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Abstract 

In live cell imaging, automatic segmentation algorithm is a powerful method to quantify time series 

of intracellular signal activity in living cells. Automatic segmentation algorithms have thus far been 

developed mainly for mononuclear and round shape cells. However, a segmentation method for 

elongated polynuclear cells, such as differentiated C2C12 cells, has yet to be developed. By 

differentiation induction, C2C12 forms myotubes and undifferentiated reserve cells, making it difficult 

to identify background regions and correct background intensity. In this study, I developed an 

automatic quantitative segmentation method for myotubes using watershed segmentation of summed 

binary images and a two-component Gaussian mixture model. I established a C2C12 cell line stably 

expressing Eevee-S6K, a fluorescence resonance energy transfer (FRET) biosensor of S6 kinase (S6K). 

Then live cell imaging was performed to acquire time-lapse fluorescence images of the differentiated 

C2C12 cells. I binarized the time-lapse images and summed the binary images to enhance the contrast 

between myotubes and reserve cells. This enabled identification of a myotube and a myotube center. 

Using a myotube center instead of a nucleus, individual myotubes could be identified automatically 

by watershed segmentation. In addition, a two-component Gaussian mixture model which fits to 

fluorescence intensity histogram enabled automatic background correction without manual selection 

of background regions. Thus, I provide an automatic quantitative segmentation method by combining 

automatic myotube identification and background correction. Furthermore, S6K activities in 
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individual myotubes were quantified using the developed method, demonstrating that some of the 

temporal properties of S6K activity such as peak time and half-life of adaptation show different dose-

dependent changes of insulin between cell population and individuals. 

 

Introduction 

Signaling dynamics of population and single-cell 

Cells sense various extracellular stimuli and nutritional conditions and determine biological processes 

including cell contraction, cellular growth, differentiation and apoptosis through regulation of 

intracellular signaling network [1]. To understand the mechanism of these biological processes, it is 

important to quantify dynamics of intracellular signaling pathway. Quantification of signaling 

molecules has widely been characterized by (i.e. phosphorylation) a snapshot at a specific timepoint 

in a bulk assay as a cell population such as western blotting [2], [3]. However, dynamics of signaling 

molecules in a single cell is sometimes different from that at a cell population [4]–[8], it is necessary 

to quantify dynamics of signaling molecules at a single-cell level resolution.  

 In recent years, with the development of observation technology and computer science, 

intracellular signal response can be captured and analyzed at single-cell level. Along with that, it is 

becoming clear that single-cell dynamics has time series properties masked by cell population 

responses [4], [5], [7], [8]. For example, J.E. Ferrell and E. M. Machleder reported that digital response 
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of mitogen-activated protein kinase in individual Xenopus laevis oocyte and its heterogenous response 

generates the analogue response in the population [4]. However, such a difference in cell population 

and single-cells has not been clarified so far whether a general nature in intracellular signal network. 

As described above, to clarify the correct dynamics of the intracellular signal molecule network, it is 

necessary to take a live cell time series for each cell type at single cell level.  

 

Live Cell Imaging 

In single-cell studies, live cell fluorescence imaging is a powerful method to observe single-cell 

dynamics of signaling molecule activity [9], [10]. However, since the live cell imaging generates a 

large amount of time lapse images, it requires automatic segmentation algorithm to identify and 

quantify individual cells. Automatic segmentation algorithms have thus far been developed mainly for 

mononuclear and round shape cells [11]–[13]. For example, the marker based watershed segmentation 

is widely developed and used for efficient cell segmentation [14]–[16]. Traditional procedure of the 

watershed segmentation is to expand a region from a marker (e.g. a nucleus) as an initial flooding 

source until it touches the neighbors or cellular boundaries. However, since watershed segmentation 

requires a marker, it cannot be applied directly for polynuclear cells, such as differentiated C2C12 

myotubes. 
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Automatic detection and quantification for elongated myotubes 

C2C12 cells, derived from mice myoblasts, have been widely used to study cell differentiation and 

muscle functions in vitro [17]–[20]. By differentiation induction, C2C12 cells forms two kinds of 

subpopulations, myotubes and undifferentiated cells (called reserve cells) (Fig. 1) [21]. The elongated 

polynuclear form of the myotubes makes it difficult to perform automatic quantitative segmentation 

of individual myotubes because of the variance of fluorescence signal intensity within a myotube 

region. In addition, undifferentiated cells that occupy spaces between the myotubes, make it difficult 

to automatically identify background regions. 

 

Insulin signaling and p70 S6 kinase 

Insulin is well known as a major anabolic signal and regulates metabolism such as fat synthesis and 

protein synthesis in target organs such as adipose tissue, liver, and muscle via activation of the insulin 

signaling pathway [22]. One of the key regulators in the insulin signaling pathway is the target of 

rapamycin (TOR). In mammals, TOR is called mammalian TOR (mTOR) and one of the important 

signaling molecules highly conserved [23], [24]. mTOR forms mTOR complex 1 (mTORC1) or 

mTOR complex 2 (mTORC2) in the cell, and monitors the external environment. Especially, mTORC1 

is known to enhance cell growth and protein synthesis by activating p70 S6 kinase (S6K) [25]. Also, 

it is known that constitutive activation of mTORC1 in skeletal muscle induces insulin resistance [26]. 

Thus, it is physiologically important to quantify the dynamics of S6K activated by mTORC1. 
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Purpose of this study 

As described above, single-cell response and cell population response may be different. However, the 

difference has not been clarified so far whether a general nature in intracellular signal network. Thus, 

it is necessary to quantify and analyze the dynamic response in each cell type and each signaling 

molecule at single cell level. 

 In this study, I developed an automatic quantitative segmentation framework including watershed 

segmentation and background correction, to detect individual myotubes. Furthermore, I demonstrate 

some of the temporal characteristics of S6K activity such as peak time and half-life of adaptation 

exhibit different insulin dose dependence between cell population and individuals.  

