROM. Alkim et al. [ABB+17] proved
that the signature scheme known as TESLA [BG14] is tightly secure under the LWE assumption.
Saito et al. [SXY18] proposed a tightly CCA secure variant of the Bellare-Rogaway encryption.
Kiltz et al. [KLS18] gave a tight reduction for the Fiat-Shamir transform in the QROM.
Tightly Secure IBEs. The first tightly secure IBE scheme from lattices in the single challenge
setting and in the standard model was proposed by Boyen and Li [BL16]. While the construction
is theoretically interesting and elegant, it is very inefficient and requires LWE assumption with
super-polynomial approximation factors. As for the construction from bilinear maps, the first
tightly secure IBE from standard assumptions in the single challenge setting and in the random
oracle model was proposed by Katz and Wang [KW03]. Coron [Cor09] gave a tight reduction for
a variant of the original Boneh-Franklin IBE [BF01]. Later, the first realization in the standard
model was proposed by Chen and Wee [CW13]. In the subsequent works, it is further extended
to the multi-challenge setting [HKS15, AHY15, GDCC16]. They are efficient but are not secure
against quantum computers.

3.3 Preparation

3.3.1 Quantum Computation

We briefly give some backgrounds on quantum computation. We refer to [NC00] for more details.
A state |ψ⟩ of n qubits is expressed as

∑
x∈{0,1}n αx |x⟩ ∈ C2n where {αx}x∈{0,1}n is a set of

complex numbers such that
∑

x∈{0,1}n |αx|2 = 1 and {|x⟩}x∈{0,1}n is an orthonormal basis on C2n

(which is called a computational basis). If we measure |ψ⟩ in the computational basis, then the
outcome is a classical bit string x ∈ {0, 1}n with probability |αx|2, and the state becomes |x⟩.
An evolution of quantum state can be described by a unitary matrix U , which transforms |x⟩ to
U |x⟩. A quantum algorithm is composed of quantum evolutions described by unitary matrices
and measurements. We also consider a quantum oracle algorithm, which can quantumly access
to certain oracles. The running time Time(A) of a quantum algorithm A is defined to be the
number of universal gates (e.g., Hadamard, phase, CNOT, and π/8 gates) and measurements
required for running A. (An oracle query is counted as a unit time if A is an oracle algorithm.)
Any efficient classical computation can be realized by a quantum computation efficiently. That
is, for any function f that is classically computable, there exists a unitary matrix Uf such that
Uf |x, y⟩ = |x, f(x)⊕ y⟩, and the number of universal gates to express Uf is linear in the size of
a classical circuit that computes f .

Quantum random oracle model. Boneh et al. [BDF+11] introduced the quantum random
oracle model (QROM), which is an extension of the usual random oracle model to the quantum
setting. Roughly speaking, the QROM is an idealized model where a hash function is idealized
to be a quantumly accessible oracle that simulates a random function. More precisely, in security
proofs in the QROM, a random function H : X → Y is uniformly chosen at the beginning of
the experiment, and every entity involved in the system is allowed to access to an oracle that
is given

∑
x,y αx,y |x, y⟩ and returns

∑
x,y αx,y |x,H(x)⊕ y⟩. We denote a quantum algorithm A

that accesses to the oracle defined as above by A|H⟩. In the QROM, one query to the random
oracle is counted as one unit time. As in the classical case, we can implement two random oracles
H0 and H1 from one random oracle H by defining H0(x) := H(0||x) and H1(x) := H(1||x). More
generally, we can implement n random oracles from one random oracle by using ⌊log n⌋-bit prefix
of an input as index of random oracles.

As shown by Zhandry [Zha12b], a quantum random oracle can be simulated by a family of

47

2Q-wise independent hash functions against an adversary that quantumly accesses to the oracle
at most Q times. As a result, he obtained the following lemma.

Lemma 3.1. ([Zha12b, Thereom 6.1].) Any quantum algorithm A making quantum queries to
random oracles can be efficiently simulated by a quantum algorithm B, which has the same output
distribution, but makes no queries. Especially, if A makes at most Q queries to a random oracle
H : {0, 1}a → {0, 1}b, then Time(B) ≈ Time(A) +Q · T 2Q-wise

a,b where T 2Q-wise
a,b denotes the time to

evaluate a 2Q-wise independent hash function from {0, 1}a to {0, 1}b.

The following lemma was shown by Boneh et al. [BDF+11]. Roughly speaking, this lemma
states that if an oracle outputs independent and almost uniform value for all inputs, then it is
indistinguishable from a random oracle even with quantum oracle accesses.

Lemma 3.2. ([BDF+11, Lemma 3].) Let A be a quantum algorithm that makes at most Q oracle
queries, and X and Y be arrbitrary sets. Let H be a distribution over Func(X ,Y) such that when

we take H
$← H, for each x ∈ X , H(x) is identically and independently distributed according to a

distribution D whose statistical distance is within ϵ from uniform. Then for any input z. we have

∆(A|RF⟩(z),A|H⟩(z)) ≤ 4Q2√ϵ

where RF← Func(X ,Y) and H← H.

3.3.2 Quantum Pseudorandom Function.

We review the definition of quantum-accessible pseudorandom functions (PRFs) [BDF+11].

Definition 3.1 (Quantum-accessible PRF). We say that a function F : K×X → Y is a quantum-
accessible pseudorandom function if for all PPT adversaries A, its advantage defined below is
negligible:

AdvPRFA,F (λ) :=
∣∣∣Pr [A|RF⟩(1λ) = 1

]
− Pr

[
A|F (K,·)⟩(1λ) = 1

]∣∣∣
where RF← Func(X ,Y) and K ← K.

Zhandry [Zha12a] proved that some known constructions of classical PRFs including the tree-
based construction [GGM86] and lattice-based construction [BPR12] are also quantum-accessible
PRFs. However, these reductions are non-tight, and thus we cannot rely on these results when
aiming for tight security. Fortunately, we can use the following lemma which states that we can
use a quantum random oracle as a PRF similarly to the classical case.

Lemma 3.3. ([SXY18, Lemma 2.2]) Let ℓ be an integer. Let H : {0, 1}ℓ×X → Y and H′ : X → Y
be two independent random functions. If an unbounded time quantum adversary A makes a query
to H at most QH times, then we have∣∣∣Pr[A|H⟩,|H(K,·)⟩(1λ) = 1 | K ← {0, 1}ℓ]− Pr[A|H⟩,|H′⟩(1λ) = 1]

∣∣∣ ≤ QH · 2
−ℓ+1

2 .

Remark 3.1. (Using PRFs to make IBE stateless.) We say that an IBE scheme is stateful if the
key generation algorithm has to record all previously issued secret keys, and always outputs the
same secret key for the same identity. By the technique by Goldreich [Gol86], a stateful scheme can
be converted to a stateless one (in which the key generation algorithm need not remember previous
executions) by using PRFs. Since PRFs exist in the QROM without assuming any computational
assumption as shown in Lemma 3.3, if we make the key size of PRFs sufficiently large, this
conversion hardly affects the tightness. Therefore in this chapter, we concentrate on constructing
tightly secure stateful IBE scheme for simplicity.

48

3.3.3 Hardness Assumption

In Section 2.2.3 we defined the LWE problem for classical adversaries. Below, we define the LWE
assumption against adversaries that can access to a quantum random oracle as is done by Boneh
et al. [BDF+11].

Definition 3.2 (Learning with Errors relative to Quantum Random Oracle). Let n, m, q and χ
be the same as in Lemma 2.1, and a, b be some positive integers. For a PPT algorithm A, the
advantage for the learning with errors problem LWEn,m,q,χ of A relative to a quantum random
oracle is defined as follows:

Adv
LWEn,m,q,χ

A,QROa,b
(λ) =

∣∣∣Pr [A|H⟩(A,A⊤s+ z
)
= 1
]
− Pr

[
A|H⟩

(
A,w + z

)
= 1
]∣∣∣

where A← Zn×m
q , s← Zn

q , w ← Zm
q , z← χm, H

$← Func({0, 1}a, {0, 1}b). We say that the LWE

assumption relative to an (a, b)-quantum random oracle holds if Adv
LWEn,m,q,χ

A,QROa,b
(λ) is negligible for

all PPT A.
It is easy to see that the LWE assumption relative to a quantum random oracle can be

reduced to the LWE assumption with a certain loss of the time for the reduction by Lemma 3.1.
Alternatively, if we assume the existence of a quantumly-accessible PRF, then the reduction loss
can be made smaller. Namely, we have the following lemmas.

Lemma 3.4. For any n, m, q, χ, a, b, and an algorithm A making at most Q oracle queries,
there exists an algorithm B such that

Adv
LWEn,m,q,χ

A,QROa,b
(λ) = Adv

LWEn,m,q,χ

B (λ)

and Time(B) ≈ Time(A) + Q · T 2Q-wise
a,b where T 2Q-wise

a,b denotes the time to evaluate a 2Q-wise

independent hash function from {0, 1}a to {0, 1}b.
Lemma 3.5. Let F : K × {0, 1}a → {0, 1}b be a quantumly-accessible PRF. For any n, m, q, χ,
a, b and an algorithm A making at most Q oracle queries, there exist algorithms B and C such
that

Adv
LWEn,m,q,χ

A,QROa,b
(λ) ≤ Adv

LWEn,m,q,χ

B (λ) + AdvPRFC,F (λ)

and Time(B) ≈ Time(A) +Q · TF and Time(C) ≈ Time(A) where TF denotes the time to evaluate
F .

In this chapter, we give reductions from the security of IBE schemes to the LWE assumption
relative to a quantum random oracle. Given such reductions, we can also reduce them to the
LWE assumption or to the LWE assumption plus the security of quantumly-accessible PRFs by
Lemma 3.4 or 3.5, respectively. The latter is tighter than the former at the cost of assuming the
existence of quantumly-accessible PRFs.

Remark 3.2. A keen reader may wonder why we have to require the extra assumption on the exis-
tence of PRFs when we’re working in the QROM, since as we mentioned earlier in Remark 3.3.2,
it seems that we can use a QRO as a PRF. The point here is that during the security reduction,
the simulator (which is given the classical LWE instance) must simulate the QRO query to the
adversary against the LWE problem relative to a quantum random oracle query, hence, the sim-
ulator is not in possession of the QRO. Note that the reason why we are able to use the QRO
as a PRF as mentioned in Remark 3.1 is because the simulator is aiming to reduce the LWE
problem relative to a quantum random oracle query to the IBE scheme. Specifically, in this case
the simulator can use the QRO provided by its challenge to simulate a PRF.

49

3.4 Tightly Secure Single Challenge GPV-IBE

In this section, we show that we can give a tight security proof for the original GPV-IBE [GPV08]
in the single-challenge setting if we set the parameters appropriately. Such proofs can be given in
both the classical ROM and QROM settings.

3.4.1 Construction

Let the identity space ID of the scheme be ID = {0, 1}ℓID , where ℓID(λ) denotes the identity-
length. Let also H : {0, 1}ℓID → Zn

q be a hash function treated as a random oracle during security
analysis. The IBE scheme GPV is given as follows. For simplicity, we describe the scheme as a
stateful one. As remarked in Remark 3.1, we can make the scheme stateless without any additional
assumption in the QROM.

Setup(1λ): On input 1λ, it first chooses a prime q, positive integers n,m, and Gaussian parameters
α′, σ, where all these values are implicitly a function of the security parameter λ. The
precise parameter selection is specified in the following section. It then runs (A,TA) ←
TrapGen(1n, 1m, q) to generate a matrix A ∈ Zn×m

q with a trapdoor TA ∈ Zm×m such that
∥TA∥GS ≤ O(n log q). Then it outputs

mpk = A and msk = TA

KeyGen(mpk,msk, ID): If skID is already generated, then this algorithm returns it. Otherwise it
computes uID = H(ID) and samples eID ∈ Zm such that

AeID = uID mod q

using eID ← SamplePre(A,TA,uID, σ). It returns skID = eID as the secret key.

Enc(mpk, ID,M): To encrypt a message M ∈ {0, 1}, it first samples s ← Zn
q , x ← DZm,α′q and

x← DZ,α′q. Then it sets uID = H(ID) and computes

c0 = u⊤IDs+ x+M⌊q/2⌉, c1 = A⊤s+ x.

Finally, it outputs the ciphertext C = (c0, c1) ∈ Zq × Zm
q .

Dec(mpk, skID, C): To decrypt a ciphertext C = (c0, c1) with a secret key skID, it computes
w = c0 − c⊤1 eID ∈ Zq and outputs 0 if w is closer to 0 than to ⌊q/2⌉ modulo q. Otherwise it
outputs 1.

3.4.2 Correctness and Prameter Selection

The following shows correctness of the above IBE scheme.

Lemma 3.6 (Correctness). Suppose the parameters q, σ, and α′ are such that

σ > ∥TA∥GS ·
√

log(2m+ 4)/π, α′ < 1/8σm.

Let eID ← KeyGen(A,TA, ID), C ← Enc(A, ID′,M ∈ {0, 1}) and M′ ← Dec(A, eID, C). If ID = ID′,
then with overwhelming probability we have M′ = M.

50

Proof. When the Dec algorithm operates as specified, we have

w = c0 − e⊤IDc1 = M⌊q/2⌉+ x+ e⊤IDx︸ ︷︷ ︸
error term

.

By Lemma 2.12 and the condition posed on the choice of σ, we have that the distribution of eID
is 2−Ω(n) close to DΛ⊥

u (A),σ. Therefore, by Lemma 2.4, we have x ≤ α′q
√
m, ∥x∥ ≤ α′q

√
m, and

∥eID∥ ≤ σ ·
√
m except for 2−Ω(n) probability. Then, the error term is bounded by

|h⊤x− e⊤IDx| ≤ x+ |e⊤IDx| ≤ 2α′qσm.

Hence, for the error term to have absolute value less than q/4, it suffices to choose q and α′ as in
the statement of the lemma.

Parameter Selection. For the system to satisfy correctness and make the security proof work,
we need the following restrictions. Note that we will prove the security of the scheme under the
LWE assumption whose noise rate is α, which is lower than α′ that is used in the encryption
algorithm.

- The error term is less than q/4 (i.e., α′ < 1/8mσ by Lemma 3.6)

- TrapGen operates properly (i.e., m > 3n log q by Lemma 2.12)

- Samplable fromDΛ⊥
u (A),σ (i.e., σ > ∥TA∥GS·

√
log(2m+ 4)/π = O(

√
n logm log q) by Lemma 2.12),

- σ is sufficiently large so that we can apply Lemma 2.1 and 2.5 (i.e., σ >
√
n+ logm, 16

√
log 2m/π),

- We can apply Lemma 2.6 (i.e., α′/2α >
√
n(σ2m+ 1)),

- LWEn,m,q,DZ,αq
is hard (i.e., αq > 2

√
n).

To satisfy these requirements, for example, we can set the parameters m, q, σ, α, α′ as follows:

m = n1+κ, q = 10n3.5+4κ, σ = n0.5+κ,

α′q = n2+2κ, αq = 2
√
n,

where κ > 0 is a constant that can be set arbitrarily small. To withstand attacks running in
time 2λ, we may set n = Ω̃(λ). In the above, we round up m to the nearest integer and q to
the nearest largest prime. We remark that though the above parameter is worse compared to the
original GPV-IBE scheme, this is due to our conservative choice of making the statistical error
terms appearing in the reduction cost 2−Ω(n) rather than the standard negligible notion 2−ω(log λ).
The latter choice of parameters will lead to better parameters, which may be as efficient as the
original GPV-IBE.

3.4.3 Security Proof in ROM

The following theorem addresses the security of GPV in the classical ROM setting. Our analysis
departs from the original one [GPV08] and as a consequence much tighter.

Theorem 3.1. The IBE scheme GPV is adaptively-anonymous single-challenge secure in the
random oracle model assuming the hardness of LWEn,m,q,DZ,αq

. Namely, for any classical adversary

51

A making at most QH random oracle queries to H and QID secret key queries, there exists an
algorithm B such that

AdvIBEA,GPV(λ) ≤ Adv
LWEn,m,q,DZ,αq

B (λ) + (QH +QID) · 2−Ω(n)

and
Time(B) = Time(A) + (QH +QID) · poly(λ).

Proof of Theorem 3.1. Let CTSam(mpk) be an algorithm that outputs a random element from
Zq × Zm

q and A be a classical PPT adversary that attacks the adaptively-anonymous security
of the IBE scheme. Without loss of generality, we make some simplifying assumptions on A.
First, we assume that whenever A queries a secret key or asks for a challenge ciphertext, the
corresponding ID has already been queried to the random oracle H. Second, we assume that A
makes the same query for the same random oracle at most once. Third, we assume that A does
not repeat secret key queries for the same identity more than once. We show the security of the
scheme via the following games. In each game, we define Xi as the event that the adversary A
wins in Gamei.

Game0 : This is the real security game. At the beginning of the game, (A,TA)
$← TrapGen(1n, 1m, q)

is run and the adversary A is given A. The challenger then samples coin
$← {0, 1} and keeps it

secret. During the game, A may make random oracle queries, secret key queries, and the challenge
query. These queries are handled as follows:

• When A makes a random oracle query to H on ID, the challenger chooses a random vector
uID ← Zn

q and locally stores the tuple (ID,uID,⊥), and returns uID to A.

• When the adversaryA queries a secret key for ID, the challenger computes eID = SamplePre(A,TA,uID, σ)
and returns eID to A.

• When the adversary makes the challenge query for ID∗ and a message M∗, the challenger
returns (c0, c1)

$← Encrypt(mpk, ID,M) if coin = 0 and (c0, c1)
$← CTSam(mpk) if coin = 1.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger outputs ĉoin. By
definition, we have

∣∣Pr[X0]− 1
2

∣∣ = ∣∣Pr[ĉoin− coin]− 1
2

∣∣ = AdvIBEA,GPV(λ).

Game1 : In this game, we change the way the random oracle queries to H are answered. When
A queries the random oracle H on ID, the challenger generates a pair (uID, eID) by first sampling
eID ← DZm,σ and setting uID = AeID. Then it locally stores the tuple (ID,uID,⊥), and returns uID

to A. Here, we remark that when A makes a secret key query for ID, the challenger returns e′ID
$←

SamplePre(A,TA,uID, σ), which is independent from eID that was generated in the simulation of
the random oracle H on input ID. Note that in this game, we only change the distribution of uID

for each identity. Due to Lemma 2.1, the distribution of uID in Game2 is 2−Ω(n)-close to that of
Game1 except for 2−Ω(n) fraction of A since we choose σ >

√
n+ logm. Therefore, the statistical

distance between the view of A in Game1 and Game2 is 2−Ω(n) + QH · 2−Ω(n) < QH · 2−Ω(n).
Therefore, we have

∣∣Pr[X1]− Pr[X2]
∣∣ = QH · 2−Ω(n).

Game2 : In this game, we change the way secret key queries are answered. By the end of this
game, the challenger will no longer require the trapdoor TA to generate the secret keys. When A
queries the random oracle on ID, the challenger generates a pair (uID, eID) as in the previous game.
Then it locally stores the tuple (ID,uID, eID) and returns uID to A. When A queries a secret key

52

for ID, the challenger retrieves the unique tuple (ID,uID, eID) from local storage and returns eID.

For any fixed uID ∈ Zn
q , let e

(1)
ID,uID

and e
(2)
ID,uID

be random variables that are distributed according
to the distributions of skID conditioning on H(ID) = uID in Game1 and Game2, respectively. Due

to Lemma 2.12, we have ∆(e
(1)
ID,uID

, DΛ⊥
u (A),σ) ≤ 2−Ω(n). On the other hand, due to Lemma 2.1,

we have ∆(e
(2)
ID,uID

, DΛ⊥
u (A),σ) ≤ 2−Ω(n). Since A obtains at most QID user secret keys skID, we

have
∣∣Pr[X1]− Pr[X2]

∣∣ = QID · 2−Ω(n).

Game3 : In this game, we change the way the matrix A is generated. Concretely, the challenger
chooses A← Zn×m

q without generating the associated trapdoor TA. By Lemma 2.12, this makes

only 2−Ω(n)-statistical difference. Since the challenger can answer all the secret key queries without
the trapdoor due to the change we made in the previous game, the view of A is altered only
negligibly. Therefore, we have

∣∣Pr[X2]− Pr[X3]
∣∣ = 2−Ω(n).

Game4 : In this game, we change the way the challenge ciphertext is created when coin = 0. Recall
in the previous games when coin = 0, the challenger created a valid challenge ciphertext as in
the real scheme. In this game, to create the challenge ciphertext for identity ID∗ and message bit
M∗, the challenger first retrieves the unique tuple (ID∗,uID∗ , eID∗) from local storage. Then the
challenger picks s← Zn

q , x̄← DZm,αq and computes v = A⊤s+ x̄ ∈ Zm
q . It then runs

ReRand([eID∗ |Im],v, αq,
α′

2α
)→ c′ ∈ Zm+1

q

from Lemma 2.6, where Im is the identity matrix with size m. Let c′0 ∈ Zq denote the first entry
of c′ and c1 ∈ Zm

q denote the remaining entries of c′. Finally, the challenger outputs the challenge
ciphertext as

C∗ = (c0 = c′0 +M∗⌊q/2⌉, c1). (3.1)

We now proceed to bound |Pr[X3] − Pr[X4]|. We apply the noise rerandomization lemma
(Lemma 2.6) with V = [eID∗ |Im], b = A⊤s and z = x̄ to see that the distribution of c′ is
negligibly close to the following:

c′ = V⊤b+ x′ =
(
A · [eID∗ |Im]

)⊤
s+ x′ = [uID∗ |A]⊤s+ x′

where the distribution of x′ is 2−Ω(n)-close to DZm+1,α′q. Here, the last equality follows from
AeID∗ = uID∗ and we can appropriately apply the noise rerandomization lemma since we have the
following for our parameter selection:

α′/2α >
√
n(σ2m+ 1) ≥

√
n(∥eID∗∥2 + 1) ≥

√
n · s1([eID∗ |Im]),

where the second inequality holds with 1 − 2−Ω(n) probability. It can be seen that the challenge
ciphertext is distributed statistically close to that in Game3. Therefore, we may conclude that∣∣Pr[X3]− Pr[X4]

∣∣ = 2−Ω(n).

Game5 : In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, to create the challenge ciphertext the challenger first picks b ← Zm

q , x̄ ← DZm,αq

and computes v = b+ x̄ ∈ Zm
q . It then sets V = [eID∗ |Im] and runs the ReRand algorithm as in

Game3. Finally, it sets the challenge ciphertext as in Eq. (3.1). We claim that
∣∣Pr[X4]− Pr[X5]

∣∣
is negligible assuming the hardness of the LWEn,m,q,DZ,αq

problem. To show this, we use A to
construct an LWE adversary B as follows:

53

B is given a problem instance of LWE as (A,v = b + x̄) ∈ Zn×m
q × Zm

q where x̄ ← DZm,αq.

The task of B is to distinguish whether b = A⊤s for some s← Zn
q or b← Zm

q . B sets the master
public key mpk to be the LWE matrix A. Note that unlike the real IBE scheme, B does not
require the master secret key TA due to the modification we made in Game3. To generate the
challenge ciphertext, B first picks coin← {0, 1}. If coin = 0, it generates the challenge ciphertext
as in Eq. (3.1) using v, and returns it to A. We emphasize that all B needs to do to generate the
ciphertext is to run the ReRand algorithm, which it can do without the knowledge of the secret
randomness s and x̄. If coin = 1, B returns a random ciphertext using CTSam(mpk). At the end

of the game, A outputs ĉoin. Finally, B outputs 1 if ĉoin = coin and 0 otherwise. It can be seen
that if A,v is a valid LWE sample (i.e., v = A⊤s), the view of the adversary corresponds to
Game4. Otherwise (i.e., v← Zm

q), it corresponds to Game5. We therefore conclude that assuming
the hardness of LWEn,m,q,DZ,αq

problem we have
∣∣Pr[X4]− Pr[X5]

∣∣ = negl.

Game6 : In this game, we change the way the challenge ciphertext is created once more. If coin = 0,
to create the challenge ciphertext the challenger first picks b← Zm

q , x̄′ ← DZm,α′q and computes

c′ = [eID∗ |Im]⊤b+ x′.

It then parses c′ into c′0 and c1 (as in Game4) and sets the challenge ciphertext as Eq. (3.1).
Similarly to the change from Game3 to Game4, we have

∣∣Pr[X5]−Pr[X6]
∣∣ = 2−Ω(n) by Lemma 2.6.

It remains to show that no adversary has negligible chance in winning Game6. Notice that
when coin = 0, the challenge ciphertext can be written as

c0 = e⊤ID∗b+ x′0 +M⌊q/2⌉, c1 = b+ x′1,

where x′0 is the first entry of x′ and x′1 is the remaining entries. It suffices to show that the joint
distribution of (b, e⊤ID∗b) is negligibly close to the uniform distribution over Zm

q ×Zq, conditioned
on uID∗ . From the view of A, eID∗ is distribute as DΛ⊥

uID∗ (A),σ. By Lemma 2.5, we have

H∞(eID∗) ≥ m− 1

for all but 2−Ω(n) fraction of A. Now we can apply the leftover hash lemma since b is distributed
uniformly at random over Zm

q and conclude that (b, e⊤ID∗b) is
√
q/2m−1-close to the uniform

distribution. Hence, we have Pr[X6] ≤ 2−Ω(n) +
√
q/2m−1 < 2−Ω(n).

Therefore, combining everything together, the theorem is proven.

3.4.4 Security Proof in QROM

As we explained in the introduction, our analysis in the ROM can be easily be extended to the
QROM setting. We can prove the following theorem that addresses the security of the GPV-IBE
scheme in the QROM setting. The analysis here is different from that by Zhandry [Zha12b], who
gave the first security proof for the GPV-IBE scheme in the QROM setting and our analysis here
is much tighter.

Theorem 3.2. The IBE scheme GPV is adaptively-anonymous single-challenge secure assuming
the hardness of LWEn,m,q,DZ,αq

in the quantum random oracle model. Namely, for any quantum
adversary A making at most QH queries to |H⟩ and QID secret key queries, there exists a quantum
algorithm B making QH +QID quantum random oracle queries such that

AdvIBEA,GPV(λ) ≤ Adv
LWEn,m,q,DZ,αq

B,QROℓID,ℓr
(λ) + (Q2

H +QID) · 2−Ω(n)

54

and
Time(B) = Time(A) + (QH +QID) · poly(λ)

where ℓr denotes the length of the randomness for SampleZ.

Proof of Theorem 3.2. Let CTSam(mpk) be an algorithm that outputs a random element from
Zq × Zm

q and A be a quantum adversary that attacks the adaptively-anonymous security of the
IBE scheme. Without loss of generality, we can assume that A makes secret key queries on the
same identity at most once. We show the security of the scheme via the following games. In each
game, we define Xi as the event that the adversary A wins in Gamei.

Game0 : This is the real security game for the adaptively-anonymous security. At the beginning
of the game, the challenger chooses a random function H : {0, 1}ℓID → Zn

q . Then it generates

(A,TA)
$← TrapGen(1n, 1m, q) and gives A to A. Then it samples coin

$← {0, 1} and keeps it
secret. During the game, A may make (quantum) random oracle queries, secret key queries, and
a challenge query. These queries are handled as follows:

• When A makes a random oracle query on a quantum state
∑

ID,y αID,y |ID⟩ |y⟩, the challenger
returns

∑
ID,y αID,y |ID⟩ |H(ID)⊕ y⟩.

• WhenAmakes a secret key query on ID, the challenger samples eID = SamplePre(A,TA,uID, σ)
and returns eID to A.

• When Amakes a challenge query for ID∗ and a messageM∗, the challenger returns (c0, c1)
$←

Encrypt(mpk, ID,M) if coin = 0 and (c0, c1)
$← CTSam(mpk) if coin = 1.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger outputs ĉoin. By
definition, we have

∣∣Pr[X0]− 1
2

∣∣ = ∣∣Pr[ĉoin− coin]− 1
2

∣∣ = AdvIBEA,GPV(λ).

Game1 : In this game, we change the way the random oracle H is simulated. Namely, the challenger
first chooses another random function Ĥ

$← Func({0, 1}ℓID , {0, 1}ℓr). Then we define H(ID) := AeID
where eID := SampleZ(σ; Ĥ(ID)), and use this H throughout the game. For any fixed ID, the
distribution of H(ID) is identical and its statistical distance from the uniform distribution is
2−Ω(n) for all but 2−Ω(n) fraction of A due to Lemma 2.1 since we choose σ >

√
n+ logm .

Note that in this game, we only change the distribution of uID for each identity, and the way
we create secret keys are unchanged. Then due to Lemma 3.2, we have

∣∣Pr[X0] − Pr[X1]
∣∣ =

2−Ω(n) + 4Q2
H

√
2−Ω(n) = Q2

H · 2−Ω(n).

Game2 : In this game, we change the way secret key queries are answered. By the end of this
game, the challenger will no longer require the trapdoor TA to generate the secret keys. When
A queries a secret key for ID, the challenger returns eID := SampleZ(σ; Ĥ(ID)). For any fixed

uID ∈ Zn
q , let e

(1)
ID,uID

and e
(2)
ID,uID

be random variables that are distributed according to the
distributions of eID conditioning on H(ID) = uID in Game1 and Game2, respectively. Due to

Lemma 2.12, we have ∆(e
(1)
ID,uID

, DΛ⊥
uID

(A),σ) ≤ 2−Ω(n). On the other hand, due to Lemma 2.1, we

have ∆(e
(2)
ID,uID

, DΛ⊥
uID

(A),σ) ≤ 2−Ω(n). Since A obtains at most QID user secret keys eID, we have∣∣Pr[X1]− Pr[X2]
∣∣ = QID · 2−Ω(n).

Game3 : In this game, we change the way the matrix A is generated. Concretely, the challenger
chooses A← Zn×m

q without generating the associated trapdoor TA. By Lemma 2.12, the distri-

bution of A differs at most by 2−Ω(n). Since the challenger can answer all the secret key queries

55

without the trapdoor due to the change we made in the previous game, the view of A is altered
only by 2−Ω(n). Therefore, we have

∣∣Pr[X2]− Pr[X3]
∣∣ = 2−Ω(n).

Game4 : In this game, we change the way the challenge ciphertext is created when coin = 0. Recall
in the previous games when coin = 0, the challenger created a valid challenge ciphertext as in the
real scheme. In this game, to create the challenge ciphertext for identity ID∗ and message bit M∗,
the challenger first computes eID∗ := SampleZ(σ; Ĥ(ID∗)) and uID∗ := AeID∗ . Then the challenger
picks s← Zn

q , x̄← DZm,αq and computes v = A⊤s+ x̄ ∈ Zm
q . It then runs

ReRand([eID∗ |Im],v, αq,
α′

2α
)→ c′ ∈ Zm+1

q

from Lemma 2.6, where Im is the identity matrix with size m. Let c′0 ∈ Zq denote the first entry
of c′ and c1 ∈ Zm

q denote the remaining entries of c′. Finally, the challenger outputs the challenge
ciphertext as

C∗ = (c0 = c′0 +M∗⌊q/2⌉, c1). (3.2)

We now proceed to bound |Pr[X3] − Pr[X4]|. We apply the noise rerandomization lemma
(Lemma 2.6) with V = [eID∗ |Im], b = A⊤s and z = x̄ to see that the following equation holds:

c′ = V⊤b+ x′ =
(
A · [eID∗ |Im]

)⊤
s+ x′ = [uID∗ |A]⊤s+ x′

where x′ is distributed according to a distribution whose statistical distance is at most 2−Ω(n)

from DZm+1,α′q. Here, the last equality follows from AeID∗ = uID∗ and we can appropriately apply
the noise rerandomization lemma since we have the following for our parameter selection:

α′/2α >
√
n(σ2m+ 1) ≥

√
n(∥eID∗∥2 + 1) ≥

√
n · s1([eID∗ |Im]),

where the second inequality holds with 1 − 2−Ω(n) probability. It therefore follows that the
statistical distance between the distributions of the challenge ciphertext in Game3 and Game4 is
at most 2−Ω(n). Therefore, we may conclude that

∣∣Pr[X3]− Pr[X4]
∣∣ = 2−Ω(n).

Game5 : In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, to create the challenge ciphertext the challenger first picks b ← Zm

q , x̄ ← DZm,αq

and computes v = b + x̄ ∈ Zm
q . It then runs the ReRand algorithm as in Game4. Finally, it sets

the challenge ciphertext as in Eq. (3.2). We claim that
∣∣Pr[X4] − Pr[X5]

∣∣ is negligible assuming

the hardness of the LWEn,m,q,DZ,αq
problem relative to a quantum random oracle |Ĥ⟩ : {0, 1}ℓID →

{0, 1}ℓr . To show this, we use A to construct an adversary B that breaks the LWE assumption
relative to |Ĥ⟩.
B is given a problem instance of LWE as (A,v = b+ x̄) ∈ Zn×m

q ×Zm
q where x̄← DZm,αq. The

task of B is to distinguish whether b = A⊤s for some s← Zn
q or b← Zm

q . First, we remark that

B can simulate the quantum random oracle |H⟩ for A by using its own random oracle |Ĥ⟩ because
H is programmed as H(ID) := AeID where eID := SampleZ(σ; Ĥ(ID)) by the modification we made
in Game1. B sets the master public key mpk to be the LWE matrix A. Note that unlike the real
IBE scheme, B does not require the master secret key TA due to the modification we made in
Game3. Namely, when A queries ID for the key oracle, B just returns eID := SampleZ(σ; Ĥ(ID)).
To generate the challenge ciphertext, B first picks coin ← {0, 1}. If coin = 0, it generates the
challenge ciphertext as in Eq. (3.2) using v, and returns it to A. We emphasize that all B needs

56

to do to generate the ciphertext is to run the ReRand algorithm, which it can do without the
knowledge of the secret randomness s and x̄. If coin = 1, B returns a random ciphertext using
CTSam(mpk). At the end of the game, A outputs ĉoin. Finally, B outputs 1 if ĉoin = coin and 0
otherwise.

It can be seen that if A,v is a valid LWE sample (i.e., v = A⊤s), the view of the adversary
corresponds to Game4. Otherwise (i.e., v ← Zm

q), it corresponds to Game5. Therefore we have∣∣Pr[X4]−Pr[X5]
∣∣ = Adv

LWEn,m,q,DZ,αq

B,QROℓID,ℓr
(λ). As for the running time, we have Time(B) = Time(A)+

(QH + QID) · poly(λ) since all B has to do is to run A once plus to compute some additional
computations that can be done in a fixed polynomial time whenever A makes a quantum random
oracle or secret key query.

Game6 : In this game, we further change the way the challenge ciphertext is created. If coin = 0,
to create the challenge ciphertext the challenger first picks b← Zm

q , x′ ← DZm,α′q and computes

c′ = [eID∗ |Im]⊤b+ x′.

It then parses c′ into c′0 and c1 (as in Game4) and sets the challenge ciphertext as Eq. (3.2).
Similarly to the change from Game3 to Game4, we have

∣∣Pr[X5]−Pr[X6]
∣∣ = 2−Ω(n) by Lemma 2.6.

It remains to show that no adversary has non-negligible chance in winning Game6. Notice that
when coin = 0, the challenge ciphertext can be written as

c0 = e⊤ID∗b+ x′0 +M⌊q/2⌉, c1 = b+ x′1,

where x′0 is the first entry of x′ and x′1 is the remaining entries. It suffices to show that the joint
distribution of (b, e⊤ID∗b) is statistically close to the uniform distribution over Zm

q ×Zq, conditioned
on uID∗ . From the view of A, eID∗ is distribute as DΛ⊥

u(ID∗)(A),σ because all information of eID∗

revealed to A is H(ID∗) = AeID∗ where eID∗ = SampleZ(σ; Ĥ(ID∗)) and Ĥ(ID∗) is completely
random from the view of A. (Remark that Ĥ(ID∗) is used in the game only when A queries ID∗ to
the key generation oracle, which is prohibited in the adaptively-anonymous security game.) By
Lemma 2.5, we have

H∞(eID∗) ≥ m− 1

for all but 2−Ω(n) fraction of A. Now we can apply the leftover hash lemma since b is distributed
uniformly at random over Zm

q and conclude that (b, e⊤ID∗b) is
√
q/2m−1-close to the uniform

distribution by the leftover hash lemma. Hence, we have Pr[X6] ≤ 2−Ω(n) +
√
q/2m−1 < 2−Ω(n).

Therefore, combining everything together, the theorem is proven.

3.5 (Almost) Tightly Secure Multi-Challenge IBE

In this section, we propose an IBE scheme that is (almost) tightly secure in the multi-challenge
setting. The security of the scheme is proven both in the classical ROM and QROM settings. Our
construction is obtained by applying the Katz-Wang [KW03] technique to the original GPV-IBE
scheme. Since the proofs require some previous results on random extractions and lossy mode
LWE, we first review them below.

57

3.5.1 Randomness Extraction

We recap some definitions and results on randomness extraction. As we have already intro-
duced in the preliminaries, the min-entropy of a random variable X was defined as H∞(X) =
− log(maxx Pr[X = x]). A similar notion called the average min-entropy, as introduced by Dodis
et al. [DORS04], is defined as follows:

H̃∞(X|I) = − log(Ei←I [2
−H∞(X|I=i)]).

The average min-entropy corresponds to the optimal probability of guessingX, given knowledge of
I. Min-entropy is a rather fragile notion, since a single high-probability element can ruin the min-
entropy of an otherwise good distribution. Therefore, it is often more beneficial to work with the
ϵ-smooth min-entropy introduced by Renner and Wolf [RW04], which considers all distributions
that are ϵ-close to X, but which has higher entropy:

Hϵ
∞(X) = max

Y : ∆(X,Y)≤ϵ
H∞(Y).

Similarly, a smooth version of average min-entropy can be defined as follows:

H̃ϵ
∞(X|I) = max

(Y,J): ∆((X,I),(Y,J))≤ϵ
H̃∞(Y |J).

We recall the definition of universal hash functions and provide an elementary construction of
them that will be used in our construction of multi-insatnce secure IBE schemes.

Definition 3.3 (Universal Hash Functions). A family of functions H = {h : X → D}h is called
a family of universal hash functions, if for all x, x′ ∈ X with x ̸= x′, we have Prh←H[h(x) =
h(x′)] ≤ 1

|D| .

Fact 3.1. Let q > 2. Let H = {u : Zn
q → Zq}u∈Zn

q
be a family of hash functions, where u(s) is

defined as u(s) = u⊤s mod q. Then, H is a family of universal hash functions.

The following lemma gives a lower bound for the smooth average min-entropy of some random
variable when partial related information is leaked.

Lemma 3.7 ([AKPW13], Lemma 2.4). Let X, Y , and Z be correlated random variables and Z
be some set such that Pr[Z ∈ Z] ≤ ϵ and |Z| ≤ 2z. Then, for any ϵ′ > 0, H̃ϵ+ϵ′

∞ (X|(Y, Z)) ≥
H̃ϵ′
∞(X|Y)− z.

The following is a generalization of the leftover hash lemma due to [DORS04]. Here, we
provide the smoothed-variant of the lemma. Roughly, this relates to the number of extractable
bits that look nearly uniform to the adversary who knows some value that is ϵ-close to the random
variable I.

Lemma 3.8 (Generalized Leftover Hash Lemma). Let H = {h : X → D} be a family of universal
hash functions. Let X be an independent random variable with values in X , let I be any random
variable. Then, for any ϵ ≥ 0, we have

∆
(
(h, h(X), I), (h,U(D), I

)
≤ 2ϵ+

1

2
·
√

2−H̃ϵ
∞(X|I) · |D|.

58

Proof. Let (Y, J) be random variables such that

(Y, J) = arg max
(Y,J): ∆((X,I),(Y,J))≤ϵ

H̃∞(Y |J).

Here, note that we have ∆(I, J) ≤ ϵ. Then,

∆
(
(h, h(X), I), (h,U(D), I

)
≤∆

(
(h, h(X), I), (h, h(Y), J)

)
+∆

(
(h, h(Y), J), (h,U(D), J)

)
+∆

(
(h,U(D), J), (h,U(D), I)

)
≤2ϵ+ 1

2
·
√

2−H̃∞(Y |J) · |D| (3.3)

In the above derivation, Eq. (3.3) follows from the standard generalized leftover hash lemma of
[DORS04] and the definition of smooth average min-entropy. This completes the proof.

Lossy Mode for LWE. It is well known that the secret vector s ∈ Zn
q is uniquely defined (with all

but negligible probability) given an LWE instance (A,A⊤s+x) ∈ Zn×m
q ×Zm

q when A is uniformly
chosen from Zn×m

q for sufficiently large m. On the other hand, if we sample A from a special
distribution which is computationally indistinguishable from the uniform distribution over Zn×m

q ,

then the pair (A,A⊤s+ x) leaks almost no information of the secret s. Since the LWE problem
of this version does not reveal much information about the secret s, this instance is often referred
to as the “lossy mode”. A series of works, e.g., [GKPV10, BKPW12, AKPW13, LSSS17] have
investigated the lossy nature of the problem. We first formally describe the procedure SampleLossy
to sample A in the lossy mode. Let n, m, ℓ be positive integers, and χ be a distribution over Zq.

SampleLossy(n,m, ℓ, χ) : It samples C
$← U(Zn×ℓ

q), B
$← U(Zℓ×m

q), and F
$← χn×m, and outputs

A = CB+ F.

It is easy to see that A in the lossy mode is indistinguishable from random under the LWE
assumption by a standard hybrid argument.

Lemma 3.9. For any PPT algorithm A, there exists a PPT algorithm B such that∣∣Pr[A(A0) = 1]− Pr[A(A1) = 1]
∣∣ ≤ n · AdvLWEℓ,m,q,χm

B (λ)

and Time(B) ≈ Time(A) where A0
$← Zn×m

q and A1
$← SampleLossy(n,m, ℓ, χ). If A has access

to a quantum random oracle from {0, 1}a to {0, 1}b, then the right hand side is replaced by n ·
Adv

LWEℓ,n,q,χ

B,QROa,b
(λ), and the number of quantum random oracle queries by A and B are the same.

We will be using the following lemma slightly adapted from the works of [AKPW13]. In
particular, we consider the smooth average min-entropy rather than the smooth min-entropy.

Lemma 3.10 (Adapted from [AKPW13], Lemma B.4). Let n, ℓ,m, q, β be positive integer pa-
rameters, α, β be some Gaussian parameters, and χ be a distribution (all parameterized by the
security parameter λ, such that Prx←χ[|x| ≥ βq] ≤ negl(λ) and α ≥ βγnm. Let s and e be random
variables distributed according to U([−γ, γ]n) and DZm,αq, respectively. Furthermore, let A be a
matrix sampled by SampleLossy(n,m, ℓ, χ). Then, for any ϵ ≥ 2−λ, we have the following:.

H̃ϵ
∞(s|A,A⊤s+ e) ≥ H∞(s)− (ℓ+ 2λ) log q − negl(λ).

Remark 3.3. In [AKPW13], they do not consider the average over (A,A⊤s + e), i.e., they
only prove the above lemma for Hϵ

∞(s|A,A⊤s + e). However, their proof actually works for the
above statement as well. This change will be useful during the security proof when we apply the
(smoothed) generalized leftover hash lemma, which works for smooth-average min-entropies.

59

3.5.2 Construction

Let the identity space ID of the scheme be ID = {0, 1}ℓID , where ℓID(λ) denotes the identity-
length. Let also H : {0, 1}ℓID+1 → Zn

q be a hash function treated as a random oracle during
the security analysis where ℓID denotes the identity-length. The IBE scheme GPVmult is given as
follows. For simplicity, we describe the scheme as a stateful one. As remarked in Remark 3.1, we
can make the scheme stateless without any additional assumption in the QROM.

Setup(1λ): On input 1λ, it first chooses a prime q, positive integers n,m, γ, and Gaussian
parameters α, σ, where all these values are implicitly a function of the security param-
eter λ. The precise parameter selection is specified in the following section. It then runs
(A,TA)← TrapGen(1n, 1m, q) to generate a matrix A ∈ Zn×m

q with a trapdoor TA ∈ Zm×m

such that ∥TA∥GS ≤ O(n log q). Then it outputs

mpk = A and msk = TA

KeyGen(mpk,msk, ID): If skID is already generated, then this algorithm returns it. Otherwise it

picks bID
$← {0, 1}, computes uID∥bID = H(ID∥bID), and samples eID∥bID ∈ Zm such that

AeID∥bID = uID∥bID mod q

as eID∥bID ← SamplePre(A,TA,uID∥bID , σ). It returns skID = (bID, eID∥bID) as the secret key.

Enc(mpk, ID,M): To encrypt a message M ∈ {0, 1}, it first samples s
$← U([−γ, γ]), x← DZm,αq.

Then it computes uID∥0 = H(ID∥0) and uID∥1 = H(ID∥1) and sets the ciphertext as

c0 = u⊤ID∥0s+M⌊q/2⌉, c1 = u⊤ID∥1s+M⌊q/2⌉, c2 = A⊤s+ x.

Finally, it outputs the ciphertext C = (c0, c1, c2) ∈ Zq × Zq × Zm
q .

Dec(mpk, skID, C): To decrypt a ciphertext C = (c0, c1, c2) with a secret key skID, it computes
w = cbID−c⊤2 eID∥bID ∈ Zq and outputs 0 if w is closer to 0 than to ⌊q/2⌉ modulo q. Otherwise
it outputs 1.

3.5.3 Correctness and Prameter Selection

The following shows correctness of the above IBE scheme.

Lemma 3.11 (Correctness). Suppose the parameters q, σ, and α are such that

σ > ∥TA∥GS ·
√

log(2m+ 4)/π, α < 1/4σm.

Let eID∥bID ← KeyGen(A,TA, ID), C ← Enc(A, ID′,M ∈ {0, 1}) and M′ ← Dec(A, eID∥bID , C). If
ID = ID′, then with overwhelming probability we have M′ = M.

Proof. When the Dec algorithm operates as specified, we have

w = cbID − e⊤ID∥bIDc2 = M⌊q/2⌉+ e⊤ID∥bIDx︸ ︷︷ ︸
error term

.

By Lemma 2.12 and the condition posed on the choice of σ, we have that the distribution of
eID∥bID is 2−Ω(n) close to DΛ⊥

uID∥bID
(A),σ. Therefore, by Lemma 2.4, we have ∥x∥ ≤ αq

√
m, and

∥eID∥bID∥ ≤ σ ·
√
m except for 2−Ω(n) probability. Then, the error term is bounded by

|h⊤x− e⊤IDx| ≤ |e⊤IDx| ≤ αqσm.

60

Hence, for the error term to have absolute value less than q/4, it suffices to choose q and α as in
the statement of the lemma.

Parameter Selection. For the system to satisfy correctness and make the security proof work,
we need the following restrictions. Note that we will prove the security of the scheme under
LWEℓ,m,q,χm , where ℓ is specified in the following.

- The error term is less than q/4 (i.e., α < 1/4mσ by Lemma 3.11)

- TrapGen operates properly (i.e., m > 3n log q by Lemma 2.12)

- Samplable from DΛ⊥
uID∥bID

(A),σ (i.e., σ > ∥TA∥GS ·
√

log(2m+ 4)/π = O(
√
n logm log q) by

Lemma 2.12),

- LWEℓ,n,q,χ is hard so that we can use the lossy mode in the proof by Lemma 3.9 (i.e., χ = DZ,2
√
ℓ),

- σ is sufficiently large so that we can apply Lemma 2.1 (i.e., σ >
√
n+ logm),

- we can apply to Lemma 3.10 in the proof (i.e., α > βγnm for β such that Prx←χ[|x| ≥ βq] ≤
negl(λ)),

- we can apply the generalized leftover hash lemma (Lemma 3.8) in the proof (i.e., n log(2γ) −
(ℓ+ 3λ) log q ≥ log q +Ω(n)).

To satisfy these requirements, for example, we can set the parameters ℓ, n,m, q, σ, α, β, γ as follows:

n = 25ℓ, m = n1+κ, σ = n0.5+κ, q = 5n5.5+3κ,

αq = n4+κ, βq = n, γ = n,

where κ > 0 is a constant that can be set arbitrarily small. To withstand attacks running in time
2λ, we may set ℓ = Ω̃(λ). In the above, we round up m to the nearest integer and q to the nearest
largest prime. As the case with the single-challenge setting, if we make the more aggressive choice
of using the negligible notion 2−ω(log λ), we will be able to obtain better parameter selections.

3.5.4 Security Proof in ROM

We can (almost) tightly prove the security of our IBE scheme GPVmult both in the classical ROM
and QROM settings. The following theorem addresses the security of GPVmult in the classical
ROM setting.

Theorem 3.3. The IBE scheme GPVmult is adaptively-anonymous multi-challenge secure assum-
ing the hardness of LWEℓ,m,q,χ in the random oracle model, where χ = DZ,αq. Namely, for any
classical adversary A making at most QH queries to H, Qch challenge queries, and QID secret key
queries, there exists an algorithm B such that

AdvIBEA,GPVmult
(λ) ≤ 3n · Adv

LWEℓ,m,q,DZ,αq

B (λ) + (QH +QID +Qch) · 2−Ω(n)

and
Time(B) = Time(A) + (QH +QID +Qch) · poly(λ).

61

Proof of Theorem 3.3. Let CTSam(mpk) be an algorithm that outputs (c0, c1, c2) such that c0
$←

Zq, c1
$← Zq, and c2 = A⊤s+x for s

$← U([−γ, γ]) and x← DZm,αq. Let also A be a classical PPT
adversary that attacks the (multi-challenge) adaptively-anonymous security of the IBE scheme.
Without loss of generality, we make some simplifying assumptions on A. First, we assume that
whenever A queries a secret key or asks for a challenge ciphertext, ID∥0 and ID∥1 for the corre-
sponding ID has already been queried to the random oracle H. We also assume that whenever A
queries H on input ID∥b, it also queries H on input ID∥b̄ as well. Furthermore, we assume that
A makes the same query for the random oracle or secret key oracle at most once. We show the
security of the scheme via the following games. In each game, we define Xi as the event that the
adversary A wins in Gamei.

Game0 : This is the real security game. At the beginning of the game, (A,TA)
$← TrapGen(1n, 1m, q)

is run and the adversary A is given A. The challenger then samples coin
$← {0, 1} and keeps it

secret. During the game, A may make random oracle queries, secret key queries, and a challenge
query. These queries are handled as follows:

• When A queries the random oracle H on ID∥0 and ID∥1, the challenger samples uID∥0
$← Zn

q

and uID∥1
$← Zn

q and returns uID∥0 and uID∥1.

• When A queries a secret key for ID, the challenger first computes bID
$← {0, 1} and returns

eID∥bID = SamplePre(A,TA,uID∥bID , σ) to A where uID∥bID is the vector chosen during the
simulation of the random oracle.

• When the adversary makes the challenge query for ID∗ and a message M∗, the challenger
returns (c0, c1, c2)

$← Encrypt(mpk, ID∗,M) if coin = 0 and (c0, c1, c2)
$← CTSam(mpk) if

coin = 1. It then returns C∗ = (c0, c1, c2) to A.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger outputs ĉoin. By
definition, we have

∣∣Pr[X0]− 1
2

∣∣ = ∣∣Pr[ĉoin− coin]− 1
2

∣∣ = AdvIBEA,GPVmult
(λ).

Game1 : In this game, we change the game so that bID is chosen when A queries the random oracle
H on input ID∥0 and ID∥1 rather than when A queries a secret key for ID. It is clear that this is
only a conceptual change and we have Pr[X0] = Pr[X1].

Game2 : In this game, we change the way the random oracle queries to H are answered. When
A queries H on inputs ID∥0 and ID∥1, the challenger first samples bID

$← {0, 1} as specified
in the previous game. Then, it generates a pair (uID∥bID , eID∥bID) by first sampling eID∥bID ←
DZm,σ and setting uID∥bID = AeID∥bID . It also samples uID∥b̄ID

$← Zn
q . Then it locally stores

the tuples (ID∥bID,uID∥bID ,⊥) and (ID∥b̄ID,uID∥b̄ID ,⊥), and returns uID∥0 and uID∥1 to A. Here,

we remark that when A makes a secret key query for ID, the challenger returns e′ID∥bID
$←

SamplePre(A,TA,uID∥bID , σ), which is independent from eID∥bID that was generated in the sim-
ulation of the random oracle H on input ID∥0 and ID∥1. Note that in this game, we only
change the distribution of uID∥bID for each identity. Due to Lemma 2.1, the distribution of

uID∥bID in Game2 is 2−Ω(n)-close to that of Game1 except for 2−Ω(n) fraction of A since we choose
σ >

√
n+ logm. Therefore, the statistical distance between the view of A in Game1 and Game2

is 2−Ω(n) +QH · 2−Ω(n) < QH · 2−Ω(n). Therefore, we have
∣∣Pr[X1]− Pr[X2]

∣∣ = QH · 2−Ω(n).

Game3 : In this game, we change the way secret key queries are answered. By the end of this game,
the challenger will no longer require the trapdoor TA to generate the secret keys. When A queries

62

H on ID∥0 and ID∥1, the challenger generates a pair (uID∥bID , eID∥bID) as in the previous game. Then
it locally stores the tuple (ID∥bID,uID∥bID , eID∥bID) and returns uID∥bID toA. WhenA queries a secret
key for ID, the challenger retrieves the unique tuple (ID∥bID,uID∥bID , eID∥bID) from the local storage

and returns eID∥bID . For any fixed uID∥bID ∈ Zn
q , let e

(2)
ID∥bID and e

(3)
ID∥bID be random variables that

are distributed according to the distributions of skID∥bID conditioning on H(ID) = uID∥bID in Game2

and Game3, respectively. Due to Lemma 2.12, we have ∆(e
(2)
ID∥bID , DΛ⊥

uID∥bID
(A),σ) ≤ 2−Ω(n). On

the other hand, due to Lemma 2.1, we have ∆(e
(3)
ID∥bID , DΛ⊥

uID∥bID
(A),σ) ≤ 2−Ω(n). Since A obtains

at most QID user secret keys, we have
∣∣Pr[X2]− Pr[X3]

∣∣ = QID · 2−Ω(n).

Game4 : In this game, we change the way the matrix A is generated. Concretely, the challenger
chooses A← Zn×m

q without generating the associated trapdoor TA. By Lemma 2.12, this makes

only 2−Ω(n)-statistical difference. Since the challenger can answer all the secret key queries without
the trapdoor due to the change we made in the previous game, the view of A is altered only
negligibly. Therefore, we have

∣∣Pr[X3]− Pr[X4]
∣∣ = 2−Ω(n).

Game5 : In this game, we change A to lossy mode (See Lemma 3.10). We claim that
∣∣Pr[X4] −

Pr[X5]
∣∣ is negligible assuming the hardness of the LWEℓ,m,q,DZ,αq

problem. To show this, we use
A to construct an adversary B′ that distinguishes random A from that in lossy mode. This
can be done by a straightforward reduction since B′ does not require the master secret key TA

to simulate the game due to the modification we made in Game3. We therefore by Lemma 3.9

conclude that there exists B such that we have
∣∣Pr[X4]− Pr[X5]

∣∣ = n · Adv
LWEℓ,m,q,DZ,αq

B (λ).

Game6 : In this game, we change the way the challenge ciphertexts are generated. Recall that
by our assumption, A makes queries for H on inputs ID∗∥0 and ID∗∥1 before making a challenge
query for identity ID∗. When A makes a challenge query for (ID∗,M∗) it samples a ciphertext as

C∗
$← CTSam(mpk) and returns C∗ to A if coin = 1. If coin = 0, it generates the ciphertext as

cbID∗ = u⊤ID∗∥bID∗ s+M∗⌊q/2⌉, cb̄ID∗
$← Zq, c2 = A⊤s+ x.

for s
$← U([−γ, γ]), where bID∗ is generated when the hash queries for ID∗∥0 and ID∗∥1 were made.

It then rearranges the terms if necessary and returns (c0, c1, c2) to A.
We argue that the view of A is statistically close to that in the previous game. To prove, we

do a hybrid argument over all the challenge ciphertexts and change cb̄ID∗ to be random one-by-one

(when coin = 0). To conclude, it suffices to show that cb̄ID∗ is distributed 2−Ω(n) close to the

uniform distribution over Zq. For each ciphertext, for any ϵ′ = 2−λ, we have

H̃ϵ′
∞(s|A, cbID∗ , c2) ≥ H̃ϵ′

∞(s|A, c2)− log q

≥ H∞(s)− (ℓ+ 2λ+ 1) log q − negl(λ)

= n log(2γ)− (ℓ+ 3λ) log q

≥ log q +Ω(n)

where the first inequality follows by applying Lemma 3.7 with Z = Zq and ϵ = 0, the second
inequality follows from Lemma 3.10, and the last inequality follows from our parameter choice.
This implies that ∆(uID∗∥b̄ID∗ ,u

⊤
ID∗∥b̄ID∗

s, |A, cbID∗ , c2) ≤ 2−Ω(n) for uID∗∥b̄ID∗ ← Zn
q by Lemma 3.8

together with Fact 3.1. Therefore, we have
∣∣Pr[X5]− Pr[X6]

∣∣ = Qch · 2−Ω(n).

From Game7 to Game10 in the following, we undo the changes we added from Game2 to Game5.

63

Game7 : In this game, A is sampled as A← Zn×m
q . Similarly to the change from Game4 to Game5,

there exists B such that we have
∣∣Pr[X6]− Pr[X7]

∣∣ = n · Adv
LWEℓ,m,q,DZ,αq

B (λ).

Game8 : In this game, A is sampled with a trapdoor as (A,TA)← TrapGen(1n, 1m, q). Similarly
to the change from Game3 to Game4, we have

∣∣Pr[X7]− Pr[X8]
∣∣ = 2−Ω(n).

Game9 : In this game, we change the way secret key queries are answered. When A makes a secret
key query for ID, the challenger returns e′ID∥bID

$← SamplePre(A,TA,uID∥bID , σ), where bID and uID

are chosen when random oracle queries on ID∥0 and ID∥1 are made. Similarly to the change from
Game2 to Game3, we have

∣∣Pr[X8]− Pr[X9]
∣∣ = QH · 2−Ω(n).

Game10 : In this game, we change the way the random oracle queries to H are answered. When A
queries the random oracle on ID∥0 and ID∥1, the challenger samples uID∥0,uID∥1

$← Zn
q and locally

stores the tuples (ID∥0,uID∥0,⊥) and (ID∥1,uID∥1,⊥), and returns uID∥0 and uID∥1 to A. These
uID∥0 and uID∥1 are also used when answering the secret key queries. Similarly to the change from

Game1 to Game2, we have
∣∣Pr[X10]− Pr[X9]

∣∣ = QH · 2−Ω(n).

Because of the changes we introduced in Game7 to Game10, we can add the following change.

Game11 : In this game, we change the way the challenge ciphertexts are generated. When A
makes a challenge query for (ID∗,M∗), it returns a random ciphertext if coin = 1. If coin = 0, it
generates the ciphertext as

cbID∗
$← Zq, cb̄ID∗ = u⊤ID∗∥bID∗ s+M∗⌊q/2⌉, c2 = A⊤s+ x.

for s
$← Zn

q , where bID∗ is generated when the hash queries for ID∗∥0 and ID∗∥1 were made. It
then rearranges the terms if necessary and returns (c0, c1, c2) to A. We claim that this change is
only conceptual. Note that the distribution of the ciphertexts in this game corresponds to that
in previous game, if we flip the value of bID∗ for every challenge identity ID∗. However, since A
never makes the secret key query for ID∗ and uID∗∥0 and uID∗∥1 are sampled from exactly the same
distribution, the value of bID∗ is information theoretically hidden from A. This implies that the
distributions are the same in this and the previous game. Therefore, we have Pr[X11] = Pr[X10].

Game12 : In this game, we further change the way the challenge ciphertexts are generated. When
A makes a challenge query for (ID∗,M∗), it returns a ciphertext sampled from CTSam(mpk) if
coin = 1. If coin = 0, it generates the ciphertext as

cbID∗
$← Zq, cb̄ID∗

$← Zq, c2 = A⊤s+ x.

for s
$← Zn

q and x ← DZm,αq. It then returns (c0, c1, c2) to A. We claim that the change is
unnoticed by A assuming the LWE assumption. This can be shown by adding changes to Game11
that are almost the same as those we introduced from Game2 to Game6. The only difference is
that cbID∗ is always sampled as cbID∗

$← Zq here. By the similar analysis, there exists B such that

we have |Pr[X11]− Pr[X12]| ≤ n · Adv
LWEℓ,m,q,DZ,αq

B′ (λ) + (QH +QID +Qch) · 2−n.

Finally, we observe that the challenge ciphertexts are sampled from CTSam(mpk) regardless
of whether coin = 0 or 1. Therefore, we have Pr[X12] = 1/2. Putting things together, the theorem
readily follows.

64

3.5.5 Security Proof in QROM

As we explained in the introduction, our analysis in the ROM can be easily extended to the
QROM setting. We can prove the following theorem that addresses the security of GPVmult in the
QROM.

Theorem 3.4. The IBE scheme GPVmult is adaptively-anonymous multi-challenge secure assum-
ing the hardness of LWEℓ,m,q,χ in the quantum random oracle model, where χ = DZ,αq. Namely,
for any classical adversary A making at most QH quantum random oracle queries, Qch challenge
queries, and QID secret key queries, there exists an algorithm B making at most 3QH+2QID+6Qch

quantum random oracle queries such that

AdvIBEA,GPVmult
(λ) ≤ 3n · Adv

LWEℓ,m,q,DZ,αq

B,QROℓID+2,max{ℓr,(⌊log q⌋+2λ)×n}
(λ) + (QH +QID +Qch) · 2−Ω(n)

and
Time(B) = Time(A) + (QH +QID +Qch) · poly(λ)

where ℓr denotes the length of the randomness for SampleZ.

Proof of Theorem 3.4. Let CTSam(mpk) be an algorithm that outputs (c0, c1, c2) such that c0
$←

Zq, c1
$← Zq, and c2 = A⊤s + x for s

$← U([−γ, γ]) and x ← DZm,αq. Let also A be a quantum
adversary that attacks the (multi-challenge) adaptively-anonymous security of the IBE scheme.
Without loss of generality, we can assume that A makes secret key queries on the same identity
at most once.

Game0 : This is the real security game. At the beginning of the game, the challenger chooses
random functions H

$← Func({0, 1}ℓID+1,Zn
q), which is used to simulate the random oracle. The

challenger generates (A,TA)
$← TrapGen(1n, 1m, q) and the adversary A is given A. The chal-

lenger then samples coin
$← {0, 1} and keeps it secret. During the game, A may make (quantum)

random oracle queries, secret key queries, and challenge queries. These queries are handled as
follows:

• When A makes a random oracle query on a quantum state
∑

ID,b,y αID,b,y |ID∥b⟩ |y⟩, then the
challenger returns

∑
ID,b,y αID,b,y |ID∥b⟩ |H(ID∥b)⊕ y⟩.

• When A makes a secret key query on ID, the challenger first chooses bID
$← {0, 1}, computes

uID∥bID = H(ID∥bID), and returns eID∥bID = SamplePre(A,TA,uID∥bID , σ) to A.

• When A makes the challenge query for ID∗ and a message M∗, the challenger returns
(c0, c1, c2)

$← Encrypt(mpk, ID∗,M) if coin = 0 and (c0, c1, c2)
$← CTSam(mpk) if coin = 1. It

then returns C∗ = (c0, c1, c2) to A.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger outputs ĉoin. By
definition, we have

∣∣Pr[X0]− 1
2

∣∣ = ∣∣Pr[ĉoin− coin]− 1
2

∣∣ = AdvIBEA,GPVmult
(λ).

Game1 : In this game, we change the way bID is chosen in simulations of secret key queries. Namely,
in this game, the challenger first picks a random function H′

$← Func({0, 1}ℓID , {0, 1}). When A
makes a secret key query ID, the challenger uses bID = H′(ID) instead of randomly choosing it.
We remark that an oracle access to H′ is not given to A. Since H′(ID) is an independently and
uniformly random bit for all ID, we have Pr[X0] = Pr[X1].

65

Game2 : In this game, we change the way the random oracle H is simulated. Namely, the
challenger first chooses additional random functions Ĥ0

$← Func({0, 1}ℓID , {0, 1}ℓr) and Ĥ1
$←

Func({0, 1}ℓID , {0, 1}(⌊log q⌋+2n)×n). Let ι : {0, 1}(⌊log q⌋+2n)×n → Zn
q denote a natural embedding

function. More precisely, it is given (a1, ..., an) ∈ {0, 1}(⌊log q⌋+2n)×n as an input, and outputs
(ã1 mod q, ..., ãn mod q)T where ãi denotes a positive integer whose binary representation is ai.

It is easy to see that if we sample (a1, ..., an)
$← {0, 1}(⌊log q⌋+2n)×n, then the statistical distance

between the distribution of ι(a1, ..., an) and the uniform distribution over Zn
q is 2−Ω(n). Then the

challenger defines H as follows:

H(ID∥b) :=

{
AeID∥b If b = H′(ID)

ι(Ĥ1(ID)) Otherwise
(3.4)

where eID∥b := SampleZ(σ; Ĥ0(ID)). We remark that oracle accesses to Ĥ0 and Ĥ1 are not given
to A. For any fixed ID, for the case of b ̸= H′(ID), the distribution of H(ID∥b) is identical for all
ID and its statistical distance from the uniform distribution is 2−Ω(n) as remarked above. For the
case of b = H′(ID), the distribution of H(ID∥b) is identical for all ID and its statistical distance
from the uniform distribution is 2−Ω(n) for all but 2−Ω(n) fraction of A due to Lemma 2.1 since
we choose σ >

√
n+ logm. Then due to Lemma 3.2, we have

∣∣Pr[X1] − Pr[X2]
∣∣ = 2−Ω(n) +

4Q2
H

√
2−Ω(n) + 4Q2

H

√
2−Ω(n) = Q2

H · 2−Ω(n).

Game3 : In this game, we change the way secret key queries are answered. By the end of this
game, the challenger will no longer require the trapdoor TA to generate the secret keys. When
A queries a secret key for ID, the challenger returns (bID, eID) where bID = H′(ID) and eID∥bID :=

SampleZ(σ; Ĥ0(ID)). Since bID is unchanged from the previous game, we only have to prove
that the distribution of eID∥bID differs negligibly from that in the previous game. For any fixed

uID∥bID ∈ Zn
q , let e

(2)
ID∥bID and e

(3)
ID∥bID be random variables that are distributed according to the

distributions of eID∥bID conditioning on H(ID∥bID) = uID∥bID in Game2 and Game3, respectively.

Due to Lemma 2.12, we have ∆(e
(2)
ID∥bID , DΛ⊥

uID∥bID
(A),σ) ≤ 2−Ω(n). On the other hand, due to

Lemma 2.1, we have ∆(e
(3)
ID∥bID , DΛ⊥

uID∥bID
(A),σ) ≤ 2−Ω(n). Since A obtains at most QID user secret

keys eID, we have
∣∣Pr[X2]− Pr[X3]

∣∣ = QID · 2−Ω(n).

Game4 : In this game, we change the way the matrix A is generated. Concretely, the challenger
chooses A← Zn×m

q without generating the associated trapdoor TA. By Lemma 2.12, the distri-

bution of A differs at most by 2−Ω(n). Since the challenger can answer all the secret key queries
without the trapdoor due to the change we made in the previous game, the view of A is altered
only by 2−Ω(n). Therefore, we have

∣∣Pr[X3]− Pr[X4]
∣∣ = 2−Ω(n).

Game5 : In this game, we change A to the lossy mode (See Lemma 3.10). We claim that
∣∣Pr[X4]−

Pr[X5]
∣∣ is negligible assuming the hardness of the LWEℓ,n,q,DZ,αq

problem relative to a quantum

random oracle |H̃⟩ : {0, 1}ℓID+2 → {0, 1}max{ℓr,(⌊log q⌋+2λ)×n}. For this purpose, we construct an
algorithm B′ that distinguishes uniform A and that in the lossy mode relative to |H̃⟩. As remarked
in Section 3.3.1, we can implement three independent quantum random oracles |H′⟩ : {0, 1}ℓID →
{0, 1}, |Ĥ0⟩ : {0, 1}ℓID → {0, 1}ℓr , and |Ĥ1⟩ : {0, 1}ℓID → {0, 1}(⌊log q⌋+2λ)×n by using |H̃⟩. Therefore
we assume that B′ can access to three random oracles |H′⟩, |Ĥ0⟩ and |Ĥ1⟩.
B′ is given a matrixA, and its task is to distinguish whetherA

$← Zn
q orA

$← SampleLossy(n,m, ℓ, χ).
First, we remark that B′ can simulate the quantum random oracle |H⟩ by using its own random

66

oracles |H′⟩, |Ĥ0⟩ and |Ĥ1⟩ because |H⟩ is programmed based on these three oracles by the modifi-
cation made in Game2. B′ sets the master public key to be the LWE matrix A. Note that unlike
the real IBE scheme, B′ does not require the master secret key TA due to the modification we
made in Game4. Namely, when A queries ID for the secret key oracle, B′ just returns (bID, eID∥bID)
where bID = H′(ID) and eID∥bID := SampleZ(σ; Ĥ0(ID)). When A makes a challenge query for

(ID∗,M∗), it samples a ciphertext as C∗
$← CTSam(mpk) if coin = 1, and honestly generates a

ciphertext as C∗
$← Encrypt(mpk, ID∗,M∗) if coin = 0, and returns C∗ to A. At the end of the

game, A outputs ĉoin. Finally, B outputs 1 if ĉoin = coin and 0 otherwise.
It can be seen that if A

$← Zn×m
q the view of the adversary corresponds to Game5, and if

A
$← SampleLossy(n,m, ℓ, χ) the view of the adversary corresponds to Game6. Therefore we can

bound
∣∣Pr[X5] − Pr[X6]

∣∣ by the distinguishing advantage of B′, which makes at most 3QH +
2QID + 6Qch quantum random oracle queries. As for the running time, we have Time(B′) =
Time(A) + (QH + QID + Qch) · poly(λ) since all B′ has to do is to run A once plus to compute
some additional computations that can be done in a fixed polynomial time whenever A makes any
query. Then by Lemma 3.9 we conclude that there exists B such that we have

∣∣Pr[X4]−Pr[X5]
∣∣ =

n ·Adv
LWEℓ,m,q,DZ,αq

B,QROℓID+2,max{ℓr,(⌊log q⌋+2λ)×n}
(λ) and the running time of B is almost the same as that of B′.

Game6 : In this game, we change the way the challenge ciphertexts are generated. When A makes
a challenge query for (ID∗,M∗), it samples a ciphertext as C∗

$← CTSam(mpk) and returns C∗ to
A if coin = 1. If coin = 0, it generates the ciphertext as

cbID∗ = u⊤ID∗∥bID∗ s+M∗⌊q/2⌉, cb̄ID∗
$← Zq, c2 = A⊤s+ x.

for s
$← U([−γ, γ]), where bID∗ = H′(ID∗). It then rearranges the terms if necessary and returns

(c0, c1, c2) to A.
We argue that the view of A is statistically close to that in the previous game. To prove, we

do a hybrid argument over all the challenge ciphertexts and change cb̄ID∗ to be random one-by-one

(when coin = 0). To conclude, it suffices to show that cb̄ID∗ is distributed 2−Ω(n) close to the

uniform distribution over Zq. For each ciphertext, for any ϵ′ = 2−λ, we have

H̃ϵ′
∞(s|A, cbID∗ , c2) ≥ H̃ϵ′

∞(s|A, c2)− log q

≥ H∞(s)− (ℓ+ 2λ+ 1) log q − negl(λ)

= n log(2γ)− (ℓ+ 3λ) log q

≥ log q +Ω(n)

where the first inequality follows by applying Lemma 3.7 with Z = Zq and ϵ = 0, the second
inequality follows from Lemma 3.10, and the last inequality follows from our parameter choice.
This implies that ∆(uID∗∥b̄ID∗ ,u

⊤
ID∗∥b̄ID∗

s, |A, cbID∗ , c2) ≤ 2−Ω(n) for uID∗∥b̄ID∗ ← Zn
q by Lemma 3.8

together with Fact 3.1. Therefore, we have
∣∣Pr[X5]− Pr[X6]

∣∣ = Qch · 2−Ω(n).

