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Abstract

Natural science and engineering have developed complementary. Natural science gives
to engineering the fundamental principles and the target, and engineering gives some
techniques to acquire new paradigms. Microscopes, telescopes and accelerators that
are developed by cutting-edge measurement technologies show some new pictures in
extreme situations. These technologies are profitable for natural science, however, are
also burdensome in some case. For example, in material science, the photomicrography
have the significant roles for elucidating structures and functions of materials, but the
cost of analysis is so high; researchers who analyze materials, are pressed by work for
processing the photos[1]. Besides, experimental equipment requiring enormous cost is
developed without sufficient experimental design including an estimation of the results
and its confidence. The large-scale experimental equipment, such as high-intensity
Fermi-chopper spectrometers[2], have produced a large amount of data which has not
yet been fully analyzed. In those case, measurement techniques and measurement process
is the bottleneck for appropriate frameworks on natural science: repeating the operations
that are proposing a hypothesis and verifying it. We need the engineering for science
to solve this bottlenecks. In this thesis, we focus on two aims: the latent parameter
estimation using measurements and the model-based experimental design for estimation.

Measurement in natural science is a process to obtain image data. The smoothness
and local structures of the image data mirror those continuities and local interactions
which targets of natural science have. The measured data are mapped on space (and time)
plane, and this process called imaging, for instance, scanning tunneling microscopy images
obtained by sampling values on the target surface and then mapped those values [3]. The
sampling processes are divided into the case of mapping to real-space or Fourier-space
such as observation by using CCD in digital cameras or neutron scattering, respectively.

The motivation of observation in natural science is identifying the model of the target
observed. To estimate latent parameter of image data is one of our aims, and necessary
for verifying the hypothesis, and this identification. We treat the estimation of latent
model parameters and evaluation of confidence of it by using image data. The confidence
of estimation is useful for the experimental design which is the other one of our aims.

We focus on quantification of image data and design the observation systems by using
Bayesian inference. Our targets are two types of image observation; observing the image
sampled and mapped to real-space or Fourier-space. In the case both type of observation,
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we modeled what we observed as the lattice, such as the MRFs and crystal systems. Our
aim of this thesis is to estimate the interaction parameters of the lattice from image data
mapping to real-space or Fourier-space and to evaluate of confidence of the estimation.
Besides, we aim the evaluation the confidence and uniqueness of estimates to design the
measurement system and processing flow of the image data.

The work in Chapter 3, 5, and 4 study the estimation of the model parameter which is
the interaction parameter of the lattice graph by using the image mapped to real-space. In
Chapter 3 and 4, we focus on the latent parameter estimation and evaluate the confidence
of image data. To begin with, we proposed the theoretical calculation of the distribution
of the model parameters of GMRF for the fundamental analysis of the quantification of
image data, and this method to calculate is used in the study of the Chapter 3. Next,
we show the inevitable effects on observation and estimation of the model parameters in
Chapter 4. In Chapter 5, we focus on the experiment design. We show the appropriate
processing for the estimation of the model parameters.

The observation mapping to Fourier-space uses the diffraction of waves or particles
such as electromagnetic waves or neutron. The recent target of observation by using
such diffractions is various materials containing bacteria and polymers, though were some
crystals in the beginning [4, 5]. It is the purpose of the measurements for the studies
of crystals to elucidate the crystal structure: the atomic arrangement and strength
of interaction between the atoms. This interaction can be measured by watching the
dispersion relation which reflects the vibrations of the crystals, so the dispersion relations
of lattice vibrations and phonons which are quantized lattice vibration has been measured
actively. In this thesis, we treat the dispersion relation of lattice vibration.

The work in Chapter 6 studies the estimation of the latent model parameter which
is the interaction parameter of the crystal lattice by using the image mapped to
Fourier-space. The image mapped to Fourier-space is obtained the spectral data. We
use the Bayesian framework to estimate the latent parameters using high-dimensional
spectral data. We introduce the previous works of the Bayesian spectral analysis in Sect.
2.2. Our novelty is to estimate the model parameters by using the dispersion relation
spectra for analyzing a crystal based on the Bayesian framework. In Chapter 6, we
propose the two methods to estimate the model parameters and compare both methods.
Besides, we suggest the better procedure to sampling Fourier space on the estimation.
In a conventional method, the experimenters visualize sample point in the Fourier-space
which has high symmetricity. We can evaluate the sampling method in the viewpoint of
the confidence of Bayesian inference. As a consequence, we contribute in this chapter to
both aims: to latent parameter estimation of the image mapped to Fourier-space and to
suggest the better design of the measurement on Fourier-space.
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Chapter 1

Introduction

Natural science and engineering have developed complementary. Natural science gives
to engineering fundamental principles and its target, and engineering gives some
techniques to acquire new paradigms. In particular, some measurement techniques
such as microscopes, telescopes, and accelerators that are developed by cutting-edge
engineering technologies show some new pictures in extreme situations which we could
not have watched. These technologies are profitable for natural science, however, are
also burdensome in some case. A large amount of measurement data requires the cost
of the measurement and analysis. These cost can be bottle-necks for a scientific process:
hypothesis and verifying.

Our goal is to treat the measured data and hypothesis in the same framework and
give some feedback for the measurement process refinement to solve the bottlenecks
on measurement and analysis step. We utilize Bayesian frameworks on this thesis for
treating the measured data and physical hypothesis. This thesis focuses on some data
that is obtained by measuring values on lattice systems and mapping these values on
real or Fourier space. We called the data that has such types, image. We set two
targets for this thesis; estimation latent physical parameters of the measured system and
feedback to measurement design from the results by using Bayesian modeling because of
the algorithmic analysis of measured data and refinement measurement process.

Firstly, this chapter introduces our issues on hypothesis and measurement steps in
Sect. 1.1. Secondly, Sect. 1.2 describes the benefit of the Bayesian modeling framework
for the scientific process. Thirdly, Sect. 1.3 define our target image data. Lastly, Sect.
1.4 describes the focus of this thesis and the contributions.

1.1 Measurement on Scientific Method

The novel pictures obtained by new measurement method provide the novel scientific
paradigms. One of the most famous episodes of the paradigm changes triggered by
measurement is that of the discovery of desoxyribonucleic acid (DNA) structure and its
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function. Linus Pauling, Francis Crick, and James D. Watson hypothesized that DNA has
a helical structure and implied DNA has the self-copying ability. Rosalind Franklin gave
the evidence for the hypothesis by measuring the crystalized DNA using X-ray diffraction
techniques. The discovery of DNA changed bioscience including genetics completely and
created biotechnologies. This episode of the discovery constructed by two-part: proposing
a hypothesis and measurement for supporting it. These steps are the elements of a
scientific investigation. Repeating these steps enhances the reliability of the scientific
fact.

Recent years, the development of the technology of measurement gives a large number
of novel pictures. These technologies are profitable for natural science, however, are also
burdensome in some case. For example, in material science, the photomicrography have
the significant roles for elucidating structures and functions of materials, but the cost of
analysis is so high; researchers who analyze materials, are pressed by work for processing
the photos[1]. Besides, experimental equipment requiring enormous cost is developed
without sufficient experimental design including an estimation of the results and its
confidence. The large-scale experimental equipment, such as high-intensity Fermi-chopper
spectrometers[2], have produced a large amount of data and its analysis by researchers
cannot catch up. Japan Proton Accelerator Research Complex (J-PARC), possess
high-intensity Fermi-chopper spectrometers. In recent years, the neutron scattering
experiments in J-PARC have produced numerous pieces of four-dimensional event data
and researchers have had difficulties in utilizing the whole data which can not treat by
human eyes. In those case, measurement techniques and measurement processes are the
bottlenecks for appropriate frameworks on natural science: repeating the processes that
are proposing a hypothesis and verifying it. We need the engineering for science to solve
this bottlenecks.

The reason why the cost of analyzing such data is so high is that the data has a
complex structure and they require prior knowledge for analysis. This prior knowledge
corresponds to the hypothesis on the scientific method. For instance, the X-ray diffraction
pattern obtained from crystalized DNA needs the prior knowledge which DNA has
a helical structure for understanding. We need the framework to treat data with
prior knowledge flexibly for solving the bottlenecks. The flexible algorithm to utilize
the physical knowledge can relax an attributability for reducing the cost to analyze a
large-scale data and overcoming the arbitrariness on data analysis. Prior knowledge helps
us to analyze the low-quality observed data such as noisy or few sample size. Evaluating
the quality of analyzed data by the algorithm can improve the way of measurement.

Our goal is to establish a flexible framework for analyzing measurement data with
prior knowledge and utilizing the results of the analysis to improve data processing
and measurement method. In this thesis, we approach to the goal by modeling of the
measurement. We need a framework for flexible method to model the measurement by
using prior knowledge of a measurement target.

The motivation of measurement in natural science is identifying the model of the target
observed. We classify the modeling into the following three levels:
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Level 1 Model selection from the candidate models of the target.

Level 2 Latent parameter estimation of the selected model.

Level 3 Confidence evaluation for the model and data.

In this thesis, we treat level 2 and 3. That is, we treat the estimation of model (latent)
parameters and evaluation of confidence of the estimation by using image data. The
confidence obtained in level 3 is useful for the experimental design which is the other
one of our aims. We need to obtain the model of not only the target observed but also
measurement process in order to improve the way of measurement.

1.2 Bayesian Modeling

The Bayesian framework can perform all levels of modeling of measurement data. The
inference based on the Bayesian framework can estimate the model parameters and
evaluate the confidence of the values, in the case that we assume the model by which
can generate data[6]. We assume the forward model which generate data, involving the
condition of the observation and preprocessing.

Let us consider the data generating process, where the probabilistic event x which is
parametrized by a occurs, and then we obtain the data y by observation. We formulate
this model by the probability distribution of the process to generate the event P (x|a),
and the distribution of the process of observation P (y|x). The conditional probability
distribution of the model parameter a given data y is P (a|y) calculated by Bayes’ theorem
and marginalization of probability as follows:

P (a|y) =
P (a, y)

P (y)

=

∫
dx
P (a, x, y)

P (y)

=

∫
dx
P (y|x)P (x|a)P (a)

P (y)
.

The probability P (a|y) is what we want to know, called the posterior distribution. We can
treat the expected value of this posterior as the estimates, and the shape of the posterior
represents the confidence and singularity of the estimation in the case that we use the
candidate model and data[7, 8, 9]. In this thesis, we analyze the posterior to evaluate the
appropriateness of the measurement systems, preprocessing before the model parameter
estimation, and the amount and quality of the given data.

It is essential to check this appropriateness before the experiments performed and to
give the feedback to some conditions for designs of the experiments and data processing.
For instance of some conditions, the noise and resolution that the data have. The number
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and the performance of the sensors must be limited. Therefore we obtain only deteriorated
measurement data inevitably. Hence, we have to evaluate whether the data has sufficient
quality or not for our aim, such as the estimation of the model parameters. Experimenters
sometimes preprocess the obtained data to try to improve the data quality, such as the
data averaging. They obtaining estimates from original data and then use as the input
data for the other estimation. We can give the evaluation based on the Bayesian inference
for these influences which are deterioration and preprocessing of image data.

Bayes’ theorem is very simple from the point of mathematical view, but it is valuable
for natural science. We describe the related work of Bayesian computation for model
parameter estimation in Sec. 2.3.

1.3 Measurement Data of Lattice Systems

Measurement in natural science is a process to obtain image data. The smoothness and
local structures of the image data mirror those continuities and local interactions which
targets of natural science have. The measured data are mapped on space (and time)
plane, and this process called imaging, for instance, scanning tunneling microscopy images
obtained by sampling values on the target surface and then mapped those values [3]. The
sampling processes are divided into the case of mapping to real-space or Fourier-space
such as observation by using CCD in digital cameras or neutron scattering, respectively.

The observation mapping to real-space can be modeled by using a graphical model.
The sampling value obtained from real-space mapped to the node and the correlation
expressed by the edges of the graph. For instance, let us consider a simple case which
is an observation by using the sensors arranged on a square lattice such as CCD and
assumed that their interactions worked in very close. In this case, we can model the
image in the graphical model like square lattice, where the nearest neighbor interaction
approximates the correlation. On this modeling process, we have to determine the graph
structure reflected the existing of the correlations and the strength of interactions.