 I established a C2C12 cell line that stably expressed Eevee-S6K, a fluorescence resonance energy 

transfer (FRET) biosensor, which monitor S6 kinase (S6K) activity [27]. Then I acquired time lapse 

fluorescence images both of cyan fluorescent protein (CFP) and FRET-induced yellow fluorescent 

protein (FRET-YFP) in differentiated C2C12 myotubes. I performed binarization of each FRET-YFP 

image followed by summation of the images to enhance the contrast between myotubes and reserve 

cells. This allowed us to detect myotube regions. In addition, to enhance contrast between myotubes 

and reserve cells, I converted the binary images of FRET-YFP into distance map images where all 

pixels have a value corresponding to the Euclidean distance to the nearest boundary pixel [28]. This 
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procedure resulted in selective detection of myotube regions. Furthermore, to identify individual 

myotubes, I detected a myotube center, rather than a nucleus, as a marker of individual myotubes. First, 

I converted the binary images of FRET-YFP into distance map images. Then, I performed binarization 

of the distance map images followed by summation of the images to enhance myotube centers. Finally, 

using a myotube center as a marker instead of a nucleus, individual myotubes were identified 

automatically by watershed segmentation. 

 For accurate quantification, background correction is essential. However, reserve cells that 

occupy the spaces between the myotubes make it difficult to identify background regions. To acquire 

objective measurement of signal intensity, I estimated average background intensity using two-

component Gaussian mixture model (GMM) without manual selection of the background regions. 

 By using the automatic quantitative segmentation above, I quantified S6K activity in individual 

myotubes. This result demonstrated that some of the temporal characteristics of S6K activity such as 

peak time and half-life of adaptation show different dose-dependent changes of insulin between cell 

population and individuals. 
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Results 

Automatic quantitative segmentation of differentiated C2C12 myotubes. 

I developed an automatic quantitative segmentation method to identify individual myotubes from 

fluorescence time lapse images. The automatic quantitative segmentation method consists of two steps, 

Step I and II (Fig. 2). Step I is segmentation of differentiated C2C12 myotubes. In Step I, I summed 

the binary time-lapse images to enhance the contrast between myotubes and reserve cells. Step II is 

background correction. By using two-component GMM for fluorescence intensity histogram, I 

estimated average background intensity without manual selection of the background regions. The 

parameters used in each Steps were summarized in Table 1. 

 

Step I: Segmentation of differentiated C2C12 myotubes. 

In Step I, I detected myotube and myotube centers by iterating binarization including the triangle 

method and Otsu's method [29], [30] (Fig. 4Fig. 5), and the individual myotubes were identified by 

watershed segmentation using a myotube center as a marker (Fig. 6) [11]. Step I consisted of three 

groups that contained 11 substeps in total; Step I-i to I-iii, detection of differentiated C2C12 myotubes; 

Step I-iv to I-x, detection of differentiated C2C12 myotube centers; Step I-xi, Application of watershed 

segmentation. 
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Step I-i to I-iii: Detection of differentiated C2C12 myotubes. Detection of differentiated C2C12 

myotubes consists of three substeps, Step I-i to I-iii (Fig. 4); Step I-i, first binarization of FRET-YFP 

time-lapse images; Step I-ii, summation of the first binarized images; Step I-iii, second binarization 

of the summed image. 

 In Step I-i, I pre-processed the FRET-YFP time-lapse images to reduce variation in fluorescence 

(See Materials and Methods) and extracted candidate regions of myotubes in each image by 

binarization (Step I-i first binarization in Fig. 4). For the first binarization, I applied the triangle method 

to the fluorescence intensity histogram of the FRET-YFP [30], because the intensity histogram was 

skews to the left (Fig. 4B). When using triangle method, I standardized the total area of the intensity 

histogram to be one prior to using the triangle method to prevent change of the threshold value due to 

the number of pixels. However, the binary images included not only myotube regions and also 

fragmented regions of reserve cells. To extract only myotube regions, enhancement of the contrast 

between myotubes and reserve cells will be needed. 

 In Step I-ii, I summed the binary images (Step I-ii Summation in Fig. 4A). By the summation, 

the contrast between myotubes and reserve cells were enhanced because the myotubes were thicker 

and brighter than reserve cells. 

 In Step I-iii, I extracted myotube regions by binarizing the summed binary images. (Step I-iii 

Second binarization in Fig. 4A). The threshold of the second binarization was determined using the 
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Otsu’s method because the intensity histogram of the summed image was bimodal (Fig. 4C). Otsu’s 

method is a statistical thresholding method to find a threshold that minimizes the within-class variance 

[29]. Thus, I detected myotubes by iterating binarization including the triangle method and Otsu's 

method, using the summed binary image of FRET-YFP time-lapse images (Fig. 4D). However, some 

of the myotubes were identified as one continuous region rather than as individual myotubes. 

Additional segmentation is required to identify individual myotubes. 

 

Step I-iv to I-x: Detection of differentiated C2C12 myotube centers. In fluorescence imaging, 

watershed segmentation has been widely used to identify individual cells [11]. However, since 

watershed segmentation using a nucleus as a marker, polynuclear and elongated shape cells such as 

myotubes could not be identified so far. Therefore, I extracted a myotube center, instead of a nucleus, 

as a marker for watershed segmentation. 

 Detection of differentiated C2C12 myotube centers consists of seven substeps, Step I-iv to I-x 

(Fig. 5A); Step I-iv, first binarization of FRET YFP time lapse images; Step I-v, transformation from 

the first binary images into distance map images; Step I-vi, second binarization of the distance map 

images; Step I-vii, summation of the second binary images; Step I-viii, thrird binarization of the 

summed images; Step I-ix, labeling of the third binary image; Step I-x, denoising of the labeled image. 