From Game7 to Game10 in the following, we undo the changes we added from Game2 to Game5.

Game7 : In this game, A is sampled as A← Zn×m
q . Similarly to the change from Game4 to Game5,

there exists B′ such that we have
∣∣Pr[X6]− Pr[X7]

∣∣ = n · Adv
LWEℓ,m,q,DZ,αq

B′,QROℓID+2,max{ℓr,(⌊log q⌋+2λ)×n}
(λ).

Game8 : In this game, A is sampled with a trapdoor as (A,TA)← TrapGen(1n, 1m, q). Similarly
to the change from Game3 to Game4, we have

∣∣Pr[X7]− Pr[X8]
∣∣ = 2−Ω(n).

67

Game9 : In this game, we change the way secret key queries are answered. When A makes
a secret key query for ID, the challenger returns e′ID∥bID

$← SamplePre(A,TA,uID∥bID , σ), where

bID = H′(ID), eID∥bID = SampleZ(σ; Ĥ0(ID)) and uID = AeID∥bID . Similarly to the change from

Game2 to Game3, we have
∣∣Pr[X8]− Pr[X9]

∣∣ = QH · 2−Ω(n).

Game10 : In this game, we change the way the random oracle queries to H are answered. Namely,
the challenger simply uses random function H : {0, 1}ℓID+1 → Zn

q to simulate |H⟩ instead of
programming it as in Eq. (3.4). Similarly to the change from Game1 to Game2, we have

∣∣Pr[X10]−
Pr[X9]

∣∣ = QH · 2−Ω(n).

Because of the changes we introduced in Game7 to Game10, we can add the following change.

Game11 : In this game, we change the way the challenge ciphertexts are generated. When A makes
a challenge query for (ID∗,M∗), it returns a ciphertext sampled from CTSam(mpk) if coin = 1. If
coin = 0, it generates the ciphertext as

cbID∗
$← Zq, cb̄ID∗ = u⊤ID∗∥bID∗ s+M⌊q/2⌉, c2 = A⊤s+ x.

for s
$← Zn

q , where bID∗ = H′(ID∗). It then rearranges the terms if necessary and returns (c0, c1, c2)
to A. We claim that this change is only conceptual. Note that the distribution of the ciphertexts
in this game corresponds to that in the previous game if we flip the value of H′(ID∗) for all
challenge identities ID∗. Since A never makes a secret key query for ID∗, the value of H′(ID∗) is
information theoretically hidden from A. This implies that even if we flip values of H′(ID∗) for all
challenge identities ID∗, A cannot notice it at all. Therefore, we have Pr[X11] = Pr[X10].

Game12 : In this game, we further change the way the challenge ciphertexts are generated. WhenA
makes a challenge query for (ID∗,M∗), it returns a random ciphertext sampled from CTSam(mpk)
if coin = 1. If coin = 0, it generates the ciphertext as

cbID∗
$← Zq, cb̄ID∗

$← Zq, c2 = A⊤s+ x.

for s
$← Zn

q . It then returns (c0, c1, c2) to A. We claim that the change is unnoticed by A
assuming the LWE assumption. This can be shown by adding changes to Game11 that are almost
the same as those we introduced from Game2 to Game6. The only difference is that cbID∗ is

always sampled as cbID∗
$← Zq here. By the similar analysis, there exists B such that we have

|Pr[X11]− Pr[X12]| ≤ n · Adv
LWEℓ,m,q,DZ,αq

B,QROℓID+2,max{ℓr,(⌊log q⌋+2λ)×n}
(λ) + (QH +QID +Qch) · 2−n.

Finally, we observe that the challenge ciphertexts are sampled from CTSam(mpk) regardless
of whether coin = 0 or 1. Therefore, we have Pr[X12] = 1/2. Putting things together, the theorem
readily follows.

68

Chapter 4

Partitioning via Non-Linear
Polynomial Functions

4.1 Introduction

Identity-based encryption (IBE) is a generalization of public key encryption (PKE) where the
public key of a user can be any arbitrary string such as an e-mail address. The concept of IBE was
first proposed by Shamir [Sha85] in 1984, but it took nearly two decades for the first realizations
of IBE [SOK00, BF01, Coc01] to appear. Since then, the construction of IBE has been one of the
central topics in cryptography. Nowadays, we have constructions of IBEs from assumptions on
bilinear maps [BF01, BB04a, BB04b, Wat05, Gen06, Wat09], the quadratic residue assumption
[Coc01, BGH07], and from the learning with error (LWE) assumption [GPV08, CHKP10, ABB10]
whose hardness is implied by the worst case reductions to certain lattice problems [Reg05].

One of the most standard security definitions for IBE is the adaptive security, or often called
full security. While it is not quite hard to obtain the adaptive security for an IBE in the ran-
dom oracle model [BF01, Coc01, GPV08], the realization in the standard model is much harder.
Roughly speaking, currently there are two general techniques in achieving adaptive security in
the standard model: the partitioning technique [BB04b, Wat05] and the dual system encryption
methodology [Wat09, LW10]. The latter is very attractive, because it allows us to construct very
efficient IBE schemes [CW13, JR13] and even more advanced cryptosystems such as attribute-
based encryptions [LOS+10] with adaptive security. However, it inherently relies on decisional
assumptions on bilinear maps (e.g., SXDH and DLIN) and cannot be extended to the proofs
based on computational assumptions on bilinear maps (e.g., computational bilinear Diffie-Hellman
(CBDH) assumption) or assumptions on lattices. On the other hand, the application of the for-
mer technique is wider. We can construct adaptively secure IBE from the CBDH assumption
(by the straightforward combination of the Goldreich-Levin bit [GL89] and Waters IBE [Wat05])
and from the LWE assumption [CHKP10, ABB10, Boy10]. However, IBE schemes constructed
from the former approach typically requires larger parameters due to the use of the Waters’ hash
[Wat05] or the admissible hash [BB04b, CHKP10].

Very recently, Yamada [Yam16] constructed IBE schemes from lattices based on the parti-
tioning technique with novel ideas that are different from the Waters’ hash or the admissible
hash. His schemes achieve asymptotically shorter public parameters than previous works. One of

0The contents of this chapter is based on the work presented at Asiacrypt 2016 under the title “Partitioning via
Non-Linear Polynomial Functions: More Compact IBEs from Ideal Lattices and Bilinear Maps” [KY16].

69

the drawbacks of the schemes is that they require super-polynomial size modulus for LWE. As a
result, their ciphertexts are longer than those of previous works by a rather large super-constant
factor. In addition, they have to assume the hardness of the LWE problem for all polynomial
(i.e., O(nc) for all c ∈ N) or the more aggressive super-polynomial approximation factor. Though
their assumption is plausible, it is much stronger than those used in the previous works where
the hardness of the LWE problem for some fixed polynomial approximation factor (i.e., O(nc)
for some c ∈ N) is assumed. Furthermore, since he used fully homomorphic computations of
trapdoors [BGG+14b], a technique unique to the lattice setting, it is a highly non-trivial task to
construct analogous schemes in other settings such as bilinear maps.

4.1.1 Our Contribution

In this chapter, we focus on the constructions of adaptively secure IBE in these settings where
dual system encryption methodology is unavailable. In particular, we propose IBE schemes with
shorter public parameters from ring/ideal lattices and from a certain computational assumption
(rather than a decisional assumption) on bilinear groups, by extending and adding twists to the
techniques of [Yam16]. Specifically, we obtain the following results. See Table 4.1 and 4.2 for the
overview.

• We propose an anonymous and adaptively secure IBE scheme from the ring LWE (RLWE)
assumption with fixed polynomial approximation factors, which is further reduced to certain
worst case problems on ideal lattices. Note that simply instantiating Yamada’s scheme us-
ing ideal lattices1 will still require the RLWE assumption for all polynomial approximation
factors, which is a much stronger assumption than what we use. As for the efficiency, the
size of the public parameters, private keys, and ciphertexts in our scheme are O(nκ1/d log n),
O(n logn), and O(n log n), respectively. Here, n is the dimension of the ring elements, κ
is the length of the identities, and d is a flexible constant that can be set arbitrary, but
will affect the reduction cost exponentially. We note that all of them achieve the best
efficiency among the other adaptively secure IBE from the RLWE assumption in an asymp-
totic sense. Compared to the ring version of Yamada’s scheme, we managed to reduce the
poly-logarithmic factors contained in the public parameters, private keys, and ciphertexts.

• We propose a (non anonymous and) adaptively secure IBE scheme from the 3-computational
bilinear Diffie-Hellman exponent (3-CBDHE) assumption. The 3-CBDHE assumption is a
weaker variant of the n-decisional bilinear Diffie-Hellman exponent (n-DBDHE) assumption
[BBG05, BGW05, BH08]. The former seems to be much a weaker assumption than the
latter in two aspects. First, the former is a computational assumption whereas the latter is
a decisional assumption. Second, the former is not a parameterized assumption, in the sense
that the size of the problem instance only depends on the security parameter. As for the
efficiency, the public parameters, private keys, and ciphertexts in our scheme require O(

√
κ)

group elements. Here, κ is the length of the identities. This is the first adaptively secure
IBE scheme from a computational assumption on bilinear groups with public parameters
consisting of sub-linear number of group elements in the length of the identities. However,
we note that the sizes of the ciphertexts and private keys of our scheme are larger than the
previous schemes.

1Note that he does not describe nor mention the ring variant of the scheme. However, we can convert his scheme
into a ring variant in a straightforward manner as is the case in most previous works [CHKP10, ABB10, Boy10].

70

We emphasize that our result for the lattice based construction cannot be obtained through
the simple switch to the ring setting in Yamada’s scheme. Their proof will still require a super-
polynomial-size modulus to work, whereas our new technique allows for a polynomial-size modulus.
In addition, the security proof of our scheme requires new ideas that did not appear in [Yam16]. It
exploits the commutative properties of the underlying ring elements in an essential way, involves
a more generalized partitioning argument, and a careful analysis of the Gaussian error. Refer
Section 4.2 for the technical overview. We note that the public parameter of our second scheme
could be further reduced to O(κ1/d) assuming the d+ 1-CBDHE assumption. However, it would
come at the cost of even longer ciphertexts and complicated description of the scheme. This is
beyond the scope of our work. We finally remark that the reduction costs for both of our schemes
are inadmissible as was in the case of [Yam16]. In fact, the reduction loss for the first scheme is
worse than [Yam16]. Improving them is left as an open problem.

Related Works. One way to reduce the size of the public parameters in Waters’ hash and
its analogue is to use Naccache’s approach [Nac07, SPB12]. However, with this approach, we
are only allowed to reduce the size of public parameters up to logarithmic factor. Ducas et
al. [DLP14] constructed efficient IBE over NTRU lattices in the random oracle model. Gentry
[Gen06] proposed adaptively secure IBE with compact parameters from a parameterized (or q-
type) assumption on bilinear maps. Galindo [Gal10] and Chen et al. [CCZ11] proposed selectively
secure CCA-secure IBE schemes from the CBDH assumption.

Note on Recent Works. Here, we mention two important recent related works.
Apon et al. [AFL16] proposed an adaptively secure IBE scheme from lattices whose parameters

are very compact, using collision resistant hash function with output-length κ = ω(log λ). Here,
λ is the security parameter. While their scheme is more efficient than our scheme, we clarify
that they implicitly assume exponential security on the collision resistant hash function, which
is a stronger assumption than what we use. To demonstrate this, let us set κ = log2 λ. If there
is no better attack than the birthday attack against the hash function, no PPT adversary can
find a collision with more than negligible probability. On the other hand, the existence of even
a sub-exponential time attack would compromise the security of the IBE. For example, assume
that there exists an attack that finds a collision in time 2

√
κ. Then, the collision for the hash can

be found in linear time in λ, since 2
√
κ = 2log λ = λ.

In their very recent work, Zhang et al. [ZCZ16] constructed an IBE scheme with poly-
logarithmic public parameters. While their scheme achieves better asymptotic space efficiency
than our scheme, their scheme is Q-bounded, in the sense that the security of the scheme is not
guaranteed any more if the adversary obtains more than Q private keys. This restriction can-
not be removed by just making Q super-polynomial, because the running time of the encryption
algorithm in their scheme is at least linear in Q. We note that our scheme is secure against an
unbounded collusion.

4.2 Technical Overview

4.2.1 Construction from Ring and Ideal Lattices

The Yamada IBE. We briefly review the Yamada IBE [Yam16], for our proposed IBE scheme
follows the framework of theirs and overcomes some of the major problems posed by their con-
struction. Their construction follows the general framework of constructing lattice-based IBE
schemes that associates to each identity ID the matrix [A|H(ID)] ∈ Zn×2m

q . In previous IBE
constructions [ABB10, CHKP10], the function H(ID) was computed by using the rather long κ

71

public matrices {Bi}i∈[κ], where κ = O(n) is the length of the identities. The main technical

contribution of the Yamada IBE was in reducing the size of the public matrices to κ1/d for any
constant d and hence reducing the size of the public parameters by incorporating a primitive
called fully homomorphic trapdoor functions. Hereafter, we consider the case d = 2 for simplicity.
In detail, they used an injective map S : {0, 1}κ → 2[ℓ]×[ℓ] that maps an identity to a subset of
the set [ℓ]× [ℓ] where ℓ = ⌈κ1/2⌉, and computed the function H(ID) as

H(ID) = B0 +
∑

(i,j)∈S(ID)

B1,i ·G−1(B2,j) (4.1)

where the number of public matrices B0, {Bi,j}(i,j)∈[2]×[ℓ] are now reduced to O(κ1/2). Here, G
is a special gadget matrix whose trapdoor is publicly known [MP12] and G−1 is viewed as a
deterministic function rather than a matrix, that maps a matrix V ∈ Zn×m

q to a matrix U ∈
{0, 1}m×m such that GU = V mod q.

During the security proof, the reduction algorithm first prepares random integers y0, {yi,j}(i,j)∈[2]×[ℓ] ∈
Zq from certain domains whose size grows linear in the number of key extraction query Q of the ad-
versary. Then after sampling R0, {Ri,j}i∈[2],j∈[ℓ] ∈ Zm×m with small spectral norm, the reduction
algorithm prepares the public parameters as

B0 = AR0 + y0G, Bi,j = ARi,j + yi,jG (4.2)

for (i, j) ∈ [2]× [ℓ]. Then during the security reduction the hash value for identity ID Eq.(4.1) is
computed as

H(ID) = (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,i + y1,iG) ·G−1(B2,j)

= (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,iG
−1(B2,j) + y1,iB2,j)

= (AR0 + y0G) +
∑

(i,j)∈S(ID)

(
AR1,iG

−1(B2,j) + y1,i(AR2,j + y2,jG)
)

= (AR0 + y0G) +
∑

(i,j)∈S(ID)

(
AR1,iG

−1(B2,j) +A(y1,iR2,j) + y1,iy2,jG
)

= A

R0 +
∑

(i,j)∈S(ID)

(
R1,iG

−1(B2,j) + y1,iR2,j

)
︸ ︷︷ ︸

:=RID, which is “small”

+

y0 + ∑
(i,j)∈S(ID)

y1,iy2,j


︸ ︷︷ ︸

:=Fy(ID)

·G

= ARID + Fy(ID)G. (4.3)

Observe that we implicitly relied on the fact that A and y1,i commutes. Therefore, the reduction
algorithm is able to sample a secret key for ID using the trapdoor of G if and only if Fy(ID) ̸= 0
mod q. Hence, the simulation succeeds when the adversary queries on secret keys for ID satisfying
Fy(ID) ̸= 0 mod q, and queries for a challenge ciphertext for ID⋆ satisfying Fy(ID

⋆) = 0 mod q
in which case the reduction algorithm can embed its LWE challenge.

Overview of the Construction and Security Proof. The major drawback of the Yamada
IBE is that they require the modulus size q to be super-polynomial. This stems from the fact
that the size of y0, yi,j ∈ Zq must grow linearly in the number of adversarial key extraction query

72

Q for the security proof to be meaningful, i.e., Pry[Fy(ID
⋆) = 0∧Fy(ID1) ̸= 0∧ · · · ∧Fy(IDQ) ̸= 0]

is noticeable in n. However, since the size of the G-trapdoor RID used during simulation grows
proportionally to the size of y1,i (check above Eq.(4.3) to see how RID was created), thereby
growing proportional to Q = poly(n), we need to set the modulus size q to be at least super-
polynomial in n for the trapdoor to operate properly. Therefore, if we try to restrict ourselves to
a polynomial sized modulus q, it seems the best we can achieve is a scheme where we have to set a
bound on the number of adversarial key extraction queries before instantiation, i.e., a Q-bounded
scheme.

In our work, we combine several ideas in a novel way to circumvent the above seemingly
inevitable problem. The first idea is to extend the elements y0, yi,j ∈ Zq to matrices Y0,Yi,j ∈
Zn×n
q so that instead of increasing the size of the element y ∈ Zq, we can “pack” small elements

in the entries of the matrix Y ∈ Zn×n
q . Namely, since the matrix has n2 entries, if the number of

key extraction query is Q = nc for some constant c, we can always set up the matrix so that c of
the entries are packed by elements of size O(n). Since there are n2 entries in total, this allows us
to pack the matrix with small entries (e.g., O(n)) for arbitrary Q = poly(n) without the need of
increasing the modulus size q. However, this simple idea alone does not work, since during the
security proof to obtain Eq.(4.3), we crucially relied on the fact that A and y1,i commutes. For
our idea to work we need the two matrices A and Y1,i to commute, however, in general this does
not hold.

To overcome this problem, we introduce our second idea of using the ring structure of ideal
lattices. Concretely, we use the special polynomial ring R = Z[X]/(Xn + 1) to construct our
scheme for n a power of 2. The construction itself is exactly the same as the ring analogue of the
Yamada IBE, however, our new security proof relies crucially on the underlying ring structure.
In detail, the reduction algorithm prepares the public parameters as

b0 = aR0 + y0g, bi,j = aRi,j + yi,jg (4.4)

for (i, j) ∈ [2]× [ℓ], where a, b0, bi,j ∈ Rk
q , R ∈ Rk×k

q , y0, yi,j ∈ Rq and g ∈ Rk
q is the ring analogue

of the G-trapdoor. Observe that y0, yi,j are now elements in Rq instead of Zq. Although this
y is not quite a matrix, this is actually more than enough for us to use the packing technique
described above. This can be seen by first noticing the natural isomorphism between Rq

∼= Zn
q

induced by the coefficient embedding and viewing y ∈ Rq as a vector in Zn
q . Since y has n

entries when viewed as vectors, it can support up to nn queries by packing each entry with small
elements of size O(n). Furthermore, the second part of the problem addressed above is naturally
resolved, since now that we are working in a ring we get the commutativity of a and y1,j for free.
This key role in the commutativity for rings is somewhat reminiscent to the signature scheme of
[DM14]. We note that the technique used by [AS15] (which has also been used in [Xag13]) to
extend the results of [DM14] to matrices seems to be inapplicable in our setting. This is because
in our setting we need to commute the LWE challenge matrix A instead of the gadget matrix G
whose associating trapdoor is known. To summarize, by incorporating our second idea, we obtain
the ring variant of Eq.(4.3) and the trapdoor operates as specified. We note that one might be
tempted to pack the entries of y with constant size elements, since 2n is still exponential in n and
hence Q(n) < 2n. However, the security proof relies heavily on the fact that the density (i.e., the
number of entries that are packed) of y is bounded by some constant. Therefore, we must choose
the size of the packed elements with care to make the overall scheme secure.

The final idea is carefully crafting a properly distributed challenge ciphertext. To be precise,
the main issue is in the difficulty of creating a ciphertext that has errors that are properly dis-
tributed. This problem of generating a properly distributed challenge ciphertext was addressed

73

in [Yam16] as well, however, they used the standard technique called the “smudging” or “noise
flooding” technique which came at the cost of making the modulus size q super-polynomial in n.
This was not a problem for them, since as we pointed out earlier, their scheme inherently needed
a super-polynomial sized modulus to work. However, this tactic is inapplicable to our setting
since we want to restrict ourselves to the polynomial sized modulus. To overcome this we devise
a way to carefully craft the error term; a technique reminiscent of [GPV08, ACPS09]. First,
assume we have F(ID⋆) = 0 for the challenge identity ID⋆ and thus H(ID) = ARID∗ . Note that
for ease of understanding we explain the technique in the matrix form instead of the ring form.
To prove security, we have to embed the LWE challenge A and v into the challenge ciphertext,
where v = sA+ x or v a random vector. One natural way is to set

x1 = x, x2 = xRID⋆ (4.5)

and compute the challenge ciphertext as

s[A|H(ID⋆)] + [x1|x2] = [v|vRID⋆].

However, one can not simply use the standard generalized leftover hash lemma for lattices pre-
sented in [ABB10]; a technique often used in proving such forms. This is because RID⋆ is not
uniformly sampled as in the case of [ABB10], but instead highly correlated to the values of y, {yi,j}
used during the simulation. Alternatively, we present a noise rerandomization technique and add
a small extra noise to Eq.(4.5) and statistically hide RID. Namely, we sample noises e1 and e2
from a particular Gaussian distribution with variance computed from RID⋆ and set

x1 = x+ e1, x2 = xRID⋆ + e2. (4.6)

Thus the challenge ciphertext is created as above by further adding the new noise terms. Although
the general idea of this technique has been around since [Reg05, GPV08] and has been used in
contexts elsewhere, as far as we know, we believe this is a nice application for rerandomizing the
noise without the need of adding a huge (super-polynomial sized) noise.

An Additional Idea. Working in the ring setting introduces some subtle yet crucial obstacles,
which we did not have to address before. Namely, for q a prime and n a power of 2, the domain
Rq = Z[X]/(q,Xn + 1) we work in is no longer a field as in the case of Zq. Additionally, if we
use a modulus q such that q ≡ 1 mod 2n as in [LPR10, LPR13], the ring Rq completely splits
into n fields. In such a ring, each field only contains q = poly(n) elements so the Schwartz-Zippel
lemma during our security proof can not be applied. We get around this by using a modulus q
such that q ≡ 3 mod 8 where it is known to split into only two fields. Then, since each field now
contains qn/2 elements and Rq acts roughly as a field, we are able to apply our proof techniques.
We finally note that we also obtain a nice regularity lemma over such rings which helps us attain
better parameters for the scheme.

We also employ some ideas to further optimize the sizes of the public parameters, secret keys
and ciphertexts. Namely, we use the (ring version of the) G-trapdoor where the base is set as nη

for some positive constant η. We use η = 1
4 for our concrete parameter selection. By incorporating

this idea, we can further reduce the size of the parameters by a factor of log n. However, this
comes at the cost of making the scheme less efficient, since the function G−1(·) has a slower
running time for a larger base.

4.2.2 Construction from Bilinear Maps

Here, we explain our IBE scheme from bilinear maps. We start with a slightly modified version
of Waters IBE [Wat05] and gradually modify it to obtain our scheme. Let us consider a group

74

G with prime order p whose generator is g. The group is equipped with a efficiently computable
bilinear map e : G × G → GT . The public parameters of the scheme contains rather long κ + 3
group elements {gwi}i∈[0,κ], gα, gβ, and a randomness rand ∈ {0, 1}|GT | that is used to derive

the Goldreich-Levin hardcore bit function GL : {0, 1}|GT | × {0, 1}|GT | → {0, 1}. The form of the
ciphertexts and private keys in the scheme are as follows:

C =
(
gs, gsH(ID), GL

(
e(gα, gβ)s, rand

)
⊕M

)
, skID =

(
gαβ · grH(ID), g−r

)
where M ∈ {0, 1} is the message to be encrypted, and s and r are random elements in Zp that are
picked during the encryption and key generation algorithms, respectively.

Here, H : {0, 1}κ → Zp is defined as H(ID) = w0 +
∑

IDi=1wi where IDi is the i-th bit of ID.
The reason why we use the hardcore bit function is to base the security of the scheme on the
computational bilinear Diffie-Hellman (CBDH) assumption, rather than the stronger decisional
bilinear Diffie-Hellman (DBDH) assumption which was used to prove the security of the original
Waters IBE.

Next, we try to reduce the size of the public parameters using the idea of the Yamada IBE.
A natural way to do this would be to introduce the injective map S : {0, 1}κ → 2[ℓ]×[ℓ] with
ℓ = ⌈κ1/2⌉, change the public parameters to be gw0 , {gwi,j}(i,j)∈[2]×[ℓ], and modify the function H
as

H(ID) = w0 +
∑

(i,j)∈S(ID)

w1,iw2,j . (4.7)

Through this change, we can reduce the size of the public parameters from O(κ) group elements to
O(
√
κ), just in as [Yam16]. However, we come across an immediate problem: We cannot efficiently

compute gsH(ID) from the public parameters! A straightforward solution to this problem is to put
“helper” terms {gw1,iw2,j} into the public parameters. However, this makes the size of the public
parameters large again.

Our solution to this problem is to rely on the Boneh-Boyen technique [BB04a] to compute
something similar to the problematic term. Namely, we compute

gsH(ID)+
∑

j∈S(ID) t̃jw2,j , { gt̃j }j∈[ℓ] (4.8)

instead of computing only gsH(ID). Here, {t̃j} are additional randomness introduced by the en-
cryption algorithm. Accordingly, we change the form of the ciphertexts and private keys of our
scheme as follows:

C =
(
gs, gsH(ID)+

∑
j∈[ℓ] t̃jw2,j , {gt̃j}j∈[ℓ], GL

(
e(gα, gβ)s, rand

)
⊕M

)
,

skID =
(
gαβ · grH(ID), g−r, {grw2,j}j∈[ℓ]

)
. (4.9)

Note that although the size of the public parameters is smaller than the original scheme, the sizes
of the ciphertexts and private keys are larger due to the additional terms. We now show that one
can efficiently compute the ciphertext. In particular, we show that it is possible to generate the
terms in Eq.(4.8). To see this, let us introduce the variables {tj} such that

t̃j := tj − s

 ∑
i∈{i∈[1,ℓ]|(i,j)∈S(ID)}

w1,i

 . (4.10)

75

Then, we have

sH(ID) +
∑
j∈[ℓ]

t̃jw2,j

= sH(ID) +
∑
j∈[ℓ]

w2,j

tj − s
 ∑

i∈{i∈[1,ℓ]|(i,j)∈S(ID)}

w1,i


= sH(ID) +

∑
j∈[ℓ]

w2,jtj − s
∑
j∈[ℓ]

 ∑
i∈{i∈[1,ℓ]|(i,j)∈S(ID)}

w1,iw2,j


= sw0 +

���������
s

∑
(i,j)∈S(ID)

w1,iw2,j +
∑
j∈[ℓ]

w2,jtj −
���������
s

∑
(i,j)∈S(ID)

w1,iw2,j

= sw0 +
∑
j∈[ℓ]

w2,jtj . (4.11)

Since Eq.(4.10) and (4.11) are linear in w0, wi,j , it can be seen that the terms in Eq.(4.8) can be
computed efficiently, as desired.

By substituting t̃j in Eq.(4.9) with the right-hand side of Eq.(4.8), we obtain our final scheme.
As for the security, we can prove the adaptive security of the scheme from the 3-computational
bilinear Diffie-Hellman exponent (3-CBDHE) assumption. We need to rely on this stronger as-
sumption than the standard CBDH assumption, because of the different algebraic structure in-
corporated by the modified Waters IBE.

4.3 Preparation

4.3.1 Homomorphic Computation

Let d be a natural number. We introduce the function PubEvald : (Rk
q)

d → Rk
q as in [Yam16],

which takes a set of vectors b1, b2, . . . , bd ∈ Rk
q as inputs and outputs a vector in Rk

q . This function

wil be used to hash identities to Rk
q in our lattice-based IBE construction. The function is defined

recursively as follows:

PubEvald(b1, . . . , bd) =

{
b1 if d = 1

b1 · g−1b

(
PubEvald−1(b2, . . . , bd)

)
if d ≥ 2.

Lemma 4.1. Let y1, . . . , yd be elements in R, a, b1, . . . , bd be vectors in Rk
q and R1, . . . ,Rd

be matrices in Rk×k such that bi = aRi + yigb for i ∈ [d]. Furthermore, we assume that
s1(Ri) ≤ B, ∥ϕ(yi)∥1 ≤ δ for i ∈ [d]. Then, there exists an efficient algorithm TrapEvald that
takes R1, . . . ,Rd, y1, . . . , yd as inputs and outputs R′ ∈ Rk×k such that

PubEvald(b1, . . . , bd) = aR′ + y1 · · · ydgb ∈ Rk
q (4.12)

and s1(R
′) ≤ Bδd−1 +Bbnk

(
δd−1−1
δ−1

)
.

Proof. Before starting the actual proof for the above lemma, we state the following lemma that
provides us with a useful bound for the singular value of a single element in R.

Lemma 4.2 ([DM14], Lemma 5). For any ring element a ∈ R, we have s1(a) ≤ ∥ϕ(a)∥1.

76

Then, the proof of Lemma 4.1 is given as follows. We prove it by induction. The base case
(the case of d = 1) is trivial. Therefore, let us assume the hypothesis for d−1 where d ≥ 2. Then,
we have

s1(R0) ≤ Bδd−2 +Bbnk
(δd−2 − 1

δ − 1

)
and PubEvald−1(b2, . . . , bd) = aR0 + y2 · · · ydgb

for efficiently computable R0. Therefore, by the definition of PubEvald, we have

PubEvald(b1, . . . , bd)

= (aR1 + y1gb) · g−1b

(
PubEvald−1(b2, . . . , bd)

)
= aR1 · g−1b

(
PubEvald−1(b2, . . . , bd)

)
+ y1 · PubEvald−1(b2, . . . , bd)

= aR1 · g−1b

(
PubEvald−1(b2, . . . , bd)

)
+ y1(aR0 + y2 · · · ydgb)

= a(R1 · g−1b

(
PubEvald−1(b2, . . . , bd)

)
+ y1R0) + y1y2 · · · ydgb.

It can be seen that Eq.(4.12) holds by setting

R′ = R1 · g−1b

(
PubEvald−1(b2, . . . , bd)

)
+ y1R0.

It is clear that it can be efficiently computable. Furthermore, we have

s1(R
′) ≤ s1(R1) · s1

(
g−1b

(
PubEvald−1(b2, . . . , bd)

))
+ s1(y1) · s1(R0)

≤ B · bnk + ∥ϕ(a)∥1 · s1(R0)

≤ Bbnk + δ

(
Bδd−2 +Bbnk

(δd−2 − 1

δ − 1

))
= Bδd−1 +Bbnk

(δd−1 − 1

δ − 1

)
.

The second inequality follows from Lemma 4.2 and the fact that s1(g
−1
b (u)) ≤ bnk holds for any

u ∈ Rk
q .

Lemma 4.3 (Expansion of Coefficients). Let c1, c2, B1, B2 ∈ N. Let also u = u0 + u1X +
· · ·uc1−1Xc1−1 ∈ R and v = v0 + v1X + · · · vc2−1Xc2−1 ∈ R be ring elements. We further
assume that c1 + c2 < n and ∥ϕ(u)∥∞ < B1 and ∥ϕ(v)∥∞ < B2. Then we have ∥ϕ(uv)∥∞ ≤
min{c1, c2} ·B1B2.

Proof. We have

∥ϕ(uv)∥∞ =

∥∥∥∥∥∥ϕ
c1+c2−2∑

j=0

 min{c1−1,j}∑
i=max{0,j+1−c2}

uivj−i

Xj

∥∥∥∥∥∥
∞

= max
j∈[0,c1+c2−2]


min{c1−1,j}∑

i=max{0,j+1−c2}

uivj−i


≤ min{c1, c2}B1B2

where the last equation follows from ∥ϕ(u)∥∞ ≤ B1, ∥ϕ(v)∥∞ ≤ B2, and min{c1 − 1, j} + 1 −
max{0, j + 1− c2} ≤ min{(c1 − 1) + 1− 0, j + 1− (j + 1− c2)} = min{c1, c2}.

77

4.3.2 Lower Bounds for the Advantage of Adversaries

The following Lemma addresses a general statement for bounding the success probability of an
adversary engaging with the security game of IBE. In more detail, when the partitioning technique
is used to prove security, the guess returned by the adversary is correlated with the key extraction
queries it has made. Therefore, we need to argue with care to obtain a meaningful bound on the
success probability that holds for arbitrary key extraction queries.

Lemma 4.4 (Implicit in [BR09, Yam16]). Let us consider an IBE scheme and an adversary A that
breaks adaptive security (adaptively-anonymous security) with advantage ϵ. Let us also consider a
map γ that maps a sequence of identities to a value in [0, 1]. We consider the following experiment.
We first execute the security game for A. Let ID⋆ be the challenge identity and ID1, . . . , IDQ be the
identities for which key extraction queries were made. We denote ID = (ID⋆, ID1, . . . , IDQ). At

the end of the game, we set coin′ ∈ {0, 1} as coin′ = ĉoin with probability γ(ID) and coin′
$← {0, 1}

with probability 1− γ(ID). Then, the following holds.∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ ≥ γmin · ϵ−
γmax − γmin

2

where γmin (resp. γmax) is the maximum (resp. minimum) of γ(ID) taken over all possible ID.

Proof. For ID = (ID⋆, ID1, . . . , IDQ), we define Q(ID) as the event that A chooses ID⋆ as its
challenge identity and it makes key extraction queries for ID1, . . . , IDQ. We also define Replace as

the event that coin′ is set as coin′
$← {0, 1}. Then, we have∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣
=

∣∣∣∣∣∑
ID

Pr[Q(ID)] · Pr[coin′ = coin|Q(ID)]− 1

2

∣∣∣∣∣ (4.13)

=

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(
Pr[coin′ = coin ∧ ¬Replace|Q(ID)]

+Pr[coin′ = coin ∧ Replace|Q(ID)]− 1

2

)∣∣∣∣ (4.14)

=

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(
Pr[ĉoin = coin|Q(ID)] · γ(ID) + 1

2
·
(
1− γ(ID)

)
− 1

2

)∣∣∣∣∣ (4.15)

=

∣∣∣∣∣∑
ID
γ(ID) · Pr[Q(ID)] ·

(
Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣ (4.16)

≥

∣∣∣∣∣∑
ID
γmin · Pr[Q(ID)] ·

(
Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣
−

∣∣∣∣∣∑
ID

(γ(ID)− γmin) · Pr[Q(ID)] ·
(
Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣ (4.17)

≥ γmin

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(
Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣− γmax − γmin

2

∣∣∣∣∣∑
ID

Pr[Q(ID)]

∣∣∣∣∣ (4.18)

78

= γmin

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣− γmax − γmin

2
(4.19)

= γmin · ϵ−
γmax − γmin

2
(4.20)

where the sum is taken over all possible ID (i.e., ID with Q(ID) > 0). In the above, Eq.(4.13)
follows by the law of total probability, Eq.(4.14) follows from the law of total probability and∑

ID Pr[Q(ID)] = 1, Eq.(4.15) follows from the fact that the probability of Replace is γ(ID), when
conditioned on Q(ID) (regardless of the value of ĉoin), Eq.(4.16) is trivial, Eq.(4.17) follows from

the triangle inequality, Eq.(4.18) holds since γ(ID) ≤ γmax and |Pr[ĉoin = coin|Q(ID)]−1/2| ≤ 1/2,
Eq.(4.19) follows again from

∑
ID Pr[Q(ID)] = 1, and Eq.(4.20) is by the definition of ϵ.

Injective map. Let d and κ be some integers. Furthermore, let ℓ be ℓ = ⌈κ1/d⌉. Then, an
element of [1, κ] can be written as an element of [1, ℓ]d using some canonical map. Furthermore, it
is also possible to write a subset of [1, κ] as a subset of [1, ℓ]d by naturally extending the canonical
map. By identifying a bit string in {0, 1}κ with a subset of [1, κ] (for example, by regarding
the former as the indicator vector of a subset of [1, κ]), we can define an efficiently computable
injective map S that maps a bit string ID ∈ {0, 1}κ to a subset S(ID) of [1, ℓ]d.

4.3.3 Core Lemma for Our Partitioning

We make a general statement concerning the partitioning technique for IBEs, which we use during
the security analysis for both our lattice and bilinear map based constructions. Namely, we
use the following Lemma in order to argue that the probability of the hash value for identities
corresponding to the key extraction queries being invertible and the hash value for the challenge
identity being zero is non-negligible.

Lemma 4.5. Let ν, µ, d,Q ≥ 1 be any integers. Let Φ be a ring and Ω1, . . . ,Ων be a set of fields
equipped with homomorphisms πj : Φ → Ωj for j ∈ [ν]. Assume that the map Π defined as Π :
Φ ∋ y 7→ (π1(y), . . . , πν(y)) ∈ Ω1×· · ·×Ων is an isomorphism. Let S0 and S1 be subsets of Φ with
finite cardinality. Let us consider a set of multivariate polynomials fi(Y1, . . . , Yµ) ∈ Φ[Y1, . . . , Yµ]
for i ∈ [0, Q] We further assume the following properties:

1. The map πj is injective on S1 for all j ∈ [ν].

2. We have πj(f0) − πj(fi) is a non-zero polynomial with degree d for all i ∈ [Q] and j ∈ [ν].
Here πj is extended to πj : Φ[X]→ Ωj [X] in a natural way.

3. We have S0 ⊇ ∪i∈[0,Q]{−fi(y1, . . . , yµ)|y1, . . . , yµ ∈ S1}.

Then, for y0
$← S0 and y1, . . . , yµ

$← S1, we have

1

|S0|

(
1− dνQ

|S1|

)
≤ Pr

y0,y′
[y0 + f0(y

′) = 0 ∧ y0 + f1(y
′) ∈ Φ∗ ∧ · · · ∧ y0 + fQ(y

′) ∈ Φ∗] ≤ 1

|S0|

where we denote y′ = (y1, . . . , yµ) and Φ∗ = Π−1(Ω∗1 × · · · × Ω∗ν).

Proof. Let us denote γ := Pry0,y′ [y0 + f0(y
′) = 0 ∧ y0 + f1(y

′) ∈ Φ∗ ∧ · · · ∧ y0 + fQ(y
′) ∈ Φ∗]

where the probability is taken over y0
$← S0 and y1, . . . , yµ

$← S1. We first show the upper bound.
We have

γ ≤ Pr
y0,y′

[y0 + f0(y
′) = 0] = Pr

y0,y′
[y0 = −f0(y′)] =

1

|S0|
.

79

The last equation follows since there exists unique y0 ∈ S0 such that y0 = −f0(y′), for any y′ ∈ Sµ
1

from our third assumption. We then proceed to show the lower bound. We have

γ = Pr
y0,y′

[y0 + f0(y
′) = 0 ∧ y0 + f1(y

′) ∈ Φ∗ ∧ · · · ∧ y0 + fQ(y
′) ∈ Φ∗]

= Pr
y0,y′

[y0 + f0(y
′) = 0]

− Pr
y0,y′

[y0 + f0(y
′) = 0 ∧ ¬

(
y0 + f1(y

′) ∈ Φ∗ ∧ · · · ∧ y0 + fQ(y
′) ∈ Φ∗

)
] (4.21)

= Pr
y0,y′

[y0 + f0(y
′) = 0]− Pr

y0,y′
[

Q∨
i=1

(
y0 + f0(y

′) = 0 ∧ y0 + fi(y
′) ̸∈ Φ∗

)
] (4.22)

≥ Pr
y0,y′

[y0 + f0(y
′) = 0]−

∑
i∈[Q]

Pr
y0,y′

[y0 + f0(y
′) = 0 ∧ y0 + fi(y

′) ̸∈ Φ∗] (4.23)

=
1

|S0|
−
∑
i∈[Q]

Pr
y0,y′

[y0 + f0(y
′) = 0 ∧ y0 + fi(y

′) ̸∈ Φ∗]︸ ︷︷ ︸
:=γ′

i

(4.24)

where Eq.(4.21) is a general equation that holds for any event, Eq.(4.22) follows from De morgan’s
laws and the distributive property, Eq.(4.23) follows from the union bound, Eq.(4.24) is again from
our third assumption. We then have to show an upper bound for γ′i.

γ′i = Pr
y0,y′

[y0 + f0(y
′) = 0 ∧ y0 + fi(y

′) ̸∈ Φ∗]

= Pr
y0,y′

[y0 + f0(y
′) = 0 ∧ f0(y

′)− fi(y′) ̸∈ Φ∗] (4.25)

= Pr
y0,y′

[y0 = −f0(y′) | f0(y′)− fi(y′) ̸∈ Φ∗] · Pr
y0,y′

[f0(y
′)− fi(y′) ̸∈ Φ∗] (4.26)

=
1

|S0|
· Pr
y0,y′

[f0(y
′)− fi(y′) ̸∈ Φ∗] (4.27)

=
1

|S0|
· Pr
y′
[f0(y

′)− fi(y′) ̸∈ Φ∗]︸ ︷︷ ︸
:=γ′′

i

(4.28)

where Eq.(4.25) is just an equivalent expression, Eq.(4.26) is trivial, Eq.(4.27) is from the fact that
for any y′ ∈ Sµ

1 there exists unique y0 ∈ S0 such that y0 = −f0(y′) (from our third assumption),
and in Eq.(4.28) we omit y0 since it is independent of the probability. It suffices to show an upper
bound for γ′′i . We have

γ′′i = Pr
y′ $←Sµ

1

[
f0(y

′)− fi(y′) ̸∈ Φ∗
]

(4.29)

= Pr
y′ $←Sµ

1

 ν∨
j=1

Π(f0(y
′)− fi(y′)) ∈ Ω1 × · · · × Ωj−1 × {0} × Ωj+1 × · · · × Ων

 (4.30)

≤
ν∑

j=1

Pr
y′ $←Sµ

1

[Π(f0(y
′)− fi(y′)) ∈ Ω1 × · · · × Ωj−1 × {0} × Ωj+1 × · · · × Ων] (4.31)

=

ν∑
j=1

Pr
y′ $←Sµ

1

[
πj(f0(y

′)− fi(y′)) = 0
]

(4.32)

80

=

ν∑
j=1

Pr
y′ $←Sµ

1

[(
πj(f0 − fi)

)
(πj(y

′)) = 0
]

(4.33)

=

ν∑
j=1

Pr
z

$←πj(S1)µ

[(
πj(f0 − fi)

)
(z) = 0

]
(4.34)

≤
ν∑

j=1

d

|πj(S1)|
(4.35)

=
dν

|S1|
(4.36)

where in Eq.(4.29) we made the distribution of y′ explicit, Eq.(4.30) is from the fact that Φ\Φ∗ =
Π−1

(
∪νj=1(Ω1 × · · · × Ωj−1 × {0} × Ωj+1 × · · · × Ων)

)
, Eq.(4.31) follows from the union bound,

Eq.(4.32) is by the definition of Π, Eq.(4.33) follows since πj is a homomorphism, Eq.(4.34) follows
since πj is injective on S1 (our first assumption), Eq.(4.35) is from the fact that πj(f0−fi) ∈ Ωj [X]
is a non-zero polynomial with degree d (our second assumption) and the Schwartz-Zippel lemma,
and Eq.(4.36) follows since πj is injective on S1.

4.4 Construction from RLWE

In this section, we show our IBE scheme from the RLWE assumption. Let d be a (flexible) constant
number. In addition, let the identity space of the scheme be ID = {0, 1}κ for some κ ∈ N and
the message space be {0, 1}n ⊂ R.2 For our construction, we consider an efficiently computable
injective map S that maps an identity ID ∈ {0, 1}κ to a subset S(ID) of [1, ℓ]d, where ℓ = ⌈κ1/d⌉.
Such a map can be constructed easily as we explained in Section 4.3.2. Let n := n(λ), b := b(n),
ρ := ρ(n), m := 2n, k := k(n), q := q(n), ℓ := ℓ(n), α := α(n), α′ := α′(n), and σ := σ(n) be
parameters that are specified later. Let also Φm(X) = Xn +1 be the mth cyclotomic polynomial
and R = Z[X]/(Φm(X)).

Setup(1λ) : On input 1λ, it first runs (a,Ta)
$← TrapGen(1n, 1k, q, ρ) to obtain a ∈ Rk

q and

Ta ∈ Rk×k. It also picks u
$← Rq, b0, bi,j

$← Rk
q for (i, j) ∈ [d]× [ℓ] and outputs

mpk = (a, b0, {bi,j}(i,j)∈[d]×[ℓ], u) and msk = Ta.

In the following, we use a deterministic function H : ID → Rk
q defined as

H(ID) = b0 +
∑

(j1,...,jd)∈S(ID)

PubEvald(b1,j1 , b2,j2 , . . . , bd,jd) ∈ R
k
q .

KeyGen(mpk,msk, ID) : It first computes H(ID) and picks e ∈ R2k such that

[a|H(ID)] · eT = u

using SampleLeft(a,H(ID), u,Ta, σ)→ e. It returns skID = e.

2Note that we regard m as an elements in R via ϕ−1 : Zn → R (the inversion of coefficient embedding).

81

Encrypt(mpk, ID,M) : To encrypt a message M ∈ {0, 1}n ⊂ R, it first picks s $← Rq, x0
$← Dcoeff

Zn,αq,

x1,x2
$←
(
Dcoeff

Zn,α′
)k
. Then it computes

c0 = su+ x0 + ⌊q/2⌉ ·M, c1 = s[a|H(ID)] + [x1|x2].

Finally, it outputs the ciphertext C = (c0, c1) ∈ Rq ×R2k
q .

Decrypt(mpk, skID, C) : To decrypt a ciphertext C = (c0, c1) using a private key skID = e, it
computes (

⌊(2/q) · ϕ(c0 − c1e
T)⌉ mod 2

)
= m. (4.37)

Here, the rounding function ⌊·⌉ is applied componentwise.

4.4.1 Correctness and Parameter Selection.

The following lemma states the correctness of our above IBE scheme.

Lemma 4.6 (Correctness). Assume αqω(
√
log n) +

√
nkα′σω(

√
log nk) ≤ q/5 holds with over

whelming probability. Then the above scheme has negligible decryption error.

Before proving Lemma 4.6, we prepare the following two lemmas.

Lemma 4.7 ([MR04], Lemma 4.4). For any n-dimensional lattice Λ, real ϵ ∈ (0, 1) and s ≥ ηϵ(Λ),
we have Pr[∥x∥ > s

√
n| x← DΛ,sω(

√
logn)] ≤ 1+ϵ

1−ϵ · 2
−n.

The following is an analogue of [ABB10], Lemma 12 where the error is instead chosen from
the discrete Gaussian.

Lemma 4.8 (Discrete Gaussian Error Bound). Let e be some vector in Zn and let x ← DZn,αq

for some αq > ω(
√
log n). Then the quantity |exT | treated as an integer in [0, . . . , q − 1] satisfies

|exT | ≤ ∥e∥2αqω(
√
log n) with all but negligible probability in n.

Proof. (of Lemma 4.8.) By [MP12], Lemma 2.8, each element of xi are δ-subgaussian of pa-
rameter αq, where δ > 0 is negligible in n. Then the random variable exT is nδ-subgaussian
with parameter ∥e∥2αq. Hence by the subgaussian distribution tail bound, we have Pr[|exT | >
∥e∥2αqω(

√
log n)] ≤ negl(n), which proves the lemma.

Then, the proof of Lemma 4.6 is given as follows.

Proof. When the Decrypt algorithm operates as specified for a valid encryption of message M ∈
{0, 1}n ⊂ R, we have

ϕ(c0 − c1e
T) = ⌊q

2
⌉ϕ(M) + ϕ(x0)− ϕ([x1|x2])rot(e

T)︸ ︷︷ ︸
error term

,

Hence, for the Decrypt algorithm to outputM, we need to show that the error term does not exceed,
say q/5. Since x0

$← Dcoeff
Zn,αq, the vector ϕ(x0) is a subgaussian with parameter αq, i.e., DZn,αq.

Therefore, by the standard subgaussian tail bound argument, |ϕ(x0)j | ≤ αqω(
√
log n) with all but

negligible probability, where ϕ(x0)j denotes the jth entry. Furthermore, since x1,x2
$← (Dcoeff

Zn,α′)k,

we have that ϕ([x1|x2])
$← DZ2nk,α′ . From the definition of the map rot, we have that each column

82

of rot(eT) ∈ Z2nk×n is of norm ∥ϕ(e)∥2. Hence, by Lemma 4.7, Lemma 4.8 and from the fact that

ϕ(e)
$← DΛ⊥

ϕ(u)
([rot(aT)T |rot(H(ID)T)T]),σ, we have |ϕ([x1|x2])rot(e

T)j | ≤ ∥ϕ(e)∥2 · α′ω(
√
log nk) ≤

√
nkα′σω(

√
log nk) with all but negligible probability, where rot(eT)j denotes the jth column.

Putting all the pieces together, we conclude that the jth entry of the error term is bounded
as ∣∣∣∣(ϕ(x0)− ϕ([x1|x2])rot(e

T)
)
j

∣∣∣∣ ≤ αqω(√log n) +
√
nkα′σω(

√
lognk),

with all but negligible probability. By assumption this is smaller than q/5 with overwhelming
probability. Hence, the error probability for the Decrypt algorithm is negligible.

Parameter selection. To satisfy the correctness requirement and make the security proof follow
through, we need the following:

− the error term is less than q/5 with overwhelming probability (i.e., αqω(
√
log n)+

√
nkα′σω(

√
log nk).

See Lemma 4.6,),

− TrapGen can operate (i.e., ρ < 1
2

√
q/n and k ≥ 2 logρ q. See Lemma 2.16.),

− the gadget matrix gb can be defined (i.e., k ≥ ⌈logb q⌉. See Lemma 2.16.),

− the regularity lemma (Lemma 2.15) can be applied in the security proof (i.e., k
2

(
q2

(2ρ+1)k

)n
2
=

negl(n).),

− σ is sufficiently large so that SampleLeft and SampleRight work (i.e., σ > O(bρ ·
√
n logρ q) ·

ω(
√
log nk) and σ > s1(R)

√
b2 + 1·ω(

√
log n), where s1(R) ≤ C ′′·κρ

√
n(
√
k+ω(

√
log n))

(
(cn)d−1+

bnk (cn)d−1−1
cn−1

)
for some absolute constant C ′′. See Eq.(4.45). The latter condition turns out to

be more restrictive.),

− ReRand algorithm in the security proof works (i.e., α′ > 2αq(s1(R) + 1), αq > ω(
√
log nk)

where s1(R) is the same as the one defined above. See Lemma 2.6.),

− the worst case to average case reduction works (i.e., αq ≥ n3/2k1/4ω(log9/4 n). See Sec-
tion 2.2.3.).

Recall that d is a (flexible) constant which may be set very small (e.g., d = 2 or 3) in a typical
setting, and κ(n) = n is the size of the identity space ID. To satisfy the above requirements, we
propose two candidate parameter selections as follows:

Type 1 IBE. For this construction we set b = 2 and ρ = 1 in order to reduce the modulus size
q. Recalling that we defined log1 q := log2 q, we can set the parameters as follows:

k = 4(d+ 1) log n, q = n2d+2, b = 2, ρ = 1,

σ = nd−
1
2 · ω(log n), α = n−2d+

1
2 · ω(log

9
2 n)−1, α′ = nd+2η+2 · ω(log3 n)−1.

We denote this specific instantiation as the Type 1 IBE scheme.

83

Type 2 IBE. For this construction we set b = ρ = nη for an arbitrary positive real η in order to
reduce the size of the public parameters, private keys, and ciphertexts. Namely, one way to set
the parameters is as follows:

k = 4 +
2d+ 2

η
, q = n2d+2+4η, b = ρ = nη,

σ = nd+2η− 1
2 · ω(log n), α = n−2d−

7
2
η+ 1

2 · ω(log2 n)−1, α′ = nd+2η+2 · ω(log
3
4 n)−1.

By plugging in η = 1
4 we obtain the following concrete parameter selection:

k = 8d+ 12, q = n2d+3, b = ρ = n
1
4 ,

σ = nd · ω(log n), α = n−2d−
3
8 · ω(log2 n)−1, α′ = nd+

5
2 · ω(log

3
4 n)−1.

We denote this specific instantiation as the Type 2 IBE scheme.

4.4.2 Security Proof for the Scheme

The following theorem addresses the security of the scheme. The proof proceeds in a similar
manner as in [Yam16], but we incorporate several novel ideas as we explained in Section 4.2.

Theorem 4.1. The above IBE scheme is adaptively-anonymous secure assuming RLWEn,k+1,q,Dcoeff
Zn,αq

is hard, where the ciphertext space is C = Rq ×R2k
q .

Proof. Let A be a PPT adversary that breaks the adaptively-anonymous security of the scheme.
In addition, let ϵ = ϵ(n) and Q = Q(n) be its advantage and the upper bound of the number of
key extraction queries, respectively.

Since A is PPT and λ and n are polynomially related (namely, n = O(λδ) for some constant
δ), there exists a constant number c1 ∈ N such that 4(dQ+1) ≤ nc1 for all n that are sufficiently
large. Similarly, since A breaks the security of the scheme, there exists c2 ∈ N such that 2ϵ ≥ n−c2
holds for infinitely many n. By setting c = c1 + c2, we have that

4dQ ≤ nc for all n ∈ N and
ϵ

2(dQ+ 1)
≥ 1

nc
for infinitely many n ∈ N. (4.38)

In the proof, we will assume d(c− 1) < n. Since both c and d are constant numbers, this holds
for sufficiently large n.

We show the security of the scheme via the following games. In each game, a value coin′ ∈ {0, 1}
is defined. While it is set coin′ = ĉoin in the first game, these values might be different in the
later games. In the following, we define Xi to be the event that coin′ = coin.

Game0 : This is the real security game. Recall that since the ciphertext space is C = Rq × R2k
q ,

in the challenge phase, the challenge ciphertext is set as C⋆ = (c0, c1)
$← Rq × R2k

q if

coin = 1. At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger
sets coin′ = ĉoin. By definition, we have∣∣∣∣Pr[X0]−

1

2

∣∣∣∣ = ∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ϵ.

84

Game1 : For integers t0, t1 ∈ Z such that t0 ≤ t1 and positive integer c ∈ N, let us denote [t0, t1]R,c

as

[t0, t1]R,c :=

{
c−1∑
i=0

aiX
i

∣∣∣∣∣ ai ∈ [t0, t1] for all i ∈ [0, c− 1]

}
⊆ R. (4.39)

In words, [t0, t1]R,c denotes the set of polynomials of degree less then c − 1 with all of its
coefficients in the interval [t0, t1]. Note that c is the constant defined in Eq.(4.38). In this
game, we change Game0 so that the challenger performs the following additional step at the
end of the game. First, the challenger picks y = (y0, {yi,j}(i,j)∈[d,ℓ]) as

y0
$← [−κ(cn)d,−1]R,(c−1)d+1 and yi,j

$← [1, n]R,c (4.40)

for (i, j) ∈ [d] × [ℓ]. Recall κ is the length of the identities. We then define a function
Fy : ID → Rq as follows:

Fy(ID) = y0 +
∑

(j1,...,jd)∈S(ID)

y1,j1 · · · yd,jd .

Then the challenger checks whether the following condition holds:

Fy(ID
⋆) = 0 ∧ Fy(ID1) ∈ R∗q ∧ · · · ∧ Fy(IDQ) ∈ R∗q , (4.41)

where ID⋆ is the challenge identity, and ID1, . . . , IDQ are identities for which A has made

key extraction queries. If it does not hold, the challenger ignores the output ĉoin of A, and
sets coin′

$← {0, 1}. In this case, we say that the challenger aborts. If condition (4.41) holds,

the challenger sets coin′ = ĉoin. As we will show in Lemma 4.9, we have∣∣∣∣Pr[X1]−
1

2

∣∣∣∣ ≥ 1

(κcdnd)(c−1)d+1

(
ϵ

2
− dQ

nc

)
.

So as not to interrupt the proof of Theorem 4.1, we intentionally skip the proof for the time
being.

Game2 : In this game, we change the way b0 and bi,j are chosen. At the beginning of the game,

the challenger picks R0,Ri,j
$← [−ρ, ρ]k×kR for (i, j) ∈ [d]× [ℓ]. It also picks y as in Game1.

Then, a, b0, and bi,j are defined as

b0 = aR0 + y0gb, bi,j = aRi,j + yi,jgb, (4.42)

for (i, j) ∈ [d]× [ℓ]. The rest of the game is the same as in Game1.

Now, we bound |Pr[X2]− Pr[X1]|. By Lemma 2.15, the distributions(
a,aR0 + y0gb, {aRi,j + yi,jgb}(i,j)∈[d]×[ℓ]

)
and

(
a, b0, {bi,j}(i,j)∈[d]×[ℓ]

)
are negl(n)-close, where b0, bi,j

$← Rk
q . Therefore, we have |Pr[X1]− Pr[X2]| = negl(n).

Game3 Recall that in the previous game, the challenger aborts at the end of the game if condition
(4.41) is not satisfied. In this game, we change the game so that the challenger aborts as
soon as the abort condition becomes true. Since this is only a conceptual change, we have
Pr[X2] = Pr[X3].

85

Before describing the next game, we define RID ∈ Rk×k for an identity ID ∈ ID as

RID = R0 +
∑

(j1,...,jd)∈S(ID)

TrapEvald(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd). (4.43)

Note that by the definition of RID, H(ID), PubEval and TrapEval (Lemma 4.1) we have

H(ID) = b0 +
∑

(j1,...,jd)∈S(ID)

PubEvald(b1,j1b2,j2 , . . . , bd,jd)

= aRID + Fy(ID)gb. (4.44)

Since R0,Ri,j
$← [−ρ, ρ]k×kR , from Lemma 2.13 we have s1(R0), s1(Ri,j) ≤ B with all but

negligible probability where B = C ′ · ρ
√
n(
√
k + ω(

√
logn)) for some positive absolute constant

C ′. Furthermore, we have ∥yi,j∥1 ≤ cn from Eq. (4.40). Therefore by Lemma 4.1, we have

s1(RID) ≤ s1(R0) +
∑

(j1,...,jd)∈S(ID)

s1(TrapEvald(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd))

≤ B

(
1 + κ(cn)d−1 + κbnk

(cn)d−1 − 1

cn− 1

)
, (4.45)

for any ID ∈ ID with all but negligible probability.

Game4 In this game, we change the way the vector a is sampled. Namely, Game4 challenger picks
a

$← Rk
q instead of generating it with a trapdoor. By Lemma 2.16, this makes only negligible

difference. Furthermore, we also change the way the key extraction queries are answered.
When A makes a key extraction query for an identity ID, the challenger first computes RID

as in Eq.(4.43). It aborts if Fy(ID) ̸∈ R∗q as in the previous game and runs

SampleRight(a, gb,RID,Fy(ID), u,Tgb , σ)→ e,

otherwise. Note that in the previous game the private key was sampled as

SampleLeft(a,H(ID), u,Ta, σ)→ e.

By Eq.(4.45) and for our choice of σ, the output distribution of SampleRight is negl(n)-
close to Dcoeff

Λ⊥
ϕ(u)

([rot(aT)T |rot(H(ID)T)T]),σ
. Furthermore, by the choice of σ, this distribution is

negl(n)-close to the output distribution of SampleLeft. Therefore, the above change alters
the view of A only negligibly. Thus, we have |Pr[X3]− Pr[X4]| = negl(n).

Game5 : In this game, we change the way the challenge ciphertext is created when coin = 0.
Recall in the previous games when coin = 0, we created a valid challenge ciphertext as in
the real scheme. If coin = 0 and Fy(ID

⋆) = 0 (i.e., if it does not abort), to create the

challenge ciphertext Game5 challenger first picks s
$← Rq and x

$← (Dcoeff
Zn,αq)

k and computes

v = sa+ x ∈ Rk. It then runs the algorithm

ReRand

(
rot
(
[Ik|RID⋆]

)
, ϕ(v), αq,

α′

2αq

)
→ c ∈ Z2nk

q

from Lemma 2.6, where Ik ∈ Rk×k is the identity matrix of size k × k. Finally, it picks
x0

$← Dcoeff
Zn,αq and sets the challenge ciphertext as

C⋆ =
(
c0 = v0 + ⌊q/2⌉ ·M, c1 = ϕ−1(c)

)
∈ Rq ×R2k

q , (4.46)

86

where v0 = su+x0 and M is the message chosen by A. We claim that this change alters the
view of A only negligibly. To show this, observe that the input to ReRand is rot

(
[Ik|RID⋆]

)
∈

Znk×2nk
q and

ϕ(v) = ϕ(sa+ x) = ϕ(s)rot(a) + ϕ(x) ∈ Znk
q ,

where ϕ(x) is distributed as ϕ(x)
$← DZnk,αq. Therefore, by the property of ReRand and

our choice of α and α′, the output c ∈ Z2nk
q is

c =
(
ϕ(s)rot(a)

)
· rot

(
[Ik|RID⋆]

)
+ x′

= ϕ(s) · rot
(
[a|H(ID⋆)]

)
+ x′

= ϕ
(
s
[
a|H(ID⋆)

])
+ x′,

where the distribution of x′ is within negligible distance from x′
$← DZ2nk,α′ due to Lemma

2.6. Here, we use the fact that H(ID⋆) = aRID⋆ holds since Fy(ID
⋆) = 0. It can be readily

seen that the distribution of c1 = ϕ−1(c) in Game5 is statistically close to that in Game4.
Therefore, we have |Pr[X4]− Pr[X5]| = negl(n).

Game6 In this game, we change the way the challenge ciphertext is created when coin = 0.
If coin = 0 and the abort condition is not satisfied, to create the challenge ciphertext
for identity ID⋆ and message M, Game6 challenger first picks v0

$← Rq, v′
$← Rk

q and

x
$← (Dcoeff

Zn,αq)
k, and runs

ReRand

(
rot
(
[Ik|RID⋆]

)
, ϕ(v), αq,

α′

2αq

)
→ c ∈ Z2nk

q , (4.47)

where v = v′ + x. Then, the challenge ciphertext is set as in Eq.(4.46). As we will show in
Lemma 4.10, assuming RLWEn,k+1,q,Dcoeff

Zn,αq
is hard, we have |Pr[X5]− Pr[X6]| = negl(n).

Game7 In this game, we further change the way the challenge ciphertext is created. When coin = 0
and the abort condition is not satisfied, the challenge ciphertext for ID⋆ is created as

C⋆ =
(
c0 = v0 + ⌊q/2⌉ ·M, c1 = [v′|v′RID⋆] + [x1|x2]

)
∈ Rq ×R2k,

where v0
$← Rq, v

′ $← Rk
q and x1,x2

$← (Dcoeff
Zn,α′)k.

We claim that this change alters the view of A only negligibly. This can be seen by a similar
argument to that we made in the step from Game3 to Game4. We first observe that in Game6
the input to ReRand is rot

(
[Ik|RID⋆]

)
∈ Znk×2nk

q and

ϕ(v) = ϕ(v′ + x) = ϕ(v′) + ϕ(x) ∈ Znk
q , (4.48)

where ϕ(x) is distributed as DZnk,αq. Therefore, the output c ∈ Z2nk
q of ReRand is

c = ϕ(v′) · rot
(
[Ik|RID⋆]

)
+ x′ = ϕ

(
[v′|v′RID⋆]

)
+ x′,

where the distribution of x′ is within negligible distance from x′
$← DZ2nk,α′ due to Lemma

2.6. Hence, the distribution of c1 = ϕ−1(c) in Game6 is statistically close to that in Game7.
Therefore, we have |Pr[X6]− Pr[X7]| = negl(n).

87

Game8 In this game, we change the way the key extraction queries are answered. Instead of
running SampleLeft or SampleRight, the (possibly inefficient) challenger directly picks a

secret key skID for identity ID as skID
$← Dcoeff

Λ⊥
ϕ(u)

([rot(aT)T |rot(H(ID)T)T]),σ
without using RID.

Similarly to the change from Game3 to Game4, by the choice of σ and Eq.(4.45), this alters
the view of A only negligibly. Therefore, we have |Pr[X7]− Pr[X8]| = negl(n). Note that
this is only a conceptual game in order to get rid of any (negligible) correlation between the
secret key and RID so as not to interfere with the statistical argument using RID⋆ in the
following game.

Game9 In this game, we change the challenge ciphertext to be a random vector, regardless of
whether coin = 0 or coin = 1. Namely, Game9 challenger generates the challenge ciphertext
C⋆ = (c0, c1) as

c0
$← Rq, and c1

$← R2k
q .

We now proceed to bound |Pr[X8]− Pr[X9]|. Since Game8 and Game9 differ only in the
creation of the challenge ciphertext when coin = 0, we focus on this case. First, it is easy to
see that c0 is uniformly random over Rq in both of Game8 and Game9. Therefore, we only
need to show that the distribution of c1 in Game8 is negl(n)-close to the uniform distribution
over R2k

q . To see this, it suffices to show that [v′|v′RID⋆] is distributed statistically close

to the uniform distribution over R2k
q . First, observe that the following distributions are

negl(n)-close:

(a,aR0,v
′,v′R0) ≈ (a,a′,v′,v′′) ≈ (a,aR0,v

′,v′′), (4.49)

where a,a′
$← Rk

q , R0
$← [−ρ, ρ]k×kR , v′,v′′

$← Rk
q . It can be seen that the first and the

second distributions are negl(n)-close, by applying Lemma 2.15 for [a;v′] ∈ R2×k
q and R0.

It can also be seen that the second and the third distributions are negl(n)-close, by applying
the same lemma for a and R0. From the above, the following distributions are statistically
close:

(a,aR0,v
′,v′RID⋆)

=

a,aR0,v
′,v′

R0 +
∑

(j1,...,jd)∈S(ID)

TrapEvald(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)


≈

a,aR0,v
′,v′′ + v′

 ∑
(j1,...,jd)∈S(ID)

TrapEvald(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)


≈ (a,aR0,v

′,v′′)

where a,a′
$← Rk

q , R0
$← [−ρ, ρ]k×kR , v′,v′′

$← Rk
q . The second and the third distributions

above are negl(n)-close by Eq.(4.49). Note that we intentionally ignored all the aRi,j terms
to keep the argument simple, since focusing on the aR0 term is enough to prove randomness
of [v′|v′RID⋆]. Therefore, we conclude that |Pr[X8]− Pr[X9]| = negl(n).

Analysis. From the above, we have∣∣∣∣Pr[X9]−
1

2

∣∣∣∣ =

∣∣∣∣∣Pr[X1]−
1

2
+

8∑
i=1

(Pr[Xi+1]− Pr[Xi])

∣∣∣∣∣
88

≥
∣∣∣∣Pr[X1]−

1

2

∣∣∣∣− 8∑
i=1

|Pr[Xi+1]− Pr[Xi]|

≥ 1

(κcdnd)(c−1)d+1

(
ϵ

2
− dQ

nc

)
− negl(n)

=
1

poly(n)

(
ϵ

2
− dQ

nc

)
− negl(n) (4.50)

where the last equality follows from the facts that c and d are constants and κ = poly(n). Since
the challenge ciphertext is independent from the value of coin in Game9, we have Pr[X9] = 1/2
and thus |Pr[X9]− 1/2| = 0. Therefore, we have that ϵ/2 − dQ/nc is negligible. However, by
Eq.(4.38),

ϵ

2
− dQ

nc
≥ dQ+ 1

nc
− dQ

nc
=

1

nc

holds for infinitely many n, which is a contradiction.

To complete the proof of Theorem 4.1, it remains to prove Lemma 4.9 and 4.10.

Lemma 4.9. For any PPT adversary A, we have∣∣∣∣Pr[X1]−
1

2

∣∣∣∣ ≥ 1

(κcdnd)(c−1)d+1

(
ϵ

2
− dQ

nc

)
.

Proof. For a sequence of identities ID = (ID⋆, ID1, . . . , IDQ) ∈ IDQ+1, we define γ(ID) as

γ(ID) = Pr
y
[Fy(ID

⋆) = 0 ∧ Fy(ID1) ̸= 0 ∧ Fy(ID2) ̸= 0 ∧ · · · ∧ Fy(IDQ) ̸= 0]

where the probability is taken over y = (y0, {yi,j}(i,j)∈[d,ℓ]), which is chosen as specified in Game1.
Then, it suffices to show

1

(κcdnd)(c−1)d+1

(
1− 2dQ

nc

)
≤ γ(ID) ≤ 1

(κcdnd)(c−1)d+1
(4.51)

since by Lemma 4.4, this implies∣∣∣∣Pr[X1]−
1

2

∣∣∣∣ ≥ ϵ

(κcdnd)(c−1)d+1

(
1− 2dQ

nc

)
− 1

2(κcdnd)(c−1)d+1

(
1−

(
1− 2dQ

nc

))
=

1

(κcdnd)(c−1)d+1

(
ϵ

(
1− 2dQ

nc

)
− dQ

nc

)
≥ 1

(κcdnd)(c−1)d+1

(
ϵ

2
− dQ

nc

)
where the last inequality follows from Eq.(4.38). In the following, we will prove Eq.(4.51) by
applying Lemma 4.5. We set

ν = 2, µ = dℓ Φ = Rq,

Ωj = Rq/⟨tj⟩, πj : Rq → Rq/⟨tj⟩, for j ∈ [2],

S0 = [−κ(cn)d,−1]R,(c−1)d+1, S1 = [1, n]R,c

89

where πj is a natural homomorphism and t1, t2 are elements in Rq as defined in Lemma 2.14.
Therefore, the map Π : Φ ∋ y 7→ (π1(y), π2(y)) ∈ Ω1 × Ω2 is an isomorphism. We define
fi({Yj,j′}(j,j′)∈[d]×[ℓ]) for i ∈ [0, Q] as

fi
(
{Yj,j′}(j,j′)∈[d]×[ℓ]

)
=

∑
(j′1,...,j

′
d)∈S(IDi)

Y1,j′1Y2,j′2 · · ·Yd,j′d

where we define ID0 := ID⋆. Note that we have Fy(IDi) = y0 + fi({yi,j}(i,j)∈[d]×[ℓ]). We now check
that the three conditions for Lemma 4.5 hold.

• We prove that πj is injective on S1 for j ∈ {1, 2}. Assume for contradiction that there are
a1, a2 ∈ S1 with a1 ̸= a2 and πj(a1) = πj(a2)⇔ πj(a1−a2) = 0. We then have a1−a2 ̸∈ R∗q .
On the other hand, we have ∥ϕ(a1 − a2)∥2 ≤

√
cn <

√
q. However, this contradicts Lemma

2.14.

• For i ∈ [1, Q], we have

f0
(
{Yj,j′}

)
− fi

(
{Yj,j′}

)
=

∑
(j′1,...,j

′
d)∈S(ID

⋆)

Y1,j′1Y2,j′2 · · ·Yd,j′d −
∑

(j′1,...,j
′
d)∈S(IDi)

Y1,j′1Y2,j′2 · · ·Yd,j′d .

Since ID⋆ ̸= IDi and S is an injective map, we have S(ID⋆) ̸= S(IDi). Therefore, there
exists (j⋆1 , . . . , j

⋆
d) ∈ [ℓ]d such that (j⋆1 , . . . , j

⋆
d) ∈ S(ID⋆) △ S(IDi), where S(ID

⋆) △ S(IDi)
denotes the symmetric difference of S(ID⋆) and S(IDi). Thus, the above polynomial is a
non-zero polynomial with degree d. Since the coefficients of f0 − fi are all in {−1, 0, 1} and
πj(±1) = ±1, πj(f0 − fi) is a non-zero polynomial for j ∈ {1, 2} as well.