The observation mapping to Fourier-space uses the diffraction of electromagnetic waves
or neutron. The recent target of observation by using such diffractions is various materials
containing bacteria and polymers. In the beginning, the targets were some crystals [4, 5].
The purpose of the measurements for the study of a crystal to elucidate the crystal
structure. The crystal structure is identified from the atomic arrangement and strength
of interaction between the atoms [10, 11]. This interaction can be measured by watching
the dispersion relation which reflects the vibrations of the crystals, so the dispersion
relations of lattice vibrations and phonons which are quantized lattice vibration has been
measured actively [12, 13]. In this thesis, we treat the dispersion relation of a lattice
vibration.
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1.4 Our Focus and Contribution

We focus on latent parameter estimation of image data and measurement design by using
Bayesian inference. Our targets are two types of image observation; observing the image
sampled and mapped to real-space or Fourier-space. In the case both type of observation,
we modeled what we observed as the lattice, such as the MRFs and crystal systems. Our
aim of this thesis is to estimate the interaction parameters of the lattice from image data
mapping to real-space or Fourier-space and to evaluate of confidence of the estimation.
Besides, we aim the evaluation the confidence of estimates to design the measurement
system and processing flow of the image data.

In all chapters of the thesis, we use the minimal model to treat the problems. The
computation of the posterior distribution requires a considerable cost, especially in image
analysis. Therefore, many techniques for approximation are developed to reduce the cost
such as variational Bayes [14]. However, those techniques change the posterior shapes,
and then it becomes difficult to divide the influence of what we want to evaluate and
the approximation. For this reason, we choose the simple model whose posterior can
be calculated analytically, otherwise the sampling method to obtain the strict posterior
shape, in each chapter of this thesis.

We construct this thesis as follows (as shown in Fig. 1.1). In Chapter 2, we summarize
the related work to this thesis. We introduce some previous work of the Bayesian inference
and its application for spectral analysis, and applications and analysis of the MRF models
by using statistical mechanics. The work studied in this thesis at the Chapter 3, 5, 4, 6
have been already published in or planned to submit to journals.

The work in Chapter 3, 4, and 5 study the estimation of the latent parameter which is
the interaction parameter of the lattice graph by using the image mapped to real-space.
In Chapter 3 and 4, we focus on the latent parameter estimation of image data. To begin
with, we proposed the theoretical calculation of the distribution of the latent parameters
of GMRF for the fundamental analysis of the quantification of image data, and this
method to calculate is used in the study of the Chapter 5. We show the inevitable effects
on observation and estimation of the model parameters. In Chapter 5, we focus on the
experiment design. We show the appropriate processing for the estimation of the model
parameters. We describe the summaries of these chapters.

Theory of Distribution Estimation of the Model Parameters in GMRF [15]
In Chapter 3, we show the exact analysis of a Gaussian-MRF(GMRF) model. The
GMRFs are models of gray-scale images. In this chapter, we calculate the posterior
distribution of the latent model parameters that are interaction parameter of the
lattice model: smoothness of the image and the noise strength. We investigated
the performance of distribution estimation of latent model parameters in Markov
random field models proposed by Y. Nakanishi-Ohno et al. [16] when used to
evaluate the confidence of data. We analytically calculated the configurational
average with respect to data, of the negative logarithm of the posterior distribution
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Ch.	3:	
Theory	of	Distribution	
Estimation	of	the	Model	
Parameters	in	GMRF.

Ch.	4:
Effects	of	Spatial	Down-
Sampling	on	the	Model	
Parameter	Estimation	in	

GMRF.

Ch.	6:	
Bayesian	Analysis	of	the	
Crystal	Lattice	System	by	
using	Dispersion	Relation	

Spectra.

Latent	
Parameter
Estimation

Measurement
Design

Real-space	mapping:
MRF	models

Fourier-space	mapping:
Spectral	analysis

Ch.	5:
Influence	of	Averaging	
Preprocessing	on	Image	
Analysis	by	using	GMRF.

Figure 1.1: Structure of this thesis.

which is defined by each image data. The negative logarithm of the posterior
distribution is called free energy based on an analogy with statistical mechanics,
so the configurational average is the expected value of this free energy. This
configurational average of free energy shrinks as the amount of data increases. Our
results theoretically confirm the numerical results from that previous study. This
calculation is the basis of the quantification of the image data mapping in real-space
because the calculated distribution presents the theoretical limit of the confidence
of the latent parameter estimation by using image data where the model form has
been known.

The original content of this work is found in Ref. [15].

Effects of Spatial Down-sampling on Model Parameter Estimation in GMRF

In Chapter 4, we show the effects of down-sampling on the posterior distribution
estimation of the model parameters of GMRF. We exhibit the effect on the latent
parameter estimation by the down-sampling which is the essential and inevitable
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process for imaging techniques since spatially continuous objects are recorded as
discrete data. In this study, first, we formulate a generative model and a cognitive
one of imaging processes with down-sampling by Markov random field models.
Next, by applying Bayes’ theorem to the cognitive model, we explain a method of
estimating latent parameters in the model. Then, we conduct numerical simulations
to examine the Bayesian posterior distribution and indicate that down-sampling
causes inherent biases. Finally, we discuss the biases focusing on the relation
between the generative and cognitive models. It is necessary for considering the
quantification of image data to evaluate the effect of spatial down-sampling.

We plan to submit this work to a journal.

Influence of Averaging Preprocessing on Image Analysis by using GMRF [17]

Chapter 5 describes our investigations into the influence of averaging preprocessing
on the performance of image analysis. Averaging preprocessing involves a trade-off:
image averaging is often undertaken to reduce noise while the number of image data
available for image analysis is decreased. We formulated a process of generating
image data by using a GMRF model to achieve image analysis tasks such as image
restoration and latent parameter estimation by a Bayesian approach. According to
the notions of Bayesian inference, posterior distributions were analyzed to evaluate
the influence of averaging. There are three main results. First, we found that the
performance of image restoration with a predetermined value for latent parameters
is invariant regardless of whether we average the images. We then found that the
performance of hyper-parameter estimation deteriorates due to averaging. Our
analysis of the negative logarithm of the posterior probability, which is called free
energy based on an analogy with statistical mechanics, indicated that the confidence
of hyper-parameter estimation remains higher without averaging. Finally, we found
that when we estimate the latent parameters from the data, the performance of
image restoration worsens as we reduce the images by averaging. We conclude
that averaging adversely affects the performance of image analysis through latent
parameter estimation. This work contributes to the design of measurements by
clarifying the adverse effects of the preprocessing. We can treat the averaging as
the basic preprocessing for image data, and the result suggests that preprocessing
make the performance of model parameter estimation to deteriorate.

The original content of this work is found in Ref. [17].

The work in Chapter 6 study the estimation of the latent parameter which is the
interaction parameter of the crystal lattice by using the image mapped to Fourier-space.
The image mapped to Fourier-space is obtained the spectral data. We use the Bayesian
framework to estimate the model parameters where the spectra are treated as input
data. We introduce the previous work of the Bayesian spectral analysis in Sec. 2.3.
Our novelty comparing with the previous work is to estimate the model parameters by
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using the dispersion relation spectra for analyzing some crystals based on the Bayesian
framework. In Chapter 6, we proposed the two methods to estimate the latent parameters
and discuss the better method. Besides, we suggest the better way to sampling Fourier
space on that estimation. In a conventional method, the experimenters visualize sample
point in the Fourier-space which has high symmetricity [10]. However, the results of the
estimates indicate that the sampling from a not symmetrical point is better rather than
symmetric. As a consequence, we contribute in this chapter to both aims: to modeling of
the image mapped to Fourier-space and to suggest the better design of the measurement
on Fourier-space.

We describe the summary of the chapter as follows:

Bayesian Analysis of Crystal Lattice System Using Dispersion Relation
Spectra

In Chapter 6, we propose two methods to estimate the model parameters which
denote the interaction between the atom of the crystal lattice by using dispersion
relation spectra that mirror the lattice vibration. One of the methods is the indirect
method: the method estimates the model parameters via the estimation of the
center of peaks of spectra, which has the same steps of the conventional method by
the assessment in visual. The other one of the method is the direct method: the
method estimates the model parameters by using whole data without preprocessing
which is spectral deconvolution. We show the weak case of the previous spectral
deconvolution [8], and we propose the method to be able to handle this case in
the indirect method. We compare the results of both methods, and we show
the advantages of the direct method. One of our contributions is to show the
better method than the method which has the step to analysis as the same to
the conventional method on latent parameter estimation of the image mapped
in Fourier-space. The other one of our contribution is to propose the method to
evaluate the better procedure to measure the Fourier space. The degenerating of
the spectra of dispersion relation is used to find the symmetricity of the target
crystal by visualizing the symmetric sampling points. However, it is not clear the
better sampling procedure of the points in Fourier space. We propose the method
for evaluation of the confidence by using Bayesian inference, and demonstrate the
design of sampling procedures.

We plan to submit this work to a journal.
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Chapter 2

Related Work

In this Chapter, we described related work of this thesis. Firstly, we introduce Markov
random field (MRF) models. MRFs are the probabilistic model for the image processing
tasks, and the models can represent the continuity on real-space mapping images. We
use this model to treat the real-space mapping images. Secondly, we describe a spectral
data analysis. The spectral data is a data type for the measurement mapped to the
Fourier-space. Spectral deconvolution or spectral function fitting is the typical analysis of
the spectral data. We utilize Bayesian spectral deconvolution to analyze spectra. Lastly,
we overview the Bayesian computation to estimate hyper parameters such as the model
parameters of the target of the measurement. We need to evaluate the confidence of
the estimated hyper parameters by using estimate the posterior distribution of model
parameters.

2.1 Markov Random Field Model

In this section, we introduce a summary of the development of Markov random field
models. In particular, we focus on the relationship with the lattice system and Ising
model in statistical mechanics. Then we introduce some applications in natural science
data processing.

The word ”Markov random field model” was introduced by Levy [18]. Levy discuss
the spatial, probabilistic model like Brownian motion, that the values of each point is a
continuous value. And this model is used for image processing by Woods [11] and Besag
[19]. These MRF models are Gaussian MRF. That is, they modeled the gray-scale image
as the value of each node is continuous. And then, the MRF models for digital image
processing are proposed by Geman et al. [20] and Derin et al. [21] formulate the image
pixels as the model of lattice systems of atoms, and they use the terminologies of statistical
mechanics. Let us consider the original image whose pixels x = (x1, x2, . . . , xN), xi ∈
{0, 1, 2, . . . , L − 1}, where L is the number of the gradation of a pixel, and N is the
number of the pixels. The probability of the existence of the original image is obtained
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by the Gibbs distribution as the following distribution:

π(x) =
1

Z
e−U(x)/T , (2.1)

where T is the constant denotes the temperture of this system, U(x) is the energy function,
and Z is the normalized constant denoted as

Z =
∑
x

e−U(x)/T . (2.2)

Z is called partition function, it plays important role in the statistical mechanics. Geman
et al. give the general form of U(x) as

U(x) =
∑

Vi,j(xi,j) +
∑

V(i,j),(i+1,j)(xi,j, xi+1,j) +
∑

V(i,j),(i,j+1)(xi,j, xi,j+1). (2.3)

For instance, when we assume the isotropic binary image (L = 2) and the image has the
continuous state, the energy function is obtained by

U(x) = α
∑

xi,j + β
(∑

xi,jxi+1,j +
∑

xi,jxi,j+1

)
. (2.4)

By using these formulas, we can restore the image noise which is the typical image
processing task. The filtering process for the image restoration is based on the smoothness
of the image [22]. The smoothness: a property that the neighbor pixel values are close is
known feature of the spins of ferromagnetic materials [22, 23]. Actually, the Ising model
which is the simplest model of magnetization has the same formulation to the MRF model
of the binary image. The spin system is the model to represent the magnetization which is
the total value of the magnetization of each spin. Let us consider the case of the simplest
Ising spin system. We assume that the value of spin Si is +1 or −1, where i = 1, . . . , N is
the index of spin-lattice point, and N is the number of atoms. For instance of the lattice,
we assume the square lattice as shown in Fig. 2.1. The Hamiltonian of this spin system
is defined by

H = −J
∑

<i,j>∈B

SiSj − h

N∑
i=1

Si, (2.5)

where the J denotes interaction whose value is positive in the case of a ferromagnetic
system, h denotes external field whose value is 0 when the magnetic field does not exist,
and j is the index of the lattice. Let B be the set of interaction worked, and we assume it
is the set of nearest neighbor spin. In Eq. (2.5), the more spins faces the same direction,
the smaller value the Hamiltonian has. In statistical mechanics, the thermal average is
calculated by using the following probability distribution:

P (S) =
e−βH∑
S e

−βH
. (2.6)
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Figure 2.1: Sketch of two dimensional square lattice.