 In Step I-iv, I binarized smoothed images by triangle method for extracting candidate regions of 
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myotubes. 

 In Step I-v, I transformed the binary images into distance map images to emphasize myotube 

centers (Step I-v Distance transform in Fig. 5A). However, some regions in the center of myotube 

were not emphasized by the presence of nuclei. This leads over-segmentation of the regions of 

myotube center. 

 In Step I-vi, to extract candidate regions of myotube center, I binarized the distance map images 

by triangle method (Step I-vi Second binarization in Fig. 5A). Then I summed the binarized images to 

enhance the contrast between myotube centers and the other regions (Step I-vii Summation in Fig. 

5A). Because a nucleus moved frequently within a myotube, the summation of the binarized images 

attenuated the influence of nuclear existence. 

 In Step I‑viii, to extract regions of myotube center, I binarized the summation of the binarized 

images by Otsu’s method (Step I-viii Third binarization in Fig. 5A). 

 In Step I-ix, I labeled the third binary image with one continuous region as one myotube center 

(Step I-ix Labeling in Fig. 5A). Although the labeled image appeared to be successful in detecting 

myotube centers, it contained lots of small debris ranging from one to dozens of pixels in length (Figs. 

Fig. 5B, C). This leads over-segmentation of individual myotubes when using a region of myotube 

center as a marker for watershed segmentation.  

 In Step I-x, therefore, I performed skeletonization of the labeled image, then removed the debris 
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by the short length. Skeletonization is a thinning algorithm that removes outer pixels of a region to 

find its medial axis and a length was defined as a number of pixels of a skeletonized region. Since the 

length histogram of the myotube centers was skewed to the left, the threshold of the length was 

determined using triangle method for the histogram (Fig. 5C). Thus I identified individual regions of 

myotube center by removing the regions smaller than the threshold (Step I-x Denoising in Fig. 5A, 

Table 1). 

 Throughout the first ten substeps (Step I-i to I-x), I obtained an individual myotube region as a 

boundary for watershed segmentation, and an individual myotube center as a marker for watershed 

segmentation. This allowed me to identify regions of individual myotube by watershed segmentation 

using a region of myotube center as a marker. 

 

Step I-xi: Application of watershed segmentation. In Step I-xi, using the individual regions of 

myotube center in Step I-x as the markers, watershed segmentation was applied to the myotube regions 

identified in Step I-iii. The regions of individual myotube were identified by removing the regions 

smaller than a threshold (Fig. 6). 

 

Performance of segmentation. 

In this study, the use of iterative binarization including the triangle method and Otsu's method enabled 
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me to develop an automatic segmentation method of individual myotubes. However, the changes of 

excitation intensity and number of time-lapse images could affect the segmentation performance 

because the thresholding methods including triangle method and Otsu's method are based on the 

intensity histogram of an image. Therefore, to test the segmentation performance, I manually selected 

ground truth of myotube regions from the MIP image as the reference for the test (Fig. 7). Then I 

compared the segmentation performance of the developed method with other conventional 

segmentation methods (Otsu's method and triangle method) by fluctuating excitation light 

transmittance and the number of time-lapse images (Fig. 8).  

The segmentation performance was evaluated based on Jaccard index [31] calculated between the 

ground truth and the regions identified by each method. The Jaccard index is an indicator of the 

similarity between two regions [11], and defined as 

Jaccard index =
𝑋 ∩ 𝑌

𝑋 ∪ 𝑌
, (1) 

where 𝑋 and 𝑌 are the regions of interest. The higher value of the index, the more similarity. Note 

that, like the ground truth, identification of the myotube regions by triangle method and Otsu's method 

used the MIP image. It was an advantageous performance comparison to Otsu method and triangle 

method. Also note that it is difficult to manually select perfect regions of myotubes because the 

boundaries of myotube are ambiguous. 

 With 12 % or less transmittance of excitation light, Jaccard index of developed method was 
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significantly higher than the conventional methods. (Fig. 8A). This result indicates that our method is 

more robust to change in excitation intensity than the conventional segmentation methods. For 

reduction of number of images, there is no significant difference under every condition (Fig. 8B). 

These results suggest that the segmentation performance of developed method is comparable to the 

conventional methods, in the change of the number of images. In addition, developed method has an 

advantage that adjacent myotubes can be identified individually by implementing detection of 

myotube center as a marker for watershed segmentation. 

 

Step II: Background correction. 

The various factors, such as the setup of the optical system, properties of the detector, and the 

fluorescent probe, often make the background intensity non-uniform even in a same field.  

Furthermore, in live cell fluorescence imaging, researchers often perform the imaging with weak 

excitation light to prevent photo-bleaching and photo-toxicity of the cells. However, this generates as 

image with a low signal-to-noise ratio. In ratiometric data, such as the FRET ratio, failure to identify 

of background regions causes serious artifacts when quantifying signal intensity. Therefore, the proper 

background correction is required [32]. 

 The method manual selection of background regions near the regions of interest followed by 

subtraction of the intensity has been widely used for background correction [18], [33], [34]. However, 
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in the case of differentiated C2C12 cells, existence of reserve cells between myotubes makes it difficult 

to identify background regions (Fig. 1). Therefore, to avoid the selection of background region, a two-

component Gaussian mixture model (GMM) which fits to a fluorescence intensity histogram was used 

for background correction. 

 Background correction consisted of five substeps (Fig. 9); Step II-i, maximum intensity 

projection (MIP) of smoothed FRET-YFP time-lapse images, Step II-ii, binarization of the MIP image; 

Step II-iii, NOT AND (NAND) operation on the raw time lapse fluorescence images and binary MIP 

image; Step II-iv, estimation of background intensity using two-component Gaussian mixture model 

(GMM). Step II-v, signal intensity quantification of individual myotubes. 

 In Step II-i, I performed MIP to keep only the pixels of maximum intensity along the z-axis of 

stacked images. The MIP can emphasize the pixels where the myotubes existed through the time series 

(Step II-i in Fig. 9). 