• We prove S0 ⊇ {−fi({yj,j′}(j,j′)∈[d]×[ℓ])|y1,1, . . . , yd,ℓ ∈ S1} for all i ∈ [0, Q]. By our assump-
tion d(c − 1) < n and by regarding elements yj,j′ as polynomials in Z[X]/(Xn + 1) with
degree c − 1, we have fi({yj,j′}) are all in [∗, ∗]R,d(c−1)+1 where ∗ represents some integer.

It then suffices to show ∥ϕ(fi({yj,j′}(j,j′)∈[d]×[ℓ]))∥∞ ≤ κ(cn)d. For any {yj,j′}(j,j′)∈[d]×[ℓ], we
have

∥ϕ(fi({yj,j′}(j,j′)∈[d]×[ℓ]))∥∞ =

∥∥∥∥∥∥ϕ
 ∑

(j′1,...,j
′
d)∈S(IDi)

y1,j′1y2,j′2 · · · yd,j′d

∥∥∥∥∥∥
∞

(4.52)

=

∥∥∥∥∥∥
∑

(j′1,...,j
′
d)∈S(IDi)

ϕ(y1,j′1y2,j′2 · · · yd,j′d)

∥∥∥∥∥∥
∞

(4.53)

≤
∑

(j′1,...,j
′
d)∈S(IDi)

∥∥∥ϕ(y1,j′1y2,j′2 · · · yd,j′d)∥∥∥∞ (4.54)

≤ κ(cn)d (4.55)

where Eq.(4.52) follows from the definition, Eq.(4.53) holds because ϕ−1 is a homomorphism,
Eq.(4.54) is from the triangle inequality, and Eq.(4.55) is from Lemma 4.3 and the fact that
∥yj,j′∥∞ ≤ n.

This completes the proof of Lemma 4.9.

90

Lemma 4.10. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[X5]− Pr[X6]| ≤ Adv
RLWE

n,k+1,q,Dcoeff
Zn,αq

B .

In particular, under the RLWEn,k+1,q,Dcoeff
Zn,αq

assumption, we have |Pr[X5]− Pr[X6]| = negl(n).

Proof. Suppose an adversary A that has non-negligible advantage in distinguishing Game5 and
Game6. We use A to construct an RLWE algorithm denoted B, which proceeds as follows.

Instance. B is given the problem instance of RLWE ({ai, vi}ki=0) ∈ (Rq×Rq)
k+1. We can assume

without loss of generality that vi = v′i + xi for xi
$← Dcoeff

Zn,αq. Then B’s task is to distinguish

whether v′i = ais for some s ∈ Rq or v′i
$← Rq. We note this subtle change from the standard

RLWE problem is done only for convenience of the proof.

Setup. To construct master public key mpk, B first sets

u := a0, a := (a1, . . . , ak), v0 := v0, v := (v1, . . . , vk)

It also picks y as in Game1, R0,Ri,j as in Game2 and sets b0 and bi,j as in Eq.(4.42). Finally, it

returns mpk = (a, b0, {bi,j}(i,j)∈[d,ℓ], u) to A. B also picks a random bit coin
$← {0, 1} and keeps

it secret.

Phase 1 and Phase 2. The key extraction queries made by A are answered as in Game4. This
is done by using R0 and Ri,j .

Challenge Query. When Amakes the challenge query for the challenge identity ID⋆ and message
m, B first computes Fy(ID

⋆). Then, it aborts and sets coin′
$← {0, 1} if Fy(ID⋆) ̸= 0. Otherwise,

it proceeds as follows. If coin = 0, it computes RID⋆ and c ∈ Z2k
q as in Eq.(4.47). It then sets the

challenge ciphertext C⋆ as in Eq. (4.46). In the case of coin = 1, B picks c0
$← Rq, c1

$← R2k
q and

sets C⋆ = (c0, c1). In both cases, B returns C⋆ to A.
Guess. At last, A outputs its guess ĉoin (if the abort condition has not been satisfied). Then, B
sets coin′ = ĉoin. Finally, B outputs 1 if coin′ = coin and 0 otherwise.

Analysis. It can be seen that B perfectly simulates the view of A in Game5 if {ai, v′i+xi}ki=0 are

valid RLWE samples (i.e., v′i = ais) and Game6 otherwise (i.e., v′i
$← Rq). We therefore conclude

that Adv
RLWE

n,k+1,q,Dcoeff
Zn,αq

B = |Pr[X5]− Pr[X6]| as desired.

4.5 Construction from Bilinear Maps

4.5.1 Single-bit Variant

In the following, we present our IBE scheme from bilinear maps. Here, for simplicity, we first
present the scheme with only single-bit message space. A variant of our scheme that can deal
with longer message space will appear later. Let the identity space of the scheme be ID = {0, 1}κ
for some κ ∈ N. For our construction, we consider an efficiently computable injective map S
that maps an identity ID ∈ {0, 1}κ to a subset S(ID) of [1, ℓ]× [1, ℓ], where ℓ = ⌈

√
κ⌉. We would

typically set κ = O(λ), and thus ℓ = O(
√
λ) in such a case. We also use GL(K, rand) to denote

the Goldreich-Levin hardcore bit [GL89] of K using randomness rand. Recall that GL(K, rand) is
the bitwise inner product between K and rand.

91

Setup(1λ) : On input 1λ, it chooses an asymmetric bilinear group G1,G2,GT with efficiently
computable map e : G1 × G2 → GT of prime order p = p(λ). Let g and h be generators

of G1 and G2 respectively. It then picks w0, w1,1, . . . , w1,ℓ, w2,1, . . . , w2,ℓ, α, β
$← Zp and

rand
$← {0, 1}|GT |. It finally outputs

mpk = (g,W0 = gw0 , {W1,i = gw1,i}ℓi=1, {W2,i = gw2,i}ℓi=1, g
α, hβ, rand) and

msk = (h, α, β, w0, w1,1, . . . , w1,ℓ, w2,1, . . . , w2,ℓ)

In the following, we use a deterministic function H : ID → Zp that is defined as follows.

H(ID) = w0 +
∑

(i,j)∈S(ID)

w1,iw2,j ∈ Zp. (4.56)

KeyGen(mpk,msk, ID) : It first computes H(ID) using msk and picks r
$← Zp. It then returns

skID = (A1 = hαβ+r·H(ID), A2 = h−r, {Bj = hrw2,j}ℓj=1). (4.57)

Encrypt(mpk, ID,M) : To encrypt a message M ∈ {0, 1}, it picks s, t1, . . . , tℓ $← Zp and computes

C0 = M⊕ GL
(
e(gα, hβ)s, rand

)
, C1 = gs, C2 =W s

0 ·
∏

j∈[1,ℓ]

W
tj
2,j ,

Dj = gtj ·

 ∏
i∈{i∈[1,ℓ]|(i,j)∈S(ID)}

W1,i

−s for j ∈ [1, ℓ] (4.58)

Finally, it returns the ciphertext C = (C0, C1, C2, {Dj}ℓj=1).

Decrypt(mpk, skID, C) : To decrypt a ciphertext C = (C0, C1, C2, {Dj}ℓj=1) using a private key

skID = (A1, A2, {Bj}ℓj=1), it first computes

e(C1, A1) · e(C2, A2) ·
∏

j∈[1,ℓ]

e(Dj , Bj) = e(g, h)sαβ. (4.59)

Then it retrieves the message by C0 ⊕ GL(e(g, h)sαβ , rand).

Correctness of the Single-bit Variant

To verify the correctness of the scheme, it suffices to show Eq.(4.59). Let gT := e(g, h). We have

loggT

e(C1, A1) · e(C2, A2) ·
∏

j∈[1,ℓ]

e(Dj , Bj)


= loggT e(C1, A1)− r

sw0 +
∑

j∈[1,ℓ]

tjw2,j

+
∑

j∈[1,ℓ]

rw2,j

tj − s ∑
i∈{i∈[1,ℓ]|(i,j)∈S(ID)}

w1,i


= loggT e(C1, A1)− rsw0 − rs

∑
j∈[1,ℓ]

 ∑
i∈{i∈[1,ℓ]|(i,j)∈S(ID)}

w1,iw2,j


92

= sαβ + rs

w0 +
∑

(i,j)∈S(ID)

w1,iw2,j

− rs
w0 +

∑
(i,j)∈S(ID)

w1,iw2,j


= sαβ.

Therefore, Eq.(4.59) follows.

Security Proof for the Single-bit Variant

The security of the scheme is proven under the 3-CBDHE assumption defined below.

Definition 4.1 (3-Computational Bilinear Diffie-Hellman Exponent (3-CBDHE) Assumption).
We say that 3-CBDHE holds on (G1,G2,GT) if

Pr[A(g, gs, ga, ga2 , h, ha, ha2)→ e(g, h)sa
3
]

is negligible for any PPT adversary A where g
$← G1, h

$← G2, s, a
$← Zp.

We also introduce the following lemma concerning the Goldreich-Levin hardcore bit function
which we use during our security proof.

Lemma 4.11 ([GL89]). Let us assume that the 3-CBDHE assumption holds. Then, for any PPT
adversary A,

Adv3CBDHE
A =

∣∣∣Pr[A(Ψ, rand,GL(e(g, h)sa3 , rand))→ 1]− Pr[A
(
Ψ, rand, T

)
→ 1]

∣∣∣
is negligible where Ψ = (g, gs, ga, ga

2
, h, ha, ha

2
), a, s

$← Zp, T
$← {0, 1} and rand

$← {0, 1}|GT |.

The following theorem addresses the security of the scheme.

Theorem 4.2. The above IBE scheme is adaptively secure assuming the 3-CBDHE assumption.

Proof. Let A be a PPT adversary that breaks adaptive security of the scheme. In addition, let
ϵ = ϵ(λ) and Q = Q(λ) be its advantage and the upper bound on the number of key extraction
queries, respectively. Since A is PPT, there exists a constant number c1 ∈ N such that 4(Q+1) ≤
λc1 for all λ ∈ N. Similarly, since A breaks the security of the scheme, there exists c2 ∈ N such
that 2ϵ ≥ λ−c2 holds for infinitely many λ. By setting c = c1 + c2, we have that

4Q ≤ λc for all λ ∈ N and
ϵ

2(Q+ 1)
≥ 1

λc
for infinitely many λ ∈ N. (4.60)

In the following, we assume that p > λc. Since the size of p is exponential in λ, this holds for
sufficiently large λ.

We show the security of the scheme via the following games. In each game, a value coin′ ∈ {0, 1}
is defined. While it is set coin′ = ĉoin in the first game, these values might be different in the
later games. In the following, we define Xi be the event that coin′ = coin in Gamei.

Game0 : This is the real security game. Since the message space is {0, 1}, without loss of generality,
we assume that the adversary always chooses M0 = 0 and M1 = 1 as its target in the
challenge phase. Then the challenger picks a random coin coin

$← {0, 1} and returns an
encryption of Mcoin = coin as the challenge ciphertext. At the end of the game, A outputs
a guess ĉoin for coin. Finally, the challenger sets coin′ = ĉoin. By the definition, we have∣∣∣∣Pr[X0]−

1

2

∣∣∣∣ = ∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ϵ.

93

Game1 : In this game, we change Game0 so that the challenger performs the following additional
step at the end of the game. First, the challenger picks y = (y0, {yi,j}(i,j)∈[2]×[ℓ]) as

y0
$← [−κλ2c,−1] and yi,j

$← [1, λc] for (i, j) ∈ [2]× [ℓ]. (4.61)

We define a function Fy : ID → Zp as follows:

Fy(ID) = y0 +
∑

(j1,j2)∈S(ID)

y1,j1y2,j2 .

Then the challenger checks whether the following condition holds:

Fy(ID
⋆) = 0 ∧ Fy(ID1) ̸= 0 ∧ · · · ∧ Fy(IDQ) ̸= 0 (4.62)

where ID⋆ is the challenge identity, and ID1, . . . , IDQ are identities for which A has made

key extraction queries. If it does not hold, the challenger ignores the output ĉoin of A, and
sets coin′

$← {0, 1}. Otherwise, the challenger sets coin′ = ĉoin. In Lemma 4.12, we will
show that ∣∣∣∣Pr[X1]−

1

2

∣∣∣∣ ≥ 1

κλ2c

(
ϵ

2
− Q

λc

)
.

Game2 In this game, we change the way α, β, w0, and wi,j are chosen. At the beginning of the

game, the challenger picks y as in Game1. It then picks a, w̃0, w̃1,1, . . . , w̃1,ℓ, w̃2,1, . . . , w̃2,ℓ
$←

Zp, α̃, β̃
$← Z∗p and sets

α = aα̃, β = a2β̃, w0 = a2y0 + w̃0, wi,j = ayi,j + w̃i,j for (i, j) ∈ [2]× [ℓ]. (4.63)

This change does not alter the distribution of w0, wi,j , α, and β. Since this change is only
conceptual, we have

Pr[X2] = Pr[X1].

Game3 Recall that in the previous game, the challenger aborts at the end of the game, if the
condition (4.62) is not satisfied. In this game, we change the game so that the challenger
aborts as soon as the abort condition becomes true. Since this is only a conceptual change,
we have

Pr[X3] = Pr[X2].

Before describing the next game, we observe that H(ID) can be written as an polynomial in a
with degree 2 whose coefficients depend on ID and y.

H(ID)

= w0 +
∑

(i,j)∈S(ID)

w1,iw2,j

= y0a
2 + w̃0 +

∑
(i,j)∈S(ID)

(y1,ia+ w̃1,i)(y2,ja+ w̃2,j)

94

=

y0 + ∑
(i,j)∈S(ID)

y1,iy2,j


︸ ︷︷ ︸

=Fy(ID)

a2 +

 ∑
(i,j)∈S(ID)

w̃1,iy2,j + y1,iw̃2,j


︸ ︷︷ ︸

:=Gy(ID)

a+

w̃0 +
∑

(i,j)∈S(ID)

w̃1,iw̃2,j


︸ ︷︷ ︸

:=Iy(ID)

= Fy(ID)a
2 + Gy(ID)a+ Iy(ID).

Game4 : In this game, we change the way the key extraction queries are answered. When A makes
a key extraction query for an identity ID, the challenger aborts if Fy(ID) = 0 as the previous

game. Otherwise, it first picks r̃
$← Zp and sets r as

r = r̃ − α̃β̃

Fy(ID)
a. (4.64)

Then the private key is generated as Eq.(4.57). Clearly, this is only a conceptual change
and does not change the view of A. Therefore, we have

Pr[X4] = Pr[X3].

Here, we observe that

αβ + rH(ID)

= a3α̃β̃ +
(
Fy(ID)a

2 + Gy(ID)a+ Iy(ID)
)(

r̃ − α̃β̃

Fy(ID)
a

)

=

(
r̃Fy(ID)−

α̃β̃Gy(ID)

Fy(ID)

)
a2 +

(
r̃Gy(ID)−

α̃β̃Iy(ID)

Fy(ID)

)
a+ r̃ · Iy(ID) (4.65)

and

rw2,j =

(
r̃ − α̃β̃

Fy(ID)
a

)
(y2,ja+ w̃2,j)

= − α̃β̃y2,j
Fy(ID)

a2 +

(
r̃y2,j −

α̃β̃w̃2,j

Fy(ID)

)
a+ rw̃2,j . (4.66)

It can be seen that the term a3α̃β̃ cancels out in Eq.(4.65). Looking ahead, this is essential
for the reduction from the 3-CBDHE assumption (Lemma 4.13) to be possible.

Game5 In this game, we change the way the challenge ciphertext is created. When creating the
challenge ciphertext, the challenger first picks s′, t̃1, . . . , t̃ℓ

$← Zp and sets

s =
s′

α̃β̃
, tj =


t̃1 + s

−Gy(ID
⋆)

y2,1
+

∑
i∈{i∈[1,ℓ]|(i,1)∈S(ID⋆)}

w1,i

 for j = 1

t̃j + s

 ∑
i∈{i∈[1,ℓ]|(i,j)∈S(ID⋆)}

w1,i

 for j ∈ [2, ℓ].

(4.67)

Then, the challenge ciphertext is computed as Eq.(4.58). Note that since 1 ≤ y2,1 ≤ λc < p
and thus y ̸= 0 mod p, the denominator in Eq.(4.67) is well-defined. Clearly, this is only a
conceptual change and does not change the view of A. Therefore, we have

Pr[X5] = Pr[X4].

95

Here, we observe that

C0 = coin⊕ GL
(
e(g, h)s

′a3 , rand
)
, D1 = gt̃1(gs

′
)−Gy(ID

⋆)/α̃β̃y2,1 , Dj = gt̃j for j ∈ [2, ℓ] (4.68)

and

logg C2

= sw0 +
∑

j∈[1,ℓ]

w2,jtj

= sw0 − w2,1s

(
Gy(ID

⋆)

y2,1

)
+
∑

j∈[1,ℓ]

w2,j

t̃j + s

 ∑
i∈{i∈[1,ℓ]|(i,j)∈S(ID⋆)}

w1,i


= −w2,1s

(
Gy(ID

⋆)

y2,1

)
+

 ∑
j∈[1,ℓ]

w2,j t̃j

+ s

w0 +
∑

j∈[1,ℓ]

∑
i∈{i∈[1,ℓ]|(i,j)∈S(ID⋆)}

w1,iw2,j


︸ ︷︷ ︸

=H(ID⋆)

= −s(y2,1a+ w̃2,1)

(
Gy(ID

⋆)

y2,1

)
+

 ∑
j∈[1,ℓ]

w2,j t̃j

+ s

Fy(ID
⋆)︸ ︷︷ ︸

=0

a2 + Gy(ID
⋆)a+ Iy(ID

⋆)


= −������

Gy(ID
⋆)sa− s

(
w̃2,1Gy(ID

⋆)

y2,1

)
+

 ∑
j∈[1,ℓ]

w2,j t̃j

+������
Gy(ID

⋆)sa+ s · Iy(ID⋆)

= s′

(
y2,1 · Iy(ID⋆)− w̃2,1 · Gy(ID

⋆)

α̃β̃y2,1

)
+ a

 ∑
j∈[1,ℓ]

y2,j t̃j

+

 ∑
j∈[1,ℓ]

w̃2,j t̃j

 . (4.69)

It can be seen that the term −Gy(ID
⋆)sa cancels out in Eq.(4.69). Looking ahead, this is

essential for the reduction from the 3-CBDHE assumption (Lemma 4.13) to be possible.

Game6 In this game, the component C0 in the challenge ciphertext is changed to be a random
bit. As we will show in Lemma 4.13, assuming the 3-CBDHE assumption is hard, we have

|Pr[X6]− Pr[X5]| = negl(n). (4.70)

Analysis. From the above, we have∣∣∣∣Pr[X6]−
1

2

∣∣∣∣ =

∣∣∣∣∣Pr[X1]−
1

2
+

5∑
i=1

Pr[Xi+1]− Pr[Xi]

∣∣∣∣∣
≥

∣∣∣∣Pr[X1]−
1

2

∣∣∣∣− 5∑
i=1

|Pr[Xi+1]− Pr[Xi]|

≥ 1

κλ2c

(
ϵ

2
− Q

λc

)
− negl(λ)

=
1

poly(λ)

(
ϵ

2
− Q

λc

)
− negl(λ). (4.71)

96

Since the challenge ciphertext is independent from the value of coin in Game6, we have Pr[X6] =
1/2 and thus |Pr[X6]− 1/2| = 0. Therefore, we have that ϵ/2−Q/λc is negligible. However, by
Eq.(4.60),

ϵ

2
− Q

λc
≥ Q+ 1

λc
− Q

λc
=

1

λc

holds for infinitely many λ, which is a contradiction.

To complete the proof of Theorem 4.2, it remains to show Lemma 4.12 and Lemma 4.13.

Lemma 4.12. For any PPT adversary A, we have∣∣∣∣Pr[X1]−
1

2

∣∣∣∣ ≥ 1

κλ2c

(
ϵ

2
− Q

λc

)
.

Proof. For a sequence of identities ID = (ID⋆, ID1, . . . , IDQ) ∈ IDQ+1, we define γ(ID) as

γ(ID) = Pr
y
[Fy(ID

⋆) = 0 ∧ Fy(ID1) ̸= 0 ∧ Fy(ID2) ̸= 0 ∧ · · · ∧ Fy(IDQ) ̸= 0]

where the probability is taken over y = (y0, {yi,j}(i,j)∈[2,ℓ]), which is chosen as specified in Game1.
It suffices to show

1

κλ2c

(
1− 2Q

λc

)
≤ γ(ID) ≤ 1

κλ2c
(4.72)

since due to Lemma 4.4, this implies∣∣∣∣Pr[X1]−
1

2

∣∣∣∣ ≥ ϵ

κλ2c

(
1− 2Q

λc

)
− 1

2κλ2c

(
1−

(
1− 2Q

λc

))
≥ 1

κλ2c

(
ϵ

2
− Q

λc

)
where we used Eq.(4.60) in the last inequality. In the following, we will prove Eq.(4.72) by
applying Lemma 4.5. We would set

d = 2, ν = 1, Φ = Ω1 = Zp,

Π = π1 = idZp , S0 = [−κλ2c,−1], S1 = [1, λc]

where idZp denotes the identity map on Zp. We set µ = 2ℓ and define fi({Yj,j′}(j,j′)∈[2]×[ℓ]) for
i ∈ [0, Q] as

fi
(
{Yj,j′}(j,j′)∈[2]×[ℓ]

)
=

∑
(j′1,j

′
2)∈S(IDi)

Y1,j′1Y2,j′2

where we define ID0 := ID⋆. Note that we have Fy(IDi) = y0 + fi({yj,j′}(j,j′)∈[2]×[ℓ]). We now
check that the three conditions for Lemma 4.5 hold.

• π1 is injective on S1 because it is the identity map on Zp and λc < p.

97

• For i ∈ [1, Q], we have

f0
(
{Yj,j′}

)
− fi

(
{Yj,j′}

)
=

∑
(j′1,j

′
2)∈S(ID

⋆)

Y1,j′1Y2,j′2 −
∑

(j′1,j
′
2)∈S(IDi)

Y1,j′1Y2,j′2 .

Since ID⋆ ̸= IDi and S is an injective map, we have S(ID⋆) ̸= S(IDi). Therefore, there
exists (j⋆1 , j

⋆
2) ∈ [ℓ]× [ℓ] such that (j⋆1 , j

⋆
2) ∈ S(ID⋆)△S(IDi), where S(ID

⋆)△S(IDi) denotes
the symmetric difference of S(ID⋆) and S(IDi). Thus, the above polynomial is a non-zero
polynomial with degree 2.

• Since S1 = [1, λc], we have

1 ≤ fi({yj,j′}) =
∑

(j′1,j
′
2)∈S(IDi)

y1,j′1y2,j′2 ≤
∑

(j′1,j
′
2)∈S(IDi)

λc · λc ≤ κλ2c

for i ∈ [Q]. Therefore, we have S0 ⊇ {−fi({yj,j′}(j,j′)∈[2]×[ℓ])|yj,j′ ∈ S1} for all i ∈ [0, Q].

This completes the proof of Lemma 4.12.

Lemma 4.13. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[X5]− Pr[X6]| ≤ Adv3CBDHE
B .

In particular, under the 3CBDHE assumption, we have |Pr[X5]− Pr[X6]| = negl(n).

Proof. Suppose an adversary A that has non-negligible advantage in distinguishing Game5 and
Game6. We use A to construct an 3CBDHE algorithm denoted B, which proceeds as follows.

Instance. B is given the problem instance of 3CBDHE
(
g, gs

′
, ga, ga

2
, h, ha, ha

2
, rand, T

)
. The

task of B is to distinguish whether T = GL(e(g, h)s
′a3 , rand) or T

$← {0, 1}.
Setup. To construct master public key mpk, B first picks y as in Game2. It also picks w̃0, w̃i,j , α̃, β̃
and implicitly sets w0, wi,j , α, β as in Game3. Then, B computes mpk as follows:

mpk =

(
g,

gα = (ga)α̃, W0 = (ga
2
)y0 · gw̃0 ,

hβ = (ha
2
)β̃, {Wi,j = (ga)yi,j · gw̃i,j}(i,j)∈[2,ℓ],

rand

)
. (4.73)

Note that these values can be computed without explicitly knowing a. Finally, it returns mpk to
A. B also picks a random bit coin

$← {0, 1} and keeps it secret.

Phase 1 and Phase 2. When A makes a key extraction query for ID, B proceeds as follows. We
assume F(ID) ̸= 0 since otherwise B aborts. By the change introduced in Game4, we have that
each component of skID can be written as a linear combination of (h, ha, ha

2
) with the coefficients

being known to B (See Eq.(4.64), (4.65), and (4.66)). Therefore, B can compute the secret key
without explicitly knowing the value of a.

Challenge Query. When A makes the challenge query for the challenge identity ID⋆, B proceeds
as follows. We assume Fy(ID

⋆) ̸= 0 since otherwise B aborts. By the change introduced in
Game6, C1, C2, {Dj}ℓj=1 in the challenge ciphertext can be written as a linear combination of

(gs
′
, g, ga, ga

2
) (See Eq.(4.68) and (4.69)). B can therefore compute these components. Finally, B

sets C0 = T ⊕ coin and gives the challenge ciphertext C⋆ = (C0, C1, C2, {Dj = gtj}j∈[1,ℓ]) to A.
Guess. At last, A outputs its guess ĉoin (if the abort condition has not been satisfied). Then, B
sets coin′ = ĉoin. Finally, B outputs 1 if coin′ = coin and 0 otherwise.

Analysis. It can be seen that the view ofA corresponds to that in Game5 if T = GL(e(g, h)s
′a3 , rand)

and Game6 if T
$← {0, 1}. Therefore, we have |Pr[X5]− Pr[X6]| ≤ Adv3CBDHE

B .

98

4.5.2 Multi-bit Variant

Let us try to extend our single-bit scheme in the previous section to be a multi-bit scheme with
message space {0, 1}ℓM for some ℓM ∈ N. The most obvious way to achieve this is to just run the
encryption algorithm ℓM times. However, this naive method will make the ciphertext ℓM times
longer. Another way would be to prepare ℓM copies of gα and hβ and put them into the master
public key. However, this approach will result in a scheme with master public key containing extra
O(ℓM) group elements. In this section, we show that it is possible to obtain a multi-bit scheme
with the same ciphertext-size as the single-bit scheme, by adding only O(

√
ℓM) group elements

to the master public key. This can be accomplished by incorporating our single bit scheme in
Section 4.5 with the technique from [HJKS10, YKHK10].

For simplicity, we assume that ℓM = (ℓ′)2 for some ℓ′ ∈ N in the following.

Setup(1λ) : On input 1λ, it chooses an asymmetric bilinear group G1,G2,GT with efficiently
computable map e : G1×G2 → GT of prime order p = p(λ). Let g and h be generator of G1

and G2 respectively. It then picks w0, w1,1, . . . , w1,ℓ, w2,1, . . . , w2,ℓ, α1, . . . αℓ′ , β1, . . . , βℓ′
$←

Zp and rand
$← {0, 1}|GT |. It finally outputs

mpk = (g,W0 = gw0 , {Wi,j = gwi,j}(i,j)∈[2]×[ℓ], {gαi}ℓ′i=1, {gβi}ℓ′i=1, rand) and

msk = (h, {αi}i∈[ℓ′], {βi}i∈[ℓ′], w0, w1,1, . . . , w1,ℓ, w2,1, . . . , w2,ℓ)

KeyGen(mpk,msk, ID) : It first computes H(ID) (defined as Eq.(4.56)) using msk and picks r(i,j)
$←

Zp for (i, j) ∈ [ℓ′]× [ℓ′]. It then computes

sk
(i,j)
ID =

(
A

(i,j)
1 = hαiβj+r(i,j)·H(ID), A

(i,j)
2 = h−r

(i,j)
, {B(i,j)

k = hr
(i,j)w2,k}ℓk=1

)
for (i, j) ∈ [ℓ′]× [ℓ′]. It then outputs skID = {sk(i,j)ID }(i,j)∈[ℓ′]×[ℓ′].

Encrypt(mpk, ID,M) : To encrypt a messageM = {0, 1}ℓM , it picks s, t1, . . . , tℓ
$← Zp and computes

C1 = gs, C2 =W s
0 ·

∏
j∈[1,ℓ]

W
tj
2,j , Dj = gtj ·

 ∏
i∈{i∈[1,ℓ]|(i,j)∈S(ID)}

W1,i

−s for j ∈ [1, ℓ]

It also computes e((gαi)s, hβj) = e(g, h)sαiβj and sets

K(i,j) = GL(e(g, h)sαiβj , rand)

for all (i, j) ∈ [ℓ′, ℓ′]. It then sets K = K(1,1)∥K(1,2)∥ · · · ∥K(ℓ′,ℓ′) and C0 = K⊕M. Finally, it
returns the ciphertext C = (C0, C1, C2, {Dj}ℓj=1).

Decrypt(mpk, skID, C) : To decrypt a ciphertext C = (C0, C1, C2, {Dj}ℓj=1) using a private key

skID = ({A(i,j)
1 , A

(i,j)
2 , {B(i,j)

k }ℓk=1}(i,j)∈[ℓ′]×[ℓ′]), it first computes

e(C1, A
(i,j)
1) · e(C2, A

(i,j)
2) ·

∏
k∈[1,ℓ]

e(Dj , B
(i,j)
k) = e(g, h)sαiβj .

for (i, j) ∈ [ℓ′]×[ℓ′]. Then it sets K(i,j) = GL(e(g, h)sαiβj , rand) and K = K(1,1)∥K(1,2)∥ · · · ∥K(ℓ′,ℓ′).
Finally, it retrieves the message by C0 ⊕ K = M.

Correctness of the scheme can be checked similarly to the single-bit version in Section 4.5.

99

4.5.3 Security of the Multi-bit Variant

Security of the multi-bit scheme is reduced to the security of a certain variant of the single-bit
scheme. Concretely, we consider a variant of our single-bit scheme with the master public key
being changed to

mpk = (g,W0 = gw0 , hw0 , {Wi,j = gwi,j}(i,j)∈[2]×[ℓ], {hw2,i}ℓi=1 , g
α, hβ, {hw1,iw2,j}(i,j)∈[ℓ]×[ℓ] , rand)

Namely, we add hw0 , {hw2,i}i∈[ℓ], and {hw1,iw2,j}(i,j)∈[ℓ]×[ℓ] to mpk. The rest of the scheme is un-
changed. We call the scheme “single bit scheme with redundant key”. We claim that the security
of this scheme can also be proven under the 3-CBDHE assumption with almost an identical proof
to that of Theorem 4.2. The only place where we need to change is Lemma 4.13. Here, we have to
simulate the above additional terms. In fact, this can easily be done using the problem instance
of the 3-CBDHE assumption, since we have

hw0 = (ha
2
)y0hw̃0 , hw2,i = (ha)y2,ihw̃2,i , hw1,iw2,j = (ha

2
)y1,iy2,j · (ha)y1,iw̃2,j+y2,jw̃1,i · hw̃1,iw̃2,j .

Summing up the above discussion, we have the following theorem.

Theorem 4.3. The single-bit scheme with redundant key is adaptively secure under the 3-CBDHE
assumption.

Therefore, to prove the security of our multi-bit variant, it suffices to show the following.

Theorem 4.4. Assuming the single-bit scheme with redundant key is adaptively secure, so is the
multi-bit scheme.

Proof. Let A be a PPT adversary that breaks the adaptive security of the scheme. To prove the
theorem, we consider the following hybrid games for (i, j) ∈ {(1, 0)}∪([ℓ′]× [ℓ′]). For convenience,
we will denote (i, ℓ′ + 1) := (i+ 1, 1) and (i, 0) := (i− 1, ℓ′).

Game(i,j) : This is the real game except that the challenger encrypts a message

M
(1,1)
1 ∥M(1,2)

1 ∥ · · · ∥M(i,j)
1 ∥M(i,j+1)

0 ∥ · · · ∥M(ℓ′,ℓ′)
0

where M
(i,j)
b denotes the (i− 1)ℓ′ + jth bit of Mb for b ∈ {0, 1}.

It can be seen that Game(1,0) corresponds to the case of coin = 0 (M0 is always encrypted) and
Game(ℓ

′,ℓ′) corresponds to the case of coin = 1 (M1 is always encrypted). We denote the event
that A outputs 1 in Game(i,j) be X(i,j). We have∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ =

∣∣∣∣12 Pr[ĉoin = 1|coin = 1] +
1

2
Pr[ĉoin = 0|coin = 0]− 1

2

∣∣∣∣
=

∣∣∣∣12 Pr[ĉoin = 1|coin = 1]− 1

2
Pr[ĉoin = 1|coin = 0]

∣∣∣∣
=

1

2

∣∣∣Pr[X(1,0)]− Pr[X(ℓ′,ℓ′)]
∣∣∣

=
1

2

∣∣∣∣∣∣
∑

(i,j)∈[ℓ′]×[ℓ′]

Pr[X(i,j−1)]− Pr[X(i,j)]

∣∣∣∣∣∣
100

≤ 1

2

∑
(i,j)∈[ℓ′]×[ℓ′]

∣∣∣Pr[X(i,j−1)]− Pr[X(i,j)]
∣∣∣ .

where the third equality follows from the definition of X(i,j) and the fourth equation follows from
our definition Game(i,0) = Game(i−1,ℓ

′). Therefore, to prove the theorem, it suffices to show that
|Pr[X(i,j−1)]− Pr[X(i,j)]| is negligible for all (i, j) ∈ [ℓ′]× [ℓ′].

Lemma 4.14. For any i⋆, j⋆ ∈ [ℓ′], there exists PPT adversary B whose advantage against
the adaptive security of the single-bit scheme with redundant key is at least |Pr[X(i⋆,j⋆−1)] −
Pr[X(i⋆,j⋆)]|/2.

Proof. Suppose an adversary A that has non-negligible advantage in distinguishing Game(i
⋆,j⋆−1)

and Game(i
⋆,j⋆). We use A to construct an adversary B against the variant of the single-bit scheme,

which proceeds as follows.

Setup. At the beginning of the game, B is given the master public keympk′ = (g,W0, {Wi,j}[i,j]∈[2]×[ℓ],
gα, hβ, {hw2,i}i∈[ℓ], {hw1,iw2,j}(i,j)∈[ℓ]×[ℓ], rand) for the single bit scheme. Then, B picks α̃i

$← Zp for

i ∈ [ℓ′]\{i⋆} and β̃j $← Zp for j ∈ [ℓ′]\{j⋆} and sets

gαi =

{
gα̃i for i ∈ [ℓ′]\{i⋆}
gα for i = i⋆

, hβj =

{
hβ̃j for j ∈ [ℓ′]\{i⋆}
hβ for j = j⋆

.

Note that B implicitly sets αi⋆ = α and βj⋆ = β here. Finally, it gives the master public key of
the multi-bit scheme mpk = (g,W0, {W1,i}ℓi=1, {W2,i}ℓi=1, {gαi}ℓ′i=1, {hβi}ℓ′i=1, rand) to A. B does
not give hw0 , {hw2,i}i∈[ℓ], and {hw1,iw2,j}(i,j)∈[ℓ]×[ℓ] to A and keeps them secret.

Phase 1 and Phase 2. When A makes a key extraction query for ID, B proceeds as follows.
We first observe that B can compute hαiβj for all (i, j) ∈ ([ℓ′]× [ℓ′])\{(i⋆, j⋆)} as follows:

hαiβj =


hα̃iβ̃j for i ̸= i⋆, j ̸= j⋆

(hα)β̃j for i = i⋆, j ̸= j⋆

(hβ)α̃i for i ̸= i⋆, j = j⋆
. (4.74)

For (i, j) ∈ ([ℓ′]×[ℓ′])\{(i⋆, j⋆)}, B picks r(i,j)
$← Zp and computes sk(i,j) = (A

(i,j)
1 , A

(i,j)
2 , {B(i,j)

k }ℓk=1)
as

A
(i,j)
1 = hαiβj ·

hw0
∏

(i′,j′)∈S(ID)

hw1,i′w2,j′

r(i,j)

, A
(i,j)
2 = h−r

(i,j)
,
{
B

(i,j)
k = (hw2,k)r

(i,j)
}ℓ

k=1
.

These can be computed using hw0 , hw2,i′ , and hw1,i′w2,j′ . To generate other parts of the private

key (i.e., sk
(i⋆,j⋆)
ID), B resort to its challenger. Namely, B makes key extraction query for ID and

obtains sk′ID = (A1 = hαβ+r·H(ID) = hαi⋆βj⋆+r·H(ID), A2 = h−r, {Bk = hrw2,k}ℓk=1). Then, it sets

sk
(i⋆,j⋆)
ID =

(
A

(i⋆,j⋆)
1 = A1, A

(i⋆,j⋆)
2 = A2, {B(i⋆,j⋆)

k = Bk}ℓk=1

)
.

Finally, it returns the secret key skID = {sk(i,j)ID }(i,j)∈[ℓ′]×[ℓ′].
Challenge Query. When A makes the challenge query for the challenge identity ID⋆ and mes-
sages M0,M1 ∈ {0, 1}ℓM , B proceeds as follows. It makes a challenge query for its challenger for

101

the identity ID⋆ and messages (M
(i⋆,j⋆)
0 ,M

(i⋆,j⋆)
1), where M

(i⋆,j⋆)
b is the (i⋆ − 1)ℓ′ + j⋆th bit of Mb.

Then, the challenge ciphertext(
C ′0 = M

(i⋆,j⋆)
coin ⊕ GL

(
e(g, h)sαβ , rand

)
, C ′1 = gs, C ′2, {D′j}ℓj=1

)
is given to B. B then computes K(i,j) = GL

(
e(C1, h

αiβj), rand
)
= GL

(
e(g, h)sαiβj , rand

)
for (i, j) ∈

([ℓ′]×[ℓ′])\{(i⋆, j⋆)}. This is possible because hαiβj for (i, j) ̸= (i⋆, j⋆) can be efficiently computable

as we observed in Eq.(4.74). Finally, B sets C0 ∈ {0, 1}ℓM as follows. In the following, C
(i,j)
0

denotes (i− 1)ℓ′ + jth bit of C0.

C
(i,j)
0 =


K(i,j) ⊕M

(i,j)
1 for (i < i⋆) ∨ (i = i⋆ ∧ j < j⋆)

C ′0 for i = i⋆, j = j⋆

K(i,j) ⊕M
(i,j)
0 for (i > i⋆) ∨ (i = i⋆ ∧ j > j⋆)

.

Finally, B returns the challenge ciphertext (C0, C1, C2, {Dj}ℓj=1) to B.

Guess. At last, A outputs ĉoin. Then, B outputs coin′ = ĉoin.

Analysis. It can be seen that the view of A corresponds to that in Game(i
⋆,j⋆−1) if coin = 0 and

Game(i
⋆,j⋆) if coin = 1. Therefore, B’s advantage is∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣
=

∣∣∣∣12 Pr[ĉoin = 1|coin = 1] +
1

2
Pr[ĉoin = 0|coin = 0]− 1

2

∣∣∣∣
=

1

2

∣∣∣Pr[ĉoin = 1|coin = 1]− Pr[ĉoin = 1|coin = 0]
∣∣∣

=
1

2

∣∣∣Pr[X(i⋆,j⋆−1)]− Pr[X(i⋆,j⋆)]
∣∣∣

as desired. This completes the proof of Lemma 4.14.

This completes the proof of Theorem 4.4.

4.6 Comparisons and Discussions

In this section, we compare our IBE schemes obtained in Section 4.4 and 4.5 with previous
schemes. Throughout this section, |mpk|, |C|, and |skID| denote the sizes of the master public
keys, ciphertexts, and private keys, respectively. We denote by κ the length of the identity, which
corresponds to the output length of the collision resistant hash if we choose to hash the bit string
representing an identity.

Ideal Lattice Based IBE. In Section 4.4. we proposed a new ideal lattice based IBE scheme.
By changing the base b of the gb-trapdoor, we obtain two types of instantiation offering tradeoffs.
Namely, by setting b = 2 we obtain the Type 1 IBE scheme and by setting b = n

1
4 we obtain

the Type 2 IBE scheme presented in Section 4.4.1. The Type 2 IBE allows for a more compact
size parameters compared to the Type 1 IBE, whereas the Type 1 IBE allows for a more efficient
sampling procedure due to the smaller Gaussian width. Note that the technique of changing the
base b is applicable for other existing IBE schemes as well, offering a similar tradeoff presented
above. Both of our schemes achieve the best efficiency among existing adaptively secure IBE

102

schemes assuming the fixed polynomial approximation of the RLWE problem. This is illustrated
in Table 4.1. We point out that the largest improvement from the Yamada’s IBE is that we
greatly weakened the underlying hardness assumption while improving the overall efficiency of
the scheme.

Figure 4.1: Comparison of Lattice-Base IBEs in the Standard Model.

Schemes |mpk| |C|, |skID|
1/α for LWE
Assumption

Anonymous?

[CHKP10] O(nκ log2 n) O(nκ log2 n) Fixed poly(n) Yes

[ABB10]+[Boy10]∗ O(nκ log2 n) O(n log2 n) Fixed poly(n) Yes

[Yam16]: Scheme 1 O(nκ
1
d log4 n) O(n log4 n) nω(1) Yes

[Yam16]: Scheme 2 O(nκ
1
d log4 n) O(n log4 n) All poly(n) No

Ours: Section 4.4. Type 1. O(nκ
1
d log2 n) O(n log2 n) Fixed poly(n) Yes

Ours: Section 4.4. Type 2. O(nκ
1
d log n) O(n log n) Fixed poly(n) Yes

All parameters presented in the table are obtained by instantiating the schemes in the
ring setting. d ∈ N is a flexible constant, which can be set to be any value. “1/α” for
LWE assumption refers to the underlying LWE assumption used in the security reduction.
“Fixed poly(n)” means that the corresponding scheme is proven secure under the LWE
assumption with 1/α being some fixed polynomial (e.g., n3). “All poly(n)” mean that we
have to assume the LWE assumption for all polynomial.

∗ In the security proof for the adaptively secure variant of IBE in [ABB10], we have a
restriction that q > Q. Namely, only bounded form of the security is proven. This
restriction is removed in the refined analysis due to Boyen [Boy10].

Bilinear Map Based IBE. Here, we compare our scheme in Section 4.5 with other adaptively
secure IBE schemes based on the hardness of computational/search problems on bilinear maps in
the standard model. To base the security of IBE schemes on such problems, we have to mask the
message using the Goldreich-Levin hardcore bit [GL89]. To the best of our knowledge, there are
only two IBE schemes that we can apply this modification: Waters IBE [Wat05] and Naccache
IBE [Nac07]. As shown in Table 4.2, our scheme achieves asymptotically shorter master public
key size than these schemes. We note that to compare the efficiency, we count the number of
group elements. However our method comes at the cost of increasing the ciphertext and private
key size and we further have to rely on a stronger assumption than theirs.

Figure 4.2: Comparison of IBE from Bilinear Maps in the Standard Model.

Schemes |mpk| |C|, |skID| Assumption

[Wat05] + Hardcore bit [GL89] O(κ) 2 CBDH
[Nac07] + Hardcore bit [GL89] O(κ/ log(λ)) = O(κ/ log(κ)) 2 CBDH
Ours: Section 4.5 O(

√
κ) O(

√
κ) 3-CBDHE

103

Chapter 5

Encoding Predicates by Arithmetic
Circuits and Their Applications

5.1 Introduction

A predicate is a function P : X → {0, 1} that partitions an input domain X into two distinct
sets according to some relation. Due to its natural compatibility with cryptographic primitives,
predicates have been used in many scenarios to control the disclosure of secrets. This may ei-
ther come up explicitly during construction (e.g., attribute-based encryptions [SW05, GPSW06],
predicate encryptions [BW07, SBC+07, KSW08]) or implicitly during security proofs (e.g., in the
form of programmable hashes [HK08, ZCZ16], admissible hashes [BB04a, CHKP10]). However,
how to express predicates as (arithmetic) circuits is usually not given much attention in these
works. Since the way we embed predicates into a cryptographic primitive has a direct effect
on the concrete efficiency of the schemes, it is important to know how efficiently we can embed
predicates. In this chapter, we propose an efficient encoding for a specific class of predicates and
focus on two primitives that benefit from this: verifiable random functions (VRFs) and predicate
encryptions (PE) schemes.

Verifiable Random Functions. VRFs introduced by Micali, Rabin and Vadhan [MRV99] are a
special form of pseudorandom functions (PRFs), which additionally enables a secret key holder to
create a non-interactive and publicly verifiable proof that validates the output value. An attractive
property for the VRF to have is the notion of all the desired properties coined by [HJ16], which
captures the following features: an exponential-sized input space, adaptive pseudorandomness,
and security under a non-interactive complexity assumption.

There currently exist two approaches for constructing VRFs with all the desired properties.
The first approach is to use a specific number theory setting (mainly bilinear groups) to hand-
craft VRFs [HW10, BMR10, ACF14, Jag15, HJ16, Yam17], and the second approach is to use a
more generic approach and build VRFs from general cryptographic primitives [GHKW17, Bit17,
BGJS17]. While the second approach provides us with better insight on VRFs and allows us to
base security on hardness assumptions other than bilinear map based ones, the major drawback
is the need for large verification key / proof sizes or the need for strong hardness assumptions
such as the subexponential Learning with Errors (LWE) assumption to instantiate the underlying
primitives. Concretely, all generic approaches require general non-interactive witness indistin-

0The contents of this chapter is based on the work presented at Asiacrypt 2017 under the title “On the Untapped
Potential of Encoding Predicates by Arithmetic Circuits and Their Applications” [Kat17].

104

guishable proofs (NIWIs) and constrained PRFs for admissible hash friendly functions, which we
currently do not know how to simultaneously construct compactly and base security under a weak
hardness assumption.

The first approach is more successful overall in light of compactness and the required hardness
assumptions, however, they come with their own shortcomings. Notably, [Yam17] presents three
constructions where only ω(log λ) group elements1 are required for either the verification key or
the proof. In particular, in one of their schemes, only sub-linear group elements are required for
both verification key and proof. However, all three schemes require an L-DDH2 assumption where
L = Ω̃(λ). In contrast, [Jag15] presents a scheme secure under a much weaker L-DDH assumption
where L = O(log λ) and [HJ16] under the DLIN assumption. However, these approaches require
a linear number of group elements in the verification key and proof in the security parameter.
Therefore, we currently do not know how to construct VRFs that are both compact and secure
under a weak hardness assumption.

Predicate Encryption. A predicate encryption (PE) scheme [BW07, SBC+07, KSW08] is a
paradigm for public-key encryption that supports searching on encrypted data. In predicate
encryption, ciphertexts are associated with some attribute X, secret keys are associated with
some predicate P , and the decryption is successful if and only if P (X) = 1. The major difficulty
of constructing predicate encryption schemes stems from the security requirement that enforces
the privacy of the attribute X and the plaintext even amidst multiple secret key queries.

Some of the motivating applications for predicate encryption schemes that are often stated
in the literatures are: inspection of recorded log files for network intrusions, credit card fraud
investigation and conditional disclosure of patient records. Notably, all the above applications only
require checking whether a subset or range conjunction predicate is satisfied. (For a more thorough
discussion, see [BW07, SBC+07, KSW08].) Therefore, in some sense many of the applications that
motivates for predicate encryption schemes can be implemented by predicate encryption schemes
for the class of predicates that are expressive enough to support subset or range conjunctions.

On the surface, the present situation on lattice-based predicate encryption schemes seem
bright. We have concrete constructions based on LWE for the class of predicates that supports
equality [ABB10, CHKP10], inner-products [AFV11], multi-dimensional equality (MultD-Eq)3

[GMW15], and all circuits [GVW15a, GKW17, WZ17]4. Therefore, in theory, we can realize all
the above applications in a secure manner, since subset or range conjunctions can be efficiently
encoded by any predicate as expressive as the MultD-Eq predicate, i.e., the works of [GMW15,
GVW15a, GKW17, WZ17] are all sufficient for the above applications. However, all of these
schemes may be too inefficient to use in real-life applications. Namely, the scheme of [GMW15]
highly resembles the bilinear map based construction of [SBC+07] and inherits the same problem;
it takes Ω(2D) decryption time where D roughly corresponds to the number of set elements
specifying the subset predicate or the number of conjunctions used in the range conjunction
predicate. Further, the schemes of [GVW15a, GKW17, WZ17] are powerful and elegant, albeit
they all require subexponential LWE assumptions. Therefore, aiming at predicate encryption
schemes with the above applications in mind, we currently do not have satisfactorily efficient

1Here, ω(f(λ)) denotes any function that grows asymptotically faster than f(λ), e.g., log2 λ = ω(log λ)
2 The L-DDH problem is where we are given (h, g, gα, · · · , gα

L

,Ψ) and have to decided whether Ψ = e(g, h)1/α

or a uniform random element.
3 The precise definition and discussions of this predicate are given in Section 5.4.2. For the time being, it is

enough to view it as a subset predicate.
4 [GKW17, WZ17] give a generic conversion from ABEs to PEs that uses an obfuscation for a specific program

proven secure under the subexponential LWE assumption. Therefore, we have provably secure lattice-based PEs
for all circuits using the lattice-based ABE of [GVW13, BGG+14a].

105

lattice-based schemes. In particular, we do not know how to construct efficient lattice-based PE
schemes for the class of MultD-Eq predicates. This is in sharp contrast with the bilinear map
setting where we know how to obtain efficient schemes for the above applications [BW07].

5.1.1 Our Contributions

In this chapter, we provide two results: a compact VRF under a weak assumption and an efficient
lattice-based PE scheme for the class of MultD-Eq predicates. For the time being, it suffices to
think of the MultD-Eq predicate as simply a predicate that supports the subset predicate. Here,
although the two results may seem independent, they are in fact related by a common theme that
they both implicitly or explicitly embed the subset predicates in their constructions.

Our idea is simple. We first detach predicates from cryptographic constructions, and view
predicates simply as a function. Then, we introduce the notion of predicate encoding schemes5,
where we encode predicates as simple (arithmetic) circuits that have different properties fit for
the underlying cryptographic applications. For example, we might not care that a predicate P
outputs 0 or 1. We may only care that P behaves differently on satisfied/non-satisfied inputs,
e.g., P outputs a value in S0 when it is satisfied and S1 otherwise, where S0, S1 are disjoint
sets. In particular, we provide two predicate encoding schemes PESFP and PESLin with different
properties encoding the MultD-Eq predicates. Then, based on these encoded MultD-Eq predicates,
we construct our VRFs, and PE schemes for the class of MultD-Eq predicates. The following is a
summary of our two results.

VRF. We propose two VRFs with all the desired properties. A detailed comparison is provided in
Table 5.1. Note that we intentionally excluded the recent VRF constructions of [Bit17, BGJS17,
GHKW17] from the table, since their schemes cannot be instantiated efficiently due to the lack
of efficient (general) NIWIs and constrained PRFs.

Our constructions are inspired by the bilinear map based VRFs of [Yam17], where they noticed
that an admissible hash function [BB04b, CHKP10] can be represented much more compactly by
using a subset predicate6. We improve their works by further noticing that subset predicates,
when viewed as simply a function, can be encoded in various ways into a circuit. In particular, we
propose a more efficient circuit encoding (PESFP) of the subset predicates that is compatible with
the underlying algebraic structure of the VRF. We note that at the technical level the constructions
are quite different; [Yam17] uses the inversion-based techniques [DY05, BMR10] whereas we do
not. Here, simply using PESFP already provides us with an improvement over previous schemes,
however, by exploiting a special linear structure in PESFP, we can further improve the efficiency
using an idea native to our scheme. Namely, we can skip some of the verification steps required to
check the validity of the proof, hence, lowering the number of group elements in the verification
key. Our schemes can be viewed as combining the best of [Jag15] and [Yam17]. In the following,
to compare the efficiency, we count the number of group elements of the verification key and proof.

5 We note that the term “predicate encoding” has already been used in a completely different context by [Wee14].
See the section of related work for the differences.

6 In particular, our idea is inspired by the VRFs based on the admissible hash function of [Yam17], Section 6.
However, the construction is more similar to the VRF based on the variant of Water’s hash in their Appendix C.

106

Figure 5.1: Comparison of VRFs with all the desired properties.

Schemes |vk| |sk| |π| Assumption Reduction
(# of G) (# of Zp) (# of G) Cost

[BMR10] O(λ) O(λ) O(λ) O(λ)-DDH O(ϵ/λ)
[HW10] O(λ) O(λ) O(λ) O(λQ/ϵ)-DDHE O(ϵ2/λQ)
[ACF14] O(λ) O(λ) O(λ) O(λ)-DDH O(ϵν+1/Qν)∗

[Jag15] O(λ) O(λ) O(λ) O(log(Q/ϵ))-DDH O(ϵν+1/Qν)∗

[HJ16] O(λ) O(λ) O(λ) DLIN O(ϵν+1/λQν)∗

[Yam17]: Section 7.1. ω(λ log λ) ω(log λ) ω(log λ) ω(λ log λ)-DDH O(ϵν+1/Qν)∗

[Yam17]: Section 7.3. ω(log λ) ω(log λ) ω(
√
λ log λ) ω(λ log λ)-DDH O(ϵν+1/Qν)∗

[Yam17]: App. C. ω(log λ) ω(log λ) poly(λ) poly(λ)-DDH O(ϵ2/λ2Q)

Ours: Section 5.5.2. ω(log2 λ) ω(log2 λ) ω(λ log2 λ) ω(log2 λ)-DDH O(ϵν+1/Qν)∗

Ours: Section 5.5.4. ω(
√
λ log λ) ω(log2 λ) ω(log λ) ω(log2 λ)-DDH O(ϵν+1/Qν)∗

To measure the verification key size |vk| and proof size |π| (resp. secret key size |sk|), we count
the number of group elements in G (resp. Zp). Q, ϵ denotes the number of adversarial queries
and advantage, respectively. We measure all the reduction cost using the techniques of [BR09].
ω(f(λ)) means that it can be taken as any function that grows asymptotically faster than f(λ); for
simplicity one can instead interpret the above ω(f(λ)) terms as O(log λ · f(λ)). poly(λ) represents
a fixed polynomial that does not depend on Q, ϵ.

∗ ν is a constant satisfying c = 1− 2−1/ν , where c is the relative distance of the underlying error
correcting code C : {0, 1}n → {0, 1}ℓ. We can make ν arbitrary close to 1 by choosing c < 1/2
appropriately and setting ℓ large enough. (For further detail, see [Gol08], Appendix E.1)

• In our first scheme, the verification key size is ω(log2 λ), the proof size is ω(λ log2 λ), and
the scheme is proven secure under the L-DDH assumption with L = ω(log2 λ). This is the
first scheme that simultaneously achieves a small verification key size and security under an
L-DDH assumption where L is poly-logarithm in the security parameter.

• Our second scheme is a modification of our first VRF with some additional ideas; the
verification key size is ω(

√
λ log λ), the proof size is ω(log λ), and the scheme is proven secure

under the L-DDH assumption with L = ω(log2 λ). This achieves the smallest verification
key and proof size among all the previous schemes while also reducing the underlying L of
the L-DDH assumption significantly to poly-logarithm.

PE Schemes for the MultD-Eq Predicates. Based on the predicate encoding scheme PESLin
for the MultD-Eq predicates, we propose a lattice-based PE scheme for the MultD-Eq predicates.
Due to the symmetry of the MultD-Eq predicates, we obtain key-policy and ciphertext-policy
predicate encryption schemes for the class of predicates that can be expressed as MultD-Eq, such
as subset and range conjunction. A detailed comparison is provided in Table 5.2. Note that we
exclude the generic constructions of [GVW15a, GKW17, WZ17] to keep the presentation simple.
Although the generic constructions are very powerful and elegant, they all require subexponential
LWE even if we restrict the underlying ABE to simple circuit classes and determining the concrete
efficiency is not obvious, e.g., in [GKW17] the secret key size depends on the underlying FHE
scheme.

107

Figure 5.2: Comparison of lattice PEs for MultD-Eq predicates (over ZD×ℓ
p).

Schemes |mpk| |sk| |ct| LWE param Dec. Time
(# of Zn×m

q) (# of Z2m) (# of Zm
q) 1/α (# of IP)

[GMW15] O(Dℓ) O(Dℓ) O(Dℓ) Õ(
√
D · n1.5)† O(ℓD)

Ours: Section 5.6.2 O(Dℓp) 1 O(Dℓp) Õ(max{ n2
√
Dℓp

,
√
Dℓp · n}) 1

To compare (space) efficiency, we measure the master public key size |mpk|, secret key size |sk| and
ciphertext size |ct| by the required number of elements in Zn×m

q ,Z2m,Zm
q , respectively. We measure

the decryption time as the number of inner products computed between vectors in Z2m
q .

† To be fair, we provided a more rigorous analysis for their parameter selections (as we did with our
scheme).

Our scheme achieves the best efficiency in terms of decryption time and the required modulus size
q; recall [GMW15] needs to perform Ω(2D) number of inner product operations (between secret
key vectors and ciphertext vectors) to decrypt a ciphertext, and [GVW15a, GKW17, WZ17]
require subexponential LWE for security. Furthermore, compared with [GMW15], the number of
secret keys (i.e., vectors in Z2m) we require are only one, whereas they require at least O(D). Our
construction follows very naturally from the predicate encoding scheme PESLin for the MultD-Eq
predicates, and builds upon the proof techniques of [AFV11, BGG+14a].

Other Applications. We also show how to make the identity-based encryption (IBE) scheme
of [Yam17] more efficient by using our predicate encoding scheme for the MultD-Eq predicate.
In particular, we are able to lower the approximation factor of the LWE problem from Õ(n11)
to Õ(n5.5) (with some additional analysis). Furthermore, we are able to significantly reduce the
parallel complexity of the matrix multiplications required during encryption and key generation.
Notably, our construction does not rely on the sequential matrix multiplication technique of
[GV15] as the IBE scheme of [Yam17]. Finally, we note that the size of the public matrices and
ciphertexts are unchanged.

5.1.2 Related Works

The idea of encoding predicates to another form has already been implicitly or explicitly used
in other works. The notion of randomized encoding [IK00, AIK04] (not specific to predicates)
aims to trade the computation of a “complex” function f(x) for the computation of a “simpler”
randomized function f̂(x; r) whose output distribution on an input x encodes the value for f(x).
The notion of predicate encoding [Wee14, CGW15] (and also the related notion of pair encoding
[Att14, Att16]) has already been used previously, in a completely different context, as a generic
framework that abstracts the concept of dual system encryption techniques for bilinear maps, and
not as a tool for lowering the circuit complexity of predicates.

5.2 Technical Overview

We now give a brief overview of our technical approaches. A formal treatment is given in the
main body. We break our overview in two pieces. First, we give intuition for our notion of
predicate encoding schemes PES and illustrate the significance of the MultD-Eq predicates. Then,
we overview how the different types of PES schemes for the MultD-Eq predicates can be used to
construct VRFs, and PE schemes for the MultD-Eq predicates.

108

Different Ways of Encoding Predicates. Predicates are often times implicit in cryptographic
constructions and in some cases there lies an untapped potential. To highlight this, we recall the
observation of [Yam17]. An admissible hash function is one of the central tools used to prove
adaptive security (e.g., digital signatures, identity-based encryptions, verifiable random functions).
At a high level, during the security proof, it allows the simulator to secretly partition the input
space into two disjoint sets, so there is a noticeable probability that the input values submitted
by the adversary as challenge queries fall inside the intended sets. Traditionally, the partition
made by the admissible hash function is viewed as a bit-fixing predicate; a bit-fixing predicate is
specified by a string K ∈ {0, 1,⊥}ℓ where the number of non-⊥ symbols are O(log λ), and the
input space {0, 1}ℓ is partitioned by the rule whether the string x ∈ {0, 1}ℓ matches the string K
on all non-⊥ symbols.

[Yam17] observed that a bit-fixing predicate can be encoded as a subset predicate; an obser-
vation not made since the classical works of [BB04b, CHKP10]. In particular, Yamada observed
thatK has many meaningless ⊥ symbols and only has O(log λ) meaningful non-⊥ symbols. Under
this observation, he managed to encode K into a very small set TK (e.g., |TK | = O(log2 ℓ)) where
each element indicates the position of the non-⊥ symbols. Now, the partition of the input space
is done by checking whether the input includes the set TK or not. Since admissible hash functions
are implicitly embedded in the public parameters, this idea allowed them to significantly reduce
the number of public parameters for identity-based encryption (IBE) schemes and the size of the
verification key (or the proof size) for VRFs.

We take this observation one step further. A predicate defines a function, but often a function
may be represented as a polynomial7 in various ways depending on what kind of properties we
require. This is easiest to explain through an example. Let us continue with the above example
of the subset predicate used in [Yam17]: PT : 2[2n] → {0, 1}, where PT(S) = 1 iff T ⊆ S. Here,
assume |T| = m and all the inputs to PT have cardinality n. One of the most natural ways to
represent the subset predicate as a polynomial is by its boolean circuit representation:

m∏
i=1

(
1−

n∏
j=1

(
1−

ζ∏
k=1

(
1− (ti,k − sj,k)2

)
︸ ︷︷ ︸

is ti=sj?

)
︸ ︷︷ ︸

is ti∈S?

)
=

{
1 if T ⊆ S

0 if T ̸⊆ S
, (5.1)

where ζ = ⌊log 2n⌋ + 1, T = {ti}i∈[m], S = {sj}j∈[n] ⊆ [2n] and ti,k, sj,k are the k-th bit of the
binary representation of ti, sj . Here Eq. (5.1) is the polynomial representation of the boolean
logic

∧
i∈[m]

∨
j∈[n]

∧
k∈[ζ](ti,k = sj,k). This is essentially what was used for the lattice-based

IBE construction of [Yam17] with very short public parameters. Observe that this polynomial
has degree 2mnζ, which is O(λ log3 λ) if we are considering the subset predicate specifying the
admissible hash function, where we have m = O(log2 λ), n = O(λ) and ζ = O(log λ). However, in
general, using a high degree polynomial may be undesirable for many reasons, even if it is only
of degree linear in the security parameter. For the case of the IBE scheme of [Yam17], due to the
highly multiplicative structure, the encryption and key generation algorithms require to rely on a
linear number of heavy sequentialized matrix multiplication technique of [GV15]. Therefore, it is
a natural question to ask whether we can embed a predicate into a polynomial with lower degree,
and in some cases into a linear polynomial.

7 It might be more precise to state that a predicate is represented by a circuit, however, in this section we adopt
the view of polynomials to better convey the intuition.

109

Indeed, we show that it is possible for the above predicate. Namely, we can do much better
by noticing the extra structure of subset predicates; we know there exists at most one j ∈ [n] that
satisfies ti = sj . Therefore, we can equivalently express Eq. (5.1) as the following polynomial:

m∏
i=1

n∑
j=1

ζ∏
k=1

(
1− (ti,k − sj,k)2

)
=

{
1 if T ⊆ S

0 if T ̸⊆ S
. (5.2)

This polynomial is now down to degree 2mζ. When this subset predicate specifies the admissible
hash function, Eq. (5.2) significantly lowers the degree down to O(log3 λ). Furthermore, if we do
not require the output to be exactly 0 or 1, and only care that the predicate behaves differently on
satisfied/non-satisfied inputs, we can further lower the degree down to 2ζ. In particular, consider
the following polynomial:

m−
m∑
i=1

n∑
j=1

ζ∏
k=1

(
1− (ti,k − sj,k)2

)
=

{
0 if T ⊆ S

̸= 0 if T ̸⊆ S
, (5.3)

which follows from the observation that |T| = m. Since, the output of the polynomial is different
for the case T ⊆ S and T ̸⊆ S, Eq. (5.3) indeed properly encodes the information of the subset
predicate. Using this polynomial instead of Eq. (5.1) already allows us to significantly optimize
the concrete parameters of the lattice-based IBE of [Yam17]. In fact, by encoding the inputs T, S
in a different way and with some additional ideas, we can encode the subset predicate into a linear
polynomial.

To summarize, depending on what we require for the encoding of a predicate (e.g., preserve the
functionality, linearize the encoding) one has the freedom of choosing how to express a particular
predicate. We formalize this idea of a “right encoding” by introducing the notion of predicate
encoding schemes. In the above we used the subset predicate as an motivating example, however,
in our work we focus on a wider class of predicates called the multi-dimensional equality MultD-Eq
predicates, and propose two encoding schemes PESFP and PESLin with different applications in
mind.

Finally, we state two justifications for why we pursue the construction of predicate encod-
ing schemes for the class of MultD-Eq predicates. First, the MultD-Eq predicates are expressive
enough to encode many useful predicates that come up in cryptography (e.g., bit-fixing, subset
conjunction, range conjunction predicates), that being for constructions of cryptographic prim-
itives or for embedding secret information during in the security proof. Second, in spite of its
expressiveness, the MultD-Eq predicates have a simple structure that we can exploit and offers us
plenty of freedom on the types of predicate encoding schemes we can achieve. The definition and
a more detailed discussion on the expressiveness of MultD-Eq are provided in Section 5.4.2, 5.4.3.

Constructing VRFs. Similarly to many of the prior works [BMR10, ACF14, Jag15, Yam17]
on VRFs with all the desired properties, we use admissible hash functions and base security on
the L-DDH assumption, which states that given (h, g, gα, · · · , gαL

,Ψ) it is hard to distinguish
whether Ψ = e(g, h)1/α or a random element. Here, we briefly review the core idea used during
the security proof of [Yam17] for the pseudorandomness property of the VRF. We note that many
of the arguments made below are informal for the sake of intuition. Their observation was that
the admissible hash function embedded during simulation can be stated in the following way using
a subset predicate:

FT(X) =

{
0 if T ⊆ S(X)

1 if T ̸⊆ S(X)
where S(X) = {2i− C(X)i | i ∈ [n]}.

110

Here, C(·) is a public hash function that maps an input X (of the VRF) to a bit string {0, 1}n,
and T ⊆ [2n] is a set defined as T = {2i −Ki | i ∈ [n],Ki ̸= ⊥} where K is the secret string in
{0, 1,⊥}n that specifies the partition made by the admissible hash. Since, the number of non-⊥
symbols in K are O(log2 λ), the above function can be represented by a set T with cardinality
O(log2 λ). During security proof, by the property and definition of FT, we have(

T ̸⊆ S(X(1))
)
∧ · · · ∧

(
T ̸⊆ S(X(Q))

)
∧
(
T ⊆ S(X∗)

)
,

with non-negligible probability, where X∗ is the challenge input and X(1), · · · , X(Q) are the inputs
for which the adversary has made evaluation queries. The construction of [Yam17] is based
on previous inversion-based VRFs [DY05, BMR10]. Here, we ignore the problem of how to
add verifiability to the scheme and overview on how they prove pseudorandomness of the VRF
evaluation. Informally, during simulation, the simulator uses the following polynomial to encode
the admissible hash function:

Q(α)
/ (m∏

i=1

n∏
j=1

(α+ ti − sj)
)
=

{
const
α + poly(α) if T ⊆ S(X)

poly(α) if T ̸⊆ S(X)
, (5.4)

where Q(α) is some fixed polynomial with degree roughly 4n independent of the input X. Here,
recall α ∈ Zp is that of the L-DDH problem, and notice that in Eq. (5.4) the polynomial will have
α in the denominator if and only if T ⊆ S(X). Although this may not seem quite like it, this
polynomial is indeed an encoding of the subset predicate8 since it acts differently depending on
T ⊆ S(X) and T ̸⊆ S(X). Finally, we note that the output Y of the VRF is obtained by simply
putting the above polynomial in the exponent of e(g, h).

Now, if the simulator is given enough (gα
i
)i∈[L] as the L-DDH challenge, it can create a

valid evaluation Y for inputs X such that T ̸⊆ S(X), since it can compute terms of the form
e(gpoly(α), h) = e(g, h)poly(α). Furthermore, for the challenge query X∗ it will use Ψ; if Ψ =
e(g, h)1/α it can correctly simulate for the case T ⊆ S(X∗), otherwise the evaluation Y ∗ of the
VRF is independent of X∗. Therefore, under the hardness of the L-DDH assumption, the output
is proven pseudorandom. Observe that for the simulator to compute e(g, h)poly(α) from Eq. (5.4),
it needs to have (gα

i
)i∈[L] where L = O(n). Then, since n = O(λ), we need to base this on

an L-DDH assumption where L = O(λ).9 To reflect the above polynomial, the verification keys
are set as (h, ĝ, (Wi = ĝwi)) in the actual construction. During simulation the parameters are
(roughly) set as ĝ = gQ(α), ĝwi = ĝα+ti .

The above construction is rather naive in that it checks whether T ⊆ S(X) in a brute-force
manner (as also noted in [Yam17]). Our idea is to instead use the polynomial from Eq. (5.2)
to represent the admissible hash function. In other words, we embed the following polynomial
during simulation:

1

α
·

m∏
i=1

n∑
j=1

ζ∏
k=1

(
1− (α+ ti,k − sj,k)2

)
=

{
1
α + poly(α) if T ⊆ S(X)

poly(α) if T ̸⊆ S(X)
. (5.5)

We note that in our actual construction, we use an optimized version of Eq. (5.2) called PESFP.
Similarly to above, we put the above polynomial in the exponent of e(g, h) for the VRF evaluation.

8 To be strict, this does not exactly fit the definition of predicate encoding we define in Section 5.4. However,
we can do so by appropriately arguing the size of α or by viewing α as an indeterminate.

9 In the actual construction we require L = ω(λ log λ), since we need to simulate a higher degree polynomial in
the exponent.

111

The difference is that the degree of the polynomial in Eq. (5.5) is significantly lowered down to
merely 2mζ, which is O(log3 λ). Therefore, when the simulator needs to compute e(g, h)poly(α)

during simulation, we only require (gα
i
)i∈[L] for L = O(log3 λ). Hence, we significantly reduced

the required L of the L-DDH assumption to poly-logarithm. Note that we need to validate
the output in a different way now, since the terms α, ti, sj that appear in the left-hand poly-
nomial are not in the denominator as in Eq. (5.4). Now, to generate the proof, we take the
so called “step ladder approach” [Lys02, ACF09, HW10], where we publish values of the form
(gθi′)i′∈[m], (g

θi,j,k′)(i,j,k′)∈[m]×[n]×[ζ] defined as follows:

θi′ =
i′∏

i=1

n∑
j=1

ζ∏
k=1

(
1− (wi,k − sj,k)2

)
, θi,j,k′ =

k′∏
k=1

(
1− (wi,k − sj,k)2

)
,

where we (roughly) set gwi,k as gα+ti,k during simulation. Although this scheme achieves a very
short verification key, it comes at the cost of a rather long proof size of O(mnζ) = O(λ log3 λ).

Finally, we describe how to make the proof much shorter, while still maintaining a sub-linear
verification key size. As a first step, we can use the simple trick used in [Yam17] to make the
proof much shorter. Namely, we add helper components to the verification key so that anyone can
compute (θi,j,k′) publicly. However, as in [Yam17], this leads to a long verification key with size
Ω̃(λ). Interestingly, for our construction, we can do much better and shorten the verification key
by a quadratic factor by in a sense skipping some ladders. The main observation is the additive
structure in (θi′)i′ . In particular, if each θi′ were simply a large product

∏
i,j,k

(
1− (wi,k− sj,k)2

)
,

we would have to prepare all the necessary helper components in the verification key that would
allow to compute gθi,j,ζ . This is because in the step ladder approach, after computing gθi,j,ζ , we
have to reuse this as an input to the bilinear map to validate the next term in the ladder. However,
in our case, we only need the ability to publicly compute e(g, g)θi,j,ζ . Here, we crucially rely on

the additive structure in θi′ that allows us to compute e(g, g)
∑

j∈[n] θi,j,ζ by ourselves; thus the

notion of skipping some ladders. Note that we are not able to publicly compute e(g, g)
∏

j∈[n] θi,j,ζ .

