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Abbreviation 

2,4-D: 2,4-dichlorophenoxyacetic acid 

BY-2: Bright Yellow 2 

CaMV: Cauliflower mosaic virus 

CCD: Colony Collapse Disorder 

CO2: Carbon Dioxide 

COS: CV-1 (simian) in Origin, and carrying the SV40 genetic material 

CPU: Central Processing Unit 

CT: Computed Tomography 

FM4-64: 

N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)-phenyl)hexatrienyl)pyridinium 

dibromide 

FtsZ:Filamenting temperature-sensitive mutant Z 

H2B: Histon 2B 

MEM: Minimum Essential Medium  

MRI: Magnetic Resonance Imaging 

OpenCV : Open Source Computer Vision Library 

PABP: Poly(A)-binding protein 
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PBS: Phosphate buffered salts 

RAM: Random access memory 

RFP: Red Fluorescent Protein  

SDK: Software Development Kit 

SSL: Secure Sockets Layer 

TLS: Transport Layer Security 

URL: Uniform Resource Locator 

USDA: United States Department of Agriculture 

YFP: yellow fluorescent protein 
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General Introduction 
	 Life science as an academic field deals with enormous information. For instance, 

bioinformatics and bioimage informatics are disciplines in which information 

processing for life sciences is conducted, although the disciplines are still developing. 

The fields are highly influenced by advancement in computer and image processing 

technologies. Although large-scale information processing has increasingly become 

critical in biological research over the recent years, only a few biologists are 

conversant with the relevant information processing tools. In addition, since themes in 

biological research are diverse, it is necessary to develop software that are 

appropriate for respective research themes, which is a time consuming process. In 

the course of conducting research on cell physiology, I encountered a need to 

analyse large amounts of biological information from images, which could not be 

adequately achieved manually. Consequently, if systems that facilitate high-speed 

and high-precision analyses could be easily designed based on the respective target 

research activities, cell physiology research would advance more. Therefore, I 

embarked on developing a novel simple, high-speed, and high-accuracy cell image 

analysis system. In addition, I analysed a structure called stromule, whose roles in 

plant cells are largely unclear and has a complicated structure. The system 

developed through the present study could be employed by different researchers in 
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future, in addition to facilitating research on structures such as stromules. 
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Abstract 

	 Automated quantitative image analysis is essential in research in all disciplines in 

the life sciences. Although numerous programs and algorithms have been developed 

for bioimage processing, an advanced understanding of image processing techniques 

and high-performance computing resources are required to apply them. 

Consequently, I developed a cloud-based image analysis platform called IMACEL, 

which integrates morphological analysis and machine learning-based image 

classification. The unique click-based user interface in IMACEL’s morphological 

analysis platform provides researchers with resources for rapid and quantitative 

evaluation of elements without the need for prior knowledge of image processing. 

Since all the image processing and machine learning algorithms are implemented by 

high-performance virtual machines, users can access the same analytical 

environment from anywhere. A validation study of the morphological analysis and 

image classification of IMACEL was performed. The results indicate that the platform 

is an accessible and potentially powerful tool for the quantitative evaluation of 

bioimages, which could minimize the barriers in life science research. In chapter 1, I 

discuss the system. 

	 In chapter 2, I analyse stromules, one of the organelles in the plant cell, using 
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IMACEL. Stromules are tubular structures that emerge from chloroplasts and other 

types of plastids. Although stromules have roles in plant immunity, little is known 

about other physiological functions of stromules or the significance of their formation, 

extent of protrusion, and frequency of occurrence. In the present study, I quantified 

the mean frequency of stromule occurrence in stomatal guard cells every hour during 

a diurnal cycle in developing and developed cotyledons in Arabidopsis seedlings. 

Stromule mean frequency was not constant during the diurnal cycle, but gradually 

increased and decreased, resulting in a local peak every 2–4 hours. Observations 

under continuous light revealed that the variation in stromule mean frequency was 

independent of the lighting conditions. The results provide novel information about 

stromule formation, revealing synchronized and periodic patterns of stromule 

frequency throughout the day–night cycle in guard cells of developing cotyledons. 
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Introduction 
Recent developments in microscopic and image processing technologies have led 

to new findings in the life sciences. With the evolution of imaging devices, such as 

microscopes, MRI, and CT, image data in the life sciences are increasingly detailed. 

In particular, the development of visualization techniques, such as the use of 

fluorescence microscopy and fluorescent probes, facilitate the analysis of biological 

structures and diversify molecular imaging. Therefore, it is becoming critical to 

analyse these bioimage data efficiently and quickly in quantitative studies (Peng et al. 

2016, Danuser et al. 2011). Generally, the analysis of large and detailed images is 

very laborious and time-consuming, and is a burden for researchers. In addition to 

advances in imaging devices, a variety of open source and commercial image 

analysis software (e.g., ImageJ (Rueden et al. 2017), ImagePro, and Photoshop) and 

libraries for programming languages (e.g., OpenCV and Bioconductor) have been 

developed; however, their use requires specialist knowledge. 

Machine learning is also used to analyse large quantities of bioimage data. Using 

this technique, it has become possible to automate or semi-automate analysis for the 

target extraction and classification of diverse and massive numbers of biological 

images (Sommer et al. 2013, Chang et al. 2011). Deep learning-based convolutional 

neural networks are expected to be useful for single-cell experiments with 
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high-throughput and high-content screening (Chessel et al. 2017, Kamatani et al. 