 In Step II-ii, binarization of the MIP images enabled reliable separation of the pixels where the 

myotubes existed through the time series from other pixels including reserve cells and background 

regions (Step II-ii in Fig. 9). 

 In Step II-iii, to extract a region composed of reserve cells and background regions, I performed 

the NAND operation on the raw time-lapse fluorescence images and the binary MIP image (Step II-iii 

in Fig. 9). 
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 In Step II-iv, since the regions of except for myotubes consists of reserve cells and background, 

I used the two-component GMM to estimate intensity distributions of background in CFP and FRET-

YFP time-lapse images, respectively (Step II-iv in Fig. 9). In the two-component GMM, the histogram 

was divided into two components of Gaussian distributions which corresponded to intensity 

distribution of a region that included reserve cells and background regions. The background intensity 

was estimated as an average of the lower component. 

 In Step II‑v, signal intensities of CFP and FRET-YFP in individual myotubes were quantified 

after subtraction of the estimated background intensity from each time-lapse image. Then I calculated 

a time series of the FRET ratio (FRET-YFP/CFP) (Step II-v in Fig. 9). 

 

Performance of background correction. 

For evaluating performance of the background correction, I compared the performance of background 

correction using two-component GMM with other histogram-based background correction methods 

using raw histogram (RAW) and kernel density estimation (KDE) (Fig. 10). In a background correction 

using RAW, background intensity was estimated as the mode intensity of the histogram. In background 

correction using KDE, background intensity was estimated as the mode intensity of the histogram, 

approximated by kernel density estimation. 

 In the all background corrections using RAW, KDE and two-component GMM, Steps II‑i to II‑iii 
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are common steps. In Step II-iv, I estimated the background intensities using RAW, KDE and 

two-component GMM, respectively. In Step II-v, By using each method for estimation and correction 

of background intensity, the signal intensities of CFP and FRET-YFP in individual myotubes were 

quantified and calculated time series of the FRET ratio (FRET-YFP/CFP) (Fig. 10A, upper panel).  

 As the performance of the background correction, I calculated an area under the curve (AUC) of 

the absolute first-order difference of the time series of FRET ratio. The AUC is described by 

𝑑𝑖 = |𝑦𝑖 − 𝑦𝑖−1|, (2) 

𝐴𝑈𝐶 = ∑
∆𝑡

2
(𝑑𝑖 + 𝑑𝑖+1)

𝑁−1

𝑖=1

, (3) 

Where {𝑦1, 𝑦2, … , yN} is the time series of the FRET ratio at a frame index i, N is the total number of 

frames, {𝑑1, 𝑑2, … , 𝑑𝑁−1}  is the absolute difference between 𝑦𝑖   and 𝑦𝑖−1 , ∆𝑡  is the time interval 

between frames (Fig. 10A, lower panel). 

 The median of the AUC when using two-component GMM was significantly smaller than those 

using RAW or KDE (Fig. 10B). This indicates that the two-component GMM has the best performance 

among the three methods. Furthermore, when using two-component GMM, the estimated distributions 

are continuous and the parameters including the mean and the variance are automatically determined. 

These are advantages not in RAW and KDE. 

 I compared the performance of background correction using two-component GMM with other 

background correction methods using semi-automatic two-component GMM and manual estimation. 
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(Fig. 7Fig. 11). In the semi-automatic two-component GMM and manual estimation, I generated the 

MIP image from FRET-YFP time-lapse images, then manually selected ground truth of the myotubes 

(Fig. 7). Especially in the semi-automatic two-component GMM, the background intensity was 

estimated using two-component GMM that fits to an intensity histogram of the regions except for the 

ground truth of the myotubes. In the manual estimation, the background intensity was estimated as an 

average intensity of manually selected three regions. By using each background correction method, I 

quantified signal intensities of CFP and FRET-YFP and calculated a time series of the FRET ratio (Fig. 

11A). Then, I calculated the AUC in eq. (3) for evaluating the performance of background correction. 

 There was no significant difference in median of the AUCs among the three background 

correction methods. This indicates that the performance of background correction using two-

component GMM is comparable to the manual estimation (Fig. 11B). Furthermore, the two-

component GMM has an advantage to provide objective quantification. 

 In an intramolecular FRET biosensor such as Eevee-S6K, fluorescent molecules of CFP and YFP 

are linked by a linker domain, and a total variation of the time series of CFP and FRET-YFP should 

show a high correlation in a steady state. Therefore, I calculated the coefficients of determination of 

the AUCs in eq. (3) between CFP and FRET-YFP when using each background correction method 

including RAW, KDE, Manual, Semi-automatic two-component GMM and two-component GMM 

(Fig. 12). The background correction using two-component GMM shows the highest coefficient of 



20 

 

determination of the AUCs, indicating that the background correction using two-component GMM is 

the most reasonable method for background correction among them. 

 Furthermore, I conformed whether the developed method using two-component GMM can be 

used for myotubes under other conditions, such as myotubes stimulated with insulin or myotubes 

expressing an ATP probe stimulated with an electrical pulse stimulation (Fig. 13A and B). To confirm 

the availability under other conditions, first I chose the pairs of myotube regions where the Jaccard 

index between manual selection and the identification by the developed method was larger than 0.5. 

Then I calculated a correlation coefficient of the time series of FRET ratio in each pair. In insulin 

stimulation for differentiated C2C12 cells stably expressing Eevee-S6K, most of the correlation 

coefficients were larger than 0.98, indicating that the developed method is comparable to the manual 

estimation (Fig. 13C, upper panel). In electrical pulse stimulation for differentiated C2C12 cells stably 

expressing mitAT1.03, which is FRET biosensor for monitoring ATP concentration in a mitochondrion 

[35], all the correlation coefficients were larger than 0.98 (Fig. 13C, lower panel), indicating that 

developed method is comparable to the manual estimation. 