Finally, we continue with the step ladder approach for the outer
∏i′

i=1 products. Therefore, since
we only need the ability to generate e(g, g)θi,j,ζ rather than gθi,j,ζ , we can reduce quadratically
the number of helper components we have to publish in the verification key.

Constructing PE for the MultD-Eq Predicates. Our proposed predicate encryption scheme
for the MultD-Eq predicates follows the general framework of [AFV11, BGG+14a], which allows
us to compute an inner product of a private attribute vector X associated to a ciphertext and
a (public) predicate vector Y associated to a secret key. To accommodate this framework, we
use our proposed linear predicate encoding scheme PESLin for the MultD-Eq predicates. In the
overview, we continue with our examples with the subset predicate for simplicity. The core idea
is the same as for the MultD-Eq predicates. Essentially, PESLin will allow us to further modify
Eq. (5.3), to the following linear polynomial:

L∑
i=1

aiXi =

{
0 if T ⊆ S

̸= 0 if T ̸⊆ S
, (5.6)

where (Xi)i∈[L], (ai)i∈[L] ∈ ZL
q are encodings of the attribute set T and the predicate set S, respec-

tively.
Following the general framework, the secret key for a user with predicate set S is a short vector

e such that [A|BS]e = u for a random public vector u, where BS is defined as in Eq. (5.7) below.

112

Furthermore, we privately embed an attribute set T into the ciphertext as

[c⊤1 | · · · | c⊤L] = s⊤[B1 + X1G | · · · | BL + XLG] + [z⊤1 | · · · | z⊤L].

Using the gadget matrix G of [MP12], a user corresponding to the predicate set S can transform
the ciphertext without knowledge of T as follows:

L∑
i=1

c⊤i G
−1(aiG) = s⊤

(L∑
i=1

BiG
−1(aiG)︸ ︷︷ ︸

= BS

+
L∑
i=1

aiXi ·G
)
+

L∑
i=1

z⊤i G
−1(aiG)︸ ︷︷ ︸

= z (noise term)

. (5.7)

Observe the matrix BS is defined independently of X (i.e., the attribute set S). By Eq. (5.6) and
the correctness of the predicate encoding scheme PESLin, we have

∑
i∈[L] aiXi = 0 when the subset

predicate is satisfied, as required for decryption. To prove security, we set the matrices {Bi}i∈[L]
as Bi = ARi − X∗i ·G, where A is from the problem instance of LWE, Ri is a random matrix
with small coefficients and (X∗i)i∈[L] is the encoding of the challenge attribute set T∗. During
simulation we have

BS = ARS −
L∑
i=1

aiX
∗G, where RS =

L∑
i=1

RiG
−1(aiG).

for any set S. Here, we have
∑

i∈[L] aiX
∗ ̸= 0 iff T∗ ̸⊆ S. Therefore, for the key extraction queries

for S such that T∗ ̸⊆ S, we can use RS as the G-trapdoor [MP12] for the matrix [A|BS] to
simulate the secret keys. We are able to generate the challenge ciphertext for the subset T∗ by
computing

(s⊤A+ z′⊤)︸ ︷︷ ︸
LWE Problem

[I|R1| · · · |RL] = s⊤[A|B1 + X∗1G| · · · |BL + X∗LG] + z′⊤[I|R1| · · · |RL]︸ ︷︷ ︸
simulation noise term

A subtle point here is that the simulation noise term is not distributed correctly as in Eq. (5.7).
However, this can be resolved by the noise rerandomization technique of [KY16].10

Finally, we propose a technique to finer analyze the growth of the noise term z =
∑

i∈[L] z
⊤
i G

−1(aiG)

and the G-trapdoor RS =
∑

i∈[L]RiG
−1(aiG) used during simulation. This allows us to choose

narrower Gaussian parameters and let us base security on a weaker LWE assumption. The main
observation is that G−1(aiG) ∈ {0, 1}nk×nk is a block-diagonal matrix with n square matrices
with size k along its diagonals where n = O(λ) and k = O(log λ). Exploiting this additional
block-diagonal structure, we are able to finer control the growth of ∥v∥2 and s1(RS) (i.e., the
largest singular value of RS).

5.3 Preparation

5.3.1 Verifiable Random Functions

We define a verifiable random function VRF = (Gen,Eval,Verify) as a tuple of three probabilistic
polynomial time algorithms [MRV99].

10 Alternatively, we could have used the techniques of [AFV11, BGG+14a] and altered the real scheme by
multiplying the error vectors of the ciphertexts by random matrices with small coefficients.

113

Gen(1λ)→ (vk, sk): The key generation algorithm takes as input the security parameter 1λ and
outputs a verification key vk and a secret key sk.

Eval(sk, X) → (Y, π): The evaluation algorithm takes as input the secret key sk and an input
X ∈ {0, 1}n, and outputs a value Y ∈ Y and a proof π, where Y is some finite set.

Verify(vk, X, (Y, π)) → 0/1: The verification algorithm takes as input the verification key vk,
X ∈ {0, 1}n, Y ∈ Y and a proof π, and outputs a bit.

Definition 5.1. We say a tuple of polynomial time algorithms VRF = (Gen,Eval,Verify) is a
verifiable random function if all of the following requirements hold:

Correctness. For all λ ∈ N, all (vk, sk) ← Gen(1λ) and all X ∈ {0, 1}n, if (Y, π) ← Eval(sk, X)
then Verify(vk, X, (Y, π)).

Uniqueness. For an arbitrary string vk ∈ {0, 1}∗ (not necessarily generated by Gen) and all
X ∈ {0, 1}n, there exists at most a single Y ∈ Y for which there exists an accepting proof π.

Pseudorandomness. This security notion is defined by the following game between a challenger
and an adversary A.

Setup. The challenger runs (vk, sk)← Gen(1λ) and gives vk to A.

Phase 1. A adaptively submits an evaluation query X ∈ {0, 1}n to the challenger, and the
challenger returns (Y, π)← Eval(sk, X).

Challenge Query. At any point, A may submit a challenge input X∗ ∈ {0, 1}n. Here,
we require that A has not submitted X∗ as an evaluation query in Phase 1. The challenger
picks a random coin coin← {0, 1}. Then it runs (Y ∗0 , π

∗
0)← Eval(sk, X∗) and picks Y ∗1 ← Y.

Finally it returns Y ∗coin to A.

Phase 2. A may continue on submitting evaluation queries as in Phase 1 with the added
restriction that X ̸= X∗.

Guess. Finally, A outputs a guess ĉoin for coin.

The advantage of A is defined as |Pr[ĉoin = coin]− 1
2 |. We say that the VRF satisfies (adaptive)

pseudorandomness if the advantage of any probabilistic polynomial time algorithm A is negligible.

5.3.2 Predicate Encryptions

We present the definition of predicate encryption [BW07, KSW08, AFV11]. A predicate en-
cryption PE scheme with attribute space X and predicate space P consists of four probabilistic
polynomial time algorithms (Setup,KeyGen,Encrypt,Decrypt).

Setup(1λ)→ (mpk,msk): The setup algorithm takes as input a security parameter 1λ and outputs
a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, P)→ skP : The key generation algorithm takes as input the master public key
mpk, the master secret key msk, and a predicate P ∈ P. It outputs a secret key skP . We
assume the description of P is implicitly included in skP .

Encrypt(mpk, X,M)→ ct: The encryption algorithm takes as input a master public key mpk, an
attribute vector X ∈ X and a message M. It outputs a ciphertext ct.

114

Decrypt(mpk, skP , ct)→ M or ⊥: The decryption algorithm takes as input the master public key
mpk, a secret key skP , and a ciphertext ct. It outputs the message M or ⊥, which means
that the ciphertext is not in a valid form.

Definition 5.2. We say a tuple of algorithms PE = (Setup,KeyGen,Encrypt,Decrypt) is a predi-
cate encryption scheme if all of the following requirements hold:

Correctness. For all λ ∈ N, all X ∈ X , P ∈ P such that P (X) = 111 and all M in the specified
message space, Pr[Decrypt(mpk, skP ,Encrypt(mpk, X,M)) = M] = 1 − negl(λ) holds, where the
probability is taken over the randomness used in all of the algorithms.

Security. This security notion is defined by the following game between a challenger and an
adversary A.

Setup. At the outset of the game, A submits to the challenger an attribute X∗ ∈ X on
which it wishes to be challenged. Then, the challenger runs (mpk,msk) ← Setup(1λ) and
gives the public parameter mpk to A.

Phase 1. A adaptively submits key extraction queries. If A submits a predicate P ∈ P to
the challenger, the challenger returns skP ← KeyGen(mpk,msk, P). Here, we require the
predicates P to satisfy P (X∗) = 0 (that is, skP does not decrypt the challenge ciphertext).

Challenge Phase. At any point, A outputs a message M∗. The challenger picks a random
coin coin ← {0, 1} and a random ciphertext ct∗1 from the ciphertext space. If coin = 0, it
runs ct∗0 ← Encrypt(mpk, X∗,M∗) and gives the challenge ciphertext ct∗0 to A. If coin = 1,
it gives ct∗1 to A.

Phase 2. A may continue to make key extraction queries as in Phase 1.

Guess. Finally, A outputs a guess ĉoin for coin.

The advantage of A is defined as |Pr[ĉoin = coin]− 1
2 |. We say that the PE scheme is selectively

secure and weakly attribute hiding, if the advantage of any PPT A is negligible.

5.3.3 Background on Bilinear Maps.

Certified Group Generators. We define certified bilinear group generators as introduced in
[HJ16]. We require that there is an efficient bilinear group generator algorithm GrpGen that
on input 1λ outputs a description of bilinear groups G, GT with prime order p and a map e :
G × G → GT . We also require that GrpGen is certified. Namely, there is an efficient algorithm
GrpVfy that on input a (possibly incorrectly generated) description of the bilinear groups and
outputs whether the description is valid or not. Furthermore, we require that each group element
has unique encoding, which can be efficiently recognized.

Definition 5.3. A bilinear group generator is a PPT algorithm GrpGen that takes as input a se-
curity parameter 1λ and outputs Π = (p,G,GT , ◦, ◦T , e, ϕ(1)) such that the following requirements
are satisfied.

1. p is prime and log(p) = Ω(λ).

11 We follow the convention that P (X) = 1 signifies the ability to decrypt. This is opposite to the convention
used in the recent lattice-based schemes, and is done purely for convenience of our presentation.

115

2. G and GT are subsets of {0, 1}∗, defined by the algorithmic descriptions of maps ϕ : Zp → G
and ϕT : Zp → GT .

3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the security parameter)
maps ◦ : G×G→ GT and ◦T : GT ×GT → GT , such that

• (G, ◦) and (GT , ◦T) form algebraic groups

• ϕ is a group isomorphism from (Zp,+) to (G, ◦)
• ϕT is a group isomorphism from (Zp,+) to (GT , ◦T)

4. e is an algorithmic description of an efficiently computable (in the security parameter) bi-
linear map e : G×G→ GT . We require that e is non-degenerate, that is,

x ̸= 0 ⇒ e(ϕ(x), ϕ(x)) ̸= ϕT (0).

Definition 5.4. We say that a group generator GrpGen is certified, if there exists a deterministic
polynomial time algorithm GrpVfy with the following properties.

1. Parameter validation. Given a string Π (which is not necessarily generated by GrpGen),
algorithm GrpVfy(Π) outputs 1 if and only if Π has the form

Π = (p,G,GT , ◦, ◦T , e, ϕ(1))

and all requirements from Definition 5.3 are satisfied.

2. Recognition and unique representation of elements of G. Each element in G has a
unique representation that is efficiently recognizable. Namely, on input two strings Π and
s, GrpVfy(Π, s) outputs 1 if and only if GrpVfy(Π) = 1 and it holds that s = ϕ(x) for some
x ∈ Zp. Here ϕ : Zp → G denotes the fixed group isomorphism contained in Π to specify the
representation of elements of G (see Definition 5.3).

Hardness Assumption.

Definition 5.5 (L-Diffie-Hellman Assumption). For a PPT algorithm A, an advantage for the
decisional L-Diffie-Hellman problem L-DDH of A with respect to GrpGen is defined as follows:

AdvL-DDH
A = |Pr[A(Π, g, h, gα, gα2

, · · · , gαL
,Ψ0)→ 1]− Pr[A(Π, g, h, gα, gα2

, · · · , gαL
,Ψ1)→ 1]|,

where Π ← GrpGen(1λ), α ← Z∗p, g, h ← G,Ψ0 = e(g, h)1/α and Ψ1 ← GT . We say that L-DDH

assumption holds if AdvL-DDH
A is negligible for all PPT A.

5.3.4 Other Facts.

The following lemma is taken from [KY16], and is implicit in [BR09, Jag15, Yam16].

Lemma 5.1 ([KY16], Lemma 8). Let us consider a VRF and an adversary A that breaks pseu-
dorandomness with advantage ϵ. Let the input space be X and consider a map γ that maps a
sequence of inputs to a value in [0, 1]. We consider the following experiment. We first execute
the security game for A. Let X∗ be the challenge input and X1, · · · , XQ be the inputs for which
evaluation queries were made. We denote X = (X∗, X1, · · · , XQ). At the end of the game, we set

116

coin′ ∈ {0, 1} as coin′ = ĉoin with probability γ(X) and coin′ ← {0, 1} with probability 1 − γ(X).
Then, the following holds.∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ ≥ γmin · ϵ−
γmax − γmin

2

where γmin (resp. γmax) is the maximum (resp. minimum) of γ(X) taken over all possible X.

As noted in [Yam17], the lemma was originally proven for IBE schemes in [KY16], however,
the exact same proof works for VRFs.

5.4 Encoding Predicates with Arithmetic Circuits

Here, we formalize the intuition outlined in the introduction on how to encode predicates as
circuits. In doing so, we first define predicates and arithmetic circuits. Notably, to capture the
algebraic properties of circuits, we adapt the view of treating circuits as polynomials and vice
versa. (For further details, see [SY10].)

Predicates. A predicate is simply a function P : X → {0, 1} over some domain X with image
{0, 1}. In particular, predicate P divides the input space X into two disjoint sets according to
some specified relation. Often times, it will be more meaningful to consider a set of predicates
P = {P |P : X → {0, 1}}.
Arithmetic Circuits. An arithmetic circuit C over a ring R and a set of variables X =
{x1, · · · , xn} is a directed acyclic graph as follows, where the vertices of C are called gates. Every
gate in C of in-degree 0 (input gate) is labelled by either a variable from X or a ring element
in R. Every other gate in C is labeled by either + (addition gate) of × (product gate) and has
in-degree ≥2. The unique gate of out-degree 0 is called an output gate.12 The depth of C is the
length of the longest directed path reaching to the output gate. For two gates u and v in C, if
(u, v) is an edge in C, then u is called a child of v, and v is called a parent of u. For a gate v in
C, define Cv to be the sub-circuit of C rooted at v.

An arithmetic circuit computes a polynomial in a natural way. For a gate v in C, define
pv ∈ R[X] to be the polynomial computed by Cv as follows: If v is an input gate labelled
by α ∈ R ∪ X, then pv = α. If v is an addition gate with v1, v2, · · · , vk as children, then
pv =

∑
i∈[k] pvk . If v is a product gate with v1, v2, · · · , vk as children, then pv =

∏
i∈[k] pvk . For a

polynomial p ∈ R[X], and a gate v in C, we say that v computes p if p = Cv. In particular, we
say p is a polynomial representation of C when the output gate of C computes p. We define the
degree of C to be the degree of the maximal-degree monomial of the polynomial representation
of C.

Finally, it is clear that given some representation of a polynomial, we can uniquely reconstruct
the original arithmetic circuit by iteratively converting each monomials into gates beginning from
the most inner monomials and moving outward. Note that since one function may be expressed
as a polynomial in number of ways, the reconstructed arithmetic circuit may be different even
if it has the same functionality, e.g., although (x1 + x2)

2 and x21 + 2x1x2 + x22 have the same
functionality, (x1 + x2)

2 will be of depth 2 consisting of 1 addition gate and 1 product gate, but
x21 + 2x1x2 + x22 will be of depth 2 consisting of 1 addition gate and 3 product gates. In the
following work, we will use the terms circuits and polynomials interchangeably.

12 Here, we only consider arithmetic circuits with a single output.

117

5.4.1 Predicate Encoding Scheme

We formalize our main tool: predicate encoding scheme.

Definition 5.6 (Predicate Encoding Scheme). Let P = {Pλ}λ∈N be a family of set of ef-
ficiently computable predicates where Pλ is a set of predicates of the form P : Xλ → {0, 1} for
some input space Xλ, and let R = {Rλ}λ∈N be a family of rings. We define a predicate encoding
scheme over a family of rings R for a family of set of predicates P, as a tuple of deterministic
polynomial time algorithms PES = (EncInpt,EncPred) such that

• EncInpt(1λ,x) → x̂ : The input encoding algorithm takes as inputs the security parameter
1λ and input x ∈ Xλ, and outputs an encoding x̂ ∈ {0Rλ

, 1Rλ
}t ⊆ Rt

λ, where t = t(λ) is an
integer valued polynomial and 0Rλ

, 1Rλ
denote the zero and identity element of the ring Rλ,

respectively.

• EncPred(1λ, P) → Ĉ : The predicate encoding algorithm takes as inputs the security pa-
rameter 1λ and a predicate P ∈ Pλ, and outputs a polynomial representation of an arith-
metic circuit Ĉ : Rt

λ → Rλ. We denote Ĉλ as the set of arithmetic circuits {Ĉ | Ĉ ←
EncPred(1λ, P), ∀P ∈ Pλ}.

Correctness. We require a predicate encoding scheme over a family of rings R for a family of
set of predicates P to satisfy the following: for all λ ∈ N and all b ∈ {0, 1}, there exist disjoint
subsets Sλ,0, Sλ,1 ⊂ Rλ (i.e., Sλ,0 ∩ Sλ,1 = ϕ), such that for all predicates P ∈ Pλ, all inputs

x ∈ Xλ if P (x) = b then Ĉ(x̂) ∈ Sλ,b, where x̂← EncInpt(1λ,x), Ĉ ← EncPred(1λ, P).

Degree. We say that a predicate encoding scheme PES is of degree d = d(λ) if the maximal degree
of the circuits in Ĉλ (in their polynomial representation) is d. In case d = 1, we say PES is linear.

In the following, we will be more loose in our use of notations. For simplicity, we omit the
subscripts expressing the domain or the security parameter such as 0R, Sλ,b,Rℓ when it is clear
from context. We also omit the expression family and simply state that it is a predicate encoding
scheme over a ring R for a set of predicates P . Finally, in the following we assume that the
algorithms EncInpt(1λ, ·),EncPred(1λ, ·) will implicitly take the security parameter 1λ as input
and omit it stated otherwise.

The following is an illustrative example showing that the equality predicate Eqy : {0, 1}ℓ →
{0, 1} where Eqy(x) = 1 iff y = x can be encoded in a variety of ways into an arithmetic circuit
with different properties.

Example. (Encoding Equality Predicates) Let P be a set of predicates {Eqy| y ∈ {0, 1}ℓ}
where Eqy is defined as above, and let the input domain be X = {0, 1}ℓ where we denote X ∋ x =
(x1, · · · , xℓ). We first consider a predicate encoding scheme PES1 over the finite field Z2. Namely,
for all Eqy ∈ P, let EncPred(1λ,Eqy) output Ĉy : Zℓ

2 → Z2 such that Ĉy(x̂) = Πi∈[ℓ]
(
1− x̂i − ŷi

)
where x̂ = x ∈ {0, 1}ℓ (resp. ŷ = y) is the output of EncInpt(x) (resp. EncInpt(y)). Recalling
−1 = 1 over Z2, it can be checked that we have correctness with S0 = {0}, S1 = {1}, and the
degree of PES1 is d = ℓ. Next, we consider a predicate encoding scheme PES2 over the ring Zq

with a much lower degree where d = 1. In particular, for all Eqy ∈ P and any integer q > ℓ, let

EncPred(Eqy) output Ĉy : Zℓ
q → Zq such that Ĉy(x̂) = ℓ−

∑
i∈[ℓ]

(
(1− ŷi)+ (−1+2ŷi) · x̂i

)
where

x̂, ŷ ∈ {0, 1}ℓ are encoded in the same way as above. Now, observing

(1− ŷi) + (−1 + 2ŷi) · x̂i = x̂iŷi + (1− x̂i)(1− ŷi), (5.8)

118

it can be checked that Ĉy = 0 if and only if x̂i = ŷi = 0 or x̂i = ŷi = 1, i.e., Eqy(x) = 1. Therefore,
we have correctness with S0 = {1, · · · , ℓ}, S1 = {0}. Furthermore, since d = 1, PES2 is linear. In
the following, we continue on to use the left hand form of Eq. (5.8) to express equality.

Remark 5.1 (An alternative notion for the input encoding algorithm). We remark that an
alternative more liberal way of defining the EncInpt algorithm is to allow it to encode the input x
as any element in R, rather than only in {0R, 1R}. Then, for example, we may create a trivial
PES scheme with degree d = 1 for the equality predicate Eqy by encoding elements x ∈ {0, 1}ℓ as

an element in R = Z2ℓ, and encoding Eqy as an arithmetic circuit Ĉy(x̂) = x̂ − ŷ over the ring
R. However, in this work, we limit ourselves to the stricter notation of simply encoding inputs
as 0, 1 elements, since it will provide a more useful and natural compatibility with the algebraic
structure of the underlying cryptographic schemes we consider.

5.4.2 Encoding Multi-Dimensional Equality Predicates

Here, we propose two predicate encoding schemes for the multi-dimensional equality predicate13

(MultD-Eq) whose constructions are motivated by different applications. As we show later, the
multi-dimensional equality predicate is expressive enough to encode many useful predicates that
come up in cryptography (e.g., bit-fixing, subset conjunction, range conjunction predicates), that
being for constructions of cryptographic primitives or for embedding secret information during in
the security proof.

We first define the domains on which the multi-dimensional equality predicates MultD-Eq are
defined over, and then formally define what they are.

Definition 5.7 (Compatible Domains for MultD-Eq). Let p,D, ℓ be positive integers. We call
a pair of domains (X ,Y) ⊆ ZD×ℓ

p × ZD×ℓ
p to be compatible with the multi-dimensional equality

predicates if it satisfies the following:
For all X ∈ X ,Y ∈ Y and for all i ∈ [D], there exists at most one j ∈ [ℓ] such that Xi,j = Yi,j,

where Xi,j and Yi,j denotes the (i, j)-th element of X and Y respectively.

Definition 5.8 (MultD-Eq Predicates). Let p,D, ℓ be positive integers and let (X ,Y) ⊆ ZD×ℓ
p ×

ZD×ℓ
p be any compatible domains for MultD-Eq. Then, for all Y ∈ Y, the multi-dimensional

equality predicate MultD-EqY : X → {0, 1} is defined as follows:

MultD-EqY(X) =

{
1 if ∀i ∈ [D], ∃unique j ∈ [ℓ] such that Xi,j = Yi,j

0 otherwise
,

where Xi,j and Yi,j denotes the (i, j)-th element of X and Y respectively.

Note that MultD-EqY(X) is satisfied only if for each i ∈ [D], there exists exactly one j ∈ [ℓ]
such that Xi,j = Yi,j . Furthermore, since we restrict (X,Y) to be over the compatible domains
(X ,Y) for MultD-Eq, for all i ∈ [D] we will never have Xi,j = Yi,j and Xi,j′ = Yi,j′ for distinct
j, j′ ∈ [ℓ]. This restriction may appear contrived and inflexible at first, however, this proves to
be very useful for constructing predicate encoding schemes with nice qualities, and in fact does
not seem to lose much generality in light of expressiveness of the predicate. In particular, by

13 This predicate is presented in the works of [GMW15] as the AND-OR-EQ predicate satisfying the so called “at
most one” promise. We state the conceptual differences between their formalization and ours: they view predicates
as functions on both variables X and Y, whereas we view only X as a variable and treat Y as a constant. (Compare
[GMW15] Section 3.1 and our Definition 5.8).

119

appropriately instantiating the compatible domains, we can embed many useful predicates into
the MultD-Eq predicate. Further discussions are given in the next section.

We now present two types of predicate encoding schemes for the MultD-Eq predicate.

Functionality Preserving Encoding Scheme PESFP. Our first predicate encoding scheme
preserves the functionality of the multi-dimensional equality predicate and can be viewed as an
efficient polynomial representation of the circuit computing MultD-EqY.

Lemma 5.2. Let q = q(λ), p = p(λ), D = D(λ), ℓ = ℓ(λ) be positive integers and let (X ,Y) ⊆
ZD×ℓ
p ×ZD×ℓ

p be any compatible domains for the MultD-Eq predicate. Further, let P = {MultD-EqY :
X → {0, 1} | Y ∈ Y} be a set of MultD-Eq predicates. Then the following algorithms PESFP =
(EncInptFP,EncPredFP) is a predicate encoding scheme over the ring Zq with degree d = Dζ where
ζ = ⌊log p⌋+ 1:

• EncInptFP(X) → X̂ : It takes as input X ∈ X , and outputs an encoding X̂ ∈ {0, 1}Dℓζ as
follows:

X̂ = (Xi,j,k)(i,j,k)∈[D]×[ℓ]×[ζ],

where Xi,j,k is the k-th bit of the binary representation of the (i, j)-th element of X. Here,
the output tuple (Xi,j,k) is sorted in the lexicographical order. (See Section 5.3.)

• EncPredFP(MultD-EqY) → ĈY : It takes as input a predicate MultD-EqY ∈ P, and outputs

the following polynomial representation of an arithmetic circuit ĈY : ZDℓζ
q → Zq:

ĈY(X̂) =
D∏
i=1

ℓ∑
j=1

ζ∏
k=1

(
(1− Ŷi,j,k) + (−1 + 2Ŷi,j,k) · X̂i,j,k

)
,

where X̂, Ŷ ∈ {0, 1}Dℓζ are encodings of X,Y respectively.

The correctness of PESFP holds for the two disjoint subsets S0 = {0}, S1 = {1} ⊂ Zq.

Proof of Correctness. First, observe that the most inner product equals 1 if Xi,j = Yi,j and 0

otherwise, due to Eq. (5.8). Here, recall that X̂ is encoded as (Xi,j,k) and Xi,j denotes the (i, j)-th
element of X. In the following, denote Xi,Yi as the i-th row of X,Y, respectively. Now, since X and
Y come from compatible domains of the MultD-Eq predicate, for each i ∈ [D], we have Xi,j ̸= Yi,j

for all j ∈ [ℓ] when MultD-EqYi
(Xi) = 0. Therefore, we have the following for all i ∈ [D]:

ℓ∑
j=1

ζ∏
k=1

(
(1− Ŷi,j,k) + (−1 + 2Ŷi,j,k) · X̂i,j,k

)
=

{
1 if MultD-EqYi

(Xi) = 1

0 otherwise
. (5.9)

Finally, since MultD-EqY(X) = 1 if and only if MultD-EqYi
(Xi) = 1 for all i ∈ [D], we have

ĈY(X) = b when MultD-EqY(X) = b for b ∈ {0, 1}. Thus, we have S0 = {0}, S1 = {1}.

Linear Encoding Scheme PESLin. Our second construction is a linear predicate encoding
scheme. It achieves linearity by increasing the length of the encoded input X̂ and takes advantage
of the fact that we can change the functionality of the encoded arithmetic circuit Ĉ; the output
of Ĉ can be values other than 0 or 1, whereas outputs of predicates are defined to be in {0, 1}.

120

Lemma 5.3. Let q = q(λ), p = p(λ), D = D(λ), ℓ = ℓ(λ) be positive integers such that q > D
and let (X ,Y) ⊆ ZD×ℓ

p × ZD×ℓ
p be any compatible domains for the MultD-Eq predicate. Further,

let P = {MultD-EqY : X → {0, 1} | Y ∈ Y} be a set of MultD-Eq predicates. Then the following
algorithms PESLin = (EncInptLin,EncPredLin) is a predicate encoding scheme over the ring Zq with
degree d = 1, i.e., a linear scheme, where we set L = 2ζ and ζ = ⌊log p⌋+ 1 below.

• EncInptLin(X)→ X̂ : It takes as input X ∈ X , and outputs an encoding X̂ ∈ {0, 1}DℓL defined
as follows:

X̂ =
(ζ∏

k=1

(
Xi,j,k

)wk
)
(i,j,w)∈[D]×[ℓ]×[L]

,

where wk and Xi,j,k is the k-th bit of the binary representation of w − 114 and the (i, j)-th
element of X, respectively. In case Xi,j,k = wk = 0, we define (Xi,j,k)

wk to be 1.

• EncPredLin(MultD-EqY) → ĈY : It takes as input a predicate MultD-EqY ∈ P, and outputs
the following polynomial representation of an arithmetic circuit ĈY : ZDℓL

q → Zq:

ĈY(X̂) = D −
D∑
i=1

ℓ∑
j=1

L∑
w=1

ai,j,w · X̂i,j,w,

where ai,j,w ∈ {−1, 0, 1} ⊂ Zq is the coefficient for the term X̂i,j,w =
∏ζ

k=1(Xi,j,k)
wk of the

polynomial

ζ∏
k=1

(
(1− Yi,j,k) + (−1 + 2Yi,j,k) · Xi,j,k

)
.

Here we treat Y as a constant.

The correctness of PESLin holds for the two disjoint subsets S0 = {1, · · · , D}, S1 = {0} ⊂ Zq.

Proof of Correctness. First, it is easy to check that ai,j,w ∈ {−1, 0, 1} for all (i, j, w) ∈ [D]× [ℓ]×
[L], since we have (1−Yi,j,k) ∈ {0, 1} and (−1+ 2Yi,j,k) ∈ {−1, 1} for any Y ∈ Y. The rest of the

proof is similar to the previous proof for PESFP. First, notice that the term
∑ℓ

j=1

∑L
w=1 ai,j,w·X̂i,j,w

is the same as the left hand side of Eq. (5.9). Therefore, we have the following for all i ∈ [D]:

ℓ∑
j=1

L∑
w=1

ai,j,w · X̂i,j,w =

{
1 if MultD-EqYi

(Xi) = 1

0 otherwise
,

where Xi,Yi are the i-th row of X,Y, respectively. Now, since MultD-EqY(X) = 1 if and only if
MultD-EqYi

(Xi) = 1 for all i ∈ [D], we have the following:

D∑
i=1

ℓ∑
j=1

L∑
w=1

ai,j,w · X̂i,j,w =

{
D if MultD-EqY(X) = 1

∈ [0, D − 1] otherwise
.

Finally, subtracting the above by D and from the fact that q > D, we obtain correctness.
14This inconvenient notion is due to the fact that the bit length of p and L may differ by one in case p = 2n − 1

for n ∈ N.

121

Remark 5.2. In some applications, the compatible domains (X ,Y) for MultD-Eq will have some
additional structures that we can exploit to obtain more efficient encoding schemes. For an exam-
ple, in some case for all X ∈ X , all of the rows of X will be equal, i.e., Xi = Xi′ for all i, i′ ∈ [D]
where Xi denotes the i-th row of X. In this case, we can reduce the output length of EncInpt by
a factor of D by discarding the redundant terms. We will see some concrete examples for our
construction of VRF schemes.

5.4.3 Expressiveness of Multi-Dimensional Equality Predicates

In this section, we will look at the expressiveness of multi-dimensional equality predicatesMultD-Eq.
In particular, the following are some predicates that can be expressed as the multi-dimensional
equality predicate instantiated with appropriate compatible domains (X ,Y). Combining this with
the result of the previous section, we obtain a functionality preserving (PESFP) or a linear (PESLin)
encoding scheme for all the following predicates. Note that the choice of the compatible domains
are not unique, and different applications would motivate for different constructions. (For further
details, see also [BW07, SBC+07, GMW15].) For completeness, we provide discussions on how to
obtain the following predicates from the MultD-Eq predicate. Note that the following encoding
is only one example; there are possibly many more “efficient” ways of encoding the predicates as
MultD-Eq predicates, where the meaning of efficient may depend on the application in one’s mind.

Bit-fixing predicates. For a vector v ∈ {0, 1, ?}ℓ the bit-fixing predicate PBF
v : {0, 1}ℓ → {0, 1}

is defined as

PBF
v (x) = 1 ⇐⇒

ℓ∧
i=1

((
vi = xi

)∨(
vi =?

))
.

For example this can be built from MultD-Eq predicates with compatible domains XBF,YBF ⊆
Zℓ×2
3 . This predicate is also known as the hidden-vector predicate [BW07].

Construction. Without loss of generality, we set “?” to be 2. Then, map v ∈ {0, 1, 2}ℓ and
x ∈ {0, 1}ℓ to the following domains XBF,YBF ⊆ Zℓ×2

3 :

x→ x̄ =


x1 2
x2 2
...

...
xℓ 2

 ∈ XBF, v→ v̄ =


v1 v1

v2 v2
...

...
vℓ vℓ

 ∈ YBF.
It is easy to check that XBF,YBF ⊆ Zℓ×2

3 are indeed compatible with the MultD-Eq predicates,
i.e., for all i ∈ [ℓ] there exists at most one j ∈ [2] such that x̄i,j = v̄i,j . Furthermore, we have
PBF
v (x) = 1 if and only if MultD-Eqv̄(x̄) = 1.

Equality conjunction predicates. For some finite alphabet Σ and a vector v ∈ Σℓ the equality
conjunction predicate PEC

v : Σℓ → {0, 1} is defined as

PEC
v (x) = 1 ⇐⇒

ℓ∧
i=1

(
vi = xi

)
.

For example this can be built from MultD-Eq predicates with compatible domains XEC,YEC ⊆
Zℓw2×1
w1

, where ww2
1 = |Σ|.

122

Construction. The most natural way is to simply map Σℓ into Zℓ
|Σ|, and define XEC = YEC = Zℓ×1

|Σ| .

This domain is trivially compatible with the MultD-Eq predicate, and we have PEC
v (x) = 1 if and

only if MultD-Eqv̄(x̄) = 1. Similarly, we can also map Σ into Zw2
w1

where ww2
1 = |Σ|, and define

XEC = YEC = Zℓw2×1
w1

.

Subset conjunction predicates. For some finite alphabet Σ, let Ti ∈ 2Σ for i ∈ [ℓ] and set
T⃗ = (T1, · · · ,Tℓ). Then the subset conjunction predicate P SC

T⃗
:
∏ℓ

i=1 2
Σ → {0, 1} is defined as

P SC
T⃗

(S⃗) = 1 ⇐⇒
ℓ∧

i=1

(
Ti ⊆ Si

)
,

where S⃗ = (S1, · · · , Sℓ). For example this can be built from MultD-Eq predicates with compatible

domains XSC,YSC ⊆ Zm×|Σ|
3 , where m =

∑ℓ
i=1 |Ti|. In particular, when ℓ = 1, we simply call this

predicate as the subset predicate P SS
T : 2Σ → {0, 1}.

Construction. For simplicity of presentation, we first consider an encoding for the subset predicate
P Sub
T : 2Σ → {0, 1} for T ∈ 2Σ. Further, we assume that all the inputs to P Sub

T (·) have fixed
cardinality of n ≤ |Σ| (as in the case for the subset predicate embedded in the modified admissible
hash function. See. Section 5.5.1). Below, let T = {t1, · · · , tm}, S = {s1, · · · , sn} where m = |T|,
and view elements in Σ as elements in Z|Σ|. Then, we can map the sets T,S ∈ 2Σ to matrices in

the following domains XSub,YSub ⊆ Zm×n
|Σ| :

T→ T̄ =


t1 t1 · · · t1
t2 t2 · · · t2
...

... · · ·
...

tm tm · · · tm

 ∈ XSub, S→ S̄ =


s1 s2 · · · sn
s1 s2 · · · sn
...

... · · ·
...

s1 s2 · · · sn

 ∈ YSub. (5.10)

It can be checked that XSub,YSub ∈ Zm×n
|Σ| are compatible with the MultD-Eq predicates. Further-

more, we have P Sub
T (S) = 1 if and only if MultD-EqT̄(S̄) = 1.

To get rid of the restriction that every input to P Sub
T (·) needs to have cardinality n, we can

use the embedding given in [GMW15], Section 3.2, where they map T, S to domains in Zm×|Σ|
3 .

Finally, to obtain an encoding for the subset conjunction predicate we can simply concatenate
the encodings of the subset predicates for each Ti.

Range conjunction predicates. For T ∈ N and a = (a1, · · · ,aℓ),b = (b1, · · · ,bℓ) ∈ [T]ℓ, the
comparison conjunction predicate PRC

[a:b] : [T]
ℓ → {0, 1} is defined as

PRC
[a:b](x) = 1 ⇐⇒

ℓ∧
i=1

(
ai ≤ xi ≤ bi

)
.

For example this can be built from MultD-Eq predicates with compatible domains XRC,YRC ⊆
Zℓ×2⌈log T ⌉
T+1 .

Construction. We can use the tree data structure for storing intervals known as segment trees to
encode range conjunction predicates as MultD-Eq predicates. Since the encoding is classical and
rather contrived, we only present the results here, and refer the readers to [BKOS00], Chap.10
and [GMW15], Section 3.3 for further details. In particular, we can encode range conjunction
predicates PRC

[a:b] : [T]
ℓ → {0, 1} as MultD-Eq predicates with compatible domains XRC,YRC in

Zℓ×⌈log T ⌉
T+1 .

123

5.4.4 Exploitable Structures for More Efficient PES Schemes

Here we comment on Remark 5.2. In some cases, the compatible domains X ,Y for the multidi-
mensional predicates MultD-Eq may have additional structures that we can exploit to obtain a
more efficient predicate encoding PES scheme. We illustrate this in the following using as example
the subset predicate that will be implicit in our VRF construction from Section 5.5.2.

For our VRF construction, we use a special type of subset predicate P Sub
T : 2Σ → {0, 1}

where the inputs have fixed cardinality of n, as discussed above. We showed in Eq. (5.10) that
this particular subset predicate can be encoded as a MultD-Eq predicate with compatible do-
mains (XSub,YSub) ∈ Zm×n

|Σ| × Zm×n
|Σ| . Therefore, for example, by Lemma 5.2 we can construct

a functionality preserving predicate encoding scheme PESFP for the the subset predicate with
p = |Σ|, D = m, ℓ = n. Namely, for any S̄ ∈ XSub and T̄ ∈ YSub we have

EncInptFP(S̄) → ˆ̄S =
(
S̄i,j,k

)
(i,j,k)∈[m]×[n]×[ζ]

EncPredFP(MultD-EqT̄) → ĈSub
T̄ ,

where ĈSub
T̄ (ˆ̄S) =

m∏
i=1

n∑
j=1

ζ∏
k=1

(
(1− ˆ̄Ti,j,k) + (−1 + 2ˆ̄Ti,j,k) · ˆ̄Si,j,k

)
,

where ζ = ⌊log(|Σ|)⌋+ 1 and T̄i,j,k, S̄i,j,k are the k-th bit of the binary representation of T̄i,j , S̄i,j ,
respectively. However, as it can be observed from Eq. (5.10), for all k ∈ [ζ], we have T̄i,1,k = T̄i,j,k

for all j ∈ [m], and S̄1,j,k = S̄i,j,k for all i ∈ [n]. Therefore, we can in fact consider a more efficient
predicate encoding scheme PES′FP that takes advantage of this redundancy:

EncInpt′FP(S̄) → ˆ̄S =
(
S̄1,j,k

)
(j,k)∈[n]×[ζ]

EncPred′FP(MultD-EqT̄) → ĈSub
T̄ ,

where ĈSub
T̄ (ˆ̄S) =

m∏
i=1

n∑
j=1

ζ∏
k=1

(
(1− ˆ̄T1,j,k) + (−1 + 2ˆ̄T1,j,k) · ˆ̄Si,1,k

)
.

Looking ahead, this encoding scheme (written slightly differently using the symmetry of ˆ̄T1,j,k

and ˆ̄Si,1,k) is what we will present in Section 5.5.2, Eq. (5.14). This extra optimization allows us
to decrease a factor of m in the output size of EncInptFP. Since this idea translates to PESLin as
well, in applications such as the predicate encoding scheme we provide in Section 5.6.2, this will
directly yield a PE scheme with shorter ciphertexts by a factor of D.

5.5 Verifiable Random Functions

5.5.1 Modified Admissible Hash Functions

To construct our VRF, we use the notion of partitioning function as introduced in [Yam17], which
is a generalization of the standard admissible hash function [BB04b, CHKP10, FHPS13, Jag15].
At a high level, partitioning functions are similar to programmable hash functions, however, unlike
programable hash functions that are defined on specific algebraic structures such as bilinear groups
[HK08] and lattices [ZCZ16], partitioning functions are purely informational theoretic primitives.

Definition 5.9 (Partitioning Function). Let F = {Fλ : Kλ × Xλ → {0, 1}}λ∈N be a fam-
ily of functions. We say that F is a partitioning function, if there exists a PPT algorithm

124

PrtSmp(1λ, Q(λ), ϵ(λ)), which takes as input a polynomially bounded function Q = Q(λ) where
Q : N → N and a noticeable function ϵ = ϵ(λ) where ϵ : N → (0, 1/2], and outputs a partitioning
key K such that

1. There exists λ0 ∈ N such that

Pr

[
K ∈ Kλ : K ← PrtSmp

(
1λ, Q(λ), ϵ(λ)

)]
= 1

for all λ > λ0. Here λ0 may depend on the functions Q and ϵ.

2. For λ > λ0, there exists functions γmax(λ) and γmin(λ) that depend on functions Q and ϵ
such that for X(1), · · · , X(Q(λ)), X∗ ∈ Xλ with X∗ ̸∈ {X(1), · · · , X(Q(λ))},

γmin(λ) ≤ Pr

[
F(K,X(1)) = · · · = F(K,X(Q(λ))) = 1 ∧ F(K,X∗) = 0

]
≤ γmax(λ) (5.11)

holds and the function τ(λ) defined as

τ(λ) := γmin(λ) · ϵ(λ)−
γmax(λ)− γmin(λ)

2
(5.12)

is noticeable. The probability is taken over the choice of K ← PrtSmp(1λ, Q(λ), ϵ(λ)).

In this work, we consider the particular partitioning function called the modified admissible
hash function. This allows us to use the same techniques employed by admissible hash functions,
while providing for a more compact representation. The following is obtained by the results of
[Jag15] and [Yam17].

Definition 5.10. (Modified Admissible Hash Function) Let n = n(λ), ℓ = ℓ(λ) and η = η(λ) be
an integer-valued function of λ such that n, ℓ = Θ(λ) and η = ω(log λ), and {Cn : {0, 1}n →
{0, 1}ℓ}n∈N be a family of error correcting codes with minimal distance c · ℓ for a constant c ∈
(0, 1/2). Let

KMAH = {T ⊆ [2ℓ] | |T| < η} and XMAH = {0, 1}n.

Then, we define the modified admissible hash function FMAH : KMAH ×XMAH → {0, 1} as

FMAH(T, X) =

{
0, if T ⊆ S(X)

1, otherwise
where S(X) = {2i− C(X)i | i ∈ [ℓ]}. (5.13)

In the above, C(X)i is the i-th bit of C(X) ∈ {0, 1}ℓ.

Theorem 5.1. There exists an efficient algorithm PrtSmpMAH(1
λ, Q(λ), ϵ(λ)) which takes as input

a polynomially bounded function Q = Q(λ) where Q : N → N and a noticeable function ϵ = ϵ(λ)
where ϵ : N→ (0, 1/2], and outputs T with cardinality exactly η′ = η′(λ), where

η′ :=

⌊
log(2Q+Q/ϵ)

− log(1− c)

⌋
,

such that Eq. (5.11) and (5.12) hold with respect to F := FMAH,PrtSmp := PrtSmpMAH and τ(λ) =
2−η

′−1 · ϵ. In particular, FMAH is a partitioning function.

125

5.5.2 Construction

Intuition. In our VRF construction, we implicitly embed the partitioning function FMAH in the
output Y during simulation. In particular, as we mentioned in the technical overview, the strategy
is to embed FMAH in the exponent of g using an L-DDH assumption with the smallest possible L.

Since FMAH checks whether the subset predicate P Sub
T : 2[2ℓ] → {0, 1} is satisfied or not,

which is a special case of the subset conjunction predicate presented in Section 5.4.3, it can
be encoded as the multi-dimensional equality predicate MultD-Eq with (exploitable) compatible

domains XSub,YSub ⊆ Z|T|×ℓ2ℓ as we showed in Section 5.4.4. For our VRF construction, we consider
the functionality preserving encoding scheme PESFP for this MultD-Eq predicate with compatible
domains (XSub,YSub), and set up the verification keys so that the following polynomial is implicitly
embedded during the security reduction:

ĈSub
T (Ŝ) =

η∏
i=1

ℓ∑
j=1

ζ∏
k=1

(
(1− Ŝj,k) + (−1 + 2Ŝj,k) · T̂i,k

)
, (5.14)

where (informaly) T̂i,k, Ŝj,k corresponds to the k-th bit of the binary representation of the i-th
and j-th element in the set T,S ⊆ [2ℓ], respectively. From the correctness of PESFP, we have
ĈSub
T (Ŝ) = (T ⊆ S) as desired. Here, recall that the set S = S(X) is uniquely constructed for each

input X ∈ {0, 1}n. Finally, since η = ω(log λ), ℓ = Θ(λ), ζ = Θ(log λ), the above polynomial will
be of degree ω(log2 λ). Thus, this allows us to simulate the proof π and evaluation Y (and hence
prove security of our VRF) under a L-DDH assumption where L = ω(log2 λ).

Construction. For simplicity of presentation, we deviate slightly from the notations used above.
Below, n, ℓ, η, S(·) are the parameters and function specified by the modified admissible hash
function (Definition 5.10) and ζ is set as ⌊log p⌋+ 1.

Gen(1λ): On input 1λ, it runs Π ← GrpGen(1λ) to obtain a group description. It then chooses
random generators g, h← G∗ and w0, wi,k ← Zp for (i, k) ∈ [η]× [ζ]. Finally, it outputs

vk =

(
Π, g, h, g0 := gw0 ,

(
gi,k := gwi,k

)
(i,k)∈[η]×[ζ]

)
, and sk =

(
w0, (wi,k)(i,k)∈[η]×[ζ]

)
.

Eval(sk, X): On input X ∈ {0, 1}n, it first computes S(X) = {s1, · · · , sℓ} ∈ [2ℓ]. In the following,
let sj,k be the k-th bit of the binary representation of sj , where k ∈ [ζ]. It then computes

θi′ =

i′∏
i=1

ℓ∑
j=1

ζ∏
k=1

(
(1− sj,k) + (−1 + 2sj,k) · wi,k

)
, and θi,j,k′ =

k′∏
k=1

(
(1− sj,k) + (−1 + 2sj,k) · wi,k

)
for i′ ∈ [η] and (i, j, k′) ∈ [η]× [ℓ]× [ζ], and defines θ := θη. Finally, it outputs

Y = e(g, h)θ/w0 , and π =

(
π0 := gθ/w0 ,

(
πi′ := gθi′

)
i′∈[η]

,
(
πi,j,k′ := gθi,j,k′

)
(i,j,k′)∈[η]×[ℓ]×[ζ]

)
.

Verify(vk, X, (Y, π)): First, it checks the validity of vk. It outputs 0 if any of the following
properties are not satisfied.

1. vk is of the form
(
Π, g, h, g0,

(
gi,k
)
(i,k)∈[η]×[ζ]

)
.

126

2. GrpVfy(Π) = 1 and GrpVfy(Π, s) = 1 for all s ∈ (g, h, g0) ∪ (gi,k)(i,k)∈[η]×[ζ].

Then, it checks the validity of X,Y and π. In doing so, it first prepares the terms Φi′ , ḡi,j,k′

for all i′ ∈ [η], (i, j, k′) ∈ [η]× [ℓ]× [ζ] defined as

Φi′ :=

ℓ∏
j=1

πi′,j,ζ , and ḡi,j,k′ := g1−sj,k′ · (gi,k′)−1+2sj,k′ .

It outputs 0 if any of the following properties are not satisfied.

3. X ∈ {0, 1}n, Y ∈ GT , π is of the form
(
π0,
(
πi′
)
i′∈[η],

(
πi,j,k′

)
(i,j,k′)∈[η]×[ℓ]×[ζ]

)
.

4. It holds that for all i′ ∈ [η − 1] and (i, j, k′) ∈ [η]× [ℓ]× [ζ − 1],

e(π1, g) = e(Φ1, g), e(πi,j,1, g) = e(ḡi,j,1, g),

e(πi′+1, g) = e(Φi′+1, πi′), e(πi,j,k′+1, g) = e(ḡi,j,k′+1, πi,j,k′).

5. It holds that e(πη, g) = e(π0, g0) and e(π0, h) = Y .

If all the above checks are passed, it outputs 1.

5.5.3 Correctness, Unique Provability, and Pseudorandomness

Theorem 5.2 (Correctness and Unique Provability). Our scheme forms a correct verifiable ran-
dom function and satisfies the unique provability requirement.

Proof. We first prove the correctness of the scheme. It is easily seen that when Gen and Eval are
properly run, then it passes Step 1, 2, 3 of the verification algorithm. Next, observe that

Φi′ =

ℓ∏
j=1

πi′,j,ζ = g
∑ℓ

j=1 θi′,j,ζ = g
∑ℓ

j=1

∏ζ
k=1((1−sj,k)+(−1+2sj,k)·wi′,k)

ḡi,j,k′ = g1−sj,k′ · (gi,k′)−1+2sj,k′ = g((1−sj,k′)+(−1+2sj,k′)·wi,k′),

for all i′ ∈ [η] and (i, j, k′) ∈ [η]× [ℓ]× [ζ]. Since Φ1 = π1 and ḡi,j,1 = πi,j,1, the first two equation
in Step 4 holds. The equality of the rest of the equations in Step 4 follow using the additional
observation that

θi′+1 = θi′ ·
(ℓ∑

j=1

ζ∏
k=1

(
(1− sj,k) + (−1 + 2sj,k) · wi′+1,k

))
θi,j,k′+1 = θi,j,k′ ·

(
(1− sj,k′+1) + (−1 + 2sj,k′+1) · wi,k′+1

) ,

for all i′ ∈ [η − 1] and (i, j, k′) ∈ [η] × [ℓ] × [ζ − 1]. Finally, since by definition πη = gθη = gθ ,
Step 5 holds. This completes the proof of the correctness of the scheme.

Next, we turn to prove the unique provability of the scheme. We have to show that for any
vk ∈ {0, 1}∗ and X ∈ {0, 1}n, there does not exist any (Y0, π0, Y1, π1) such that Y0 ̸= Y1 and
Verify(vk, X, (Y0, π0)) = Verify(vk, X, (Y1, π1)) = 1.

127

• First of all, in Step 1 and Step 2, the verification algorithm checks whether Π contains valid
certified bilinear group parameters and checks whether all group elements g, h, g0, (gi,j)(i,j)∈[η]×[ζ]
are valid group elements with respect to Π. Thus, in the following, we may assume that all
these group elements are valid and have a unique encoding.

• In Step 3, it is checked whether X ∈ {0, 1}n, Y ∈ GT and π is in the proper form. In Step 4
and Step 5 it inductively checks whether all the equality holds. Now, since the bilinear
group is satisfied, i.e., each group element has a unique encoding and the bilinear map is
non-degenerate, there exists only one unique π such that correctness holds.

Therefore, the value of (Y, π) is uniquely determined by the input X and the verification key vk.
This completes the proof.

Theorem 5.3 (Pseudorandomness). Our scheme satisfies pseudorandomness assuming L-DDH
with L = ηζ = ω(log2 λ).

Proof. Let A be a PPT adversary that breaks the pseudorandomness of the scheme with non-
negligible advantage. Let ϵ = ϵ(λ) be its advantage and Q = Q(λ) be the upper bound on the
number of evaluation queries it makes. Here, since A is a valid adversary, Q is a polynomi-
ally bounded function and there exists a noticeable function ϵ0 = ϵ0(λ) such that ϵ(λ) ≥ ϵ0(λ)
holds for infinitely many λ. Then combining Definition 5.9 and Theorem 5.1 together, for
T ← PrtSmpMAH(1

λ, Q(λ), ϵ0(λ)) , we have T ⊆ [2ℓ] and |T| < η with probability 1 for all
sufficiently large λ. Therefore, in the following, we assume this condition always holds. We show
security of the scheme through a sequence of games. In each game, a value coin′ ∈ {0, 1} is

defined. While it is set coin′ = ĉoin in the first game, these values might be different in the later
games. In the following we define Ei to be the event that coin′ = coin in Gamei.

Game0 : This is the actual security game. Since Y = GT , when coin = 1, a random element
Y ∗1 ← GT is returned to A as the challenge query. At the end of the game, A outputs

a guess ĉoin for coin. Finally, the challenger sets coin′ = ĉoin. By assumption on the
adversary A, we have∣∣∣∣Pr[E0]−

1

2

∣∣∣∣ = ∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ϵ.

Game1 : In this game, we change Game0 so that the challenger performs an additional step at the
end of the game. Namely, the challenger first runs T ← PrtSmpMAH(1

λ, Q(λ), ϵ0(λ)) from
Theorem 5.1. As noted earlier, we have |T| ⊆ [2ℓ] and |T| < η. Then, it checks whether the
following condition holds:

FMAH(T, X
(1)) = 1 ∧ · · · = ∧ FMAH(T, X

(Q)) = 1 ∧ FMAH(T, X
∗) = 0

⇐⇒
(
T ̸⊆ S(X(1))

)
∧ · · · ∧

(
T ̸⊆ S(X(Q))

)
∧
(
T ⊆ S(X∗)

)
(5.15)

where X∗ is the challenge input and {X(i)}i∈[Q] are the inputs for which A has queried

the evaluation of the function. If it does not hold, the challenger ignores the output ĉoin
of A and sets coin′ ← {0, 1}. In this case, we say that the challenger aborts. If condition

(5.15) holds, the challenger sets coin′ = ĉoin. By Lemma 5.1 and Theorem 5.1 (See also
Definition 5.9, Item 2), the following holds for infinitely many λ:∣∣∣∣Pr[E1]−

1

2

∣∣∣∣ ≥ γmin · ϵ−
γmax − γmin

2

128

≥ γmin · ϵ0 −
γmax − γmin

2
≥ τ,

where τ = τ(λ) is a noticeable function. Recall that γmax, γmin, τ are functions specified by
Q, ϵ0 and the underlying partitioning function FMAH.

Game2 : In this game, we change the way w0, (wi,k)(i,k)∈[η]×[ζ] are chosen. First, at the beginning

of the game, the challenger picks T ← PrtSmpMAH(1
λ, Q(λ), ϵ0(λ)) and parses it as T =

{t1, · · · , tη′} ⊂ [2ℓ]. Note that changing the time on which the adversary runs the algorithm
is only conceptual. Now, recalling that by our assumption η′ < η, it sets ti = 0 for i ∈
[η′ + 1, η]. Next, it samples α ← Z∗p and w̃0, w̃i,k ← Zp for (i, k) ∈ [η] × [ζ]. Finally, the
challenger sets

w0 = w̃0 · α, wi,k = w̃i,k · α+ ti,k for (i, k) ∈ [η]× [ζ], (5.16)

where ti,k is the k-th bit of the binary representation of ti. The rest of the game is identical
to Game1. Here, the statistical distance of the distributions of w0, (wi,k)(i,k)∈[η]×[ζ] in Game1
and Game2 is at most (ηζ + 1)/p, which is negligible. Therefore, we have

|Pr[E1]− Pr[E2]| = negl(λ).

Before, getting into Game3, we introduce polynomials (associated with each input X) that
implicitly embeds the information on the partitioning function FMAH(T, X), i.e., the form of the
polynomials depend on whether T ⊆ S(X) or not. For any T ⊆ [2ℓ] with |T| = η′ < η and
X ∈ {0, 1}n (i.e., for any S(X)), we define the polynomial PT⊆S(X)(Z) : Zp → Zp as

PT⊆S(X)(Z) =

η∏
i=1

ℓ∑
j=1

ζ∏
k=1

(
(1− sj,k) + (−1 + 2sj,k) · (w̃i,kZ+ ti,k)

)
, (5.17)

where {sj,k}(j,k)∈[ℓ]×[ζ] and {ti,k}(i,k)∈[η]×[ζ] are defined as in Game2. Note that PT⊆S(X)(α) = θ.
Our security proof is built upon the following lemma on the partitioning function.

Lemma 5.4. There exists RT⊆S(X)(Z) : Zp → Zp such that

PT⊆S(X)(Z) =

{
1 + Z · RT⊆S(X)(Z), if FMAH(T, X) = 0

Z · RT⊆S(X)(Z), if FMAH(T, X) = 1
.

In other words, PT⊆S(X)(Z) is not divisible by Z if and only if T ⊆ S(X).

So as not to interrupt the proof of Theorem 5.3, we intentionally skip the proof of Lemma 5.4
for the time being. Furthermore, with an abuse of notation, for all X ∈ {0, 1}n, we define the
following polynomials that map Zp to Zp, which are defined analogously to the values computed
during Eval: 

θXi′ (Z) =
i′∏

i=1

ℓ∑
j=1

ζ∏
k=1

(
(1− sj,k) + (−1 + 2sj,k)(w̃i,kZ+ ti,k)

)

θXi,j,k′(Z) =
k′∏

k=1

(
(1− sj,k) + (−1 + 2sj,k)(w̃i,kZ+ ti,k)

) ,

for i′ ∈ [η] and (i, j, k′) ∈ [η]×[ℓ]×[ζ], and define θX(Z) := θXη (Z). Note that we have PT⊆S(X)(Z) =

θX(Z), θi′ = θXi′ (α), θi,j,k′ = θXi,j,k′(α), and θ = θX(α).

129

Game3 : Recall that in the previous game, the challenger aborts at the end of the game if condi-
tion (5.15) is not satisfied. In this game, we change the game so that the challenger aborts
as soon as the abort condition becomes true. Since this is only a conceptual change, we
have

Pr[E2] = Pr[E3].

Game4 : In this game, we change the way the evaluation queries are answered. When the adversary
A queries an input X to be evaluated, it first checks whether FMAH(T, X) = 1, i.e., it checks
if condition (5.15) is satisfied. If it does not hold, it aborts as in Game3. Otherwise, it
computes the polynomial RT⊆S(X)(Z) ∈ Zp[Z] such that PT⊆S(X)(Z) = Z · RT⊆S(X)(Z), and
returns

Y = e(gRT⊆S(X)(α)/w̃0 , h), (5.18)

π =

(
π0 = gRT⊆S(X)(α)/w̃0 ,

(
πi′ = gθ

X
i′ (α)

)
i′∈[η]

,
(
πi,j,k′ = g

θX
i,j,k′ (α)

)
(i,j,k′)∈[η]×[ℓ]×[ζ]

)
.

(5.19)

Note that existence of such a polynomial PT⊆S(X)(Z) is guaranteed by Lemma 5.4. By the

definition of θXi′ (Z) and θXi,j,k′(Z), the components πi′ and πi,j,k′ are correctly generated.
Furthermore, we have

RT⊆S(X)(α)

w̃0
=
α · RT⊆S(X)(α)

α · w̃0
=

PT⊆S(X)(α)

w0
=

θ

w0
.

Therefore, Y and π0 are also correctly generated, and the challenger simulates the evaluation
queries perfectly. Hence,

Pr[E3] = Pr[E4].

Game5 : In this game, we change the way the challenge ciphertext is created when coin = 0.
Recall in the previous games when coin = 0, we created a valid Y ∗0 = Eval(sk, X∗) as in
the real scheme. If coin = 0 and FMAH(X

∗) = 0 (i.e., if it does not abort), to create Y ∗0 ,
the challenger first computes the polynomial RT⊆S(X∗)(Z) ∈ Zp[X] such that PT⊆S(X∗)(Z) =
1 + Z · RT⊆S(X∗)(Z), whose existence is guaranteed by Lemma 5.4. It then sets,

Y ∗0 =
(
e(g, h)1/α · e(g, h)RT⊆S(X∗)(α)

)1/w̃0

and returns it to A. Here, the above term can be written equivalently as(
e(g, h)1/α · e(g, h)RT⊆S(X∗)(α)

)1/w̃0

= e(g(1+αRT⊆S(X∗)(α))/αw̃0 , h) = e(gPT⊆S(X∗)(α)/w0 , h) = e(gθ/w0 , h).

Therefore, the view of the adversary in unchanged. Hence,

Pr[E4] = Pr[E5].

Game6 : In this game, we change the challenge value to be a random value in GT regardless of
whether coin = 0 of coin = 1. Namely, the challenger sets Y ∗ ← GT . As we will show in
Lemma 5.5, assuming L-DDH is hard for L = ηζ, we have | Pr[E5] = Pr[E6] |= negl(λ).

130

Analysis. From the above, we have∣∣∣∣Pr[E6]−
1

2

∣∣∣∣ =

∣∣∣∣∣Pr[E1]−
1

2
+

5∑
i=1

(Pr[Ei+1]− Pr[Ei])

∣∣∣∣∣
≥

∣∣∣∣Pr[E1]−
1

2

∣∣∣∣− 5∑
i=1

|Pr[Ei+1]− Pr[Ei]|

≥ τ(λ)− negl(λ), (5.20)

for infinitely many λ. Since Pr[E6] = 1/2, this implies τ(λ) ≤ negl(λ) for infinitely many λ, which
is a contradiction.

To complete the proof of Theorem 5.3, it remains to prove Lemma 5.4 and 5.5.

Proof of Lemma 5.4. First, we can rewrite Eq.(5.17) as

PT⊆S(X)(Z) = Z · RT⊆S(X)(Z) +

η∏
i=1

ℓ∑
j=1

ζ∏
k=1

(
(1− sj,k) + (−1 + 2sj,k) · ti,k

)
︸ ︷︷ ︸

= C

,

for some polynomial RT⊆S(X)(Z) with degree at most ηζ. Observe the constant term C is comput-
ing the circuit outputted by the functionality preserving encoding scheme PESFP for the subset
predicate (See Lemma 5.2). Therefore, we have C = 1 if T ⊆ S ⇔ FMAH(T, X) = 0, and C = 0
otherwise, as desired.

Lemma 5.5. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[E5]− Pr[E6]| ≤ AdvL-DDH
B ,

where L = ηζ. In particular, under the L-DDH assumption, we have |Pr[E5]− Pr[E6]| = negl(n).

Proof. Suppose an adversary A that has non-negligible advantage in distinguishing Game5 and
Game6. We use A to construct an L-DDH algorithm denoted B, which proceeds as follows.

Instance. B is given the problem instance of L-DDH(Π, g, h, {gαi}i∈L,Ψ) for L = ηζ, where
Ψ = e(g, h)1/α or Ψ← GT .

Setup. To construct the verification key vk, it samples w̃0, w̃i,k ← Zp for (i, k) ∈ [η] × [ζ] as in
Game2, and implicitly sets w0 and (wi,k)(i,k)∈[η]×[ζ] as in Eq. (5.16). Then, since w0, (wi,k)(i,k)∈[η]×[ζ]
are all at most degree 1 polynomials in α, B can efficiently compute g0, (gi,k)(i,k)∈[η]×[ζ] from the
problem instance. Finally, it returns vk = (Π, g, h, g0, (gi,k)(i,k)∈[η]×[ζ]) to A. B also picks a random
bit coin← {0, 1} and keeps it secret.

Phase 1 and Phase 2. The evaluation queries made by A are answered as in Eq. (5.18) of
Game4. Observe that this can be done efficiently, since RT⊆S(X)(Z) is degree at most L = ηζ.

Challenge Query. When A makes the challenge query for the challenge input X∗, B first
computes FMAH(X

∗). Then, it aborts and sets coin′ ← {0, 1} if FMAH(X
∗) = 1. Otherwise, it

proceeds as follows. If coin = 0, it computes

Y ∗0 =
(
Ψ · e(g, h)RT⊆S(X∗)(α)

)1/w̃0

.

131

Note that e(g, h)RT⊆S(X∗)(α) can be efficiently computed from the problem instance, since RT⊆S(X∗)(Z)
is of degree at most L = ηζ. In the case of coin = 1, B sets Y ∗ ← GT . In both cases, B returns
Y ∗ to A.
Guess. At last, A outputs its guess ĉoin (if the abort condition has not been satisfied). Then, B
sets coin′ = ĉoin. Finally, B outputs 1 if coin′ = coin and 0 otherwise.

Analysis. It can be seen that B perfectly simulates the view of A in Game5 if Ψ = e(g, h)1/α and
Game6 if Ψ← GT . We therefore conclude that

AdvL-DDH
B = |Pr[E5]− Pr[E6]|

for L = ηζ as desired.

5.5.4 Achieving Smaller Proof Size

In this section, we propose a variant of the VRF presented in Section 5.5.2 with a much shorter
proof size. Recall the VRF we constructed in the previous section had a very small verification key
size |vk| ≈ ηζ = ω(log2 λ) with a rather large proof size |π| ≈ ηℓζ = ω(λ log2 λ), where we count
the number of group elements for size. A first attempt is to use a similar trick used in [Yam17]
to add some helper terms in the verification key to make the proof size smaller. In particular, we
can convert our VRF to have a very small proof size |π| = ω(log λ) by allowing the verification
key size to grow quasi-linearly in the security parameter, i.e., |vk| = ω(λ log λ).

However, we can do much better with an additional idea; we obtain a VRF with proof size
|π| = ω(log λ) and verification key size |vk| = ω(

√
λ log λ), which is now sublinear.

Preparation. We define power tuples P(W) for a tuple W , analogously to power sets. Namely,
we create a tuple that contains all the subsequence of W in lexicographical order, i.e., P(W) =
(w1, w2, w3, w1w2, w1w3, w2w3, w1w2w3) forW = (w1, w2, w3). Here, we do not consider the empty
string as a subsequence of W . For a group element g ∈ G or GT and a tuple W with elements in
Zp, we denote gP(W) as the tuple (gw | w ∈ P(W)). Furthermore, for tuples W,W ′ with elements
in Zp we define e(gP(W), gP(W

′)) to be the tuple (e(g, g)ww′ | w ∈ W,w′ ∈ W ′). Assume all the
tuples are sorted in the lexicographical order.

Construction. Below, we provide a VRF with small proof size.

Gen(1λ): On input 1λ, it runs Π ← GrpGen(1λ) to obtain a group description. It then chooses
random generators g, h← G∗, w0, wi,k ← Zp for (i, k) ∈ [η]× [ζ] and sets Li = (wi,k)k∈[⌊ζ/2⌋]
and Ri = (wi,k)k∈[⌊ζ/2⌋+1,ζ]. Finally, it outputs

vk =

(
Π, g, h, g0 := gw0 , (gP(Li), gP(Ri))i∈[η]

)
, and sk =

(
w0, (wi,k)(i,k)∈[η]×[ζ]

)
.

Note that we have e(gP(Li), gP(Ri)) = e(g, g)P(Wi) where Wi = (wi,k)k∈[ζ].

Eval(sk, X): On input X ∈ {0, 1}n, it first computes S(X) = {s1, · · · , sℓ} ∈ [2ℓ]. In the following,
let sj,k be the k-th bit of the binary representation of sj , where k ∈ [ζ]. It then computes

132


θi =

ℓ∑
j=1

ζ∏
k=1

(
(1− sj,k) + (−1 + 2sj,k) · wi,k

)

θ[1:i′] =
i′∏

i=1

ℓ∑
j=1

ζ∏
k=1

(
(1− sj,k) + (−1 + 2sj,k) · wi,k

) ,

for i ∈ [η], i′ ∈ [2, η] and sets θ := θ[1:η]. Note that we do not require i′ = 1 since θ1 = θ[1:1].
Finally, it outputs

Y = e(g, h)θ/w0 , and π =

(
π0 := gθ/w0 ,

(
πi := gθi

)
i∈[η]

,
(
π[1:i′] := gθ[1:i′]

)
i′∈[2,η]

)
.

Verify(vk, X, (Y, π)): First, it checks the validity of vk. It outputs 0 if any of the following
properties are not satisfied.

1. vk is of the form
(
Π, g, h, g0, (g

P(Li), gP(Ri))i∈[η]

)
.

2. GrpVfy(Π) = 1 and GrpVfy(Π, s) = 1 for all s ∈ (g, h, g0) ∪ (gP(Li), gP(Ri))i∈[η].

Then, it checks the validity of X,Y and π. In doing so, it first computes the coefficients
(αS)S⊆[ζ] of the multi-variate polynomial

p(Z1, · · · ,Zζ) =
ℓ∑

j=1

ζ∏
k=1

(
(1− sj,k) + (−1 + 2sj,k) · Zk

)
=
∑
S⊆[ζ]

αS

∏
k∈S

Zk.

Next, for all i ∈ [η] and S ⊆ [ζ], it sets LS = S ∩ [⌊ζ/2⌋] and RS = S ∩ [⌊ζ/2⌋ + 1, ζ], and
computes Φi,S as

Φi,S = e(g
∏

k∈LS
wi,k , g

∏
k∈RS

wi,k).

Here, in case LS = ϕ (resp. RS = ϕ), we define
∏

k∈LS
wi,k (resp.

∏
k∈RS

wi,k) to be 1.

Note that these values can be computed efficiently, since gP(Li), gP(Ri) are given as part of
the verification key. It outputs 0 if any of the following properties are not satisfied.

3. X ∈ {0, 1}n, Y ∈ GT , π is of the form π = (π0, (πi)i∈[η], (π[1:i′])i′∈[2,η]).

4. It holds that for all i ∈ [η] and i′ ∈ [3, η],

e(πi, g) =
∏
S⊆[ζ]

ΦαS
i,S , and e(π[1:2], g) = e(π1, π2), and e(π[1:i′], g) = e(π[1:i′−1], πi′).

5. It holds that e(π[1:η], g) = e(π0, g0) and e(π0, h) = Y .

If all the above checks are passed, it outputs 1.

The correctness, unique provability and pseudorandomness of the above VRF can be proven
in a similar manner to the VRF in Section 5.5.2. For completeness, we show correctness and a
proof sketch for pseudorandomness of our VRF. The proofs follow closely to the ones given in
Section 5.5.3. We omit the proof for the unique provability, since it is the same as the one given
in Section 5.5.3.

133

Theorem 5.4 (Correctness). Our VRF from Section 5.5.4 forms a correct verifiable random
function.

Proof. We first prove the correctness of the scheme. It is easily seen that when Gen and Eval are
properly run, then it passes Step 1, 2, 3 of the verification algorithm. Next, observe that for all
i ∈ [η] we have ∏

S⊆[ζ]

ΦαS
i,S =

∏
S⊆[ζ]

(
e(g

∏
k∈LS

wi,k , g
∏

k∈RS
wi,k)

)αS

=
∏
S⊆[ζ]

(
e(g, g)

∏
k∈S wi,k

)αS

= e(g, g)
∑

S⊆[ζ] αS
∏

k∈S wi,k

= e(g, g)p(wi,1,··· ,wi,ζ)

Since θi = p(wi,1, · · · , wi,ζ), the first equation in Step 4 holds. The equality of the rest of the
equations in Step 4 follow using the additional observation that θ[1:i′]·θi′+1 = θ[1:i′+1] for i

′ ∈ [η−1],
where θ[1:1] = θ1. Finally, since by definition π[1:η] = gθ[1:η] = gθ , Step 5 holds. This completes
the proof of the correctness of the scheme.

The proof of pseudorandomness follows very closely to the proof given in Section 5.5.3. No-
tably, the VRF is proven under the L-DDH assumption where L = ηζ = ω(log2 λ). Therefore, to
avoid being redundant, we point out the main differences between the proof in Section 5.5.3 and
restrict ourselves to an overview of the security proof.