It can be clearly seen that the binary MRF model is equivalent to the model of
the Ising spin model by Eqs. (2.1), (2.2), (2.4), (2.5), and (2.6). It has been pointed
out that the Bayesian inference procedure is the equivalent framework of the statistical
mechanics of spin systems [24, 23]. By using Bayesian frameworks, some image processing
method is proposed such as image restoration [20, 21, 25, 26] and image segmentation
[27, 28, 29]. On the other hand, by using replica method of the statistical mechanics,
Nishimori et al. analyze the performance of image restoration of the binary MRF model
[30]. Consequently, estimation of the interaction parameters of the image pixels and the
lattice spin systems can be performed by using the same framework.

The interaction parameters of MRF models are important meaningful parameters
for natural science. Nakanishi et al. shows that the interaction parameters of GMRF
correspond to the diffusion coefficient of the diffusion equations [16]. They proposed
the estimation method of the model parameter distribution of GMRF. Simmons et al.
suggest that the interaction parameters mirror the wetting behavior which corresponds
to the surface tension on the mesoscale structure of the target material [31].

2.2 Spectral Analysis

In this thesis, we treat the spectral data analysis by using Bayesian inference. We describe
the previous work in this section.

In an experiment using some diffraction, experimenters obtain the intensity
distribution by watching the diffraction patterns of X-ray, light, or neutron beams [4].
This intensity distribution is coupled with the distribution of the scatterers by Fourier
transforms. In an analysis of scatterers, the structure factor |FS(q)|2

Is(q) ∝ |FS(q)|2
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is calculated, where the diffraction vector q = s0 − s, s is the incident wave, and s0 is the
diffraction wave. Then, the scattering power distribution f(r) is defined by

f(r) =
1

(2π)3

∫
dqF (q)eiq·r,

which is the distribution of scatterers such as electrons or nucleus. The F (q) has a
magnitude |F (q)| and a phase ϕ(q) related by the equation

F (q) = |F (q)| eiϕ(q).

For that reason that we can obtain only this structure factor |FS(q)|2 without the phase
information, we cannot calculate f(r) directly. This difficulty on the calculation of
the scattering power distribution is called a phase retrieval problem. The analysis of
scatterers is used the two conventional methods [4]. One is the model-based method.
The model-based method has two-step. The first step is the calculation of |F̂S(q)|2
by using an assumed model and model parameters, and the second step is comparing
with calculated |F̂S(q)|2 and observed |FS(q)|2. The experimenter repeats the above two
steps with different parameters and models until they are satisfied. In most cases, the
comparisons of experimenters are made based on a subjective visual assessment. Therefore
the assessment may be arbitrary. The other one is the statistical method. In the statistical
method, the steps are almost the same as the model-based method, but they compare the
autocorrelation functions obtained by using |FS(q)|2 and an assumed model. What we
are concerned here is that the experimenter cannot confirm the uniqueness and confidence
of the model obtained by using both methods. The Bayesian inference is the method to
solve those problems.

The diffraction patterns is obtained as the spectral data. The spectral data is
formulated by the radial basis function networks and it is defined by

f(x) =
K∑
k

akΦk(x; θ) (2.7)

where Φk(x) is the radial basis function and θ is the parameters of Φk(x) such as the
location of centers or bandwidth of peaks. One of the purposes of the spectral analysis
is to deconvolute to basis functions from the spectral data. This task is called spectral
deconvolution. In some previous study, the Bayesian spectral deconvolution algorithms
are proposed[32, 33, 34, 8].

For example, we describe the case that the spectra consisted by Gaussian basis and
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Gaussian error. The likelihood P (y|θ, a, σnoise)

P (y|θ, a, σnoise) =
∏
i

N
(
f(xi; θ, a), σ

2
noise

)
=

∏
i

[
1√

2πσnoise

]
exp

[
− N

σ2
noise

E(f(xi; θ, a))

]
,

(2.8)

E(f(xi; θ, a)) =
1

2N

N∑
i=1

(yi − f(xi; θ, a))
2 (2.9)

is defined by the model of the Gaussian observation error, where a = {ak}, yi, xi, (i =
1, · · ·N) are the data and its observed point, σnoise is the noise magnitude. When the
data set D = (x,y) is given, we can obtain the posterior P (θ|D) is obtained

P (θ|D) =
P (D|θ)P (θ)

P (D)

∝ exp

[
− N

σ2
noise

E(f(xi; θ, a))

]
P (θ) (2.10)

by Bayes ’ theorem. Previous studies estimate the posterior distributions by using
Markov Chain Monte Carlo (MCMC) sampling methods such as reverse-jump Monte
Carlo (RJMC)[35] or replica exchange Monte Carlo method (REMC)[35]. We described
the replica exchange Monte Carlo algorithm in Sect. 2.3.2. Some algorithms can estimate
the parameters of the spectrum and select the number of peaks K by sampling K[33, 34]
or by optimizing free energy[8]

F (K;D) = − log

∫
dθP (θ|D) (2.11)

which is minus of logarithm of the partition function.
The spectral deconvolution is practical, therefore developed for natural science

,especially physics and chemistry [36, 37, 38, 39]. The spectral deconvolution is utilized
to estimate the target model parameters (more “deep” parameters). Murata et al.
estimate the parameters of the autoregressive model which is a probabilistic model for
time series data [40]. In this study, they proposed the method to obtain the parameters
of latent dynamics by using time-dependent spectra. Kasai et al. proposed the method
to deconvolute the spectrum and obtain the target information which is to determine the
amino acid [41].

2.3 Computation of Posterior Distribution

In this section, we describe the Bayesian computation for the posterior distribution
estimation of latent parameters. Let us consider the latent parameter a and the
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measurement target x occurs, and then we obtain the data y by observation. We
formulate the probability distribution of the process to generate the event P (x|a), and
the distribution of the process of observation P (y|x). The distribution P (x|a) which
corresponds to the hypothesis of the event is the prior distribution of x. The probability
P (a|y) is what we want to know, called the posterior distribution. To estimate latent
parameters of the model is calculated by integration with respect to the visible random
variable such as the image pixel values, as follows

P (a|y) =
P (a, y)

P (y)

=

∫
dx
P (a, x, y)

P (y)

=

∫
dx
P (y|x)P (x|a)P (a)

P (y)
.

This integration can be costly for computation in the case that the dimension of the visible
variables is high. We can calculate analytically the problems whose prior distribution of
the latent parameter is integrable. For example, Gaussian Markov random field models
whose posterior can be analytically calculated are the special case. In general, we chose the
computational method in two way: variational Bayesian learning or Sampling methods.
The variational Bayesian learning is the method to calculate approximately the posterior
whose distribution form is limited. We outline the variational inference for the latent
parameter estimation in Sect. 2.3.1. On the other hand, the sampling method computes
the posterior distribution by using Monte Carlo integration with the sample sequence
obtained by unnormalized posterior. We describe the MCMC methods which are the
typical sampling method in Sect. 2.3.2. We used MCMC sampling method for the
computation of the posterior in Chapter 6.

2.3.1 Variational Inference

Variational inference is the method to calculate approximately the intractable integration.
In this section, we mainly focus on the procedure for posterior distribution estimation.
Let us consider the parameter w and data D, the posterior P (w|D) is defined by Bayes’
theorem as follows

P (w|y) =
P (y|w)P (w)

P (y)

=
P (y|w)P (w)∫
dwP (y|w)P (w)

, (2.12)

where, P (D|w) is the probability distribution of observation and P (w) is the prior.
In this method, we fixed the form of the posterior

P (w|y) ∼ Q(w; θ) (2.13)

14



as the approximation, where θ is hyperparameters for instance mean and variance of the
distribution. We chose Q(w; θ) what we can calculate easily such as a Gaussian and
a conditionally independent distribution with respect to multivariate random variables.
The distribution estimation problem is simplified to estimate θ, therefore, the distribution
form has been fixed. The hyperparameter θ is obtained commonly by minimization of
KL-divergence

DKL(Q||P ) ≡
∑
w

Q(w) ln
Q(w)

Q(w|y)
. (2.14)

The variational inference is a flexible method for computation. The accuracy of the
approximation depends on the way of calculation of the KL-divergence and the function
type of the approximated posterior. Mean field approximation assumes that the random
variables independent as follows:

P (w1, w2) ∼ P (w1)P (w2) (2.15)

This approximation is used for various Bayesian learning algorithms. Although those
algorithms are practical, sometimes changes the shape of the approximated posterior
substantially.

2.3.2 Sampling method by Markov Chain Monte Carlo

It is necessary to acquire the posteriors and to compute the partition functions. The
integration of those partition functions requires an efficient and accurate numerical
calculation method. We perform these integrations by sampling method. The probability
that X is in [aX , bX ] of the random variable X is expressed as

π(aX ≤ X ≤ bX) =

∫ bX

aX

dX π(X) (2.16)

= E [aX ≤ X ≤ bX ] . (2.17)

When we have a sequence of variables xi(i = 1, 2, . . . N), this expectation can be
approximated by using Monte Carlo integration defined as

E [aX ≤ X ≤ bX ] ∼ 1

M

M∑
i

R(xi; aX , bX), (2.18)

xi i.i.d ν(X), (2.19)

π(X) ∝ ν(X), (2.20)

where

R(xi; aX , bX) =

{
1 (aX ≤ χi ≤ bX)
0 (otherwise)

. (2.21)
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We need a sampling method to obtain a sequence of random variables following
the function ν(x). Hence, we describe REMC method which is an efficient sampling
method for calculation of the posteriors and free energies. REMC algorithm includes a
conventional MCMC method, so we first explain Metropolis-Hastings algorithm, which
is a basic MCMC method[42, 43, 44]. Actually, the Gibbs sampling method which is a
special case of the Metropolis-Hastings algorithm is used frequently[20, 45], and used in
this chapter. Metropolis-Hastings algorithm is explained in algorithm 1.

Algorithm 1 Metropolis-Hastings algorithm

Sample the sequence of random variables following the target probability distribution
π(X). We assume that the value of the function ν(X) ∝ π(X) can be calculated where
the candidate-generating distribution is symmetric: g(xi+1|xi) = g(xi|xi+1)
Initialization: Choose an arbitrary sample x0.
for i ∈ (1 . . . ,M)

Generate the sample candidate x̃i+1 following the candidate-generating distribution
g(x̃i+1|xi).

Calculate r = ν(x̃i+1)
ν(xi)

.

Generate a random number p following the uniform distribution on [0, 1].

if p < min(1, r)

accept: xi+1 = x̃i+1

else

reject: xi+1 = xi

The Metropolis-Hastings algorithm obtains a sequence of random variables that
converges to the target distribution under satisfactory conditions[46]. One of the condition
for this convergence is that the sample can be moved in entire range of the target function
defined. However,if the target distribution has local minima, the Metropolis-Hastings
algorithm requires a very long time to move between local solutions because the sample is
trapped[47]. Simulated annealing is one way of dealing with such local minima[48]. In the
simulated annealing algorithm, a target function is expressed as the following Boltzmann
distribution:

P (θ|D; β) =
exp [−βH(θ,D)]∫
dθ exp [−βH(θ,D)]

, (2.22)

where θ is the parameter, and D is the data. An inverse temperature parameter β
corresponds to the magnitude of noise. If the temperature is high, the noise increases. The
state following the Boltzmann distribution can escape the local minimum by increasing
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or decreasing β. Simulated annealing is an effective algorithm for optimizing the target
function but not for sampling.

The REMC method is the method for sampling from the joint distribution of the
Boltzmann distributions which have the each parameter of inverse temperatures βl(l =
1, . . . , L), βL = 1:

P (θ1, . . . , θL) =
L∏
l=1

exp [−NβlE(θl)]ψ(θl)∫
dθl exp [−NβlE(θl)]ψ(θl)

(2.23)

=
L∏
l=1

ζ(θl; βl). (2.24)

The REMC algorithm can prevent samples from being trapped by parallel sampling and
exchanging the samples from each Boltzmann distribution[47]. The detailed algorithm of
REMC is explained in algorithm 2.