 

The different characteristics between cell population and individuals in C2C12 myotubes. 

The developed method aims to acquire time series of fluorescent intensity in individual myotubes from 

fluorescence time-lapse images. Using the developed method, I tried to quantify insulin-dependent 
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S6K activation and looked for different characteristics between cell population and individual 

myotube. 

From the obtained fluorescence time lapse images, I quantified time series of S6K activity in 

individual myotubes stimulated with various dose of insulin (0 nM to 100 nM) (Fig. 14A). Then I 

quantified the characteristics such as Peak, Peak time, AUC, etc., from the time series (Fig. 14A lower 

right panel, B). In the cell population, Peak, AUC, Half-life of adaptation and Intensity at half-life of 

adaptation increased dose-dependently of insulin. Variance in Peak time decreased, and Adaptation 

precision slightly decreased dose-dependently of insulin. 

The correlation analysis of characteristics in between bootstrap subset (Bootstrap) as the cell 

population and all data (All) as the individuals was performed to investigate the difference between 

the cell population and the individuals (Fig. 15). The correlation of Peak time with all other 

characteristics were significantly different between the cell population and the individuals. The reason 

why the Peak time was significantly different in the combinations with all characteristics may be 

because the variance of Peak time decreased dose-dependently of insulin (Fig. 14B). Consistent with 

this, the correlations between Peak time with all other properties were decreased in a dose-dependent 

manner of insulin (Fig. 16).  Also, the correlation of Half-life of adaptation with all other properties 

were significantly different between the cell population and the individuals. This indicates that Half-

life of adaptation shows different responses between the cell population and individuals. In Half-life 
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of adaptation, differences in the characteristics except for Peak time between the cell population and 

individuals can be classified into three groups that show higher correlation in the cell population than 

the individuals, higher correlation in the individuals than the cell population, and reversed relationship 

between the cell population and individuals (Fig. 15). 

In the combinations with Half-life of adaptation, Peak and AUC showed stronger correlation in the 

cell population than in the individuals (Fig. 15A, B). Consistent with this, the distributions of Peak 

and AUC were more separated in the cell population than the individuals (Fig. 17A). Adaptation 

precision showed higher correlation with Half-life of adaptation in the individuals than in the cell 

population (Fig. 15A, B). Furthermore, in the individuals, the correlation of Half-life of adaptation 

with Adaptation precision in each dose decreased dose-dependently of insulin (Fig. 16 bottom center, 

Fig. 17B). This indicates that the combination of Half-life of adaptation and Adaptation precision in 

individuals conserves characteristic response not found in the cell population. In the combination of 

Intensity at half-life of adaptation and Half-life of adaptation, the correlation in the cell population 

was positive, whereas in the individuals was negative (Fig. 15A, B). The distribution of Half-life of 

adaptation and Intensity at half-life of adaptation for each dose varied in the negative correlation 

direction in individuals, but not in the cell population (Fig. 17C). Furthermore, the correlations 

between Half-life of adaptation and intensity at Half-life of adaptation in each dose of insulin were 

negative in the individuals (Fig. 16 bottom right). These results indicate that the individuals possess 
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hidden characteristics that can not be seen in the cell population. Thus, some of the characteristics of 

insulin dose-dependent S6K activation differ between the cell population and the individuals.   
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Materials and methods 

Cell Culture 

C2C12 cells (kindly provided by Takeaki Ozawa, University of Tokyo, Tokyo, Japan) were cultured 

at 37°C under 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM), (High Glucose) with 

L-Glutamine and Phenol Red (Wako Pure Chemical Industries Limited, Osaka, Japan) supplemented 

with 10% fetal bovine serum (Nichirei Bioscience Incorporated, Japan). For differentiation induction, 

C2C12 cells were seeded on 35 mm/Collagen Coated Dish Collagen type I (IWAKI, Japan) at a 

concentration of 1.0×105 cells/dish and cultured for two days under conditions described above until 

confluent, and then confluent cells were cultured in DMEM with L-Glutamine and Phenol Red 

supplemented with 2% horse serum (Nichirei Bioscience Incorporated) for seven days [36]. 

 

Construction of C2C12 cell line stably expressing FRET biosensors. 

C2C12 cells stably expressing FRET biosensors, Eevee-S6K (plasmid was kindly provided by 

Kazuhiro Aoki, National Institute for Basic Biology, Aichi, Japan) [27], [37] and mitAT1.03 (plasmid 

was kindly provided by Hiromi Imamura, Kyoto University, Kyoto, Japan) [35], were constructed 

using the PiggyBac Transposase System (System Biosciences, U.S.A.), respectively. Three hundred 

μL of Opti-MEM (Life technologies, U.S.A.), 4 μL of Lipofectamin 2000 (Invitrogen, U.S.A.), 1.0 μg 

of PiggyBac transposon vector clone (kindly provided by Kazuhiro Aoki, National Institute for Basic 
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Biology, Aichi, Japan) and 0.2 μg of PiggyBac transposase expression vector (PB210PA-1, Funakoshi, 

Japan) were mixed and let stand for 5 min. Thereafter, 70% confluent C2C12 cells were plated on a 

35 mm dish and transfected with the mixture and incubated for 6 h. For selection of infected cells, the 

cells were cultured with DMEM (High glucose) with L-Glutamine and Phenol Red containing 10% 

fetal bovine serum and 20 μg/mL of Blasticidin S Hydrochloride (Wako, Japan). Selected cells were 

seeded on a Cell Culture Dish 430167 (Corning Incorporated, U.S.A.) and cultured until forming the 

colonies. The colonies were picked and seeded on a Cell Culture Dish 430167. After seeding and 

proliferation, the cells were stored at a concentration of 1.0×105 cells/mL with Bambanker (NIPPON 

Genetics, Japan). Eevee-S6K is localized in the cytosol and mitAT1.03 is localized in the mitochondria. 