Proof Sketch. At a high level, the strategy of the proof is the same; we show that we can simulate
all the components in the verification key and a valid output Y ∗ for the challenge input X∗ using
the L-DDH instance {gαi}i∈[ηζ]. Here, note that if we can simulate a valid output Y ∗, we can also
simulate a valid proof for any input X such that T ̸⊆ S(X). We first show that the challenger
can correctly simulate the verification key. As in Game2, Eq. (5.16) of the previous proof, the
challenger sets

w0 = w̃0 · α, wi,k = w̃i,k · α+ ti,k for (i, k) ∈ [η]× [ζ].

To create the rest of (gP(Li), gP(Ri))i∈[η], it can simply use {gαi}i∈[ηζ] since the terms in P(Li),P(Ri)
are at most degree ζ. Recall Li = (wi,k)k∈[⌊ζ/2⌋] and Ri = (wi,k)k∈[⌊ζ/2⌋+1:ζ]. Furthermore, since
we use the same degree ηζ polynomial PT⊆S(X)(Z) as in Eq. (5.17) to embed the partitioning

function FMAH, we can correctly simulate the proof as in Game5 using {gαi}i∈[ηζ]. Thus, we have
that our VRF is adaptively pesudorandom. □

Combining everything together, our second VRF satisfies all the desired properties under the
L-DDH assumption where L = ω(log2 λ). Finally, we end this section by discussing the efficiency
of the above construction.

Remark 5.3. Our second VRF has verification key size |vk| = ω(
√
λ log λ) and proof size |π| =

ω(log λ). To see this, observe that for all i ∈ [η] we have |P(Li)|, |P(Ri)| ≤ 2⌈ζ/2⌉, which follows
from |Li|, |Ri| ≤ ⌈ζ/2⌉. Next, since ℓ = Θ(λ), there exists some positive constant c such that
ℓ(λ) ≤ cλ for large enough λ ∈ N. Then, since ζ = ⌊log ℓ⌋+ 1, we have ζ(λ) ≤ log λ + log c+ 1.
Therefore, 2⌈ζ/2⌉ ≤ 2ζ/2+1 = c′λ1/2 for some positive constant c′. Thus, we obtain the upper
bound |gP(Li)|, |gP(Ri)| = O(

√
λ). Since we consider this for all i ∈ [η] where η = ω(log λ), we

conclude |vk| = ω(
√
λ log λ). Note that this means that we can take vk for example as small as

|vk| = O(
√
λ log2 λ). A detailed comparison is provided in Section 5.1.1, Table 5.1.

134

5.6 Predicate Encryption for MultD-Eq Predicates

In this section, we show how to construct a predicate encryption scheme for the multi-dimensional
equality predicates MultD-Eq. This directly yields predicate encryption schemes for all the pred-
icates presented in Section 5.4.3. Due to the symmetry of the MultD-Eq predicate and the com-
patible domains (X ,Y), we obtain both key-policy and ciphertext-policy predicate encryption
schemes.

5.6.1 Embedding Predicate Encoding Schemes into Matrices

[BGG+14a] provides us with a generic way of constructing a lattice-based attribute-based encryp-
tion (ABE) scheme from three deterministic algorithms (Evalpk,Evalct,Evalsim). In this chapter,
we slightly modify the syntax of the Evalct algorithm so that the three deterministic algorithms
yield a predicate encryption (equivalently, a predicate hiding ABE) scheme.

Definition 5.11. We say that the deterministic algorithms (Evalpk,Evalct-priv,Evalsim) are αC-
predicate encryption (PE) enabling for a family of arithmetic circuits C = {C : Zt

q → Zq} if they
are efficient and satisfy the following properties:

• Evalpk
(
C ∈ C, B0,

(
Bi

)
i∈[t] ∈ Zn×m

q

)
→ BC ∈ Zn×m

q

• Evalct-priv
(
C ∈ C, c0,

(
ci
)
i∈[t] ∈ Zn

q

)
→ cC ∈ Zm

q

• Evalsim
(
C ∈ C, R0,

(
Ri

)
i∈[t] ∈ Zm×m

)
→ RC ∈ Zm×m

We further require that the following holds:

1. Evalpk(C, (AR0 − G), (ARi − xiG)i∈[t]) = A · Evalsim(C,R0, (Ri)i∈[t]) − C(x)G for any
x = (x1, · · · , xt) ∈ {0, 1}t.

2. If c0 = (B0 + G)⊤s + z0 and ci = (Bi + xiG)⊤s + zi for some s ∈ Zn
q , and z0, zi ←

DZm,β , xi ∈ {0, 1} for all i ∈ [t], then ∥cC − (BC + C(x)G)⊤s∥2 < αC · β
√
m with all but

negligible probability.

3. If Ri ← {−1, 1}m×m for all i ∈ [0, t], then s1(RC) < αC with all but negligible probability.

There are two major differences between the notions from [BGG+14a]. First, Evalct-priv does
not take (xi)i∈[t] ∈ {0, 1}t as input to the homomorphic evaluation of the ciphertexts. On one
hand this limits us to perform only linear operations over the ciphertexts, however, on the other
hand this will allow the decryptor to create cC without knowledge of the predicate associated to
the ciphertext (See also [AFV11]). Second, we loosen the condition on z,R in Requirement 1, 2
to hold with overwhelming probability. This allows us to obtain tighter bounds on the behavior of
the random matrices and error vectors. Finally, we make a minor change by additionally including
(B0, c0,R0) as inputs to the algorithms to cope with the constant terms of the polynomials being
evaluated.

αC-PE enabling algorithms for MultD-Eq predicates. We show that the linear predicate en-
coding scheme PESLin for the MultD-Eq predicates (Section 5.4.2, Lemma 5.3) provides us with a
family of arithmetic circuits Ĉ that allows for αĈ-PE enabling algorithms (Evalpk,Evalct-priv,Evalsim).

135

Let all the parameters be defined as in Lemma 5.3 and denote Ĉ as the set {ĈY | ĈY ←
EncPredLin(MultD-EqY), ∀MultD-EqY ∈ P}. The three algorithms are defined as follows:15

Evalpk
(
ĈY ∈ Ĉ, B0,

(
Bi,j,w

)
(i,j,w)∈[D]×[ℓ]×[L]

)
: It outputs

BY = B0 ·G−1(DG)−
D∑
i=1

ℓ∑
j=1

L∑
w=1

ai,j,w ·Bi,j,w ∈ Zn×m
q .

Evalct-priv
(
ĈY ∈ Ĉ, c0,

(
ci,j,w

)
(i,j,w)∈[D]×[ℓ]×[L]

)
: It outputs

c =
(
G−1(DG)

)⊤
c0 −

D∑
i=1

ℓ∑
j=1

L∑
w=1

ai,j,w · ci,j,w ∈ Zm
q .

Evalsim
(
ĈY ∈ Ĉ, R0,

(
Ri,j,w

)
(i,j,w)∈[D]×[ℓ]×[L]

)
: It outputs

RY = R0 ·G−1(DG)−
D∑
i=1

ℓ∑
j=1

L∑
w=1

ai,j,w ·Ri,j,w ∈ Zn×m
q .

Lemma 5.6. The above algorithms (Evalpk,Evalct-priv,Evalsim) are αĈ-PE enabling algorithms

for the family of arithmetic circuits Ĉ defined by the predicate encoding scheme PESLin for the
MultD-Eq predicates defined over ZD×ℓ

p , where αĈ = C ·max{m
√
m/n,

√
Dℓpm} for some absolute

constant C > 0.

Proof. We check that all the requirements of Definition 5.11 are satisfied. First, by the property
of the gadget matrix G and the fact that ai,j,w ∈ {−1, 0, 1}, we have ai,j,wIm = G−1(ai,j,w ·G).

Then, by plugging in B0 = AR0 − G and Bi,j,w = ARi,j,w − X̂i,j,wG, we can see that BY =

ARY − ĈY(X̂)G. Hence, Requirement 1 holds. Furthermore, simple calculation shows that in
case c0 = (B0 +G)⊤s+ z0 and ci,j,w = (Bi,j,w + X̂i,j,wG)⊤s+ zi,j,w, we have

c = (BY + ĈY(X̂)G)⊤s+
((

G−1(DG)
)⊤

z0︸ ︷︷ ︸
:=e1 (noise)

−
D∑
i=1

ℓ∑
j=1

L∑
w=1

ai,j,w · zi,j,w︸ ︷︷ ︸
:=e2 (noise)

)
. (5.21)

Recall that the discrete Gaussian distribution DZm,β is subgaussian with parameter C ·β for some
absolute constant C. In the following, with an abuse of notation, we will denote any absolute
constant as C. Then by the property of G−1, we can use Lemma 2.10 with B = Cβ and ℓ = 1 to
obtain ∥e1∥2 ≤ C · βm

√
m/n. Note that we assume n|m without loss of generality. Next, from

Lemma 2.3 and the linearity of subgaussian variables, we have ∥e2∥2 ≤ C ·
√
mDℓLβ. Combining

this together with the fact L = 2⌊log p⌋+1, we obtain ∥e1 − e2∥2 ≤ C · (m/
√
n +
√
Dℓp) ·

√
mβ ≤

αĈ ·
√
mβ with all but negligible probability. This shows that Requirement 2 holds.

Finally, we show that Requirement 3 holds. First, since the absolute values of each element
is bounded by 1, every entry of R0,Ri,j,w are subgaussian variables with parameter C. Then,
following a similar argument as above, RY is a subgaussian matrix with parameter C · (m/

√
n+√

Dℓp) ·
√
m. Then using the Lemma 2.9 of [MP12], we have that s1(RY) ≤ C · (m

√
m/n +√

Dℓpm) ≤ C ·max{m
√
m/n,

√
Dℓpm} ≤ αĈ with all but negligible probability.

15 Recall that when we use the notation (Ai,j,w)(i,j,w)∈[D]×[ℓ]×[L], we assume the elements are sorted in the
lexicographical order.

136

5.6.2 Construction

Given αĈ-PE enabling algorithms (Evalpk,Evalct-priv,Evalsim) for a family of arithmetic circuits
defined by the predicate encoding scheme PESLin = (EncInptLin,EncPredLin) for the MultD-Eq
predicates with compatible domains (X ,Y), we build a predicate encryption scheme for the same
family of predicates.

Parameters. In the following, let n,m, q, p,D, ℓ be positive integers such that q is a prime
and q > D, and let σ, α, α′ be positive reals denoting the Gaussian parameters. Furthermore,
let (X ,Y) ∈ ZD×ℓ

p × ZD×ℓ
p be any compatible domains for the MultD-Eq predicates, let P =

{MultD-EqY : X → {0, 1} | Y ∈ Y} be the set of multi-dimensional predicates and Ĉ = {ĈY |
ĈY ← EncPred(MultD-EqY), ∀MultD-EqY ∈ P} be the set of polynomials representing the multi-
dimensional predicates. Finally, let ζ = ⌊log p⌋ + 1 and L = 2ζ . Here, we assume that all of the
parameters are a function of the security parameter λ ∈ N. We provide a concrete parameter
selection of the scheme in Section 5.6.3. The following is our PE scheme.

Setup(1λ): It first runs (A,TA)← TrapGen(1n, 1m, q) to obtain A ∈ Zn×m
q and TA ∈ Zm×m. It

also picks u← Zn
q , B0,Bi,j,w ← Zn×m

q for (i, j, w) ∈ [D]× [ℓ]× [L] and outputs

mpk =
(
A,B0,

(
Bi,j,w

)
(i,j,w)∈[D]×[ℓ]×[L],u

)
and msk = TA.

KeyGen(mpk,msk,MultD-EqY): Given a predicate MultD-EqY ∈ P for Y ∈ ZD×ℓ
p as input, it runs

ĈY ← EncPredLin(MultD-EqY) and computes

Evalpk

(
ĈY,B0,

(
Bi,j,w

)
(i,j,w)∈[D]×[ℓ]×[L]

)
→ BY ∈ Zn×m

q .

Then, it runs

e← SampleLeft(A,BY,u,TA, σ),

where [A|BY]e = u mod q, and finally returns skY = e ∈ Z2m.

Enc(mpk,X,M): Given an attribute X ∈ ZD×ℓ
p as input, it first runs X̂ ← EncInptLin(X) where

X̂ ∈ {0, 1}DℓL. Then it samples s ← Zn
q , z ← DZ,αq, z, z0, zi,j,w ← DZm,α′q for (i, j, w) ∈

[D]× [ℓ]× [L], and computes

cX =


c = u⊤s+ z +M · ⌊q/2⌉,
c = A⊤s+ z,
c0 = (B0 +G)⊤s+ z0,

ci,j,w =
(
Bi,j,w + X̂i,j,wG

)⊤
s+ zi,j,w for (i, j, w) ∈ [D]× [ℓ]× [L],

where X̂i,j,w is the (i, j, w)-th element of X̂. Finally, it returns the ciphertext cX ∈ Zq ×
(Zm

q)DℓL+2.

Dec(mpk, (ĈY, skY), cX): To decrypt the ciphertext cX = (c, c, c0, (ci,j,w)) given a predicate and
a secret key (ĈY, skY), it computes

Evalct-priv
(
ĈY, c0,

(
ci,j,w

)
(i,j,w)∈[D]×[ℓ]×[L]

)
→ c̄ ∈ Zm

q .

Then using the secret key skY = e ∈ Z2m, it computes

d = c− [c⊤|c̄⊤]⊤e ∈ Zq.

Finally, it returns |d− ⌊q/2⌉| < q/4 and 0 otherwise.

137

5.6.3 Correctness and Parameter Selection

Lemma 5.7 (correctness). If the predicate is satisfied, assuming α′ > α, the error term on the
decrypted values are bounded by O(

√
mα′αĈσq) with overwhelming probability.

Proof. By the definition of αĈ-PE enabling algorithms, when the cryptosystem is operated as
specified, we have during decryption

d = c− [c⊤|c̄⊤]⊤e = M · ⌊q/2⌉+ z − (z0 + z)⊤e,

where z is defined as in Eq. (5.21) (i.e., z := e1−e2). Further, we have the following upper bound
on the noise.

∥z − (z0 + z)⊤e∥2 ≤ |z|+ (∥z⊤0 e∥2 + ∥z⊤e∥2)
≤
√
mαq + 2

√
mα′αĈσq

= O(
√
mα′αĈσq).

The first inequality follows from the CauchySchwarz inequality and the second inequality follows
from Lemma 2.3, Requirement 2 of the αĈ-PE enabling algorithms and the linearity of subgaussian
variables.

Parameter selection. To satisfy the correctness requirement and make the security proof follow
through, we need the following:

- the error term is less than q/5 with overwhelming probability (i.e., O(
√
mα′αĈσq) < q/5. See

Lemma 5.7),

- the correctness of PESLin holds. (i.e., q > D. See Lemma 5.3),

- the TrapGen algorithm works as specified during Setup. (i.e., m ≥ 2n⌈log q⌉. See Lemma 2.12),

- the leftover hash lemma can be applied in the security proof (i.e., m > (n+ 1) log q + ω(log n).
See. Lemma 2.11),

- the SampleLeft algorithm works as specified during KeyGen. (i.e., σ > ∥TA∥GS ·ω(
√
logm). See

Lemma 2.12),

- the SampleRight algorithm in the security proof works as specified. (i.e., σ > s1(RY) · ∥TG∥GS ·
ω(
√
logm)⇔ σ > αĈ · ω(

√
logm). See Lemma 2.12, Definition 5.11),

- the ReRand algorithm in the security proof works as specified (i.e., α′/2α > s1(R
∗), αq >

ω(
√
logmDℓL) where R∗ is defined as in Game4. See Lemma 2.6),

- the worst case to average case reduction works (i.e., αq > 2
√
n).

To satisfy the above requirements, one way to set the parameters are as follows:

m = O(n log q), q =
√
m · (

√
Dℓp)−1 · α2

Ĉ
· ω(logm), σ = αĈ · ω(

√
logm),

αĈ = O(max{m
√

log q,
√
Dℓpm}) α = (

√
Dℓp) · α−2

Ĉ
· ω(logm)−1, α′ = O(

√
Dℓpm · α),

and round up q to the nearest larger prime. Here, D, ℓ, p are chosen accordingly to the types of
MultD-Eq predicates one wants to use.

138

5.6.4 Security Proof

Theorem 5.5. Given the PE enabling algorithms (Evalpk,Evalct-priv,Evalsim) for the family of

arithmetic circuits Ĉ defined above, our predicate encryption scheme is selectively secure and
weakly attribute hiding with respect to the MultD-Eq predicates, assuming the hardness of LWEn,m+1,q,DZ,αq

.

Proof. The proof proceeds in a sequence of games where the first game is identical to the real
predicate encryption security game from Definition 5.2. In the last game in the sequence, the
adversary has zero advantage. In the following, let A be a PPT adversary that breaks the
security of the scheme with advantage ϵ, and define Ei to be the event that A wins in Gamei.

Game0 : This is the real security game between the attacker A against our scheme. By definition,
we have |Pr[E0]− 1/2| = ϵ. In the following, let X∗ ∈ ZD×ℓ

p denote the challenge attribute
A submits.

Game1 : In this game, we change the way B0,Bi,j,w are chosen. At the beginning of the game,
the challenger samples R0,Ri,j,w ← {−1, 1}m×m for (i, j, w) ∈ [D] × [ℓ] × [L]. Then, we
define B0 and Bi,j,w as

B0 = AR0 −G and Bi,j,w = ARi,j,w − X̂∗i,j,wG, (5.22)

where X̂∗ ← EncInptLin(X
∗) and X̂∗i,j,w is the (i, j, w)-th element of X̂∗ ∈ {0, 1}DℓL. By

Lemma 2.11, the distributions(
A,B0, (Bi,j,w)(i,j,w)∈[D]×[ℓ]×[L]

)
and

(
A,AR0, (ARi,j,w)(i,j,w)∈[D]×[ℓ]×[L]

)
are negligibly close, where B0,Bi,j,w ← Zn×m

q . Therefore, we have

|Pr[E0]− Pr[E1]| = negl(λ).

Before continuing to our next game, we make the following observation. From Requirement 1
of Definition 5.11, for all MultD-EqY ∈ P and ĈY ← EncPredLin(MultD-EqY), we have

Evalpk

(
ĈY, (AR0 −G), (ARi,j,w − X̂∗i,j,wG)(i,j,w)

)
= ARY − ĈY(X̂

∗)G

whereRY = Evalsim(ĈY,R0, (Ri,j,w)(i,j,w)). Furthermore, we have ∥RY∥2 < αĈ < σ from Require-
ment 3 and our parameter selection. Now by the correctness of the PESLin scheme (Lemma 5.3),
we have

ARY − ĈY(X̂)G =

{
ARY if MultD-EqY(X

∗) = 1

ARY − tG for ∃t ∈ {1, · · ·D} if MultD-EqY(X
∗) = 0

. (5.23)

Note that since q > D and q a prime, t is always invertible in Zq.

Game2 : In this game, we change howA is sampled. Namely, in Game2, we generateA as a random
matrix in Zn×m

q instead of generating it with a trapdoor. By Lemma 2.12, this makes only
negligible difference. To respond to a key extraction query for a predicate MultD-EqY ∈ P
made by A, it first runs ĈY ← EncPredLin(MultD-EqY) and computes

Evalsim
(
ĈY,R0, (Ri,j,w)(i,j,w)∈[D]×[ℓ]×[L]

)
→ RY.

139

If A is a valid adversary, then all the predicates submitted as a key extraction query satisfies
MultD-EqY(X

∗) = 0, and by Eq. (5.23) we have t = ĈY(X̂
∗) for some invertible element

t ∈ {1, · · · , D} ⊂ Zq. Then, using the SampleRight algorithm from Lemma 2.12, it samples
the secret key

SampleRight(A,G,RY, t,u,TG, σ)→ e.

Note that in the previous game the key was sampled as

SampleLeft(A,BY,u,TA, σ)→ e.

By the definition of Evalsim, SampleRight, SampleLeft and for our choice of σ, the distribu-
tion of the secret key is negligibly close to the distribution of that in the previous game.
Therefore, the above alters the view of A only negligibly. Thus, we have

|Pr[E1]− Pr[E2]| = negl(λ).

Game3 : In this game, we change the way the challenge ciphertext is created when coin = 0.
Recall in the previous games when coin = 0, we created a valid challenge ciphertext as in
the real scheme. If coin = 0, to create the challenge ciphertext, the challenger first picks
s ← Zn

q , z ← DZ,αq, z̄ ← DZm,αq and computes v = u⊤s + z ∈ Zq and v = A⊤s + z̄ ∈ Zm
q .

It then sets R∗ = [R0|R1,1,1| · · · |RD,ℓ,L] ∈ Zm×(DℓL+1)m and runs

ReRand
(
[Im|R∗],v, αq,

α′

2α

)
→ c′ ∈ Z(DℓL+2)m

q

from Lemma 2.6, where Im is the identity matrix with size m. Finally, it parses c′ appropri-
ately into DℓL+ 2 size m vectors (c, c0, (ci,j,w)(i,j,w)) and outputs the challenge ciphertext
as (

c = v +M · ⌊q/2⌉, c, c0, (ci,j,w)(i,j,w)∈[D]×[ℓ]×[L]

)
. (5.24)

We claim this change alters the view of A only negligibly. To see this, we apply the noise
rerandomization lemma (Lemma 2.6) with V = [Im|R∗],b = A⊤s and z = z̄ to obtain that
the distribution of c′ is negligibly close to the following:

c′⊤ = s⊤A[Im|R∗] + z′⊤

= s⊤[A|AR0|AR1,1,1| · · · |ARD,ℓ,L] + z′⊤

= s⊤[A|B0 +G|B1,1,1 + X̂∗1,1,1G| · · · |BD,ℓ,L + X̂∗D,ℓ,LG] + z′⊤ ∈ Z(DℓL+2)m

where the last equality follows from Eq. (5.22), and z′ is distributed negligibly close to
DZ(DℓL+2)m,α′q. Here, we can apply the noise rerandomization lemma since

α′/2α > 20
√

(DℓL+ 3)m ≥ s1([Im|R∗]),

for our parameter selection, where we use Lemma 2.9 for the second inequality. It can be
seen that the challenge ciphertext is distributed statistically close to Game2. Therefore, we
may conclude that

|Pr[E2]− Pr[E3]| = negl(λ).

140

Game4 : In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, to create the challenge ciphertext the challenger first picks w ← Zq,w ← Zm

q ,
z ← DZ,αq, and z̄ ← DZm,αq and computes v = w + z ∈ Zq and v = w + z̄ ∈ Zm

q . It then
sets R∗ and runs the ReRand algorithm as in Game4. Finally, it sets the challenge ciphertext
as in Eq. (5.24). We claim that |Pr[E3]− Pr[E4]| is negligible assuming the hardness of the
LWEn,m+1,q,DZ,αq

problem. To show this, we use A to construct an LWE adversary B as
follows:

B is given the problem instance of LWE as (A′,v′ = w′ + z̄′) ∈ Zn×(m+1)
q × Zm+1

q where

z̄′ ← DZm+1,αq. The task of B is to distinguish whetherw′ = A′⊤s for s← Zn
q orw′ ← Zm+1

q .
In the following, let the first column of A′ be u ∈ Zn

q and the remaining columns be
A ∈ Zn×m

q . Further, let the first coefficient of v′ be v and the remaining coefficients be
v ∈ Zm

q . Using these terms, B sets the master public keys as in Eq. (5.22). During the
game, key extractions queries made by A are answered as in Game2 without knowledge
of the trapdoor of A. To generate the challenge ciphertext, it first picks coin ← {0, 1}. If
coin = 0, it generates the challenge ciphertext as in Eq. (5.24) using v,v, and returns it to A.
Note that all B needs to do to generate the ciphertext is to run the ReRand algorithm, which
it can do without knowledge of the secret randomness s, z̄′. If coin = 1, B returns a random
ciphertext. At the end of the game, coin′ is defined. Finally, B outputs 1 if coin′ = coin and
0 otherwise. It can be seen that if A′,v′ is a valid LWE sample (i.e., v′ = A′⊤s), the view of

the adversary corresponds to Game3. Otherwise (i.e., v′ ← Zm+1
q), it corresponds to Game4.

We therefore conclude that assuming the hardness of the LWEn,m+1,q,Zαq problem we have

|Pr[E3]− Pr[E4]| = negl(λ).

Game5 : In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, the challenger samples w ← Zq,w ← Zm

q , z ← DZ,αq, z
′ ← DZ(DℓL+2)m,α′q, sets

R∗ as in the previous games and computes v = w + z ∈ Zq. Then, it computes

c′⊤ = w⊤[Im|R∗] + z′⊤ ∈ Z(DℓL+2)m
q ,

and parses c′ appropriately into DℓL + 2 size m vectors (c, c0, (ci,j,w)(i,j,w)). Finally, it
sets the challenge ciphertext as in Eq. (5.24). Using the same argument we made to move
from Game2 and Game3 concerning the noise rerandomization lemma, we can check that the
above change alters the distribution of the challenge ciphertext only negligibly. Thus, we
have

|Pr[E4]− Pr[E5]| = negl(λ).

Game6 : In this game, we change the challenge ciphertext to be a random vector, regardless of the
value of coin. Namely, the challenger creates the challenge ciphertext (c, c, c0, (ci,j,w)(i,j,w)) ∈
Zq × Z(DℓL+2)m

q by properly formatting (DℓL+ 2)m+ 1 random elements from Zq. In this
game, the value coin is independent from the view of A. Therefore, Pr[E6] = 1/2.

It remains to upper bound |Pr[E5]− Pr[E6]|. Since Game5 and Game6 differs only in the
creation of the challenge ciphertext when coin = 0, we focus on this case. First, it is easy to
see that c is uniformly random over Zq and independent of the other terms of the ciphertext
in both games. Therefore, we are left to show that the distribution of c̄ = (c, c0, (ci,j,w)(i,j,w))

141

in Game5 is negligibly close to the uniform distribution over Z(DℓL+2)m
q . First, observe that

the following distributions are negligibly close:

(A,AR∗,w⊤,w⊤R∗) ≈ (A,A′,w⊤,w′⊤) ≈ (A,AR∗,w⊤,w′⊤)

where A ← Zn×m
q , A′ ← Zn×(DℓL+1)m

q , R∗ ← {−1, 1}m×(DℓL+1)m, w ← Zm
q and w′ ←

Z(DℓL+1)m
q . It can be seen that the first and the second distributions are negligibly close, by

applying Lemma 2.11 for [A⊤|w]⊤ ∈ Z(n+1)×m
q and R∗. It can also be seen that the second

and the third distributions are negligibly close, by applying the same lemma for A and
R∗. Adding a noise vector z′ to the above w⊤R∗ does not change the statistical distance
between the distributions. Therefore, we may conclude that

|Pr[E5]− Pr[E6]| = negl(λ).

Analysis. Combining everything together, we have

ϵ =

∣∣∣∣Pr[E0]−
1

2

∣∣∣∣ =
∣∣∣∣∣

5∑
i=0

(Pr[Ei]− Pr[Ei+1]) + Pr[E6]−
1

2

∣∣∣∣∣
≤

5∑
i=0

|Pr[Ei]− Pr[Ei+1]|+
∣∣∣∣Pr[E6]−

1

2

∣∣∣∣
≤ negl(λ).

Therefore, the probability that A wins Game0 is negligible.

Remark 5.4. As noted in Remark 5.2 and Section 5.4.4, in some cases we can compress the size
of the ciphertext by taking advantage of the underlying compatible domains (X ,Y). For example,
in case we construct a predicate encryption scheme for the subset conjunction predicate, we can
decrease the size of the ciphertext by a factor of D.

5.7 Other Applications: Improving [Yam17] IBE

In this section, we give an (informal) overview on how to make the identity-based encryption (IBE)
scheme of [Yam17] more efficient using the preicate encoding scheme of Eq. (5.3) in Section 5.2.
Notably, we are able to lower the approximation factor of the LWE problem from Õ(n11) to
Õ(n5.5) by exploiting the additive structure of our embedded polynomial and with some additional
techniques concerning random matrices used in our proof of Lemma 2.10. Furthermore, we are able
to parallelize the encryption and key generation algorithm, whereas the algorithms of [Yam17]
are inherently unparallelizable since they rely heavily on the sequential matrix multiplication
technique of [GV15].

Recall that [Yam17] provides a modular construction of IBEs. They first define the notion
of compatible algorithms for partitioning functions (See Definition 5.9). Then, they propose a
generic construction of IBE schemes from a partitioning function with its associating compatible
algorithms. In particular, they obtain an IBE scheme by instantiating this framework with the
compatible algorithms for the modified admissible hash function FMAH (See Definition 5.10).
Below, we provide the definition of compatible algorithms.

142

Definition 5.12. ([Yam17], Definition 8)We say that the deterministic algorithms (Encode,PubEval,TrapEval)
are δ-compatible with a function family {F : K × X → {0, 1}} if they are efficient and satisfy the
following properties:

• Encode(K ∈ K)→ κ ∈ {0, 1}u

• PubEval(X ∈ X , {Bi ∈ Zn×m
q }i∈[u])→ BX ∈ Zn×m

q

• TrapEval(K ∈ K, X ∈ X ,A ∈ Zn×m
q , {Ri ∈ Zm×m}i∈[u])→ RX ∈ Zm×m

We require the following to hold:

PubEval(K,X,A, {ARi + κiG}i∈[u]) = ARX + F(K,X)G,

where κi ∈ {0, 1} is the i-th bit of κ = Encode(K) ∈ {0, 1}u. Furthermore, if Ri ∈ {−1, 0, 1}m×m
for all i ∈ [u], we have ∥RX∥∞ ≤ δ.

At a high level, PubEval is a public algorithm used to compute the hash of an ID ∈ X and
TrapEval is a secret algorithm used by the simulator to recover the G-trapdoor RX . Therefore,
since RX is used as a trapdoor to sample a secret key for user X, the quality of RX has a direct
effect on the efficiency and required hardness assumption for LWE. In particular, the value of δ
has a quadratic effect on the approximation factor of the LWE problem used in the underlying
IBE scheme. Thus, compatible algorithms for FMAH with a smaller δ will directly yield a more
efficient IBE construction.

In thier work, they (basically) used Eq. (5.1) to compute FMAH (See Eq. (5.13)) and obtained
δ-compatible algorithms (EncodeYam,PubEvalYam,TrapEvalYam) for FMAH where δ = Õ(λ4), which
can be obtained by plugging in the values from Theorem 5.1. Furthermore, due to the multiplica-
tive structure of Eq. (5.1), they heavily rely on the sequential matrix multiplication technique of
[GV15] in order to control the growth of δ. This is the reason why their scheme is inherently
unparallelizable.

We provide two ideas to improve their scheme. First, we can do much better by using Eq. (5.3)
to compute FMAH. Namely, we use the following polynomial defined over Zq, which is a slight
modification of Eq. (5.3):

η −
η∑

i=1

ℓ∑
j=1

ζ∏
k=1

(
(1− sj,k) + (−1 + 2sj,k) · ti,k

)
=

{
0 if T ⊆ S(X)

∈ {1, · · · η} if T ̸⊆ S(X)
, (5.25)

A subtle point here is that we have to alter Definition 5.12 so that the function family can
take output over Zq. Recall that in the above we required FMAH(T, X) ∈ {0, 1}. However, we can
easily show that for the security proof for the IBE scheme to follow through, we do not necessarily
need the output to be in {0, 1}, as long as we have FMAH(T, X) = 0 iff T ⊆ S(X).

For completeness, we provide the algorithms for PubEval,TrapEval following the notations of
[Yam17], Section 5.1. The Encode algorithm is defined as in [Yam17].

PubEval(X, {Bi,k}(i,k)∈[η]×[ζ] ∈ Zn×m
q) : It first computes S(X) = {s1, · · · , sℓ} ⊂ [2ℓ]. Let sj,k ∈

{0, 1} be the k-th bit of the binary representation of sj . It then proceeds as follows:

1. For (i, j, k) ∈ [η]× [ℓ]× [ζ], it sets Vi,j,k = (1− sj,k) ·G+ (−1 + 2sj,k) ·Bi,k

2. For (i, j) ∈ [η] × [ℓ], set Vi,j,[1:1] := Vi,j,1 and compute Vi,j,[1:k+1] := Vi,j,k+1 ·
G−1(Vi,j,[1:k]) for k ∈ [ζ − 1]. Then set Vi,j = Vi,j,[1:ζ].

143

3. Finally, it outputs BX = η ·G−
∑

i∈[η]
∑

j∈[ℓ]Vi,j

TrapEval(T, X,A, {Ri,k}(i,k)∈[η]×[ζ] ∈ Zn×m
q) : It first computes S(X) = {s1, · · · , sℓ} ⊂ [2ℓ] and

parses T → (t1, · · · , tη′) ⊂ [2ℓ], where η′ < η. It then sets tη′+1 = · · · = tη = 0. In
the following, let ti,k,sj,k ∈ {0, 1} be the k-th bit of the binary representation of ti, sj ,
respectively. It then proceeds as follows:

1. For (i, j, k) ∈ [η]× [ℓ]× [ζ], it sets Si,j,k = (−1 + 2sj,k) ·Ri,k

2. For (i, j) ∈ [η]×[ℓ], set Si,j,[1:1] := Si,j,1 and compute Si,j,[1:k+1] := Ri,k+1·G−1(Vi,j,[1:k])+
(−1 + 2sj,k+1) · Si,j,[1:k] for k ∈ [ζ − 1], where Vi,j,[1:k] is defined as above. Then set
Si,j = Si,j,[1:ζ].

3. Finally, it outputs RX =
∑

i∈[η]
∑

j∈[ℓ] Si,j

Lemma 5.8. The above algorithms (Encode,PubEval,TrapEval) are mζηℓ-compatible algorithms
for FMAH. In particular, if we instantiate FMAH using Definition 5.10, mζηℓ = Õ(λ2).

Proof. First observe the inequality

∥Si,j,[k+1]∥∞ = ∥Ri,k+1 ·G−1(Vi,j,[1:k]) + (−1 + 2sj,k+1) · Si,j,[1:k]∥∞
≤ m · ∥Ri,k+1∥∞ + ∥Si,j,[1:k]∥∞
≤ m+ ∥Si,j,[1:k]∥∞,

where we use (−1 + 2sj,k+1) ∈ {0, 1},Ri,k+1 ∈ {−1, 0, 1}m×m. Therefore by induction, we have
∥Si,j∥∞ ≤ mζ. Hence, we obtain the bound.

Note that the poly-log factor hidden in the Õ(·) notation is the same as [Yam17]. Our δ is
a O(λ2) factor smaller than the scheme of [Yam17], and since δ has a quadratic effect on the
approximation factor of the LWE problem, we are able to lower the approximation factor down
by O(λ4). Finally, we make the following subtle observations:

• Using subgaussian arguments, the error term can be bounded by O(α′σ
√
mq) instead of

O(α′σmq). (See [Yam17], Lemma 13).

• Since RX ∈ Zm×m is subgaussian with parameter δ (which follows from ∥R∥∞ ≤ δ), we have
s1(RX) ≤ C ·

√
mδ with overwhelming probability for some positive constant C ([MP12],

Lemma 2.9). Therefore, we can use α′ > O(α
√
mδ), instead of α′ > O(αmδ). (See [Yam17],

Section 6.2).

• Use the sampling algorithm of [MP12] to obtain σ > Ω̃(
√
mδ) instead of σ > Ω̃(mδ) (See.

[Yam17], Lemma 3).

Combining this together, we obtain a candidate parameter selection as follows:

m = O(n log q), q = n2 · δ2 · ω(log2 n), σ = m · δ · ω(
√

logm),

αq = 3
√
n α′q = 5

√
n ·m · δ.

Plugging in our δ-compatible algorithm for the FMAH function, we obtain an approximation factor
of Õ(n5.5) for the LWE problem. Recall that the approximation factor of [Yam17] was Õ(n11).
Finally, we are also able to improve significantly on the parallel complexity of the IBE scheme.
Notably, our compatible algorithms (Encode,PubEval,TrapEval) for the modified admissible hash

144

function FMAH allows for high parallelization of the encryption and key generation algorithm.
(Recall PubEval is used to compute the hash of an ID ∈ X .) We obtain parallel speed up because
our encoded polynomial of FMAH has an additive structure, and we do not have to rely on the
sequential matrix multiplication technique of [GV15] to control the growth of RX .

145

Chapter 6

Non-Zero Inner Product Encryption
Schemes from Various Assumptions

6.1 Introduction

An attribute-based encryption (ABE) scheme is an advanced form of public key encryption where
an access control over encrypted data is possible. In an ABE scheme, a ciphertext and a secret
key are associated with attributes X and Y , respectively, and the decryption is possible only
when they satisfy R(X,Y) = 1 for a certain relation R. The concept of ABE was first proposed
by Sahai and Waters [SW05]. Since then, many study followed in order to improve the scheme in
many aspects: security [LOS+10, OT10], expressibility [GPSW06, LW11, GVW13], and efficiency
[ALDP11]. While the early constructions of ABE schemes are based on bilinear maps, some of
the more recent schemes are based on lattices.

In this chapter, we focus on a special form of an ABE scheme called non-zero inner product
encryption (NIPE) scheme. In an NIPE scheme, a ciphertext attribute is a vector x⃗ and a
secret key attribute is a vector y⃗, and the relation is defined as R(x⃗, y⃗) = 1 iff ⟨x⃗, y⃗⟩ ̸= 0.
The notion of NIPE was first introduced in [KSW08]. It was not until Attrapadung and Libert
[AL10] who gave the first construction of an NIPE scheme using bilinear maps. In their work,
they provided interesting applications of NIPE schemes such as identity-based revocation (IBR)
schemes, where an IBR scheme is a type of broadcast encryption scheme that allows for efficient
revocation of small member size. Since then, many efficient NIPE schemes have been proposed
[AL10, ALDP11, OT10, OT15, YAHK14, CW14, CLR16]. They are all based on number theoretic
assumptions on bilinear maps.

On the other hand, the constructions of NIPE schemes without bilinear maps are much less
investigated. The only known other constructions are based on lattices. However, unlike in the
bilinear map setting, we do not know of any direct constructions of a NIPE scheme in the lattice
setting. In more detail, we have ABE schemes for any circuit (i.e. the relation R being general
circuits) [GVW13, BGG+14b] and any branching programs [GVW13, GV15] from the learning
with errors (LWE) assumption. Here, the expressibility of the latter constructions are more lim-
ited, however, these schemes can be proven secure under the LWE assumption with polynomial
approximation factors unlike the former schemes that require sub-exponential approximation fac-
tors, i.e., the required hardness assumption is much weaker. Although we have two lines of works

0The contents of this chapter is based on the work presented at PKC 2019 under the title “Non-Zero Inner
Product Encryption Schemes from Various Assumptions: LWE, DDH and DCR” [KY19b].

146

that allow us to indirectly construct lattice-based NIPE schemes, they are both highly inefficient.
In particular, we can use the former constructions from circuits to implement an NIPE scheme,
however, this would require us to express the computation of the non-zero-inner-product predi-
cates as a circuit, which would result in a highly inefficient scheme. Furthermore, it would require
us to base security under a sub-exponential LWE assumption, which is not desirable both from
the efficiency and security stand points. Alternatively, we can use the latter construction for
branching programs. To do so, we would first represent the non-zero inner product predicate as
an NC1 circuit, which is possible because arithmetic operations are known to be in NC1 [BCH86],
and then convert it into a branching program using the Barrington’s theorem. Using [GVW13]
or[GV15], the construction by this approach enjoys security from the standard polynomial LWE
assumption. However, the approach is still highly inefficient due to the large overhead incurred
by the invocation of the Barrington’s theorem [Bar89].

More on NIPEs. Although NIPE schemes allows us to construct other cryptographic primitives
such as IBR schemes as explained above, it may be more helpful to understand the usefulness
of the primitive through its “negating” feature. As the name suggests, NIPE scheme is the
counterpart of inner-product encryption (IPE) schemes. It is well known that IPE schemes can
be used to construct functional encryption schemes that can handle many practical predicates
such as polynomial evaluations, disjunction and/or conjunctions of equality tests, membership
tests and so on (for concrete applications see for example [BW07, KSW08]). In brief, NIPE
schemes are primitives that can handle the exact opposite of all these predicates. As negating
policies are useful in practice, the importance of negated policies in the area of ABE has been
highlighted in prior works [OSW07, AL10, ABS17].

Furthermore, aside from its practical interest, NIPE schemes are theoretically interesting in
its own right, since as we show as one of our results, NIPE schemes can be constructed from much
weaker assumptions than one would expect. In particular, we construct NIPE schemes from the
DDH or DCR assumption, whereas it currently seems that stronger assumptions such as the
DBDH or DLIN assumption is required to construct IPE schemes. Therefore, although an NIPE
scheme may be simply understood as an IPE scheme in the opposite flavor, our result indicates
a distinct gap between the two primitives when it comes to concrete constructions. Considering
the recent breakthrough in constructing identity-based encryption schemes [DG17] and functional
encryption schemes for inner products [ABDCP15, ALS16] from weak assumptions, we hope our
work to spark interest to finding the minimum assumption for other ABE-related primitives.

6.1.1 Our Contributions

To remedy our rather poor understanding regarding NIPE schemes without bilinear maps, we
provide two methods for constructing NIPE schemes: a direct construction from lattices and a
generic construction from functional encryption schemes for inner products (LinFE)1 . For the
first direct lattice-based approach, we propose two NIPE constructions where the differences lie
in where the inner products between attribute and predicate vectors are taken. The first scheme
is over Z whereas the second scheme is over Zp. For the second generic approach, we show how to
generically construct NIPE schemes from any LinFE scheme. In particular, we can use the recent
works of [ABDCP15, ALS16] to instantiate various types of NIPE schemes. Concretely, since
[ALS16] provides us with LinFE schemes from the LWE assumption, the DDH assumption and

1 The term LinFE is borrowed from [ALS16]. It is named as such, since it is a special type of functional
encryption scheme restricted to the class of linear functions.

147

the DCR assumption, we obtain NIPE schemes secure under all of these assumptions. Notably,
we obtain the first NIPE constructions without bilinear maps or lattices.

We give a brief overview on the properties that our NIPE schemes satisfy. As for the first direct
approach, we obtain two NIPE schemes with different properties: a selectively secure stateless
NIPE scheme over Z and a selectively secure stateful NIPE scheme over Zp. As for the second
generic approach, by using the LinFE schemes provided in [ALS16], which subsumes the work
of [ABDCP15], we obtain an adaptively secure stateless or stateful NIPE scheme over Z or Zp,
depending on what we use as the underlying LinFE scheme. The main advantage of the first
approach is that it leads to a more efficient NIPE scheme in the amortized sense compared with
the second approach instantiated with a lattice-based LinFE scheme. In more detail, to encrypt a
message of ℓM -bit length, the first approach requires (ℓM +m+mℓ) elements of Zq in a ciphertext
and the second requires (m + ℓ)ℓM . Here, ℓ is the dimension of the predicate vectors in the
NIPE scheme and q and m are the modulus size and the number of columns of the LWE matrix
involved in the scheme, respectively. The first approach is more efficient than the second one
when we encrypt more than mℓ/(m + ℓ) bits at once. For a natural setting of ℓ < m, λ where
λ is the security parameter, this encompasses the most interesting case of KEM-DEM settings
where one encrypts λ bits of session key. In fact, when we are in the ring setting, since m is
O(log λ), the first approach will be more efficient regardless of the size ℓ. Furthermore, for NIPE
schemes over Zp, the first approach would require smaller LWE modulus. Indeed, in certain
regime of parameters such as ℓ = log n/ log log log n and p = log log n, the first approach would
yield a scheme with polynomial modulus whereas the second requires super-polynomial modulus.
However, on the other hand, the advantage of the second approach is that it achieves adaptive
security and allows us to instantiate the NIPE scheme with different types of hardness assumptions
such as the DDH and DCR assumptions. Below, we give an outline of the techniques we used
for constructing lattice-based NIPE schemes and the generic construction of NIPE schemes from
LinFE. In particular, we believe the techniques we utilized for the lattice-based direct NIPE
construction to be of independent interest.

6.2 Technical Overview

Lattice-Based Constructions. We propose two NIPE schemes built directly from lattices.
At a high level, our two NIPE constructions share many similarities; both constructions highly
depart from the previous lattice-based ABE constructions [GVW13, BGG+14b, GV15] and they
rely heavily on the tools of Gaussian measures over multi-dimensional lattices during the security
proof. Notably, for both of our constructions: a trapdoor TA ∈ Zm×m for the public matrix
A ∈ Zn×m

q is not required, a secret key for a user is simply a linear combination of the master
secret keys, and the algorithm SampleRight of [ABB10] is used during decryption. To the careful
readers, this may seem somewhat peculiar, since SampleRight is an algorithm that customary
appears in the security proof for allowing the simulator to sample a short vector e such that
[A|B]e = u without knowledge of the trapdoor of A, in case B is in the special form AR+ t ·G
mod q, where t ∈ Zq is some invertible element and G is a special matrix with a publicly known
trapdoor TG [MP12].

Below we sketch our construction. We set the master public key MPK and the master secret
key MSK as follows:

MPK = (A,B1, · · · ,Bℓ,u) and MSK = (R1, · · · ,Rℓ),

148

where ℓ denotes the dimension of the vectors, {Ri}i∈[ℓ] are random matrices whose columns are
sampled from the discrete Gaussian distribution and Bi = ARi mod q. In the following, we focus
on the overview of our first NIPE scheme with inner product space Z. Although the high level
construction is the same for our second NIPE scheme with inner product space Zp, we require
some additional technicalities during key generation, which we describe later.

Given the master secret key MSK, our secret key generation algorithm is very simple and
does not require any Gaussian sampling as in prior works. Concretely, given a predicate vector
y⃗ = (y1, · · · , yℓ) ∈ Zℓ, we simply return Ry⃗ =

∑ℓ
i=1 yiRi ∈ Zm×m as the secret key. To embed

an attribute vector x⃗ = (x1, · · · , xℓ) ∈ Zℓ into the ciphertext, we use the techniques of [AFV11,
BGG+14b], and create vectors {ci = s⊤(Bi + xi ·G) + zi}i∈[ℓ] along with c0 = s⊤A+ z0. Then,
for decryption, a user with predicate vector y⃗ computes the following:

ℓ∑
i=1

yi · ci = s⊤(
ℓ∑

i=1

yiBi + ⟨x⃗, y⃗⟩ ·G) + noise = s⊤(ARy⃗ + ⟨x⃗, y⃗⟩ ·G) + noise.

Therefore, if ⟨x⃗, y⃗⟩ ̸= 0 (over Z), we can use the algorithm SampleRight to sample a short vector
e ∈ Z2m such that [A|ARy⃗ + ⟨x⃗, y⃗⟩ ·G]e = u mod q. Here, to take care of the subtle problem
that ⟨x⃗, y⃗⟩ has to be invertible over Zq, we require the attribute and predicate vectors to be in
some restricted domains.

However, despite the simplicity of our construction, the security proof requires a rather sen-
sitive and technical analysis that calls new techniques. In particular, building upon the prior
works of [BF11], we prepare new tools concerning Gaussian measures over mulit-dimensional lat-
tices, which we believe to be of independent interest. Using these tools, we are able to provide
a rigorous treatment on the distribution of the secret keys Ry⃗ of the real world and the simu-
lated world. In more detail, given a challenge attribute x⃗∗ ∈ Zℓ at the outset of the game, the
simulator samples random matrices {RSIM

i }i∈[ℓ] as in the real world and sets the public matri-

ces Bi as ARSIM
i − x∗i ·G. We answer the secret key queries as in the real world, i.e., given a

predicate vector y⃗ = (y1, · · · , yℓ) ∈ Zℓ, we simply return RSIM
y⃗ =

∑ℓ
i=1 yiR

SIM
i ∈ Zm×m. At first

glance this seems completely insecure, since an adversary may query y⃗ = (1, 0, · · · , 0) ∈ Zℓ and
recover R1 or RSIM

1 depending on which world it is in. Then, the adversary can check whether
B1 = AR1 or B1 = ARSIM

1 − x∗1 · G to distinguish between the real world and the simulated
world. However, this seemingly acute tactic cannot be used to attack our NIPE scheme. The
main observation is that, if y⃗ = (1, 0, · · · , 0) ∈ Zℓ is a valid predicate for the key extraction query,
then we must have ⟨x⃗∗, y⃗⟩ = 0, or in other words x∗1y1 = x∗1 = 0. Therefore, since R1 and RSIM

1

are distributed statistically close, the above attack cannot be used to distinguish between the two
worlds. Our security analysis builds on this idea and proves that the distribution of the secret
keys the adversary obtains in the two worlds {Ry⃗(j)}j∈[Q] and {RSIM

y⃗(j)
}j∈[Q] are indeed statistically

indistinguishable. The main technical contribution is developing new tools for Gaussian mea-
sures over multi-dimensional lattices, and analyzing the (set of) linear combinations of Gaussian

distributions {Ry⃗(j) =
∑ℓ

i=1 y
(j)
i Ri}j∈[Q].

Finally, we briefly note on the aforementioned technical issue that arises for our second NIPE
construction with inner product space Zp. Notably, we require our NIPE scheme to be stateful.
This is similar to an issue that came up in the works of [ALS16] for their LinFE scheme over
Zp. Unlike in the NIPE construction with inner product space Z, the linear dependency of the
predicate vectors y⃗ ∈ Zℓ

p and the secret keys Ry⃗ ∈ Zm×m are no longer consistent. In other
words, even when an adversary queries for secret keys corresponding to predicate vectors that are
linearly dependent over Zp, the corresponding secret keys may no longer be linearly dependent

149

over Z. Therefore, the adversary can recover the full master secret key {Ri}i∈[ℓ] by querying the
right predicate vectors. To prevent this from happening, we make the key generation algorithm
stateful and pay special attention so as not to give out linearly independent secret keys for linearly
dependent predicate vectors. In addition, we also specify how to maintain the state in a clever
way. This is because the representation of the state has a direct effect on the required LWE
assumption, and if we maintain the state naively, we would have to base our security on the
subexponential LWE assumption.

Generic Construction from LinFE. Besides the direct constructions from lattices, we also
propose a generic construction of a NIPE scheme from a LinFE scheme. The idea for the generic
conversion is inspired by the works of [ABP+17] and is surprisingly simple. To explain the idea,
let us first recall that in a LinFE scheme, a ciphertext and a private key are associated with
vectors x⃗ and y⃗, and when we decrypt the ciphertext using the private key, we recover ⟨x⃗, y⃗⟩.
Given a LinFE scheme, we construct a NIPE scheme as follows. To encrypt a message M for a
vector x⃗, we encrypt a vector M · x⃗ using the underlying LinFE scheme to obtain a ciphertext. A
private key for a vector y⃗ in the NIPE scheme is exactly the same as a private key for y⃗ in the
underlying LinFE scheme. Observe that when we decrypt the ciphertext using the private key, we
recover ⟨M · x⃗, y⃗⟩ = M · ⟨x⃗, y⃗⟩. This value corresponds to 0 when ⟨x⃗, y⃗⟩ = 0 regardless of the value
of the message. On the other hand, when x⃗ and y⃗ are known, M can be recovered by computing
M · ⟨x⃗, y⃗⟩/⟨x⃗, y⃗⟩ = M. That is, the message is recovered if and only if ⟨x⃗, y⃗⟩ ̸= 0. Indeed, this
functionality exactly matches that of NIPE schemes.

While the idea is very simple, it leads to interesting consequences. By applying our LinFE-
to-NIPE conversion to existing LinFE constructions [ABDCP15, ALS16], we obtain several new
NIPE schemes. Notably, we obtain the first NIPE constructions from the DDH and DCR assump-
tions. In other words, we obtain NIPE constructions without relying on bilinear maps or lattices.
This result may be somewhat surprising, since we do not know any other similar primitives to
inner product encryption (IPE)2 schemes that can be constructed without bilinear maps or lat-
tices. In particular, it was not until recently for even a simple primitive such as an identity-based
encryption scheme (in the standard model) to be constructed without relying on bilinear maps
or lattices [DG17]. Therefore, our result indicates that NIPE schemes may be a primitive quite
different from other ABE type primitives in nature.

6.3 Preparation

6.3.1 Non-Zero Inner Product Encryption

Syntax. Let P and I denote the predicate space and attribute space, where the inner product
between elements (i.e., vectors) from P and I are well-defined. Furthermore, let S denote the
space where the inner product is taken. A stateful non-zero inner product encryption (NIPE)
scheme over S consists of the following four algorithms:

Setup(1λ, 1ℓ)→ (MPK,MSK, st): The setup algorithm takes as input a security parameter 1λ and
the length ℓ of the vectors in the predicate and attribute spaces, and outputs a master public
key MPK, a master secret key MSK and an initial state st.

KeyGen(MPK,MSK, st, y⃗)→ (sky⃗, st): The key generation algorithm takes as input the master
public key MPK, the master secret key MSK, the state st and a predicate vector y⃗ ∈ P. It

2IPE is a special kind of ABE where decryption is possible iff the inner product of the vectors corresponding
to a ciphertext and a private key is 0. This should not be confused with LinFE, where the decryption is always
possible and the decryption result is the inner product itself.

150

outputs a private key sky⃗ and a updated state st. We assume that y⃗ is implicitly included
in sky⃗.

Encrypt(MPK, x⃗,M)→ ct: The encryption algorithm takes as input a master public key MPK, an
attribute vector x⃗ ∈ I and a message M. It outputs a ciphertext ct.

Decrypt(MPK, sky⃗, (x⃗, ct))→ M or ⊥: The decryption algorithm takes as input the master public
key MPK, a private key sky⃗, and a ciphertext ct with an associating attribute vector x⃗. It
outputs the message M or ⊥, which means that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, ℓ ∈ N, all x⃗ ∈ I, y⃗ ∈ P,
and all M in the specified message space, the following holds:

- if ⟨x⃗, y⃗⟩ ̸= 0, then Pr[Decrypt(MPK, sky⃗,Encrypt(MPK, x⃗,M)) = M] = 1− negl(λ)

- if ⟨x⃗, y⃗⟩ = 0, then Pr[Decrypt(MPK, sky⃗,Encrypt(MPK, x⃗,M)) = ⊥] = 1− negl(λ),

where the inner products are taken over S and the probability is taken over the randomness used
in all the algorithms.

We also define a stateless non-zero inner product encryption, where we do not require any
state information in the above algorithms.

Security. We define the security of a (stateful) NIPE scheme over S with predicate space P and
attribute space I by the following game between a challenger and an adversary A.
- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ← Setup(1λ, 1ℓ) and
gives the public parameter MPK to A.
- Phase 1. A may adaptively make key-extraction queries. If A submits a predicate vector y⃗ ∈ P
to the challenger, the challenger runs (sky⃗, st)← KeyGen(MPK,MSK, st, y⃗) and returns sky⃗.

- Challenge Phase. At some point, A outputs messages M0,M1 and an attribute vector x⃗∗ ∈ I
on which it wishes to be challenged, with the restriction that ⟨x⃗∗, y⃗⟩ = 0 (over S) for all y⃗
queried during Phase 1. Then, the challenger picks a random bit b ∈ {0, 1} and returns C∗ ←
Encrypt(MPK, x⃗∗,Mb) to A.
- Phase 2. After the challenge query, Amay continue to make key-extraction queries for predicate
vectors y⃗ ∈ P, with the added restriction that ⟨x⃗∗, y⃗⟩ = 0 (over S).
- Guess. Finally, A outputs a guess b′ for b.

The advantage of A is defined as AdvNIPEA,S =
∣∣Pr[b′ = b]− 1

2

∣∣ . We say that a stateful NIPE
scheme with inner product space S is adaptively secure, if the advantage of any PPTA is negligible.
Similarly, we define selective security for a stateful NIPE scheme with inner product space S, by
modifying the above game so that the adversary A is forced to declare its challenge attribute
vector x⃗∗ before Setup. Therefore, we also add the restriction that ⟨x⃗∗, y⃗⟩ = 0 (over S) during
Phase 1. Finally, we define an analogous security notion for stateless NIPE schemes, where we
do not require any state information during the above game.

Remark on the Security Model. In the stateful setting, it may be more natural to consider
a security model where the adversary is allowed to request the challenger to create a secret key
without actually seeing it. Such a query will change the internal state of KeyGen in a possibly
malicious way. In our work, we follow the stateful functional encryption formalization of [ALS16]
and do not consider this stronger security model. We leave it open the problem of constructing
efficient NIPE scheme satisfying this security notion.

151

6.3.2 Sampling Algorithm SampleSkewed

We introduce a new sampling algorithm SampleSkewed which is a slight modification of the algo-
rithm SampleRight (See 2.2.2). Recall that even if we are in possession of a “nice” trapdoor matrix
R, we can not use the SampleRight algorithm in case t is not invertible over Zq. Below we consider
the case where q = pd for some prime p and positive integer d, and slightly modify SampleRight
so that we can sample short vectors from some shifted lattice of Λ⊥([A|AR + pd−1t′G]) for an
invertible element t′ ∈ Zq. Note that t = pd−1t′ is no longer invertible over Zq.

Lemma 6.1 (Algorithm SampleSkewed). Let q = pd for a prime p and positive integer d. Then,
there exists a polynomial time algorithm SampleSkewed with the following property.

SampleSkewed(A,G,R, t, pd−1u,TG) → e: a randomized algorithm that, given full-rank ma-
trices A,G ∈ Zn×m

q , a matrix R ∈ Zm×m, a vector pd−1u ∈ Zn
q , and an invertible element

t ∈ Zq, outputs a vector e ∈ Z2m such that [A|AR + pd−1 · t · G]e = pd−1u mod q and
∥e∥ ≤ s1(R)

√
m · ω(

√
log n) with all but negligible probability.

Proof. The proof follows in a straight forward manner from the trapdoor technique used in [MP12].
We describe how algorithm SampleSkewed works. It first samples a vector z ∈ Zm such that
Gz = t−1u mod q by invoking SamplePre with trapdoor TG of G, where t−1 is well-defined since

t is invertible in Zq. Then it returns the vector e =

[
−R
Im

]
z ∈ Z2m as its output.

We show that vector e has the desired property. First, observe that

[A|AR+ pd−1 · t ·G]e = [A|AR+ pd−1 · t ·G]

[
−R
Im

]
z

= pd−1 · t ·Gz

= pd−1u mod q.

Finally, we have ∥e∥ ≤ (s1(R)+1)∥z∥ ≤ s1(R)
√
m ·ω(

√
log n), since we have ∥z∥ ≤

√
mω(
√
log n)

from Lemma 2.3 and Lemma 2.12. This completes the proof.

6.3.3 Multi-Dimensional Lattices

In this chapter, we require a generalization of standard lattices which we call multi-dimensional
lattices. We provide the minimum explanation of multi-dimensional lattices that are required to
understand the main contribution of this chapter. We refer the interested readers to Section 6.7.
Specifically, we introduce new techniques over lattices to prove the below key theorem which we
believe to be of an independent interest.

For anm-dimensional lattice Λ ⊆ Zm, define them-dimensional k-multi lattice Λk as [Λ| · · · |Λ] =
{[z1| · · · |zk]|∀zi ∈ Λ,∀i ∈ [k]} ⊆ Zm×k. For a matrix T = [t1| · · · |tk] ∈ Zm×k, denote Λk + T
as [Λ + t1| · · · |Λ + tk] ⊆ Zm×k. For a matrix M ∈ Zk×ℓ define Λk ·M as the multi lattice
{VM|V ∈ Λk} ⊆ Zm×ℓ.

Analogously to standard (one-dimensional) lattices, for an m-dimensional k-multi lattice Λk,
we define the discrete Gaussian distribution over Λk with center C ∈ Zm×k and parameter σ
denoted as DΛk,σ,C by the process of sampling a matrix whose i-th column is a sample from
DΛ,σ,Ci for i ∈ [k], where Ci denotes the i-th column of C. This definition extends naturally to
shifted multi-lattices as well.

Key Theorem. The following theorem concerning on the distribution of the sum of discrete
Gaussians plays a central roll in our security proof. The proof of the theorem is given in Section 6.7
with a more formal treatment on the output distribution.

152

Theorem 6.1. Let q be a prime or some power of a prime p. Let n,m, ℓ, t be positive integers
such that m ≥ 2n log q and ℓ > t, let A ∈ Zn×m

q be a random matrix and T ∈ Zm×ℓ be an arbitrary

matrix. Let M ∈ Zℓ×(ℓ−t) and W ∈ Zℓ×t be full rank matrices satisfying W⊤M = 0 ∈ Zt×(ℓ−t).
Finally, let σ be a positive real such that σ >

√
s1(W⊤W) · ω(

√
logm).

If, X ∈ Zm×ℓ is distributed as DΛ⊥(A)ℓ+T,σ, then XM ∈ Zm×(ℓ−t) is statistically close to to a

distribution parameterized by Λ⊥(A), σ,M, (TM mod Λ⊥(A)ℓM).

Remark 6.1. An important observation is that, if we independently sample X0 ← DΛk+T0,σ

and X1 ← DΛk+T1,σ, then the distributions of X0M and X1M are statistically close whenever

T0M = T1M mod ΛkM. This is the key insight used in our security proof; in the real world
the secret components are sampled as X0 and in the simulated world they are sampled as X1.
Furthermore, for any matrix M̄, if we let M be an arbitrary maximal independent subset of the
columns of M̄, since all the columns of XM̄ are linear combinations of the columns of XM, the
distribution of XM̄ is parameterized solely by the distribution of Λ, σ,M, (TM mod ΛkM).

6.4 Construction from Lattices with Inner Product over Z

6.4.1 Constructions

Here we construct a stateless NIPE scheme with inner product space Z. We consider the predicate
space P = {−P + 1, . . . , P − 2, P − 1}ℓ ⊂ Zℓ and attribute space I = {−I+1, . . . , I−2, I−1}ℓ ⊂
Zℓ for some integers P = P (n), I = I(n), where ℓ = ℓ(n) is typically taken to be poly(n),
and set the modulus size to be a prime q = q(n) such that the inner products of the predi-
cate and attribute vectors do not wrap around q, i.e., ℓPI < q. Other parameters including
m(n), σ(n), α(n), α′(n), s(n) are specified later. Here, we assume that the message space is {0, 1}.
For the multi-bit variant, we refer Section 6.4.4.

Setup(1n, 1ℓ): On input 1n, 1ℓ, it samples a random matrix A← Zn×m
q , a random vector u← Zn

q

and random matrices Ri ←
(
DZm,σ

)m
for i ∈ [ℓ]. It then sets Bi = ARi mod q. Finally,

it outputs

MPK = (A,B1, · · · ,Bℓ,u) and MSK = (R1, · · · ,Rℓ).

KeyGen(MPK,MSK, y⃗ ∈ P): Given a predicate vector y⃗ = (y1, · · · , yℓ) ∈ P, it computes

Ry⃗ =

ℓ∑
i=1

yiRi ∈ Zm×m.

Then, it returns the secret key sky⃗ = Ry⃗.

Enc(MPK, x⃗ ∈ I,M): To encrypt a message M ∈ {0, 1} for an attribute x⃗ = (x1, · · · , xℓ) ∈ I, it
samples s← Zn

q , z ← DZ,αq and zi ← DZm,α′q for i ∈ [0, ℓ], and computes
c = u⊤s+ z +M⌊q/2⌉,
c0 = A⊤s+ z0,

ci = (Bi + xiG)⊤s+ zi, (i ∈ [ℓ]).

Then, it returns the ciphertext C = (c, (ci)i∈[0,ℓ]) ∈ Zq × (Zm
q)(ℓ+1) with the corresponding

attribute x⃗.

153

Dec(MPK, (y⃗, sky⃗), (x⃗, C)): To decrypt a ciphertext C = (c, (ci)i∈[0,ℓ]) with an associating at-

tribute x⃗ ∈ I using a secret key sky⃗ = Ry⃗ =
∑ℓ

i=1 yiRi with an associating predicate y⃗ ∈ P,
it first computes

cy⃗ =

ℓ∑
i=1

yici ∈ Zm
q .

Next, it samples a short vector e ∈ Z2m by running SampleRight(A,G,Ry⃗, ⟨x⃗, y⃗⟩,u,TG, s).
Then, it computes w = c − e⊤[c⊤0 |c⊤1]⊤ ∈ Zq. Finally, it returns 1 if |w − ⌈q/2⌉| < ⌈q/4⌉
and 0 otherwise.

6.4.2 Correctness and Parameter Selection

The following lemma states the correctness of our proposed NIPE scheme.

Lemma 6.2 (correctness). Assume
(
αq+ ℓP 2σmα′q

)
·ω(
√
log n) < q/5 holds with overwhelming

probability. Then the above scheme has negligible decryption error.

Proof. To establish correctness of decryption, we only need to consider the case ⟨x⃗, y⃗⟩ ̸= 0 ∈ Z.
Note that due to our parameter selection, we have |⟨x⃗, y⃗⟩| < q, hence ⟨x⃗, y⃗⟩ is invertible in Zq for
q a prime. First, notice that

cy⃗ =
ℓ∑

i=1

yici =
ℓ∑

i=1

yi

(
(Bi + xiG)⊤s+ zi

)

=

(
A

ℓ∑
i=1

yiRi + ⟨x⃗, y⃗⟩G
)⊤

s+

ℓ∑
i=1

yizi

=

(
ARy⃗ + ⟨x⃗, y⃗⟩G

)⊤
s+ z′,

where we set z′ =
∑ℓ

i=1 yizi and recall sky⃗ = Ry⃗. Now, since each row of Ri are independent,
each row of Ry⃗ are distributed according to DZm,∥y⃗∥σ from the linear structure of subgaussian
random variables. Therefore,

s1(Ry⃗) = s1
(ℓ∑
i=1

yiRi

)
≤ C ·

√
ℓPσ ·

√
m (6.1)

where, the inequality follows from Lemma 2.2 and the fact that y⃗ ∈ P.
Next, since ⟨x⃗, y⃗⟩ is invertible in Zq, algorithm SampleRight work as specified, i.e., it outputs

a short vector e ∈ Z2m such that [A|ARy⃗ + ⟨x⃗, y⃗⟩G]e = u. Therefore,

e⊤
[
c0
cy⃗

]
= e⊤[A|ARy⃗ + ⟨x⃗, y⃗⟩G]⊤s+ e⊤[z⊤0 |z′⊤]⊤ = u⊤s+ z′′ ∈ Zq,

where we set z′′ = e⊤[z⊤0 |z′⊤]⊤. Then, we have w = M⌊q/2⌉+ z − z′′. Finally,

|z − z′′| ≤ |z|+ |e⊤[z⊤0 |z′⊤]⊤|
≤ |z|+ ∥e⊤z0∥+ ∥e⊤z′∥ (6.2)

154

= |z|+ ∥e⊤z0∥+ ∥
ℓ∑

i=1

yi · e⊤zi∥

≤
(
αq + P · s1(Ry⃗)

√
mℓα′q

)
ω(
√

log n) (6.3)

≤
(
αq + ℓP 2σmα′q

)
ω(
√
log n) (6.4)

where Eq.(6.2) follows from the sub-additivity of the square root function
√
·, Eq.(6.3) follows

from the linear structure of subgaussian random variables, Lemma 2.12, Lemma 2.3 and the fact
that y⃗ ∈ P, Eq.(6.4) follows from Eq.(6.1). Note that we hide the constant factors inside ω(·).

By assumption this is smaller than q/5 with overwhelming probability. Hence, the error
probability of the Decrypt algorithm is negligible.

Parameter Selection. To satisfy the correctness requirement and make the security proof follow
through, we need the following:

− the inner product between any attribute vector x⃗ ∈ I and predicate vector y⃗ ∈ P satisfies
|⟨x⃗, y⃗⟩| < q (i.e., ℓPI < q),

− the error term is less than q/5 with overwhelming probability (i.e.,
(
αq+ℓP 2σmα′q

)
ω(
√
log n) <

q/5. See Lemma 6.2),

− the gadget matrix G is well defined (i.e., m ≥ n⌈log q⌉. See Lemma 2.12.),

− σ is sufficiently large so that Ri’s are samplable, and Theorem 6.1 is applicable during the
security proof. (i.e., σ > ω(

√
log n) and σ >

√
ℓI · ω(

√
log n)). See Lemma 2.12),

− the SampleRight algorithm works as specified (i.e., s > s1(R⃗y⃗) · ω(
√
logm) for all predicate

vector y⃗ ∈ P. See Lemma 2.12),

− the ReRand algorithm in the security proof works as specified (i.e., α′ > 2α(s1(R⃗) + 1), αq >
ω(
√
logmℓ) where R⃗ ∈ Zm×m(ℓ+1) is the concatenation of the Ri’s. See Lemma 2.6),

− the worst case to average case reduction works (i.e., αq > 2
√
n). See Section 2.2.3.).

Recall that P (n) and I(n) is the bound on the size of the predicate and attribute vectors
and ℓ(n) is the dimension of the attribute/predicate vectors, where ℓ is set as poly(n) in a typical
setting. To satisfy the above requirements, we propose a candidate parameter selections as follows:

m = n⌈log q⌉, q = ℓ2P 2Im2 · ω(log n)1.5, σ =
√
ℓI · ω(

√
log n),

α = (ℓ2P 2Im1.5 · ω(log n)1.5)−1, α′ = (ℓ1.5P 2Im · ω(log n))−1, s = ℓPI
√
m · ω(log n),

and round up q to the nearest larger prime.

6.4.3 Security Proof

Theorem 6.2. The above NIPE scheme with inner product space Z is selectively secure assuming
LWEn,m+1,q,χ is hard, where χ = DZ,αq.

155

Proof. Let A be a PPT adversary that breaks the selective security of the NIPE scheme. In
addition, let Q = Q(n) be the number of key extraction queries A makes, and denote y⃗(k) ∈ P as
the k-th predicate vector A queries, where k ∈ [Q]. Here, we assume that A always queries for
ℓ − 1 linearly independent predicate vectors, which are all orthogonal to the challenge attribute
vector x⃗∗ over Z. This can be done without loss of generality, since A can simply ignore these
additional queries. The proof proceeds with a sequence of games that starts with the real game
and ends with a game in which A has negligible advantage. For each game Gamei denote Si the
event that A wins the game.

Game0 : This is the real security game. Namely, adversary A declares its challenge attribute
vector x⃗∗ ∈ I at the beginning of the game. Note that any predicate vector y⃗ ∈ P queried by
A to the challenger as a key extraction query must satisfy ⟨x⃗∗, y⃗⟩ = 0 over Z if A is a legitimate
adversary.

Game1 : In this game, we change the way the public matrices B1, · · · ,Bℓ are created. On receiving
the challenge attribute vector x⃗∗ = (x∗1, · · · , x∗ℓ) ∈ I from adversary A at the beginning of the
game, the challenger samples random matrices Ri ←

(
DZm,σ

)m
and sets Bi = ARi − x∗iG

mod q for i ∈ [ℓ]. Otherwise, the behavior of the challenger is identical as in Game0. Namely, the
challenger remains to answer the key extraction query for a predicate vector y⃗ ∈ P as sky⃗ = Ry⃗ =∑ℓ

i=1 yiRi where y⃗ = (y1, · · · , yℓ), and creates the challenge ciphertext as in Game0.