The REMC algorithm is not only effective for dealing with local minima, but also
efficient for the parallel computation of free energies or partition functions[49, 50]. The
partition function of ζ(θl; βl) can be written as

z(β) =

∫
dθ exp [−NβE(θ)]ψ(θ) (2.25)

when a sequence of inverse temperatures 0 = β1 < β2 < · · · < βL = 1 is given, z(1) which
is equal to the distribution function of interest, is obtained as

z(1) =
z(βL)

z(βL−1)
× z(βL−1)

z(βL−2)
· · · × z(β2)

z(β1)
(2.26)

=
L−1∏
l=1

z(βl+1)

z(βl)

=
L−1∏
l=1

∫
dθ exp [−Nβl+1E(θ)]ψ(θ)∫
dθ exp [−NβlE(θ)]ψ(θ)

=
L−1∏
l=1

∫
dθ exp [−N(βl+1 − βl)E(θ)] exp [−NβlE(θ)]ψ(θ)∫

dθ exp [−NβlE(θ)ψ(θ)]

=
L−1∏
l=1

⟨exp [−N(βl+1 − βl)E(θ)]⟩ζ(θl;βl)
, (2.27)

where < · >ζ(θl;βl) denotes an expected value with respect to ζ(θl; βl). This expected value
in Eq. (2.27) can be calculated using samples generated by REMC in parallel. The free
energy of Bayesian inference is defined by

F (β) = − 1

β
ln z(β) (2.28)
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We have to estimate optimal value of β because β represents the unknown noise
magnitude of the system. The method to estimate β is proposed by Tokuda et al.[51].
Let us consider the minimization of the free energy. The partial derivative of F (β) with
respect to β is

∂F

∂β
= N

[
⟨E(θ)⟩β −

1

2β

]
(2.29)

by the approach based on the empirical Bayes framework. They show the optimal β̂
satisfies the following equation:

⟨E(θ)⟩β̂ =
1

2β̂
. (2.30)

By using Eq. (2.30), we estimate optimal β, and then we use the sample sequence on β̂
to calculate the expected value.

Algorithm 2 Replica exchange Monte Carlo method

Sample the sequence of random variables following the target joint distribution
Υ(θ1, . . . , θL) =

∏L
l=1 υ(θl; βl).

Initialize: Choose arbitrary initial samples xi=0,l=1,...,L

for i ∈ (1 . . . ,M)

Update samples xi,l=1,...,L by an MCMC method such as the Metropolis-Hastings or
Gibbs sampling algorithm.

Exchange process between temperatures at l, l + 1.

Calculate u and v: u = min(1, v), v = q(θl+1;βl)q(θl;βl+1)

q(θl;βl)q(θl+1;βl+1)

Generate a random number p following the uniform distribution on [0, 1].

if p < min(1, r)
Exchange xi,l and xi,l+1.
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Chapter 3

Theory of Distribution Estimation of
the Model Parameters in GMRF

Markov random fields (MRFs) have been developed in image processing,[20, 25, 27, 52,
28, 53, 29] and their performance is sensitive to hyper-parameters that represent the
smoothness of an image and the magnitude of observation noise. [54, 55, 56, 22] A discrete
Fourier transform (DFT) is essential for the theoretical analysis of Gaussian MRF.[26, 56,
57] For example, a DFT enables us to show that an image-restoration method based on
Gaussian MRF models is equivalent to a Wiener filter. [26] The marginalization required
for hyper-parameter estimation of a Gaussian MRF can be precisely carried out because
the DFT allows us to diagonalize adjacency matrices. [56, 16]

Researchers in natural science have begun to use MRF models to extract latent
structures of image data. [58, 59, 60, 61] A hyper-parameter of an MRF was pointed
out to correspond to a diffusion coefficient. [16] Thus, not only do hyper-parameters need
to be estimated, but also the confidence of estimates needs to be evaluated. A previous
study proposed a method of distribution estimation in which the posterior distribution
of hyper-parameters is calculated by utilizing the framework of Bayesian inference. [16]
This method allows us to evaluate the confidence of estimates.

In this study, we theoretically confirm the performance of the method of distribution
estimation when it is used to evaluate the confidence of estimates. The posterior
distributions vary in shape, and the location of the peak depends on the randomness of
the sample data. It is true that the typical distribution can be inferred from the sample
mean of distributions, but we have to evaluate a typical distribution directly. Therefore,
we analytically calculate the configurational average of the negative logarithm of posterior
distribution, also known as that of free energy, with respect to data.
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3.1 Formulation

We formulate our MRF model according to Nakanishi-Ohno et al.[16]. We focus on
one-dimensional images, but the argument is applicable to high-dimensional integer
lattices such as a square lattice. Let us denote an original image as u = (u1, u2, . . . , uN) ∈
RN and an observed image as v = (v1, v2, . . . , vN) ∈ RN , where N is the number of pixels.

Each pixel value vi of an original image is given by

vi = ui + ni, (3.1)

where ni represents measurement noise. We assume that n = (n1, n2, . . . , nN) ∈ RN

are independent and identically distributed random variables that follow a normal
distribution, the mean and variance of which are 0 and b, respectively (denoted asN (0, b)).
Then, an observed image v follows a multivariate normal distribution defined by

P1(v|u, b) =
1

Z1(b)
exp

[
− 1

2b

N∑
i=1

(vi − ui)
2

]
, (3.2)

where the function Z1 is called a partition function and defined by

Z1(b) =

∫
dv exp

[
− 1

2b

N∑
i=1

(vi − ui)
2

]
. (3.3)

Variable b is called a hyper-parameter representing the magnitude of measurement noise.
We also consider a more general case in which T images {vt}Tt=1 = {v1,v2, . . . ,vT} are
obtained independently by observing the same original image u. In such a case, the
probability distribution of a set of observed images {vt}Tt=1 is given by the product of
probability distributions, Eq. (5.2), as follows:

PT ({vt}Tt=1|u, b) =
T∏
t=1

P1(v
t|u, b). (3.4)

We take the smoothness of an original image u into account to assign a high probability
to an image, for which its values of neighboring pixels are close to each other, as follows:

Ppri(u|a) =
1

Zpri(a)
exp

[
− 1

2a

N∑
i=1

(ui+1 − ui)
2

]
, (3.5)

where the function Zpri is called a partition function and is defined by

Zpri(a) =

∫
du exp

[
− 1

2a

N∑
i=1

(ui+1 − uj)
2

]
. (3.6)
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Figure 3.1: Free energies. Figs. (a) and (b) are F (a, b|{vt}Tt=1) obtained by numerical
experiments by using synthetic observed images. Fig. (c) is the arithmetic mean of
1000 trials. Fig. (d) is the configurational average of ⟨F (a, b|{vt}Tt=1)⟩ that is calculated
analytically. The images are two dimensional with the number of pixels N = 1282. The
number of images is T = 1. The true hyper-parameters are (a0, b0) = (1, 0.1).

For convenience of analysis, a periodic boundary condition, uN+1 = u1, is imposed.
Variable a is called a hyper-parameter. The smoothness of an original image increases
as this hyper-parameter is set to a small value. This probability function Ppri, called a
prior distribution, corresponds to the diffusion equation, and a is related to the reciprocal
number of the diffusion coefficient.

3.2 Analysis

The prior distribution of the hyper-parameters is given by

P (a, b) ∝ constant, (3.7)

which means that there is no prior knowledge of the hyper-parameters.
Equation (5.4) is rewritten in quadratic form:

Ppri(u|a) =
1

Zpri(a)
exp

[
− 1

2a
uTΛu

]
, (3.8)

where the superscript character T represents the transpose. An N -by-N matrix Λ, the
elements Λij of which are 2 if i = j, −1 if i is adjacent to j, and 0 otherwise. Matrix Λ
can be diagonalized by the DFT because it is a circulant matrix.[26, 56, 57]

By using the DFT defined as

ũk =
1√
N

N∑
i=1

ui exp

[
2πi(i · k)

N

]
, (3.9)

ṽtk =
1√
N

N∑
i=1

vti exp

[
2πi(i · k)

N

]
, (3.10)
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the Fourier representation of the prior probability distribution is given by

Ppri(ũ|a) =
1

Zpri(a)
exp

[
− 1

2a
ũTΛ̃ũ

]
, (3.11)

and each element of Λ̃ is calculated as follows:

Λ̃kl =
1

N

∑
i,j

exp

(
2πi

N
li

)
Λij exp

(
2πi

N
jk

)
,

= λkδkl, (3.12)

where δkl is the Kronecker delta, and where λk is the diagonal elements of Λ̃ and is given
by

λk = 2− 2 cos

(
2πk

N

)
. (3.13)

Then, we obtain a diagonalized representation of the prior probability distribution as
follows:

Ppri(ũ|a) =
N∏
k=1

{√
λk
2πa

exp

[
− 1

2a
λk |ũk|2

]}
. (3.14)

A probability distribution of a set of observed images in diagonalized form is obtained in
a similar way as

PT (ṽ|ũ, b) =
N∏
k=1


(√

1

2πb

)T

exp

[
− 1

2b

T∑
t=1

∣∣ṽtk − ũk
∣∣2] (3.15)

by using Eqs. (5.3), (3.9), (3.10).
First of all, we focus on image restoration using our MRF models. According to Bayes’

theorem, the posterior distribution of an original image given a set of observed images is
as follows:

P (u|{vt}Tt=1, â, b̂) =
PT ({v}Tt=1|u, b̂)Ppri(u|â)

P ({vt}Tt=1|â, b̂)
, (3.16)

where â, b̂ are estimates of hyper-parameters. By using Eqs. (3.14), (3.15), the Fourier
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representation of P (u|{vt}Tt=1, â, b̂) is given by

P (ũ|{ṽt}Tt=1, â, b̂)

∝
N∏
k=1

{
exp

[
− 1

2b̂

T∑
t=1

∣∣ṽtk − ũk
∣∣2 − λk

2â
|ũk|2

]}

=
N∏
k=1

{
exp

[
−1

2

(
λk
â

+
T

b̂

)
∣∣∣∣∣ũk − T

b̂

(
λk
â

+
T

b̂

)−1
1

T

T∑
t=1

ṽtk

∣∣∣∣∣
2
 . (3.17)

Then, we obtain a restored image, by using the maximum a posteriori (MAP) estimation,
as follows:

ũMAP
k =

T

b̂

(
λk
â

+
T

b̂

)−1
1

T

T∑
t=1

ṽtk. (3.18)

This MAP estimate by utilizing a Gaussian MRF is known to be equivalent to an image
obtained by Wiener filter[26].

Next, to evaluate the performance of this image restoration, we will analyze a
configurational average of mean squared error (MSE) with respect to data defined by

MSEave =
1

N

⟨
N∑
i=1

(
ui − uMAP

i

)2⟩
u,v|a0,b0

, (3.19)

where ⟨·⟩u,v|a0,b0 is the expected value with respect to P (u,v|a0, b0) =

PT ({vt}Tt=1|u, b0)PPri(u|a0). By using DFT as Eqs. (3.9), (3.10), MSEave is rewritten as
follows: ⟨

N∑
i=1

(
ui − uMAP

i

)2⟩
u,v|a0,b0

=

⟨
N∑
k=1

∣∣ũk − ũMAP
k

∣∣2⟩
ũ,ṽ|a0,b0

(3.20)

By utilizing Eqs. (3.14), (3.15), (3.18), (3.19) and the formula of the Gaussian integral,
we obtain MSEave as follows:

MSEave =
1

N

∫
dũdṽt=1 · · · dṽt=T

N∑
k=1

∣∣ũk − ũMAP
k

∣∣2
PT ({ṽt}Tt=1|ũ, b0)PPri(ũ|a0)

=
1

N

N∑
k=1

a0
λk

− 2

( a0â
λ2
k

â
λk

+ b̂
T

)
+
â2

λ2k

a0
λk

+ b0
T(

â
λk

+ b̂
T

)2
 .

(3.21)
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We can see that the true hyper-parameters minimize MSEave because the first derivatives
of MSEave with respect to â and b̂ at the point of (â, b̂) = (a0, b0) are equal to 0. These
hyper-parameters correspond to the Nishimori temperature because they maximize the
performance of image restoration.[23]

Finally, we will analyze the posterior distribution of the hyper-parameters. According
to Bayes’ theorem, the posterior distribution is given by

P (a, b|{vt}Tt=1) =
P ({v}Tt=1|a, b)P (a, b)

P ({vt}Tt=1)
. (3.22)

In our case, the marginal likelihood P ({v}Tt=1|a, b) on the right-hand side of Eq. (3.22) is
given by

P ({v}Tt=1|a, b) =

∫
duPT ({vt}Tt=1|u, b)PPri(u|a). (3.23)

Then, we obtain

P (a, b|{vt}Tt=1) =

∫
duPT ({vt}Tt=1|u, b)PPri(u|a)P (a, b)

P ({vt}Tt=1)
.