2017). A report on using nonlinear dimensionality reduction in combination with deep 

learning to reconstruct cell cycle and disease progression has demonstrated the 

efficiency of applying machine learning techniques to objective biological prediction 

(Eulenberg et al. 2017). For instance, I previously proposed a system that combines 

machine learning and active learning (Settles et al. 2009) for subcellular localization, 

mitotic phase classification, and the discrimination of apoptosis in images of plant and 

human cells. This system achieved an accuracy level greater than or equal to that of 

the annotators (Kutsuna et al. 2012). 

Although advanced image processing and machine learning techniques are 

necessary in life science studies, many research labs are ill-equipped to perform 

bioimage analysis that uses advanced imaging technologies and many computing 

resources. For generic morphological analysis, such as counting a number, 

measuring an area, and extracting several features of a shape, researchers need 

information about the signal/background setting, noise reduction filtering, binarization 

setting, and particle analyser function in de facto-standard image processing software 

ImageJ, and must manually choose particular algorithms for each specific research 

purpose and tune the parameters manually. Additionally, for classification analysis, 
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almost all software and analytical environments require skills for programing 

languages to input commands. Hence, although image processing plays an important 

role in quantitative data analysis for life sciences, the current available image 

processing solutions are too complicated for most researchers to use. Thus, 

user-friendly software for image analysis is needed to expand the use of imaging 

technologies throughout the life sciences. 

IMACEL is a cloud-based image analysis platform developed for automatic 

classification and morphological analysis. Because all image processing and 

machine learning are performed by virtual machines in the cloud, it is not necessary 

to set up powerful laboratory computers or workstations. IMACEL’s target data 

includes various types of microscopic bioimages. The most important feature in 

IMACEL is the new user interface for researchers with limited knowledge of image 

processing. IMACEL suggests multiple candidates for morphological analysis, allows 

users to select the most efficiently processed images. This allows users to determine 

appropriate procedures quickly and easily. In addition to morphological analysis, 

IMACEL can perform automatic image classification from uploaded annotated images 

using random forests and a deep learning algorithm.  

The contributions of this study are as follows:  
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• I present a tool that enables life science researchers with limited image 

processing experience and computing resources to automatically and quantitatively 

analyse microscopic image data.   

• I verify the morphological analysis of the system by evaluating the number and 

size of stress granules in images using the batch process function. Moreover, I 

evaluate the classification analysis of cell cycle progression using machine learning 

techniques on the IMACEL platform. 

The adoption of IMACEL in life science research has the potential to improve the 

quality and quantity of research, particularly for researchers who would not otherwise 

have the experience and resources to perform such investigations. 
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Methods 

Implementation and architecture of the IMACEL platform 

IMACEL is a cloud-based image processing platform that runs on Windows, Mac 

OS X, and Linux. The image processing core modules of IMACEL were developed 

using Python 3 and OpenCV, and computation is performed on a virtual machine 

using the Microsoft Azure service.  

A virtual machine with the standard D2 v2 instance type (2 vCPU, 7 GB RAM) was 

used in this study. Azure Storage was used as the image storage server. To connect 

to the storage server from a web application server, the Azure Storage SDK for 

Python was used. The database and web server used URLs for their connections to 

the storage server.  

 

Security of the IMACEL platform 

IMACEL used SSL/TLS to establish a secure connection between the web browser, 

web server, application server, and storage server. To grant limited access to 

resources in the storage server, a shared access signatures (SAS) provided by Azure 

Storage was used.  
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Cloud-based image processing 

To use IMACEL, researchers upload images to the web server through a web 

browser, and the images are processed by high-performance virtual machines 

running on the Microsoft Azure platform that are able to communicate with the 

system’s database (Fig. 1). Processed image data are sent back to the researchers 

through the web browser. The maximum data size for uploading images depends on 

the type of web browser. For example, Internet Explorer 11 has a limitation of 4 GB 

for file uploading.  

 

Interface of IMACEL with a click-based user interface 

The IMACEL platform includes a novel click-based interface designed for 

researchers who have no advanced image processing knowledge (Fig. 2). 

Researchers can upload images to IMACEL, specifying the imaging method (e.g., 

fluorescence, bright field, or electron microscopy) and imaging target (e.g., bacteria, 

yeast, mammalian cells, or brain tissue) to enable the IMACEL particle analyser to 

provide practical suggestions (Fig. 2a). In the image processing procedure, users 

click on the most appropriate processed image shown in the browser (Fig. 2b). This 

clickable user interface allows researchers at all skill levels to extract particles 
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quantitatively and objectively from raw input images (Figs 2c, d).  

Several watershed algorithms are available at the last stage of the procedure. 

Additionally, several morphological features of particles, such as a number, area, 

roundness, fitted ellipse long and short axes, centroid coordinates, and solidity, are 

extracted automatically.  

The IMACEL platform is designed for scientific image processing with a focus on 

bioimaging. Hence, all suggested procedures are appropriate for maintaining 

bioimage integrity (Supplemental Table 1). To enable the archiving of image 

processing procedures in each researche’s experimental notes, an image processing 

report is also provided (Fig. 2e). 

 

Classification algorithms in the IMACEL classifier 

Two classification algorithms are implemented in the current version of IMACEL: a 

random forest and a deep learning algorithm. The convolutional neural network 

architecture of AlexNet, which was first place in the ImageNet Large Scale Visual 

Recognition Challenge 2012 (ILSVRC2012) (Krizhevsky et al. 2012), is used. AlexNet 

consists of eight layers: five convolutional layers and three fully connected layers. 

Moreover, the version used in IMACEL was pre-trained on the data used in 
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ILSVRC2012. 