 

Live-cell imaging. 

C2C12 myotubes were starved in 2 mL of Medium199, Hanks’ Balanced Salts (Life technologies, 

U.S.A.) overnight and then mineral oil (Sigma Aldrich) was stratified to prevent vaporization of the 

medium prior to the fluorescence time-lapse imaging. Fluorescence time-lapse imaging was performed 

with an inverted fluorescence microscope, IX 83 (Olympus, Tokyo, Japan) equipped with a 

UPLSAPO10X2 objective lens (Olympus), a ORCA-R2 C10600-10B CCD camera (Hamamatsu 

Photonics), a U-HGLGPS mercury lamp (Molecular Devices, Sunnyvale, CA), XF3075 and XF3079 

emission filter for CFP and YFP (Omega Optical), respectively, and an MD-XY30100T-META 
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automatically programmable XY stage (Molecular Devices).  

 All the images of myotubes were 1344×1024 pixels and 0.645 μm/pixel. Time-lapse images of 

myotubes expressing Eevee-S6K were acquired for 650 min every 5 min (total 131 frames) with eight 

stage positions. Time-lapse images of myotubes expressing mitAT1.03 were acquired for 45 min every 

1 min (total 46 frames) with one stage position. After background subtraction, FRET-YFP/CFP ratio 

images were created with Meta-Morph software (Universal Imaging, West Chester, PA).  

 

Pre-processing of images. 

A myotube region in an obtained fluorescence image shows a non-uniform distribution of fluorescence 

because of its polynuclear and elongated form. For proper identification of myotube regions, 

smoothing of obtained images is essential. I first applied a median filter to remove outliers [38] 

followed by white top-hat filter to reduce variation of fluorescence intensity (Fig. 3). 

 

Image analysis. 

Our proposed method was developed using Python and Python modules, including Mahotas [39], 

Scikit-image [40] and Scikit-learn [41] for automatic quantification. Fiji [42] was used for manual 

quantification of fluorescence intensity of FRET-YFP and CFP. The FRET-YFP and CFP intensities 

were averaged over the whole myotube area.  
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Significance test of the difference between two correlation coefficients.  

Fisher’s z-transformation of correlation coefficients 𝑟 is given by  

𝑧𝑖 =
1

2
ln

1 + 𝑟𝑖

1 − 𝑟𝑖
, 𝑖 ∈ {1,2},  (3) 

where 𝑖 is an index of correlation coefficient. A z score of the difference between two correlation 

coefficients, described by 

𝑧 =
𝑧1 − 𝑧2

√
1

𝑛1 − 3 +
1

𝑛2 − 3

,  (4) 

where 𝑛1 and 𝑛2 are numbers of data corresponding to 𝑟1 and 𝑟2. As the z score follows normal 

distribution, significance test was performed with significance level α = 10−3, 10−5, 10−7. 

 

Discussions 

Advantages of the developed segmentation method. 

In previous research, many cellular segmentation algorithms have been developed for mononuclear 

and round shape cells [11], [12], [43]. However, methods for automatic segmentation of elongated 

polynuclear cells, such as differentiated C2C12 cells, has not yet been developed. Indeed, intracellular 

signal activity and reactive oxygen species in myotubes have been measured only by manual selection 

of myotube regions [18], [33], [34]. Since the developed method can be used in unsupervised, it can 

be used for any type of polynuclear and deformed cells. However, it is difficult to apply the developed 
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method to moving cells because cell tracking does not include in the developed method. Using our 

method for images every fixed period and implementing cell tracking, there is a possibility that our 

method can be applied to moving cells. Since the developed method uses time-lapse images to enhance 

contrast between the background and the objects, the segmentation may fail if the number of images 

is insufficient.  

 Using deep learning, some recent studies achieved improvements of accuracy and throughput of 

segmentation of cells [44]. Deep learning is a powerful tool for cellular segmentation of the complex 

region with high accuracy and high throughput and may be used effectively for elongated polynulcear 

cells, such as C2C12 myotubes. While the deep learning has wide range of availability, it requires a 

large amount of training data and computational resources in general. Therefore, a segmentation result 

by deep learning depends on the training data. Especially, in cells with ambiguous cell boundaries 

such as myotubes, there is possibility to learn bias of manual selection of the myotube regions. On the 

other hand, developed method does not require any training data and few computational resources. 

 The calculation time of the developed method was less than 15 min even when processing 131 

images including from segmentation to quantification, using AMD Ryzen 7 1800X (Table 2).  

When only performing the segmentation, the developed method took about 30 sec for one dataset (131 

frames). This is fast enough compared with manual segmentation which took about 15-20 min using 

ROI tool in Fiji. In background correction, two-component GMM took about 3 sec per image. Since 
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the developed method was fully automated after setting the parameters for the segmentation (Table 1), 

the consuming time of two-component GMM is practical time. This is practical time, because our 

method was fully automated after setting the segmentation parameters. 

 

Heterogeneity of cell response. 

I quantified S6K response for insulin stimulation in individual myotubes and demonstrated that the 

individuals possess hidden characteristics that can not be seen in the cell population. This raises the 

possibility that some of the characteristics may be underestimated or incorrectly estimated by the cell 

population analysis. Therefore, single-cell analysis is important to reveal hidden characteristics of the 

cell system that can not be observed in the cell population. In addition, single-cell analysis will address 

whether variation of cell population is derived from intra-cellular variation or inter-cellular variation. 

For instance, to quantify information transmission of intracellular signaling within these variations, 

the information theory is needed to handle a distribution of cellular response as an information [45]–

[49]. 