(3.24)

We substitute our model, represented by Eqs. (3.14) and (3.15), into Eq. (3.24) and
use the formula of the Gaussian integral to obtain

P (a, b|{ṽt}Tt=1) ∝
N∏
k=1


√

λk
2πa

(√
1

2πb

)T

∫
dũk exp

[
− 1

2a
λkũ

2
k −

1

2b

T∑
t=1

∣∣ṽtk − ũk
∣∣2]}

∝
∏
k

{√
1

a
λk

+ b
T

exp

[
−1

2

1
a
λk

+ b
T

µ2
k

]
(√

1

b
exp

[
− 1

2b
ηk

])T−1
 , (3.25)

where µk =
∣∣∣∑T

t=1 ṽ
t
k

∣∣∣ /T , ηk =∑T
t=1 |ṽtk−µk|2/(T −1). The variables µk and ηk represent

the mean and variance, respectively, of the k-th Fourier component with respect to T
observed images.

We can calculate the hyper-parameter posterior distribution by substituting synthetic
image data into Eq. (5.31). [16] Figures 3.1(a) and (b) show the negative logarithm of

24



the posterior distribution. Let us call this quantity free energy F based on an analogy
with statistical mechanics. We use two-dimensional images whose number of pixels is
N = 1282, and the values of the true hyper-parameters are set to (a0, b0) = (1, 0.1), in
Fig. 3.1 and Fig. 3.2. The number of images is T = 1 in Fig. 3.1. Distributions of F vary
in location and shape as shown in Figs. 3.1(a) and 3.1(b), but Fig. 3.1(c) suggests that
the arithmetic means of trials converge to a certain distribution. In this study, we show
the typical F by calculating analytically configurational average with respect to data. As
a result, we obtain Fig. 3.1(d), and this analytical configurational average is very similar
to the numerical one in Fig. 3.1(c). We will describe the analysis of the configurational
average of F in the following paragraphs.

The free energy F is as follows:

F (a, b|{vt}Tt=1) = − lnP (a, b|{vt}Tt=1)

= −1

2

∑
k

{
ln

1
a
λk

+ b
T

− 1
a
λk

+ b
T

µ2
k

+(T − 1)

(
ln

1

b
− 1

b
ηk

)}
. (3.26)

Note that the equal sign between the first and second lines means that both sides are
equal up to a constant. We calculate the configurational average of F with respect to
data:

⟨F (a, b|{vt}Tt=1)⟩{vt}Tt=1|a0,b0

≡
∫ ( T∏

t=1

dvt

)
F (a, b|{vt}Tt=1)P ({vt}Tt=1|a0, b0), (3.27)

where a0 and b0 are true values of the hyper-parameters. In previous work [16], the shape
of the posterior distribution was evaluated numerically by substituting a few examples of
synthetic data {vt}Tt=1 into Eq. (5.31).

We now explain how to calculate this analytically. We substitute Eq. (3.23) into Eq.
(3.27) to break down the expectation into two steps:

⟨F (a, b|{vt}Tt=1)⟩{vt}Tt=1|a0,b0

=

∫
du

(
T∏
t=1

dvt

)
F (a, b|{vt}Tt=1)PT ({vt}Tt=1|u, b0)Ppri(u|a0)

≡
⟨⟨
F (a, b|{vt}Tt=1)

⟩
{vt}Tt=1|u,b0

⟩
u|a0

. (3.28)
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Figure 3.2: Configurational averages of free energy ⟨F (a, b|{vt}Tt=1)⟩. Images are
two-dimensional with number of pixels N = 1282. True hyper-parameters are (a0, b0) =
(1, 0.1). The panels of the left and right columns are when T = 1, 2, respectively.

Equation (3.26) is substituted into Eq. (3.28) to obtain

⟨F (a, b|{vt}Tt=1)⟩ = −1

2

∑
k

{
ln

1
a
λk

+ b
T

− 1
a
λk

+ b
T

⟨⟨µ2
k⟩⟩

+(T − 1)

(
ln

1

b
− 1

b
⟨⟨ηk⟩⟩

)}
, (3.29)

where the subscripts of expectation are omitted. The two expected values ⟨⟨µ2
k⟩⟩ and

⟨⟨ηk⟩⟩ remain to be calculated.
Let us recall that µk and ηk are the sample mean and variance, respectively, of the k-th

Fourier component of observed images. We see that variables ṽtk are independent random
variables that follow N (ũk, b0) and that variables ũk are independent random variables
that follow N (0, a0/λk).

Each random variable µk follows N (ũk, b0/T ) because µk is the sample mean of ṽtk
that follows N (ũk, b0). The inner expectation of ⟨⟨µ2

k⟩⟩ with respect to {vtk}Tt=1|ũk, b0 is
calculated as follows:

⟨⟨µ2
k⟩⟩ =

⟨
|ũk|2

⟩
ũk|a0

+
b0
T
. (3.30)

The calculation of the other expectation
⟨
|ũk|2

⟩
ũk|a0

gives us

⟨⟨µ2
k⟩⟩ =

a0
λk

+
b0
T
, (3.31)
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using the fact that ũk follows N (0, a0/λk).
Each ηk is the sample variance of ṽtk that follows N (ũk, b0). Let us denote

η′k =
T − 1

b0
ηk, (3.32)

and this random variable η′k follows the chi-squared distribution with T − 1 degrees of
freedom[62]. Because the mean value of the chi-squared distribution is equal to its degrees
of freedom, we obtain

⟨⟨ηk⟩⟩ =
b0

T − 1
⟨⟨η′k⟩⟩ = b0. (3.33)

As a result, we substitute Eqs. (3.31) and (3.33) into Eq. (3.29) to obtain

⟨F (a, b|{vt}Tt=1)⟩ = −1

2

∑
k

{
ln

1
a
λk

+ b
T

−
a0
λk

+ b0
T

a
λk

+ b
T

+(T − 1)

(
ln

1

b
− b0

b

)}
. (3.34)

Figure 3.1(d) presents the analytical configurational average of F obtained by Eq. (3.34).
Fig. 3.1(c) is similar to Fig. 3.1(d). Our analysis is considered to be valid.

We now focus on the arguments of the minimum of ⟨F (a, b|{vt}Tt=1)⟩. It is shown
that the true hyper-parameters minimize ⟨F (a, b|{vt}Tt=1)⟩ because the first derivatives of
⟨F (a, b|{vt}Tt=1)⟩ with respect to a and b at the point of (a, b) = (a0, b0) are equal to 0.
We confirm a well-known fact that true hyper-parameters minimize this configurational
average.

Figure 3.2 presents the analytical configurational average of F . In Fig. 3.2, the left and
right panels are when T = 1, 2, respectively. We see that the breadth of distribution of F
decreases as the amount of data increases from T = 1 to T = 2. This typical behavior of
F corresponds to that of posterior distribution numerically examined by Nakanishi-Ohno
et al.[16]. Hence, we theoretically confirm that distribution estimation can be used to
evaluate the confidence of data.

We investigated the performance of the distribution estimation method proposed by
Nakanishi-Ohno et al.[16]. Our analysis of free energy F validated the fact that the
breadth of posterior distribution shrinks as the amount of data increases. In conclusion,
we confirm that we can evaluate the confidence of data by analyzing the breadth of F and
posterior distribution. It is also important to analyze differences in free energy among
original images[63]. This can be carried out by calculating only the inner expectation in
the last line of Eq. (3.28) to obtain⟨

F (a, b|{ṽt}Tt=1)
⟩
{ṽt}Tt=1|ũ,b0

= −1

2

∑
k

{
ln

1
a
λk

+ b
T

−
|ũk|2 + b0

T
a
λk

+ b
T

+(T − 1)

(
ln

1

b
− b0

b

)}
. (3.35)

27



It is future work to analyze the data average of the performance of other image-processing
such as image inpainting[64].
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Chapter 4

Effects of Spatial Down-sampling on
Model Parameter Estimation in
GMRF

第 4章は雑誌掲載が予定される内容を含むため，インターネット公表できません．
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Chapter 5

Influence of Averaging Preprocessing
on Image Analysis by using GMRF

Averaging as preprocessing is often performed on image data, which are typical
high-dimensional data. Averaging has two main advantages: an improved signal to
noise ratio during observations, and reduced data volume to conserve computational
resources, such as the memory space and the computation time spent in postprocessing.
However, there is a disadvantage, i.e., averaging can deteriorate the performance of the
postprocessing. This is due to a certain amount of irreversible information loss due to
averaging. There is a trade-off between the advantages and disadvantages of averaging.
Therefore, we have to determine the extent of the signal to noise ratio, data volume, and
information loss in the case of averaging image data. This problem is related to how to
optimally adjust the frame rate when video data are acquired to enable dynamical systems
to be studied. Thus, whether and how averaging should be performed is a common though
not trivial problem in the analysis of image and video data in various fields of natural
science.

We focused on Bayesian image analysis based on Markov random field (MRF) models.
MRF models stochastically express the properties of image data and measurement
processes to formulate image data. MRF models have been proposed for Bayesian
image analysis[20, 21]. There are many applications in image analysis such as image
segmentation and image restoration[25, 27, 52, 28, 53, 29, 64]. Our MRF model has
two hyper-parameters which represent the smoothness of the original images and the
magnitude of measurement noise. It is important to adjust these hyper-parameters in
image analysis. Bayesian inference provides a hyper-parameter estimation method[55, 56,
22]. In addition, our recent research has found that the confidence of hyper-parameter
estimation can be evaluated by investigating Bayesian posterior distributions[16, 15].
Such confidence evaluation methods play an important role in natural science because
many hyper-parameters are related to physical quantities[16]. Actually, one of the
hyper-parameters in our MRF model mathematically corresponds to a diffusion coefficient.
This analogy has innovated geophysical research where seismic tomography data are
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analyzed by using MRF models in a similar way to ours to reveal geofluid spatial
distributions inside the earth[58, 59, 60].

In this study, we examined the influence of averaging preprocessing on image
restoration and hyper-parameter estimation. First, we found that if predetermined
hyper-parameters are used, the performance of image restoration does not depend
on whether averaging is carried out. We then examined the influence of averaging
preprocessing on hyper-parameter estimation. We found that the confidence of
hyper-parameter estimation decreases as raw image data decreases in volume even though
a higher signal to noise ratio is obtained by averaging. We also found that if estimated
hyper-parameters are used, the accuracy of image restoration decreases as image data are
averaged. Finally, we discuss the trade-off that we found to be involved with averaging
on the basis of our results.

The rest of this chapter is organized as follows. Section 2 introduces the MRF model
we used to formulate image data and averaging as preprocessing. Section 3 examines the
performance of image restoration and hyper-parameter estimation. Section 4 discusses
the trade-off involved in averaging and future work. Section 5 summarize the chapter.

5.1 Formulation

This section explains how we formulated a process of probabilistically generating image
data by using MRF models to enable image analysis to be discussed based on the Bayesian
framework. We then explain how to derive a probability distribution that averaged images
follow.

5.1.1 Markov random field models

We formulate an acquisition process of image data from an original image by using MRF
models as shown in Fig. 5.1. An item of n-dimensional image data is composed of
N pixel values vi ∈ R on an n-dimensional square lattice and is denoted by a vector
v = (v1, v2, . . . , vN). In the case of one-dimensional image data shown in Fig. 5.1(a), the
subscript i is an integer from 1 to N . In the case of two-dimensional image data, which is
an ordinary case, shown in Fig. 5.1(b), the subscript i is a pair of integers (i1, i2) (1 ≤ i1 ≤
N1, 1 ≤ i2 ≤ N2) and N = N1 ×N2 is the number of pixels. In higher-dimensional cases,
every pixel is similarly indexed. Each pixel value vi is acquired by a measurement of the
corresponding pixel value ui ∈ R of an original image u = (u1, u2, . . . , uN) represented by
the edge between nodes ui and vi characterized by a hyper-parameter b. As described later
in this subsection, all pairs of neighboring pixels on the lattice can be assumed to take
values close to each other, and this relation is represented by the edges characterized by a
hyper-parameter a. For simplicity, we explain our formulation using the one-dimensional
case hereafter, although the same arguments can be applied to higher-dimensional image
data.
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(a)
ui−1 ui ui+1a a

vi−1 vi vi+1

b b b

(b)	


Figure 5.1: Graphical sketches of our MRF model. Variables u = {ui}, (i = 1, 2, . . . , N)
compose an original image. Variables v = {vi} compose image data. hyper-parameters a
and b represent the smoothness of the original image and the magnitude of measurement
noise, respectively. (a) One-dimensional image case. (b) Two-dimensional image case.