 

Cell culture of mammalian and plant cells 

The tobacco (Nicotiana tabacum) BY-2 cell line was diluted 95-fold with a modified 

Linsmaier and Skoog medium supplemented with 2,4-D at weekly intervals, as 

previously described  (Nagata et al. 1992) . The cells were agitated on a rotary 

shaker at 130 rpm at 27 °C in the dark. The cell cycle progression was synchronised 

with 5 mg aphidicolin (Sigma), as previously described  (Nagata et al. 1992) . A 

transgenic BY-2 cell line, stably expressing an RFP-Histone H2B fusion protein, could 

be maintained and synchronised by procedures similar to those used for the original 

BY-2 cell line. 

African green monkey kidney fibroblast-derived COS7 cells were obtained from the 

RIKEN BioResource Center and cultured in high glucose Dulbecco’s modified Eagle’s 

medium (Gibco) supplemented with 10% qualified heat inactivated fetal bovine serum 

from USDA-approved regions (Gibco), 50 U/mL penicillin-50 µg/mL streptomycin 

(Gibco), 2 mM L-glutamine (Gibco), 1 mM sodium pyruvate (Gibco), MEM 

nonessential amino acids (Gibco), and 55 µM 2-mercaptoethanol (Gibco) at 37 °C in 

5% CO2. 
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Stress treatment and immunofluorescence labelling 

COS7 cells cultured onto a 35-mm glass-based dish (IWAKI) were treated with 0.5 

µM sodium arsenite (Fluka) for 15 min or 60 min and fixed with 3% paraformaldehyde 

(Sigma Aldrich) and 0.1% glutaraldehyde (Sigma Aldrich) at 37°C in 5% CO2 for 10 

min. COS7 cells were permeabilised with 0.2% Triton-X 100 (SIGMA) and blocked at 

37°C in 5% CO2 for 30 min with 10% goat serum (Life Technologies) and then 

incubated for 30 min with primary antibodies, rabbit polyclonal anti-PABP antibody 

(Abcam), diluted in Can Get Signal Solution A (TOYOBO). After washing with 0.2% 

Triton-X 100 and PBS, the cells were incubated with Alexa 488 labelled goat 

anti-rabbit secondary antibodies diluted in Can Get Signal Solution A.  

 

Microscope 

For the observation of the cell cycle in BY-2 cells, the cells were imaged using 

fluorescent microscopy (FSX100, Olympus, Tokyo, Japan). To extract the nuclear 

regions, the images were processed manually using ImageJ. 

To observe the COS7 cells, they were imaged using fluorescence microscopy 

(N-STORM, Nikon, Tokyo, Japan). Noise in the fluorescent microscopy image was 
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reduced with a difference of Gaussian filter using ImageJ. 

 

Manual evaluation of the number and size 

To evaluate the number and size of stress granules, boundaries were traced 

manually using ImageJ software. Manual evaluations were performed by two 

researchers who were not involved in this study to avoid biases that could 

overestimate the differences in treatment effect and underestimate the differences 

between the results of the manual evaluation and IMACEL particle analyser. 

Four experts in plant cell division annotated the training data for the classification of 

cell cycle progression in tobacco BY-2 suspension-cultured cells. 

 

Statistical information 

To evaluate the differences in the number of stress granules, the Mann–Whitney U 

test was calculated using free statistical software R and R Studio versions 3.3.1 and 

1.1.383, respectively. 

 

Results 

As illustrated in Fig 1, IMACEL is a cloud-based image processing platform. 
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Researchers upload images to the web server through a web browser. Image 

processing and image classification are performed by high-performance virtual 

machines, and the processed image data are sent back through the web browser. 

IMACEL has the following two independent functions: a particle analyser for 

morphological analysis and a classifier for bioimage classification. 

 

Validation of the IMACEL particle analyser 

I validated the morphological analysis of the IMACEL particle analyser by 

determining how similar its extracted features were to those of a manual evaluation. I 

focused on immunologically labelled stress granules because the shapes of the 

organelles are oval and traced easily by manual evaluation (as shown in 

Supplemental Fig. 1). It has been reported that a treatment of sodium arsenite 

induces the development of stress granules in a time-dependent manner (Nover et al. 

1989, Nover et al. 1983, Collier et al. 1986). Therefore, COS7 cells treated with 0.5 

μM sodium arsenite for 15 min and 60 min were analysed with respect to the size and 

number of stress granules formed during treatment. I confirmed that the stress 

granules were segmented appropriately by the IMACEL particle analyser (Fig 3a). As 

expected, there were significant differences in the number and size of stress granules 
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between the 15 min and 60 min treatments, and the morphological analysis of 

IMACEL yielded results that were very similar to those of the manual evaluation (Figs 

3b, c). The batch process of the IMACEL particle analyser (65 images each for 

specimen treated for 15 min and 60 min) was finished in approximately 5 min. In 

contrast, manual evaluation by tracing each stress granule took approximately 16 h 

(Fig 3d). In addition, hierarchical clustering analysis revealed that the 15-min and 

60-min treatments were different and that the 15-min treatment group could be further 

divided into 2 groups. Specifically, comparing the two groups within the 15-min 

treatment group revealed a significant difference in circularity, although there was no 

difference in area. It also suggested a physiological basis for the control of the 

circularity of the stress granules (Supplemental Fig. 2, 3). The results indicate that the 

IMACEL particle analyser can evaluate the morphology of particles, both 

quantitatively and rapidly, with high accuracy. 

 

Validation of the IMACEL classifier 

To validate the IMACEL classifier, a classification of cell cycle progression in 

tobacco BY-2 suspension-cultured cells was performed using two machine learning 

methods: random forests and deep learning. Because of its highly synchronized cell 
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cycle progression (Kumagai-Sano et al. 2006), this cell cycle is very suitable for 

bioimage classification (Fig. 4a). Moreover, synchronized BY-2 cells are one of the 

most suitable suspension-cultured cells for observing each cell cycle. Nucleuses and 

chromosomes were visualized using histone H2B-RFP (Kumagai-Sano et al. 2006, 

Hayashi et al. 2007), and the image features were extracted using the LPX296 

feature extractor formerly the KBI feature extractor (Caplan et al. 2015) and a 

higher-order local autocorrelation feature extractor.  