 Signal transduction in skeletal muscle has thus far been studied by conventional bulk assays such 

as western blot, that reflect the activity at cell population level [50]–[54]. In contrast, the developed 

method can automatically identify and quantify signal activity of single myotube, and will open the 

door to single-cell analysis in signal transduction of skeletal muscle.   
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Figures and tables 

 

Fig. 1 Differentiated C2C12 myotubes stably expressing Eevee-S6K. Differentiated C2C12 cells 

stably expressing Eevee-S6K (Yellow). Nuclei were stained with DAPI (Blue). Because myotubes are 

much thicker than reserved cells, myotubes (red arrows) were much brighter than reserve cells (green 

arrows). Because of the relatively weaker fluorescence signal in reserve cells, only nuclear signals, 

but not cell body signals, were visible. 
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Fig. 2 Procedures of the automatic quantitative segmentation of myotubes using time-lapse 

images. The automatic quantitative segmentation method consists of two steps, Step I and II; Step I, 

myotube segmentation; Step II, background correction. 
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Fig. 3 Pre-processing of fluorescence images. I applied median filter with 𝟓 × 𝟓 square window to 

the raw FRET-YFP time-lapse images. Then, I applied white top-hat to images processed by the 

median filter. Filter window of the white top-hat is 𝟑𝟓 × 𝟑𝟓  and 𝟑𝟎 × 𝟑𝟎  in identification of 

myotubes and identification of myotube centers, respectively. 
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Fig. 4 Detection of differentiated C2C12 myotubes. (A) Detection of myotubes consisted of three 

substeps; Step I-i, first binarization; Step I-ii, summation; Step I-iii, second binarization. In step I-ii, 

the intensity increases from blue to red. (B) FRET-YFP intensity histogram at frame 0. Red line 

indicates the threshold value, which was determined by the triangle method. (C) Intensity histogram 

of the summed binary image. The red line indicates the threshold value, as determined by Otsu’s 

method. (D) Labeled images of detected myotubes. One color corresponds to one continuous myotube 

region. Black denotes a region of either reserve cells or background. 
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Fig. 5 Detection of myotube centers. (A) Detection of myotube centers consists of seven substeps; 

Step I-iv, first binarization of fluorescence time-lapse images; Step I-v, transformation of the first 

binary images into distance map images; Step I-vi, second binarization of the distance map images; 

Step I-vii, Summation of the second binary images; Step I-viii, third binarization of the summed 

images; Step I-ix, labeling of the third binary image; Step I-x, denoising of the labeled image. Note 

that in Step I-v and I-vii, colors denote intensity in a pixel, whereas, in Step I-ix and I-x, one color 

corresponds to one continuous region. Black indicates either reserve cells or background regions. (B) 
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Skeletonized image of a labeled image. (C) Length histogram of a skeletonized image. We assumed 

that length is a number of pixels in a continuous region of a skeletonized image. The red line indicates 

threshold length determined by the triangle method.  
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Fig. 6 Watershed segmentation. (A) Myotubes and myotube centers were identified from time-lapse 

FRET-YFP images. An identified myotube was used as a boundary for watershed segmentation. An 

identified myotube center was used as a marker for watershed segmentation. Watershed segmentation 

was performed using identified myotubes and myotube centers, areas that were less than 10000 were 

removed. (B) Overlays of raw FRET-YFP time-lapse image at frame 0 and the result of watershed 

segmentation. Yellow lines indicate contours of segmented myotube regions. 
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Fig. 7 Manual selection of myotube regions. I generated MIP images from the pre-processed 

FRET-YFP time-lapse images and manually selected the myotube regions and background regions, 

respectively. The yellow line indicates myotube regions. The green line indicates background regions. 

I transposed the regions to raw time-lapse images of CFP and FRET-YFP and quantified intensities of 

CFP and FRET-YFP in each region. Three background regions were selected, and the average of the 

intensities was used as background intensity.  
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Fig. 8 Accuracy of segmentation. (A) Left panel: Representative segmentation results with the 

indicated transmittance of excitation light (25%, 12%, 6% and 3%). Yellow lines are contours of 

individual myotubes. Right panel: Jaccard indices in each transmittance of excitation light (median 

± iqr, n = 8 stage positions). Segmentation result of ground truth was used as the reference to 

calculate the Jaccard index. N. S. (Not significant), p > 0.05 (Welch’s t-test). p values were corrected 

by Bonferroni correction. (B) Representative segmentation results when changing the number of time-

lapse images by resampling every two to ten images. Full shows segmentation results using the full 
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set of the images. Every 2, Every 5 and Every 10 indicate segmentation results obtained by resampling 

the images at every two, five and ten time points, respectively. Transmittance was set to 25%. Right 

panel: Jaccard indices in each number of time-lapse images (median ± iqr, n = 8 stage positions).  
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Fig. 9 Background correction. Background correction consists of five substeps; Step II-i, maximum 

intensity projection (MIP); Step II-ii, binarization of the MIP image; Step II-iii, NOT AND (NAND) 

operation; Step II-iv, two-component Gaussian mixture model (GMM). Step II-v, signal intensity 

quantification. In Step II-iii, the intensity increases from blue to red. In Step II-iv, a red line indicates 

estimated background intensity distribution and a red dashed line indicates an average of the 

distribution as the estimated background intensity. A yellow line indicates the estimated intensity 

distribution of a region that included reserve cells and dead cells. In Step II-v, each blue line 

corresponds to the time series of each individual myotube. A red line indicates the average time series 

of the FRET ratio of myotubes in each background correction.  
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Fig. 10 Comparison of accuracy of background corrections using RAW, KDE and 

two-component GMM. (A) Upper panels: time series of the FRET-ratio (FRET-YFP/CFP) of 

individual myotubes in RAW, KDE, and GMM, respectively (n = 96, eight stage positions). Here, we 

used the same time lapse fluorescence images for all background corrections using RAW, KDE, and 

two-component GMM. One blue line corresponds to the time series of one myotube. The red line 

indicates the average time series of FRET ratio of myotubes in each background correction. Lower 