First, we explain a simple case where an item of image data is acquired. Let each pixel
value vi of the image data be the sum of the corresponding pixel value ui of an original
image and a noise component ni as

vi = ui + ni. (5.1)

When the noise components ni are i.i.d. random variables, that follow a zero-mean
Gaussian distribution with variance b, denoted by N (0, b), the probability distribution
of an item of image data v is given by

P1(v|u, b) =
(

1√
2πb

)N

exp

[
− 1

2b

N∑
i=1

(vi − ui)
2

]
, (5.2)

where noise variance b is a hyper-parameter of our MRF model and b is positive.
We next explain the case where more than one item of image data is acquired. Let a set

of image data {vt}Tt=1 = {v1,v2, . . . ,vT} be acquired by observing the same original image
u. When each item of image data vt independently follows the probability distribution

32



in Eq. (5.2), the probability distribution of T items of image data {vt}Tt=1 is given by

PT ({vt}Tt=1|u, b) =
T∏
t=1

P1(v
t|u, b)

=

(
1√
2πb

)NT

exp

[
− 1

2b

T∑
t=1

N∑
i=1

(
vti − ui

)2]
. (5.3)

We can see that each pixel vti of image data follows N (ui, b).
Most natural phenomena targeted as original images have the property of spatial

continuity. Then, the prior distribution of an original image is given by

Ppri(u|a) =
1

Zpri(a)
exp

[
− 1

2a

N∑
i=1

(ui − ui+1)
2

]
, (5.4)

where a Gaussian MRF model is used to ensure that neighboring pixels take values close
to each other. A periodic boundary condition of uN+1 = u1 is imposed for analytical
convenience. The function Zpri is called a partition function and is defined by

Zpri(a) =

∫
du exp

[
− 1

2a

N∑
i=1

(ui − ui+1)
2

]
. (5.5)

The variable a is called a hyper-parameter of our MRF model. The smoothness of the
original image increases as a is set to a smaller value. a represents the variance of the
difference in values of neighboring pixels and is positive.

5.1.2 Averaging

We calculated the probability distribution of averaged image data for a set of raw image
data to discuss the preprocessing of averaging within the Bayesian framework. For clarity,
we introduce a simple case where an item of averaged image data m1 = (m1

1,m
1
2, . . . ,m

1
N)

is computed from two items of raw image data {v1,v2} as shown in Fig. 5.2(a). Let each
pixel m1

i of averaged image data be the mean value of corresponding pixels v1i and v2i of
raw image data as follows:

m1
i =

v1i + v2i
2

. (5.6)

since v1i and v2i follow N (ui, b) according to our model, the probability distribution of m1

is given by

P2→1(m
1|u, b) =

N∏
i=1

∂

∂m1
i

∫∫
v1
i
+v2

i
2

<m1
i

dv1i dv
2
i

∏
t=1,2

√
1

2πb
exp

[
− 1

2b
(vti − ui)

2

]
, (5.7)
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Figure 5.2: Outline of averaging preprocessing. (a) Case where two items of raw image
data are preprocessed to obtain one item of averaged image data, viz., T = 2/S = 1. (b)
Case where six items of raw image data are preprocessed to obtain three items of averaged
image data, viz., T = 6/S = 3.

where the subscript 2 → 1 means that two items of raw image data are averaged into one
item of averaged image data. The integral is calculated to obtain

P2→1(m
1|u, b) =

(√
1

πb

)N

exp

[
−1

b

N∑
i=1

(m1
i − ui)

2

]
. (5.8)

This probability distribution is compared with P2, the T = 2 case of Eq. (5.3), to find the
variance of P2→1, which is b/2, half that of P2. This indicates that averaged image data
are more precise than raw image data. On the other hand, the number of items of image
data available in the main task of image analysis is decreased by averaging preprocessing.
Therefore, there is a trade-off and whether averaging should be performed is nontrivial.

We formulate a general case where T given items of raw image data are preprocessed
into S items of averaged image data to quantitatively evaluate the influence of averaging.
Figure 5.2(b) outlines such a case, where T = 6 and S = 3. Each pixel ms

i of averaged
image data follows N (ui, bS/T ) because an item of averaged image data is obtained by
calculating the mean of T/S items of raw image data. The probability distribution of a
set of averaged image data {ms}Ss=1 is given by

PT→S({ms}Ss=1|u, b) =

(√
T/S

2πb

)NS

exp

[
−T/S

2b

S∑
s=1

N∑
i=1

(ms
i − ui)

2

]
. (5.9)

We can see that the ratio T/S controls the trade-off because it simultaneously represents
both the degree of enhanced precision and the degree of decrease in the number of items.
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5.2 Image Analysis and Its Performance Evaluation

This section introduces methods of image analysis based on Bayesian inference[6] and
explains how we evaluated the influence of averaging on their performance. This study
focused on two tasks in image analysis, viz., image restoration and hyper-parameter
estimation. It is important to restore image data to the original image, and according
to a maximum a posteriori (MAP) framework, image restoration can be formulated
as a minimization problem of an energy function. What mattered more to us was
hyper-parameter estimation. Our model has two hyper-parameters , which represent
the magnitude of measurement noise and the smoothness of original images, the latter
of which can be interpreted as a physical quantity, viz., a diffusion coefficient[16]. In
general, physical quantities should be assessed not only by point estimation such as MAP
estimation but also with the confidence of estimation. Such assessments are possible with
a method of estimating posterior distributions that the authors proposed on the basis of a
free-energy function, i.e., the negative logarithm of a posterior distribution[16, 15]. These
methods of hyper-parameter estimation are also useful for improving the performance of
image restoration because the hyper-parameters are included in these energy functions.
The framework of hyper-parameter estimation enables us to objectively determine the
values of tuning parameters in image analysis using the data, although they are often
arbitrarily adjusted.

5.2.1 Image restoration

Posterior distributions play a central role in Bayesian inference. According to Bayes’
theorem, the posterior distribution of a restored image given a set of averaged images is
given by

PT→S(u|{ms}Ss=1, a0, b0) =
PT→S({ms}Ss=1|u, b0)Ppri(u|a0)∫
duPT→S({ms}Ss=1|u, b0)Ppri(u|a0)

. (5.10)

The hyper-parameters are set to the true values (a, b) = (a0, b0) in this subsection and
hyper-parameter estimation is explained in the next subsection. We substitute Eqs. (5.4)
and (5.9) into Eq. (5.10) to obtain

PT→S(u|{ms}Ss=1, a0, b0) ∝ e−ET→S(u|{ms}Ss=1,a0,b0), (5.11)

where the energy function, ET→S, is given by

ET→S(u|{ms}Ss=1, a0, b0) =
N∑
i=1

[
T/S

2b0

S∑
s=1

(ms
i − ui)

2 +
1

2a0
(ui − ui+1)

2

]
. (5.12)

The MAP framework, where the posterior distribution is maximized, is equivalent to
minimizing the energy function. Thus, we investigate the influence of averaging on the
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Figure 5.3: Examples of images. The images are two-dimensional with N = 1282 pixels.
The number of images is T = 12. The true hyper-parameters are (a0, b0) = (1, 1.2). (a)
is an original image. (b) is an observed image. (c) is a restored image, where S = 1, and
(d) is a restored image, where S = 12. (e)–(h) Magnified images of the lower-left corner
of (a)–(d), respectively.

Figure 5.4: Examples of images. This figure is the same as Fig. 5.3 except that the true
hyper-parameters are (a0, b0) = (0.2, 1.2).
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Figure 5.5: Examples of images. This figure is the same as Fig. 5.3 except that the true
hyper-parameters are (a0, b0) = (1, 6).
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Figure 5.6: Results of 1000 trials of image restoration using true hyper-parameters. The
MSE of restored images with respect to original images is shown in the form of a boxplot.
The central line in the box is the median and the bottom and top of the box are the first
and third quartiles, respectively. The whiskers extending from the bottom and top of the
box are 1.5 times as long as the interquartile range. The crosses are outliers. The images
are two-dimensional with N = 1282 pixels. The number of images is T = 12. The true
hyper-parameters are (a0, b0) = (1, 1.2), (0.2, 1.2), and (1, 6) from left to right.

energy function to evaluate the performance of image restoration. For simplicity, our
analysis begins with the case where the number of raw images is T = 2. When two raw
images v1 and v2 are averaged to obtain an averaged image m1, in which pixel noise of
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Figure 5.7: Results of 1000 trials of image restoration using true hyper-parameters. The
MSE of restored images with respect to original images is plotted against S. The solid
line and its error bars represent the mean value and its standard error, respectively.
The dotted line represents our theoretical result for the typical value. The images are
two-dimensional with N = 1282 pixels. The number of images is T = 12. The true
hyper-parameters are (a0, b0) = (1, 1.2), (0.2, 1.2), and (1, 6) from left to right.

variance b0/2 has been added to each pixel, the energy function E2→1 is given by

E2→1(u|m1, a0, b0) =
N∑
i=1

[
2

2b0

(
m1

i − ui
)2

+
1

2a0
(ui − ui+1)

2

]

=
N∑
i=1

[
2

2b0

(
v1i + v2i

2
− ui

)2

+
1

2a0
(ui − ui+1)

2

]
. (5.13)

When two raw images are used without averaging, the energy function E2→2 is given by

E2→2(u|v1,v2, a0, b0) =
N∑
i=1

[
1

2b0

{(
v1i − ui

)2
+
(
v2i − ui

)2}
+

1

2a0
(ui − ui+1)

2

]

=
N∑
i=1

[
2

2b0

(
v1i + v2i

2
− ui

)2

+
1

2a0
(ui − ui+1)

2 +
2

2b0

(
v1i − v2i

2

)2
]
.

(5.14)

Since the third term in square brackets on the right of Eq. (5.14) has no component
of u, the two energy functions E2→1 and E2→2 are equal up to a constant. Therefore,
the same results for image restoration can be expected regardless of whether averaging is
performed.

The MAP estimator of the original image is analytically derived from our model, which
is based on a Gaussian MRF model with a periodic boundary condition[26, 57, 15]. By
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using a discrete Fourier transformation (DFT) defined as

x̃k =
1√
N

N∑
i=1

xi exp

[
2πi(i · k)

N

]
, (5.15)

the Fourier representation of the energy function ẼT→S is given by

ẼT→S(ũ|{m̃s}Ss=1, a0, b0) ≃
N∑
k=1

1

2

(
T

b0
+
λk
a0

) ∣∣∣∣∣ũk −
T
b0

T
b0
+ λk

a0

µ̃k

∣∣∣∣∣
2

, (5.16)

where λk = 2 − 2 cos
[
2πk
N

]
, µ̃k = 1

S

∑S
s=1 m̃

s
k, and the symbol ≃ means that both sides

are equal up to a constant term. It is worth mentioning that all two-body interaction
terms such as (ui − ui+1)

2 in Eq. (5.4) have been eliminated by the DFT because of the
translational symmetry of our model to obtain a one-body representation of the energy
function, ẼT→S. Moreover, it is emphasized that this property is valid in the case of
higher-dimensional image data. Because ẼT→S is minimized at

ũMAP
k =

T
b0

T
b0
+ λk

a0

µ̃k, (5.17)

the MAP estimator is given by

uMAP
i =

1√
N

N∑
k=1

ũMAP
k exp

[
−2πi(i · k)

N

]
(5.18)

with the inverse DFT. Since each ms is an averaged image of T/S raw image data by
definition, µk is rewritten as

µ̃k =
1

T

T∑
t=1

ṽtk. (5.19)

We can then see that the MAP estimator does not depend on the number of averaged
images S and that averaging has no influence on the performance of image restoration.