The classification dataset was composed of 1,619 images of seven classes (Fig.  

4b). To avoid overfitting, the mean accuracy was calculated using three-fold 

cross-validation.  

The random forest IMACEL classifier (Kutsuna et al. 2012) identified seven cell 

cycle classes with a mean accuracy of approximately 76.69% and four classes with a 

mean accuracy of approximately 83.31% (Fig. 4c). S/G2 and metaphase were 

classified with high accuracy, but pro-metaphase and anaphase were classified with 

comparatively low accuracy (Fig. 4d).  

By contrast, the deep learning method in IMACEL managed to identify seven cell 

cycle classes with a mean accuracy of approximately 80.17% and four classes with a 

mean accuracy of approximately 86.21% (Fig. 4c). The mean accuracies of 
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pro-metaphase and anaphase classification increased when deep learning 

classification was used (Fig. 4d).  

These results indicate that IMACEL can automatically classify images without 

requiring researchers to have advanced knowledge of various image processing and 

machine learning techniques. 

 

Discussion 

The development of the IMACEL platform was based on two design concepts. The 

first concept is that of a novel clickable-based user interface. Existing image 

processing software, such as ImageJ or Photoshop CC, requires researchers to 

actively select the desired function from a list of image processing procedures. 

Because there is so much flexibility in the function selection, mistakes can be made if 

inappropriate image processing procedures are used. For example, a nonlocal mean 

filter (Buades et al. 2005), which is an effective noise reduction method, performs 

smoothing using similar intensity distributions from distant regions independently of 

whether the regions are biologically identical or not. Therefore, when such filtering is 

implemented in image processing software, researchers should avoid using it. By 

contrast, the IMACEL particle analyser effectively restricts the functions that can be 
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selected by those unfamiliar with image proce1ssing. Additionally, batch processing 

is easily performed without the need to write macro functions in a programming 

language.  

The second concept is that of a cloud-based image processing platform. Generally, 

machine learning requires extensive computing resources. The construction of an 

analytical environment is too complex for many biological researchers. Moreover, 

high-performance machines are expensive to establish in each laboratory. In IMACEL, 

because image processing and machine learning are performed on high-performance 

virtual machines, users can freely access their own analytical environment via a web 

browser from anywhere. Additionally, because IMACEL stores previous analytical 

images, the platform could play the role of an image management tool.  

I developed this platform for researchers in the broad field of life sciences. 

Microscopic images are more often observed than MRI images in some life science 

journals. Therefore, I focused this validation study on (fluorescence) microscopic 

images. However, in a related study, a prototype version IMACEL was used to 

classify transmitted electron microscopic images of tumorigenic cancer stem cells into 

two categories (ABCGS2+ and ABCGS2-) (Sasaki et al. 2018) . However, on the 

IMACEL platform, I do not restrict the image acquisition tools or type of image that 
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may be used for analysis. In fact, I am developing an extension to the image 

processing platform that is focused on MRI, CT, and X-ray images for specific fields 

of life science.  

Compared with manual labelling, the classification methods in IMACEL are not 

highly accurate. There are several reasons for this performance in this study. First, 

the number of images in my dataset was small, particularly for the anaphase cell 

images. Deep learning is well known to perform better with a large number of images, 

and if one class has few examples, the resulting dataset can be imbalanced and 

affect the accuracy. Second, each cell cycle image was acquired using cheap 

fluorescent microscopy instead of a more advanced method, such as confocal laser 

scanning microscopy, and high levels of image noise could affect the result. Third, 

transfer learning could have affected the result. AlexNet was trained using not only 

microscopic images but also general images. Note that the above poor study 

conditions were selected to assess the IMACEL platform because it is aimed at 

researchers who do not have advanced computing skills or equipment. 

A current version of the IMACEL platform, all microscopic images used in this study 

and detailed documentations will be distributed to interested researchers on request. 

Currently, I am developing three-dimensional reconstruction and the extraction of the 
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surface area and volume for three-dimensional images. Additionally, tracking or 

kinetic analysis for time-sequential observations is under development. 

In conclusion, I developed a new cloud-based image processing platform called 

IMACEL that consists of morphological analysis and image classification functions. 

The validation experiments indicate that particles can be extracted easily and rapidly 

with high accuracy. Additionally, IMACEL enables researchers to perform image 

classification based on machine learning without prior knowledge of image 

processing.  