Before continuing to Game2, we show that Game0 is statistically indistinguishable from Game1;
this is the crux of our proof. In particular, we show that the view of the adversary in both games
is statistically close. Here, the view of the adversary is completely determined by{

MPK =
{
A, {Bi}i∈[ℓ],u

}
, {Ry⃗(k)}k∈[Q], C∗

}
where {Ry⃗(k)}k∈[Q] is the set of secret keys returned by the challenger during the key extraction
query and C∗ ← Encrypt(MPK, x⃗∗,Mb) is the challenge ciphertext, where b is the random bit cho-
sen by the challenger. Observe that in both games A,u are distributed identically. Furthermore,
the challenge ciphertext C∗ is created using only the terms in MPK (with some extra randomness
that are identical in both games). Furthermore, from our assumption on A, we assume that
{y⃗(k)}k∈[ℓ−1] is the set of the ℓ − 1 linearly independent vectors that A queries. Then, what we
need to consider are only the ℓ − 1 secret keys {Ry⃗(k)}k∈[ℓ−1], since all the other secret keys can
be created by the linear combinations of {Ry⃗(k)}k∈[ℓ−1]. Therefore, the difference in the views of
the adversary in Game0 and Game1 is determined solely by the difference in the distribution of{

{Bi}i∈[ℓ], {Ry⃗(k)}k∈[ℓ−1]
}
. (6.5)

Hence, we aim at proving that the view of Eq.(6.5) for the adversary is statistically close in
both games. More strictly, we compare the following probability of each game:

Pr

[{
{Bi}i∈[ℓ], {Ry⃗(k)}k∈[ℓ−1]

}
=
{
{B̂i}i∈[ℓ], {R̂y⃗(k)}k∈[ℓ−1]

}]
=Pr

[
{Ry⃗(k)}k∈[ℓ−1] = {R̂y⃗(k)}k∈[ℓ−1]

∣∣∣ {Bi}i∈[ℓ] = {B̂i}i∈[ℓ]
]

︸ ︷︷ ︸
(A)

·Pr
[
{Bi}i∈[ℓ] = {B̂i}i∈[ℓ]

]
︸ ︷︷ ︸

(B)

,

156

where the probability is taken over the randomness of {Ri}i∈[ℓ] during Setup; recall each Ri is

distributed according to
(
DZm,σ

)m
in both games. Note that in the above we abuse the notation

for sets by implicitly assigning an order over the elements, i.e., {X,Y} ̸= {Y,X}.
We first prove that the value of (B) is negligibly close in both games. Observe that for all

i ∈ [ℓ], ARi is distributed uniformly at random over Zn×m
q with all but negligible probability

where Ri ←
(
DZm,σ

)m
, which follows from Lemma 2.1 and our parameter selections. Concretely,

since Bi = ARi and Bi = ARi − x∗iG for Game0 and Game1, respectively, we have that in both

games {Bi}i∈[ℓ] is distributed statistically close to uniform over
(
Zn×m
q

)ℓ
.

We now proceed to prove that the value of (A) is negligibly close in both games. We
first analyze the case for Game0. Let B⃗view ∈ Zn×mℓ

q and R⃗ ∈ Zm×mℓ denote the matrices

[B1| · · · |Bℓ] and [R1| · · · |Rℓ], respectively. Then we have B⃗view = AR⃗ mod q. Furthermore,
let T⃗ = [T1| · · · |Tℓ] ∈ Zm×mℓ be an arbitrary solution to B⃗view = AT⃗ mod q. Then, due to
Lemma 2.1, conditioned on {B̂i}i∈[ℓ] = {ARi}i∈[ℓ] (mod q), the conditional distribution of R⃗ is
D

Λ⊥(A)mℓ+T⃗,σ
. Now, we are ready to determine the conditional distribution of the secret keys

{Ry⃗(k)}k∈[ℓ−1] obtained by the adversary A. Observe the following equation:

[Ry⃗(1) |Ry⃗(2) | · · · |Ry⃗(ℓ−1)]︸ ︷︷ ︸
:=R⃗sk ∈Zm×m(ℓ−1)

= [R1|R2| · · · |Rℓ]︸ ︷︷ ︸
=R⃗ ∈Zm×mℓ


y
(1)
1 Im

y
(1)
2 Im
...

y
(1)
ℓ Im

y
(2)
1 Im

y
(2)
2 Im
...

y
(2)
ℓ Im

· · ·

· · ·

y
(ℓ−1)
1 Im

y
(ℓ−1)
2 Im

...

y
(ℓ−1)
ℓ Im

 ,
︸ ︷︷ ︸

:=M=Y⊗Im ∈Zmℓ×m(ℓ−1)

(6.6)

where y
(k)
j is the j-th entry of the k-th predicate vector y⃗(k) and Y ∈ Zℓ×(ℓ−1) is a full rank

matrix whose k-th column is y⃗(k). We also denote the left and right hand matrices as R⃗sk and
M ∈ Zmℓ×m(ℓ−1), respectively. Note that the equality is taken over Z. Now, since x⃗⋆⊤Y = 0 ∈
Z1×(ℓ−1), we have W⊤M = 0 ∈ Zm×m(ℓ−1) where W = x⃗⋆ ⊗ Im ∈ Zmℓ×m is a full rank matrix.
Furthermore, by construction, we have

√
s1(W⊤W) = ∥x⃗∗∥. Therefore, by Theorem 6.1 and

from the fact that R⃗ is distributed according to D
Λ⊥(A)mℓ+T⃗,σ

, for our parameter selection, we

have that the distribution of R⃗sk = R⃗M is statistically close to a distribution parameterized by
Λ⊥(A), σ,M and (T⃗M mod Λ⊥(A)mℓM).

We now show that this holds in case for Game1 as well. Similarly to above, we begin by
determining the conditional distribution of R⃗ given {Bi}i∈[ℓ] = {ARi − x∗iG}i∈[ℓ]. Let us denote
G⃗x⃗∗ ∈ Zn×mℓ

q as the matrix [x∗1G|x∗2G| · · · |x∗ℓG]. Then, B⃗view + G⃗x⃗∗ = AR⃗ mod q. Next, let

us chose an arbitrary matrix E ∈ Zm×m such that G = AE mod q, and define E⃗x⃗∗ ∈ Zm×mℓ

as the matrix [x∗1E|x∗2E| · · · |x∗ℓE]. Then, we have G⃗x⃗∗ = AE⃗x⃗∗ mod q. Combining this with the

T⃗ we have defined above in Game0, we obtain B⃗view + G⃗x⃗∗ = A(T⃗ + E⃗x⃗∗) mod q. Therefore,
by Lemma 2.1, the conditional distribution of R⃗ given {Bi}i∈[ℓ] is DΛ⊥(A)mℓ+T⃗+E⃗x⃗∗ ,σ

. Next, we

determine the conditional distribution of the secret keys {Ry⃗(k)}k∈[ℓ−1] obtained by the adversary
A. Observe that equation Eq.(6.6) holds for Game1 as well, since we do not change the way we
answer the key extraction queries. Concretely, we have M = Y⊗ Im and W⊤M = 0 where W =
x⃗⋆⊗Im. Hence, by Theorem 6.1 and the fact that R⃗ is distributed according toD

Λ⊥(A)mℓ+T⃗+E⃗x⃗∗ ,σ
,

we have that the distribution of R⃗sk = R⃗M is statistically close to a distribution parameterized by
Λ⊥(A), σ,M and (T⃗M+ E⃗x⃗∗M mod Λ⊥(A)mℓM). Finally, it remains to prove that E⃗x⃗∗M = 0

157

(over Z) in order to prove equivalence of (A) between Game0 and Game1. Observe that

E⃗x⃗∗M = E · [x∗1Im|x∗2Im| · · · |x∗ℓIm]


y
(1)
1 Im

y
(1)
2 Im
...

y
(1)
ℓ Im

y
(2)
1 Im

y
(2)
2 Im
...

y
(2)
ℓ Im

· · ·

· · ·

y
(ℓ−1)
1 Im

y
(ℓ−1)
2 Im

...

y
(ℓ−1)
ℓ Im


= E · [⟨x⃗∗, y⃗(1)⟩Im|⟨x⃗∗, y⃗(2)⟩Im| · · · |⟨x⃗∗, y⃗(ℓ−1)⟩Im]

= 0 ∈ Zm×m(ℓ−1),

since we have ⟨x⃗∗, y⃗(k)⟩ = 0 over Z for k ∈ [ℓ − 1]. Hence, we conclude that the value of (A),
i.e., the conditional probability of R⃗sk given {Bi}i∈[ℓ], in Game0 and Game1 is negligibly close.
Therefore, we have |Pr[S0]− Pr[S1]| = negl(n).

Game2 : In this game, we change the way the challenge ciphertext is created. Recall that in the
previous game, the challenge ciphertext was created as

c = u⊤s+ z +Mb⌊q/2⌉, c0 = A⊤s+ z0, (ci = (ARi)
⊤s+ zi)i∈[ℓ] (6.7)

where s← Zn
q , z ← DZ,αq, zi ← DZm,α′q for i ∈ [0, ℓ], and b← {0, 1}, where the last term follows

from the fact that in Game1 we modified Bi so that Bi = ARi − x∗iG, and M0,M1 are the two
messages sent by the adversary A. To create the challenge ciphertext in Game2, the challenger
first picks s← Zn

q and z← DZm,αq and computes v = A⊤s+ z ∈ Zm
q . It then runs the algorithm

ReRand
(
[Im|R⃗],v, αq,

α′

2α

)
→ c ∈ Zm(ℓ+1)

q

from Lemma 2.6, and parses c into ℓ+1 vectors (ci)i∈[ℓ+1] in Zm
q such that c⊤ = [c⊤0 |c⊤1 | · · · |c⊤ℓ] ∈

Zm(ℓ+1)
q . Finally, it picks z ← DZ,αq, b← {0, 1} and sets the challenge ciphertext as

C∗ =
(
c = v +Mb⌊q/2⌉, c0, (ci)i∈[ℓ]

)
∈ Zq × Zm

q × (Zm
q)ℓ, (6.8)

where v = u⊤s+ z.

We claim that this change alters the view of A only negligibly. First, the first term c is dis-
tributed identically as in Eq.(6.7). Next, observe that the input to ReRand is [Im|R⃗] ∈ Zm×m(ℓ+1)

and v = A⊤s+ z ∈ Zm
q . Therefore, due to Lemma 2.6, for our choices of α and α′, the output of

ReRand is

c⊤ =
(
A⊤s

)⊤
[Im|R⃗] + z′⊤

= s⊤[A|AR⃗] + z′⊤ ∈ Zm(ℓ+1)
q ,

where the distribution of z′ is within statistical distance from z′ ← DZm(ℓ+1),α′q. By parsing c
appropriately as above, it can be seen that it is statistically close to (ci)i∈[0,ℓ] of Eq.(6.7). There-
fore, the challenge ciphertexts of Game1 and Game2 are statistically indistinguishable. Hence, we
have |Pr[S1]− Pr[S2]| = negl(n).

Game3 : In this game, we further change the way the challenge ciphertext is created. To create
the challenge ciphertext, the challenger first samples v ← Zq, v

′ ← Zm
q and z ← DZm,αq, and

158

runs ReRand
(
[Im|R⃗],v, αq, α′

2α

)
→ c ∈ Zm(ℓ+1)

q , where v = v′+ z. Then, the challenge ciphertext

is set as in Eq.(6.8). We show in Lemma 6.3 below that assuming LWEn,m+1,q,χ is hard, we have
|Pr[S2]− Pr[S3]| = negl(n).

Furthermore, since v is uniformly random over Zq and independent of the other values, the
term in the challenge ciphertext c = v + Mb⌊q/2⌉ that conveys the information on the message
is distributed independently from the value of Mb. Therefore, we have Pr[S3] = 1/2. Combining
everything together, we have∣∣∣∣Pr[S0]− 1

2

∣∣∣∣ =
∣∣∣∣∣

2∑
i=0

(Pr[Si]− Pr[Si+1]) + Pr[S3]−
1

2

∣∣∣∣∣
≤

2∑
i=0

|Pr[Si]− Pr[Si+1]|+
∣∣∣∣Pr[S3]− 1

2

∣∣∣∣ ≤ negl(n).

Therefore, the probability that A wins Game0 is negligible.

To complete the proof of Theorem 6.2, it remains to prove the following Lemma 6.3.

Lemma 6.3. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[S2]− Pr[S3]| ≤ Adv
LWEn,m+1,q,χ

B .

In particular, under the LWEn,m+1,q,χ assumption, we have |Pr[S2]− Pr[S3]| = negl(n).

Proof. Suppose there exists an adversary A with non-negligible advantage in distinguishing be-
tween Game2 and Game3 that outputs a value coin ∈ {0, 1}, where coin = 1 in case A decides its
interacting with a Game2 challenger. We use A to construct an LWE algorithm B as follows.

Instance. B is given {ai, vi}mi=0 ∈
(
Zn
q ×Zq

)m+1
as the problem instance of LWEn,m+1,q,χ, where

recall that χ = DZ,αq. We can assume without loss of generality that vi = v′i + zi for zi ← DZ,αq
and restate the LWE problem so that B’s task is now to distinguish whether v′i = a⊤i s for some
s ∈ Zn

q or v′i ← Zq for i ∈ [0,m]. We note this subtle change from the standard LWE problem is
only a syntactical change made for the convenience of the proof.

Setup. To construct the master public key MPK, B first sets the random vector u as a0, and
assembles the random matrix A ∈ Zn×m

q from the remaining LWE samples {ai}mi=1 by letting
the i-th column be the vector ai. It also samples ℓ random matrices Ri ← (DZm,σ)

m and sets
Bi = ARi − x∗iG mod q for i ∈ [ℓ]. Finally, it returns MPK = (A,B1, · · · ,Bℓ,u) to A.
Phase 1 and Phase 2. The key extraction queries made by A are answered as in Game1 (which
is equivalent to both Game2 and Game3), using the Ri’s created during Setup.

Challenge Query. When A makes the challenge query for the challenge attribute vector x⃗∗ and
challenge messages M0,M1, B sets the challenge ciphertext C∗ as in Eq.(6.8) and returns C∗ to
A.
Guess. At last, A outputs its guess coin. Then, B outputs 1 if coin = 1 and 0 otherwise.

Analysis. It can be seen that B perfectly simulates the view of A in Game2 if {ai, vi}mi=0 are
valid LWE samples (i.e., v′i = a⊤i s) and Game3 otherwise (i.e., v′i ← Zq). We therefore conclude

that Adv
LWEn,m+1,q,χ

B = |Pr[S2]− Pr[S3]| as desired.

159

6.4.4 Multi-bit Variant

Here, we explain how to extend our scheme to a multi-bit variant without increasing much the
size of the master public keys, secret keys, and ciphertexts following the techniques of [PVW08,
ABB10, Yam16]. To modify the scheme to deal with message space of length ℓM , we replace
u ∈ Zn

q in MPK with U ∈ Zn×ℓM
q . The component c in the ciphertext is replaced with c =

U⊤s+ z+M⌈q/2⌉ where z← DZℓM ,αq and M ∈ {0, 1}ℓM is the message to be encrypted. When

decrypting the message, one samples a matrix E ∈ Z2m×ℓM such that [A|ARy⃗ + ⟨x⃗, y⃗⟩G]E = U,
which is possible given sky⃗ by running SampleRight in a column wise manner. We can prove
security for the multi-bit variant from LWEn,m+ℓM ,q,χ by naturally extending the proof of Theorem
6.2. We note that the same parameters as in Section 6.5.1 will also work for the multi-bit
variant. By this change, the sizes of the master public keys, ciphertexts, and private keys become
Õ((n2ℓ+nℓM) log q), Õ((n+ℓ+ℓM) log q), and Õ(n2 log q) from Õ(n2ℓ log q), Õ((n+ℓ) log q), and
Õ(n2 log q), respectively. The sizes of the master public keys and ciphertexts will be asymptotically
the same as long as ℓM = Õ(n). To deal with longer messages, we employ a KEM-DEM approach
as suggested in [Yam16]. Namely, we encrypt a random ephemeral key of sufficient length and
then encrypt the message by using the ephemeral key.

6.5 Constructions from Lattices with Inner Product over Zp
In this section, we construct a stateful NIPE scheme with inner product space Zp for p = p(n) a
prime, where the predicate and attribute spaces are Zℓ

p.

Overview. We give a more detailed overview on the intuition given in the introduction. First,
we need the state to keep track of what kind of predicate vectors y⃗ we gave out secret keys to.
Unlike in the NIPE construction of Section 6.4, for our NIPE scheme with predicate space Zp,
the linear dependency of the predicate vectors (over Zp) and the secret keys (over Z) are no
longer consistent. Namely, when an adversary queries for linearly dependent predicate vectors
over Zp, the corresponding secret keys may no longer be linearly dependent over Z. For our
particular construction, when an adversary obtains secret keys to a linearly independent predicate
vectors over Z, the scheme leads to a complete break in security. Therefore, we need to maintain
information on the linear span of the predicate vectors (over Zp and Z) that it has generated
secret keys to, and create a secret key for a new predicate vector y⃗ as a Z-linear combination of
the previously generated secret keys if y⃗ lies in the Zp-linear span maintained in the state.

Here, we also maintain our state in a unique way, which allows us to base security of our
scheme under a weaker polynomial LWE assumption. As already mentioned, the state maintains
the information of the linear span of the predicate vectors that it has generated secret keys to. In
our scheme, this is expressed by a list of tuples of the form (⃗h(i), h⃗(i), sk

h⃗(i)) ∈ Zℓ
p × Zℓ × Zm×m,

where i ∈ list ⊆ [ℓ]. Informally, list indicates the distinctive indices that specifies the linear span
of the so far queried predicate vectors, and |list| is the dimension of the linear span. Furthermore,
h⃗(i) ∈ Zℓ

p are vectors specifying the linear span of the queried predicate vectors, h⃗(i) are vectors

in Zℓ that is in a sense encodings of h⃗(i) that maintain linear dependency over Z, and sk
h⃗(i) are

the secret keys corresponding to the predicate vector h⃗(i). When queried a new predicate vector
y⃗, the algorithm first checks if it lies in the Zp-linear span of {h⃗(i)}i∈list. If so, (informally) it
computes secret keys as a Z-linear combination of {sk

h⃗(i)}i∈list. If not, it processes y⃗ into a new

vector h⃗(j) ∈ Zℓ
p that does not lie in the Zp-linear span of {h⃗(i)}i∈list and adds j to list. Here, in

order for us to base security on an LWE assumption with polynomial approximation factor, we

160

need to process y⃗ in such a way that the matrix with columns {h⃗(i)}i∈list interpreted as vectors
in Zℓ has a small singular value. At a high level, this can be achieved by keeping the diagonal
elements small, which we can do since we can store any factor of h⃗(i) ∈ Zℓ

p without altering the

Zp-linear span. Here, the crucial observation is that the Zp-linear dependency of {h⃗(i)}i∈list and
the size of the singular values of {h⃗(i)}i∈list interpreted as a matrix over Z are (almost completely)
independent with each other.

Construction. Let q = pd for some positive integer d ≥ 3 and let m(n), σ(n), α(n), α′(n), s(n)
be parameters that are specified later. Here, we assume that the message space is {0, 1}. We can
easily extend the scheme to the multi-bit variant similarly to Section 6.4.4.

Setup(1n, 1ℓ): On input 1n, 1ℓ, it samples a random matrix A← Zn×m
q , a random vector u← Zn

q ,

random matrices Ri ←
(
DZm,σ

)m
for i ∈ [ℓ] and sets Bi = ARi mod q. Furthermore, it

initializes a state st that inculdes an empty list list ⊆ [ℓ]. Finally, it outputs

MPK =
(
A, {Bi}i∈[ℓ],u

)
and MSK =

(
st, {Ri}i∈[ℓ]

)
.

KeyGen (MPK,MSK, y⃗ ∈ Zℓ
p, st): Given a predicate vector y⃗ ∈ Zℓ

p and an internal state st, it
computes the secret key sky⃗ as follows. At any point of the execution, the internal state

st contains a list of indices list ⊆ [ℓ] and at most ℓ tuples of the form (⃗h(i), h⃗(i), sk
h⃗(i)) ∈

Zℓ
p × Zℓ × Zm×m, where the vectors {h⃗(i)}j∈list form a basis of the Zp-linear span of the

predicate vectors which the key extraction queries has been made so far.

If y⃗ ∈ Zℓ
p is linearly independent modulo p from all the {h⃗(j)}j∈list in the state st, it

first runs the following procedure. By construction, for all j ∈ list, we will have (j =

argmini∈[ℓ]{h
(j)
i ̸= 0}) ∧ (h

(j)
j = 1), i.e., the smallest index for which the entry of h⃗(j) is

non-zero is j, and at that index it holds that h
(j)
j = 1. It sets h⃗ = y⃗, and starting with the

smallest index j ∈ list, it iterates through list in ascending order by updating h⃗← h⃗−hj ·h⃗(j)

mod p so that the updated h⃗ satisfies hj = 0 mod p, where hj denotes the j-th element

of h⃗. After it runs through all the element in list, it finds the smallest index j′ such that
h⃗j′ ̸= 0. This always exists since y⃗ is linearly independent modulo p from {h⃗(j)}j∈list. Then,
it updates h⃗ once more by h⃗← (1/hj′) · h⃗ mod p and sets h⃗(j

′) = h⃗ ∈ Zℓ
p. It can be checked

that (j′ = argmini∈[ℓ]{h
(j′)
i ̸= 0}) ∧ (h

(j′)
j′ = 1). Finally, it sets h⃗(j

′) = h⃗(j
′), interpreted as a

vector in Zℓ, and sets sk
h⃗(j′) as

R
h⃗(j′) =

ℓ∑
i=1

h
(j′)
i Ri ∈ Zm×m, (6.9)

where h
(j′)
i is the i-th entry of h⃗(j

′). It then adds j′ to list and the tuple (⃗h(j
′), h⃗(j

′), sk
h⃗(j′))

to st.3 Note that after this procedure, the predicate vector y⃗ is linearly dependent modulo
p with the vectors {h⃗(j)}j∈list in the state st. Furthermore, when ℓ linearly independent

queries has been made, we have list = [ℓ] and the set of vectors {h⃗(j)}j∈[ℓ] forms a lower
triangular matrix with ones along the diagonal.

3 Although h⃗(j′) ∈ Zℓ
p and h⃗(j

′) ∈ Zℓ are in some sense identical, we intentionally write it redundantly in this

form for consistency with the other predicate vectors y⃗, i.e., (⃗h(j
′), sk

h⃗(j′)) acts as a valid secret key for the predicate

vector h⃗(j′).

161

Finally, to construct the secret key for y⃗, it sets y⃗ =
∑

j∈list λj h⃗
(j) mod p for some λj ’s

in Zp and sets y⃗ =
∑

j∈list λj h⃗
(j) ∈ Zℓ where here λj is viewed as an element over Z. Finally,

it sets sky⃗ as

Ry⃗ =
ℓ∑

i=1

yiRi ∈ Zm×m,

where yi is the i-th entry of y⃗, and returns the tuple (⃗y, sky⃗) ∈ Zℓ×Zm×m as the secret key.

Enc(MPK, x⃗ ∈ Zℓ
p,M): To encrypt a message M ∈ {0, 1} for an attribute x⃗ = (x1, · · · , xℓ) ∈ Zℓ

p,
it samples s← Zn

q , z0, zi ← DZm,α′q for i ∈ [ℓ], and computes
c = pd−1 ·

(
u⊤s+M⌊p/2⌉

)
,

c0 = A⊤s+ z0,

ci = (Bi + pd−1 · xiG)⊤s+ zi, (i ∈ [ℓ]),

Then, it returns the ciphertext C = (c, c0, (ci)i∈[ℓ]) ∈ Zq × (Zm
q)ℓ+1 with its corresponding

attribute x⃗.

Dec(MPK, (y⃗, y⃗, sky⃗), (x⃗, C)): To decrypt a ciphertext C = (c, c0, (ci)i∈[ℓ]) with an associating

attribute x⃗ ∈ Zℓ
p, it first computes

cy⃗ =
ℓ∑

i=1

yici mod q ∈ Zm
q ,

where yi is the i-th entry of y⃗. Next, it samples a short vector e ∈ Z2m by running
SampleSkewed(A, sky⃗ = Ry⃗, ⟨x⃗, y⃗⟩, pd−1u,TG). Then, it computes t = c− e⊤[c⊤0 |c⊤y⃗]

⊤ ∈ Zq

Finally, it returns 1 if |t− ⌈q/2⌉| < ⌈q/4⌉ and 0 otherwise.

6.5.1 Correctness and Parameter Selection

The following lemma states the correctness of our proposed NIPE scheme.

Lemma 6.4 (correctness). Assume
(
αq + ℓp2σmα′q

)
· ω(
√
log n) < q/5 holds with overwhelming

probability. Then the above scheme has negligible decryption error.

Proof. To establish correctness of decryption, we only need to consider the case ⟨x⃗, y⃗⟩ ̸= 0 ∈ Zp.
First, notice that

cy⃗ =
ℓ∑

i=1

yici =
ℓ∑

i=1

yi

(
(Bi + pd−1 · xiG)⊤s+ zi

)

=

(
A
(ℓ∑

i=1

yiRi

)
︸ ︷︷ ︸
=Ry⃗ (=sky⃗)

+pd−1 · ⟨x⃗, y⃗⟩G
)⊤

s+

ℓ∑
i=1

yizi︸ ︷︷ ︸
:=z′ (noise)

=

(
ARy⃗ + pd−1 · ⟨x⃗, y⃗⟩G

)⊤
s+ z′ mod q, (6.10)

162

where we set z′ =
∑ℓ

i=1 yizi.

Next, we show that pd−1 · ⟨x⃗, y⃗⟩ = pd−1 · ⟨x⃗, y⃗⟩ mod q. Recall that y⃗ =
∑

j∈list h⃗
(j) mod p

and y⃗ =
∑

j∈list λj h⃗
(j) for some λj ’s in Zp (or view λj as an element in Z for the latter equality),

where {h⃗(j)}j∈list are the vectors stored in the state st at the time of constructing the secret

key for y⃗ and h⃗(j) = h⃗(j) over Z. Therefore, we have ⟨x⃗, y⃗⟩ = ⟨x⃗, y⃗⟩ mod p, which implies
pd−1 · ⟨x⃗, y⃗⟩ = pd−1 · ⟨x⃗, y⃗⟩ mod q. Hence, Eq.(6.10) is equivalent to

cy⃗ =

(
ARy⃗ + pd−1 · ⟨x⃗, y⃗⟩G

)⊤
s+ z′ ∈ Zm

q .

Observe that since each rows of Ri are independent, each row of R⃗y⃗ are distributed according
to DZm,∥⃗y⊤∥σ from the linear structure of subgaussian random variables. Therefore,

s1(R⃗y⃗) = s1

(ℓ∑
i=1

yiRi

)
≤ C ·

√
ℓpσ ·

√
m (6.11)

where, the inequality follows from Lemma 2.2 and the fact that y⃗ ∈ Zℓ
p.

Since p is a prime, q = pd and ⟨x⃗, y⃗⟩ ∈ Zp\{0}, we have that ⟨x⃗, y⃗⟩ is invertible in Zq.
Therefore, algorithm SampleSkewed works as specified, i.e., it outputs a short vector e ∈ Z2m

such that [A|ARy⃗ + pd−1 · ⟨x⃗, y⃗⟩G]e = pd−1 · u mod q. Hence,

e⊤
[
c0
cy⃗

]
= e⊤[A|ARy⃗ + pd−1 · ⟨x⃗, y⃗⟩G]⊤s+ e⊤[z⊤0 |z′⊤]⊤ = pd−1 · u⊤s+ z′′ ∈ Zq,

where we set z′′ = e⊤[z⊤0 |z′⊤]⊤. Then, we have w = M · pd−1⌊p/2⌉+ z − z′′. Finally,

|z − z′′| ≤ |z|+ |e⊤[z⊤0 |z′⊤]⊤|
≤ |z|+ ∥e⊤z0∥+ ∥e⊤z′∥ (6.12)

= |z|+ ∥e⊤z0∥+ ∥
ℓ∑

i=1

yi · e⊤zi∥

≤
(
αq + p · s1(R⃗y⃗)

√
mℓα′q

)
ω(
√

log n) (6.13)

≤
(
αq + ℓp2σmα′q

)
ω(
√

log n) (6.14)

where Eq.(6.12) follows from the sub-additivity of the square root function
√
·, Eq.(6.13) follows

from the linear structure of subgaussian random variables, Lemma 2.3, Lemma 2.12 and the fact
that y⃗ ∈ Zℓ

p, Eq.(6.14) follows from Eq.(6.11). Note that we hide the constant factors inside ω(·).
By assumption this is smaller than q/5 with overwhelming probability. Hence, from the fact

that q = pd, the error probability of the Decrypt algorithm is negligible.

Parameter Selection. To satisfy the correctness requirement and make the security proof follow
through, we need the following:

− the error term is less than q/5 with overwhelming probability (i.e.,
(
αq+ℓp2σmα′q

)
ω(
√
logn) <

q/5. See Lemma 6.2),

− the gadget matrix G is well defined (i.e., m ≥ n⌈log q⌉. See Lemma 2.12.),

163

− σ is sufficiently large so that Ri’s are samplable and Theorem 6.1 is applicable during the
security proof (i.e., σ > ω(

√
log n) and σ > (p + 1)ℓ+2 · ω(

√
logm). See Lemma 2.12 and

Lemma 6.5),

− the ReRand algorithm in the security proof works as specified (i.e., α′ > 2α(s1(R⃗) + 1), αq >
ω(
√
logmℓ) where R⃗ ∈ Zm×m(ℓ+1) is the concatenation of the Ri’s. See Lemma 2.6),

− the worst case to average case reduction works (i.e., αq > 2
√
n). (See Theorem 2.1).

Recall that p(n) is the size of the predicate/attribute space and ℓ(n) is the dimension of the
attribute/predicate vectors and the modulus size q is pd for d := d(n). To satisfy the above
requirements, we propose a candidate parameter selections as follows:

m = n⌈log q⌉, q = pd, pd−2(ℓ+1) ≥ ℓ1.5m2ω(log n)2.5,

α = p−2(ℓ+1) · (ℓmω(log n))−1.5, α′ = p−(ℓ+2) · (ℓmω(log n))−1, σ = pℓ · ω(
√

log n).

Therefore, to base the construction on the LWE problem with polynomial modulus q, for example
we can set ℓ, d = O(log n/ log log n) and p = O(log n) or set ℓ, d = O(log n) and p as some positive
constant.

6.5.2 Security Proof

Theorem 6.3. The above NIPE scheme with inner product space Zp is selective secure assuming
FE.LWEn,m+1,q,χ is hard, where χ = DZ,αq

Proof. Let A be a PPT adversary that breaks the selective security of the NIPE scheme. Here,
assume that A makes key extraction queries in a way that at the end of the game the state st
contains ℓ − 1 linearly independent (modulo p) predicate vectors {h⃗(j)}j∈list where |list| = ℓ − 1
(which are all orthogonal modulo p to the challenge attribute vector x⃗∗). Note that this assumption
can be made without loss of generality, since A may simply ignore unnecessary additional secret
keys, and A can not obtain no more than ℓ− 1 linearly independent (modulo p) vectors without
violating the ⟨x⃗∗, y⃗⟩ = 0 mod p condition. The proof proceeds with a sequence of games that
starts with the real game and ends with a game in which A has negligible advantage. For each
game Gamei denote Si the event that A wins the game.

Game0 : This is the real security game. Namely, adversary A declares its challenge attribute
vector x⃗∗ ∈ Zℓ

p at the beginning of the game. Note that any predicate vector y⃗ ∈ Zℓ
p queried by

A to the challenger as a key extraction query must satisfy ⟨x⃗∗, y⃗⟩ = 0 mod p if A is a legitimate
adversary.

Game1 : In this game, we change the way the public matrices B1, · · · ,Bℓ are created. On receiving
the challenge attribute vector x⃗∗ = (x∗1, · · · , x∗ℓ) ∈ Zℓ

p from adversary A at the beginning of the

game, the challenger samples random matrices Ri ←
(
DZm,σ

)m
and sets Bi = ARi − pd−1 · x∗iG

mod q for i ∈ [ℓ]. Otherwise, the behavior of the challenger is identical as in Game0. Namely, the
challenger remains to answer the key extraction query for a predicate vector y⃗ ∈ Zℓ

p and creates
the challenge ciphertext as in Game0.

Before moving on to Game2, we show that Game0 is statistically indistinguishable from Game1.
In particular, we prove that the view of the adversary in both games is statistically close. In doing
so, we first show that every secret keys are Z-linear combinations of the secret keys stored in the
state st. Namely, let {h⃗(j)}j∈list denote the vectors stored in the state st on time of constructing

164

the secret key for the queried predicate vector y⃗, where list ⊆ [ℓ] is the index set contained in st.
Then, we want to show that for a predicate vector y⃗ of the form

∑
j∈list λj h⃗

(j) mod p for some λj ’s
in Zp, the corresponding secret key sky⃗ (= Ry⃗) is a Z-linear combination of {sk

h⃗(j) = R
h⃗(j)}j∈list.

To see this let the tuples stored in st be (⃗h(j), h⃗(j), sk
h⃗(j) = R

h⃗(j)) ∈ Zℓ
p × Zℓ × Zm×m for j ∈ list.

Then, we have the following:

Ry⃗ =
ℓ∑

i=1

yiRi
(i)
=

ℓ∑
i=1

(∑
j∈list

λjh
(j)
i

)
Ri =

∑
j∈list

λj

(ℓ∑
i=1

h
(j)
i Ri

)
(ii)
=
∑
j∈list

λjRh⃗(j) ∈ Zm×m,

where h
(j)
i is the i-th entry of h⃗(j). Eq. (i) follows from the definition of yi and Eq. (ii) follows

from Eq. (6.9)
Therefore the distribution of the secret keys obtained by adversary A is completely determined

by the distribution of the secret keys {sk
h⃗(j) = R

h⃗(j)}j∈list stored in the state st at the end of the
game. Therefore, the view of the adversary in both games is determined by{

MPK =
{
A, {Bi}i∈[ℓ],u

}
, {R

h⃗(j)}j∈list, C∗
}
,

where C∗ ← Encrypt(MPK, x⃗∗,Mb) is the challenge ciphertext, b is the random bit chosen by the
challenger and |list| = ℓ − 1 by assumption. Observe that in both games A,u are distributed
identically and the challenge ciphertext C∗ is created using only the terms in MPK (with some
extra randomness that are identical in both games). Therefore, the differences in the views of the
adversary in Game0 and Game1 is solely determined by the difference in the distribution of{

{Bi}i∈[ℓ], {R
h⃗(j)}j∈list

}
. (6.15)

Hence, we aim at proving that the view of Eq.(6.15) in both games are statistically close to the
adversary. More specifically, we compare the following probability of each game:

Pr

[{
{Bi}i∈[ℓ], {Rh⃗(j)}j∈list

}
=
{
{B̂i}i∈[ℓ], {R̂h⃗(j)}j∈list

}]
=Pr

[
{R

h⃗(j)}j∈list = {R̂h⃗(j)}j∈list
∣∣∣ {Bi}i∈[ℓ] = {B̂i}i∈[ℓ]︸ ︷︷ ︸

(A)

]
· Pr

[
{Bi}i∈[ℓ] = {B̂i}i∈[ℓ]

]
︸ ︷︷ ︸

(B)

,

where the probability is taken over the randomness of {Ri}i∈[ℓ] during Setup; recall each Ri is

distributed according to
(
DZm,σ

)m
in both games. Note that in the above we abuse the notation

for sets by implicitly assigning an order over the elements, i.e., {X,Y} ̸= {Y,X}.
We first prove that the value of (B) is negligibly close in both games. Observe that for all

i ∈ [ℓ], ARi is distributed uniformly at random over Zn×m
q with all but negligible probability

where Ri ←
(
DZm,σ

)m
, which follows from Lemma 2.1 and our parameter selections. Concretely,

since Bi = ARi and Bi = ARi − pd−1 · x∗iG for Game0 and Game1 respectively, we have that in

both games {Bi}i∈[ℓ] is distributed statistically close to uniform over
(
Zn×m
q

)ℓ
.

We now proceed to prove that the value of (A) is negligibly close in both games. We
first analyze the case for Game0. Let B⃗view ∈ Zn×mℓ

q and R⃗ ∈ Zm×mℓ denote the matrices

[B1| · · · |Bℓ] and [R1| · · · |Rℓ], respectively. Then, we have B⃗view = AR⃗ mod q. Furthermore,
let T⃗ = [T1| · · · |Tℓ] ∈ Zm×mℓ be an arbitrary solution to B⃗view = AT⃗ mod q. Then, due to

165

Lemma 2.1 and the conditions on {B̂i}i∈[ℓ] = {ARi}i∈[ℓ], the conditional distribution of R⃗ is
given by D

Λ⊥(A)mℓ+T⃗,σ
. Now, we are ready to determine the conditional distribution of the secret

keys {R
h⃗(j)}j∈list obtained by the adversary A. Here, let j∗ ∈ [ℓ] denote the index [ℓ]\list where

|list| = ℓ− 1, and observe the following equation:

[R
h⃗(1) |Rh⃗(2) | · · · |Rh⃗(ℓ−1)︸ ︷︷ ︸
:=R⃗sk ∈Zm×m(ℓ−1)

] = [R1|R2| · · · |Rℓ]︸ ︷︷ ︸
=R⃗ ∈Zm×mℓ


h
(1)
1 Im

h
(1)
2 Im
...

h
(1)
ℓ Im

· · ·
· · ·

· · ·

h
(j∗−1)
1 Im

h
(j∗−1)
2 Im

...

h
(j∗−1)
ℓ Im

h
(j∗+1)
1 Im

h
(j∗+1)
2 Im

...

h
(j∗+1)
ℓ Im

· · ·
· · ·

· · ·

h
(ℓ−1)
1 Im

h
(ℓ−1)
2 Im

...

h
(ℓ−1)
ℓ Im

 ,
︸ ︷︷ ︸

:=M ∈Zmℓ×m(ℓ−1)

(6.16)

where h
(j)
k is the k-th entry of h⃗(j) that is associated with the j-th vector h⃗(j) in st for j ∈ list. We

denote the left and right hand matrices as R⃗sk ∈ Zm×m(ℓ−1) and M ∈ Zmℓ×m(ℓ−1) respectively. So
as not to interrupt the proof of Theorem 6.3, we intentionally skip the proof for the time being.
Later in Lemma 6.5, we show that there exists a matrix W ∈ Zmℓ×m such that W⊤M = 0 over
Z with a sufficiently small singular value. Therefore, for our parameter selection and the fact that
R⃗ is distributed according to D

Λ⊥(A)mℓ+T⃗,σ
we can apply Theorem 6.1. Namely, the distribution

of R⃗sk = R⃗M is statistically close to a distribution parameterized by Λ⊥(A), σ,M and (T⃗M
mod Λ⊥(A)mℓM).

We now show that this holds in case for Game1 as well. We begin by determining the condi-
tional distribution of R⃗ given {Bi}i∈[ℓ] = {ARi − pd−1 · x∗iG}i∈[ℓ]. Let us denote G⃗x⃗∗ ∈ Zn×mℓ

q

as the matrix pd−1 · [x∗1G|x∗2G| · · · |x∗ℓG]. Then, B⃗view + G⃗x⃗∗ = AR⃗ mod q. Next, let us chose

an arbitrary matrix E ∈ Zm×m such that G = AE mod q, and define E⃗x⃗∗ ∈ Zm×mℓ as the
matrix pd−1 · [x∗1E|x∗2E| · · · |x∗ℓE]. Then, we have G⃗x⃗∗ = AE⃗x⃗∗ mod q. Combining this with the

T⃗ we have defined above in Game0, we obtain B⃗view + G⃗x⃗∗ = A(T⃗ + E⃗x⃗∗) mod q. Therefore,
by Lemma 2.1, the conditional distribution of R⃗ given {Bi}i∈[ℓ] is DΛ⊥(A)mℓ+T⃗+E⃗x⃗∗ ,σ

. Next, we

determine the conditional distribution of the secret keys {R
h⃗(j)}j∈list obtained by the adversary

A. Observe that equation Eq.(6.16) holds for Game1 as well, since we do not change the way we
answer the key extraction query. Hence, following the same argument as above, by Theorem 6.1
and the fact that R⃗ is distributed according to D

Λ⊥(A)mℓ+T⃗+E⃗x⃗∗ ,σ
, we have that the distribution of

R⃗sk = R⃗M is statistically close to a distribution parameterized by Λ⊥(A), σ,M and (T⃗M+E⃗x⃗∗M
mod Λ⊥(A)mℓM).

Finally, we prove that E⃗x⃗∗M ∈ Λ⊥(A)mℓM to prove equivalence of the distributions between
Game0 and Game1. Observe that

E⃗x⃗∗M = pd−1 ·E · [x∗1Im|x∗2Im| · · · |x∗ℓIm] ·


h
(1)
1 Im

h
(1)
2 Im
...

h
(1)
ℓ Im

· · ·
· · ·

· · ·

h
(j∗−1)
1 Im

h
(j∗−1)
2 Im

...

h
(j∗−1)
ℓ Im

h
(j∗+1)
1 Im

h
(j∗+1)
2 Im

...

h
(j∗+1)
ℓ Im

· · ·
· · ·

· · ·

h
(ℓ−1)
1 Im

h
(ℓ−1)
2 Im

...

h
(ℓ−1)
ℓ Im

 ,
= pd−1 ·E · [⟨x⃗∗, h⃗(1)⟩Im| · · · |⟨x⃗∗, h⃗(j

∗−1)⟩Im|⟨x⃗∗, h⃗(j
∗+1)⟩Im| · · · |⟨x⃗∗, h⃗(ℓ−1)⟩Im]

= q ·E · [n1Im| · · · |nj∗−1Im|nj∗+1Im| · · · |nℓ−1Im] ∈ qZm×m(ℓ−1),

166

where we set nj = ⟨x⃗∗, h⃗(j)⟩/p ∈ N for j ∈ list. Note that this is well-defined since ⟨x⃗∗, h⃗(j)⟩ =
⟨x⃗∗, h⃗(j)⟩ = 0 mod p (See Section 6.5.1) and q = pd. Therefore, to prove E⃗x⃗∗M ∈ Λ⊥(A)mℓM,
it suffices to prove that qZm×m(ℓ−1) ⊂ Λ⊥(A)mℓM. Namely, we prove that for every Z ∈
qZm×m(ℓ−1), there exists a matrix V ∈ Λ⊥(A)mℓ ⊂ Zm×mℓ such that VM = Z (over Z). Here, re-

call that for the vectors {h⃗(j)}j∈list in the state st, we had (j = argmini∈[ℓ]{h
(j)
i ̸= 0})∧ (h(j)j = 1).

Namely, the smallest index with a non-zero entry for h⃗(j) is j, and at that index we have h
(j)
j = 1.

Therefore, denoting H ∈ Zℓ×(ℓ−1) as the matrix whose columns are the vectors in {h(j)}j∈list, we
can properly rearrange the columns and rows of H, or more concretely there exists a permuta-
tion matrix P ∈ {0, 1}ℓ×ℓ,Q ∈ {0, 1}(ℓ−1)×(ℓ−1), such that H gets transformed into the following
matrix:

PHQ =



⋆ · · · ⋆ ⋆

1 0 · · · · · · 0

⋆ 1
. . .

...
... ⋆

. . .
. . .

...
...

. . . 1 0
⋆ ⋆ · · · ⋆ 1


=

[
a⊤

U

]
∈ Zℓ×(ℓ−1), (6.17)

where ⋆ denotes an arbitrary element in Z, a ∈ Zℓ−1 is some vector and U ∈ Z(ℓ−1)×(ℓ−1) is
unimodular. Recall that permutation matrices are orthogonal matrices: Q−1 = Q⊤, and that the
inverse of a unitary matrix is also unitary: U−1 ∈ Z(ℓ−1)×(ℓ−1). We now proceed to prove that
V = [0m×m | Z·(QU−1⊗Im)]·(P⊗Im) ∈ Zm×mℓ satisfies the above condition, i.e., V ∈ Λ⊥(A)mℓ

and VM = Z (over Z). First, it is easy to check that V ∈ Λ⊥(A)mℓ, since Z ∈ qZm×m(ℓ−1) and
qZm ⊂ Λ⊥(A). Then, recalling that M = H⊗ Im, we have

VM =
(
[0m×m | Z · (QU−1 ⊗ Im)](P⊗ Im)

)
· (H⊗ Im)

=
(
[0m×m | Z · (QU−1 ⊗ Im)](P⊗ Im)

)
·
(
P⊤

[
a⊤

U

]
Q⊤
)
⊗ Im (6.18)

= [0m×m | Z · (QU−1 ⊗ Im)](P⊗ Im)(P⊤ ⊗ Im)

([
a⊤Q⊤

UQ⊤

]
⊗ Im

)
(6.19)

= [0m×m | Z · (QU−1 ⊗ Im)]

[
a⊤Q⊤ ⊗ Im
UQ⊤ ⊗ Im

]
(6.20)

= Z, (6.21)

where Eq. (6.18) follows from Eq. (6.17), Eq. (6.19) follows from the fact that (AB ⊗ Im) =
(A⊗ Im)(B⊗ Im) and Eq. (6.20),(6.21) follows from the fact that P,Q are orthogonal matrices.
Therefore, we have E⃗x⃗∗M ∈ Λ⊥(A)mℓM.

Hence, we conclude that the value of (A), i.e., the conditional probability of R⃗sk given {Bi}i∈[ℓ]
in Game0 and Game1 are negligibly close. Therefore, we have |Pr[S0]− Pr[S1]| = negl(n).

Game2 : In this game, we change the way the challenge ciphertext is created. Recall that in the
previous game, the challenge ciphertext was created as

c = pd−1 ·
(
u⊤s+Mb⌊p/2⌉

)
, c0 = A⊤s+ z0, (ci = (ARi)

⊤s+ zi)i∈[ℓ] (6.22)

167

where s ← Zn
q , z0, zi ← DZm,α′q for i ∈ [ℓ], and b ← {0, 1}. Note the term (ci)i∈[ℓ] follows from

the fact that in Game1 we modified Bi so that Bi = ARi − pd−1 · x∗iG, and M0,M1 are the two
messages sent by the adversary A. To create the challenge ciphertext in Game2, the challenger
first picks s← Zn

q and z← DZm,αq and computes v = A⊤s+ z ∈ Zm
q . It then runs the algorithm

ReRand
(
[Im|R⃗],v, αq,

α′

2α

)
→ c ∈ Zm(ℓ+1)

q

from Lemma 2.6, and parses c into ℓ+1 vectors (ci)i∈[ℓ+1] in Zm
q such that c⊤ = [c⊤0 |c⊤1 | · · · |c⊤ℓ] ∈

Zm(ℓ+1)
q . Finally, it picks b← {0, 1} and sets the challenge ciphertext as

C∗ =
(
c = v +Mb · pd−1⌊p/2⌉, c0, (ci)i∈[ℓ]

)
∈ Zq × Zm

q × (Zm
q)ℓ, (6.23)

where v = pd−1 · u⊤s.

We claim that this change alters the view of A only negligibly. First, observe c is distributed
identically as in Eq.(6.22). Next, observe that the input to ReRand is [Im|R⃗] ∈ Zm×m(ℓ+1) and
v = A⊤s + z ∈ Zm

q . Therefore, due to Lemma 2.6, for our choices of α and α′, the output of
ReRand is

c⊤ =
(
A⊤s

)⊤
[Im|R⃗] + z′⊤

= s⊤[A|AR⃗] + z′⊤ ∈ Zm(ℓ+1)
q ,

where the distribution of z′ is within statistical distance from z′ ← DZm(ℓ+1),α′q. By parsing c ap-

propriately as above, it can be seen that it is statistically close to
(
c, (ci)i∈[ℓ]

)
of Eq.(6.22). There-

fore, the challenge ciphertexts of Game1 and Game2 are statistically indistinguishable. Hence, we
have |Pr[S1]− Pr[S2]| = negl(n).

Game3 : In this game, we further change the way the challenge ciphertext is created. To create
the challenge ciphertext, the challenger first samples v ← pd−1Z/qZ (i.e., {a | pd−1 · a, ∀a ∈ Zq}),
v′ ← Zm

q and z← DZm,αq, and runs

ReRand
(
[Im|R⃗],v, αq,

α′

2α

)
→ c ∈ Zm(ℓ+1)

q ,

where v = v′ + z. Then, the challenge ciphertext is set as in Eq.(6.23). We show below in
Lemma 6.6 that by assuming FE.LWEn,m+1,q,χ is hard, we have |Pr[S2]− Pr[S3]| = negl(n).

Furthermore, since v is uniformly random over pd−1Z/qZ and independent of the other values,
the term in the challenge ciphertext c = v +Mb · pd−1⌊p/2⌉ ∈ pd−1Z/qZ that conveys the infor-
mation on the message is distributed independently from the value of Mb. Therefore, we have
Pr[S3] = 1/2. Combining everything together, we have∣∣∣∣Pr[S0]− 1

2

∣∣∣∣ =
∣∣∣∣∣

2∑
i=0

(Pr[Si]− Pr[Si+1]) + Pr[S3]−
1

2

∣∣∣∣∣
≤

2∑
i=0

|Pr[Si]− Pr[Si+1]|+
∣∣∣∣Pr[S3]− 1

2

∣∣∣∣ ≤ negl(n).

Therefore, the probability that A wins Game0 is negligible.

168

To complete the proof of Theorem 6.3, it remains to prove Lemma 6.5 and Lemma 6.6.

Lemma 6.5. There exits a full rank matrix W ∈ Zmℓ×m such that W⊤M = 0 (over Z) and√
s1(W⊤W) ≤ (p+ 1)ℓ+2, where M ∈ Zmℓ×m(ℓ−1) is the full rank matrix defined in Eq. (6.16).

Proof. Here, we use the matrices and vector P,Q,U,a defined in Eq. (6.17). First, let w ∈ Zℓ be
a non-zero vector such that w⊤PHQ = 0 (over Z). Then, we can set W = (P⊤w)⊗Im ∈ Zmℓ×m.
It is easy to check that W is rank m and satisfies

W⊤M =
(
(P⊤w)⊗ Im

)⊤ ·M =
(
(w⊤P)⊗ Im

)
· (H⊗ Im) =

(
(w⊤PHQ) ·Q⊤

)
⊗ Im = 0,

where we have QQ⊤ = Iℓ−1 due to the fact that Q is a permutation matrix. Furthermore, by the
way we construct W, we have

W⊤W = (P⊤w ⊗ Im)⊤(P⊤w ⊗ Im) = w⊤w ⊗ Im = w⊤w · Im.

Therefore s1(W
⊤W) = w⊤w. Hence, it suffices to prove that there exists w ∈ Zℓ such that

w⊤PHQ = 0 and ∥w∥ ≤ 3pℓ. Recalling Eq. (6.17), we have

(w⊤PHQ)⊤ =


a1 1 u1,1 · · · · · · u1,ℓ−1
a2 0 1 u2,2 · · · u2,ℓ−1
...

...
. . .

. . .
. . .

...

aℓ−2
...

. . . 1 uℓ−1,ℓ−1
aℓ−1 0 · · · · · · 0 1




w1

w2
...

wℓ−1
wℓ

 = 0 ∈ Zℓ−1, (6.24)

where ai, ui,k ∈ Z for i ∈ [ℓ − 1], k ∈ [i]. Furthermore, since P,Q are permutation matrices and
all elements of H were chosen from Zp (See the KeyGen algorithm), we have |ai|, |ui,k| < p. Now,
from Eq. (6.24), if we set w1 = 1 we can solve for the other {wi}ℓi=2 terms recursively as follows:

wℓ = −aℓ−1w1

wℓ−1 = −aℓ−2w1 − uℓ−1,ℓ−1wℓ−1
...

w2 = −a1w1 −
∑ℓ−1

i=1 u1,iwi+1

Since, w1 = 1 and |ai|, |ui,k| < p for all i ∈ [ℓ − 1], k ∈ [i], we have |wi| ≤
∑ℓ+1−i

t=1 p|wt| ≤
p(p+ 1)ℓ+1−i. Therefore, we have

w⊤w =

ℓ∑
i=1

w2
i ≤

ℓ∑
i=1

p2(p+ 1)2(ℓ+1−i) ≤ (p+ 1)2(ℓ+2).

Thus, we conclude that
√
s1(W⊤W) = ∥w∥ ≤ (p+ 1)ℓ+2.

Lemma 6.6. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[S2]− Pr[S3]| ≤ Adv
FE.LWEn,m+1,q,χ

B .

In particular, under the FE.LWEn,m+1,q,χ assumption, we have |Pr[S2]− Pr[S3]| = negl(n).

169

Proof. Suppose there exists an adversary A with non-negligible advantage in distinguishing be-
tween Game2 and Game3 that outputs a value coin ∈ {0, 1}, where coin = 1 in case A decides its
interacting with a Game2 challenger. We use A to construct an FE.LWE algorithm B as follows.

Instance. B is given {ai, vi}mi=0 ∈
(
Zn
q × Zq

)m+1
as the problem instance of FE.LWEn,m+1,q,χ,

where recall that χ = DZ,αq and the first term is errorless, i.e., v0 = a⊤0 s in case of a valid FE.LWE
sample. We can assume without loss of generality that vi = v′i + zi for zi ← DZ,αq (i ∈ [m]) and
restate the FE.LWE problem so that B’s task is now to distinguish whether v′i = a⊤i s for some
s ∈ Zn

q or v′i ← Zq for i ∈ [0,m]. We note this subtle change from the standard FE.LWE problem
is only a syntactical change made for the convenience of the proof.

Setup. To construct the master public key MPK, B first sets the random vector u as a0, and
assembles the random matrix A ∈ Zn×m

q from the remaining FE.LWE samples {ai}mi=1 by letting
the i-th column be the vector ai. It also samples ℓ random matrices Ri ← (DZm,σ)

m and sets
Bi = ARi − pd−1 · x∗iG mod q for i ∈ [ℓ]. Finally, it returns MPK = (A, {Bi}i∈ℓ,u) to A.
Phase 1 and Phase 2. The key extraction queries made by A are answered as in Game1 (which
is equivalent to both Game2 and Game3), using the Ri’s and R′i’s created during Setup.

Challenge Query. When A makes the challenge query for the challenge attribute vector x⃗∗ and
challenge messages M0,M1, B sets the challenge ciphertext C∗ as in Eq.(6.23) and returns C∗ to
A.
Guess. At last, A outputs its guess coin. Then, B outputs 1 if coin = 1 and 0 otherwise.

Analysis. It can be seen that B perfectly simulates the view of A in Game2 if {ai, vi}mi=0 are valid
FE.LWE samples (i.e., v′i = a⊤i s) and Game3 otherwise (i.e., v′i ← Zq). We therefore conclude that

Adv
FE.LWEn,m+1,q,χ

B = |Pr[S2]− Pr[S3]| as desired.

6.6 A Generic Construction of NIPE from LinFE

In this section, we show a generic conversion from a functional encryption scheme for inner
products to a NIPE scheme. We note that the former primitive is a special case of the notion
of functional encryption schemes where only linear functions are available. Henceforth we call
this primitive as LinFE in the following. The idea for the conversion is drawn from the work of
Agrawal et al. [ABP+17], who constructed trace and revoke schemes from LinFE.

6.6.1 Definition of Functional Encryption for Inner Product

Syntax. Let Q and J denote the predicate space and attribute spaces, where the inner product
between elements (i.e., vectors) from Q and J are well-defined. Furthermore, let D denote the
space where the inner product is taken. A stateful functional encryption scheme for inner products
over D consists of the following four algorithms:

Setup(1λ, 1ℓ)→ (MPK,MSK, st): The setup algorithm takes as input a security parameter 1λ and
the length ℓ of the vectors in the predicate and an attribute spaces, and outputs a master
public key MPK, a master secret key MSK and an initial state st.

KeyGen(MPK,MSK, st, y⃗)→ (sky⃗, st): The key generation algorithm takes as input the master
public key MPK, the master secret key MSK, the state st and a predicate vector y⃗ ∈ Q. It
outputs a private key sky⃗ and a updated state st. We assume that y⃗ is implicitly included
in sky⃗.

170

Encrypt(MPK, x⃗)→ ct: The encryption algorithm takes as input a master public key MPK and
attribute vector x⃗ ∈ J . It outputs a ciphertext ct.

Decrypt(MPK, sky⃗, ct)→ ⟨x⃗, y⃗⟩or ⊥: The decryption algorithm takes as input the master public
key MPK, a private key sky⃗, and a ciphertext ct. It outputs ⟨x⃗, y⃗⟩ or ⊥, which means that
the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, ℓ ∈ N, and all x⃗ ∈ J , y⃗ ∈ Q,
we require

Pr[Decrypt(MPK, sky⃗,Encrypt(MPK, x⃗,M)) = ⟨x⃗, y⃗⟩] = 1− negl(λ)

holds, where the probability is taken over the randomness used in (MPK,MSK, st)← Setup(1λ, 1ℓ),
(sky⃗, st)← KeyGen(MPK,MSK, st, y⃗), and Encrypt(MPK, x⃗).

We also define a stateless LinFE scheme, where we do not require any state information in
the above algorithms.

Security. We define the security of a (stateful) LinFE scheme for inner product space D with
predicate space Q and attribute space J by the following game between a challenger and an
adversary A.
- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ← Setup(1λ, 1ℓ) and
gives the public parameter MPK to A.
- Phase 1. A may adaptively make key-extraction queries. If A submits a predicate vector y⃗ ∈ Q
to the challenger, the challenger runs (sky⃗, st)← KeyGen(MPK,MSK, st, y⃗) and returns sky⃗ to A.
- Challenge Phase. At some point, A outputs messages x⃗∗0, x⃗

∗
1 on which it wishes to be chal-

lenged, with the restriction that ⟨x⃗∗0, y⃗⟩ = ⟨x⃗∗1, y⃗⟩ (over D) for all y⃗ queried during Phase 1. Then,
the challenger picks a random bit b ∈ {0, 1} and returns C∗ ← Encrypt(MPK, x⃗∗b) to A.
- Phase 2. After the challenge query, Amay continue to make key-extraction queries for predicate
vectors y⃗ ∈ Q, with the added restriction that ⟨x⃗∗0, y⃗⟩ = ⟨x⃗∗1, y⃗⟩ (over D).
- Guess. Finally, A outputs a guess b′ for b. The advantage of A is defined as

AdvLinFEA,D =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
We say that an LinFE scheme with inner product space D is adaptively secure, if the advantage
of any PPT A is negligible. Similarly, we define selective security for a stateful LinFE scheme
with inner product space D, by modifying the above game so that the adversary A is forced
to declare its challenge attribute vectors x⃗∗0, x⃗

∗
1 before Setup. Finally, we define an analogous

security notion for stateless LinFE schemes, where we do not require any state information during
the above game.

6.6.2 Generic Construction of NIPE from LinFE

Here, we show a generic construction of NIPE from LinFE. Specifically, we convert a LinFE
scheme with predicate space Q, attribute space J with inner product space D into an NIPE
scheme over D with predicate space P, attribute space I, and message spaceM. The conversion
is possible when the following properties are satisfied:

• We require P,Q, I,J ⊆ Dℓ andM⊆ D for some integral domain D.

• We also require { M · x⃗ | M ∈M, x⃗ ∈ I } ⊆ J and P = Q.

171

• Division can be efficiently performed over D. More specifically, we require that given α, β ∈
D, it is possible to efficiently compute γ ∈ D satisfying α = βγ if such γ exists.

We now show the construction. Note that the conversion works both for the stateless and state-
ful cases. Let (Setup,KeyGen,Enc,Dec) be the underlying LinFE scheme and (Setup′,KeyGen′,
Enc′,Dec′) be the resulting NIPE scheme.

Setup′(1λ, 1ℓ): It is the same as Setup(1λ, 1ℓ).

KeyGen′(MPK,MSK, y⃗ ∈ P, st): It is the same as KeyGen(MPK,MSK, y⃗ ∈ P, st).

Enc′(MPK, x⃗ ∈ I,M ∈M): To encrypt a message M ∈M for an attribute x⃗ = (x1, · · · , xℓ) ∈ I,
it runs ct← Enc(MPK,M · x⃗) and outputs ct.

Dec′(MPK, (y⃗, sky⃗), (x⃗, C)): To decrypt a ciphertext ct with an associating attribute x⃗ ∈ I using
a secret key sky⃗ with an associating predicate y⃗ ∈ P, it first computes z = Dec(MPK, sky⃗, ct).
It then computes ⟨x⃗, y⃗⟩ and outputs ⊥ if ⟨x⃗, y⃗⟩ = 0 over D. Otherwise, it outputs z/⟨x⃗, y⃗⟩.
Note that the final step is possible because of the requirement on D.

Correctness. Due to the requirements on the domains, we have M · x⃗ ⊆ J and y⃗ ∈ Q = P.
Therefore, by the correctness of the underlying LinFE scheme, we have z = ⟨M · x⃗, y⃗⟩ = M · ⟨x⃗, y⃗⟩
with overwhelming probability. Thus, the correctness of the resulting NIPE scheme follows.

Theorem 6.4. If the underlying LinFE scheme is adaptively secure, so is the above NIPE scheme.

Proof. Suppose there exists an adversary A against the NIPE scheme that has non-negligible
advantage. We use A to construct another adversary B against the underlying LinFE scheme as
follows.

- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ← Setup(1λ, 1ℓ) and
gives the public parameter MPK to B. B passes the same MPK to A.
- Phase 1. When A makes a key-extraction query for a vector y⃗, B submits the same y⃗ to its
challenger and is given sky⃗. Then, it passes the same sky⃗ to A.
- Challenge Phase. When A outputs the messages (M0,M1) and the challenge attribute x⃗∗ on
which it wishes to be challenged, B submits (M0 · x⃗∗,M1 · x⃗∗) to its challenger and receives the
challenge ciphertext C∗. B passes the same C∗ to A.
- Phase 2. It is the same as Phase 1.

- Guess. Finally, A outputs a guess b′. B outputs the same bit as its guess.

Analysis. We first show that B does not violate the restriction of the security game as long as
A does not. To see this, observe that

⟨M0 · x⃗∗, y⃗⟩ = M0 · ⟨x⃗∗, y⃗⟩ = 0 = M1 · ⟨x⃗∗, y⃗⟩ = ⟨M1 · x⃗∗, y⃗⟩

holds for all y that is queried during the game. Here, the second and the third equalities follow
from the restrictions on the queries posed on A. It is clear that B’s simulation for A is perfect
and B’s advantage is exactly the same as A. This concludes the proof of the theorem.

One may expect that the above proof works also in the selective setting (i.e., if we start from a
selectively secure LinFE, we obtain a selectively secure NIPE). However, interestingly we require
to modify the proof to work in the selective setting. In particular, in the selective setting, the

172

LinFE adversary B above has to declare its target (M0x⃗
∗,M1x⃗

∗) at the beginning of the game.
However, since the NIPE adversary A only declares x⃗∗ at the outset and decides (M0,M1) later in
the game, it is difficult for B to correctly decide its target. One way to circumvent this problem is
to restrict the message spaceM to be of polynomial size and change the proof so that B simply
guesses (M0,M1). The probability of B correctly guessing the values is noticeable due to the
restriction on the size of the message space, which will be enough for our purpose. The drawback
of the approach is that we can only encrypt short messages of logarithmic length. To encrypt a
longer message, one needs to run the encryption algorithm many times to encrypt each chunk of
the message. Formally, we have the following theorem.

Theorem 6.5. Let us assume that the size of the message space M is polynomially bounded.
Then, if the underlying LinFE scheme is selectively secure, so is the above NIPE scheme.

Proof. Suppose there exists an adversary A against the NIPE scheme that has non-negligible
advantage. We use A to construct another adversary B against the underlying LinFE scheme as
follows.

- Initial Phase. At the outset of the game, A declares its target vector x⃗∗ on which it wishes to
be challenged. Then, B randomly picks M̂0, M̂1 ←M and declares (x⃗∗M̂0, x⃗

∗M̂1) as its target.

- Setup. Then, the challenger runs (MPK,MSK, st)← Setup(1λ, 1ℓ) and gives the public param-
eter MPK to B. B passes the same MPK to A.
- Phase 1. When A makes a key-extraction query for a vector y⃗, B submits the same y⃗ to its
challenger and is given sky⃗. Then, it passes the same sky⃗ to A.
- Challenge Phase. When A outputs the messages (M0,M1), B proceeds as follows. If
(M̂0, M̂1) ̸= (M0,M1), B aborts and outputs a random bit. Otherwise, B queries the challenge
ciphertext for its challenger to obtain C∗. Then it passes the same C∗ to A.
- Phase 2. It is the same as Phase 1.

- Guess. Finally, A outputs a guess b′. B outputs the same bit as its guess.

Analysis. We first observe that B does not violate the restriction of the security game as long
as A does not. We then evaluate the advantage of B. In the following, we denote the event of B
correctly guessing (M̂0, M̂0) by guess. Then, it is easy to see that B’s simulation for A is perfect
when guess occurs. Otherwise, B outputs a random bit. Therefore, we have∣∣∣∣Pr[B outputs b]− 1

2

∣∣∣∣
= |Pr[guess] · Pr[B outputs b | guess] + Pr[¬guess] · Pr[B outputs b | ¬guess]|

=

∣∣∣∣ 1

|M|2
· Pr[A outputs b] +

1

2
·
(
1− 1

|M|2

)
− 1

2

∣∣∣∣
=

1

|M|2

∣∣∣∣Pr[A outputs b]− 1

2

∣∣∣∣ ,
which is non-negligible because A’s advantage is non-negligible andM is of polynomial size. This
completes the proof of the theorem.

6.6.3 Instantiations

By applying the conversion to the existing adaptively secure LinFE schemes of [ABDCP15,
ALS16], we obtain several new NIPE schemes. Since the result of [ALS16] subsumes that of

173

[ABDCP15] in the sense that the former achieves adaptive security whereas the latter achieves
selective security, we discuss new schemes obtained by applying our conversion to the former
schemes. This results in new adaptively secure NIPE schemes from the LWE assumption, the
DDH assumption, and the DCR assumption. In particular, our DDH and DCR instantiations are
the first constructions of NIPE schemes without bilinear maps or lattices. One thing to note is
that the resulting scheme obtained by our conversion can only deal with logarithmic-size message
space when D is of polynomial size and in order to encrypt a longer message, one needs to sepa-
rate the message into chunks and run the encryption algorithm multiple times to encrypt each of
them.

Construction from the LWE Assumption. In [ALS16], the authors proposed two LinFE
schemes from lattices. One is in the stateless setting where the inner product is taken over Z,
and the other one is in the stateful setting where the inner product is taken over Zp for some
prime p. To apply the conversion to the former scheme, we set D = Z, P = Q = {0, . . . , P − 1}ℓ,
I = {0, . . . , I − 1}ℓ,M = {0, . . . ,M − 1} and J = {0, . . . ,MI − 1} for (polynomially bounded)
integers P, I,M . It is straightforward to see that these domains satisfy our conditions for the
conversion. This results in a stateless NIPE scheme over Z. To apply the conversion to the
latter scheme, we set D = Zp, P = Q = I = J = Zℓ

p, and M = Zp. It is also easy to see
that these domains satisfy our condition for the conversion. This results in a stateful NIPE
scheme over Zp. Since the original scheme is adaptively secure under the LWE assumption with
sub-exponential approximation factors, so is our scheme obtained by the conversion. Compared
to our direct construction in Section 6.5, the main advantage of the resulting scheme is that it
achieves adaptive security.

Construction from the DDH Assumption. In [ALS16], the authors proposed a stateless
LinFE scheme from the DDH assumption. In the scheme, the inner product is taken over Zq,
where q is the order of the underlying group G. One subtlety regarding their scheme is that
the decryption algorithm is efficient only when the inner product ⟨x⃗, y⃗⟩ is polynomially bounded.
This is because the decryption algorithm first recovers g⟨x⃗,y⃗⟩ for the generator g of G and then
retrieves ⟨x⃗, y⃗⟩ by solving the discrete logarithm problem. Due to this problem, we cannot apply
the conversion in a completely black box manner and some modification is needed. To apply our
conversion to their scheme, we set D = Zq, P = Q = I = J = Zℓ

q, and M = {0, 1, . . . ,M}
for polynomially bounded M . Then, (Setup′,KeyGen′,Enc′) are defined as in Section 6.6.2. We
slightly modify the decryption algorithm. We run the decryption algorithm of the underlying
LinFE scheme to obtain Z = gM·⟨x⃗,y⃗⟩, but halt it before computing the discrete logarithm logg Z,

which is impossible when M · ⟨x⃗, y⃗⟩ is exponentially large. Instead, we compute Z1/⟨x⃗,y⃗⟩ = gM and
then retrieve the message M by solving the discrete logarithm problem.

The above scheme can encrypt only short messages. We can modify the scheme so that it can
encrypt longer messages without degrading the efficiency much. The main idea is that we can
use the above scheme as a key encapsulation mechanism (KEM). Namely, we change the above
scheme so that the encryption algorithm first encrypts a randomness s ∈ Zp and then encrypt the
message M by using the “DEM key” K = gs. The decryption algorithm first retrieves K = gs

and then retrieves the message M using the key K.

Construction from the DCR Assumption. In [ALS16], the authors proposed two LinFE
schemes from the DCR assumption. One is in the stateless setting where the inner product
is taken over Z, and the other is in the stateful setting where the inner product is taken over
ZN . To apply the conversion to the former scheme, we set D = Z, P = Q = {0, . . . , P − 1}ℓ,
I = {0, . . . , I − 1}ℓ, M = {0, . . . ,M − 1} and J = {0, . . . ,MI − 1} for (possibly exponentially

174

large) integers P, I,M . It is straightforward to see that these domains satisfy our condition for
the conversion. This results in a stateless NIPE scheme over Z. To apply the conversion to the
latter scheme, we set D = ZN , P = Q = I = J = Zℓ

N , and M = ZN . Rigorously speaking, we
cannot apply the conversion because ZN is not an integral domain. However, we can treat ZN

as if it were an integral domain, since any element x ∈ ZN with gcd(x,N) ̸= 1 will allow us to
factorize N , which contradicts the hardness of the DCR assumption.

6.7 Formal Treatment on Multi-Dimensional Lattices

In this section, we provide some discussions on the main tool we use for this work — multi-
dimensional lattices. We believe the new definitions and developed techniques to be of interest to
applications elsewhere.

6.7.1 Background

A symmetric positive-definite matrix Σ ∈ Rℓ×ℓ, expressed as Σ > 0 for short, is a matrix such
that Σ = Σ⊤ and x⊤Σx > 0 for all non-zero x ∈ Rℓ. Furthermore, for any Σ > 0, there exists a
unique lower triangular matrix U ∈ Rℓ×ℓ such that Σ = UU⊤. In the following, we denote this
matrix U as

√
Σ. Positive definiteness defines a partial ordering on symmetric matrices: we say

Σ1 > Σ2 if (Σ1 − Σ2) > 0. In the section, for any matrix R, we use smax(R) and smin(R) to
denote the largest and smallest singular value of R, respectively. Note that in the main body, we
used s1(R) to denote smax(R).

6.7.2 Discrete Gaussian Measures over Multi Lattices

In this section, we define the discrete Gaussian distribution over an m-dimensional ℓ-multi lattice
Λ̄ ⊆ Rm×ℓ where the Gaussian parameter is given by a symmetric positive-definite matrix Σ ∈
Rℓ×ℓ. Here an m-dimensional ℓ-multi lattice is defined as a discrete additive subgroup of Rm×ℓ.
We emphasize that unlike in the main body of the paper, we do not require the multi lattice to
be of the specific form Λℓ = [Λ| · · · |Λ] = {[z1| · · · |zℓ] | ∀zi ∈ Λ,∀i ∈ [ℓ]} ∈ Zm×ℓ. From here
on, we add a bar on top of multi lattice related notations, e.g., Λ̄, η̄, when we want to explicitly
differentiate between a normal lattice notion and a multi lattice notion. Furthermore, the dual
multi lattice Λ̄∗ is defined as Λ̄∗ = {W ∈ Rm×ℓ | X⊤W ∈ Zℓ×ℓ,∀X ∈ Λ̄}. Note that for the
special case Λ̄ = Λℓ, we have (Λℓ)∗ = (Λ∗)ℓ. Also, for any matrix M ∈ Zℓ×t, Λ̄M denotes the
m-dimensional t-multi lattice {ZM | Z ∈ Λ̄} ∈ Rm×t.