We carried out numerical experiments to examine the influence of averaging on image
restoration. We dealt with a two-dimensional case where the number of pixels was N =
1282 and the number of raw images was T = 12. The true hyper-parameter values were
set to (a0, b0) = (1, 1.2), (0.2, 1.2), and (1, 6). Note that the same settings were used in
all experiments described in this chapter. The procedure involved three steps. First, an
original image was generated by using Eq. (5.4). Second, Gaussian noise was added to
the original image to create raw image data in accordance with Eq. (5.3). Finally, the
original image was estimated from the image data with or without averaging using the
MAP framework. Figs. 5.3–5.5 show some examples of image restoration. The case of
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(a0, b0) = (1, 1.2) is shown in Fig. 5.3. Fig. 5.3(a) is an original image. Fig. 5.3(b) is raw
image data. Fig. 5.3(c) shows the results of image restoration from 12 items of raw image
data without averaging, viz., S = 12. Fig. 5.3(d) shows the results of image restoration
from an item of image data averaged over 12 raw image data, viz., S = 1. Figs. 5.3(c)
and 5.3(d) were compared to find whether both are the same image. Figs. 5.4 and 5.5
show the cases of (a0, b0) = (0.2, 1.2) and (1, 6), respectively, and we can see that the
performance of image restoration with the true hyper-parameters is not influenced by
averaging preprocessing. Here, let us define mean squared error (MSE) as

MSE =
1

N

N∑
i=1

(
uMAP
i − ui

)2
, (5.20)

to quantitatively evaluate performance. We calculate MSE in cases where S = 1, 2, 3, 4, 6,
and 12. The results of 1000 trials of numerical experiments are shown in Figs. 5.6 and
5.7. Fig. 5.6 shows boxplots of MSE. Figure 5.7 indicates the mean value of MSE and its
standard error to evaluate the typical performance of image restoration. We can see that
MSE does not decrease or increase and this supports our argument that averaging does
not influence the results of image restoration if the hyper-parameters are predetermined.

It is also important to theoretically analyze the typical performance of image
restoration. The expected value of MSE was analytically calculated[15]. The expected
value of MSE with respect to image data is defined as

⟨MSE⟩ =

⟨
1

N

N∑
i=1

(
uMAP
i − ui

)2⟩
{ms}Ss=1,u|a0,b0

, (5.21)

where ⟨·⟩{ms}Ss=1,u|a0,b0
denotes calculating an expected value with respect to

PT→S({ms}Ss=1,u|a0, b0) = PT→S({ms}Ss=1|u, b0)Ppri(u|a0). (5.22)

By using the DFT, the expected value is expressed as

⟨MSE⟩{ms}Ss=1,u|a0,b0
=

⟨
1

N

N∑
k=1

∣∣ũMAP
k − ũk

∣∣2⟩
{m̃s}Ss=1,ũ|a0,b0

. (5.23)

The probability distribution with respect to which the expected value is calculated is
given by

P̃T→S({m̃s}Ss=1, ũ|a0, b0) = P̃T→S({m̃s}Ss=1|ũ, b0)P̃pri(ũ|a0), (5.24)

where the Fourier representations of the probability distributions on the right-hand side
are given by

P̃T→S({m̃s}Ss=1|ũ, b0) =

√T/S

2πb0

NS

exp

[
−T/S

2b0

S∑
s=1

N∑
k=1

|m̃s
k − ũk|2

]
, (5.25)
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and

P̃pri(ũ|a0) =
1

Zpri(a0)
exp

[
− 1

2a0

N∑
k=1

λk |ũk|2
]
. (5.26)

The formula for the Gaussian integral is used to obtain:

⟨MSE⟩ =
1

N

N∑
k=1

(
T

b0
+
λk
a0

)−1

. (5.27)

Under the same conditions as those in the above simulation, we calculated the expected
value of MSE. As seen in Fig. 5.7, the numerical results are considered to be consistent
with those of theoretical analysis.

5.2.2 Hyper-parameter estimation

This subsection is devoted to hyper-parameter estimation, which was not discussed in the
previous subsection. Hyper-parameter estimation is possible with the Bayesian framework
because hyper-parameters can also be regarded as random variables [6]. Posterior
distributions play as central a role as ever. According to Bayes’ theorem, the posterior
distribution of hyper-parameters given a set of averaged images is given by

PT→S(a, b|{ms}Ss=1) ∝ PT→S({ms}Ss=1|a, b)P (a, b), (5.28)

where

PT→S({ms}Ss=1|a, b) =
∫
duPT→S({ms}Ss=1|u, b)PPri(u|a) (5.29)

is a marginalized likelihood function. The prior distribution of hyper-parameters P (a, b)
is set to a uniform distribution defined in the domain of a > 0 and b > 0 because there
is no knowledge on the hyper-parameter values beforehand except that they are positive.
Thus, the posterior distribution can be identified with the marginalized likelihood
function. Marginalization is generally difficult to calculate because of its high-dimensional
integral, but in our case, it can be exactly calculated[16]. The DFT is applied to the
high-dimensional integral such that it can be broken down into component-wise integrals
as

PT→S(a, b|{ms}Ss=1) ∝
N∏
k=1

√
λk
2πa

(√
T/S

2πb

)S ∫
dũk exp

[
−T/S

2b

S∑
s=1

|m̃s
k − ũk|2 −

λk
2a

|ũk|2
]
.

(5.30)
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Each of the component-wise integrals can be calculated by using the formula for the
Gaussian integral. As a result, we obtain the following exact solution:

PT→S(a, b|{ms}Ss=1) ∝
N∏
k=1

√
1

a
λk

+ b
T

exp

[
−1

2

1
a
λk

+ b
T

|µ̃k|2
]{√

1

b
exp

[
−T/S

2b
η̃k

]}S−1

,

(5.31)

where

η̃k =
1

S − 1

S∑
s=1

|m̃s
k − µ̃k|2 . (5.32)

We can see from Eq. (5.31) that the posterior distribution depends on S unlike the
energy function of image restoration, and the performance of hyper-parameter estimation
is influenced by averaging preprocessing.

We begin with the MAP estimation of hyper-parameters. MAP estimation can be
carried out by maximizing the posterior distribution with the method of gradient descent.
We simulated hyper-parameter estimation with settings similar to those in the numerical
experiments on image restoration. We dealt with a two-dimensional case where the
number of pixels was N = 1282 and the number of raw images was T = 12. The true
hyper-parameter values were set to (a0, b0) = (1, 1.2), (0.2, 1.2), or (1, 6). Figure 5.8 shows
the results in the form of a boxplot. The whiskers are shorter as there are more averaged
images, and this indicates that averaging preprocessing should not be done to maintain
the precision of MAP estimation of hyper-parameters.

The performance of hyper-parameter estimation can also be evaluated by the
performance of image restoration. The previous subsection explained how the performance
of image restoration was evaluated when the true values of hyper-parameters were used.
However, the true values are unknown beforehand in practical situations and they should
be adequately determined by using hyper-parameter estimation. If hyper-parameter
estimation provides the true values, the performance of image restoration is also
maximized [23]. The results of 1000 trials of image restoration are shown in Figs. 5.9
and 5.10. Fig. 5.9 shows boxplots of MSE. Fig. 5.10 shows the mean value of MSE and its
standard error to evaluate the typical performance of image restoration. We can see that
MSE is smaller as there are more averaged images. This indicates that hyper-parameter
estimation performs well in terms of image restoration when raw image data are used as
they are as much as possible.

It is important to evaluate the confidence of estimated values when the estimation
target is a physical quantity such as a diffusion coefficient, which is related to the
hyper-parameter a. Most conventional estimation methods such as MAP estimation are
point estimations, which only provide estimated values, and it is impossible to evaluate
the confidence of estimated values unless data acquisition and parameter estimation are
repeated many times. In contrast, distribution estimation can simultaneously provide an
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Figure 5.8: Results of 1000 trials of hyper-parameter estimation. The MAP value of
hyper-parameters is shown in the form of a boxplot. See caption to Fig. 5.6 for details.
The images are two-dimensional N = 1282 pixels. The number of images is T = 12. The
true hyper-parameters are (a0, b0) = (1, 1.2), (0.2, 1.2), and (1, 6) from left to right.

estimated value and its confidence [16, 15]. Figures 5.11–5.13 present the results obtained
from estimating hyper-parameter distributions. We dealt with a two-dimensional case
where the number of pixels was N = 1282, the number of raw images was T = 12, and the
true values of the hyper-parameters were given by (a0, b0) = (1, 1.2), (0.2, 1.2), and (1, 6).
The number of averaged images was set to S = 1, 2, or 12 to evaluate how averaging
influenced the posterior distribution. We can see that the posterior distribution has a
sharper peak close to the true values as the number of averaged images is smaller. This
indicates that hyper-parameter estimation can be achieved with higher precision without
averaging.

We examined posterior distributions in terms of the mutual information of the two
hyper-parameters a and b to evaluate the influence of averaging on distribution estimation
in detail. Mutual information is useful in measuring the dependence between two random
variables and it is defined as

I(a; b) =

∫
dadbP (a, b) ln

P (a, b)

P (a)P (b)
. (5.33)
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Figure 5.9: Results of 1000 trials of image restoration using estimated hyper-parameters.
The MSE of restored images with respect to the original images is shown in the form of
a boxplot. See caption to Fig. 5.6 for details. The images are two-dimensional N = 1282

pixels. The number of images is T = 12. The true hyper-parameters are (a0, b0) =
(1, 1.2), (0.2, 1.2), and (1, 6) from left to right.
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Figure 5.10: Results of 1000 trials of image restoration using estimated hyper-parameters.
The MSE of restored images with respect to original images is plotted against S. The
solid line and its error bars represent the mean value and its standard error, respectively.
The images are two-dimensional N = 1282 pixels. The number of images is T = 12. The
true hyper-parameters are (a0, b0) = (1, 1.2), (0.2, 1.2), and (1, 6) from left to right.

Since the definition is based on the Kullback–Leibler divergence, the value of mutual
information is always non-negative, and it is equal to zero if and only if the two variables
are independent of each other. Figure 5.14 plots the results of mutual information. Each
point and its error bar respectively represent the mean value and its standard error in
1000 trials. We can see that mutual information decreases to zero with increasing number
of averaged images. When random variables to be estimated are regarded as independent
of each other, approximation methods such as variational Bayesian methods could work
well. This possibility will be discussed later.
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It is also important to analyze the typical performance of hyper-parameter estimation.
Let us define a free-energy function by

FT→S(a, b|{ms}Ss=1) = − lnPT→S(a, b|{ms}Ss=1), (5.34)

and its expected value with respect to the marginalized likelihood function can be obtained
analytically[15]. According to Eq. (5.29), the expected value is given by⟨

FT→S(a, b|{ms}Ss=1)
⟩
{ms}Ss=1|a0,b0

=
⟨⟨
FT→S(a, b|{ms}Ss=1)

⟩
{ms}Ss=1|u,b0

⟩
u|a0

, (5.35)

where the outer and inner expected values on the right-hand side are respectively
calculated with respect to Eqs. (5.4) and (5.9). Equation (5.31) is substituted to obtain

⟨
FT→S(a, b|{ms}Ss=1)

⟩
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≃
N∑
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2

1
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λk
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T
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− 1

2
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1
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T

+(S − 1)

(
T/S

2b
⟨⟨η̃k⟩m⟩u −

1

2
ln

1

b

)}
, (5.36)

where the subscripts regarding expected values have been abbreviated on the right-hand
side. The expected values

⟨⟨
|µ̃k|2

⟩
m

⟩
u
and ⟨⟨η̃k⟩m⟩u should be calculated. Because µ̃k is

the mean value of ṽtk, each of which follows N (ũk, b0), and the kth Fourier component of
an original image ũk follows N (0, a0/λk), we obtain

⟨⟨
|µ̃k|2

⟩
m

⟩
u
= a0

λk
+ b0

T
. The other

expected value, η̃k, is the variance of ṽtk. Since the random variable η̃′k = T/S
b0

(S − 1)η̃k
follows a chi-squared distribution with S−1 degrees of freedom[62], we obtain ⟨⟨η̃k⟩m⟩u =
b0. As a result, the expected value of free energy is given by
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, (5.37)

and its partial derivatives are given by

∂⟨FT→S⟩
∂a

=
N∑
k=1

1

2λk

a−a0
λk

+ b−b0
T(

a
λk

+ b
T

)2 (5.38)

and

∂⟨FT→S⟩
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 1

2T
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T(
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T

)2 + (S − 1)
b− b0
2b2

 . (5.39)
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These derivatives are made to equal zero to find whether the true values of the
hyper-parameters minimize the typical free energy. Since the minimizer of the free energy
corresponds to the MAP-estimated values, we have ensured that the MAP estimation is
unbiased regardless of whether averaging is performed.