Figure 1. Architecture of IMACEL, a cloud-based image processing and machine learning 
platform for life science researchers.
The entire process of image processing is performed in the cloud using high-performance 
virtual machines. The public-domain images used in this figure were obtained from 
Openclipart.
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Figure 2   Interface of the IMACEL particle analyser.
(a) The image title, imaging method, and specimen type must be provided to begin each image 
processing procedure. (b) Click-based user interface of the IMACEL particle analyser. Users 
click on the image to select the most suitable processed image for each procedure, such as 
noise reduction, binarisation, and postprocessing. (c) Input image, (d) segmentation output 
image, and (e) quantitative segmentation output.
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Figure 3. Results of the IMACEL particle analyser for extracting and evaluating stress granules in 
COS7 cells.
(a) Input image, binarised image, and output image of the IMACEL particle analyser.  Comparison 
of the distribution of the number (b) and size (c) of stress granules against stress treating time 
evaluated using manual evaluation and IMACEL. Asterisks indicate significant differences 
(Mann–Whitney U test) between cells treated with 0.5 μM sodium arsenite for 15 min and 60 min 
(in number: p = 2.568 × 10−13 and p < 2.2 × 10−16, in size: p < 2.2 × 10−16 and p < 2.2 × 10−16). 
(d) Total time spent on manual analysis versus the computational time of the IMACEL particle 
analyser. We measured 65 images each for specimen treated for 15 min and 60 min. 
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Figure 4   Results of the IMACEL classifier for cell cycle classification with nucleuses visualised using 
fluorescent images.
(a) Representative images of each cell cycle in suspension-cultured plant cells. Nuclear regions were 
visualised using RFP-Histone H2B. (b) Distribution of the number of dataset images in each class. (c) 
Mean accuracy of cell cycle classification in seven-class and four-class classification using random 
forests and deep learning. For four-class classification, the prophase, prometaphase, and metaphase 
were integrated into the early mitotic phase. Anaphase and telophase were integrated into the late 
mitotic phase. (d) Accuracy of each cell cycle classification with bars representing the standard 
deviation based on three independent experiments.
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Supplemental Figure 1   Representative example of the manual evaluation of stress granules 
using ImageJ.

34



15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 60 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15

15 60 60
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

60
60 60 60 60 60 60 60 60 15 60 60 60 60 60 60 60 15 60 15 15 60 60 60 60 60 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
60

60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
60 60 60 60 60 60 60 60 60 60 60 60 15 60 60 60 60 60 60

60
60 60

60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

0
10

20
30

40

Cluster Dendrogram

hclust (*, "ward.D2")
dist

H
ei

gh
t

−6
−4

−2
0

2
4

6

Intensity

−6
−4

−2
0

2
4

6

Area

−6
−4

−2
0

2
4

6

Major

−6
−4

−2
0

2
4

6

Minor

−6
−4

−2
0

2
4

6

Circularity

−6
−4

−2
0

2
4

6

Aspect ratio

−6
−4

−2
0

2
4

6

Roundness

−6
−4

−2
0

2
4

6

Solidity

a 

b

Supplemental Figure 2. Morphological analysis of stress granules using hierarchical clustering.
(a)  Hierarchical clustering using ward method. Two largte cluster was cleary organized by stress 
granules treated for 15 mins and 60 mins, although small cluster of stress granules treated for 15 
mins was inserted in the cluster of 60 mins. Cluser generated by cells treated for 15 mins and 60 
mins were indicated as green and magenta. (b) Comparison of morphological features of stress 
granules treated for 15 mins and 60 mins. Double asterisks indicate significant differences 
(Mann–Whitney U test, P < 0.01).
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Supplemental Figure 3. Comparison of two diffenet cluster within the 15-min treatment cells. 
(a-b) Representative images of stress granules treated for 15 mins (a) and 60 mins (b). (c) 
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Supplemental Table 1   List of the implemented image processing methods in the 
IMACEL particle analyser. 
1. Colour channel extraction 

1. Greyscale 
2. Red channel of RGB colour 
3. Green channel of RGB colour 
4. Blue channel of RGB colour 
5. Hue channel of HSV colour 
6. Saturation of HSV colours 

2. Invert to black background  
3. Removing excessive bright regions 

1. Skip this operation 
2. Median filtering of bright regions (radius = 5–21 pixels) 

4. Shading 
1. Skip this operation 
2. Equalization of the global intensity histogram 
3. Equalization of the adaptive intensity histogram 

5. Noise reduction 
1. Skip this operation 
2. Gaussian filtering (sigma = 1 - 4 pixel) 

6. Edge enhancement 
1. Skip this operation 
2. Difference of Gaussian (sigma = 0.5, 4.0 or 0.5, 8.0) 

7. Binarisation 
1. Threshold = 50 
2. Otsu method 
3. Adaptive Gaussian 
4. Adaptive Mean 
5. Edge extraction using the Canny method (threshold = 100, 200 or 10, 50) 

8. Noise reduction using the closing method 
1. Skip this operation 
2. Closing (radius = 3–11 pixels) 

9. Fill holes 
1. Skip this operation 
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2. Filling 
10. Noise reduction using the opening method 

1. Skip this operation 
2. Opening (radius = 3–13 pixels) 

11. Contour extraction 
1. Simple segmentation 
2. Dividing using watershed (blob ratio = 1%–15%) 
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Chapter 2 
 

Quantitative evaluation of stromule frequency at hourly 

intervals in Arabidopsis stomatal guard cell chloroplasts 

 
 
 
 
 
 
 
 
 
 
 
 



 40 

Introduction 

In the previous chapter, I described the cell image analysis system IMACEL. 

Although the system is valuable for all cell image analyses, I examined whether it was 

possible to elucidate novel phenomena by analyzing the most complex intracellular 

structures. Consequently, I selected chloroplasts and organelles called stromules and 

proceeded with the analysis. 

 The chloroplast is one of several different types of plastid, all of which have 

common ancestral origins in photosynthetic cyanobacteria that are considered to 

have become organelles of eukaryotic cells by formation of intracellular symbioses. 

Compared with prokaryotic cells, chloroplasts appear to have acquired several new 

mechanisms related to the structure and specific functions of chloroplasts in plant 

cells. One mechanism is binary division of chloroplasts. Chloroplasts possess double 

membranes, and division of the inner membrane is achieved by means of the 

ancestral-type FtsZ ring, while the outer membranes divide by means of a complex of 

outer rings involving dynamin-related ARC5 (Chen et al. 2018). Another mechanism 

is chloroplast movement, termed chloroplast photorelocation, and involves cp-actin 

(Kadota et al. 2009, Suetsugu et al. 2010). Chloroplasts move within cells to 

accumulate in low light conditions or avoid high light conditions using 
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chloroplast-specific actin microfilaments, called cp-actin. Recent studies revealed 

involvement of cp-actin in photorelocation of nuclei to avoid high UV damage in 

Arabidopsis pavement cells (Higa et al. 2014, Suetsugu et al. 2016). A further 

mechanism is the occurrence of stromules.  