We first define the m-dimensional ℓ-multi Gaussian function ρ̄√Σ(X) over Rm×ℓ with a sym-

metric positive-definite matrix Σ ∈ Rℓ×ℓ as ρ̄√Σ(X) = exp(−π · tr(XΣ−1X⊤)). Similarly, the
discrete Gaussian distribution for an m-dimensional ℓ-multi shifted lattice Λ̄ + T is defined as
DΛ̄+T,

√
Σ(X) = ρ̄√Σ(X)/ρ̄√Σ(Λ̄ + T) for all X ∈ Λ̄ + T and T ∈ Zm×ℓ, where ρ̄√Σ(Λ̄ + T) =∑

X∈Λ̄+T ρ̄
√
Σ(X). Note that when Λ̄ = Λℓ for some lattice Λ and Σ = σ2Iℓ, this corresponds to

the special case we described in the main body, where each column of X are independent samples
from Λ. This fact can be seen by observing that

exp(tr(XX⊤)) = exp(tr(X⊤X)) = exp(

ℓ∑
i=1

∥xi∥2) =
ℓ∏

i=1

exp(∥xi∥2),

where xi ∈ Zm is the i-th column of X ∈ Zm×ℓ.

175

Vectorization of Matrices. To argue how well discrete Gaussian distributions over multi
lattices behave, we need something similar to the smoothing parameter for (standard one-multi)
lattices. We do this by observing that multi lattices can be viewed equivalently as a standard
lattice via the isomorphism4 ϕ : Rm×ℓ → Rmℓ defined as follows:

ϕ (X = [x1|x2| · · · |xℓ]) =


x1

x2
...
xℓ

 ∈ Rmℓ.

Since this is an isomorphism between vector spaces, it can be checked that a multi lattice Λ̄ in
Zm×ℓ is isomorphic to a lattice ϕ(Λ̄) in Zmℓ. Above we defined ϕ for a particular pair of variables
(m, ℓ), however with an abuse of notation, hereafter we define ϕ for any (m, ℓ), i.e., we view ϕ
as simply an operation that stacks the columns of a given matrix on top of one another. Some
standard formulas we use are as follows: for any X ∈ Rm×ℓ,Y ∈ Rℓ×t,Z ∈ Rℓ×ℓ we have

• ϕ(XY) = (Y⊤ ⊗ Im) · ϕ(X) = (It ⊗X) · ϕ(Y) ∈ Rmt

• tr(XZX⊤) = ϕ(X)⊤(Z⊗ Im)ϕ(X)

Using this, we can relate the m-dimensional ℓ-multi Gaussian function ρ̄√Σ(X) to an mℓ-
dimensional Gaussian function ρ√Σ′(x). Concretely,

ρ̄√Σ(X) = exp(−π · tr(XΣ−1X⊤))

= exp
(
− π · ϕ(X)⊤(Σ−1 ⊗ Im)ϕ(X)

)
(6.25)

= exp
(
− π · ϕ(X)⊤(Σ⊗ Im)−1ϕ(X)

)
(6.26)

= ρ√Σ⊗Im(ϕ(X)), (6.27)

where Eq.(6.25) follows from the second formula, Eq.(6.26) follows from A−1 ⊗ B−1 = (A ⊗
B)−1, and Eq.(6.27) follows from Σ ⊗ Im = (

√
Σ ⊗ Im)(

√
Σ ⊗ Im)⊤. Therefore, DΛ̄+T,

√
Σ(X) =

Dϕ(Λ̄)+ϕ(T),
√
Σ⊗Im(ϕ(X)) for any X ∈ Λ̄ +T.

Furthermore, using ϕ we can check that a multi lattice Λ̄M ∈ Rm×t for M ∈ Zℓ×t is isomorphic
to the lattice (M⊤ ⊗ Im) · ϕ(Λ̄) = {(M⊤ ⊗ Im)z | z ∈ ϕ(Λ̄)} ⊆ Rmt. Finally, for the special case
Λ̄ = Λℓ, we have (ϕ(Λℓ))∗ = ϕ((Λ∗)ℓ).

Useful Lemmas for Multi Lattices. We will now study the behavior of a discrete Gaussian
distribution over multi lattices by observing its lattice counterparts. To do so, we prepare one
last tool; the smoothing parameter for lattices.

Definition 6.1. For an m-dimensional lattice Λ and positive real ϵ > 0, we define the smoothing
parameter ηϵ(Λ) as the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ϵ. Furthermore, let Σ > 0

be any symmetric positive-definite matrix in Rm×m. We say
√
Σ ≥ ηϵ(Λ) if ρ√Σ−1(Λ

∗\{0}) ≤ ϵ.

It is informative to observe that, if
√
Σ ≥ ηϵ(Λ), then

√
λmax ≥ ηϵ(Λ) where λmax denotes the

largest eigenvalue of Σ. Equivalently, since for symmetric positive-definite matrices eigenvalues
equal their singular values,

√
smax ≥ ηϵ(Λ) where smax denotes the largest singular value. On the

other hand, if
√
λmin =

√
smin ≥ ηϵ(Λ), then

√
Σ ≥ ηϵ(Λ) where λmin and smin denotes the smallest

eigenvalue and singular value of Σ, respectively.
We define the smoothing parameter for a multi lattice as below.

4 In linear algebra, this isomorphism is sometimes called the vectorization of matrices.

176

Definition 6.2. For an m-dimensional ℓ-multi lattice Λ̄ and positive real ϵ > 0, we define the
(multi lattice) smoothing parameter η̄ϵ(Λ̄) as ηϵ(ϕ(Λ̄)). I.e., the smallest real s > 0 such that
ρ̄1/s(Λ̄

∗\{0m×ℓ}) = ρ1/s(ϕ(Λ̄
∗)\{0}) ≤ ϵ. Furthermore, let Σ > 0 be any symmetric positive-

definite matrix in Rℓ×ℓ. We say
√
Σ ≥ η̄ϵ(Λ̄) if and only if

√
Σ⊗ Im ≥ ηϵ(ϕ(Λ̄)).

Observe that if Λ̄0 ⊆ Λ̄1, then η̄ϵ(Λ̄0) ≥ η̄ϵ(Λ̄1) for any ϵ, since Λ̄∗0 ⊇ Λ̄∗1 ⇔ ϕ(Λ̄∗0) ⊇ ϕ(Λ̄∗1).
Furthermore, the same argument we did above, e.g., if

√
smin ≥ η̄ϵ(Λ̄), then

√
Σ ≥ η̄ϵ(Λ̄), holds,

since the smallest (resp. largest) singular value of the symmetric positive definite matrix Σ⊗ Im
is the same as Σ. Now that we have formally defined the smoothing parameter for multi lattices,
we obtain a standard result analogous to that of one-multi lattices.

Lemma 6.7. [Corollary of [MR04], Lemma 4.4] Let Λ̄ be any m-dimensional ℓ-multi lattice. For
any ϵ ∈ (0, 1), symmetric positive-definite matrix Σ in Rℓ×ℓ such that

√
Σ ≥ η̄ϵ(Λ̄), and any

T ∈ Rm×ℓ, we have

ρ̄√Σ(Λ̄ +T) ∈
[1− ϵ
1 + ϵ

, 1
]
· ρ̄√Σ(Λ̄).

Proof. This follows from the standard results of [MR04, Lemma 4.4] and [MP12, Lemma 2.4].
Namely, it follows directly from the definition

√
Σ ≥ η̄ϵ(Λ̄) ⇔

√
Σ ⊗ Im ≥ ηϵ(ϕ(Λ̄)) and that√

Σ⊗ Im is non-singular.

Finally, for the special case Λ̄ = Λ, we can bound the smoothing parameter of Λ̄ using Λ.

Lemma 6.8. For any m-dimensional lattice Λ and ϵ ∈ (0, 1/2), we have η̄ϵ(Λ
ℓ) ≤ ηϵ′(Λ), where

ϵ′ = (1 + ϵ)1/ℓ − 1. In particular, for any ϵ = negl(λ) and ℓ = poly(λ), we have ϵ′ = negl(λ).

Proof. Observe that ϕ(Λℓ) = {[x⊤1 | · · · |x⊤ℓ]⊤ ∈ Rmℓ | xi ∈ Λ, ∀i ∈ [ℓ]} and (Λℓ)∗ = (Λ∗)ℓ. Then,
by definition ρ̄1/s((Λ

ℓ)∗) = ρ1/s(Λ
∗)ℓ. Furthermore, for any positive real s ≥ ηϵ′(Λ), we have

ρ1/s(Λ
∗\{0}) ≤ ϵ′. Equivalently, ρ1/s(Λ∗) ≤ 1 + ϵ′, since ρ1/s(0) = 1. Therefore,

ρ̄1/s((Λ
ℓ)∗\{0m×ℓ}) = ρ̄1/s((Λ

ℓ)∗)− 1 ≤ (1 + ϵ′)ℓ − 1 = ϵ.

Hence, ηϵ′(Λ) ≥ η̄ϵ(Λℓ).

6.7.3 Sum of Discrete Gaussians

The following theorem is a generalization of [BF11], Theorem B.1.], and can be used as an
alternative tool to [BF11], Theorem B.3.]. The main advantage of our theorem is that, in the
special case when the multi lattice is of the form Λℓ, our theorem may allow for a much tighter
(exponentially tighter) bound on the Gaussian parameter.

Theorem 6.6 (Generalization of [BF11], Theorem B.1.). Let m, ℓ, t be positive integers such that
t < ℓ. Let Λ̄ ⊆ Zm×ℓ be a multi lattice, M ∈ Zℓ×(ℓ−t) be a full rank matrix, T ∈ Zm×ℓ be a matrix
and Σ ∈ Rℓ×ℓ be a symmetric positive-definite matrix. Let W ∈ Zℓ×t be a full rank matrix that
satisfies W⊤M = 0 ∈ Zt×(ℓ−t) and let L be the m-dimensional t-multi lattice

L := {U ∈ Rm×t | UW⊤ ∈ Λ̄}.

Furthermore, suppose that
√

(W⊤Σ−1W)−1 > η̄ϵ(L) for some negligible ϵ.
If X is distributed as DΛ̄+T,

√
Σ, then XM is statistically close to D

Λ̄M+TM,
√
M⊤ΣM

.

177

Proof. The proof follows the outline of the proof of [BF11], Theorem B.1, with additional tech-
niques to work with multi lattices.

Below, we aim at computing the probability of Pr[XM = V] for V ∈ Λ̄M +TM when X is
distributed as DΛ̄+T,

√
Σ. First, define the set SV = {Z ∈ Λ̄ + T | ZM = V}. Let X0 ∈ Λ̄ + T

be an arbitrary solution ot ZM = V. Then, since the kernel of the linear map M ∈ Zℓ×(ℓ−t) is
spanned by the columns of W ∈ Zℓ×t, we have

SV = X0 + {Z ∈ Λ̄ | ZM = 0m×(ℓ−t)} = X0 + {UW⊤ ∈ Λ̄ | U ∈ L},

where L is a multi lattice as defined in the theorem. Now,

Pr[XM = V] = Pr[X ∈ SV] =
∑
U∈L

Pr[X = X0 +UW⊤]

=
1

ρ̄√Σ(Λ̄ +T)

∑
U∈L

exp
(
−π · tr

(
(X0 +UW⊤)Σ−1(X0 +UW⊤)⊤

))
(6.28)

To properly decouple the terms in tr(·), we use the following fact on linear algebra.

Fact 6.1. Let M ∈ Rℓ×(ℓ−t), W ∈ Rℓ×t be full-rank matrices such that W⊤M = 0t×(ℓ−t), and

Σ ∈ Rℓ×ℓ be a symmetric positive-definite matrix. Then, we have the following:

M
(
M⊤ΣM

)−1
M⊤ = Σ−1 − Σ−1W

(
W⊤Σ−1W

)−1
W⊤(Σ−1)⊤.

Proof. Denote the matrix on the right (resp. left) hand side as A ∈ Rℓ×ℓ (resp. B ∈ Rℓ×ℓ). Then,
using the fact that W⊤M = 0t×(ℓ−t) and Σ = Σ⊤, direct calculation shows that[

Σ⊤M |W
]⊤

A =
[
M | 0ℓ×t

]⊤
=
[
Σ⊤M |W

]⊤
B.

Since Σ and [M|W] ∈ Rℓ×ℓ are non-singular, we have that A = B.

Then, the term tr(·) in Eq.(6.28) can be expressed as follows:

tr
(
(X0 +UW⊤)Σ−1(X0 +UW⊤)⊤

)
=tr
(
UW⊤Σ−1WU⊤

)
+ 2 · tr

(
X0Σ

−1WU⊤
)
+ tr

(
X0Σ

−1X⊤0
)

=tr
(
(U+Y)

(
W⊤Σ−1W

)
(U+Y)⊤

)
+ tr

(
X0Σ

−1X⊤0
)
− tr

(
Y
(
W⊤Σ−1W

)
Y⊤
)

(6.29)

=tr
(
(U+Y)

(
W⊤Σ−1W

)
(U+Y)⊤

)
+ tr

(
X0M

(
M⊤ΣM

)−1
M⊤X⊤0

)
(6.30)

=tr
(
(U+Y)

(
W⊤Σ−1W

)
(U+Y)⊤

)
+ tr

(
V
(
M⊤ΣM

)−1
V⊤
)

(6.31)

where in Eq.(6.29) we substitute Y = X0Σ
−1W

(
W⊤Σ−1W

)−1
, in Eq.(6.30) we use Fact 6.1,

and in Eq.(6.31) we use the equality V = X0M. Then plugging Eq.(6.31) back in Eq.(6.28), we
obtain

Pr[XM = V] =
ρ̄√

M⊤ΣM
(V)

ρ̄√Σ(Λ̄ +T)

∑
U∈L

exp
(
−π · tr

(
(U+Y)

(
W⊤Σ−1W

)
(U+Y)⊤

))
=
ρ̄√

M⊤ΣM
(V)

ρ̄√Σ(Λ̄ +T)
· ρ̄√

(W⊤Σ−1W)−1(L+Y).

178

Since
√
(W⊤Σ−1W)−1 > η̄ϵ(L) and from Lemma 6.7, for all Y ∈ Rm×ℓ we have

Pr[XM = V] ∈
[
1− ϵ
1 + ϵ

, 1

]
·
ρ̄√

(W⊤Σ−1W)−1(L)

ρ̄√Σ(Λ̄ +T)
· ρ̄√

M⊤ΣM
(V)

Since ϵ is negligible and ρ̄√
(W⊤Σ−1W)−1(L)/ρ̄

√
Σ(Λ̄+T) is a constant independent of V, it follows

that Pr[XM = V] ∈ [1−ϵ1+ϵ , 1] · ρ̄√M⊤ΣM
(V)/ρ̄√

M⊤ΣM
(Λ̄M+TM). Hence, by definition, XM is

statistically close to D
Λ̄M+MT,

√
M⊤ΣM

.

Corollary 6.1. Let q be a prime or some power of a prime p. Let n,m, ℓ, t be positive integers
such that m ≥ 2n log q and ℓ > t, let A ∈ Zn×m

q be a random matrix and T ∈ Zm×ℓ be an arbitrary

matrix. Let M ∈ Zℓ×(ℓ−t) be a full rank matrix and let W ∈ Zℓ×t satisfy W⊤M = 0 ∈ Zt×(ℓ−t).
Finally, let σ be a positive real such that σ >

√
smax(W⊤W) · ω(

√
logm).

If, X ∈ Zm×ℓ is distributed as DΛ⊥(A)ℓ+T,σIℓ
, then XM ∈ Zm×(ℓ−t) is statistically close to

D
Λ⊥(A)ℓM+TM,σ

√
M⊤M

.

Proof. Plugging in Σ = σ2Iℓ, to use Theorem 6.6 it suffices to show that σ ·
√

(W⊤W)−1 > η̄ϵ(L)
for some negligible ϵ, where L is the m-dimensional t-multi lattice defined as

L := {U ∈ Rm×t | UW⊤ ∈ Λ⊥(A)ℓ}.

First, notice that, since Λ⊥(A) is closed under addition, we have Λ⊥(A)t ⊆ L. This implies
that η̄ϵ(L) ≤ η̄ϵ(Λ

⊥(A)t). Next, by Lemma 6.8 we have η̄ϵ(Λ
⊥(A)t) ≤ ηϵ′(Λ

⊥(A)), where
ϵ′ = (1 + ϵ)1/t − 1 is negligible, since t = poly(λ). Furthermore, for a random choice of
A ∈ Zn×m

q , we have ηϵ′(Λ
⊥(A)) < ω(

√
logm) with all but negligible probability [GPV08].

Therefore, since (smax(W
⊤W))

−1
= smin((W

⊤W)−1), if σ >
√
smax(W⊤W) · ω(

√
logm), then

σ ·
√
smin((W⊤W)−1) > η̄ϵ(L). Here, smax(Z) (resp. smin(Z)) denotes the largest (resp. smallest)

singular value of Z. Finally, by definition this implies σ ·
√

(W⊤W)−1 > η̄ϵ(L) for some negligible
ϵ, which completes the proof.

179

Chapter 7

Attribute-based Signatures for
Unbounded Circuits in the ROM

7.1 Introduction

Attribute-based signature (ABS) was introduced by [MPR11] as a versatile tool allowing a signer
to anonymously authenticate a message M w.r.t. a public signing policy C only if the signer
has a signing key associated to an attribute x ∈ {0, 1}∗ that satisfies C, i.e., C(x) = 1. An
attribute-based signature scheme reveals no information on the signer’s identity or the attribute
other than the fact that the signature is valid, hence the anonymity property of ABS schemes.
One of the central research themes on ABS schemes is to expand the expressiveness of the class of
policies that can be supported by the schemes. In the bilinear map setting, there has been a long
line of interesting works, including ABS schemes for threshold policy (e.g., [HLLR12]), boolean
formula (e.g., [MPR11, OT11, OT13, EGK14]) and the current state-of-the-art; unbounded circuits
[SAH16].1

On the other hand, the constructions of ABS schemes without bilinear maps, in particular
ABS schemes from lattices, are much less investigated. To the best of our knowledge, there
are only two major works concerning lattice-based ABS schemes [EE16, Tsa17]. Rachid et al.
[EE16] construct a lattice-based ABS scheme for boolean formulas using a non-interactive zero-
knowledge (NIZK) proof system as the main building block, following one of the most promising
ways of constructing ABS schemes [MPR11, EGK14, SAH16]. Informally, a signature for a signer
with attribute x is simply a zero-knowledge proof attesting to the fact that he has a certificate
corresponding to the attribute x issued by the authority and that the policy C associated to the
message M satisfies C(x) = 1. Although this approach has been very effective in the bilinear map
setting where [SAH16] were able to obtain ABS schemes for unbounded circuits, this has not been
the case for lattices. One of the main reasons behind this is the lack of efficient lattice-based
NIZK proof systems for a wide enough language. In particular, we only have efficient NIZK proof
systems tailored for specific languages, such as proving possession of a solution to the short integer
solution (SIS) problem or the learning with errors (LWE) problem [LNSW13], proving possession
of a valid signature of the Boyen digital signature scheme [Boy10, LLNW14, LNW15] and so on,

0The contents of this chapter is based on the work presented at PKC 2018 under the title “Attribute-based
Signatures for Unbounded Circuits in the ROM and Efficient Instantiations from Lattices” [EK18].

1 In this work, we only consider message-policy ABS schemes. Recall that using universal circuits, we can convert
message-policy ABS schemes into key-policy ABS schemes [BF14], where the functionality of the secret keys and
messages are reversed.

180

which in general does not seem strong enough for constructing ABS schemes. Recently, [YAL+17]
showed (informally) how to construct lattice-based NIZK proof systems for languages accepted
by monotone span programs, however, this still does not seem strong enough to use as a building
block for ABS schemes supporting unbounded circuits as policies.

Tsabary [Tsa17] constructs lattice-based ABS schemes following a different approach; they
show equivalence between a homomorphic signature (HS) scheme and a (message-policy) ABS
scheme. Therefore, based on the HS construction of Gorbunov et al. [GVW15b], they achieve a
lattice-based ABS scheme for bounded circuits that does not make use of NIZK proof systems.2

Here, by bounded, we mean that the required hardness assumptions on the LWE and/or SIS
problems grow exponentially in the depth of the circuit, e.g., to base the security of the ABS
scheme under a polynomial LWE assumption, we need to restrict the depth of the circuit to
be O(log λ), where λ is the security parameter. However, it seems challenging to improve their
techniques to ABS schemes for unbounded circuits, due to the inherent noise-growth incurred
by the homomorphic operations of matrices while computing the circuit gate-by-gate. The only
known method of overcoming these O(log λ) depth barrier concerning homomorphic operations
is the bootstrapping technique of fully homomorphic encryptions [Gen09], however, it is still an
open problem whether there is a signature analogue of this technique.

7.1.1 Our Contribution

In this chapter, we affirmatively close the gap between the state-of-the-art ABS schemes based
on bilinear maps and lattices by constructing the first lattice-based ABS scheme for unbounded
circuits in the random oracle model. We start by providing a general construction of ABS schemes
supporting unbounded-circuits as policies. We then give an instantiation in the lattice setting
showing that all the building blocks required by our generic construction is obtainable from
lattices. We stress that, despite the expressiveness of the signing policy, we manage to prove
the security of our scheme under surprisingly mild SIS and LWE assumptions with polynomial
modulus size q = Õ(ℓλ1.5), where ℓ denotes the length of the inputs to the circuits. Specifically,
the required hardness assumptions are independent of the depth of the circuits that express the
policies. Furthermore, the sizes of the public parameter, signing keys and signatures are Õ(ℓλ2),
Õ(λ) and Õ((ℓλ+ |C|)λ2), respectively, where |C| is the size of the circuit (i.e., policy) associated
to the message.

To this end we prepare two new tools equipped for the lattice setting: we provide a gen-
eralization of the forking lemma of [PS00] which we call the general multi-forking lemma with
oracle access and further construct a new lattice-based NIZK proof system for proving posses-
sion of a valid Boyen signature [Boy10] that departs from the previously known techniques (e.g.,
[LLNW14, LNW15]). Below, we give a more detailed overview of the techniques we used in our
work.

2 We note that the ABS scheme presented in [Tsa17] does not fulfill the standard security requirements of
(message-policy) ABS schemes as originally defined in [MPR11]; achieving either unforgeability or anonymity in
its full capacity comes at the cost of getting a much weaker version of the other, i.e., one has to choose between
single-key-selective-unforgeability or leaking information about the signing key.

181

7.2 Technical Overview

Generic Construction of ABS for Unbounded Circuits. We propose a generic construction
of ABS schemes supporting unbounded depth circuits as policies in the random oracle model3,
which employs the following primitives as its building blocks; a commitment scheme, a digital
signature scheme and a Σ-protocol for a sufficiently wide relation. As a separate theoretical
contribution, since all of the above primitives are implied from one-way functions, our result
implies that one-way functions are sufficient to construct an ABS scheme for unbounded circuits
in the random oracle model. Here, the random oracle is used only to convert the underlying
Σ-protocol into a NIZK proof system via the Fiat-Shamir transformation [FS86].

At a high level, the generic construction of our ABS scheme follows closely the bilinear map
based construction of [SAH16] (which is non-generic and proven in the standard model). We briefly
review the construction in slightly more detail; first, the attribute authority issues a signature
σ on an attribute x ∈ {0, 1}ℓ to certify that a signer is indeed authorized to sign a message on
behalf of that attribute. Then, to sign anonymously, the signer produces a zero-knowledge proof
attesting to the following two facts:
(I) the signature σ issued by the authority is valid, and
(II) the corresponding secret attribute x satisfies the circuit C associated to the message M.

However, in spite of the similarities shared with the construction of [SAH16], the security proof
of our construction requires a rather sensitive and technical analysis, which calls for new tools.
This difficulty mainly stems from the fact that security proofs relying on the Fiat-Shamir-based
NIZK proof systems are often times not as simple as the construction appears to be and in some
cases the intuition may fail, e.g., [BPW12, BFW16].

Our proof of security of the generic ABS scheme relies on our generalization of the forking
lemma of [PS00], which we call the general multi-forking lemma with oracle access. Our forking
lemma can be seen as a generalization and a simplification of the general forking lemma of [BN06]
and the improved forking lemma of [BPVY00]. In particular, we analyze the output behavior of an
algorithm when run multiple times on related inputs, instead of when only run twice as in [BN06],
while also providing it with oracle access to a deterministic algorithm. Recall that the original
forking lemma of [PS00] applies to Fiat-Shamir type signature schemes and roughly states that, if
there exists a valid forger A, then one can rewind A initialized with the same randomness tape to
find two accepting transcripts with the same commitment but different challenges, leading, via the
special soundness property of Σ-protocols, to extract the secret signing key from the transcripts
and hence a proof of security of the signature scheme in the random oracle model.

First, we require the forking lemma to analyze the output behavior of an algorithm on
multiple runs to capture the situation arising in the recent lattice-based NIZK proof systems
(e.g., [LNSW13, LLNW14, LNW15]) where the extractor of the underlying Σ-protocol requires
more than two valid transcripts to extract a witness. Although the improved forking lemma of
[BPVY00] captures this multiplicity of the forking lemma of a particular El Gamal-type signa-
ture scheme, it seems hard to apply in situations like ours where we are not dealing with regular
signature schemes. Our forking lemma, similar to the one of [BN06], divorces the probabilistic
essence of the forking lemma from any particular application context. Furthermore, our forking
lemma provides worst-case rather than expected-time guarantees; the improved forking lemma
of [BPVY00] roughly states that an expected O(1/ϵ) repeated executions of a forger A with ad-
vantage ϵ is required to extract a valid witness. We believe this feature to be more suitable for
standard assumptions that are defined for PPT algorithms, as also stated in [BN06].

3 In this work, we only consider circuits that do not have random oracle gates.

182

Second, and more importantly, our forking lemma allows the algorithmA that can be rewinded,
to have oracle access to some algorithm O that cannot be rewinded. This is a useful feature for
the forking algorithm to have in situations where the simulator cannot rewind all the algorithms
which he is interacting with. This may be easiest to explain with a concrete example; in particu-
lar, when we reduce the eu-cma security of the underlying digital signature scheme to the security
of our ABS scheme, the simulator (which is the eu-cma adversary) simulates the view of an ABS
security game to the ABS adversary A, and answers the queries made by A using its eu-cma
challenger O. At some point when A outputs a forgery for the ABS security game, the simulator
hopes to extract the witness from the forgery and use it to win his own eu-cma security game.
However, for this particular situation, the problem with all the previous forking lemmas is that
the simulator will not be able to run the forking algorithm in the specified way; the simulator can
rewind A to a particular point where the fork happens, however, the simulator cannot rewind the
eu-cma challenger O in the same way, since it is outside the simulator’s (i.e., eu-cma adversary’s)
control. Then, since the behavior of A is implicitly dependent on the behavior of the eu-cma chal-
lenger, the standard forking lemma does not provide meaningful analysis of the output of A on
multiple runs. We therefore present a general multi-forking lemma with oracle access to capture
these situations where the simulator is restricted to rewinding only some of the algorithms he is
interacting with. We note that in case one is willing to use some algebraic problem such as the
SIS or LWE problem as the underlying hardness assumption, these situations do not show up,
since once given a fixed problem instance, the simulator can reuse it in every run to simulate the
view to A.

Finally, one of the benefits of using the Fiat-Shamir-based NIZK proof system is that we do not
have to rely on the dummy attribute technique of those ABS schemes based on Goth-Sahai NIZK
proof systems [MPR11, SAH16] to prove adaptive unforgeability, thus obtaining a more efficient
signing algorithm. At a high level, this is because Fiat-Shamir based NIZK proof systems can be
simulation-sound and extractable at the same time, whereas Goth-Sahai NIZK proof systems can
only be instantiated to have one of the two properties. Therefore, during the proof of adaptive
unforgeability, since the simulator needs to set up the common reference string in the extractable
mode to extract a witness from the forgery, the simulator has to rely on these extra dummy
attributes, which are never used in the actual scheme, to simulate signatures (i.e., proofs).

Instantiation from Lattices. To instantiate our generic ABS construction from lattices, we
require three primitives: a signature scheme, a commitment scheme, and a Σ-protocol for a relation
capturing the aforementioned items (I) and (II). As for the signature scheme, we can use the simple
and efficient lattice-based signature scheme of Boyen [Boy10], which has been extensively studied
in the lattice-based NIZK literatures. In particular, Ling et al. [LNSW13] provides an efficient Σ-
protocol for proving possession of a valid Boyen signature (i.e., item (I)). However, unfortunately,
it is not known whether the Σ-protocol of Ling et al. can be extended to prove circuit satisfiability,
which is what we require in item (II), and in fact, recent subsequent results of [LLM+16, YAL+17]
suggest that they are not powerful enough to capture circuit satisfiability. On the other hand, Xie
et al. [XXW13] provides a lattice-based Σ-protocol for proving NP relations via arithmetic circuit
satisfiability, which is what we exactly require in item (II), however, it does not seem possible to
simply combine the two different types of Σ-protocols of [LNSW13] and [XXW13].

To this end, in this chapter we present a new Σ-protocol for proving possession of a valid Boyen
signature by expressing the verification algorithm of the Boyen signature as a simple arithmetic
circuit that is compatible with the Σ-protocol of Xie et al. Specifically, since both items (I)
and (II) is now represented as simple arithmetic circuits, we can effectively use the Σ-protocol
of Xie et al. to obtain our desired Σ-protocol. The main observation is that, most operations

183

that show up in lattice-based cryptography are composed of simple arithmetic operations such as
matrix multiplications, and therefore naturally leads to simple arithmetic circuit representations.
For our particular case, the verification algorithm of the Boyen signature scheme essentially boils
down to checking two simple conditions; whether a vector z satisfies ∥z∥∞ ≤ β andAz = u mod q
for public matrix A and vector u. Here, we intentionally dismiss the message for simplicity. As
it can be seen, the latter equation is readily expressed by a very simple arithmetic circuit. On
the other hand, the first inequality requires some extra work, however, this too can be expressed
as an simple arithmetic circuit without much overhead by efficiently encoding predicates such as

x
?
∈ {−1, 0, 1} into arithmetic circuits.

7.3 Preparation

7.3.1 Commitment Schemes with Gap Openings

We define a standard commitment scheme that supports an additional notion we call gap openings.
This additional notion will make it conceptually easier when we combine it with gap-Σ-protocols,
which we later define. Informally, a commitment scheme with a gap opening is a standard com-
mitment scheme where there may exist additional valid openings that are never created during the
commitment algorithm. For those readers who are only interested in the generic attribute-based
signature constructions from standard (i.e., non-lattice-based) Σ-protocols, they can safely skip
the “gap” arguments.

Definition 7.1 (Commitments). A commitment scheme with message spaceM and commitment
space C is a triple of PPT algorithms (C.Gen,C.Com,C.Open) of the following form:

C.Gen(1λ) → pk : The key generation algorithm takes as input the security parameter 1λ and
outputs a public commitment key pk.

C.Com(pk,M)→ (c, d) : The commitment algorithm takes as inputs the commitment key pk and
message M ∈ M, and outputs a commitment/opening pair (c, d). We denote DCom(pk,M)
as the set of all possible outputs of this algorithm under fixed pk and M.

C.Open(pk,M, c, d)→ 1\0 : The deterministic opening algorithm takes as inputs the commitment
key pk, message M and commitment/opening pair (c, d) as inputs and outputs 1 or 0. We
denote DG-Com(pk,M) as the set of all possible pairs (c, d) this algorithm outputs 1 under
fixed pk and M.

Here, we require that checking membership of an element in DCom(pk,M) is efficient. We also
require the commitment scheme to satisfy the following correctness notion: for all M ∈ M, pk←
C.Gen(1λ), (c, d)← C.Com(pk,M) we have C.Open(pk,M, c, d) = 1.

It is clear that we have DCom(pk,M) ⊆ DG-Com(pk,M) for all pk and M ∈ M. We say the
commitment scheme has a gap-opening when DCom ⊂ DG-Com, i.e., there are valid openings that
are never created by the commitment algorithm C.Com. We require the following security notions
for a commitment scheme:

Binding. We call the scheme unconditionally (resp. computationally) binding if for all (resp.
PPT) algorithm A, we have the following:

Pr[pk← C.Gen(1λ); (c,M,M′, d, d′)← A(pk) :

184

C.Open(pk,M, c, d) = C.Open(pk,M′, c, d′) = 1 ∧M ̸= M′] ≤ negl(λ)

Note that even though such a pair (c, d) may never be outputted by the commitment algorithm
C.Com, the binding property must hold even for adversaries that output (c, d) ∈ DG-Com(pk,M)\DCom(pk,M).

Hiding. We call the scheme unconditionally (resp. computationally) hiding if for all (resp. PPT)
algorithm A and any message M ∈M, we have the following:4

Pr[pk← C.Gen(1λ); b← {0, 1}; c0 ← C; (c1, d)← C.Com(pk,M);

b′ ← A(pk,M, cb) : b = b′] ≤ 1/2 + negl(λ)

7.3.2 Digital Signature Schemes.

In this work we consider deterministic digital signature schemes; a scheme where the randomness
of the signing algorithm is derived from the secret key and message. A deterministic digital sig-
nature scheme can be easily obtained from any digital signature scheme by using a pseudorandom
function (PRF) for generating the randomness used in the signing algorithm (see for example
[Kat10]).

Definition 7.2 (Digital Signatures). A digital signature scheme S with message space {0, 1}ℓ is
a triple of polynomial time algorithms (S.KeyGen, S.Sign, S.Verify) of the following form:

S.KeyGen(1λ.1ℓ)→ (vk, sk) : The randomized key generation algorithm takes as input the security
parameter 1λ and the message length 1ℓ, and outputs a verification key vk and signing key sk.

S.Sign(sk,x) → σ : The deterministic signing algorithm takes as inputs the signing key sk and
message x ∈ {0, 1}ℓ, and outputs a signature σ.

S.Verify(vk,x, σ)→ 1\0 : The deterministic verification algorithm takes as inputs the verification
key vk, message x ∈ {0, 1}ℓ and signature σ, and outputs 1 or 0.

A digital signature scheme is called correct if the following holds for all λ, ℓ ∈ N and x ∈ {0, 1}ℓ:

Pr[(vk, sk)← S.KeyGen(1λ, 1ℓ);σ ← S.Sign(sk,x) : S.Verify(vk,x, σ) = 1] = 1− negl(λ)

We model the security of existential unforgeability under an adaptive chosen message attack
(eu-cma) using the following game between an adversary A and a challenger.

Setup: The challenger runs (vk, sk)← S.KeyGen(1λ, 1ℓ) and providesA the verification key vk.

Signature Queries: When A submits a message x ∈ {0, 1}ℓ, the challenger responds by
returning σ ← S.Sign(sk,x).

Output: Finally, A outputs a pair (x, σ). The adversary A wins if S.Verify(vk,x, σ) = 1 and
x is not one of the messages A has made signature queries.

We define the advantage of an adversary A as the probability that A wins the above game,
where the probability is taken over the randomness used by the challenger and the adversary.

Definition 7.3. A digital signature scheme is called eu-cma secure if the advantage of the above
game is negligible for all PPT adversaries.

4 We assume that the commitment space C is efficiently sampleable. Furthermore, as long as the hiding property
holds, C may be larger than the set of all possible commitments. These types of commitment schemes show up in
many of the lattice-based commitment schemes.

185

7.3.3 Arithmetic Circuit Representation

Let C be an arithmetic circuit over a ring R having ℓ input wires, one output wire and N gates.
Here the gates are labelled by either + (addition) or × (product) gates. The input wires are
indexed by 1, · · · , ℓ, the internal wires are indexed by ℓ+1, · · · , ℓ+N −1 and the output wire has
index ℓ+N . We assume each gate takes only two incoming wires with multiple fan-out wires, where
all the fan-out wires are indexed with the same index. We specify the topology of an arithmetic
circuit by a function topo : {ℓ+1, · · · , ℓ+N} → {+,×}×{1, · · · , ℓ+N −1}×{1, · · · , ℓ+N −1}.
They map a non-input wire to its first and second incoming wires in which these three wires are
connected by either a gate labelled by + or ×. For (⋆, i1, i2)← topo(i), we require that i1, i2 < i
where ⋆ ∈ {+,×}.

In the following, we consider Cλ as a collection of arithmetic circuits defined over a ring Rλ

each having λ input wires. We also define the collection C = {Cλ}λ∈N. Further, unless stated
otherwise, we simply call arithmetic circuits as circuits.

7.3.4 Attribute-Based Signature Scheme

An attribute-based signature scheme supporting the class of arithmetic circuits C = {Cλ}λ∈N and
message space {0, 1}∗ is defined by the following four probabilistic polynomial time algorithms
(Setup,KeyGen, Sign,Verify):

Setup(1λ, 1ℓ)→ (mpk,msk) : The setup algorithm takes as input the security parameter 1λ and
the input length 1ℓ of the circuits in Cℓ, and outputs the master public key mpk and the
master secret key msk.

KeyGen(mpk,msk,x) → skx : The signing key generation algorithm takes as input the master
public key mpk, the master secret key msk and an attribute x ∈ {0, 1}ℓ, and outputs a
signing key skx.

Sign(mpk, skx, C,M) → Σ : The signing algorithm takes as input the master public key mpk, a
secret key skx associated with an attribute x, a circuit C ∈ Cℓ and a message M ∈ {0, 1}∗,
and outputs a signature σ.

Verify(mpk,M, C,Σ)→ Valid/Invalid : The verification algorithm takes as input the master public
key mpk, a message M, a circuit C and a signature Σ, and outputs Valid or Invalid.

Correctness. We require the following correctness condition to hold: for all λ, ℓ ∈ N, x ∈ {0, 1}ℓ,
C ∈ Cℓ such that C(x) = 1, it holds with all but negligible probability that Verify(mpk,M, C,
Sign(mpk, skx, C,M)) = Valid, where the probability is taken over the randomness used in (mpk,msk)←
Setup(1λ, 1ℓ) and skx ← KeyGen(mpk,msk,x).

We define two security notions for attribute-based signature schemes. The first notion is
privacy, which requires the signature to not leak any information on the signer’s attribute beyond
the fact that the attribute satisfies the predicate. The other notion is unforgeability, which requires
any collusion of signers are unable to forge a new signature with a predicate which is not satisfied
by any attribute in the collusion even if they see signatures on messages of their choice.

Definition 7.4 (Privacy). The security notion of privacy for an attribute-based signature scheme
is defined by the following game between a challenger and an adversary A:

Setup. The challenger runs (mpk,msk)← Setup(1λ, 1ℓ) and gives (mpk,msk) to A.

186

Challenge. A outputs a message M ∈ {0, 1}∗, two attributes x0,x1 ∈ {0, 1}ℓ and a circuit
C ∈ Cℓ such that C(x0) = C(x1) = 1 to the challenger. The challenger first runs skx0 ←
KeyGen(mpk,msk,x0) and skx1 ← KeyGen(mpk,msk,x1). Then, it picks a random bit b ←
{0, 1} and returns to A the signature Σ∗ ← Sign(mpk, skxb

, C,M) along with the two secret
keys (skx0 , skx1).

Forgery. Finally, A outputs a guess b′ ∈ {0, 1} for b.

The advantage of A is defined as |Pr[b′ = b]− 1/2|. We say that the attribute-based signature
scheme is computationally private if the advantage of any PPT algorithm A is negligible. We say
it is unconditionally private if the advantage of any (possibly inefficient) algorithm A is negligible.

Definition 7.5 (Unforgeability). The security notion of adaptively unforgeable for an attribute-
based signature scheme is defined by the following game between a challenger and an adversary A:

Setup. The challenger runs (mpk,msk)← Setup(1λ, 1ℓ) and gives mpk to A.
Queries. A may adaptively make the following queries to the challenger:

- Signing. A submits a signing query on any attribute, message and circuit tuple (x,M, C)
such that C(x) = 1 to the challenger. The challenger runs skx ← KeyGen(mpk,msk,x).
Then, it returns the signature Σ← Sign(mpk, skx, C,M) to A.

- Key reveal. A submits a key reveal query on any attribute x to the challenger. The
challenger returns the signing key skx ← KeyGen(mpk,msk,x) to A.

Forgery. Finally, A outputs a signature (M∗, C∗,Σ∗).

The adversary A wins the game if the following three conditions hold:

(i) Verify(mpk,M∗, C∗,Σ∗) = Valid,

(ii) Adversary A did not submit a key reveal query for x such that C∗(x) = 1,

(iii) Adversary A did not submit a signing query on (x,M∗, C∗) for any x such that C∗(x) = 1

The advantage of A is defined as the probability of A winning the above game. We say that the
attribute-based signature scheme is adaptively unforgeable if the advantage of any PPT algorithm
A is negligible.

7.3.5 General Multi-Forking Lemma with Oracle Access

Here we state and prove an extended version of the forking lemma of [PS00], which will play a
central role in our proof of security of our ABS scheme. Our forking lemma analyzes the output
behavior of an algorithm A when run multiple times on related inputs, instead of when only run
twice, while also providing it with oracle access to a deterministic algorithm O.

Lemma 7.1 (General Multi-Forking Lemma with Oracle Access). Fix an integer q ≥ 1 and a set
H of size h ≥ 2. Let A be a randomized algorithm that has oracle access to some deterministic
algorithm O, where on input param, h1, · · · , hq, algorithm A returns a pair; the first element is
an integer in the range 0, · · · , q and the second element is what we refer to as a side output. Let
IG be a randomized algorithm called the input generator. The accepting probability of A, denoted
acc, is defined as the probability that J ≥ 1 in the experiment below:

(param, param)← IG; h1, · · · , hq ← H; (J, σ)← AO(param,·)(param, h1, · · · , hq).

187

Algorithm F
O(param,·)
A,ℓ (param)

Pick coin ρ for A at random.

h
(1)
1 , · · · , h(1)q ← H

(I(1), σ(1))← AO(param,·)(param, h
(1)
1 , · · · , h(1)q ; ρ)

if I(1) = 0 then return (0, {ϵk}k∈[ℓ])
for k = 2 to ℓ do

h
(k)

I(1)
, · · · , h(k)q ← H

(I(k), σ(k))← AO(param,·)(param, h
(1)
1 , · · · , h(1)

I(1)−1, h
(k)

I(1)
, · · ·h(k)q ; ρ)

if I(1) = I(k) and h
(k)

I(1)
̸= h

(k′)

I(1)
for all k, k′ ∈ [ℓ] then

return (1, {σ(k)}k∈[ℓ])
else

return (0, {ϵk}k∈[ℓ]).

Figure 7.1: Description of the forking algorithm F
O(param,·)
A,ℓ .

For a positive integer ℓ ≥ 2, the forking algorithm F
O(param,·)
A,ℓ associated to AO(param,·) is a ran-

domized oracle algorithm that takes input param and proceeds as in Figure 7.1, where {ϵk}k∈[ℓ]
denotes an arbitrary set of strings. Let

frk = Pr[(param, param)← IG; (b, {σk}k∈[ℓ])← F
O(param,·)
A,ℓ (param) : b = 1].

Then,

frk ≥ acc ·

((
acc

q

)ℓ−1
− f(ℓ)

h

)
, (7.1)

where f(ℓ) is some universal positive valued function that only depends on the value ℓ.

Proof. For any input x = (param, param), denote acc(x) as the probability that J ≥ 1 in the
following experiment:

h1, · · · , hq ← H; (J, σ)← AO(param,·)(param, h1, · · · , hq).

Also, let frk(x) = Pr[(b, {σk}k∈[ℓ])← F
O(param,·)
A,ℓ (param) : b = 1]. We claim that there exists some

universal positive valued function f(ℓ) such that for all x,

frk(x) ≥ acc(x) ·

((
acc(x)

q

)ℓ−1
− f(ℓ)

h

)
. (7.2)

By taking the expectation of frk(x) over x = (param, param)← IG and using the fact E[acc(x)ℓ] ≥
E[acc(x)]ℓ (which follows from Jensen’s inequality), we obtain Eq. (7.1). Therefore, to prove the
claim, we must prove Eq. (7.2). Now, for any input x, with the probabilities taken over the coin

tosses of F
O(param,·)
A,ℓ (param), frk(x) is equivalent to the following.

frk(x) = Pr
[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1) ∧ (h

(k)

I(1)
̸= h

(k′)

I(1)
for all k, k′ ∈ [ℓ])

]
188

= Pr
[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1)

]
− Pr

[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1) ∧ (h

(k)

I(1)
= h

(k′)

I(1)
for some k, k′ ∈ [ℓ])

]
≥ Pr

[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1)

]
− Pr

[
(I(1) ≥ 1) ∧ (h

(k)

I(1)
= h

(k′)

I(1)
for some k, k′ ∈ [ℓ])

]
= Pr

[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1)

]
− Pr

[
(I(1) ≥ 1)

]
· (1−

ℓ−1∏
k=1

h− k
h

)

Here, we can rewrite 1 −
∏ℓ−1

k=1
h−k
h = 1

h ·
(∑ℓ−2

k=0 αk(ℓ) · 1
hk

)
, where (αk(ℓ))

ℓ−2
k=0 are functions

that only depend on ℓ. Since h ≥ 1, we can always upper bound the right hand side by f(ℓ)/h
using some positive valued function f(ℓ) that only depends on ℓ, where for example, we can use
f(ℓ) = (ℓ − 1) · max{|αk(ℓ)|}ℓ−2k=0. Here, note that f(ℓ) is some universal function that depends
neither on A nor O. Therefore, we can further rewrite the inequality as follows:

frk(x) ≥ Pr
[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1)

]
− acc(x) · f(ℓ)

h
.

Hence, it remains to show that Pr
[(
I(1) = I(k) for all k ∈ [ℓ]

)
∧
(
I(1) ≥ 1

)]
≥ acc(x)ℓ/qℓ−1. Let

R denote the set from which A draws its random coins. For each i ∈ [q], let Xi : R×Hi−1 → [0, 1]
be defined by setting Xi(ρ, h1, · · · , hi−1) to

Pr[hi, · · · , hq ← H ; (J, σ)← AO(param,·)(param, h1, · · · , hq; ρ) : J = i]

for all ρ ∈ R and h1, · · · , hi−1 ∈ H. Here, regard Xi as a random variable over the uniform
distribution on its domain. Then,

Pr
[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1)

]
=

q∑
i=1

Pr
[
I(k) = i for all k ∈ [ℓ]

]
=

q∑
i=1

Pr[I(1) = i] · Pr[I(2) = i | I(1) = i] · · ·Pr[I(ℓ) = i | I(k) = i for k ∈ [ℓ− 1]]

=

q∑
i=1

(
Pr[I(1) = i] ·

ℓ∏
k=2

Pr[I(k) = i | I(1) = i]
)

(7.3)

=

q∑
i=1

∑
ρ,h1,··· ,hi−1

Xi(ρ, h1, · · · , hi−1)ℓ ·
1

|R| · |H|i−1
(7.4)

=

q∑
i=1

E[Xℓ
i] ≥

q∑
i=1

E[Xi]
ℓ. (7.5)

Here Eq. (7.3) follows from independence of I(k) and I(k
′) for k, k′ ∈ [2, ℓ], Eq. (7.4) follows from the

fact that once ρ, h1, · · · , hi−1 are fixed Pr[I(1) = i] = Pr[I(k) = i | I(1) = i] = Xi(ρ, h1, · · · , hi−1)
and Eq. (7.5) follows from Jensen’s inequality where we use the fact that f(x) = xℓ is a convex
function. Finally, using Holder’s inequality, we obtain

q∑
i=1

E[Xi]
ℓ ≥ 1

qℓ−1
·

(
q∑

i=1

E[Xi]

)ℓ

=
1

qℓ−1
· acc(x)ℓ.

189

This completes the proof of Eq. (7.1), hence concluding our claim.

Remarks. As can be checked from the proof, we can set the function f(ℓ) so that in case ℓ = 2,
we have f(2) = 1. Therefore, by setting the deterministic oracle O to be an oracle that outputs
nothing, the above lemma implies the general forking lemma of [BN06].

7.4 Gap-Σ-Protocols and Non-Interactive Zero-Knowledge Proofs

Before presenting the main tools we use in this chapter, we recall some standard notions. A
language L ⊆ {0, 1}∗ is said to have polynomial time recognizable relation R ⊆ {0, 1}∗×{0, 1}∗ if
L = {x | ∃w s.t. (x,w) ∈ R} where |w| ≤ poly(|x|). We call the string w a witness to the statement
x ∈ L. Occasionally, we write LR to emphasize that the language L is induced by the relation R.
In the following, we implicitly assume that all languages and relations are parameterized by the
security parameter. Furthermore, an non-interactive proof system is defined as follows:

Definition 7.6 (Non-Interactive Proof System). Let R be a relation with an associated lan-
guage LR. Then, a non-interactive proof system for language LR consists of two algorithms
(P,V), where P may be randomized and V is deterministic such that for any pair (x,w) ∈ R, if
π ← P(x,w) then V(x, π) outputs 1, which signifies that the proof π was correct, and otherwise
outputs 0.

7.4.1 Gap-Σ-Protocols

Σ-protocols are a special type of 3-round interactive proof systems that is also a proof of knowl-
edge. Below, we define (a special type of) the gap-Σ-protocol, which is a generalization of the
standard Σ-protocol where we allow the extracted witness to lie in a slightly larger space than the
actual witness being proven during the protocol. Furthermore, the special soundness is defined for
cases where more than 2 valid transcripts are required to extract a witness. These non-standard
formalizations are required, since most of the lattice-based Σ-protocols are not captured by the
standard formalizations.

Later on, we see that many of the results known to the standard Σ-protocols can be translated
to the gap-Σ-protocol settings. Readers familiar with standard Σ-protocols that are not interested
in the lattice-based instantiations may safely skip this section, since our generic construction of
attribute-based signature scheme can be constructed from standard Σ-protocols as well.

Definition 7.7 (Gap-Σ-protocols). Let m be an integer constant and t an integer-valued function
of the security parameter. Let (P,V) be a two-party protocol, where V is PPT, and let L,L′ ⊆
{0, 1}∗ be languages with witness relations R,R′ such that R ⊆ R′. Then (P,V) is called a gap-
Σm,t-protocol for relations (R,R′) with challenge space C = {0, 1, · · · ,m − 1}t, if it satisfies the
following conditions:

- 3-move form: The protocol is of the following form:

· The prover P, on input (x,w) ∈ R, sends a commitment α to V.
· The verifier V samples a challenge β ← C and sends it to P.
· The prover P sends a response γ to V, and V outputs 1 or 0 based on the protocol transcript
(α, β, γ).

The protocol transcript (α, β, γ) is called a valid transcript if the verifier V outputs 1, i.e.,
accepts the protocol run.

190

- Completeness: Whenever (x,w) ∈ R, V accepts with probability 1.

- Soundness: If (x,w) ̸∈ R, then any cheating (possibly inefficient) prover P∗ succeeds with
probability at most (m−1m)t. We call this value the soundness error.

- Special gap-soundness: There exists a PPT algorithm E (the knowledge extractor) which
takes m valid transcripts {(α, βi, γi)}i∈[m] for some statement x ∈ L, where there exists at least
one index j ∈ [t] such that {βi,j}i∈[m] = {0, 1, · · · ,m − 1} as inputs, and outputs w such that
(x,w) ∈ R′. Here βi,j denotes the j-th value of the string βi. Note that the knowledge extractor
outputs a witness in the gap relation.

- Special honest-verifier zero-knowledge (HVZK): There exists a PPT algorithm S (the
HVZK simulator) taking x ∈ L as input, that outputs (α, β, γ) whose distribution is indistin-
guishable from an accepting protocol transcript generated by a real protocol run. Although no
guarantees on the outputs are made, the simulator S is also defined over the inputs x ̸∈ L.

We call the gap-Σm,t-protocol computationally (resp. statistically) special HVZK if the simulated
transcript is computationally (resp. statistically) indistinguishable from a real transcript.

Lastly, we say the gap-Σ-protocol has high-commitment entropy if for all (x,w) ∈ R and α,
the probability that an honestly generated commitment by P takes on the value α is negligible.

We omit the subscript (m, t) of the gap-Σm,t-protocol whenever it is irrelevant to the context.
Occasionally, we omit t and simply write gap-Σm-protocol to emphasize that the soundness error
is negligible in the security parameter. We note that the standard Σ-protocol is a special case
of the gap-Σ-protocol where m = 2,R = R′. In this case the soundness error will simply be
2−t and special gap-soundness implies special soundness, since if there exists an index j ∈ [t] for
which the binary strings (i.e., the challenges) differ, then it implies that the two challenges are
different. Finally, we assume without loss of generality that all of the gap-Σ-protocols we consider
in this work have high-commitment entropy, since the condition can be easily met by appending
a super-logarithmic number of public random bits to the commitments.

Often times, the gap in the relations allows for much more efficient schemes, and do not
affect their usefulness in practice as long as R′ is still a sufficiently hard relation, e.g., [FO97,
DF02, AJLA+12, BCK+14]. Here, note that for the case m ≥ 3, we define a stronger notion
of special gap-soundness compared to the most general definitions one can consider for gap-Σ
protocols, i.e., we require a stronger condition than βi ̸= βj for i ̸= j ∈ [m], since in many cases
in lattice-based Σ-protocols, we need to impose this stronger restriction to extract a witness.
This is mainly due to the fact that in lattice-based schemes, gap-Σm,t-protocols are constructed
from running t gap-Σm,1-protocols in parallel, and we require the stronger restriction to extract a
witness from one of the inner gap-Σm,1-protocols, see, e.g., [KTX08, LNSW13]. We note that for
simplicity, in this work we only consider gap-Σ-protocols that are complete with probability 1.
Namely, our formalization does not capture those gap-Σ-protocols that are based on the rejection
sampling technique such as [Lyu09, Lyu12, BCK+14, BDOP16]. This is purely because these
gap-Σ-protocols do not offer zero-knowledge proofs for relations that are strong enough for our
application in mind.5

5 Note that we intentionally disregard [BKLP15] from our work. Although they offer an attractive rejection
sampling-based gap-Σ-protocol for proving arbitrary arithmetic operations that are more efficient than those of
[XXW13] which we use in Section 7.6, we were not able to verify the correctness of their proof sketch. In particular,
the knowledge extractor for the protocol for proving multiplicative relations could not be constructed as stated in
their paper.

191

Before continuing, we provide the following simple composition lemma for gap-Σ-protocols for
completeness.

Lemma 7.2. Given a gap-Σm,1-protocol for relations (R,R′), we can construct a gap-Σm,t-
protocol for the same relations by running t instances of the gap-Σm,1-protocol in parallel. In
particular, when t is super-logarithmic in the security parameter6 , the soundness error of the
gap-Σm,t-protocol is negligible.

Proof. It is straightforward to check that completeness and special HVZK hold. The condition
on soundness error holds, since in each internal gap-Σm,1-protocol, a cheating prover has at most
probability 1− 1/m of succeeding. Furthermore, special soundness holds too, since if there exists
such an index j ∈ [t] such that {βi,j}i∈[m] = {0, 1, · · · ,m−1}, we can use the knowledge extractor
of the internal gap-Σm,1-protocol to extract the witness w such that (x,w) ∈ R′ from the j-th
run.

Finally, we formally describe the Fiat-Shamir transformation [FS86] (who [BR93] attributes
to Blum), which is a technique to make any (gap-)Σ-protocol into a non-interactive proof system
by using a cryptographic hash function.

Definition 7.8. Let (P,V) be a gap-Σ-protocol with relation (R,R′), and H(·) a hash function
with range equal to the verifier’s challenge space C. The Fiat-Shamir transformation of gap-Σ is
the non-interactive proof system (PH ,VH) defined as follows:

PH(x,w) : Run P(x,w) to obtain a commitment α, and compute β ← H(x, α). Then complete
the run of P with β as the challenge to get the response γ. Finally output the pair π =
(α, β, γ) as the proof.

VH(x, π = (α, β, γ)) : Return the output of V(α, β, γ) if β = H(x, α) and 0 otherwise.

7.4.2 Non-Interactive Zero-Knowledge Proof Systems

We formalize the notion of non-interactive zero-knowledge (NIZK) proof systems in the explicitly
programmable random oracle model [Wee09], where the zero-knowledge (ZK) simulator is allowed
to explicitly program the random oracle. We follow the notations provided in [FKMV12] for
presentation. Namely, we model the ZK simulator of a NIZK proof system as a stateful PPT
algorithm S that can operate in two modes: (h, st) ← S(1, st, q) takes care of answering ran-
dom oracle queries, and (π, st) ← S(2, st, x) simulates the proof. Here, the calls to S(1, · · ·)
and S(2, · · ·) share the common state st that is updated after each invocation of the simulator.
Furthermore, we define three algorithms S1,S2, Ŝ2 that run simulator S internally: S1(q) returns
the first output of (h, st) ← S(1, st, q), S2(x,w) ignores the second input w and returns the first
output of (π, st) ← S(2, st, x) if and only if (x,w) ∈ R (or equivalently x ∈ L), and Ŝ2(x) is
essentially the same as S2(x,w) except that it does not take a second input w and is also defined
for inputs such that x ̸∈ L. Observe that S2 and Ŝ2 are identical for inputs x ∈ L, and unlike S2,
Ŝ2 may be invoked to simulate proofs for invalid statements.

Definition 7.9 (Non-Interactive Zero-Knowledge Proof System). Let R be a relation with an
associated language LR. We say a non-interactive proof system (P,V) is a statistical NIZK proof

6 Up until this point, we have made the security parameter implicit for the simplicity of presentation. Later on,
it will be clear from context that everything, including the relations, are parameterized by the security parameter.

192

system for language LR with a (PPT) ZK simulator S in the random oracle model, if for any
algorithm D we have∣∣∣Pr[DH(·),PH(·,·)(1λ) = 1]− Pr[DS1(·),S2(·,·)(1λ) = 1]

∣∣∣ = negl(λ),

where H(·) is modeled as a random oracle, and both P and S2 output ⊥ if (x,w) ̸∈ R. It is called
a computational NIZK proof system in case the above holds only for all PPT algorithms D.

It is a well known fact that in the random oracle model, the Fiat-Shamir transformation of
any Σ-protocol is a NIZK proof system. It is straightforward to prove that it is also the case for
gap-Σ-protocols, as we state in the following lemma.

Lemma 7.3 (Fiat-Shamir NIZK Proof Systems). Let (P,V) be a gap-Σ-protocol with relation
(R,R′) that is computationally (resp. statistically) special HVZK, and H(·) a hash function
with range equal to the verifier’s challenge space C. Then, in the random oracle model, the
non-interactive proof system (PH ,VH) obtained by the Fiat-Shamir transformation of gap-Σ is
a computational (resp. statistical) non-interactive zero-knowledge proof system for the language
LR.

Proof sketch. To prove that the proof system (PH ,VH) is a NIZK proof system for the language
LR, it suffices to show that there exists a ZK simulator S as in the above Definition 7.9. Below,
we construct S by invoking the HVZK simulator SΣ of the underlying gap-Σ-protocol (P,V):

- S(1, st, q = (x, α)) → (h = β, st) : To answer random oracle queries, it searches the table TH
kept in the state st whether an output for q = (x, α) is already defined. If so it returns the
previously defined assigned value. If not, it samples a uniformly random value β ← C and
stores (q = (x, α), h = β) in the table. Note that this corresponds to algorithm S1.

- S(2, st, x) → (π = (α, β, γ), st) : To simulate a proof for the statement x ∈ LR, it runs the
HVZK simulator SΣ on input x to obtain a proof (α, β, γ). Then, it updates the table TH
by adding (q = (x, α), h = β). If TH happens to be already defined on input q = (x, α), S
aborts. This completely specifies algorithm S2 as required. Observe that the simulator S
can also be run on statements x ̸∈ LR using the above method, since SΣ is well-defined for
x ∈ L as well. In particular, the above description for S also specifies algorithm Ŝ2 as well.

Since, we only consider gap-Σ-protocols with high-commitment entropy, the probability of simu-
lator S aborting is negligible, which ends the proof sketch.

In the following, we use the above algorithm S as the ZK simulator for a NIZK proof system
(PH ,VH) based on the Fiat-Shamir transformation of a gap-Σ-protocol (P,V). Note that we do
not explicitly define the soundness property of the NIZK proof system, since this property will be
implicitly implied when we construct a knowledge extractor during the security proof.

7.5 Generic Construction of Attribute-based Signatures

Overview and Preparation. Before presenting our construction, we provide a brief overview.
The main idea is that the attribute authority issues a signature σ (i.e., certificate) on an attribute
x ∈ {0, 1}ℓ to certify that the intended signer is allowed to sign a message on behalf of that
attribute. To sign anonymously, the signer proves the following facts in zero-knowledge: the
signature issued by the attribute authority is valid and the corresponding secret attribute satisfies

193

the public circuit C ∈ Cℓ (i.e., policy) attached to the message. To do so, the signer first commits to
the signature, the attributes and all of the values assigned to the internal wires of the circuit C on
input the attribute x. Then, he proves in zero-knowledge that the values inside the commitments
satisfy the equations Eq. (7.6 - 7.8) in our construction.

Therefore, the tools we need to prepare are a digital signature scheme, a commitment scheme
and a NIZK proof system to prove the above relations between committed values. For the rest of
the overview, we describe the relations and languages we require for our NIZK proof system. Our
construction relies on a gap-Σ-protocol for the relations (RABS,R′ABS) defined below and employs
the Fiat-Shamir transformation provided in Definition 7.8 to turn it in into a NIZK proof system.
In the following, xi for i ∈ [ℓ+1, ℓ+N−1] denotes the values assigned to the i-th (internal) wire of
C on input x = (x1, · · · , xℓ) and vkSign, pkCom denotes the verification key and public commitment
key of the underlying digital signature scheme and commitment scheme, respectively. Then the
relation RABS is defined as follows:

RABS =
{(

statement =
(
vkSign, pkCom, C ∈ Cℓ, cσ, (ci)

ℓ+|C|−1
i=1

)
,

witness =
(
x = (x1, · · · , xℓ), σ, dσ, (di)

ℓ+|C|−1
i=1

))∣∣∣
the committed values in cσ, (ci)

ℓ+|C|−1
i=1 satisfy the following conditions

- S.Verify(vkSign,x, σ) = 1

- xi = xi1 ⋆i xi2 for i ∈ [ℓ+ 1, ℓ+ |C| − 1] where (⋆i, i1, i2)← topoC(i)

- 1 = x(ℓ+|C|)1 ⋆ℓ+|C| x(ℓ+|C|)2 where (⋆ℓ+|C|, i(ℓ+|C|)1 , i(ℓ+|C|)2)← topoC(ℓ+ |C|)

- (cσ, dσ) ∈ DCom(pkCom, σ) and (ci, di) ∈ DCom(pkCom, xi) for i ∈ [ℓ+ |C| − 1]
}

Here, recall that DCom(pkCom,M) is the set of all possible outputs of the commitment algorithm
C.Com(pkCom,M) that we require to have an efficient method for checking membership of an
element. We simply define the corresponding language LABS as the language LRABS

induced by
the relation RABS. Furthermore, the gap-relation R′ABS is defined analogously to RABS except
that we replace the last condition as follows:

- (cσ, dσ) ∈ DG-Com(pkCom, σ) and (ci, di) ∈ DG-Com(pkCom, xi) for i ∈ [ℓ+ |C| − 1]

The only difference between the two relations are the condition on the commitment and opening
pairs. Namely, it is only required that the pairs are in the set DG-Com(·) and not in the more
restricted set DCom(·). Recall that DG-Com(pkCom,M) is the set of all commitment and opening
pairs that the opening algorithm outputs 1 on message M. This set is efficiently recognizable,
since we can use the opening algorithm to check if the pair is included in DG-Com(pkCom,M). As
we noted in Section 7.4.1, we require this gap-relation R′ABS purely for technical reasons, since in
many of the lattice-based Σ-protocols we can only extract witnesses that lie in a slightly larger
space than the actual witnesses being proven in the actual protocol. Similarly to above, we define
the language L′ABS as the language LR′

ABS
induced by the relation R′ABS.

For simplicity, in the following we omit vkSign and pkCom from the statement, since they are
fixed by the Setup algorithm and all signers use the same vkSign and pkCom.
Construction. Here, we provide our attribute-based signature scheme for unbounded (arith-
metic) circuits. In the following, assume a digital signature scheme (S.KeyGen, S.Sign, S.Verify),
a commitment scheme (C.Gen,C.Com,C.Open) and a NIZK proof system for the relation RABS.

Setup(1λ, 1ℓ) : On input the security parameter 1λ and the input length 1ℓ for the family of
circuits Cℓ, generate a verification key and a signing key (vkSign, skSign) ← S.KeyGen(1λ, 1ℓ)

194

and a public commitment key pkCom ← C.Gen(1λ). Then output

mpk = (vkSign, pkCom,H(·), G(·)) and msk = (skSign).

Here, H(·) and G(·) are hash functions used by the NIZK proof system and by algorithm
Sign, respectively, which are programmed as random oracles in the security reduction. Fur-
ther, we assume the output space of G(·) to be {0, 1}ℓ.7

KeyGen(mpk,msk,x) : On input x = (x1 · · · , xℓ) ∈ {0, 1}ℓ, create a signature on the attribute
x ∈ {0, 1}ℓ by running σ ← S.Sign(skSign,x). Then, output the secret key as skx = (x, σ).

Sign(mpk, skx, C,M) : On input message M ∈ {0, 1}⋆ and circuit C ∈ Cℓ with an associating
topology topoC proceed as follows:

1. Compute h = (h1, · · · , hℓ) ← G(M, C)8 and create a new circuit Ĉ ∈ Cℓ with two
dummy gates connected to each of the input wires of C. Namely, to the input wires
i ∈ [ℓ] of C, we add a series composition of two addition gates where one gate adds hi
and the other gate adds −hi; on input xi to the i-th input wire of Ĉ, it first evaluates
to xi + hi and then evaluates back to xi, on which point it gets fed to the i-th (input)
wire of C. Here, the value h is hard-wired into Ĉ, and is considered as one of the
internal wires. Further, let N be the number of gates |Ĉ|.

2. Compute the assignment to each non-input wires in Ĉ(x1, · · · , xℓ): for all i ∈ [ℓ +
1, ℓ+ (N − 1)], compute (⋆i, i1, i2)← topo(i) where ⋆i ∈ {+,×}, and denote the newly
created values (xi)

ℓ+N−1
i=ℓ+1 in ascending order as{

xi = xi1 + xi2 if ⋆i = +

xi = xi1 · xi2 if ⋆i = ×
.

3. Create a commitment (cσ, dσ) ← C.Com(pkCom, σ) of the signature σ. Furthermore,
for all i ∈ [ℓ+N − 1], create a commitment (ci, di)← C.Com(pkCom, xi) that commits
to the value of each wire in Ĉ (except for the output wire).

4. Generate a NIZK proof π proving that the committed values satisfy relation RABS.
Concretely, it generates a proof for the following conditions.9

– The attribute x = (x1, · · · , xℓ) committed to (ci)
ℓ
i=1 and the signature σ committed

to cσ satisfy the following verification equation:

S.Verify(vkSign,x, σ) = 1. (7.6)

– For all i ∈ [ℓ + 1, ℓ + N − 1], the value xi committed to ci satisfy the following
equation: {

xi = xi1 + xi2 if ⋆i = +

xi = xi1 · xi2 if ⋆i = ×
. (7.7)

7Here, we do not explicitly define the input and output space of the hash functions, since it may differ according
to the underlying NIZK proof system being used.

8Here, we assume that we can encode C uniquely into a binary string.
9 Note that we intentionally dismiss the conditions (c, d) ∈ DCom(pkCom, ⋆) as in the overview, i.e., proving

knowledge of a valid opening, since they will be implicitly proven by the fact that the committed messages satisfy
Eq. (7.6 - 7.8).

195

– The values x(ℓ+N)1 and x(ℓ+N)2 committed to c(ℓ+N)1 and c(ℓ+N)2 , respectively,
satisfy the following equation:{

1 = x(ℓ+N)1 + x(ℓ+N)2 if ⋆ℓ+N = +

1 = x(ℓ+N)1 · x(ℓ+N)2 if ⋆ℓ+N = ×
. (7.8)

5. Finally, output Σ =
(
cσ, (ci)

ℓ+N−1
i=1 , π

)
.

Verify(mpk,M, C,Σ) : Compute h ← G(M, C) and construct the circuit Ĉ as in Step 1 of the
Sign algorithm. Then, verify the proof with respect to the circuit Ĉ. Output Valid if the
proof is verified valid, and output Invalid otherwise.

Correctness. Observe that Ĉ(x) = C(x) for all M,x. Therefore, the correctness of the scheme
follows simply from the correctness of the underlying NIZK proof system. In particular, a signer
that has a certified attribute x such that C(x) = 1 can properly generate a proof proving Eq. (7.6
- 7.8).

7.5.1 Security Analysis

Theorem 7.1 (Privacy). Assume a statistically hiding commitment scheme with gap-openings
and a statistically special HVZK gap-Σ-protocol for relations (RABS, R′ABS). Then, converting the
gap-Σ-protocol into a Fiat-Shamir NIZK proof system, the above attribute-based signature scheme
is statistically private in the random oracle model. In case either the hiding property or the special
HVZK property only holds computationally, then we obtain computational privacy.

Proof. For our Fiat-Shamir NIZK proof system, we use the ZK simulator S that we have defined
in Lemma 7.3. Then, privacy of the attribute-based signature scheme follows naturally from the
hiding property of the commitment scheme and by the ZK simulator S. In the following, we
only consider the case for statistical privacy, i.e., the commitment scheme is statistically hiding
and the Fiat-Shamir NIZK proof system is statistically zero-knowledge. It is straightforward to
obtain an analogous result for computational privacy. Here, assume A submits (M,x0,x1, C)
as the challenge, and let Ĉ be the circuit created at Step 1 of the Sign algorithm that has N
gates. In the actual game, which we denote by Gamereal, the challenger picks a random bit
b← {0, 1} and returns the signature Σ∗ ← Sign(mpk, skxb

, C,M), where Σ∗ =
(
c∗σ, (c

∗
i)

ℓ+N−1
i=1 , π∗

)
along with the two secret keys skx0 and skx1 . Here the proof π∗ is the actual zero-knowledge
proof created with the witness satisfying

((
Ĉ, c∗σ, (c

∗
i)

ℓ+N−1
i=1

)
, (xb, σ, d

∗
σ, (d

∗
i)

ℓ+N−1
i=1)

)
∈ RABS as

input, where σ ← S.Sign(skSign,xb) and every commitment/opening pairs are created by running
C.Com(pkCom, ·). Recall that we omit vkSign, pkCom from the statement for simplicity. We consider
a game Game0, where the proof π

∗ is instead created by running the ZK simulator S (in particular
S2). Since the statement being proven is in the language LABS, by the definition of statistical NIZK
proof systems (See Definition 7.9), the proof π∗ created in Gamereal and Game0 are statistically
indistinguishable.

Below, we consider changing all the commitments to uniformly random values and simulating a
proof for some random (false) statement, at which point the adversary A will have zero-advantage
in winning the privacy game. In order to carry out the proof, we consider ℓ+N −1 hybrid games,
where in the i-th game Gamei, the challenger swaps the commitment c∗i with a uniformly random
element from the commitment space. Furthermore, to create a proof π∗, the challenger invokes
oracle Ŝ2 on input the statement

(
Ĉ, c∗σ, (c

∗
i)

ℓ+N−1
i=1

)
. Here recall that Ŝ2 is the oracle run by

196

the ZK simulator S, which does not necessarily require the statement to belong in the language
LABS to create a simulated proof. Finally, the Gamei challenger outputs a challenge signature
Σ∗ =

(
c∗σ, (c

∗
i)

ℓ+N−1
i=1 , π∗

)
along with the secret keys skx0 and skx1 . Due to the statistically hiding

property of the underlying commitment scheme, the view of the adversary in Gamei−1 and Gamei
is negligible.