Figure 5.15 presents the expected value of free energy calculated under the same
conditions as those in Figs. 5.11–5.13. We can see that the free-energy function has a
sharper valley as the number of averaged images increases. This property of free energy
can be deduced from its formula in Eq. (5.37). The last half of Eq. (5.37) depends on
S and it reflects the influence of averaging. Since the second coefficient of its Taylor
expansion at b = b0 is proportional to S − 1, free energy turns out to have a sharper
valley as there are more averaged images. The confidence of data determined from the
peak sharpness of the posterior distribution decreases monotonically as there are fewer
averaged images.

The term independent of S outside the braces on the right of Eq. (5.31) accounts for
the correlation between a and b. This independence is indicated from the second partial
derivatives of the expected value of free energy where (a, b) = (a0, b0), which are

∂2⟨FT→S⟩
∂a2

∣∣∣∣
a=a0,b=b0

=
N∑
k=1

1

2λ2k

1(
a0
λk

+ b0
T

)2 , (5.40)

and
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=
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2T 2

1(
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+ b0
T

)2 + (S − 1)
1

2b20

 . (5.41)

We can see that only the second derivative of b is influenced by averaging. When S is
large, the second term of Eq. (5.41) is dominant and the free energy has a sharper valley
as S increases. Hence, the value of b is estimated precisely and independently of the
estimated value of a when there are many items of averaged images.

5.3 Discussion

Our analysis of the Bayesian posterior distribution and our numerical experiments revealed
that the performance of image restoration with predetermined hyper-parameters is
independent of averaging. The hyper-parameter estimation is unbiased, but the confidence
decreases as there are fewer items of averaged image data. Our analysis of the estimated
hyper-parameter distributions indicated that averaging results in the correlation and
dependence of the estimated hyper-parameters. The performance of image restoration
using estimated hyper-parameters degrades as there are fewer averaged images. As a
result, we deduced that averaging is not problematic as long as image analysis does
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not involve any hyper-parameter estimation, but averaging has an adverse effect on the
performance of image analysis when it requires hyper-parameter estimation.

The performance of preprocessing has often been discussed with the data processing
inequality, which states that the mutual information between data and what is to be
estimated never increases by averaging, viz.

I(a, b,u; {vt}Tt=1) ≥ I(a, b,u; {ms}Ss=1), (5.42)

since the random variables consist of the Markov chain {a, b,u} → {vt}Tt=1 →
{ms}Ss=1[70]. Our results are considered to be consistent with the data processing
inequality in the sense that averaging preprocessing does not improve the performance
of image restoration or hyper-parameter estimation. Moreover, our detailed analysis
indicated that averaging has no influence on image restoration with predetermined
hyper-parameters and that it does not cause any bias but deteriorates the confidence
in the results of image analysis that requires hyper-parameter estimation.

The computational cost is often too high when many raw image data are directly used
for image analysis. It is important to discuss approximate methods based on the posterior
distributions examined in this study. For example, it is well known that variational
Bayesian methods are effective in approximately calculating posterior distributions when
the random variables are independent[14]. As shown in Fig. 5.14, the mutual information
of the hyper-parameters a and b regarding our posterior distribution decreases toward
zero as there are more items of averaged image data, and because the mutual information
of two independent variables is zero by definition, the hyper-parameters can be regarded
as relatively independent if averaging preprocessing is not performed. In addition, we
analyzed this independence by calculating the second partial derivatives of free energy, as
given by Eqs. (5.40) and (5.41). We confirmed that the free-energy distribution becomes
independent as using more averaged images. Consequently, the variational Bayesian
method could be effective when the number of items of averaged image data S is kept at
a large value.

Although we studied image analysis tasks based on Gaussian MRF models, it is also
important to evaluate the influence of averaging preprocessing on other tasks. A related
study regarding the least absolute shrinkage and selection operator (LASSO) within the
context of compressed sensing has proved that averaging should not be performed to
maximize performance[71]. Compressed sensing is a framework for signal reconstruction
from a few items of data by utilizing the sparseness of signals[72, 73]. LASSO is formulated
as an ℓ1-norm regularized least-squares method, viz.

min
x

{
1

2
∥y −Ax∥22 + λ∥x∥1

}
, (5.43)

where y is a data vector, A is a measurement matrix, and x is a signal vector[74].
∥ · ∥2 denotes the ℓ2-norm defined as ∥x∥2 =

√∑
i x

2
i . ∥ · ∥1 denotes the ℓ1-norm

defined as ∥x∥1 =
∑

i |xi|. LASSO can be interpreted in the framework of Bayesian
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inference and is therefore worth comparing with MRF models. The least-squares term in
LASSO reflects Gaussian noise in a similar way to that in Eq. (5.2). The ℓ1-norm term
represents prior knowledge of signal sparseness because the spatial continuity and diffusive
properties of image data are described by MRF models, as can be seen from Eq. (5.4).
The regularization coefficient λ can be regarded as a hyper-parameter of LASSO, which
controls the degree of sparseness. We expected that the performance would deteriorate
in LASSO due to averaging caused by hyper-parameter estimation, similarly to for our
settings in this work, and that when a predetermined hyper-parameter was used, the
performance of LASSO would be uneffected by averaging preprocessing. Therefore, it
will be important in future work to find the influence of averaging on LASSO from the
viewpoint of hyper-parameter distribution estimation.

We dealt with a Gaussian model, in which noise components are assumed to follow
a Gaussian distribution and the prior distribution of original images is described by a
Gaussian MRF. It is important to study different measurement models to discuss many
other real environments. For example, if the exposure time for obtaining image data is
extremely short, the quantum effects of counting photons might become dominant. In such
a case, we have to consider Poissonian noise, not Gaussian noise, as a generative model for
image data in this study. A previous study proposed a method of image restoration with
respect to image data blurred by Poissonian noise[75]. It will be interesting to examine
the relation between the influence of averaging on image analysis and hyper-parameter
estimation also in the case of Poissonian generative models. In another real situation,
dynamical systems are often studied using video data, viz., a time series of image data.
In such a case, prior distributions should be discussed further considering not only spatial
patterns based on MRF models but also spatio-temporal patterns described by partial
differential equations. In addition, it is necessary to balance another averaging-related
trade-off between spatial and temporal resolutions in acquiring video data. A promising
future work will be to evaluate the influence of averaging preprocessing on image analysis
based on realistic models.

5.4 Summary of this Section

We investigated the influence of averaging preprocessing on image analysis in this
study, such as that in image restoration and hyper-parameter estimation, with an MRF
model. We obtained two main results by analyzing Bayesian posterior distributions.
First, the performance of image restoration with true hyper-parameters is independent
of averaging. Second, averaging adversely affects the performance of hyper-parameter
estimation. Averaging does not produce bias in hyper-parameter estimation but
degrades the confidence and the performance of image restoration with the estimated
hyper-parameters. As a result, averaging is not problematic as long as we use
predetermined hyper-parameters for image restoration, but averaging is not appropriate
for image restoration with hyper-parameter estimation.
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Hyper-parameter estimation without image averaging requires a method of analysis
for large amounts of image data. The analysis of free energy suggests that the variational
Bayesian method is an effective approximation approach to hyper-parameter estimation,
which takes the independence between hyper-parameters into consideration. It will be
important to investigate the cases of images on various scales and movie data, such as when
systems are dynamical and noise follows Poisson distributions, in future developments.
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Figure 5.11: Examples of posterior distribution of hyper-parameters PS(a, b|{m̃s}Ss=1).
Where, N = 1282 pixels, T = 12, (a0, b0) = (1, 1.2). The posteriors in the each columns
are the results where the numbers of averaged images are S = 1, 2, and 12, respectively.
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Figure 5.12: Examples of posterior distribution of hyper-parameters PS(a, b|{m̃s}Ss=1).
This figure is the same as Fig. 5.11 except that the true hyper-parameters are (a0, b0) =
(0.2, 1.2).
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Figure 5.13: Examples of posterior distribution of hyper-parameters PS(a, b|{m̃s}Ss=1).
This figure is the same as Fig. 5.11 except that the true hyper-parameters are (a0, b0) =
(1, 6).
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Figure 5.14: Results of 1000 trials of hyper-parameter estimation. Mutual information
I(a; b) is plotted against S. The solid line and its error bars represent the mean value and
its standard error, respectively. The images are two-dimensional N = 1282 pixels. The
number of images is T = 12. The true hyper-parameters are (a0, b0) = (1, 1.2), (0.2, 1.2),
and (1, 6) from left to right.
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Figure 5.15: Configurational average of free energy
⟨
F (a, b|{m̃s

i}Ss=1)
⟩
{m̃s

i }Ss=1
. The images

are two-dimensional N = 1282 pixels. The number of images is T = 12. The top, middle,
and bottom rows correspond to the true hyper-parameters (a0, b0) = (1, 1.2), (0.2, 1.2),
and (1, 6), respectively. The left, middle, and right columns correspond to S = 1, 2, and
12, respectively.
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Chapter 6

Bayesian Analysis of Crystal Lattice
System Using Dispersion Relation
Spectra

第 6章は雑誌掲載が予定される内容を含むため，インターネット公表できません．
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Chapter 7

Conclusion

In this thesis, we focused on the image data quantification and the design of measurement
by utilizing the quantified image. We defined the image data quantification as the
latent parameter estimation of the lattice models by using image data. Two observed
methods obtain the image data; one is the mapping to real-space, and the other one
is to Fourier-space. The thesis showed the approach and demonstration for Bayesian
measurement modeling, for the latent parameter estimation of the images and design of
the measurement and preprocessing.

We treated the Gaussian Markov random field (GMRF) models as the model of the
image mapped to the real-space as the lattice system in Chapter 3, 4, and 5. In Chapter
3, we showed the exact analysis of the GMRF based on the Bayesian framework. We
calculated the expectation values of the estimated model parameter distribution where
the true data model is given. We demonstrate to evaluate the theoretical confidence of the
data following the GMRF model. In the analysis, we present the limitation of confidence
on the estimation for the model parameters even if we know the true model form. The
proposed method to analyze the expectation values was utilized in Chapter 5.

In Chapter 4, we considered the two Bayesian model for the original image; one of
the models was to generate data, and the other one was to estimate. In this chapter, we
focused on evaluating the influence of sampling which is essential on the measurement of
image data. The cause of why that we use both models is to represent the difference of
the treatment between the generating the image and estimating from the image, from the
point of view of sampling on the measurement. By using those models, we demonstrated
that the sampling and estimation when the sampling deteriorates the image data. We
showed the results to estimate the posterior distribution by using those models and
evaluated the effect of down-sampling for the bias and spread of the posteriors. We
proposed the method to correction of the bias by down-sampling of given image data.
The shape changing with respect to down-sampling indicated the effect of the sampling
step. Besides, the discussion in this chapter, we suggested that the deformation of the
graphical model cause of this bias. This suggestion shows that the model evaluation is
necessary for the model parameter estimation.
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In Chapter 5, we demonstrate the method to evaluate the image processing step in
the image analysis by using the Bayesian inference. In this Chapter, we focused on the
trade-off of the image averaging. Through the latent parameters distribution estimation
and image restoration tasks, the image averaging sometimes give the adverse effects on the
performance of the tasks. By utilizing this evaluation of the influence of averaging, we can
propose the better way of preprocessing image data for the image modeled by GMRFs.
We show the way of design of the measurement process based on the Bayesian framework,
due to the analysis of the influence of averaging which is the basic preprocessing for image
data.

The work in Chapter 6 study the estimation of the latent parameter which is the
interaction parameter of the crystal lattice by using the image mapped to Fourier-space.
The image mapped to Fourier-space is obtained the spectral data. We use the Bayesian
framework to estimate the latent parameters where the spectra by using the dispersion
relation are treated as input data.

In Chapter 6, we proposed the methods to estimate the model parameters and evaluate
its confidence which denote the interaction between the atom of the crystal lattice by using
dispersion relation spectra that mirror the lattice vibration. The proposed methods show
the results to estimate latent parameter by using the image of the dispersion relation.
We can treat the data which has not been utilized for latent parameter estimation by
using proposed method. Furthermore, we compared the method to estimate directly
and the method based on the conventional way via the spectral deconvolution as the
preprocessing of the image data. We show that the direct method has the advantages
and better performance than the indirect method. Besides, we demonstrates the method
to compare the better sampling method from Fourier space by using Bayesian analysis of
dispersion relations. This method contributes to the design of the measurement process
by using lattice observation from Fourier space such as neutron diffraction.

In conclusion, we propose the method to latent parameter estimation of the image
data and evaluation of confidence of the data for the lattice systems. By utilizing the
proposed modeling method for measurement, we can improve designs of the measurement
and processing procedure of the image data.
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