 Stromules are stroma-filled tubular structures that emerge from chloroplasts and 

other types of plastid. The direction of stromule protrusion is determined by three-way 

junction structures in the endoplasmic reticulum (Schattat et al. 2011) based on 

cytoskeletons (Kwok and Hanson 2004) and myosin motor proteins (Natesan et al. 

2009). It has been reported that stromule formation is induced by salt or drought 

stress (Gray et al. 2012), treatment with sucrose or glucose (Schattat and Klosgen 

2011) or strigolactones (Vismans et al. 2016), and by oxidation-reduction signals 

(Brunkard et al. 2015). Although stromules have roles in plant immunity (Caplan et al. 

2015), little is known about other physiological functions of stromules or the 

significance of their formation, extent of protrusion and frequency of occurrence. 

 Previous studies examined the frequency of stromule formation during a diurnal 

cycle. The frequency of stromule formation increased in light conditions in pavement 

cells of young leaves of Nicotiana benthamiana (Brunkard et al. 2015) and in rosette 

leaves of 6-week-old Arabidopsis (Schattat et al. 2012, Barton et al. 2018). Although 



 42 

Brunkard et al. reported that sucrose did not increase the frequency of stromule 

formation in Arabidopsis stomatal guard cells, the frequency of stromule formation in 

stomata is largely unknown (Brunkard et al. 2015). 

 In this study I performed detailed evaluation of stromule frequency in stomatal 

guard cells every hour during a diurnal cycle in developing and developed cotyledons 

of Arabidopsis. Quantitative evaluations revealed synchronized and periodic changes 

in stromule mean frequency in developing cotyledons. These results may shed light 

on the importance of stromule frequency and aid in investigations of the physiological 

roles of stromules.  

 

 

Materials and methods 

Plant materials 

A transgenic line of Arabidopsis thaliana, stably expressing the transit peptide of 

AtFtsZ1-1 and yellow fluorescent protein (YFP) fusion protein under the control of 

the CaMV35S promoter, was established as previously described (Chen et al. 2009). 

Arabidopsis seeds were sterilized and grown on plates with 0.8% (w/v) agar, 

supplemented with half-strength Murashige and Skoog medium without sucrose, in a 



 43 

growth chamber at 23.5°C with 12-h light and 12-h dark cycle or continuous light (100 

μmol m−2s−1 white light). To compare different growth stages of the seedlings reliably, 

all of the seeds were placed on the growth medium at 1-h point of the light condition. 

Seeds were placed on the 12-h light and 12-h dark cycle (Fig. 5, 6) or continuous light 

(Fig. 8) for 72 h. Germinated seedlings were used for experiment as 1 day old 

seedling, and ungerminated seeds were removed from the growth medium and were 

not used in this study.  

 

Cell staining 

To visualize plasma membranes in the leaf cells, leaves were immersed in water 

supplemented with 32 μM 

N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)-phenyl)hexatrienyl)pyridinium 

dibromide (FM4-64; Molecular Probes, Invitrogen) for 10 min.  

 

Microscope 

To acquire confocal images, I used the inverted platform of a fluorescence 

microscope equipped with a confocal scanning unit (CSU X1, Yokogawa) and a 

cooled CCD camera (Cool-SNAP HQ, PhotoMetrics). Maximum intensity projection 
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images were reconstructed from serial optical sections with a 0.1-μm step size using 

METAMORPH software (Universal ImagingA). The images were processed digitally 

using ImageJ software. 

 

Quantitative evaluation of stromule frequency and statistical analysis 

Counting of stromule frequency in stomatal guard cell chloroplasts was performed 

by two researchers working independently using ImageJ software and all 

experimental images were evaluated both of the researchers. At least two seedlings 

were used for image acquisition at each time point. Stromule frequency was 

determined by manually counting the number of chloroplasts with or without 

stromules and expressed as the percentage of the total number of chloroplasts 

counted per stomata that had visible stromules. Mean values and standard errors 

were calculated for each time point using the numbers of samples as specified in the 

Figures. I used standard error, not standard deviation, as error bars in the Figures, 

similar to previous study reporting stromule frequency (Brunkard et al. 2015). To 

evaluate the significance of differences in the mean frequency of stromules, I used 

the Mann–Whitney U test, calculated using free statistical software R and RStudio 

(versions 3.3.1 and 1.1.383, respectively). 
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Results  

Stromule frequency in light and dark conditions in Arabidopsis stomata 

 To examine the influence of a diurnal cycle on stromule frequency in stomatal 

guard cells I used seedlings of transgenic Arabidopsis that was stably expressing the 

transit peptide of AtFtsZ1-1 and YFP fusion protein under the control of 

the CaMV35S promoter (Chen et al. 2009). Seedlings were grown without sucrose to 

avoid induction of stromules by sucrose treatment, as reported in pavement cells and 

mesophyll cells (Schattat and Klosgen 2011), although Brunkard et al. (2015) 

reported that sucrose did not increase stromule formation in guard cells. I observed 

stomatal guard cell chloroplasts and counted the frequency of stromules in 1- and 

2-day old cotyledons, taken as a developing leaf, and 5-day old cotyledons, as a 

developed leaf. Abnormal morphology of chloroplasts in stomata has not been 

reported in wild-type seedlings (Fujiwara et al. 2018) and I observed normal 

morphology of the chloroplasts in stomata and pavement cells in this study (Fig. 5a).  