panels: absolute first-order difference of the time-series of the FRET ratio of individual myotubes in 
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each background correction. The red line indicates the mean time series of the absolute first order 

differential time series. (B) AUC distributions of the absolute first order difference of the time-series 

of myotubes in each background correction. *, p < 0.05 (Steel-Dwass test). In each violin plot, box 

plots are shown in the inset, and a white dot denotes the median.  
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Fig. 11 Comparison of accuracy of background correction using Manual and semi-automatic 

two-component GMM. (A) Upper panels: time series of the FRET ratio (FRET-YFP/CFP) of 

individual myotubes in Manual and semi-automatic two-component GMM, respectively (n = 80, eight 

stage positions). The result of background correction using automatic myotube segmentation and 

two-component GMM in Fig. 10 was shown (two-component GMM). One blue line corresponds to 

the time series of one myotube. The red line indicates the average time series of the FRET ratio of 

myotubes in each background correction. Lower panels: absolute first order difference of time series 
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of the FRET ratio of individual myotubes in each background correction. The red line indicates the 

average time series of the absolute first order difference of the time series. (B) AUC distributions of 

the absolute first order difference of the time-series of myotubes in each background correction. N. S. 

(Not significant), p > 0.05 (Steel-Dwass test). In each violin plot, box plots are shown in the inset, and 

a white dot denotes the median.  
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Fig. 12 Coefficients of determination of the AUCs in eq. (3) between CFP and FRET-YFP in each 

quantification method. One dot corresponds one myotube. The black line is the regression of the 

AUCs of CFP and FRET-YFP.  
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Fig. 13 Quantification of signal activity of S6K and ATP concentration by applying the developed 

method. (A) Time-lapse of the FRET ratio image. Differentiated C2C12 cells stably expressing Eevee-

S6K were stimulated with 100 nM of insulin at 50 min. Differentiated C2C12 cells stably expressing 

mitAT1.03 were stimulated with EPS (10 ms with 50 V, 1Hz interval) at 10 min and continued for 15 

min. (B) A time series of the FRET ratio (FRET-YFP/CFP) in response to insulin (n = 90, eight stage 

positions) and EPS (n = 10, one stage position) quantified by two-component GMM and quantified by 
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Manual (n = 80, eight stage positions, insulin; and n = 10, one stage position, EPS). One blue line 

corresponds one myotube. The red dashed line indicates time points of insulin stimulation. The red 

filled area indicates a period of EPS. (C) Histograms of Pearson’s correlation coefficients of the time 

series of the FRET ratio between two-component GMM and Manual in response to insulin (Upper 

panels) and EPS (Lower panels).  
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Fig. 14 Insulin-dependent S6K activation in individual myotubes and cell population. (A) Time 

series of the FRET ratio (FRET-YFP/CFP) in response to various doses of insulin in individual 

myotubes. From Control to 100 nM, number of myotubes were n = 98, 102, 100, 97, 86, 103 and 98, 

respectively. One blue line corresponds to the time series of one myotube. The red line indicates the 

average of each time series. Lower right panel is the definition of the characteristics of time series. (B) 

The cell population response of the time series in (A). In each violin plot, box plots are shown in the 

inset, and a white dot denotes the median. The red line indicates the average series of each character.  
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Fig. 15 Correlation between the characteristics in individual myotubes and population. (A) 

Spearman’s rank correlation coefficients between the properties. All (n = 684) and Bootstrap (n = 700) 

indicate the correlations in all individuals and bootstrap subsets of population of myotubes, 

respectively. The bootstrap subsets in each dose data were generated by iterating 100 times to 

randomly sample 10 points and calculate the median. Cyan rectangles; the correlations higher in the 
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cell population than in the individuals, magenta rectangles; the correlation higher in the individuals 

than in the cell population, yellow rectangles; the reversed correlation between the cell population and 

individuals. (B) The difference in correlation coefficients between All and Bootstrap. N. S. (Not 

significant), *p < 10-3, **p < 10-5, ***p < 10-7. z score is a test static of the difference between two 

correlation coefficients (see Materials and methods). 
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Fig. 16 Correlation coefficient between the characteristics in each dose of insulin in individuals 

(All). The black and red dashed line indicates |r| = 0 and 0.5, respectively.  
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Fig. 17 Relationships between the characteristics in individual myotubes. (A) The characteristics 

showing the correlation higher in bootstrap subsets of population than in individuals. (B) The 

characteristics showing the correlation stronger in individuals than in bootstrap subsets of population. 

(B) The characteristics showing the reversed relationship in individuals and in bootstrap subsets of 

population.  



53 

 

Table 1 Parameters used for pre-processing. 

Parameter Value (pixel) Description 

median filtera 5 side length of filter window 

white top hatb 35 side length of filter window 

white top hatc 30 side length of filter window 

threshold sized 10000 threshold area of myotube 

(a) is the common value in detection of myotubes and detection of myotube centers. (b) is used for 

detection of myotubes. (c) is used for detection of myotube centers. (d) is used after watershed 

segmentation.  
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Table 2 Computation time. 

Step Mean±S.D. (sec) Max (sec) 

Detection of myotubes (Step II-i to II-iii)a 6.13±0.52 6.82 

Detection of myotube centers (Step II-iv to II-x)b 24.97±3.72 32.33 

Watershed (Step II-xi)c - - 

Background correction (Step III)d 2.94±0.84 4.73 

Because (a), (b) and (c) are batch processes, the computation times were measured for each dataset 

(1344×1024 pixels, 131 frames) with eight stage positions (n = 8). (c) was too fast to measure the 

computation time. Because of (d) is a sequential process for each image, the computation time was 

measured in each image (131 frames, eight stage positions, n = 1048). 

  



55 

 

Data Availability 

The datasets of time-lapse images, segmentation results and segmentation programs are available from 

our database (http://kurodalab.org/info/Inoue). 
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