Finally, in game Gameℓ+N , the challenger swaps the commitment c∗σ with a uniformly random
element from the commitment space. Otherwise, he acts exactly the same as the Gameℓ+N−1
challenger. Following the same argument above, the differences in the view of the adversary in
Gameℓ+N−1 and Gameℓ+N is negligible due to the statistically hiding property of the commitment
scheme. Furthermore, since all the commitments are now uniformly random over the commit-
ment space in Gameℓ+N , the signature Σ∗ =

(
c∗σ, (c

∗
i)

ℓ+N−1
i=1 , π∗

)
is completely independent of the

attributes x0,x1. Therefore we have that in Gameℓ+N , the advantage of adversary A is 0.
Combining the hybrid games together, we have that the advantage of any adversary A winning

Gamereal is negligible, if the underlying commitment scheme is statistically hiding and the NIZK
proof system is statistically zero-knowledge.

Theorem 7.2 (Adaptive Unforgeability). Assume a computationally hiding and a statistically
binding commitment scheme with gap openings, a computationally special HVZK gap-Σm-protocol10

for relations (RABS,R′ABS) and an eu-cma secure (deterministic) digital signature scheme. Then,
by converting the gap-Σm-protocol into a Fiat-Shamir NIZK proof system, the above attribute-
based signature scheme is adaptively unforgeable in the random oracle model.

Proof. Assume there exists a PPT adversary BABS that wins the adaptive unforgeability game
with advantage ϵ = ϵ(λ). Furthermore, let QH = QH(λ) be the number of unique random oracle
queries BABS makes to H(·) that is bounded by some polynomial in the security parameter λ.
Our proof proceeds in a sequence of games, where Xi denotes the event the adversary wins in
Gamei. Our final goal is to construct an adversary BSign that breaks the eu-cma security of the
underlying digital signature scheme by using BABS. As in the proof of Theorem 7.1 for privacy,
we use the ZK simulator S defined in Lemma 7.3 for our Fiat-Shamir NIZK proof system.

Gamereal : This game is identical to the real adaptive unforgeability game where all the random
oracle queries to H(·) and G(·) are answered randomly by the challenger. At the end of the
game, BABS outputs a valid forged signature (M∗, C∗,Σ∗) with probability Pr[Xreal] = ϵ.

Game1 : In this game, we change the way the challenger answers the random oracle queries to
H(·) and the signing queries. Namely, we use the ZK simulator S associated to the NIZK
proof system to answer these. Recall that simulator S has two modes for running the two
oracles S1 and Ŝ2. When BABS submits a random oracle query to H(·), the challenger relays
this to oracle S1 and returns the value outputted by S1 to BABS. Here, the random oracle
queries to G(·) are answered by the Game1 challenger as in the previous game. Furthermore,
when BABS submits a signing query on an attribute, message and circuit tuple (x,M, C)
such that C(x) = 1, it first runs skx = (x, σ) ← KeyGen(mpk,msk,x) and constructs the
circuit Ĉ with N gates using h ← G(M, C) as in Step 1 of the Sign algorithm. Then it
proceeds with Step 2 and 3 to create commitments

(
cσ, (ci)

ℓ+N−1
i=1

)
along with valid openings

10 Here, recall that we write gap-Σm-protocol, when we make explicit of the fact that m valid transcripts are
requried for special gap-soundness to hold. Furthermore, this notation also implies that the soundness error is
negligible (See Section 7.4.1).

197

(
dσ, (di)

ℓ+N−1
i=1

)
. Finally, it invokes Ŝ2 on input the statement

(
Ĉ, cσ, (ci)

ℓ+N−1
i=1

)
∈ LABS11

and obtains a proof π, and returns the signature Σ =
(
cσ, (ci)

ℓ+N−1
i=1 , π

)
to BABS. Here, the

simulated proofs of Ŝ2 are distributed negligibly close to the actual proofs in Gamereal by
the definition of the NIZK proof system (See Definition 7.9), and the fact that the oracles
S2 and Ŝ2 are equivalent in case the statement to be proven is in the language. Hence,

|Pr[Xreal]− Pr[X1]| = negl(λ).

Game2 : In this game, we change the way the challenger creates the commitment for the signature
σ produced during the signing query. In the previous game, when BABS submitted a signing
query on an attribute, message and circuit tuple (x,M, C) such that C(x) = 1, the challenger
created a proper commitment cσ for the signature σ following Step 3 of the Sign algorithm,
i.e., (cσ, dσ) ← Com(pkCom, σ). In this game, however, the Game2 challenger will instead
sample a random value c in the commitment space CCom and sets cσ = c. Then, as in
Game2, it invokes Ŝ2 on input

(
Ĉ, cσ, (ci)

ℓ+N−1
i=1

)
and obtains a proof π, and returns the

signature Σ =
(
cσ, (ci)

ℓ+N−1
i=1 , π

)
to BABS. Here, recall that oracle Ŝ2 is defined to simulate

proofs for false statements that are not in the language LABS as well. Now, following the
same argument in the previous proof of Theorem 7.1 for privacy, the differences in the
view of the adversary in Game1 and Game2 are computationally indistinguishable due to the
computationally hiding property of the commitment scheme.12 In other words, we have

|Pr[X1]− Pr[X2]| = negl(λ).

Game3 : In this game, we add an additional winning condition for adversary BABS to satisfy.
Namely, when BABS outputs a forgery (M∗, C∗,Σ∗), the Game3 challenger checks if the
random oracle G(·) was ever queried on a message-circuit pair (M, C) ̸= (M∗, C∗) such that
Ĉ = Ĉ∗. Note that this implies G(M, C) = G(M∗, C∗). Hereafter, we say BABS wins if and
only if in addition to the winning condition of the previous game, there are no such message-
circuit pairs. Since, the output values of the random oracle G(·) are uniformly random over
{0, 1}ℓ for ℓ = poly(n), the probability that a collision occurs for different message-circuit
pairs is negligible. Hence,

|Pr[X2]− Pr[X3]| = negl(λ).

Below, we denote ϵ3 = Pr[X3].

In the following, we define the algorithms A and O to be used in the forking algorithm

F
O(param,·)
A,m of the generfal multi-forking lemma with oracle access (See Lemma 7.1). Looking ahead,

the forking algorithm will be used by adversary BSign to win the eu-cma security of the underlying
digital signature scheme. At a high level, A will be an algorithm constructed from composing the

11 Recall we ignore the public parameters vkSign and pkCom from the statement for simplicity.
12 More formally, as in the proof of Theorem 7.1 for privacy, we create qsign hybrid games and swap the com-

mitments of the signature to a random value in the commitment space one hybrid game at a time until we have
swapped every signature commitments into the desired random form, where qsign is the number of signature queries
BABS makes. Note that qsign is polynomial in the security parameter λ.

198

Game3 challenger, BABS and the ZK simulator S that simulates Game3, and O(param, ·) will be
the signing algorithm S.Sign(sk, ·) used in the underlying eu-cma security game.

To provide the full description of algorithms A and O, we first define the input generator IG,
the set H and the integer q, which are required to define the inputs for A and O. First, the
input generator IG outputs (param, param) where param constitutes of the verification key vkSign,
public commitment key pkCom and any extra auxiliary parameters required to specify the ABS
scheme (e.g., the family of circuits), and param is simply the signing key skSign. Here, vkSign, skSign
and pkCom are generated by running (vkSign, skSign) ← S.KeyGen(1λ, 1ℓ) and pkCom ← C.Gen(1λ).
Furthermore, we define the set H to be the verifier’s challenge space CΣ of the underlying gap-Σm-
protocol, and set q as QH ; the number of unique random oracle queries made to H(·) by BABS.
To summarize, A will be given param and h1, · · · , hQH

∈ H as input.
We next specify how algorithms A and O run. First, the deterministic algorithm O is sim-

ply defined as the signing algorithm of the underlying deterministic digital signature scheme;
O(param, ·) = S.Sign(skSign, ·). Here, O is deterministic since the signing algorithm is deter-
ministic once fixed a signing key skSign. Next, we define A as the randomized algorithm that
simulates Game3 and outputs a small modification of the forgery returned by BABS. We first
explain how A simulates Game3: A essentially runs the Game3 challenger, BABS and the ZK sim-
ulator S internally, with two conceptual changes concerning the Game3 challenger and the ZK
simulator S. In particular the Game3 challenger is modified to an algorithm which we call the
Game′3 challenger, so that it does not run (vkSign, skSign) ← S.KeyGen(1λ, 1ℓ) anymore. Instead
of generating (vkSign, skSign) on its own, the Game′3 challenger is provided with vkSign by A, and
no longer possesses skSign. Whenever the Game′3 challenger requires to run the signing algorithm
S.Sign(skSign, ·), A simply invokes O(param, ·) = S.Sign(skSign, ·), which it has oracle access to, and
returns whatever outputtd by O to the Game′3 challenger. Furthermore, the ZK simulator S (See
Lemma 7.3) is modified in a way so that it does not sample a random value hi ← CΣ when invoked
on a random oracle query to H(·). Concretely, on the i-th unique random oracle query to H(·), it
simply outputs the value hi provided by A.13 This is only a conceptual change, since CΣ = H and
hi are sampled uniformly over H. Therefore, the above changes do not alter the view of BABS.
Hence the advantage of BABS winning the game simulated by A is exactly the same as of Game3.
Finally, we describe the output of A. In particular, at the end of the simulation of Game3, BABS
outputs a valid forgery (M∗, C∗,Σ∗) where Σ∗ =

(
c∗σ, (c

∗
i)

ℓ+N−1
i=1 , π∗

)
with probability ϵ3. In the

following let χ∗ denote the statement (Ĉ∗, c∗σ, (c
∗
i)

ℓ+N−1
i=1), where Ĉ∗ is the circuit with N gates

constructed from C∗ in Step 1 of the Sign algorithm. Since this is a valid forgery, we must have
χ∗ ∈ LABS. Given the forgery of BABS, A first parses the proof π∗ as (α∗, β∗, γ∗), where α∗, β∗,
γ∗ are the commitment, challenge and response of the underlying gap-Σm-protocol (See Defini-
tion 7.8), respectively. A then checks whether H(·) was queried on (χ∗, α∗). If not it outputs
(0, ϵ1). Otherwise, there exists an index i∗ ∈ [QH] for which the challenge β∗ = H(χ∗, α∗) is set
to hi∗ , i.e., β

∗ = hi
∗
. In this case, it outputs (i∗, (α∗, hi∗ , γ

∗, χ∗,M∗, C∗)). Now, since A simulates
Game3 perfectly and the probability of BABS outputting a valid forgery without knowledge of the
output of H(χ∗, α∗) (i.e., the challenge) is negligible, we have

acc = Pr
[
(i∗, (α∗, hi∗ , γ

∗, χ∗,M∗, C∗))← AO(param,·)(param, h1, · · · , hQH
) : i∗ ≥ 1

]
≥ ϵ3 − negl(λ), (7.9)

where the probability is taken over the choice of (param, param), (hi)
QH
i=1 and the randomness used

13 More formally, we can think the state st provided to the ZK simulator S includes (hi)
QH
i=1, assuming without

loss of generality that S knows the bound on the number of query made by BABS.

199

by A.
Finally we construct an adversary BSign against the eu-cma security of the underlying digital

signature scheme using the forking algorithm F
O(param,·)
A,m . In particular the advantage of BSign

will be ϵm3 /Q
m−1
H − negl(λ) for a constant m. Hence, assuming the eu-cma security of the digital

signature scheme, ϵ3 is negligible. Therefore, since ϵ = ϵ3±negl(λ), we conclude that ϵ is negligible,
thus completing the proof. Below, let CSign be the challenger for the eu-cma game of the underlying
digital signature scheme. Also, let vkSign be the verification key given to BSign and skSign be the
signing key used by CSign to answer the signature queries. In particular, CSign uses the signing
algorithm S.Sign(skSign, ·) to answer signature queries made be BABS. Now, given vkSign, BSign
runs pkCom ← C.Gen(1λ) and prepares param, i.e., the input to A provided by the input generator
IG. This can be done efficiently since param constitutes only of public values: vkSign, pkCom and
some other public auxiliary parameters specifying the ABS scheme. Since the forking algorithm
only requires oracle access to the deterministic algorithm O(param, ·) = S.Sign(skSign, ·), which
is provided by CSign, BSign can properly run the forking algorithm F

O(param,·)
A,m (param) as specified.

Note that param, param are distributed exactly as the output of the input generator IG defined
above. Now, due to the general multi-forking lemma with oracle access (Lemma 7.1), we obtain
the following pairs with probability frk:(

1,
{
α(k), h(k), γ(k), χ(k),M(k), C(k)

}
k∈[m]

)
, where χ(k) =

(
Ĉ(k), c(k)σ , (c

(k)
i)ℓ+N−1

i=1

)
k∈[m]

. (7.10)

Here, by Eq. (7.1) of Lemma 7.1, we have

frk ≥ acc ·

((
acc

QH

)m−1
− f(m)

|CΣ|

)
=

accm

Qm−1
H

− negl(λ), (7.11)

where CΣ is the output range of H(·) that is super-polynomially large, m is a constant representing
the number of valid transcripts we require to extract a witness and f(m) is a universal positive
valued function that only depends on m, i.e., a constant value when viewed as a funtion on the
security parameter λ. Now, we argue that for all k ∈ [m], the values of the commitments α(k) and
statements χ(k) are equivalent, respectively. Let i∗ ∈ [QH] be the index outputted by A in the first

run inside the forking algorithm F
O(param,·)
A,m (param). Then, up until the i∗-th unique random oracle

query to H(·), the behavior of BABS is the same for every run, since we fix the randomness being
used by the challenger Game′3, BABS and the ZK simulator S. This implies that whatever submitted
by BABS on the i∗-th unique random oracle query to H(·), which is the pair (α(k), χ(k)), must be
the same in every run. Let us denote this as (α∗, χ∗ = (Ĉ∗, c∗σ, (c

∗
i)

ℓ+N−1
i=1)). Therefore, by running

F
O(param,·)
A,m (param), BSign obtains m valid transcript of the form

(
α∗, h(k), γ(k), χ∗,M∗, C∗

)
k∈[m]

where M∗, C∗ are the same in every run as well, due to the winning condition we added in Game3
and the fact that Ĉ∗ is the same in every run.

Next, we show that BSign can properly extract a witness from the valid transcripts using
the knowledge extractor of the underlying gap-Σm-protocol (See special gap-soundness of Defini-
tion 7.7). Recall that the range of the random oracle H(·) is CΣ = {0, 1, · · · ,m − 1}t for some
constant m and an integer-valued function t that is poly-logarithmic in the security parameter λ.
Now, by Definition 7.7, in order to extract a witness there needs to exist at least one index j ∈ [t]

such that {h(k)j }k∈[m] = {0, 1, · · · ,m − 1}. Since each h(k) are sampled uniformly random over

CH = {0, 1, · · · ,m−1}t, the probability of no such j ∈ [t] existing is (1− m!
mm)t, which is negligible

in the security parameter for our choices of m, t. Therefore, with all but negligible probability,

200

BSign is able to extract a witness (x∗, σ∗, d∗σ, (d
∗
i)

ℓ+N−1
i=1) in the gap-language L′ABS from them valid

transcripts. Furthermore, since we use a statistically binding commitment scheme, the (x∗, σ∗)
pair extracted from the transcripts are the actual pairs used by BABS to create a forgery, with all
but negligible probability.

Finally, we show that (x∗, σ∗) is a valid signature forgery that allows BSign to win the eu-cma
game between the challenger CSign. Namely, we show that x∗ was never queried as the key reveal
query by BABS in all of the m runs of A. Note that the only situation A invokes the signing oracle
O(param, ·) = S.Sign(skSign, ·) is when BABS submits a key reveal query to the Game′3 challenger.
This is because we altered the game in Game2 so that the ZK simulator is used to answer the
signing queries made by BABS. Now, since BABS outputs a valid forgery we have Ĉ∗(x∗) = 1.
Then, by the way we construct Ĉ∗(x∗) in Step 1 of the Sign algorithm, we have C(x∗) = 1 as
well. On the other hand, due to the winning condition of BABS, BABS must have never made a
key reveal query on x∗ such that C∗(x∗) = 1 (in any of the runs). Therefore, we conclude that
x∗ was never queried to the Game′3 challenger by BABS in any of the runs of A; (x∗, σ∗) is a valid
forgery.

Hence, combining Eq. (7.9), (7.11) and the previous games together, assuming a PPT ad-
versary BABS that makes at most QH queries to the random oracle H(·) and wins the adaptive
unforgeability game with advantage ϵ, there exists a PPT adversary BSign that wins the eu-cma
security with advantage ϵm/Qm−1

H − negl(λ) for a constant m.

7.5.2 Implications

Since a computationally hiding and statistically binding commitment scheme, a deterministic
digital signature scheme and a computationally special HVZK Σ-protocols for any NP-language
are all implied from one-way functions (See for example [Nao91, Rom90, PSV06]), we obtain the
following lemma as an implication of our above result:

Lemma 7.4. If one-way functions exist, then there exist computationally private and adaptive
unforgeable attribute-based signature schemes for unbounded circuits in the random oracle model.

7.6 ABS for Unbounded Circuits from Lattices

In this section, we provide an efficient instantiation of our generic ABS construction for unbounded
circuits from lattices. In particular, we prepare a lattice-based signature scheme and a commit-
ment scheme with gap-openings, and construct an associating lattice-based gap-Σ-protocol for the
relation RABS. We believe our gap-Σ-protocol for proving possession of a valid signature, which
departs from the previously known stern-type protocol of [LNSW13], to have applications in other
contexts such as group signatures. Finally, we will be using the ω(·)-notation throughout the rest
of this section. Note that ω(f(X)) denotes any function that grows asymptotically faster than
f(X). For instance, when we state that the communication is ω(f(X)), it can be set as small as
f(X) · logX.

7.6.1 Preparing Tools

We present the underlying lattice-based digital signature scheme and commitment scheme with
gap-openings that we use as building blocks for our lattice-based ABS scheme.

201

Digital Signature Scheme. Here, we review the lattice-based digital signature scheme of Boyen
[Boy10] with an improved security reduction by [MP12]. This scheme is a lattice-based analogue
of the Waters’ pairing-based signature [Wat05]. Below, we provide a deterministic version of
Boyen’s signature scheme, where the signing algorithm uses a PRF for generating the required
randomness. In the following, by lattice convention, we use the dimension of the lattice n to
denote the security parameter.

Theorem 7.3. Let n,m, q be positive integers such that m ≥ 2n log q. Let α, β be positive
reals such that α = Ω(

√
ℓn log q log n) and β = αω(

√
logm). Then, the following algorithms

(S.KeyGen,S.Sign, S.Verify) form a deterministic digital signature scheme with message spaceM =
{0, 1}ℓ that is eu-cma secure under hardness of the SIS∞

n,m,q,ℓÕ(n)
problem.

S.KeyGen(1n, 1ℓ) : It samples a matrix A ∈ Zn×m
q with a trapdoor TA ∈ Zm×m using algorithm

TrapGen(1n, 1m, q). It also samples matrices Ai ← Zn×m
q for i ∈ [0, ℓ], a vector u ∈ Zn

q and
generates a seed for a PRF by running r ← PRF.Gen(1n). Finally it outputs the verification
key vk and signing key sk as

vk = (A,A0, · · · ,Aℓ,u), sk = (TA, r).

S.Sign(sk,x) : On input the message x ∈ {0, 1}ℓ, it first constructs the matrix Ax = A0 +∑ℓ
i=1 xiAi ∈ Zn×m

q , where xi is the i-th bit of x. Then using TA, it samples a short vector
z ∈ Z2m such that [A|Ax]z = u mod q using algorithm SampleLeft(A,Ax,u,TA, α), where
the output of PRF.Eval(r,x) is used as the randomness. Finally, it outputs σ = z as the
signature.

S.Verify(vk,x, σ) : It first checks that x ∈ {0, 1}ℓ. Next, it checks whether [A|Ax]z = u mod q
and ∥z∥∞ ≤ β. It outputs 1 if all the above check passes, otherwise it outputs 0.

Commitment Scheme. Here, we present the commitment scheme of [XXW13] with minor mod-
ification. Specifically, we slightly deviate from their construction to be consistent with our notion
of commitment schemes with gap openings from Section 7.3.1. Furthermore, for simplicity, we
present the commitment scheme based on standard lattices, whereas [XXW13] uses ring lattices.
Finally, we use Lemma 4 of [LLNW14] instead of Lemma 1 of [XXW13] to optimize the required
parameters of the commitment scheme. In the following let [·||·] denote the vertical concatenation
of vectors.

Theorem 7.4. Let n, m̄, q be positive integers such that m̄ ≥ 3n, q a prime. Further, let
γ, γ′ be positive reals such that q ≥ (4γ + 1)2 and γ ≥ γ′ω(log n). Then, the following algo-
rithms (C.Gen,C.Com,C.Open) form a computationally hiding and statistically binding commit-
ment scheme with gap openings under the hardness of the LWEn,m̄,q,DZ,γ problem. Here the message
spaceM is Zq and the commitment space C is Zm̄

q .

C.Gen(1n) : It samples B← Z(n+1)×m̄
q and outputs pk = B.

C.Com(pk,M) : For a message M ∈ Zq, it samples a random vector s← Zn
q . Then, it samples

e← DZm̄,γ′ until ∥e∥∞ ≤ γ holds.14 Finally, it outputs (c, d) = (B⊤[s||M]+e mod q, (s, e)).

14 For our parameter selection, this procedure will end in a constant number of trials with all but negligible
probability.

202

C.Open(pk,M, c, d) : It first checks if M ∈ Zq. It then parses d = (s, e) and checks if c =
B⊤[s||M] + e mod q and ∥e∥∞ ≤ 2γ hold. If all the check passes it outputs 1, otherwise it
outputs 0.

Observe that the above commitment scheme has gap-openings; although the commitment
algorithm C.Com only samples vectors e such that ∥e∥∞ ≤ γ, the opening algorithm C.Open
accepts e such that γ < ∥e∥∞ ≤ 2γ as well. In addition, we can easily check membership of an
element (c, d = (s, e)) in DCom(pk,M) by checking whether the opening algorithm outputs 1 and
∥e∥∞ ≤ γ holds.

[XXW13] provides three gap-Σ-protocols for proving useful relations over committed values:
ΣOpen for proving knowledge of a valid opening and ΣAdd, ΣMult

15 for proving arithmetic relations
(over Zq) of committed values. We additionally construct one useful gap-Σ-protocol ΣEqTo⋆ for
proving that a commitment opens to a specific value. So as not to interrupt the main objective of
this section, we refer the details of the construction to Section 7.7. Then, the above commitment
scheme is equipped with the following four basic gap-Σ-protocols.

Theorem 7.5. The commitment scheme with gap openings in Theorem 7.4 has associating com-
putationally special HVZK gap-Σ-protocols (ΣOpen,ΣEqTo⋆,ΣAdd, ΣMult) for the following four re-
lations:

ROpen = {(pk, c), (M, d) | (c, d) ∈ DCom(pk,M)},
REqTo⋆ = {(pk, c,M), d | (c, d) ∈ DCom(pk,M)},
RAdd = {(pk, (ci)3i=1), ((Mi, di)

3
i=1) | M3 = M1 +M2 ∧ (ci, di) ∈ DCom(pk,Mi) for i ∈ [3]},

RMult = {(pk, (ci)3i=1), ((Mi, di)
3
i=1) | M3 = M1 ·M2 ∧ (ci, di) ∈ DCom(pk,Mi) for i ∈ [3]}.

The gap-relations (Σ′Open,Σ
′
EqTo⋆,Σ

′
Add,Σ

′
Mult) are defined similarly except that the set DG-Com is

used instead of DCom.

The above gap-Σ-protocols of [XXW13] additionally require internally a standard commitment
scheme, which is used by the prover in the first round to send a commitment to the verifier.
Although, we can use the commitment scheme of [XXW13] provided above, we use the more
efficient lattice-based commitment scheme of Kawachi et al. [KTX08] to instantiate the gap-Σ-
protocols. In this case, the communication costs of ΣOpen,ΣEqTo⋆ are ω(m̄ log q log γ log n) and
ΣAdd,ΣMult are ω(m̄ log3 q log γ log n). Plugging in some example parameters required by the
commitment scheme, e.g., m̄ = 3n, the communication costs can be set to be Õ(n), where recall
n is the security parameter.

Remark 7.1. The above four basic gap-Σ-protocols can be composed in parallel to obtain a gap-
Σ-protocol for larger relations, e.g., provided with commitments (ci)

4
i=1 of the values (Mi)

4
i=1

satisfying M4 =
∑3

i=1Mi, we can prove this relation by creating one extra auxiliary commitment
caux for Maux = M1 +M2 and running two ΣAdd in parallel for the statement pairs (pk, c1, c2, caux)
and (pk, caux, c3, c4).

7.6.2 ABS for Unbounded Circuits Based on Lattices

To instantiate the generic ABS construction in Section 7.5 from lattices, it is sufficient to prove
that the above digital signature scheme and commitment scheme are equipped with a gap-Σ-
protocol for the relation RABS. Therefore, below we aim at constructing a gap-Σ protocol for

15 In their paper, they present two protocols for proving arithmetic relations, however, in our work we only
consider the more efficient protocol in [XXW13], Section 4.3.

203

proving Eq. (7.6), (7.7) and (7.8) in our ABS construction, where the attribute x and Boyen
signatures σ are committed using the commitment scheme of [XXW13]. Below, we provide the
equations that appear in our ABS construction for reference.

• The attribute x = (x1, · · · , xℓ) committed to (ci)
ℓ
i=1 and the signature σ committed to cσ

satisfy the following verification equation:

S.Verify(vkSign,x, σ) = 1. (7.6)

• For all i ∈ [ℓ+ 1, ℓ+N − 1], the value xi committed to ci satisfy the following equation:{
xi = xi1 + xi2 if ⋆i = +

xi = xi1 · xi2 if ⋆i = ×
. (7.7)

• The values x(ℓ+N)1 and x(ℓ+N)2 committed to c(ℓ+N)1 and c(ℓ+N)2 , respectively, satisfy the
following equation: {

1 = x(ℓ+N)1 + x(ℓ+N)2 if ⋆ℓ+N = +

1 = x(ℓ+N)1 · x(ℓ+N)2 if ⋆ℓ+N = ×
. (7.8)

Taking the above Remark 7.1 into consideration, a gap-Σ-protocol for proving Eq. (7.7) and
(7.8), which are essentially proving that the circuit is computed correctly, can be constructed by
simply composing the basic gap-Σ-protocols ΣEqTo⋆,ΣAdd,ΣMult in parallel. In more detail, we
use ΣAdd and ΣMult to prove that we computed each gates correctly, and use ΣEqTo⋆ to prove
that the value associated to the output wire is equal to 1. Therefore, in the following, we only
focus on how to construct a gap-Σ-protocol for proving Eq. (7.6); we construct a gap-Σ-protocol
for proving possession of a valid Boyen-signature using ΣEqTo⋆,ΣAdd,ΣMult. Here, we stress that
we cannot simply use the gap-Σ-protocol for proving possession of a valid Boyen-signature of
[LNSW13] for our purpose, since their protocol does not allow us to efficiently prove possession
of messages satisfying complex arithmetic relations.16 In other words, since Eq. (7.6) and (7.7)
share the same witness x = (x1, · · · , xℓ), we will not be able to combine the different types of
gap-Σ-protocols of [LNSW13] and [XXW13] to construct a gap-Σ protocol for the relation RABS.

To summarize, our goal is to construct a gap-Σ-protocol for proving possession of a valid
Boyen signature σ = z = [z1, · · · , z2m]⊤ ∈ Z2m, where x = (x1, · · · , xℓ) ∈ {0, 1}ℓ is viewed as
the message, provided the verification key vkSign and the commitments to the signature σ and
message x. Then, since the basic gap-Σ-protocols of Theorem 7.4 allows for parallel composition,
our desired gap-Σ-protocol for the relation RABS is obtained by composing the gap-Σ protocol
for the Boyen signature with the gap-Σ-protocols for Eq. (7.7) and (7.8) together. Below, we
assume the commitment cσ of the signature is provided in the form (c̄k)k∈[2m] where each c̄i is a
commitment of the k-th element zk ∈ Z of z (viewed as an element in Zq), and the commitment
of the message cx is provided in the form (ci)i∈[ℓ] where each ci is a commitment of the value
xi ∈ {0, 1}. Now, due to the verification algorithm of the Boyen signature scheme, proving a
signature is valid is equivalent to proving the following three statements:

x ∈ {0, 1}ℓ ⇐⇒ xi ∈ {0, 1} for i ∈ [ℓ], (7.12)
16 The subsequent works of [LLM+16, YAL+17] allow proving possession of a valid Boyen-signature while also

proving possession of messages satisfying some simple arithmetic relations. However, their protocols are not strong
enough to prove arbitrary circuits in zero-knowledge.

204

∥z∥∞ ≤ β ⇐⇒ |zk| ≤ β for k ∈ [2m], (7.13)[
A|A0 +

ℓ∑
i=1

xiAi

]
z = u mod q, . (7.14)

Below we construct gap-Σ-protocols respectively for the above equations by converting each of
them into an arithmetic circuit, and using the basic gap-Σ-protocols provided in Theorem 7.4 as
building blocks to prove the satisfiability of each circuit.

Gap-Σ-Protocol for Proving Eq. (7.12). It is sufficient to prove that for every i ∈ [ℓ], the
commitment ci ← C.Com(pk, xi) opens to either 0 or 1. To do so, we first create auxiliary com-
mitments czero ← C.Com(pk, 0) and gi ← C.Com(pk, x2i) for i ∈ [ℓ]. Then using the commitments
(ci)i∈[ℓ] and the auxiliary commitments, and combining the basic gap-Σ-protocols ΣEqTo⋆,ΣAdd

and ΣMult together, we construct a gap-Σ-protocol for proving the following statement for all
i ∈ [ℓ]:

czero opens to 0 ∧ x2i = xi · xi ∧ 0 = x2i − xi

Since all arithmetic operations are over the finite field Zq, the only xi that satisfy the above
relations are xi = 0 or 1. Therefore, the above gap-Σ-protocol indeed proves Eq. (7.12). The
total communication cost is ω(ℓm̄ log3 q log γ log n). For example, the parameters can be set to be
Õ(ℓn).

Gap-Σ-Protocol for Proving Eq. (7.13). Here, for simplicity of the protocol, we assume that
β can be written as 2ζ − 1 for some positive integer ζ. Equivalently, ζ = log(β + 1). This does
not harm the efficiency nor the security of the signature scheme by much, since given any β, there
always exists a value of the form 2ζ − 1 in between β and 2β.

First, we prepare some notations. For k ∈ [2m], let zk,j be the j-th bit of the binary represen-
tation of zk ∈ Z for j ∈ [ζ]. Note that, we extend the standard binary decomposition to negative
integers as well in the obvious way. In particular, we can bit decompose any zk ∈ [−β, β] as
zk =

∑ζ
j=1 2

j−1zk,j , where zk,j ∈ {−1, 0, 1}.17 Further, set wk,j = 2j−1zk,j for j ∈ [ζ] and wk,[j′] =∑j′

j=1wk,j for j′ ∈ [2, ζ]. Finally, define wk,[1] = wk,1. Next, create the following auxiliary com-

mitments for k ∈ [2m]: czero ← C.Com(pk, 0), ccoeff,j ← C.Com(pk, 2j−1), c̄k,j,µ ← C.Com(pk, zµk,j),
hk,j ← C.Com(pk, wk,j) for µ ∈ [3], j ∈ [ζ], and hk,[j′] ← C.Com(pk, wk,[j′]) for j′ ∈ [2, ζ]. Then,
using the commitments (c̄k)k∈[2m], the auxiliary commitments and composing the gap-Σ-protocols
ΣEqTo⋆,ΣAdd and ΣMult together, we construct a gap-Σ-protocol for the following statement for
all k ∈ [2m], j ∈ [ζ] and j′ ∈ [2, ζ]:18

czero opens to 0 ∧ ccoeff,j opens to 2j ∧ z2k,j = zk,j · zk,j ∧ z3k,j = z2k,j · zk,j ∧
0 = z3k,j − zk,j ∧ wk,j = 2j−1 · zk,j ∧ wk,[j′] = wk,j′ + wk,[j′−1] ∧ 0 = zk − wk,[ζ].

We check that the above statement is equivalent to Eq. (7.13), i.e., each zk satisfy |zk| ≤ β for
all k ∈ [2m]. First, since q is a prime, the only zk,j satisfying z3k,j − zk,j = 0 over Zq are −1, 0, 1.
Hence, the above statement proves that zk,j ∈ {−1, 0, 1}. Furthermore, when zk,j ∈ {−1, 0, 1}, we

17 A subtly is that unlike standard bit decomposition, the bit representation is not unique anymore, e.g., 11 can
be decomposed as (1, 1, 0, 1) or (−1, 0, 1, 1). However, this will not affect our following argument.

18 Since we prove czero opens to 0 in the above gap-Σ-protocol for proving Eq. (7.12), we will not require this
when we compose the gap-Σ-protocols together. The same holds for the aforementioned gap-Σ-protocol for proving
Eq. (7.14).

205

have |zk| ≤
∑ζ

j=1 2
j−1 |zk,j | ≤ 2ζ−1 = β. Therefore, if the above statement holds, then we must

have |zk| ≤ β for all k ∈ [2m]. The total communication cost is ω(mm̄ log β log3 q log γ log n). For
example, the parameters can be set to be Õ(n2).

Gap-Σ-Protocol for Proving Eq. (7.14). We first prepare some notations. Let as,k (resp.,
ai,s,k) denote the (s, k1)-th (resp., (s, k2 − m)-th) entry of A (resp., Ai) ∈ Zn×m

q , for s ∈ [n],
k1 ∈ [m] (resp., k2 ∈ [m + 1, 2m]) and i ∈ [0, ℓ]. Then, observe that we can rewrite Eq. (7.14)
using the following equations for s ∈ [n]:

m∑
k1=1

as,k1 · zk1 +
2m∑

k2=m+1

(
a0,s,k2 +

ℓ∑
i=1

xi · ai,s,k2
)
· zk2 = us (7.15)

Next, we prepare some auxiliary values for s ∈ [n] in order to prove the above equations us-

ing the gap-Σ-protocols ΣEqTo⋆,ΣAdd and ΣMult: wi,s,k2 = xi · ai,s,k2 , w[i′],s,k2 =
∑i′

i=1wi,s,k2 ,
as,k2 = a0,s,k2 + w[ℓ],s,k2 for i ∈ [ℓ], i′ ∈ [2, ℓ], k2 ∈ [m + 1, 2m], bs,k = as,k · zk for k ∈ [2m],

bs,[k′] =
∑k′

k1=1 bs,k1 for k′ ∈ [2,m], bs,[k′] =
∑k′

k2=m+1 bs,k2 for k′ ∈ [m + 2, 2m] and ts =
bs,[m] + bs,[2m]. Further define w[1],s,k2 = w1,s,k2 , bs,[1] = bs,1 and bs,[m+1] = bs,m+1. Next, we
create auxiliary commitments for the related values for s ∈ [n]: cmat,s,k1 ← C.Com(pk, as,k1),
cmat,i,s,k2 ← C.Com(pk, ai,s,k2) for i ∈ [0, ℓ], k1 ∈ [m], k2 ∈ [m+1, 2m], ωi,s,k2 ← C.Com(pk, wi,s,k2),
ω[i′],s,k2 ← C.Com(pk, w[i′],s,k2), αs,k2 ← C.Com(pk, as,k2) for i ∈ [ℓ], i′ ∈ [2, ℓ], k2 ∈ [m + 1, 2m],
βs,k ← C.Com(pk, bs,k) for k ∈ [2m], βs,[k′] ← C.Com(pk, bs,[k′]) for k

′ ∈ [2,m]∪ [m+2, 2m]. Then,

using the commitment (ci)
ℓ
i=1, (c̄k)k∈[2m], the auxiliary commitments and composing the gap-Σ-

protocols ΣEqTo⋆,ΣAdd and ΣMult together, we construct a gap-Σ-protocol for the following state-
ment for all s ∈ [n], i ∈ [ℓ], i′ ∈ [2, ℓ], k1 ∈ [m], k2 ∈ [m+1, 2m], k ∈ [2m], k′ ∈ [2,m]∪ [m+2, 2m]:

czero opens to 0 ∧ cmat,s,k1 , cmat,0,s,k2 , cmat,i,s,k2 opens to as,k, a0,s,k, ai,s,k, respectively ∧
wi,s,k2 = xi · ai,s,k2 ∧ w[i′],s,k2 = wi′,s,k2 + w[i′−1],s,k2 ∧ as,k2 = a0,s,k2 + w[ℓ],s,k2 ∧
bs,k = as,k · zk ∧ bs,[k′] = bs,k′ + bs,[k′−1] ∧ ts = bs,[m] + bs,[2m] ∧ 0 = us − ts

The above statement can be checked that it is equivalent to proving Eq. (7.15) for s ∈ [n]. The
total communication cost is ω(ℓnmm̄ log3 q log γ log n). For example, the parameters can be set
to be Õ(ℓn3).

Gap-Σ-Protocol for RABS. To summarize, we obtain a gap-Σ-protocol for proving possession
of a valid Boyen signature by composing the gap-Σ-protocols for proving Eq. (7.12-7.14) together.
Then, by composing this protocol with the aforementioned gap-Σ-protocols for proving Eq. (7.7)
and (7.8), we obtain our desired gap-Σ-protocol for the relation RABS where the total commu-
nication cost is ω((m(ℓn + log β) + |C|)m̄ log3 q log γ log n). Here, |C| is size of the circuit (i.e.,
policy) associated to the message. For example, the parameters can be set to be Õ((ℓn+ |C|)n2).
Thus, we obtain our lattice-based ABS scheme for unbounded circuits in the random oracle model
by instantiating the generic ABS construction in Section 7.5 with our gap-Σ protocol for RABS.

7.7 Gap-Σ-Protocol for the Relation REqTo⋆

In this section, we show how to construct a gap-Σ protocol for relation REqTo⋆ building on top
of the commitment scheme of [XXW13]. Observe that due to Lemma 7.2, we only require to
construct a gap-Σm,1-protocol for relations (REqTo⋆,R′EqTo⋆) for some m. Let the commitment

206

c be B⊤[s∥M] + e ∈ Zm̄
q , where ∥e∥∞ ≤ γ. The goal of the protocol is for the prover P to

convince the verifier V that c is a valid commitment of M without leaking any other information.
Before stating the gap-Σ-protocol, P first bit decomposes e ∈ Zm̄ to k = ⌊log γ⌋ + 1 vectors
ẽi ∈ {−1, 0, 1}m̄ such that e =

∑k−1
i=0 2iẽi. Then, P appends to each vector ẽi an arbitrary

vector ēi in {−1, 0, 1}2m̄ such that the number of -1, 0, 1 in the vector [ẽi∥ēi] are respectively m̄.
Denote B3m̄ as the set of vectors where the number of −1, 0, 1 are exactly m̄, and ei as the vector
[ẽi∥ēi] ∈ B3m̄. Then, we have the following:

c = B⊤[s∥M] + Î

k−1∑
i=0

2iei = B̂⊤s+M · b+ Î

k−1∑
i=0

2iei ∈ Zm̄
q ,

where B̂ ∈ Zn×m̄
q is the matrix excluding the last row of B, b⊤ ∈ Zm̄

q is the last row of B and

Î = [Im̄|0m̄×2m̄].
Let S3m̄ be the set of all permutations over 3m̄ elements. Then the following Figure 7.2

depicts the gap-Σ3,1-protocol for the relation REqTo⋆. Here, Com can be an arbitrary commitment
scheme. The concrete parameter selection we provide in the main body is obtained by using
the efficient lattice-based commitment scheme of Kawachi et al. [KTX08]. Finally, we run this
protocol t = ω(log λ) times in parallel to obtain our desired gap-Σ3-protocol (See Lemma 7.2).
Recall the subscript 3 signifies that we require 3 valid transcripts for the extractor to work.

The gap-Σ-protocol can be checked that it is correct. We omit the proof of special gap-
soundness and special HVZK, since it follows naturally from the proofs provided in [XXW13] for
the gap-Σ-protocol for the relation ROpen.

207

1. Commitment: The Prover samples v ← Zn
q , ri ← Z3m̄

q , πi ← S3m̄ for i ∈ [0, k − 1]
and randomness ρ1, ρ2, ρ3 to be used in Com. Then, he sends the commitment CMT =
(C1, C2, C3) to the verifier, where

C1 = Com
(
(πi)

k−1
i=1 , t1 = B̂⊤v + Î

k−1∑
i=0

2iri; ρ1

)
, C2 = Com

(
(t2,i = πi(ri))

k−1
i=1 ; ρ2

)
,

C3 = Com
(
(t3,i = πi(ri + ei))

k−1
i=1 ; ρ3

)
.

2. Challenge: The Verifier sends a challenge Ch← {1, 2, 3} to the Prover.

3. Response: Depending on the value of Ch, the Prover sends the respone RSP computed
as follows:

- Ch = 1: Set RSP = ((t2,i, t3,i)
k−1
i=0 , ρ2, ρ3).

- Ch = 2: Set RSP = (t1, (πi, t3,i)
k−1
i=0 , ρ1, ρ3).

- Ch = 3: Set RSP = (t1, (πi, t2,i)
k−1
i=0 , ρ1, ρ2).

4. Verification: Receiving RSP, the Verifier proceeds as follows:

- Ch = 1: Check that t3,i−t2,i ∈ B3m̄ for all i ∈ [0, k−1] and C2 = Com((t2,i)
k−1
i=0 ; ρ2), C3 =

Com((t3,i)
k−1
i=0 ; ρ3).

- Ch = 2: Check that c + t1 − Î
∑k−1

i=0 2iπ−1i (t3,i) − M · b ∈ Λ(B̂) and C1 =
Com((πi)

k−1
i=0 , t1; ρ1), C3 = Com((t3,i)

k−1
i=0 ; ρ3).

- Ch = 3: Check that t1− Î
∑k−1

i=0 2iπ−1i (t2,i) ∈ Λ(B̂) and C1 = Com((πi)
k−1
i=0 , t1; ρ1), C2 =

Com((t2,i)
k−1
i=0 ; ρ2).

In each case, the Verifier outputs 1 if and only if all the check passes.

Figure 7.2: gap-Σ3,1-protocol for the relation REqTo⋆

208

Bibliography

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h) ibe in the
standard model. In EUROCRYPT, pages 553–572. Springer, 2010.

[ABB+17] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, Özgür Dagdelen, Edward
Eaton, Gus Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting TESLA in
the quantum random oracle model. In PQCrypto, pages 143–162. Springer, 2017.

[ABDCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In PKC, pages 733–751. Springer,
2015.

[ABP+17] Shweta Agrawal, Sanjay Bhattacherjee, Duong Hieu Phan, Damien Stehlé, and
Shota Yamada. Efficient trace-and-revoke with public traceability. In CCS, pages
2277–2293. ACM, 2017.

[ABS17] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. Generic transformations
of predicate encodings: Constructions and applications. In CRYPTO, pages 36–66.
Springer, 2017.

[ACF09] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from
identity-based key encapsulation. In EUROCRYPT, pages 554–571. Springer, 2009.

[ACF14] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions:
Relations to identity-based key encapsulation and new constructions. Journal of
Cryptology, pages 544–593, 2014.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In
CRYPTO, pages 595–618. Springer, 2009.

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel
Wichs. Public-key encryption in the bounded-retrieval model. In EUROCRYPT,
pages 113–134. Springer, 2010.

[AFL16] Daniel Apon, Xiong Fan, and Feng-Hao Liu. Fully-secure lattice-based ibe as
compact as pke. Cryptology ePrint Archive, Report 2016/125, 2016. https:

//eprint.iacr.org/2016/125.pdf.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In ASIACRYPT,
pages 21–40. Springer, 2011.

209

https://eprint.iacr.org/2016/125.pdf
https://eprint.iacr.org/2016/125.pdf

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. A framework for
identity-based encryption with almost tight security. In ASIACRYPT, pages 521–
549. Springer, 2015.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptograpcrhy in NC0. In
FOCS, pages 166–175. IEEE, 2004.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication,
computation and interaction via threshold fhe. In EUROCRYPT, pages 483–501.
Springer, 2012.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC, pages 99–
108. ACM, 1996.

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited. In CRYPTO, pages 57–74. Springer, 2013.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of
mathematics, pages 781–793, 2004.

[AL10] Nuttapong Attrapadung and Benôıt Libert. Functional encryption for inner prod-
uct: Achieving constant-size ciphertexts with adaptive security or support for nega-
tion. In PKC, pages 384–402. Springer, 2010.

[ALDP11] Nuttapong Attrapadung, Benôıt Libert, and Elie De Panafieu. Expressive key-
policy attribute-based encryption with constant-size ciphertexts. In PKC, pages
90–108. Springer, 2011.

[ALS16] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryp-
tion for inner products, from standard assumptions. In CRYPTO, pages 333–362.
Springer, 2016.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on
classical proof systems: The hardness of quantum rewinding. In FOCS, pages 474–
483. IEEE, 2014.

[AS15] Jacob Alperin-Sheriff. Short signatures with short public keys from homomorphic
trapdoor functions. In PKC, pages 236–255. Springer, 2015.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more. In
EUROCRYPT, pages 557–577. Springer, 2014.

[Att16] Nuttapong Attrapadung. Dual system encryption framework in prime-order groups
via computational pair encodings. In ASIACRYPT, pages 591–623. Springer, 2016.

[Bar89] David A Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in nc1. Journal of Computer and System Sciences,
38(1):150–164, 1989.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In EUROCRYPT, pages 223–238. Springer, 2004.

210

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without random
oracles. In CRYPTO, pages 443–459. Springer, 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In EUROCRYPT, pages 440–456. Springer, 2005.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic
proxy cryptography. In EUROCRYPT, pages 127–144. Springer, 1998.

[BCH86] Paul W Beame, Stephen A Cook, and H James Hoover. Log depth circuits for
division and related problems. SIAM Journal on Computing, pages 994–1003, 1986.

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and
Gregory Neven. Better zero-knowledge proofs for lattice encryption and their ap-
plication to group signatures. In ASIACRYPT, pages 551–572. Springer, 2014.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. Random oracles in a quantum world. In EUROCRYPT, pages
41–69. Springer, 2011.

[BDOP16] Carsten Baum, Ivan Damg̊ard, Sabine Oechsner, and Chris Peikert. Efficient com-
mitments and zero-knowledge protocols from ring-sis with applications to lattice-
based threshold cryptosystems. Cryptology ePrint Archive, Report 2016/997, 2016.
https://eprint.iacr.org/2016/997.pdf.

[BDPMW16] Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee. Fhe circuit
privacy almost for free. In CRYPTO, pages 62–89. Springer, 2016.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In
CRYPTO, pages 213–229. Springer, 2001.

[BF11] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over bi-
nary fields and new tools for lattice-based signatures. In PKC, pages 1–16. Springer,
2011.

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In PKC, pages 520–
537. Springer, 2014.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications. In STOC, pages 103–112. ACM, 1988.

[BFW16] David Bernhard, Marc Fischlin, and Bogdan Warinschi. On the hardness of proving
cca-security of signed elgamal. In PKC, pages 47–69. Springer, 2016.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures
based on learning with errors. In CT-RSA, pages 28–47. Springer, 2014.

[BGG+14a] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit abe and compact garbled circuits. In
EUROCRYPT, pages 533–556. Springer, 2014.

211

https://eprint.iacr.org/2016/997.pdf

[BGG+14b] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit abe and compact garbled circuits. In
EUROCRYPT, pages 533–556. Springer, 2014.

[BGH07] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based
encryptionwithout pairings. In FOCS, pages 647–657. IEEE, 2007.

[BGJS17] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. A note
on vrfs from verifiable functional encryption. Cryptology ePrint Archive, Report
2017/051, 2017. https://eprint.iacr.org/2017/051.pdf.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In CRYPTO, pages 258–275. Springer,
2005.

[BH08] Dan Boneh and Michael Hamburg. Generalized identity based and broadcast en-
cryption schemes. In ASIACRYPT, pages 455–470. Springer, 2008.

[Bit17] Nir Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. In TCC, pages 567–594. Springer, 2017.

[BKLP15] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. Efficient zero-knowledge proofs for commitments from learning with errors
over rings. In ESORICS, pages 305–325. Springer, 2015.

[BKOS00] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong
Schwarzkopf. Computational geometry. In Computational geometry. Springer, 2000.

[BKPW12] Mihir Bellare, Eike Kiltz, Chris Peikert, and Brent Waters. Identity-based (lossy)
trapdoor functions and applications. In EUROCRYPT, pages 228–245. Springer,
2012.

[BL16] Xavier Boyen and QinYi Li. Towards tightly secure lattice short signature and
id-based encryption. In ASIACRYPT, pages 404–434. Springer, 2016.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld.
Improved security proofs in lattice-based cryptography: using the rényi divergence
rather than the statistical distance. In ASIACRYPT, pages 3–24. Springer, 2015.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.
In ASIACRYPT, pages 514–532. Springer, 2001.

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseu-
dorandom functions with improved efficiency from the augmented cascade. In CCS,
pages 131–140. ACM, 2010.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In CCS, pages 390–399. ACM, 2006.

212

https://eprint.iacr.org/2017/051.pdf

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In PKC, pages 499–517. Springer, 2010.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, pages 719–737. Springer, 2012.

[BPVY00] Ernest Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung. Design val-
idations for discrete logarithm based signature schemes. In PKC, pages 276–292.
Springer, 2000.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself:
Pitfalls of the fiat-shamir heuristic and applications to helios. In ASIACRYPT,
pages 626–643. Springer, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS, pages 62–73. ACM, 1993.

[BR09] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort:
Simplified proof and improved concrete security for waters ’ibe scheme. In EU-
ROCRYPT, pages 407–424. Springer, 2009.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, pages 253–273. Springer, 2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In FOCS, pages 97–106. IEEE, 2011.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, pages 535–554. Springer, 2007.

[CCZ11] Yu Chen, Liqun Chen, and Zongyang Zhang. Cca secure ib-kem from the compu-
tational bilinear diffie-hellman assumption in the standard model. In Information
Security and Cryptology–ICISC, pages 275–301. Springer, 2011.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In ASI-
ACRYPT, pages 3–33. Springer, 2016.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system abe in prime-order
groups via predicate encodings. In EUROCRYPT, pages 595–624. Springer, 2015.

[Che06] Jung Hee Cheon. Security analysis of the strong diffie-hellman problem. In EURO-
CRYPT, pages 1–11. Springer, 2006.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In EUROCRYPT, pages 523–552. Springer, 2010.

[CLR16] Jie Chen, Benôıt Libert, and Somindu C. Ramanna. Non-zero inner product en-
cryption with short ciphertexts and private keys. In SCN, pages 23–41. Springer,
2016.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Cryptography and Coding, pages 360–363. Springer, 2001.

213

[Cor09] Jean-Sébastien Coron. A variant of boneh-franklin ibe with a tight reduction in the
random oracle model. Designs, Codes and Cryptography, pages 115–133, 2009.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack. In CRYPTO, pages 13–25. Springer,
1998.

[CVH91] David Chaum and Eugène Van Heyst. Group signatures. In EUROCRYPT, pages
257–265. Springer, 1991.

[CW13] Jie Chen and HoeteckWee. Fully,(almost) tightly secure ibe and dual system groups.
In CRYPTO, pages 435–460. Springer, 2013.

[CW14] Jie Chen and Hoeteck Wee. Doubly spatial encryption from DBDH. Theory of
Computer Science, pages 79–89, 2014.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. In
STOC, pages 542–552. ACM, 1991.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In CRYPTO, pages
307–315. Springer, 1989.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment
scheme based on groups with hidden order. In ASIACRYPT, pages 77–85. Springer,
2002.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie-hellman
assumption. In CRYPTO, pages 537–569. Springer, 2017.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod
Vaikuntanathan. Public-key encryption schemes with auxiliary inputs. In TCC,
pages 361–381. Springer, 2010.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE trans-
actions on Information Theory, 22(6):644–654, 1976.

[DKNY18] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, and Shota Yamada. Con-
strained prfs for bit-fixing from owfs with constant collusion resistance. Cryptology
ePrint Archive, Report 2018/982, 2018. https://eprint.iacr.org/2018/982.

pdf.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based en-
cryption over ntru lattices. In ASIACRYPT, pages 22–41. Springer, 2014.

[DM14] Léo Ducas and Daniele Micciancio. Improved short lattice signatures in the standard
model. In CRYPTO, pages 335–352. Springer, 2014.

[DM15] Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic encryption
in less than a second. In EUROCRYPT, pages 617–640. Springer, 2015.

[DORS04] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy ex-
tractors: How to generate strong keys from biometrics and other noisy data. In
EUROCRYPT, pages 523–540. Springer, 2004.

214

https://eprint.iacr.org/2018/982.pdf
https://eprint.iacr.org/2018/982.pdf

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short
proofs and keys. In PKC, pages 416–431. Springer, 2005.

[EE16] Rachid El Bansarkhani and Ali El Kaafarani. Post-quantum attribute-based signa-
tures from lattice assumptions. Cryptology ePrint Archive, Report 2016/823, 2016.
http://eprint.iacr.org/2016/823.

[EGK14] Ali El Kaafarani, Essam Ghadafi, and Dalia Khader. Decentralized traceable
attribute-based signatures. In CT-RSA, pages 327–348. Springer, 2014.

[EK18] Ali El Kaafarani and Shuichi Katsumata. Attribute-based signatures for unbounded
circuits in the rom and efficient instantiations from lattices. In PKC, pages 89–119.
Springer, 2018.

[EKS17] Ali El Kaafarani, Shuichi Katsumata, and Ravital Solomon. Anonymous reputation
systems achieving full dynamicity from lattices. To appear in FC, Springer, 2017.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In CRYPTO, pages 10–18. Springer, 1984.

[FHPS13] Eduarda SV Freire, Dennis Hofheinz, Kenneth G Paterson, and Christoph Striecks.
Programmable hash functions in the multilinear setting. In CRYPTO, pages 513–
530. Springer, 2013.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi.
On the non-malleability of the fiat-shamir transform. In INDOCRYPT, pages 60–
79. Springer, 2012.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM Journal on Computing, pages 1–28, 1999.

[FN93] Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO, pages 480–491.
Springer, 1993.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In CRYPTO, pages 16–30. Springer, 1997.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In CRYPTO, pages 186–194. Springer, 1986.

[Gal10] David Galindo. Chosen-ciphertext secure identity-based encryption from computa-
tional bilinear diffie-hellman. In Pairing-Based Cryptography–Pairing, pages 367–
376. Springer, 2010.

[GDCC16] Junqing Gong, Xiaolei Dong, Jie Chen, and Zhenfu Cao. Efficient ibe with tight
reduction to standard assumption in the multi-challenge setting. In ASIACRYPT,
pages 624–654. Springer, 2016.

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In
EUROCRYPT, pages 445–464. Springer, 2006.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–169. ACM, 2009.

215

http://eprint.iacr.org/2016/823

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, pages 40–49. IEEE, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, pages 792–807, 1986.

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic
approach to constructing and proving verifiable random functions. Cryptology
ePrint Archive, Report 2017/021, 2017. https://eprint.iacr.org/2017/021.

pdf.

[GKPV10] Shafi Goldwasser, Yael Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robust-
ness of the learning with errors assumption. Innovations in Computer Science,
pages 230–240, 2010.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In
FOCS, pages 612–621. IEEE, 2017.

[GL89] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way func-
tions. In STOC, pages 25–32. ACM, 1989.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In STOC, pages 365–377. ACM, 1982.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer
and system sciences, pages 270–299, 1984.

[GMW15] Romain Gay, Pierrick Méaux, and Hoeteck Wee. Predicate encryption for multi-
dimensional range queries from lattices. In PKC, pages 752–776. Springer, 2015.

[Gol86] Oded Goldreich. Two remarks concerning the goldwasser-micali-rivest signature
scheme. In CRYPTO, pages 104–110. Springer, 1986.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In CCS, pages 89–98.
ACM, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206. ACM, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
CRYPTO, pages 75–92. Springer, 2013.

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient
ABE for branching programs. In ASIACRYPT, pages 550–574. Springer, 2015.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In STOC, pages 545–554. ACM, 2013.

216

https://eprint.iacr.org/2017/021.pdf
https://eprint.iacr.org/2017/021.pdf

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from lwe. In CRYPTO, pages 503–523. Springer, 2015.

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homo-
morphic signatures from standard lattices. In STOC, pages 469–477. ACM, 2015.

[HJ12] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryp-
tion. In CRYPTO, pages 590–607. Springer, 2012.

[HJ16] Dennis Hofheinz and Tibor Jager. Verifiable random functions from standard as-
sumptions. In TCC, pages 336–362. Springer, 2016.

[HJKS10] Kristiyan Haralambiev, Tibor Jager, Eike Kiltz, and Victor Shoup. Simple and
efficient public-key encryption from computational diffie-hellman in the standard
model. In PKC, pages 1–18. Springer, 2010.

[HK08] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applica-
tions. In CRYPTO, pages 21–38. Springer, 2008.

[HKS15] Dennis Hofheinz, Jessica Koch, and Christoph Striecks. Identity-based encryption
with (almost) tight security in the multi-instance, multi-ciphertext setting. In PKC,
pages 799–822. Springer, 2015.

[HLLR12] Javier Herranz, Fabien Laguillaumie, Benôıt Libert, and Carla Ràfols. Short
attribute-based signatures for threshold predicates. In CT-RSA, pages 51–67.
Springer, 2012.

[HW10] Susan Hohenberger and Brent Waters. Constructing verifiable random functions
with large input spaces. In EUROCRYPT, pages 656–672. Springer, 2010.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In FOCS, pages 294–304.
IEEE, 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In ICALP, pages 244–256. Springer, 2002.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In STOC, pages 44–61. ACM, 1989.

[Jag15] Tibor Jager. Verifiable random functions from weaker assumptions. In TCC, pages
121–143. Springer, 2015.

[JR13] Charanjit S Jutla and Arnab Roy. Shorter quasi-adaptive nizk proofs for linear
subspaces. In ASIACRYPT, pages 1–20. Springer, 2013.

[Kat10] Jonathan Katz. Digital signatures. Springer Science & Business Media, 2010.

[Kat17] Shuichi Katsumata. On the untapped potential of encoding predicates by arithmetic
circuits and their applications. In ASIACRYPT, pages 95–125. Springer, 2017.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment
of fiat-shamir signatures in the quantum random-oracle model. In EUROCRYPT,
pages 552–586. Springer, 2018.

217

[KMT19] Shuichi Katsumata, Takahiro Matsuda, and Atsushi Takayasu. Lattice-based re-
vocable (hierarchical) ibe with decryption key exposure resistance. To appear in
PKC, Springer, 2019.

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Des-
ignated verifier/prover and preprocessing nizks from diffie-hellman assumptions.
Under Submission, 2019.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages
146–162. Springer, 2008.

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure iden-
tification schemes based on the worst-case hardness of lattice problems. In ASI-
ACRYPT, pages 372–389. Springer, 2008.

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with
tight security reductions. In CCS, pages 155–164. ACM, 2003.

[KY16] Shuichi Katsumata and Shota Yamada. Partitioning via non-linear polynomial func-
tions: more compact ibes from ideal lattices and bilinear maps. In ASIACRYPT,
pages 682–712. Springer, 2016.

[KY19a] Shuichi Katsumata and Shota Yamada. Group signatures without nizk: From
lattices in the standard model. Under Submission, 2019.

[KY19b] Shuichi Katsumata and Shota Yamada. Non-zero inner product encryption schemes
from various assumptions: Lwe, ddh and dcr. To appear in PKC, Springer, 2019.

[KYY18] Shuichi Katsumata, Shota Yamada, and Takashi Yamakawa. Tighter security proofs
for gpv-ibe in the quantum random oracle model. In ASIACRYPT, pages 253–282.
Springer, 2018.

[LLM+16] Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang.
Zero-knowledge arguments for matrix-vector relations and lattice-based group en-
cryption. In ASIACRYPT, pages 101–131. Springer, 2016.

[LLNW14] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based
group signature scheme with verifier-local revocation. In PKC, pages 345–361.
Springer, 2014.

[LNSW13] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-
knowledge proofs of knowledge for the isis problem, and applications. In PKC,
pages 107–124, 2013.

[LNW15] San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from lattices:
simpler, tighter, shorter, ring-based. In PKC, pages 427–449. Springer, 2015.

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hier-
archical) inner product encryption. In EUROCRYPT, pages 62–91. Springer, 2010.

218

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, pages 1–23. Springer, 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe cryp-
tography. In EUROCRYPT, pages 35–54. Springer, 2013.

[LPRTJ05] Alexander E Litvak, Alain Pajor, Mark Rudelson, and Nicole Tomczak-Jaegermann.
Smallest singular value of random matrices and geometry of random polytopes.
Advances in Mathematics, pages 491–523, 2005.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for
module lattices. Designs, Codes and Cryptography, pages 565–599, 2015.

[LSSS17] Benôıt Libert, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. All-but-many lossy
trapdoor functions and selective opening chosen-ciphertext security from lwe. In
CRYPTO, pages 332–364. Springer, 2017.

[LW10] Allison Lewko and Brent Waters. New techniques for dual system encryption and
fully secure hibe with short ciphertexts. In TCC, pages 455–479. Springer, 2010.

[LW11] Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryp-
tion. In EUROCRYPT, pages 547–567, 2011.

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions from the
dh-ddh separation. In CRYPTO, pages 597–612. Springer, 2002.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: applications to lattice and
factoring-based signatures. In ASIACRYPT, pages 598 – 616. Springer, 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
pages 738–755. Springer, 2012.

[MH78] Ralph Merkle and Martin Hellman. Hiding information and signatures in trapdoor
knapsacks. IEEE transactions on Information Theory, pages 525–530, 1978.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and appli-
cations to ajtai’s connection factor. SIAM Journal on Computing, pages 118–169,
2004.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample com-
plexity of lwe search-to-decision reductions. In CRYPTO, pages 465–484. Springer,
2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT, pages 700–718. Springer, 2012.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of sis and lwe with small parame-
ters. In CRYPTO, pages 21–39. Springer, 2013.

[MPR11] Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signa-
tures. In CT-RSA, pages 376–392. Springer, 2011.

219

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on gaussian measures. In FOCS, pages 372–381. IEEE, 2004.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on gaussian measures. SIAM Journal on Computing, pages 267–302, 2007.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In
FOCS, pages 120–130. IEEE, 1999.

[MSK02] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing.
transactions on fundamentals of electronics, communications and computer sci-
ences, pages 481–484, 2002.

[Nac07] David Naccache. Secure and practical identity-based encryption. IET Information
Security, pages 59–64, 2007.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of cryptology, pages
151–158, 1991.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In FOCS, pages 458–467. IEEE, 1997.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of prob-
lems for the security of cryptographic schemes. In PKC, pages 104–118. Springer,
2001.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with
non-monotonic access structures. In CCS, pages 195–203. ACM, 2007.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In CRYPTO, pages
191–208, 2010.

[OT11] Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures
for non-monotone predicates in the standard model. In PKC, pages 35–52. Springer,
2011.

[OT13] Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based signa-
tures. In PKC, pages 125–142. Springer, 2013.

[OT15] Tatsuaki Okamoto and Katsuyuki Takashima. Achieving short ciphertexts or short
secret-keys for adaptively secure general inner-product encryption. Designs, Codes
and Cryptography, pages 725–771, 2015.

[Pei07] Chris Peikert. Limits on the hardness of lattice problems in ell p norms. In
Conference on Computational Complexity, pages 333–346. IEEE, 2007.

220

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem. In STOC, pages 333–342. ACM, 2009.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In CRYPTO,
pages 80–97. Springer, 2010.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In TCC, pages 145–166. Springer, 2006.

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
ring-lwe for any ring and modulus. In STOC, pages 461–473. ACM, 2017.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. Journal of cryptology, pages 361–396, 2000.

[PSV06] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Construction of a non-
malleable encryption scheme from any semantically secure one. In CRYPTO, pages
271–289. Springer, 2006.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO, pages 554–571. Springer, 2008.

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and
privacy homomorphisms. Foundations of Secure Computation, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In STOC, pages 84–93. ACM Press, 2005.

[Reg10] Oded Regev. The learning with errors problem. Invited survey in CCC, 2010.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOCS, pages 387–394. ACM, 1990.

[RS91] Charles Rackoff and Daniel R Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In CRYPTO, pages 433–444. Springer,
1991.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
pages 120–126, 1978.

[RST01] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASI-
ACRYPT, pages 552–565. Springer, 2001.

[RW04] Renato Renner and Stefan Wolf. Smooth rényi entropy and applications. In ISIT,
pages 233–233. IEEE, 2004.

[SAH16] Yusuke Sakai, Nuttapong Attrapadung, and Goichiro Hanaoka. Attribute-based
signatures for circuits from bilinear map. In PKC, pages 283–300. Springer, 2016.

[SBC+07] Elaine Shi, John Bethencourt, TH Hubert Chan, Dawn Song, and Adrian Perrig.
Multi-dimensional range query over encrypted data. In S&P, pages 350–364. IEEE,
2007.

221

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, pages 612–613,
1979.

[Sha82] Adi Shamir. A polynomial time algorithm for breaking the basic merkle-hellman
cryptosystem. In FOCS, pages 145–152. IEEE, 1982.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO,
pages 47–53. Springer, 1985.

[Sho94a] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In FOCS, pages 124–134. IEEE, 1994.

[Sho94b] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In FOCS, pages 124–134. IEEE, 1994.

[SKAH18] Yusuke Sakai, Shuichi Katsumata, Nuttapong Attrapadung, and Goichiro Hanaoka.
Attribute-based signatures for unbounded languages from standard assumptions. In
ASIACRYPT, pages 493–522. Springer, 2018.

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on
pairings. In SCIS, 2000. (In Japanese).

[SPB12] Kunwar Singh, C Pandurangan, and AK Banerjee. Adaptively secure efficient lattice
(h) ibe in standard model with short public parameters. In SPACE, pages 153–172.
Springer, 2012.

[SS11] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems
over ideal lattices. In EUROCRYPT, pages 27–47. Springer, 2011.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public
key encryption based on ideal lattices. In ASIACRYPT, pages 617–635. Springer,
2009.

[STW96] Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-hellman key distribution
extended to group communication. In CCS, pages 31–37. ACM, 1996.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473. Springer, 2005.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. In EUROCRYPT,
pages 520–551. Springer, 2018.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends R⃝ in Theoretical Computer Science,
pages 207–388, 2010.

[Tsa17] Rotem Tsabary. An equivalence between attribute-based signatures and homomor-
phic signatures, and new constructions for both. In TCC, pages 489–518. Springer,
2017.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the
fujisaki-okamoto and OAEP transforms. In TCC, pages 192–216. Springer, 2016.

222

[Unr14a] Dominique Unruh. Quantum position verification in the random oracle model. In
CRYPTO, pages 1–18. Springer, 2014.

[Unr14b] Dominique Unruh. Revocable quantum timed-release encryption. In EUROCRYPT,
pages 129–146. Springer, 2014.

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In EUROCRYPT, pages 755–784. Springer, 2015.

[Unr17] Dominique Unruh. Post-quantum security of fiat-shamir. In ASIACRYPT, pages
65–95. Springer, 2017.

[Ver11] Roman Vershynin. Introduction to the non-asymptotic analysis of
random matrices. Lecture Notes, 2011. Available at http://www-
personal.umich.edu/romanv/papers/ non-asymptotic-rmt-plain.pdf.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EU-
ROCRYPT, pages 114–127. Springer, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under
simple assumptions. In CRYPTO, pages 619–636. Springer, 2009.

[Wee09] Hoeteck Wee. Zero knowledge in the random oracle model, revisited. In ASI-
ACRYPT, pages 417–434. Springer, 2009.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In TCC, pages
616–637. Springer, 2014.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under lwe. In FOCS, pages 600–611. IEEE, 2017.

[Xag13] Keita Xagawa. Improved (hierarchical) inner-product encryption from lattices. In
PKC, pages 235–252. Springer, 2013.

[XXW13] Xiang Xie, Rui Xue, and Minqian Wang. Zero knowledge proofs from ring-lwe. In
CANS, pages 57–73. Springer, 2013.

[YAHK14] Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and Noboru Kunihiro.
A framework and compact constructions for non-monotonic attribute-based encryp-
tion. In PKC, pages 275–292, 2014.

[YAL+17] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Lattice-based
techniques for accountable anonymity: Composition of abstract stern ’s protocols
and weak prf with efficient protocols from lwr. Cryptology ePrint Archive, Report
2017/781, 2017. https://eprint.iacr.org/2017/781.pdf.

[Yam16] Shota Yamada. Adaptively secure identity-based encryption from lattices with
asymptotically shorter public parameters. In EUROCRYPT, pages 32–62. Springer,
2016.

[Yam17] Shota Yamada. Asymptotically compact adaptively secure lattice ibes and verifiable
random functions via generalized partitioning techniques. In CRYPTO, pages 161–
193. Springer, 2017.

223

https://eprint.iacr.org/2017/781.pdf

[YKHK10] Shota Yamada, Yutaka Kawai, Goichiro Hanaoka, and Noboru Kunihiro. Public
key encryption schemes from the (b) cdh assumption with better efficiency. IE-
ICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, pages 1984–1993, 2010.

[ZCZ16] Jian Zhang, Yu Chen, and Zhenfeng Zhang. Programmable hash functions from
latties: Short signatures and ibes with small key sizes. In CRYPT0, pages 303–332.
Springer, 2016.

[Zha12a] Mark Zhandry. How to construct quantum random functions. In FOCS, pages
679–687. IEEE, 2012.

[Zha12b] Mark Zhandry. Secure identity-based encryption in the quantum random oracle
model. In CRYPTO, pages 758–775. Springer, 2012.

224

	Introduction
	Background
	Reliable Assumptions
	Our Contribution

	Preliminary
	Notation
	Lattices and Gaussian Distributions
	Rings and Ideal Lattices
	Cryptographic Primitives
	Supplementary Materials for Rings and Ideal Lattices

	Tighter Security Proofs for GPV-IBE in the Quantum ROM
	Introduction
	Technical Overview
	Preparation
	Tightly Secure Single Challenge GPV-IBE
	 (Almost) Tightly Secure Multi-Challenge IBE

	Partitioning via Non-Linear Polynomial Functions
	Introduction
	Technical Overview
	Preparation
	Construction from RLWE
	Construction from Bilinear Maps
	Comparisons and Discussions

	Encoding Predicates by Arithmetic Circuits and Their Applications
	Introduction
	Technical Overview
	Preparation
	Encoding Predicates with Arithmetic Circuits
	Verifiable Random Functions
	Predicate Encryption for MultD-Eq Predicates
	Other Applications: Improving Yam17 IBE

	Non-Zero Inner Product Encryption Schemes from Various Assumptions
	Introduction
	Technical Overview
	Preparation
	Construction from Lattices with Inner Product over Z
	Constructions from Lattices with Inner Product over Zp
	A Generic Construction of NIPE from LinFE
	Formal Treatment on Multi-Dimensional Lattices

	Attribute-based Signatures for Unbounded Circuits in the ROM
	Introduction
	Technical Overview
	Preparation
	Gap–Protocols and Non-Interactive Zero-Knowledge Proofs
	Generic Construction of Attribute-based Signatures
	ABS for Unbounded Circuits from Lattices
	Gap–Protocol for the Relation REqTo