Quantitative evaluation of the frequency of stromules in stomata of 1-day old 

cotyledons during a diurnal cycle revealed that the mean frequency of stromules was 

significantly higher (P = 0.0242, Fig. 5b) in light than dark conditions, similar to the 
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results reported in Arabidopsis and N. benthamiana pavement cells (Schattat et al. 

2012, Brunkard et al. 2015, Barton et al. 2018). However, I found no significant 

difference between light and dark conditions in 2-day old seedlings (P = 0.2257, Fig. 

5b), and conversely, the mean stromule frequency was significantly higher in the dark 

period in 5-day old developed cotyledons (P = 0.001557, Fig. 5b). Unfortunately, 

significant differences were not observed in the result of IMACEL classifier (Fig. 5b). It 

may because of not using 3D future value. These results suggest that the difference 

in frequency of stromules between light and dark conditions varied depending on the 

developmental stage of the cotyledon.  

 

Detailed evaluation of stromule frequency at hourly intervals 

 To evaluate whether stromule frequency varied abruptly or gradually in the 

transition between light and dark conditions, I performed detailed observations of 

stromule frequency in Arabidopsis stomata at hourly intervals throughout the day in 

developing 1- and 2-day old seedlings and developed 5-day old seedlings. 

Surprisingly, quantitative evaluation revealed periodic increases and decreases in 

stromule mean frequency, with local peaks in frequency at 3–4-h intervals, 

independent of the developmental stage of the cotyledon, and similar results were 
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confirmed using manual evaluations (Fig. 6). Comparison of the periodic patterns in 

the developing cotyledons of 1- and 2-day-old seedlings revealed local peaks of 

stromule mean frequency at almost similar times (Fig. 6 a, b, d, e asterisks), although 

a synchronized periodic pattern was not apparent in the 5-day-old developed 

cotyledons (Fig. 6c, f). These results indicate that stromule mean frequency in 

stomata in developing Arabidopsis cotyledons was not constant but varied in an 

apparently synchronized and periodic pattern. Even under NaCl treatment conditions, 

it was confirmed that there is a rhythm every 2-4 hours in the occurrence frequency of 

stromules as in control (Fig. 7). It is suggested that the pathway for promoting 

stromule formation by NaCl addition and the pathway for increasing stromule 

formation frequency exist independently. 

 

Effect of lighting conditions on the periodic patterns of stromule frequency 

 To evaluate whether the lighting conditions of 12 h light and 12 h dark affected 

the periodic pattern of stromule frequency, I quantified the stromule mean frequency 

every hour for 24 h in 1-day old seedlings that were grown in continuous light. I found 

that the periodic pattern of stromule mean frequency was also observed in continuous 

light (Fig. 8). These results suggest that the periodic pattern of stromule mean 
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frequency in Arabidopsis stomata was independent of the lighting conditions. 

 

Discussion 

Detailed evaluation of stromule mean frequency at hourly intervals during the 

diurnal cycle 

In this study, I performed detailed observations of stromule frequency in 

Arabidopsis stomata at hourly intervals throughout the day, and quantitative 

evaluation revealed periodic patterns of stromule mean frequency. Previous studies, 

reporting that stromule frequency was increased in light conditions in Arabidopsis and 

N. benthamiana pavement cells, did not detect a periodic pattern of stromule 

frequency (Schattat et al. 2012, Brunkard et al. 2015, Barton et al. 2018). This may 

have been because of differences in the observational interval, as previous studies 

were performed at 2–4 h intervals. In my evaluation, re-analysis of all of the data 

every 1.5 or 2 h did not detect clear periodic patterns because some local peaks of 

stromule mean frequency were masked (data not shown). It may be necessary to 

observe stromule frequency using short intervals to detect rapid changes in frequency. 

Alternatively, it may be that periodic patterns of stromule mean frequency are specific 

to stomatal guard cells: I am currently investigating this possibility by evaluating 
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stromule frequency at short intervals in Arabidopsis pavement cells.  

 

Synchronized and periodic patterns of stromule mean frequency in developing 

cotyledons 

 In this study, I reported two new findings. First, stromule frequency in 

Arabidopsis stomatal guard cells varied between light and dark conditions, depending 

on the developmental stage of the cotyledon (Fig. 5b–d). Second, stromule mean 

frequency showed periodic patterns. Two key features in these results lead to our 

hypothesis for the basis of periodic patterns of stromule mean frequency in 

Arabidopsis stomata:  

1. Stromule frequency was periodic, with apparent local peaks in mean frequency 

at 3–4 h intervals, independent of the developmental stage of the cotyledon and of 

lighting conditions.  

2. The periodic patterns of stromule mean frequency were almost synchronized 

during the diurnal cycle, at least in the developing cotyledons of 1- and 2-day old 

seedlings. 

Although the periodic pattern of stromule mean frequency was not dependent on 

the light–dark cycle (Fig. 8), synchronization of the periodic pattern in developing 
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cotyledons was apparently dependent on lighting conditions, suggesting that the 

above two features of our results were maintained by at least two mechanisms. I 

suggest that a lighting condition-independent mechanism is involved in creating the 

periodic pattern of stromule mean frequency, while a lighting condition-dependent 

mechanism is involved in the synchronization of the periodic pattern during the 

diurnal cycle. 

 

Stromule frequency in light and dark conditions 

 One of my new findings was that stromule frequency was higher in light 

conditions in 1-day old seedlings and in dark conditions in 5-day old seedlings (Fig. 

5b, d). Obviously, these overall differences were composed of the sum of the 

short-term periodic patterns of stromule mean frequency. Stomata close and open 

from time to time, depending on the lighting conditions. It will be important to  
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determine whether the mechanisms of responding to lighting conditions and the 

closing and opening of stomata are related to stromule frequency.  

 

Roles of periodic patterns of stromule frequency 

 The physiological roles of the periodic patterns of stromule mean frequency 

revealed in this study remain completely unknown. It has been reported that 

stromules were induced by the immune response to bacterial infection and were 

connected to nuclear defense signaling in N. benthamiana epidermal cells and 

mesophyll cells (Caplan et al. 2015). Therefore, there is a possibility that stromules 

may be required in epidermal cells ahead of rapid defense responses. However, 

constant production of stromules may be a waste of energy and so it may be that 

Arabidopsis guard cells have a mechanism that varies stromule frequency throughout 

the day and enables an efficient defense response. 
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Figure 5. Representative images of chloroplasts with or without stromules and frequency of 

stromules in stomata of Arabidopsis seedlings of different ages.

(a) Chloroplasts visualized with YFP (left), plasma membrane visualized with FM4-64 (center) and merged 

image (right). Representative images of maximum intensity projections were constructed from serial optical 

sections with a 0.1-μm step size. Chloroplasts with and without stromules are shown in the enlarged images on 

the right. The scale bars in the merged image and enlarged image indicate 10 and 3 μm, respectively. (b) 

Frequency of stromules in stomatal guard cells of cotyledons grown in 12 h light and 12 h dark for 1 day, 2 days  

and 5 days then sampled during the light or dark periods (white and gray bars, respectively). Stromules were 

counted during a 1-h period for each time-point. I analyzed 5648–6170 plastids and at least 72 seedlings for each 

lighting condition, and the mean frequency of stromules (expressed as % of plastids with stromules) per stomata 

is shown. Error bars represent the standard error of 171–234 independent stomata. Asterisk and double asterisk 

indicate significant differences (U-test, P = 0.0242 and P = 0.001557, respectively) between mean stromule 

frequency in light and dark conditions.
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Figure 6. Mean frequency of stromules in stomata during a diurnal cycle in Arabidopsis seedlings of different ages.

The mean frequency of stromules was counted in stomatal guard cells of cotyledons of Arabidopsis grown for 1 day 

(a, d), 2 days (b, e) and 5 days (c, f) with a 12 h light and 12 h dark cycle. White and gray bars indicate light and dark 

conditions, respectively. Counts of stromules were obtained at hourly time-points over 24 h. We analyzed 68–264 

plastids and 2–3 seedlings at each time point, and the mean frequency of stromules (expressed as % of plastids with 

stromules) per stomata is shown. Error bars represent the standard error of 7–25 independent stomata. Asterisks 

indicate synchronized local peaks of stromule mean frequency in 1- and 2-day old seedlings.
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Figure 7. Mean frequency of stromules treated with 100 mM NaCl in stomata in Arabidopsis seedling.

The mean frequency of stromules was counted in stomatal guard cells of cotyledons of Arabidopsis grown 

for 3 day. Counts of stromules were obtained at hourly time-points 5-12 h from light condition. We 

analyzed 92–222 plastids and 2–3 seedlings at each time point, and the mean frequency of stromules 

(expressed as % of plastids with stromules) per stomata is shown. Error bars represent the standard error of 

10–27 independent stomata. 
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Figure 8. Mean frequency of stromules in stomata of Arabidopsis seedlings grown under continuous light.

The frequency of stromules was counted at hourly time points in stomatal guard cells of cotyledons of 

1-day old Arabidopsis seedlings grown under continuous light. We analyzed 96–283 plastids and 2 

seedlings at each time point, and the mean frequency of stromules (expressed as % of plastids with 

stromules) per stomata is shown. Error bars represent the standard error of 10–26 independent stomata.
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Figure 4   Results of the IMACEL classifier for cell cycle classification with nucleuses visualised using 
fluorescent images.
(a) Representative images of each cell cycle in suspension-cultured plant cells. Nuclear regions were 
visualised using RFP-Histone H2B. (b) Distribution of the number of dataset images in each class. (c) 
Mean accuracy of cell cycle classification in seven-class and four-class classification using random 
forests and deep learning. For four-class classification, the prophase, prometaphase, and metaphase 
were integrated into the early mitotic phase. Anaphase and telophase were integrated into the late 
mitotic phase. (d) Accuracy of each cell cycle classification with bars representing the standard 
deviation based on three independent experiments.
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Supplemental Figure 1   Representative example of the manual evaluation of stress granules 
using ImageJ.

34



 56 

Conclusion 

In the present study, we developed IMACEL, a novel cellular image analysis 

system capable of efficiently analyzing large image data sets in the life sciences. 

Based on the components of the system, its novelty was acknowledged and a patent 

acquired. This tool facilitates the analysis of large sets of images rapidly and 

efficiently. In addition, we examined the stromule, which is a tubular structure 

protruding from the plastid of the plant cell. We demonstrated that there was a regular 

pattern in its frequency of appearance using IMACEL. Also, notably, it was revealed 

that there is a regular pattern even under salt stress conditions, which reportedly 

induces the appearance in stromules, and rhythm formation is an independent 

mechanism different from induction of stromal emergence under salt stress. 

I aim to employ IMACEL in numerous types of research and contribute to the 

advancement of life sciences. In addition, although novel findings were presented 

regarding the occurrence frequency of stromules, I aim to analyse large data sets 

using IMACEL in the future to elucidate more detailed functions.
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	アートボード_3
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